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SUMMARY 

 

Supervised classifiers are the most popular approach for image classification due to their high 

accuracies, ease of use and strong theoretical grounding. Their primary disadvantage is the high 

level of user input required during the creation of the data needed to train the classifier. One 

alternative to supervised classification is an expert-system rule-based approach where expert 

knowledge is used to create a set of rules which can be applied to multiple images. This research 

compared supervised and expert-system rule-based approaches for forest mapping. For this 

purpose two SPOT 5 images were acquired and atmospherically corrected. Field visits, aerial 

photography, high resolution imagery and expert forestry knowledge were used for the 

compilation of the training data and the development of a rule-set. Both approaches were 

evaluated in an object-orientated environment. It was found that the accuracy of the resulting maps 

was equivalent, with both techniques returning an overall classification accuracy of 90%. This 

suggests that cost-effectiveness is the decisive factor for determining which method is superior. 

Although the development of the rule-set was time-consuming and challenging, it did not require 

any training data. In contrast, the supervised approach required a large number of training areas 

for each image classified, which was time-consuming and costly. Significantly more training areas 

will be required when the technique is applied to large areas, especially when multiple images are 

used. It was concluded that the rule-set is more cost-effective when applied at regional scale, but it 

is not viable for mapping small areas. 
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OPSOMMING 

 

Gerigte klassifiseerders is die gewildste benadering tot beeldklassifikasie as gevolg van hulle hoë 

graad van akkuraatheid, maklike aanwending en kragtige teoretiese fundering. Die primệre nadeel 

van gerigte klassifikasie is die hoë vlak van gebruikersinsette wat benodig word tydens die 

skepping van opleidingsdata. 'n Alternatief vir gerigte klassifikasie is 'n deskundige stelsel waarin 

‘n reëlgebaseerde benadering gevolg word om deskundige kennis aan te wend vir die opstel van 'n 

stel reëls wat op meervoudige beelde toegepas kan word. Hierdie navorsing het gerigte en 

deskundige stelsel benaderings toegepas vir bosboukartering om die twee benaderings met mekaar 

te vergelyk. Vir dié doel is twee SPOT 5 beelde verkry en atmosferies gekorrigeer. Veldbesoeke, 

lugfotografie, hoë-resolusie beelde en deskundige bosboukennis is aangewend om opleidingsdata 

saam te stel en die stel reëls te ontwikkel. Beide benaderings is in 'n objekgeoriënteerde omgewing 

beoordeel. Die akkuraatheidsvlakke van die resulterende kaarte was ewe hoog vir beide tegnieke 

met 'n algehele klassifikasie-akkuraatheid van 90%. Dit wil dus voorkom asof koste-effektiwiteit 

eerder as akkuraatheid die deurslaggewende faktor is om te bepaal watter metode die beste is. 

Alhoewel die ontwikkeling van die stel reëls tydrowend en uitdagend was, het dit geen 

opleidingsdata vereis nie. In teenstelling hiermee is 'n groot aantal opleidingsgebiede geskep vir 

elke beeld wat met gerigte klassifikasie verwerk is – 'n tydrowende en duur opsie. Dit is duidelik 

dat meer opleidingsgebiede benodig sal word wanneer die tegniek op groot gebiede toegepas 

word, veral omdat meervoudige beelde gebruik sal word. Gevolglik sal die stel reëls meer koste-

effektief wees wanneer dit op streekskaal toegepas word. ‘n Deskundige stelsel benadering is egter 

nie lewensvatbaar vir die kartering van klein gebiede nie. 
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CHAPTER 1:  INTRODUCTION 

Spatial information is essential when undertaking any form of environmental decision making and 

for it to be most effective it must be detailed, up to date and accurate (Apan 1996; Benz et al. 

2004; De Carvalho et al. 2004; Lennartz & Congalton 2004). However, collecting such 

information manually is almost impossible, particularly at large scales and for large areas (Bock et 

al. 2005; Shiba & Itaya 2006). While the advent of aerial photography and satellite imagery has 

allowed the development of desktop classification of land-cover over much larger areas and in 

much higher detail than could previously be accomplished, these techniques are not without their 

disadvantages. High-resolution remotely sensed imagery is expensive (Lennartz & Congalton 

2004), computationally demanding (Hay, Niemann & Goodenough 1997) and requires specialised 

training to use effectively (De Carvalho et al. 2004; Gegg, Günther & Riekert 1990; Inglada 

2007). This is particularly relevant when an increase in classification accuracy is usually 

accompanied by an increase in reference data quality, classification method complexity and 

required image resolution (Blaschke et al. 2000; Mather 2004; Moller-Jensen 1997).  

 

1.1 Supervised classification versus rule-set classification 

Supervised classification is the most popular digital image classification method for research 

applications (Brown de Colstoun et al. 2003). The attributes favouring its selection over other 

forms of classification include its strong theoretical base, its ease of use, and its high degree of 

accuracy. It does, however, suffer a major disadvantage: the expense of identifying and 

delineating the training areas necessary for the classification procedure. These areas, which are 

used to ‘train’ the classifier to recognise unknown areas, must be carefully chosen, as the accuracy 

of the outcome of the classifier is heavily dependent on them. Insufficient, poorly chosen or 

incorrectly defined training areas will result in lower overall accuracy (Campbell 2006; Mather 

2004). In addition, the inherent differences in values among images of different areas often 

necessitate the reconfiguration of training areas when classifying more than one image (Pax-

Lenney et al. 2001). This severely limits the degree of classification automation possible over 

multi-image areas, such as on a regional or national scale. 

 

More recent research has examined classification systems which use a set of expert-informed or 

autonomously-created rules in logical structures to determine information classes from the 

different features within remotely-sensed imagery (Brown de Colstoun et al. 2003). These rule-

based classifiers have two distinct advantages over more conventional methods: the logical, 
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flexible and transparent manner in which image information is represented within a rule-set; and 

the modular arrangement of the rule-set, which allows for easy alterations or updates for classifier 

improvement (Bolstad & Lillesand 1992). The structure of this methodology allows for a more 

accommodating approach to autonomous classification, where a rule-set can be specifically 

designed to take into account the inherent differences experienced between images, owing to 

sensor calibration, time of day of capture, and seasonality.  

 

In addition, both the supervised and rule-set classification approaches have been enhanced by 

object-orientated methods. Object-orientation image classification involves the delineation and 

classification of image segments rather than individual pixels, which allows for more meaningful 

analysis of spectral and textural features. It also introduces the use of geometrical and contextual 

features, which provide a more intuitive understanding of the relation between image-objects and 

real-world objects (Benz et al. 2004; Bock et al. 2005; Hay et al. 2005; Mansor, Hong & Shariff 

2002; Shiba & Itaya 2006).  

 

1.2 Remote sensing in forestry classification in South Africa 

Natural forests, the smallest vegetation unit in South Africa (estimated at 3000km2 in size), are 

difficult to map, as they are both widely distributed and highly fragmented (Geldenhuys & Mucina 

2006). However, the efficient management of these natural resources requires constant, up-to-date 

and accurate inventories on a national scale (Desclée et al 2006). Being responsible for monitoring 

and managing forests in South Africa, the Department of Water Affairs and Forestry (DWAF) has 

commissioned several projects to map forests on a regional and national level. The latest project, 

namely the National Forest Inventory (NFI), was completed in 2002, using supervised 

classification techniques on Landsat imagery (Wannenburg & Mabena 2002).  

 

Although the NFI provides a good foundation for planning purposes on a national level, its 

accuracy and scale (1:100 000) are inadequate for monitoring and management on a local level 

(Van Niekerk 2007). In addition to the low level of detail, the NFI also contains many errors 

(Mucina et al. 2007). Consequently, a more accurate, larger scale (1:10 000) NFI is urgently 

needed (DWAF 2008). However, to update the NFI using a supervised approach would be 

prohibitively expensive as it will involve a detailed national survey to collect the required training 

data. In this regard, an object-orientated rule-based approach may be more cost-effective. 
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1.3 Overarching aim 

The aim of this study is to compare the accuracy and cost-effectiveness of a supervised and rule-

based classifier, applied in an object-orientated environment, for mapping forests over large areas. 

 

1.4 Research objectives 

To accomplish this aim, the specific research objectives are to: 

1) Review the relevant literature and related research to better understand the fundamental 

remote sensing concepts involved; 

2) Acquire and pre-process the necessary imagery; 

3) Use a combination of field surveys, recent aerial photography, high-resolution satellite 

imagery and expert knowledge to develop a reference dataset for rule-set development and 

training data creation; 

4) Carry out an object-orientated supervised classification for mapping forests; 

5) Develop and carry out an object-orientated rule-set classification for mapping forests; 

6) Compare the accuracies and costs of the two techniques; and 

7) Interpret the results and make recommendations as to the possible application of each 

approach for mapping forests over large areas. 

 

1.5 Study area 

The techniques were developed and tested in two slightly overlapping 60x60km areas south and 

north respectively of Richards Bay in the uThungulu Municipal District of KwaZulu-Natal in 

South Africa, as illustrated in Figure 1.1. The area was chosen for its complexity regarding forest 

types (i.e. Eastern Scarp Forests, KwaZulu-Natal Coastal Forests, KwaZulu-Natal Dune Forests, 

Swamp Forests and Mangrove Forests) and other land uses (e.g. agricultural, natural, residential). 

Natural vegetation accounts for 49.3% of the total land cover in the study area, of which thicket 

and bushland have the largest proportion (21.4%), followed by unimproved grassland (14.1%) and 

forest and woodland (13.8%). Agriculture comprises 27.2% of the total land cover, consisting 

mainly of temporarily semi-commercial or subsistence dryland cultivation (16.6%) and sugarcane 

(10.9%), the remainder (0.3%) being horticultural crops such as citrus, subtropical fruits and 

vegetables (KwaZulu-Natal Department of Transport 2008). Other significant land cover types are 

commercial forestry (10.5%) consisting almost entirely of eucalyptus and pine plantations 

(Mucina 2008, pers com) and degraded natural vegetation (9.4%). Urban-related land cover is 

proportionally low (1.2%), with the town of Richards Bay being the commercial and industrial  
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Figure 1.1: Location and extent of the acquired satellite images which demarcate the study area 
 

hub of the area (population 44 852 in 2001). Other notably populated urban areas in the vicinity 

are Empangeni (population 13 306 in 2001) and the nearby township of Esikhawini (population 32 

437 in 2001) (Statistics South Africa 2001). The climate of the area is subtropical, with maximum 

daily temperatures ranging from 23°C in winter to 29°C in summer. The rainfall average per year 

is 1228mm (1961-1990) with a concentration during summer (South African Weather Service 

2008). 

 

1.6 Research methodology and agenda 

The research methodology of a study should be rooted in both the real and everyday world, and in 

the more abstract world of science and scientific research (Mouton 2004). The relation of this 

research to the world of scientific enquiry is conceptual: it furthers the knowledge and 

understanding of the methodologies being tested. The relation of this research to the real world 

lies in the functional: it applies the conclusions of the research to the undertaking of forestry 

mapping over a large area. An argument is made that the two classifiers presented, namely a 

supervised and rule-set classification in an object orientated environment, are the most applicable 

to the task at hand. The classifiers are then compared in terms of cost-effectiveness and accuracy 

to determine which should be utilised for national forest mapping. 
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This research can be categorised as a methodological study, which Mouton (2004:173) describes 

as a study “…aimed at developing new methods… of data collection and sometimes also 

validating a newly developed instrument through a pilot study.” Such studies can be non-empirical 

in nature, deriving conclusions based strongly in established theory. However, while the concepts 

informing this study were acquired from theory, its conclusions are derived from the evidence of 

the performance of the compared methodologies, resulting in a distinctly empirical nature. The 

same precept applies to the nature of the data used: conclusions are based on primary data 

generated during the course of the study. The specific type of data used is quantitative in nature, 

comprising numerical, statistical and logical elements, with a high degree of control during 

methodology comparison. 

 

A layout of the report structure and associated chapters is shown below in Figure 1.2.  

