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ABSTRACT 
 

This work evaluates the use of inverse least squares (ILS) and classical least squares (CLS) 

models for calibration of a diffuse reflectance spectrophotometer for on-line monitoring of 

the aqueous phase in a flotation cells. Both models use a Beer‟s law for the quantification of 

the metals. The formulated statistical models are compared to a proprietary Blue Cube model 

in terms of prediction ability to determine the potential applicability of the models. A diffuse 

reflectance spectrophotometry was used for simultaneous analysis of copper (Cu), cobalt 

(Co) and zinc (Zn) in the solutions. 

 

The laboratory set-up of Blue Cube instrument was used for the experimental analyses. The 

concentrations and matrix compositions of the samples are simulated according to Skorpion 

zinc mine plant conditions. The calibration samples were prepared using a simplex-centroid 

mixture design with the triplicates of the centroid run. The unknown or test samples were 

prepared randomly within the same concentration of the calibration samples. The effects of 

temperature and nickel concentration on absorption of the metals were evaluated in the 

following range, 20 – 80 ºC and 125 – 400 ppm, respectively. 

 

The statistical models (ILS and CLS) were calibrated from visible and near infrared (VNIR) 

spectra data of the calibration samples. A modified Beer‟s method was used as a 

preprocessing technique to convert the raw data into absorbance values. The manual 

wavelength selection procedure was used to select the wavelengths to be used in both 

models. The quality of the models was evaluated based on R
2
 and % root mean squared error 

(RMSE) values with 0.90 and 10% used as the guideline for the respective statistical 

parameters. 

 

Both ILS and CLS models showed good results for all three metals (Cu, Co and Zn) during 

their calibration steps. It was further shown that both models give worse predictions for Zn 

as compared to other metals due to its low relative intensity in the mixture. The derivative 

orders of absorbance spectra that were used to enhance the prediction results of Zn had no 

positive effect but they rather lowered accuracy of predictions. An increase in temperature 

was found to increase the intensities of the absorption spectra of all the metals while an 

increase in nickel concentration decreases the prediction ability of model. 
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The developed statistical models were compared to a Blue Cube model in terms of prediction 

ability using analysis of variance (ANOVA) test. The ANOVA results revealed that there is 

no statistical difference between the developed models and Blue Cube model since the F-

values for all the metals were below the critical F-value. Furthermore, the partial least 

squares (PLS) model shows an increased accuracy results for prediction of zinc metal as 

compared to both the ILS and CLS models. Finally, good comparisons of the statistical 

models results with atomic absorption spectroscopy (AAS) analyses were establish for the 

unknown samples. 

 

The study demonstrates that chemometric models (ILS and CLS) developed here can be used 

for quantification of several metals in real hydrometallurgical solutions as samples were 

simulated according to a plant conditions. However, in order to have confidence in the 

results of the models, a factorial-mixture design must be used to study the effect of 

temperature and nickel concentration. Moreover the models must be further tested and 

validated on the real samples from a plant. 
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OPSOMMING 

 

Hierdie werkstuk evalueer die gebruik van inverse kleinste kwadraatmetodes (IKK) en 

klassieke kleinste kwadraatmetodes (KKK) vir die kalibrasie van „n diffuse 

reflektansiespektrofotometer vir die aanlyn monitering van die waterige fase in flottasieselle. 

Beer se wet word vir die kwantifisering van metale vir albei modelle gebruik. Die omskrewe 

data-gebaseerde modelle is op grond van voorspellingsvermoë vergelyk met ŉ Blue Cube 

model, sodat die moontlike toepaslikheid van hierdie modelle bepaal kan word. ŉ diffuse 

reflectantie spektrofotometrie is ingespan vir die gelyktydige analise van koper (Cu), kobalt 

(Co) en sink (Zn) in oplossing. 

 

Eksperimentele analises is met behulp van ŉ laboratoriumopstelling met ŉ Blue Cube 

instrument uitgevoer. Die konsentrasies en matriks-samestellings van monsters is gesimuleer 

om Skorpion sinkmyn aanlegkondisies na te boots. Kalibrasie monsters is voorberei volgens 

ŉ simpleks-sentroïed mengselontwerp met drievoudige sentroïede lopies. Onbekende (toets) 

monsters is ewekansig voorberei binne dieselfde konsentrasie spesifikasies as die kalibrasie 

monsters. Die invloed van temperatuur en nikkelkonsenstrasie op die absorpsie van die 

metale is in die bestek van 20 – 80 ºC en 125 – 400 dpm, onderskeidelik, bepaal. 

 

Die data-gebaseerde modelle (IKK en KKK) is met sigbare en naby infrarooi (SNIR) spektra 

data van die kalibrasie monsters gekalibreer. ŉ Gewysigde Beer metode is vir data 

voorbereiding benut om rou data na absorbansie waardes om te skakel. Die handgolflengte-

seleksieprosedure is vir beide modelle gebruik om die golflengtes te kies. Die kwaliteit van 

die modelle is op grond van R
2
 en % wortel gemiddelde kwadratiese fout (WGKF) 

geëvalueer, met waardes van 0.90 en 10% (onderskeidelik) as riglyne vir hierdie statistiese 

parameters. 

 

Beide IKK en KKK modelle het vir hul kalibrasie stappe vir al drie metale (Cu, Co en Zn) 

goeie resultate getoon. Dit is verder getoon dat albei modelle die slegste voorspellings lewer 

vir Zn (vergeleke met die ander metale) as gevolg van Zn se lae relatiewe intensiteit in die 

mengsel. Afgeleide ordes van absorbansie spektra is gebruik om die Zn voorspellings te 

versterk, maar het geen positiewe effek gehad nie; inteendeel, voorspellingakkuraatheid is 
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verlaag. ŉ Verhoging in temperatuur het die intensiteite van die absorpsie spektra van alle 

metale verhoog, terwyl ŉ verhoging in nikkelkonsentrasie die voorspellingakkuraatheid van 

die modelle verlaag het. 

 

Die ontwikkelde data-gebaseerde modelle is met ŉ Blue Cube model vergelyk in terme van 

voorspellingsvermoë met behulp van variansie-analise (ANOVA). Die ANOVA resultate 

toon dat daar geen statistiese verskil tussen die ontwikkelde modelle en die Blue Cube model 

is nie, aangesien die F-waardes vir al die metale onder die kritiese F-waarde is. Die 

gedeeltelike kleinste kwadraatmodel (GKK) toon verder verhoogde voorspellingakkuraat-

heid vir sinkmetaal tenoor beide die IKK en KKK modelle. Ten slotte, goeie 

ooreenstemming van die data-gebaseerde modelresultate met atoomabsorpsie spektroskopie 

(AAS) analise is vir die onbekende monsters gevind. 

 

Hierdie werkstuk toon dat die chemometriese modelle (IKK en KKK) wat hier ontwikkel is, 

gebruik kan word vir die kwantifisering van verskeie metale in werklike hidrometallurgiese 

oplossings, aangesien monsters gesimuleer is volgens aanlegkondisies. Om egter verdere 

vertroue te hê in die modelresultate, sal ŉ faktoriaal-mengselontwerp toegepas moet word 

om die effek van temperatuur en nikkelkonsentrasie te ondersoek. Voorts moet die modelle 

verder getoets en gevalideer word op werklike monsters van ŉ aanleg. 
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CHAPTER 1: INTRODUCTION 

 

This chapter introduces the process of flotation and gives a number of reasons why a 

complex process like flotation must be monitored by on-line methods for better process 

control. A brief background on the on-line control methods such as on-stream analysers, 

image processing techniques and diffuse reflectance spectrophotometry (DRS) is given. From 

the basis of the success of DRS, the motivation and objectives of the study are laid out. The 

methods used for data collection and analysis are briefly discussed. The chapter concludes by 

giving the layout of the thesis. 

 

 

1 INTRODUCTION  

 

The consumption of valuable minerals is ever increasing in modern societies due to their 

usage in everyday life. Commodities, such as iron, coal and oil are used in large quantities to 

fuel economic growth in developing and developed countries alike. In addition, minerals 

produced in smaller quantities, like copper, gold and nickel, are also essential in everyday 

usage. Mining and mineral processes have become essential tools for obtaining the minerals 

that contribute to the growth of countries‟ economy. Of all the unit processes required to 

produce these commodities, froth flotation is the widely used one. Froth flotation contributes 

a major portion to mineral processing, not only because it is a mature process, but can also be 

easily implemented on large scale to process different mineral ores. It is used mainly for the 

separation of a large range of sulphides, carbonates and oxides prior to further refinement. 

 

 

1.1 Flotation Principles Overview 
 

Froth flotation makes use of the differences in physico-chemical surface properties of various 

mineral particles to achieve separation. In order for a process to take place, an air-bubble 
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must attach itself to particles so as to lift them to the water‟s surface (Wills, 1997). The 

flotation process involves many mechanisms that affect the froth‟s characteristics, which in 

turn determines flotation performance. It is also influenced by many manipulated variables, 

thus making it one of the most difficult processes to understand to date (Sauter and Ragot, 

2008). Reagents such as frothers, collectors, activators and depressants have an effect on the 

chemical environment of the flotation pulp since they can enhance or reduce the chances of 

bubble-mineral aggregate formation. 

 

 It is important to control these reagents so that the good froth properties can be achieved. A 

brief description of each reagent is given as follows (Bartolacci et al, 2006): 

Frother reduces the average bubble size within the pulp and leads to the formation of a 

separate froth phase above the pulp. However, it can cause froth instability due to excessive 

addition. 

Collector makes the valuable mineral hydrophobic so that it can be uplifted by air bubbles 

which further control the froth mobility and drainage rate. 

Activator regulates the chemical nature of mineral surfaces so that they become hydrophobic 

due to the action of the collector. It has been reported that too much activator can lead to 

froth collapse (Ylinen, 2000). 

Depressant is used to increase the selectivity of flotation by rendering certain minerals 

hydrophilic, thus preventing their flotation and is used to control the pH of the system.  

 

Despite decades of research, flotation is a complex process that is still not understood 

sufficiently well to model and control on an advanced basis and one of the main reasons is 

the lack of on-line sensors that can be used to measure the state of the flotation system. 

Computer vision, (Aldrich et al, 2010), is a possible exception to this, but the technique has 

not yet proved useful to assess the metallurgical composition of the aqueous phase of the 

flotation system. Basically, there are two control methods commonly used, namely off-line 

and on-line. In this work, the focus will be on the latter due to their quick analysis time over 

the former when employed on an industrial scale. Furthermore, the urgent need for better 

information has led to increased effort to develop analytical sensors. This type of sensors 

have brought a lot of improvement in the control and monitoring of complex process like 

flotation as will be illustrated in the section that follows. 
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1.2  Importance of an On-line Analyses 
 

Most sulphide ores have traditionally been processed using pyrometallurgical process to 

produce a matte that goes through further refining, however copper, nickel, zinc and all other 

minor minerals can be produced using other extractive metallurgy. Recent advances in 

hydrometallurgy have resulted in mineral processing operations that can be applied in this 

area. Most of the sulphides of low grade have traditionally been processed by concentrating 

through a froth flotation process, since the reagents used are very selective to a specific 

mineral to be processed.  

 

The on-line determination of these metals plays a significant role during the extraction 

processes. There will be improvements in the whole plant system efficiency. When 

evaluating the significance of on-line analytical methods Figure 1.1 will be used. The figure 

shows the schematic diagram of the flotation process of a typical ore. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Flow sheet for industrial flotation process of typical mineral  

 

From Figure 1.1, it can be observed that if the quantity of the mineral in stream labelled 1 

from the feed tank is known, the amount of chemical reagents (collector and frother) used 

during the flotation process will be proportional to mineral content in that particular stream. 
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Thus a high recovery of mineral can be achieved through an effective process. The plant will 

save a great deal of money from the cost of reagents. Furthermore, by knowing the mineral 

content in stream labelled 2, the efficiency of the flotation process can be determined. Then 

the whole plant performance can be improved due to the fact that mineral content will be 

easily quantified in the solution. Both streams 1 and 2 can be determined by an online 

analysis method, which will be developed in this research project. These methods can 

perform fast analysis, thus can detect plant disturbances within a short period of time. 

 

The on-line measurements are non-intrusive, hence there is no interference with the process, 

and thus plant operations run smoothly without interruptions. Moreover on-line analysis 

reduces the health hazards that are usually experienced during the sampling process for 

laboratory analysis (Sowerby, 2002). Moreover, the laboratory analyses were subjected to 

large sampling errors whereas on-line methods provide high quality sampling data through 

the analysis of large continuous volumes of material at hand (Gaft et al, 2007).  

 

 

1.3 Control in Mineral Processing 
 

Due to the benefits brought by on-line analysis, there are a number of techniques that had 

been developed for process control. These mostly include include on-stream analysers based 

on the use of data from the electromagnetical spectrum, such as optical or (near) infrared 

sensors. Furthermore, Bartolacci et al, (2006) observed that human eyes, are insufficient 

monitors for highly complex processes like flotation, hence an on-line machine vision system 

is needed for those particular applications. The on-stream analysers like XRF analysers make 

sampling time longer by about 15 minutes when employed on large plants, where there are 

several slurry lines. Moreover, some of the computational algorithms used to interpret the 

signals are yet sufficiently robust for automated use in real plant situations. 

 

Optical fibre sensors have found a wide application in many industries including the 

pharmaceutical, food processing, and mineral processing. There are several reasons for this 

wide application. For example, the instruments are relatively low cost and can easily be 

operated without any health hazards. Additionally and most importantly, the sensors use 

diffuse reflectance spectroscopy for their measurements. In this technique, light is scattered 
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and reflected through the sample of interest (Lottering and Aldrich, 2006; Haavisto et al, 

2008).  

De Waal and Du Plessis (2005) used the optical fibre sensor to determine the mineral 

composition of heavy sands. The research work done by Haavisto et al, (2008) on the optical 

monitoring of the flotation process formed the basis in application of optical fibre in mineral 

processing. In their work, an optical fibre sensor was combined together with statistical 

models to control and monitor the copper-zinc flotation plant and an XRF analyser was used 

to update the calibration model. The methods developed in each application are plant 

specific, however they can be extended to other and different plant conditions. 

 

 

1.4 Motivation of the Study 
 

The Blue Cube Systems Pty (Ltd) is located in Stellenbosch, South Africa and has become an 

established manufacturer of on-line, mineral industry instruments for analysis of dry, slurry 

and aqueous solution samples. The Blue Cube instruments provide a reliable means to predict 

unknown samples in real industrial applications. However, little is known with regards to 

these instruments, as the models used to calibrate them are proprietary information. 

 

Thus the focus of this study is to assess the potential application of diffuse reflectance 

spectrophotometry (DRS) as an on-line analytical tool in the Skorpion zinc flotation plant 

situated in Namibia. The data measurements and interpretation are considered in this research 

to get a better understanding of the principles behind the DRS, such as used by Blue Cube, to 

contribute to improvements of plant performance. 

 

 

1.5 Objectives of the Study 
 

As diffuse reflectance spectrophotometry has not been used for on-line estimation of copper 

(Cu), cobalt (Co) and zinc (Zn) before, the main goal of this study is to assess the feasibility 

of on-line sensors in this context. Specific objectives that will be pursued are the following: 

 

i. Calibration of diffuse reflectance spectrophotometry on a laboratory scale using 

standard solutions that are prepared according to statistically designed experiments. 
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ii. Assessment of the classical least squares (CLS) and inverse least squares (ILS) 

techniques to calibrate the sensor. 

 

iii. Assessment of the effect of temperature and contaminants on the response of the 

sensor. 

 

iv. Finally, comparison of the different statistical calibration models in terms of 

predictive ability related to test samples. 

 

In order to achieve the stated objectives, the method that will be employed involves analysis 

of standard solutions on a laboratory scale and measurements of their absorption spectra. In 

this application, the reflected visible light from different solutions was measured using the 

Blue Cube optical fibre sensor coupled to spectrophotometer, which recorded the spectra of 

the metals. The spectra were captured via a desktop computer and processed using CLS & 

ILS techniques. The statistical models developed will be used to determine the concentration 

of the unknown solutions. The results of these models will be verified by partial least squares 

(PLS) model and atomic absorption spectrometry (AAS) technique. 

 

 

1.6 Layout of the Thesis 
 

The layout of the thesis can be summarised as follows: 

 

 Chapter 1 deals with the natural occurrences and use of base metals, more importantly 

highlighting their essential role in our society and also stated the significance of on-

line as compared to off-line methods. Finally, the research objectives and background 

of the problem to be addressed were examined.  

 

 Chapter 2 presents the literature review of work performed in the field of online 

analysis for hydrometallurgical solutions and provides the reader with an overview of 

the work done to date, thus indicating the strengths and some weaknesses of existing 

on-line techniques. In addition, there is essential theory on spectroscopy concepts, 

which will help the reader to understand why some factors were investigated in the 
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study. It further provides a better understanding of the concept of the Blue Cube 

optical fibre sensor. 

 

 Chapter 3 is concerned with the theory of calibration models, specifically 

investigating both classical and inverse least squares (CLS & ILS) techniques. The 

points discussed include the mathematical background of each technique and their 

application in aqueous media. The chapter is concluded by indicating the advantages 

and disadvantages of the techniques over one another.  

 

 The focus of Chapter 4 is mainly on the methodology of the project. The experimental 

design used for calibration purpose is laid out. The major part of this chapter is 

closely concerned with the laboratory experimental work whereby the synthetic 

samples are used to develop and validate the calibration model. The features and 

operations of the laboratory set-up of the Blue Cube optical fibre sensor instrument 

are given in details. 

 

 Chapter 5 investigates the results and discusses the laboratory tests. The results are 

compared to the theoretical knowledge so as to evaluate the applicability of the 

developed models on the large industrial scale.  

 

 The last chapter contains the conclusion of the research. Lastly future work is 

recommended towards improvement in the accuracy and precision of both the ILS and 

CLS models. 
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CHAPTER 2: LITERATURE REVIEW 

 

The following literature survey details the strengths and weaknesses of on-line methods or 

techniques, namely on-stream analysers and diffuse reflectance spectrophotometry (DRS). 

The survey illustrates that on-stream instruments have high accuracy owing to their 

elemental composition analysis because each element is determined at specific wavelength. 

However, they pose hazards to operating personnel and sometimes require intense 

computational work with complex algorithms. On the other hand, DRS techniques use 

statistical models which produce high accuracy with less computational work. However, the 

techniques have a large operating window for spectral analysis that can be affected by 

interference from external sources. The chapter wraps up by examining the factors that affect 

spectroscopical methods. 

 

 

2 REVIEW OF ON-LINE SPECTROSCOPY IN MINERAL 

PROCESSING 

 

2.1 On-line Spectroscopy Measurements 
 

The massive demand for copper (Cu), cobalt (Co) and zinc (Zn) metals have led to the 

development and growth of extractive metallurgical plants to produce these metals in very 

large quantities; hence in order to ensure that such a goal is met, the unit operations and 

processes must be maintained at optimum conditions. This can be successfully done by use of 

on-line analysis to avoid the loss of any metal along the process. 

 

The efficiency of the plant depends on the routine analysis of each element after each and 

every unit operation so that process engineers can have the best tools to optimise and control 

the process (Gaft et al, 2007). On-line analysis is most suited for this case to provide 

immediate and continuous data and feedback necessary for implementation as suggested by 
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Sowerby (2002) and Gaft et al (2007). In one flotation application, it was observed that on-

line spectroscopic techniques produce grade measurements for 24 hours as opposed to plant 

operators who cannot check it regularly (Bartolacci et al, 2006).  

