'N STUDIE VAN DIE KONVEKSITEITSTELLING VAN
A. A. LYAPUNOV

deur
Charlotte Barnard

Tesis ingelewer ter gedeeltelike voldoening aan die vereistes vir die graad van

MAGISTER IN DIE NATUURWETENSKAPPE

in die vak
WISKUNDE
aan die
UNIVERSITEIT VAN STELLENBOSCH

STUDIELEIER: Prof. P. Maritz
Departement Wiskunde
Universiteit van Stellenbosch

Maart 2008
Verklaring

Ek, die ondergetekende, verklaar hiermee dat die werk in hierdie tesis vervat, my eie oorspronklike werk is en dat ek dit nie vantevore in die geheel of gedeeltelik by enige universiteit ter verkryging van 'n graad voorgelê het nie.

Handtekening: [Signature]
Datum: 28 Januarie 2008

Kopiereg © 2008 Universiteit van Stellenbosch
Alle reëte voorbehou
Opsomming

Laat T 'n nie-leë versameling wees, \mathcal{A} 'n σ-algebra van subversamelings van T en $\mu : \mathcal{A} \rightarrow \mathbb{R}^n$ 'n begrensde, aftelbaar additiewe maat. 'n Versameling $E \in \mathcal{A}$ word 'n atoom met betrekking tot μ genoem as $\mu(E) \neq 0$ en, as $F \in \mathcal{A}$, $F \subseteq E$, dan is $\mu(F) = \mu(E)$ of $\mu(F) = 0$; die maat μ is atomies as daar minstens een atoom (met betrekking tot μ) in \mathcal{A} is. As daar geen atoom (met betrekking tot μ) in \mathcal{A} bestaan nie, dan word μ nie-atomies genoem.

In 1940 publiseer die Russiese wiskundige A. A. Lyapunov die Konveksiteitstelling, wat lui dat die waardeversameling $\mathcal{R}(\mu)$ van 'n begrensde, eindig-dimensionele maat μ kompak is en, in die nie-atomiese geval, ook konveks. Sedert 1940 het baie publikasies oor verskillende aspekte van die waardeversameling van 'n vektormaat lig gesien. Hierdie aspekte strek vanaf nuwe en korter bewyse van die Konveksiteitstelling en sy bruikbaarheid in heetemal uiteenlopende gebiede, tot by navorsing oor die meetkundige eienskappe van die waardeversameling deur die gebruik van ander bekende stellings, soos dié van Krein-Milman en Radon-Nikodým.

In die betrokke oorsig word die Konveksiteitstelling op sigself beskou. Toepassings in verskillende gebiede asook brokkies oor die geskiedenis van die mense en die idees betrokke by die ontwikkeling daarvan, word ook behandel.
Summary

Let T be a non-empty set, \mathcal{A} a σ-algebra of subsets of T and $\mu : \mathcal{A} \rightarrow \mathbb{R}^n$ a bounded, countably additive measure. A set $E \in \mathcal{A}$ is called an atom with respect to μ if $\mu(E) \neq 0$ and, if $F \in \mathcal{A}$, $F \subseteq E$, then $\mu(F) = \mu(E)$ or $\mu(F) = 0$; the measure μ is atomic if there exists at least one atom (with respect to μ) in \mathcal{A}. If no such atom (with respect to μ) exists in \mathcal{A}, then μ is called non-atomic.

In 1940 the Russian mathematician A. A. Lyapunov published the Convexity Theorem. According to this theorem the range $\mathcal{R}(\mu)$ of a bounded, finite-dimensional measure μ is compact and, in the non-atomic case, convex. Since 1940 much has been published on different aspects of the range of a vector-measure. These aspects range from new and shorter proofs of the Convexity Theorem and the usefulness of it in diverse fields, to research about the geometrical characteristics of the range by using other familiar theorems, like Krein-Milman and Radon-Nikodým.

In the survey at hand the Convexity Theorem in itself is studied. Applications in different fields will be looked at as well as pieces about the history of the people and the ideas involved in the development of the theorem.
Erkennings

Ek sal graag die volgende persone net kortliks wil bedank:

- Professor P. Maritz, my studieleier. Dankie is te klein 'n woord. Ek waardeer regtig al die moeite wat u in die tesis ingesit het. Dit was 'n ongelooflike voorreg om saam met u te kon werk. Baie, baie dankie.

- My ouers. Dankie vir volgehewe moed-inpraat en geloof in my.

- My Here God. Dankie vir genade onbeskryflik groot.
Inhoud

Inleiding

<table>
<thead>
<tr>
<th>1 Vektormaattheorie</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Inleiding</td>
<td>7</td>
</tr>
<tr>
<td>1.2 Geskiedenis en notasie</td>
<td>7</td>
</tr>
<tr>
<td>1.3 Die Konveksiteitstelling</td>
<td>9</td>
</tr>
</tbody>
</table>

Voorgeskiedenis

<table>
<thead>
<tr>
<th>2</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Sierpiński</td>
</tr>
<tr>
<td>2.2</td>
<td>Geskiedenis</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Die Tussenwaardestelling van Sierpiński</td>
</tr>
<tr>
<td>2.3</td>
<td>Neyman-Pearson</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Persoonlike geskiedenis</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Die eerste spanpoging</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Die tweede spanpoging</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Die Fundamentele Lemma in moderne terme</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Tekortkominge van die Fundamentele Lemma</td>
</tr>
</tbody>
</table>

Twee-dimensionele mate

<table>
<thead>
<tr>
<th>3</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Inleiding</td>
</tr>
<tr>
<td>3.2</td>
<td>Deel I</td>
</tr>
<tr>
<td>3.3</td>
<td>Deel II</td>
</tr>
<tr>
<td>3.4</td>
<td>Deel III</td>
</tr>
<tr>
<td>3.5</td>
<td>Deel IV</td>
</tr>
</tbody>
</table>
4 Die Konveksiteitsstelling 60
 4.1 Inleiding .. 60
 4.2 Konveksiteitsstelling 63

5 Die eerste korter bewys van die Konveksiteitsstelling 69
 5.1 Inleiding .. 69
 5.2 Halmos se eerste poging 70
 5.3 Halmos se tweede poging 81

6 Eerste toepassings van die Konveksiteitsstelling 97
 6.1 Inleiding .. 97
 6.2 Twee uitbreidings van die Konveksiteitsstelling 98
 6.3 Verdere uitbreidings van die Konveksiteitsstelling 106
 6.4 Die Uitskakeling van Ewekansigheid 111
 6.4.1 Formulering van stellings 112
 6.4.2 Toepassing van die Konveksiteitsstelling in die uitskakeling van ewekan-
 sigheid ... 117
 6.4.3 ’n Veralgemening van die Konveksiteitsstelling 121
 6.4.4 ’n Uitbreiding van die Konveksiteitsstelling 131
 6.4.5 Verdere uitbreidings van die Konveksiteitsstelling 135

7 Toepassings van die Konveksiteitsstelling in optimeringsprobleme 137
 7.1 Inleiding .. 137
 7.2 Karlin .. 138
 7.3 Lindenstrauss ... 149
 7.4 Die oneindig-dimensionele weergawe 158
 7.4.1 Kingman en Robertson 159
 7.4.2 Die swak Konveksiteitsstelling vir die sterk topologie 166
 7.4.3 Nuwe terminologie 174
Inleiding

Die Konveksiteitstelling van A. A. Lyapunov lui dat die waardeversameling van 'n be- grensde maat met waardes in 'n eindig-dimensionele topologie se vektorruimte kompak is en, in die nie-atomiese geval, konveks. Na hierdie Konveksiteitstelling van A. A. Lyapunov word verwys as 'n "everintriguing theorem" [ANDI], en "one of the most beautiful and best-loved theorems of the theory of vector measures" [KLUV]. Hierdie is 'n studie oor die Konveksiteitstelling. Die stelling op sigself, en van die toepassings asook brokkies oor die geskiedenis van die mense en die idees betrokke by die ontwikkeling daarvan, sal behandel word. So ver moontlik is gebeure wat bygedra het tot die ontwikkeling chronologies gerangskik.

Hoofstuk 1 van hierdie tesis sal dien as 'n grondslag. In hierdie hoofstuk word die notasie vasmekaar (daar is gepoog om die notasie so konsekwent as moontlik te gebruik). Daar word ook kortliks meer oor Lyapunov self genoem. In Hoofstuk 2 word die pre-1940 geskiedenis van die waardeversameling van 'n maat kortliks bespreek aan die hand van die werk van Sierpiński, Weir, Neyman en Pearson. Die Neyman-Pearson Fundamentele Lemma het as 'n wegspringplek gedien waarvandaan die toepassings van die Konveksiteitstelling in die Statistiek beland het.

Hoofstuk 3 hanteer die werk van die Deense wiskundige Buch, waarin hy gepoog het om 'n gaping in die Fundamentele Lemma te vul, maar helaas onsuksesvol was. Dié lang artikel van Buch is deur Halmos gesien, en deur laasgenoemde het A. A. Lyapunov se Konveksiteitstelling in die destydse Westerse literatuur bekend geword.

Hoofstuk 4 is 'n kort hoofstuk oor A. A. Lyapunov en sy Konveksiteitstelling, maar sonder bewys. Kort bewyse van hierdie stelling sal in verdere hoofstukke aangebied word.
In Hoofstuk 5 word twee belangrike artikels van Halmos behandel; die eerste artikel het 'n fout bevat wat in die tweede artikel deur middel van ander tegnieke vermy is.

Die eerste toepassings van die Konveksiteitstelling was in die Statistiek. Hierdie toepassings word in Hoofstuk 6 ingelei aan die hand van publikasies van Blackwell, Dvoretsky, Wald, Wolfowitz, Lehmann en Chernoff. Die bewysmetodes van Halmos (Hoofstuk 5) het as 'n goeie basis vir hierdie werk gedien.

Die Konveksiteitstelling het algaande 'n meer funksionaal-analitiese kleur begin kry, wat duidelik uit die werk van Karlin na vore getree het. Ekstreempunte, konveksiteit, Krein-Milman, ... was begrippe en stellings wat al meer na vore getree het in die werk wat Karlin oor optimalisering prolemes gedoen het. Karlin het 'n uitbreiding van die Konveksiteitstelling bewys (kyk na Stelling 7.2.6), en in hierdie bewys is deeglik van ekstreempunte gebruik gemaak. Die idees van Karlin is later deeglik deur Lindenstrauss benut toe hy die Konveksiteitstelling van 'n kort bewys voorsien het; kyk na Afdeling 7.3. Die idees van Karlin en die nut van ekstreempunte het ook later in Beheerteorie kop uitgestreek, kyk na Hoofstuk 11. Oneindig-dimensionele weergawes word in Afdeling 7.4 behandeld.

Hooftukke 8 en 9 gaan hand-aan-hand en handel oor multifunksies, integrale van multifunksies (veral die Aumann-integraal) en uiteindelik die toepassing daarvan in die Wiskundige Ekonomie. Oor hierdie fakse werk het die wiskundiges Debrue en Aumann in 1983 en 2005,onderskeidelik, die Nobelprys vir Ekonomie ontvang.

In Hoofstuk 11 word toepassings van die Konveksiteitstelling kortliks genoem, veral na aanleiding van die rol van ekstreempunte in die 'bang-bang' basisel van LaSalle.

In die laaste hoofstuk, Hoofstuk 12, word aangedui hoe wyd die bewysmetode van Lindenstrauss se weergawe van die Konveksiteitstelling strek, en dat dit al eintlik in die literatuur deel van die 'wiskundige volkskunde' geword het, sonder vermelding van die oorsprong van die idee.
In kort word in hierdie oorsig beskou hoe wyd en ver Lyapunov se geliefde stelling se vlerke gesprei het.
Hoofstuk 1

Vektormaatteorie

1.1 Inleiding

Soos reeds genoem dien hierdie hoofstuk as 'n basis vir die res van die oorsig. Die terminologie en notasie word in die hoofstuk ingevoer en daar sal ook kortliks aan sekere algemene aspekte aangaande die Konveksiteitstelling aandag gegee word. Aangesien die Konveksiteitstelling oor die waardeversameling van vektormate handel, word die geskiedenis van vektormate vir interessante en eers beskou.

1.2 Geskiedenis en notasie

Volgens Diestel en Uhl [DIUH] het baie van die aanvanklike idees in die meetkunde, en in die basis- en isomorfie-teorie van Banach-ruimtes vektormaatteoretiese oorspronge. Verder skryf Kluvánek dat "the theory of vector measures...is) basically related to the very core of analysis and, hence, to its most important applications" [KLUV]. Kluvánek noem ook dat baie van die toepassings van vektormate voorgekom het lank voor die formulering van die sentrale konsepte en stellings van die teorie self.

