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Abstract

The interpretation – and compilation of predictive equations to represent the general

trend – of collected data is aided immensely by its graphical representation. Whilst,

by and large, predictive equations are more accurate and convenient for use in appli-

cations than graphs, the latter is often preferable since it visually illustrates deviations

in the data, thereby giving an indication of reliability and the range of validity of the

equation. Combination of these two tools – a graph for demonstration and an equation

for use – is desirable to ensure optimal understanding. Often, however, the functional

dependencies of the dependent variable are only known for large and small values

of the independent variable; solutions for intermediate quantities being obscure for

various reasons (e.g. narrow band within which the transition from one regime to

the other occurs, inadequate knowledge of the physics in this area, etc.). The limit-

ing solutions may be regarded as asymptotic and the powered addition to a power,

s, of such asymptotes, f0 and f∞ , leads to a single correlating equation that is appli-

cable over the entire domain of the dependent variable. This procedure circumvents

the introduction of ad hoc curve fitting measures for the different regions and subse-

quent, unwanted jumps in piecewise fitted correlative equations for the dependent

variable(s). Approaches to successfully implement the technique for different combi-

nations of asymptotic conditions are discussed. The aforementioned method of pow-

ered addition is applied to experimental data and the semblances and discrepancies

with literature and analytical models are discussed; the underlying motivation being

the aspiration towards establishing a sound modelling framework for analytical and

computational predictive measures. The purported procedure is revealed to be highly

useful in the summarising and interpretation of experimental data in an elegant and

simplistic manner.
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Opsomming

Die interpretasie – en samestelling van vergelykings om die algemene tendens voor te

stel – van versamelde data word onoorsienbaar bygestaan deur die grafiese voorstel-

ling daarvan. Ten spyte daarvan dat vergelykings meer akkuraat en geskik is vir

die gebruik in toepassings as grafieke, is laasgenoemde dikwels verskieslik aangesien

dit afwykings in die data visueel illustreer en sodoende ’n aanduiding van die be-

troubaarheid en omvang van geldigheid van die vergelyking bied. ’n Kombinasie van

hierdie twee instrumente – ’n grafiek vir demonstrasie en ’n vergelyking vir aanwend-

ing – is wenslik om optimale begrip te verseker. Die funksionele afhanklikheid van

die afhanklike veranderlike is egter dikwels slegs bekend vir groot en klein waardes

van die onafhanklike veranderlike; die oplossings by intermediêre hoeveelhede on-

duidelik as gevolg van verskeie redes (waaronder, bv. ’n smal band van waardes

waarbinne die oorgang tussen prosesse plaasvind, onvoldoende kennis van die fisika

in hierdie area, ens.). Beperkende oplossings / vergelykings kan as asimptote beskou

word en magsaddisie tot ’n mag, s, van sodanige asimptote, f0 en f∞, lei tot ’n enkel,

saamgestelde oplossing wat toepaslik is oor die algehele domein van die onafhank-

like veranderlike. Dié prosedure voorkom die instelling van ad hoc passingstegnieke

vir die verskillende gebiede en die gevolglike ongewensde spronge in stuksgewys-

passende vergelykings van die afhankilke veranderlike(s). Na aanleiding van die

moontlike kombinasies van asimptotiese toestande word verskillende benaderings

vir die suksesvolle toepassing van hierdie tegniek bespreek. Die bogemelde metode

van magsaddisie word toegepas op eksperimentele data en die ooreenkomste en ver-

skille met literatuur en analitiese modelle bespreek; die onderliggend motivering ’n

strewe na die daarstelling van ’n modellerings-raamwerk vir analitiese- en rekenaar-

voorspellingsmaatreëls. Die voorgestelde prosedure word aangetoon om, op ’n ele-

gante en eenvoudige wyse, hoogs bruikbaar te wees vir die lesing en interpretasie van

eksperimentele data.
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Nomenclature

Constants

π 3.141 592 654

e 2.718 281 828

Variables

av particle specific surface [m−1]

A arbitrary coefficient [−]

Aann area of annulus [m2]

Ac cross-sectional area of bed [m2]

Ap surface area of single, non-spherical particle [m2]

Aplug area of plug [m2]

Asp surface area of an equivalent volume sphere [m2]

B arbitrary coefficient [−]

c constant [−]

cd form drag coefficient [−]

CΩ new constant / model parameter of Mbiya [−]

d linear dimension of RUC [m]

dp mean particle diameter [m]

ds linear dimension of solid in RUC [m]

dsv diameter of sphere with equivalent surface area / vol-

ume ratio as particle

[m]

dv volume diameter [m]

D diameter [m]

Dh hydraulic diameter [m]

Dplug plug diameter [m]

D diameter of sphere (perfectly spherical particle) [m]

Dshear sheared diameter [m]

f{x} original dependent variable [−]
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x

f0 asymptotic solution or correlation for x → 0 [−]

f∞ asymptotic solution or correlation for x → ∞ [−]

g acceleration due to gravity [m/s2]

g{x} canonical dependent variable [−]

h{x∗} logarithmic dependent variable [−]

hv velocity head [m]

hs static head [m]

ht total head [m]

H bed height [m]

k pressure loss coefficient [−]

kv pressure loss coefficient for valve [−]

kv, c pressure loss coefficient for valve at critical point [−]

K fluid consistency index [Pa.sn]

L length of straight channel / bed height [m]

m0 total or bulk mass [kg]

m f mass of traversing fluid [kg]

ms solid mass [kg]

M empirically determined, constant coefficient [−]

n fluid behaviour index [−]

N empirically determined, constant coefficient [−]

p pressure [N/m2]

pH total pressure head [N/m2]

q superficial velocity / specific discharge [m/s]

qA arbitrary constant [−]

qm f minimum fluidisation velocity [m/s]

Qann flux through annulus [m3/s]

Qplug flux through plug [m3/s]

r radius [m]

rplug plug radius [m]

R pipe radius [m]

Re general Reynolds number [−]

Re3 Slatter Reynolds number [−]

Re3, c Slatter Reynolds number at critical point [−]

Rep particle Reynolds number [−]

Re Reynolds number for packed bed of spheres [−]

s arbitrary shifting exponent [−]

t arbitrary shifting exponent [−]

U0 total or bulk volume [m3]

U f volume of fluid phase [m3]

Us volume of solid phase [m3]

v velocity [m/s]
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xi

vann corrected mean velocity in the annulus [m/s]

vplug velocity of plug [m/s]

vx velocity component in x-direction [m/s]

vy velocity component in y-direction [m/s]

vz velocity component in z-direction [m/s]

Vp volume of single, non-spherical particle [m3]

w specific weight [kg/m2s2]

x independent variable [−]

x∗ logarithmic independent variable [−]

xA arbitrary constant [−]

xB arbitrary constant [−]

xc independent variable at central or critical point [−]

Y normalised dependent variable [−]

z height above arbitrary reference point [m]

Z normalised independent variable [−]

Greek letters

α exponent in asymptotic solution for x → 0 / arbitrary

exponent

[−]

β exponent in asymptotic solution for x → ∞ / arbitrary

exponent

[−]

γ̇ shear rate [s−1]

∆ change in stream-wise property [−]

ε bed porosity / void fraction [−]

ε0 porosity at incipient fluidisation [−]

η apparent viscosity [N.s/m2]

θ valve opening coefficient [−]

κ hydrodynamic permeability [−]

λΩ nominal turbulent loss coefficient [−]

µ fluid dynamic viscosity [N.s/m2]

ν kinematic viscosity [s−1]

ζ0{q} functional dependence of pressure drop for q → 0 [N/m3]

ζ∞{q} functional dependence of pressure drop for q → ∞ [N/m3]

ρ mass density [kg/m3]

ρ0 total or bulk mass density [kg/m3]

ρ f mass density of traversing fluid [kg/m3]

ρs mass density of solids [kg/m3]

τ shear stress [N/m2]

τ0 shear stress at the pipe wall [N/m2]
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xii

τy yield stress [N/m2]

φp particle shape factor (sphericity) [−]

Φ variable defined for simplicity in Ergun equation [−]

ψ geometric factor [−]

Ψ Waddell sphericity factor [−]

Vectors and Tensors

f
b

body forces [N/kg]

n̂ unit vector in stream-wise direction [−]

∇ del operator [m−1]

σ stress tensor [N/m2]

τ viscous stress dyadic [N/m2]

Acronyms

CHE Churchill-Usagi Equation

RUC Representative Unit Cell
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Introduction

The dependence of modern engineering research on precise, credible experimental

and computational practices is undeniable. These procedures provide the requisite

predictive information needed for design purposes and the in-depth understanding

of complex processes. It is common practice to represent the general trend in a set

of such collected data by drawing a line through the individual datum points on the

plot. Correlation between the drawn predictive curve and the data is then evaluated

against some norm, e.g. least squares fit to a straight line or polynomial function pass-

ing through the data, visual inspection, etc. Theoretical knowledge of the functional

behaviour is helpful but not a prerequisite for the construction of graphical correlation

and thus a line best suited to the particular problem is chosen – the better the predic-

tive line on the graphical presentation corresponds to the physical reality, especially

in the limits of the independent variable, the greater the trustworthiness of obtained

results.

If it is possible to accurately determine or predict the asymptotic behaviour – traits

at extreme values of the independent variable – of the dependent variable under con-

sideration, the results can usually be presented in a neat and elegant format. The basic

procedure of asymptotic matching by straightforward addition of the expressions for

the asymptotic conditions is a method that has been been in use for some time, espe-

cially in engineering practice. However, the article by Churchill & Usagi [1], which

appeared in 1972, for the first time really formalised the use and accentuated the wide

application possibilities of the method and variations thereof. Their method yields

an equation of simple form with one arbitrary constant that interpolates between the

limiting solutions; the value of which may be determined by either experimental or

theoretical procedure. The routine is applicable to any phenomenon which varies uni-

formly between known, limiting solutions and is especially useful for the evaluation

and summarising of experimental and computational data. Furthermore it is particu-

larly convenient for design purposes as it yields an expression that is relevant over the

entire domain of the dependent variable and has the same form for all correlations.

Whether it presents an exact representation of the transfer process cannot be proven

scientifically, yet the method is widely applicable and accepted.

xiii
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xiv

In the first chapter an outline is given of powered addition. The articles by Churchill

& Usagi [1; 2] form the backbone of this chapter. Different scenarios of the limiting

functions and / or values are investigated and simple examples provided. Curve ad-

justment and the importance of the point of intersection of the asymptotes are dis-

cussed. Chapter 2 and 4 sees the application of the method to the collected experimen-

tal data for two diverse processes. The results of the former chapter were presented

at The 2nd Southern African Conference on Rheology (SASOR), Cape Peninsula Uni-

versity of Technology, Cape Town, 6 - 8 October 2008 [3]; those of the latter were pub-

lished in the proceedings of The 5th International Conference on Computational &

Experimental Methods in Multiphase and Complex Flow (Multiphase Flow V), New

Forest, UK, 15 - 17 June 2009 [4]. Chapter 3 serves as précis of two approaches used in

predicting pressure drop over a packed bed or porous medium – the one (Ergun equa-

tion) being itself an example of powered addition with an exponent of unity, the other

(RUC model) forming a keystone to the work of the following chapter. Supplemen-

tary material and the original data sets of the experimental investigations conducted

at Høgskolen i Telemark (Telemark University College), Porsgrunn, Norway are col-

lected in the appendices.
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Chapter 1

Powered addition as curve fitting

technique

Powered addition of expressions valid for two opposing ranges as described by Chur-

chill and Usagi [1; 2; 5; 6] is a procedure used to produce a combined result which is

valid for both of these ranges. Since each of the limiting expressions predominates in

their respective regions of applicability, a unified model can be obtained using such an

‘asymptote matching’ technique.

1.1 Asymptotic behaviour of transfer processes

In many continuum processes, such as momentum and thermal transfer processes,

the value of a sought after parameter is expressible as a function of certain known

parameter(s) at low and high values. These limiting solutions for large and small

values of the independent variable(s) may be regarded as asymptotic conditions of the

dependent variable.

By stating that

f{x} → g{x} as x → a

it is meant that
(

f{x}
g{x}

)

→ 1 as x → a.

In other words, it is said that f is asymptotic to g as x → a [7]. Very often the func-

tional expression of the dependent variable is in the form of a power dependency upon

some independent variable, x.

1
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1.1 Asymptotic behaviour of transfer processes 2

Let the functional dependence, f , of such a process be described by

f → f0{x} = Axα as x → 0, (1.1)

f → f∞{x} = Bxβ as x → ∞. (1.2)

Here equations (1.1) and (1.2) denote the functional expressions at the lower and up-

per extremal values of x respectively. However, solutions for intermediate cases are

seldom as simply expressed. (It is important to take note that, for the discussion to

follow, the explicit expression of the asymptotes in terms of a power dependency is

not permutable, i.e. the lower asymptote is always associated with coefficient A and

exponent α; the upper with B and β).

The direct summation of two such asymptotic solutions or approximations is often

effected to obtain a single solution that holds over the entire range of the independent

variable, i.e.

f{x} = f0{x}+ f∞{x} = Axα + Bxβ. (1.3)

Equation (1.3) may now be considered as a matching or coupled curve connecting the

two dependencies as it satisfies the asymptotic conditions and also provides values for

f at intermediate values of the independent variable, x.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

x

f 
{x

}

f
0
 = 1

f
∞

 = x

f {x} = f
0
 +  f

∞

Figure 1.1: Linear plot of the function f{x} = 1 + x.
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1.1 Asymptotic behaviour of transfer processes 3

As an example, consider the very simple case of a function f{x} = 1 + x; i.e. A = 1,

B = 1, α = 0 and β = 1 in equation (1.3). In the above formulation this corresponds to

the case,

f{x} → 1 as x → 0, (1.4)

f{x} → x as x → ∞. (1.5)

Hence the asymptotes governing the behaviour of the coupled function will be given

by

f0{x} = 1

f∞{x} = x.

Plotting this relation on a linear-linear Cartesian scale, generates a straight line as

shown in Figure 1.1. It is only once the function is drawn on a log-log graph that more

insight is gained; the asymptotic behaviour that results from addition of the functional

expressions at the extremal values now becomes apparent. This is illustrated in Figure

1.2.

10
−2

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

x

f 
{x

}

f
0
 = 1

f
∞

 = x

f {x} = f
0
 +  f

∞

Figure 1.2: Log-log plot of the function f{x} = 1 + x.

The advantage of using logarithmic coordinates when plotting data is that equal

percentage changes yield equal displacements over the entire range, where-as with
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1.2 Shifting of the matching curve 4

arithmetic coordinates (Cartesian axes) on the other hand, the displacement increases

in accordance with the magnitude of the variable. In other words, logarithmic co-

ordinates display percentage deviations and perceptually suppress these deviations

compared to arithmetic plots – the former may thus obscure the magnitude of scatter

in the data, the latter distort such scatter unduly by displaying absolute differences.

[5].

It is important to note that, as seen in Figure 1.1, the matched curve merely ap-

proaches, yet never reaches, the upper limiting functional value. An increase in the

independent variable leads to the diminishing influence of the lower asymptotic func-

tion on the overall solution, which only becomes visually apparent once the solution

is plotted on log-log axes as in Figure 1.2. The method is therefore best suited to ap-

proximate the general trend in a process, rather than predict the exact values of the

constituent limiting functions.

1.2 Shifting of the matching curve

Frequently the values of the dependent variable at the transition between the asymp-

totic extremities do not lie exactly on this matching solution. Churchill & Usagi [1; 2;

5; 6] demonstrated that the use of powered addition, the most general form of which

is shown in equations (1.6) and (1.7) below, may lead to dramatic improvement in

correlation with experimental data

f s{x} = f s
0{x}+ f s

∞{x}, (1.6)

whence

f{x} = [ f s
0{x}+ f s

∞{x}]1/s. (1.7)

By adjusting the value of the shifting exponent, s, the level of the solution may be

modified so as to more closely trace the expected or empirical values, yielding bet-

ter correspondence between predictive equation and experimental results. The right

hand side of equation (1.7) may be considered as the sth order sum of the asymptotic

solutions [1; 2; 5].

1.2.1 Increasing dependence

When the dependent variable is an increasing power of the independent variable, in

other words if the power of x in equation (1.3) is greater at the higher limit, that is

α < β, (1.8)
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1.2 Shifting of the matching curve 5

0 0.5 1 1.5 2
0.5

1

1.5

2

2.5

x

f 
{x

}

f
∞

f
0

s = 1

s = 2

s = 5

Figure 1.3: Linear plot of the function f{x} = [ f s
0{x} + f s

∞{x}]1/s = [1 + xs]1/s for

varying values of the shifting exponent, s.

the expression

f{x} = [(Axα)s + (Bxβ)s]1/s, (1.9)

is usually desirable for interpolation between the extremal values.

Theoretically the matched function in equation (1.9) will have no upper bound and

will only be bounded from below by the the functional expression for small values

of x; i.e the term Axα in equation (1.3) will form a lower bound on the values that

the independent variable may take on. The arbitrary exponent, s will now have a

positive value. The shifting effect obtained is illustrated in Figures 1.3 and 1.4; the

same conditions were used as in equations (1.4) and (1.5) to obtain

f{x} = [ f s
0{x}+ f s

∞{x}]1/s = [1 + xs]1/s. (1.10)

For the sake of simplicity, the function-notation ( f0 and f∞) will henceforth be favoured

over the explicit expression in terms of power dependencies.
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1.2 Shifting of the matching curve 6

10
−2

10
−1

10
0

10
0

x

f 
{x

}

f
∞

f
0

s = 1

s = 2

s = 5

Figure 1.4: Log-log plot of the function f{x} = [ f s
0{x}+ f s

∞{x}]1/s = [1 + xs]1/s for

varying values of the shifting exponent, s.

1.2.2 Decreasing dependence

In some instances the dependence of f{x} decreases with an increase in the indepen-

dent variable, i.e.

α > β, (1.11)

in equation (1.3). Two possibilities now exist – the asymptotes may either form the

lower bound or the upper bound of the resulting matched curve; knowledge of the

process being modelled and/or experimental data will dictate the specific case.

1.2.2.1 Bounded from below

Decreasing dependence upon the independent variable is such that the solutions for

extremal values – i.e. the functional expressions for the asymptotes – bind all possible

solutions to the process from below. Suppose, for the sake of an illustrative example,
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1.2 Shifting of the matching curve 7
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Figure 1.5: Linear plot of the function f{x} =
[(

1
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)s
+ 1
]1/s

for varying values of the

shifting exponent, s.

that the limiting solutions to such a process are given by the simple relations

f{x} → 1

x
as x → 0, (1.12)

f{x} → 1 as x → ∞. (1.13)

This corresponds to equation (1.3) with coefficients A = 1, B = 1 and exponents,

α = −1 and β = 0. The matched solution, raised to the shifting exponent will thus be

f{x} =

[(

1

x

)s

+ 1

]1/s

. (1.14)

The result of varying the values of the shifter, s, is graphically represented on Cartesian

and log-log axes in Figures 1.5 and 1.6 respectively.

1.2.2.2 Bounded from above

The asymptotes, f0{x} and f∞{x}, of the process being modelled form an upper

bound on the possible values that the function can assume. Using the formulation of
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Figure 1.6: Log-log plot of the function f{x} =
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1
x

)s
+ 1
]1/s

for varying values of

the shifting exponent, s.

equation (1.3) consider, as an example, the very simple case in which the asymptotes

constituting the matched equation are given by

f{x} → x as x → 0, (1.15)

f{x} → 1 as x → ∞. (1.16)

To ensure that the matched solution approaches the limiting functions from below, the

shifting exponent now needs to take on a negative value. However, the obtained curve

will still approach the asymptotes as |s| increases; illustrated in Figures 1.7 and 1.8.

The introduction of a negative value for s may be circumvented by taking the recip-

rocal of the original dependent variable, i.e. by defining

1

g{x} =
1

Axp +
1

Bxq =
1

g0{x} +
1

g∞{x} , (1.17)

before it is raised to s, ensures that s > 0. Applying this to the above example, outlined

in equations (1.15) and (1.16), yields the function

f{x} =
x

1 + x
, (1.18)
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Figure 1.7: Linear plot of the function f{x} = [xs + 1]1/s for varying negative values

of the shifting exponent, s.

and in so doing Figures 1.7 and 1.8 in g{x} are converted to Figures 1.5 and 1.6 in

f{x} = 1/g{x}.