 

Moreover, on-line analysis using optical sensors have many advantages in leaching or froth 

flotation plants because there is a broad range of analysis, meaning that metals of interest will 

be read simultaneously and results will be available on-line. Ultimately this provides a good 

opportunity to improve the process (Gaft et al, 2007). On the other hand, the manual 

sampling and laboratory analyses which are done by the plant operator require a great deal of 

time and relatively expensive equipment (ICP-MS or AAS) to perform (Paula et al, 2004). 

 

Furthermore, manual analyses in the laboratory are subjected to large sampling errors 

whereas sensors provide high quality sampling data through the analysis of large continuous 

volume of material at hand (Gaft et al, 2007). The on-stream analysers, like XRF instrument, 

have very high accuracy since they can determine the elemental composition of a sample at 

hand. High accuracy and speed mean the plants can reduce their reagent consumption and 

ultimately achieve higher financial returns. 

 

Finally, on-line analysis methods are suitable where the sampling or measurement is 

particularly difficult. For instance, the measuring of dissolved oxygen during the leaching 

process of nickel and copper via the off-line methods yield poor predictions because the 

atmospheric oxygen may interfere with the measurements. Therefore, in order to get accurate 

results the oxygen must be measured within the vessel so as to obtain a real time 

concentration, thus allowing the process to be monitored effectively. 

 

In conclusion, the use of spectroscopy in mineral processing had given attention for the last 

decade because these techniques or instruments require very little (if any) sample preparation. 

Moreover, there is no contact with a sample to be analysed. These benefits had not only 

added stability in plant performance but also given rise to the development of more on-line 

techniques. In this review, the focus will be given mainly on two techniques namely, on-

stream analysers and diffuse reflectance spectrophotometry (DRS). The latter will be dealt 

more in details as this study is formulated based on its principle. The fundamental principles 

and applications of DRS in mineral processing will be also discussed. 
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2.1.1 On-stream Analysers  

 

Among the techniques and instruments used in mineral processing, X-ray fluorescence (XRF) 

analysers are one of the most developed machines with many industrial applications. The 

main advantage of XRF analysers is their ability to determine the elemental composition of 

any given substance (Haavisto and Kaartinen, 2009). Each element in the sample corresponds 

to a specific reflected fluorescent using X-rays to radiate the sample. When an XRF analyser 

was used as an on-line analysis tool, the plant operators were relieved from a great deal of 

tedious work done for laboratory samples analyses. The XRF can perform simultaneous 

analysis of all elements, whereas operators must run each element individually. 

 

Remes et al, (2007) used an XRF analyser in a flotation process to determine the amount of 

copper for both concentrates and tailings streams. In their study, they evaluated the effect of 

measurement and cycling time for the analyser, which were related to the profits of a plant. 

The first-order kinetic model was developed to derive the relationship and it was found that 

measurement cycles affect the plant‟s economical returns while the measurement time does 

not. There was an assay delay of about 20 minutes between two consecutive XRF 

measurements, thus leading to a decrease in plant performance. In addition, Haavisto and 

Kaartinen, (2009) stated that an XRF analyser alone cannot detect plant disturbance within 10 

minute periods. This means that faster measurements and control were needed to improve the 

plant performance. 

 

Gaft et al, (2007) reported that the laser induced breakdown spectroscopy (LIBS) machine, 

which has much shorter sampling time, was used to measure magnesium, iron and aluminium 

in phosphate rocks for the purpose of ore sorting. The LIBS machine was tested successfully 

in both laboratory and plant analyses using real samples for the laboratory optimisation. 

When the developed technique was compared to routine analytical laboratory analyses, it was 

identified that laboratory analyses were more accurate than an on-line analyser. However the 

LIBS machine shows to operate for about year without experiencing any mechanical 

problems. The major drawback of the technique is that the machine analyses only the surface 

of the sample, hence there is lack of representative data of the entire sample. 
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In another study by Biesinger et al, (2007), X-ray photoelectron spectroscopy (XPS) was 

used to evaluate surface chemical mechanisms in a copper flotation process. The main aim of 

their study was to examine whether the loss of valuable mineral was due to surface chemistry. 

Samples were collected from different stages of the process, that is, feed stream, rougher, 

concentrates and tailings. The XPS spectra and images were used to control and monitor the 

plant performance (Biesinger et al, 2007). The XPS was found to be a semi-quantitative 

technique; hence back-up analysis from laboratory experiments was needed for effective 

monitoring of copper content along the process. 

 

In a search for a method that can perform full quantitative analysis, Coughill et al, (2002) 

described a laser technique for the measurement of particle size in mineral slurries. They 

argued that the technique had much improved advantages as compared to previous techniques 

since the particle analyser had the ability to operate on undiluted and non-electrically 

conducting slurries. The analyser was developed from the laboratory using real samples from 

the plant. Ultimately the tests indicated that solid content has no effect on the measurements 

of the mineral under study. 

 

Coughill et al, (2002) stated that the CSIRO particle size analyser was tested on lead/zinc ore, 

magnetite ore, titanium oxide ore and iron ore. All the slurries tested displayed a strong 

correlation, about 95%, between the laboratory and the analyser results. Furthermore, lower 

detection limits were observed for all the minerals measured. However, the analyser takes 

approximately five minutes to perform the measurements due to the low frequency of 

ultrasonic and de-aeration periods. This can cause the plant to suffer from fast disturbances 

usually experienced in slurry plants.  

 

In general, the on-stream analysers are quite effective in monitoring and controlling plant 

processes, because they can determine elemental composition of a sample with high 

accuracy. The major difficulty in their usage includes exposure of radiation via the 

instruments necessary for on-stream analysing. Hence, the plant personnel require extensive 

training. Moreover, their sampling time is questionable when faster disturbances are 

experienced in plant situations (Haavisto and Kaartinen, 2009, Remes et al, 2007). 
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2.1.2 Diffuse Reflectance Spectrophotometry 

 

2.1.2.1 Principles of the spectrophotometry 

 

Diffuse reflectance spectrophotometry (DRS) involves the applications whereby the reflected, 

scattered or emitted light from the sample is measured as a function of wavelength. The 

optical methods employed in DRS techniques are based on ultraviolet (180 – 380 nm), visible 

(380 – 780 nm) and near infrared (780 – 2500 nm) radiation (Skoog et al, 2008). This study 

makes use of the combined visible and near infrared (VNIR) reflectance spectroscopy and the 

wavelengths range from 400-1000 nm. The fundamental concept in DRS is the interaction of 

radiation of light with the measured sample. The incident intensity (Io) from the light source 

is passed through the sample of interest and the absorption of radiation by a sample results in 

transmitted intensity (I) as shown in Figure 2.1. 

 

 

Figure 2.1: Attenuation of an incident beam through absorption of radiation by sample 

 

The interaction of light and sample can be related together to give absorbance (A) or 

transmittance (T) of the absorbing sample as given by equation 2.1. Moreover if the light is 

travelling through a homogeneous and non-scattering medium, as it is the case in this study, 

the relationship of absorbance is given by Beer-Lambert law as illustrated in equation 2.2. 

The absorbance of the absorbing sample is directly proportional to its concentration (C) and 

path length (b). 

 

    (2.1) 

 

      (2.2) 
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There are quite number of theories and phenomena used to describe the relationship between 

absorbance and the content of the sample. Each phenomenon depends on the specific problem 

at hand. Recently, the uses of the optical sensors have shown great contributions in industrial 

applications of an elemental analysis in the areas of food processing, pharmaceutical and 

mineral processing. Even though the method of analysis is not the same in each case, the 

principles behind all the measurements are similar because they are based on DRS (Lewis et 

al, 2007). These types of sensors have the advantage of needing no external calibrations for 

sample variations encountered in the plant (Schneider, 1998). The discussion of the sensors 

will centre on chemically modified optical sensors and optical fibre sensors, as will be given 

in the next two sections that follow. 

 

 

2.1.2.2 Chemically Modified Optical Sensor 

 

The distinguishing feature of a chemically modified optical sensor (CMOS) is that a thin film 

of active chemical reagent is usually bonded or coated onto the sensor surface to selectively 

enhance specific properties of the sensor (Carla et al, 2009). The reagent that is incorporated 

or immobilised in the sensor increases the chemical, electrochemical, and transport features 

of the sensor in a chemically designed way. A chemically modified sensor poses the 

advantages such as high selectively, high sensitivity, very low detection limits, and provides 

linear response for an analyte under study (Bari et al, 2009 and Buke et al, 2009). 

 

Paula et al, (2004) conducted the study for the determination of copper ions using a sol-gel 

optical sensor. The experimental set up was arranged in such a way that a sample could be 

continuously circulated in the flow system and detected by the sensor. The method employed 

in this study was found to be highly selective for copper because of the stable complex 

formed with a complexing agent. When the sensor was applied to real samples, the sensor 

gave the results similar to that of inductively coupled plasma mass spectrometry (ICP-MS). 

However, Paula et al, (2004) stated that the sensor showed degradation in the performance, 

and thus the accuracy was greatly decreased in those applications. This lead to regeneration 

of the sensor by using special regenerating reagents like picolinic. 

 

The regeneration of CMOS has been common practice in the application of these sensors. 

Pons et al, (2005) mentioned that complexing agents used to improve the short life-time of 
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the sensors were very expensive and they added value to the operating costs of the plant. In a 

search for a method that can avoid sensor regeneration, Bari et al, (2009) developed a method 

that utilises the sol-gel silica sensor incorporated with cyanex to separate copper, nickel and 

zinc ions within a one sample solution. Atomic absorption spectrometry (AAS) was used to 

detect and determine the wavelength of each element from the spectra and recoveries above 

97 % were obtained for all metals. Despite the high recovery percentages seen, the method 

suffers from longer analysis time because different acid strengths must be used to achieve a 

good separation and other operating conditions must be varied. 

 

From literature searched, most studies done have been applied on a laboratory scale using 

simulated samples or employed with a small volume of real samples (Guell et al, 2007). Even 

though the CMOS has high selectivity and sensitivity for a particular metal, almost all the 

methods developed could not be applied on industrial scale since the sensors needed to be 

regenerated regularly because their repeatability last for a short period, approximately two 

months (Abbaspour and Moosavi, 2002). One of the developments to compensate for the 

shortcomings of the CMOS was the use of optical fibre sensors. The optical fibre sensors 

have proven to work for a longer time, on the scale of years rather than months, without 

experiencing any mechanical problems (Gaft et al, 2007). 

 

 

2.1.2.3 Optical Fibre Sensors 

 

The optical fibre sensor coupled to NIR transmittance spectroscopy was employed to 

determine the binary mixture of ammonia aqueous solution. Zachariassen et al, (2005) 

studied both the off-line and on-line developments of the sensor at laboratory and industrial 

scales respectively. The PLS was used to analyse the analytical spectra of the samples in 

order to derive the model. They found that the calibration model derived from the laboratory 

analyses did not work well because the samples used seemed to underestimate the amount of 

interferences expected in a real plant situation. Furthermore, Zachariassen et al, (2005) 

showed that the sensor performed very well when it came to controlling the ammonia 

concentration at an acceptable level, even though the effect of temperature was not modelled 

very well in PLS. The results obtained were accurate and reproducible with the product of 

high degree of purity. 
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In mineral processing applications, the use of an optical fibre sensor coupled to visible near 

infrared (VNIR) spectrophotometer was applied to monitor zinc flotation. Haavisto et al, 

(2008) conducted a study to identify and determine elemental composition of the final grade 

of the slurry. The elements analysed were zinc, copper and iron. The laboratory tests were 

done by using the samples collected from the plants and a PLS model was employed to 

analyse the analytical spectra of the metals. The already existing XRF analyser in the plant 

was used to update the PLS model, thus improved results for monitoring were obtained. It 

was further shown that mineral composition has an effect on the spectra of the minerals, that 

is, smaller size mineral have a better reflectance compared to larger minerals. 

 

Haavisto et al, (2008) indicated that the PLS model cannot monitor the process accurately 

after any process failure. They performed further studies on the zinc flotation plant and 

suggested a new method called recursive PLS model to compensate for the already 

mentioned shortcoming (Haavisto and Hyotyneimi, 2009). During the laboratory set up, they 

found that solid content in the range of 15 - 40 % had no effect on the spectra of the minerals. 

Furthermore, they found that the recursive PLS model provides more accurate predictions 

than the non-updated PLS model. The optical fibre sensor in this particular study provided 

almost continuous control of flotation cells because of improved sampling time on the scale 

of seconds as compared to traditional XRF analyser which takes up to ten minutes. The 

model gave poor predictions for the tailings due to low concentration of the minerals in that 

particular stream. 

 

From the zinc case study, Haavisto and Hyotyneimi, (2009) developed a multichannel VNIR 

spectrum analyser for the monitoring and control of several slurry lines. They further utilised 

a recursive PLS model on real plant data and achieved accurate predictions for concentrates 

and middlings streams whereas tailing were poorly predicted. The high frequency sampling 

of the VNIR model was important in identifying the cause of oscillation. The XRF analyser 

aided in the detections of other oscillations observed in the process. Haavisto, (2010) made 

use of a recursive singular spectrum analysis (SSA) to analyse and isolate the oscillations 

finding flow rate to be the cause of the oscillation. The recursive SSA method improved the 

performance of the whole plant due to the fact that rapid oscillation can be easily detected.  

 

In this present work, focus would be on the use of a Blue Cube optical fibre sensor as an 

online analysis tool in leaching and froth flotation processes in industries. The sensor also 
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uses the principle of diffused reflectance spectrophotometry, which is the wavelength region 

of visible near infrared (VNIR) light, to measure the mineral content of the sample. Lottering 

and Aldrich, (2006) demonstrated that the sensor can be used for the compositional 

determination of valuable minerals during the separation process of the mineral sands. The 

sensor provides high accuracy results and shows a promising application in industrial mining 

since the samples used in the laboratory experiments have a similar composition to those 

found in real plants. 

 

In addition, de Waal and du Plessis, (2005) used a pilot set-up of an electrostatic separator to 

study the effect of roller speed, ore temperature, voltage and feed rate on the separation of a 

heavy mineral sand. The composition of the product stream (non-conducting material) was 

analysed by a Blue Cube optical fibre sensor. The high accuracy and repeatability of the 

sensor lead to continuous monitoring of the sand composition. The control system was built 

and tested for installation in a plant. After several tests, Blue Cube Company developed and 

installed several on-line instruments for mineral processing applications such as heavy 

mineral sand mine, flotation and leaching industries. de Waal, (2007) mentioned that all 

instruments use similar optical components and data processing methods. The calibration 

procedure is done by relating the mineral spectrum with its known concentration. 

 

In summary, the use of VNIR spectroscopy in mineral processing is a promising technology 

when it comes to providing solutions to problems encountered in mineral industries, 

especially the flotation process. The current studies have shown that VNIR spectra and the 

derived statistical models have high accuracy when used for monitoring and the control of 

large mineral plants (de Waal, 2007, Haavisto, 2010). Another added benefit is the increased 

stability in plant operation, as illustrated in Figure 2.2, where the Blue Cube optical fibre 

sensor is used in a flash flotation process to control the percentage of chromite in the 

concentrate cell to be within 3-4 %. The improved plant performance results in a higher 

financial return for the company (Haavisto et al, 2008, de Waal and du Plessis, 2005). The 

Blue Cube optical fibre sensor does not introduce new concepts but rather uses the already 

existing concept of VNIR spectroscopy. These spectroscopic concepts are used to bridge the 

gap that exists in industrial and commercial mineral processing applications 
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Figure 2.2: Chromite variation before and after implementation of Blue Cube optical sensor  

 

Despite the benefits and increasing number of on-line monitoring techniques in DRS 

applications, there are still some limitations encountered. The main downside of VNIR 

reflectance spectroscopy is the large number of external factors affecting the shape of the 

obtained spectra. The spectroscopy has a large spectrum operating window from 400 – 1000 

nm and this can be affected by the lot of interferences. The most influential factors that affect 

the VNIR spectra include, but are not limited to, particle size, mineral composition and 

temperature of the sample. 

 

 

2.2 Factors affecting the performance of Spectroscopy 
 

2.2.1 Particle Size of Mineral 

 

The particle size of the mineral sample has a great effect on the spectral intensities. Michaud 

et al, (2007) determined the influence of particle size and mineral phase on LIBS signal. In 

their study, samples (Fe2O3 and Fe3O4) from an iron ore plant were analysed using a LIBS 

laboratory analyser. It was further determined that the spectral intensities of the minerals 

increase with the reduction in particle size of the ore. In a different case study, Haavisto et al. 

(2008) used a VNIR optical sensor to monitor and control different stages of a zinc flotation 

process. It was observed that the variation in the solids content has effect on the shape of the 

spectrum. The samples with less solid content were found to have high intensities values. In 
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general, the possibility of multiple scattering and reflected light occurring decrease as the 

particles size of the mineral increases. 

 

 

2.2.2 Mineral Composition 

 

The type of mineral and composition of the sample also have the effect on the absorption 

properties of mineral of interest. In the VNIR region, each mineral has a specific wavelength 

where it can absorb radiation however the measured absorption spectra tend to be masked by 

the interferences. Haavisto et al, (2008) found that the samples taken from the tailings section 

of flotation have lower intensity peaks compared to the ones from concentrate section.  It was 

further observed that tailing samples have less concentration of zinc, thus their absorption 

ability is decreased. Oestreich et al, (1994) found that there is correlation between 

composition of the flotation froth and colour vector angle. They further proved that different 

minerals absorb different quantities of light. It is therefore imperative to ensure that during 

the VNIR measurements, there is little to no interferences of any foreign materials or at least 

their quantity is known. 

 

 

2.2.3 Temperature of Sample 

 

Molar absorptivity (ε) as given by equation 2.2 in Section 2.1.2.1 is specific and constant for 

each species in solution and wavelength. This constant is a fundamental molecular property 

which is directly proportional to temperature (Benalia et al, 2006). This means that 

temperature needs to be kept constant during the VNIR analysis of material at hand. Figure 

2.3 illustrates the effect of temperature on absorption spectra of nickel and was redrawn from 

the explanation given by Yurii et al, (2005) and Kumagai et al, (2008). From a study 

performed by Kumagai et al, (2008) on the absorption spectra of lithium and magnesium salt, 

they evaluated the effect of the concentration of salts, temperature and the size of the cations. 

It was found that the increase in temperature shifts the intensities of maximum absorption 

peaks to higher wavelengths and absorbance values. 
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Figure 2.3: UV-VIS absorption of nickel complex and its dependence on temperature (after 

Kumagai et al, (2008)). 
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CHAPTER 3: CALIBRATION MODEL 

 

The mathematical backgrounds of the ILS and CLS calibration models are presented first, 

followed by their applications in spectral analysis of the mixtures. The traditional ILS and 

CLS models use selected wavelengths and the whole spectrum wavelengths respectively. The 

literature review reveals that both models have similar accuracy when applied to simple 

mixtures but for the complex mixtures ILS shows improved performance due to its inverse 

nature of the algorithm. However, the CLS models have the advantage of qualitative nature 

for relating absorptivities to the individual constituents in the mixture. The chapter further 

shows that algorithms of the models can be modified to improve their quantitative analyses. 