 

Figure 1.2: Research diagram indicating the chapter structure of the thesis 
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Chapter 2 provides a comprehensive review of the literature with particular focus on image-

classification techniques, object-based classification and segmentation, and image features. The 

acquisition and pre-processing of the imagery, as well as the creation of the reference data are 

discussed in Chapter 3. Chapter 4 details the methodology used for the supervised classification 

and the development of the rule-set. This includes a discussion of training data creation, rule-set 

design and the subsequent implementation of rules. The research is critically evaluated in Chapter 

5, where the accuracy and cost-effectiveness of the supervised approach is compared to the rule-

set results. The research is concluded by providing an overview of the findings of the study and 

placing them in the broader context of a forestry inventory. 
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CHAPTER 2:  IMAGE CLASSIFICATION METHODOLOGIES 

Digital image classification methodologies, or image classifiers, involve a set of computer 

procedures that assign image pixels or objects to classes representing information categories 

relevant to the user, based on a diverse selection of inherent image features (Campbell 2006). The 

development of image classifiers has been subject to ongoing research since the introduction of 

remote sensing, so that there now exists a wide variety of classifier types and forms, each with its 

own strengths and weaknesses relative to applications to which they may be applied (Lawrence & 

Wright 2001; Mather 2004). When deciding on a classification method for an application, a user 

must weigh the importance of several different factors. Efficacy of classification methods is 

usually judged in the literature according to the statistical accuracies of the final classification. 

However, the demand for human expertise, the time and expense of preparing and running the 

classifier, and the degree of automation required are aspects which must be taken into account (Pal 

& Mather 2003). It should also be noted that the accuracies of different classification 

methodologies are often specific to the application to which they are put (Liu, Skidmore & Van 

Oosten 2002). It is therefore important that the user be aware of the different types of classifiers 

available, to judge which is better suited to the application at hand. This chapter begins with an 

overview of traditional and alternative pixel-based classification methods, then examines 

classification methods employed in an object-orientated environment, and concludes with the 

intrinsic features found in digital images which can be used by classifiers to identify land cover 

classes.  

 

2.1 General classification in remote sensing 

The more conventional methods of classification consist of supervised and unsupervised 

procedures, which rely strongly on a variety of statistical algorithms employed in geometric space. 

Although widely used in practical applications, these more traditional classifiers are not without 

their limitations. The progression of digital image analysis techniques combined with the 

advancement of computer hardware and software, has led to the development of alternative 

classifiers which display a greater degree of data mining for image pattern recognition (Tseng et 

al. 2007). This is done by incorporating techniques such as artificial intelligence, logical structures 

and expert knowledge into the classification procedures (Brown de Colstoun et al. 2003; Mather 

2004). This subsection expounds on and evaluates both traditional and alternative classifiers. 
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2.1.1 Traditional classifiers 

Traditional classifiers refer to the two classification methodologies with the longest established 

tradition in remote sensing applications: namely unsupervised and supervised classification. 

 

2.1.1.1 Unsupervised classification 

Unsupervised classification is defined by two distinct steps. The first step is the automatic 

classification of pixels into a user-specified number of image classes according to their spectral 

properties. The second step is the manual labelling of the classes, usually depicted in images as 

areas of homogeneity, according to real-world information (Campbell 2006). Although the 

automated nature of the spectral delineation renders this classification method less user-intensive 

than others, it cannot be said to be truly unsupervised in nature. It is rather, as Mather (2004:203) 

puts it, “exploratory”, where repeated unsupervised area delineations with different parameters 

allow a user to ”get a feel” for which real-world classes are spectrally distinct and which are 

spectrally similar. This understanding of image features can inform the construction of the set of 

real-world classes to be used in the classification, rendering unsupervised classification extremely 

useful where a priori information regarding the study area or the classification structure is 

unavailable or not pre-determined. Conversely, where a real-world class structure is already 

established it is rare that it will correspond with the automatically delineated spectral classes, 

resulting in the lowering of the accuracy of the outcome (Campbell 2006). This is especially true 

for high-resolution imagery where features of interest commonly comprise multiple spectral 

classes shared by more than one information class (Vanderzanden & Morrison 2002). This is the 

primary disadvantage of unsupervised classification, and for this reason its use is often limited in 

practical applications. 

 

2.1.1.2 Supervised classification 

Supervised classification is defined by the application of a priori information of real-world classes 

to determine the identity of unknown image elements. Data for the real-world classes are acquired 

from an external source and entered into the classifier in the form of designated and labelled 

polygons termed “training areas” or “training data”. These training areas contain statistical 

information regarding the spectral properties of each class, which is used by a classification 

algorithm to identify the class of unknown pixels (Campbell 2006; Lira & Maletti 2002; Mather 

2004). Classification algorithms are widely varied, but are all designed to statistically compare the 

features of each of the classes with those of an unknown pixel in geometric space, and assign a 

class based on the results of that comparison. The most widely used algorithm is the maximum 
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likelihood classification (MLC) algorithm, due to its ready accessibility, robustness, strong 

theoretical foundation, and high accuracies for a wide range of remote sensing applications (Albert 

2002; Bolstad & Lillestad 1991; Brown de Colstoun et al. 2003; Pal & Mather 2003; Tseng et al. 

2007). Because of these traits, a number of studies use MLC as the benchmark with which to 

compare newly developed classification methods (Gumbricht, McCarthy & Mahlander 1996; 

Hagnar & Reese 2007; Hepner et al. 1990; Liu, Skidmore & Van Oosten 2002; Nangendo, 

Skidmore & Van Oosten 2007; Neusch & Grussenmeyer 2003; Pal & Mather 2003).  

 

Despite the advantages shown by supervised classification, it does contain a number of drawbacks. 

First, while accuracies achieved are generally acceptable they are often out-performed by more 

elaborate classification methods, such as artificial neural networks, expert systems and 

classification trees (Pal & Mather 2003). The second and third disadvantages pertain to the 

identification and delineation of training areas. As stated earlier, poorly developed training areas 

result in weak classification accuracies, and thus training data must be meticulously prepared. This 

can become expensive in terms of both time and money, especially for projects that span multiple 

images (Albert 2002). More relevant to this study, however, is the low degree of automation 

allowable by supervised classification due to training area creation. Again, this is amplified for 

wider-scale projects, as without rigorous pre-processing new training areas must be developed for 

each individual image used (Pax-Lenney et al. 2001). 

 

2.1.2 Alternative classifiers 

Alternative classifiers are classification methodologies that are less used for practical applications 

due to their complexity and lack of software or they are too recent innovations to have proven 

credibility (De Carvalho et al. 2004). This subsection focuses on the most well-documented 

alternative methodologies, namely artificial neural networks, supervised rule-sets, and expert 

systems.  

 

2.1.2.1 Artificial neural networks 

One of the older alternative classification methodologies, namely artificial neural network (ANN) 

classifiers, was among the first to draw from the field of artificial intelligence (AI) in the attempt 

to improve traditional classification techniques. As with supervised classification, this process 

requires the input of training data, but whereas supervised classification can be thought of as 

“forward-propagating” (i.e. the analysis of input data determines the output data), ANNs are 

“back-propagating” in that the connections between the input and output data are examined and 
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modified according to the expected and actual classification results. These connections are the 

links between the “neurons”: elements of the input layer, output layer and one or more hidden 

intermediate layers which allow for the normalisation, weighting, summation and thresholding of 

input values in approximating the output values. The adjustment process is the dynamic alteration 

of the connection weights in the intermediate layer or layers of a network, designed to bring the 

actual output data closer to the expected output data. Examination and readjustment are performed 

iteratively until a minimum return threshold is reached or the process become asymptotic. This 

process is termed “training the network” (Hepner et al. 1990; Skidmore et al. 1997). 

 

One of the original purposes of the development of ANN classifiers was to overcome the 

limitations of creating or using a predetermined algorithm for classification. By “learning” a 

classification procedure according to the training data provided, no a priori knowledge of the area 

is necessary and the need for specialist assessment and evaluation of the outcome is removed. 

Additional advantages of back-propagating neural networks include allowance for data of any 

statistical distribution, higher tolerance of image noise, and the greater ability to recognise 

unknown patterns which are similar but not identical to the training data (Hepner et al. 1990; 

Mather 2004; Skidmore et al. 1997).  

 

However, the development and use of an ANN does contain two significant disadvantages. The 

first concerns the design specifics of the ANN, as network architecture is determined mostly 

through trial and error. This is because each application is case-specific, and thus the literature 

does not provide guidelines on, for example, how many hidden layers to have, how many neurons 

to have for each layer, what neuron connections are necessary or unnecessary, what the minimum 

return threshold should be, how many training patterns should be used, and what neuron 

connection weights should be (Pal & Mather 2003; Tseng et al. 2007). Skidmore et al. (1997:551) 

demonstrated that these factors can significantly affect the classification result, leading them to 

conclude that while the ANN performed as expected, “...the adjustments and fine tuning required 

of the input parameters would deter many users.” The second disadvantage of ANN classifiers 

relates directly to that experienced by traditional supervised classification, namely the 

identification and delineation of training areas. Although findings have indicated that training 

areas need not be as robust as needed for supervised classifiers (Hepner et al. 1990), the principle 

of inferior training data resulting in an unsatisfactory classification remains valid (Skidmore et al. 

1997). The time and monetary expenses of training data collection for larger projects is therefore 

applicable to this classification methodology and this, in conjunction with only modest 
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improvements to accuracy, a high processing demand (Campbell 2006) and the complex nature 

of establishing the ANN, have resulted in only modest use of this type of classifier. 

 

2.1.2.2 Supervised rule-sets 

Like ANN classifiers, rule-based systems incorporate machine-learning algorithms from the field 

of AI in attempting to predict digital image classes. While rule-based classifiers can encompass a 

variety of forms, it is possible to distinguish between those that are developed autonomously from 

training data input by the user, also termed supervised rule-sets, and those developed manually 

from external knowledge, which are termed expert classifiers. 

 

One significant difference between ANN and rule-based techniques is the transparency of each 

classification method. The algorithm created from training an ANN has been termed a “black box” 

in the literature, because it provides little insight into the relationships between the image classes 

and image features (Tseng et al. 2007). Conversely, a rule-based system is by its very nature 

discerning in that feature information is used to assign classes by a set of threshold rules of the 

“If...Then...Else” structure (Bolstad & Lillesand 1992). By scrutinising the rule-set, created either 

autonomously or manually, users can familiarise themselves with the more discriminating features 

for each image class. 

 

For autonomously created rule-sets the use of classification trees has, over the past decade and a 

half, steadily gained in prevalence (Lawrence & Wright 2001). Classification trees, also termed 

decision trees (DTs) or classification and regression trees (CARTs), are constructed by the 

recursive division of the training data into increasingly homogenous subsets. An individual node, 

or split, in the classification tree is a threshold value for the image feature which produces the 

most deviance in the dataset. Subsequent subsets are subject to further division, perhaps using 

other features with high heterogeneity, until either a preset subset variance or classification tree 

level is reached. The result is a hierarchical rule-set used for digital image classification (Hansen, 

Dubayah & Defries 1996; Lawrence & Wright 2001).  

 

Although classification trees show a relatively high degree of classification accuracy (Bolstad & 

Lillesand 1992; Brown de Colstoun et al. 2003; Hansen, Dubayah & Defries 1996), their major 

limitation is the same as that of traditional supervised classification and ANNs, that is the need for 

extensive and accurate training data (Homer et al. 2002). Lawrence & Wright (2001) used a 

CART to classify Landsat imagery of the Greater Yellowstone ecosystem in Idaho, Montana and 
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Wyoming, and concluded that although classification with CART analysis was effective, the 

outcome is as sensitive to proper training data selection as the more traditional supervised 

classifiers. Although no literature could be found where one set of training data has been applied 

to multiple images for classification tree analysis, it is argued that the statement by Pax-Lenney et 

al. (2001) remains valid, namely that without rigorous pre-processing of different images, new 

training areas must be developed for each individual image used. 