1.2.3 Only limiting values known

In many cases the functional dependence of the independent variable is known at the

extremal values. Often, however, only the limiting values in both limits, i.e. f{0} and

f{∞}, are known beforehand. In cases such as these the straight-forward application

of equation (1.6) is not possible and an alternative approach is to be followed.

To commence, a functional dependence of the dependent variable upon the inde-

pendent variable is postulated for either x → 0 or x → ∞. Any convenient function

which approximates the behaviour of the data may be chosen. Churchill & Usagi [2]

recommend the use of a power function since its use is widely applicable and the sim-

plicity of such a function ties in with that of equation (1.6) and the philosophy behind

the method in general. Once an applicable function for either of the limiting values

has been chosen it is, as per the discussion in Section 1.1, matched to the constant value
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Figure 1.8: Log-log plot of the function f{x} = [xs + 1]1/s for varying negative values

of the shifting exponent, s.

that binds the process in the other limit (it is important to choose the approximating

function such that no singularities are introduced once the functions are combined).

As an example, the power function

f0{x} = f{0}+ ( f{∞} − f{0})
(

x

xA

)α

, (1.19)

may be suggested to represent the functional dependence at the lower limiting value

[2]. Here xA is an arbitrary constant and α an arbitrary exponent; the influence of these

values on the obtained curves will be discussed shortly. The function in equation (1.19)

is chosen such that

f0{x} → f{0} as x → 0,

i.e. ( f{∞} − f{0})
(

x

xA

)α

→ 0 as x → 0. (1.20)

In equation (1.20) the coefficient ( f{∞} − f{0}) is a constant value and therefore it

should hold that
(

x

xA

)α

→ 0 as x → 0, (1.21)
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Figure 1.9: Postulated function f0{x} = f{0}+ ( f{∞} − f{0})(x/xA)α for constant

value of arbitrary exponent, α = 1.5, and varying values of the arbitrary constant, xA.

which will only be the case if both the arbitrary constant and exponent is such that

xA > 0 and α ≥ 0; a restriction that should be kept in mind when choosing these

values.

The postulated function and upper limiting asymptote will now intersect where

f0{x} = f∞{x}, (1.22)

that is

f{0}+ ( f{∞} − f{0})
(

x

xA

)α

= f{∞}, (1.23)

whence, after rearrangement and division,

(

x

xA

)α

= 1. (1.24)

It thus follows from equation (1.24) that x = xA at the intersection of these two func-

tions; by changing the value of xA the point of intersection may be altered. In Section

1.4 the importance of this value, the so-called critical point, will be discussed. Plot-

ting of the postulated function in equation (1.19) for different values of the arbitrary

constant xA – illustrated in Figure 1.9 – graphically clarifies its influence.
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Figure 1.10: Postulated function f0{x} = f{0}+ ( f{∞} − f{0})(x/xA)α for constant

value of the arbitrary constant, xA = 1, and varying values of the arbitrary exponent,

α.

The influence of the arbitrary exponent, α, becomes clear when equation (1.19) is

rearranged as
(

x

xA

)α

=
f0{x} − f{0}
f{∞} − f{0} , (1.25)

and the logarithm taken on either side to yield

log

(

x

xA

)α

= log

(

f0{x} − f{0}
f{∞} − f{0}

)

,

i.e. α(log x− log xA) = log( f0{x} − f{0})− log( f{∞} − f{0}). (1.26)

Defining a new variable, x∗, equation (1.26) thus takes the form of a linear depen-
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Figure 1.11: Application of powered addition with only limiting values known. A

function of the form f0{x} = f{0} + ( f{∞} − f{0})(x/xA)α was postulated for the

lower limiting dependency. The effect of varying the value of the shifting exponent, s,

on the solution is shown (xA = 1 and α = 2 were kept constant).

dency in x∗ (straight line graph in Cartesian coordinates), such that

h{x∗} = αx∗ + c, (1.27)

where h{x∗} = log( f0{x} − f{0}), (1.28)

x∗ = log x, (1.29)

and c is a constant value

c = log( f{∞} − f{0})− α log xA = log

(

f{∞} − f{0}
xα

A

)

. (1.30)

As can be seen from equation (1.27), altering the value of α thus influences the ’cur-

vature’ of the postulated function; this is illustrated graphically in Figure 1.10.

The postulated function of equation (1.19) will thus form an upper bound on the

possible values that the dependent variable may take in the lower limit. Furthermore
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Figure 1.12: Application of powered addition with only limiting values known. A

function of the form f∞{x} = f{∞} − ( f{∞} − f{0})(xB/x)β was postulated for the

upper limit. The effect on the matched solution for selected values of the shifting

exponent, s, is demonstrated (xB = 1 and β = 1.5 were kept constant).

its contribution to the final solution should diminish as the value of the independent

variable increases, in other words, once matched, the solution should show a decreas-

ing dependence upon this function: a decreasing dependence, bounded from above

as outlined in Section 1.2.2. By setting g{x} = 1/ f{x}, cf. equation (1.17), the ex-

pressions g0{x} = 1/ f0{x} and g∞{x} = 1/ f∞{x} = 1/ f{∞} are obtained for the

respective dependencies; the latter being a constant value. Inserting the aforemen-

tioned together with the proposed dependency of equation (1.19) into equation (1.6),

yields

1

f s{x} =
1

f s
0{x} +

1

f s
∞{x} =

1
[

f{0}+ ( f{∞} − f{0})
(

x

xA

)α]s +
1

f s{∞} . (1.31)

A plot of equation (1.31) for different values of the shifting exponent, s, is shown in

Figure 1.11.

Instead of postulating a function for the lower limit, the behaviour of the process in
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the upper limit may be considered. The function is now required to act such that

f∞{x} → f{∞} as x → ∞. (1.32)

Once again a power function, now of the form

f∞{x} = f{∞} − ( f{∞} − f{0})
( xB

x

)β
, (1.33)

may be utilised as arbitrary function, approximating the dependency at upper ex-

tremal values. Applying the same reasoning as above to equation (1.32) imposes

the restrictions xB > 0 and β ≥ 0 (the function now forming a lower bound). A

power-added function, similar to that of equation (1.31), covering the entire range

of the independent variable, may now be constructed by choosing g{x} = 1/ f{x},

g0{x} = 1/ f0{x} = 1/ f{0} and g∞{x} = 1/ f∞{x}, where 1/ f0{x} is now given by

equation (1.33). Figure 1.12 illustrates the use of the function proposed in equation

(1.33) for approximation of the behaviour at upper extremal values; altering the value

of the shifting exponent, s, having the desired effect.

1.2.4 Crossing of one limiting solution

In some phenomena the data is not bound completely by the limiting solutions; one

of the limiting functions may be crossed as the solution approaches it. Although it is

presumed that both the lower functional dependency, f0{x}, and the upper limiting

value, f{∞}, is known, equation (1.6) is not directly applicable, since for any posi-

tive values of the shifting exponent, equation (1.6) gives values that fall above f0{x}
and f{∞} (see Sections 1.2.1 and 1.2.2.1). As in the preceding section, a function is

postulated viz.,

f∞{x} → f{∞} as x → ∞, (1.34)

but it should now differ from equation (1.33) in that it not only forms an upper bound

on attainable values of the dependent variable, but also approaches the limiting value

from above. Using a function of the form [1; 2],

f∞{x} = f{∞}
[

1 +
(xA

x

)α]

, (1.35)

in stead of f{∞}, solves this problem, since as x → ∞ the second term in square

brackets on the left hand side of equation (1.35) approaches zero (once again, provided

that α ≥ 0).

Constructing a new dependency of the form suggested by equation (1.6), with g{x} =

1/ f{x}, g0{x} = 1/ f0{x} and g∞{x} = 1/ f∞{x}, with f∞{x} the newly defined re-
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Figure 1.13: Application of powered addition when the solution crosses one of the lim-

iting functions; a function of the form f∞{x} = [1 + (xA/x)α] utilized to approximate

the upper limit. The effect on the matched solution for selected values of the shifting

exponent, s, is demonstrated (xA = 5 and α = 2 were kept constant).

lation of equation (1.35), yields

(

f0{x}
f{x}

)s

= 1 +







f0{x}
f{∞}

[

1 +
(xA

x

)α]







s

(1.36)

after simplification. In Figure 1.13 the family of curves found for selected values of

the shifting exponent, s is illustrated; the arbitrary variables, xA = 5 and α = 2, were

kept constant, their allocated values having been selected purely for demonstrative

purposes. Investigation of the influence of the arbitrary constant, xA, and arbitrary

exponent, α, in equation (1.36) can be done in a fashion similar to the procedures fol-

lowed to obtain equations (1.26) and (1.27) – the graphical representation of a change

in the values assigned to these constants are illustrated by Figures 1.14 and 1.15. The

results are, as was to be expected, akin to those of Figures 1.9 and 1.10.

http://scholar.sun.ac.za



1.3 Normalisation to obtain one horizontal asymptote 17

10
0

10
1

10
2

10
0

10
1

x

f{
x
} 

=
 1

/g
{x

}

f{0}

f{∞}

f
∞

{x}
x

A
 = 1

x
A
 = 2

x
A
 = 5

Figure 1.14: Variation of the value of the arbitrary constant, xA, in equation (1.35) with

the value of arbitrary exponent, α = 2, being kept constant.

1.3 Normalisation to obtain one horizontal asymptote

Frequently neither of the expressions for the limiting solutions, (1.1) and (1.2), are

linear in form or of a constant value. To aide visual interpretation it is often beneficial

to divide equation (1.7) by one of the asymptotic expressions, namely

f{x}
f0{x} =

[

1 +

(

f∞{x}
f0{x}

)s]1/s

, (1.37)

or
f{x}

f∞{x} =

[(

f0{x}
f∞{x}

)s

+ 1

]1/s

, (1.38)

to obtain non-dimensional, normalised forms of the original function. Both equation

(1.37) and (1.38) can now be written in generic form as

Y = (1 + Zs)1/s, (1.39)

yielding a horizontal asymptote at Y = 1 (Z → 0); the exact functional definition of

the newly defined variables, Y and Z, will be case specific. Plotting of the expression
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Figure 1.15: The effect of a change in the arbitrary arbitrary exponent, α, on the asymp-

totes of the Churchill-Usagi equation proposed by equation (1.35). The value of the

arbitrary constant, xA = 5, was kept constant.

obtained in equation (1.37) will stretch the curve at low values of the independent

variable, whereas plots with equation (1.38) will extend the curve at high values of the

independent variable.

1.4 Critical point and shifting-exponent

The central or critical point, xc, of the matching curve is the value of the independent

variable at which the asymptotes meet. Since the asymptotes intersect here, the nu-

merical value of their respective functional expressions must be equal, that is

f0{xc} = f∞{xc}. (1.40)

As both functions, f0 and f∞, contribute equally to the added solution at this point,

the resultant curve is most sensitive to variations in the value of the shifter, s, in the

vicinity of xc. Furthermore, looking at equations (1.37), (1.38) and (1.39), it becomes

apparent that the maximal fractional deviation of the matched solution from either of
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the limiting solutions or asymptotic values will occur at precisely this point and take

on the value

Y{1} − 1 = 21/s − 1. (1.41)

That is
(

f{xc}
f0{xc}

)

− 1 =

(

f{xc}
f∞{xc}

)

− 1 = 21/s − 1, (1.42)

if written in terms of the original equations for the extremal values.

Determining the value of the shifting-exponent, s, we use the same argument as

above in equation (1.40). Thus,

f s{xc} = f s
0{xc}+ f s

∞{xc} = 2 f s
0{xc} = 2 f s

∞{xc} (1.43)

whence it follows that
(

f{xc}
f∞{xc}

)s

=

(

f{xc}
f0{xc}

)s

= Y{1}s = 2. (1.44)

The value of s may now be determined straightforwardly from equation (1.44) as

s =
ln 2

ln f{xc} − ln f∞{xc}
=

ln 2

ln f{xc} − ln f0{xc}
=

ln 2

ln Y{1} . (1.45)
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Figure 1.17: Log-log plot of the function f{x} = ( f s
0{x}+ f s

∞{x})1/s = (1 + xs)1/s to

indicate the location of the critical point and equivalent function value.

In performing an experiment, it is therefore advantageous to arrange the physical

conditions in such a manner that the independent variable is in close vicinity of xc.

Whenever the experimental value of f{xc} is known, we proceed to determine the

value of the shifter by equation (1.45). In Figures 1.16 and 1.17 the critical point and

the corresponding function value at this point is indicated for the illustrative example,

f{x} = 1 + x, that has been used thus far. Note that in this, most simple form, the

value of the shifter, s = 1.

Alternatively, visual inspection by trial and error adjustment of the correlation be-

tween the predictive curve and data points may lead to an assignment of a value to s.

As noted by Churchill & Usagi [1] the matched curve is relatively insensitive to varia-

tions in s; the required acuity being determined by considerations such as the process

involved, tunability of other parameters and allowable error-margin.
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Chapter 2

Flow in straight-through diaphragm

valves

Diaphragm valves possess several advantages that lead to their extensive use in di-

verse industrial applications. There are two types of diaphragm valves: the "weir"

type used in piping systems that carry less viscous fluids; and the "straight-through"

type - a schematic representation of which is shown in Figure 2.1 - suited to slurries

and suspensions [8]. The data sets of Mbiya [9; 10], on which this chapter is based, is

concerned with the latter type of valve.

Figure 2.1: Schematic representation showing the cross-section of a straight-through

diaphragm valve (http://www.engvalves.com)

Despite the broad scope of their use, Mbiya [9; 11] notes that few studies dealing

21
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2.1 Definitions of pressures and heads 22

with valve openings of aperture less than unity is available in the literature. This limits

the use of the information contained therein, rendering it inapplicable to cases where

valves are used as flow impeding devices. Furthermore the studies that had been done

were restricted to specific intervals of the Reynolds number. The aim of Mbiya’s [9;

11] experimental investigation was to more accurately predict the additional pressure

loss incurred, for four different opening positions, once a pipe had been fitted with a

straight-through diaphragm valve.

A brief outline will be given on the definition of the pressure loss coefficient, the

experimental determination of which is one of the main focuses of Mbiya’s work

[9; 10; 11]. Hereafter the specific Reynolds number used in his study will be discussed

shortly (for a complete derivation of the Slatter Reynolds number, refer to Appendix

B). In the second half of this chapter Mbiya’s [9; 11] results are investigated for pos-

sible asymptotic bounds whereafter powered addition is applied to these functional

dependencies. The outcomes of powered addition is compared to those of Mbiya’s

model for a few selected cases (a complete set of comparative graphs are available in

Appendix C) and the results discussed.

2.1 Definitions of pressures and heads

The fitting of a valve into a pipe section causes a change in shape of the plane perpen-

dicular to the direction of flow and hence also in that of the flow path, thereby leading

to an increase in the pressure drop as the fluid traverses the constriction caused by the

valve. In Figure 2.2 this resulting additional pressure loss is graphically illustrated.

A wide variety of parameters are used to express the pressure drop characteristics of

the different components in a piping system [12]. The data on pressure losses may be

arrived at by either experiment or by theoretical solution of the equations governing

flow. Pressure loss data obtained by the former method usually concern measurements

taken at two stations, one upstream and one downstream of the component. Reference

is seldom made to the details of the change in pressure within the component itself.

The well-known Bernoulli equation for steady, incompressible flow states

1

2
v2

1 +
p1

ρ1
+ gz1 =

1

2
v2

2 +
p2

ρ2
+ gz2 = constant, (2.1)

where v is the velocity, p the pressure, ρ the fluid density (which is presumed constant),

z is the height above some arbitrary reference point and g is the acceleration due to

gravity. Division of equation (2.1) by g yields

v2
1

2g
+

p1

w1
+ z1 =

v2
2

2g
+

p2

w2
+ z2 = constant = ht, (2.2)
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Figure 2.2: Increased pressure drop due to the presence of a valve.

where w, the specific weight, has been written in stead of ρg. The terms in equa-

tion (2.2) all have the dimensions of length and are referred to as heads in hydraulics.

Hence, v2/2g is known as the velocity head (hv), p/w the pressure head, z is the posi-

tion head and their sum, ht – constant along the stream tube – is called the total head

[12]. Frequently the pressure head and position head together are referred to as the

static head [13]; the choice of this grouping becomes clear upon regarding Figure 2.3,

where the flow in a horizontal pipe is schematically represented.

The height to which a fluid rises in a tube connected to a tapping in the pipe wall

is called the static head. The difference between the static head and the head yielded

upon placing a forward facing tube (pitot) into the fluid stream, is called the velocity

head. The total head is simply the sum of the static and velocity heads. Comparison

with equation (2.2) yields an expression for the static head

hs =
p

w
+ z. (2.3)

Since it is the same fluid being regarded, and assuming incompressibility (i.e. con-

stant density), that is ρ = ρ1 = ρ2, equation (2.1) may be multiplied by ρ, resulting

in
1

2
ρv2

1 + p + ρgz1 =
1

2
ρv2

2 + p + ρgz2 = constant = pH. (2.4)

In equation (2.4) the contribution to the energy balance (the principle on which the
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Bernoulli equation is based) of the term ρgz is negligible [12] and hence it simplifies to

1

2
ρv2

1 + p1 =
1

2
ρv2

2 + p2 = constant = pH . (2.5)

In the form of equation (2.5) all terms have the dimensions of pressure; the first term,
1
2ρv2, is known as the dynamic pressure, the second term, p, as the static pressure and

their sum, pH, (once again a constant along the stream tube) as the total pressure [12].

Considering equation (2.5), it follows that any change in the total or static pressure

within the flow will be proportional to the local dynamic pressure. This leads to the

definition of the total pressure loss coefficient

k ≡ p̄H2
− p̄H1

1
2ρv2

=
∆pH
1
2 ρv2

. (2.6)

Hence, using the change of total head, the head loss, ∆ht, in a straight pipe section is

approximately proportional to the square of the velocity, v2, of the fluid. The relation

in equation (2.6) may thus be expressed as

k =
ht1
− ht2

v̄2/2g
=

2g∆ht

v̄2
=

2gH

v̄2
, (2.7)

whereby division of the head loss by the mean velocity head, v̄2/2g, yields a non-

dimensional loss coefficient [12; 13]. The presence of a component, such as a valve,

in a piping system will, via an increase in the loss of dynamic pressure, lead to a
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larger head loss. The study of Mbiya [9; 10; 11] concerns the experimental determi-

nation of the pressure loss coefficient (or resistance coefficient) and the prediction

thereof in terms of an empirical equation expressible as a function of valve opening

and Reynolds number.

2.2 Choice of Reynolds number

According to Newton’s law of viscosity the shear stress, τ, and viscosity, µ, for one-

dimensional flow of a fluid are related by

τ = −µ
dvx

dy
, (2.8)

where dvx/dy is the shear rate or velocity gradient as a function of position [14]. Fluids

that obey this criterion are referred to as Newtonian fluids. This is however an ideali-

sation as many fluids exhibit a more complicated relationship than the mere linearity

described by equation (2.8). Often the relation between the velocity gradient and shear

stress of a fluid is best described by the power dependency,

τ = K

(

−dvx

dy

)n

, (2.9)

where K is the fluid consistency index and n the flow behaviour index; fluids exhibit-

ing such behaviour are called power-law fluids (for a brief outline on the classification

of fluids, refer to Appendix A). Depending on the value of the flow behaviour index,

power-law fluids are classified into three broad groups: pseudo-plastic fluids if n < 1;

Newtonian fluids for n = 1, since equation (2.9) reverts to equation (2.8) in this case;

and dilatant fluids for n > 1. In pseudo-plastic substances shear thinning is observed,

in other words the viscosity decreases with an increase in rate of the shear stress.

A true plastic substance has an initial yield stress that needs to be overcome before

it assumes fluid-like properties, i.e. continuous deformation when subjected to a (fur-

ther) shear stress [14]. The constitutive equation for the yield pseudo-plastic model

can thus be formulated as

τ = τy + K

(

−dvx

dy

)n

, (2.10)

with τy denoting the yield stress. Setting n = 1 in equation (2.10) yields the so-called

Bingham-plastic model, while τy = 0 results in it reverting back to that for power-law

fluids, equation (2.9).