Alhoewel die verhouding tussen stellings in die teorie van Banach-ruimtes en dié van vektormate deesdae deur baie as 'n blote omskryf van definisies van een konteks na 'n ander beskou word, was dit nie altyd die geval nie. Dit is wiskundiges soos J. A. Clarkson (1936), N. Dunford en A. P. Morse (1936), B. J. Pettis (1938) en I. M. Gel'fand (1938) wat groot bydraes gelewer het tot die interaksie tussen Banach-ruimtes en vektormaat-
teorie [DIUH]. Die Tweede Wêreldoorlog het egter ’n demper op die vooruitgang in hierdie gebied geplaas. Dit was as gevolg van wiskundiges soos A. Grothendieck, wat vektormaat-
teorie gebruik het om lineêre operatore te bestudeer, en R. G. Bartle, N. Dunford en J. T. Schwartz, wat operatore op ruimtes van kontinue funksies bestudeer het, dat vektormaatteorie in die middel 1950’s weer herleef het [DIUH]. Deur hulle studies is daar vir die eerste keer in baie jare van die belangrike stellings in die teorie van algemene vek-
tormate bewys, soos byvoorbeeld dat die waardeversameling van ’n vektormaat relatief swak-kompak is. Na die publikasie van N. Dinculeanu se boek Vector measures [DINC] in 1967 het die belangstelling in vektormate begin toeneem.

Voordat enigsins verder beweeg word, is dit belangrik om die notasie wat gebruik gaan word, vas te maak. ’n Groot verskeidenheid wiskundiges se artikels is gebruik vir die samestelling van hierdie oorsig en elke skrywer het uit die aard van die saak sy eie notasie gebruik. So ver moontlik is gepoog om die notasie in hierdie oorsig dwarsdeur dieselfde te gebruik.

Laat T ’n nie-leë versameling wees, A ’n σ-algebra van subversameling van T, X ’n reële vektorruimte en μ : A → X ’n maat wat aftelbaar additief is op A, tensy anders vermeld word. ’n Atoom van (T, A, μ) (of ’n μ-atoom) is ’n versameling A ∈ A wat μ(A) ≠ 0 bevredig en waarvoor daar geen versameling B ∈ A, B ⊂ A, bestaan sodat μ(B) ≠ 0 en μ(A) ≠ μ(B). As daar geen atome vir (T, A, μ) bestaan nie, dan word (T, A, μ) nie-
atomies genoem.

Die waardeversameling van μ word aangedui deur ℛ(μ), waar ℛ(μ) = {μ(A) : A ∈ A}. Die versameling van alle reële getalle word aangedui deur ℠, die versameling van positiewe reële getalle deur ℍ, die versameling van uitgebreide reële getalle deur ℜ, die versameling van rasionale getalle deur Q, die versameling van heelgetalle deur Z en die versameling van natuurlike getalle deur N. As A en B versameling is, dan is A\B = {x : x ∈ A en x ∉ B}.

Die term ’zonoid’ word partykeer gebruik in verband met die waardeversameling van
mate. E. D. Bolker definieer in [BOLK, p.323] 'n zonoid as volg: 'n Zonoid is die waardeversameling van 'n aftelbaar additiewe nie-atomiese maat \(\mu : \mathcal{A} \rightarrow \mathbb{R}^n \).

In [BOLK] bewys Bolker dat die volgende vier eienskappe van 'n konvekske versameling \(Z \subseteq \mathbb{R}^n \) ekwivalent is:

1. \(Z \) is die waardeversameling van 'n vektormaat.
2. \(Z \) is 'n limiet van somme van segmente.
3. Die pool van \(Z \) word, aangesien daar in eindige dimensies gewerk word, in terme van binneprodukte gedefinieer en is 'n sentrale deel van die eenheidsbal van \(L^1 \) (die sentrale deel van 'n liggaam is 'n snit van die liggaam deur 'n hipervlak deur die oorsprong van die liggaam).
4. Die pool van \(Z \) is 'n afbeeldingsliggaam.

'N Zonoid het dus al vier bogenoemde eienskappe. Die term 'zonoid' word deesdae redelik wyd gebruik en bestudeer in verband met die waardeversameling van vektormate. So definieer L. Rodriguez-Piazza [ROPI, p.166] 'n subversameling \(Z \) van 'n reële Banachruimte \(X \) as 'n zonoid as dit die geslote konvekske omhulsel van die waardeversameling van 'n \(X \)-waardige maat is. As \(\mu : \mathcal{A} \rightarrow X \) 'n maat is en as \(Z = \overline{\mathcal{B}}(\mathcal{R}(\mu)) \), dan genereer \(\mu \) die zonoid \(Z \), waar \(\overline{\mathcal{B}}(\mathcal{R}(\mu)) \) die afsluiting van die konvekske omhulsel van \(\mathcal{R}(\mu) \) aandui. Hierdie definisie stem ooreen met Bolker s'n. [NEYA] is nog 'n voorbeeld waar met zonoids gewerk word.

1.3 Die Konveksiteitstelling

Lyapunov se Konveksiteitstelling het in 1940 verskyn [LYA1]. Voor en na (hoofsaaklik na) die verskyning daarvan het baie publikasies oor verskillende aspekte van die waardeversameling \(\mathcal{R}(\mu) \) van 'n vektormaat \(\mu \) die lig gesien. Hierdie aspekte strek vanaf nuwe
en korter bewyse van die Konveksiteitstelling en sy bruikbaarheid in heetemal uiteenlopende velde, tot by navorsing oor die meetkundige eienskappe van die waardeversame-
ling $R(\mu)$ deur die gebruik van stellings van Rybakov, Krein-Milman en Radon-Nikodým.
Die Karlin-Lindenstrauss benadering tot die Konveksiteitstelling word soms genoem as 'n
interessante en belangrike toepassing van die Banach-Alaoglu en Krein-Milman Stellings.
Dit is na aanleiding van al hierdie ontwikkelinge dat die Konveksiteitstelling beskou word
as "one of the central classical theorems of the theory of vector measures" [DIUH, p.261].

Die Konveksiteitstelling, soos wat Lyapunov dit in die eindig-dimensionele geval beskou
het, staan in 'n nou verband met heelparty toepassings in Wiskundige Ekonomie, Beheer-
teorie, Statistiek en ander gebiede. Dit sal later in meer diepte bespreek word. Lyapunov
et egter self opgemerk, en in 1946 'n teenvoorbeeld as bewys gepubliseer [LYA2], dat
sy stelling in die oneindig-dimensionele geval faal. Die soeke na 'n oneindig-dimensionele
weergawe van Lyapunov se stelling was relatief ongestruktureerd en onsuksesvol totdat
J. F. C. Kingman en A. P. Robertson [KIRO] 'n tipe konveksiteitstelling in 'n spesiale
geval bewys het. 'n Algemene weergawe van dié stelling is deur G. Knowles [KNOW]
geformuleer. Volgens Kluvánek [KLUV, p.118] het 'n oneindig-dimensionele tipe kon-
veksiteitstelling egter lank voor sy presiese formulering in ingenieursliteratuur bestaan.
Hy noem dat die St. Venant Beginsel (gebruik in elastiiteit vanaf die begin 1900's) in
breë terme 'n aannamer is dat die Konveksiteitstelling vir sekere mate (op daardie sta-
dium nog nie eksplisiet geïdentifiseer nie) geld. Baie kortliks is die verband tussen die
St. Venant Beginsel en 'n Lyapunov maat as volg : Y. C. Fung [FUNG] noem dat Barre
de Saint-Venant in 1855 die 'beginsel van ekwivalensie van statics gelykwaardige sisteme
van gewigte' geformuleer het. Die Beginsel luit: Indien 'n stelsel van kragte wat staties
ekwivalent is aan zero-krag en zero-koppeling op 'n klein deel van die oppervlakte van
'n liggaam uitgeoefen word, dan is die spanning wat in die liggaam voortgebring word,
van wegbaarbare grootte op afstande wat groot is in vergelyking met die lineêre dimensies
van die spesifieke deel van die liggaam waarop die stelsel inwerk. Kluvánek en Knowles
[KLKN, pp.99-101] wys dat as die geldigheid van die St. Venant Beginsel aanvaar word
in die Lineêre Teorie van Elastisiteit, dan is die verhouding tussen die spanning en die kragte wat die spanning veroorsaak, 'n transformasie wat uitgedruk kan word as integrasie met betrekking tot 'n Lyapunov-maat. (Kyk na Afdeling 7.4.3 vir 'n definisie van hierdie begrip.)

Daar is baie vrae wat verband hou met die waardeversameling van 'n vektormaat. Tog moet dit in ag geneem word dat nie elke verwysing in die literatuur na die waardeversameling van 'n maat of na nie-atomiese mate verband hou met die Konveksiteitstelling nie. So is die Konveksiteitstelling byvoorbeeld nie in die volgende teenwoordig nie:

1. R. G. Bartle, N. Dunford en J. T. Schwartz [BDSC] wys dat as \(X \) 'n Banach-ruimte is, \((T, \mathcal{A}, \mu) \) 'n maatruimte met \(\mathcal{A} \) 'n \(\sigma \)-algebra van subversamelings van \(T \) en \(\mu : \mathcal{A} \to X \) 'n aftelbaar additiewe maat, dan is \(\mathcal{R}(\mu) \) relatief swak-kompak. Dit verskil van die Konveksiteitstelling aangestien die maat nou sy waardes in 'n willekeurige Banach-ruimte aanneem in plaas van in 'n produkruimte en aangesien daar nie aangeneem word dat die mate sekere digtheid bevat nie. I. Tweddle [TWED] veralgemeen hierdie resultaat na die geval waar \(\mathcal{A} \) 'n \(\sigma \)-ring is en \(X \) 'n lokaal konvexe Hausdorff-ruimte: as \(\overline{\mathcal{C}}(\mathcal{R}(\mu)) \) (die asluiting van die konvexe omhulsel van \(\mathcal{R}(\mu) \)) swak-volledig is, dan is \(\mathcal{R}(\mu) \) relatief swak-kompak.

2. L. Drewnowski en G. Emmanuele [DREM] wys dat as \(\mu \) enige eindige nie-atomiese maat op 'n \(\sigma \)-algebra \(\mathcal{A} \) is en \(X \) is enige Banach-ruimte wat 'n afbeelding van \(c_0 \) bevat, dan het die ruimte \(L^1(\mu, T) \) nie 'n komplement in die Banach-ruimte \(ccabv(\mathcal{A}, \mu; T) \) van alle \(\mu \)-kontinue vektormate van begrense variasie nie, en het \(L^1(\mu, T) \) 'n relatief kompakte waardeversameling in \(X \).

4. In Anantharaman en Diestel [ANDI] se artikel ondersoek hulle die karakterisering
van die Banach-ruimte X waarvoor elke kompakte subversameling van X bevat word in die waardeversameling van ’n X-waardige vektormaat. C. Piñeiro en L. Rodríguez-Piazza [PIRP] het hierdie vraag volledig beantwoord deur te wys dat laasgenoemde eienskap eindig-dimensionele Banach-ruimtes karakteriseer.

Net soos elke verwysing na die waardeversameling van ’n maat of na nie-atomiese mate nie altyd verband hou met die Konveksiteitstelling nie (daar is buiten bostaande nog baie sulke voorbeelde. Sien [LEUN], [RORO], [BAMI],...), is elke verwysing na Lyapunov in die literatuur nie noodwendig ’n verwysing na A. A. Lyapunov nie. ’n Frase soos ”’n stelling van Lyapunov” kan net so goed ook verwys na die welbekende wiskundige A. M. Lyapunov - ’n neef van beide A. A. Lyapunov se oupas (laasgenoemde twee was broers). Uitdrukings soos ”Lyapunov graphs”, ”Lyapunov inertia”, ”Lyapunov constants”, ”Lyapunov spectrum”, ”Lyapunov functions”, ”Lyapunov’s inequality”... verwys almal na die werk van A. M. Lyapunov, terwyl die uitdrukings ”Lyapunov vector measure”, ”anti-Lyapunov measure”, ”Lyapunov set”, ”Lyapunov space” en ”Lyapunov-type problems” almal na A. A. Lyapunov verwys. Vanaf die konteks van ’n artikel is dit darem egter duidelik na watter Lyapunov verwys word. ’n Navorsingsgebied waar beide Lyapunovs aangehaal word, is Beheerteorie, maar tot dan is dit nie regtig moeilik om te onderskei na watter Lyapunov verwys word nie.