 

2.1.2.3 Expert systems 

The first of the alternative classifiers to overcome the limitations of training data are expert 

systems. The term ”expert system” is used variously in remote sensing and it can represent a 

number of different techniques. Tsatsoulis (1993) defines the categories of expert systems as user-

assistance systems, classifiers, low-level processing systems, data fusion systems, and GIS 

applications. All pertain to different procedures in remote sensing analysis, but all are defined as 

“expert” in that they all employ AI inference structures which use expert knowledge (Cohen & 

Shoshany 2002). For this reason, expert systems are also known in the literature as knowledge-

based systems. 

 

For this review, only the classification techniques of expert systems were examined. These 

comprise a number of rules which use prior expert knowledge to define image classes, and they 

can be divided into three groups, namely relaxation-systems which apply knowledge in the 

verification of a classification; pixel-level systems which apply knowledge to determine the 

identity of a pixel through feature analysis; and domain-level systems where a structural model 

already exists which can be used for classification (e.g. road types, urban zoning) (Tsatsoulis 

1993). Regarding classification accuracy, results have been promising. Nangendo, Skidmore & 

Van Oosten (2007) demonstrated how the incorporation of expert rules significantly increased the 

accuracy of East African tropical forest mapping in Uganda. Cohen & Shoshany (2002) found that 

a knowledge-based classifier returned superior results to unsupervised classification for a number 

of different satellite images for crop recognition in central Israel. Although Gumbricht, McCarthy 

& Mahlander (1996) showed that a manually inferred rule-set is superior to a maximum likelihood 

supervised classifier, they concluded that “...the knowledge representation was the bottleneck, as 

reported by many other studies" (Gumbricht, McCarthy & Mahlander 1996:278). This remark 

illustrates the primary disadvantage of expert classification: that the creation of a usable rule-set 

from expert knowledge is time-consuming (Liu, Skidmore & Van Oosten 2002). Another 

disadvantage of many rule-based expert systems is the limitation imposed by per-pixel features. 
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Moller-Jensen (1997) attempted to incorporate texture into a knowledge representation model of 

an urban environment, and when identifying possible directions for future research suggested a 

shift to a more object-orientated environment. This is examined in more detail in the following 

section. 

 

2.2 Segmentation and use of objects 

The development of classification methodologies has been enhanced by the advent of object-

orientated analysis. Traditional methods of image analysis consider each pixel as an individual 

unit, with little cognisance of its topological relations to its neighbours or the class structure it 

represents (Lira & Maletti 2002; Van Coillie, Verbeke & De Wulf 2007). This individuality of 

pixels renders them susceptible to data noise, atmospheric effects and surface variation (Wicks, 

Smith & Curran 2002), and limits the usability of spectral, textural and relational information 

(Lennartz & Congalton 2004; Oruc, Marangoz & Buyuksalih 2004; Rego & Koch 2003). 

Considering these factors, Blaschke et al. (2000) argue that no form of pixel-based classification 

can really yield reliable, robust and accurate results. In contrast, object-orientated imagery analysis 

operates on pre-defined areas of the image, derived either from an external pre-defined source or, 

more commonly, an internal region-partitioning process known as segmentation (Blaschke et al. 

2000).  

 

2.2.1 Segmentation 

Segmentation is usually the first step in object-based classification and involves the delineation of 

areas of an image into separate objects. Although there are a variety of methods of segmentation, 

the bottom-up, region-growing method of multiresolution segmentation has been shown to provide 

good results for a variety of applications and over an array of image types (Baatz & Schäpe 1999). 

This method starts with objects consisting of single pixels, then repetitively merges adjacent 

objects until a user-set homogeneity parameter is exceeded. Altering this parameter (termed 

"scale"), which consists of separate object scale, object size and object form variables, allows the 

user to define a layer of image objects corresponding to actual geographical objects relative to the 

scale at which the image is viewed. Repeated segmentations with different scale parameters result 

in layers of objects of different dimensions which can be structured in a shape-constrained 

hierarchical object network. Each object in such a network will exhibit both horizontal and vertical 

spatial awareness, as it is aware of its neighbouring objects in the same object layer, the number of 

and shared borders of its sub-objects in layers below, and its membership to super-objects in 

layers above (Benz et al. 2004; Karakis, Marangoz & Buyuksalih 2006; Mallinis et al. 2007; 
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Willhauck et al. 2000). The result could be termed a multi-scale hierarchy of object-primitives-

building blocks defined though a process of repetitive testing which provides optimal information 

for further segmentations or classifications for the specific application (Mitri & Gitas 2002). It 

follows that segmentation and classification must be a collaborative process, as defining 

appropriate segmentation parameters for different scales is challenging and often problematical 

(Hay et al. 2005), and the quality of the segmentation will significantly affect the outcome of the 

classification (Bauer & Steinnocher 2001; Benz et al. 2004; Kermad & Chehdi 2002).  

 

To summarise, the use of multi-scale, object-orientated image analysis offers the following 

advantages (Benz et al. 2004; Bock et al. 2005; Hay et al. 2005; Mansor, Hong & Shariff 2002; 

Shiba & Itaya 2006): 

• Meaningful statistical calculation of spectral and textural qualities. 

• The availability of feature qualities such as shape and object topology. 

• The intuitive spatial relations between real-world objects and image objects. 

• The ease of integration between GIS and remote sensing environments and flexibility 

among different software platforms. 

A number of researchers have argued that these factors contribute to producing a superior image 

classification result compared to those provided by pixel-based approaches. Several case studies 

support this view. Rego & Koch (2003) illustrated the superior accuracy of object-based over 

pixel-based supervised classifiers in more than 100 image classifications, using IKONOS imagery 

in Rio de Janeiro City, Brazil. The superiority of object-orientated classification was also shown 

by Oruc, Marangoz & Buyuksalih (2004) who compared the technique to three different types of 

pixel-based supervised classification of Landsat-7 enhanced thematic mapper plus (ETM+) 

imagery in Zonguldak, Turkey. And Benz et al. (2004), Blaschke et al. (2000) and Willhauck et 

al. (2000) all lauded object-orientation for its superior integration between continuous remote 

sensing data and a vector-based GIS environment. 

 

2.2.2  Classification techniques in an object-orientated environment 

Most pixel-based classifiers can be adapted successfully for an object-orientated environment. 

Mansor, Hong & Shariff (2002) demonstrated the application of a simple supervised classification 

of a Landsat TM image for land cover mapping, with an overall accuracy of over 90%. Ali-Akbar, 

Sharifi & Mulder (2000) incorporated expert knowledge and ancillary data in image segmentation 

and applied a maximum likelihood classifier to the resulting objects in an attempt to improve the 

accuracy of deforestation estimates in Chiong Mai Province in Thailand. Their method was used 
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on Landsat thematic mapper (TM) data, and showed an 8-10% increase in accuracy over 

previously used methods. Berberoglu et al. (2000) compared maximum likelihood and ANN 

classifiers for a per-field approach to land cover classification of Landsat TM data in the Cukurova 

Delta in Turkey, obtaining overall accuracies of up to 89% with eight categories.  

 

The family of classification techniques most enhanced by the use of objects is that of rule-based 

classifiers. As stated earlier, each object-primitive in a hierarchy contains a number of inherent 

features, as well as relative spatial awareness which is ideally suited to analysis by a rule-set 

structure. This has been demonstrated by a number of studies. Lewinsky & Bochenek (2008) 

undertook a land cover-based classification of a SPOT 4 image in the Kujawy region in Poland 

using feature thresholding in a rule-based decision-tree. Their use of spectral, textural and 

relational feature thresholds to classify objects attained a satisfactory overall accuracy of 89% with 

13 categories. They admitted that although the principle of rule-based classification was sound, 

modifications were necessary when applying the rule-set to different images. Bock et al. (2005) 

used a hierarchical rule-based classification at multiple scales and at multiple resolutions for 

habitat mapping in Northern Germany and Wye Downs, UK, and lauded the technique for its 

potential to incorporate expert knowledge at any stage of the analysis.  Mitri & Gitas (2002) 

developed and tested a hierarchical object membership classifier for Landsat TM images to map 

burnt areas in two regions in the Mediterranean, with accuracies over 98% for both images. Bauer 

& Steinnocher (2001) developed a rule-set which used object hierarchy aggregation and allocation 

to classify urban areas from IKONOS imagery in Venice, Italy, also with favourable results.  

 

In forestry specifically, Mallinis et al. (2007) compared a nearest-neighbour classifier to a CART 

classifier for forest type classification from Quickbird imagery in Thessaloniki in northern Greece. 

Although the overall accuracies for both classifiers did not exceed 70% for the seven classes, the 

authors concluded that the rule-based CART outperformed the supervised classification regarding 

both accuracy and transparency. Shiba & Itaya (2006) used a rule-based classifier in conjunction 

with a digital elevation model (DEM) in an object-orientated environment to detect forest change 

in Japan. The classifier was used on IKONOS imagery and the authors concluded that rule-based 

object-orientated approaches have the ability to greatly improve forest monitoring and 

management systems for decision-making processes. 

 

More relevant to the aim of this study are expert-system rule-based classifiers, which eliminate the 

need for training data and thereby increase cost-effectiveness. As stated before, an expert 
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understanding of the relationships between these objects in the real world, and their intrinsic 

image features, allows the user to define complex rules for object classification based on spectral, 

textural and structural qualities, as well as the spatial relationships among the objects (Benz et al. 

2004; Blaschke et al. 2000). Argialas & Harlow (1990:883) put it more elegantly when they state 

that expert systems “...upgrade the state of image analysis capabilities from brute force 

mathematical and statistical approaches to analysis techniques based on interpretation logic and 

heuristics”, but also caution that feature selection relies on the past experience, engineering 

intuition and domain-specific knowledge of the system designer. It is therefore essential that the 

variety and composition of image features is fully understood before an expert-system rule-set 

classifier can be created. This is examined in more detail in the following section. 

 

2.3 Object features 

All objects on earth, when struck by the electromagnetic (EM) energy of the sun, absorb and 

transmit a degree of that energy, and reflect the remainder back into space. The specific manner of 

the object determines which specific wavelengths of the EM spectrum are absorbed and 

transmitted, and which are reflected. Remote-sensing instruments are designed to measure and 

record those reflected portions of the EM spectrum most practical for earth-observation purposes. 

The most widely used remote-sensing instruments are multispectral scanners, such as used in this 

study, and these comprise a number of sensors each simultaneously recording different ranges or 

bands of the EM spectrum  (De Jong, Pebesma & Van der Meer 2005). The number of bands and 

the EM wavelength ranges of each band vary among systems, but the final product is usually a 

composition of all the bands together in one digital image (Newton 2007). It is the function of the 

remote-sensing expert to translate, interpret and classify these images.  

 

Traditional image processing was primarily undertaken on a per-pixel basis, with most analysis 

limited to spectral image properties (De Jong, Pebesma & Van der Meer 2005; Tuominen & 

Pekkarinen 2005), although there are examples of research which employ pattern recognition of 

which the work of Haralick, Shanmugam & Dinstein (1973) is the most notable. Contemporary 

image analyses still make regular use of spectral and textural features, but the advent of object-

orientated image analysis has enhanced the manner in which such features can be used. In addition 

to providing an additional set of feature attributes – that of object geometry – feature analysis can 

now be undertaken for each object (i.e. locally), within a hierarchical object framework or on all 

objects (i.e. globally) (Blaschke et al. 2000; Definiens 2007). This section examines the object 

features available for expert-based rule-set classification. 
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2.3.1 Spectral features 

The overview of image classifiers in the previous sections has provided some insight into the use 

of spectral features for non-object-orientated image analysis. Unsupervised classifiers use spectral 

properties to classify homogenous areas for manual class labelling, while supervised classifiers 

match unknown areas of an image to pre-defined training data, primarily using their spectral 

characteristics. In addition, pixel-based expert systems use prior knowledge of the spectral 

properties of land cover features in a rule-set to arrive at a classification. 

 

However, in an object-orientated expert system the analysis of spectral features is different. 