The Slatter Reynolds number, Re3, is based on the yield pseudo-plastic model and

starts from the assumption that, in the presence of a yield stress, the core of the fluid
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moves as a solid, unsheared plug [10; 15] resulting in annular flow (see derivation in

Appendix B). It can be expressed as

Re3 =
8ρv2

ann

τy + K

(

8vann

Dshear

)n . (2.11)

In equation (2.11) vann denotes the corrected mean velocity in the annulus and Dshear

the sheared diameter.

2.3 Mbiya’s empirical correlation

The addition of a component, such as a valve, to a piping system leads to a local con-

striction (or dilation) of the cross-sectional area and consequently also to a change

in the flow path. Initially, at low Reynolds numbers – the region of laminar flow –

Re → 0 0 < Re < 10

Re → ∞

Figure 2.4: Schematic representation of recirculation within the valve section due to

an increase in the Reynolds number.

streamlines will trace out the irregular geometry caused by the valve’s presence. As

the Reynolds number increases however, localised areas of recirculation will gradually

develop within the indentations of the diaphragm until, at turbulent flow conditions,
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the streamlines bypass these areas altogether; Figure 2.4 represents this schemati-

cally. This is an intuitive explanation accounting for the constant resistance coefficients

(pressure loss) obtained at high Reynolds numbers, i.e. turbulent flow, and reflected

in the data of Mbiya [9; 10; 11].

Mbiya’s [9; 10; 11] proposed two-constant model is based on a large set of accrued ex-

perimental data. A test rig , constructed at the Cape Peninsula University of Technol-

ogy, consisted of pipes of different diameters (40mm, 50mm, 65mm, 80mm and 100mm),

each of which was fitted with the appropriately sized diagram valve. The fluids car-

boxymethyl cellulose [CMC] (at 5% and 8% concentration), glycerine or glycerol (con-

centrations of 75% and 100%), kaolin, a claylike mineral (10% and 13% concentrations)

and water were pumped through the pipes for four different valve opening positions

(25%, 50%, 75% and 100% open) and the pressure drop in the pipe was recorded.

The aim was to predict the pressure loss coefficient, kv(Re3), as defined in equation

(2.7) – the v-subscript denoting valve – for straight-through diaphragm valves. Mbiya

[9; 10; 11] concludes by summarizing his model, as being applicable to all sizes of

valves tested, by straight-forward addition of

kv =























1000

Re3
, Re3 < 10

CΩ√
Re3 θ2

+
λΩ

θ2
, Re3 ≥ 10

(2.12)

Here CΩ is a new constant (model parameter) introduced by Mbiya [9; 11], λΩ is the

nominal turbulent loss coefficient, and θ is the partial valve opening coefficient as ratio

of the fully opened position, i.e. θ = 0 for a closed valve and θ = 1 for a fully opened

valve. Note that an open valve does not correspond to an open tube flow condition;

the diaphragm still protrudes into the lumen as can be seen in Figure 2.1 (right).

Unfortunately, to obtain good agreement with experimental results, an ‘if’-condition

had to be introduced at a Slatter Reynolds number of 10. The two different curve

fitted solutions on either side of this value lead to an unwanted jump in the values

of the dependent variable, i.e. the predicted crossover at this Reynolds number is not

smooth; Figure 2.5 shows a typical correlation for such a case – cf equation (2.12) – the

‘jump’ in the value of the dependent variable evident. This contradicts the expected,

intuitive-orderly behaviour of such a continuum transfer process. (The constant CΩ

is an unfortunate fudge factor introduced for proper agreement, in the transitional

region, between the experimental data and correlative equations (2.12). It is also this

factor that leads to the unwanted jump in the proposed model).
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Figure 2.5: Typical correlation of experimental data with equation (2.12), showing the

jump at Re3 = 10. The equations were applied to the data sets of Mbiya [9] for a pipe

with internal diameter of 40mm and a valve opening of 25%.

2.4 Powered addition applied to Mbiya’s work

Regarding equation (2.12) in the limit where Re3 → ∞, it is clear that kv → λΩ/θ2.

Hence, λΩ/θ2 may be regarded as an asymptotic lower bound on kv. The direct ad-

dition of this result to the dependency of kv on Re3 for Re3 < 10, is then considered

as a matching between the two asymptotic conditions, yielding a single solution that

covers the entire range of the Reynolds numbers, namely

kv =
1000

Re3
+

λΩ

θ2
. (2.13)

Inspection of Mbiya’s proposal thus evidently leads to the following definitions

k0 ≡
1000

Re3
for Re3 → 0, (2.14)

and

k∞ ≡
λΩ

θ2
for Re3 → ∞, (2.15)
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whence equation (2.13) becomes

kv = k0 + k∞. (2.16)
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Figure 2.6: Application of powered addition to the data sets generated by Mbiya [9]

for a pipe with internal diameter of 40mm and a valve opening of 25%; s-values of 0.4

(solid line) and 1.4 (dashed) are shown for comparison.

Instead of the direct addition of the two asymptotes as in equation (2.13), powered

addition, as discussed in Chapter 1, may now be applied to the asymptotic expres-

sions, yielding

ks
v = ks

0 + ks
∞, (2.17)

which may, analogous to equation (1.38), be re-written as

kv

k∞

=

[(

k0

k∞

)s

+ 1

]1/s

. (2.18)

If two new variables, Y and Z, are defined as

Y ≡ kv

k∞

(2.19)

Z ≡ k0

k∞

, (2.20)
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equation (2.18) simplifies to

Y = [Zs + 1]1/s , (2.21)

cf equation (1.39).

Instead of dividing equation (2.17) by k∞, one may alternatively have chosen to des-

ignate k0 as denominator, followed by the corresponding redefinition of variables Y

and Z in equations (2.19) and (2.20). One extremely useful consequence of this type of

modelling is the direct possibility of non-dimensionalisation into either of the follow-

ing forms

kv Re3

1000
=

[

1 +

(

λΩ Re3

1000 θ2

)s](1/s)

, (2.22)

or

kv θ2

λΩ

=

[

(

1000 θ2

λΩ Re3

)s

+ 1

](1/s)

. (2.23)

Furthermore, in so doing equations (2.22) and (2.23) have been normalized with re-

gards to different values of the nominal turbulent loss coefficient, λΩ, and valve flow

ratio (or valve opening), θ, and a single horizontal asymptote obtained.

Determination of the critical point and the value of the shifting exponent may now

be done in the manner outlined in Section 1.4. The critical point will thus be where

k0 = k∞, (2.24)

whence

1000

Re3, c
=

λΩ

θ2

⇒ Re3, c =
1000 θ2

λΩ

. (2.25)

Since both λΩ and θ are constants for a given pipe diameter and valve opening, the

Slatter Reynolds number at which the critical point is to be found may easily be deter-

mined; these values are listed in Table 2.1. The pressure loss coefficient at the critical

point is thus given by kv,c = kv(Re3, c), the corresponding functional value obtained

by equation (2.25).

The discussion in Section 1.4, equation (1.45), now yields a value for the shifting

exponent, i.e.

s =
ln 2

ln kv, c − ln k∞, c
=

ln 2

ln kv, c − ln k0, c
, (2.26)

or in explicit form as

s =
ln 2

ln kv(Re3, c)− ln

(

λΩ

θ2

) =
ln 2

ln kv(Re3, c)− ln

(

1000

Re3, c

) . (2.27)
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valve opening, θ

0.25 0.50 0.75 1.00

40mm (λΩ = 8.0) 7.8594 31.438 70.734 125.75

50mm (λΩ = 3.4) 18.493 73.971 166.43 295.88

65mm (λΩ = 1.5) 41.917 167.67 377.25 670.67

80mm (λΩ = 2.9) 21.681 86.724 195.13 346.90

100mm (λΩ = 4.1) 15.335 61.341 138.02 245.37

Table 2.1: Calculated values Re3, c = (1000 θ2)/λΩ for all possible combinations of pipe

diameter and valve opening. The λΩ-values in this table were obtained from Mbiya

[9].

Traversal of the data sets in search of the Re3, c-value closest to those listed in Ta-

ble 2.1 may now be effected, the objective being to find the corresponding value of

the dependent variable, kv, c, at this point. Plugging these values into equation (2.27)

will then yield a possible value for the shifting exponent. However, the datum point

chosen may be a poor choice (an outlier, the result of a poor reading, etc.) and ground-

ing the s-value solely on this one, single reading may lead to erroneous results. It

is therefore recommended that the value of the intersection of the asymptotes be de-

termined beforehand and the bulk of experimentation conducted in the area of the

yielded independent variable, i.e. Re3, c. In so doing a more accurate prediction will

be obtained (from averaging numerous data points) and the fractional deviation of the

matched solution from either of the limiting solutions or asymptotic values minimized

(see Section 1.4). It is nevertheless important to note that the method is still an empir-

ical one, based on experimental results; the wish being for an analytical expression in

which this shifting exponent is linked to some quantifiable parameter in the process

under consideration.

Since Mbiya’s experimental readings were not arranged in such a manner as to fo-

cus on the transitional area between the asymptotes, the aforementioned methodical

approach was not used. In lieu, to circumvent the shifting exponent being based on

an incorrect or inaccurate reading, a trial-and-error graphical approach was used. The

results of two such curve fittings for different pipe diameters and valve openings are

shown in Figures 2.6 and 2.7, with s-values of 0.4 (solid line) and 1.4 (dashed) plotted

for comparison.

Ideally, the normalised, non-dimensional expressions of equations (2.22) and (2.23)

would also allow for the experimental data of all valve sizes to be plotted on a sin-

gle plot, irrespective of the valve flow ratio, θ. However, as can be seen in Table 2.1,

there is no discernable relation between the valve diameter and the λΩ-values. Mbiya
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Figure 2.7: Powered addition applied to Mbiya’s [9] data sets for a pipe with internal

diameter of 50mm and a valve opening of 50%. s-values of 0.4 (solid line) and 1.4

(dashed) are shown for comparison.

[9; 10; 11] notes that λΩ is obtained by the minimisation of the overall logarithmic

difference between his calculated and experimental kv-values and cites the lack of dy-

namic similarity between valves of different sizes as rationalisation for these discrep-

ancies.

An attempt at plotting all the data for a specific valve diameter, regardless of the

valve opening, on a single plot afforded no clear visual results. To prevent clutter,

data sets were plotted on separate axes according to valve diameter and valve open-

ing (see Appendix C). The plots show a gradual shift towards and beyond (below) the

asymptotes with an increase in the valve opening, that is to lower values of both the

dependent and independent variables. This observation suggests a dependence upon

some parameter that is yet to be considered or identified. To arrive at an accurate

prediction of the shifter it is recommended that experiments be tailored so as to specif-

ically investigate the flow parameters in the transitional regime; this was, however,

not the focus of Mbiya’s [9; 11] study.

Although the graphs obtained through the use of powered addition still leave a lot
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to be desired, overall they exhibit, for our particular goal, a qualitatively improved

prediction of the process than the model of Mbiya.
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Chapter 3

Flow through a packed bed

Packed beds are of significant interest to chemical engineers since they are widely

used for mass transfer in industrial plants. A crucial piece of information required

for effective design is the difference of piezometric head necessary to ensure steady

fluid flow, be it through a pipe, porous medium, etc. See e.g. [16] (piezo is derived

from the Greek piezein, which means to squeeze or press). In the study of porous

media this translates into a relation being sought between the pressure gradient and

the superficial or discharge velocity.

The two predominant approaches used in the theoretical study of pressure drop

through a packed bed differ from one-another in the manner in which the solid and

fluid parts of the bed are regarded. The first method regards the pores between the

solid phase as a bundle of tangled tubes of irregular and inconsistent cross-section and

proceeds to develop a model based on applying, modifying and expanding the well-

established results for the flow in single, straight tube. The second method involves

the solid phase being seen as an aggregation of individual objects submersed in the

fluid phase; the pressure drop being calculated by addition of the resistance of each of

the particles, e.g. [17]. The former approximation to reality has enjoyed more publicity

and attention in the literature.

In this chapter two methods used in predicting pressure drop over a packed bed

or porous medium are discussed: the first, the Ergun equation, is semi-empirical in

nature and, surprisingly, one of the very few known example of powered addition

with an exponent of unity; the other method, the RUC model, is an analytical approach

based on pore-scale modelling of the microstructure of the porous medium and forms

a key concept in the discussion following in Chapter 4.

34
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3.1 Ergun equation

One of the pioneers in experimental fluid mechanics was the French engineer, Henry

Darcy (1803 - 1858) of Dijon. Involvement in the design of municipal water supply sys-

tems led to his research into the flow of water through sand bed filters [18; 19] (i.e. flow

through porous media) and the eventual publication in 1856 of Les Fontaines Publiques

de la Ville de Dijon. The empirical law that he proposed, and that consequently carries

his name, states that the rate of flow through a bed of packed particles is proportional

to the pressure drop (hydraulic gradient) over the bed [18; 20] – specific discharge is

proportional to the fluid pressure gradient in the direction of flow. In one dimension

this linear relation is expressed as

− dp

dx
=

µ

κ
q, (3.1)

where −dp/dx is the streamwise pressure drop, µ the viscosity of the traversing fluid

and q the superficial velocity or specific discharge. The coefficient of proportionality,

κ, is referred to as the hydrodynamic permeability and is generally determined experi-

mentally (a great deal of work has gone into determining an analytical expression and

will be discussed in Section 3.2).

In practice, however, results obtained from experiments tend to deviate from the

linear relation predicted by equation (3.1) and become nonlinear at higher velocities,

despite the fact that the Reynolds number, Re, may still be fairly small [17]. Hence,

wide application of Darcy’s law is impeded by its limitation to a fairly narrow range

of Reynolds numbers.

Throughout history various attempts have been made to more accurately relate the

pressure gradient and superficial velocity. In 1901 Forchheimer proposed [21] (refer-

enced in [22]) the introduction of a quadratic term to take this nonlinear behaviour

into account, leading to an empirical generalized form of the Darcy equation, namely

− dp

dx
= Mq + Nq2, (3.2)

with the coefficients M and N empirical constants that depend on the structural and

geometric properties of the porous medium and fluid viscosity [23; 24]. In the case

of a superficial velocity, q, less than unity the second term in equation (3.2) becomes

negligible and it effectively reduces to the Darcy law, equation (3.1). Conversely, for a

high superficial velocity the quadratic term in equation (3.2) predominates. Between

these two flow regimes a transitional area exists.

The Ergun equation – a capillary tube model widely used for the prediction of pres-

sure drop of flow through a packed bed – is in essence based upon a combination of
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specific asymptotic solutions for the Darcy and Forchheimer regimes and is therefore

semi-empirical in nature. In it’s derivation the assumption is made that the bed con-

sists of smooth, uniformly sized, spherical particles; that the particles are packed in

a statistically uniform random manner; and, that the diameter of the containing col-

umn is orders of magnitude larger than that of the particles. Ergun simply added the

equation proposed by Blake and Kozeny for laminar flow (Darcy regime)

Φ = 150Re , (3.3)

to the Burke-Plummer equation for turbulent flow (Forchheimer regime) [1; 17; 25],

Φ = 1.75Re2 , (3.4)

to obtain

Φ = 150Re + 1.75Re2 , (3.5)

an expression for the pressure drop across a packed bed for Reynolds numbers rang-
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Figure 3.1: Logarithmic correlation for the pressure drop through a packed bed of

spheres – the Ergun equation is an instance of powered addition with s = 1 (the equa-

tion of Carman and Kozeny was added to the Burke-Plummer equation).

ing from the laminar to the turbulent flow regimes. It should be noted that the non-

linear effects, represented by the second term on the righthand side of equation (3.5),
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are already noticeable at Reynolds numbers well below that of the region which is

normally associated with turbulence.

His result mostly yields satisfactory agreement with experimental data for ε < 0.5.

In equations (3.3) to (3.5) the variable Φ has been used for simplicity and is defined as

Φ =
ρ f ε3D3 

µ2(1− ε)3

(

−dp

dL

)

, (3.6)

with the Reynolds number for a packed bed of spheres, Re , given by [1]

Re =
ρ f qD 

µ(1− ε)
. (3.7)

In equations (3.6) and (3.7), ρ f denotes the density of the traversing fluid, ε the bed

porosity or void fraction, D the diameter of a perfectly spherical particle and L the

length of the straight channel (or height of bed).

Ergun had thus, in effect, applied the matching technique proposed by Churchill &

Usagi [1; 2; 5; 6; 25] as discussed in Chapter 1 to produce a combined result,

Φ = [(150Re )s + (1.75Re2 )s]1/s, (3.8)

with equation (3.8) reverting to equation (3.5) by choosing the shifting exponent, s = 1;

his result is shown in Figure 3.1. The value of the exponent was however not known a

priori. Utilizing the generic form suggested by equation (1.39) with

Y =
Φ

150Re , (3.9)

and

Z =
1.75Re 

150
=

Re 
85.7

, (3.10)

the value of the critical point, as considered in Section 1.4, is obtained at Z = 1, that is

at Re = 85.7. Churchill [1] notes that this process happens to be the only one thus far

examined in which the best choice of exponent turned out to be unity.

The Ergun equation, expressed in its more well-known form

− ∆p

L
= 150

(1− ε)2

ε3

µq

φ2
pd2

p
+ 1.75

(1− ε)

ε3

ρq2

φpdp
, (3.11)

takes into account cases in which the bed consists of non-spherical particles. In equa-

tion (3.11) dp denotes the mean particle diameter and φp the particle shape factor

(sphericity). The mean particle diameter, dp, is defined in terms of the specific sur-

face, av of the particle,

dp =
6

av
, (3.12)
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with the specific surface being defined as

av =
total particle surface

volume of the particles
. (3.13)

The reason for the above definitions becomes apparent when regarding a bed consist-

ing of N perfectly spherical particles. Since the surface area of a sphere is given by

4πr2 and its volume by 4
3πr3, substitution into equation (3.13) will yield

av =
4Nπr2

4/3Nπr3
=

3

r
=

6

D , (3.14)

and plugging this result into equation (3.12) sets dp = D (here r and D respectively

denote the radius and diameter of the sphere) [17].

More often than not the bed does not consist of perfectly spherical particles, in which

case it is customary to construct a hypothetical equivalent-volume sphere, φpdp, with

dp =
6Vp

Apφp
=

6Vp

Asp
, (3.15)

as used in equation (3.11). Here Vp is the volume of a single, non-spherical particle,

Ap its surface area and Asp the surface area of an equivalent volume sphere. Equation

(3.15) thus relates the surface area of the particle to the surface area of a sphere of

equal volume [24]; cf equation (3.13). Thus, φp = 1 and φs < 1 for spherical and

non-spherical particles respectively.

According to Geldart [26] the most appropriate parameter for use in flow through

packed beds is the external surface area of the powder per unit particle volume. Hence,

the diameter of a sphere with the same external surface area to volume ratio as that

of the particle, dsv, is the most relevant diameter. The Waddell sphericity factor, Ψ,

defined as

Ψ =
surface area of equivalent volume sphere

surface area of particle
, (3.16)

can be shown to link dsv and dv, , by

Ψ =
dsv

dv
, (3.17)

with dv the volume diameter, i.e. the diameter of a sphere having the same volume as

the particle.

3.2 RUC model

The analytical approach to flow through porous media is based on modelling the mi-

crostructure of the porous media on pore-scale level and aims to provide a theoretical
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derivation of the empirical Ergun equation. In dealing with porous media that is as-

sumed to have a regular pattern, the idea of constructing a repetitive unit or cell, holds

the advantage that flow around each and every solid particle in the medium need not

be analyzed. It would thus be possible to ‘reconstruct’ the particular porous medium

under regard from such a building block or unit cell, provided that these cells are both

volume-conserving and space-filling.

The actual interstitial pore space, especially in cases where the media under regard

is isotropic, and the solid material is thus randomly positioned within the volume, is

very seldom open to precise analysis. To circumvent this obstacle, a hypothetical rep-

resentative unit cell (RUC) was introduced [27; 28] which theoretically approximates

the porous material in that it contains the average geometric properties of the material.