 

 

3 REVIEW OF CALIBRATION MODELS 

 

The combination of the diffuse reflectance spectrophotometry (DRS) sensor and multivariate 

calibration techniques had been proven that it can be used in process monitoring of flotation 

plant. Haavisto et al,  (2008) used a PLS model to control the zinc flotation process with the 

optical spectrum of slurries. In general view multivariate calibration models had been applied 

successfully in a number of applications including, but not limited to, pharmaceutical, food 

processing and mineral processing industries. The most used models up to date are PLS, 

PCR, ILS and CLS whereby the first two have received attention due to their ability to study 

non-linear systems. However, the last two are mostly also applied for quick analysis and 

linear systems. The present study will utilise the benefits of ILS and CLS models since the 

system under this study is thought to be linear due to very dilute concentrations of the metal. 

Furthermore, there is an added advantage during the modelling because both models depend 

on Beer-Lambert Law (Haaland et al, 2000 and Dinc et al, 2003) and the law works very 

effectively for low concentrations. 

 



  CALIBRATION MODELS 

Page 21 

3.1 Classical Least Squares Methods 
 

3.1.1 Theory 

 

The classical least squares (CLS) method is usually used to refer to a multivariate least 

squares technique that utilizes the physical model as the basis of the method. The CLS 

calibration and prediction algorithms are also based upon an explicit linear additive model, 

called the Beer-Lambert law, which can yield excellent estimates of the pure component 

spectra as they exist in the sample matrix. Hence there is significant chemical and spectral 

information available in the calibration step of the algorithm. 

 

Let us begin the calibration step with the following assumption that states that at each 

frequency or wavelength, there is linear relationship between the concentration (C) of an 

absorbing species and its spectral absorbance (A) when a source of light is passed through 

such species. The Beer-Lambert law relation is defined as follows:  

 

       (3.1) 

 

where  is the absorptivity of the absorbing species and b is the path length that light travels 

through the solution. Since absorptivity is characteristic for each species and path length is 

unvarying, then k can be defined as the product . Then adding random error (e) in the 

spectrum at each frequency, equation 3.1 can be written as: 

 

       (3.2) 

 

The random error is assumed to be normally distributed with an expectation of zero and 

variance proportional to T
-2

 where T is the transmittance value of the spectrum at each 

frequency. 

 

Most of the applications in real samples involve more than one species in the solution, thus 

the Beer-Lambert law can be represented in the matrix form and the following notation in the 

equation should be taken into consideration; upper-case bold letters are used for matrices, 

lower-case bold for vectors and italicised lower-case letters for scalars. Further includes ^ to 
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indicate estimated values, 
T 

to denote a transposed matrix, 
-1 

for matrix inversion and 
+
 for the 

pseudoinverse of a matrix. The basic CLS model can be expressed as: 

 

       (3.3) 

 

Where A is the p  matrix of the absorbance spectra from the n samples at the p 

frequencies, 

C is the m  reference concentration matrix containing m components 

K is the p  m matrix of the m pure-component spectra of all spectrally active 

components 

EA is the p  matrix of spectral errors in the model 

 

The linear least-squares solution for K for the model in equation 3.3 from a series of 

calibration samples with known component concentrations is given as 

 

      (3.4) 

 

During the CLS prediction step, the first assumption made is that of a zero baseline which 

allows the absorbance spectrum of the unknown sample to be expressed as: 

 

      (3.5) 

 

where Au represents the spectral matrix of the unknown samples to be predicted and Cu is the 

concentration matrix containing m components in nu unknown samples. Eu is the matrix error 

in unknown spectrum. The concentrations of the unknown samples can be estimated, first by 

substituting eq. 3.4 into eq. 3.5 and then solving by least squares to yield 

 

Cu = AuK
T
(KK

T
)

-1
      (3.6) 

 

 

3.1.2 Application in Spectral Analysis 

 

Classical least squares (CLS) multivariate modelling has long been used for the qualitative 

and quantitative analyses of infrared and absorption spectra of aqueous solutions. It has been 
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shown that CLS methods are very effective and accurate for the analysis of simple well-

characterised linear systems or gas phase methods which obey Beer‟s law and when all 

components interfering with the spectra of the analyte are known (Griffth, 1996). The 

development of CLS-based methods had lead to improvement in spectral analysis of complex 

and nonlinear systems. 

 

Haaland et al, (1999) used a sol-gel coated sensor for trace detection of organic components 

(acetone and isopropanol) in aqueous solutions and then applied CLS and partial least squares 

(PLS) methods to analyse the spectral data. The CLS method yielded poor quantitative results 

for isopropanol as compared to PLS. On the other hand, the CLS method demonstrated 

superior qualitative interpretation. In their results, they showed that PLS weight-loading 

vectors can yield misleading information if the spectral variance of the analyte is too small 

compared to the total variance. 

 

After the failure of CLS methods in quantifying organic molecules at trace level, Haaland et 

al, (2000) proposed a method to detect and quantify a number of samples containing 12 

elements by using inductively coupled plasma atomic emission spectrometers (ICP-AES). 

The spectral data was analysed by both CLS and PLS methods. The CLS, using a multi-

window of the spectra showed improved accuracy, detection limits and quantitative range for 

elements under investigation and was superior to the PLS method for very low concentrations 

of the element. This advantage of the CLS method over PLS is contributed to the fact that 

ICP-AES uses benefits of CLS multivariate methods that rely on explicit additive linear 

spectral models, since the emission signal from ICP-AES tends to be also additive and linear 

over a large range.  

 

After the experiments were performed and spectra collected it was discovered that many 

samples were contaminated by carryover of some of the elements from samples analysed 

before. The concentration-correction procedure was performed for each element and was 

incorporated during the CLS calibration but there was no correction for the effect of 

carryover in the calibration of PLS due to its algorithm. Furthermore, the poor performance 

of PLS was attributed to a small number of calibration samples. Haaland et al, (2000) 

indicated that CLS method experienced problems with the detection of arsenic when 

palladium was introduced as interference. This proves that presence of interference affect the 

quality of the model because both elements have the same emissions at 189 nm. Moreover, it 
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was thought that at higher concentrations of the elements, CLS methods would give poor 

prediction due to nonlinearity behaviour of the elements (Skoog et al, 2008).  

 

Since the traditional CLS methods cannot accurately account for the nonlinearities of the 

system because the explicit equations required to model these effects are not known, Haaland 

and Melgaard, (2000) developed a new CLS-based algorithm called prediction-augmented 

classical least squares (PACLS) to compensate for those effects. The PACLS method has the 

capability of empirically measuring the source of spectral variations not included during CLS 

calibration and integrating them in the CLS prediction portion of the analysis. The traditional 

CLS and PACLS methods were used to analyse dilute aqueous solutions of urea, creatinine 

and NaCl. The squared correlation coefficient (R
2
) values of urea from the methods were 

0.628 and 0.9960 respectively. 

 

The poor prediction results demonstrated by the CLS method in the work of Haaland and 

Melgaard, (2000) explain why CLS has not been used in the presence of interfering analyte 

concentrations that are not available for calibration purposes. The PACLS has shown the 

ability to accommodate the presence of unmodelled components in the prediction samples. 

Since the empirically derived spectral shapes might have errors, the PACLS method will 

suffer degradation in sensitivity analysis. This means that the effect of error on the 

predictions must be thoroughly studied. In addition, PACLS requires that all spectral 

components be included as concentrations during calibration and thus is too restrictive in 

many real industrial applications (Haaland and Melgaard, 2001). 

 

A new hybrid algorithm that has features of CLS, PACLS and PLS has been developed for 

quantitative analysis of dilute aqueous solutions. The new hybrid method (PACLS/PLS) takes 

the advantage of the qualitative interpretation of CLS, the special capabilities of PACLS 

outlined above and retains the flexibility of PLS (Haaland and Melgaard, 2001). PLS has 

gained widespread use due to its flexibility to define a calibration model even when all the 

spectrally active components are not known (Mutihac and Mutihac, 2008). The hybrid 

PACLS/PLS and ordinary PLS were applied to spectral data and it was pointed out that the 

hybrid method outperform the predictive ability of ordinary PLS when new sources of spectra 

variation were introduced. 
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Haaland and Melgaard, (2001) claimed that the hybrid algorithm would achieve a better 

transfer of multivariate models between various spectrometers, which was impossible with 

current methods at that time. They further demonstrated that better results were accomplished 

when recalibrating the PLS algorithm rather than updating the PACLS algorithm during the 

prediction step. Furthermore it was observed that recalibration of the cross-validated model 

takes a long time for computationally purposes. If this hybrid method can be used in real 

industrial applications, then process monitoring and control will be ineffective since the 

updating of prediction data will be slower than the occurrence of the source of errors. 

 

Since the hybrid PACLS method needs recalibration so that the model can be updated, 

another algorithm called concentration residuals augmented classical least squares 

(CRACLS) was developed to allivate problem of recalibration. The CRACLS method retains 

improved qualitative benefits of CLS, yet it has the flexibility of PLS because it repeatedly 

augments the calibration matrix of reference concentrations with concentration residuals 

estimated during the CLS prediction step (Melgaard et al, 2002). The PLS and combination 

of CRACLS with PACLS methods were applied to spectral data of dilute aqueous solutions 

of glucose, urea and ethanol. 

 

Melgaard et al, (2002) indicated that CRACLS/PACLS provided the prediction results 

comparable to PLS for validated samples studied when there was instrument drift. However, 

CRACLS was rapidly updated during prediction without the need for time consuming cross-

validated recalibration. Moreover, CRACLS was updated only using spectral information, 

while PLS required both spectral and concentration information during recalibration. Finally, 

similar prediction results were obtained with CRACLS when using all concentrations 

simultaneously or using the concentration of each component at a time. 

 

The research team of Haaland and co-workers at Sandia National Laboratories in New 

Mexico have performed exceedingly valuable work concerning the development of CLS-

based methods. They improved the traditional CLS method from its qualitative nature to a 

mature stage able to perform quantitative analysis for both linear and nonlinear systems. The 

augmented classical least squares (ACLS) methods developed showed great promise 

compared to PLS and principal component regression (PCR). Sometimes ACLS outperforms 

them. Steady progress has been made where the CLS-based methods were applied to dilute 

aqueous solutions on laboratory scale. 
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3.2 Inverse Least Squares Methods 
 

3.2.1 Theory 

 

The inverse least squares (ILS) method is used to refer to the multivariate least squares 

technique that is based on the inverse of Beer-Lambert‟s law. The ILS method eliminates the 

drawback of the classical least squares (CLS) method which requires the inclusion of all 

interfering species and their concentrations in the model. In the ILS method, the calibration 

and prediction algorithms are built upon the concentrations of the analytes which are 

modelled as a function of absorbance measurements (Ozdemir, 2008). 

 

Lets begin the calibration algorithm of ILS method by first rearranging the Beer-Lambert law 

as given by an equation 3.1 to yield the following expression: 

 

        (3.7) 

 

where all the parameters are the same as defined in the CLS calibration algorithm. Once 

more, the path length and absorptivity will be held constant and their reciprocal ( ) will 

be replaced by P. Random error will also be added to give the following mathematical 

expression: 

 

       (3.8) 

 

In many real world problems, the number of components usually appears to be more than one 

and hence the number of absorbance points included in the model increases. Equation 3.8 can 

be more concise if it is represented in the matrix form. The notations and symbols used in the 

CLS method matrices still apply here. 

 

         (3.9) 

 

Where C and A are the same as explained in equation 3.3 

P is the m  matrix of the unknown calibration coefficients relating the components 

concentrations to the spectral intensities 
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  EC is the m  matrix errors in the concentrations not fitted by the model 

 

When a set of calibration samples have been made with known concentrations of each 

sample, and their absorbance spectra has been measured and recorded, the reciprocals of the 

linear coefficients of absorptivities, or P matrix, can be determined as: 

 

       (3.10) 

 

The linear least-squares solution for P, in the model equation 3.10, from a series of 

calibration samples with known component concentrations is given with P as the estimated 

calibration coefficients. 

 

      (3.11) 

 

During the prediction step of the ILS method, the unknown concentrations are obtained 

simply by direct multiplication of the unknown spectrum (Au) by the P matrix determined 

from equation 3.11. 

 

       (3.12) 

 

where  is the estimated concentration of a component of interest in an unknown mixture. 

 

The ILS method is more robust than the CLS method because it is not restricted by the fact 

that the concentrations of all components must be known. Furthermore, it is not limited by 

the component interactions since the interactions can be treated as impurities. Thus the ILS 

method can analyse more complex systems as compared to CLS method. 

 

Despite the mentioned advantages of ILS, there are two major shortcomings of the method. 

First, the number of wavelengths in the calibration spectra cannot be more than the number of 

calibration samples. Therefore the model cannot be improved by increasing the number of 

wavelengths at which the absorbances are measured. Secondly, Ozdemir, (2003) stated that 

the selection of suitable wavelengths at which the absorbances have to be measured is a 
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cumbersome restriction in ILS method. The wavelength selection strategies, such as stepwise 

wavelength selection, must be sorted out to provide the best fit for the model. 

 

 

3.2.2 Application in Spectral Analysis 

 

The inverse least squares (ILS) methods have been used for both qualitative and quantitative 

analysis of infrared spectra of different substances. It has been shown that the ILS method is 

more effective for quantitative than qualitative analysis of spectral data. The quantitative 

nature of ILS can be improved by modification or extension of calibration and prediction 

algorithms of the traditional ILS method (Paradkar and Willams, 1997). The ILS method has 

become a popular method for simultaneous chemical analysis and is being studied 

extensively in a number of different fields, such as petroleum, pharmaceutical and food 

industries. 

 

Haaland and Thomas, (1988) used four multivariate calibration models (PLS, PCR, CLS and 

ILS) to perform the quantitative and qualitative analysis of spectral data of the simulated 

samples. The system that was analysed was a three-component mixture where the sum of the 

number of molar percentage was 100 % in all 16 samples prepared. The CLS method was 

found to have the best qualitative results whereas ILS has the poorest. However, the ILS 

method demonstrated a higher prediction ability quantitatively as compared to the CLS 

method since it was not only able to estimate the analyte concentrations but also provided the 

chemical and physical properties of the samples from the infrared spectra. 

 

The inverse nature of the ILS model has made it applicable in many applications. For 

example, Blanco et al, (1999) used the technique to determine the active organic compound 

and solvent used in nasal spray. The calibration and validation steps of the model were done 

using the synthetic samples that were prepared by statistically designed experiments, namely 

factorial design. The resulting model was tested and applied to manufacturing samples, and 

the samples were predicted with high accuracy with correlation variation values of less than 

2.00 %. In the study, they further showed that particles in the suspension affected the spectra 

of the sample of interest. 
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Since the ILS method requires selection of wavelength region, Blanco et al, (1999) used the 

manual selection (MS) and automatic forward stepwise selection (AFSS) procedures. It was 

found that MS performs better than the AFSS method based on their relative standard errors. 

Using high-performance liquid chromatography (HPLC) on manufacturing samples, as a 

reference method, the results indicated that MS gives slightly better predictions and shorter 

analysis times as compared to HPLC. Later in the analysis, the ILS model was modified by 

incorporating correction terms in the calibration equation to eliminate the effect of 

interferences. 

 

The modified form of the traditional ILS method that can result in an effective prediction for 

unknown samples was proposed by Ozdemir, (2008). This genetic ILS model (GILS) was 

used to study the diesel fuel parameters whereby the boiling point, total aromatics, viscosity, 

density, cetane number and freezing point were determined. Large numbers of samples, over 

100, were used for the calibration and prediction steps of the model. The near infrared (NIR) 

spectra were used as the input data. The model used a genetic algorithm for wavelength 

selection since it can reduce data sets for modelling purposes. 

 

Before a genetic model can be applied to test samples it should be validated by a half-

validation procedure since it can reduce over-fitting and computation time (Ozdemir, 2008). 

The GILS method has a strong prediction ability for most diesel fuel parameters excluding 

freezing point and cetane number that have standard errors of prediction greater than 10 % 

and R
2
 values less than 0.900. Even though Ozdemir, (2008) concluded that the GILS method 

was very successful for selecting and extracting valuable information to develop the accurate 

model from such a large number of calibration samples, the problem with the presented 

method is that it is very tedious because each parameter of diesel fuel has its own calibration 

and prediction model. 

 

The use of ILS and its modified forms has gained importance in spectral analysis of 

pharmaceutical products. The main two reasons being, they can resolve overlapping spectra 

of the mixtures and do not need any pre-treatment procedures prior to the analysis as 

compared to other conventional methods, like HPLC (Dinc et al, 2003). Dinc and Ustundag, 

(2003), carried out a study to investigate the accuracy of the CLS, ILS, PLS and PCR models 

for the quantification of binary mixtures. The mixture design was used to prepare calibration 
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samples. On the basis of F-test results, it was found that there was no statistical difference 

between the models and the results of the models were further supported by HPLC analysis. 

 

From the literature reviewed, most of the researchers have shown that the ILS model 

performs better than the CLS model. Although a study by Dinc and Ustundag, (2003) had 

found that a similar accuracy was obtained for both methods. This may be attributed to the 

nature of the mixture under investigation. For example, a simple mixture can be predicted 

with high accuracy and precision since there is limited interactions between the components 

of mixture (Cirovic, 1998). Nagaraj et al, (2007) performed a case study to quantify mixtures 

of pharmaceutical products using the CLS, ILS, PLS and PCR models. The correlation 

coefficient values in the prediction steps for CLS and ILS models were 0.947 and 0.997 

respectively. Another advantage of ILS shown in this study is that it can be combined with a 

derivate technique to give better and more reliable results. 

 

The application of ILS models in spectral analysis of both UV and NIR spectra data have 

become useful tools in many processing areas. In almost all applications, the techniques are 

found to be promising routine analysis tools since their analyses are faster and more reliable 

compared to conventional methods like HPLC and gas chromatography (GC). Even in cases 

where the ILS model underperforms, it can be modified to increase its prediction ability 

(Ozdemir, 2008). Lastly, they have maintained high accuracy in both simulated and 

commercial samples. 

 

Despite such promising progress, the CLS and ILS models were only applied to dilute 

aqueous solutions on laboratory scale using very small volumes of samples. The question that 

remains is what will happen if the same methods are applied on large industrial scale where 

other factors with differing magnitude, such as plant disturbances (flow rates, pressure and 

temperature), take place frequently. Table 3.1 shows a comparison of the prediction ability of 

the CLS and ILS models based on spectral analysis. The “good” and “poor” in the table 

indicates the performance measure of each model in respect to the specific application shown. 
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Table 3.1: Comparison of CLS and ILS in terms of spectral analysis 

Model 

Qualitative Analysis Quantitative Analysis 

Simple 

Mixture 

Complex 

Mixture 

Simple 

Mixture 

Complex 

Mixture 

CLS Good Good Good Poor 

ILS Good Poor Good Good 
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CHAPTER 4: EXPERIMENTAL WORK 

 

 

The chapter starts with the review of the experimental design, namely the simplex-centroid 

mixture design, and further illustrates that statistically designed experiments do reveal 

hidden and valuable information about the interactions between the constituents of the 

mixture with few experiments. After the experiments had been designed, the procedure for the 

samples’ preparation was comprehensively laid out based on the plant conditions. Next, the 

description of a laboratory set-up of a Blue Cube optical fibre sensor instrument is explained 

in details. Finally, the method for data collection of raw spectra and software programs used 

for data analysis are presented and their usage description is briefly explained. 