Multiresolution segmentation defines an object network according to the homogeneity of each 

spectral band selected for the segmentation process. In theory, this creates bordered areas of low 

variance, which offers a broad range of possibilities for object comparison using statistical 

measures such as band mean, standard deviation, range, and maximum and minimum values 

(Definiens 2007). Again, it must be stated that such spectral feature comparisons can be 

undertaken between objects on the same hierarchical level, on levels above or below, or with the 

spectral properties of the entire image. For example, for a given object network it may be found 

that it is possible to differentiate a particular class by comparing the specific object means of a 

certain band with the global mean of that same band. If the object value is lower than the global 

value, the object is assigned to that specific class. If it is higher it is left as undefined. The 

undefined objects might be subject to further segmentation, creating a new object-network below 

the first, where it may then be found that by comparing the sub-objects’ standard deviation of a 

second band to the standard deviation of their super-object, it is possible to distinguish another, 

different class. Such an example illustrates the possible use of spectral information for object-

orientated image classification. However, in the pursuit for more efficient information extraction 

techniques, researchers have also developed a number of procedures to enhance spectral data 

(Mather 2004). These procedures are termed image transforms, and they are examined in more 

detail in the following section. 

 

2.3.2 Image transforms 

An image transform is any operation which re-expresses the information content of an image for 

the purpose of deriving usable data not immediately apparent from individual bands (Mather 

2004). The variety of image transforms is large, ranging from simple arithmetical operations to 

complex dimensional alteration and compression techniques. Arithmetical transforms are defined 

by the use of mathematical operators such as addition, subtraction, multiplication and division, 
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and while these are all used in various areas of remote sensing to some degree, the most widely 

used and relevant to this research are the family of vegetation ratios or vegetation indices. Of the 

dimensional transforms, one of the more common is principal components analysis. This section 

provides a brief overview of vegetation indices and principal components analysis. 

 

2.3.2.1 Vegetation indices 

Vegetation indices are arithmetical operations designed to enhance green vegetation in a remotely 

sensed image (Campbell 2006). To do this, they use the unique spectral properties of green plant 

material, which is highly absorbent in the red portions of the EM spectrum and highly reflective in 

the infrared (IR) portions of the EM spectrum. The arithmetical operation most commonly 

employed between these bands is division, which not only enhances the differences between the 

red and IR reflectances of vegetation, but also reduces the effects of topographical variation on 

spectral illumination (Mather 2004). 

 

The simplest vegetation index is the ratio of red and IR bands, which returns an image roughly 

analogous to the amount of vegetative matter in the image. However, due to the inaccuracies of 

this simple vegetation indicator, it has been superseded by the more robust normalised difference 

vegetation index (NDVI), defined as the equation: 

 

NDVI = (NIR – Red) / (NIR + Red) 

 

where NIR is near infrared, a multispectral band in the IR in close proximity to visible red on the 

EM spectrum and common to a number of remote-sensing systems. The ratio of the sums and 

differences of the NIR and red bands, rather than the absolute values of the IR:red ratio, render 

NDVI less affected by atmospheric variation between images, and thus more suitable for multiple 

image analysis (Mather 2004). This property, as well as the simplicity and relative accuracy of 

NDVI, have resulted in it becoming the most widely used vegetation index in remote sensing 

(Karnieli et al. 2001). However, NDVI does contain three distinct limitations. First, it does not 

account for background soil reflectance properties, which are shown to have a strong influence on 

NDVI values (Huete 1988). Second, the dynamic range of NDVI is prone to saturation at the 

higher end of the index spectrum, where vegetation canopies are dense and multilayered (Karnieli 

et al. 2001). And third, while it can be said that NDVI is more tolerant of atmospheric conditions, 

it is by no means completely unaffected by the scattering effects of cloud and aerosols (Mather 

2004; Karnieli et al. 2001).  
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The attempts to overcome these limitations have produced two new families of vegetation index, 

namely those which correct for atmospheric influence and those which correct for soil reflectance. 

Kaufman & Tanré (1992) developed a vegetation index called the atmospheric-resistant vegetation 

index (ARVI) which incorporates a blue band to identify and compensate for the red-scattering 

properties of aerosols in the atmosphere. While moderately successful, the use of a blue band 

limits the usefulness of this family of indices, as not all remote-sensing systems possess a sensor 

in the blue portion of the EM spectrum (Jiang et al. 2008). To overcome this handicap in part, 

another “aerosol-free” vegetation index was developed by Karnieli et al. (2001), which makes use 

of a band in the shortwave infrared (SWIR) portion of the EM spectrum. This wavelength is less 

affected by atmospheric gases and aerosols than the visible spectrum, while also demonstrating a 

high correlation with a red band regarding vegetation reflectance properties. The vegetation index 

proposed by Karnieli et al. (2001) was termed the aerosol-free vegetation index (AFRI), defined 

as the equation: 

 

  AFRI = (NIR – 0.66 * SWIR) / (NIR + 0.66 * SWIR) 

 

where the SWIR band can be either of the 1.6µm or 2.1µm atmospheric windows of the EM 

spectrum, both of which are commonly used bands in most remote-sensing systems. Practical 

testing of this vegetation index by Karnieli et al. (2001) showed AFRI to closely resemble NDVI 

in clear-sky conditions, while also satisfactorily demonstrating the ability to penetrate atmospheric 

interferences such as smoke or sulphates. 

 

In an attempt to reduce the influence of soil reflectance on vegetation index calculations, Heute 

(1988) modelled soil brightness in relation to vegetation canopy to determine a soil-adjustment 

factor (L) to apply to the formula of NDVI. This new index was named the soil-adjusted 

vegetation index (SAVI), defined as the equation: 

 

  SAVI = (NIR – Red) * (1 + L) / (NIR + Red + L) 

 

where L is determined manually according to vegetation density. A further improvement on SAVI 

was presented by Qi et al. (1994), where L was represented by a self-adjusting formula designed 

to determine the optimum value for L for any vegetation density. This index was named the 

modified soil-adjusted vegetation index (MSAVI), defined by the equation: 
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  MSAVI = [2 * NIR + 1 – √(2*NIR + 1)2 – 8*(NIR – Red)] / 2. 

 

In testing the effectiveness of MSAVI, Qi et al. (1994) demonstrated a further improvement in 

reducing the influence of soil reflectance beyond that shown by SAVI, while still increasing the 

dynamic range of the index to account for the high-end saturation experienced by NDVI.  

 

The enhanced vegetation index (EVI) was originally developed to monitor climate change through 

vegetation time-series analyses of images of the moderate resolution imaging spectroradiometer 

(MODIS) remote-sensing system. As a vegetation index, EVI was created through combining the 

concepts of both ARVI and SAVI, and as such it was the first vegetation index to overcome all 

three limitations experienced by NDVI. Although highly successful for use in MODIS imagery, 

the widespread use of EVI is limited due to the need for a blue band. This limitation was 

overcome by Jiang et al. (2008), who developed a two-band EVI (EVI2), which used only the red 

and NIR bands. At optimal calibration, as calculated by Jiang et al. (2008), EVI2 is defined by the 

equation: 

 

  EVI2 = 2.5 * (NIR – Red) / (NIR + 2.4*Red + 1). 

 

EVI2 was shown by Jiang et al. (2008) to be highly correlated with the original EVI over a large 

sample of snow/ice-free land cover types, while still retaining the abilities to overcome aerosol 

interference, soil-reflectance noise and dense vegetation value saturation. This recommends EVI2 

as an appropriate vegetation index for use in multi-area or multi-image studies. 

 

2.3.2.2 Principal components analysis 

It is common in multispectral imagery that bands of close proximity show a high degree of 

correlation and repetition. Principal components analysis (PCA) is a transform procedure which 

reduces the redundancy of the data by identifying the optimal linear combinations of the original 

channels and altering the dimensional axes in such a manner that correlation is eliminated. The 

outcome of PCA is a series of coefficients, or eigenvectors, which align the principal axis along 

the strongest degree of correlation in dimensional space, and which therefore concentrates the 

maximum amount of information possible into one band called the first principal component 

(PC1). The second principal component (PC2) is the second largest axis mutually perpendicular to 

the first in dimensional space, into which is concentrated the maximum amount of information 

possible from the information remaining after the creation of PC1. This process is repeated for the 
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same number of principal components as the original number of bands, resulting in a set of 

bands of decreasing variability, with the greatest majority of the information contained in the first 

three component bands (Campbell 2006; Liang 2004; Mather 2004). 

 

The advantages of PCA lie both in data compression and data interpretation. Regarding data 

compression, because most of the image information is contained within the first three principal 

components, it is possible to reduce the dimensions of the data by retaining PC1, PC2 and PC3, 

and discarding the remaining ones. As for data interpretation, multispectral images are usually 

displayed onscreen by assigning any three of the bands of the multispectral image as red, green 

and blue (RGB). By rather displaying the first three principal components as RGB, more image 

information is shown onscreen making it easier to identify spectral differences in land cover, 

thereby aiding in feature selection for classification (Mather 2004). 

 

The primary disadvantage of PCA is its inability to compare the principal component values 

between images. This is due to the image-specific characteristics of the inter-band correlation or 

covariance defined by the transformation, which ultimately restricts the usefulness of PCA in 

multiple-image comparison (Mather 2004). However, this disadvantage does not extend to the use 

of textural features on principal components, and as such PCA retains an element of usefulness for 

this research.  

 

2.3.3 Texture 

Although spectral properties are the primary feature for image analysis, there are certain 

conditions where they are less effective for image classification (Neusch & Grussenmeyer 2003). 

In their review of pixel-based segmentation and classification, Ali-Akbar, Sharifi & Mulder 

(2000) state outright that spectral data alone is insufficient for thorough extraction of information 

from digital images. Berberoglu et al. (2000) and Chica-Olmo & Abarca-Hernández (2005) all 

note that supplementing textural information for classification in an object-orientated environment 

increases overall accuracy by augmenting the discrimination of classes with similar spectral 

properties. Tuominen & Pekkarinen (2005) note that for forestry estimation texture features 

surpass spectral features for imagery with a higher spatial resolution than that of Landsat TM 

imagery (30x30m). Such comments suggest a need to examine texture as a discriminating feature 

in more detail. 
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Image texture has undergone much scrutiny in the literature where it is generally agreed that 

although it may be intuitively understood to the human eye and brain, it is a difficult concept to 

measure or even define. Consequently, it has been difficult to incorporate texture into image 

analysis so that its practical use has been limited (Ferro & Warner 2002; Mather 2004). Haralick, 

Shanmugam & Dinstein (1973), the first researchers to apply texture measurements to remotely 

sensed images, defined texture as the spatial statistical distribution of grey-tone variations within a 

band, and in an attempt to measure texture they introduced a form of second-order statistical 

analysis measuring the relative frequency distribution of grey values within an image. This 

statistical measurement, for which fourteen different textural features at four different directions 

were proposed by Haralick, Shanmugam & Dinstein (1973), gained a degree of popularity and 

eventually became commonly known as the grey level co-occurrence matrix (GLCM). Although 

not without disadvantages, the use of GLCM textural features became widely used in remote 

sensing processing, and image classification in particular (Mather 2004; Tuceryan & Jain 1998). 

Table 2.1 briefly explains eight of the more commonly used textural features proposed for use on a 

GLCM by Haralick, Shanmugam & Dinstein (1973). 

 

Table 2.1: Eight commonly used Haralick textural features 

Homogeneity A measure of local homogeneity 

Contrast A measure of local variation, the opposite of homogeneity 

Dissimilarity Similar to contrast, but increasing linearly 

Entropy A measure of GLCM element distribution equality 

Angular second movement A measure of local homogeneity 

Mean An average of the GLCM 

Standard deviation A standard deviation of the GLCM 

Correlation A measure of the grey level linear dependency 
Source: Definiens (2007) 

 

An important aspect to consider when using texture features in image analysis is scale. Objects of 

interest occur at a hierarchy of scales within an image, requiring analysis to be undertaken at a 

corresponding hierarchy of scales for optimal classification results. With pixel-based analysis the 

scale of analysis is limited to the spatial resolution of the remote sensor (Ferro & Warner 2002). 

Object-orientated analysis of high-resolution imagery, on the other hand, allows for the 

development and analysis of an image on a hierarchical structure of levels of varying scale, as 

discussed above. This allows for a more in-depth textural analysis, because GLCM textural 

features can be calculated and compared for every object over a variety of scales. 
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The literature reviewed in this chapter serves three distinct purposes. The comparison of 

classifiers in the first section justifies and provides context regarding the research objectives of 

creating an expert-system rule-based classifier, and comparing it specifically to a supervised 

classification for evaluation purposes. The overview of segmentation and the use of objects in 

classification justifies the use of each of the classifiers tested in an object-orientated environment. 