The RUC model is thus a generalised geometric approximation of the actual geomet-

ric properties of the medium in such a manner as to preserve the physical attributes

of flow through such a medium; an abstraction of the porous medium rendering it

amenable to physical analysis.

The pore-scale geometric relation between the solid and fluid phases of porous me-

dia allows for classification into three fundamental classes: granular, spongelike and

unidirectional two-dimensional fibre-bed. Analytical expressions for the hydrody-

namic permeability, k, and stream-wise pressure drop,−dp/dx, of the different RUCs

are known [27; 28; 29; 30; 31; 32].

For the remainder of this section the particle Reynolds number, Rep – an indicator

of the ratio between the inertial and viscous forces of the fluid with dp used as charac-

teristic length – has been defined as

Rep =
ρqdp

µ
, (3.18)

where ρ and µ denote the density and viscosity of the traversing fluid respectively, q

the magnitude of the superficial velocity or specific discharge and d the linear RUC

dimension. The practical use of the Reynolds number is to distinguish among flow

regimes, for example laminar or turbulent flow in pipes or around immersed objects,

its value depending upon the situation.

3.2.1 Granular porous media

In media that fall into this class, the solid phase is present in the form of isolated

to semi-connected units that are submerged in the surrounding fluid phase. Some

examples of granular porous media would be the glass spheres used in packed bed

chemical reactors and a pipe filled with sand or marbles. A schematic representation
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ds

d

Us

U f

Uo

n̂

Figure 3.2: Cubic geometry of the RUC model for modelling fluid flow through granu-

lar media. The streamwise direction is indicated by n̂. The shaded volume represents

the solid phase.

of the isotropic granular RUC model [29; 31; 32] is shown in Figure 3.2. Us denotes the

volume of the solid phase, U f the volume of the fluid phase and Uo the total volume

of the RUC.

The relation between the linear dimensions d and ds of the granular RUC, with ε

denoting the porosity, is given by

ds = (1− ε)1/3d, (3.19)

and the stream-wise pressure drop, −dp/dx, by

− dp

dx
=

25.4(1− ε)4/3

(1− (1− ε)1/3)(1− (1− ε)2/3)2
· µq

d2
s

+
cd(1− ε)

2ε(1− (1− ε)2/3)2
· ρq2

ds
, (3.20)

where cd denotes the drag coefficient and Re is the Reynolds number as defined in

equation (3.18).

3.2.2 Spongelike porous media

Spongelike or consolidated porous media are distinguished from granular porous me-

dia by the fact that the solid and fluid phases are interconnected. In other words, one

would be able to move from any point in a given phase to any other point in the same

phase, without ever having to leave it. Examples would be plastic and metallic foams,

such as those used in electronics, or any substance containing interlinking ducts.
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Foamlike media is further differentiated into three sub-models depending on the

number of stagnant pore-sections assumed to be present within the foam model [29;

33; 34]. For porous media of this type, the stream-wise pressure drop, −dp/dx is given

by

− dp

dx
=

36ψ2(ψ− 1)

ε2
· µq

d2
+

cd(ψ− 1)ψ2(ψ− 3)2

4ε3
· ρq2

d
, (3.21)

with ψ a geometric factor, defined in this case as

ψ = 2 + 2 cos

(

4π

3
+

1

3
cos−1(2ε− 1)

)

, (3.22)

subject to the condition that ψ = 1 when ε = 1.

n̂

n̂

d− ds ds

d
Us

U f

Uo

Figure 3.3: Cubic geometry of the RUC model for modelling fluid flow through foam-

like media. The streamwise direction is indicated by n̂. Note that here the shaded

volume is representative of the fluid phase.

In Figure 3.3 a schematic representation is given of the isotropic foamlike RUC

model. It is important to note that in this figure, as opposed to the other figures, the

shaded volume is representative of the fluid phase, U f . Fluid traversing such a theo-

retically constructed medium would thus enter through the façade facing the reader,

move along the side of the cube and then turn Eastwards to move along the middle

channel. It will travel a distance ds along the side of the cube, before turning in a

Northerly direction, to finally exit the model at the backward facing plane.

Expressing the relation between the linear dimensions d and ds of the foamlike RUC

in terms of the porosity, ε, yields a polynomial of the third order,

ε = 1− 3

(

ds

d

)2

+ 2

(

ds

d

)3

, (3.23)
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which may be rewritten in terms of the geometric factor, ψ, as [29]

ψ

ε
=

4

(3− ψ)2
. (3.24)

3.2.3 Unidirectional two-dimensional fibre-bed porous media

Should the solid phase of the medium consist of aligned, disjoint fibre strands sur-

rounded by an interconnected fluid phase, it is classified as a two-dimensional pris-

matic or unidirectional fibre-bed porous medium. Air flowing through a stack in a

timber-drying kiln would be an example of porous media of this kind. Figure 3.4

shows a schematic representation of porous media of this type. It should be noted that

the dimension L should be of sufficient length so as to clearly distinguish it from the

granular RUC model illustrated in Figure 3.2. The relation between d and ds for the

n̂

dds

UsU f

Uo

L

Figure 3.4: RUC model for modelling fluid flow through fibre beds. The streamwise

direction is indicated by n̂. The shaded volume represents the solid phase.

fibre-bed RUC may be expressed as

ds = d
√

1− ε, (3.25)

while the stream-wise pressure drop, −dp/dx, for the isotropic fibre-bed model is

given by [29; 30]

− dp

dx
=

13.5
√

1− ε

(1−
√

1− ε)3
· µq

d2
+

cd

√
1− ε

2ε(1−
√

1− ε)
· ρq2

d
. (3.26)
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Whereas the Ergun equation was limited to a fairly narrow range of porosities, the

fact that the RUC model is based on physical principles (and doesn’t contain empiri-

cal coefficients) ensures that the latter is applicable over the entire range of porosities

from zero through unity. The geometries of the different fundamental classes have

also been designed as such that it is physically adaptable to predict the pressure drop

in beds consisting of non-spherical particles.
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Chapter 4

Fluidised bed

A fluidised bed is formed when a fluid, usually a gas, is forced upwards through a bed

of particles. The packed bed of particles, supported on some kind of distributor, is con-

verted into an expanded, suspended bed and in the process takes on many liquid-like

properties: the bed has zero angle of repose, pressure increases linearly with distance

below the surface, wave motion is observed, denser objects sink and lighter objects

may be floated on its surface, their movement almost unhindered [35]. This only hap-

pens once the pressure drop across the bed, created by the flow, becomes sufficient

enough to support the weight of the constituent particles and is referred to as incipient

fluidisation. The superficial velocity at which the aforementioned phenomenon occurs

is know as the minimum fluidisation velocity, qm f . Additional increase in the fluid

flow rate leads to a further expansion of the bed and eventually the formation of bub-

bles. This is commonly known as aggregative fluidisation and leads to agitation of the

solid constituents and a consequent fluctuation in the height of the bed [35].

A fluidised system has a number of highly useful properties that may be utilised in

industrial applications. Foremost among them is the agitation caused by the bubbles

– the already large specific area of a fine powder is further exploited as the stirring ac-

tion continually moves the particles around, exposing it to the gas. The good mixing

of the solids is responsible for a high heat transfer rate from the gas to the particles,

causing dispersion of localised temperature regions and leading to radial and axial

isothermal conditions. The large contact area between the solid and fluid phases also

enhances chemical reaction rate, making fluidisation a technique well suited for cat-

alytic reactions. Thus, although the mechanism may be both physical and chemical

in nature, the dominating attribute utilised in a specific industrial process, will deter-

mine its application. A broad classification of fluid bed applications is given by [36],

from which it is evident that fluidisation is an interdisciplinary field of inquiry.

Despite many attractive features, fluidised beds are not suited to all fluid-solid pro-

44
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cesses and some of the disadvantages may overshadow the potential benefits. Both

chemical and mechanical difficulties arise with scale-up in size from laboratory equip-

ment to industrial plant – some of the gas in the bubbles may by-pass particles com-

pletely, lowering efficiency; erosion of the containing vessel will inevitably occur in

areas of high gas velocity. To optimally reap the benefits of this promising and still in-

completely understood process there thus exists a particular need for the development

of predictive models; holding challenges for both fundamental and applied research.

Upon analysis of sets of collected data of flow through a porous medium, it is

evident that asymptotes exist for some variable dependencies in the transition from

packed- to fluidised bed. The transition between such asymptotes is governed, amongst

others, by parameters such as particle size, particle size distribution, superficial gas ve-

locity and bed height. Powered addition to a power, s, of such asymptotes f0 and f∞,

leads to a single correlating equation that is applicable over the whole range of flow

rates.

4.1 Newtonian fluid

Experimental data was obtained from measurements performed by the author on

laboratory-scale fluidized beds at Telemark University College, Porsgrunn, Norway.

The aforementioned method of powered addition is applied to the experimental data

and the outcomes discussed; the underlying motivation being an aspiration towards

establishing a sound modelling framework for analytical and computational predic-

tive measures. The results of this section were presented at the 5th International Con-

ference on Computational & Experimental Methods in Multiphase and Complex Flow

(Multiphase Flow V), New Forest, UK, 15 - 17 June 2009 [4].

4.1.1 Experimental procedure

The bed was contained in a cylindrical perspex tube with an inner diameter of 72mm.

Since the investigation was only concerned with the pressure drop across a specified

section of the bed (i.e. between two pressure sensors), the porosity of the plate on

which the bed was supported was irrelevant. It was only required not to allow parti-

cles to drop through into the antechamber and to function as a uniform gas distributor.

To prevent particle entrainment the uppermost end of the containing perspex tube was

covered with a porous paper cap and the bed illuminated from behind to allow easy

visual detection of the onset of fluidisation.
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Figure 4.1: Experimental setup

The beds comprised of glass powders, consisting of spherical glass particles, with

a density of 2485kg/m3 and available in three different diameter-ranges: 100µm −
200µm; 400µm − 600µm; and 750µm − 1000µm. These particles all fall into Group B

and D according to the Geldart powder classification [37]. Since the particles are man-

ufactured they were assumed, for the sake of simplicity, to be perfectly spherical in

shape and thus have a Waddell sphericity factor – see equation (3.16) – of Ψ = 1 [26] .

In all of the experiments performed the fluid used to fluidise the bed was air at am-

bient conditions, with a density of 1, 2kg/m3 and viscosity of 1.78× 10−5N · s/m2. Air

was pumped into the bed by a compressor and flow into the antechamber was con-

trolled via a manual valve. A digital flow meter, situated between the valve and the

antechamber, registered the fluid velocity. By using different gas velocities and only

one particle diameter-range or a mixture of the particle diameter-ranges, the param-

eters of the experiment could be varied. Eight equidistantly spaced pressure tubes

were placed along the height of the bed and were connected to digital pressure sen-

sors (Honeywell, model 142PC02G) that measured the pressure (in mbar) at these fixed
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intervals within the bed. An experiment-specific software program was written with

the aid of the LABVIEW package with which the data from each sensor were recorded

and written to file; the program was calibrated and allowed for the interval between

consecutive readings to be varied. Figure 4.1 shows the bed, antechamber, fluid inlet

from below and some of the silicone pressure tubes (leading off to the digital sensors).

A minimum of three runs were performed for each of the three different diameter-

ranges mentioned above. A run consisted of a gradual increase until and beyond

fluidisation, followed by a gradual and controlled decrease to zero fluid flow. It was

noted that hysteresis only became apparent if the bed was allowed a period of rest

between consecutive fluidisations. Consequently, runs for a particular diameter-range

were conducted in succession allowing the obtained pressure-values to be averaged.

It is to this averaged data that the curve-fitting technique was applied.

4.1.1.1 Determining the superficial velocity of the traversing fluid

A digital flow meter, connected to a compressor, measured the flow rate of the air

entering the bed. The meter registered rates in liters per minute, [ℓ/min], and these

readings were recorded with the mentioned software program. To convert ℓ/min, the

inner diameter (72mm) of the cylindrical perspex tube containing the bed was used,

i.e. readings from the meter were multiplied by a factor,

ℓ/min

Ac
=

(0.1m)3

60s

πr2
= 4.09× 10−3m/s, (4.1)

to obtain the superficial velocity. Here Ac is the cross-sectional area of bed and r the

radius of the containing cylinder.

4.1.1.2 Determining the porosity of the packed bed

For each of the diameter-ranges an amount of powder was weighed out and poured

into the cylindrical perspex tube comprising the fluidised bed. Once inside the tube,

the powders were briefly allowed to settle before commencing experimentation. By

measuring the distance between the supporting porous plate at the base of the bed

and the bed surface, the bulk volume, U0, occupied by the powder (and hence that of

the bed) could be calculated by

U0 = πr2H, (4.2)

where r is the radius of the containing cylinder and H the height of the packed bed.

Porosity or bed voidage, ε, is defined as the ratio between the fluid volume, U f and
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the bulk volume, U0, i.e.

ε ≡
U f

U0
, (4.3)

and density, ρ, as the mass, m, per unit volume, U

ρi ≡
mi

Ui
, (4.4)

with the subscript denoting the phase under consideration.

It follows naturally that the total or bulk volume, U0, is merely the sum of the vol-

umes occupied by the solids, Us, and the fluid, U f , i.e.

U0 = Us + U f , (4.5)

with the same being true of the total or bulk mass, m0

m0 = ms + m f , (4.6)

where ms and m f are the masses of the solids and fluid respectively.

From definition (4.4) and equations (4.5) and (4.6) it follows that

U0 =
ms

ρs
+

m f

ρ f
=

m0−m f

ρs
+

m f

ρ f
. (4.7)

Some further simple algebraic manipulation, utilisation of definition (4.4), substitution

with equation (4.6) and rearrangement to make m f the subject of the formula, yields

m f = U0ρ f

(

ρs − ρ0

ρs − ρ f

)

. (4.8)

Division of equation (4.8) by ρ f yields

U f = U0

(

ρs − ρ0

ρs − ρ f

)

, (4.9)

whence follows, by definition (4.3)

ε =
ρs − ρ0

ρs − ρ f
, (4.10)

an expression for the porosity in terms of known or easily measurable quantities.

In an idealised situation of infinite size the diameter of spherical particles would

have no influence on the porosity of the bed. However, in the constrained bed found

in practical applications, the cross-sectional area of the bed will influence the packing

of the particles. Taking this into account and regarding equation (4.10) it now becomes

evident that the diameter of particles impacts indirectly on the porosity of the bed

by having an influence on the bulk volume, and thus the bulk density thereof. The

porosity for each of the diameter ranges were calculated with the aid of equation (4.10)

and are listed in Table 4.1.
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Particle diameter Porosity, ε

100− 200µm 0.391

400− 600µm 0.368

750− 1000µm 0.362

Table 4.1: Porosity or bed voidage for the different diameter-ranges.

4.1.2 Asymptotic dependencies

Three regimes are to be identified, namely the two regimes corresponding respectively

to the physical conditions related to the two asymptotes f0 and f∞ and the change-over

regime connecting the two. This latter regime surrounds the critical point, xc, where

the asymptotes meet. Of particular interest is the relation between the extent of the

change-over regime surrounding the critical point and the shifting exponent s; in the

present case of onset of fluidization the change-over between a packed bed condition

and a fluidized state is fairly abrupt leading to a relatively high value of s. These effects

will be discussed in the following subsections.

4.1.2.1 The lower asymptote

Before the onset of fluidisation, the bed may be regarded as a packed bed or porous

medium consisting of spherical particles. To describe the pressure drop of Newtonian

flow through such a structure, the Ergun equation has proven to be satisfactory in most

applications as is evident from its extensive utilisation in chemical engineering. In

their paper [32], Du Plessis & Woudberg compare the RUC (Representative Unit Cell)

model to the Ergun equation for the description of Newtonian flow through a packed

bed of uniformly sized spherical granules and find the agreement to be satisfactory.

The choice, in this paper, of the RUC model to describe the asymptotic relation at small

values of the independent variable is due to the fact that it is adaptable to different

physical situations, whereas the Ergun equation is empirically based and will thus

vary according to the situation to which it is applied. Furthermore the RUC model

allows the usage of the average bed porosity and is applicable over both the entire

porosity and laminar Reynolds number ranges.

In the original Ergun equation, which is already a special case of powered addition

with shifter, s = 1 as discussed in Section 3.1,

∆p

H
= M

(1− ε)2

ε3

µq

D2
h

+ N
1− ε

ε3

ρ f q2

Dh
, (4.11)

the values of coefficients M and N were acquired experimentally and are given as 150
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Figure 4.2: Particle diameter-range 100µm − 200µm. Influence of chosen particle di-

ameter on the positioning of the lower asymptote, f0, and the position of the critical

point, fc. The RUC model is used to describe the lower asymptote.

and 1.75 respectively. Here ∆p denotes the finite pressure difference (measured in the

streamwise direction of fluid flow), H the bed height, ε the porosity or bed voidage,

µ the fluid viscosity, ρ f the fluid density, q the superficial velocity of the traversing

fluid and Dh the hydraulic diameter (which is equal to the diameter of the spherical

particles).

The work of Du Plessis & Woudberg, as briefly discussed in Section 3.2, allows one

to purge equation (4.11) of its empirical elements. Pore-scale analysis of interstitial

flow conditions lead to the following expression of coefficients

M =
25.4ε3

(1− ε)2/3(1− (1− ε)1/3)(1− (1− ε)2/3)2
, (4.12)

and

N =
ε2cd

2(1− (1− ε)2/3)2
. (4.13)

They thus succeed in rewriting (4.11) such that it is independent of, and not limited
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Figure 4.3: Particle diameter-range 750µm− 1000µm. The choice of particle diameter

determines orientation of the lower asymptote, f0, and critical point, fc. Note that

the asymptotes need not be straight lines – slight curvature of f0 due to the quadratic

nature of equation (4.11) is evident.

by, the range of porosities used. Here the particle Reynolds number, Rep, is defined as

Rep ≡
ρ f qDh

µ
, (4.14)

and as in [32] the value of the form drag coefficient, cd in (4.13), was taken to be 1.9,

presenting the most empirical aspect of the procedure.

4.1.2.2 The upper asymptote

As noted by Geldart [26], the pressure drop across a fluidised bed, given by

∆p =
m0g

Ac
=

ρ0U0g

Ac
= ρ0gH, (4.15)

is the only parameter that can be predicted with accuracy, since at all times during

fluidisation the downward force, i.e. the weight of the bed, m0g, is balanced by the
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upward force, ∆pAc . Division of equation (4.15) by the bed height, yields

∆p

H
=

m0g

AcH
=

ρ0U0g

AcH
= ρ0g, (4.16)

which forms the upper limiting asymptote. Here m0 denotes the bulk mass, ρ0 the

bulk density, U0 the bulk volume, g acceleration due to gravity (taken as 9.81 m/s2)

and Ac the cross-sectional area of the bed.

4.1.3 Powered addition of the asymptotes

The original Ergun equation, (4.11), was obtained through simple addition of the

Blake-Kozeny and Burke-Plummer equations, the former being a Darcy-type equa-

tion predominating in the regime where Rep → 0 and the latter dominating in the

Forchheimer regime (refer to Section 3.1). If powered addition, as discussed in Chap-

ter 1, is used to match the asymptotic conditions – i.e. equations (4.11) and (4.16) are

combined – a single correlative measure,

∆p

H
=

[(

M
(1− ε)2

ε3

µq

D2
h

+ N
1− ε

ε3

ρ f q2

Dh

)s

+ (ρ0g)s

]1/s

, (4.17)

is obtained for the pressure drop over the bed. Here coefficients M and N are as

expressed in equations (4.12) and (4.13).