A. M. Lyapunov het ’n groot verskeidenheid van belangrike werk gedoen en dit is dus in ’n sekere mate verstaanbaar dat hy partykeer as dié Lyapunov beskou word. Dat dit die geval is, blyk duidelik uit die volgende:

- A. M. Lyapunov is die enigste Lyapunov wiskundige vermeld deur verskeie woordeboeke, ensiklopedieë en historiese uitgawes, byvoorbeeld [DEMA], [DISB], en [ENMA].

- E. L. Lehmann, een van Jerzy Neyman se studente, het die Konveksiteitstelling verkeerdlik aan A. M. Lyapunov toegeskryf [LEH2, p.131]. Verder dien Lehmann ook as ’n goeie voorbeeld van die feit dat daar nog nie konsensus bereik is oor die
spelling van die van Lyapunov nie. In [LEH1] en [LEH2] gebruik hy onderskeidelik
die volgende spellings: Liapounoff, Liapounov en Lyapounov. Ander spellings wat
al opgemerk is, is Liapunoff, Ljapounov, Ljapunov, Lapunov, Lyapounoff,

- In Mathematical Reviews 81c:01033 skryf I. Grattan-Guiness in 'n resensie dat
"Aleksei Andreevich Lyapunov (1911 - 1973) was apparently a grandson of Alexan-
der Mikhailovich Lyapunov (1857 - 1918)...". Dit is egter foutief. A. M. Lyapunov
is in 1886 met Natalia Rafailovna getrou en hulle het geen kinders gehad nie.

Met die nodige basis gelê kan die voorgeskiedenis van die Konveksiteitsstelling nou beskou
word.
Hoofstuk 2
Voorgeskiedenis

In hierdie hoofstuk word artikels van W. Sierpiński en J. Neyman en E. S. Pearson beskou, aangesien hierdie artikels 'n groot rol gespeel het in die pre-1940 geskiedenis van die Konveksiteitstelling.

2.1 Sierpiński

Hierdie afdeling bevat enkele resultate aangaande sekere eienskappe van die waardeversameling van 'n begrensde reëelwaardige maat. Die eerste resultate is dié van Wacław Sierpiński uit die jaar 1922 en daarna word enkele ander resultate soortgelyk aan dié van Sierpiński, maar wat ander (en soms korter) bewysmetodes illustreer, beskou.

Soos bekend, word 'n funksie $f : \mathbb{R} \to \mathbb{R}$ 'n Darboux-funksie genoem as vir elke samehangende versameling $A \subset \mathbb{R}$ die beeld $f(A)$ 'n samehangende versameling is. Soms word gesê dat so 'n funksie f die tussenwaarde-eienskap het. Elke kontinue funksie $f : \mathbb{R} \to \mathbb{R}$ is Darboux. J. G. Darboux het egter getoon dat daar ook diskontinue Darboux-funksies bestaan.

Laasgenoemde het ook bewys dat as 'n funksie $f : [a, b] \to \mathbb{R}$ differensieerbaar is op $[a, b]$, dan is f' 'n Darboux-funksie.
2.2 Geskiedenis

Waclaw Sierpiński is op 14 Maart 1882 in Warskou gebore, toe Pole deel van die Russiese Ryk was. Hy het in Warskou self skoolgegaan, waar sy talent vir Wiskunde op 'n vroeë ouderdom baie duidelik was. Goeie onderrig was in hierdie tydperk skaars, aangesien die Russe hulle taal en kultuur op die Pole afgedwing het en ten doel gehad het om ongelettertheid onder die Pole so hoog as moontlik te hou. Ten spyte van die moeilikhede wat dit tot gevolg gehad het, het Sierpiński in 1899 ingeskryf by die Departement van Wiskunde en Fisika aan die Universiteit van Warskou. Hy het in 1904 gegradeer en, na hy vir 'n tyd lank skoolgehou het, sy doktoraat verwerf. Daarna is hy aangestel by die Universiteit van Lvov.

Met die aanvang van die Eerste wereldoorlog was Sierpiński en sy familie toevallig in Rusland. Sierpiński is gevangene geneem en in Viatka geïnterneer. Toe die Russiese wiskundiges Egorov en Luzin egter hiervan te hore kom, het hulle gereël dat Sierpiński toegelaat word om na Moskou te gaan. Dit is dan hier waar Sierpiński die res van die oorlog deurgebring het, en waar hy saam met Luzin analitiese versamelings begin bestudeer het.

Na die oorlog is Sierpiński terug na Lvov. Kort daarna is hy 'n poe by die Universiteit van Warskou aangebied, wat hy aanvaar het. Die res van Sierpiński se lewe is in Warskou deurgebring.

2.2.1 Die Tussenwaardestelling van Sierpiński

In sy 1922-artikel beskou Sierpiński [SIER] 'n begrensde subversameling T van 'n n-dimensionele ruimte, sê \mathbb{R}^n, 'n σ-algebra A van subversamelings van T en 'n begrensde kontinue maat $\mu: A \to \mathbb{R}$, waar μ kontinu is as daar vir elke $\varepsilon > 0$ 'n getal $\eta > 0$ bestaan sodat vir elke versameling $E \in A$ waarvoor die deursnit $\delta(E) < \eta$ bevredig dit volg dat $|\mu(E)| < \varepsilon$.

15
Stelling 2.2.1.1 [SIER, p.241]
As $\mu : A \rightarrow \mathbb{R}$ additief en kontinu is op A en as μ die waardes $\mu(E_1)$ en $\mu(E_2)$ vir $E_1, E_2 \in A$ aanneem, dan neem μ al die waardes tussen $\mu(E_1)$ en $\mu(E_2)$ aan.

Na hierdie stelling word dikkwels verwys as die 'Tussenwaardestelling van Sierpiński', sien [HARO]. Sierpiński bewys die stelling deur te wys dat 'n maat μ wat bostaande voorwaardes bevredig die tussenwaarde-eienskap het, wat beteken dat as c tussen $\mu(E_1)$ en $\mu(E_2)$ geleë is, daar 'n versameling $E_c \in A$ bestaan sodat $\mu(E_c) = c$.

Tensy anders vermeld, sal voortaan met 'n maatruiunte die volgende bedoel word:

T is 'n nie-leë versameling, A is 'n σ-algebra van deelversameling van T en $\mu : A \rightarrow X$ is 'n aftelbaar additiewe maat, waar X 'n reële Banach-ruimte is; as $X = \mathbb{R}$, dan is μ nie-negatief.

Definisie 2.2.1.2 [DINC, p.25]
'n Maat $\mu : A \rightarrow \mathbb{R}$ is 'n Darboux-maat as vir elke versameling $E \in A$ en vir elke getal $\alpha \in [0, \mu(E)]$ daar 'n versameling $A \in A$ bestaan met $A \subset E$ sodat $\mu(A) = \alpha$.

'n Maat met die tussenwaarde-eienskap is 'n Darboux-maat en omgekeerd.

Definisie 2.2.1.3 [DINC, p.25]
'n Versameling $E \in A$ word 'n atoom met betrekking tot μ genoem as $\mu(E) \neq 0$ en as $F \in A, F \subset E$, dan is $\mu(F) = \mu(E)$ of $\mu(F) = 0$; die maat μ is atomies as daar minstens een atoom (met betrekking tot μ) in A is. As daar geen atoom (met betrekking tot μ) in A bestaan nie, dan word μ nie-atomies genoem.

'n Maat $\mu : A \rightarrow X$ is dus nie-atomies as vir elke $A \in A$ met $\mu(A) \neq 0$, daar 'n $B \in A$, $B \subset A$, bestaan sodat $\mu(B) \neq 0$ en $\mu(B) \neq \mu(A)$. Soos bekend, is die Lebesgue-maat op
\mathbb{R} 'n nie-atomiese maat, beskou [ZAAN, p.67; 10.14 en 10.15]. Dit is verder ook bekend dat 'n σ-eindige nie-atomiese maat $\mu : \mathcal{A} \to \mathbb{R}$ 'n Darboux-maat is, beskou [DINC, p.26, Proposition 7]. Dit is duidelik dat 'n Darboux-maat nie-atomies is.

Afleiding 2.2.1.4 [SIER, p.246]
As $\mu : \mathcal{A} \to \mathbb{R}$ begrens, aftelbaar additief en kontinu is op \mathcal{A}, dan is die waardeversameling $\mathcal{R}(\mu)$ 'n kompakte interval in \mathbb{R}.

Resultate soortgelyk aan dié van Sierpiński is bewys deur R. Franck [FRAN] ('n tipe middelwaardestelling) en M. Fréchet [FREC] (oor die begrensdeheid van die waardeversameling van 'n maat en 'n tipe middelwaardestelling).

In die literatuur bestaan daar ook verskeie bewys vir Stelling 2.2.1.1 en Afleiding 2.2.1.4, byvoorbeeld deur P. R. Halmos [HAL2], W. F. Pfeffer [PFEF], A. J. Weir [WEIR] en A. C. Zaanen [ZAAN].

Stelling 2.2.1.1 kan op twee maniere bewys word. Vir die tweede bewysmethode is die volgende identifisering van versamelingh nodig:
As (T, \mathcal{A}, μ) 'n maatruimte is, dan is die versameling $E, F \in \mathcal{A}$ μ-byna oral gelyk, aangedui deur $E \sim F$, as $\chi_E = \chi_F$ μ-byna oral op T, waar χ_E die karakteristieke funksie van E is.

Stelling 2.2.1.5
As \mathcal{A} 'n σ-algebra van subversameling van T is en $\mu : \mathcal{A} \to \mathbb{R}$ is 'n eindige nie-atomiese maat, dan is $\mathcal{R}(\mu) = [0, \mu(T)]$.

Bewys:
Bewys I [WEIR, p.100] (a) Daar word gewys dat as $A \in \mathcal{A}$, $\mu(A) > 0$ en $\epsilon > 0$, dan bestaan daar 'n versameling $B \subseteq A$, $B \in \mathcal{A}$ sodat $0 < \mu(B) < \epsilon$.

17
(i) As \(0 < \mu(A) \leq \varepsilon\): Aangesien \(\mu\) nie-atomies is, bestaan daar 'n versameling \(B \subseteq A, B \in \mathcal{A}\) sodat \(0 < \mu(B) < \mu(A) \leq \varepsilon\).

(ii) As \(0 < \varepsilon < \mu(A)\): Aangesien \(\mu\) nie-atomies is, bestaan daar 'n versameling \(E \subseteq A, E \in \mathcal{A}\) sodat \(0 < \mu(E) < \mu(A)\). Dan is \(\mu(A \setminus E) = \mu(A) - \mu(E)\) waarvandaan volg dat \(\delta_1 \leq \frac{1}{2}\mu(A)\) of \(\mu(A \setminus E) \leq \frac{1}{2}\mu(A)\). Laat

\[
B_1 = \begin{cases}
E & \text{as } \mu(E) \leq \mu(A \setminus E) \\
A \setminus E & \text{as } \mu(A \setminus E) \leq \mu(E).
\end{cases}
\]

Dan is \(0 < \mu(B_1) \leq \frac{1}{2}\mu(A)\). Konstrueer op soortgelyke wyse 'n versameling \(B_2 \subseteq B_1, B_2 \in \mathcal{A}\) sodat \(0 < \mu(B_2) \leq \frac{1}{2}\mu(B_1) \leq \frac{1}{2^2}\mu(A)\). Gaan so voort deur induksie totdat 'n getal \(n_0 \in \mathbb{N}\) groot genoeg gevind word waarvoor

\[
B_{n_0} \subseteq B_{n_0-1}, B_{n_0} \in \mathcal{A} \text{ en } 0 < \mu(B_{n_0}) \leq \frac{1}{2^{n_0}}\mu(A) < \varepsilon.
\]

Laat \(B = B_{n_0}\). Dit volg dus dat \(T\) meetbare subversamelingë van willekeurige klein positiewe maat bevat.