The last section, an outline of spectral, index and textural object features, provides a basis for 

feature testing during the creation of the rule-set. However, before rule testing could begin, the 

imagery had to be acquired and prepared, and reference data established. This is dealt with in the 

next chapter. 
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CHAPTER 3:  PREPARATORY WORK 

This chapter details the preparatory work required before the development of the object-orientated 

supervised and rule-set approaches could be attempted. It specifically details and justifies the 

imagery used for the research, the pre-processing that was undertaken both externally and in-

house on the imagery, and the creation of the reference data used for accuracy assessment. The 

chapter is concluded by a brief overview of the possible techniques used in accuracy assessment, 

which techniques were used in this study, and the factors of bias that may affect returned 

accuracies due to the specific classification and assessment methodologies used. 

 

3.1.1 Imagery 

As one of the major objectives of this research was to maintain cost-effectiveness, the remotely 

sensed imagery used had to possess a desirable balance between the cost of the data, and the 

availability, coverage and spatial and spectral resolutions of the data. On the one hand medium-to-

very-high resolution imagery such as IRS-P6 Resourcesat-1 (5.8m), FORMOSAT-2 (2m), 

IKONOS (0.82m), Quickbird (0.61m), Worldview-1 (0.46m) and GeoEye-1 (0.41m) were judged 

to have too low an image extent, and consequently be too financially expensive to use for mapping 

over a large area, while on the other hand imagery with higher coverage such as the advanced 

spaceborne thermal emission and reflection radiometer (ASTER; 15-90m), the moderate 

resolution imaging spectroradiometer (MODIS; 250-1000m) and the advanced very high 

resolution radiometer (AVHRR; 1.09km) were considered to have too low a spatial resolution to 

achieve the desired accuracies of the research (other than perhaps the three 15m near infra-red 

(NIR) bands of ASTER, which alone would be insufficient for forest classification). Only two 

remote-sensing systems satisfied the criteria of easy availability, low expense, high coverage per 

image, and acceptable spatial and spectral resolution, namely Landsat 7 ETM+ and SPOT 5. The 

spatial and spectral properties of the two systems are set out in Table 3.1. 

Table 3.1 The spectral and spatial resolutions of Landsat ETM+ and SPOT 5 bands 

Band Landsat 7 ETM+ SPOT 5 
Visible blue 0.45-0.52µm, 30m per pixel  
Visible green 0.53-0.61µm, 30m per pixel 0.50-0.59µm, 10m per pixel 
Visible red 0.63-0.69µm, 30m per pixel 0.61-0.68µm, 10m per pixel 
NIR 0.78-0.90µm, 30m per pixel 0.78-0.89µm, 10m per pixel 
SWIR 1.55-1.75µm, 30m per pixel 1.58-1.75µm, 20m per pixel 
SWIR 2.09-2.35µm, 30m per pixel  
Thermal IR 10.4-12.5µm, 60m per pixel  
Panchromatic 0.52-0.90µm, 15m per pixel 0.48-0.71µm, 2.5m per pixel 

Sources: National Aeronautics and Space Administration (NASA) (2008); Spot Image (2005) 
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National image coverage of South Africa was available at no cost for both systems: Landsat 7 

ETM+ imagery is free of charge online, and SPOT imagery is available from the Council for 

Scientific and Industrial Research’s (CSIR) Satellite Applications Centre (SAC), which is tasked 

with providing a national SPOT 5 mosaic for use in statutory and research institutions (Lück 

2007). The decision on which set of imagery to use thus rested on which spectral and spatial 

properties were better suited to the desired level of precision and accuracy for the research. As 

evidenced by Table 3.1, Landsat 7 ETM+ imagery possesses a higher spectral resolution with its 

seven spectral bands to the four for SPOT 5 imagery. Landsat 7 ETM+ imagery also possesses a 

greater spatial coverage per image, with roughly 180x180km per Landsat 7 ETM+ image 

compared to 60x60km per SPOT 5 image. However, SPOT 5 imagery has a superior spatial 

resolution to Landsat 7 ETM+. This was the decisive factor in determining which of the two 

systems to use. The panchromatic resolution of SPOT 5 (2.5m per pixel) was deemed to be able to 

significantly increase the level of detail of forestry classification. This assessment is supported by 

Salajanu & Olson (2001) who suggested that the increased spatial resolution of SPOT data 

resulted in more accurate forestry classification than the equivalent multispectral bands of 

Landsat, and by Radoux & Defourney (2007) who suggested the optimal spatial resolution for 

forest stand delineation is in the range of 2-3m. Consequently, it was decided to use the SPOT 5 

national mosaic created by SAC. 

 

3.1.2 Pre-processing 

Pre-processing involves any operations which are undertaken on the imagery prior to the primary 

analysis. These operations can be grouped into radiometric pre-processing, which includes any 

operation designed to adjust digital values to compensate for atmospheric or sensor calibration 

differences, or spatial pre-processing, which includes orthorectification, fusion and subsetting 

(Campbell 2006).  

 

The SPOT 5 imagery offered by SAC was available at three different levels of pre-processing, or 

rather, three different data products (Lück 2007). The first data product consisted of completely 

raw, untouched data with no pre-processing undertaken. It was considered that adequate 

preparation of raw imagery for this research would require a degree of work which was not cost-

effective, both in terms of time and money. This was especially true in light of the second data 

product, which was both orthorectified and pan-sharpened – a fusion technique used to match the 

spatial resolution of the multispectral bands to that of the panchromatic band. The third data 

product provided by SAC was a national true-colour mosaic, produced by matching images of the 
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second data product to a 16-day MODIS colour composite. Although effective in creating a 

seamless mosaic of South Africa, this colour-matching technique was judged to compromise the 

spectral information in the image. As a result, it was decided to use the second data product of the 

SPOT 5 national mosaic, and subsequently two orthorectified and pan-sharpened images were 

acquired from SAC. The techniques of orthorectification and pan-sharpening used are examined in 

further detail in subsequent sections, as are the pre-processing techniques of radiometric 

normalisation, atmospheric correction, and subsetting which were all undertaken in-house on the 

imagery. 

 

3.1.2.1 Orthorectification 

Orthorectification is the process of geometrical correction where images are assigned to the 

position that represents their “true” location on earth.  This is accomplished by resampling a series 

of points in an unrectified image to corresponding points in a “correct” reference system, which 

may be data such as pre-projected orthophotos, cadastral information or topographical maps. 

These associated points are called ground control points (GCPs). Orthorectification also uses a 

digital elevation model to correct image geometry for distortions caused by terrain. In the case of 

the SPOT 5 national mosaic, GCPs were collected for the panchromatic band and resampled 

according to 1:30 000 and 1:50 000 orthophotos and urban cadastral information obtained from 

the Chief Directorate: Surveys and Mapping (CDSM). The four multispectral bands were then 

resampled according to the rectified panchromatic band. A spatial assessment using separate GCPs 

indicated the spatial accuracy of the majority of the images of the KwaZulu-Natal region to be less 

than 12m at 2 sigma, denoting that any position in an image is within 12m of its “true” position, 

stated at a 95% confidence interval. In addition, both of the images used for the development of 

the rule-set had a mean accuracy error of less than 5m (Lück 2007). 

 

3.1.2.2 Pan-sharpening 

Pan-sharpening is the term given to the fusion of a higher resolution panchromatic band with a 

lower-resolution multispectral band, for the purposes of increasing the spatial resolution of the 

multispectral band. A variety of pan-sharpening techniques exist. Weighted coefficient 

calculations between the panchromatic and IR bands are common, as are the techniques of 

principal component substitution, RGB-intensity-hue-saturation, and Brovey’s transformation. It 

has been noted however, that all of these techniques alter, and therefore compromise, the spectral 

information of an image to some degree (Cheng et al. 2003; Prasad et al. 2001). The pan-

sharpening fusion used in the SPOT 5 national mosaic is a statistical fusion technique specifically 
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designed to overcome this problem of colour distortion, retaining the spectral qualities of each 

band and allowing for meaningful quantitative analysis (Cheng et al. 2003). The result is a 2.5m 

pan-sharpened image consisting of four multispectral bands with very similar spectral properties 

to those of the raw image (Lück 2007). 

 

3.1.2.3 Radiometric correction 

Radiometric correction consists of procedures which correct for sensor calibration differences, 

called radiometric normalisation, and rectify distortion caused by atmospheric interference. 

Radiometric normalisation is the procedure of converting DN, a unitless indicator of incoming EM 

radiation, to at-satellite radiation, the amount of EM radiation recorded by the sensor in mW.cm-

2.sr-1.µm-1. Between-image differences can be further reduced by converting at-satellite radiation 

to planetary reflectance, where values are standardised according to the earth-sun distance and 

solar elevation angle at the time of image capture (Irish 2000). Conversion of DN values to at-

satellite radiation is calculated using the following formula (Irish 2000): 

 

  Lλ = (gainλ * DNλ) + biasλ 

 

Where   Lλ:   At-satellite radiance of band λ  

DNλ:    digital number of band λ  

gainλ:   gain value of band λ, read from the image metadata 

biasλ:   bias for band λ, read from the image metadata. 

 

The dynamic adjustment of SPOT 5 sensors according to the intensity of incoming radiation 

results in each SPOT 5 image containing a distinct set of gains and bias for each band. These can 

be read from the metadata file which accompanies each image. Theoretically, images consisting of 

radiance values can be directly compared, but further normalisation by converting to at-satellite 

reflectance is recommended (Irish 2000). Conversion of at-satellite radiance to reflectance is 

calculated using the following formula (Irish 2000):   

 

  Pρ = (π * Lλ * d2) /(ESUNλ * cosθs) 

 

Where   Pρ:   unitless planetary reflectance  

Lλ:   at-satellite radiance  

d:  earth-sun distance  
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ESUNλ:  mean solar exo-atmospheric irradiances  

θs:  solar elevation angle. 

 

Exo-atmospheric irradiances and solar elevation angle can be read from the image metadata file, 

and earth-sun distance can be obtained from astronomy websites. Calculation of at-satellite 

reflectance ensures the best comparability between images which have not been atmospherically 

corrected. 

 

Atmospheric particles scatter, absorb and reflect EM radiation to different degrees and over 

different wavelengths. To compensate for this, a number of atmospheric correction pre-processing 

techniques have been proposed. These can be classified as either relative or absolute correction 

models. Relative corrections match atmosphere-affected band histograms to corresponding less-

affected band histograms, either in different images or to strongly correlated bands within the 

same image unaffected by atmospheric distortion. However, these techniques are both difficult to 

implement and automate (Irish 2000), rendering them unfavourable for this study. Absolute 

corrections can be either empirical or physical. Empirical models use the knowledge of band-band 

relationships to correct for distortion. However, such models are often oversimplified and rely on 

questionable assumptions, which may lead to suspect results. Physical models use the knowledge 

of the effects of atmospheric gases on different wavelengths of the EM spectrum to compensate 

for each sensor band accordingly (Lück 2005). However, the required atmospheric information to 

ensure accurate physical modelling is seldom available for specific images, and thus sensor-

specific models for atmospheric correction are often used instead. Despite the generalisation 

resulting from this technique, physical atmospheric correction is commonly used as it is easily 

available, straightforward to implement and can be applied to a wide variety of remote-sensing 

systems (Richter 2004). The physical atmospheric correction model, ATCOR2, which includes 

radiometric correction, was implemented on the imagery used in this study.  

 

3.1.2.4 Subsetting 

Due to the heavy computational demands of remote-sensing operations, it is a generally accepted 

practice to undertake analyses on smaller sections of an entire image. Four subsets of 15x10km 

were created from the southern and northern images. The size of the subsets (150km2) was 

considered to be large enough to contain adequate coverage of the various land-cover types in the 

area, while not so large to render object segmentation times impracticable. The locations of the 

subsets were purposefully chosen to include a fair degree of plantation and natural forest, but both 
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subsets also display significant areas of water, bare ground, non-forest natural vegetation, 

commercial and subsistence agriculture, and a variety of types of urban settlement. The location 

and extent of each area is displayed in Figure 3.1. 