4.1.3.1 Critical point and shifting-exponent

As discussed in Section 1.4 the critical point of the matching curve is the value of the

independent variable at which the asymptotes meet. To determine this value for the

case of the fluidised bed, we set

M
(1− ε)2

ε3

µq

D2
h

+ N
1− ε

ε3

ρ f q2

Dh
= ρ0g, (4.18)

which yields a quadratic equation in q. Let qc be the value of the independent variable

at which the asymptotes meet, i.e. the critical point. Solving q = qc in equation (4.18)

yields

qc =
M

N

µ

2ρ f Dh
(1− ε)



−1±

√

√

√

√

(

1 +
N

M2

ε3

(1− ε)3

4ρ0ρ f gD3
h

µ2

)



 . (4.19)

Since N
M2

ε3

(1−ε)3

4ρ0ρ f gD3
h

µ2 ≥ 0 in equation (4.19) and qc ≥ 0, it follows that we may disre-

gard the negative root. Substitution of this qc value into equation (4.17) will yield the

http://scholar.sun.ac.za



4.1 Newtonian fluid 53

function value at the intersection of the asymptotes. It is also worth noting that once

the pressure drop created by the fluid flow becomes sufficient to support the weight of

the bed, fluidisation will take an onset. In the general introductory discussion on flu-

idised beds at the beginning of this chapter it was remarked that this is referred to as

the point of incipient fluidisation and the corresponding superficial velocity of the fluid

as the minimum fluidisation velocity, qm f . Seeing as the upper limiting asymptote pre-

dominates in the composition of the matched solution beyond the critical point, this

point of intersection is the threshold value of the superficial velocity at which fluidisa-

tion will occur. The value found by equation (4.19) will thus be a theoretical prediction

of the minimum velocity required to fluidise the bed, i.e. qm f = qc.

Once the experimental value of fc = f{qc} for each of the diameter ranges has been

determined by the method discussed above, we may proceed to calculate the value of

the shifter by equation (1.45). As an alternative we may manually adjust the predictive

curve until satisfactory visual correlation with the data is achieved and then assign a

value to s.

4.1.3.2 Crossing of the upper asymptote

In Section 1.2.4 a method was outlined to construct a (postulated) dependence should

the collected data cross the upper limiting asymptote. Referring to Figure 4.2 it is evi-

dent that this is the case for particles within the diameter range 100µm− 200µm. This

phenomenon is, according to Geldard [26] and Davidson & Harrison [35], caused by

the wedging action within the bed and cohesion between the particles and is prevalent

in beds composed of Group B particles (into which this diameter range resorts).

Letting ζ{∞} = ρ0g, and making use of the functional form suggested by equation

(1.35), the dependence
∆p

H
= ρ0g

[

1 +

(

qA

q

)α]

, (4.20)

was postulated to represent behaviour of the bed in the upper limits of the superficial

velocity. Here qA is equivalent to the arbitrary constant of equation (1.35) and α an

arbitrary exponent (see Section 1.2.4). The values of both these variables were chosen

by trial and error; selecting the former to be equal to the value of the critical point,

calculated in equation (4.19), that is qA = qc, and the latter as α = 12, yielded encour-

aging results. The RUC model, as per equations (4.11), (4.12) and (4.13) was kept as

representative of the lower asymptote. After applying the powered addition method

used when an asymptote is crossed (outlined in Section 1.2.4) to the constituent terms

in the functional expression and some rearrangement, the pressure drop across the
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Figure 4.4: Curve-fitting by powered addition with a postulated function for the up-

per limiting dependency to enable crossing of the upper extremal value. Particles in

diameter-range 100µm − 200µm. The functional relation is given by equation (4.21),

with xA = 0.026, α = 12 and s = 4 having been used.

bed may now be expressed as

∆p

H
=

ζ0{q}ζ∞{q}
(ζ0{q}s + ζ∞{q}s)1/s

. (4.21)

Here ζ0{q} is the functional dependence in the lower limit of the pressure drop on

the superficial velocity as given by equation (4.11) and ζ∞{q} as per equation (4.20).

In Figure 4.4 the matched curve yielded after plotting equation (4.21) against the col-

lected data is shown; the degree of agreement between the two being a satisfactory

result. Here, and in subsequent figures, fCHE refers to the Churchill-Usagi-equation,

or matched solution, as per equation (1.6).

4.1.4 Correlation of experimental results

The pressure drop was plotted against the superficial velocity for each of the diameter

ranges. Figures 4.2 and 4.3 serve to illustrate the influence of the use of the mini-
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mum (dmin), average (dmean) and maximum (dmax) particle diameters on the orienta-

tion of the lower asymptote. A similar plot may be drawn for particle diameter-range
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Figure 4.5: Curve-fitting by powered addition to experimental readings for particles

in diameter-range 100µm− 200µm. The functional relation is given by equation (4.17).

An s-value of -2 was used for dmean; an s-value of -14 for dmax (as per Table 4.2).

400µm− 600µm. It is important to note that the asymptotes need not be straight lines;

this is apparent in Figure 4.3 where the quadratic nature of the RUC model – equation

(4.11) with coefficients M and N as expressed in equations (4.12) and (4.13) – starts to

dominate due to an increase in the superficial velocity before the onset of fluidisation.

Diameter 100− 200µm 400− 600µm 750− 1000µm

dmin -0.593 -0.825 -1.878

dmean -2.248 -3.155 -8.193

dmax -14.280 -9.567 -11.786

Table 4.2: Calculated values of shifter-exponent, s, for the different particle diameter

possibilities

From these graphical results the particle-diameter yielding the best correlation with
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Figure 4.6: Powered addition-curve fitted to data for particles in diameter-range

400µm− 600µm. The functional relation is once again given by equation (4.17); s-value

of -10 was used.

the experimental data was chosen to be used in the fitting of a predictive curve. In the

case where the data points were not noticeably favouring a specific particle diameter,

the experimental data was traversed in search of the qc-value matching the theoreti-

cally predicted value of the critical point, as expressed by equation (4.19), most closely.

This value was then used to determine an s-value. Calculated values of s are shown

in Table 4.2. The corresponding curves were plotted and the best match was chosen

by visual inspection. From equation (4.19) it is clear that the diameter of the particle

impacts on the value of qc, and thus on fc = f{qc}. The latter in turn has a direct

influence on the value of s, as calculated by equation (1.45). In the format of equation

(4.17), with ∆p/H the dependent and q the independent variable, the relation shows a

decreasing dependence as the superficial velocity grows. Furthermore, both the func-

tions at the extremal values are presumed to form upper bounds on the value that the

pressure drop may take. Hence, it is expected that the plot should be qualitatively

analogous to the case outlined in Section 1.2.2.2 and a negative value of the shifting

exponent is to be expected. Indeed, this turns out to be the case.

It should however be noted that the datum point chosen upon traversal of the ex-

http://scholar.sun.ac.za



4.1 Newtonian fluid 57

perimental data may be a poor choice (an outlier, the result of a poor reading, etc.)

Establishing the s-value purely based on this principle may lead to erroneous results;

the value of visual inspection should never be underestimated (besides, the method is

empirical). The false ’accuracy’ portrayed by the values listed in Table 4.2 is merely the

result of the algorithm used to traverse the original data sets; as Churchill and Usagi

[1; 2; 5; 6] notes the solution is relatively insensitive to changes in s and hence these

values were rounded in each of the corresponding figures.

For diameter-range 100µm− 200µm, shown in Figure 4.2, the experimental values

lie between the average, dmean, and maximum, dmax, particle diameters. Curves for

the matched solution were plotted for a particle diameter of both 153µm and 200µm –

the former yielding results that closer match the trend of the data; illustrated by Figure

4.5.
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Figure 4.7: Curve-fitting by the method of powered addition of asymptotic solutions

as applied to particles in diameter-range 750µm− 1000µm. Equation (4.17) represents

the functional relation with an s-value of -8 having been used.

In the case of diameter-range 400µm − 600µm, the data points were distributed

around the asymptote predicted by the upper limit of the range, dmax. Use of a particle

diameter of 600µm yields the best graphical results, as shown in Figure 4.6. Examining

diameter-range 750µm− 1000µm, it was once again difficult to discern the particle di-
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ameter to be used by merely regarding data point distribution about the asymptotes.

Figure 4.3 shows experimental points crossing the asymptotes for both dmax and dmean.

Curves were plotted for both solutions; the average diameter of 960µm more closely

followed the trend exhibited by the experimental data. The graphical result of a plot

with this diameter is shown in Figure 4.7.

4.2 Non-Newtonian fluid

Digitised data was obtained from the work of Sabiri [38; 39] and Ciceron [40] for the

flow of the non-Newtonian fluids glycerol (glycerine) and carboxymethyl cellulose

(CMC), a cellulose derivative , through a bed of spherical particles. As in the case of

Newtonian flow discussed above in Section 4.1, the bed was contained in a PMMA

(poly methyl methacrylate) or perspex cylinder, the interior diameter of which was

90mm. Two particle sizes were used, the diameters being 2.92mm and 5.00mm respec-

tively, with the corresponding bed porosities at incipient fluidisation taken as 0.42 and

0.437. The CMC solution of 6g/ℓ was said to have a consistency index, K = 0.624Pa.sn,

behaviour index, n = 0.7662, and density of ρ = 1020.3kg/m3. The corresponding

parameters for the 75% glycerine solution was taken as K = 0.025Pa.sn, n = 1 and

ρ = 1192.5kg/m3. These authors consider the latter solution to be an example of non-

Newtonian fluid flow, though strictly speaking the use of a behaviour index value,

n = 1 reverts the power law model for non-Newtonian fluids back to the model for

Newtonian fluids.

4.2.1 Asymptotic dependencies

From plots of the digitised data an abrupt transition between the packed- and fluidised

bed regimes is evident and hence a shifting exponent larger than unity is expected.

4.2.1.1 The lower asymptote

The assumption is made, as in Section 4.1.2.1, that the unfluidised or packed bed may

be viewed as a porous medium consisting of spherical particles. The RUC model of Du

Plessis & Woudberg [29; 22; 32] was extended [31] to include non-Newtonian fluids,

with the stream-wise pressure gradient expressed as

− dp

dx
= KFnqn, (4.22)
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where

Fn =
2n(4.47)(1− ε)2/3

dn+1
s

(

1− (1− ε)1/3
)n (

1− (1− ε)2/3
)n+1

(

2n + 1

n

)n

×
[

1 +
(1− (1− ε)2/3)

12(4.47)ε
Repn

]

, (4.23)

and

Repn =
12ρdnq2−n

K

(1− (1− ε)1/3)

(1− (1− ε)2/3)2−n

(

n

2(2n + 1)

)n

. (4.24)
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Figure 4.8: Fitting of the matched solution to Sabiri [38; 39] and Ciceron [40]’s data. The

bed consisted of particles with diameter 2.92mm and was fluidised with glycerine. An

s-value of -10 was used to obtain the fitted curve.

The rational behind the choice of this model to represent the functional dependence

of the lower asymptote is similar to that outlined in Section 4.1.2.1.
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4.2.1.2 The upper asymptote

As mentioned in Section 4.1.2.2, the pressure drop at incipient fluidisation is sufficient

to support the weight of the particles [35; 41], and hence

∆p

H
= (1− ε0)(ρs − ρ f )g. (4.25)

with ε0 the porosity at incipient fluidisation. The relation given by equation (4.25)

above will be taken to represent functional dependence at the upper extreme.
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Figure 4.9: Curve-fitting by the method of powered addition of asymptotic solutions as

applied to non-Newtonian flow. Equation (4.26) represents the functional relation with

an s-value of -10 having been used. The fluid used to fluidise the bed was glycerine;

particle diameter 4.99mm.

4.2.2 Powered addition of the asymptotes

Application of Churchill & Usagi’s method of powered addition, outlined in Chapter

1, to the results obtained for the respective dependencies at the extremal values – that
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is, combing equations (4.22) and (4.25) and taking the sth order sum of the solutions –

produces the desired single measure,

∆p

H
= [[KFnqn]s + [(1− ε0)(ρs − ρ f )g]s]1/s, (4.26)

applicable over the entire range of q-values.
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Figure 4.10: Curve-fitting by the method of powered addition of asymptotic solutions

as applied to non-Newtonian flow through a bed consisting of spherical particles, di-

ameter 2.92mm. Equation (4.26) represents the functional relation with an s-value of -2

having been used.

4.2.2.1 Critical point and shifting-exponent

Analogous to Section 4.1.3.1, by equating

KFnqn = (1− ε0)(ρs − ρ f )g, (4.27)

and isolating the independent variable as,

qc =

[

(1− ε0)(ρs − ρ f )g

KFn

]1/n

, (4.28)
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the critical point, f{qc}, of the matching curve where the asymptotic solutions intersect,

is obtained. The dependency of this value is thus closely linked to the behaviour index

of the particular non-Newtonian fluid under regard.

4.2.3 Correlation of experimental results

For the digitised data of Sabiri [38] and Ciceron [40] the pressure loss over the bed

versus the superficial velocity of the traversing non-Newtonian fluid was plotted. The

value of the shifting exponent, s, was adjusted by trial-and-error visual evaluation to

obtain the graphical representations shown in Figures 4.8 to and 4.11. Figures 4.8 and

4.9 show the results obtained for a bed fluidised with a 75% glycerine solution. The
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Figure 4.11: Application of the Churchill-Usagi equation to data for a bed of spherical

particles, diameter 4.99mm, fluidised with the non-Newtonian fluid CMC. An s-value

of -4 was used in equation (4.26).

expansion of the RUC model to encompass non-Newtonian flow [31] was based on

the power law model (or Ostwald de Waele model). The power law model for time-

independent, non-Newtonian flow (see Appendix A), given by

τxy = −K|γ̇|n, (4.29)
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reverts to the mathematical model for Newtonian flow when n = 1. Hence, since

a value of unity is assigned to the behaviour index of glycerine, this fluid is strictly

speaking not an example of a non-Newtonian substance.

In the work of Sabiri [38] no mention was made of the bed height in the cases where

CMC was used as fluidising liquid. Consequently, the uppermost limiting value had

to be adjusted accordingly to fit the experimental data. Since the pressure drop in

equation (4.25) is linearly related to the height, an incorrect choice of value would

only cause a parallel offset and not influence the curvature of the resultant match.

In both the cases of glycerine and CMC the data show an abrupt changeover in the

transitional areas, which corresponds to the relatively high values obtained for the

shifter. As with the Newtonian fluidised bed, studied in Section 4.1, equation (4.26)

exhibits a decrease in the dependence of the pressure drop as the superficial velocity

increases (for constant n). As anticipated from the discussion in Section 1.2, a negative

shifting exponent ensures a satisfactory match.
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Chapter 5

Conclusion / Closure

The straightforward addition of the solutions at extremal values to obtain a single rela-

tion that holds over the domain of the independent variable, is a practice that has been

in use for some time, especially in engineering applications. The method of powered

addition, formalised by Churchill & Usagi [1], succeeds, through simple exponentia-

tion of the constituent terms, in adjusting the solution so as to more closely trace the

experimental or computational data. The procedure should not be regarded as a trick;

rather linear addition of asymptotic models should be regarded as a special case of

powered addition when s = 1. Prior knowledge of the functional behaviour in at

least one of the limits makes the direct application of the proposed method possible.

Should, however, only the limiting values be known, but not the functional depen-

dence at either of the extremities, an empirical expression for one or the other limit

may be postulated. In cases such as these, a power function is pertinent; its uncompli-

cated form making it a satisfactory choice in tune with the underlying philosophy of

simplicity.

Although the routine has not yet been proven to accurately describe the relative

behaviour of the different parameters during a transfer process, it may be argued to

be more appropriate, since the rate of change between the two asymptotes can be

adjusted to fit experimental readings. For instance, the higher the (absolute) value of

the shifter-exponent, s, the more abrupt the changeover between the two asymptotic

processes. Furthermore, irrespective of the rate at which the changeover occurs, it will

be a smooth transition as is expected for the crossover from one continuum process

to another. In the examined cases in this study, and the various examples listed in

the literature by Churchill et al. [1; 2; 5; 6; 25; 42; 43], powered addition appears to

be favoured over the introduction of ad hoc curve-fitting or bridging functions which

might introduce unwanted jumps. Thus, although primarily a curve-fitting exercise,

this procedure leads to better physical modelling since the only ’tuneable’ parameter is

64
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the shifter-exponent, s. Adjusting its value does not change the value of the asymptotic

conditions and leaves the double-asymptote character of the transfer process intact.

The main advantages of the method is that a singular functional dependence of the

independent variable upon the dependent variable is established over the entire range

of the latter. The inherent simplicity of the method suggests that in such a curve-fitting

exercise the greater deal of effort should be exerted in determination of the asymptotes,

the value of the exponent, s, and possible relation of the latter to some quantifiable

parameter.

The sensitivity of the matched curve to changes in the shifter, s, in the vicinity of

intersection of the asymptotes, suggests that experiments should be designed so as to

focus on this area. More specifically, in performing an experiment it is advantageous

to arrange the physical conditions in such a manner that the independent variable is

in close proximity of the critical point, xc. Should the experimental values of the de-

pendent variable at the critical point, f{xc}, be known, a good indication of the value

of the shifting exponent may be obtained by the logarithmic expression of equation

(1.45). It is however important to keep in mind that, since the method is empirical in

nature, an exact solution is not obtained and therefore the potential benefit of visual

inspection and evaluation on the result should not be disregarded (visual inspection

by trial and error adjustment of the correlation between the predictive curve and data

points often lead to a better assignment of a value to s). As noted by Churchill & Usagi

[1] the matched curve is relatively insensitive to variations in s; the required accuracy

being determined by considerations such as the process involved, tunability of other

parameters and allowable error-margin.

http://scholar.sun.ac.za



Appendix A

Fluid classification

In the classification of fluids two different approaches are followed. Hence, the cate-

gory into which a fluid will fall depends on the criterion being used: either the fluid’s

reaction to an externally applied pressure, or the response of the fluid due to the ap-

plication of a shearing force or shear stress, being used as distinguishing factor. The

former approach differentiates between compressible and incompressible fluids, depend-

ing on the relation between the pressure and volume of the fluid; the latter is contin-

gent upon the relationship between shear stress and shear rate and leads to the dis-

tinction between Newtonian (linear relation) and non-Newtonian (non-linear relation)

fluids [44; 45]. In other words classification is either based on the compressibility or

viscosity. Most liquids may be regarded as incompressible [44] (whereas this is not the

case for gasses) and accordingly the second approach will be discussed in this section.

Viscosity can be regarded as a fluid’s resistance to a shearing force when the fluid is

in motion; the nature of the relation between the shear stress and the velocity gradient

of the fluid determining into which category the fluid is classified.

A.1 Newtonian flow

For Newtonian fluids the velocity gradient in the direction of flow, dvx/dy is linearly

related to the shear stress, τyx, by

τyx = µ

(

−dvx

dy

)

= µγ̇yx, (A.1)

where µ denotes the viscosity, a proportionality constant linking the former two fac-

tors. In rheology the symbol γ̇ is frequently used to represent the shear rate of the

fluid, with the first subscript referring to the surface on which the stress is acting and
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the second to the direction in which it acts, i.e γ̇yx is the shear rate of the stress acting

on a surface defined by a normal vector in the y-direction and with component in the

x-direction (the direction of flow) [44; 45]. The negative sign in equation (A.1) serves

to indicate that τyx opposes the motion of the fluid.

Alternatively, for the case of an incompressible fluid (i.e. ρ constant), equation (A.1)

may be written as

τyx = −µ

ρ

d

dy
(ρvx) = −ν

d

dy
(ρvx), (A.2)

where ρ represents the fluid’s mass density. Now the quantity ρvx may be thought of

as the linear momentum in the x-direction per unit volume of fluid, with τyx the flux

of momentum in the direction of flow, the x-direction [44]. The ratio between viscosity,

µ, and mass density, ρ is referred to as the kinematic viscosity and represented by the

Greek letter nu, ν, in equation (A.2), i.e

ν =
µ

ρ
. (A.3)

By definition the Newtonian viscosity, µ, is independent of both the shear rate, γ̇yx,

and the shear stress, τyx, and is dependent only upon the properties of the material, its

temperature and pressure. This single constant therefore serves to completely charac-

terize the flow behaviour of the fluid at a given pressure and temperature.