 

 

4 EXPERIMENTAL WORK 

 

The previously discussed multivariate calibration models in the last chapter require a suitable 

selection of the calibration samples. The selection is necessary because of the collinearity 

effect that affects the mathematical computation of the algorithms. Experimental design is 

usually used to partially overcome the problem of this effect because a few number of 

samples that covers a larger domain can be chosen. This fact was also supported by Cirovic, 

(1998) where it was found that the increase in number of parameters‟ levels during the design 

reduces absolute error for prediction. It was also pointed out that a calibration set should have 

the same or at least very similar nature, as that of the samples to be predicted (Haaland et al, 

2000). Thus the experiments must be properly designed for an effectiveness of the calibration 

models. 
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4.1 Review on Experimental Design 
 

4.1.1 Motivation for Experimental Design 

 

In most cases experimental work is done by changing levels of one factor at a time in an 

unsystematic way in order to try and find the optimum conditions of complex systems, such 

as mixtures of components. However, as shown by Fisher (1925), changing one separate 

factor at a time (COST) does not give any information about the position of the optimum in 

the common case where there are interactions between factors. Therefore the COST approach 

yields an optimum far from the true value. 

 

There are multiple problems associated with the COST approach as explained and discussed 

by Fisher, (1925) which are summarised below: 

1. Does not lead to real optimum conditions of the experiments 

2. Inefficient, unnecessary many runs 

3. Provides no information about what happens when factors are varied simultaneously 

4. Provides less information about the variability of the response 

 

In order to overcome the problems that are encountered in the COST approach method, 

statistical experimental design, also known as design of experiments, must be employed. This 

is the methodology of how to conduct and plan the experiments in order to extract the 

maximum amount of information in the fewest number of runs (Christine and Montgomery, 

2008). There are several designs available to date, specifically factorial, composite and 

mixture designs, and each depends on the type of research problem and the knowledge of the 

researcher toward the design. Here are basic steps normally considered when performing a 

design (Leardi, 2009): 

 

1.  The purpose of the experiments – this defines the goals one wants to achieve from the 

experiments, especially the relevance of the information to be extracted. This first step 

determines the type of design to be used e.g Composite, mixture etc. 

 

2. Examine the factors that can have the effects – the selection of the factors must be 

based on scientific knowledge of the subject at hand and not on the personal 

preference of the researcher. 
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3. Plan the experiments – once important factors are identified, their levels must be set 

and the knowledge of the process under investigation plays another important role 

here. Normally screening experiments are done to check the levels for actual 

experiments. 

 

4. Run the experiments – this is the most essential part of the design since the results 

obtained are going to be used to build the regression model. The experiments must be 

carried out carefully to avoid personal and instrumental errors. 

 

5. Data analysis – this last step converts all the raw data from the experiments into 

useful information for determining which factors affect the process at hand. In most 

scenarios regression models and surface response graphs are used for that purpose but 

the latter was found to be more effective in determining the interactions between the 

factors. 

 

In most cases, it is found that the outcome of the experiments yield irrelevant information for 

the description of the system being studied hence the researcher needs to go to step 3 to 

redefine the level of factors or eliminate some factors from the design (Leardi, 2009). Then 

the remaining steps can be repeated. There are quite a number of applications where the 

experimental designs are effectively utilised to study the laboratory and industrial systems 

and thus, reducing the cost of time and resources in those situations. 

 

The importance of the experimental design can be seen from a study of Alfantazi and Valic, 

(2003) whereby they realised that factorial experimental design can be effectively utilised to 

determine the effects that affect the process. A linear relationship regression model was built 

and the main effect and the interactions were found to be statistically significant based on 

probability values (P-values) less than 0.05. The results from the design show a good 

agreement when compared to the experimental results with a R
2
 value of 0.996. 

 

In general, statistical experimental designs provide a mathematical framework for changing 

all pertinent factors simultaneously to achieve results that allow the analysis of interaction 

between the factors. In most cases, the interactions are the driving force in an experiment 

(Alfantazi and Valic, 2003). In this project, the simplex-centroid mixture design is used to 



  EXPERIMENTAL WORK 

Page 35 

run the experiments. The background together with the application of the mixture design will 

be given in the section that follows. 

 

 

4.1.2 The Concept of Mixture Design 

 

Most of the processes use the addition of two or more components to produce the desired 

product. Take, for example, the formulation of the paint and extraction solvents. In a mixture 

experiment, the independent variables are proportions of different components in a mixture. 

When the mixture components are subject to the constraint that they must sum to one, there 

are standard mixture designs for fitting standard models, such as simplex-lattice designs and 

simplex-centroid designs. In mixture experiments, the measured response is assumed to 

depend only on the relative proportions of the ingredients or components in the mixture and 

not the quantity of the mixture (Cornell, 1981). 

 

The positive outcome of a mixture design in mineral processing can be seen from a 

laboratory study performed by van Tonder et al, (2010) where they studied the effect of ore 

blends in platinum processing conditions. A simplex lattice design was employed for all the 

experiments. The regression model and graphical presentation of the results were used to 

determine the behaviour of the different ores. From the flotation experiments, the blends of 

„poor‟ore (salene) and „good‟ ores (Townland) show non-linear behaviour (van Tonder et al, 

2010). From this study, it can be concluded that properly designed experiments can reveal 

hidden behaviours of certain ore blends. 

 

Another important reason for performing mixture experiments is to evaluate the effect of 

interactions between the components of a mixture (van Tonder et al, 2010). The interaction 

effects can be divided into three categories depending on the behaviour of each component. 

These include synergetic, additive and antagonistic effects. The explanation of each effect is 

illustrated by an example of an extraction process as show in Figure 4.1. In this example, two 

pure solvents are mixed together to form one blend solvent. The rate of reaction is used as a 

response to determine the behaviour of each solvent. 

 

Firstly, it is assumed that both solvents A and B produce extraction percentage values of 60 

and 35 % respectively. The question that arises is what will happen if 50% of each solvent is 
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used to make a mixture. In order to answer this question, a mixture experiment must be 

performed and there are three possible outcomes that can be expected as explained here and 

also illustrated by Figure 4.1. 

 

1. The solvents can produce the average extraction percentage of the individual values to 

give 47.5 %. Any combinations of the catalyst will always give the linear behaviour 

as shown in Figure 4.1 by a straight line and this is known as the additive effect. 

 

2. Another possibility is the situation whereby the solvents produce an extraction 

percentage higher than the average value of the individual values, in this case, 65 %. 

This is shown by an upward curvature in Figure 4.1 that illustrates that any 

combination of the solvents will always give higher values than the averages values; 

this is known as the synergistic effect. 

 

3. The last option is that the solvents result in a lower extraction percentage than the 

average value, which in this case it is 31 %. The behaviour is shown by the downward 

curvature in Figure 4.1 and it is known as an antagonistic effect since any 

combination of the solvents will always give lower values than the averages. 

 

 
Figure 4.1: Illustration of interactions effect in mixture design 
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4.1.3 Simplex-centroid design of three components mixture 

 

The simplex-centroid mixture design for this study was designed through the use of Design 

Expert software from the category of experimental design. The three factors constrained-

mixture was generated with three replicates of the centroid point, thus resulting in 12 runs as 

shown in Table 4.3. The usual assumption made for mixture experiments is that the errors are 

independent and identically distributed with zero mean and common variance. Another 

assumption that is made, similar to that in factorial designs, is that the true underlying 

response surface is continuous over the region being studied. 

 

The design points correspond to all permutations of the pure blends at the vertices, the binary 

blends along the edge and finally permutations of the blends involving three components are 

found inside the triangle. The design is augmented with interior points to enhance the 

information gathered from the interior portion of the design (Statsoft, 2007). When 

examining Figure 4.2, the fractional percentages of the components in respective mixtures 

add up to a constant value which is 100%. 

 

 

 

 

In this design, the aim of the experiment is to model the blending surface response with some 

form of mathematical formulae as given by equations 4.1, 4.2 and 4.3. Thus a measure of the 

influence of each component individually and in combination on the response can be 

Figure 4.2: Three factor simplex-centroid mixture design 
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obtained. Below are the formulas for the three components (A, B and C) mixture models. As 

described by (Statsoft, 2007), an intercept cannot be fit to these reduced mixture models: 

 

Linear model 

 

       (4.1) 

 

Quadratic model 

 

   (4.2) 

 

Special cubic model 

 

    (4.3) 

 

Whereby are the coefficients for main factors A, B, C respectively and 

 are the coefficients for two interaction factors (AB, AC, BC) and finally  is 

a coefficient for three interaction factors (ABC).  , are the coded values for factors 

A, B, C respectively and y is a dependent variable value. Only one model will be fitted for 

this particular experiment. The selection criteria depends not only on the model that gives the 

best data fit but also on statistical parameters, like P-values and F-values, as will be 

demonstrated in discussion section. The use of mixture designs can reveal important variables 

that affect the process (Claeys-Bruno et al, 2008). It was also observed that the use of a 

mixture design can produce high efficiency results. 

 

 

4.2 Laboratory Samples Preparation  
 

The samples used for the laboratory experiments were prepared like the samples found in the 

industrial plant at Skorpion zinc flotation where the Blue Cube Hydromet instrument is 

installed to perform the analyses. The concentration of the metals, as measured by Hydromet 

at mine, is given in Table 4.1. Further simulation of the samples was done by generating the 

similar matrix composition by introducing the interferences in the samples. Based on the 

concentration values from Table 4.1, cobalt, copper and zinc were prepared with maximum 
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concentrations of 50, 500 and 50000 ppm respectively. This would ensure that the ranges of 

concentrations, as depicted in the table, were covered. 

 

Table 4.1: The metals' concentrations as found at Skorpion Zinc flotation plant 

Metal Low concentration (ppm) High concentration (ppm) 

Copper 200.0 400.0 

Zinc 30000 40000 

Cobalt 20.00 40.00 

 

 

4.2.1 Calibration and Test Samples 

 

The sulphate salts of copper, cobalt and zinc metals were used to make the solutions. The 

amounts of the salt used for sample preparation are reflected by the values in Table 4.2. Each 

salt was first dissolved in 100 ml of distilled water and then added to 50 mL of 98% sulphuric 

acid. The resulting solutions were diluted to 500 mL with distilled water to make the 

concentrations of 400, 2000 and 100000 ppm for Co, Cu and Zn respectively. High purity 

sulphate salts were preferred because low levels of purity in the metals‟ solutions could 

interfere with the absorption peak of the metals of interest. Therefore, purity plays a very 

critical role in this investigation. In industrial solutions the interferences present are cadmium 

and iron metals. The lower concentrations for the calibration and test samples were made by 

diluting the stock solution with distilled water. 

 

  Table 4.2: Preparation of stock solution using sulphuric acid 

Substance Mass (g) Purity (%) Source 

Copper Sulphate 3.929 99.99 Merck 

Zinc Sulphate 219.9 99.50 Saarchem 

Cobalt Suphate 0.954 99.99 Sigma Aldrich 

Nickel Sulphate 1.119 99.98 Sigma Aldrich 
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Since the analyses in this study involve the simultaneous determination of three metals in 

solution, the calibration set of samples were done using mixture solutions of copper, zinc and 

cobalt metals. The percentage of the concentrations of each metal, Table 4.3, were generated 

from a statistical three-component mixture design using Design-Expert software as illustrated 

in sub-section 4.1.2 of the experimental design. The solutions for the test samples were 

prepared in a similar manner as the calibration samples, except that the proportions of each 

metal were chosen randomly so that the total percentages of metals add up to 100 %. The 

maximum concentrations from which they were prepared are given in Section 4.2. The table 

showing the samples for the test set is given in Appendix A. 

 

Table 4.3: Sample solutions used for calibration procedure 

  Standard  

Percentage of each metal from maximum 

concentration (%) 

Run Order Zinc Copper Cobalt 

1 1 16.67 16.67 66.67 

2 6 0.00 50.00 50.00 

3 9 33.33 33.33 33.33 

4 4 50.00 50.00 0.00 

5 12 0.00 0.00 100.00 

6 11 16.67 66.67 16.67 

7 14 0.00 100.00 0.00 

8 10 50.00 0.00 50.00 

9 1 33.33 33.33 33.33 

10 19 66.67 16.67 16.67 

11 16 100.00 0.00 0.00 

12 2 33.33 33.33 33.33 

 

 

4.2.2 Samples for Nickel effect  

 

The nickel sulphate (NiSO4.6H2O) salt, weighing 1.119 g, was measured with an analytical 

balance. The salt was dissolved in distilled water together with 50 ml of 98% of sulphuric 

acid in a 500 ml volumetric flask to make solutions with concentrations of 1000 ppm. The 

nickel solution was added to the four different samples. The three component mixture 
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samples were prepared as shown in Table 4.4. The addition was in increment of 25 ml of 

1000 ppm nickel solution. More detail on this procedure is given in sub-section 4.4.2. 

 

Table 4.4: Sample solutions for determination of nickel interference effect 

 

Percentage of each metal from maximum 

concentration (%) 

Sample # Zinc Copper Cobalt 

1 70.00 0.00 30.00 

2 80.00 20.00 0.00 

3 0.00 60.00 40.00 

4 40.00 30.00 30.00 

 

 

4.2.3 Samples for Temperature Effect  

 

The samples used to evaluate the effect of temperature on the absorption spectra of metals 

were prepared as shown in Table 4.5 using the dilution method explained by equation 4.4 in 

section 4.2.1. The temperature of each sample was varied from 20 ºC to 80 ºC as will be 

illustrated in the methodology section under sub-section 4.4.3. 

 

Table 4.5: Sample Solutions for determination of temperature effect 

 

Percentage of each metal from maximum 

concentration (%) 

Sample # Zinc Copper Cobalt 

1 60.00 10.00 30.00 

2 50.00 25.00 25.00 

3 20.00 0.00 80.00 

4 60.00 40.00 0.00 

 

4.2.4 Blank Samples  

 

Blank samples were prepared in a similar manner as metals solutions, the only difference 

being that no analyte (copper, zinc and cobalt) was included in the preparation steps. Thus, a 

volume of 50 mL of 98% sulphuric acid was diluted to 500 mL with distilled water in a 
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volumetric flask. The acid was added slowly to avoid giving off excess heat as a result of 

mixing substances. In most cases, the measurement obtained from the blank was subtracted 

from the solution samples, so that only the response due to respective metals could be 

determined. 

 

All solutions were prepared daily at the Department of Process Engineering and were stored 

in plastic bottles before analysis at Blue Cube company. The plastic bottle has the advantage 

of being not easily corroded by acid as compared to glass sample holders that corrode easily 

and sometimes they can produce other metals, such as calcium, sodium, which cause 

interferences to the metals being studied. 

 

 

4.3 Experimental Set-up  
 

4.3.1 Instrument Description 

 

The instrument used for the analyses has four main essential parts that are used to run the 

experiments. These are interface, data processor, sample holder and spectrophotometer. The 

instrument has an optical sensor that uses the principle of diffused reflective spectroscopy to 

quantify each metal (Lottering and Aldrich, 2006). The spectroscopy has a wavelength region 

of roughly 350 nm (ultraviolet-visible (UV-Vis)) to 1100 nm (near infrared (NIR)) 

spectroscopy. Figure 4.3 is the photograph of the overview of the industrial prototype of the 

Blue Cube optical fibre sensor instrument with the features mentioned above and their 

functions explained as follows: 

 

The interface is connected to a main switch and it supplies a steady 12 volts to both the data 

processor and spectrophotometer. The data processor contains the computer processor which 

processes the data captured from the sample. The spectrophotometer is responsible for 

providing a light source to the sample. Optical fibres are used for the transmission of light 

from its source to the sample holder along with transferring the resulting signal from the 

solution to the data processor for interpretation. 
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Figure 4.3: Blue Cube optical fibre sensor instrument 

 

Lastly the sample holder contains a measuring cell which holds the solution to be analysed 

and has a volume capacity of 180 mL. All the parts described above are networked to the 

personal computer. The computer is used mainly for inputting experimental parameters like 

light intensity and execution time. In addition, it is suitable for graphically displaying results 

and the storage of data (spectra). 

 

 

4.3.2 Internal Calibration of the Instrument  

 

Before any experiment can be run, the internal calibration must be done on the instrument 

and this is usually done by performing two runs of reference, namely black and light. Black 

reference is the situation whereby the light is switched-off to correct the baseline and 

correspond to 100 % absorbance. The light reference involves baseline correction using 

distilled water but this time the light is switched on and this corresponds to 0 % absorbance. 

The important factor to be considered during the internal calibration is that the black 

reference is always performed first so that the light intensity can be stabilised for the 
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experimental runs. Then the light reference must be performed at least one hour after the 

black reference simply because the lamp requires that much time to warm up. 

 

 

4.4 Methodology 
 

4.4.1 Analytical Procedure: Calibration and Test Samples 

 

The instrument does not necessarily require further sample preparation prior to the analysis of 

metals‟ solutions. Therefore after the internal calibration of the instrument the standard 

solutions were run first before any other samples because they have known concentrations 

which make them easier for comparison with unknown samples. After that, the test metals‟ 

sample solutions can be run. The runs of the experiments for each set of samples were 

performed randomly to accommodate any instrumental error that may be experienced during 

the measurements, thus the error can be evenly distributed among the samples to be analysed. 

 

 

Figure 4.4: Laboratory set-up of Blue Cube instrument showing sample holder 

 

The solution to be analysed was poured into the sample holder through a white funnel until it 

came out at another outlet end of the holder as shown in Figure 4.4. The plastic clamp was 
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used to reduce the flow rate of samples by squeezing the inlet tube to the sample holder. The 

clamp aids in reducing the number of the bubbles in the cell, thus the effect of bubbles on the 

absorption spectra of the metals is also reduced. Furthermore, the solution inside the 

measuring cell was allowed to stabilise for 30 seconds before analysis was done. The start 

button on a remote control was pressed to start capturing the data and three scans, or repeats, 

were done for each sample for a period of six minutes.  

 

After each measurement, the funnel was detached from the stand to discard the solution into 

the waste container. The flow is in the reverse direction of the flow as illustrated in Figure 

4.5. The system switches off automatically after collecting the data from each scan. The 

important factor to consider is the cleanliness of the instrument through the entire 

experimental procedure. In between the runs of the samples, the system was washed twice 

with deionised water to remove interferences from the previous sample and finally rinsed 

with the sample to be analysed to improve the accuracy of that particular measurement. Once 

the instrument had been calibrated, the results of the other samples were obtained from the 

small display screen on the data processor after each scan. 

 

 

Figure 4.5: Blue Cube laboratory set-up during the drainage of used solution 
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4.4.2 Effect of Nickel 

 

In order to study the effect of nickel on the absorption spectra of the metals of interest, the 

prepared samples of four-component mixture solutions were spiked with a nickel solution in 

the increment volume of 5 ml starting from 5 ml to 20 ml. The concentration of nickel that 

was used in the experiments was 500 ppm. The mixing was done within the sample bottles 

originally used to contain only metals of interest. The analysis procedure was similar to that 

of calibration and test samples explained in section 4.4.1.1. The experimental set-up used for 

the calibration and test samples was also used for the evaluation of an effect of nickel and 

temperature and it is illustrated by Figure 4.6. The figure shows all the components that 

constitute a Blue Cube laboratory set-up. 

