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� I   Current 

� pa   Anodic current 

� pc   Cathodic current 

� LLE   Liquid-liquid extraction 

� LOD   Limit of detection 

� MPC   metallophthalocyanine 

� MS   Mass spectrometer 

� MV/s   Millivolts per second 

� NPD   Nitrogen-phosphorous detector 

� O   Oxidation 

� OD   Optical density 

� PPM   Parts per million 

� R   Reduction 

� RDE  Rotating disc electrode 

� RE   Reference electrode 

� RB  Redox Battery 

� RFB  Redox Flow Battery 

� RPM   Revolutions per minute 

� SCE   Saturated calomel electrode 

� SD   Standard deviation 

� SHE   Standard hydrogen electrode 

� SPE   Screen printed electrode 

� SPME   Solid-phase micro-extraction 

� Spp.   Species 

� TMB   Tetramethylbenzidine 

� UV   Ultra violet 

� V   Volts 

� WE   Working electrode 

 



 

SYMBOLS 
 

 
� a   Pre-factor in the power law 

� A  Surface area (cm2) 

� B  Power in the power law relationship 

� 0 c  Initial concentration of a diffusing species (mol·cm-3) 

� R c   Final concentration of a diffusing species (mol·cm-3) 

� s c  Current concentration of a diffusing species at the surface of an     

                   electrode(mol·cm-3) 

� C  Capacitance (F) 

� C 0   Initial bulk concentration of the electroactive species (mol·cm-3) 

� Li C   Maximum concentration of intercalated lithium in an intercalant       

                                              (mol·cm-3) 

� D   Diffusion coefficient (cm·s-1) 

� e   Charge on an electron (C) 

� E  Electrochemical potential (V) 

� E f  Final potential in a potential sweep (V) 

� Ei   Initial potential in a potential sweep (V) 

� E F   Fermi energy (eV) 

� E g  Band gap energy in semiconductors (eV) 

� E OC  Open circuit potential (V) 

� E P  Potential at which a peak is formed in voltammetry (V) 

� EP/2  Potential at half the peak height (current) (V) 

� E S   Steady state potential (V) 

� ∆Eτ   Change in potential between the start and the end of a galvanostatic  

     step. 

� j f   Probability that the jth electron energy state in a substance is occupied. 

� F  Faraday’s constant (96485 C·mol-1) 

� h   Planck’s constant (6.626×10-34 Js) 

� i   Current (A) 

� i P  Peak current in a voltammetry experiment (A) 

� i , p a  Peak anodic current in a voltammetry experiment (A) 

� i p c,   Peak cathodic current in a voltammetry experiment (A) 

� t (t )   Total current as a function of time (A) 

� k   Boltzmann’s constant (1.381×10-23 J·K-1) 

� m   Mass of active material (g) 

� m e   Effective mass of an electron 

� m h   Effective mass of a hole 

� m 0  Mass of an electron 

� n  Number of electrons transferred in an electrochemical process (mol) 

� n a   Number of electrons transferred in the rate limiting step of a multistep 

electrochemical process (mol) 

� N   Number of moles of intercalated (mol) 

� q c  Coulombic charge passed for a specific reaction during the cathodic  

sweep in a voltammogram (C) 

� Q   Coulombic charge passed during a potentiostatic step (C) 
� r  Particle radius or diffusion length (cm) 

� R   Gas constant (8.314 J·mol-1·K-1) 

� t   Time (s) 

� T   Temperature (K) 



 

� V   Volume of a thin film electrode (cm3) 

� m V   Molar volume (cm3
·mol-1) 

� A z   Charge on an ion 

� α   Transfer coefficient (dimensionless) 

� Γ 
∗

Li  Maximum surface concentration of intercalated lithium in a adsorbed  

film model (mol·cm-2) 

�  Γ
∗

 Li +   Surface concentration of adsorbed Li+ ions 

� ε   Dielectric constant 

� j ε   Energy of the jth electron energy state (eV) 

� ν   Scan rate in a voltammetry experiment (V·s-1) 

� τ   Time taken during a galvanostatic step during a galvanostatic 

intermittent titration experiment (s) 
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Abstract 
 

Electrochemical behaviour of Ce, Fe, Cr,V and Mn in the presence of DTPA, EDTA, EDDS, 

NTA ligands were investigated by using cyclic voltammetry, a rotating disc electrode and 

electrochemical impedance spectroscopy for use in redox flow battery (RFB) systems. RFB is 

currently used for energy storage, the vanadium, which is used in most of the RFB’s, however 

suffers from species crossover and sluggish reactions, which limit the lifetime of the battery.  

These various ligands and metal complexes mentioned above where all examined to identify 

the suitable and favoured electrolyte that can be used for a RFB system.  

 

Kinetic parameters such as potential, limiting current, transfer coefficient, diffusion 

coefficients, and rate constants were studied. RDE experiments confirmed that the parameters 

measured by CV are similar under hydrodynamic conditions and can be used to determine the 

kinetic parameters of the redox couples. The use of DTPA as a ligand for complexation of 

Ce(IV) gave more favourable results compared to other ligand with various metal complexes 

used in this study [1-3]. The results of kinetic studies of Ce(IV)–DTPA complex shows 

promise as an electrolyte for a redox flow battery.  

 

The separation of V(IV)/(V), Fe (III)/(IV),Cr(III)/(IV),Mn (III)/(IV) and Ce(III)/(IV) with 

various ligands (EDTA, EDDS, NTA and DTPA) were also investigated using capillary 

electrophoresis. To understand the speciation of these metal complexes as used in this study 

and particularly the vanadium, for the reason that it has a complicated (V) oxidation state. The 

charge/discharge performance of all electrolytes used in this work was determined and a high 

voltage achieved when Ce-DTPA was used, and it is compared to that of the vanadium 

electrolyte currently in use. This was evaluated with systems studied previously. Therefore, 

Ce-DTPA will be a suitable electrolyte for redox flow battery systems.  
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Chapter 1 

Introduction 

1.1 Background 

 

Worldwide the demand for electrical energy is continuously increasing. It is well know that 

the entire world is now suffering from the worst energy crisis. Although over the last two 

decades growth in energy consumption has been slower than was anticipated in the late 1970s, 

recent economic growth and improved distribution of electricity to households have resulted 

in significant increases in electricity demand. 

 

In South Africa the demand for electricity between 1980 and 2004 increased by about 50% 

and, from 2004 until recently it was underestimated (more energy was required than could be 

produced). It is predicted that there will be more than a 60 % increase in energy usage as a 

result of increase consumption by 2030 to fuel economic development [1]. Energy demand is 

expected to grow significantly by 5.7% annually, driven particularly by important forward 

changes in the living conditions of the millions of people who currently live at or below the 

poverty line. 

 

Growth in demand is not the only reason to consider alternative energy supply options. 

Currently, in South Africa, the energy supply is primarily coal. However, supplies will not 

last more than 20 years if used at the current rates. Coal has many other uses, and it needs to 

be preserved for future utilization. Coal and other fossil fuels, including oil, produce carbon 

dioxide when burned to produce energy. Furthermore is now widely accepted that climate 

change, partially caused by human-generated carbon dioxide, represents an extremely serious 

environmental threat to the whole world.  

 

Today researchers have the potential to increase the flexibility of power systems and improve 

on the response to a sudden demand of energy. Presently the world is facing new challenges 

in electricity, since much has been ignored for the past decays. The need to meet growing 

energy demand will require innovation, such as energy generation and storage. Over the past 

years several energy storage technologies have been investigated and developed. Some 

technologies have reached the marcher level but only a few have become commercially 

available. Pumped hydro facilities have been successfully used to store electricity for many 

decades, but suitable locations present problems. Redox flow batteries (RFB) are also capable 
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of accumulating electrical energy. The flow batteries are very good for power and energy on a 

large scale because they are environmentally friendly, have a long life and high reliability 

require low maintenance, and are simple efficient. More research work and development has 

already been done and now researchers are progresing to improve the electrochemistry of the 

RFBs and reduce its high manufacturing cost. The focus of this dissertation is on the 

evaluation of various electrolytes that can be suitable for RFB application and also the battery 

performance and offer a good efficiency to conceivable replace vanadium that is presently 

used, but presents its own problems. 

 

1.2 Aim and Objectives 

  

The critical questions to be addressed in this dissertation are: how can one improve on the 

problems currently associated with RFBs, namely: cross contamination, strong activity, 

reversibility of the redox processes, stability of electrolytes, solubility of electrolytes, and 

electrochemical activity. The current industry standard in RFBs is the vanadium redox flow 

batteries (VRFB). 

 

1.2.1 Aim 

 

This thesis addresses issues of the reversibility, stability, cross contamination, strong activity, 

and solubility of electrolytes. Electrochemical techniques such as CV and EIS were utilized to 

investigate fundamental kinetics and thermodynamics of selected redox couples of Fe, Cr, Mn 

and Ce and complexes there of with aminocarboxylic acids 

 

1.2.2 Specific objectives 

 

� Investigate the electrochemical behaviour of redox couples (cerium (Ce), chromium 

(Cr), iron (Fe), manganese (Mn), and vanadium (V) for redox flow batteries.  

� Study the kinetics and thermodynamics of complexes of various aminocarboxylates 

ethylenediamine disuccinate (EDDS), ethylenediaminetetra acetic acid (EDTA), 

nitrilotriacetic acid (NTA) and diethylenetriaminepenta acetic acid (DTPA) with 

metals (Ce, Cr, Fe, Mn, and V) by electrochemical techniques. 

� Determine the performance of potential redox couples for use in RFB systems. 

� Speciation of metal complexes, (Ce-EDTA, Ce-DTPA, Cr-EDTA, Cr-DTPA, Fe-

EDTA, Fe-DTPA, Mn-EDTA, Mn-DTPA, V-EDTA, and V-DTPA). 
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1.3 Methodology and Approach 

 

The electrochemical behaviour of the redox couples used in this study will be examined using 

cyclic voltammetry (CV), a rotating disc electrode (RDE), and electrochemical impedance 

spectroscopy (EIS) for redox flow battery systems. CV has become an important and 

commonly used electroanalytical technique in many areas of chemistry [2]. It is usually used 

for the study of redox processes, for understanding reaction intermediates, and for 

determining the stability of reaction products. This technique is based on varying the applied 

potential at a working electrode in both forward and reverse directions.  

 

The RDE is similar to CV technique in that the working electrode potential is swept back and 

forth across the formal potential of analyte. It varies in the working electrode; it rotates at a 

very high speed. This rotational motion sets up a well defined flow of solution towards the 

surface of the rotating disk electrode. The flow pattern is similar to a current that literally 

sucks the solution towards the electrode [2]. RDE was used in this study to verify the CV 

results. EIS was used to evaluate a suitable electrolyte for redox couple systems.   

 

EIS has great advantages: it can not only provide detailed kinetic information, but can also be 

used to monitor changes in battery properties under different usage or storage conditions. Due 

to its great advantages it is now widely applied to the study of batteries and fuel cells [3].  It is 

a very sensitive technique and offers a wealth of information about battery systems, such as 

an analysis of the state of charge, study of reaction mechanisms, and change of active surface 

area during operation separator evaluation, separation and comparison of electrode kinetics on 

each electrode, investigation of the kinetics at each electrode. EIS can give accurate, error-

free kinetic and mechanistic information using a variety of techniques and output formats [4, 

5].The performance of a test battery will be evaluated with constant- current charge-discharge 

experiments and open-circuit voltage measurements with a battery system.  

 

Capillary electrophoresis (CE) is an attractive approach for the separation of metal species 

because of its high efficiency and rapid separation [5, 6]. In this investigation the separation 

of V (IV)/(V), Fe(III)/(IV), Cr(III)/(IV), Mn (III)/(IV), and Ce(III)/(IV) with various ligands 

e.g. EDTA, EDDS, NTA and DTPA were studied using CE. A major problem associated with 

CE is the separation of cations of similar mobility, even though the complexation of cations 

with ligands to form anionic complexes can be used to modify cation mobility [7]. 
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1.4 Layout of thesis 

 

Chapter 1 

Overview of this project  

 

Chapter 2 

Literature review of the advance electrolyte for redox flow batteries application technology, 

the development of theories involved, and the landmark of the redox flow batteries are 

presented. 

 

Chapter 3 

Description of all electrochemical techniques used during this project. Which are CV, RDE, 

EIS, CE and electrochemical charge/discharge battery performance test. 

 

Chapter 4 

Electrochemical evaluation of different electrode (carbon, platinum and gold electrode) 

materials for studying RFB electrolytes. 

 

Chapter 5 

Electrochemical study of cerium (IV) in the presence of ethylenediaminetetraacetic acid 

(EDTA) and diethylenetriaminepentaacetate (DTPA) ligands. (Published as a paper, Modiba 

P, Crouch A.M, J. Appl. Electrochem 38 (2008)1293. 

 

Chapter 6 

Electrochemical impedance study of Ce(IV) with aminopolycarboxylate ligands for redox 

flow batteries applications, (resubmitted as a paper, Modiba P, Matoetoe M, Crouch A.M, J. 

Electrochimica Acta (2009). 

 

Chapter 7 

Electrochemical properties of metals (Cr, Fe, Mn, and V) for RFB applications, (submitted to 

J. Electrochimica Acta (2009) Modiba P, Matoetoe M, Crouch A.M. 
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Chapter 8 

 

Testing and measuring the performance of redox couples for potential system for flow 

batteries, (published as a paper, Modiba P, Crouch A.M, Proceedings of the 43
rd

 Power 

Source Conference, Philadelphia, New York, 7-10 July 2008. 

 

Chapter 9 

Conclusions and future recommendation.  

 

Chapter 10 

Addendum  
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Chapter 2 

Literature Overview 

 

2.1 Electrolytes  

 

Electrolytes play a significant role in electrochemical procedures. Their fundamental function 

is independent of the greatly expanded chemistries and applications of the procedure. 

Electrolytes in batteries, electrolytic cells, capacitors, and fuel cells provide the medium for 

the transfer of charges, which are in the form of ions, between a pair of electrodes. The vast 

majority of electrolytes are electrolytic solution types that consist of salts, also called 

electrolyte solutes, dissolved in solvents, either aqueous or non-aqueous, and are in a liquid 

state in the service-temperature range.  

 

According to the literature, an electrolyte is any substance containing free ions that behaves as 

an electrically conductive medium [1]. Because they generally consist of ions in solution, 

electrolytes are also known as ionic solutions, but molten electrolytes and solid electrolytes 

are also possible. An electrolyte is also a chemical compound that, when its complexes or is 

dissolved in certain solvents (normally water) will conduct an electric current. All electrolytes 

in the fused state or in solution give rise to ions that conduct the electric current [1]. We can 

also simply define an electrolyte as a liquid substance that acts as a medium to conduct 

electricity.  

 

One speaks of an electrolyte in a number of different contexts; the most common are health 

and fitness, and various electronics and automotive disciplines. An electrolyte is full of ions, 

which are atoms that have some sort of net electric charge, either positive or negative. A 

dilute electrolyte has a relatively small number of ions for its volume, while a concentrated 

electrolyte has a larger amount of ions. In basic fuel cells, such as those used in automotive 

technology, an electrolyte acts as the liquid that allows ions to travel between the cathode and 

anode to keep the power-generating process underway, while keeping the reactive oxygen and 

hydrogen apart. In the type of fuel cell known as a proton exchange membrane cell, the 

electrolyte specifically moves protons (positively charged hydrogen ions) to the cathode from 

the anode, where they are produced, with the result being the production of water and 

electricity [1].      
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There are several promising materials such as yttria-stabilized zirconia (YSZ), doped cerium 

oxide, and doped bismuth oxide. Of these, the first two are the most promising. Bismuth 

oxide based materials have a high oxygen ion conductivity and lower operating temperature 

(lower than 800 C), but do not offer sufficient crystalline stability at high temperature to be 

widely useful [2]. YSZ has emerged as the most suitable electrolyte material. Yttria serves the 

dual purpose of stabilizing zirconia into the cubic structure at high temperatures and also 

providing oxygen vacancies at the rate of one vacancy per mole of dopant [2].  

 

Batteries also employ an electrolyte of some sort, both to conduct electricity between the 

battery plates and to store energy on the plates themselves [3]. The electrolyte used in a 

battery depends on the batteries type and purpose. Most car batteries, for example, use an 

electrolyte, which contains sulphuric acid, which is why they require careful handling. 

Alkaline batteries use an alkaline solution as their electrolyte. Lithium batteries use a special 

organic electrolyte, which freezes, at much lower temperatures than the more traditional 

water-based electrolytes. Redox flow batteries also use electrolyte on both side tanks, namely 

the cathode and anode [3]. Electrolyte is especially important in the redox flow batteries. 

 

2.1.1 Principles of electrolyte 

 

Electrolytes commonly exist as solutions of acids, bases, or salts. Furthermore, some gases 

may act as electrolytes under conditions of high temperature or low pressure. Electrolyte 

solutions can also result from the dissolution of some biological polymers(e.g. DNA, 

polypeptides) and synthetic polymers (e.g. polystyrene sulfonate), termed polyelectrolytes, 

which contain multiple charged molecules [1].  

Electrolyte solutions are normally formed when a salt is placed into a solvent such as water 

and the individual components dissociate due to the thermodynamic interactions between 

solvent and solute molecules, in a process called solvation. For example, when table salt 

(NaCl) is placed in water, the salt (a solid) dissolves into its component elements, according 

to the dissociation reaction 

 

NaCl(s)   ↔  Na
+

(aq) + Cl
−

(aq).    
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It is also possible for substances to react with water when they are added to it, producing ions, 

for example, carbon dioxide gas dissolves in water to produce a solution, which contains 

hydronium, carbonate, and hydrogen carbonate ions [1]. 

Note that molten salts can be electrolytes as well. For instance, when sodium chloride is 

molten, the liquid conducts electricity. An electrolyte in a solution may be described as 

concentrated if it has a high concentration of ions, or dilute if it has a low concentration. If a 

high proportion of the solute dissociates to form free ions, the electrolyte is strong; if most of 

the solute does not dissociate, the electrolyte is weak. The properties of electrolytes may be 

exploited using electrolysis to extract constituent elements and compounds contained within 

the solution [1]. 

2.1.2 Electrochemistry of electrolytes 

 

It is well known from the literature [4-5] when electrodes are placed in an electrolyte and a 

voltage is applied, the electrolyte will conduct electricity. Lone electrons normally cannot 

pass through the electrolyte, instead, a chemical reaction occurs at the cathode consuming 

electrons from the cathode, and another reaction occurs at the anode producing electrons to be 

taken up by the anode. As a result, a negative charge cloud develops in the electrolyte around 

the cathode, and a positive charge develops around the anode. The ions in the electrolyte 

move to neutralize these charges so that the reactions can continue and the electrons can keep 

flowing [4-5]. 

For example, in a solution of ordinary salt (sodium chloride, NaCl) in water, the cathode 

reaction will be: 

2H2O + 2e
−
 → 2OH

−
 + H2    (2.1) 

(hydrogen gas will bubble up)  

and the anode reaction will be  

2H2O → O2 + 4H
+
 + 4e

−
    (2.2) 

(oxygen gas will be liberated) 

The positively charged sodium ions (Na
+
) will react in the direction of the cathode, 

neutralizing the negative charge of (OH
−
) there, and the negatively charged chlorine ions (Cl

−
) 
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will react towards the anode neutralizing the positive charge of (H
+
) there. Without the ions 

from the electrolyte, the charges around the electrodes would delay the electron flow, 

diffusion of H
+
 and OH

−
 through water to the other electrode takes longer than movement of 

the much more prevalent salt ions [5]. 

In other systems, the electrode reactions can involve the metals of the electrodes as well as the 

ions of the electrolyte. Electrolytic conductors are used in electronic devices where the 

chemical reaction at a metal/electrolyte interface yields useful effects [1, 3-6] 

� In batteries, two metals with different electron affinities are used as electrodes; 

electrons flow from one electrode to the other outside of the battery, while inside the 

battery the circuit is closed by the electrolyte's ions. Here the electrode reactions 

convert chemical energy to electrical energy.  

� In some fuel cells, a solid electrolyte or proton conductor connects the plates 

electrically while keeping the hydrogen and oxygen fuel gases separated.  

� In electroplating tanks, the electrolyte simultaneously deposits metal onto the object to 

be plated, and electrically connects object in the circuit.  

� In operation gauges, two thin columns of mercury are separated by a small electrolyte-

filled gap, and, as charge is passed through the device, the metal dissolves on one side 

and plates out on the other, causing the visible gap to slowly move along.  

� In electrolytic capacitors the chemical effect is used to produce an extremely thin 

'dielectric' or insulating coating, while the electrolyte layer behaves as one capacitor 

plate.  

� In some hygrometers the humidity of air is sensed by measuring the conductivity of a 

nearly dry electrolyte.  

� Hot, softened glass is an electrolytic conductor, and some glass manufacturers keep 

the glass molten by passing a large current through it [1, 3-6].  

 

2.2 Metal complexes 

 

Metal complexes consist of a central metal atom or ion surrounded by several atoms, ions or 

molecules, called ligands. Ligands are ions or molecules that can be independentely attached 

to the central metal atom or ion. Examples of ligands are halide ions, carbon monoxide, 

ammonia and cyanide ions, etc.  In describing complexes, the ligands directly attached to the 

metal (usually as Lewis bases, donating electrons to the metal) are counted to determine the 
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coordination number of the complex. Ions that are directly coordinated to the metal are 

written within the brackets of the formula, and are referred to as inner sphere. Ions that serve 

as counter ions in order to produce a neutral salt, and are not coordinated to the metal called 

the outer sphere, and written outside of the brackets in the formula [7-9]. 

 

2.2.1 Bonding of metal complexes  

 

2.2.1.1 The crystal field theory 

 

There are two widely used approaches for explaining the bonding and stability of transition 

metal complexes. In the crystal field theory [10], the electronic field created by the ligand 

electron pairs surrounding the central metal is viewed as point negative charges that repel and 

interact with the d orbitals of the metal ion. This theory explains the splitting of the d orbitals 

to remove their degeneracy, and the number of unpaired electrons in transition metal 

complexes, their color, spectra, and magnetic properties.  

 

The magnitude of the splitting is determined experimentally from spectra of transition metal 

complexes. As the size of the gap changes, so does the color of the complex, as most of the t2g 

to eg transitions occur in the visible range. Analysis of the absorption spectra of a variety of 

transition metal complexes has resulted in the spectrochemical series, a list that orders the 

ligands from the weakest ligand fields to the strongest [10-11]. 

 

I
-
<Br

-
<S

2-
<Cl

-
<NO3

1
<N3

-
<F

-
<OH

-
<C2O4

2-
<H2O<NCS

-
<CH3CN  

<pyridine<NH3<en<bipy<phen<NO2
-
<PPh3<CN

-
<CO 

 

Generally, the halogens are considered relatively weak ligands, water is somewhat 

intermediate in strength, ammonia is considerably stronger, and the strong p bonding ligands 

of cyanide and carbon monoxide are quite strong [10-11].  

 

2.2.1.2 The ligand field theory 

 

An alterative approach to understanding the bonding of transition metal complexes is the 

ligand field theory. Crystal field theory is a simple model that explains the spectra, 

thermochemical, and magnetic data of many complexes. Its main flaw is that it treats the 

ligands as point charges or dipoles, and fails to consider the orbitals of the ligands. Ligand 
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Field Theory applies molecular orbital theory and symmetry concerns to transition metal 

complexes. In octahedral symmetry, group theory can be used to determine the shapes and 

orientation of the orbitals on the metal and the ligands.  

 

According to the literature [10-12], the ligand field theory enables the 3d, 4s, and 4p orbitals 

on the metal to overlap with orbitals on the ligand to form the octahedral covalent bond 

skeleton that holds the complex together. Simultaneously, this model generates a set of five 

orbitals in the center of the diagram that are split into t2g and eg subshells, as predicted by the 

crystal field theory. As a result, we do not have to worry about "inner-shell" versus "outer-

shell" metal complexes. In effect, the 3d orbitals can be used in two different ways. They can 

be used to form the covalent bond skeleton and then used again to form the orbitals that hold 

the electrons that are originally in the 3d orbitals of the transition metal [10-12]. 

 

2.3 Batteries 

 

A battery is an electric cell, a device that produces electricity from a chemical reaction. It 

converts energy stored in the chemical bonds of a material into electrical energy passing 

through oxidation/reduction (redox) reactions. Redox reactions are chemical reactions in 

which an electron is either required or produced by the chemical reaction. It consists of two or 

more cells connected in series or parallel, but the term is generally used for a single cell. A 

cell consists of a negative electrode; an electrolyte, which conducts ions; a separator, an ion 

conductor; and a positive electrode. The electrolyte may be aqueous or non aqueous in liquid, 

paste, or solid form. If the cell is connected to an external load, or device to be powered, the 

negative electrode supplies a current of electrons that flow through the load and are accepted 

by the positive electrode. When the external load is removed, the reaction comes to an end 

[13].  

The key components that determine many of the basic properties of the battery are the 

materials used for the electrode and electrolyte for both the oxidation and reduction 

reactions. The electrode is the physical location where the core of the redox reaction (the 

transfer of electron) takes place. In many battery systems, including lead acid and alkaline 

batteries, the electrode is not only where the electron transfer takes places, but is also a 

component in the chemical reaction that either uses or produces the electron. However, in 

other battery systems (most commonly fuel cells) the electrode material is itself inert and is 

only the site for the electron transfer from one reactant to another. For a discharging 
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battery, the electrode at which the oxidation reaction occurs is called the anode and by 

definition, it has a positive voltage, while the electrode at which the reduction reaction 

occurs is the cathode and it has a negative voltage. While in recharging the anode has by 

definition a negative charge and the cathode a positive charge. 

The electrode alone is not sufficient for a redox reaction to take place, since a redox 

reaction involves the interaction of more than a single component. The other chemical 

components of the reaction are contained in the electrolyte. For many practical battery 

systems, the electrolyte is an aqueous solution. One reasons for having an aqueous solution 

is the oxidized or reduced form of the electrode exists in an aqueous solution. Further, it is 

important that the chemical species in the electrolyte be mobile in order that they can move 

to the site on the electrode where the chemical reaction takes places, and also such that ion 

species can travel from one electrode to the other [14].  

2.3.1 Types of batteries  

 

Batteries are classified into two broad categories: primary and secondary batteries. In a 

primary battery, the chemical energy is converted to electrical energy in a one way process. 

Although there are those kinds of batteries, which are irreversibly transforming chemical 

energy to electrical energy, when the initial supply of reactants, is exhausted, energy cannot 

be readily restored to the battery by electrical means. Therefore, the process is not reversible 

and electrical energy cannot be converted to chemical energy. This means that a primary 

battery cannot be recharged; it will only convert its chemicals into electricity once, and then 

must be discarded. Some types of primary batteries are for instance, telegraph circuits, which 

are restored to operation by replacing the components of the battery consumed by the 

chemical reaction, and alkaline consumer batteries, which are in flashlights [13-15]. Figure 

2.1 shows all types of battery systems.  
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Figure 2.1: Flow chart of all types of battery systems 

 

In a secondary battery, the conversion process between electrical and chemical energy is 

reversible: chemical energy is converted to electrical energy, and electrical energy can be 

converted to chemical energy, and batteries can be recharged. Specifically batteries can have 

their chemical reactions reversed by supplying electrical energy to the cell, restoring their 

original composition. A secondary battery has electrodes that can be reconstituted by passing 

electricity back through it; therefore it is also called a storage or rechargeable battery, it can 

be reused many times. For photovoltaic systems, all batteries used must be rechargeable or 

secondary batteries. Common examples of secondary batteries are lead acid batteries 

(including those used in cars) and lithium-ion batteries used in higher power consumer 

Battery 

Systems 

Redox Flow 

Batteries 
Flow Batteries 

 

Primary 

Batteries 
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Batteries 

Zinc bromine  

Iron chromium 

Zinc cerium 

Polysulphide bromide 
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electronic equipment such as computer laptops, camcorders, mobile telephones, and some 

digital cameras [14-16]. 

 

One of the first space batteries was the silver zinc battery, which dominated the industry in the 

1960's. This is a premium system with very high specific power and energy, but is quite 

expensive due to the use of silver. They are still used in selected applications, such as launch 

vehicles and torpedoes. Mars Pathfinder also used a silver zinc battery, but it was designed to 

be rechargeable. They have a relatively short cycle life, and are not used for multi-year 

missions. This type of battery is commonly used in the commercial market as hearing aid 

batteries [15]. 

 

2.3.2 Redox Chemistry 

 

Batteries generate electricity and store chemical energy by a redox (reduction/oxidation) 

reaction, as described above (Section 2.2). Galvanic cells, fuel cells and flow cells are all 

based on a redox reaction. Flow batteries (FB) are the second category of electrochemical 

storage systems. They are large energy storage devices that have a wide range of potential 

applications in a distributed generation network. The NASA group started to work on redox 

flow batteries (RFB) in 1979, when they developed and demonstrated the RFB system with 

the plan to increase stationary energy storage applications [17]. 

 

2.3.3 Oxidation and reduction 

 

A reaction in which both oxidation and reduction is occurring is called a redox reaction. 

Redox reactions are very common; as one substance loses electrons the other substance 

accepts them. Oxidation requires an oxidant. Oxygen is an oxidant, but not the only one. 

Despite the name, an oxidation reaction does not necessarily need to involve oxygen. In fact, 

even fire can be fed by an oxidant other than oxygen: fluorine fires are often unquenchable, as 

fluorine is an even stronger oxidant (it has a higher electronegativity) than oxygen [18-19]. A 

redox reaction is a transformation of matter at the atomic level by electron transfer from one 

species to another. A molecule is oxidized when it loses electrons. It is reduced when it gains 

electrons.  
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An oxidizing agent (called an oxidant) where electrons are taken from another substance and 

becomes reduced. 