It is important to note that equation (A.1) is for the simple case of unidirectional

flow, the velocity vector having only one component directed in the x-direction and

being dependent only on the y-coordinate for its magnitude. In the case of three-

dimensional flow, the appropriate partial differential equations for each of the nine

entries in the shear stress tensor need to be evaluated. This more general case, for the

x-plane, of an incompressible fluid is expressed as [17; 44]

τxx = −2µ
∂vx

∂x
+

2

3
µ

(

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z

)

, (A.4)

τxy = −µ

(

∂vx

∂y
+

∂vy

∂x

)

, (A.5)

τxz = −µ

(

∂vx

∂z
+

∂vz

∂x

)

. (A.6)

Similar expressions to those of equations (A.4) to (A.6) may be set up for each of the

y- and z-planes; as above there will be two shearing components (in the plane being

regarded) and one component normal to the plane in each of the cases. Furthermore,

it holds for a Newtonian fluid that [17; 44]

τxx = τyy = τzz = 0. (A.7)

Therefore, the complete definition of a fluid that falls into this category is not only

that it has a constant viscosity, but also that the fluid obeys equation (A.7).
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A.2 Non-Newtonian flow

A fairly large category of fluids does not obey the Newtonian law of viscosity, in

other word the viscosity is not independent of the shear rate and the relation between

the shear stress and shear rate is not a linear one. These fluids are classified as non-

Newtonian and require, besides viscosity, the measurement of additional parameters

(normal stresses, etc.). Broadly these fluids are classified into three general classes

as (a) time independent or purely viscous; (b) time dependent; and (c) viscoelastic,

though most real materials exhibit a combination of features. Each of these categories

may be further subdivided [44; 45]: time independent fluids into shear-thinning or

pseudo-plastic fluids, viscoplastic fluids and shear-thickening or dilatant fluids; and

time dependent fluids into thixotropic and rheopectic fluids. The classification is by

no means sharply defined and merely serves to aid in the mathematical modelling

of the fluids. Indeed, rheology – from the Greek word rheos meaning stream – is the

branch of physics concerned exclusively with the study of the flow of matter and the

quantitative and qualitative relationships between deformations and stresses and their

derivatives.

The extension of the RUC model to incorporate non-Newtonian fluids [31], used

in Section 4.2.1.1, is based on the power law (or Ostwald de Waele) model and will

thus be the only model outlined here. In this model, which is effectively a generalised

expression used to model Newtonian as well as non-Newtonian fluids, the non-linear

relation between the shear stress and shear rate is given by

τyx = K(γ̇yx)
n, (A.8)

where K, the fluid consistency index, and n, the flow behaviour index, are empirical

curve fitting parameters used to characterise the fluid and are constant at a fixed tem-

perature and pressure. The exponent, n, is a measure of how much the fluid deviates

from a Newtonian fluid and hence for n = 1 equation (A.1) will revert to equation

(A.8) with K = µ. Division of the shear stress by the shear rate,

η =
τyx

γ̇yx
, (A.9)

gives the so-called apparent viscosity, η, a parameter frequently used in the litera-

ture. For values of n < 1 the fluid exhibits shear-thinning properties, meaning that

the apparent viscosity of the fluid decreases as with an increase in shear rate. The

opposite behaviour is observed when n > 1 and hence these fluid are known as shear-

thickening.

Criticism against the power law is that for zero shear rate the apparent viscosity

in equation takes on an infinite value and that for real fluids the exponent, n, is not
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constant over the entire range of flow. Another objection is that the consistency index,

K, is dependent upon the behaviour index, n, and may thus not be compared unless

the latter values are similar. Despite all the critique, the power law model has the

advantage of simplicity and is therefore, according to Chhabra [44], one of the models

used most widely in literature dealing with process engineering.
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Appendix B

Derivation of Slatter Reynolds number

In its most general form, without any simplifications, the Navier-Stokes equation is a

complicated, nonlinear partial differential equation used to describe the motion of a

fluid substance (as yet, no general solution has been obtained) [14]. During the last

part of the 19th century Osborne Reynolds studied these equations governing flow in

an attempt to determine when two different flow situations may be deemed similar.

Two instances of flow are said to be dynamically similar if (a) their correspond-

ing linear dimensions have a constant ratio (that is, they are geometrically similar);

and (b) pressures at corresponding points have a constant ratio (geometrically similar

streamlines)[14]. Reynolds considered geometrically similar flow situations and came

to the conclusion that these flows would be dynamically similar, providing the differ-

ential equations describing them were identical. He found that if the dimensionless

group ρvl/µ was the same, this criterion was met (here, ρ is the mass density, v is a

characteristic velocity, l a characteristic length, and µ the viscosity). Thus, the param-

eter

Re =
ρvl

µ
, (B.1)

has taken his name, Reynolds number, and may be viewed as the ratio of the inertial

forces to viscous forces [14; 46; 16], i.e.

Re ∝
inertial forces

viscous forces
. (B.2)

Many variations on the above definition of the Reynolds number for straight, round

tubes exist; the characteristic quantities being chosen so as to be specific to the case

where it is being applied. The Slatter Reynolds number, Re3, is one such variant based

on the yield pseudo-plastic model. It starts from the assumption that, in the presence

of a yield stress, the core of the fluid moves as a solid, unsheared plug [47; 15; 10]

resulting in annular flow.
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The fact that velocity components perpendicular to a surface cannot exist in the

region of the surface, accounts for the existence of a laminar sub-layer immediately

adjacent to the solid surface. It also implies that solid boundaries suppress turbulence.

Slatter [47; 15] notes that the definition of yield stress states by implication that if the

shear stresses are insufficient to overcome the former, the material will behave as a

solid. Such is the case in the unsheared core of plug flow – a coaxial solid plug existing

D Dplug

rplug

R

unsheared plug

pipe wall

sheared annulus

Figure B.1: Schematic cross-section of pipe showing unsheared plug geometry.

in the centre of the pipe with flow in an annular region – a representation of which is

shown in Figure B.1. He argues that this plug may be regarded as a solid boundary

and that it will affect the stability of the laminar flow in the surrounding annulus [47;

15; 10]. Hence, the flow represented by that of the plug must be subtracted since it is no

longer being treated as part of the fluid flow. The velocity profile of annular flow also

differs from that of plane Poiseuille flow (the flow of an incompressible Newtonian

fluid in a tube), as illustrated in Figure B.2.

The constitutive rheological equation for the yield pseudo-plastic model is formu-

lated as [47; 15]

τ = τy + K

(

−dvz

dr

)n

= τy + K(γ̇rz)
n , (B.3)

with τy denoting the yield stress, K the fluid consistency index and n the flow be-

haviour index. The shear rate, (−dvz/dr) = γ̇rz, may be expressed as the velocity gra-

dient in the direction perpendicular to that of the shear force (cf. viscous stress dyadic

in equation (B.6)). Setting n = 1 in equation (B.3) yields the so-called Bingham-plastic

model, while τy = 0 results in it reverting back to that for power-law fluids.

Cauchy’s differential equation for the movement of any continuum, which holds at
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direction of flow

pipe wall

pipe wall

Figure B.2: Schematic representation of velocity profile for plug flow (solid line). The

qualitative velocity profile of an incompressible Newtonian fluid is shown in a dashed

line for comparison.

any arbitrary point within the continuum, states

ρ
Dv

Dt
= ρ f

b
+∇ · σ , (B.4)

where ρ denotes the density, v the velocity, f
b

the body forces and σ the stress tensor.

Since the pressure in a continuum with fluid properties is linked to the internal surface

forces, there should be a relation between the pressure and the stress tensor. This is

indeed the case and the stress tensor may be written as

σ = −p1 + τ(v) , (B.5)

with p the pressure and τ the so-called viscous stress dyadic, represented in its matrix

form for cylindrical coordinates as

τ =







τrr τrθ τrz

τθr τθθ τθz

τzr τzθ τzz






. (B.6)

According to convention the first subscript refers to the face upon which the stress is

acting and the second to the direction in which it acts (first face, second stress). In other

words the entry τrz corresponds to the stress acting on a surface defined by a normal

vector in the r-direction and with component in the z-direction (the direction of flow

as per Figure B.3).

Equation (B.4) may now, with the aid of equation (B.5), be rewritten as

ρ
Dv

Dt
= ρ f

b
−∇p +∇ · τ . (B.7)
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Once the flow has developed fully, there is no more acceleration of fluid particles.

Hence the velocity profile is constant, no longer time dependent and v = v{r}k. This

being the case, one may then set the left-hand side of equation (B.7) equal to zero, since

Dv

Dt
=

∂v

∂t
+ v · ∇v =

∂v

∂t
+ vr

∂v

∂r
+

vθ

r

∂v

∂θ
+ vz

∂v

∂z
, (B.8)

where

vr =
∂v

∂θ
=

∂v

∂z
= 0 , (B.9)

and ∂v/∂t = 0 (no acceleration). If it is further assumed that the influence of gravity

upon the flow is negligible (or has reached an equilibrium at fully developed flow) it

implies that equation (B.7) reduces to

∇p = ∇ · τ . (B.10)

However, a pressure gradient only exists in the direction of flow. Using a cylindrical

coordinate system with the z-direction orientated along the axis of the pipe, this means

that

− ∂p

∂z
k = −dp

dz
k = ∇ · τ , (B.11)

but since ∂p/∂z is a constant for fully developed flow, equation (B.11) may be written

as

c k = ∇ · τ , (B.12)

where c is a constant value.

r
R

τrz

L

p p + ∆p

A B

CD

Figure B.3: Schematic representation of flow in a tube to show influence of shear stress.

The fluid flow is from left to right.

Flow is caused by a pressure difference across the ends of the pipe. Once the flow

has fully developed the radial velocity is zero and the fluid is flowing at a steady rate,

in other words a fixed pressure gradient exists between any two reference points of

the pipe. (See Figure B.3 illustrating the conditions present during fully developed,

steady flow of an incompressible fluid in a pipe of radius R).
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Regarding an arbitrary fluid element, ABCD, as per Figure B.3, the linear momen-

tum balance (which is in the direction of flow, i.e. the z-direction) may be written as

[44]

p(πr2)− (p + ∆p)(πr2) = τrz(2πrL) , (B.13)

with r and L as indicated. Rearranging this yields,

τrz(r) =

(

−∆p

L

)

r

2
=

(

−dp

dz

)

r

2
= c

r

2
. (B.14)

Thus the shear stress varies linearly over the pipe or tube’s cross-section, with the

maximal value obtained at the wall and no shear stress at the axis [44]. What is impor-

tant to note is that equation (B.13) is based only on the balancing of forces and that no

assumptions have been made regarding fluid type or flow pattern. Hence it is applica-

ble to laminar as well as turbulent flow, providing that the fluid is incompressible and

the flow is steady and fully developed [44]. Even in the presence of a yield stress, this

statement would still be true since, once the flow has developed fully, the linear mo-

mentum balance should still hold. The plug or unsheared core, although regarded as

a solid boundary, moves along with the fluid and thus the flow in the annular region

surrounding it may be considered as a special instance of plane Couette-Poiseuille

flow (the resulting velocity profile, as previously mentioned, is shown in Figure B.2).

Letting τ0 denote the shear stress at the pipe wall, i.e.

τrz(R) = τ0 , (B.15)

equation (B.14) may be re-written as

τrz(r) =
τ0

R
r , (B.16)

Rearranging equation (B.3) as

−
(

τrz(r)− τy

K

)1/n

=
dvz

dr
, (B.17)

it may now be integrated as follows

∫ vz(R)

vz(r)
dvz = −

(

1

K

)1/n ∫ R

r
[τrz(r)− τy]

1/ndr

⇒ vz(R)− vz(r) = −
(

1

K

)1/n ∫ R

r

[τ0

R
r− τy

]1/n
dr

0− vz(r) = −
(

1

K

)1/n
[

( τ0
R r− τy

)1+1/n

1 + 1/n

R

τ0

]R

r

vz(r) =
n

n + 1

R

τ0

(

1

K

)1/n [

(τ0 − τy)
(n+1)/n −

(τ0

R
r− τy

)(n+1)/n
]

=
n

n + 1

R

τ0

(

1

K

)1/n [

(τ0 − τy)
(n+1)/n − (τrz − τy)

(n+1)/n
]

(B.18)
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Since the plug moves along with the fluid, yet does not shear (i.e. behaves as a solid),

it implies that by setting τrz = τy in equation (B.18) the velocity of the plug may be

obtained as

vplug =
n

n + 1

R

τ0

(

1

K

)1/n

(τ0 − τy)
(n+1)/n . (B.19)

By the same reasoning as above, it follows from equation (B.16) that for τrz = τy, the

radius of the plug is determined as

rplug =
τy

τ0
R , (B.20)

and the area of the annulus by

Aann = π(R2 − r2
plug) . (B.21)

The sheared diameter, Dshear, as indicated in Figure B.1, may be calculated from

Dshear = D−Dplug , (B.22)

and

Dplug = 2rplug . (B.23)

As mentioned earlier the flow represented by the plug needs to be subtracted since it

is treated as a solid body and doesn’t form part of the fluid flow. The flux through the

annular part of the pipe is given by

Qann = Q−Qplug , (B.24)

with

Qplug = vplugAplug , (B.25)

where Q denotes the flux indicated by the respective subscripts and A the cross-

sectional area. The corrected mean velocity in the annulus is thus obtained,

vann =
Qann

Aann
. (B.26)

Returning to the fundamental assumption of equation (B.2) where, according to

Massey [16],

inertial force α ρl2v2 , (B.27)

and

viscous force α l2τvisc , (B.28)

with τvisc the representative viscous shear stress. The constitutive rheological equa-

tion – here, the yield pseudo-plastic model – for the fluid being considered relates the

viscous stress to the shear rate. Slatter [47; 15; 48] notes that the so-called bulk shear
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rate, 8v/D, has successfully been used in other rheological formulations and proposes

its use as representative shear rate. Its use yields

τvisc = τy + K

(

8v

D

)n

, (B.29)

as representative shear rate. Since the shearing of the fluid only takes place in the

annular region surrounding the plug, taking the sheared diameter, Dshear, as per equa-

tion (B.22), as the characteristic length is preferable. The same reasoning leads to the

choice of the velocity in the annulus, vann, as characteristic velocity. Substitution of

these parameters into equation (B.29) together with relations (B.27) and (B.28) pro-

duces

Re ∝
ρv2

ann

τy + K

(

8vann

Dshear

)n . (B.30)

Only the choice of a proportionality constant remains. The choice should result in the

newly defined relation reverting back to standard form under Newtonian conditions.

In other words setting τy = 0, K = µ and n = 1 in equation (B.30) should reduce it to

equation (B.1). This is achieved by selecting the value 8, whence

Re3 =
8ρv2

ann

τy + K

(

8vann

Dshear

)n , (B.31)

is obtained; the so-called Slatter Reynolds number.
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Appendix C

Plots with Mbiya’s data sets

The following plots are based on the data sets generated by Mbiya [9] for pipes with

varying diameters and at pre-selected opening values – Figures C.1 to C.4 are for a

pipe with internal diameter of 40mm; Figures C.5 to C.8 for 50mm; Figures C.9 to C.12

for 65mm; Figures C.13 to C.16 for 80mm; and Figures C.17 to C.20 for 100mm. In each

of the representations (bottom) two matched solutions have been plotted: s = 0.4 and

s = 1.4 in a solid and dashed line respectively.
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Figure C.1: Internal pipe diameter: 40mm. Valve opening: 25%. Mbiya’s two-constant

model (top), powered addition (bottom).
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Figure C.2: Internal pipe diameter: 40mm. Valve opening: 50%. Mbiya’s two-constant

model (top), powered addition (bottom).
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Figure C.3: Internal pipe diameter: 40mm. Valve opening: 75%. Mbiya’s two-constant

model (top), powered addition (bottom).
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Figure C.4: Internal pipe diameter: 40mm. Valve opening: 100%. Mbiya’s two-constant

model (top), powered addition (bottom).
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Figure C.5: Internal pipe diameter: 50mm. Valve opening: 25%. Mbiya’s two-constant

model (top), powered addition (bottom).
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Figure C.6: Internal pipe diameter: 50mm. Valve opening: 50%. Mbiya’s two-constant

model (top), powered addition (bottom).

http://scholar.sun.ac.za



84

10
2

10
4

10
6

10
0

10
1

10
2

Re
3
λ

Ω
 / θ2

k
v
θ

2
 /
 λ

Ω

CMC 5%

CMC 8%

Glycerine 100%

Kaolin 10%

H
2
O

10
2

10
4

10
6

10
0

10
1

10
2

Re
3
λ

Ω
 / θ2

k
v
θ

2
 /
 λ

Ω

CMC 5%

CMC 8%

Glycerine 100%

Kaolin 10%

H
2
O

Figure C.7: Internal pipe diameter: 50mm. Valve opening: 75%. Mbiya’s two-constant

model (top), powered addition (bottom).
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Figure C.8: Internal pipe diameter: 50mm. Valve opening: 100%. Mbiya’s two-constant

model (top), powered addition (bottom).
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Figure C.9: Internal pipe diameter: 65mm. Valve opening: 25%. Mbiya’s two-constant

model (top), powered addition (bottom).
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Figure C.10: Internal pipe diameter: 65mm. Valve opening: 50%. Mbiya’s two-constant

model (top), powered addition (bottom).
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Figure C.11: Internal pipe diameter: 65mm. Valve opening: 75%. Mbiya’s two-constant

model (top), powered addition (bottom).
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Figure C.12: Internal pipe diameter: 65mm. Valve opening: 100%. Mbiya’s two-

constant model (top), powered addition (bottom).
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Figure C.13: Internal pipe diameter: 80mm. Valve opening: 25%. Mbiya’s two-constant

model (top), powered addition (bottom).
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Figure C.14: Internal pipe diameter: 80mm. Valve opening: 50%. Mbiya’s two-constant

model (top), powered addition (bottom).

http://scholar.sun.ac.za



92

10
2

10
4

10
6

10
−1

10
0

10
1

10
2

Re
3
λ

Ω
 / θ2

k
v
θ

2
 /
 λ

Ω

CMC 5%

CMC 8%

Glycerine 100%

Kaolin 10%

H
2
O

10
2

10
4

10
6

10
−1

10
0

10
1

10
2

Re
3
λ

Ω
 / θ2

k
v
θ

2
 /
 λ

Ω

CMC 5%

CMC 8%

Glycerine 100%

Kaolin 10%

H
2
O

Figure C.15: Internal pipe diameter: 80mm. Valve opening: 75%. Mbiya’s two-constant

model (top), powered addition (bottom).
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Figure C.16: Internal pipe diameter: 80mm. Valve opening: 100%. Mbiya’s two-

constant model (top), powered addition (bottom).
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Figure C.17: Internal pipe diameter: 100mm. Valve opening: 25%. Mbiya’s two-

constant model (top), powered addition (bottom).
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Figure C.18: Internal pipe diameter: 100mm. Valve opening: 50%. Mbiya’s two-

constant model (top), powered addition (bottom).
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Figure C.19: Internal pipe diameter: 100mm. Valve opening: 75%. Mbiya’s two-

constant model (top), powered addition (bottom).
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Figure C.20: Internal pipe diameter: 100mm. Valve opening: 100%. Mbiya’s two-

constant model (top), powered addition (bottom).
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Appendix D

Høgskolen i Telemark (Telemark

University College) data sets

Measurements were performed on a laboratory-scale fluidized beds at Høgskolen i

Telemark (Telemark University College), Porsgrunn, Norway between 13 – 20 Octo-

ber 2008. The beds, contained in a cylindrical perspex tube with inner diameter of

72mm, comprised of glass powders, consisting of spherical glass particles, with a den-

sity of 2485kg/m3 and available in three different diameter-ranges: 100µm − 200µm;

400µm− 600µm; and 750µm− 1000µm. In all of the experiments performed the fluid

used to fluidise the bed was air at ambient conditions, with a density of 1, 2kg/m3

and viscosity of 1.78× 10−5N · s/m2. Below are the tables containing the experimental

data.

Eight pressure tubes were placed along the height of the bed and were connected to

digital pressure sensors (Honeywell, model 142PC02G) that measured the pressure at

these fixed intervals within the bed. In Tables D.1 to D.3 these distances are indicated

in the heading of each column under the sensor number. The unprocessed pressure

data was plotted against distance of the sensor from the porous plate on which the bed

was supported; the result of this plot is shown in Figure D.1. Since the pressure drop

is a linear function of the height, this plot served to demonstrate possible anomalies

in individual sensors (e.g. sensor 3 may be disregarded); for the results discussed in

Section 4.1.4 sensors number 2 and 8 were used.
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Figure D.1: Plot of raw pressure data, p [mbar], against vertical sensor distance from

porous plate supporting the bed, z [mm].
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Table D.1: EXPERIMENTAL DATA: 100µm− 200µm

Pressure reading [mbar]

Run

no.