(b) Volgens [WEIR, p.100] is hierdie deel van die bewys te danke aan D. Newton. Laat \(t \in (0, \mu(T))\). Vanaf deel (a) bestaan daar versamelings \(A \in \mathcal{A}\) sodat \(0 < \mu(A) < t\). Laat

\[
s_1 = \sup\{\mu(A) : A \in \mathcal{A} \text{ en } \mu(A) \leq t\}.
\]

Dan is \(0 < s_1 \leq t\). Daar bestaan 'n versameling \(A_1 \in \mathcal{A}\) sodat

\[
\frac{s_1}{2} < \mu(A_1) \leq s_1.
\]

Laat

\[
s_2 = \sup\{\mu(A) : A \in \mathcal{A}, A_1 \subseteq A \text{ en } \mu(A) \leq t\}.
\]

Dan is \(0 < s_2 \leq s_1 \leq t\) en bestaan daar 'n versameling \(A_2 \in \mathcal{A}, A_1 \subseteq A_2\) sodat

\[
s_2 - \frac{s_1}{2^2} < \mu(A_2) \leq s_2.
\]

Deur so voort te gaan, word verkry dat

\[
s_n = \sup\{\mu(A) : A \in \mathcal{A}, A_{n-1} \subseteq A \text{ en } \mu(A) \leq t\}
\]

18
en dan bestaan daar 'n versameling \(A_n \in \mathcal{A}, A_{n-1} \subseteq A_n \) sodat
\[
\frac{s_n - s_1}{2^n} < \mu(A_n) \leq s_n.
\]

Die ry \((s_n : n \in \mathbb{N}) \) is afnemend in \(\mathbb{R} \) en die ry \((A_n : n \in \mathbb{N}) \) is toenemend in \(\mathcal{A} \). As \(A_0 = \bigcup_{n=1}^{\infty} A_n \), dan is
\[
\mu(A_0) = \lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} s_n = s
\]
(kies \(s \) as die limiet). Daar moet nou gewys word dat \(\mu(A_0) = t \). Duidelik is \(s \leq t \). Gestel dat \(s < t \). Dan is \(0 < \mu(A_0) < t < \mu(T) \), \(T = (T \setminus A_0) \cup A_0 \), en \(0 < \mu(T \setminus A_0) < \mu(T) \).

Laat \(\varepsilon = t - \mu(A_0) \). Dan is \(\varepsilon > 0 \) en volg dit vanaf deel (a) dat daar 'n versameling \(B \in \mathcal{A}, B \subseteq T \setminus A_0 \) bestaan sodat \(0 < \mu(B) < \frac{\varepsilon}{2} \). Dit volg dat
\[
0 < \mu(A_0) < \mu(A_0 \cup B) = \mu(A_0) + \mu(B) < t.
\]

Verder bestaan 'n getal \(n_1 \in \mathbb{N} \) sodat
\[
n \geq n_1 \Rightarrow \mu(A_0) \leq s_n < \mu(A_0 \cup B).
\]

Maar vanaf die definisie van \(s_n \) is \(\mu(A_0 \cup B) \leq s_n \) wat teenstrydig is met bostaande vergelyking (2.1). Dit wil sê, \(s = \mu(A_0) = t \). Dus is \(R(\mu) = [0, \mu(T)] \).

Let op dat aangesien \(t = s \leq s_n \leq t \) vir elke \(n \in \mathbb{N} \), volg dit dat \((s_n : n \in \mathbb{N}) \) 'n konstante ry in \(\mathbb{R} \) is.

Bewys II [ZAAN, p.372] (a) Soos Bewys I(a)

(b) Laat \(0 < \beta < \mu(T) \). Die klas \(C_\beta = \{A : A \in \mathcal{A} \) en \(0 < \mu(A) \leq \beta \} \neq \emptyset \). Orden die klas \(C_\beta \) parsieel deur \(\mu \)-byna oral versamelingsinsluiting \(\subset \). Laat \(D = \{D_\tau : \tau \in \Gamma \} \), met \(\Gamma \) 'n indeksversameling, enige keting in \(C_\beta \) wees met betrekking tot die geëinduseerde parsiele ordening van \(C_\beta \). Laat \(\beta_1 = \sup\{\mu(D) : D \in D\} \). Dan is \(0 < \beta_1 \leq \beta \).

Daar bestaan 'n aftelbare toenemende subketting \(\Delta = \{E_\tau : \tau \in \Gamma_0 \subseteq \Gamma\} \) van \(D \) sodat \(\lim_{\tau \to \infty} \mu(E_\tau) = \beta_1 \). Dan is \(E_0 = \bigcup_{\tau \in \Gamma_0} E_\tau \) 'n bogrens van die keting \(D \). Aangesien elke keting in \(C_\beta \) 'n bogrens het, volg dit vanaf Zorn se lemma dat \(C_\beta \) 'n maksimale element het, sê \(C \). Dan is \(0 < \mu(C) \leq \beta \). Nou moet gewys word dat \(\mu(C) = \beta \). Gestel
\(\mu(C) < \beta \); dan volg dit vanaf die feit dat \(0 < \mu(T\setminus C) < \mu(T) \) en \(\mu \) nie-atomies is, dat daar 'n versameling \(K \in A \) bestaan, \(K \subseteq T\setminus C \), sodat \(0 < \mu(K) < \frac{1}{4}(\beta - \mu(C)) \). Dan is \(\mu(C \cup K) = \mu(C) + \mu(K) < \beta \). Die feite dat \(C \subseteq C \cup K \) en dat \(C \) en \(C \cup K \) nie \(\mu \)-byna gelyke versamelings is nie is teenstrydig met die maksimaliteit van \(C \). Gevolglik is \(\mu(C) = \beta \). Dit wil sê, \(\mathcal{R}(\mu) = [0, \mu(T)] \).

Opmerking 2.2.1.6: (1) Dele (a) en (b) van Weir se bewys (Bewys I) stem respektiewelik ooreen met Lemmas 1 en 2 van [HAL1] (sien Lemma 5.2.5 en Lemma 5.2.6 van hierdie tesis). Halmos verwys in [HAL1] na die metode gebruik in deel (b) as die 'method of exhaustion'; 'n metode wat algemeen in maatteorie toegepas word.

(2) 'n Stelling ekwivalent aan Stelling 2.2.1.5 word deur J. Warga [WARG, pp.59, 60] deur middel van induksie bewys. Hy gee erkenning aan S. Saks vir dié stelling, wat wys dat 'n eindige, positiewe en nie-atomiese maat die Darboux-eienskap het:

Stelling Laat \((T, A, \mu) \) 'n eindige maatskapike wees met \(\mu \) 'n positiewe nie-atomiese maat op \(A \). Laat \(M \in A \). Dan bestaan daar 'n funksie \(B : [0, 1] \rightarrow A \) sodat \(B(\alpha) \subseteq B(\beta) \) as \(0 \leq \alpha \leq \beta \leq 1, B(0) = \emptyset, B(1) = M \) en \(\mu(B(\alpha)) = \alpha \mu(M) \) vir alle \(\alpha \in [0, 1] \).

(3) L. E. Dubins en E. H. Spanier bewys in hulle 1961-artikel, [DUSP], 'n soortgelyke resultaat as Warga, naamlik:

Stelling As \(\mu_1, \mu_2, \ldots, \mu_\mu \) eindige en nie-atomiese reëlwêrdige mate op \(A \) is, dan bestaan daar 'n funksie \(f : T \rightarrow \mathbb{R} \) sodat \(\mu_k(f^{-1}(-\infty, \alpha)) = \alpha \mu_k(T) \).

Dubins en Spanier meld dat hulle resultaat ekwivalent is aan 'n veralgemening van die volgende stelling geformuleer deur J. Neyman [NEYN] in 1946:

Stelling Laat \(T_1, T_2, \ldots, T_n \) onderling disjunkte toevalveranderlikes wees met kontinue verspreidingsfunksies \(F_1, F_2, \ldots, F_n \). Dan bestaan daar 'n meetbare funksie \(f \) sodat \(f(T_k) \) gelykvoormig versprei is tussen 0 en 1 vir elke \(k = 1, 2, \ldots, n \), dit wil sê as \(Y_k = f(T_k) \), dan is \(P(\{Y_k \leq t\}) \equiv t \) vir \(0 \leq t \leq 1 \).
(4) 'n Artikel geskryf deur E. Pap [PAPE] waarin hy die eienskappe van nie-additiewe versamelingstheorie bespreek, word nou kortliks behandel. Laat $T \neq \emptyset$ enige versameling wees en laat G en H onderskeidelik 'n ring en 'n σ-ring van subversamelings van T voorstel.
(a) 'n Operasie $\perp : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is t-konorm as dit kommutatief, assosiatief en nie-afnemend is in elke argument, en as dit nul as neutrale element besit. Dit word aangedui as $x \perp y$ of $\perp(x, y)$.
(b) 'n t-konorm is kontinu by nul as die volgende voorwaarde bevredig word:

Vir alle rye $(x_n : n \in \mathbb{N})$ en $(y_n : n \in \mathbb{N})$ in $[0, 1]$ wat $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 0$
bevredig, geld dat $\lim_{n \to \infty} \perp(x_n, y_n) = 0$.

(c) 'n Funksie $\mu : G \rightarrow [0, 1]$ met $\mu(\emptyset) = 0$ word 'n \perp-ontbindingsmaat genoem as

$$\mu(A \cup B) = \mu(A) \perp \mu(B)$$
geld vir alle $A, B \in G$ waarvoor $A \cap B = \emptyset$.

(d) 'n Funksie $\mu : H \rightarrow [0, 1]$ met $\mu(\emptyset) = 0$ word 'n σ-\perp-ontbindingsmaat genoem as

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mu(A_n)$$
geld vir elke paarstig disjunkte rye $(A_n : n \in \mathbb{N})$ in H, waar $\perp_{n=1}^{\infty} a_n = (\perp_{n=1}^{\infty} a_n) \perp a_r$ en $\perp_{n=1}^{\infty} a_n = \lim_{r \to \infty} \perp_{n=1}^{r} a_n$.

(e) 'n Versamelingsfunksie $\mu : G \rightarrow [0, 1]$ is orde-kontinu as $\lim_{n \to \infty} \mu(E_n) = 0$ vir enige afnemende rye $(E_n : n \in \mathbb{N})$ in G wat $\bigcap_{n=1}^{\infty} E_n = \emptyset$ bevredig.

(f) 'n t-konorm \perp is parsieël-kontinu as die volgende voorwaarde bevredig word:

Vir elke $\varepsilon > 0$ en elke getal $x \in [0, 1], x < \varepsilon$,

bestaan daar'n getal $y \in (0, 1)$ sodat $x \perp y < \varepsilon$.

(2.2)

(g) Stelling As μ 'n orde-kontinue \perp-ontbindingsmaat gedefinieer op die σ-algebra $\mathcal{P}(\mathbb{N})$
van alle subversamelings van \mathbb{N} is, waar \perp 'n t-konorm is wat kontinu is by nul, dan is

$\mathcal{R}(\mu)$ kompak.

21
(h) **Stelling** Laat \(\mu : \mathcal{H} \to [0, 1] \) 'n orde-kontinue \(\sigma \text{-ontbindingsmaat} \) wees met betrekking tot 'n \(t \)-norm \(\perp \) en wat die voorwaarde (2.2) bevredig. As \(E, F \in \mathcal{H} \) so is dat \(F \) geen atome van \(\mu \) bevat nie en \(\mu(E) < \mu(E \cup F) \), dan bestaan daar vir elke positiewe reële getal \(\alpha, \mu(E) < \alpha < \mu(E \cup F) \), 'n versameling \(A \in \mathcal{H} \) sodat \(A \subseteq F \) en \(\mu(E \cup A) = \alpha \). Die bewys van die stelling hieronder laat 'n mens dink aan [HAL2, Lemma 11].

(i) **Stelling** As \(\mathcal{H} \) 'n \(\sigma \)-algebra van subversamelings van \(T \) is, \(\mu : \mathcal{H} \to [0, 1] \) is 'n orde-kontinue \(\sigma \text{-ontbindingsmaat} \) met betrekking tot 'n \(t \)-konorm \(\perp \) wat die voorwaarde (2.2) in (f) bevredig, dan is \(\mathcal{R}(\mu) \) kompak.

2.3 Neyman-Pearson

Die Neyman-Pearson-artikel van 1933 [NEP2] het 'n belangrike rol gespeel in die pre-1940 geskiedenis van die Konveksiteitstelling. Tewens, in retrospeks kon gesê word dat 'n twee-dimensionele weergawe van 'n Lyapunov-tipe stelling die kern van die Fundamentele Stelling in [NEP2] vorm. Ten aanvang word die loopbane van J. Neyman en E. S. Pearson kortlik beskou.