 

                      oxidant + electron   = product  

A reducing agent (called a reductant) gives electrons to another substance and is oxidized in 

the process. 

 

                       Reductant = Product + electron    

 

In the RFB, the redox reaction is separated in two simultaneous steps occurring on both sides 

of the membrane. During the discharge, electrons are removed from the anolyte and 

transferred through the external circuit to the catholyte. The redox reaction in this case is: 

 

Oxidation             Ce 
3+

 = Ce 
4+

 +  electron 

 

Reduction              Ce 
4+

 +  electron = Ce 
3+

 

 

    Ce 
3+  

+
  
Ce 

4+                 
Ce 

4+     
+

     
Ce 

3+   

The oxidant Ce 
4+

 takes an electron from the reductant Ce 
3+

, as the reaction proceeds from 

left to right, Ce 
4+

 is reduced and Ce 
3+

 is oxidized. 

 

The flow of electrons is reversed during the charge, the reduction now takes place in the 

anolyte and the oxidation in the catholyte. The redox reaction in this case is  

 

Reduction     Ce 
4+

 +  electron   = Ce 
3+

  

 

Oxidation      Ce 
3+

 = Ce 
4+

 +  electron 

 

    
 
Ce 

4+     
+

         
Ce 

3+                  
Ce 

3+    
+

    
Ce 

4+ 
 

Because there is no net change in charge during a redox reaction, the number of electrons in 

excess in the oxidation reaction must equal the number consumed by the reduction reaction 

[18]. 
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2.3.4 Flow batteries 

 

Flow batteries are often called redox flow batteries. The name redox flow battery is based on 

the redox reaction between the two electrolytes in the system. Redox as already mentioned 

above in Section 2.2.4 stands for reduction/oxidation reaction. These reactions include all 

chemical processes in which atoms have their oxidation number changed. A flow battery is a 

form of battery in which electrolyte containing one or more dissolved electroactive species 

flows through a power cell and, the reactor in which chemical energy is converted to 

electricity. Its stores electrolyte externally, generally in tanks, and is usually pumped through 

the cell of the reactor. 

 

A flow battery is a type of battery that is designed to be very flexible. It can be designed for 

high power applications as well for high capacity electrical energy storage. There are several 

types of electrical energy storage, like conventional batteries and flywheels that do not show 

flexibility and have some limitations to their applications. Flywheels are mostly used for short 

durations of less than 5 minutes and high power storage greater than 500 kW, while batteries 

are used for lower power less than 500 kW and long durations of more than 1 hour. Flow 

batteries are used for large-scale projects that require high-capacity storage and also high 

power storage, for instance for grid-connected electricity storage at wind farms. There are 

many types of flow batteries using aqueous electrolytes. These include the early developed 

iron chromium cell, as well as polysulfide bromine, zinc bromine and all-vanadium redox 

flow cells. All flow cells have a same design but use different electrolytes in the positive and 

negative half cells. Each cell varies in terms of an open circuit potential, coulombic 

efficiency, energy efficiency and cycle life, but cells share similar challenges such as 

electrolyte management and membrane failure [17, 20]. 

 

In a flow battery the battery is charged and discharged by a reversible chemical reaction 

between the two liquid electrolytes of the battery. These electrolytes are not stored in the 

power cell of the battery as in a conventional battery, but in separated storage tanks. During 

operation these electrolytes are pumped through the electrochemical reactor in which a 

chemical redox reaction takes place and electricity is produced. Due to this storage of the 

electrolytes outside the reactor, the specifications of the battery are flexible; the power and the 

energy content of the system can be specified separately. It is very easy to increase the 

amount of electrolytes or to replace the electrolytes. Moreover, the design of the power cell 

can be optimized for the power rating needed, as this is independent of the amount of 
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electrolyte used. The development of flow batteries has reached the stage of demonstration 

projects. Small-scale products are already available on a commercial basis, while for the 

larger-scale projects demonstrations have been started. These demonstration projects prove 

the technology and show that it can be applied on a large scale. The costs of the technology 

will decrease as soon as the technology becomes available as a commercial product. Based on 

current feasibility studies, the life cycle costs will be lower than those of the alternatives, 

based on the capital costs and the expected life time. Flow batteries can be very attractive for 

future applications, especially for large-scale applications, like peak power support at wind 

farms or distribution level balancing [17, 20-23].  

 

2.3.5 Redox flow battery  

 

A redox flow battery (RFB) is an electrochemical system that allows energy to be stored in 

two solutions containing different redox couples, with electrochemical potentials sufficiently 

separated from each other to provide an electromotive force to drive the oxidation/reduction 

reactions needed to charge and discharge the cell [23]. RFBs are stationary storage batteries 

that operate by continually pumping two electrolytes past a pair of high-surface-area 

electrodes that are separated by an ionically conductive spacer. Energy is stored and harvested 

via the oxidation/reduction reactions of redox-active solutes in the two electrolytes. The 

capacity of the redox flow battery system is increased by simply increasing the concentration 

of the electrolytes or the volume of the electrolyte reservoirs, while the storage capacity of 

conventional secondary batteries depends on the size of the electrodes. It is an indication of 

the potential of redox flow battery technology that three alternative systems have recently 

been commercialised: an all-vanadium system, a polysulphide–bromine system and zinc–

cerium system.  

 

The redox flow cell concept was proposed first by NASA [17], as mentioned previously in 

this Section 2.2.3. RFBs become more interesting in the 1970’s, especially where the NASA 

group became active in different projects. RFBs containing the Fe–Ti couple, where FeCl3 

was used as the oxidising agent and TiCl2 as the reducing agent, both couples where in an 

alkaline electrolyte [24]. Then Ti
2+ 

was replaced by Cr
2+

, leading to better performances. 

 

 During the years in 1980’s, much work was carried out by NASA on the Fe–Cr system, as 

well as on the zinc/alkaline/sodium ferricyanide (Na3Fe(CN)6,H2O) couple [25]. Bartolozzi 

[20] has summarised the redox principle, the main reports on RFBs, and also the historical 
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background of RFB. He mentions that redox flow batteries differ from conventional batteries 

because the active materials are concentrated solutions of redox-active solutes and not solid-

state materials. RFB is one type of an advanced rechargeable battery. One of the most 

attractive features is the possibility of an independent scaling of electric energy storage. 

 

A RFB is a new type battery, which is composed of stacks, electrolytes, pumps, tanks (see 

Figure 2.2). In the system, RFB is stored with electric energy through the oxidization of the 

positive electrolyte (M
4+

 / M
5+

) and the reduction of the negative electrolyte (M
3+

 / M
2 +

).The 

energy is discharged through the reverse reactions. The volume of the electrodes in the battery 

changes with the charge and discharge and this phenomenon causes the electrode to powder 

or to drop out [26-27].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Basic construction of a redox flow battery. 

 

Recently much attention has been focused on the all-vanadium RFB [26-28] particularly 

because it’s various advantages. There is no decrease in capacity caused by the cross mixing 

of the positive electrolyte and negative electrolyte, meaning that there will be no energy 

efficiency loss during the process. The effect of cross-contamination of an all-vanadium RFB 

does not need catalysts for both electrode reactions, and the evolution of hydrogen gas will 

not be observed, which needs rebalancing power and additional equipment. Even though these 

qualities exist for all-vanadium redox flow systems, the open-circuit voltage for each single 
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_ 
+
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cell after full charging is about 1.4 V, which is relatively low. Many researchers were 

concerned with investigating different ways to make RFBs the best, safest and most suitable 

and high energy storage system [27-35].  

 

 

2.4 Types of flow batteries 

 

2.4.1 Zinc bromine redox system 

 

The zinc bromine battery (ZBB) is a hybrid flow battery because one of its electrodes 

participates in the reaction. This technology is currently being developed primarily for 

stationary energy storage applications, but also for electric vehicle applications. The system 

offers a good specific energy (65-84 Wh/kg) and can withstand 2000 cycles [36].  

 

The concept of a battery based on a zinc bromine originated as long ago as the 1880s, but due 

to technical difficulties halted development was until the mid 1970s [37]. ZBBs have attracted 

great interest as a rechargeable power source because of their good energy density, high cell 

voltage, high degree of reversibility, and the availability of low cost materials. As in other 

redox flow cells, the aqueous electrolyte solutions containing reactive species are stored in 

external tanks and circulated through each cell in the stack. Each cell contains two electrodes 

at which reversible electrochemical reactions occur. The electrolyte is zinc bromide salt 

dissolved in water; during the charge, zinc is plated on the negative electrode, thus limiting 

the capacity of the battery. At the positive electrode, bromine is produced and forms a 

bromine complex that sinks to the bottom of the positive electrolyte tank. During the 

discharge, zinc is redissolved to form zinc ions and bromide ions are formed at the positive 

electrode. A third pump is required to re-circulate the bromine complex. The ZBB efficiency 

is around 60 –75 %. Over the years, some multi-kWh ZBB have been built and tested [38-39]. 

 

2.4.2 The iron–chromium redox system 

 

The NASA group [40-44] first studied the iron–chromium redox system. The positive reactant 

is an aqueous solution of ferric–ferrous redox couple while the negative reactant is a solution 

of the chromous–chromic couple, both acidified with hydrochloric acid. In this redox flow 

cell the flow rate of each reactant is always higher than the stoichiometric flow requirement, 
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which would result in total reactant utilization in a single pass through the cell. In each cell, 

an anionic and cationic ion exchange membrane separates the two flowing reactant solutions.  

 

In principle, the membrane prevents cross diffusion of the iron and chromium ions, permitting 

free passage of chloride and hydrogen ions for completion of the electrical circuit through the 

cell. These early cells have been studied by various researchers and groups like NASA [20], 

and the research group of the University of Alicante in Spain [45-46], Shimada et al. [47] 

reported on an investigation into the performance of a Fe–Cr redox flow cell. They reported 

that the coulombic efficiency increased when the structure of the carbon fibbers changed from 

amorphous to graphite and that 95% coulombic efficiency. In another study by Johnson and 

Reid [48], the Fe–Cr redox system was evaluated using 1/8 inch carbon felt electrodes.  

 

2.4.3. Zinc–cerium redox system 

 

This system has been developed by Plurion Systems Inc. [49], they have successfully 

managed to operate a cell at high current densities of 400–500mA cm
−2

. Their cell voltage of 

the Zn–Ce system during charge was approximately 2.5V and droped to below 2V on the 

discharge cycle. Another Zn–Ce system, patented in 2004 [50], was used with a cell 

containing carbon plastic anodes and platinized titanium mesh cathodes of 100 cm
2
 

geometrical area separated by a non-specified type of Nafion membrane. 

 

Lopez-Atalaya et al. [51] describe the performance of a Fe–Cr redox flow battery, which 

operates in bipolar mode. They studied the optimization of electrolyte composition, 

temperature, and membrane type, and obtained the following results: Coulombic efficiency of 

97%, and an energy efficiency of 73% for an electrolyte composition of 2.3 M HCl + 1.25 M 

FeCl2 + 1.25 M CrCl3, using a Nafion 117 membrane, and working at the temperature of 44 

°C with a current density of 40 mA/cm
2
. They also obtained a maximum discharge power 

density of 73 mW/cm
2
. 

 

2.4.4 Polysulphide bromide battery  

 

A polysulphide bromide battery (PSB) is a FB using sodium bromide and sodium 

polysulphide as salt solution electrolytes. Sodium ions pass through the membrane to 

maintain the electroneutrality of the cell. Although this technology is maintained to be 

environmentally friendly by Price et al. [52], there is concern that toxic bromine vapour might 
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be released in the event of an accident. Some multi-kilowatts batteries have been built. Innogy 

has built a 100 kW stack with a 1 m
2
 electrode area, with a net efficiency of about 75%. The 

construction of two large (12, 15 MW, and 120 MWh) storage plants in the UK and US has 

ceased due to engineering difficulties and financial constraints. Ever since then active PSB 

development has been neglected [53]. 

 

2.4.5 Soluble lead-acid battery  

 

This is a flow battery based on the electrode reactions of lead(II) in methanesulfonic acid. 

This system differs from the traditional lead-acid battery as Pb(II) is highly soluble in the 

aqueous acid electrolyte. It also differs from the reported redox flow batteries because it only 

requires a single electrolyte, i.e., no separator or membrane is necessary, which significantly 

reduces the cost and design complexity of the batteries [54]. The electrode reactions involve 

the conversion of the soluble species into a solid phase during charging and dissolution at the 

discharging cycles. Dissolution and deposition of lead should be fast and no overpotential 

should be required, however, if overpotentials occur hydrogen evolution might take place and 

reduce the storage capacity. These cells have been studied in several electrolytes: perchloric 

acid, hydrochloric acid, hexafluorosilicic acid, tetrafluoroboric acid and most recently, 

methanesulfonic acid [54-58].  

 

 

2.4.6 Vanadium–bromine redox system  

 

The vanadium–bromide redox flow system was considered long time ago and most 

researchers have recently shown interest. The energy density is related to the concentration of 

the redox ions in solution, the cell potential and the number of electrons transferred during the 

discharge per mol of active redox ions. All –vanadium redox flow cells have a maximum 

vanadium concentration in the region of 2 mol dm
−3

, which limits energy density and 

represents the solubility limit of V(II) and V(III) ions in sulfuric acid at temperatures between 

5 and 40 
◦
C, at which the V(V) ions are still stable [59-60]. A variation of the vanadium–

bromide cell is the vanadium–polyhalide cell in which the polyhalide presents higher 

oxidation potential and exists as a result of the interaction between halogen molecules and 

halide ions such as Br2Cl
−
 or Cl2Br

−
 equivalent to the species I

3− 
of Br

3−
. Vandium RFB 

system has been tested in a small laboratory scale redox flow cell with two glassy carbon 
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sheet current collectors and graphite felt electrodes, separated by a Nafion® 112 membrane, 

and VCl
2
/VCl

3
 electrolyte on the negative side and Br

−
/ClBr

2− 
on the positive [60]. 

 

2.4.7 All–vanadium redox flow battery (VRFB)  

 

Maria Skyllas-Kazacos and coworkers [61-62] first developed the VRFB at the University of 

New South Wales, Australia. It employs vanadium redox couples in both half-cells, by this 

means, eliminating the problem of cross–contamination by diffusion of ions across the 

membrane. The VRFB exploits the ability of vanadium to exist in four different oxidation 

states, and utilizes this property to make a battery that has just one electroactive element 

instead of two. These flow batteries are excellent candidates for large stationary storage 

applications. A VRFB consists of an assembly of power cells, each of which contains two 

half-cells that are separated by an ion–permeable membrane. In the half-cells, the 

electrochemical reactions take place on inert carbon felt electrodes from which the current is 

collected. The balance of components required for the VRFB consists of pipes and pumps so 

that the electrolyte can flow from the tanks to the stack. The electrolyte is a solution of 

vanadium mixed with dilute sulphuric acid; and has the same acidity as a conventional lead–

acid battery. Unlike lead–acid systems, the VRB electrolyte has an indefinite life span and is 

reusable [62-65]. 

 

According to Skyllas-Kazacos and co-workers [59-60, 65-73] the VRFB is not damaged by 

fluctuating power demand or by repeated total discharge or charge rates as high as the 

maximum discharge rates [66-69]. VRFB can also be charged to ensure that gassing is 

eliminated during the high charge rates associated with rapid charging cycles. Furthermore, 

VRB cells can be overcharged and overdischarged, within the limits of the capacity of the 

electrolytes, and can be cycled from any state of charge or discharge, without permanent 

damage to the cells or electrolytes. There is however the problem that the strong activity of a 

certain type of vanadium ion, V(V), degrades the ion exchange membrane. Vanadium 

batteries are being studied in detail by the research group of Skyllas-Kazacos at the University 

of New South Wales (Australia) and by various industrial organizations [59-75].  
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Table: 2.1.Advantages and disadvantages of battery energy storage systems compared to 

redox flow system [3] 

Battery energy 

storage system 

 

Advantages 

 

Disadvantages 

 

Redox flow system 

 

Conventional 

systems 

Well-known 

technology 

Frequent 

maintenance 

Flooded lead-acid battery 

 
Low maintenance 

Heavy Valve-regulated lead-acid 

(VRLA) 

 Small size High construction 

cost 

 

  Expensive 

technology 

 

  Short life span  

  Not portable  

Developmental 

systems 

Transportability Thermal 

management 

Sodium –sulfur battery 

 High energy 

(charging) 

efficiency 

Difficult 

maintenance 

Zinc –bromine redox flow 

cell 

 Flexible operation   

Redox flow 

cells 
Low cost 

Latest technology Bromine –polysulphide 

redox flow cell 

 Modularity  Vanadium redox flow cell 

 Transportability  Iron –chromium redox 

flow cell 

 Flexible operation  Zinc –cerium redox flow 

cell 

 High efficiency   

 Large scale   

 

The advantages and disadvantages of conventional developmental and redox flow battery 

systems are listed and compared in Table 2.1 [3]. There are some systems with fewer 
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advantages than disadvantaged and some systems with more advantages and fewer 

disadvantaged. In the cases of the ones with more disadvantages, researchers have 

recommended further studies. Particularly developing new redox flow systems that will be 

safe, suitable, reliable, have higher energy storage, and be relatively low cost.  

2.5 The performance of RFBs  

 

The purpose of a battery is to store energy and release it at the appropriate time and in a 

controlled manner. VRB stores energy by employing vanadium redox couples: V2
+
/V3

+
 in 

the negative and V4
+
/V5

+
 in the positive half-cells. These are stored in mild sulphuric acid 

solutions (electrolytes). During the charge/discharge cycles, H
+
 ions are exchanged between 

the two electrolyte tanks through the hydrogen-ion permeable polymer membrane. During 

that process the voltage of the cell is measured and recorded. The cell coulombic efficiency 

(CE) is defined as the discharge capacity divided by the charge capacity. The energy 

efficiency (EE) is defined as the discharge energy divided by the charge energy. Then the 

voltage efficiency (VE) is calculated from VE = EE/CE. The cell voltage of vanadium RFB 

is about 1.4 to 1.6 V. The net efficiency of this battery can be as high as 85%. The power 

and energy ratings of VRB are independent of each other, as with other flow batteries [76]. 

 

The charge/discharge current of a battery is measured in terms of the C-rate. Most portable 

batteries are rated at 1C. This means that a 1000 mAh battery would provide 1000 mA for one 

hour if discharged at 1C rate. The same battery discharged at 0.5C would provide 500 mA for 

two hours. At 2C, the 1000 mAh battery would deliver 2000 mA for 30 minutes. 1C is often 

referred to as a one-hour discharge; a 0.5C would be a two-hour, and a 0.1C a ten hour 

discharge [77]. 

 

The capacity of a battery is commonly measured with a battery analyzer. If the analyzer's 

capacity read out is displayed in terms of percentage of the nominal rating, 100% is shown if 

a 1000 mAh battery can provide this current for one hour. If the battery only lasts for 30 

minutes before cut-off, 50% is indicated. A new battery sometimes provides more than 100% 

capacity. 

When discharging a battery with a battery analyzer that allows the setting of different 

discharge C-rates, a higher capacity reading is observed if the battery is discharged at a lower 

C-rate and vice versa. By discharging the 1000 mAh battery at 2C, or 2000 mA, the analyzer 

is scaled to derive the full capacity in 30 minutes. Theoretically, the capacity reading should 
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be the same as with a slower discharge, since the identical amount of energy is dispensed, 

only over a shorter time. Due to internal energy losses and a voltage drop that causes the 

battery to reach the low-end voltage cut-off sooner, the capacity reading may be reduced to 

95%. Discharging the same battery at 0.5C, or 500mA over two hours may increase the 

capacity reading to about 105%. The discrepancy in capacity readings with different C-rates is 

related to the internal resistance of the battery [78-79]. 

 

One battery that does not perform well at a 1C discharge rate is the portable sealed lead-acid 

battery. To obtain a reasonably good capacity reading, manufacturers commonly rate these 

batteries at 0.05C or 20-hour discharge. Even at this slow discharge rate, a 100% capacity is 

difficult to attain. To compensate for different readings at various discharge currents, 

manufacturers offer a capacity offset. Applying the offset to correct the capacity readout does 

not improve battery performance; it simply adjusts the battery capacity if is discharged at a 

higher or lower C-rate than specified [80-81]. Table 2.1 summarizes the development of RFB 

between 1973 and 2009. 
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Table 2.2: Summary history of RFB 

YEAR AUTHORS DEVELOPMENT 

1973 NASA Group RFB 

1976 Thaller ( Fe
2+

/Fe
3+

) &(Cr
2+

/Cr
3+

) as 

electrolytes 

1979 Roy & Kaplan (USA) Analysed the performance 

capacity for RFB 

1980 De Nora ( Italy) (Cr
2+

/Cr
3+

) in Fe/Cr RFB 

1981 NASA Investigated factors affecting the 

performance of Fe-RFB 

1983 Nozaki (Fe
2+

/Fe
3+

) & (Cr
2+

/Cr
3+

)  

1984 Nozaki Fe-Cr electrolytes 

1985 Maria Skyllas Investigated V
5+

/V
4+

 system for 

RFB 

1986 Gahn from NASA Investigated new all-VRFB  

1987 Keneko Investigated new electode for Cr-

Fe RFB 

1988 Maria Skyllas & Rychnik 

Shimizu, Hamamoto 

Hatta ( Japan) 

Maria Skyllas & Rychnik 

New Characterization of all-

VRFB 

Describe new method for RFB, 

using UV Rad. 

New electrode operation in RFB  

Evaluated membranes for All-

VRFB 

1997 Mitsubishi Demonstrates numbers of 

prototype load leveling VRBS  

2001 Federation group 

 

Federation group & Vantek 

Developed & utilized RFB in 

South  Africa 

Installation of VRB in Cape 

Town Stellenbosch universities 

& largest VRB outside Japan 

2002 Bae C. H, Roberts  Cr-EDTA RFB 

2006 Yamamura and Shiokawa 

from Japan 

 

Determine the energy efficiency 

of neptunium redox battery and 

compare it with VRFB 

2008 Research group from 

Chinese Academy of 

Sciences  

Investigated the VRFB for 

energy storage in China 

2009 Rahman and Maria Skyllas Investigated a positive half-cell 

electrolyte for VRFB 
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Chapter 3 

 

Analytical Techniques for Electrolyte Determination 

 

Physical electrochemistry addresses the broad area of fundamental electrochemistry. This 

includes theoretical and experimental aspects of the kinetics and thermodynamics of 

heterogeneous electron transfer at electrode–electrolyte interfaces, and the application of 

spectroscopic and other techniques to the study of the electrochemical interface and processes. 

In this chapter the analytical techniques that were used for electrolyte determination, cyclic 

voltammetry (CV), rotating disc electrode (RDE), electrochemical impedance spectroscopy 

(EIS), change discharge performance determination and capillary electrophoresis (CE), are 

described.  

 

3.1 Cyclic voltammetry  

 

CV is one of the most widely used techniques for the characterization of redox systems. CV 

involves linearly scanning the potential of a stationary working electrode, using a triangular 

potential waveform at a certain speed. Depending on the information sought, single or 

multiple cycles can be used. During the potential sweep, the potentiostat measures the current 

resulting from the applied potential. The resulting plot of current vs. potential is termed a 

cyclic voltammogram [1-3]. CV is also a very useful technique to study redox reactions in 

aqueous solutions, surface deposition and adsorption [4-6]. CV can also be used for kinetic 

studies of aqueous solutions and solids by monitoring surface deposition and adsorption  

 

CV can be used in combination with simulation software to calculate rates of homogeneous 

and heterogeneous reactions. Such studies typically involve varying the scan rate under 

conditions and examining how the peak currents and peak potentials change in response to 

differences. Current responses are measured by imposing a cyclic potential sweep on an 

electrode. Analysis of the current response provides information about the thermodynamics 

and kinetics of electron transfer at the electrode–electrolyte interface, as well as the kinetics 

and mechanisms of solution chemical reactions initiated by the heterogeneous electron 

transfer [1-4]. 

 



 32 

The primary events in most CV experiments are electrode-mediated oxidation and reduction 

processes of electroactive species in solution. In order to react, the electroactive species have 

to diffuse from the bulk solution to the electrode–solution interface. The three modes of mass 

transfer responsible for transporting the electroactive species from bulk solution to the 

interface are migration, diffusion, and convection [1, 3]. Migration refers to the movement of 

an electroactive species under the influence of an electric field. Diffusion is the movement of 

an electroactive species under the influence of a gradient of chemical potential such as a 

concentration gradient. Convection is a mode of transport during which the electroactive 

species is moved by the influence of density gradients, laminar flow, turbulent flow, and 

agitation.  

 

An electrode mediated reaction involves three main steps [1-2]: mass transfer of a reactant to 

the electrode, heterogeneous electron transfer involving non-adsorbing species, and mass 

transfer of the product to the bulk solution. However, in most cases scientists deal with more 

complex reactions involving hydrolysis steps, a series of electron transfers and protonations, 

branching mechanisms, parallel paths, or surface adsorption reactions.  

 

 

    

 

Figure 3.1: A typical combination of CV and RDE instrument. 

 

 

A potentiostat is one of the most widely used instruments in electrochemical studies and it 

makes possible the performance of techniques such as CV. The potentiostat–galvanostat 

(voltammetric analyzer model BAS 100B/W provided with the software version 2.3, 2001, 
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Bioanalytical Systems, Inc. Indiana) was available to perform the CV experiments in this 

study and is illustrated in Figure 3.1. A potentiostat system sets the control parameters of the 

experiment. Its purpose is to impose on an electrode (the working electrode) a cyclic linear 

potential sweep and to output the resulting current-potential curve. The sweep potential is 

described in general by its initial (Ei), switching (Es), final (Ef) potentials, and scan rate (v, in 

V/s) [1, 3-4]. 

The potential as a function of time is: 

E = Ei + vt (forward sweep) 

E = Es – vt (reverse sweep) 

More complicated sweeps are possible, such as in the case where a third delimiting potential 

is required and Ei ≠ Ef. In addition, multiple consecutive cycles are sometimes used, but in 

some instances these are not more instructive than a single cycle. The term linear sweep 

voltammetry (LSV) is used for a half cycle (½CV). In the present study, two potential values 

were selected for each cycle: Ei and Ef were made equal, and differed from Es. Although the 

option of a single cycle was used in some instances, consecutive subsequent cycles were 

recorded when necessary [1, 3]. 

 

The electrochemical reaction of interest takes place at the working electrode (WE). Electrical 

current at the WE, due to electron transfer is termed faradaic current. The potentiostat 

operates with a three–electrode system in an analytical cell. The three–electrode systems 

function is to maintain the potential of the working electrode at a desired level with respect to 

a fixed reference electrode. This goal is achieved by passing the necessary current between 

the working electrode and a third electrode, called the counter or auxiliary electrode (AE). 

The counter electrode is driven by the potentiostatic circuit to balance the faradaic process at 

the working electrode with an electron transfer of opposite direction (e.g. if oxidation takes 

place at the WE, reduction takes place at the AE). The process at the AE is not of interest in 

this study, and in most experiments the small currents observed mean that the electrolytic 

products at the AE have no influence on the processes at the WE. The reference electrode is 

designed in such a way that its composition remains constant over time and then its potential 

is fixed. Therefore, any changes in the cell are ascribed to processes occurring at the working 

electrode. The faradaic current at the WE is transduced to a potential output at a selected 

sensitivity, expressed in amperes per volt, and recorded in a digital or analog form. The CV 

response is plotted as current versus potential [1-4].  
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In order to understand the basics of a CV experiment it is important to consider what happens 

before and after the working electrode is connected to the potentiostat and placed in contact 

with a solution containing an electroactive species. Before connection to the potentiostat and 

immersion into the solution, electrons in the electrode occupy a continuous range of free 

energies, according to the conduction band model [1-2]. The electron that is easiest to remove 

is at the top of the conduction band. This energy is termed the Fermi level energy. The free 

energy change associated with the removal of an electron from the electrode is equal and 

opposite to the Fermi level free energy. The Fermi level is also called the electrochemical 

potential of the electron in the conducting material [2-3].  

 

In thermodynamics, the electrochemical potential is defined as the change in free energy per 

unit species (temperature and pressure) kept constant. When the three electrodes are 

connected to the potentiostat it is possible to control the potential of the working electrode 

with respect to the reference, which is equivalent to controlling the energy of the electrons 

within the working electrode. When the working electrode potential is driven toward negative 

values by applying negative potentials, the energy of the electrons is increased as the potential 

becomes more negative. When the applied negative potential is sufficient in magnitude and 

the electrodes are placed in the solution, the electrons will reach a level that is high enough to 

transfer into vacant electronic states on electroactive species in the solution. Consequently, 

electrons flow from the working electrode to electroactive species in solution and a reduction 

current is obtained. In this case, electroactive species in solution are reduced at the electrode–

electrolyte interface. In an analogous manner, when the energy of the electron is lowered by 

imposing a sufficiently positive potential, the electrons flow from electroactive species in 

solution to the working electrode and an oxidation current is obtained. In this case, 

electroactive species in solution are oxidized at the electrode–electrolyte interface [1-4]. 

 

 The magnitude of the potential difference at the interface applies an effect in the relative 

energies between the electrode and electrolyte. The potential difference controls the direction 

and the rate of the electron transfer processes. The measured current i due to the number of 

electrons that cross the interface, is related to the extent of the chemical reaction, and 

therefore to the amount of reactant consumed and product generated. The measured current 

can be plotted as a function of potential to obtain the corresponding cyclic voltammogram [1-

2, 4]. 
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Figure 3.2: (a) Cyclic potential sweep and (b) a resulting cyclic [1-2]. 