Fluid

velocity

[ℓ/min]

Sensor 1

at 30mm

Sensor 2

at 230mm

Sensor 3

at 331mm

Sensor 4

at 432mm

Sensor 5

at 532mm

Sensor 6

at 633mm

Sensor 7

at 733mm

Sensor 8

at 834mm

1 1.0 18.95367 13.97865 12.47998 9.97153 8.19564 6.24307 4.11083 2.44127

1 1.5 29.45802 22.50327 20.46747 16.69936 13.78390 10.58586 7.06468 4.10142

1 1.5 31.71953 23.37373 20.92357 16.69455 13.72598 10.46761 6.98105 4.09170

1 2.0 44.23392 32.58558 29.07701 23.22803 19.18734 14.67983 9.88536 5.80791

1 2.0 47.45059 36.27742 33.05562 26.95077 22.27800 17.12554 11.52700 6.64074

1 2.5 57.16058 41.98516 37.48037 30.00802 24.72962 19.06505 12.90695 7.65287

1 2.5 61.25906 46.86933 42.75256 34.86980 28.84536 22.18569 14.99435 8.61511

1 3.0 69.43926 51.06728 45.65560 36.57947 30.19570 23.31342 15.81362 9.37380

1 3.0 71.57872 54.78347 50.02074 40.80785 33.78059 25.99408 17.59990 10.10408

1 3.5 83.14843 61.17979 54.77007 43.91534 36.27275 27.99853 18.97105 11.18065

1 3.5 86.62369 66.36983 60.66311 49.50889 41.01771 31.59137 21.44899 12.30176

1 4.0 89.69118 64.52500 56.91698 45.58397 36.67933 28.20242 19.88684 11.68692

1 4.0 104.11834 79.87414 73.09329 59.69633 49.51141 38.17544 25.98106 14.90201

1 4.5 102.36348 74.28898 66.06832 53.04520 43.19946 33.35199 23.34626 13.62672

1 4.5 114.92805 88.23026 80.79961 66.01456 54.79415 42.25936 28.80221 16.52285

1 5.0 116.17686 84.75726 75.72347 60.78099 49.78898 38.61803 26.95733 15.74490

1 5.0 129.63451 99.60787 91.32100 74.67666 62.02810 47.88498 32.68384 18.75286

1 5.5 131.27105 96.64048 87.02657 69.93299 57.86981 45.20526 31.39424 18.73062

1 5.5 143.19501 110.11652 101.05768 82.68961 68.73886 53.10092 36.29719 20.83395

1 6.0 140.71135 104.59733 94.08356 75.37287 62.41638 49.10311 34.35508 20.84876
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1 6.0 155.77877 119.82464 110.00074 90.00264 74.93903 57.92552 39.72977 22.80072

1 6.7 137.30826 104.68540 93.68090 76.21013 64.72154 50.55105 35.65335 23.38454

1 7.2 143.66332 109.60585 97.19038 78.19839 66.01514 49.91619 35.65843 23.20328

1 7.5 139.24016 107.55382 97.64640 79.33942 65.98832 51.08681 35.84478 21.79643

1 8.2 138.26897 107.45096 98.18819 80.12238 66.77726 52.26275 36.93814 23.01949

1 8.8 139.80218 108.44007 99.08177 80.91219 67.63333 52.68154 37.58476 23.50440

1 9.3 139.09265 108.28225 99.29549 81.22111 67.96525 53.31013 37.87421 24.23955

1 9.5 141.04250 110.04500 100.91311 82.73708 69.42457 54.52606 39.35610 25.40003

1 10.2 139.87939 108.97352 100.04982 81.98070 68.73311 53.79404 38.55321 25.07929

1 10.5 141.47716 110.46737 101.16052 82.81549 69.69395 54.66842 39.48391 25.42576

1 11.0 142.49261 111.24627 101.84766 83.38153 70.54348 55.24936 40.22767 26.22084

1 11.3 142.75993 111.88912 103.25492 85.07759 71.68847 56.63545 41.09635 27.60944

1 12.0 143.44573 112.25759 102.35387 84.17410 71.40622 55.92243 41.02664 27.00476

1 12.5 142.96052 112.10615 103.44525 85.18065 71.97998 57.21298 41.79914 28.08601

1 13.0 144.63398 113.35956 104.52047 86.16547 72.49527 57.23472 41.94579 27.93436

1 14.0 145.64961 114.41792 106.03504 87.40193 73.70032 58.74014 42.90218 28.89478

1 14.5 146.63855 115.59877 107.19530 88.59874 75.04634 58.99676 43.98648 30.22047

1 15.0 146.82798 115.58757 106.77035 87.33459 74.56986 58.73262 43.73842 29.85128

1 16.0 148.26245 117.06430 108.02094 89.00982 76.42204 60.73306 45.33969 31.38724

1 16.5 147.89646 116.71141 108.20082 89.07898 75.86198 60.28201 44.75427 30.77585

1 18.0 151.07298 119.83305 110.13862 90.16209 78.75561 62.71305 47.31179 33.51320

1 18.0 150.09448 118.82371 110.56998 91.42715 77.94969 61.65001 46.27425 32.21510

1 21.0 154.40616 122.42441 114.89508 94.07749 80.56975 64.10849 48.56672 34.24769

2 1.0 19.91246 14.74455 13.00390 10.41056 8.46593 6.32458 4.12837 2.26370

2 1.5 31.46901 23.31639 20.52694 16.38738 13.41072 10.13072 6.76314 3.86675

2 2.0 44.07534 32.64586 28.81068 22.98897 18.83527 14.24136 9.55657 5.44049

2 2.0 49.96295 37.89944 34.48134 28.24541 23.69153 18.50824 12.95172 7.34183
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2 2.5 56.43280 41.83302 36.96538 29.50493 24.19337 18.31545 12.32831 7.00286

2 2.5 64.95705 49.32144 44.91410 36.80456 30.90628 24.16738 16.95837 9.60028

2 3.0 68.94417 50.90249 44.86096 35.64332 29.09635 22.03620 14.94192 8.49914

2 3.0 79.38394 60.32102 54.98873 45.08250 37.89271 29.64294 20.85377 11.79799

2 3.5 80.60229 59.59118 52.63005 41.86214 34.23018 25.99541 17.71046 10.14971

2 3.5 91.78604 69.80201 63.69963 52.24970 43.94261 34.40088 24.24143 13.72256

2 4.0 90.80617 67.29338 59.34688 47.10358 38.59949 29.69004 20.65183 12.15332

2 4.0 106.45842 81.05205 74.00585 60.73939 51.13637 40.05744 28.27693 16.00707

2 4.5 103.95869 77.23255 68.26545 54.31246 44.62854 34.40268 23.89899 14.06476

2 4.5 119.36293 90.94339 83.13075 68.26489 57.50979 45.07742 31.85597 18.04746

2 5.0 114.48023 84.69949 74.63738 59.09574 48.27525 37.11917 25.60308 15.14239

2 5.0 132.47156 101.02046 92.42198 75.94336 64.02614 50.21547 35.53490 20.13958

2 5.5 126.13774 93.61950 82.80409 65.78329 53.95129 41.66010 28.91680 17.11203

2 5.5 144.07458 109.93704 100.66474 82.75572 69.81166 54.76697 38.81401 22.02571

2 6.0 133.53266 100.23262 88.56288 70.36369 57.66536 45.09129 31.31094 18.70923

2 6.0 144.78643 107.60966 96.56636 77.33829 62.86056 48.71806 33.61238 20.34326

2 6.5 146.39020 110.17557 97.54777 77.66879 63.78966 50.09816 34.99826 20.81332

2 6.5 155.01642 114.93788 102.92396 82.17852 66.42439 51.26324 35.31367 20.85887

2 7.0 139.38114 106.90805 97.26687 78.90553 65.41615 50.68363 35.60543 21.41209

2 7.0 153.73415 116.79388 103.87230 82.88353 68.21691 53.49968 37.46851 22.16719

2 7.5 139.26822 106.94046 97.50228 79.30229 65.72393 50.86324 35.66534 21.58967

2 8.0 135.26647 104.78936 94.96704 76.72219 63.07773 48.42134 33.21551 19.03779

2 8.0 139.96762 108.09785 98.59973 80.37087 66.84944 51.75903 36.70935 22.50517

2 8.5 138.26575 106.61012 97.01648 78.73832 65.12830 50.40495 35.17106 21.07523

2 9.0 135.86904 104.50213 94.99676 76.90472 63.52455 48.77717 33.97631 19.95810

2 9.0 139.28137 107.62518 98.12986 79.85086 66.30457 51.58593 36.18421 21.96616

2 10.0 140.60183 109.28015 100.08808 81.83816 68.37994 53.62902 38.11935 23.86511
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2 10.5 140.07210 108.63031 99.41336 81.07756 67.43890 52.55467 37.15344 22.97271

2 11.0 141.21518 110.41596 101.40096 82.99087 69.42071 54.57213 39.03407 24.86750

2 11.5 141.99720 110.77658 101.86728 83.69061 70.16683 55.14786 39.84526 25.75519

2 12.0 142.40941 111.37948 102.34806 83.93763 70.38646 55.53733 39.90576 25.81822

2 12.5 142.93961 111.65007 102.74339 84.32176 70.63280 55.58618 39.83593 25.53862

2 13.0 143.56165 112.39243 103.62741 85.36852 71.86691 56.85634 41.06499 26.85584

2 13.5 144.22028 112.84497 104.06300 85.49462 71.84296 56.51731 40.88843 26.61891

2 14.0 143.93218 112.74858 104.00270 85.49451 71.92644 56.86727 41.01487 26.79413

2 15.0 145.57501 114.19133 105.43206 86.67028 72.84098 57.69316 41.96749 27.63499

2 15.0 145.70004 114.41449 105.61930 86.87833 73.02095 57.83390 42.11374 27.91896

2 16.0 146.29011 115.02179 106.34576 87.64247 73.71559 58.41319 42.58864 28.33714

2 16.0 147.14760 115.75897 106.98838 88.25085 74.38296 58.91393 42.87117 28.64089

2 17.0 147.45107 115.95524 107.38838 88.39379 74.45723 59.23945 43.35198 29.12633

2 17.5 148.46164 117.09807 108.37056 89.30377 75.55441 59.90274 43.80617 29.55493

2 18.5 149.63964 118.30075 109.71234 90.61882 76.43647 60.70647 44.50068 30.36546

2 19.0 150.22350 118.61215 110.19165 91.24476 77.12572 61.30695 45.06564 30.56619

2 20.0 150.65087 119.13030 110.76587 91.84067 77.52071 61.04941 45.11649 30.79523

2 20.5 150.27862 118.96432 110.62423 91.50373 77.41373 62.00419 45.66405 31.56087

3 1.0 16.84427 12.62445 11.25106 9.00968 7.30037 5.44298 3.49720 1.90923

3 1.5 29.96102 22.43216 20.05485 16.01966 12.99250 9.71781 6.31899 3.40898

3 1.5 30.79923 22.76569 20.15868 16.10808 13.09811 9.81541 6.45706 3.50770

3 2.0 39.48826 29.44061 26.19510 20.79546 16.97804 12.66395 8.21437 4.62265

3 2.0 44.98719 33.26624 29.50803 23.55728 19.18642 14.39765 9.52555 5.15216

3 2.5 49.74815 37.13560 33.10856 26.31464 21.47308 16.04101 10.45758 5.87613

3 2.5 57.90293 42.84704 38.04106 30.38176 24.77129 18.59881 12.34431 6.66376

3 3.0 61.28985 45.84170 40.98080 32.61772 26.58820 19.89710 13.04638 7.30911

3 3.0 71.15631 52.70352 46.85958 37.43455 30.54725 22.94988 15.27651 8.23732
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3 3.5 72.74040 54.55345 48.88410 38.99853 31.79462 23.86969 15.77411 8.85639

3 3.5 84.94022 62.96774 56.03969 44.79749 36.58657 27.51678 18.34966 9.89328

3 4.0 85.09059 63.95068 57.46286 45.92757 37.45983 28.19914 18.74906 10.54437

3 4.0 96.84109 71.86130 64.00848 51.19302 41.84386 31.48795 21.02892 11.33134

3 4.5 92.23371 69.15029 62.23768 49.58913 40.49213 30.35307 20.17625 11.46790

3 4.5 110.88897 82.36203 73.45829 58.78820 48.08986 36.22395 24.23178 13.06475

3 5.0 103.60224 77.91233 70.22975 56.11854 45.91198 34.60408 23.19849 13.30382

3 5.0 122.52935 91.08612 81.32051 65.10912 53.29928 40.17296 26.90490 14.50752

3 5.5 112.38854 84.61192 76.70964 61.43827 50.29983 38.18121 26.27689 15.48643

3 5.5 133.16106 99.07050 88.51467 70.92000 58.08743 43.80871 29.37095 15.84294

3 6.0 124.28750 93.88977 84.99829 68.21433 55.98589 42.68254 29.41096 17.35591

3 6.0 146.08920 108.80058 97.30172 78.00791 63.94068 48.25644 32.39463 17.48203

3 6.5 130.12421 98.20525 88.54555 70.83782 58.05055 43.88243 30.38866 18.63796

3 6.5 158.59803 118.21295 105.83019 84.90383 69.64067 52.59066 35.34106 19.08515

3 7.0 140.65024 107.78195 97.33003 78.08029 64.19464 48.75003 33.73483 20.48654

3 7.0 166.31043 125.50837 112.43966 90.24232 74.05578 55.97285 37.64417 20.35110

3 7.5 137.59934 105.40685 95.71284 77.47269 63.97739 49.31108 34.21863 20.14165

3 8.0 137.11140 105.10373 95.45544 77.13630 63.43102 48.72076 33.46370 19.19675

3 8.0 138.13331 106.05061 96.38750 78.11380 64.63298 49.98657 34.77459 20.67317

3 9.0 137.55421 105.69629 96.10111 78.10008 64.70215 50.10192 34.92248 20.82460

3 9.0 139.54503 107.94128 98.54228 80.29305 66.86345 52.16548 36.97141 22.88847

3 10.0 139.57699 108.52177 99.23635 80.89677 67.29424 52.48387 37.06866 22.85139

3 10.0 140.66618 109.32079 100.20578 81.94740 68.52820 53.74163 38.21769 23.97466

3 11.0 140.70446 109.77812 100.69468 82.41134 68.85881 53.95808 38.47130 24.23114

3 11.0 141.27693 110.14729 101.00479 82.73103 69.14132 54.14565 38.46499 24.12873

3 12.0 141.66306 110.59522 101.62458 83.38771 69.86125 54.88727 39.16449 24.87650

3 13.0 142.35165 111.27673 102.43089 84.13912 70.54626 55.62033 39.85654 25.67854
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3 13.0 142.92486 111.80618 102.97554 84.57201 70.89130 55.94520 40.23063 25.99207

3 15.0 144.61491 113.37735 104.46328 85.91812 72.20520 57.13543 41.27319 27.07760

3 15.0 144.47785 113.09924 104.29429 85.79490 72.12999 56.88218 40.99619 26.71276

3 18.0 146.08767 114.81142 106.11654 87.57753 73.84228 58.45894 42.57734 28.44945

3 18.0 147.88382 116.61998 107.93253 89.23612 75.04796 59.66874 43.36701 28.96747

3 21.0 148.55597 117.16319 108.53330 89.51039 75.88834 60.64421 44.68205 30.54577

Table D.2: EXPERIMENTAL DATA: 400µm− 600µm

Pressure reading [mbar]

Run

no.

Fluid

velocity

[ℓ/min]

Sensor 1

at 30mm

Sensor 2

at 230mm

Sensor 3

at 331mm

Sensor 4

at 432mm

Sensor 5

at 532mm

Sensor 6

at 633mm

Sensor 7

at 733mm

Sensor 8

at 834mm

1 5.0 12.47307 9.66077 8.62459 6.97451 5.68746 4.39089 3.01765 1.82501

1 5.0 14.86238 11.19224 10.09635 8.28818 6.77191 4.86699 3.20382 1.92120

1 8.0 20.03674 15.45186 13.85388 11.16670 9.11916 7.04298 4.87215 2.93491

1 8.0 24.68648 18.54897 16.78764 13.73811 11.24063 8.09726 5.40752 3.18642

1 10.0 25.76351 19.84229 17.81906 14.34789 11.73083 9.07014 6.28271 3.78260

1 10.0 30.60494 22.99243 20.82058 17.03720 13.93828 10.05256 6.73762 3.95324

1 12.0 31.38214 24.14986 21.71559 17.47413 14.29712 11.06161 7.67032 4.61369

1 12.0 37.07740 27.85626 25.25027 20.65060 16.90550 12.20747 8.20905 4.79460

1 14.0 43.56601 32.73062 29.69981 24.28463 19.88560 14.36910 9.68586 5.64406

1 15.0 39.50100 30.38600 27.36668 22.01353 18.02347 13.95464 9.69544 5.83548
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1 16.0 49.90141 37.50068 34.04958 27.84346 22.81291 16.49085 11.14165 6.48276

1 18.0 47.14571 36.24588 32.67700 26.26940 21.51619 16.66751 11.58932 6.97832

1 18.0 56.31119 42.33560 38.46462 31.46220 25.78589 18.65425 12.61635 7.33284

1 20.0 62.73135 47.17904 42.88610 35.08623 28.76922 20.82500 14.10229 8.19072

1 21.0 55.47809 42.66349 38.50406 30.95203 25.37350 19.67471 13.69391 8.25721

1 22.0 69.83019 52.53770 47.79128 39.10401 32.08194 23.24487 15.76144 9.14884

1 24.0 65.40606 50.31900 45.45785 36.54396 29.98828 23.27737 16.22637 9.79572

1 24.0 78.27064 58.91598 53.62934 43.89968 36.03347 26.12359 17.73757 10.28832

1 26.0 85.96473 64.73517 58.96917 48.28258 39.65186 28.76241 19.55468 11.33609

1 27.0 75.60274 58.19565 52.61821 42.32165 34.74545 26.98331 18.84402 11.40993

1 28.0 94.06170 70.86872 64.59339 52.90951 43.47306 31.54807 21.47119 12.44333

1 30.0 86.59599 66.67462 60.32805 48.53433 39.85715 30.99183 21.67547 13.17175

1 30.0 102.62222 77.35580 70.54673 57.80686 47.52231 34.50471 23.50349 13.60322

1 32.0 110.85267 83.58886 76.27891 62.52000 51.40831 37.33633 25.43776 14.69902

1 33.0 97.70831 75.25335 68.14546 54.85934 45.09311 35.08511 24.57585 14.96938

1 34.0 120.14988 90.63561 82.75725 67.84916 55.80136 40.53488 27.60846 15.91864

1 36.0 108.85495 83.81417 75.96438 61.17650 50.31445 39.18129 27.47096 16.73744

1 36.0 128.46331 96.93078 88.54703 72.61283 59.72867 43.38018 29.53563 16.97550

1 38.0 115.47948 88.88727 80.52022 64.82926 53.27228 41.47862 29.03164 17.65904

1 38.0 136.54043 103.03522 94.16306 77.22303 63.53896 46.10076 31.34993 17.93030

1 40.0 122.04502 93.95955 85.18373 68.63917 56.47071 44.00321 30.88404 18.87604

1 40.0 145.00739 109.07331 99.49380 81.34623 67.16307 49.02260 33.13176 18.70521

1 42.0 129.66120 99.84218 90.66364 73.28454 60.33399 47.11710 33.14908 20.43076

1 42.0 142.72394 107.84912 97.44880 78.54425 64.44130 50.30743 35.27952 21.03025

1 44.0 135.71658 104.52799 95.10630 76.93736 63.44021 49.52340 34.79160 21.60873

1 44.0 142.56012 109.99692 98.98923 79.63777 65.63001 51.55839 36.57591 22.85391

1 46.0 141.76524 109.23016 99.32104 80.20370 66.40349 51.74544 36.59427 22.75907
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1 46.0 143.20200 110.64218 100.89796 82.20466 67.82450 53.22464 38.26184 24.62993