 

 

Figure 4.6: Schematic diagram of Blue Cube laboratory set-up 

 

 

4.4.3 Effect of Temperature on Samples 

 

The effect of temperature on the absorption spectra of the metals of interest was studied by 

varying the temperature of the samples at the following values: 20ºC, 40ºC, 60ºC and 80ºC. 

The water bath was used to maintain the temperature at each set value and a thermometer was 

used to take the readings of the samples to confirm the bath temperatures. Samples together 

with deionised water were allowed to attain the temperature of the bath for a period of one 
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hour before measurements were taken. The temperature of the solutions could not be 

increased to 100ºC, because the material used for the laboratory set-up could not handle 

temperatures of that degree. In addition, some leakages were observed at 80ºC, showing that 

the plastic tubes used were loosening up. The measurements and data collection procedures 

were similar to that of the calibration and test samples except that each solution was not 

discarded during the temperature increments. 
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CHAPTER 5: RESULTS AND DISCUSSION 

 

This chapter gives an overview of the results obtained together with discussion. The pre 

processing method used for conversion of data aided in both quantitative and qualitative 

analyses. Both CLS and ILS models gave good results for Cu, Co and Zn metals during 

calibration steps but only Zn metal gave poor prediction results. The derivative spectroscopy 

which was thought to enhance prediction results of Zn had no effect – rather it gave poor 

predictions with increasing order of derivative. The increase in temperature of a solution and 

presence of Ni as an interference affected the prediction ability of both models. Overall, the 

developed statistical (CLS and ILS) models have similar accuracy as the Blue Cube and PLS 

models. However, the PLS model shows improved results for Zn metal. 

 

 

5 RESULTS AND DISCUSSION 

 

The data interpretation in this study will be based on the modelling of ILS and CLS 

calibration models and a number of software programs will be used for this purpose. Each 

program will be specific for its own usage to extract the valuable information from the raw 

data. The results obtained will be compared with the literature already published and some 

recommendations will be given from there. 

 

Both models developed in this study involve two main steps, namely calibration and 

prediction. The discussion focuses mainly on the development, validation and evaluation of 

the models. Throughout the discussion only the ILS model will be discussed since it is 

assumed that the similar discussion will hold for the CLS model too. Because both models 

are linear models they should have similar behaviour in data interpretation. However, the 

exceptions will be given where the CLS model involves a different data manipulation. 
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5.1 Model Development 
 

The success of any model depends mainly on good formulation and development of its 

calibration step. A number of factors have to be taken into account in doing that, for example, 

the number of samples and complexity of the model algorithms. Before the calibration step of 

the models could be done, the data was first analysed to evaluate the repeatability between 

individual measurements and also to determine which techniques could be used as a 

preprocessing step. 

 

5.1.1 Data assessment 

 

The raw data from the Blue Cube optical sensor was given in units of transmittance counts 

whereby a high transmittance counts value shows that a sample had absorbed less light hence 

most of the light is transmitted. Figure 5.1 shows the four VNIR spectra of pure copper (500 

ppm), cobalt (50 ppm) and zinc (50000 ppm) metals together with their mixture (33 % of 

each metal) for a given wavelength region of 400 to 1000 nm. Each spectrum is the average 

of 54 individual measurements performed for that particular sample. Cobalt has the highest 

light intensity shown by maximum peak around 600 nm in Figure 5.1. The intensity for each 

sample depends mainly on the type of metal present in the sample solution because 500 ppm 

of Cu has lower intensity as compared to 50000 ppm of Zn as shown by their spectra in 

Figure 5.1. 

 

Figure 5.1: Raw spectra of pure Cu, Co, Zn and their mixture 
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As discussed and shown in Figure 5.1, each individual sample has a different intensity from 

the other. In addition, there is also a clear distinction in terms of the shapes of their VNIR 

spectra which further reveal different chemical properties between these metals. From these 

raw data spectra, it can be deduced that the optical sensor is able to differentiate between the 

metals in terms of their intensities which are based on their colour. Table 5.1 shows the 

statistical values of the four spectra show in Figure 5.1 to reflect the repeatability of 54 

individual measurements for the whole spectrum range (400 – 1000 nm). 

 

Table 5.1: Repeatability of Individual Measurements from Raw Data 

Metal 
Intensity Values (counts) 

Maximum Mean Standard Deviation (%) 

Copper 2262.72 600.105 0.5518 

Cobalt 2680.63 1130.14 0.5723 

Zinc 2587.16 1110.85 0.8858 

Mixture 2489.99 830.432 0.7553 

 

The percentage standard deviation (% STDV) was used for ease of comparison of the metals 

since they have different intensity values. The guideline used for a statistically acceptable 

value of % STDV is any value less than 2.5% and the results in Table 5.1 showed that there 

was a good repeatability between the individual measurements of each sample being analysed 

since the % STDV values for these samples were below 1%. Cu metal showed a lowest value 

among all the metals intensity values, thus indicating a good response of the sensor towards 

this metal, as will be demonstrated in the further discussion. 

 

 

5.1.1.1 Measurements Consistency 

 

Another technique to check the consistency of individual measurements is to make a 

hypothetical cut through the VNIR spectra of Figure 5.1 at wavelength of 760 nm and then 

plot the values in a stair-case graph as shown in Figure 5.2. The results for all the calibration 

and test samples are included in the analyses. The horizontal lines in Figure 5.2 represent the 

values for each run made within each sample being measured and each run consisted of 54 
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measurements or scans. The vertical lines in the same figure indicate the intensity values of 

the samples. The measurements shown with a red colour line are from test samples and they 

seemed to contain some noise in their values shown by the uneven horizontal lines. This 

problem of noise effect was eliminated by filtering the signal before doing further analysis. 

The third order smoothing filter that uses a Savitzy-Golay algorithm from MATLAB 

software was employed to reduce the noise level. 

 

 

Figure 5.2: Consistency of measurements during calibration and prediction steps 

 

 

5.1.1.2 Comparison of Calibration and Test data 

 

In order to have a model that can be effectively used for prediction of unknown samples, both 

calibration and test data must fall within the same concentration range for each metal. In the 

study for monitoring the concentration of ammonia, Zachariasen et al, (2005) underestimated 

the amount of interferences when preparing laboratory calibration samples – hence the PLS 

model developed was inaccurate when applied in industrial scale for prediction of unknown 

samples. Their case study had shown that a difference in composition of the calibration and 

prediction samples could lead to a poor model. 

 

The similarity between the calibration and test data will be evaluated based on the intensity 

values for all the samples that were obtained from the instrument. The two procedures 

namely, Sammon mapping and Kernel density were employed to determine the difference 
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between the two data sets. The first procedure is based on the working range within which the 

calibration and test data sets must fall so that similarity can be done as will be illustrated in 

detail in Figure 5.3 and second procedure evaluates if the samples from both two data sets 

behave in a similar manner throughout the whole wavelength region of the spectrum and this 

will be discussed and shown in more depth from Figure 5.4. 

 

Figure 5.3 shows a three-dimensional scatter plot of the results of Sammon projections from 

both calibration and test data sets. The Sammon mapping algorithm from the MATLAB 

software program was used to map high-dimensional space data (spectra raw data) to lower 

dimensionality space data (extracted three features data). The algorithm preserves the 

structure in both data space sets by ensuring the distance between the two points in original 

space (do.s) is similar to the distance in the projection space data (dp.s). Sammon, (1969) stated 

that the main aim of the algorithm is to minimise the error between do.s and dp.s by using a 

function called Sammon‟s stress. 

 

 

Figure 5.3: Sammon mapping for the calibration and test data 

 

Both calibration and test data fell within the same space as given by Figure 5.3. This figure 

clearly shows that there is a well defined similarity among the samples of the two data sets 
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a much larger range than the test set hence a test set can be predicted very accurately by the 

models. The value of the stress of mapping was computed to be 3.363×10
-5

 and the value 

indicated that there is an insignificant difference between the higher and lower space data 

sets; hence the mapping procedure was considered to be very accurate. 

 

In a general view, the previously discussed result showed a high degree of similarity between 

the two data sets. Thus to determine the similarities of the individual samples from both 

calibration and test data sets, the intensity value for each sample was plotted against the 

wavelength numbers. Figure 5.4, (A) and (B) show the kernel densities of the scaled 

transmittance values for both calibration data and test data, respectively. The data were scaled 

by using a standardisation method and the method has aided in the easier comparison of both 

data sets. 

 

The yellow colour in both sub figures indicates the area where most of the data points lie. It 

can be noted that the colour follows the same patter in both sub figures throughout the whole 

wavelength region and most of the points are found to be saturated around the wavelength of 

500 nm. However, in a calibration set the colour is more intense due to a larger number of 

samples used as compared to the test set. The results from the sub figures show that both 

calibration and test data sets are similar throughout the whole wavelength region which was 

used in the experimental analyses. Based on sammon mapping and kernel density methods, it 

could be concluded that there is no difference between the individual samples of both data 

sets. 

 

 

Figure 5.4: Comparison of calibration (A) and test data (B) for each wavelength number 
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5.1.2 Preprocessing Step 

 

A high degree of similarity between the calibration and test data sets within both the working 

concentration range and throughout the wavelength region clearly indicates that formulation 

of the models can be done. However, both data sets must be preprocessed before model 

formulation. The dimensionality of the data can be reduced by the preprocessing methods. 

There are quite a number of preprocessing techniques that can be used, and mostly, they 

depend on the calibration models to be used and the knowledge of the problem at hand. 

Haavisto et al, (2008) stated that a preprocessing step used in a PLS model did not only have 

an advantage of reducing the intensity of computational load but it also did not affect the 

performance of the model. 

 

Most of the studies had used mean-centred spectra to preprocess the data and it was found 

that the intensity of each component in the mixture can be clearly identified (Haaland et al, 

1999). In this study the raw data was converted to absorbance values by using the principles 

of Beer-Lambert law which states that absorbance of any given component is directly 

proportional to its concentration. The absorbance of a metal of interest in the solution is 

approximated by a given formula from equation 5.1. 

 

        (5.1) 

 

where Isolvent is the intensity of the light that passes through the solvent only. In this case, a 

blank sample as described in section 4.2.4 was used. Isolution is the intensity of light obtained 

from a sample composed with solvent (blank) and an analyte of interest. The approximation 

holds for all the samples used in the study because of their dilute concentrations that follow 

the principles of Beer-Lambert law as stated above. 
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Figure 5.5: Absorption spectra of pure Cu, Co and Zn together with their mixture 

 

The raw data of all the VNIR spectra were transformed into absorbance values and Figure 5.5 

shows the absorption spectra of pure Cu, Co and Zn metals together with their mixture. The 

wavelength region between 950 and 1000 nm is affected by a lot of noise possibly due to 

instrument drift and this region was discarded for a further data analysis. The transformation 

has aided by showing clearly maximum peak of each metal and it can be observed that Cu 

absorbed maximum light at around wavelength region of 800 nm. Since Cu metal has the 

highest maximum absorption peak among the metals, a preliminary conclusion at this point 

could be that a quantitative analysis of copper in the mixture will be relatively easy to carry 

out as compared to other metals. 

 

The maximum absorption peaks for cobalt and zinc could not be visible from Figure 5.5, thus 

the wavelength region between 400 nm and 560 nm was enlarged to illustrate their peaks. 

The resulting spectra are shown in Figure 5.6 whereby Co and Zn exhibit maximum 

absorption peaks at wavelength of 510 and 430 nm respectively. The peak for Zn is not as 

sharp as that of Co because of weak interactions that exist between the radiation light and Zn 

ions. 
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Figure 5.6: Absorption spectra showing maximum peaks of pure Zn and Co  

 

Furthermore, the maximum absorption peaks observed from the spectra in Figure 5.5 and 5.6 

aided in qualitative analysis of the metals since each metal has a maximum peak at the 

specific wavelength number. The transformation of spectra into absorbance values added an 

advantage to a wavelength selection procedure to be used in the calibration and prediction 

steps of the models. When using the raw spectra for modelling purposes, as shown in Figure 

5.1, it was impossible to select the wavelength region for each metal since the spectra had 

totally overlapped and masked each other. 
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1. ILS model – the number of selected wavelengths cannot exceed the number of 

calibration samples. This is a big restriction in the calibration step of model since the 

larger the number of wavelengths, the better prediction can be obtained. The selection 

process became very tedious and sometimes impossible. 

 

2. CLS model – in this case, the selected wavelength number does not depend on the 

number of calibration samples. However, it should be considered that too many values 

selected result in an over fitting of the model and poor prediction. In both models a 

great care must be taken during the selection procedure. 

 

Table 5.2: Selected wavelength region for each individual metal 

Metal 
Wavelength region (nm) 

ILS model CLS model 

Copper 796 – 802 796 – 802 

Cobalt 509 – 514 509 – 514 

Zinc 435 – 440 438 – 449 

 

Table 5.2 shows the wavelength region that was selected and used to perform the calibration 

steps of both ILS and CLS model. After the selection, the algorithm for the calibration step 

was formulated from the statistical toolbox in MATLAB software program. The 

proportionality constant (P-matrix) to be used in the prediction step of the models was 

calculated from the measured absorbance of the calibration samples and their concentration 

values as given by equation 5.2, whereby C and A are the concentration and absorbance 

matrix of calibration samples respectively: 

 

      (5.2) 

 

The calibration steps of the models were evaluated based on the correlation coefficient (R
2
) 

between the actual and their predicted values, and percentage root mean squared error (% 

RMSE) values given by equation 5.3 and 5.4 respectively. Before each statistical parameter 

was computed, the actual values of the metals in solutions and predicted values from the 

models were rescaled to 0 – 100 %. The rescaling procedure had added advantage that the 

calibration and prediction performance of the models can be easily compared among the 
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metals since now RMSE values will be in dimensionless units (%) of both the calibration and 

prediction ranges. 

 

     (5.3) 

 

     (5.4) 

 

where Ypred is a value predicted by the model and Ytheor is a theoretical value given by a 

design for calibration samples. Lastly, Ymean is a mean value of n number of measurements 

being performed for a particular metal. All the values were expressed in percentages. 

 

The good accuracy and precision of the model is determined by the R
2
 values close to 1.00 

and % RMSE values less than 10. Table 5.3 show results from the ILS and CLS models after 

their calibration algorithms had been computed. It is evident that the results of the CLS model 

are not as good as that of ILS model and also that one statistical parameter cannot be used 

alone to determine the precision of the models. For instance, the high R
2
 value does not 

necessary reflect that the theoretical and predicted values are high degree of correlation but 

other parameters like P-value and F-value must be calculated to reach a conclusion about the 

quality of the model. 

 

Table 5.3: Results from the calibration steps of ILS and CLS model 

Metal 

R
2
 Value RMSE Value (%) 

ILS model CLS model ILS model CLS model 

Copper 0.9956 0.9978 1.9048 2.7545 

Cobalt 0.9947 0.9488 2.1070 7.0215 

Zinc 0.9984 0.9174 3.1447 10.056 

 

From Table 5.3, zinc has a sligthly higher % RMSE value compared to copper and cobalt 

results, however all the values for the metals fall within the acceptable limit of 10%. The 

accuracy and precision of the calibration steps of both models were found to be satisfactory 

on the basis of % RMSE and R
2
 values, thus the models can be used for the prediction of the 
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unknown samples. This can be further examined from the scatter plots in Figure 5.7, 5.8 and 

5.9. A solid line in each scatter plot shows the linear regression fit between the measured and 

model values, whereas the dotted lines show 95 % confidence interval limits for an 

estimation of good fit for the ILS model. For all the figures, the majority of the data points 

fall within the interval limit, thus reflecting good accuracy for the model. The results shown 

here and onwards are only for the ILS model, the calibration graphs of all the metals for the 

CLS model are given in Appendix B.1. The fitted equations for the linear regression lines are 

also shown on the graphs. 

 

 

Figure 5.7: Calibration graph for the Cu metal using ILS model 

 

 

Figure 5.8: Calibration graph for the Co metal using ILS model 
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Figure 5.9: Calibration graph for the Zn metal using ILS model 

 

 

5.1.4 Influence of number of calibration samples 

 

Before the overall evaluation of the ILS model can be done in terms of the prediction ability, 

it was worthwhile to examine the effect of the number of calibration samples on the 

prediction ability of the model. Cirovic, (1998) stated that the few number of samples than 

the components in a mixture leads to unstable mathematical results, for example, it becomes 

quite impossible to solve for the P-matrix as given by equation 5.2. On the other hand when 

there is large number of calibration samples, the model can be over fitted hence prediction 

will become poor. 

 

Moreover, there is also the effect of collinearity in the spectra with a large calibration data. 

Collinearity effect occurs due the fact that absorbance values of the spectra simultaneously 

increase and decrease as the concentrations of components in a mixture change. Hence the 

concentration values of the test samples to be predicted are highly correlated. Again, in this 

case, the mathematical solutions with each component in a mixture become very unstable. 
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Figure 5.10: The effect of calibration samples on prediction ability of ILS model 

 

Figure 5.10 shows the results for the effect of number of calibration samples on the prediction 

ability of the ILS model. The quality of the model was evaluated based on R
2
 value for each 

metal. For the tested number of calibration samples, the prediction ability of the model for Zn 

metal seemed to increase with the number of samples in the calibration step. The prediction 

results of Zn improve when using ten samples in the calibration step of the model. The 

prediction ability of the ILS model for Cu and Co metals appeared to be independently 

related to a number of calibration samples used for developing the model. Both metals have 

the R
2
 values of greater than 0.900 for all different number of samples, as shown by Figure 

5.13. The worse prediction of Zn is contributed to its low absorbance in mixture solutions as 

shown in Figure 5.5 and will be explained in the prediction step of the model. 

 

 

5.2 Model Validation  
 

In order to apply the formulated ILS model for prediction of the unknown samples, the 

adequacy of this model must be determined. The assumption used to evaluate the adequacy of 

the model is that the errors are constant, normally and independently distributed with mean 

zero. However, in practice, this assumption will usually not hold exactly because of the 

uncontrollable factors (Leardi , 2009). The adequacy of a model can be easily investigated by 
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the examination of residuals. If a model is adequate, the residuals should be structureless; that 

is, they should show no obvious patterns (Montgomery and Runger, 2002). 

 

 

5.2.1 Residual Plots 

 

A normal probability plot of residuals was used in this study to evaluate the validation of the 

ILS model. If the underlying error distribution in the fitted data is normal, the points of a plot 

will resemble a straight line. Montgomery and Runger, (2002) mentioned that in visualising 

the straight line of the data points, more emphasis should be placed on the central values of 

the plot than on the extremes. The experimental conditions which may differ from time to 

time could mainly be contributed to the deviation of the extreme values. From Figure 5.11, 

the residual values for each measurement lie on the straight line, indicating that the error 

distribution within the measurements is approximately normal. This means that the normal 

probability plot of residuals was very satisfactory and consequently used as a measure for the 

validation of the ILS model. The figure was used to validate the results of calibration step of 

the ILS model. 

 

 

Figure 5.11: Normality plot of the studentised residuals of calibration samples 
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5.2.2 Influence of mixture component on calibration step 

 

On the basis of residual plot, the previous section had proved that the ILS model was valid. 

Thus the ILS model can be used for the prediction purposes. However, due to different 

heights of maximum peaks of the absorption spectra of Cu, Co and Zn metals, it was 

necessary to investigate which metal in the mixture solutions affect the quality of calibration 

step of the ILS model. The regression models, given by Table 5.5, were developed to 

combine the results of all the metals. The absorbance value for each calibration sample, 

shown in Table 5.4, was calculated by taking the average of absorbance values at the 

maximum peaks of each metal present in a mixture for that particular sample. The absorbance 

values were used to develop these regression models. 