 

 

Figure 3.2 shows an example of (a) a cyclic potential sweep and (b) a resulting cyclic 

voltammogram. The potential changes linearly toward negative values and then the potential 

is reverted linearly in the opposite direction toward positive values. While scanning in the 

negative direction, at a sufficiently negative potential, a reduction peak that appears 

corresponds to the reduction of an electroactive species in solution. This peak is often called 

the reduction peak or cathodic peak and its area is proportional to the amount of electrons 

crossing the interface. Similarly, the oxidation peak or anodic peak is obtained at a 

sufficiently positive potential and the peak area is proportional to the amount of electrons that 

cross the interface [1-2,4]. 

 

Although Figure 3.2(a) presents a cyclic potential sweep where the initial scanning direction 

is positive and at time ts reverts to the positive direction, this is not necessarily true for all 

experiments. Experiments can be designed in such a way that the initial scanning direction is 

positive and at time ts reverts to the negative direction. A variety of voltammogram shapes 

that differ from that shown in Figure 3.2(b) can be obtained. In some instances, the cathodic 

peak is obtained but the anodic peak is absent, implying that the electroactive species in 

solution can be reduced but oxidation processes are inhibited. Conversely, when the anodic 

peak is observed but no cathodic peak is present, the oxidation of the electroactive species 

occurs but reduction is inhibited. 
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The cyclic voltammogram is a complicated time-dependent function of a several number of 

physical and chemical parameters, which can be explored in more detail by coupling it with 

time resolved RDE and EIS technology. Applications such as mechanism, number electrons 

involved in the reaction, sensitivity, are not applicable for routine quantitative analysis. 

 

3.2 Rotating disc electrode 

 

A RDE is a hydrodynamic working electrode used in a three electrode system [1]. The 

electrode actually rotates during experiments, inducing a flux of analyte to the electrode. 

These working electrodes are used in electrochemical studies when investigating reaction 

mechanisms related to redox chemistry among other chemical phenomena. The more complex 

rotating ring-disk electrode can be used as a rotating disk electrode if the ring is left inactive 

during experiments [5-6]. 

 

CV couple to the use of RDE, it can be used to investigate the kinetics of charge transfer at 

the electrode–electrolyte interface in the way that the working electrode potential is swept 

back and forth across the formal potential of the analyte. RDE varies in the working electrode 

where it is rotated at a very high speed. This rotational motion sets up a well defined flow of 

solution towards the surface of the RDE. The flow pattern is similar to a current that literally 

sucks the solution and the analyte towards the electrode [1, 7-9].  

 

The RDE is usually used for laboratory studies due to its ability to control hydrodynamic 

conditions. RDE is the most popular among the electrodes used for electrochemical 

experiments under controlled mass transfer. The first person to develop the method to obtain 

well defined diffusion conditions was Levich [1-2]. The major advantages of RDE are the 

direct current and mass transport controlled current, double-layer charging effects and the 

steady-state background current, are advantages that CV does not have. 

 

A RDE consists of a disk of the electrode material embedded in a rod of insulating material, 

typically made of Teflon with epoxy resin. The rod is directly attached to a motor directly by 

means of a chuck or by a flexible rotating shaft, and rotates at a certain angular velocity ω 

(s
-1

), where ω = 2πf (f is the frequency in rad /s). The electrical connection is made by a brush 

contact. The motion of the electroactive species is due to the rotation of the electrode [1, 7-9].  
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Analyte is transported to the electrode surface by a combination of two types of transport. 

First, the current flow in the bulk solution continuously brings fresh analyte to the outer edge 

of the stagnant layer. Then, the analyte moves across the stagnant layer via simple molecular 

diffusion. The thinner the stagnant layer is the faster the analyte can diffuse across it, to reach 

the electrode surface. Faster electrode rotation makes the stagnant layer thinner. Thus, faster 

rotation rates permit the analyte to diffuse to the electrode faster, resulting in a higher current 

being measured at the electrode [1-2, 4]. Experimental results are generally plotted as a graph 

of current versus potential, and a typical rotated disk voltammogram. The voltammogram 

exhibits a sigmoidal shaped wave, and the height of the wave, which provides the analytical 

signal.  

It is important to note that the layer of solution immediately adjacent to the surface of the 

electrode behaves as if it were stuck to the electrode. While the bulk of the solution is being 

stirred vigorously by the rotating electrode, the thin layer of solution manages to cling to the 

surface of the electrode, and appears to be motionless from the perspective of the rotating 

electrode. This layer is called the stagnant layer in order to distinguish it from the remaining 

bulk of the solution [3].  

The Levich equation predicts the current observed at a RDE. This equation takes into account 

both the rate of diffusion across the stagnant layer and the complex solution flow pattern. In 

particular, the Levich equation gives the height of the sigmoidal wave observed in rotated disk 

voltammetry as illustrated in Figure 3.3. The sigmoid wave height is often called the Levich 

current, iL, and it is directly proportional to the analyte concentration, C. The Levich equation 

is written as [1, 9]: 

iL = (0.620) n F A D
2/3

 w
1/2

 v
–1/6

 C               (3.1)    

where iL is the Levich current, n is the number of electrons, F is the Faraday constant, A is the 

electrode area (cm
2
), D is the diffusion coefficient (cm

2
/s), w is the rotation rate (radians/s), C 

is the concentration of solution (mol cm
-3

) and v is the kinematic viscosity (cm
2
/s) is the ratio 

of the solution's viscosity to its density. For pure water, v = 0.0100 cm
2
/sec, and for the 

background solution (1.0 M KNO3), v = 0.00916 cm
2
/sec. The rotation rates may have to be 

converted from units of rate per minute (rpm) to radians per second (rps) using the 

relationship: w = 2πf / 60 [1, 3, 9]. 
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3.3: Hydrodynamic voltammogram (a) for reverse and forward reaction at the rotation rate of 

1000 rpm (b) Plot of Levich current vs. square root of rotation rate [1-2]. 

(a) 

(b) 

I (µA) 

E (mV) 
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In the voltammograms for a rotated disk, the limiting current is measured and plotted against 

the square root of the rotation rate, producing a Levich plot. The experimental rotation rate, f 

is measured in rpm and must be converted to the angular rotation rate, w, so that it has units of 

rps. The linear relationship between the Levich current and the square root of the rotation rate 

is obvious from the Levich plot. In Figure 3.3 a linear least squares fit of the data produces an 

equation for the best straight line passing through the data [9]. Figure 3.3(a) shows a 

hydrodynamic voltammogram for reverse and forward reaction for the solution of the 

convective-diffusion equation and the steady-state limiting current density. It can be written 

as in equation (3.1), where jlim is the limiting current density (A / cm
2
), n is the number of 

exchanged electrons, D is  the diffusion coefficient (cm
2
/s), w is the angular velocity (s

-1
), v 

the scan rate (V /s) and C is the bulk concentration (mol /cm
3
). A 

 
plot of iL vs. w

1/2
 in Figure 

3.3 (b) gives a straight line with slope proportional to D
2/3

. For a quasi-reversible process, the 

peak potential Ep is a function of scan rate, and where the difference between Ep and the 

formal potential E
o
 is related to the standard rate constant. The peak current may also be 

expressed as in Equation (3.2) [1, 9]. 

 

         ip   =  (0.227) n F A C k  exp [–(αnF/RT) (E-E
o
)      (3.2)  

 

where ip is the peak current (A), n is the number of electrons transferred per mole of analyte, 

A is the area of the electrode (cm2), k is the rate constant (cm2/s), α is the rate coefficient (V/s) 

and C is the bulk concentration of analyte (mol /cm3). The dependence on bulk concentration 

(rather than the concentration at the electrode surface) allows peak current to be used for 

quantitative measurements.While the Levich equation suffices for many purposes, improved 

forms based on derivations utilizing more terms in the velocity expression are available [7-8].  

 

In this study the redox kinetics of redox couples will be pursued using RDE to confirm the 

results from CV. As mentioned in Section 3.1.2 CV and RDE techniques complement each 

other [9]. 
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3.3 Electrochemical Impedance Spectroscopy 

EIS is an experimental method used to characterize electrochemical systems. This technique 

measures the impedance of a system over a range of frequencies, and therefore the frequency 

response of the system, including the energy storage and dissipation properties are revealed. 

Often, data obtained by EIS are expressed graphically in a Bode plot or a Nyquist plot. During 

the past few decades, EIS has been developed into a powerful and practical tool for studying 

electrochemistry. More problems in various systems were encountered especially during the 

1980’s, although there are disadvantages, difficulties and critical issues associated within its 

application, EIS has become a very important analytical technique, it has broadened the range 

of corrosion phenomena that can be studied using electrochemical techniques [1, 4].  

 

 

 

Figure 3.4: A typical EIS instrument.  

 

 

In EIS the focus is especially on the properties of the polarization layer at a metal to 

electrolyte or ion conductor interface, and the related chemical reactions. This is just the 

opposite of dielectric, conductivity, or impedance material spectroscopy, where these effects 

are known as electrode polarization. Figure 3.4 illustrates a typical EIS instrument.  
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Figure 3.5: Principle of a three–electrode EIS set-up [10]. 

 

 

The two parallel plate electrodes (denoted as the counter and working electrode) and a third 

voltage reference electrode are placed close to the polarization layer and measures the voltage 

difference between the polarization double layer capacity and that of  the working electrode. 

In contrast to the case of dielectric, conductivity and impedance material spectroscopy where 

all electrodes are made of inert metal e.g. gold, stainless steel or platinum, this applies for the 

electrochemical cell only for the counter electrode feeding current into the electrolyte. The 

working electrode consists of the metal to be characterized in combination with the 

electrolyte. The reference electrode is usually an open–tipped glass capillary filled with a 

standard electrolyte coupled to a standard metal in order to create a defined electrochemical 

potential to the electrolyte [1, 4]. The principle of an EIS set-up is shown in Figure 3.5. 

 

The total potential drop across the cell is the sum of all contributions of the chemical process 

like mass transport, chemical and adsorption steps, electron transfer, etc. By measuring the 

impedance spectrum VRef (w) /IS (w) and fitting it with an equivalent circuit model, the several 

process contributions can be separated from each other. A typical evaluation includes 

determination of Warburg impedance related to mass transport, electron transfer resistance, 

electrolyte resistance and double layer capacity. When the working electrodes an 

electrochemical reaction takes place, it is necessary to keep the DC potential VRef at a defined 

value or alternatively apply a constant DC current to the cell. This can be done by using a 

potentiostat / galvanostat DC circuit as shown in Figure 3.6 [4]. 
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Figure 3.6: Principle of potentiostat / galvanostat circuit with differential reference voltage 

inputs [10]. 

 

The voltage amplifier connected to the CE electrode compares in potentiostat mode the 

differential voltage VPrc = VRE+ – VRE– of both reference electrodes with the intended voltage 

Vset DC. The amplifier adjusts its output voltage until VPrc and Vset DC match resulting in a 

constant and sample impedance independent reference voltage differential which can be 

adjusted by Vset dc. In galvanostat mode VPrc is created proportional to the measured cell 

current by a current to voltage converter (V < -I), resulting in constant sample cell current. In 

both modes, the variable capacitor Ct adjusts the control loop time constant in order to avoid 

free high frequency oscillations caused by too high an open loop gain [4]. 

EIS is used in the electrochemical study of corrosion, in areas such as semiconductors, 

batteries, electrodeposition, electro organic synthesis, and organic coating evaluation [10]. In 

these areas EIS offers some distinct advantages over DC techniques. Firstly, EIS uses very 

small excitation potential amplitudes, generally in the range of 5-10 mV peak to peak, which 

cause only minimal perturbation of the electrochemical test system. Secondly, EIS offers 

valuable mechanistic information because EIS can provide data on both electrode capacitance 

and charge transfer kinetics. Last, but not least EIS can be used for electrodes in low 

conductivity solutions and with organic coatings [4, 10]. 

EIS has increasingly become the method of choice for achieving a comprehensive 

understanding of the electrochemical processes. It is a very useful technique for redox flow 

batteries because it can provide information about the status of the element or redox couple 

inside the battery cell compartment (for example an electrolyte). EIS is a single technique that 

is able to identify several different failure modes. This makes it interesting because, even 

though the instrumentation required for EIS can be expensive, only one involved analytical 
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system is required. EIS results give a good operating performance data set for developing 

advanced analytical tools, for delivering immediate information about internal cell behavior 

and for predicting or identifying failures during operation of cell system [10-12]. 

 

In general, impedance analyzers measure the complex impedance Z*(ω) = Z'(ω) + jZ''(ω) 

between electrical ports of a system under test and is dependent on frequency ω/(2π). For 

materials analysis, the Z*(ω) spectrum of two or more electrodes with the sample material in 

between is measured. Depending on the sample material, the requirements to the impedance 

analyzer are extraordinarily high, thus the result concerning quality and availability strongly 

depends on its performance. In practice one is generally not so much interested in extreme 

high accuracy, but to measure both components of Z*(ω), permittivity ε*(ω) or conductivity 

σ*(ω). Beside the frequency range, the impedance range and the tan (δ) or phase accuracy are 

the most important performance parameters [4, 10].  

 

 

 

Figure 3.7: Typical Nyquist plot.  
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Figure 3.8: (a) Bode-magnitude plot and (b) Bode-phase plot 

 

 

 

 

 

 

Figure 3.9: Equivalent circuit model used for the impedance data fitting. 

 

 

EIS is a suitable method for investigating the kinetics of an electrochemical reaction, as the 

elementary reaction steps that limit the rate of the reaction can, in principle, be separated. EIS 

is an AC method where a sinusoidal potential, E, with varying frequency, f, is applied to the 

electrode: 

 

E = AEexp(jwt)     (3.3) 

 

where: AE is the amplitude, j is the imaginary unit, w is the angular frequency (2πf) and t is 

the time. In the linear current - overvoltage range (small AE in Equation 2.1) the current 

response, i, as a function of f is also a sin function 

i = Aiexp(j(wt-φ))     (3.4) 

(a) 

(b) 

R1 R2 W1

C1
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where: Ai is the current amplitude and φ is the phase angle. The impedance, Z, equals 

 

Z = E/i = (AE/Ai)exp(jφ)   (3.5) 

 

The impedance is often plotted in the complex plane, minus the imaginary part along the 

ordinate axis, and the real part along the axis of Nyquist plot for a mixed control circuit. In 

Figure 3.7, a semicircle with a long straight line with a slope of more than 45º from higher to 

lower frequency region is produced. In addition, a Bode-magnitude plot with Bode–phase plot 

obtained from equivalent electrical circuit model in Figure 3.8, illustrated by the equivalent 

circuit shown in Figure 3.9. In this figure, R1 represents the electrolyte resistance, C1 stands 

for the constant phase element of interface between the electrode and the electrolyte, R2 is the 

charge transfer resistance, and W is the Warburg diffusion. If C1 is not a perfect capacitor a 

depressed arc will appear but if is perfect it will be a complete semicircle arc. In the case of a 

more complex electrode reaction, several elementary processes may limit the reaction rate, 

and each of these processes may appear in the impedance spectrum as a more or less 

depressed arc. The arcs may overlap and it can be difficult to separate them in practice. More 

details about the interpretation of impedance measurements are given in the literature [10, 13].  

 

EIS is able to measure electrochemical cell complex impedance over a wide range of AC 

frequencies. Typically, several cell elements and cell characteristics contribute to a system 

EIS spectrum. A partial list of possible elements includes; electrode double layer capacitance, 

electrode kinetics, diffusion layer, and solution resistance. Unfortunately, the systems 

impedance at any given frequency usually depends on more than one cell element. This 

greatly complicates the analysis of EIS spectra. The most common method used to analyze 

EIS spectra is equivalent circuit modelling [11]. The behaviour of each element is described 

in terms of “classical” electrical components (resistors, capacitors, inductors) plus a few 

specialized electrochemical elements (such as Warbug diffusion elements). 
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3.4 EIS interpretation of measurements 

 

The electrochemical impedance response obtained on composite cathodes generally comprises 

a high frequency induction tail, L, ascribed to the measurement leads, an ohmic resistance, Rs, 

mainly originating from the electrolyte (the high frequency intercept adjusted for induction), 

and a number of more or less overlapping arcs. The data results are always fitted using the 

computer software EQUIVCRT (Boukamp) or Zplot software (version 2b), in order to 

determine the magnitude of Rs and the polarization resistance, Rpol, and to separate the 

individual arcs in the impedance spectrum.  

 

Figure 3.10: The equivalent circuit used for fitting the data. L is an inductance, Rs is the series         

resistance, R is a resistance, and Q is a constant phase element, Rpol = R1 + R2 +R3 [10]. 

                                

In this study the data were fitted to an equivalent circuit of the type Rs(R1Q1)(R2Q2)(R3Q3) see 

Figure 3.10. R is a resistance, Q is a constant phase element with the admittance Y' = Y0 

(jw)n, where Y0 is an admittance factor and n is the frequency exponent. RQ is a depressed arc 

in the impedance spectrum [10-11]. The equivalent circuit has three series connected arcs, 

which gives the simplest possible description of impedance spectra containing three limiting 

processes. When fitting the data one or two of the arcs may turn out to be zero. However, this 

circuit is not adequate to describe the impedance of all composite electrodes. More than three 

processes may contribute to the impedance response [11]. The circuit is used to determine Rpol 

and the magnitude of the individual arcs present in the impedance spectrum, and the circuit 

has been found to serve this purpose well.  

 

For the symmetric test cell, the measured polarisation resistance, Rp, reflects the sum of the 

polarisation resistances of the two electrodes investigated. Therefore, to get the average area-

specific polarisation resistance of the two electrodes, Rp, the measured value, R'p, needs to be 

divided by two and corrected for area. The value of Rp determined in this way is comparable 

to the polarisation resistance measured using three-electrode cells [10-11]. 
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3.5 Charge–discharge performance 

 

Charging a battery is the act of applying an electric potential across the electrodes or plates of 

a capacitor, from a diverse source of electrical energy, to increase the amount of useful and 

available electrical energy stored in the capacitor. It can also be the amount of energy stored 

in a capacitor that is available for release to usefully supply electrical energy to an electric 

load. Discharging is the act of removing available electrical energy from storage in a battery, 

cell or capacitor, via flow of electric current from the battery or capacitor to a load. Figure 

3.11 shows the electrochemical cell for charge–discharge performance of a battery electrolyte. 

The three commonly used performance measures of a flow cell that are obtained from the 

resultant charge–discharge response are coulombic, voltaic and energy efficiency. Coulombic 

efficiency, also known as the Amp–hour efficiency, is a ratio of the discharge to charge 

capacity of the cell. Theoretical capacity or electrical charge (QT) can be calculated from 

Faraday’s Law, therefore in theoretically QT is the product of the cell charging current (I, 

Amps) and the theoretical discharging time (tT, seconds) [14]. 

 

    

 

Figure 3.11: Electrochemical cell for charge–discharge performance of battery electrolyte. 

 

Experimentally, the capacity of a cell will be lower than the theoretical value that is calculated 

as an integral of charge or discharge current (I, Amps or C/s) with time. After the charge and 

discharge capacity (Ahr) are calculated separately, the coulombic efficiency (%) can be 

determined. The theoretical available energy (energy T, J) is calculated by multiplying the 

electrical charge (QT, C) and cell potential (Ecell, V or J/C). Energy is normally recorded in a 

more common unit, Watt-hours (Wh) which can be converted from Joules (J), using 1Wh = 

3600J, while the practical available energy determined experimentally, is an integration of the 

product of cell potential (V, J/C) and the current (I, C/s) with time. When the 
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charge−discharge practical energy is obtainable after the calculation, therefore the energy 

efficiency of the cell can be determined. For an experimental setup with constant 

charge−discharge current, an energy efficiency calculation would differ slightly from the 

above description. Since the energy efficiency is also a product of coulombic and voltaic 

efficiency, the voltaic efficiency can then be determined. Alternately, voltaic efficiency can be 

approximated as the ratio between discharge and charge voltage at 50%, state of charge 

(SOC) 50% from the voltage response curve obtained experimentally [14]. 
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Figure 3.12: A typical charge–discharge diagram [P] 

 

A battery is composed of two electrodes, and a positive cathode and a negative anode, with a 

porous separator sandwiched between the two. In terms of battery charging, the speed of 

charge is usually determined by the milliamp hour (mAh) capacity of the battery. If a source 

is rated at 400 milliamps, charging a 400 mAh battery would take 400/400 = 1 hour (C), while 

charging a 200 mAh battery would take 200/400 = 0.5 hours (0.5 C). In all reality, however, 

charging a battery actually requires at least 1.5 C to reload fully. To avoid confusion, the 

notation for capacitance is an italicized C and the notation for the capacity of a battery is C 

[15].  

 

 

 

[P] Presented Orally by P Modiba at 43rd Power Sources Conference, Philadelphia, New York, 7-10 July 2008. 
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To test the performance of a flow cell the most common technique is to monitor the cell 

voltage with time when the cell is charged and discharged at a constant current. A typical 

charge / discharge response (Figure 3.12) would have an increasing cell voltage during the 

charging stage and a gradual decrease when the cell discharges. The electrochemical cell test 

makes it possible to control the voltage limit and applied current for each charge–discharge 

cycle and to be able to specify the number of cycles to be repeated. For safety reasons, when 

measuring voltage range, the current limit has to be set to prevent the occurrence of extreme 

voltages or currents. For a continuing charge–discharge process, the applied constant current 

can be changed after a fixed number of cycles. The cell efficiency versus current plot can be 

obtained without manually restarting the charging process, hence eliminating the stationary 

time [14]. 

 

3.6 Capillary electrophoresis 

 

Electrophoresis is defined as the differential movement of charged ions by attraction or 

repulsion in an electric field. Tiselius first established CE as a separation technique in 1937 

[16]. The separation efficiency in free solution is limited by thermal diffusion and convection. 

Therefore, electrophoresis has traditionally performed in anti-convective media, such as 

polyacrylamide or agarose gels. Gels in the slab or tube format that use primarily for the size-

dependent separation of biomacromolecules like nucleic acids and proteins. Slab gel 

electrophoresis is a powerful analytical technique but suffers from some disadvantages 

including long analysis times, low efficiencies, necessity for staining after the separation and 

difficulty to automate. Electrophoretic and chromatographic methods are routine separation 

techniques used to analyze a variety of analytes ranging from small ions to large 

biomolecules. Although both methods will apply to similar types of analytes, the separation 

mechanisms are different, resulting in complementary and distinct separation patterns.  

 

Tiselius [16] also developed the moving boundary called “zone electrophoresis” to separate 

serum proteins in solution. He applied a mixture of proteins in a U-shaped cell containing a 

buffer solution. The electrodes immersed at each end of the U-tube. Under an applied voltage, 

the protein samples migrated at different velocities toward the anode or cathode depending on 

their charges and the movements of boundaries, detected at both ends using Schlieren optics. 

Due to the significance of Tisselius’s work, he was awarded the Nobel Prize for Chemistry in 
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1948. The first example of CE in 5 mm narrow tubes was described in 1958 and was cited by 

Stellen Hjerten in 1967 [17]. To overcome band broadening caused by Joule heating, 

Hjerten’s instrument employed a rotating capillary to diminish the thermal gradient. There 

have been subsequently attempts to improve CE separation performance by reducing the 

diameter of the capillary. In 1979, Mikkers et.al [18] reported the use of 200 µm i.d. 

capillaries in high performance zone electrophoresis with UV and conductimetric detection.  

 

CE is a modern analytical separation technique that is used for a variety of compounds such 

as amino acids, drugs peptides and various ionic species. It is extremely useful for the 

analysis of ions, when rapid results are desired. It has become the predominant technique for 

the analysis of both basic and chiral pharmaceuticals. This technology is making its mark in 

biotechnology, replacing traditional electrophoresis for the characterization and analysis of 

macromolecules such as proteins and carbohydrates, and promises to be a valuable tool in 

tackling the characterization challenges posed by proteome-wide analysis. CE technology has 

also served to accelerate the accumulation of genome-level knowledge by automating DNA 

sequencing and genotyping. The "in solution" approach, which is a key feature of this 

technique, is also ideal for creating environments in which molecular interactions are detected 

and studied [19-20]. 

 

CE is also very well suited for the separation of proteins. It covers a family of related 

separation techniques that use narrow-bore fused-silica capillaries to separate a complex array 

of large and small molecules. High electric field strengths are used to separate molecules 

based on differences in charge, size, and hydrophobicity. Sample introduction is 

accomplished by immersing the end of the capillary into a sample vial and applying pressure, 

vacuum or voltage. Depending on the types of capillary and electrolytes used, the technology 

of CE can be segmented into several separation techniques. Even though CE technology is 

applied to many different types of research, it has gained its reputation from the study of 

molecules that have traditionally been difficult to separate. It should be the one to be 

considered first when dealing with highly polar and charged analytes. The CE separation 

mechanism is controlled by electrophoretic mobility, which is a function of charge and size of 

the studied ionic species [19-21]. The capillary electrophoresis technique is clearly illustrated 

in Figure 3.13. 
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Figure 3.13: Photograph of a typical CE instrument. 

 

 

In CE, the only source of band broadening is longitudinal diffusion and therefore narrow peak 

widths (resolution) can be achieved. Short analysis time, high resolution, low electrolyte and 

sample consumption are the main advantages of CE compared to other separation techniques 

like HPLC and GC in particularly high selectivity and lower operating cost, which is the 

reason CE, was chosen in this study. Separation conditions can be optimized quite effectively 

by modifying the capillary temperature and separation voltage, and the nature, pH and 

concentration of the background electrolyte. The main components of a CE system are high 

voltage power supply, two buffer reservoirs, a capillary and a detector. Basic CE 

instrumentation can be enhanced with the use of auto samplers, multiple injection devices, 

multiple detector, sample and capillary temperature control, fraction and computer 

interfacing. [22] The sample solution is introduced as a small plug at the inlet side of the 

capillary, with the application of high voltage from 5 to 30 kV across the capillary. Different 

zones of analyte ions develop, and start to migrate with different velocities toward the outlet 

side of the capillary. Before reaching the end of the capillary (most commonly), the separated 

analyte bands (peaks) are registered by absorbance detection directly through the capillary 

wall yielding an electropherogram. 

 

The foundation to utilize the polyamide coated fused silica capillary used in GC as a standard 

capillary in CE was the fundamental point in CE development [21]. Numerous properties of 

fused silica have proved useful in CE e.g, ability to manufacture the capillary with precision, 

ease of handling, inert surface compared to glass, and excellent UV transparency when the 

coating is removed. In 1981 Jorgenson and Luckacs [21] published they first used fused silica 

capillaries of 75 µm, and a length of 80-100 cm pyrex glass capillary and a 30 kV for 
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separation of derivatized amino acids, peptides and amines. This was a milestone in the 

development of CE. In 1984, CE applications were extended when Terabe et al [23] 

introduced micelles as buffer modifiers to separate neutral and charged compounds based on 

relative affinity for the hydrophobic interior and/or ionic exterior of a micellar pseudo-

stationary phase [24]. Nowadays, capillaries with internal diameters ranging from 10 to 100 

µm are available and applied in CE [25-27].  
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Chapter 4 

 

Study of the Ce (III)/(IV) Redox Couple Using Three Different 

Working Electrode Systems 

 

The previous chapter (Chapter 3) dealt with all the analytical techniques used in the study. In 

this chapter (Chapter 4) the focus is on the electrochemical behaviour of the Ce (IV)/Ce(III) 

redox couple in a sulphuric acid medium with various working electrodes i.e. carbon (C), gold 

(Au) and platinum (Pt) electrodes.  

 

This work was undertaken in view of the interest in the study of the electrochemical kinetic 

parameters of the Ce(III)/Ce(IV) redox couple, using CV and RDE with different electrodes 

(C, Au and Pt electrodes). When three electrodes (C, Au and Pt) where compared, higher 

potential was reached when Pt–electrode was used, followed by C and then Au–electrode, 

making the Pt–electrode the most preferable electrode for the cerium (III/IV) redox flow 

system. A high rate constant for the cerium (III/IV) system was obtained with Pt and Au 

electrodes, which make Pt–electrode the ideal electrode material for the cerium (III/IV) redox 

flow system, C–electrode was found to be the second preferred electrode. 

 

4.1 Introduction 

 

The electrochemical kinetics of the Ce(III)/Ce(IV) couple at high over potential has been 

attributed almost entirely to the reduction of Ce(IV), usually with H2SO4 as the stabilizing 

electrolyte. Randle and Kuhn [1] investigated the reduction reaction of the Ce(III)/Ce(IV) 

couple in 0.5 M H2SO4 and concluded that the mechanism was simple, with no coupled bond 

breakage or adsorption steps. The following reaction applied:  

 

Ce 
4+

aq + e  ↔      Ce 
3+

 aq     

 

The reduction of Ce
4+

 at Pt, highly boron-doped conductive diamond electrodes and the 

oxidation of Ce
3+

 on Au were investigated [2-6]. Kiekens et al. [7] report that the reduction of 

Ce
4+

 was independent of the electrode material, and that the charge-transfer coefficient (α) 

and the heterogeneous rate constant (kc) were similar for different electrodes. For instance, at 
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Pt and glassy carbon (GC) electrodes the kc was 3.7 x 10
−4

cms
−1

and 4.8 x 10
−4

cms
−1

 

respectively and α was 0.21 & 0.35 respectively. Regarding the oxidation of Ce
3+

, the 

different electrodes had different effects on the reaction of Ce
3+→ Ce

4+
+e. These effects are 

due to electrode material, background reactions, oxygen evolution, and a catalytic effect [8-

12].  