1 48.0 144.10181 111.11117 100.74270 81.58687 67.67080 53.00661 38.06414 24.73772

1 48.0 144.03684 111.46639 101.38260 82.30580 68.71205 54.29577 39.42763 26.23747

1 50.0 147.52569 114.73452 104.67990 84.94436 70.49199 55.44070 40.30257 27.12829

1 50.0 147.46080 114.93851 105.10425 85.79560 71.87664 56.93933 41.69095 28.40981

1 55.0 154.19383 121.69134 111.73694 91.13155 76.03026 60.43981 44.91478 31.85158

1 60.0 159.49338 131.21941 119.87880 97.06514 81.13404 64.82618 48.95381 36.14123

1 60.0 159.61222 130.28136 119.63378 97.77522 82.39414 66.46323 50.65368 37.91139

1 65.0 161.17748 136.63153 125.77380 102.53000 86.45093 70.25459 54.34780 41.60692

2 2.0 4.00184 3.14559 2.76971 2.28862 1.86352 1.40278 0.84395 0.55511

2 5.0 11.27150 8.70600 7.77919 6.30914 5.14173 3.89896 2.55149 1.50441

2 5.0 12.47297 9.64460 8.63398 6.97979 5.70685 4.39488 2.95952 1.83564

2 8.0 20.93510 16.14124 14.49920 11.68765 9.55755 7.38093 5.04283 3.07878

2 9.0 20.19048 15.52932 13.93982 11.25894 9.18370 6.97815 4.66504 2.68806

2 10.0 26.92062 20.73070 18.65096 15.01625 12.29076 9.49541 6.51763 3.96288

2 12.0 28.76253 22.08426 19.84833 16.00552 13.06255 9.94559 6.69129 3.82374

2 12.0 32.96856 25.38138 22.85793 18.39149 15.05676 11.64149 8.01267 4.84772

2 15.0 35.75539 27.45237 24.69584 19.90774 16.25381 12.38829 8.37094 4.76520

2 15.0 39.36229 30.30813 27.32234 21.98042 17.99770 13.92341 9.60848 5.80075

2 18.0 43.80603 33.63526 30.28955 24.41329 19.94807 15.21413 10.31755 5.86625

2 18.0 47.57869 36.63157 33.06220 26.60169 21.79062 16.86814 11.66791 7.03523

2 20.0 54.58777 42.04637 37.97858 30.56739 25.04995 19.39874 13.44545 8.09480

2 21.0 51.55605 39.59177 35.69153 28.76785 23.52073 17.94537 12.19523 6.92782

2 23.0 64.59128 49.77651 45.00922 36.23664 29.72316 23.02963 15.98860 9.62169

2 24.0 61.25233 47.05651 42.45222 34.22240 28.00480 21.38717 14.57007 8.27181

2 25.0 71.26277 54.93779 49.71274 40.04402 32.85389 25.46127 17.69480 10.64862

2 27.0 69.03148 53.05420 47.90260 38.61899 31.63267 24.17079 16.49387 9.36379
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2 28.0 81.40012 62.78441 56.87046 45.82935 37.62666 29.17905 20.30024 12.20950

2 30.0 81.58830 62.73210 56.70198 45.74088 37.50082 28.69976 19.62639 11.14876

2 30.0 89.53073 69.08868 62.63458 50.50183 41.48611 32.17291 22.39676 13.45694

2 33.0 92.60604 71.26185 64.45724 52.04030 42.71480 32.73959 22.44560 12.76614

2 33.0 100.97967 77.98598 70.77343 57.10337 46.94020 36.41610 25.37060 15.23134

2 35.0 108.20658 83.60412 75.92660 61.28717 50.40436 39.10158 27.25006 16.34799

2 36.0 104.25340 80.29892 72.70102 58.74761 48.29691 37.07288 25.45709 14.50867

2 38.0 120.23632 92.96659 84.52233 68.26554 56.18232 43.58769 30.38024 18.19035

2 39.0 115.28421 88.85246 80.54706 65.13069 53.66094 41.25844 28.42687 16.25486

2 40.0 127.26477 98.39666 89.47711 72.25991 59.44680 46.06315 32.02939 19.03103

2 41.0 122.08935 94.10361 85.35134 69.06057 56.98517 43.84981 30.24094 17.33591

2 42.0 134.55232 104.07309 94.65605 76.37560 62.79527 48.19556 33.16498 19.42371

2 44.0 130.58845 100.65033 91.27134 73.89695 61.01685 47.15042 32.32927 18.84326

2 45.0 140.99056 108.16534 98.20147 79.60862 65.87443 51.24222 35.88078 21.71132

2 47.0 139.91225 107.65446 97.27962 78.50397 64.69438 49.80986 34.48300 20.63210

2 48.0 143.24367 110.57988 99.97094 80.75368 66.87601 52.21661 37.19853 23.89245

2 50.0 143.66343 111.33899 100.66576 81.22103 67.04632 52.11376 36.95294 23.66952

2 50.0 145.43289 112.88463 102.26172 82.75032 68.56416 53.58253 38.53997 25.38465

2 53.0 149.28754 116.68948 106.39317 86.39020 71.94616 56.71037 41.36806 28.28784

2 54.0 150.71955 117.61970 107.39017 87.17190 72.36795 56.92587 41.34217 28.12552

2 56.0 154.21454 121.35673 110.89534 90.11633 74.97946 59.51833 43.98456 31.05747

2 58.0 156.27843 123.19471 112.41828 91.66406 76.74096 61.08615 45.22682 32.06106

2 60.0 158.35981 128.07058 116.59086 94.78343 79.07091 63.10953 46.97786 33.96852

2 60.0 158.05377 126.94818 115.29475 93.21163 77.61210 61.82538 46.11662 33.30743

2 65.0 160.58203 135.11372 122.70204 98.90643 82.22012 66.03807 50.22370 37.66949

3 5.0 9.75932 7.49250 6.68745 5.43245 4.41773 3.35694 2.17855 1.30308

3 5.0 10.93890 8.45070 7.55172 6.12880 4.99557 3.78550 2.47839 1.46683
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3 8.0 15.91752 12.17714 10.90958 8.82212 7.17750 5.46808 3.61970 2.12463

3 8.0 18.07666 13.90792 12.47558 10.08202 8.22463 6.24925 4.15939 2.40521

3 10.0 20.50193 15.65945 14.04888 11.34577 9.23657 7.04063 4.69368 2.72959

3 10.0 23.77298 18.26928 16.41944 13.24983 10.81075 8.22155 5.51455 3.16949

3 12.0 25.31131 19.31844 17.34407 14.00201 11.40202 8.69486 5.82812 3.37215

3 13.0 31.51706 24.20706 21.78477 17.56705 14.34293 10.91756 7.36374 4.20735

3 15.0 31.87946 24.32072 21.86298 17.63833 14.36743 10.97166 7.38498 4.25182

3 15.0 36.22178 27.81605 25.04767 20.20019 16.49149 12.55936 8.49340 4.84120

3 18.0 38.74619 29.55745 26.59716 21.44906 17.48266 13.36006 9.01446 5.17797

3 18.0 44.14563 33.90580 30.56528 24.65013 20.13753 15.34172 10.41134 5.92603

3 20.0 43.78044 33.39666 30.07402 24.24978 19.76939 15.11611 10.22152 5.86300

3 21.0 52.33698 40.20508 36.27914 29.26247 23.91645 18.23446 12.39737 7.04637

3 22.0 48.87781 37.28808 33.59740 27.09038 22.09687 16.89944 11.44577 6.55911

3 24.0 61.46230 47.23031 42.66091 34.41861 28.15183 21.47594 14.63190 8.31007

3 25.0 58.45964 44.61812 40.23992 32.45693 26.49317 20.28047 13.76543 7.88483

3 27.0 71.06649 54.63662 49.39770 39.86576 32.63427 24.90975 17.00094 9.64702

3 28.0 67.60859 51.62473 46.59671 37.59868 30.71594 23.53657 16.00310 9.17041

3 30.0 73.96724 56.48868 51.01900 41.17456 33.65482 25.80396 17.56158 10.06646

3 30.0 83.59943 64.31426 58.21753 47.01226 38.50932 29.41631 20.11126 11.40484

3 33.0 84.86699 64.84396 58.61280 47.32654 38.72544 29.71562 20.25836 11.62027

3 33.0 94.17102 72.49140 65.67967 53.06474 43.49197 33.23368 22.73812 12.88351

3 36.0 95.19472 72.79876 65.85241 53.20785 43.59625 33.49384 22.87252 13.13710

3 36.0 103.09433 79.40183 72.00163 58.20090 47.72753 36.48173 24.97972 14.13918

3 39.0 106.41159 81.42004 73.71523 59.60278 48.88190 37.59311 25.73306 14.77635

3 40.0 120.18752 92.64140 84.13524 68.06836 55.87748 42.72325 29.28677 16.55220

3 42.0 116.30383 89.09179 80.74810 65.37108 53.68223 41.38226 28.44563 16.40447

3 43.0 131.67615 101.55366 92.32181 74.74656 61.35884 46.92768 32.16816 18.13568
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3 45.0 129.55270 99.21452 90.01288 72.94406 59.93467 46.24452 31.85635 18.40151

3 45.0 137.67638 105.79360 95.67742 77.12172 63.22443 48.38765 33.10340 19.01679

3 48.0 136.91345 104.62819 94.84727 76.84671 63.16601 48.63935 33.46887 19.42282

3 48.0 142.83786 110.52200 100.20395 80.94223 66.70872 51.38624 35.52433 21.17729

3 50.0 141.56859 109.23063 98.63936 79.38849 65.30014 50.42647 35.34568 21.90277

3 50.0 143.41260 111.04867 100.24596 80.75000 66.53655 51.60226 36.48179 23.04857

3 55.0 148.32176 115.74693 105.43876 85.65062 71.13303 55.72259 40.20836 26.92806

3 55.0 148.87682 116.26460 105.94905 85.93918 71.36502 55.97836 40.59947 27.42201

3 60.0 155.60770 123.18178 112.91939 91.86608 76.40451 60.42434 44.57548 31.48237

3 60.0 155.54647 123.38450 112.37616 91.06673 75.62759 59.81520 43.98377 30.95980

3 65.0 159.00676 130.13127 118.15746 94.86080 78.64998 62.38601 46.44977 33.64406

Table D.3: EXPERIMENTAL DATA: 750µm− 1000µm

Pressure reading [mbar]

Run

no.

Fluid

velocity

[ℓ/min]

Sensor 1

at 30mm

Sensor 2

at 230mm

Sensor 3

at 331mm

Sensor 4

at 432mm

Sensor 5

at 532mm

Sensor 6

at 633mm

Sensor 7

at 733mm

Sensor 8

at 834mm

1 10.0 9.77829 7.59895 6.86236 5.59822 4.61242 3.57332 2.43170 1.55725

1 10.0 9.02922 7.00768 6.28926 5.18274 4.30057 3.33313 2.19653 1.30954

1 20.0 19.39146 15.01717 13.64963 11.10084 9.18120 7.15512 4.99486 3.18978

1 20.0 18.46015 14.28424 12.87461 10.55536 8.77891 6.82609 4.64388 2.69461

1 30.0 32.41464 25.09598 22.87748 18.59110 15.41785 12.06065 8.51348 5.43105
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1 30.0 31.24210 24.16362 21.83511 17.88048 14.89102 11.61576 8.00216 4.61026

1 40.0 47.92672 37.15278 33.96709 27.61795 22.96277 18.02221 12.81190 8.24704

1 40.0 46.60605 36.05610 32.64262 26.72250 22.27046 17.39835 12.05993 6.91598

1 50.0 64.48103 49.99906 45.77099 37.22982 30.97949 24.34375 17.35569 11.14318

1 50.0 65.27084 50.53424 45.82872 37.52869 31.30494 24.46902 17.02566 9.71970

1 60.0 87.72582 68.00077 62.34147 50.72111 42.21389 33.17279 23.73166 15.28602

1 60.0 89.34851 69.25605 62.92726 51.56066 43.05216 33.67578 23.48638 13.32852

1 65.0 100.27644 77.71582 71.27299 58.01583 48.28382 37.97735 27.19327 17.53144

1 65.0 103.13024 79.99091 72.75268 59.64028 49.82832 38.98072 27.21011 15.40811

1 70.0 114.40336 88.58967 81.27594 66.16956 55.05048 43.34823 31.17878 20.23470

1 70.0 115.72131 89.79516 81.73912 67.01958 56.00007 43.79573 30.53552 17.12569

1 75.0 125.20633 96.96977 89.06448 72.54645 60.43384 47.77256 34.53194 22.39082

1 75.0 127.18710 98.48291 89.53778 73.24799 60.96986 47.37618 32.60744 18.31325

1 80.0 137.06661 105.40219 95.34198 77.40298 63.69349 48.92375 33.73848 19.70655

1 80.0 140.55830 108.93484 100.22681 81.78028 68.13080 53.93161 38.80769 25.06995

1 85.0 142.48277 108.81385 98.49233 79.76859 66.50970 51.70298 36.29361 22.25470

1 85.0 147.35917 113.94777 104.08193 85.21952 71.45493 56.75041 41.68667 28.35765

1 90.0 144.49449 111.48420 101.60131 82.89069 69.40686 54.76826 39.66504 26.42413

1 90.0 153.00203 119.03521 109.16840 89.81076 75.90412 61.04509 46.01535 33.40346

1 95.0 158.21229 124.70373 114.70735 94.60775 80.52460 65.63853 50.55788 38.32575

1 100.0 157.13965 124.62731 114.88821 94.78839 81.15711 66.60255 51.78054 39.95403

1 105.0 163.52639 138.52997 130.55266 109.48002 94.98798 79.15806 63.53539 51.54221

1 110.0 162.85023 138.36161 129.25356 107.92779 93.75011 78.45765 62.84715 51.20585

1 110.0 164.11721 142.89167 135.69581 114.38118 99.93651 84.22050 68.13877 55.95756

1 120.0 163.83682 148.23504 145.76618 124.89255 108.75464 91.42036 74.65948 63.05205

2 10.0 9.52192 7.22726 6.40016 5.14772 4.07093 3.03589 1.90244 0.96457

2 10.0 9.56803 7.37443 6.60403 5.29302 4.25849 3.16662 1.96947 0.95207
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2 20.0 19.17324 14.44983 12.88567 10.29101 8.16733 6.09636 3.88914 1.92683

2 20.0 19.26746 14.80344 13.28955 10.62789 8.54724 6.36409 4.06970 1.90010

2 30.0 31.98915 24.06422 21.52979 17.17591 13.64739 10.20704 6.57866 3.25862

2 30.0 32.38947 24.85073 22.36863 17.84572 14.37584 10.71241 6.91567 3.18255

2 40.0 46.92932 35.28275 31.66052 25.22868 20.09657 15.04509 9.74394 4.81186

2 40.0 48.73125 37.38567 33.72461 26.90484 21.68892 16.17166 10.48927 4.78535

2 50.0 65.17460 48.98662 44.05335 35.12008 28.00700 20.99565 13.66067 6.74174

2 50.0 68.53159 52.61764 47.54217 37.94669 30.62503 22.84032 14.85280 6.74792

2 60.0 88.71841 66.61450 60.02870 47.87621 38.23171 28.71844 18.75984 9.33580

2 60.0 93.34582 71.72270 64.92938 51.86858 41.91240 31.28052 20.35891 9.19861

2 65.0 101.17164 75.91939 68.46341 54.64487 43.66979 32.87003 21.58377 10.84211

2 65.0 107.65407 82.75004 74.99883 59.93376 48.46175 36.16539 23.52421 10.57073

2 70.0 112.72748 84.38213 76.12893 60.72230 48.44607 36.48854 24.06306 12.35724

2 70.0 121.97358 93.58413 84.74905 67.56218 54.41566 40.29524 25.79913 11.01833

2 75.0 123.56238 92.79164 83.83855 66.84003 53.37467 40.24390 26.67492 14.06772

2 75.0 132.08438 100.80912 90.94286 72.38265 57.80390 42.65031 26.49497 11.94049

2 80.0 135.24036 101.70549 91.62998 73.22732 58.75565 44.12243 29.21256 14.93718

2 80.0 136.54770 102.34552 91.33627 72.91284 59.05352 43.69304 28.14289 13.96952

2 85.0 138.59797 105.09207 94.57580 75.88121 62.05551 47.48758 32.29640 19.19767

2 85.0 137.22871 104.05425 93.49725 75.01848 61.07670 46.37544 30.99690 17.67939

2 90.0 143.65148 109.38605 98.78397 80.28287 65.62797 50.89135 36.12466 22.18218

2 90.0 145.85892 111.98538 101.64008 81.87629 67.36119 52.58658 37.31738 24.47028

2 100.0 149.90876 117.10564 105.88210 85.42047 70.27393 55.00503 40.97895 28.60067

2 100.0 153.74699 123.58328 113.39443 93.02331 76.87967 61.81540 45.94444 32.23326

2 110.0 156.81142 129.62368 119.15767 97.61163 83.61170 66.96067 50.88227 38.53596

3 10.0 8.73212 6.66136 5.90095 4.81919 3.89242 2.88984 1.77378 0.93236

3 10.0 9.63296 7.26863 6.40849 5.13242 4.12046 3.06315 1.89561 1.00866
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3 20.0 19.00033 14.24935 12.64485 10.06409 8.09806 6.03709 3.84474 1.98675

3 20.0 17.84108 13.53758 12.07979 9.78938 7.92604 5.90237 3.72824 1.89388

3 30.0 31.50192 23.59581 20.99234 16.68077 13.43241 10.03528 6.47445 3.31358

3 30.0 30.16425 22.84328 20.45421 16.53342 13.40277 9.99494 6.39059 3.21079

3 40.0 46.64676 34.93562 31.15627 24.73889 19.93770 14.91853 9.68478 4.93404

3 40.0 45.37121 34.36505 30.84368 24.91832 20.21759 15.08752 9.70543 4.84543

3 50.0 64.06585 48.00731 42.88344 34.05440 27.47285 20.57115 13.43611 6.84427

3 50.0 63.99281 48.50559 43.63290 35.26393 28.63928 21.38843 13.80106 6.85749

3 60.0 86.90455 65.09802 58.22089 46.23417 37.33288 27.99156 18.34005 9.44716

3 60.0 87.46054 66.37441 59.83916 48.39762 39.36906 29.41723 19.01921 9.40609

3 65.0 98.68434 73.83609 66.08849 52.49108 42.44883 31.90237 21.02454 10.83592

3 65.0 99.52577 75.61834 68.25277 55.24867 44.98386 33.62023 21.74629 10.72663

3 70.0 109.82108 81.94855 73.38182 58.27450 47.15659 35.45409 23.46157 12.24592

3 70.0 114.06221 86.84019 78.57625 63.71034 51.98259 38.91471 25.22852 12.44559

3 75.0 121.94801 90.91740 81.48413 64.70317 52.53924 39.73169 26.61034 14.44179

3 75.0 125.84857 95.82556 86.78315 70.40299 57.45405 42.97645 27.80037 13.44790

3 80.0 133.26912 100.01133 89.83925 71.21358 57.34335 43.22001 28.77831 15.33234

3 80.0 133.81222 100.85395 90.76465 72.94146 58.82571 43.88654 28.76824 14.77328

3 85.0 137.60100 104.50762 93.89468 75.31708 61.53662 47.03068 32.21128 18.69090

3 85.0 137.36736 103.80135 93.25515 74.72858 60.88490 46.23801 31.31272 17.92300

3 90.0 143.80636 110.50838 99.92623 80.35197 65.96818 50.93274 36.09584 23.26333

3 90.0 143.05144 109.43195 98.69497 79.23968 64.87345 49.92194 35.05086 22.23052

3 100.0 153.61917 121.70321 111.41039 91.47960 77.28648 61.59794 45.46043 32.87421

3 100.0 151.15737 118.46335 107.95646 87.38722 72.04363 56.38782 41.16116 28.64399

3 110.0 155.91992 128.02531 118.22181 97.67642 83.67158 67.97444 51.42820 39.03196
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