 

Table 5.4: Absorbance response from the calibration samples 

Run order 

Standard 

order Zinc Copper Cobalt Absorbance 

1 1 
16.67 16.67 66.67 0.1182 

2 6 
0.00 50.00 50.00 0.1779 

3 9 
33.33 33.33 33.33 0.1533 

4 4 
50.00 50.00 0.00 0.1875 

5 12 
0.00 0.00 100.00 0.0354 

6 11 
16.67 66.67 16.67 0.2255 

7 14 
0.00 100.00 0.00 0.2761 

8 10 
50.00 0.00 50.00 0.0375 

9 1 
33.33 33.33 33.33 0.1285 

10 19 
66.67 16.67 16.67 0.0758 

11 16 
100.00 0.00 0.00 0.0408 

12 2 
33.33 33.33 33.33 0.1291 

 

The pseudo-coded values for each calibration sample together with its absorbance from Table 

5.4 were processed by Design Expert software using a simplex centroid mixture analysis tool 

for a mathematical or regression model to be fitted. In order to determine which model will 

best fit the data, the sequential model sum of squares and model statistics calculations were 
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carried out before the regression model could finally be fitted. Two criteria were employed to 

select a model that has a high accuracy in explaning the data given in Table 5.4. 

 

Firstly, the selection of the best model is to choose a highest order polynomial model where 

the additional terms are significant and a model is not aliased, as given from Design Expert 

Software, version7.1.6 software. Another guideline from Design Expert software is also to 

choose a model which maximises both adjusted R
2
 and predicted R

2
 values. Both of these 

guidelines are adhered to by the linear model as shown in Table 5.5 with both R
2
 values 

greater than 0.900. Moreover, the P-value of the linear model is less than 0.05 showing the 

model was found to be statistically significant within 95 % confidence interval limits of the 

fitted calibration data. The F-value is used to test the null hypothesis that a regression model 

being proposed fits the data well. The large F-value indicates that a model explains a variance 

in the data very accurately. The linear model also satisfied this criterion of the F-test. 

 

      Table 5.5: Sequential fit and statistics of the models 

Model Type 

Sum of 

Squares F value Adjusted R
2
  Predicted R

2
 P-value 

Linear  0.0625 107.8800 0.9511 0.9036 <0.0001 

Quadratic  0.0012 1.6350 0.9596 0.7413  0.2781  

Special Cubic  0.0000 0.0215 0.9517 0.4903 0.8892 

Cubic 0.0009 2.7117 0.9714 0.0454 0.2125 

 

From the previous discussed points of Table 5.5 above, it is evident that the linear model had 

fitted data very accurately as compared to other models. The derived linear regression model 

is given as follows: 

 

    (5.5) 

 

Where Y is the response (absorbance) and, x1, x2 and x3 are pseudo-coded values for Cu, Co 

and Zn metals respectively. 
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From equation 5.5, it can be noted that all the regression coefficients are positive reflecting 

that the metals have synergetic effects on the absorbance values of the mixture solutions. The 

magnitude of the regression coefficient values indicates the contribution of each metal 

towards the measured absorbance. Copper has the greatest effect on the absorbance value of a 

given mixture solution. The fitted linear regression model clearly shows that there are no 

interactions among the individual metals. The absence of the interactions was further 

supported by a contour plot illustrated in Figure 5.12.  

 

The contour lines in Figure 5.12 are straight and parallel to one another indicating that there 

is a linear combination within the metals towards their contribution to the measured 

absorbance values. The presence of interactions, if any, will be indicated by the upward and 

downward curved lines for synergetic and antagonistic effects respectively. The effects 

depend on the behaviour of the individual metals in a mixture (van Tonder et al, (2010)). 

 

 

Figure 5.12: Absorbance contour plot for the components of the linear mixture model 

 

When examining Figure 5.12, from 100% Co and 100% Zn solutions towards 100 % Cu 

solutions, the absorbance values increase. This indicates that Cu has a major contribution for 

a quality calibration step of the ILS model since the model was developed from the 

absorbance values. In terms of contribution to the absorbance values, Cu is followed by Co 

A: zinc
100.000

B: Copper

100.000

C: Cobalt

100.000

0.000 0.000

0.000

Absorbance

0.0874194

0.129681

0.171942

0.214203

0.256464

3



  RESULTS AND DISCUSSIONS 

Page 66 

and then Zn. The least contribution of Zn metal towards the measured absorbance can also be 

seen from the colours of the solutions in Figure 5.13. 

 

Figure 5.13 shows the stock solutions of the pure three metals used in this study and the 

solution of Cu and Co are colourful whereas that of Zn is colourless. Thus, the Zn solution 

has a very low ability to absorb light as compared to other metals. The Blue Cube optical 

fibre sensor used in the study measures the intensity or transmittance of each solution hence 

all the solutions containing zinc will be expected to decrease the efficiency or quality of the 

calibration step of the models. In conclusion, the contribution of the metals towards the 

measured absorbance decreases in the following order: Cu > Co > Zn. 

 

 

Figure 5.13: Stock solution for pure Cu, Zn and Co metals 

 

 

5.3 Testing of the model; Prediction Step 
 

After the model had been developed and validated from the calibration step, it was used for 

prediction of the unknown samples. These test samples have the same concentration range as 

the calibration samples as shown by Figure 5.3. The same wavelength region selected in the 

calibration step was also used in this step. The computation of the algorithm for the 

prediction step of the ILS model was done using the statistical toolbox in MATLAB software 

program. The concentration of the unknown samples (Cu) was calculated from measured 
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absorbance of these unknown samples (Au) and the proportionality constant (P) that was 

obtained from calibration step using equation 5.2. The relatioship between these three 

parameters is given by an equation 5.6 as follows: 

 

        (5.6) 

 

The previous discussion as given by Figure 5.10 had shown that more than ten calibration 

samples gave accurate prediction ability of the ILS model. Several statistical parameters were 

used to evaluate the prediction ability of the ILS model; namely R
2
, and % RMSE values. 

However, one of the most important tools in statistical analysis is a visualisation of the 

results. This can give a clear indication of the behaviour of the factors investigated in the 

specific study. The scatter plots for Cu, Co and Zn metals are shown in Figure 5.14, 5.15 and 

5.16 respectively. The scatter plots generated by STATISTICA software program show the 

correlation between experimental and model values. The 95 % confidence interval limits for a 

fitted regression line were also plotted on the same graphs and indicated by curved dotted 

lines. The fitted equations for the linear regression lines are also shown on the graphs. 

 

 

Figure 5.14: Graph for the prediction of Cu metal using ILS model 
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Figure 5.15: Graph for the prediction of Co metal using ILS model 

 

 

Figure 5.16: Graph for the prediction of Zn metal using ILS model 

 

When analysing the scatter plots, there are two most important factors to take into 

consideration. Firstly, the width of the confidence interval limits and lastly the number of 

data points that falls outside the interval limits. Figures 5.14 and 5.15 have narrow width of 

confidence interval limit indicating that the error associated with the prediction of Cu and Co 

within 95 % confidence interval is statistically insignificant. The scatter plot of Zn has wider 

confidence interval limit as shown by Figure 5.16. If this figure has a similar interval like 

other metals, most of the data points will fall outside the 95% limit. This reflects that the 

regression line does not fit the data very accurately. However, the deviation of the data points 

could be considered to be statistically acceptable based on the fact that the ILS algorithm is a 
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linear model. The prediction graphs of all the metals for the CLS model are given in 

Appendix B.2. The statistical results for evaluation of the ILS and CLS models are given in 

Table 5.6. 

 

Table 5.6: Results from the prediction steps of ILS and CLS model 

Metal 

R
2
 Values RMSE Values (%) 

ILS model CLS model ILS model CLS model 

Copper 0.9883 0.9910 2.9057 2.2654 

Cobalt 0.9855 0.9441 4.2743 11.315 

Zinc 0.9334 0.8995 14.010 21.282 

 

The performance of the CLS model for the prediction of the unknown samples is worse than 

results of the ILS model, as indicated by larger % RMSE values for all the metals in Table 

5.6. The poor results of the CLS model could be explained by the fact that the K-matrix 

obtained from the calibration is inverted during the computation of the prediction step 

algorithm. Thus the mathematical solution of algorithm becomes unstable. Both the ILS and 

CLS models gave poor results for prediction of zinc as compared to the other metals. Once 

again, the worse prediction of Zn is attributed to its low absorbance in the mixture solutions 

that is caused by the colourless solution of pure Zn metal as was shown by Figure 5.5. 

 

The poor results for the Zn metal could be explained in terms of transitions that exist within 

the metal. The transitions are caused mainly by the presence of electrons in the atoms and the 

ligands present in the solution. The distribution of electrons within the metal plays important 

role in absorption of a radiation light. The metal exists as the ions in the aqueous solution and 

all the transition metal ions in water solutions are complex ions. If no ligands appear to be 

present, the water molecules in solution will act as ligands by attaching to the metal ion, 

[Zn(H2O)6]
2+

]. The ligands field causes the d-orbitals to split, as shown in figure 5.17. In 

octahedral geometry, the most common type of complex, two levels will be formed: t2g and 

eg. An electron can absorb a photon and transition from the lower energy t2g level to the 

higher energy eg level will take place. The electron configurations or distributions for the 

cations of the three metals are illustrated below. 
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The ions from these metals use 3 d-orbital shells for the transitions process. The transitions 

that occur within each ion depend on the energy required of an electron to move from one 

orbital to another. The energy level diagrams shown in Figure 5.17 indicate the outer orbital 

shells of each metal involved during the transition process. The arrows represent the electrons 

that are filled in the orbitals according to a spin rule. Skoog et al, (2008) indicated that the 

electrons are filled starting with low energy state level orbital sub-shells. Furthermore, the 

filling of electrons depends on the magnitude of crystal field splitting energy of the ligand. 

 

From Figure 5.17, Cu and Co ions have unfilled orbitals to interact with the negative charge 

from the ligands present in the aqueous medium. There is possibility of a transfer of electrons 

within their 3 d-orbital of the ions. On the other hand, Zn has a fully filled 3d-orbital shell; 

hence it has different characteristics from both Cu and Co metals. With this regard, there is 

no transfer of electrons from and to the d-orbital shell of Zn ion. In this case, there are no d –

d transitions that can occur, and thus no visible light is absorbed and the solution appears 

colourless. The behaviour of Zn ions make it to have a low intensity in the mixture which had 

resulted in poor prediction results by both the ILS and CLS models. The poor prediction of 

zinc could be enhanced by using the derivative forms of the absorbance spectra as will be 

explained in detail in a Section 5.4. 

 

 

 

 

 

   

Figure 5.17: Electron Configuration of in the outer d-orbital of Cu, Co and Zn ions. 

Cu2+ ion Zn2+ ion Co2+ ion 
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5.4 Derivative Spectroscopy 
 

Derivative spectroscopy has been used in many applications of spectroscopy like in the near 

infrared spectra, ultraviolet-visible absorption spectra and flame emission spectra. The 

derivative methods had shown a number of advantages over the last decade in analytical 

spectroscopy. Firstly, they have been used for spectral discrimination whereby similar spectra 

of different constituents were easily identified. Secondly, they have been employed for 

resolution of spectra that overlapped with one another, so that their peaks could be 

determined by their wavelength (De Luca et al, 2009). Lastly, they have been used for 

elimination of insignificant background from the main spectra of interest (Demetriades-Shah 

et al, 1990). In their applications, derivative techniques are used more frequently for 

quantitative purposes than qualitative analysis. 

 

 

5.4.1 Mathematical background 

 

The spectral analyses using a derivative spectroscopy require the peaks of the analyte to be 

easily identified. There are number of techniques available for generating derivative 

spectroscopy and the two most common are electronic and mathematical techniques. The 

electronic techniques are easy to apply since most of the instruments come with a function 

that generates the derivative spectra. However, the derivative, in such case, is with respect to 

time not the wavelength hence they suffer in qualitative analysis. On the other hand 

mathematical technique had advantage that the derivative process can be easily monitored. 

The techniques are optimised by selecting only the portions of spectra to be used in the data 

analyses (Demetriades-Shah et al, 1990). In the present study, the first and high orders of 

mathematical derivative spectroscopy are utilised to enhance the maximum absorption peak 

of zinc. The enhancement will aid in improved prediction results of Zn metal. 

 

The assumption which was made for zero-order absorbance spectra that they obey the Beer‟s 

law still holds for the derivative spectra. The assumption is mostly used when performing 

quantitative analysis of spectral data. The first and high order derivative spectra are given by 

equation 5.7 and 5.8 respectively. They are based on the linear relationship between 

concentration and absorbance of each sample. The superscript n in equation 5.8 indicates the 

n
th

 order of derivative. 
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        (5.7) 

 

      (5.8) 

 

The mathematical techniques had been applied to a number of situations to study the 

behaviour of components of the mixture. Abbaspour and Mirzajani, (2005) used zero and first 

derivative spectral data to develop the PCR and PLS models to study the ternary mixtures of 

the synthetic pharmaceutical products. From their results, they found that first order 

derivative has no effect on the prediction ability of PCR models. However, PLS model when 

combined with first order derivative give better results when compared to other models. 

There was also a good agreement found when the model was applied to real samples. 

 

In another case study, De Luca et al, (2009) mentioned that third order derivative 

spectroscopy had improved the prediction ability of low content component in a mixture. 

They used PCR and PLS models to analyse spectral data for zero to fourth order derivative 

spectroscopy. The simulated samples of ternary mixture were used for the calibration 

purposes. The combination of simplex centroid mixture design and third order derivative 

spectroscopy was established to resolve the overlapping peaks of the components of a 

mixture. Hence, the quantification analysis of each component was relatively easy to 

perform. The performance of both models was increased by using a wavelength selection 

procedure that extracted the useful information for model formulation (De Luca et al, 2009). 

 

In this present study, the mathematical derivative spectra were computed as follows; first 

derivative spectroscopy was calculated by taking the difference of two successive absorbance 

values throughout the wavelength of the spectrum region. Then the high order derivative 

spectra were calculated by applying the computation of the first derivative in the successive 

steps until to the fourth order. The computation for the first order spectra was done in 

MATLAB software program using equation 5.9. 

 

      (5.9) 
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where Aderi is the calculated derivative absorbance and Δλ is the difference between two 

successive wavelengths. 

 

The major problem associated with the computation of the derivative spectroscopy is that the 

derived spectra have a lot of noise. Thus, the signal-to-noise ratio decreases with increasing 

order of the derivative. Cirovic, (1998) showed that the presence of noise in both calibration 

and test data affect the performance of the model being developed. The noise in this study 

was reduced by using a Savitzky-Golay smoothing filter from signal processing toolbox in 

MATLAB software program. The filter uses a third order polynomial function to fit the 

smoothed data. 

 

Another challenge encountered in the derivative spectroscopy is the selection of wavelength 

region to be used to develop the model. A manual selection method explained and used for 

the zero order spectroscopy in Section 5.1.3 was also employed. However, in this case, the 

selection procedure becomes tedious since the derivative spectra have both positive and 

negative peaks. Furthermore, the number of peaks increases with order of derivative 

spectroscopy. It was noted that as the order of derivative spectroscopy increases, the selection 

procedure becomes very time consuming and sometimes impossible. 

 

 

5.4.2 Data Manipulation 

 

The algorithms of all the orders of derivative spectroscopy together with the algorithm of the 

smoothing filter were incorporated in the ILS model. During the computation of each 

derivative spectrum, both the first and last data measurements are lost. The order of 

polynomial function used for smoothing the noisy data was optimised and third order filter 

was selected. The selection of filter was based on the order that does not distort the shape of 

the derivative spectra but the order that give a good approximation of the derivative spectra. 

The wavelength regions selected for each order of derivative are given in Table 5.7. A few 

numbers of wavelengths were selected for the high order of derivative. The results of 

derivative spectra are given in Figure 5.18 that follows. 
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Table 5.7: Selection of wavelength region from derivate spectra for ILS model 

Derivative order 
Wavelength region (nm) 

Copper Cobalt Zinc 

First 685 – 687  457 – 459 455 

Second 640 – 642  559 – 561  457 -459  

Third 597 – 599 531 426 – 429 

Fourth 729  501 429 – 431 

 

 

Figure 5.18: First, second, third and fourth derivative spectroscopy of Cu, Co and Zn metals 

 

From Figure 5.18, the number of maximum absorption peaks for each metal increases with 

the order of derivative spectroscopy and there are also negative peaks observed for each 

spectrum. A high number of oscillations in each spectrum occur at the higher wavelengths. 

These features of the spectra had resulted in difficulties for selecting the region to be used 

during the modelling purposes. Due to the closely positive maximum peaks in the third and 
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fourth order derivative spectroscopy, only one wavelength, as shown in Table 5.7, was 

selected for the calibration step of the ILS model. 

 

5.4.3 Optimisation of the Model 

 

After a careful manual selection of the wavelength region for each metal, the algorithm for 

each order of derivative was developed and computed using a MATLAB software program as 

previously discussed. The quality of the derivative spectroscopy models was evaluated based 

on both R
2
 and % RMSE values. Figure 5.19 shows the results for R

2
 values of all the metals 

for different orders of derivative. When using all the orders of the derivative spectroscopy, 

the prediction values for Zn metal are lower as compared to a normal or zero order 

absorbance spectroscopy.  

 

The maximum absorption peak of Zn from zero absorbance spectroscopy given by Figure 5.6 

is not as sharp as compared to other metals. Hence taking a derivative of a Zn spectrum, the 

peak becomes almost flat as shown in Figure 5.18 and consequently there is no clearly 

observed peak in the derivative form of absorbance. Thus the prediction results of Zn become 

very poor as reflected by the lower R
2
 values in Figure 5.19. On the other hand, there is 

positive effect on the prediction results for Cu and Co metals when derivative spectroscopy is 

applied. The maximum peaks of both Cu and Co are easily identified as shown by Figure 

5.18. 

 

 

Figure 5.19: Evaluation performance of derivative spectroscopy 
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The % RMSE values for the metals, as shown by Figure C.1 in the appendix section, increase 

with the order of derivative spectroscopy. This indicates that the error of prediction is large 

with higher orders. The increased number of the maximum peaks had resulted inappropriate 

selection of the wavelengths. Among the orders of derivative spectroscopy used in the study, 

only the third order gave the better results close to that of a zero absorbance spectroscopy. In 

conclusion, the results show that all the orders of the derivative spectroscopy gave worse 

prediction values as compared to the zero absorbance spectroscopy. Thus in this study, the 

derivative spectroscopy cannot be used to enhance the prediction results of Zn metal as it was 

suggested earlier in the section. 

 

 

5.5 Robustness of the Model 
 

The developed model was further tested for its ability to determine the concentrations of the 

Cu, Co and Zn metals in the presence of interferences. The inferences on the prediction of the 

ILS model that were evaluated in this study are the temperature and nickel. The reasons 

stated below explain why each factor was evaluated: 

 

1. Temperature: usually in the industrial applications, the temperature of the feed stream 

of the hydrometallurgical solution differs at each specific time with operating 

conditions of a plant. Hence, it was considered to determine within which temperature 

range the ILS model calibrated at room temperature can still produces a good 

performance in terms of the prediction ability. 