Of most of the research [13-23], we are interested in the examining of the cerium because of 

its higher potential. Earlier work on the Ce(IV)/Ce(III) couple was mostly focused on the 

electro-analysis and the concentration of the Ce(IV)/Ce(III) couple at low concentration in 

mmol/dm
3
. However since the electro-active materials are used in redox flow cells, the 

concentration should be high, therefore the concentration of Ce(IV) and Ce(III) has to be 

above 0.1mol dm
−3

. From the cyclic voltammogram response of a Ce(IV)/Ce(III) couple at an 

inert working electrode,     Liu et al. [8] investigated the reversibility of the couple in a H2SO4 

solution. In addition, the kinetic parameters of the Ce(IV)/Ce(III) couple and the oxidation 

efficiency of Ce(III) at various electrodes has been obtained using a rotating disk electrode 

and rotating ring-disk voltammetry [6,8]. 

For this study sulphuric acid was chosen as the acid medium mainly because Ce(SO4)2 is 

stable in H2SO4 solution and a redox reaction seldom takes place. Although the potential of 

the Ce
4+

/Ce
3+

 couple is also high in H2SO4 solution, Kunz [9] proved that in a HClO4 or 

HNO3 solution, the potential of the Ce
4+

/Ce
3+

 couple is also high, and far above the over 

potential for oxygen evolution. The Ce
4+

/Ce
3+

 couple is not stable in HClO4 or HNO3 solution 

since ClO4
−
 and NO3

−
 cannot form stable complexes with Ce

4+
 and Ce

3+
. (This is also the 

reason that the potential of this couple is higher than that in H2SO4 solution). However, SO4
2−

 

can form a complex with Ce
4+

, in the form of CeSO4
2+

, Ce(SO4)2 and Ce(SO4)3
2−

 [6]. Because 

of the formation of a stable complex, it was generally accepted that the Ce(IV) and Ce(III) 

would not undergo hydrolysis in H2SO4 solution. When hydrochloric acid was used as the 

acid medium, Ce
4+

 would oxidize Cl
−
 to Cl2. Mills and Giddings [10] used the Ru, Ir oxide as 

the catalyst to accelerate this reaction, which demonstrated that the Ce(IV)/Ce(III) couple was 

unstable in HCl solution [11]. 

Liu et al. [8] and Xia et al. [12] favoured carbon electrodes for the reduction of the 

Ce(IV)/Ce(III) system rather than the platinum electrode. They have found that the carbon 

electrode was more suitable for the Ce(IV)/Ce(III) system than a platinum electrode. 

However, they did not obtain a higher potential when the carbon electrode was used; it was 

relatively low. Hence, I will focus on the electrochemical behaviour of the Ce (IV)/Ce(III) 
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redox couple in sulphuric acid medium with various working electrodes, C, Au and Pt 

electrodes. Considering the fact that the nature of the electrode material is an important matter 

for electrolyte investigation, both analytical techniques CV and RDE will be used to compare 

the results obtained from these techniques. 

4.2 Experimental Procedure  

4.2.1 Instrumentation 

 

CV measurements were performed using a Bioanalytical System (BAS) 100B voltammetric 

system. A rotating disc electrochemistry (RDE) stand was used in conjunction with the BAS 

100B voltammetric system from Bioanalytical Systems, Inc.West Lafayette, Indiana, USA 

 

4.2.2 Preparation of cerium (IV) sulphate [Ce(SO4)2] solution  

 

Cerium (IV) sulphate [Ce(SO4)2] was dissolved in 0.5 M H2SO4 by continuous stirring. The 

solution was filtered and poured in to a small specially designed CV glass cell for CV and for 

RDE experiments. The electrodes used for CV and RDE experiments were the following: 

Platinum wire as counter electrode, Ag/AgCl as reference electrode and various working 

electrodes (carbon, gold and platinum) with a diameter of 3mm ( Area was ca. 0.07 cm
2
). The 

solutions were de-aerated by bubbling with nitrogen before and during experiments. 

Voltammetry measurements were performed using a BAS 100B voltammetric system. When 

the RDE was used, a RDE stand was used in conjunction with the BAS 100B voltammetric 

system. 

 

4.3 Results and discussion of cyclic voltammetry experiments 

 

4.3.1 Electrochemical evaluation of Ce(III)/(IV) redox couple using carbon electrode 

 

The results below show the obtained cyclic voltammograms for the Ce(III)/(IV) redox couple 

in 0.5M sulphuric acid at three different electrodes ( carbon, gold and platinum). 
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Figure 4.1: Cyclic voltammograms of a 0.1M Ce(SO4)2 solution in 0.5 M H2SO4 at a glassy 

carbon electrode: (a) at various scan rates 20-200 mV/s (b) Plot of peak current vs. square root 

of scan rate.  

 

 

The cyclic voltammograms of the cerium (IV) sulphate in 0.5 M sulphuric acid are shown in 

Figure 4.1 (a) and (b). Forward scans reveal that the anodic peak associated with the 

oxidation of Ce
3+

 to Ce
4+

 occurs at approximately 1750 mV. On the reverse scan, the cathodic 

peak associated with the reduction of Ce
4+

 to Ce
3+

 occurs at approximately – 270 mV versus  

Ag/AgCl. Figure 4.1(b) shows that the anodic and cathodic peak potential changes slightly 

with different scan rates. 
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Table 4.1: Electrochemical parameters E, ∆E, and Ipc / Ipa evaluated by CV for 

Ce(SO4)2  on C-electrode 

Scan 

rate   

Ec    

Reduction 

Ea 

Oxidation Ipc(Red) Ipa,(Ox) ∆E=Ea-Ec 

√scan 

rate 

Ipc/Ipa 

(mV/s) (mV) (mV) (mA) x (10
-1

) (mA) x (10
-1

) (mV) (mV/s)  

20 -300 1760 -0.6 0.3 2060 4.47 1.8 

50 -358 1837 -1.07 0.6 2195 7.07 1.6 

100 -256 1766 -1.25 1.04 2022 10.0 1.21 

150 -274 1774 -1.48 1.45 2048 12.24 1.02 

200 -286 1784 -1.73 2.17 2070 14.14 0.80 

 

Therefore, the electrochemical process will be irreversible since the separation between the 

forward and reverse potential peak ∆Ep is more than 59 mV as shown in Table 4.1, and the 

potential of the forward peak is independent of the scan rate. Pletcher et al. [16] reported a 

larger peak potential separation from the cyclic voltammograms of Ce(III)/Ce(IV) system 

obtained at carbon electrodes. A similar study of the Ce(III)/(IV) redox couple by Fang et al. 

[14] confirmed the irreversible nature of the Ce(III)/(IV) redox couple in the presence of 

sulphuric acid. 
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4.3.2 Electrochemical evaluation of Ce(III)/(IV) redox couple using Platinum  electrode 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Cyclic voltammograms of 0.1M Ce(SO4)2 solution in 0.5 M H2SO4 at Pt-electrode 

in (a) at various scan rates 20-200mV/s (b) Plot of peak current vs. square root of scan rate.  
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Table 4.2 Electrochemical parameters E, ∆E, and Ipc/Ipa evaluated by CV for Ce(SO4)2  

on Pt- electrode 

 

Scan rate   

     Ec 

Reduction 

      Ea 

Oxidation Ipc(Red) Ipa,(Oxi) ∆E=Ea-Ec 

√Scane 

rate 

Ipc/ 

Ipa 

(mV\s) (mV) (mV) (A) x (10
-1

) (A) x (10
-1

) (mV)   

20 966 1282 -0.9 1.2 272 4.47 0.76 

50 974 1294 -1.32 1.6 320 7.07 0.82 

100 978 1312 -1.34 1.62 334 10.0 0.83 

150 982 1322 -1.36 1.8 340 12.25 0.75 

200 984 1334 -1.56 2.2 350 14.4 0.71 

 

The scan rate dependence of the peak currents and peak potentials is shown in Figure 4.2 (b), 

peak splitting was found to increase with increasing scan rate. It also gives a linear correlation 

between the peak current and the square root of scan rate. From Table 4.2, the Randles Sevcik 

equation predicted that the peak current should be proportional to the square root of scan rate 

(√ scan rate). The results obtained follow the Randles Sevcik prediction, where the peak 

height (ip) is proportional to √ scan rate. It indicates that the electrode process of Ce (III)/Ce 

(IV) is electrochemically irreversible. This is contrary to the report by Liu et al. [8] who 

reported a reversible electrochemical behavior of Ce (III)/Ce (IV) on the Pt-electrode. 
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4.3.3 Electrochemical evaluation of Ce(III)/(IV) redox couple using Au-electrode 

 

 

Figure 4.3: Cyclic voltammograms of 0.1M Ce(SO4)2 in 0.5 M H2SO4 at Au-electrode (a) at 

various scan rates 20-200 mV/s (b) Plot of peak current vs. square root of scan rate.  

 

In Figure 4.3(a) the forward scan reveals that the reversible anodic peak associated with the 

oxidation of Ce 
3+

 to Ce 
4+ 

occurs at approximately 1360 mV. On the reverse scan, cathodic 

peak associated with the reduction of Ce 
4+

 to Ce 
3+

 at approximately 710 mV versus 

Ag/AgCl. The scan rate dependence of the peak currents and peak potentials is shown in 

Figure 4.3 (b). Peak splitting between the cathodic (Ipc) peak and anodic peak (Ipa) was 

found to increase with increasing scan rate from the square root of scan rate of 10 to 15 

(mV/s)
1/2

 . It also gives a linear correlation between the peak current and the square root of 

scan rate. 
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Table 4.3 Electrochemical parameters E, ∆E, and Ipc/Ipa evaluated by CV for Ce(SO4)2  

on Au- electrode 

 

Scan rate   

Ec 

Reduction 

Ea 

Oxidation Ipc(Red) Ipa,(Oxi) ∆E=Ea-Ec 

√Scane 

rate 

Ipc/ 

Ipa 

(mV\s) (mV) (mV) (A) x (10
-1

) (A) x (10
-1

) (mV)   

20 682 1348 -0.32 1.56 666 4.47 0.239 

50 686 1350 -0.8 2.34 664 7.07 0.345 

100 692 1368 -1.49 3.44 676 10.0 0.433 

200 722 1384 -2.2 4.32 662 14.14 0.51 

 

It can be seen from Table 4.3 that the anodic and cathodic peak potential changed slightly 

with a scan rate. A large peak potential separation was observed and it indicates that the 

electrode process of Ce (III)/Ce (IV) is electrochemically irreversible.  

 

4.3.4 Comparison of the Ce (III)/Ce (IV) couple using various electrodes (C, Pt and Au) 

 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-1300 -800 -300 200 700 1200 1700

E / mV vs. Ag/AgCl

I 
/ 
m

A

C-electrode

Pt-electrode

 

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

300 800 1300 1800

E / mV vs. Ag/AgCl

I 
/ 
m

A

Pt-electrode

Au-electrode

  

Figure 4.4: Cyclic voltammograms of 0.1M Ce(SO4)2  in 0.5M H2SO4 at a scan rate of 

100mV/sec on (a) C and Pt- electrode (b) Pt and Au- electrode. 

 

Comparing the carbon and Pt-electrode electrodes in Figure 4.4 (a) it can be seen that with 

the carbon electrode, a higher potential was observed at around 1780 mV, see Table 4.1.the 

platinum electrode gave the highest potential which was observed around 1384 mV at a scan 

rate of 200 mV/s, see Table 4.2. In Figure 4.4 (b) the platinum was also compared with the 

Au-electrode, and it was found that the platinum is still favoured compared to Au-electrode in 

relationship to over potentials generated. 

(a) (b) 
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4.4 Rotating Disc Electrode (RDE) Results 

 

4.4.1 Electrochemical investigation of Ce (III)/Ce (IV) couple using C-electrode. 

 

RDE will give information about the electron transfer mechanism in the absence of any mass 

restriction. In this section results for hydrodynamic voltammogram from RDE was used to 

confirm the results observed from similar CV. The RDE and CV results illustrate a reversible 

one electrode process only on the platinium electrode, where it is expected to show the 

potential separation (∆Ep). If the peak current (ip) and square root of the scan rate (v
1/2

) is a 

constant value, independent of scan rate (v). The electrochemical behaviour is measured to be 

reversible, also if the electrons transfer rate is fast on the experiment time scale. The larger 

peak splitting indicates that the energy required increases. Therefore, the reaction is 

irreversible. In peak splitting an increase is caused by increasing the scan rate, which indicates 

a slow interfacial electron transfer.  
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Figure 4.5: Hydrodynamic voltammogram for 0.1M of Ce(SO4)2 in 0.5 M H2SO4 at C-

electrode (a) at a rotating rate of 1000 rpm (b) Rotating rate of 400-2000 rpm (c) Plot of 

Levich current vs. square root of rotating rate. 

 

Table 4.4: RDE results for Ce2(SO4)3 on a C-electrode 

 

Rotating rate IL E(1/2) Length of S-Shape √Rotating rate 

(mV\s) (A) x (10
4
) (V) (mm)  

400 8.08 1.196 40 20.0 

600 6.44 1.20 38 24.49 

800 7.20 1.197 29 28.28 

1000 7.28 1.198 26 31.62 

1400 8.07 1.26 20 37.41 
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Figure 4.5 (a) and (b) represent the hydrodynamic voltammograms obtained for different 

rotation rates (from 100 to 1000 rpm). From these measurements, it is possible to study the 

dependence between the limiting current density (iL) and the rotation rate (ω). The relation 

between iL and the square root of the rotation rate is linear as predicted, shown in Figure 4.5 

(c). The values of limiting current are tabulated in Table 4.4. Values for the diffusion 

coefficient of Ce (III)/Ce (IV) at carbon electrode 2.97 x 10
-6

 cm2 s
-1

 was calculated using the 

Levich equation (see previous Equation 3.1) Where w is the rotation rate (s
-1

) and the other 

units are the same as in Equation 3.1 

 

A Plot of iL vs. w
1/2 

give a straight line with slope proportional to D
2/3

. For a quasi-reversible 

process, the peak potential Ep is a function of scan rate, the difference between Ep and formal 

potential Eo, being related to the standard rate constant. The peak current may be also be 

expressed as in Equation (4.3) below 

 

ip = (0.227) n F A C k exp [–(αnF/RT) (E-Eo)  (4.3) [24] 

 

A plot of lni vs potential (E-Eo) were constructed as shown in Figure 4.6 and a straight line 

plot was obtained with a linear regression of 0.9516. This plot of lni vs (E-Eo), determined at 

different scan rates, should have a slope of – (αnF/RT) with the intercept proportional to (k). 

The rate constant for the Ce(III)/(IV) was calculated to be 2.7 x10
-4

 cm s
-1

 as shown in Table 

4.5 for C-electrode and electron coefficient of (α = 0.36). Generally, it can be considered that 

for a metal, α is theoretically equal to 0.5 (α + β =1) [9]. Consequently, the value of 0.4 for 

glassy carbon is expected, since this material exhibits a metallic character. 
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Table 4.5: Data taken from cyclic voltammograms recorded on carbon electrode for 

calculation of rate constant (k) 

 

E1 – E
0
 lni ααααf(E-E°)    K (10

-4
) 

    

1850 6.9077 -0.19434 2.73  

1795 6.9501 -0.13972 2.74  

1691 7.0013 -0.06135 2.74  

1561 7.1005 -0.01489 2.75  

1442 7.2013 -0.00736 2.76  

1409 7.3005 -0.00593 2.77  

1377 7.4013 -0.00541 2.77  

1265 7.5005 -0.00506 2.78  

1141 7.6013 -0.00475 2.79  

1074 7.7005 -0.00442 2.79  

980 7.8013 -0.00408 2.80  

896 7.9005 -0.00351 2.80  

810 8.0013 -0.00283 2.81  

799 8.1005 -0.00199 2.82  
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Figure 4.6 Plot of Lni vs. (E-Eo) for voltammogram in Figure 4.1 on C- electrode. 
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4.4.2 Electrochemical investigation of Ce (III)/Ce (IV) couple using Pt-electrode 
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Figure 4.7: Hydrodynamic voltammogram for 0.1M of Ce(SO4)2 in 0.5 M H2SO4 at Pt-

electrode (a) at a rotating rate of 1000 rpm (b) Rotating rate of 400-2000 rpm (c) Plot of 

Levich current vs. square root of rotating rate. 
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Table 4.6: RDE for Ce2(SO4)3 on Platinum electrode 

 

Rotating rate IL E(1/2) Length of S-Shape √Rotating rate 

(mV\s) (A) (10
4
) (V) (mm)  

400 2.72 0.79 14 20.0 

600 3.17 0.85 20 24.49 

800 6.77 0.87 45 28.28 

1000 7.84 0.89 61 31.62 

1400 5.55 0.93 72 37.41 

 

From the Figure 4.7 (a) and (b) it was possible to measure the limiting current and the 

rotation rate. The relation between iL and the square root of the rotation rate is linear as 

expected and can be seen in Figure 4.7 (c). The values of limiting current are tabulated in 

Table 4.6. Values for the diffusion coefficient of Ce (III)/Ce (IV) at the platinum electrode are 

3.2 x 10
-6

 cm
2
 s

-1
 as was calculated using the Levich equation (Equation 4.3). 

 

Table 4.7: Data taken from cyclic voltammograms recorded on Pt-Electrode 

 

E1 – E
0
 lni αf(E-E°) K (10

-4
) 

    

72 -12.9202 0.2304 3.128 

65 -13.2361 0.208 3.024 

55 -13.8697 0.176 2.985 

33 -14.018 0.1056 2.983 

18 -14.1506 0.0576 2.952 

4 -14.2973 0.0128 2.143 

12 -14.4324 -0.0384 2.228 

27 -14.5449 -0.0864 2.311 

176 -14.7368 -0.5632 2.398 

700 -14.9593 -2.24 2.989 

1441 -15.2926 -4.6112 2.711 

1893 -16.1052 -6.0576 2.803 

2253 -17.7513 -7.2096 2.987 

2840 -12.9202 -9.088 2.999 
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Figure 4.8 Plot of Lni vs. (E-Eo) for voltammogram in Figure 4.2 on Pt-electrode. 

 

A plot of ln i vs (E-Eo) in Figure 4.8, determined at different scan rates, should have a slope 

of – (αnF/RT) with the intercept proportional to (k), the intercept of lni vs (E-Eo) is 0.227 

nFAck, a straight line plot was obtained with a linear regression of 0.9332. The electron 

transfer coefficient (α) values were obtained from the same plot of lni vs potential (E-Eo), and 

found to be (α) = 0.4 , the rate constant for the Ce(III)/(IV) was calculated to be 1.9 x 10
-4

 

cm
2
 s

-1
 as shown in Table 4.7 for Pt- electrode. 
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4.4.3 Electrochemical investigation of Ce (III)/Ce (IV) couple using Au-electrode. 

 

 (a) 

-0.8

-0.6

-0.4

-0.2

0

0.2

800 1300 1800 2300

E/ mV vs. Ag/AgCl

I/
 m

A
 

 (b) 

-0.8

-0.6

-0.4

-0.2

0

0.2

800 1300 1800 2300

E/ mV vs. Ag/AgCl

I/
 m

A
 

400rpm

600rpm

1000rpm

2000rpm

  

(c)

y = 0.029x - 0.2648

R2 = 0.956

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50

√Rotating rate  (rad/s)

L
e
v
ic

h
 C

u
rr

e
n

t 
(m

A
)

 

 

Figure 4.9 Hydrodynamic voltammogram for 0.1M of Ce(SO4)2 in 0.5 M H2SO4 at Au-

electrode (a) at a rotating rate of 1000 rpm (b) Rotating rate of 400-2000 rpm (c) Plot of 

Levich current vs. square root of rotating rate.  
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Table 4.8: RDE for Ce2(SO4)3 on Gold electrode 

 

Rotating rate IL      E(1/2) Length of S-Shape  √Rotating rate 

(mV\s) (A) (10
4
) (V) (mm)  

400 1.945 0.91 12 20.0 

600 2.68 0.88 24 24.49 

800 5.37 0.90 50 28.28 

1000 5.99 0.92 56 31.62 

1400 10.40 0.94 98 37.41 

 

Figure 4.9 (a) and (b) for the hydrodynamic voltammogram of Ce (III)/Ce (IV) at gold 

electrode obtained for different rotation rates from 100 to 1000 rpm, from this voltammogram  

It is possible to measure the limiting current density (iL) and the rotation rate (w). A straight 

line was observed as shown in Figure 4.9 (c), this means there is linear relation between iL 

and the square root of the rotation rate as predicted. The values of limiting current are 

tabulated in Table 4.8. Values for the diffusion coefficient of Ce (III)/Ce (IV) at carbon were 

found to be 2.97 x 10
-6

 cm
2
 s

-1
 which was calculated according to the Levich equation 

(Equation 4.2). 

 

Table 4.9: Data taken from cyclic voltammograms recorded on Au- Electrode 

 

E1 – E
0 Lni ααααf(E-E°)    K(10

-4
) 

60 12.3337 -0.192 3.13 

33 12.2293 -0.1056 3.12 

12 12.1442 -0.0384 3.11 

18 12.0002 0.0576 3.04 

47 11.8148 0.1504 2.99 

66 11.6710 0.2112 2.95 

76 11.5864 0.2432 2.90 

84 11.5141 0.2688 2.86 

93 11.4332 0.2976 2.81 

141 10.9567 0.4512 2.76 

156 10.8049 0.4992 2.72 

182 10.5528 0.5824 2.67 

211 10.2962 0.6752 3.07 
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Figure 4.10 Plot of Lni vs. (E-Eo) for voltammogram in Figure 4.3 on Au- electrode. 

 

The rate constant for the Ce(III)/(IV) was calculated to be 3.2 x10
-4

 cm s
-1

 as shown in Table 

4.9 for Au-electrode. A plot of lni vs potential (E-Eo) were constructed as shown in Figure 

4.10 and a straight line plot was obtained with a linear regression of 0.8871. The electron 

coefficient (α) value was found to be 0.32 obtained from the plot lni vs potential 

(E-Eo). 

 

4.5 Calculations 

 

Rate constant and electron coefficient was calculated from Butler-Volmer equation below 

[25]. 

 

 

i = lnFAkC e -ααααf(E-E°) 

 

k = lni - lnFAC + ααααf(E-E°) 
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Table 4.10: Data taken from cyclic voltammograms recorded on C, Au and Pt-electrode 

Calculation rate constant (k) 

Carbon Platinum Gold 

Reaction type 

Irreversible 

Reaction type 

Irreversible 

Reaction type 

Irreversible 

k( 10-4) 

(cm/s) E1 – E
0 Lni 

k( 10-4) 

(cm/s) E1 – E
0 Lni 

k( 10-4) 

(cm/s) E1 – E
0 Lni 

2.73E 1850 6.9077 2.13 72 -12.9202 2.81 93 11.4332 

2.82E 1409 7.3005 3.92 18 -14.1506 2.94 141 10.9567 

2.79E 1141 7.6013 3.99 176 -14.7368 3.72 156 10.8049 

2.83E 896 7.9005 2.01 1441 -15.2926 2.67 182 10.5528 

2.77E 799 8.1005 3.97 2840 -12.9202 3.87 211 10.2962 

 

 

4.6 Comparison and discussion for CV and RDE 

 

The nature of the electrode material is an important consideration for electrolyte examination. 

The investigation of cerium in sulphuric acid by CV and RDE has been carried out on three 

types of electrodes, including glassy carbon, gold and platinum. Some of these electrode type, 

electrode preparation is necessary, for example, by polishing electrode. Table 4.10: 

summarizes the values obtained for the kinetics of Ce(III)/(IV) at different electrodes C, Pt 

and Au-electrodes. The anodic transfer coefficient, the rate constant, diffusion coefficient, 

electron coefficient, and linear regression were calculated and discussed below. The reactions 

at C and Pt-electrode show a larger (k) value than at the gold electrode, meaning that the 

reaction will be faster to a certain extent when the carbon and Pt-electrodes are used rather 

than the Au-electrode.  
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Table 4.11: Electrochemical parameters of Ce(III)/(IV) at C, Pt and Au electrodes. 

 

Electrodes αααα D 

[cm2/s] 

(10-6) 

Linear 

Regression 

K 

( 104/cm2 s-1) 

 

Carbon 0.36 2.79 0.9516 2.75 

Platinum 0.41 3.2 0.9332 3.9 

Gold 0.32 2.97 0.8871 3.2 

 

 

The rate constant was calculated comparing the three electrodes, C, Au and Pt. The highest 

rate constant is obtained at Pt-electrode, which make it the favoured electrodes for cerium 

(III/IV) redox couple, with the reaction being faster. C and Au-electrode together came 

second as they are more similar since their rate constant values are close. The rate constant for 

all three electrode (C, Pt and Au) differ slightly as is shown in Table 4.11. Unfortunately, the 

Au-electrode is corroded by the cerium (III/IV) solution when used for more than 5 min. 

Therefore, C and Pt-electrode should replace the Au-electrode. Even though there is an 

adsorption of cerium (IV) on Pt-electrode and formation of oxide on the surface of Pt-

electrode the rate constant is still high, there was not much influence of the reaction during the 

process, the reaction remains fast. When using C-electrode, although there is no adsorption 

and no formation of oxide on the surface, the reaction will not be as fast as on a Pt-electrode. 

The electrochemical behaviour for cerium (III/IV) couple was electrochemically irreversible 

when using all three (C, Pt and Au) electrodes.  

 

 

 

 

 

 

 

 

 

 



 76 

4.7 Conclusion 

 

After evaluation of the three electrodes (C, Au and Pt), C had the highest over potential, for 

the reaction of cerium (III/IV) followed by Pt and then Au-electrode, The electrochemical 

behaviour for the Pt-electrode gave a better electrochemical reversibility than C-electrode, 

than means the kinetic reaction will be faster than when using the C-electrode, making the Pt–

electrode the most preferable electrode. A high rate constant and a low diffusion constant for 

the cerium (III/IV) system were obtained when a Pt–electrode was used. A high rate constant 

for the cerium (III/IV) system was obtained with Pt and Au electrodes, which make Pt–

electrode the most ideal electrode material for cerium (III/IV) redox couple; the C–electrode 

was the second preferred electrode. The rate constant for C-electrode and Au-electrode differs 

slightly. Unfortunately the Au–electrode is easily corroded by cerium (III/IV) solution. 
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Chapter 5 

 

Electrochemical Study of Cerium (IV) in the Presence of Ethylenediaminetetraacetic 

Acid (EDTA) and Diethylenetriaminepentaacetate (DTPA) Ligands [*] 

 

 

Summary  

 

The electrochemical behaviour of the complexation of cerium (IV) with EDTA and DTPA 

was studied using both cyclic voltammetry (CV) and rotating disc electrode (RDE). The 

Ce(IV)–DTPA complex at various scan rates, gave a linear correlation between the peak 

potential (Ep) and square root of the scan rate, showing that the kinetics of the overall process 

was controlled by mass transport. However, when the EDTA ligand was added to the Ce(IV) 

there was no specific change to the potential peak, i.e. the Ce(IV)–EDTA complex has the 

same redox potential as the Ce(IV)/(III) couple. Kinetic parameters such as potential, limiting 

current, diffusion coefficients, transfer coefficients and rate constants were studied. The 

results of RDE experiments confirmed that the parameters measured by CV are similar under 

hydrodynamic conditions and can be used to determine the kinetic parameters of the redox 

couples. The use of DTPA as a ligand for complexation of Ce(IV) gave more favourable 

results compared to the Ce–(EDTA) complex reported previously. The results of kinetic 

studies of the Ce(IV)–DTPA complex indicate what this complex may be useful as an 

electrolyte for redox flow batteries. 

 

5.1 Introduction 

 

The search for stable redox systems for use in redox flow batteries (RFBs) has been an active 

field of research for the past few years [1–7]. A typical battery makes use of two fully soluble 

redox couples, and consists of stacks, electrolytes, pumps and tanks. The storage capacity is 

determined by the electrolyte concentration and the size of the battery cells. The first study of 

redox flow batteries was reported by Thaller [2] who used Fe
2+

/Fe
3+

 and Cr
2+

/Cr
3+ 

redox 

couples for the redox flow cell energy storage systems.  

 

 

 

[*] This chapter has been published by Modiba P and Crouch A. M  in the Journal of Applied Electrochemistry 38 (2008) 1293.  
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Later reports [3, 4] described a multiplicity of redox couple flow batteries (Fe
2+

/Fe
3+ 

and 

V
4+

/V
5+

), (Fe
2+

/Fe
3+

and Ti
+3

/ TiO
+2

), (Fe
2+

/Fe
3+

 and V
2+

/VO
2+

), (Cr
2+

/Cr
3+

 and Cu(NH
3
)
2
 
+
1/ 

Cu(NH
3
)
4
 
+2

) and (V
2+

/VO
2+

 Fe(O
3
)
-3

/Fe(O
3
)
-4

) systems for redox cell development. 

 

Reid et al. [5] also tried to use the Fe
2+

/Fe
3+

 and Cr
2+

/Cr
3+

 couples in redox flow batteries. In 

all these studies encountered the same problem of poor reversibility and the cross mixing of 

anolyte and catholyte through the separating membrane was encountered because of the use of 

two separate redox couples in a half cell.  