 

 

Figure 3.1: The location and extent of the four subsets 

 

3.1.3 Reference data preparation 

In order to assess the accuracy of the expert-system rule-set it was necessary to create a dataset 

consisting of the “correct” data against which to compare rule-set results. For this purpose a 

reference dataset was created by digitising the classes of natural forest, plantation and other from 

a set of aerial photographs obtained from the CDSM. Digitising of classes was undertaken at 

scales of 1:6000 or larger for the 150km2 subsets of the northern and southern images using 

ArcMap 9.2. High-resolution true-colour composite satellite imagery (GoogleEarth) was used as a 

cross reference where class differentiation was not immediately apparent. Despite the lower 

resolution, the SPOT 5 images themselves were used as the conclusive class decider where 

temporal discrepancies between the ancillary data occurred. Further verification was undertaken 

through field observations undertaken in the study area on 12-14 November 2008. The final 

reference dataset was verified by a forestry expert with on-site experience of the region who 
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deemed the data to be accurate enough to be used for comparisons of a minimum mapping unit 

of one hectare (Mucina 2008, pers com). 

 

3.1.4 Accuracy assessment techniques 

The evaluation of each approach required a rigorous method of determining class accuracy. 

According to Levin (1999), classification accuracy can be assessed in four different ways: 

1) A field survey of either random or grid-allocated points, compared to corresponding points 

of the classification. 

2) A visual estimate of agreement, often by overlaying the reference data with the 

classification. 

3) In-depth statistical analysis of numerical data, using techniques such as root mean square 

error, correlation coefficients, linear or multiple regression analysis and Chi-squared 

testing. 

4) Error matrix compilation. 

The first two methods lack precision and are prone to subjectivity. Statistical comparison is more 

thorough, but can become very complex, and is often specific to a particular feature, such as root 

mean square error calculations for geometric offset determination. Error- or confusion-matrix 

compilation, which was used in this study, is the most commonly used method for classification 

accuracy assessment due to its simplicity of implementation and interpretation (Hammond & 

Verbyla 1996; Verbyla & Hammond 2002). However, a comprehensive understanding of 

classification accuracy derived from confusion matrices and accompanying statistics is incomplete 

without first analysing the factors which influence accuracy bias—a factor often lacking in many 

studies (Hammond & Verbyla 1996). 

 

Bias is any factor which either overstates or understates the returned accuracy figure from a 

classification accuracy assessment. Overstating an accuracy figure is called optimistic bias, and 

stems from three main sources: the use of training data in accuracy assessments; the use of 

reference data with spatial or temporal proximity to training areas; and the restriction of reference 

data sampling to homogenous areas. Understating an accuracy figure is termed conservative bias, 

and also stems from three main factors: reference data errors or inaccuracies, positional errors, and 

generalisation of class delineation in reference data (Verbyla & Hammond 2002). The severity of 

these factors affecting bias is influenced by the methodology used during classification and 

accuracy assessment type (Levin 1999). 
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The expert-system rule-based approach in this study deliberately avoided the use of any form of 

training data. Consequently, the first two factors causing optimistic bias are negated. However, 

this is not so with the supervised classification. The third factor, restricting reference data 

sampling to homogenous areas, is usually observed where reference data sampling is done on the 

centre of a 3x3 neighbourhood of pixels of the same class, to avoid edge effects and minimise 

positional uncertainty (Verbyla & Hammond 2002). The accuracy assessments for either 

classification method conducted in this study are not affected by this factor, as accuracy was 

calculated on a point basis i.e. the "true" reference class of every point was compared to that of the 

corresponding point in the classification product. However, as a result of the first two factors 

which are influenced by the use of training data, the accuracies returned for the rule-set can be 

confidently interpreted as more understated, and therefore more reliable as that of the supervised 

classification. 

This chapter detailed the reference data creation and pre-processing steps necessary prior to 

classification. It also provided justification for the specific sensor chosen for the study and 

expounded on the pre-processing undertaken on the imagery prior to acquisition and further 

necessary in-house preparation. With the imagery and reference data suitably prepared, the 

development and application of the supervised and rule-set classifiers could be undertaken. This is 

dealt with in the following chapter. 
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CHAPTER 4:  METHODOLOGY 

This chapter examines the methodology used in the creation and application of the two object-

orientated classifications. The first section details the class structure and training data used in the 

supervised classification, while the second section explains the procedures used in the creation of 

the rule-set. 

 

4.1 Supervised classification 

With the advent of freely-available, high-resolution satellite imagery and object-orientated 

analysis techniques, the logical alternative to the expert-system rule-based classifier presented in 

this research would be a supervised classification. Therefore, an object-based nearest-neighbour 

supervised classification was undertaken on the four test areas, using Definiens Developer 7.0. 

This was performed in a two-tier hierarchical manner, with training area creation and refinement 

undertaken iteratively for each class level. The first level was created using a segmentation scale 

parameter of 80, which returned objects of suitable size and variation for the desired classes. 

These classes were: bare ground, including barren fields, open mines, beaches and very young 

plantations; built-up, including residential, commercial and industrial areas; vegetation, including 

agriculture, natural vegetation and plantations; and water. Training classes were created iteratively 

for each class, where the classification result of each iteration determined the refinement of 

training classes for the next iteration until a satisfactory classification was obtained. Typically, the 

features used for a supervised classification are the spectral bands of the sensor, but in this case a 

textural measure, the standard deviation of band 3 (NIR), was added to improve the final 

classification. 

 

Once a satisfactory classification had been achieved for the first hierarchical level, the vegetation 

class was further segmented using a scale parameter of 40, resulting in smaller “child” vegetation 

objects more suitable for specific vegetation distinction. For the classification of objects on this 

sub-level, training areas were again iteratively created and refined for the following classes: 

farmland, mangroves, natural forest, natural vegetation and plantation. Botanically, mangrove 

forests are classified as natural forests (Geldenhuys & Mucina 2006), but the textural and spectral 

properties differ so significantly between the information classes of natural forest and mangroves, 

that the classification was simplified by assigning mangrove forests an individual class. For the 

final classification, mangroves was merged into natural forest, plantation was left as its own class, 

and natural vegetation, farmland, built-up, bare ground and water were all merged as other. To 
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achieve a suitable final classification, an average of over 80 training area objects was necessary 

for each class. With nine classes over the four areas, the number of training objects delineated was 

over 2400 in total. 

 

4.2 Rule-set development 

The development of the rule-set classifier was undertaken using Definiens Developer 7, in a two-

tier manner. The first tier consisted of the classification of the images into forest and non-forest, 

while the second tier consisted of the discrimination of the forest class into natural and plantation 

(See Appendix A for the complete rule-set). This section explains each tier in more detail. 

 

4.2.1 Tier 1: Forest/non-forest classification 

The workflow of Tier 1 is comprised of a number of distinct steps, as illustrated in Figure 4.1. 

 

Figure 4.1: The workflow diagram of the first tier of the rule-set–classification of forest and non- 

       forest 

 

First, an edge mask was created from the target subset, and both the target subset and the edge 

mask were then entered into a segmentation. Once segmented, two rules were created to classify 
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the vegetation and forest class respectively. The creation of rules was iterative, subject to 

assessment and refinement until a satisfactory classification was created. The following sections 

explain each of these steps in more detail. 

 

4.2.1.1 Edge masking 

The first stage of object-based classification is usually the delineation of the image into 

homogenous objects using a segmentation algorithm such as multiresolution segmentation (MRS). 

In this study an additional step was performed before the image was subjected to segmentation. As 

objects are defined intensely along changes in spectral tone, it was speculated that edge detection 

would assist the segmentation process. An image was created by applying a 5x5 variance filter on 

the first principal component of each region. This variance image was subject to a 7x7 median 

filter and then recoded according to a threshold value of 20. The outcome, an example of which is 

displayed in Figure 4.3, was a binary mask depicting edge data. A comparison of Figure 4.3 with 

Figure 4.2 which is a pseudo-colour representation of the same area, shows that both plantation 

and natural forest (indicated with red and yellow arrows respectively) display a low degree of edge 

data. Conversely, linear objects, such as roads and field borders, and high-variance areas, such as 

the residential area of Esikhawini in the south-east of Figure 4.2, are strongly represented in the 

edge mask image. Edge data were assigned as no data before rule-set execution, which assisted in 

both object creation by inherently delineating object borders, and classification by removing 

medium- to high-residential areas from the image.  

 

4.2.1.2 Initial segmentation 

MRS for object creation requires input parameters for layer weighting, scale and homogeneity 

(Definiens 2007). Image-layer weighting defines the influence of each layer used in the 

segmentation process. Theoretically, the layers showing the most difference among the desired 

classes would be the most suited for use in segmentation. Visual observation showed forests to 

reflect less of band 1 (green), band 2 (red) and band 4 (SWIR) electromagnetic energy than all 

other land-cover types excepting water. Consequently testing of segmentation for suitable forest 

object definition was undertaken on these layers, as well as NDVI and the first principal 

component of a PCA on the entire subset. Different weight variations were tested among the 

layers, with the resulting segmentations visually analysed for suitability. Although the results 

showed little significant variation amongst the layers  
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Figure 4.2: A pseudo-colour image of the forests near Esikhawini Township 
 

 

Figure 4.3: Edge mask output       

Plantation 

Natural 
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tested for segmentation, the significant influence of the green band during classification 

promoted the use of a 100% weighting of green for the forest/non-forest segmentation. 

 

The second parameter, scale, is a unitless control variable influencing the size of the resulting 

objects (Definiens 2007). For the purposes of forest classification, it was desirable to create a 

segmentation that represents forest patches with as few objects as possible. The results of scale 

parameters ranging from 10 and 250 were sequentially tested and visually assessed. A scale 

parameter of 25 was determined to be the most suitable for the forest/non-forest segmentation, 

creating objects which comfortably delineated forest land cover without generalisation or 

unnecessary variation. 

 

The third MRS parameter, homogeneity, comprised a combination of the shape and compactness 

criteria. The shape criterion specifies the weight that object shape has on the segmentation, with a 

higher shape value lessening the influence of spectral values on segmentation and returning 

objects with higher rectangular indices, i.e. more ‘blocky’. The compactness criterion is a product 

of shape, defining the smoothness or compactness of the segmentation (Definiens 2007). Because 

spectral properties were considered of greater importance than the shape of the resulting objects 

both the shape and compactness parameters were left as zero. 

 

4.2.1.3 Feature selection for forest classification 

Feature selection for forest classification began by identifying typical spectral and spatial 

properties of forest land cover. Information from the literature, reinforced by visual observations, 

showed forests to have lower values in green, red and SWIR, medium-high vegetation index 

values, and a homogenous textural structure across all the bands as well as the first principal 

component (Desclée et al. 2006; Huang et al. 2008). Vegetation indices, however, displayed a 

high degree of similarity between agricultural fields and certain types of natural forest, and the 

same was true for textural features between agriculture and plantations. The individual bands of 

green, red and SWIR showed the most promise for forest identification, but visual examination 

showed slightly better results where band values were first subjected to a normalisation process 

using a generic vegetation class. This vegetation class was created by the removal of built-up land 

cover (e.g. roads and urban areas) during edge masking, and then through the removal of water 

features and a significant amount of bare ground using a threshold for the scene-adjusted ratio of 

NIR (the mean value of NIR per object against the mean value of NIR for the entire scene). 
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Objects were then normalised according to the band means of the vegetation class, according to 

the following formula: 

 

  Rλ = Oλ / Vλ  

Where   Rλ: Vegetation-standardised ratio of band λ 

  Oλ: Specific object mean of band λ 

  Vλ: Vegetation mean of band λ. 

 

The most effective band-ratio for forest classification, determined through experimentation, 

proved to be the vegetation-standardised ratio of green. The specific values of these two rules, the 

NIR threshold for vegetation classification and the standardised green threshold for forest 

classification were initially developed on Area 1 and then adjusted during the testing of Area 2. 