2.3.1 Persoonlike geskiedenis

Jerzy Neyman is as 'n Pool in die Oekraïene gebore. Hy het in 1912 by die Universiteit van Kharkov ingeskryf met die doel om Wiskunde te studeer, maar het vinnig na Fisika oorgeslaan – hoofsaaklik as gevolg van Einstein se relatiwiteitsteorie en die feit dat die Pool Marie Curie 'n Nobel prys vir Fisika ontvang het. Neyman was egter 'n totale ramp in die praktiese deel van Fisika aangesien hy baie lomp was. In 1914 verander Neyman sy studie-rigting na Wiskunde toe 'n Poolse professor in Wiskunde aan die Universiteit van Kharkov, C. K. Russyan, Neyman inlig oor die nuwe integraal vanuit Frankryk. Henri Lebesgue se *Leçons sur l'intégration et la recherche des fonctions primitives* [LEBG] het Neyman vanaf die eerste bladsy geboei. Russyan wou hê dat Neyman die resultate van Lebesgue se onbevredigende laaste hoofstuk moes verbeter en van sy eie
toepassings daarby moes voeg.

Gedurende die jare 1915 - 1917 het Neyman baie met versamelings en met maat- en integrasieteorie gewerk en glad nie belangstelling in waarskynlikheidsteorie getoon nie. Soos hy self opgemerk het: "I was interested in Mr. Lebesgue — in measure and integration" [REID]. Hy het natuurlik nie geweet dat A. N. Kolmogorov minder as twee dekades later 'n eksplisierte verbintenis tussen waarskynlikheidsteorie en maatteorie sou bewerkstellig nie, en dat hy (Neyman) in 1962 'n lesing sou aanbied oor die onderwerp *If Measure Theory did not exist, it would have to be developed to treat Probability Theory* [REID, p.24].

In 1916 word Neyman se belangstelling in die toepassing van teorie op praktiese probleme aangewakker toe hy die boek *The Grammar of Science* van Karl Pearson [PEAR] lees.

In 1922 verhuis Neyman en sy vrou, Olga, na Warskou omdat Neyman nader aan professor Waclaw Sierpiński wou wees. In 1921, tydens hulle eerste ontmoeting reeds, moedig Sierpiński vir Neyman aan om sy nuwe resultaat oor die Lebesgue-integraal (die opvul van gapings, soos reeds bo vermeld) te publiseer. So verskyn Neyman se eerste artikel dan in 1923 in die *Fundamenta Mathematicae*.

Neyman het Sierpiński se lesings oor die grondslae van Wiskunde bygewoon en in die selfde tydperk meer geïnteresseerd geraak in Statistiek, veral deur middel van die tydskrif *Biometrika*. In 1925 reis Neyman, onder die aanmoediging van onder andere Sierpiński, na London. Dit is hier waar hy bevriend geraak het met Karl Pearson se enigste seun, Egon. In die lente van 1926 nooi Egon Pearson vir Neyman vir 'n naweek na hulle huis in Surrey. Hier praat Pearson met Neyman oor die statistiese probleme waarmee hy op daardie stadium geworstel het.

Tens die einde van die akademiese jaar 1925 - 1926 het Neyman lesings oor Waarskynlikheidsteorie deur Émil Borel en Henri Lebesgue in Parys bygewoon. In 1927 keer Neyman
terug na Pole en in Julie 1928 verskyn die eerste gesamentlike artikels van Neyman en Pearson [NEP1].

2.3.2 Die eerste spanpoging

Die waarskynlikheid van 'n gebeurtenis E word deur $P\{E\}$ aangedui en die relatiewe waarskynlikheid van E_1, gegee E_2, word deur $P\{E_1|E_2\}$ aangedui. Die elementêre waarskynlikheidswet van variante $x_1, x_2, ..., x_n$ wat van l bekende of onbekende parameters $\theta_1, \theta_2, ..., \theta_l$ afhang, word deur $p(x_1, x_2, ..., x_n|\theta_1, \theta_2, ..., \theta_l)$ aangedui. Enige aanname aangaande die waarskynlikheidswet van 'n versameling veranderlikes word 'n statistiese hipotese genoem. Die hipotese is eenvoudig as dit die waarskynlikheidswet volledig specificeer; andersins word dit saamgesteld genoem. In [NEP1] wys Neyman en Pearson dat die toetsing van statistiese hipoteses in wese handel oor die besluitneming of 'n gegee statistiese hipotese waar is of nie. Die besluit moet geneem word in terme van die alternatiewe tot die hipotese wat 'n statistikus bereid is om in ag te neem. Daar is twee moontlike tipes foute wat kan voorkom. Die eerste tipe is dat die hipotese wat waar is, verwerp kan word en die tweede tipe is dat die hipotese wat vals is, aanvaar kan word. Later in [NEP2] het Neyman en Pearson egter bewys dat al weet 'n mens nie altyd watter hipotese waar of vals is nie, daar vir reëls geseok moet word waarvolgens mens se optrede gereguleer kan word. In só 'n geval sal 'n mens nie te gereeld die verkeerde keuse maak nie.

In hulle eerste artikel [NEP1] voer Neyman en Pearson die wiskundige R. A. Fischer se aanneemlikheidsverhouding in – die verhouding tussen die maksimum waarskynlikheid van die waarnemings onder die veranderlikes tot die ooreenkomstige waarskynlikheid onder die hipotese. Op daardie stadium het hulle egter steeds hierdie verhouding op 'n intuïtiewe wyse benader: "There is little doubt that the criterion of likelihood is one which will assist the investigator in reaching his final judgement, ..." [NEP1, p.186].
2.3.3 Die tweede spanpoging

Gedurende Desember 1931 en Januarie 1932 het Neyman en Pearson buite Warskou bymekaar gekom vir die skryf van hulle "Big Paper" [NEP2]. Hulle was nie meer tevrede met 'n intuitiewe oplossing vir hulle probleem nie. Die resultate verkry vanaf hulle ondersoekte in hierdie artikel was die bepalende stap in die Neyman-Pearson teorie van hipotesetoeings. Neyman se gedagtegang was om te bewys dat die aanneemlikhedsverhoudingstoets die mees geskikte sal wees en hy het besef dat hy met 'n probleem uit die Variasierekening gekonfronteer is. Neyman en Pearson het die probleem beskou van die keuse van 'n kritieke gebied vir die toetsing van enige gegewe statistie se hipotes, H_0, met betrekking tot 'n alternatief, H_1. Hulle het die begrip van 'n 'mees geskikte kritieke gebied' ingevoer: dit is die gebied wat die waarskynlikheid minimeer om H_0 te aanvaar wanneer H_1 waar is, onderworpe aan 'n gekose waarskynlikheid om H_1 te aanvaar wanneer H_0 waar is. Die geval van 'n eenvoudige nulhipotes H_0 teenoor 'n eenvoudige alternatief H_1 is met behulp van die aanneemlikhedsverhoudingstoets deur hulle opgelos; dit staan bekend as die Neyman-Pearson Fundamentele Lemma. Vir die geval waar die hipotes H_0 wat getoets moet word saamgesteld is, het Neyman en Pearson aangetoon hoe die 'mees geskikte kritieke gebied' gekies kan word wanneer 'soortgelyke gebiede' bestaan. Hulle het aangetoon hoe laasgenoemde onder beperkte voorwaardes gevind kan word.

In [NEP2], voer Neyman en Pearson 'n nuwe basis in vir die kies van gepaste kriteria vir die toetsing van enige gegewe statistie se hipotes, se H_0, met betrekking tot 'n alternatiewe H_1. As θ_1 en θ_2 twee sulke moontlike kriteria is en as in die gebruik van beide, dieselfde kans, se ε, $\varepsilon \geq 0$, bestaan om die hipotes H_0 te verwerp wanneer dit waar is, dan moet daardie een van die twee kriteria gekies word wat die minimum kans versekker om hipotes H_0 te aanvaar as H_1 waar is. Aangesien die kies van 'n kriterium ekwivalent is aan die kies van 'n kritieke gebied in veelvoudige ruimte, was dit moontlik om die begrip van die 'mees geskikte kritieke gebied' in te voer met betrekking tot die alternatiewe hipotes H_1. Dit is die gebied wat vir 'n vaste waarde van ε die minimum kans waarborg om die hipotes H_0 te aanvaar wanneer die hipotes H_1 waar is.
Gestel dat die aard van 'n gebeurtenis E presies deur die toetspunt (x_1, x_2, \ldots, x_n) beskryf word en gestel verder dat daar 'n sekere hipotese H_0 bestaan rakende die oorsprong van die gebeurtenis wat van so 'n aard is dat die waarskynlikheid $p_0 = p_0(x_1, x_2, \ldots, x_n)$ van moontlike voorkoms van elke moontlike gebeurtenis E bepaal word. Om die waarskynlikheid te bereken dat die gebeurtenis E 'n toetspunt in die spesifieke gebied w sal gee, moet die integraal

$$P_0(w) = \int \ldots \int w p_0(x_1, x_2, \ldots, x_n)\,dx_1dx_2\ldots dx_n$$

bereken word.

Daar word aangeneem dat die toetspunte enige plek in 'n kontinue toetsruimte W mag val. Dan is $P_0(W) = 1$. Slegs die geval van eenvoudige hipoteses word hier bespreek: ter herinnering, die hipotese dat 'n gebeurtenis E plasgevind het onderworpe aan 'n volledige gespesifiseerde waarskynlikheidswet $p_0(x_1, x_2, \ldots, x_n)$ is 'n eenvoudige een.

In [NEP2, p.295] word 'n kort verduideliking gegee oor hoe die kriterium vir aansneemlikheid verkry kan word. Neem enige toetspunt Σ met koördinate (x_1, x_2, \ldots, x_n) en beskou die versameling A_Σ van waarskynlikhede $P_H(x_1, x_2, \ldots, x_n)$ wat ooreenkom met die gekose toetspunt en bepaal word deur verskillende eenvoudige hipoteses wat aan Ω behoort, waar Ω die versameling van alle eenvoudige hipoteses onder beskouing is. Wat ook al die toetspunt is, die versameling A_Σ is veronderstel om begrens te wees. Laat $p_0(x_1, x_2, \ldots, x_n) = \sup A_\Sigma$. Dan, as H_0 'n eenvoudige hipotese is wat die elementêre waarskynlikhede $p_0(x_1, x_2, \ldots, x_n)$ bepaal, word sy aansneemlikheid gedefinieer as

$$\lambda = \frac{p_0(x_1, x_2, \ldots, x_n)}{p_0(x_1, x_2, \ldots, x_n)}.$$

Die gebruik van die beginsel van aansneemlikheid in hipotesetoetsing, bestaan uit die aanvaarding van die kritieke gebiede wat deur die ongelykheid $\lambda \leq C$ bepaal word, waar C 'n konstante is. 'n Hipotese kan met verskillende grade van vertroue aanvaar of verwerp word, maar watter pad ook al gekies word, moet die volgende altyd in gedagte gehou word: as H_0 verwerp word, is daar 'n moontlikheid dat dit waar is; as H_0 aanvaar word, is daar 'n moontlikheid dat dit vals is, met ander woorde dat 'n ander hipotese H_t waar
is. Alhoewel hierdie twee bronse van foute nooit regtig geëlimineer kan word nie, probeer Neyman en Pearson wys hoe die risiko van hierdie foute beheer en geminimeer kan word. Die beginsel waarop die keuse van die kritieke gebied bepaal kan word so dat die twee bronse van foute beheer kan word, is die heel belangrikste. Die algemene teorie van die geval van eenvoudige hipoteses word in [NEP2, pp.298-312] behandel en geïllustreer.