 

The system also suffered from serious efficiency losses, which reduces the life time of 

expensive membranes. All these problems can be minimized by employing the same element 

in different oxidation states. In both half cells this approach requires the use of different 

complexing agents to provide a workable difference in redox potential. Quantities of redox 

couples based on a single species (all-vanadium, iron, chromium, cerium, and neptunium) 

have been reported in the literature [6–13]. Recently much of attention has been focused on 

the all−vanadium RFB [6, 7, 10, 11] due to its various advantages, where there is no decrease 

in capacity caused by the cross mixing of the positive electrolyte and negative electrolyte, 

meaning that there will be no energy efficiency loss during the process. The effect of cross-

contamination for all vanadium RFB does not need catalysts for both electrode reactions, and 

there is no evolution of hydrogen gas, which needs rebalancing power and additional 

equipment. Even though these qualities exist for all-vanadium redox flow systems the open-

circuit voltage for each single cell after full charging is about 1.4 V, which is relatively low.  

 

Lui et al. [4] proved that vanadium could be replaced by cerium. Fang et al. [14] investigated 

the Ce(IV)/Ce(III) couple, which has a standard reduction potential of 1.74 V, which is higher 

than the all-vanadium RFB. Paulenova and Creager [15] evaluated the cerium couple in a 

RFB because of its positive redox potential, and the cell voltage was predicted to be 

approximately 1.9 V. The use of the Ce
4+

/Ce
3+

 redox couple is attractive for RFB technology 

because of its large positive redox potential, which should result in a battery with a higher cell 

voltage and a greater energy storage capacity. Pletcher and Valder [16] reported the 

electrochemical behaviour of the Ce
4+

/Ce
3+

 redox couple in aqueous nitrite media and the 

electrochemistry of the Ce
4+

/Ce
3+

 couple in sulphuric acid solutions has been widely 

investigated [17–20].  
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The kinetics and mechanism of the oxidation of organic compounds by various oxidizing 

agents have also received considerable attention in recent years. In particular, the oxidation of 

different organic compounds using carboxylic acids and alcohol with Ce(IV) has been studied 

extensively. Abbaspour and Mehrgardi [18] investigated the electrochemical behaviour of 

Ce(III) ions in the presence of EDTA, and they determined the kinetic parameters such as 

transfer coefficients and rate constants for the electrocatalytic oxidation of the nitrite ion. 

Glenworth et al. [19] carried out a kinetic study of isotopic exchange reactions between 

lanthanide ions and lanthanide polyaminopolycarboxylic acid complex ions in aqueous 

solution to determine the chemical effect of nuclear transformation of Ce–EDTA and Ce–

DTPA couples. This work was used as a point of departure to demonstrate the superior 

performance of the Ce–DTPA complex. 

 

A literature search has revealed no report of an electrochemical study of Ce(IV) in the 

presence of DTPA as a ligand or complexone for use in redox flow batteries system. In this 

paper we report on the study of a Ce(IV) redox system using EDTA or DTPA as a ligand for 

redox flow batteries. This system was also used to compare Ce–DTPA and Ce–EDTA 

systems, to show that the former system Ce–DTPA is more promising than the latter Ce–

EDTA in terms of its stability and electron transfer capability. A comparison was also made 

to similar systems of iron. 

 

5.2 Experimental 

 

5.2.1 Materials  

 

All reagents were of analytical reagent grade unless stated otherwise. 

Ethylenediaminetetraacetic acid (EDTA), sulphuric acid, potassium ferricyanide (K3Fe(CN)6), 

potassium nitrate (KNO3) sodium hydroxide, cerium(IV) sulphate and 

diethylenetriaminepentaacetic acid (DTPA) were obtained from Sigma-Aldrich (Steinheim, 

Germany).  

 

5.2.2 Preparation of Ce(IV)–DTPA and Ce(IV)–EDTA 

 

Cerium(IV) sulphate [Ce(SO4)2] and Ce(IV)–EDTA were prepared as described in the 

literature [21]. For the preparation of Ce(IV)–DTPA, DTPA was added to replace EDTA as 

per literature method [21], and dissolved in 1 M H2SO4. The solution was filtered and poured 
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in a small, specially designed cyclic voltammetry (CV) glass cell. Deionized water was 

prepared by passing distilled water through a Milli Q water purification system (Millipore 

from Bedford, MA, USA)  

 

 

5.2.3 Preparation of Fe(III)–DTPA and Fe(III)–EDTA  

 

Fe(III)–DTPA and Fe(III)–EDTA were prepared by dissolving potassium ferricyanide 

(K3Fe(CN)6) in 0.1 M potassium nitrate (KNO3) solution. The specific quantities of EDTA 

and DTPA were added in a separate container to complex with the prepared iron solution.  

 

5.3 Instrumentation 

 

CV measurements were performed using a BAS 100B voltammetric system. A rotating disc 

electrochemistry (RDE) stand was used in conjunction with the BAS 100B voltammetric 

system from Bioanalytical Systems, Inc.West Lafayette, Indiana, USA. 

 

5.3.1 Electrochemical measurements 

 

The electrochemical behaviour of Ce(IV) ion in the presence of EDTA and DTPA was 

investigated with CV and RDE or hydrodynamic voltammetry techniques. The electrodes 

used for both CV and RDE experiments included: a platinium disc electrode with a diameter 

of 3 mm as a working electrode, Ag/AgCl as a reference electrode and a platinium wire as a 

counter electrode. The electrodes were initially hand polished with 600–1200 grit paper. 

Before each experiment they were polished again with a microcloth using 1, 0.3, and 0.05 µm 

alumina, followed by rinsing the electrodes with de-ionized water. Thereafter the electrodes 

were polished with 1 µm diamond polish slurry. The electrodes were rinsed again several 

times with de-ionized water and methanol to remove polishing residues. The surface activity 

was confirmed by recording CVs for K3Fe(CN)6 in 0.1 M KNO3 solution. The solutions were 

de-aerated by bubbling with nitrogen before each experiment for 10 min. Analyses were 

carried out at room temperature at various scan rates from  20 to 200 mV s
-1

.  
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5.4 Results and discussion 

 

5.4.1 Cyclic voltammetry 

 

The redox process of Ce
3+

 / Ce
4+

 on the platinum electrode is presented in Figure 5.1(a) and 

(b) It was observed that the peak potentials of cathodic and anodic were changed to more 

negative direction as the scan rate increases from 20 to 200 mVs
−1

. Forward scans reveal that 

the anodic peak associated with the oxidation of Ce
3+

 to Ce
4+

 occurs at approximately 1020 

mV. On the reverse scan, the cathodic peak associated with the reduction of Ce
4+

 to Ce
3+

 

occurs at approximately 1290 mV. Therefore, the electrochemical process will be quasi-

reversible since the separation between the forward and reverse potential peak ∆Ep is more 

than 59 mV, and the potential of the forward peak is independent of the scan rate. Pletcher et 

al. [16] reported a larger peak potential separation from the cyclic voltammograms of 

Ce(III)/Ce(IV) in H2SO4 system obtained at carbon electrodes. A similar study of the 

Ce(III)/(IV) redox couple by Fang et al. [14] confirmed the irreversible nature of the 

Ce(III)/(IV) redox couple in the presence of sulphuric acid. Fang et al. also investigated the 

effect of sulphuric acid concentration on the formal potential of the cerium redox couple. The 

scan rate dependence of the peak currents and peak potentials in sulphuric acid is reported in 

Figure 5.1(c). There is a linear relationship between peak current and scan rate, indicating a 

diffusion controlled reaction. 
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Figure 5.1: Cyclic voltammograms for a platinium electrode in: (a) 0.1 M Ce(SO4)2 solution 

in 1M H2SO4, at a scan rate of 100 mVs
-1

;(b) at various scan rates: 20, 50, 100, 150 and 200 

mVs
-1

;(c) Plot of peak current vs. square root of scan rate for voltammogram of Ce (SO4)2 on 

Pt-electrode. 

 

Figure 5.2(a) and b shows the voltammograms for the Ce(IV) aminocarboxylate complexes 

in 1 M H2SO4 solution .The peak potential Epa and Epc values are observed at around 1020 

mV and 1290 mV. Both the cathodic peak and anodic peak potentials changed slightly with 

the scan rate as shown in Figure 5.2(b). Peak splitting was found to increase with increasing 

scan rate, meaning a larger peak separation was observed and the electrochemical process was 

irreversible. The redox reaction Ce(III) to Ce(IV) shows a quasi-reversible electrochemical 

behaviour, Ce(IV)–EDTA illustrates an irreversible behaviour, whereas the Ce(IV)–DTPA 

complex is quasi-reversible as shown in Figure 5.2(c). The cathodic peak potential shift 

(a) 
(b) 
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towards more negative potential values for the reduction step, the current ratio Ipa/ Ipc for the 

Ce(IV)–DTPA complex was found to be 0.84 and the transfer coefficient (a) from the Table 1 

was found to be 0.42. This ratio and transfer coefficient supports the notion that the reaction 

shown in Figure 5.2(a) is quasi-reversible. Various concentrations of DTPA (1–3 mM) were 

added to the cerium solution and the colour of the solution changes after adding 3 mM DTPA, 

the colour changes from deep yellow to light yellow. The ionic strength was strictly kept 

constant, since the change in the rate constant could be due to the small changes in the ionic 

strength. Sodium hydroxide was used to adjust the pH of the solution to 4.5. Ce(IV)–DTPA 

complex provides better results at the pH 4.5 than the Ce(IV)–EDTA complex as shown in 

Figure 5.2.  

 

Glentworth et al. [19] studied the kinetics of lanthanide polyaminopolycarboxylic acid 

complex ions, claiming that the rate of exchange depends on the pH of Ce–DTPA and on the 

concentration of Ce–DTPA complex. The reason is that the ligands may be considered to be 

electrostatically bonded to the metal ion and it is probable that the carboxylate group is 

unstable, i.e. there is a continuous breaking and reforming of the bonds. The unstable 

carboxylate group will be vulnerable to attack by protons and the stability of the ligand will 

be increasingly reduced by successive protonation of the carboxylate group. Rao [22] studied 

the rate of exchange kinetics of EDTA, DTPA and its analogues with Ce(IV) in sulphuric acid 

medium using spectrophotometric methods. No electrochemical study is presented for 

Ce(IV)–DTPA. Rao confirmed that the rate constant depends on the nature of amino groups 

i.e. tertiary > secondary > primary. This implies that a ligand like EDTA will be less 

vulnerable to attack by an oxidizing agent like Ce(IV) in sulphuric acid than DTPA. Therefore 

the Ce(IV)–DTPA complex will be more stable and more suitable for redox flow batteries 

than the Ce(IV)–EDTA system. A plot of the peak current (ip) for the oxidation and reduction 

processes versus square root of scan rate (V
1/2

) is given in Figure 5.2 (d) and (e) This shows 

the dependence of peak current for the oxidation and reduction process of the Ce(IV)–DTPA 

complex; the peak current is a linear function of the potential scan rate, confirming that the 

surface measures limit these processes. It also proves that the Ce(IV)–DTPA complex is a 

quasi-reversible redox process within the potential range and is controlled by a diffusion 

limited reaction. 
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Figure 5.2: Cyclic voltammogram for a 0.1 M Ce(SO4)2 solution in 1 M H2SO4 at a 

platimium electrode. With (a) 0.03 M DTPA at a scan rate of 100 mVs
-1

 (b) at various scan 

rates: 20, 50, 100, 150 and 200 mV s
-1

 and (c) 0.1 M of Ce(SO4)2, Ce (IV)–EDTA and Ce 

(IV)–DTPA. (d) Randles plot for the redox reaction of Ce(IV)–EDTA. (e) Randles-Sevcik 

plot for the redox reaction of Ce(IV)–DTPA. 
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Figure 5.2(d) shows a large current separation between the anodic and cathodic lines 

indicating faster kinetics for the reduction process than the oxidation process for the Ce(IV)–

EDTA complex. In contrast Figure 5.2(e) illustrates that the anodic ‘‘line’’ and cathodic 

‘‘line’’ are close together and have similar slopes, indicative of relatively comparable electron 

transfer rates. However the Ce(IV)–EDTA complex is slightly limited by the surface 

processes and a poor linear response is achieved as shown in Figure 5.2(d). Figure 5.2(c) 

shows an overlap of the three voltammograms of the redox behaviour of Ce(IV) in sulphuric 

acid, the Ce(IV)–EDTA complex and the Ce(IV)–DTPA complexes respectively.  

 

The anodic and cathodic peak currents of the Ce(IV)–DTPA complex is higher than the 

corresponding currents for the Ce(IV)– EDTA complex and Ce(IV) at the same concentration, 

indicating a faster electron transfer at the platinum working electrode for the former. This 

enhanced electron transfer compared to the other complexes is also supported by the electron 

transfer coefficient (α) for this reaction.  
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Table 5.I: Cyclic voltammogram data for different electrolytes determined using a platinum 

electrode 

Electrolyte Diffusion 

coefficient 

(10
6
D / cm

2
 s

-1
) 

 

Electron 

coefficient 

(αααα) 

Standard rate 

constant  

(10
4 
k

o 
/ cm

2
 s

-1
) 

 

 This 

study 

Literature 

values 

This 

study 

Literature 

values 

This  

study 

Literature 

values 

Ce(IV) 2.4 3.20
a 

[21] 0.31 - 1.6 1.9      [21] 

Ce(IV)-EDTA 1.3 - 0.36 - 1.9 1.9 
b
   [18] 

Ce(IV)-DTPA 1.1 - 0.42 - 3.1 - 

Fe(III) 2.3 3.24
c 

[25] 

7.6     [26] 

0.39 - 2.1 3.25    [25] 

2.87
 d

 [26] 

Fe(III)-EDTA 1.9 1.50
e 

[25] 0.48 0.49 [27] 2.6 1.9
f
     [27] 

Fe(III)-DTPA 0.28 0.20   [25] 0.51 - 2.3 156    [25] 

 

a
 Diffusion coefficient of Ce(IV) at Au-electrode = 0.32 x 10

-5
cm s

-1
 [21] 

b
 The rate constant (k) of Ce(IV)–EDTA in 0.1M KCl = 1.9 s

-1
 [18] 

c
 Diffusion coefficient of Fe(III) at Diamond-electrode = 7.6 x 10

-6
 cm

2
 s

-1
 [26] 

d
 The rate constant (k) of Fe(III at Diamond-electrode = 2.87 x 10

-3
 cm s

-1
 [26] 

e
 Diffusion coefficient of Fe(III) at Pt-electrode = 1.50 x1 0

-6
 cm

2 
s

-1
 [25] 

f
 The rate constant (k) of Fe(III)–EDTA at Au-electrode = 1.9 cm s

-1
 [27] 

 

 

The rate constant, diffusion coefficient and electron coefficient for Fe(III), Fe(III)–EDTA and 

Fe(III)–DTPA are shown in Table 5.1. The values of (k) were obtained from the plot of lni vs 

potential (E-Eo), and found to be (k) = 2.1 9 10
-4

 cm/s Fe (III), Fe (III) EDTA (k) = 2.6 9 10
-4

 

cm/s and Fe(III)DTPA (k) = 2.3 9 10
-4

 cm/s. The value of (α) were also obtained from the 

same plot of lni vs potential (E-Eo), and found to be (α) = 0.39 Fe(III), (α) = 0.48 

Fe(III)EDTA and (α) = 0.51 Fe(III)DTPA as shown in Table 5.1. In comparison the 
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Fe(III)EDTA complex species have a larger (k) value than the uncomplexed species, meaning 

that the reaction will be faster when the EDTA and DTPA complexes are used rather than the 

uncomplexed species of Fe(III).  

 

 

5.4.2 Rotating disc voltammetry  

 

The voltammograms of rotating disc electrochemistry were shown in Figure 5.3 which was 

obtained at rotation rates between 200 and 4000 rpm. The limiting current results were plotted 

versus the square root of rotation rate as illustrated in Figure 5.3(c), a linear relationship has 

been found between the square root of rotation rate and the limiting current. This 

demonstrates that the Ce(IV)–DTPA reaction obeys the Levich equation below, Equation 

(5.1) [23] 

 

iL = (0.620) n F A D
2/3

 w
1/2

 v
–1/6

 C     (5.1) 

 

where iL is the Levich current, n is the number of electrons, F is the Faraday constant, A is 

the electrode area (in cm
2
), D is the diffusion coefficient (in cm

2
/s), w is the rotation rate 

(radians/s), v is the kinematic viscosity (cm
2
/s), and C is the concentration of (mol/cm

3
).  
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Figure 5.3: Hydrodynamic voltammograms of a 0.1 M Ce(SO4)2 solution in 1 M H2SO4 at a 

Plutinum electrode with (a) 0.03 M DTPA at various rotation rates: 200, 400, 600, 800, 1000, 

2000, 3000 and 4000 rpm (b) in Ce(SO4)2, Ce (IV)–EDTA and Ce (IV)–DTPA at a rotation 

rate of 1000 rpm; (c) plot of Levich current vs. square root of rotation rate for the Ce (IV)–

DTPA (d) a plot of lni vs. potential (E-E0). 

 

The values of the diffusion coefficient obtained from Figure 5.3(c) are shown in Table 5.1. A 

plot of lni vs potential (E-Eo) were constructed as shown in Figure 5.3(d), a straight line plot 

was obtained with a linear regression of 0.9934. The rate constant (k) was calculated from the 

Levich plot and found to be in the range 1.6–3.1  10
-4

 cm
2
/s, and is in good agreement with 

those found by earlier researchers [18, 20] as listed in Table 5.1. Therefore, the process is 
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diffusion controlled. The diffusion coefficient of the uncomplexed Ce(IV) in 1 M H2SO4, 

calculated from the slope of the straight line, was found to be 2.4 x 10
- 6

 cm
2
/s as shown in 

Table 5.1. This is lower than the value of 3.2 x 10
-6

 cm
2
/s found in the literature [16, 17, 20]. 

A plot of iL vs. w
1/2

 gave a straight line with slope proportional to D
2/3

. For a quasi-reversible 

process, the peak potential Ep is a function of scan rate, the difference between Ep and formal 

potential Eo, being related to the standard rate constant. The peak current may also be 

expressed as in Equation (5.2) [24]. 

 

ip = (0.227) n F A C k exp [–(anF/RT) (E-Eo)    (5.2 ) 

 

Plot of lni vs. (E-Eo), determined at different scan rates, should have a slope of -(anF/RT) 

with the intercept proportional to (k). The rate constant for the uncomplexed Ce(IV) in 1 M 

H2SO4 was calculated to be 1.6 x 10
-4

 cm/s as shown in Table 5.1. This is a reasonable 

agreement with the value 1.9 x 10
-4

 cm/s found in the literature [20]. No kinetic and 

electrochemical data were available in the literature for the Ce(IV)–DTPA system for use in 

redox flow battery systems. Therefore the kinetics of uncomplexed Ce(IV) and Ce(EDTA) are 

the only points of reference, as shown in Table 5.1. The Fe(III) EDTA and Fe(III)(DTPA) 

systems were also evaluated and used as a further point of reference. In comparison the 

Ce(IV)–DTPA complex species have a larger (k) value than the uncomplexed species, 

meaning that the reaction will be faster when DTPA is used as a complex rather than EDTA 

and  uncomplexed species (Ce(IV). 

 

5.5 Conclusion 

 

The electrochemical behaviour of the complexation of Ce(IV) with EDTA and DTPA was 

studied using both CV and rotating disc electrochemistry (RDE). The results for cyclic 

voltammetry study of Ce(IV)–DTPA illustrate a quasi-reversible 1e
-
 transfer reaction 

electrode process on platinium. A potential separation (∆Ep) of greater than 59 mV was 

observed; this was dependent of scan rate. The Ce(IV)–DTPA complex at various scan rates 

gave a linear correlation between the peak current (Ep) and square root of scan rate, showing 

that the kinetics of the overall process was diffusion-controlled. RDE results also provided 

information about the electron transfer mechanism in the absence of any mass restriction. The 

kinetic tests also showed that the Ce(IV)–EDTA redox reaction at platinium was a relatively 

slow heterogeneous reaction. The electrochemical studies of the Ce(IV) in the presence of 

EDTA show irreversible behaviour. EDTA was therefore found not to be a suitable ligand for 
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use in electrolytes of RFB. In the Ce(IV) uncomplexed species the results show a quasi-

reversible electrochemical behaviour with a lower electron transfer rate constant. The 

electrochemical study of Ce(IV), Ce(IV)–EDTA and Ce(IV)–DTPA at the platinum electrode 

indicated that the highest k value was between 1.6 and 3.1 x 10
-4

 cm/s and the diffusion 

coefficients between 1.1 and 2.4 x 10
-6

 cm/s. The Ce(IV)–DTPA complex species have a 

higher electron transfer rate constant than the Ce(IV)–EDTA complex and uncomplexed 

species Ce(IV), respectively. This indicates that the rate of electron transfer was fast. An all 

cerium redox couple in which the DTPA ligand will be used as an electrolyte for the redox 

flow battery system, has an advantage over the Ce–EDTA and Ce(IV) uncomplexed species. 

Hence the suggestion is that a redox flow battery employing the Ce(IV)–DTPA complex as 

the positive active species, with high voltage efficiency will satisfy an important requirement 

for a redox flow battery electrolyte. 
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Chapter 6 

Electrochemical Impedance Study of Ce(IV) with Other 

Aminopolycarboxylate Ligands for Redox Flow Battery Applications[*] 

 

In this study the electrochemical behaviour of cerium with ethylenediamine disuccinate 

(Ce(IV)–EDDS) and nitrilotriacetic acid (Ce(IV)–NTA) on a platinum electrode were 

investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) 

for redox flow battery (RFB) applications. EDTA and DTPA results were used in this chapter 

to compare with other aminopolycarboxylate ligands like EDDS and NTA.  The Ce(IV) redox 

system using EDDS and NTA as ligands for RFB was reported for the first time using EIS. 

The reversibility from the CV results was best when Ce(IV) was complexed with the DTPA 

ligand compared to the EDTA, EDDS and NTA ligands. The AC impedance spectra of these 

redox couples were analyzed and equivalent circuits proposed. Results of the EIS studies 

confirmed the results obtained from CV. Ce(IV)–DTPA showed the least resistance and faster 

electron transfer compared to Ce(IV)–EDTA, Ce(IV)–EDDS and Ce(IV)–NTA. The Ce(IV)–

DTPA will therefore be a more suitable RFB electrolyte compared to Ce(IV), Ce(IV)–EDTA, 

Ce(IV)–EDDS and Ce(IV)–NTA due to its better electrochemical reversibility, lower 

resistance, higher potential, fast kinetic reactions, diffusion control and mass transfer.  

 

6.1. Introduction 

The complexes of metals with aminopolycarboxylic acid have attracted considerable attention 

[1-11]. The oxidation of various organic compounds using carboxylic acids with Ce(IV) has 

been extensively studied [1,3-4]. Abbaspour and Mehrgardi [1] investigated the 

electrochemical behaviour of Ce(III) ions in the presence of EDTA and determined the kinetic 

parameters such as transfer coefficient and rate constants for the electrocatalytic oxidation of 

the nitrite ion. The paper on Ce(IV) with the addition of DTPA complex has been published 

and in this is compared with uncomplexed Ce(IV) and Ce(IV)–EDTA, this all in the previous 

chapters and the paper [3]. Vanadium electrolyte was compared with the results observed 

from Modiba and Crouch [4] using charge/discharge characteristics of the electrolyte for 

battery performance, and found that the results are almost the same when comparing the 

vanadium and Ce(IV)–DTPA.  

 

 

[*] Submitted to Electrochimica Acta, Modiba P, Matoetoe M, Crouch A.M. (2009). 
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It is important to study the kinetics and mechanism of different electrolytes for redox flow 

batteries, in order to be able to identify a suitable electrolyte that displays a high potential, 

high current and electrochemical reversibility. There are a few complications related to redox 

flow batteries (RBF), namely, mixing of electrolytes, and chemical degradation due to 

corrosion. An all−vanadium RFB system has been used to solve some of these difficulties 

[12-22], This system offers various advantages such as no decrease in capacity caused by the 

cross mixing of the positive and negative electrolyte, meaning that there will be no energy 

efficiency loss during the process. The effect of cross−contamination for all−vanadium RFB 

does not require catalysts for both electrode reactions, and there is no evolution of hydrogen 

gas, no need to rebalance power and additional equipment. Even though these qualities exist 

for all-vanadium redox flow systems the open-circuit voltage for each single cell after full 

charging is about 1.4 V, which is relatively low. 

 

Liu and co-workers [23] investigated both cerium and vanadium, their CV results have 

confirmed the feasibility of replacing vanadium with a very high concentration of a cerium 

couple to produce a completely novel redox cell. Fang et al. [24] studied the Ce(IV)/Ce(III) 

couple, and obtained a formal potential of 1.2V and a coulombic efficiency of around 87%, 

which is higher than for the all–vanadium RFB. Kieken and co-worker [25] illustrated that the 

reduction of Ce(IV) to Ce(III) is independent of electrode materials using C, Pt and Au 

electrodes. They found that the charge transfer coefficient and the rate constant of all 

electrodes used were similar. Paulenova et al. [26] investigated the cerium couple for RFB, 

because of its larger positive redox potential, and the cell voltage was predicted to be 

approximately 1.9 V.  

 

Glentworth et al. [2] examined the kinetics of isotopic exchange reactions between lanthanide 

ions and lanthanide as mentioned in Chapter 5, Section 5.1. This work was used as a point of 

departure to demonstrate the superior performance of Ce(IV) with the addition of DTPA to 

form a Ce(IV)–DTPA complex. Also it should be useful to compare it with other ligands such 

as ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS) and 

nitrilotriacetic acid (NTA), My literature search has revealed no report of an electrochemical 

study of Ce(IV) in the presence of DTPA, EDTA, EDDS and NTA using electrochemical 

impedance spectroscopy (EIS) for redox flow batteries application. Generally the new battery 

technologies that are currently under development [3-4, 23-26], fluctuate in the use of 

different metals redox couples. The Ce
4+

/Ce
3+

 redox couple is attractive for RFB technology 

because of its large positive redox potential, which should result in a battery with a higher cell 
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voltage and a greater energy storage capacity. Pletcher and Valder [26] reported on the 

electrochemical behaviour of the Ce
4+

/Ce
3+

 redox couple in aqueous nitrite media, and the 

electrochemistry of the Ce
4+

/Ce
3+ 

couple in sulphuric acid solutions has been widely 

investigated [3-4, 23, 26-28]. A cerium couple is the most uncomplicated electrolyte for redox 

batteries, and it provides a relatively inexpensive and reliable power source. Although the 

production of cerium batteries is generally simple and has only a relatively low environmental 

impact, various disadvantages of cerium redox batteries do persist. To avoid these 

disadvantages associated with the cross contamination and relatively poor energy to volume 

ratio, alternative ligands can be used to complex cerium for example, cerium can be 

complexed with EDTA, EDDS or DTPA to achieve improved power levels.  

 

In earlier work, by Modiba and Crouch [3] CV and RDE were used to evaluate the 

electrochemical kinetics of Ce(IV)–DTPA and Ce(IV)–EDTA complexes. In this chapter the 

electrochemical evaluation and electrochemical impedance spectroscopy of Ce(IV) with 

EDTA, EDDS, NTA and DTPA were used to determine their suitability as electrolytes for 

RFB. The AC impedance spectra of these redox couples have been analyzed and an 

equivalent circuit proposed.  

 

6.2. Experimental 

6.2.1 Materials  

 

All reagents were of analytical reagent grade unless otherwise stated. 

Ethylenediaminetetraacetic acid (EDTA), ethylenediamine disuccinate (EDDS), 

nitrilotriacetic acid (NTA) and diethylenetriamine pentaacetic acid (DTPA) were obtained 

from (Fluka- Riedel-de Haen). Sulphuric acid, potassium ferricyanide (K3Fe(CN)6), 

potassium nitrate (KNO3) sodium hydroxide, cerium (IV) sulphate [Ce(SO4)2] were purchased 

from Sigma–Aldrich (Steinheim, Germany). 

 

6.2.2 Preparation of Ce(IV) with DTPA, NTA, EDDS and EDTA 

 

Cerium (IV) sulphate [Ce(SO4)2] and Ce(IV)−EDTA were prepared as described in the 

literature [29]. For the preparation of Ce(IV)−DTPA , DTPA was added to replace EDTA as 

per literature method, and dissolved in 1 M H2SO4. The solution was filtered, and then poured 

into a small specially designed CV glass cell. Deionized water was prepared by passing 

distilled water through a Millipore water purification system (Bedford, MA, USA). 
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6.2.3 Instrumentation 

CV measurements were performed using a BAS 100B voltammetric system (Bioanalytical 

Systems, Inc. West Lafayette, Indiana, USA). Electrochemical impedance spectroscopy (EIS) 

measurements were recorded with a VoltaLab PGZ 402 (Radiometer Analytical, France).  

6.2.4 Electrochemical measurements 

 

The electrochemical behaviour of the Ce(IV) ion in the presence of EDTA, NTA, EDDS and 

DTPA was investigated with CV and EIS. A three electrode system was used to perform all 

electrochemical experiments: a platinum electrode with a diameter of 3 mm was used as a 

working electrode, Ag/AgCl (3M NaCl type) as a reference electrode, and a platinum wire as 

a counter electrode. 

 

Impedance measurements were performed in the frequency range from 100 kHz to 100 mHz 

at potential step from 800 −1300 mV, with an applied amplitude of 10 mV. All experiments 

were performed at room temperature and EIS results were recorded using Pt as working 

electrode. Alumina micro-polish and polishing pads (Buehler, IL, USA) were used for 

polishing the electrodes. The electrodes were sonicated for 15 min in water, followed by air-

drying. 