The results of this method of rule-set creation are illustrated in Table 4.1, which shows the overall 

accuracies of each area for each rule. Rule 1 shows a low accuracy in Area 1 (55.6%) and a much 

higher accuracy in Area 2 (81.4%). This is primarily due to the non-forest vegetation in each 

image, which strongly affects the accuracy of the vegetation class when compared to the reference 

data of forest/non-forest. The vegetation in Area 1 comprised a large amount of agriculture 

relative to forest. Conversely, the vegetation of Area 2 comprised mostly plantation forests. 

Overall accuracies for the classification of forest/non-forest, were 89% for Area 2 and 98% for 

Area 1. Noticeable errors in the forest classification were predominantly darker agriculture and 

urban trees (not considered forests in the 2002 NFI). Attempts at correcting these errors resulted in 

unacceptable omissions of the forest classification. Despite this the product was considered 

acceptable for use in the further classification of natural forest and plantation. Figure 4.4 provides 

a graphical illustration of the vegetation (light green) and forests (dark green) near the Esikhawini 

Township. 

 
Table 4.1: Tier 1 rule descriptions and accuracies for Area 1 and Area 2 
    CLASS AREA 1 AREA 2 
RULE 1:  SCENE-ADJUSTED RATIO BAND 3 <= 0.23 VEGETATION 55.6% 81.4% 

RULE 2:  VEGETATION-STANDARD BAND 1 <= 1.1 FOREST 98.0% 89.1% 
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Figure 4.4: The vegetation classification result overlaid by the forest classification result 
 

4.2.2 Tier 2: Discrimination of natural forest and plantation 

Tier 2 comprised the discrimination of the forest class created in Tier 1 into natural and plantation 

classes. Figure 4.5 illustrates the steps taken during the creation of this section of the rule-set. The 

forest class was first subject to resegmentation, then tested for suitable rules for the extraction of 

plantation. The remainder of the forest class was assigned to natural, and the resulting 

classification was assessed. As with Tier 1, the creation of the rules was an iterative process. 

These steps are explained in more detail in the following sections. 

 

4.2.2.1 Resegmentation 

Due to the unsuitable size of the original objects for this level of the classification, it was found 

necessary to create a new segmentation below the first one. The aim of the new object level was to 

create objects in the forest category which properly defined the borders of natural forest and 

plantation while still encompassing as much variation as possible. The forest objects were 

therefore merged and resegmented according to a 100% weighting of NIR, which showed a 
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Figure 4.5: The workflow diagram of the second tier of the rule-set–discrimination of plantation                       

         and natural 

 

relatively high degree of contrast between plantation and natural forests, and green. Through 

experimentation it was found that a scale parameter of 100 was the most suitable, returning objects 

which accurately delineated borders between adjacent natural and plantation objects, while also 

being large enough to allow textural features to be successfully used. Segmentation homogeneity 

parameters were also introduced, with values of 0.5 for both shape and compactness. These 

parameters increased the regularity of the objects, which correlated more closely with the less 

irregular plantation borders. 

 

4.2.2.2 Feature selection for plantation and natural classification 

With a viable segmentation the next step undertaken was an analysis of plantation and natural 

forest land cover to assess the spectral and spatial differences between the two classes. Through 

visual observations it was found that plantations appeared to be uniformly darker for every band 

except NIR, and contained minimal grey-level variation within objects. Conversely, natural forest 

objects showed wider variation between objects and higher grey-level heterogeneity within 
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objects. Consequently the following spectral features were tested for natural/plantation 

discrimination: green, red, NIR and SWIR, mean brightness, NDVI, AFRI, MSAVI, EVI2. 

Standard deviation and the GLCM Haralick textural features of homogeneity, second angular 

movement and correlation were calculated for all of the spectral bands and the first principal 

component. Features were initially assessed using density slicing, a procedure which assigns a 

colour to the brightness of a target layer for enhanced visual analysis. Methodical alterations to the 

threshold values, while overlaid by the reference data, enabled specific threshold rules to be 

created and tested for each layer. More promising features were initialised as individual rules and 

subject to accuracy assessments. This was done by assigning the most suitable threshold value of 

each feature for plantation classification, assigning the remaining forest class to natural and 

calculating overall accuracy for the final classification product. These accuracies, which are 

shown in Table 4.2, provide a more rational indication of the potential usefulness of the features 

tested in plantation discrimination. As expected, standard deviation, correlation and homogeneity 

showed high combined accuracies for the classification of the texturally smooth plantation objects. 

Vegetation indices generally performed poorly in the classification, possibly due to the spectral 

similarity of natural forests and plantations in the red band, while accuracies of the individual 

bands of NIR and SWIR showed noteworthy potential as a classification feature. Green, while 

showing reasonable accuracy for Area 1, was poor for the Area 2, possibly due to the large amount 

of plantation relative to natural forest in this area. 

 

Table 4.2: Overall accuracies of individual features threshold rules 

Features Area 1  accuracy % Area 2 accuracy % Combined accuracies % 
NIR standard deviation 79.7 76.9 78.3 
PCI correlation 85.2 70.7 78.0 
NIR 75.4 76.3 75.8 
NIR homogeneity 79.5 70.7 75.1 
SWIR 64.5 78.4 71.5 
MSAVI  54.4 75.6 65.0 
EVI2 76.3 46.7 61.5 
NIR correlation 80.8 38.3 59.6 
Green 78.7 28.3 53.5 
AFRI 73.3 30.9 52.1 
Red 55.6 38.7 47.1 
NDVI  51.8 38.9 45.4 

 

It is important to note, however, that no one layer showed overall dominance in delineating either 

the plantation or natural classes. Because of this the rule-set was constructed in a manner that 

used a number of different features to sequentially classify as many of the plantations as possible 
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before assigning the remainder to natural. The exception to this methodology was the initial 

extraction of mangrove swamps, a type of natural forest bordering the Richards Bay Estuary. This 

land-cover type showed very similar properties to plantation, both being spectrally very dark in the 

green, red and SWIR bands, as well as texturally homogenous. However, the waterlogged nature 

of mangrove forests also causes low reflection in the NIR region of the EM spectrum, and as such 

it was possible to assign mangrove forests as natural prior to plantation extraction using a 

threshold value of mean layer brightness. Plantation extraction itself was undertaken using 

threshold values for features in the following order: vegetation-standardised green, ratio-to-scene 

NIR, and standard deviation of the NIR band. Each feature extracted slightly different areas of 

plantations and the combination of the features improved the result of the classifier over multiple 

areas, as can be seen in Table 4.3. 

 

Table 4.3: Tier 2 rule descriptions and accuracies for Area 1 and Area 2 

    CLASS AREA 1 AREA 2 
RULE 3:  BRIGHTNESS <= 60 NATURAL n/a n/a 
RULE 4:  VEGETATION-STANDARD BAND 1 >= 1.23 PLANTATION 94.4% 79.0% 
RULE 5:  RATIO-TO-SCENE BAND 3 <= 1.05 PLANTATION 94.6% 87.8% 
RULE 6:  STANDARD DEVIATION BAND 3 <= 11 PLANTATION 94.3% 90.5% 

 

Due to the lack of plantation classification, the calculation of overall accuracy for Rule 3 was not 

undertaken. Rules 4 and 5 return relatively high overall accuracy for both areas, but with greater 

accuracy in Area 1. This is due to the method of rule-set design, where the initial rule-set was 

developed on Area 1 and then tested and tweaked for Area 2. An example of the necessary 

tweaking is Rule 6, which uses the standard deviation of the NIR band to delineate plantations. 

Although this rule lowers overall accuracy by 0.3% in Area 1, it increases the accuracy in Area 2 

by 2.7%. This slight loss of accuracy in Area 1 was deemed to be outweighed by the increase in 

accuracy in Area 2. 

  

An area of the final classification is shown in Figure 4.6. A visual comparison of the classification 

with the reference data revealed a number of noticeable classification errors, the majority of which 

are plantations classified as natural. This occurred due to the spectral differences of younger 

plantations, the textural heterogeneity of sparsely canopied plantations, and in plantations of 

smaller area and therefore weaker feature representation. Errors of natural forest classified as 

plantation were much less common, occurring where natural forest objects closely resembled 

plantations spectrally and texturally. 
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Figure 4.6: The final natural/plantation classification product of the area of Esikhawini township  
 

Despite these errors, the overall accuracy of the forest maps of Areas 1 and 2 was deemed 

sufficient for comparison purposes. The comparison of the rule-set and supervised classification 

approaches is described and discussed in the next chapter.  
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CHAPTER 5:  EVALUATION AND CONCLUSIONS 

This chapter begins by citing the accuracies of the supervised approach, identifying possible 

reasons for class error and stating the confidence with which accuracies can be interpreted. The 

second section details the same factors for the rule-set, and the third section compares the two 

approaches in terms of accuracy and cost-effectiveness. The final section of the chapter provides 

an overview of the research, the conclusions of the findings and the recommendations for the use 

of each approach in the context of forest mapping over large areas. 

 

5.1 Expert system versus supervised classification approaches 

Although the accuracies of the forest maps of Areas 1 and 2 were tested during both the 

supervised classification and rule-set creation, a more significant indication of the accuracy of 

each approach was determined by assessing the accuracies of all four forest maps. The maps 

generated by the supervised and rule-set classifications were consequently compared using 100 

random points for each test area. These points were then combined into one 400 point error matrix 

for each approach. In theory, error matrixes can be created using either point or polygon data as 

reference. Although point-based accuracy assessments are less effective than polygon-based 

assessments in identifying boundary inaccuracies, a point-based approach was chosen for this 

evaluation because land cover could be unambiguously determined for each reference point using 

a combination of field visits, aerial photographs, topographical maps and satellite imagery. This 

approach ensured that the accuracy assessment was a true reflection of the resulting classification 

quality.  

 

5.1.1 Accuracy assessment of forest maps generated using a supervised classifier 

The results of the supervised classifications, given in Table 5.1, show an overall accuracy of 90%. 

The Kappa index value, an estimate of accuracy which takes into account the possibility of 

randomly selecting the correct classification, was 0.796, which is generally indicative of a better-

than-average classification (Montserud & Leamans 1992; Landis & Koch 1977). The generally 

higher producer’s and user’s accuracy of the other class suggests that the classifier was more 

successful in differentiating between forest and non-forest than separating the different types of 

forests. This is also indicative of the similarity of the spectral and textural features between 

natural forest and plantation.  
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Table 5.1: The combined error matrix of the supervised classifications undertaken on the four 
areas 
Reference/Class Other Natural Plantation   
Other 254 6 6 266 
Natural 11 73 7 91 
Plantation 5 5 33 43 
  270 84 46 400 
       
  Producer's Accuracy User's Accuracy    
Other 95.49 94.07    
Natural 80.22 86.90    
Plantation 76.74 71.74    
       
Kappa Index 0.796     

Overall Accuracy 90.00     

          

 

The primary factor affecting classification accuracy is instances of uncharacteristic plantations and 

natural forests. Typical plantations are texturally homogenous with low values in green and red, 

while natural forest has higher grey-level variation, with slightly higher spectral values for every 

band other than NIR. A number of the occurrences were observed where young or recently burnt 

plantations where incorrectly classified as other or natural. Similarly, plantations which display 

patchy canopy cover, i.e. higher heterogeneity, were classified as natural. Conversely, certain 

sections of natural forest that have homogenous canopies were mistakenly classified as plantation. 

Non-forest riparian vegetation, which has a very similar spectral signature and textural structure to 

typical plantations was also often incorrectly classified as plantation. 

 

5.1.2 Accuracy assessment of forest maps generated using a rule-set classifier 

The results of the accuracy assessment carried out on the forest maps generated by the rule-set 

classifier are summarized in Table 5.2. When compared with Table 5.1 one can see that the 

accuracies obtained using the rule-set classifier (i.e. 90% and a Kappa Index of 0.788) is virtually 

the same to that of the maps produced by the supervised classification. Another similarity is the 

higher producer's and user's accuracy for the other class, which is again indicative of the greater 

separability between the other and forest classes over the plantation and natural.  