 

2. Nickel: in most cases, an ore used in real plant condition comes with a lot of gangue 

and other valuable minerals. An ore used in most zinc mines is zinc sulphide which is 

associated with minerals like copper, nickel and cadmium in different proportions. 

The model was tested for the effect of nickel on absorption spectra of metals of 

interest.  

 

5.5.1 Effect of Temperature 

 

The solutions containing Cu, Co and Zn metals were set at different temperatures. The same 

ILS model calibrated with solutions at room temperature was used to predict the 
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concentrations of these solutions. The effect of temperature on the absorption spectra of the 

metals was tested using a zero absorbance spectroscopy. In addition, the relationship between 

the temperature and P matrix of the ILS model would be determined and discussed in Section 

5.5.1.3. 

 

 

5.5.1.1 Model Predictive ability 

 

The results for the effect of temperature on prediction ability of the ILS model for copper, 

cobalt and zinc metals are shown in Figure 5.20, 5.21 and 5.22 respectively. The temperature 

values of the four samples were varied from a room temperature of 20 °C up to 80 °C in the 

increment of 20 °C as indicated in the figures. From Figure 5.20, it is observed that 

temperature has a minor effect on the predicted values for Cu metal with %RMSE value less 

than 10. Hence the precision of the ILS model was found to be fairly accurate for this 

particular metal. 

 

 

Figure 5.20: Prediction ability of ILS model for copper metal at various temperatures  

 

Furthermore, the predicted values for Co and Zn metals were found to be affected by 

different temperature values that were used. The prediction results of Zn metal was affected 

most, as could be seen by a large dispersion of its measurements in Figure 5.22. Among the 

samples investigated under this study, sample 4 was found to be less affected by temperature 
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variation. Sample 4 was composed of 200 ppm of Cu, 0 ppm of Co and 30000 ppm of Zn and 

this sample has the highest amount of Cu among other samples. 

 

 

Figure 5.21: Prediction ability of ILS model for cobalt metal at various temperatures 

 

 

 

Figure 5.22: Prediction ability of ILS model for zinc metal at various temperatures 
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computed and their results were tabulated in Table 5.8. The guideline used was that the % 

RMSE values should be less than 10 % so that the prediction ability of the ILS model could 

be considered to be accurate. According to the % RMSE values from the same table, only 

sample 4 can be predicted fairly accurately by the model for all the metals. Cu metal shows 

better results with the entire % RMSE values less than 10%, thus indicating a little effect of 

temperature. 

 

Moreover, there is no general trend that can be observed between the prediction ability of the 

model and individual metal in the mixture of the samples. The variation of the prediction 

results among samples could be explained by the fact that each sample has a different metal 

composition. Each metal has its own transitions which are affected differently by 

temperature. A detailed explanation of these transitions is given in Section 5.5.1.2. 

 

Table 5.8: Precision of ILS model for Cu, Co and Zn at various temperatures 

Metal 

Sample 1 Sample 2 Sample 3 Sample 4 

% RMSE % RMSE % RMSE % RMSE 

Copper 6.1105 2.8093 6.1445 6.2921 

Cobalt 19.8258 41.9959 22.5068 11.9807 

Zinc 29.3844 38.7900 31.1521 18.2108 

 

 

5.5.1.2 Influence on Spectra 

 

The results presented in Figure 5.23 show the absorption spectra of the mixture of Cu, Co and 

Zn metals at different temperature values. The composition of the mixture was 50 ppm of Cu, 

15 ppm of Co and 30000 ppm of Zn, given in Table 5.8 as sample 1. The results obtained 

were consistent and similar to those found by Kumagai et al, (2008) studying the effect of 

temperature on salts of lithium (Li) and magnesium (Mg). They observed that the increase in 

temperature shifted the Li and Mg spectra to higher absorbance values. In this study, also the 

intensities of the absorption spectra increase with temperature as clearly seen in the 

wavelength range of 700 – 1000 nm. 
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Figure 5.23: Influence of temperature on absorption spectra of the metals 

 

However, for the wavelength range of 400 – 600 nm in Figure 5.23, the results for 

temperature 40 °C and 60 °C are lower than the result at room temperature (20 °C). This 

could maybe due to either the heat loss from the samples or the type of the metal in the 

mixture. The other three samples showed similar results to that of sample 1. In another 

samples analysed, it was further observed that when the temperature is increased, the 

maximum absorption peak of each metal shifted to the higher wavelengths. The shift could be 

attributed to the Jahn-Teller distortion effect experienced by the complex ions (Jones, 2001). 

This distortion destroys the symmetry of the complex and thus electronic energy levels are 

also affected. 

 

From Figure 5.23, as the temperature increases, the region of the spectra due to Cu metal 

result in two maximum absorption peaks at around 800 nm. The two peaks are more 

pronounced with an increase in temperature. These peaks could be attributed to the presence 

of water molecules in the solutions. This observation maybe supported by the more intense 

peaks in Figure 5.23 which occurs at the wavelength of 950 nm. However, these three peaks 

could also be result of the reaction of copper metal when it is heated. By measuring the 

intensities of the absorption spectra of the solution in the absence of copper metal, it will be 

verified which substance is responsible for the peaks. The absorption spectra of the solution 

at different temperatures are given in Figure 5.24. The solution of a mixture was composed of 

40 ppm of Co and 10000 ppm of Zn. 
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Figure 5.24: Effect of water on the absorption spectra of Co and Zn metals 

 

The peaks in the wavelength region between 700 and 1000 nm, from Figure 5.24 are similar 

to the peaks seen in Figure 5.23. The absence of Cu peaks at room temperature from Figure 

5.24 clearly shows that the peaks observed at higher temperature are due to water molecules 

not to the copper metal. At higher temperatures, water changes its state from liquid to vapour 

and water vapour shows several maximum absorbance peaks in the near infrared (NIR) 

region. In most cases, the relative absorbance values are due to vibrational transitions of the 

water molecule. Vibrational transitions are caused by the energy change that occurs between 

the bonds that hold the molecule together (Skoog et al, 2008). The wavelength region from 

700 – 1000 nm is the NIR region and the vibrational transitions become more pronounced in 

this region as illustrated by the highest peaks at around 950 nm. Water vapour exhibit higher 

peaks than the metal of interest in this study because its absorbance values are contributed by 

both electronic (absorption) and vibrational transitions.  

 

Cu, Co and Zn metals exhibit mainly electronic (absorption) transitions when their solutions 

are measured at the higher temperatures. The influence of temperature on absorption spectra 

of the metals could be explained in terms of electronic transitions using the phenomena of 

collision theory and electronic transitions. The collision theory states that when the 

temperature of the solution is increased, the rate of collision of the molecules within the 

solution also increases. In this study, as the temperature is increased, the rate at which the 

radiation source from the sensor interacts with the ions is also increased. Then, the 

assumption would be that the electrons within the ions will have more excitation energy to 
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move to higher energy levels as shown in Figure 5.25. Hence the intensities of the absorption 

spectra will shift to higher values. 

 

 

Figure 5.25: Energy levels for orbitals of an atom 

 

 

5.5.2 Effect of Contaminants 

 

The presence of interferences in the solution to be analysed affect the absorption spectra of 

the metal of interest. Haavisto and Kaartinen, (2009) studied the maximum absorption spectra 

of the zinc solutions from different stages of flotation. They showed that the spectra of the 

dilute and impure solutions occur at a lower wavelength as compared to that of pure 

concentrated solutions. In this study, the effect of nickel (Ni) on spectra of Cu, Co and Zn 

metal was examined on four samples. 

 

 

5.5.2.1 Model Predictive ability 

 

The prediction values of the Cu, Co and Zn metals in the presence of Ni are given by Figure 

5.26, 5.27 and 5.29 respectively. The nickel solution was used for the experiments in the 

increment of 50 ppm from 0 ppm to 200 ppm as indicated in the figures. The zero order 

absorbance spectra were used to evaluate the effect of nickel to the solutions. The prediction 

ability of ILS model for Cu and Co metals decreases with increasing concentration of nickel 

as reflected by Figure 5.26 and 5.27 respectively. The lower predicted values for Cu and Co 

metals could be due to the strong interactions exhibited by absorption spectra of Ni over these 
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two metals. This is evident from Figure 5.28 and the detailed explanation of the interactions 

followed from the same figure. 

 

 

Figure 5.26: Prediction ability of ILS model for copper metal in presence of nickel 

 

 

Figure 5.27: Prediction ability of ILS model for cobalt metal in presence of nickel 

 

Figure 5.28 illustrated the absorption spectra of a solution of Cu, Co and Zn metals in the 

presence of nickel. The solution was composed of 300 ppm of Cu and 20 ppm of Co. The 

presence of Ni in the solution shifts the maximum absorption spectra of Cu to lower 

absorbance values. In the wavelength range of 400 – 750 nm, the absorption spectra of the 

solution increase with the increase in the concentration of nickel until it reaches the inflection 

point around 750 nm as shown in the figure. After the inflection point the absorption spectra 
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decrease with the increase in the concentration of nickel. The region after the inflection point 

is where the maximum absorption peak of Cu occurs. 

 

From Figure 5.28, it can be observed that nickel has negative effect on the predicted values of 

Cu as previously shown in Figure 5.23. The Co metal has the maximum absorption peak 

occur at 520 nm. The spectra around that wavelength cannot be effectively distinguished 

from one another. Thus, the only assumption that could be made for the poor results of Co is 

that the presence of nickel in that region suppressed the maximum absorption peak of the Co 

metal. Furthermore, the suppression could be thought to be more distinct with an increase in 

concentration of Ni. 

 

 

Figure 5.28: Absorption spectra of solution of Cu and Co in the presence of nickel 

 

The prediction values for the Zn metal computed by the ILS model are given in Figure 5.29 

for all the four samples analysed. The results for Zn metal showed no defined relationship 

between the concentration of nickel and the predicted values of the model. Sample 2, 3 and 4 

showed that increase in concentration of Ni increases the prediction values for Zn metal while 

sample 1 showed conflicting results. From these arguments, the conclusion was that the 

concentration of Ni increases the predicted values for Zn metal. This conclusion was also 

supported by the absorption peak at around 410 nm in Figure 5.28. The peak is due to the 

presence Ni metal in the solution. 
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Figure 5.29: Prediction ability of ILS model for zinc metal in presence of nickel 

 

 

5.5.2.2 Influence on Spectra 

 

The previous section had determined the effect of Ni based on the predicted values of the ILS 

model. In this case, the effect of nickel based on the absorption spectra of Cu, Co and Zn 

metals was examined. The spectra of the pure Cu, Co, Zn and Ni solutions were plotted 

together and given by Figure 5.30. Ni metal is characterised by two maximum absorption 

peaks, the sharp and broad peaks, which occur around 410 nm and 720 nm, respectively. 

Skoog et al, (2008) also reported two absorption peaks for aqueous solution of nickel metal at 

both 400 nm and 700 nm. They further stated that the position of the peaks depends on the 

oxidation state of Ni and a ligand bonded to it. 

 

The positions of the two peaks of Ni are very close to maximum absorption peaks of Cu and 

Zn metals; hence a poor quantitative analysis of these metals is expected to occur in the 

presence of Ni. The maximum absorption peak of Zn is fully masked by the peak of Ni at 

wavelength of 400 nm as shown by Figure 5.30. The resolution technique or procedure must 

be applied for quantitative analysis of Zn in the presence of Ni. 
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Figure 5.30: Absorption spectra of pure Cu, Co, Zn and Ni metals 

 

In general, the presence of Ni in the solutions decreases the absorbance values of the Cu and 

Co metals whereas it increases the absorbance values of the Zn metal. The effect of Ni on 

these metals is explained clearly by using Beer‟ law which state that absorbance of a metal is 

directly proportional to its concentration. In this case, it would be expected that an effect of 

Ni should be linear with the addition of its volume. Figure 5.31 further proved that the nickel 

obeys the Beer‟s law since the relative absorbance values at both maximum peaks increase 

with concentration of Ni solution. The peak at 720 nm becomes very identifiable with the 

increase in concentration. 

 

 

Figure 5.31: Absorption spectra of nickel in increasing concentration 
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In summary, the developed models were found to give poor results in the presences of 

disturbance during the measurements of absorption spectra of the Cu, Co and Zn metals. The 

model calibrated at room temperature cannot handle effectively the solutions with higher 

temperatures. The presence of Ni as the interference in the solutions makes the model to be 

unstable. Since Ni was not included in the calibration step of the model, the model gave the 

poor predictions for the Cu, Co and Zn metals. Zachariassen et al, (2005) performed a PLS 

model based on NIR spectra and they found that the temperature was not modelled accurately 

in the calibration part of the model. They compensate the effect of the temperature by 

including a third PLS component in the calibration step. Finally, this study had also proved 

that calibration part of the model must be updated when a new disturbances is encountered. 

 

 

5.6 Potential Applicability of the developed Models 
 

In order to evaluate the potential applicability of the developed statistical models, the ILS and 

CLS models, their prediction ability results were compared with a Blue Cube model and PLS 

model. The Blue Cube Company had already installed its instrument at Skorpion zinc mine 

and the instrument uses a statistical model to quantify the aqueous solution of the metals. It 

was worthwhile to perform a comparison with already existing and implemented model in the 

industrial plant. All the statistical models were further compared to an analytical technique, 

atomic absorption spectroscopy, as discussed in Section 5.6.2. 

 

 

5.6.1 Blue Cube Model 

 

The similarity between the developed models and Blue Cube model was based on the 

prediction ability of each model when the experimental analyses were performed with the test 

samples. The accuracy values of the models were calculated based on the theoretical values 

of the samples. A comparison was done in two ways; first by evaluating the behaviour of the 

models for prediction of the individual metal and lastly by using both t- and F-tests to 

determine if there is a statistical difference between all the models. Figure 5.32, 5.33 and 5.34 

show the multiple line plots of all the runs for the test samples for the quantification of the 

Cu, Co and Zn metals respectively. The prediction abilities of the models for quantification of 

copper metal were found to be similar to one another as shown by Figure 5.32. 
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Figure 5.32: Comparison of developed models and Blue Cube for a Cu metal 

 

The prediction abilities of the models for Co metal seemed to be lower than that of Cu and 

runs 2, 4 and 7 gave worse results compared to other runs as shown by Figure 5.33. These 

three runs were having a low content of Co in the solutions. For the case of the Zn metal, as 

illustrated by Figure 5.34, both the ILS and CLS models have almost similar accuracy values 

that were worse as compared to the results of Blue Cube model. For all the runs being 

performed, the accuracy of the Blue Cube model is similar throughout all the prediction 

results of the metals. This is because the Blue Cube model has prediction values like that of 

theoretical data set. 

 

 

Figure 5.33: Comparison of developed models and Blue Cube for a Co metal 
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Figure 5.34: Comparison of developed models and Blue Cube for a Zn metal 

 

The accuracy results of the ILS and CLS models differ from one metal to the other. 

Moreover, the accuracy among the metals decreases in the following: Cu > Co > Zn. The 

results for Zn metal, as shown by Figure 5.34, was questionable, hence the analysis of 

variance (ANOVA) test was perform to determine if there is any statistical difference among 

the models within 95 % confidence interval limit. The ANOVA results of Cu, Co and Zn 

metals are shown in the Table 5.9 and 5.10. 

 

      Table 5.9: Summary statistics for the comparison of the models 

Groups 

Copper Cobalt Zinc 

Average Variance Average Variance Average Variance 

Actual 23.125 420.982 29.375 631.696 47.500 707.143 

ILS model 22.018 509.568 28.502 468.257 65.780 1838.281 

CLS model 22.075 504.548 38.313 373.393 79.439 1698.837 

Blue Cube 

model 21.047 434.650 33.272 536.038 46.517 622.038 

 

The summary of the statistics computed for all the models and the theoretical data is shown in 

Table 5.9. Both the ILS and CLS models show the larger average and variance values for Cu 

and Zn as compared to a theoretical data set. The developed methods (ILS and CLS) and the 

Blue Cube model show a similar variance for only Cu and Co metals. However, the ILS and 

CLS models gave much larger variance results for prediction of Zn metal. The variance value 
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explains the precision of the individual measurements in a particular set of data. The results 

that are presented here show that the Blue Cube model performs better than the developed 

models in this study. The extent of an improved performance of Blue Cube model can be 

evaluated by ANOVA test. 

 

The main of purpose of the ANOVA was to test whether the Blue Cube model performs 

better than other models at 5% significance level. The null hypothesis tested by F-value is to 

determine whether there is any difference in the means of the models for the prediction of the 

metals. The calculated F-values for all the metals are smaller than the critical F-value as 

shown in Table 5.10. Moreover, the P-values for the metals are greater than the significance 

level (0.05) for all the models. The P-value indicates the probability of finding how close is 

the calculated F-value from zero. The high P-value for Cu shows that all the models have 

similar accuracy and precision for quantification analysis of this metal. On the basis of the F-

value and P-values, it is clear that there is no significant difference among the means of the 

models. Thus the accuracy and precision results of all the models are similar within the 95% 

confidence interval limits. 

 

Table 5.10: Results of ANOVA test for comparison of the models 

Metal F-value P-value F-crit* 

Copper 0.0123 0.9980 2.9467 

Cobalt 0.3188 0.8116 2.9467 

Zinc 1.6422 0.2021 2.9467 

*the critical F-value is calculated at 0.05 significance level. 

 

In order to determine whether there are any differences among the individual means of the 

models, but specifically which pairs of means are significantly different, the multiple 

comparison tests were performed. The tests were computed using a multcompare function in 

MATLAB software program and the results were given by Table 5.11. This function 

overcomes the drawback of multiple t-tests by reducing the probability of making at least one 

incorrect conclusion among the pairs. The results in the table below show a 95% confidence 

interval for the difference of the means within each pair. All the intervals contain 0, so it was 

concluded that there is insignificant difference among the theoretical data, ILS, CLS and Blue 
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Cube models. The accuracy of all the models is found to be satisfactory as compared to the 

theoretical data. 

 

Table 5.11: Multiple comparisons of pair of the models and theoretical data 

Group
#
 

Copper Cobalt Zinc 

Lower 

95% C.I 

Upper 

95% C.I 

Lower 

95% C.I 

Upper 

95% C.I 

Lower 

95% C.I 

Upper 

95% C.I 

1 2 -28.4084 30.6217 -29.7240 31.4707 -65.8962 29.3354 

1 3 -28.4655 30.5647 -39.5350 21.6597 -79.5550 15.6765 

1 4 -27.4369 31.5932 -34.4944 26.7003 -46.6330 48.5985 

2 3 -29.5721 29.4580 -40.4083 20.7863 -61.2747 33.9569 

2 4 -28.5436 30.4865 -35.3677 25.8270 -28.3527 66.8789 

3 4 -28.4865 30.5436 -25.5567 35.6380 -14.6938 80.5378 

#
 1 = Theoretical, 2 = ILS Model, 3= CLS Model, 4 = Blue Cube Model 

 

 

5.6.2 Partial Least Squares Model 

 

The developed models in this study were further compared to partial least squares (PLS) 

model. The PLS models had quite a number of applications in industries like food processing, 

pharmaceutical and mineral processing. These models are suitable for large processes with 

hundreds to thousands of controllable variables. In addition, the PLS models can analyse 

large data with noisy, collinear and incomplete variable (Wold et al, 2001). 