 

6.3. Results and discussion 

6.3.1 Cyclic voltammetry 

 

A cyclic voltammogram of Ce(IV) in the presence of EDDS at a Pt electrode  showed anodic 

and cathodic peaks around 1232 and 490 mV, respectively, in Figure 6.1 (a). The anodic peak 

potential gradually increased from 1228 to 1244 mV with an increase in scan rate. A 

corresponding cathodic peak potential decrease was observed from 500 to 484 mV with an 

increase in scan rate from 20 −300 mV/s as shown in Figure 6.1 (b). These changes indicate 

that the potentials of the anodic and cathodic peaks are dependent upon the scan rates. The 

symmetric shape of the anodic and cathodic peaks reveals good electron transfer, but the 

potential separation (∆E) shows poor reversibility between the anodic peak and the cathodic 

peak. The anodic peak current of the Ce(IV)−EDDS complex is greater than that of the 

cathodic peak and a variable change from the Ce(IV) is observed. The anodic peak showed a 

marked increase, whereas there was a slight increase in the cathodic peak current. This means 

that the addition of EDDS to Ce(IV), there was no effect in the chemical reaction. The 

Ce(IV)–EDDS results follow the same trend as the Ce(IV)–EDTA results reported earlier [3]. 
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Both complexes of Ce(IV)–EDDS and Ce(IV)–EDTA are electrochemically irreversible; their 

surface processes are limited and they have poor linear response. 
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Figure 6.1: (a) Ce(IV)–EDDS cyclic voltammograms with a Pt −electrode are recorded at a 

scan rate of 100 mV/s  and (b) at scan rates of 20, 50, 100, 150, 200, 250 and 300 mV/s 

respectively. 

 

A voltammogram of Ce(IV) in the presence of NTA (Ce(IV)–NTA) is shown in Figure 6.2 

(a). The anodic peak is observed around 1139 mV and the cathodic peak at around 942 mV. 

The Ce(IV)–NTA complex is electrochemically active, showing a quasi-reversible 

electrochemical behaviour. The peak current increases with scan rate as observed in Figure 

6.2 (b).  

 

 

 

(a) 
(b) 
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Figure 6.2: (a) Ce(IV) –NTA cyclic voltammograms with a Pt−electrode are recorded at a 

scan rate of 100 mV/s and (b) at scan rates 20, 50, 80, 100, 150, 200, 250 and 300 mV/s 

respectively.  

 

Such changes indicate that the potentials of the anodic and cathodic peaks are independent of 

the scan rate, and the peak potential separation (∆EP) is more than 59 mV. If the peak 

potential separation (∆EP) is greater than 59 mV then the electrochemical reaction is 

considered to be quasi-reversible. The Ce(IV)–NTA complex and the Ce(IV)–DTPA complex 

had similar cyclic voltammogram shape [3]. Both complexes have a good reversible redox 

reaction, one electron (−1e) transfer reaction, which is mass transfer controlled and diffusion 

limited. 

 

6.3.2 Comparison of the electrochemistry of Ce(IV) with various ligands (EDTA, EDDS, 

NTA, DTPA) 

 

Studies of Ce(IV)–DTPA have shown that this complex has promising electrochemical 

properties, therefore comparison of this complex to other complexes was investigated [3]. A 

comparison of the cyclic voltammograms of the Ce(IV)–DTPA with Ce(IV) as an 

uncomplexed species, as well as with various aminopolycarboxylate ligands (EDTA, EDDS, 

NTA), are illustrated in Figure 6.3. Ce(IV)–DTPA has the highest current, and its 

electrochemical reversibility is better than Ce(IV)–EDTA, Ce(IV)–EDDS, Ce(IV)–NTA and 

the uncomplexed Ce(IV) species. The Ce(IV)–DTPA cyclic voltammograms illustrate a 

quasi-reversible 1e
-
 transfer reaction electrode process with a ∆EP of greater than 59 mV. This 

is an indication of reversible electrochemical behaviour, as stated in the literature [29-30]. 

(a) 
(b) 
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Figure 6.3: (a) Cyclic voltammogram of the following, recorded at a scan rate of 100 mV/s 

(a) Ce(IV), (b) Ce(IV)–NTA (c) Ce(IV) –EDTA, (d) Ce(IV)–EDDS, (e) Ce(IV)–DTPA  

(Concentration of cerium in all the above solutions is 0.1 M). 

 

 

The Ce(IV)–DTPA complex showed a linear correlation between the peak current (Ep) and 

the square root of the scan rate, showing that the kinetics of the overall process was diffusion 

controlled.  

 

The electrochemical parameters and kinetics of the Ce(IV) in the present of 

aminopolycarboxylate ligands ( EDTA, EDDS, NTA and DTPA) are summarized in Table 

6.1. 
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Table 6.1: Electrochemical parameters and kinetics of Ce(IV) in the presence of aminopolycarboxylate ligands with a Pt–electrode. 

 

Electrolyte 

Epc 

(mV) 

Epa 

(mV) 

Ipc 

(A) 

Ipa 

(A) 

∆E=Ea-Ec 

(mV) 

Ipa/ Ipc Dx10
6
 

/cm
2
s

-1
 

kx10
4
 

/cm
-1

 

Ce(IV) 1002 1252 -8.94x10
-2

 1.22x10
-1

 249 1.36 2.4 1.6 

Ce–EDTA 982 1192 -3.37x10
-1

 0.81x10
-1

 210 2.4 1.3 1.9 

Ce–EDDS  490 1223 -1.49x10
-1

 3.44x10
-1

 733 2.3 1.5 2.1 

Ce–NTA 957 1127 -0.57x10
-1

 0.97x10
-1

 170 1.69 1.2 2.6 

Ce–DTPA 1080 1264 -7.03x10
-1

 1.02 184 1.4 1.1 3.1 
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The peak ratios of the anodic and the cathodic peaks for all electrolytes are greater than 1, 

indicating that the anodic reaction is more favourable than the cathodic reaction. The peak 

potentials decrease as follows: Ce(IV)–DTPA > Ce(IV)–NTA > Ce(IV)–EDTA > Ce(IV) > 

Ce(IV)–EDDS. The current trend is as follows: Ce(IV)–DTPA > Ce(IV)–NTA > Ce(IV)–

EDTA > Ce(IV)–EDDS > Ce(IV). Rao [11] confirmed that the rate constant depends on the 

nature of the amino groups, i.e. tertiary > secondary > primary. This implies that ligands like 

EDTA and EDDS will be less vulnerable to attack by oxidizing agents (like Ce(IV)) in 

sulphuric acid than DTPA and NTA. The Ce(IV)–DTPA complex  and Ce(IV)–NTA complex 

species have higher rate constant (k) values than Ce(IV)–EDTA, Ce(IV)–EDDS and Ce(IV) 

uncomplexed species, meaning that the redox reactions of Ce(IV) will be faster when DTPA 

and NTA complexes are used rather than when EDTA and EDDS complexes are used. 

Therefore, the Ce(IV)–DTPA complex  and Ce(IV)–NTA will be more stable and more 

suitable for redox reactions for flow batteries. However, Ce(IV)–NTA has the lowest current 

and potential compared to all five electrolytes used in this study, hence it will not be suitable 

as a storage electrolyte. 

 

6.3.3 Electrochemical impedance  

 

Based on the CV results, further studies were directed at determination of electrolyte 

resistance using EIS. Resistance studies of the five electrolytes Ce(IV), Ce(IV)–EDTA, 

Ce(IV)–EDDS, Ce(IV)–NTA and Ce(IV)–DTPA were performed and their application in 

RFB was assessed. In RFB low resistance and fast electron transfer of the electrolyte is 

favoured. Therefore an electrolyte that has low resistance to e
–
 transfer has superior 

impedance properties.  

 

6.3.4 Electrochemical impedance of Ce(IV ) 

 

Results of impedance studies of the Ce(III)/(IV) redox couple are shown in Figure 6.4. The 

Nyquist plot Figure 6.4 (a) for the Ce(IV) / Ce(III) couple at different potentials, from 0.9 V–

1.3 V, measured at frequencies of 10
-1

 to 10
5
 Hz, displays single semicircles that represent the 

electron transfer resistance at the electrode surface between the electrolyte/electrode surface 

from the higher frequency to the lower frequency. This resistance controls the electron 

transfer kinetics of the redox process at the electrolyte/electrode interface.  
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Figure 6.4: Results of Ce(III)/(IV) redox couple (a) Nyquist impedance plot, (b) Bode–

magnitude plot, (c) Bode–phase plot and (d) Proposed equivalent circuit model diagram used 

for fitting the impedance data for the Ce(IV) electrolyte. 

 

In this case, the lowest resistance is observed before the redox reaction (1.1V) at potentials of 

1.0 and 1.2 V. The capacitance is also lower at 1.1 V, where the electron transfer is the fastest. 

Figures 6.4(b and c) shows corresponding Bode-magnitude plots, Bode–phase plot and the 

equivalent electrical circuit model used to determine the resistance. 

 

 

 

 

(c) 

(a) 

(d) 
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R1 R2 W1

C1
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Table 6.2: Electrical parameters from circle fitting for the Ce(IV) electrolyte 

E (V) R1 (ΩΩΩΩ) Error 

% 

R2 (ΩΩΩΩ) Error 

% 

C1 

(F/cm
2
) 

Error 

% 

W1 

(ΩΩΩΩ) 

Error 

% 

0.9 1.332 0.83 2.078 0.74 2.6x10
-6

 5.18 143.46 2.67 

1.0 1.267 0.25 2.348 0.56 2.5x10
-6

 8.62 101.53 7.84 

1.1 1.254 0.85 1.018 2.27 2.3x10
-6

 11.25 783.5 5.81 

1.2 1.474 0.92 3.404 0.25 3.4x10
-6

 2.51 213.86 3.23 

1.3 1.242 0.58 1.036 0.18 2.7x10
-6

 4.27 143.76 13.79 

R1: bulk solution resistance, and electrode resistance, C1: the capacitance at the contact interface between the 

electrode and the electrolyte solution (described as a capacitive constant phase element), R2: charge transfer 

resistance in parallel with C1, W1: Warburg diffusion element W1 attributable to the diffusion of ions. 

 

Electrical parameters from circle fitting in Figure 6.4(d) is shown in Table 6.2 . The higher 

resistance (R1) between the electrolytes and electrodes was observed at a potential of 1.2 V, 

R2 is also high from 0.9 to 1.1 V and from 1.2 to 1.3 V.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Results of Ce(IV)-EDTA (a) Nyquist impedance plot, (b) Bode–magnitude plot, 

(c) Bode–phase plot and (d) Equivalent circuit model used for fitting the impedance data for 

the Ce(IV)-EDTA electrolyte. 

 

(c) 
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(d) 
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Figure 6.5(a) shows the Nyquist plot of a Ce(IV) couple in the presence of EDTA (Ce–

EDTA) at different potentials from 0.9–1.3 V. Within the measured frequency range of 10
-1

 to 

10
5
 Hz a single semicircle in the high frequency region is observed. The semicircle at high 

frequency represents the charge transfer process, which is usually described by the charge 

transfer resistance (R2). The response at low frequency is related to the diffusion process due 

to the Ce–EDTA layer that interrupts the access of the oxidizing species to the surface. At the 

potentials of 1.2 V and 1.3 V the arcs increased, and an increase in potential became wider in 

the high frequency region than in the lower frequency region of 0.9 – 1 V. At higher 

frequency the impedance is dominated by the electrolyte resistance, while at low frequency 

the surface electrode resistance (polarization resistance) dominates as shown in Figure 6.5(b-

c).  

 

Table 6.3: Electrical parameters from circle fitting for the Ce(IV)-EDTA electrolyte 

E (V) R1 (ΩΩΩΩ) Error 

% 

R2 (ΩΩΩΩ) Error 

% 

C1 

(F/cm
2
) 

Error 

% 

W1 

(ΩΩΩΩ) 

Error 

% 

0.9 1.442 0.52 2.642 0.82 2.4x10
-6

 8.88 135.39 5.81 

1.0 0.966 0.83 1.9052 1.38 2.3x10
-6

 4.62 101.35 3.94 

1.1 1.125 0.66 2.723 5.62 2.2x10
-6

 5.25 792.41 9.52 

1.2 1.582 0.74 3.562 1.58 2.1x10
-6

 1.82 225.15 2.89 

1.3 1.032 0.15 2.968 8.48 2.5x10
-6

 3.56 143.57 8.54 

R1: bulk solution resistance, and electrode resistance, C1: the capacitance at the contact 

interface between the electrode and the electrolyte solution (described as a capacitive constant 

phase element), R2: charge transfer resistance in parallel with C1, W1: Warburg diffusion 

element W1 attributable to the diffusion of ions. 

 

 

 

 

 

 

 

 

 

 



 105 

The values of the important parameters from equivalent circuit fitting in Figure 6.5(d) are 

summarized in Table 6.3. It was found that the R1 value at 1.2 V is the higher than other 

potentials, and R2, C1 and W1 were higher than other potentials used. 

 

6.3.5 Electrochemical impedance of the Ce(IV)-DTPA complex 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Results of Ce-DTPA (a) Nyquist impedance plot, (b) Bode–magnitude plot, (c) 

Bode–phase plot and (d) Proposed equivalent circuit model diagram used for fitting the 

impedance data for the Ce-DTPA electrolyte. 

 

 

The Nyquist plot of the Ce(IV)/Ce(III) couple in the presence of DTPA at different potentials 

from 0.9 V–1.3 V appears to be a perfect Randles circuit equivalent (see Figure 6.6(a)). In 

the measured frequency range of 10
-1

 to 10
5
 Hz, a single semicircle in the high frequency 

region and a straight line in the low frequency region are observed in all spectra, except at the 

potential of 1.3V where a depressed arc appears without a straight line. Figure 6.6(b) Bode-

magnitude plot and Figure 6.6(c) bode–phase plot obtained from equivalent electrical circuit 

model in Figure 6.6(d). 

(c) 

(a) 

(d) 
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R1 R2 W1

C1
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Table 6.4: Electrical parameters from circle fitting for the Ce(IV)–DTPA electrolyte 

E (V) R1 (ΩΩΩΩ) Error 

% 

R2 (ΩΩΩΩ) Error 

% 

C1 

(F/cm
2
) 

Error 

% 

W1 

(ΩΩΩΩ) 

Error 

% 

0.9 1.203 1.12 1.950 0.52 2.6x10
-6

 2.26 157.28 6.04 

1.0 1.198 0.52 1.715 0.38 2.5x10
-6

 5.42 112.35 5.93 

1.1 1.197 1.02 1.802 2.08 2.3x10
-6

 1.25 829.8 3.02 

1.2 1.173 3.04 1.687 2.12 2.3x10
-6

 8.12 705.5 8.89 

1.3 1.205 0.98 1.925 5.06 2.7x10
-6

 9.82 162.88 6.22 

 

The corresponding data derived from the measurements of the equivalent circuits are 

presented in Table 6.4. The lowest resistance (R1) between the electrolytes and electrodes 

was observed at a potential of 1.2 V. R2 is also low at the potential of 1.2 V, except all other 

remaining potential (0.9 – 1.1 and 1.3 V), C1 and W1 values are also high as shown in Table 

6.4. Further study was done to verify that the Ce(IV)–DTPA complex shows promise as an 

electrolyte for redox flow battery. Therefore, EIS was used in this work for more detailed 

information on the electron transport properties of the electrolyte, given that EIS is the best 

technique to determine reliable results for electrolytes electrochemical parameters. 

 

6.3.6 Electrochemical impedance studies of the different complexes of Ce(IV) with EDDS, 

NTA, EDTA and DTPA 

 

The perfect equivalent circuits model, characterised by a single semicircle and a straight line 

appear for all the electrolytes that were considered in this study, excluding the Ce(IV)–EDDS 

and Ce(IV)–NTA. A semicircle and a straight line in the EIS data were recorded for Ce(IV)–

DTPA and Ce(IV)–EDTA. Figure 6.7(a) shows a single semicircle in the high frequency 

region and a long straight line with a slope of about 45º in the lower frequency region, this is 

an indication of an electrochemical process that is controlled by an electrochemical reaction 

and a diffusion step. In the Ce(IV)-DTPA complex corresponding Bode magnitude plots 

(logarithm of impedance versus logarithm of frequency) for all complexes are presented in 

Figure 6.7(b and c).  
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Table 6.5: Electrical parameters from circle fitting for various electrolytes in Figure 5 (d-f) 

 

 Electrolyte R1 

 ΩΩΩΩ 

Error 

% 

R2 

 ΩΩΩΩ 

Error 

% 

C1  

(-F/cm
2
) 

Error 

% 

W1 

 ΩΩΩΩ 

Error 

 % 

Ce(IV) 1.474 0.58 3.404 0.35 3.4x10
-6

 2.25 213.86 6.23 

Ce(IV)-NTA 1.351 0.32 3.002 0.38 2.3x10
-6

 5.52 188.94 8.12 

Ce(IV)-EDTA 1.582 0.62 3.562 0.58 2.1x10
-6

 9.12 225.15 3.05 

Ce(IV)-EDDS 1.435 0.94 3.284 0.85 3.2x10
-6

 7.98 208.52 9.52 

Ce(IV)-DTPA 1.173 0.25 1.687 0.52 2.5x10
-6

 3.58 705.51 4.13 

 

Further detailed interpretation of the EIS measurements was performed by fitting the 

experimental plots, using the equivalent circuit depicted in Figure 6.7(d-f), from experimental 

data obtained from Figure 6.7(a). The data are summarised in Table 6.5. The equivalent 

circuit for Ce(IV)-DTPA and Ce(IV) fitted very well in Figure 6.7(d), Ce(IV)-NTA and 

Ce(IV)-EDTA fitted well in Figure 6.7(e), and Ce(IV)-EDDS fitted satisfactorily in Figure 

6.7(f).  
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Figure 6.7: Results of Ce(IV) with (EDTA, EDDS, NTA and DTPA ), (a) Nyquist impedance 

plot, (b) Bode–magnitude plot, (c) Bode–phase plot and plots (d-f) Proposed equivalent 

circuit model used for fitting the impedance data (d) Ce–DTPA, (e) Ce(IV) and Ce–EDTA, (f) 

Ce–EDDS and Ce–NTA. 

. 
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Ce(IV)–DTPA has the lowest electrolyte resistance (R1) and charge transfer resistance (R2) 

values than other complexes, comparable with the values of C1 and W1 which are also low. 

Xue et al. [31] pointed out that when the resistance is low the potential will be high, and 

suggested that when the resistance of the electrolyte is high, the conductivity of the electrolyte 

will not be suitable. Therefore in Ce(IV)–DTPA, because the resistance is low, it means that 

the potential will be higher than the other complexes used in this study. 

 

6.4. Conclusions  

 

In this study the electrochemical behaviour of cerium with Ce(IV)–EDTA, Ce(IV)–EDDS, 

Ce(IV)–NTA and Ce(IV)–DTPA at a Pt–electrode was investigated by CV and EIS. The 

reversibility from the CV results was best when Ce(IV) was complexed with the DTPA ligand 

compared to the EDTA, EDDS and NTA ligands. The electron transfer was also faster for the 

Ce(IV)–DTPA couple compared to the other systems calculated from the electron diffusions 

and standard rate constants. The AC impedance spectra of Ce(IV)–EDTA, Ce(IV)–EDDS, 

Ce(IV)–NTA and Ce(IV)–DTPA were analyzed and equivalent circuits were proposed. 

 

 Equivalent circuit modelling for the Ce(IV)–DTPA complex illustrated that the process that 

takes place is a charge transfer process due to a combination of kinetics and diffusion 

processes. Furthermore, EIS results of analysis confirmed the results obtained from CV 

analysis. The Ce(IV)–DTPA showed the lowest resistance and faster electron transfer 

compared to Ce(IV)–EDTA, Ce(IV)–EDDS and Ce(IV)–NTA. Therefore, it is proposed that 

Ce(IV)–DTPA could be a suitable RFB electrolyte, better than Ce(IV), Ce(IV)–EDTA, 

Ce(IV)–EDDS and Ce(IV)–NTA, due to better electrochemical reversibility, lower resistance, 

higher potential, fast kinetic reactions, diffusion control and mass transfer. 
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Chapter 7 

Electrochemical Properties of Metals (Cr, Fe, Mn, and V) for Redox Flow 

Battery Applications [*] 

Summary 

 

The electrochemical behaviour of Cr, Fe, Mn and V in the presence of DTPA ligand was 

investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) 

for use in redox flow battery (RFB) systems. Suitable electrolyte systems were initially 

chosen based on their electrochemical properties from CV results. Electrochemical 

reversibility, electron transfer and fast kinetic reactions are required. The results were 

compared with results for the Ce–DTPA system. From the EIS data, a feasible electrolyte was 

proposed based on its lower resistance. In Fe–DTPA and Mn–DTPA the electrochemical 

reversibility was much better than in the case of Cr–DTPA and V–DTPA, however, when V–

DTPA was compared with Ce-DTPA, the Ce-DTPA complex was found to be better. 

Furthermore, EIS results confirmed the results obtained from CV. The Mn–DTPA, Cr–DTPA, 

Fe–DTPA and V–DTPA complexes had higher resistance than the Ce(IV)–DTPA complex. 

The Ce–DTPA is still the most preferable and suitable electrolyte compared to Mn–DTPA, 

Cr–DTPA, Fe–DTPA and V–DTPA, due to its better electrochemical reversibility, lower 

resistance, higher potential, fast kinetic reactions, diffusion control and mass transfer. For 

these reasons the cerium system with DTPA ligand, will still remain the better electrolyte in 

terms of performance and is a possible candidate for RFB application when compared to the 

other metal complexes mentioned above. 

 

7.1. Introduction 

A variety of redox couples have been used as an electrolyte for redox flow batteries [1-8]. 

Some couples have a lower cell voltage and a smaller energy storage capacity, but some have 

higher voltage but poor reversibility. Recently, the Mn(II)/Mn(III) couple’s suitability was 

investigated as an electrode material [7]. The stability of the Mn(II)/Mn(III couple is poor,  

however the poor stability of Mn(III) is due to a spontaneous disproportionate reaction that 

produces Mn(II) and manganese dioxide.  

 

[*] Submitted to J. Power Source Modiba P, Matoetoe M, Crouch A.M (2009).  
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Selim and Lingane [8] reported that Mn(III) could be present in sulphuric acid with 

concentrations of 4–8M. The lowest disproportionation reaction rate of Mn(III) was in 6.3M 

sulfuric acid and containing manganous sulphate, this mixture was used as the electrolyte. 

 An all-vanadium electrolyte system has been developed as a commercial system [9-13]. 

Chakrabarti at el. [12] reported that the performance of the all-vanadium system was 

significantly better than an all-chromium system, however they did observe cross-

contamination of active electrolytes. Doria et al. [14] used an all-chromium redox system 

(Cr(II)/Cr(III) and Cr(III)/Cr(VI)) in a chloride medium for redox flow battery applications, 

and proposed a slow kinetic reactions for both chromium couples. Bae et al. [15] also 

investigated a chromium couple with the addition of EDTA ligand. They found that the redox 

reaction of the Cr(III)–EDTA/Cr(II)–EDTA couple was fast, had a higher energy output and 

longer life than a conventional Fe–Cr redox system. The kinetic reactions with Cr(V)–

EDTA/Cr(III)–EDTA was however slow. 

Several researchers have studied the complexes of metals with aminopolycarboxylic acid [16-

17]. The oxidation of selected organic compounds using carboxylic acids and alcohol with 

Ce(IV) has been widely studied and is currently a very interesting prospect. In previous 

papers that we have published [1-2], Ce(IV) with the addition of DTPA complex was 

reported, the Ce(IV)–DTPA was also established and compared with uncomplexed Ce(IV) 

and Ce(IV)–EDTA [18]. Kiekens et al. [19] reported on the cerium system using various 

electrodes on different electrodes as mentioned in the previous chapter.  

 

It is important to study the kinetics and thermodynamics of electrolyte for redox flow batteries 

in order to be able to identify a suitable electrolyte to give of high potential, current, and 

electrochemical reversibility to the reaction. In several cases, the thermodynamic properties of 

other complexes have also been examined electrochemically [20-23]. However in several 

cases the influence of complexation on the thermodynamic properties has not been 

competently comprehensible, because of the complicated mechanism of the complexation in 

the reaction that is taking place during the whole process.  

 

In earlier studies by Modiba and Crouch [1]; CV and RDE were used to evaluate the 

electrochemical kinetics of Ce(IV)–DTPA, Ce(IV)–EDTA and uncomplexed Ce(IV). More 

recently we studied the electrochemical processes of Ce(IV) in the presence of DTPA, EDTA, 

EDDS, NTA using EIS and confirmed and extended the results from CV. We found that the 

Ce(IV)–DTPA complex  was a suitable electrolyte when compared to Ce(IV)–EDTA, 
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Ce(IV)–EDDS, Ce(IV)–NTA complex and uncomplexed Ce(IV) species, due to better 

electrochemical reversibility, higher potential and lower resistance [18]. 

 

The cerium complexes of DTPA have been investigated [1-2, 18] and found to be a suitable 

electrolyte for redox flow batteries. In this chapter, the investigation and confirmation of a 

suitable electrolyte will be best favoured for the application of redox flow battery using CV 

and EIS techniques. It was considered advantageous to look into the chelating tendencies of 

other metal species with the DTPA ligand and to compare them with cerium-DTPA. 

Therefore, various electrochemical and physical measurements were conducted to investigate 

the appropriate electrolytes. Consequently various metals with DTPA ligands were examined 

and it was interesting to study the reaction between the metal and the ligand, since they all 

react differently with different metal species and the complex formation is different. 

Nevertheless, by using CV and EIS it was possible to compare and select a suitable electrolyte 

that will be more favorable than all other electrolytes mentioned above.  

 

7.2. Experimental 

 

7.2.1 Materials  

 

All reagents were of analytical grade unless stated otherwise. Diethylenetriaminepentaacetic 

acid (DTPA) was obtained from (Fluka and Riedel-de Haën).Sulphuric acid, potassium 

ferricyanide (K3Fe(CN)6), potassium nitrate (KNO3) sodium hydroxide, cerium(IV) sulphate 

[Ce(SO4)2], chromium sulphate Cr(III) sulphate, manganese (II) sulphate (MnSO4), vanadium 

vanadate, (V2SO5 ) vanadium vanadyl (VOSO4), were all purchased from Sigma–Aldrich 

(Steinheim, Germany). 

 

7.2.2 Preparation of various metal species with DTPA 

 

Chromium (III) sulphates, manganese (II) sulphate, cerium(IV) sulphate, potassium 

ferricyanide, potassium nitrate and  ammonium vanadate were prepared as described in the 

literature [21]. For the preparation of all metals (Mn, Cr, Ce, Fe and V) with the ligand 

DTPA, the same procedure was used as in Chapter 5 Sections 5.2.2 and 5.2.3. 
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7.2.3 Instrumentation 

 

CV measurements were performed using a BAS 100B voltammetric System from Bio-

analytical Systems, Inc., West Lafayette, Indiana, USA. Electrochemical impedance 

spectroscopy (EIS) measurements were recorded with a VoltaLab PGZ 402 (Radiometer 

Analytical, France).  

 

7.2.4 Electrochemical measurements 

 

Studies were performed using CV and EIS. A three–electrode system was used to carry out all 

the electrochemical experiments: a platinum electrode with a diameter of 3 mm as a working 

electrode, Ag/AgCl (3M NaCl type) as a reference electrode, and a platinum wire as a counter 

electrode. 

 

Impedance measurements were performed in the frequency range of 100 kHz – 100 MHz at a 

potential step from 800 to 1300 mV, with an applied amplitude of 10 mV. All experiments 

were performed at room temperature and EIS results were recorded using Pt as the working 

electrode. Alumina micro-polish and polishing pads (Buehler, IL, USA) were used for 

polishing the electrodes. The electrodes were sonicated for 15 min in water, followed by air-

drying. 

 

7.3 Results and discussion 

 

7.3.1 Cyclic voltammetry 

7.3.1.1 Iron (Fe(II)/(III) couple 

 

Figure 7.1(a) shows the cyclic voltammograms of the Fe(II)/(III) redox couple, anodic and 

cathodic peaks were observed around 260mV and 120mV, respectively , these results were 

compared with the EIS results. The anodic and cathodic peaks increased with increasing scan 

rate. The potential slowly increased from 240 to 280mV. Indications were that the potentials 

of the anodic and cathodic peaks were almost independent of the scan rate. The symmetric 

shapes of the anodic and cathodic peaks revealed that the ratios of the anodic and cathodic 

current peak heights are close to 1, indicating a reversible redox reaction of the Fe(II)/(III) 

couple occurred in the system. In Figure 7.1(b) the cyclic voltammogram of iron in the 
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presence of DTPA (Fe-DTPA complex) an oxidation peak was observed around 230 mV and 

cathodic peak around 60 mV. 
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Figure 7.1: Cyclic voltammograms for a 0.1M Fe(II)/(III) solution in 1M H2SO4 recorded at a 

scan rate of 20–300mV/s: (a) Fe(II)/(III) couple, (b) Fe–DTPA, (c) Fe–DTPA and Fe(II)/(III) 

couple at the scan rate of 100 mV/s on Pt electrode. 