 

Specific reasons for classification inaccuracies are also comparable to the supervised 

classification: young, burnt or patchy plantations are incorrectly classified as other or natural 

forest, natural vegetation displaying high homogeneity as plantation, topography-shadowed 

agriculture as either natural forest or plantation, and riparian vegetation as natural forest. 

However, in addition to these inaccuracies a new type of error is observed, namely edge offsets.  
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Table 5.2: The combined error matrix of the rule-set classifications undertaken on the four areas 
Reference/Class Other Natural Plantation   
Other 262 4 5 271 
Natural 12 65 4 81 
Plantation 7 8 33 48 
  281 77 42 400 
       
  Producer's Accuracy Users Accurac'y    
Other 96.68 93.24    
Natural 80.25 84.42    
Plantation 68.75 78.57    
       

Kappa Index 0.788     

Overall Accuracy 90.00     
          

 

Edge offsets are errors which are the result of the discrepancies between the edges defined and 

removed through edge detection, and the actual borders of plantation and natural forest. Such 

errors are slight, but tend to be more prone to the delineation of natural forest, as this land-cover 

type contains a higher degree of heterogeneity. One example of this is the edge detection and 

removal of the shadow of a visually distinct tree amongst other natural forest. The shadow is 

erroneously classified as other, with the final natural classification appearing slightly patchy due 

to the grey-level variation caused by the heterogeneity of natural forest. 

 

5.1.3 Classifier comparison 

It is argued here, that when considering the applicability of the two approaches to forest mapping 

over large areas, two features are prominent when determining which is superior: accuracy and 

cost-effectiveness. The accuracies of the two classifiers, as shown in previous sections, are both 

reasonably high at 90%. This is reinforced by the high kappa indices seen for the classifications: 

both bordering on 0.8, which indicates a fair amount of confidence with which the classifications 

can be interpreted. With the accuracies of the two classifiers showing such a high similarity, it can 

be inferred that a decision on which is the superior classifier must rest with the cost-effectiveness 

of the technique. This is often directly related to the degree to which the classification process can 

be automated as one of the main costs of image classification is user input. 

 

The degree of automation of a classification is directly affected by the amount of input required 

from a user to obtain a classification result. Figure 5.1 illustrates the project workflow used in the 

supervised classification approach. As can be seen, each of the four areas classified followed the 

same approach. Training data was created for each area and the areas was classified consecutively. 



 46 

The results of the classification were assessed and the training data altered accordingly. This 

process of iterative refinement was repeated until a satisfactory classification was produced. 

 

 

Figure 5.1: The project workflow of the supervised approach 

 

Conversely, the project workflow of the rule-set approach shows a higher degree of automation 

(i.e. less user input), as illustrated in Figure 5.2. The development of the rule-set was based on 

Area 1 and modified for Area 2. The rule-set was iteratively adjusted and tested on both Area 1 

and 2 until a satisfactory overall classification was obtained. Although the rule-set creation was 

more user-intensive (i.e. costly) than the creation of training data for one area, the advantage of the 

rule-set classifier lies in its re-use for Areas 3 and 4 without significant loss of accuracy (see 

Appendix B for individual error matrices). This result indicates that rule-set classifiers can be 

applied to different images over a wide area, rendering it more automated and therefore more cost-

effective than a supervised classification approach.  
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Figure 5.2: The project workflow of the rule-set approach 

 

5.2 Synopsis and conclusions 

The aim of this study was to, using object-orientated techniques, compare the accuracy and cost-

effectiveness of a supervised and rule-set classification approach for mapping forests on a regional 

scale. Such a goal prompted a number of questions which needed to be addressed, the first of 

which was: why select these specific classification approaches? This question was addressed by 

assessing different methods of image classification in the literature, analysing the advantages and 

disadvantages of each, and then relating the more suitable methods to the task of a multi-image, 

large-scale forestry inventory. The review of research in this field made it apparent that, in terms 

of accuracy, familiarity and ease-of-application, an object-orientated supervised classification was 

the most suitable for the task at hand. Concerning automation and cost-effectiveness, however, an 

expert-systems rule-based classification in an object-orientated environment showed significant 

promise, although the possible accuracies of such a technique were unclear as it had never been 

attempted for multi-image forestry mapping in South Africa. The crux of this research was then to 
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develop an expert-system, rule-based classifier, and evaluate its accuracy and cost-effectiveness 

against a supervised classification for forest mapping on a national scale. 

 

To undertake this, two orthorectified, pan-sharpened SPOT 5 images were acquired from the SAC 

of the CSIR. Images were further pre-processed using atmospheric correction procedures, and 

15x10km image subsets were delineated from each image. Reference data was compiled using 

ancillary data and field visits, and verified by a forestry expert. 

 

The object-orientated supervised approach was undertaken using a nearest-neighbour algorithm on 

a nine-class, two-tier hierarchical classification. Training areas were delineated and iteratively 

refined, using information obtained during a field survey and by using ancillary data. The 

development of the rule-set was an iterative process, where the accuracies of one classification 

iteration determined the refinement of individual feature threshold rules used, until a satisfactory 

classification was returned. When tested on four areas spanning two SPOT5 images, both 

classifiers returned overall accuracies of 90% with almost identical kappa values of almost 0.8.  In 

terms of automation, the process of training data development for each area rendered the 

supervised approach more user-intensive, and therefore less cost-effective than the rule-set 

approach. Adding weight to this argument is the requirement that training data demands the 

meticulous scrutiny of accurate, large-scale ancillary data, and should be supplemented by field-

site verification, which is both time-consuming and financially expensive. 

 

Taking these findings into account, the conclusion of this research is that the greater level of 

automation shown by the expert-system rule-set approach renders it superior to that of supervised 

classification for the task at hand. It is therefore suggested that the expert-systems rule-set 

presented here should be employed for the classification of natural and plantation forests on 

regional scales. However, more research is needed to determine whether the rule-set classifier can 

be applied to other areas as it was only tested for the forest types and tree species located in the 

study area. It is likely that some adjustments will be required to compensate for the spectral and 

textural variations of other forest types. Thus it is recommended that this rule-set be subjected to 

further testing in other areas. For a study on a national scale, it may be necessary to modify the 

rule-base to develop a catalogue of rule-sets for different regions which, at a future date, could be 

readily applied to any SPOT 5 imagery for monitoring and management purposes. 

 

 

15608 words 
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APPENDIX A: RULE-SET DOCUMENTATION 

 

Definiens Developer 7.0 documentation of rule-set Rules26A.dcp, the final rule-set used for 
the classification of natural, plantation and other. 
 
Layers:  
    SPOT Band 1(green); SPOT Band 2 (red); SPOT Band 3 (NIR); SPOT Band 4 (SWIR); Edge 
mask. 
 
Classes: 
    Forest 
    Natural 
    Other 
    Plantation 
    Unsure 
    Vegetation 
    VegetationR 
 
Customized Features: 
    RatioVegMnL1: [Layer mean of Layer 1, VegetationR]/[Mean Layer 1] 
 
Process: Main: 
    Forest Extraction 
         Segmentation 
              multiresolution segmentation: 25 creating 'Level One' 
         Classify Vegetation 
              assign class: with Ratio Layer 3 <= 0.23  at Level One: Other 
              assign class: unclassified at Level One: VegetationR 
              assign class: Other at Level One: unclassified 
         Classify Forest 
              copy image object level: at Level One: copy creating 'Level Two' below 
              assign class: VegetationR at Level Two: Vegetation 
              assign class: Vegetation with RatioVegMnL1 <= 1.1  at Level Two: Other 
              assign class: Vegetation at Level Two: Forest 
              assign class: Other at Level Two: unclassified 
         Resegmentation 
              merge region: loop: Forest at Level Two: merge region 
              merge region: loop: unclassified at Level Two: merge region 
              multiresolution segmentation: Forest at Level Two: 100 [shape:0.5 compct.:0.5] 
              copy image object level: at Level Two: copy creating 'Level Three' below 
              assign class: Forest at Level Three: Unsure 
         Type Extraction 
              assign class: Unsure with Brightness <= 60  at Level Three: Natural 
              assign class: Unsure with RatioVegMnL1 >= 1.23  at Level Three: Plantation 
              assign class: Unsure with Ratio to scene Layer 3 <= 1.05  at Level Three: Plantation 
              assign class: Unsure with Standard deviation Layer 3 <= 13  at Level Three: Plantation 
         Cleanup 
              assign class: Unsure at Level Three: Natural 
              merge region: loop: Natural at Level Three: merge region 
              merge region: loop: Plantation at Level Three: merge region 
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APPENDIX B: INDIVIDUAL ERROR MATRICES 

 

Table B1: Supervised classification error matrix of Area 1     
Reference/Class Other Natural Plantation Totals 
Other 78 1 4 83 
Natural 0 5 0 5 
Plantation 3 1 8 12 
Totals 81 7 12 100 
     
  Producers Accuracy Users Accuracy    
Other 93.98 96.30    
Natural 100.00 71.43    
Plantation 66.67 66.67    
       
Kappa Index 0.709     

Overall Accuracy 91.00     

          

 

Table B2: Supervised classification error matrix of Area 2     
Reference/Class Other Natural Plantation Totals 
Other 66 3 0 69 
Natural 4 15 1 20 
Plantation 1 0 10 11 
Totals 71 18 11 100 
     
  Producers Accuracy Users Accuracy    
Other 95.65 92.96    
Natural 75.00 83.33    
Plantation 90.91 90.91    
       
Kappa Index 0.805     

Overall Accuracy 91.00     

          
 
 
Table B3: Supervised classification error matrix of Area 3     
Reference/Class Other Natural Plantation Totals 
Other 76 1 1 78 
Natural 3 7 0 10 
Plantation 1 1 10 12 
Totals 80 9 11 100 
     
  Producers Accuracy Users Accuracy    
Other 97.44 95.00    
Natural 70.00 77.78    
Plantation 83.33 90.91    
       
Kappa Index 0.802     
Overall Accuracy 93.00     
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Table B4: Supervised classification error matrix of Area 4     
Reference/Class Other Natural Plantation  Totals 
Other 34 1 1 36 
Natural 4 46 6 56 
Plantation 0 3 5 8 
Totals 38 50 12 100 
       
  Producers Accuracy Users Accuracy    
Other 94.44 89.47    
Natural 82.14 92.00    
Plantation 62.50 41.67    
       
Kappa Index 0.738     
Overall Accuracy 85.00     

          

 
 
Table B5: Rule-set classification error matrix of Area 1 
Reference/Class Other Natural Plantation  Totals 
Other 79 0 0 79 
Natural 4 8 1 13 
Plantation 0 3 5 8 
Totals 83 11 6 100 
       
  Producers Accuracy Users Accuracy    
Other 100.00 95.18    
Natural 61.54 72.73    
Plantation 62.50 83.33    
       
Kappa Index 0.754     
Overall Accuracy 92.00     

          

 
 
Table B6: Rule-set classification error matrix of Area 2 
Reference/Class Other Natural Plantation  Totals 
Other 69 0 2 71 
Natural 0 7 1 8 
Plantation 3 3 15 21 
Totals 72 10 18 100 
       
  Producers Accuracy Users Accuracy    
Other 97.18 95.83    
Natural 87.50 70.00    
Plantation 71.43 83.33    
       
Kappa Index 0.797     
Overall Accuracy 91.00     

          

 
 
 
 
 



 60 

Table B7: Rule-set classification error matrix of Area 3 
Reference/Class Other Natural Plantation Totals 
Other 72 4 3 79 
Natural 2 7 1 10 
Plantation 1 1 9 11 
Totals 75 12 13 100 
       
  Producers Accuracy Users Accuracy    
Other 91.14 96.00    
Natural 70.00 58.33    
Plantation 81.82 69.23    
       
Kappa Index 0.685     
Overall Accuracy 88.00     

          

 
 
Table B8: Rule-set classification error matrix of Area 4  
Reference/Class Other Natural Plantation Totals 
Other 42 0 0 42 
Natural 6 43 1 50 
Plantation 3 1 4 8 
Totals 51 44 5 100 
       
  Producers Accuracy Users Accuracy    
Other 100.00 82.35    
Natural 86.00 97.73    
Plantation 50.00 80.00    
       
Kappa Index 0.804     
Overall Accuracy 89.00     

          

 