 

5.6.2.1 Background of the PLS Model 

 

Cirovic, (1998) evaluated the effect of a mixture design on the prediction ability of the PLS 

model. Simulated samples were used for both the calibration and prediction steps of the 

model. The solutions were prepared from the Plackett-Burman design and different 

concentration levels were evaluated. The PLS model was validated using a new validation 

sets. The results obtained from the study revealed that a large number of constituents in the 

mixture gave poor prediction for the model. Simulations with added noise affect the 
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performance of the PLS model; however the effect of noise was negligible with less number 

of constituents in the mixture. 

 

In the study for minerals fingerprinting, Alvey et al, (2010) used a laser-induced breakdown 

spectroscopy (LIBS) together with PLS model for real-time geochemical analysis of the 

garnet ore. The main objective of their study was to classify the samples based on the 

composition and origin of the ore. They utilised PLS discriminant analysis (PLSDA) 

technique to analyse the LIBS spectra of the samples. The wavelengths of main elements and 

impurities were used for compositional and locational classification, respectively. The best 

latent variables of the PLSDA technique were estimated by cross-validation method. Alvey et 

al, (2010) determined that about 94.7 % and 55. 0 % of the tested samples were classified 

correctly based on composition and origin, respectively. The low percentage for origin 

classification was related to few number of samples used in the training algorithm of the 

PLSDA model. Their study had proved that a combination of statistical signal processing and 

chemometric techniques can be used for rapid real-time analysis and discrimination of 

minerals. 

 

In the quantification study of serpentite in nickel laterite ore, Basile et al, (2010) used PLS 

model for prediction of the unknown samples. PCA was employed for classification of 

synthetic mixtures used for calibration purpose. The mixtures were prepared in relation to the 

composition of natural ore using the experimental design. The IR spectra data was used for 

model development and validation. It was further determined that PLS model have high 

accuracy with R
2
 and % RMSE values of 0.97 and 1.97, respectively. Basile et al, (2010) 

showed that the model gave poor results for prediction of natural ores because of a different 

composition of the natural ore. 

 

Haavisto et al, (2008) employed the PLS model to control and monitor the copper flotation 

plant. The measurements were based on the VNIR spectra of Cu, Fe and Zn. The percentage 

of each element was kept within its acceptable limit, thus the plant stability was improved. 

The PLS model gave inaccurate results when the plant conditions were altered. In an attempt 

to correct that situation Haavisto et al, (2008) used a recursive PLS model and it showed 

improved prediction as compared to non-updated PLS model. 
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Before a detail data interpretation with the PLS model can be carried out, a brief 

mathematical background on PLS algorithms is given here. In the calibration step of the PLS 

model, both the absorbance (A) and concentration (C) matrices are decomposed into latent 

variables using equation 5.9 and 5.10, respectively. In both equations T and U are the scores 

of the matrices A and C respectively, whereas P and Q are the loading matrices of the latent 

variables. The residual matrices for the absorbance and concentration are given by E and F. 

 

A = TP
T
 + E       (5.9) 

 

C = UQ
T
 + F       (5.10) 

 

The vector scores of both the absorbance and concentration are computed to result into the 

weight matrices. The A and C weight matrices are used together to determine the regression 

coefficient (B). The calibration algorithm explains most variation in both A and C matrix and 

maximise the linear relation between the two matrices. For the detail calculations the reader 

is referred to Wold et al, (2001). The main purpose of the calibration step of PLS model is to 

determine the regression coefficient (B) that is used in the prediction part of the model as 

shown in equation 5.11 whereby the subscript u indicate unknown or test sample. 

 

Cu = Au × B       (5.11) 

 

 

5.6.2.2 Data Interpretation with PLS model 

 

The PLS model used to analyse the data in this study was generated from Latentix software 

version 2.00. The software program comes with formulated algorithms for both the 

calibration and prediction steps of the model. The procedures that are used for obtaining the 

results for the PLS model are presented in the section that follows. The calibration and test 

raw data in ILS and CLS models were also used in this model. The model used was PLS1 but 

it will be referred as PLS thorough the discussion. All the wavelengths for the spectra were 

selected for model development and evaluation. 
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5.6.2.2.1 Model Development 

 

Before the model can be formulated, the raw data was auto scaled, that is, it was first mean-

centred and then scaled. These preprocessing steps make all the metals to have similar 

contribution in the prediction ability of the model. The score and residual plots were used to 

determine the outliers in the data. The seventh sample, as shown in Figure E.1 in the 

appendix, was found to have both large residual and hotelling (T
2
) values. It was supposed to 

be discarded from the calibration samples for further analysis, but it was not. The deviation of 

this sample is attributed to that the sample has 100 % copper and Cu has most intense of all 

metals which result in higher absorbance values. 

 

The score plot of the samples is shown in Figure 5.35. It can be observed that most 

information about the concentration is explained in the first principal component which 

accounts about 80 %. The contribution of two principal components is 90 %. This high 

percentage shows that there are similar features among the sample, thus the samples can be 

used for calibration step of the PLS model. 

 

 

Figure 5.35: Score plot for detection of the outliers 

 

Figure 5.36 shows a graph of explained variance in the concentration data of the metals as a 

function of PLS component. Copper could be explained effectively by the model because 

after the first PLS component about 90 % is achieved whereas other metal retain that 
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percentage when using third PLS component. In overall, the variance in each metal could be 

explained accurately by fourth PLS component. This observation from Figure 5.36 shows that 

calibration samples can be used to predict the concentration of the unknown samples. The 

results from the graphs, as shown by Figures E.2, E.3 and E.4 in the appendix, indicate a high 

degree of correlation between the actual and predicted values. The R
2 

values are greater than 

0.990 for all the metals. 

 

 

Figure 5.36: The explained variance in the calibration data 

 

 

5.6.2.2.2 Model Validation 

 

In most cases, the model needs to be validated before it can be used for prediction of the 

unknown samples. The best validation procedure is to use another sub-set of data to test the 

formulated model. In this study, the model validation was done using a full cross-validation 

(CV) procedure because of the absence of real validation set. The leave-one-out sample 

approach was employed in the validation procedure because of the small number of 

calibration data. Another advantage of the CV is to determine the number of components for 

the best PLS model. The component which gives a smallest residual error is chosen for the 

model development. 
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The validation residual errors for all the metals, as shown in Figure 5.37, decrease with the 

increasing number of PLS components. From the fourth PLS component to tenth, the residual 

errors are minimal and almost equal. The model with four components was chosen for further 

analysis. Other components greater than the fourth one can be chosen, however they could 

resulted in an over fitting of the model, thus a prediction ability of the model will decrease. 

 

 

Figure 5.37: Cross- validation method for the PLS model 

 

 

5.6.2.2.3 Model Prediction 

 

The four component calibrated PLS model was used to determine the metals‟ concentrations 

of the unknown samples. The prediction values for all the metals were scaled to percentage 

values, as shown in Figure 5.38. This comparison enabled the evaluation of the overall 

prediction ability of the PLS model. Zinc shows slightly low R
2
 value and this could be 

explained by its low relative intensity in the mixture. However, the high R
2
 values for all the 

metals indicate that the PLS model have a good accuracy for predicting the concentrations of 

their unknown samples. 
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Figure 5.38: Prediction results of the unknown samples 

 

The prediction ability of the PLS model was compared to the ILS and CLS models. The 

results of all the models are shown in Figure 5.39 as the bar plot. As previously discussed, the 

high degree quality of the model is based on % RMSE value less than 10. Copper and cobalt 

can be predicted accurately by the ILS and PLS models with % RMSE less than 5, whereas 

zinc was predicted accurately by the PLS model only. The pronounced prediction ability of 

the PLS over the other models is mainly due to the fact that during the PLS calibration step, 

both concentration and absorbance data are decomposed into latent variables. These variables 

are uncorrelated in low dimensional data space, thus the prediction results is much increased 

in PLS model. 

 

 

Figure 5.39: Comparison of the ILS, CLS and PLS model 

R² = 0.9827

R² = 0.9956

R² = 0.9949

-10

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

P
re

d
ic

te
d

 V
al

u
es

 (
%

)

Actual Values (%)

Zinc

Copper

Cobalt

0.00

5.00

10.00

15.00

20.00

Copper Cobalt Zinc

%
 R

M
S

E

Metal

ILS Model

CLS Model

PLS Model



  RESULTS AND DISCUSSIONS 

Page 98 

 

As show in Figure 5.39, the PLS model gave improved prediction results for Zn and this was 

a major concern for both ILS and CLS models. Multiple comparisons and ANOVA tests were 

carried out to determine if there is any significant difference between the accuracy of all the 

models. The mean values of the models were tested at 5 % significance level. The results in 

Table 5.12 show a 95% confidence interval for the difference of the means within each pair. 

All the intervals include 0, so it was concluded that there is insignificant difference among 

the models. P-values also shown in Table 5.12 indicate the probability of finding the mean 

values of all the models to be same for a specific metal. A high P-value for Cu shows that all 

the models have a similar accuracy for this metal as compared to Co and Zn metal. The 

degree of accuracy decreases with lower P-value. 

 

Table 5.12: Statistically comparisons for prediction ability of CLS, ILS and PLS model 

Model 

1 

Model 

2 

Copper Cobalt Zinc 

-95% C.I  +95% C.I  -95% C.I  +95% C.I  -95% C.I  +95% C.I  

CLS ILS -34.5508 61.8682 -28.2948 28.4089 -17.3093 36.9313 

CLS PLS -25.3066 71.1124 -24.6377 32.0660 -13.9102 40.3305 

ILS PLS -38.9653 57.4537 -24.6948 32.0090 -23.7212 30.5195 

        
P-value 0.9311 0.4571 0.4957 

 

 

5.6.3 Atomic Absorption Spectroscopy (AAS) 

 

The previous discussions show that both ILS and CLS models have a comparison similar to 

that of Blue Cube and PLS models. All the models compared were statistical methods. It was 

worthwhile to compare the prediction results of the ILS and CLS models with the analytical 

technique. The test samples were analysed by atomic absorption spectroscopy (AAS) 

technique. The AAS experiments involve the calibration of each metal at the time. After the 

calibration, then the test samples are analysed for the Cu, Co and Zn metal in the solutions. 

The metals are quantified individually from each sample. The calibration curve of the AAS 

technique is done by highly pure standard solutions for each metal. 
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Figure 5.40: Calibration graph of the Cu metal for AAS analysis 

 

Figure 5.40 shows the calibration graph for Cu metal during the AAS experiments. It can be 

observed that a good relationship was found between the relative absorbance of Cu metal and 

its concentration. The high R
2 

value indicates that the linear regression fit the data accurately. 

A solid line in the scatter plot shows the linear regression fit between the measured and 

model values, whereas the dotted lines show 95 % confidence interval limits for an 

estimation of good fit for the data. The results for the Co and Zn metal are given in Appendix 

E as Figure E.5 and E.6. Their results are similar to that of Cu metal. 

 

 

Figure 5.41: Predicted results for copper using the AAS technique 
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Figure 5.41 shows the predicted results for the analysis of the Cu metal. The high R
2
 value of 

0.9890 from the regression line shows that the AAS technique can measure the Cu metal very 

accurately from the solutions. The results that are presented here have the similar accuracy 

and precision than that of the prediction results of the ILS and CLS models. The AAS 

experiments confirmed that the results of the ILS and CLS models were accurate. 

 

In summary, this section study had proved that the accuracy and precision of both the ILS 

and CLS models are comparable with those of the AAS method. However, the advantages of 

the models are the simultaneous quantification of Cu, Co and Zn metals and the speed of the 

analysis. The calibration procedure for each metal for the AAS method makes the analysis 

time to be much longer as compared in the statistical models. Furthermore, the models also 

showed a more reliable data interpretation than the AAS method. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

 

This chapter gives the conclusions and recommendations based on the outcome of the results 

in the current study. It is shown that the CLS and ILS calibration models cannot predict 

effectively the samples performed at different experimental conditions. Nonetheless, the 

accuracy of these models is similar to that of the Blue Cube and PLS models within 95% 

confidence intervals. The future work is recommended based on the observations made 

during the experimental analyses and the literature review being studied. 

 

 

6 CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 
 

Diffuse reflectance spectrophotometry was calibrated successfully with standard solution and 

the preprocessing technique used to convert the raw data into absorbance values was very 

useful in both the quantitative and qualitative analyses of the Cu, Co and Zn metals. The 

height and position of the maximum absorption peaks were utilised respectively for each 

analysis. The peaks for Cu, Co and Zn metal occur at the wavelengths of 800, 510 and 430 

nm respectively. 

 

The CLS and ILS models have similar accuracy for all the metals during the calibration step 

with R
2
 values greater than 0.950. However, the CLS model showed less reliable prediction 

results for all the metals as compared to the ILS model. In addition, both the ILS and CLS 

models gave poor predictions for zinc, compared to Cu and Co, with the R
2
 values of 0.9334 

and 0.8995 respectively. The poor prediction results are due to the low relative intensity of 

the Zn metal in the mixture. Zinc ions have outer shells that are completely filled with 

electrons in their d-orbitals; hence rate of transition within the ions is very limited. 
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The intensity of the absorption spectra of the metals increased with the rise in temperature. 

The increase in the nickel concentration lowered the predicted values for Cu and Co metal 

but on the other hand it increased the predicted values for Zn metal. In general, the models 

developed from a normal room temperature in the absence of contaminants could not handle 

effectively the effect in the increase of temperature and nickel concentration. The models 

could only give accurate results up to temperature of 40 °C and 50 ppm of nickel 

concentration. 

 

The accuracy and precision of these statistical (ILS and CLS) models were determined to be 

similar to the results of Blue Cube optical fibre sensor within 95% confidence interval limits. 

The performance between the models and sensor was estimated using the analysis of variance 

(ANOVA) test. The PLS model shows a similar accuracy when compared to both ILS and 

CLS models for prediction of copper and cobalt metals. However the PLS model 

demonstrates improved predictive ability for the determination of zinc metal. The results of 

all the statistical models were verified and validated by the analytical technique, atomic 

absorption spectroscopy (AAS) and good comparison was found. 

 

Furthermore, the use of the experimental design revealed that there are no interactions 

between individual metals in the solution of mixture, i.e. interaction terms in a linear 

regression model were found to be insignificant at a 95% confidence level. The graphical 

display of the results, given as the contour plots also revealed a linear relationship among the 

metals. The linear regression model was given as follows:

. Based on coefficients of Cu, Co and Zn metal derived from the regression 

model, the contribution of the metals was determined to decrease in this order; Cu > Co > Zn. 

 

In an attempt to improve the prediction ability of the models for Zn quantification, first to 

fourth order of derivative spectroscopy was employed. The third order derivative shows 

similar results as the zero absorbance spectroscopy but other orders of the derivative 

spectroscopy gave inaccurate results for all the metals with %RMSE greater than 10. The 

predictions became very poor due to difficulties involved in selecting the wavelength region 

for the models. None of the orders of the derivative shows improved prediction results for Zn. 
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In general, this study demonstrates that the chemometric models (ILS and CLS) developed 

here can be used for quantification of several metals in real hydrometallurgical solutions, as 

samples were simulated according to conditions in a zinc plant. However, in order to observe 

the potential applicability of the study, the models must be further tested and applied on real 

samples as discussed in Section 6.2 below. 

 

 

6.2 Recommendations 
 

A manual selection method used to select the wavelength region in this study is very tedious, 

time consuming and sometimes is quite impossible to be employed in the derivative 

spectroscopy. Hence other methods like genetic algorithm or neural network must be sorted 

out. Wiegand et al, (2009) showed that a robust genetic algorithm can effectively perform the 

variable selection in a PLS model to extract valuable information about the predictors. 

 

The low intensity of Zn metal can be increased by using a complex agent that will chelate the 

Zn ions in the solutions and thus, enhance the maximum absorption peak of Zn metal. This 

enhancement procedure will only be applicable to the laboratory samples. When the models 

are supposed to be used in the industrial applications, the enhancement procedure will add 

cost to a plant. But this procedure could give indication whether poor predictions results is 

due to low absorbance in the mixtures solution.  

 

In order to study the influence of temperature and nickel concentration on the absorption 

measurements of Cu, Co and Zn metals very effectively, a combined factorial-mixture design 

must be used. The details of such experimental design are explained by Anderson and 

Whitcomb, (2000). They illustrated the experiments that simultaneously combine mixture 

components of a solution and process factors of an operation. 

 

Finally, the potential applicability of the study can further evaluated by applying the 

developed statistical (ILS and CLS) models on spectra data of the real plant solutions. Then 

assess the performance of the models in terms of the disturbances encountered in a plant 

operation. However, more experiments needed to be done in the laboratory to evaluate the 

effect of flow rate. 
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APPENDIX A: TEST SAMPLES 

 

The individual metals‟ concentration values for the unknown samples were chosen arbitrary 

so that the overall percentage of the metals equals to 100 %. The values in Table A.1 were 

selected and prepared to fall within the concentration range of the calibration samples. 

 

Table A. 1: Composition of the unknown samples 

RUN 

Percentage of each metal from maximum 

concentration (%) 

Zn Cu Co 

1 60.00 10.00 30.00 

2 50.00 25.00 25.00 

3 70.00 0.00 30.00 

4 80.00 20.00 0.00 

5 0.00 60.00 40.00 

6 20.00 0.00 80.00 

7 60.00 40.00 0.00 

8 40.00 30.00 30.00 

 

 

APPENDIX B: PERFORMANCE OF CLS MODEL 

 

B.1 Calibration Step of CLS model 
 

 

Figure B. 1: Calibration graph for the Cu metal using CLS model 
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Figure B. 2: Calibration graph for the Co metal using CLS model 

 

 

Figure B. 3: Calibration graph for the Zn metal using CLS model 

 

B.2 Prediction Step of CLS Model 
 

 

Figure B. 4: Graph for the prediction of Cu metal using CLS model 
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Figure B. 5: Graph for the prediction of Co metal using CLS model 

 

 

Figure B. 6: Graph for the prediction of Zn metal using CLS model 

 

 

APPENDIX C: DERIVATIVE SPECTROSCOPY 

 

 

Figure C. 1: Evaluation of the derivative orders based on % RMSE 
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APPENDIX D: FACTORS AFFECTING CLS MODEL 

D.1 Effect of the temperature 
 

 

Figure D. 1: Prediction ability of CLS model for copper metal at various temperatures 

 

 

Figure D. 2: Prediction ability of CLS model for cobalt metal at various temperatures 

 

 

Figure D. 3: Prediction ability of CLS model for zinc metal at various temperatures 
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D.2 Effect of the Nickel concentration 
 

 

Figure D. 4: Prediction ability of ILS model for copper metal in presence of nickel 

 

 

Figure D. 5: Prediction ability of ILS model for cobalt metal in presence of nickel 

 

 

Figure D. 6: Prediction ability of ILS model for zinc metal in presence of nickel 
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APPENDIX E: SUPPLEMENTARY METHODS  

 

E.1 PLS model evaluation 
 

 

Figure E. 1: Residual plot for identification of outliers 

 

 

Figure E. 2: Calibration graph of zinc metal for the PLS model 
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Figure E. 3: Calibration graph of copper metal for the PLS model 

 

 

Figure E. 4: Calibration graph of cobalt metal for the PLS model 
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E.2 AAS experiments 
 

 

Figure E. 5: Predicted results for cobalt using the AAS technique 

 

 

Figure E. 6: Predicted results for zinc using the AAS technique 
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