Die 'mees gesikte kritieke gebied' vir 'n eenvoudige hipotese H_0 met betrekking tot 'n eenvoudige alternatief H_1 is die gebied w_0 waarvan

$$P_1(w_0) = \int \ldots \int_{w_0} p_0(x_1, x_2, \ldots, x_n) dx_1 dx_2 \ldots dx_n$$

'n Maksimum is, onderworpe aan die voorwaarde dat $P_0(w_0) = \varepsilon$. Veronderstel dat die waarskynlikheidswette vir H_0 en H_1, naamlik $p_0(x_1, x_2, \ldots, x_n)$ en $p_1(x_1, x_2, \ldots, x_n)$ onderskeidelik, bestaan en ook kontinu en nie-negatief op die toetsruimte W is. Gestel ook dat

$$P_0(W) = P_1(W_1) = 1.$$

Die reeds gemelde probleem uit die Variasierekening bestaan daaruit om 'n onvoorwaardelike minimum vir die uitdrukking

$$P_0(w_0) - kP_1(w_0) = \int \ldots \int_{w_0} \{p_0(x_1, x_2, \ldots, x_n) - kp_1(x_1, x_2, \ldots, x_n)\} dx_1 dx_2 \ldots dx_n$$

te vind, waar k 'n konstante is wat later deur die voorwaarde $P_0(w_0) = \varepsilon$ bepaal word. Veronderstel dat die gebied w_0 bepaal is en dat S die beperkende hiperoppervlak daarvan is. Neyman en Pearson het toe bewys dat as w_0 die 'mees gesikte kritieke gebied' vir H_0 met betrekking tot H_1 is, dan geld in elke punt van S dat

$$p_0(x_1, x_2, \ldots, x_n) = kp_1(x_1, x_2, \ldots, x_n)$$

waar k 'n konstante is. Hierdie vergelyking gee die nodige randvoorwaardes. Neyman en Pearson het daarna bewys dat die nodige en voldoende voorwaardes vir 'n gebied w_0 om die 'mees gesikte kritieke gebied' vir H_0 met betrekking tot die alternatief H_1 te wees,
daaruit bestaan dat \(p_0(x_1, x_2, \ldots, x_n) \geq k p_1(x_1, x_2, \ldots, x_n) \), \(k \) 'n konstante, in enige punt buite \(w_0 \); dit beteken dat \(w_0 \) gedefiniër word deur die ongelykheid
\[
p_0(x_1, x_2, \ldots, x_n) \leq k p_1(x_1, x_2, \ldots, x_n).
\]

Laat nou \(w_0 \) die gebied wees wat deur (2.4) gedefiniër is en gestel \(w_1 \) is enige ander gebied wat die voorwaarde \(P_0(w_1) = P_0(w_0) = \varepsilon \) bevredig. Hierdie gebiede het 'n gemeenskaplike deel \(w_{01} \). Dan geld
\[
P_0(w_0 - w_{01}) = \varepsilon - P_0(w_{01}) = P_0(w_1 - w_{01})
\]
en gevolglik
\[
k P_1(w_0 - w_{01}) \geq P_0(w_0 - w_{01}) = P_0(w_1 - w_{01}) \geq k P_1(w_1 - w_{01}).
\]

Deur \(k P_1(w_{01}) \) aan weerskante by te tel, volg
\[
P_1(w_0) \geq P_1(w_1).
\]

Uit bostaande oorwegings volg dit dat \(w_1 \) 'n minder bevredigende kritieke gebied is as wat \(w_0 \) is. Dus, van die gebiede \(w \) waaroor \(P_0(w) = \varepsilon \) en wat die randvoorwaarde (2.3) bevredig, is die gebied \(w_0 \) (wat deur ongelykheid (2.4) bepaal word) die 'mees geskikte kritieke gebied' vir die alternatief \(H_1 \).

Die waarskynlikheid van die eerste tipte fout (verwerping van die getoetse hipotese wanneer dit waar is) bepaal deur die getoetse hipotese, \(H_0 \), word die grootte van die ooreenstemmende kritieke gebied genoem en word aangedui deur \(P\{E \in w|H_0\} \) [NEP2]. Twee toets, wat gebaseer is op die kritieke gebiede van dieselfde grootte, is ekwivalent. Die waarskynlikheid van verwerping van \(H_0 \) wanneer die alternatiewe eenvoudige hipotese \(H_t \) waar is, dit wil sê \(P\{E \in w|H_t\} \), word die mag van die toets genoem. Die sterkste toets vir \(H_0 \) met betrekking tot \(H_t \) is die toets waarvan die mag groter is as dié van enige ander ekwivalente toets en die kritieke gebied wat die sterkste toets met betrekking tot \(H_t \) lever, word die 'mees geskikte kritieke gebied' vir \(H_0 \) met betrekking tot \(H_t \) genoem.

Gestel \(p(x_1, x_2, \ldots, x_n|H_0) \) en \(p(x_1, x_2, \ldots, x_n|H_t) \) is die onderskeie waarskynlikheidswette wat
bepaal is deur twee eenvoudige hipoteses H_0 (die een wat getoets word) en die alternatief H_1. In [NEP2] is bewys dat die gebied w_0 wat gedefinieer is deur die ongelykheid

$$p(x_1, x_2, ..., x_n | H_0) \geq k p(x_1, x_2, ..., x_n | H_0)$$

waar $k > 0$ 'n konstante is sodanig dat $P\{E \in w_0 | H_0\} = \alpha$, die 'mees gesikte kritieke gebied' met betrekking tot H_1 is en grootte α het.

Neyman en Pearson kom tot die gevolgtrekking dat die toets gebaseer op die beginsel van aanneemlikheid in der waarheid na die gebruik van die beste kritieke gebiede lei. In [NEP2, p.337] noem hulle dat die vraag of die keuse van 'n 'goeie kritieke gebied' vir hipotesetoetsing wanneer daar geen gemeenskaplike kritieke gebied is met betrekking tot elke alternatiewe toelaatbare hipoteses nie, oop is. Dit is egter al gewys dat die kritieke gebied gebaseer op die beginsel van aanneemlikheid die intuitiewe vereiste van 'n 'goeie kritieke gebied' bevrede.

Gedurende die lente van 1937 het Neyman ses weke in die VSA deurgebring waar hy lesings by verskillende instellings aangebied het. By die Universiteit van Illinois was die jong president van die Wiskundeklub, David Blackwell, ook in die gehoor, sien Hoofstuk 6. Blackwell het later vir Neyman as voorsitter van die departement opgevolg.

In 1938 emigreer Neyman na Amerika nadiat hy 'n vol professoraat by die Universiteit van California, Berkely kampus, aangebied is. Gedurende 1938 - 1940 probeer Neyman en Pearson om die projekte waarmee hulle begin het vóór Neyman se vertrek, te voltooi, maar as gevolg van verskeie redes het daar ongelukkig niks verder van gekom nie.

'n Referent van een van Neyman se artikels (A. C. Aitken van Edinburg) het in 1937 vir Neyman aanbeveel om die boek van Kolmogorov [KOLM] te lees. Dit was die eerste geleentheid wat Neyman gehad het om 'n streng uiteensetting van Waarskynlikheidsteorie in terme van Maatteorie onder oë te kry. Hierdie twee persone het vir die eerste keer in 1954 in Amsterdam ontmoet.
2.3.4 Die Fundamentele Lemma in moderne terme

In [LEH1] en [LEH2] bespreek E. L. Lehmann die Fundamentele Lemma van Neyman en Pearson in moderne terme. Lehmann stel hulle lemma as volg:

Stelling 2.3.4.1 [LEH1, p.65]

Laat P_0 en P_1 waarskynlikhedsverspreidings wees met betrekking tot die maat μ met digthede p_0 en p_1 respektiewelik.

1. Bestaan: Om $H : p_0$ teen die alternatief $K : p_1$ te toets bestaan daar 'n toets ϕ en 'n konstante k sodat

$$E_0\phi(X) = \alpha$$

en

$$\phi(x) = \begin{cases} 1 & \text{as } p_1(x) > kp_0(x) \\ 0 & \text{as } p_1(x) < kp_0(x). \end{cases}$$

(2.5)

(2.6)

2. 'n Voldoende voorwaarde vir 'n kragtigste toets: As 'n toets (2.5) en (2.6) vir 'n k bevredig word, dan is dit die kragtigste vir toetsing van p_0 teen p_1 op vlak α.

3. 'n Nodige voorwaarde vir 'n kragtigste toets: As ϕ die kragtigste is by vlak α vir die toetsing van p_0 teen p_1, dan bevredig dit vir 'n k (2.6) μ-byna oral. Dit bevredig ook vir (2.5) tensy daar 'n toets van grootte $< \alpha$ bestaan met krag l.

Die volgende resultaat is 'n uitbreiding van Stelling 2.3.4.1.

Stelling 2.3.4.2 [LEH1, p.83], [LEH2, p.96]

Laat $f_1, f_2, \ldots, f_{n+1}$ reëelwaardige funksies gedefinieer op 'n Euklidiese ruimte V wees wat μ-integreerbaar is. Gestel dat vir geeewe konstantes c_1, c_2, \ldots, c_n daar 'n kritiese funksie ϕ bestaan wat

$$\int(\phi f_i)(t) d\mu = c_i, \quad i = 1, 2, \ldots, n$$

(2.7)
bevredig. Laat C die klas van kritiese funksies ϕ wees wat (2.7) bevredig.

1. Tussen die elemente van C bestaan daar een wat $\int (\phi f_{n+1})(t)\,d\mu$ maksimeer.

2. 'n Voldoende voorwaarde vir 'n element van C om $\int (\phi f_{n+1})(t)\,d\mu$ te maksimeer, is die bestaan van konstantes $k_1, k_2, ..., k_n$ sodat

$$\phi(t) = 1, \text{ wanneer } f_{n+1} > \sum_{i=1}^{n} k_i f_i(t)$$

$$\phi(t) = 0, \text{ wanneer } f_{n+1} < \sum_{i=1}^{n} k_i f_i(t). \quad (2.8)$$

3. As 'n element van C (2.8) bevredig met $k_1, k_2, ..., k_n \geq 0$, dan maksimeer dit al die kritiese funksies

$$\int (\phi f_i)(t)\,d\mu \leq c_i, \quad i = 1, 2, ..., n \quad (2.9)$$

vir $\int (\phi f_{n+1})(t)\,d\mu$.

4. Die versameling M van punte in die n-dimensionele ruimte met koördinate

$$\left(\int (\phi f_1)(t)\,d\mu, \int (\phi f_2)(t)\,d\mu, ..., \int (\phi f_n)(t)\,d\mu \right)$$

vir 'n kritiese funksie ϕ is konveks en geslote. As $(c_1, c_2, ..., c_n)$ 'n inwendige punt van M is, dan bestaan daar konstantes $k_1, k_2, ..., k_n$ en 'n toets ϕ wat (2.5) en (2.6) bevredig en is 'n voldoende voorwaarde vir 'n element van C om $\int (\phi f_{n+1})(t)\,d\mu$ te maksimeer dat (2.6) μ-byna oral geld.

Opmerking 2.3.4.3: Dantzig en Wald het 'n artikel geskryf [DAWA] waarin hulle die geval bespreek wanneer die punt $(c_1, c_2, ..., c_n)$ nie 'n inwendige punt van M is nie.

Probleem 3 in [LEH1, p.110] (of Probleem 5 in [LEH2, p.113]) benodig 'n spesiale geval van die Konveksiteitstelling. Die probleem is as volg:

As die toetsruimte T Euklidies is en P_0 en P_1 die digtheid met betrekking tot die Lebesgue-maat, dan bestaan daar 'n nie-ewekeansige krugtigste toets vir die toetsing van
P_0 teen P_1 by elke vlak x.

Hierdie probleem is deur W. C. M. Kallenberg et al [KALL, pp.33, 34] opgelos.

2.3.5 Tekortkominge van die Fundamentele Lemma

Alhoewel Neyman en Pearson se artikels 'n nuwe gesigspunt in Wiskundige Statistiek gevestig het, was daar nog steeds besware oor sekere dele van hulle teorie. So het die wiskundige W. Feller [FELL] byvoorbeeld sekere tekortkominge in die voorgestelde procedures uitgewys met behulp van 'n aantal voorbeeldte wat in die praktyk kan voorkom. Verwys na Hoofstuk 3 om die tekortkominge deur K. R. Buch uitgewys te sien.

Feller [FELL] verwys spesifiek na [NEP2] en [NEYM] waar die onderwerp die probleem van statistici is om gebiede soortgelyk aan die toetsgebied te vind. Alhoewel Neyman en Pearson suksesvol was in die konstruksie van sulke gebiede vir statistiese doeleindes, meen Feller dat daar in menige gevalle geen gebiede soortgelyk aan die toetsruimte bestaan nie en dié wat ondraad bestaan 'n triviale kategorie vorm. Hierdie triviale gebiede is nie regtig baie nuttig in die oplossing van die statistiese probleme nie. Feller illustreer sy punt met behulp van voorbeeldte. Die probleem uit 'n suiwere analitiese oogpunt lyk soos volg: In die Euklidiese ruimte \mathbb{R}^n (of deel daarvan) word 'n elementêre waarskynlikheidswet $p(x_1, x_2, \ldots, x_n|\theta_1, \theta_2, \ldots, \theta_l)$ gegee wat afhang van sekere willekeurige parameters $\theta_1, \theta_2, \ldots, \theta_l$. Die waarskynlikheid dat die variant E in 'n willekeurig gekose gebied w val, word gedefinieer deur

$$P\{E \in w|\theta_1, \theta_2, \ldots, \theta_l\} = \int_w p(x_1, x_2, \ldots, x_n|\theta_1, \theta_2, \ldots, \theta_l)dx_1dx_2...dx_n.$$

Die gebiede en funksies betrokke is Lebesgue-meetbaar en die integraal beskou is die Lebesgue-integraal. Verder word daar aanvaar dat 'n waarskynlikheidswet $p(x_1, x_2, \ldots, x_n|\theta_1, \theta_2, \ldots, \theta_l)$ nie-negatief en sommeerbaar is met betrekking tot die x^e en dat die waarskynlikheid dat E in die hele ruimte \mathbb{R}^n val, gelyk is aan een. 'n Gebied A is soortgelyk aan die toets-ruimte \mathbb{R}^n van $p(x_1, x_2, \ldots, x_n|\theta_1, \theta_2, \ldots, \theta_l)$ met betrekking tot die
parameters $\theta_1, \theta_2, \ldots, \theta_l$ en in ooreenstemming met 'n spesifieke waarde α, $0 \leq \alpha \leq 1$, as
\[
P\{E \in A|\theta_1, \theta_2, \ldots, \theta_l\} \equiv \alpha
\]
onafhanklik van die waardes van die parameters.