 

The anodic cathodic potential difference (∆Ep = Epc – Epa) of the Fe(II)/(III) couple was in 

the region of ∼140mV versus Ag/AgCl. Figure 7.1(c) shows an overlap of two 

(a) 
(b) 

(c) 
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voltammograms, of the redox behaviour of Fe(II)/(III) couple and Fe–DTPA complex. The 

potential difference between the anodic and the cathodic peaks (∆Ep) was more than 59mV, 

from the scan rate of 20mV/s to 300mV/s for both the Fe(II)/(III) couple and the Fe–DTPA 

complex. Such changes indicate that the potentials of the anodic and cathodic peaks are 

independent of the scan rate, shown in Figure 7.1(a-b.) Hence, it is considered that the 

electrochemical reaction of the Fe(II)/(III) couple is a diffusion-controlled process, similar to 

that in the corresponding solutions. It is a single electron transfer quasi-reversible 

electrochemical process [22-23]. The electrochemical reaction is considered to be quasi-

reversible for both systems the Fe(II)/(III) couple and the Fe–DTPA complex. The diffusion 

coefficient (D) and rate constant (k), for the Fe(II)/(III) couple and the Fe–DTPA are shown in 

Table 7.1. The D value of the uncomplexed species (Fe(II)/(III) couple), calculated from the 

slope of the straight line, was found to be 2.3 x 10
-6

 cm/s and the complex species (Fe–DTPA) 

to be 2.8 x 10
-6

 cm/s. This is lower than the value of 3.92 m
2
/s found previously by De 

Strycker et al. [24] for Fe(II)/(III) couple. The values of (k) were: Fe(II)/(III) couple (k) = 2.1 

x10
-4

 cm/s, and Fe–DTPA (k) = 2.3 x10
-4

 cm/s. In comparison, the Fe(III) DTPA complex 

species have a larger (k) value than the uncomplexed species, meaning that the reaction will 

be faster when the DTPA complexes are used rather than the uncomplexed species of the 

Fe(II)/(III) couple. 

 

7.3.2 Electrochemical impedance spectroscopy 

 

The electrochemical impedance of 0.1M Fe(II)/(III) solution in 1M H2SO4 couple with and 

without 0.03M DTPA was investigated using EIS, Figure 7.2(a) shows the Nyquist plot of 

the Fe(II)/(III) couple and Fe–DTPA complex . 
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7.3.2.1 Iron (Fe(II)/(III) couple 

A long straight line is observed in Figure 7.2(a), from higher to lower frequency region with 

a slope of about 45º. This is indicative of an electrochemical process that is controlled by an 

electrochemical reaction and diffusion step for the Fe–DTPA complex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Results of 0.1M Fe(II)/(III) solution in 1M H2SO4 couple with and without 0.03M 

DTPA (a) Nyquist impedance plot for, (b-c) Bode plots, (d) Proposed equivalent circuit 

model used to fit the EIS data. 
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However for the Fe(II)/(III) couple a straight line with a slope of about 90º is observed in the 

higher frequency region. Figure 7.2(b) bode-magnitude plot and Figure 7.2(c) Bode–phase 

plot where obtained from the equivalent electrical circuit model in Figure 7.2(d). In this 

circuit; R1 is the solution resistance between the working electrode and the reference 

electrode; R2 is the charge-transfer resistance reflecting the electrochemical reaction of the 

Fe(II)/(III) couple at the electrode/solution interface; W is the Warburg impedance; and C1 

models the double-layer capacitance, which is substituted for the capacitors to fit more 

exactly the high-frequency capacitive loop. All the results of the Fe(II)/(III) couple and the 

Fe–DTPA complex are in accordance with the predictions of the electrochemical mechanism, 

and the theory is best demonstrated by the fitting in Table 7.1. 

 

7.3.3 Cyclic voltammetry 

 

The electrochemical behaviours of Cr, Fe, Mn and V in the presence of DTPA were 

investigated in effort to improve the electrochemical reversibility of these metal species. 

Research has proved that the use of DTPA improves the electrochemical properties of Ce(IV) 

[1-2]. 

 

7.3.3.1 Chromium (Cr(II)/(III) couple 

 

Cyclic voltammograms of Cr(II)/(III) couple and Cr–DTPA complex are shown in Figure 

7.3. The forward scan reveals that the anodic peak associated with the oxidation of Cr(II) to 

Cr(III) at approximately 760 mV versus Ag/AgCl is shown in Figure 7.3(a). On the reverse 

scan, a cathodic peak associated with the reduction of Cr(III) to Cr(II) occurred at 

approximately –860 mV versus Ag/AgCl. There was another minor reduction peak around –

116mV versus Ag/AgCl. The anodic and cathodic peak potential changed slightly when using 

different scan rates. The peak splitting increased with increasing scan rate, meaning that a 

larger peak separation was observed, therefore, the electrochemical process of Cr(II)/(III) 

couple will be irreversible.  
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Figure 7.3: Cyclic voltammograms of 0.1M (Cr2SO4)3 solution in 1M H2SO4 (a) without 

DTPA, (b) with 0.03 M DTPA, (c) Cr–DTPA and Cr(II)/(III) couple at the scan rate of 100 

mV/s on Pt electrode. 

 

The voltammogram of the Cr–DTPA complex showed a large oxidation and a slight reduction 

peak of Cr(II)/(III) couple at around 760 mV and –860 mV respectively as shown in Figure 

7.3(b). Therefore, the electrochemical behaviour will be irreversible since the separation 

between the forward and reverse potential peak (∆Ep) is more than 59 mV. According to the 

literature [22], the potential of the forward peak is independent of the scan rate when the 

(∆Ep) is more than 59 mV, which is an indication of an irreversible electrochemical 

behaviour. An overlap of two voltammograms of the redox behaviour of Cr(II)/(III) couple 

and Cr–DTPA complex are shown in Figure 7.3(c). The observation illustrates that the 

anodic peak decreases in the absence of DTPA and increases significantly in the presence of 

DTPA (results are summarised in Table 7.1).  
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Table 7.1: Electrochemical parameters E, ∆E, and Ipc/Ipa evaluated by CV using a  

Pt–electrode 

Electrolyte 

Epc 

(mV) 

Epa 

(mV) 

Ipc 

(A) 

Ipa 

(A) 

∆E=Ea-Ec 

(mV) 

Ipc/ Ipa D 10
-6 

cm
2
s

-1
 

k 10
-4

 

cm
-1

 

Ce(IV) -570  393 -5.58E-03 1.74E-03 963 3.2 2.4 1.6 

Ce-DTPA    1080  1264 -1.21E-00 1.65E-00 184   0.73 1.1 3.1  

Mn(III) -643 -338 -3.62E-01 2.28E-01 305 1.6 3.8 2.3 

Mn-DTPA -585 -390 -2.06E-01 1.13E-01 195 1.8 3.1 2.7 

Cr(II) -792  786 -2.54E-02 2.18E-02   1576 1.1 2.5 1.8 

Cr-DTPA -686  798 -1.19E-02 7.51E-02   1484 0.2 1.9 2.1 

Fe(III) -116  238 -1.26E-02 6.6E-03 354 1.9 2.3 2.1 

Fe-DTPA   44.0  229 -7.59E-02 6.61E-02 185 1.1 2.8 2.3 

V(IV) -589  354 -5.62E-03 1.7E-03 943 3.3 5.4 1.7 

V-DTPA 
(1)

 -757 -587 -2.64E-02 1.72E-02 170 1.5 4.9 2.2 

V-DTPA 
(2)

 -593  114 -2.40E-02 5.10E-02 707 0.5 6.5 9.1 

(1)
 First peak for V(IV)–DTPA/V(V)–DTPA couple 

(2)
 Second peak V(IV)–DTPA/V(V)–DTPA couple 

 

The peak current increased upon oxidation of Cr(II)–DTPA to Cr(III)–DTPA, while on the 

reduction of Cr(III)–DTPA to Cr(II)–DTPA,  no peak current increase was observed. This is 

due to the chelate nature of DTPA and to the lack of hydrogen atoms on the amine groups. It 

was not constructive using Pt–electrode for Cr(III) species, because only a small fraction of 

Cr(III) gave peak current that continuously decreases even at different scan rates. The 

diffusion coefficient (D) of Cr(III)–DTPA was calculated to be 1.9 x 10
-6

 cm
2
/s and the rate 

constant (k) was 2.1 x 10
-4

 cm/s as shown if Table 7.1 . 

  

Bae et al. [15] used a graphite rod electrode for Cr(II)/(III)–EDTA couple and observed a 

reversible one–electron transfer reaction, and a fast redox reaction, with a diffusion 

coefficient (D) of 8.1 x 10
-6

 cm
2
/s for Cr(III)–EDTA and 5.6 x 10

-5
 cm

2
/s for Cr(II)–EDTA. 

Pletcher and White [21] have proven that the organic chemistry of the Cr(II)–DTPA and 

Cr(II)–EDTA complexes are similar in the cases of the reduction process. Therefore, the rate 

constant of Cr–DTPA was compared with that of Cr–EDTA, since there is no literature value 

for the rate constant (k) of Cr–DTPA to compare with the k values of Cr–DTPA observed in 

this study. Zhang et al. [25] found the k value to be 0.45 cm/s, while Anderson and Bonner. 

[26] found it to be around 2 x 10
-5

 M
-1

/s, Hupp and Weaver [27] found the k value was 3 x 10
-
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6
 cm/s. Meier et al. [28] reported that Cr(III/II)–EDTA rate constant was found to be 0.462 

cm/s and the diffusion coefficient (D) to be 2 x 10
-7

 m/s using a glassy carbon electrode. The 

(k) value differs due to different kinetics at different material used for electrode surfaces. This 

is the reason that the Pt–electrode was used in this study instead of glassy carbon electrode.  

 

7.3.4 Electrochemical impedance spectroscopy 

 

The electrochemical impedance of various metal species with and without DTPA ligand was 

investigated using EIS to determine the electrical parameters, such as the resistance and the 

capacitance of various electrolytes. 

 

7.3.4.1 Chromium (Cr(II)/(III) couple 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Results of  0.1M Cr(II)/(III) solution in 1M H2SO4 couple with and without 

0.03M DTPA, (a) Nyquist impedance plot for, (b-c) Bode plots, and (d) An equivalent circuit 

model diagram used for fitting the experimental impedance data. 
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The Nyquist plots of the Cr(II)/(III) couple and Cr(II)-DTPA complex are shown in Figure 

7.4(a). The measured frequency between 10
-1

 and 10
5
 Hz where the Cr(II)-DTPA displays a 

single semicircle in the high frequency region, and a straight line with a slope of about 45º in 

the low frequency region. The electrochemical process is controlled by an electrochemical 

reaction and diffusion step. For the Cr(II)/(III) couple, a semicircle that is open with a straight 

line was observed from high frequency to lower frequency. At the higher frequency region the 

impedance is dominated by the electrolytes resistance and at low frequency the surface of 

electrode resistance dominates as shown in Figure 7.4(b and c). The low charge-transfer 

resistance confirmed the existence of a fast Faradic reaction on the surface of the Pt–

electrode. At lower frequencies, the straight line had a finite slope near 1, which represents 

the diffusive resistance of electrolyte at the electrode surface. Further detailed interpretation 

of the EIS measurements was performed by fitting the experimental plots using the equivalent 

circuit depicted in Figure 7.4(d). Where R1 is the electrolyte resistance, C1 is charge-transfer 

resistance, for the constant phase element of the interface between the electrode and the 

electrolyte, R2 is the charge transfer resistance, and W1 is the Warburg diffusion element for 

the resistance of the diffusion step. 

 

7.3.5 Cyclic voltammetry 

 

Cyclic voltammetry of the Mn(II)/(III) couple was carried out in the presence and absence of 

DTPA, as illustrated in Figure 7.5(a-b). The voltammogram show one electronic process that 

takes place at the redox reaction of the Mn(II)/(III) couple between the electrode surface and 

the electrolyte. 

 

7.3.5.1 Manganese (Mn(11)/(111)) couple 

 

The electrochemical properties of the Mn(II)/(III) couple and Manganese in the presence of 

DTPA (Mn–DTPA complex) were examined by cyclic voltammogram as illustrated in Figure 

7.5(a-b). In this figure, an oxidation peak of Mn
2+

 to Mn
3+

 was observed at around –420 mV 

and the reduction peak at around –560 mV. The anodic / cathodic potential difference (∆Ep) = 

Epa – Epc gives the formal polaropraphic half wave potential of the Mn(II)/(III) couple, it 

was approximately ∼ 143 mV, which is larger than 59 mV for reversible one–electron 

Nerstian transfer. These waves are best described as a quasi-reversible electrochemical 

reaction. 
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Figure 7.5: Cyclic voltammograms for 0.1M Mn(II)/(III) solution in 1M H2SO4 at the scan 

rate of 20–300mV/s (a) without DTPA, (b) with 0.03M DTPA, (c) Mn-DTPA and Mn(II)/(III) 

couple recorded at the scan rate of 100mV/s on platinum electrode. 

 

A cyclic voltammogram of manganese in the presence of DTPA (Mn–DTPA complex) is 

depicted in Figure 7.5. In the presence of DTPA, peak potentials showed a positive shift; the 

oxidation peak was observed around –390 mV and the cathodic peak around –570 mV. There 

was a minimum change in peak potential difference (∆Ep = Epc – Epa) of the Mn(II)/Mn(III) 

(a) 
(b) 

(c) 
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couple. The diffusion coefficient (D) and the rate constant (k) for the Mn(II)/(III) couple and 

Mn(III)–DTPA are shown in Table 7.1.  

 

A closer inspection of the Mn(II)–DTPA complex here was similar to the Mn(II)–DTPA 

complex reported earlier [8] both showed good reversibility of the redox reaction, one 

electron transfer with mass transfer, and were controlled by a diffusion limited reaction and 

fast electron transfer. The anodic and cathodic peak currents of the Mn–DTPA complex are 

higher than the corresponding currents for the Mn(II)/(III) couple, indicating a faster electron 

transfer at the platinum working electrode than in case of  the previous reaction of Mn(II)/(III) 

couple.  

 

7.3.6 Electrochemical impedance spectroscopy 

7.3.6.1 Manganese (Mn(11)/(111) ) couple 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6: Results of  0.1M Mn(II)/(III) solution in 1M H2SO4 couple with and without 

0.03M DTPA, (a) Nyquist impedance plot for, (b-c) Bode plots, and (d) Equivalent circuit 

model used for fitting the impedance data. 
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The Nyquist plot for the Mn(II)/(III) couple and Mn(III)–DTPA complex electrode are shown 

in Figure 7.6(a), where the Mn(II)/(III) couple exhibits a straight line with a slope of more 

than 45° from the higher to a lower frequency region. The Mn(III)–DTPA complex contains a 

capacitive loop in the higher frequency and a straight line with a slope of 45° at a lower 

frequency region. This means that the Warburg impedance phase angle of 45° is under 

diffusion control at the lower and higher frequency, that is observed from Figure 7.6(b-c). 

The R1, R2, C1 and W explanations have been stated early (in this Chapter Section 7.3.4)  

 

The Mn(II)/(III) couple from the higher to lower frequency region, with the appearance of the 

Warburg impedance phase angle of slightly more than 45°, indicates that the Mn(II)/(III) 

couple system was also under diffusion control similar to the Mn(III)–DTPA complex . The 

above mentioned two impedance spectra fitted well by the equivalent circuit in Figure 7.6(d). 

R1 is the solution resistance between the working electrode and the reference electrode.  

 

7.3.7 Cyclic voltammetry 

7.3.7.1 Vanadium ( V(1V)/V(V) ) couple 

 

The results of electrochemical behaviour for the V(IV) species at a platinum electrode in 1M 

H2SO4 solution, are included in Table 7.1. The anodic peak around –460 mV corresponds to 

the oxidation of V (IV) to V (V) and the cathodic peak occurs around –590mV corresponding 

to the reduction of V (V) to V (IV). There was another cathodic peak at about 180mV that 

could be associated with another reduction of V(IV) to V(III) observed in Figure 7.7(a). The 

peak potentials for the oxidation of V(IV) remains almost unchanged with increasing scan 

rate, although the reduction of V(V) changed with scan rate, indicating that the transformation 

reaction between V(IV) and V(V) is relatively irreversible.  
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Figure 7.7: Cyclic voltammograms of 0.1M V(IV)/(V) solution in 1M H2SO4 at the scan rate 

of 20–300 mV/s (a) with 0.03 M DTPA (b) with and without DTPA, at the scan rate of 100 

mV/s on Pt–electrode. 

 

The cyclic voltammograms of vanadium in the presence of DTPA ligand, the results reveals 

two irreversible anodic processes, the first at around –670mV and the second at around -

100mV versus Ag/AgCl. A comparison of the complex vanadium and uncomplex vanadium 

are shown in Figure 7.7(b). The complexed vanadium experiences two separate reduction and 

two oxidation reactions, all having features of chemical irreversibility in the cyclic 

voltammetric time scale. Diffusion coefficient and rate constant, for the V(IV)/V(V) and 

V(IV)–DTPA / V(V)–DTPA couples are shown in Table 7.1. The V(IV)–DTPA / V(V)–

DTPA complex become progressively more complex, and revealed that there is a formation of 

a new bond. The absorbed complex couple changes the peak–to–peak separation structure, to 

a state were the significant electron transfer become irreversible, therefore, this fact suggests 

that the electrochemical behaviour  process is affected by the addition of DTPA ligand. No 

detailed studies have yet been carried out on the fundamental mechanism of the 

electrochemical behaviour of vanadium complexes with DTPA. These redox transformation 

could correspond to the sequence V(I)–DTPA / V(II)-DTPA / V(III)–DTPA / V(IV)–DTPA / 

V(V)–DTPA [23]. As far as the reduction processes are concerned, it is also likely that metal 

vanadium is positioned in the central point of the amino carboxylic ligands.  

 

 

 

 

(a) (b) 
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7.3.8 Electrochemical impedance spectroscopy 

7.3.8.1 Vanadium (V(1V)/V(V) ) couple 

 

The electrochemical impedance of the V(IV)/(V) couple and the V(IV)–DTPA complex was 

investigated using EIS and Figure 7.8(a) shows the Nyquist plot of V(IV)/(V) couple and 

V(IV)–DTPA complex. A long straight line with a slope of more than 45º from higher to 

lower frequency region was observed for the V(IV)/(V) couple. This is the indication of an 

electrochemical process that is controlled by an electrochemical reaction and a diffusion step. 

However, for the V(IV)–DTPA complex, an incomplete semicircle was observed from a 

higher to lower frequency region. Figure 7.8(b) Bode-magnitude plot and Figure 7(c) Bode-

phase plot obtained from the equivalent electrical circuit model in Figure 7.8(d), where R1, 

R2 and C1 are fitted in the circuit, and the was no Warburg diffusion in the circuit, that is an 

indication of a simple Randles equivalent circuit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8: Results of  0.1M V(IV)/(V) solution in 1M H2SO4 couple with and without 

0.03M DTPA, (a) Nyquist impedance plot (b-c) Bode plots, and (d) Proposed equivalent 

circuit model used for fitting the EIS experimental data. 
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The impedance results were fitted to a simple equivalent circuit consisting of a parallel 

combination C1, and R1, in series with R2, representing the ohmic drop in the electrolyte. 

Figure 7.8(d) shows all the fittings. The values of the V(IV)–DTPA are shown in Table 7.2. 

The R1 and C1 values for V(IV)–DTPA are lower than in the case of uncomplexed V(IV) 

species.  

 

7.3.9 Cyclic voltammetry 

7.3.9.1 Effect of DTPA in the electrochemical behaviour of the metals 

 

A comparison of the cyclic voltammograms of Mn, Cr, Fe, V, and Ce in the presence of 

DTPA ligand is illustrated in Figure 7.9. the curves for  Mn–DTPA, Fe–DTPA and Ce–

DTPA have a better cyclic shape, which means that their electrochemical reversibility is much 

better than that of Cr–DTPA, and V–DTPA. All complexes with full cyclic shape 

voltammograms, illustrate a quasi-reversible electrochemical performance with a one electron 

transfer (1 e
-
) reaction electrode process.  
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Figure 7.9: Cyclic voltammograms for the Mn–DTPA, Fe–DTPA, Cr–DTPA, V–DTPA, and 

Ce–DTPA recorded at a scan rate of 100mV. 
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A summary of the electrochemical parameters and kinetics are depicted in Table 7.1. The 

peak ratios of the anodic and the cathodic peak for all electrolytes are greater than 1, 

indicating the favourable electrochemical reversibility, the most suitable electrolytes that are 

around 1. The peak potentials decrease from Ce–DTPA > Mn–DTPA > Fe–DTPA > V–

DTPA > Cr–DTPA. The current trend is as follows; Ce–DTPA > Fe–DTPA >Mn–DTPA > 

V–DTPA > Cr–DTPA. Zanello [23] stated that transition metal complexes are stable in 

different oxidation states. The cerium specie acts as an oxidizing agent to remove electrons 

from another species, a trend, and affinity to add electrons measured by the standard reduction 

/ oxidation potentials. Therefore the redox agent is based on the standard potential of the 

redox process of  Ce-DTPA, therefore Ce-DTPA is be considered as the most appropriate of 

the stable metal complexes used in this study. This implies that a ligand like DTPA will be 

more exposed to attack by an oxidizing agent like Ce(IV) in sulphuric acid than other metal 

species mentioned used in this study (Fe, Mn, Cr and V).  

 

7.3.10 Electrochemical impedance spectroscopy 

 

7.3.10.1 Effect of DTPA on the electrochemical behaviour of the metals 

 

The electrochemical impedances of Mn–DTPA, Cr–DTPA, Fe–DTPA, V–DTPA and Ce–

DTPA are shown in Figure 7.10(a). Semicircles at the higher frequency and a straight line 

with a slope of about 45º in the lower frequency region were observed for Ce–DTPA and Fe–

DTPA. This is an indication of an electrochemical process that is controlled by 

electrochemical reaction and a diffusion step.  
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Table 7.2:Electrical parameters from circle fitting for various electrolytes in  

                 Figure 5(d-g) 

 Electrolyte R1(Ω) 

 

Errors 

% 

R2 

(Ω) 

Errors 

% 

C1 

(F/cm2) 

Errors 

% 

W1 

(Ω) 

Errors 

% 

Ce(IV) 1.924 0.526 2.145 0.38 3.7x10
-6

 2.98 679.27 5.36 

Ce-DTPA 1.173 0.26 1.687 0.62 2.5x10
-6

 3.61 705.51 3.22 

Mn(III) 20.12 0.35 21.31 0.35 2.1x10
-4

 6.28 389.24 9.52 

Mn-DTPA 18.32 0.72 13.02 0.24 2.7x10
-5

 5.14 414.00 6.13 

Cr(II) 12.30 1.25 14.18 0.82 3.6x10
-2

 1.23 211.88 8.58 

Cr-DTPA 10.98 0.92 12.52 0.52 5.1x10
-3

 3.87 225.15 11.02 

Fe(III) 18.35 0.88 14.72 1.26 3.8x10
-5

 5.12 128.78 8.13 

Fe-DTPA 16.535 0.29 10.74 2.37 1.6x10
-6

 7.26 145.52 5.36 

V(IV) 14.84 0.58 13.76 0.58 1.6x10
-1

 9.58 117.06 6.52 

V-DTPA 11.925 0.62 14.25 1.98 7.2x10
-2

 5.21 129.00 9.23 

 

 

In the case of Cr–DTPA, an incomplete semicircle was observed from a higher to lower 

frequency region. A straight line with a slope of about 90º was observed in the case of the 

Mn–DTPA and V–DTPA from a higher to lower frequency region. Further detailed 

interpretation of the EIS measurements was performed by fitting the experimental plots using 

the equivalent circuit depicted in Figure 7.10(d-g) from experimental data obtained from 

Figure 7.10(a). Values of equivalent circuit parameters such as R1, R2, C1 and W1 were all 

calculated from the impedance data during the charge process, as summarized in Table 7.2.  
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Figure 7.10: Results of Mn–DTPA, Fe–DTPA, Cr–DTPA, V–DTPA and Ce–DTPA, (b) and 

(c) Bode plots, (d-g) Equivalent circuit model diagrams used for fitting the impedance data (d) 

Ce–DTPA and Fe–DTPA,  (e) Mn–DTPA, (f) Cr–DTPA, (g)V–DTPA.  
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The equivalent circuit for Ce(IV)–DTPA fitted best in Figure 7.10(d). Mn–DTPA and Fe-

DTPA fitted both fine in Figure 7.10(e). Cr–DTPA fitted in Figure 7.10(f), and V-DTPA 

fitted in Figure 7.10(g). Ce(IV)–DTPA has the lowest electrolyte resistance (R1) and charge 

transfer resistance (R2) values as compared to the other complexes, similarly its C1 and W1 

values are also low. Xue et al. [29] pointed that, when the resistance is low the potential will 

be high. The conductivity of the electrolyte will not be suitable for the V–DTPA system, 

given that the Ce(IV)–DTPA resistance is low, that means the potential will be higher than 

other complexes used in this study. It is clear that when the DTPA ligand is present in cerium 

species, the electrolyte resistance increases and hence the corrosion inhibition effect is 

pronounced. In addition, the capacitance decrease is due to the absorption that is taking place 

during the process at the electrolyte/electrode surface area. Therefore in Ce(IV)–DTPA the 

resistance is low, meaning that the potential will be higher than other complexes used in this 

study. 

 

7.4 Conclusion 

 

Due to better electrochemical reversibility, lower resistance, higher potential, fast kinetics 

reaction, diffusion control, and mass transfer. The Ce–DTPA complex is the most favoured 

electrolyte for redox flow batteries when compared to Cr–DTPA, Fe–DTPA, Mn–DTPA and 

V–DTPA complexes. CV and EIS results showed that the Ce–DTPA complex has the best 

electrochemical behaviour and lowest resistance, respectively, compared to the other metal–

DTPA complexes used in this study. Hence the Ce–DTPA complex  remains the most 

preferable electrolyte in terms of performance and as a possible candidate for RFB 

applications when compared to the other metal–DTPA complexes used in this study. 
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Chapter 8 

 

Charge/Discharge Characteristics of Cerium (IV) and its Complexes with 

Ethylenediaminetetraacetic Acid (EDTA) and 

Diethylenetriaminepentaacetate (DTPA) Ligands as Potential Electrolytes 

for Redox Flow Batteries. [*] 

Summary 

 

The results of kinetic studies of the Ce(IV)–DTPA complex shows promise as an electrolyte 

for redox flow batteries. Charge/discharge characteristics and species formed during the 

charge-discharge cycle are reported. 

 

8.1 Introduction 

 

In all the new battery technologies that are currently under development[1–3], RFB systems 

vary in the manner in which they store energy electrochemically, by a mechanism that uses 

the oxidation and reduction of one or two soluble redox couples for both charging and 

discharging. Energy compartment chemicals used in redox flow batteries are stored in 

separate liquid tanks, and the liquid pumped to the cell in which the electrolyte is separated by 

an ion-conductive separator for both charging and discharging. The power of the system is 

determined by the size of the battery cells, whereas the energy storage capacity is determined 

by the concentration and volume of the electrolyte. RFB’s offer the following advantages: as 

large-scale energy storage system for a wide range of applications, long life, reliability, 

simplicity, environmentally friendly, low maintenance and high-efficiency [1-9]. 

 

A cerium couple is the most uncomplicated electrolyte for redox batteries; it provides a 

relatively inexpensive and reliable power source. In order to improve the ratio of power to 

weight, these ligands can be complexed with EDTA, EDDS or DTPA to gain an improved 

power level. In this work, the charge/discharge performance in a small laboratory scale, a 

sandwich type cell was tested to determine the performance of the Ce–DTPA and the Ce–

EDTA systems. 

 

 

[*] Published as proceedings of the 43rd Power Source Conference, Philadelphia, New York, 7-10 July (2008), Modiba P, Crouch A.M.  
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8.2 Experimental 

 

8.2.1 Cyclic voltammetry and rotating disc electrode 

 

The procedures used to study the electrochemical kinetic parameters of the Ce(III)/Ce(IV) 

redox couple, of the Ce(IV)–EDTA and Ce(IV)–DTPA complexes by using CV and RDE 

with Pt electrodes were the same as described in Chapter 4 Section 4.2. 

 

This work was undertaken in view of the interest in the study of the electrochemical kinetic 

parameters of the Ce(III)/Ce(IV) redox couple using CV and RDE with different electrodes 

(C, Au and Pt electrodes). 

 

8.2.2 Charge/discharge 

 

In this study, systems that were found to exhibit fast kinetics were tested for their 

charge/discharge characteristics in a small specially fabricated sandwich cell. A Nafion 117 

membrane was used as a separator. At the beginning of the charge/discharge, test 20ml of a 

solution of 0.1M Ce(SO4)2 and 0.03 M DTPA in 1 M H2SO4 was pumped into the cathode 

side. In addition, a 20ml of solution of 0.1M Ce(SO4)2 with 0.03 M DTPA in 2M H2SO4 was 

pumped into the anode side. Measurements were recorded at a current density of 20 mA cm
-2

.  

 

.3 Results and discussion  

 

8.3.1 Cyclic voltammetry and rotating disc electrode 

 

Cyclic voltammetry and rotating disc electrochemistry for these systems (Ce(III)/Ce(IV) 

couple, Ce(IV)–EDTA and Ce(IV)–DTPA complexes are similar to that discussed in Chapter 

4, Sections 4.3 and 4.4. Where the redox reaction of Ce(III) to Ce(IV) shows a 

quasireversible electrochemical behaviour, the Ce(IV)-EDTA illustrate an irreversible 

behaviour. The Ce(IV)-DTPA complex however show a quasi-reversible behaviour. It was 

also found that there is a linear relationship between the peak current and the scan rate, 

indicating a diffusion controlled reaction. The anodic and cathodic peak currents of the 

Ce(IV)-DTPA complex is higher than the corresponding currents for the Ce(IV)- EDTA 
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complex and Ce(IV) at the same concentration, indicating a faster electron transfer at the 

platinum working electrode for the former. This enhanced electron transfer compared to the 

other complexes is also supported by the electron transfer coefficient (α) for this reaction.  