Feller wys dat geen gebied van hierdie soort in ooreenstemming met die waardes $0 < \alpha < 1$ vir die waarskynlikheidswet
\[
p(x_1, x_2, \ldots, x_n|\theta_1, \theta_2, \ldots, \theta_l) = \frac{1}{(\sqrt{2\pi})^n} \exp \left[\frac{-(x_1 - \theta_1)^2 + \ldots + (x_n - \theta_n)^2}{2} \right]
\]
bestaan nie. Dit is ook interessant om op te let dat hierdie bewering ook waar is wanneer die parameters $\theta_1, \theta_2, \ldots, \theta_l$ almal tot willekeurige klein intervalle beperk word, sè $|\theta_k - \theta^0_k| < \varepsilon$. Vir ander gelyksoortige wette, soos byvoorbeeld
\[
\exp \left[-\frac{x_1}{\theta_1} - \ldots - \frac{x_n}{\theta_n} \right] \quad \text{en} \quad \frac{x_1^{\theta_1} x_2^{\theta_2} \ldots x_n^{\theta_n}}{\Gamma(\theta_1 + 1) \Gamma(\theta_2 + 1) \ldots \Gamma(\theta_n + 1)} e^{-x_1-\ldots-x_n}
\]
waar die veranderlikes tot die omgewing $x_k > 0$ beperk word, met $\theta_k > 0$, $k = 1, 2, \ldots, n$, bestaan daar ook triviale soortgelyke gebiede.

In sekere gevalle kom iets wat van 'n ander situasie voor. Vir die waarskynlikheidswet
\[
-\frac{1}{(\sqrt{2\pi})^n} \frac{1}{\theta_1 \theta_2 \ldots \theta_n} \exp \left[-\frac{1}{2} \left(\frac{x_1^2}{\theta_1^2} + \ldots + \frac{x_n^2}{\theta_n^2} \right) \right], \quad \theta_k > 0
\]
bestaan daar soortgelyke gebiede (vir $\alpha = k(\frac{1}{2})^2$, met $k = 0, 1, \ldots, 2^n$). Dit is egter nie duidelik of hierdie gebiede vir statistiese benadering gebruik kan word en of dit triviaal is nie.

Feller merk op dat die voorbeeldbo genoem almal dieselfde aantal parameters as veranderlikes bevat. Die meer ingewikkelde probleem is dus tot watter mate die aantal parameters 'n rol speel in die bestaan van soortgelyke omgewings. Feller bestudeer hierdie probleem verder in [FELL].
Hoofstuk 3
Twee-dimensionele mate

3.1 Inleiding

In 1945 publiseer die Deense wiskundige Kai Rander Buch 'n artikel [BUCH] van 69 bladsye oor sy studies van die eienskappe van die waardeversamelings van mate. In hierdie artikel bewys Buch, onafhanklik van Lyapunov, stellings oor die afsluiting van die waardeversameling van 'n maat vir nie-negatiewe mate van dimensies een en twee.

In 'n sekere sin is die artikel van Buch 'n anachronisme, en dit om die volgende redes:

1. Die stellings wat Buch in sy artikel oor die waardeversamelings van begrensde mate bewys, is reeds sedert 1940 bekend en deur A. A. Lyapunov [LYA1] bewys.

2. Die stelling wat Buch in Deel III van sy artikel oor die versameling van subsomme van 'n konvergente reeks van positiewe terme bewys (en wat een van sy sleutelresultate is) is reeds in 1914 deur S. Kakeya [KAKE] bewys.

Indien Buch egter nie sy artikel geskryf en laat publiseer het nie, sou P. R. Halmos dit nie in 1947 raakgesien het nie (kyk na Hoofstuk 5) en dan sou die geskiedenis van die veralgemening en toepassings van Lyapunov se Konveksiteitstelling waarskynlik heel anders verloop het. Om hierdie rede word Buch se artikel as 'n belangrike skakel in die ketting van gebeure beskou en word sy artikel dus baie volledig behandel.

Volgens Buch is dit die boek Grundbegriffe der Wahrscheinlichkeitsrechnung deur A. N. Kolmogorov [KOLM] (gepubliseer in 1933) wat aanvanklik sy belangstelling in Waarskyn-
likheidsleer en die toepassings daarvan gewek het. Hierdie boek is die eerste een wat Waarskynlikheidsleer en Maatteorie bymekaargebring het. Verskeie besoekte van Buch aan die Stockholm Universiteit se Instituut vir Verskeringwiskunde en Wiskundige Statistiek het hierdie belangstelling net versterk. Dit is ook by hierdie instituut waar Buch in aanraking gekom het met en geïnteresseerd geraak het in Neyman en Pearson se teorie oor die toetsing van statistiese hipoteeses (sien Afdeling 2.3). Oor hierdie teorie skryf Buch dat dit vir almal duidelik was dat die teorie soos dit op daardie stadium bekend was sekere te-kortkominge gehad het. Vir Buch was dit duidelik (soos vir W. Feller [FELL] voor hom) dat die Neyman-Pearson metodes nie in alle gevallle 'n 'mees geskikte kritieke gebied' oplewer nie [FELL]. Dit was vir Buch voor die handliggend watter wysigings nodig sou wees en watter resultate moontlik dan verkry sou word. Volgens hom was die probleem om die basis van die teorie op so 'n wyse te verander dat die wysigings moontlik sou wees. Buch se navorsing in hierdie probleem het ongelukkig nie algehele resultate opgelever nie. Dit het egter geboorte geskenk aan [BUCH].

Buch stel Neyman-Pearson [NEP1] se probleem soos volg: "Let a stochastic integral be given. An assumption of the structure of the distribution of this variable is called a statistical hypothesis. A set of observations of the stochastic variable is called a sample, and as a test of this statistical hypothesis a function of the result of the sample is now computed. If this sample has certain properties further stated, it will be discarded; whereas it will be maintained if the function has not got these properties. The test is not absolute in the sense of giving information whether the hypothesis laid down is correct or false, but it can be arranged in such a way that it may in the long run give good results; to be more precise, it can be arranged in such a manner that the probability of discarding the hypothesis when it is true, does not exceed a certain limit fixed beforehand and correspondingly that the probability of maintaining the hypothesis, even if it is false, is kept under reasonable limit" [BUCH, p.67]. Kyk na Stelling 3.5.4.

Vir Buch was dit natuurlik om aan die begin van sy navorsing die vereiste dat die toets-
ruimte in twee dele opgedeel word, te behou sodanig dat die hipotese geld as die toetspunt binne een van die dele val, terwyl die hipotese verwerp word as die toetspunt in die ander deel val. Verder het Buch besluit om 'n derde versameling in te voer waarin die vraag oor of die hipotese waar of onwaar is oogelat word. Buch formuleer die probleem in sy eenvoudigste vorm soos volg: Laat T 'n nie-leë versameling wees met \mathcal{A} 'n σ-algebra van subversamelings van T. Gestel daar bestaan twee nie-negatiewe, af terbaar additiewe mate $\mu : \mathcal{A} \to \mathbb{R}$ en $\nu : \mathcal{A} \to \mathbb{R}$ gedefinieer op \mathcal{A} sodanig dat $\mu(T) = \nu(T) = 1$. Die probleem is nou om te wys dat daar twee disjunkte versamelings $A, B \in \mathcal{A}$ bestaan sodat

$\begin{align*}
(i) & \quad \mu(B) \leq \varepsilon_1 \\
(ii) & \quad \nu(A) \leq \varepsilon_2 \\
(iii) & \quad \mu(A) + \nu(B) \text{ is so groot as moontlik.}
\end{align*}$

Dit is op hierdie stadium dat Buch tot die besef kom dat navorsing oor bostaande probleem meer kennis oor sekere mate vereis; kennis wat op daardie stadium nog nie tot sy beskikking was nie. Dus het Buch sy probleem herformuleer:

Laat $B \in \mathcal{A}$ sodat voorwaarde (i) nie noodwendig bevredig word nie. Dan moet daar 'n versameling $A_B \subseteq T \setminus B, A_B \in \mathcal{A}$, bestaan sodat $\nu(A_B) \leq \varepsilon_2$ en sodat $\mu(A_B)$ so groot as moontlik is. Definieer funksie $p : \mathcal{A} \to \mathbb{R}$ deur

$$p(B) = \nu(B) + \mu(A_B).$$

Hierdie funksie bevredig $p(B_1 \cup B_2) \leq p(B_1) + p(B_2)$. Dan moet gewys word dat die versameling $\{p(B) : B \in \mathcal{A}, \mu(B) \leq \varepsilon_1\}$ 'n maksimum waarde het.

Buch meld dat 'n deeglike kennis oor versamelingsfunksies soos p handig te pas sou kom in 'n studie soos syne. Na Buch se wete is sulke versamelingsfunksies op daardie stadium nog net deur S. Banach [BANA] bestudeer. Banach se navorsing was egter onder ander voorwaardes en met ander doelwitte in sig.

Opmerking 3.1.1: Banach beskou 'n algebra \mathcal{A} gegenereer deur die geslote reghoekige subversamelings van $T = [0, 1] \times [0, 1]$ en bestudeer die eienskappe van sekere versame-
lingsfunsies \(p : \mathcal{A} \to \mathbb{R} \). As \(K \in \mathcal{A} \), laat \(|K| \) die area van \(K \) aandui. Dan het \(p : \mathcal{A} \to \mathbb{R} \) 'n bo afgeleide by 'n punt \(x \in T \) as \(\lim_{|K| \to 0^+} \frac{p(K)}{|K|} \) bestaan, met \(x \in K \) en \(K \in \mathcal{A} \). Hierdie limiet word aangedui deur \(\overline{p}(x) \). Soortgelyk het \(p : \mathcal{A} \to \mathbb{R} \) 'n onder afgeleide by 'n punt \(x \in T \) as \(\lim_{|K| \to 0^+} \frac{p(K)}{|K|} \) bestaan, met \(x \in K \) en \(K \in \mathcal{A} \). Hierdie limiet word aangedui deur \(\underline{p}'(x) \). Gevolglik het \(p : \mathcal{A} \to \mathbb{R} \) 'n afgeleide by 'n punt \(x \in T \) as \(\overline{p}'(x) = \underline{p}'(x) \). Dié afgeleide word dan aangedui deur \(p' \).

'n Versamelingsfunsie \(p \) is van begrensde variasie as daar 'n getal \(M \) bestaan sodat vir elke eindige klas \(\{E_1, E_2, ..., E_n\} \subseteq \mathcal{A} \) die ongelykheid \(\sum_{i=1}^{n} |p(E_i)| \leq M \) geld.

Banach beskou dan in besonder versamelingsfunsies wat van begrensde variasie is en wat verder die ongelykheid \(p(E_1 \cup E_2) \leq p(E_1) \cup p(E_2) \) vir elke disjunkte paar versamelings \(E_1 \) en \(E_2 \) in \(\mathcal{A} \) beveilig. Banach noem sulke versamelingsfunsies normaal. Verder wys hy dat as \(p \) normaal is, dan

- is \(\overline{p}' \) Lebesgue-meetbaar

- kan \(p \) geskryf word as die verskil tussen twee nie-positiewe normale versamelingsfunsies

- bestaan \(p' \) byna oral en

- besit \(p \) sekere kontinuïteits- en integreerbaarheidseienskappe.