 

8.3.2 Charge/Discharge performance of the Cerium redox battery system 

 

To investigate the reason why the performance of the best suitable battery electrolyte is good, 

the EIS was used to determine the resistivity of the Ce(IV), Ce(IV)–EDTA and Ce(IV)–

DTPA electrolyte. The charge/discharge battery test was also used to determine the battery 

performance. The assembled cell was first charged and then discharged at a constant current 

of 20 mA in various electrolytes of Ce(IV), Ce(IV)–EDTA and Ce(IV)–DTPA, A lower 

current was used during the discharge process to prevent the cell voltage from dropping 

rapidly to zero. The Ce(IV), Ce(IV)–EDTA and Ce(IV)–DTPA electrolyte were compared 

according to the voltage generated by each electrolyte. 
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Figure 8.1(a): Charge/Discharge curves of the single cell Ce(IV) as redox couples at a current 

density of 20 mA cm
-2

. 

 

The cell potential versus time curve for the charge/discharge curves of the Ce(IV) electrolyte 

is shown in Figure 8.1(a). During the charge process of the Ce(IV) electrolyte, the cell 

voltage increases from 0.2V to 0.6V, and decreases from 0.6V to 0.2V through the discharge 

process. An energy efficiency of approximately 59%, a voltage efficiency of 45 % and a 

coulombic efficiency of 81 % were obtained as shown in Table 8.1. This is a poor 
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performance when compare with the corresponding complexes of Ce(IV)–DTPA electrolytes 

but better than the Ce(IV)–EDTA electrolyte. 
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Figure 8.1(b): Charge/Discharge curves of the single cell Ce(IV)–EDTA as redox couples at 

a current density of 20 mA cm
-2

. 

 

During the charge/discharge process of the Ce(IV)-EDTA electrolyte in Figure 8.1(b), when 

the battery cell is charged, the voltage increases from 0.2V to 0.4V, and throughout the 

discharge process it decreases from 0.4 to 0.2V. The lowest energy efficiency of 

approximately 36%, the voltage efficiency of 45 % and the advanced coulombic efficiency of 

81 % were obtained. This was a very poor performance when compared with the Ce(IV) and 

Ce(IV)–DTPA electrolytes. 
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Figure 8.1(c): Charge/Discharge curves of the single cell of Ce(IV)–DTPA and 

as redox couples at a current density of 20 mA cm
-2

. 
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The charge/discharge characteristics of the Ce(IV)–DTPA electrolyte is shown in Figure 

8.1(c). At the beginning of the charging process, the maximum voltage achieved is about 1V. 

Throughout the discharge process, the voltage decreases to 0.2V. The highest energy 

efficiency of approximately 85% as well as voltage efficiencies of 93%, and coulombic 

efficiencies of 92 % were obtained. The open circuit voltage after charging was high at 1 V, 

and the cell voltage remained above 0.2V during the duration  of the discharge process. This 

was a very good performance when compared with Ce(IV) and Ce(IV)–EDTA electrolytes. 
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Figure 8.1(d): Charge/Discharge curves of the single cell with Ce(IV)–DTPA, Ce(IV)–

EDTA and Ce(IV) as redox couples at a current density of 20 mA cm
-2

. 

 

Results of the cell voltage versus time for the charge/discharge cycles using various 

electrolytes Ce(IV), Ce(IV)–EDTA and Ce(IV)–DTPA are shown in Figure 8.1(d). The 

Ce(IV)–DTPA achieved the highest charge voltage (0.9 V) compared to Ce(IV) (0.6 V) and 

Ce(IV)–EDTA (0.4 V).The percentage efficiencies of the various electrolytes that were used 

were compared with that of the vanadium redox couple, which was previously reported [3]. 

From Table 8.1 it is evident that the percentage energy efficiency for Ce(IV)-DTPA is the 

highest  of all other electrolytes used. The Ce(IV)–DTPA system is comparable to the 
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acceptable vanadium redox couple [7] with the energy efficiency of 89% currently used in 

practical RFB systems, without the disadvantages associated with multiple high oxidation 

state species. 

 

Table 8.1: Efficiencies of the redox flow battery electrolytes 

 

 

 

 

 

 

 

 

 

a
 Current density of 40 mA/cm

2 

 

8.4 Conclusion 

 

The Ce(IV)–DTPA electrolytes had a higher open voltage circuit potential after charging 

compared to Ce(IV) and Ce(IV)–EDTA. A higher percentage of voltage efficiency and energy 

efficiency was obtained and found to be more favourable than the Ce(IV), Ce(IV)–EDTA and 

vanadium systems. A single cell charge/discharge cycle test with the Ce(IV)–DTPA redox 

couple demonstrates the promise for possible application in redox flow battery systems. This 

was a confirmation of the EIS results in Chapter 7 Section 7.3.10. Therefore Ce(IV)–DTPA 

was proven as a very good substitute as an electrolyte when compared with Ce(IV) and 

Ce(IV)–EDTA electrolytes and similar or slightly higher than those previous observed [7, 10]. 

 

  

 

 

 

Efficiencies 

(%) 

Vanadium 

[7] 

Ce(IV) Ce(IV)–EDTA Ce(IV)–DTPA 

 

Coulombic   89 
a
 95 81 92 

 

Voltage   91 63 45 93 

 

Energy  81 59 36 85 
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Chapter 9 

Overall Conclusions, Recommendations, and Outputs 

 

9.1 Conclusions 

 

The electrochemical behaviour of vanadium, chromium, cerium, iron and manganese with 

various aminocarboxylates, (EDDS, NTA, EDTA, and DTPA) were investigated using CV 

and RDE. Suitable electrolytes for RFB systems were determined by studying the kinetics and 

thermodynamics of the electrolyte used in RFBs. Voltammograms of CV and RDE were used 

to determine the electrochemical behaviour of Ce(III)/(IV) couple using various electrodes,  

glassy carbon, gold and platinum electrodes. However, complex behavior was obtained at 

different electrodes, each electrode giving a slight different in CV and RDE voltammograms, 

while the platinium electrode was shown to be prefarable electrode with the best surface to 

study the complexes. 

 

The results of this study, carried out to determine the most suitable electrolyte from various 

metals used with various ligands, have shown that the Ce-DTPA complex is the most suitable 

electrolyte to be used for RFB applications. 

 

� Pt electrode the best surface to study the complexes. 

� The first electrochemical study of Ce with aminocarboxylates using RDE and 

impedance etc. 

� A comprehensive comparison of high oxidation state metal ions with 

aminocarboxylates using electrochemical techniques. 

� An evaluation of the performance of the electrolytes as possible couples fo RFB 

applications. 

� Kinetic and thermodynamic parameters for all the redox couples studied. Important for 

determining electron transfer rates and reversibility of redox couples. 

� EIS Results also confirm fast kinetics and electron transfer. The first study of its kind. 

�  Ce(IV) DTPA found to be an electrolyte which fulfills many of the challenges 

associated with RFB, such as solubility, etc….. A relatively large open circuit 

potential = ~ 1.3 V. Reasonable cost = Ce(IV)–DTPA inexpensive. DTPA was a good 

complexing agent.  
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The most important purpose and aims of this project are discussed in Chapter one. This body 

of work has identified several important factors that affect the electrochemical performance of 

RFB systems, which are mentioned in Chapter two. All the analytical techniques used in this 

study are briefly described in Chapter three. In Chapter four, three different electrodes 

(carbon, platinium and gold) were compared to determine the best electrode that can be 

suitable to study the cerium couple for a RFB system. And we observed that carbon and 

platinum were favoured when in use with the Ce(III)/(IV) couple. In the next chapter, 

Chapter five, we evaluated cerium with two different ligands (EDTA and DTPA) for their 

electrochemical behaviour for RFB application using CV and RDE. The electrochemical 

kinetic parameters such as potential, limiting current, transfer coefficient, diffusion 

coefficients, and rate constants were detected from CV and RDE. The Ce(IV)–DTPA 

complex species have a higher electron transfer rate constant than other complex species used 

, indicating that the rate of electron transfer was fast. Therefore the results that were observed 

verify that DTPA was a suitable ligand when it complexes with cerium because of the quasi-

reversible electrochemical behaviour, one electron transfer, mass transfer and fast electron 

transfer. The results from RDE confirmed that the parameters of measurement in CV are 

approved and can be used to determine the kinetic parameters of the redox couples.  

 

In Chapter six the electrochemical impedance study of Ce (IV) with aminopolycarboxylate 

ligands (DTPA, EDTA, EDDS and NTA), were presented in CV. EIS verified that Ce(IV)-

DTPA will be a suitable RFB electrolyte when compared to Ce(IV), Ce(IV)-EDTA, Ce(IV)-

EDDS and Ce(IV)-NTA due to better electrochemical reversibility, lower resistance , higher 

potential, kinetics, diffusion control and mass transfer. In Chapter seven the electrochemical 

properties of metals (Cr, Fe, Mn, and V) using CV and EIS were evaluated for RFB 

applications. The Ce-DTPA still proved to be the most preferred and suitable electrolyte as 

compared to Mn-DTPA, Cr-DTPA, Fe-DTPA and V-DTPA, due to its better electrochemical 

reversibility, lower resistance and higher potential. 

 

Chapter eight the charge/discharge characteristics and species formed for Ce(IV), Ce(IV)-

EDTA and Ce-DTPA during the charge-discharge cycle performance are evaluated and the 

observed results where compared to those presently used in redox flow systems, which is the 

vanadium system. The Ce(IV)-DTPA electrolytes was found to have a higher open voltage 

circuit potential after charging compared to that of Ce(IV) and Ce(IV)-EDTA. A higher 

percentage of voltage efficiency and energy efficiency was also obtained and found to be 

more favourable than that of the Ce(IV), Ce(IV)-EDTA and Vanadium systems. A single cell 
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charge / discharge cycle test with the Ce(IV)-DTPA redox couple demonstrates the promise 

for possible application in a redox flow battery system. 

 

Chapter nine is for overall conclusions and recommendations 

 

The capillary electrophoresis was used to investigate the efficient separation of vanadium 

species in Chapter ten as addendum. The electrophoretic behaviour of vanadium species with 

four various complexing agents (EDTA, DTPA, EDDS and NTA) were examined. Cerium 

and other metal species (Mn, Cr & Fe) were also investigated even though their results were 

not clearly understandable. There are plenty of assumptions that need clarity. Further study on 

these metals and ligands is recommended using CE. 

 

9.2 Recommendations and future work 

 

In the view of the fact that there are several assumptions concerning CE results that need 

clarity. Further study on this metals and ligand is recommended.  

 

9.3 Outputs 

 

9.3.1 Papers Published 

 

� Modiba P, Crouch A.M, J. Appl. Electrochem.38 (2008)1293. 

� Modiba P, Crouch A.M, Proceedings of the 43
rd

 Power Source Conference 

Philadelphia, New York, 7-10 July (2008).  

 

 

9.3.2 Submitted Papers 

 

� Modiba P, Matoetoe M, Crouch A.M, Electrochemical Impedance Study of Ce(IV) 

with Aminopolycarboxylate Ligands for Redox Flow Batteries Application, 

resubmitted to Electrochimica Acta (2009) 

� Modiba P, Matoetoe M, Crouch A.M, Electrochemical Properties of Metals (Cr, Fe, 

Mn, and V) for Redox Flow Battery Applications, submitted to Electrochimica Acta 

(2009). 
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9.3.3 To be submitted 

 

� Modiba P, Matoetoe M, Crouch A.M, J. Power Source (2010) 

 

9.4 Conference contributions 

 

9.4.1 Oral Presentations  

 

� Modiba P, Crouch A.M, 10
th

 International Symposium on Kinetics in Analytical 

Chemistry, Cape Town, South Africa. 02 - 04 December 2009.  

� Modiba P, Crouch A.M, Proceedings of the 43
rd

 Power Source Conference, 

Philadelphia, New York, 07 - 10 July 2008. 

� Modiba P, Crouch A.M, 39
th

 National Convention of the South African Chemical 

Institute (SACI), Stellenbosch, South Africa, 30 November - 05 December 2008. 

� Modiba P, Crouch A.M, Student Symposium, Potchefsroom, South Africa. 07 

December 2005.  

� Modiba P, Crouch A.M, Student Symposium, Stellenbosch, South Africa, 06 

December 2004. 

 

9.4.2 Poster Presentations  

 

� Modiba P, Crouch A.M, The South African Chemical Institute (SACI) Inorganic 

Chemistry Conference, Club Mykonos, Western Cape, South Africa,  8-12 July 2007 

� Modiba P, Crouch A.M, 38
th

 Convention of the South African Chemical Institute, 

(SACI) Conference, Durban, South Africa  3-8 December 2006. 
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Addendum                                                             Chapter 10  

 

Study the speciation of Vanadium, Chromium, Iron, Manganese 

and Cerium using CE 

 

10.1 Introduction 

 

In this chapter, the focus was on understanding the oxidation state of vanadium, since it is a 

very complicated species, which has five different oxidation states. Capillary electrophoresis 

(CE) was used to investigate the efficient separation of vanadium species. The electrophoretic 

behaviour of vanadium species with four various complexing agents (EDTA, DTPA, EDDS 

and NTA) was examined. Factors that affect the migration behaviour of vanadium species, 

such as electrolyte pH and concentration, also EDTA, DTPA, EDDS and NTA concentration, 

applied voltage, and wavelength measurement, were studied in detail to improve the 

understanding of the five oxidation states of vanadium. Cerium and other metal ions (Mn,Cr 

& Fe) were also investigated even though their results were not clearly understandable, most 

of the results can be found in Appendix A, cerium  results was expected to appear most 

favourable electrochemically than other metals, unfortunately the complexes are too labile at 

the higher pH. 

 

10.2 Experimental details 

10.2.1 Instrumentation 

 

Capillary electrophoresis analyses were performed on a HP
3D

 CE Instrument (Agilent 

Technology, Waldbronn, Germany) system Hewlett Packard (More detailed info in Chapter 3 

Section 3.5)  

 

10.2.2 Materials and reagents 

 

All reagents were of analytical reagent grade unless stated otherwise. Deionised water having 

resistivity of 18 MΩ.cm (Millipore). Ethylenediaminetetraacetic acid (EDTA), 

ethylenediamine disuccinate (EDDS), nitrilotriacetic acid (NTA) and diethylenetriamine 

pentaacetic acid (DTPA) were obtained from (Fluka- Riedel-de Haen) sulphuric acid, sodium 
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hydroxide (NaOH), hydrochloric acid (HCl), NH4V03, cerium (IV) sulphate [Ce(SO4)2] 

vanadium vanadate (V2SO5 ), vanadium vanadyl (VOSO4) were purchased from Sigma–

Aldrich (Steinheim, Germany).  

 

10.2.3 Preparation of buffer solution 

The EOF mobilities at different pH were measured in the same capillary using six buffer 

solutions, which were made in the usual fashion: (i) 20 mM acetate buffer pH 4,)(ii) 20 mM 

phthalate buffer pH 5,(iii)-(vi) 20 mM phosphate buffer pH 6, 7, 8 and 9. 20 mM phosphate 

buffer (pH values of phosphate buffers were adjusted with 0.1 M phosphoric acid or 0.1 M 

NaOH). All buffer solutions were sonicated and filtered through 0.45 µm membrane syringe 

filter before analysis, to remove the sediment prior to CE analysis. All experiments were 

conducted at 25 
0
C. 

10.2.4 Preparation of solutions and metal complexes  

 

Fresh working single or various standards were prepared daily by appropriate dilution of the 

stock solutions. The solutions were prepared by diluting with deionized water with a 

resistivity of 18 mΩ. cm (Millipore system). Metal complexes were prepared by mixing metal 

solution with ligands and the electrolyte was prepared from 20mM sodium tetraborate buffer 

and 0.1 mM CTAB surfactant, 0.1 M NaOH and 0.1 M HCL was used to adjust the desired 

pH . Sample analyses were in the ratio of 1:1, 1:2, 1.3, 1.4 and 1:5 metal to Ligand (EDTA, 

DTPA, EDDS, and NTA) All solutions and electrolytes were sonicated and filtered through 

0.45 µm membrane filter before analysis. 

 

10.2.5 Capillary conditioning 

 

Fused silica capillaries using various internal diameters, outer diameter 365 µm obtained from 

Poly Micro Technologies, Inc. (Phoenix, AZ). The required length of capillary (used 40-70 

cm) was cut using a capillary cleaving tool to give a clean perpendicular cut without any 

uneven ends. The detection window was constructed by burning out about 2-3 mm of the 

outer polyimide coating. The window then was cleaned with acetone to remove coating 

residue or fingerprints.  

 

When new bare fused silica capillaries were used for the first time, they were rinsed with 1 

mol L
−1

 sodium hydroxide for 30 min and ultra pure water for 30 min and after these rinses. 
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Normal conditioning was done by rinsing with background standards electrolyte for 30 min 

followed by 0.1 M NaOH for 10 min, then with deionized water for another 10 min and 

equilibrated with the buffer solution for a further 10 min. Every day before and after runs, the 

capillary was conditioned by sequentially purging with 0.1 M NaOH for 5 min., 0.01 M 

NaOH for 5 min and ultra pure water for 10 min. During the sequence between the runs, the 

capillary was purged with buffer for 3 min. To assure that the capillary was in good condition 

throughout the sequence, the capillary was conditioned by washing it with 0.1 mol L
−1

 sodium 

hydroxide for 5 min, ultra pure water for 5 min and separation electrolyte for 5 min after 

every three samples. Between each injection, the capillary was filled with the buffer solution 

by flushing the entire capillary for 5 min at 50 mbar. The sample solution was introduced into 

the anodic end of the capillary by hydrostatic injection. A voltage of −25 kV was then applied 

for separation. 

 

10.2.6 Procedure for Capillary Electrophoresis 

The electrolyte required for CE was prepared by dissolution of an appropriate amount of 

NaH2PO4 in Deionised water, which contained appropriate amounts of 

tetradecyltrimethylammonium bromide (TTAB). All electrolytes were filtered through a 

Millipore 0.45 µm membrane filter and degassed in an ultrasonic bath prior to use. Milli-Q 

water was obtained from Milli-Q (Millipore, Bedford, MA, USA) equipment with a 

conductivity of 0.054 S/cm, and was used for preparing all solutions. Electrolyte pH was 

adjusted with 0.1 M NaOH or 0.1 M H3PO4 solution.  

 

10.3 Results and Discussion 

 

10.3.1 Speciation of Vanadium with (EDTA and DTPA) 

 

During pre-column derivation, the complexing ligand will form a kinetically stable complex 

with each vanadium species and each metal complex will have a high absorptivity. The 

formation of kinetically stable complexes is important because anionic vanadium complexes 

may partially decompose in the capillary during separation. 
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Figure 10.1: Typical electropherogram of V(IV) and V(V) with 10mM EDTA, 0.2mM of 

V(IV) and V(V)1
st
 peak = marker, 2

nd
 peak = V(V)–EDTA, 3

rd
 peak = V(IV)–EDTA. 

Conditions: capillary, fused-silica capillary 60cm×50µm (effective length: 52.5cm); 

electrolyte, 25mM sodium phosphate, 0.50mM TTAB at pH 4.0 applied potential, −15kV; 

hydrostatic injection: 30s, UV detection at 200nm, capillary temperature of 25°C. 

In all four ligands (EDTA, DTPA, EDDS and NTA ) tested two single separate vanadium 

complexes were formed using EDTA and DTPA. The ligand EDTA complex with [VO]
2+

 

(V(IV) and [VO2]
+
 V(V) to form kinetically stable complexes is shown in Figure 10.3. The 

V(V)-EDTA complex migrated faster than that of V(IV)-EDTA at pH 4, and also the peak 

height for V(V)-EDTA is higher than V(IV)-EDTA. The reason being that the formation of 

[VO2 (HEDTA]
2–

 took place as descriped by Jone et al.[1] 
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Figure 10.2: Typical electropherogram of V(IV) and V(V) with 10mM DTPA, 0.2mM of 

V(IV) and V(V)1
st
 peak = V(V)–DTPA, 2

nd
 peak = V(IV)–DTPA. (same conditions as in 

Figure 10.1). 

 

The V(V)-DTPA complex migrated faster than that of V(IV)-DTPA. But the peak height for 

V(V)-DTPA is lower than V(IV)-DTPA as shown in Figure 10.3, this might be the different 

charges on the complexes. The result for vanadate anion using EDDS, NTA were very 

broadened and had poorly shaped peaks, as can be seen in Appendix A, Using EDTA and 

DTPA, two single distinct vanadium complexes were formed as shown in Figure 10.1 and 

Figure 10.3, specifically both ligands can complex with [VO]
2+

 and [VO2]
+
 to form 

kinetically stable complexes. The complex was unstable in the electrophoretic system until 

EDTA and DTPA is added in the electrolyte. The V(IV)-complex peak appeared to be stable 

on the electropherogram if there was no EDTA in the electrolyte 

 

 

 

 

 

 

 

 

 

V(V)-DTPA 

V(IV)-DTPA 
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Figure 10.3: Electropherograms of V(IV) and V(V) with 10mM EDTA, 0.2mM of V(IV) and 

V(V) at various pH level from pH 2-8 , monitored at 200nm.  

 

The effect of electrolyte pH was investigated, the electrolyte concentration was the same but 

various pH values of electrolyte were used from pH 2-8 level, the pH of the electrolyte 

controls the ionization and the electrophoretic mobility of the carrier ion, and the separation of 

lower mobility ions can be optimized by decreasing the pH. From the pH of 2-3 the peaks are 

not clearly detected, especially the second peak is not observed as shown if Figure 10.3. 

Although from the pH of 4-7 both peaks are observed. Then at the pH 8 the second peak 

disappear totally, no observation for the second peak, the first peak correspond to V(V)-

EDTA and the second V(IV)-EDTA. The increase in pH supplies more Y
4-

 for complexation 

and enhances the stability of [V0
2
Y]

 3-
 and [VOY]

 2-
. On the other hand there is a high risk of 

the formation of precipitation at higher pH level. In general, migration at pH 4 gave the best 

sensitivity to detection and was chosen as the optimal electrolyte pH. Since both peaks are 

observed and are not far apart from each other, which simplify becouse the migration time is 

almost the same, even the high peaks are almost the same. 
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Figure 10.4: Electropherograms of V(IV) and V(V) with 10mM EDTA, 0.2mM and 0.5 mM 

concentration of V(IV) and V(V). 

 

There effect of the electrolyte concentration also plays a major role in the speciation and 

separation of vanadium, the concentration of 0.2 and 0.5 mM for V(IV) and V(V) were 

investigated. In Figure 10.4 when the concentration of 0.5 M was used, the first peak 

becomes broad and the peak hight decreases. Also the peak separation narrows. When the 0.2 

mM was used the two peak of V(IV) and V(V) are observed more clearly and there is a small 

difference of migration between the two peak, the peak height improved and also another 

small peak is observed at the migration time of around 5.8 min. This could be the formation 

of another V(V)-EDTA complex. These electropherograms have the characteristics of almost 

stable base line and low noise levels are as shown in Figure. 10.4 while with the increasing 

concentration of VO
2+

, the peak height improved very much. 
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10.3.2 Separation of Vanadium with EDTA, EDDS, DTPA and NTA  

 

Figure 10.5: Typical electropherogram of vanadium with various ligands (EDTA, EDDS, 

DTPA and NTA) 1
st
 peak = V(IV/V) -EDDS, 2

nd
 peak = V(IV/V) –EDTA, 3

rd
 peak = 

V(IV/V) -DTPA, 4
th

 peak = V(IV/V) –NTA. 

 

 

The choice of ligand to achieve high UV response and separation selectivity means that the 

complexing ligands should satisfy several requirements including: rapid complexation 

between metal ions and ligand, formation of a single distinct complex with V(IV) or V(V) 

under on-column conditions; and formation of a complex with large UV absorptivity. Figure 

10.5 illustrates the results obtained from different ligands in the supporting electrolyte for 

complexation and separation of V(IV) and V(V); the electrolyte contained 10 mmol ligand at 

pH 4.0. Two distinct peaks attributable to vanadium complexes were formed when EDTA and 

DTPA were used, and both resulted in good resolution. Higher detection sensitivity of V(IV) 

and V(V) was however, obtained. 

 

Detection sensitivity for use of both NTA and EDDS was also much lower than that obtained 

by use of EDTA and DTPA. This indicated that NTA and EDDS were selective ligands for 

specific oxidation states and with lower UV absorptivity. Both can be attributed to the 

structure of the metal complex, which involves selective coordination. Although the use of 

NTA for Ce metal speciation has been reported previously [2], for reasons of speed of 

complexation, separation electivity, and detection sensitivity. EDTA was the most suitable 

min2 4 6 8 10 12 14

mAU

0

5

10

15

20

25

 DAD1 D, Sig=254,40 Ref=off (PORCH\2NOV0023.D)

 5
.0

1
4

 5
.5

5
0

 7
.1

0
8

 8
.6

7
0

 1
1

.6
2

0

 1
3

.3
1

3



 155 

ligand for the complexation of V(IV) and V(V), because it best satisfied the requirements 

listed above, although the second best EDTA, EDDS and NTA are not good for the 

complexation of V(IV) and V(V). The addition of low concentrations of ligand to the 

background electrolyte can prevent the decomposition, but can also reduce the detection 

sensitivity due to the increase in the UV background. Hence, preliminary studies [3-5] of pre-

capillary complexation, was investigated [VO]
2+

 and [VO2]
+
. The vanadium complexes 

formed were separated by CE with an electrolyte containing 25mM phosphate, 0.5mM TTAB 

at pH 4 because this buffer system has been successfully used for the separation of many 

different anionic solutes [6-10]. 

 

10.3.3 Speciation of Cerium with EDTA, EDDS, DTPA . 

 

The complexing ligand should therefore satisfy several requirements: It should form a single-

state complex, with each vanadium oxidation state, the complex that formed should remain 

stable during electrophoresis, and the complex formed should have a large UV absorptivity 

that was previously investigated by [11] and [12]. Aminopolycarboxylic acids, such as 

EDTA, DTPA, EDDS, and NTA all form complexes with metal ions in solution and satisfy 

the three requirements described above and have all been used in developing separation 

methods. All cerium electropherograms have the characteristics of an unstable base line and 

too much interference, the results are shown in Appendix A1. In view of the fact that most of 

them were not clearly observed and it was too complicated to be interpreted. And also other 

metals like (Mn, Cr, and Fe) were not clearly detected or separated as shown in Appendix A2-

A7, that could be the effect of electrolyte concentration, pH not suitable, effect of applied 

voltage to high or small , and ligand concentration to strong or low ( and especially ligand 

exchange).  

 

10.4 Conclusions 

Four ligands tested, two single distinct vanadium complexes were formed only using EDTA, 

DTPA, EDDS, and NTA. The only ligands that complexes with [VO]
2+

 and [VO2]
+
 to form 

kinetically stable complexes is EDTA and DTPA.  

There are plenty of assumptions that need clarity. Further study on these metals and ligands is 

recommended.  
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Appendix A 

 

 

 

Figure A1: Typical electropherogram of 0.2mM Ce(IV) with 10mM EDTA, Conditions: capillary, fused-silica 

capillary 60cm×50µm (effective length: 52.5cm); electrolyte, 25mM sodium phosphate, 0.50mM TTAB at pH 

4.0 applied potential, −25kV; hydrostatic injection: 30s, UV detection at 200nm, capillary temperature of 25°C. 

 

 

 

Figure A2: Typical electropherogram of 0.2mM Mn(II) with 10mM EDTA, Conditions: capillary, fused-silica 

capillary 60cm×50µm (effective length: 52.5cm); electrolyte, 25mM sodium phosphate, 0.50mM TTAB at pH 

4.0 applied potential, −25kV; hydrostatic injection: 30s, UV detection at 200nm, capillary temperature of 25°C. 
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Figure A3: Typical electropherogram of 0.2mM V(IV) with 10mM EDTA, Conditions: capillary, fused-silica 

capillary 60cm×50µm (effective length: 52.5cm); electrolyte, 25mM sodium phosphate, 0.50mM TTAB at pH 

4.0 applied potential, −25kV; hydrostatic injection: 30s, UV detection at 200nm, capillary temperature of 25°C. 

 

 

Figure A4: Typical electropherogram of 0.2mM Ce(IV) with 10mM DTPA, Conditions: capillary, fused-silica 

capillary 60cm×50µm (effective length: 52.5cm); electrolyte, 25mM sodium phosphate, 0.50mM TTAB at pH 

4.0 applied potential, −25kV; hydrostatic injection: 30s, UV detection at 200nm, capillary temperature of 25°C. 
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Figure A5: Typical electropherogram of 0.2mM Fe(III) with 10mM DTPA, Conditions: capillary, fused-silica 

capillary 60cm×50µm (effective length: 52.5cm); electrolyte, 25mM sodium phosphate, 0.50mM TTAB at pH 

4.0 applied potential, −25kV; hydrostatic injection: 30s, UV detection at 200nm, capillary temperature of 25°C. 

 

 

 

 

Figure A6: Typical electropherogram of 0.2mM Cr(III) with 10mM DTPA, Conditions: capillary, fused-silica 

capillary 60cm×50µm (effective length: 52.5cm); electrolyte, 25mM sodium phosphate, 0.50mM TTAB at pH 

4.0 applied potential, −25kV; hydrostatic injection: 30s, UV detection at 200nm, capillary temperature of 25°C. 
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Figure A7 Typical electropherogram of 0.2mM V(IV) with 10mM DTPA, Conditions: capillary, fused-silica 

capillary 60cm×50µm (effective length: 52.5cm); electrolyte, 25mM sodium phosphate, 0.50mM TTAB at pH 

4.0 applied potential, −25kV; hydrostatic injection: 30s, UV detection at 200nm, capillary temperature of 25°C. 
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