Buch se artikel is redelik lank, maar baie volledig in die sin dat dit 'n gedetailleerde weergawe van die dele van maat- en integraaltheorie bevat. Dit is as gevolg van die feit dat maat- en integraaltheorie in abstrakte ruimte in die tyd waarin Buch se artikel geskryf en gepubliseer is nog relatief jonk was en die terminologie dus nog nie standaard was nie.

Die artikel bestaan uit vier dele wat elkeen apart beskou sal word.
3.2 Deel I

In hierdie gedeelte word die terminologie vasmekaar, onder andere klasse van versamelingen (ringe, Borel-ringe, σ-ringe), eindige additiewe σ-eindige mate en mate (waar 'n maat gedefinieer is op 'n σ-algebra, waardes aanneem in \(\mathbb{R}^+ = \mathbb{R} \cup \{\infty\} \) en aftelbaar additief en σ-eindig is) op klasse van versamelingen, die gewone eienskappe van mate, uitbreidings van eindig-additiewe σ-eindige mate na mate, die bepaalde integraal van nie-negatiewe funksies, absoluut kontinue en singuliere versamelingfunksies, Lebesgue- en Jordan-ontbindings van mate en dan ook die onbepaalde integraal en die Radon-Nikodým Stelling. Dus word al die basiese definisies en eienskappe in hierdie gedeelte bevat.

3.3 Deel II

Hierdie gedeelte handel oor monotone funksies en versamelingfunksies op Borel-klasse. Gestel die funksie \(f \) is nie-afnemend op die interval \((a,b)\). Definieer die saltus \(S(x) \) van die funksie \(f \) in die punt \(x \) deur

\[
S_f(x) = \overline{f(x)} - \underline{f(x)}
\]

waar \(\overline{f(x)} = \inf \{f(\xi) : x < \xi < b\} \) en \(\underline{f(x)} = \sup \{f(\xi) : a < \xi < x\} \). Dan is

\[
\overline{f(x)} = \lim_{\xi \to x^+} f(\xi) = f(\xi + 0) \quad \text{en} \quad \underline{f(x)} = \lim_{\xi \to x^-} f(\xi) = f(\xi - 0).
\]

Stelling 3.3.1 Ontbindingstelling [BUCH, p.26]

Laat \(f : (a,b) \to \mathbb{R} \) 'n begrensde, nie-afnemende funksie wees. Dan kan dit geskryf word as

\[
f(x) = g(x) + h(x),
\]

waar beide \(g \) en \(h \) nie-afnemende funksies is, met \(g \) kontinu en waar

\[
V_h(x_1, x_2) = D_h(x_1, x_2) = D_f(x_1, x_2)
\]

(3.1)

vir enige keuse van \(x_1 \) en \(x_2 \), \(a < x_1 < x_2 < b \), met

\[
V_h(x_1, x_2) = h(x_2) - h(x_1)
\]

(3.2)
die variatie van h op die interval (x_1, x_2) en

$$D_h(x_1, x_2) = \lim_{x \to x_1^+} (h(x) - h(x_1)) + \sum_i S_h(x_i) + \lim_{x \to x_2^-} (h(x_2) - h(x)) \quad (3.3)$$

waar $S_h(x_i)$ die saltus van die funksie h in die punte x_i voorstel, met $x_i (i = 1, 2, \ldots)$ die punte van diskontinuïteit van h.

In die laaste twee subafdelings van hierdie deel word gekyk na versamelingsfunksies gedefinieer op die Borel-klas van \mathbb{R}. Laat $F = \{[a, b) \subseteq \mathbb{R} : -\infty < a \leq b < \infty\}$. Laat G die ring gegenereer deur F wees, en B die Borel-ring gegenereer deur F; B word die Borel-klas van \mathbb{R} genoem.

Stelling 3.3.2 [BUCH, p.29]

'n Eindige, additiewe funksie $\phi : F \to \mathbb{R}$ kan uitgebrei word na 'n maat $\phi^* : B \to \mathbb{R}$ as en slegs as ϕ nie-negatief en kontinu van binne is.

Hierdie is 'n standaard resultaat en 'n toeganklike verwysing is [HAL4].

'n Versamelingsfunksie $\phi : F \to \mathbb{R}$ is kontinu van binne as vir elke interval $I = [a, b) \in F$ en vir elke eindige klas $\{I_j : j = 1, 2, \ldots, n\} \subseteq F$, met $I_j = [a_j, b_j)$, $b_1 < b_2 < \ldots < b_n$ en $a_1 > a_2 > \ldots > a_n$, $\lim_n b_n = b$ en $\lim_n a_n = a$, gelyk dat $\phi(I) = \lim_n \phi(I_n)$. As $\phi([a, b)) = b - a$, dan is $\phi^* : B \to \mathbb{R}$ die Borel-maat van \mathbb{R}.

Buch definieer ook die Borel-Stieltjes-maat $\phi^*_f : B \to \mathbb{R}$ gegenereer deur 'n nie-afnemende funksie f wat linkskontinu is in elke punt van \mathbb{R}. Die volgende afleiding word dan verkry:

Afleiding 3.3.3 [BUCH, p.31]

Vir 'n begrensde funksie $f : \mathbb{R} \to \mathbb{R}$ bestaan daar 'n ooreenkomstige maat $\phi_f^* : B \to \mathbb{R}$ sodanig dat

$$\phi_f^*([a, b)) = f(b) - f(a)$$
vir elke interval \([a, b] \in \mathcal{F}\) as en slegs as \(f\) nie-afnemend en linkskontinu in elke punt in \(\mathbb{R}\) is. Die maat \(\phi_f^*\) is uniek gedefinieer.

Verder definieer Buch ook die Lebesgue-Stieltjes-integraal \(\int_{\mathcal{A}} F(x)df(x)\) van 'n funksie \(F: \mathbb{R} \to \mathbb{R}\) met betrekking tot die funksie \(f\).

In die laaste afdeling van Deel II werk Buch met die interval \([0,1]\). Hy definieer \(\mathcal{F}_1 = \{(a, b) : 0 \leq a < b \leq 1\}\) en laat \(\mathcal{G}_1\) die ring gegenereer deur \(\mathcal{F}_1\) wees en \(\mathcal{B}_1\) die Borel-ring gegenereer deur \(\mathcal{F}_1\). Dan word \(\mathcal{B}_1\) die Borel-klas van die interval \([0,1]\) genoem.

Duidelijk geld al die stellings vooraf geformuleer vir \(\mathbb{R}\) nog steeds vir die interval \([0,1]\). So kan daar, analoog aan Afleiding 3.3.3, 'n unieke maat \(\phi_f^*: \mathcal{B}_1 \to \mathbb{R}\) gedefinieer word vir elke funksie \(f: [0,1] \to \mathbb{R}\) wat nie-afnemend en linkskontinu is in elke punt sodat

\[
\phi_f^*([a, b]) = f(b) - f(a)
\]

vir elke \([a, b] \in \mathcal{F}_1\). Laat \(f(0) = 0\). Die funksie \(f\) kan dan, volgens Stelling 3.3.1, ontbind word in die vorm

\[
f(x) = g(x) + h(x)
\]

waar beide \(g\) en \(h\) nie-afnemend is, \(g\) kontinu is, \(h\) linkskontinu is elke punt van \([0,1]\) en sodat \(g(0) = 0\) en dus \(h(0) = 0\). Dan kan twee mate \(\phi_g^*: \mathcal{B}_1 \to \mathbb{R}\) en \(\phi_h^*: \mathcal{B}_1 \to \mathbb{R}\) op 'n unieke wyse bepaal word sodat

\[
\phi_g^*([a, b]) = g(b) - g(a)
\]

en

\[
\phi_h^*([a, b]) = h(b) - h(a) \quad (3.4)
\]

vir elke \([a, b] \in \mathcal{F}_1\). Vir elke \([a, b] \in \mathcal{F}_1\) volg dit dat

\[
(\phi_g^* + \phi_h^*)([a, b]) = g(b) + h(b) - g(a) - h(a)
\]

\[
= f(b) - f(a)
\]

\[
= \phi_f^*([a, b]).
\]
Dus is $\phi_\gamma^* = \phi_\gamma^* + \phi_h^*$ op B_1.

Buch sluit die tweede deel van sy artikel af deur te kyk na die waardeversamelingen $\mathcal{R}(\phi_\gamma^*)$ en $\mathcal{R}(\phi_h^*)$ van ϕ_γ^* en ϕ_h^* onderskeidelik.

Eerstens is $\mathcal{R}(\phi_\gamma^*) = [0, g(1)]$. Dit volg aangesien $\phi_\gamma^*([0, 1)) = g(1) - g(0) = g(1)$ en as $y_0 \in (0, g(1))$, dan is $y_0 = \phi_\gamma^*([0, x_0))$ vir $x_0 \in (0, 1)$, uit die Tussenwaardestelling vir kontinue funksies. As $x \in [0, 1)$ en as $x + \frac{1}{n_0} \in [x, 1)$ vir "n $n_0 \in \mathbb{N}$, dan

$$\phi_\gamma^*((x)) = \phi_\gamma^* \left(\bigcap_{r=n_0}^{\infty} [x, x + \frac{1}{r}] \right)$$

$$= \lim_{r \to \infty} \phi_\gamma^* ([x, x + \frac{1}{r}])$$

$$= \lim_{r \to \infty} (g(x + \frac{1}{r}) - g(x))$$

$$= 0.$$

Vir $A \subset [0, 1)$ aftelbaar, geld dan $\phi_\gamma^*(A) = 0$.

Tweedens word nou gekyk na $\mathcal{R}(\phi_h^*)$. Die punte van diskontinuïteit van h vorm 'n hoogstens aftelbare versameling $N = \{\xi_n \in [0, 1) : n \in \mathbb{N}\}$.

Die saltus van h in die punt ξ_i word aangedui deur $S_h(\xi_i)$. Definieer nou die funksie $p : \mathcal{F_1} \to \mathbb{R}$ vir elke interval $A = [a, b) \in \mathcal{F_1}$ deur $p(A) = \sum_{\xi_i \in A} S_h(\xi_i)$, waar die sommasie oor al die punte van diskontinuïteit van h in A geskied. Vanaf (3.1), (3.2) en (3.3) volg dit dat

$$h(b) - h(a) = \lim_{x \to a^+} h(x) - h(a) + \sum_{\xi_i \in A} S_h(\xi_i) + h(b) - \lim_{x \to b^-} h(x)$$

$$= \sum_{\xi_i \in A} S_h(\xi_i)$$

aangesien h linkskontinu is by b. Dan is p 'n maat op $\mathcal{F_1}$ en $p = \phi_h^*$ op $\mathcal{F_1}$, vanaf (3.4).

Dié mate stem dan ook ooreen in uitgebreide vorms op B_1 en

$$\phi_h^*(A) = \sum_{\xi_i \in A} S_h(\xi_i)$$

41
waar die sommasie oor die punte van diskontinuïteit van \(h \) in die versameling \(A \in \mathcal{F} \) strek. Bostaande vergelyking kan ook in die vorm

\[
\phi_h^*(A) = \sum_{\xi_i \in A \cap N} S_h(\xi_i)
\]

geskryf word, waar \(A \in B_1 \) en die versameling \(N \) soos bo gedefinieer is. Dan is

\[
\mathcal{R}(\phi_h^*) = \left\{ \sum_{\xi_i \in A \cap N} S_h(\xi_i) : A \in B_1 \right\}.
\]

As \(A = \{a\} \), dan is \(\phi_h^*(A) = S_h(a) \), en as \(A \cap N = \emptyset \), \(A \in B_1 \), dan is

\[
\phi_h^*(A) = 0.
\]

As die aantal diskontinuïteite van \(h \) in die versameling \(A \in B_1 \) eindig is, dit wil sê, \(\xi_1, \xi_2, ..., \xi_n \), of onderskeidelik, aftelbaar oneindig is, dus \(\xi_1, \xi_2, ..., \xi_n, ... \), dan

\[
\phi_h^*(A) = \sum_{i=1}^{n} e_i S_h(\xi_i) \tag{3.5}
\]
onderskeidelik

\[
\phi_h^*(A) = \sum_{i=1}^{\infty} e_i S_h(\xi_i) \tag{3.6}
\]
waar die getalle \(e_i \) onafhanklik van mekaar die waardes 0 of 1 aanneem.

3.4 Deel III

In hierdie derde deel van Buch se artikel word een van sy belangrikste resultate behandel, naamlik dat die waardeversameling van 'n begrensde een-dimensionele maat gedefinieer op 'n \(\sigma \)-algebra geslote is.

Die eerste resultaat van hierdie gedeelte is 'n hulpstelling oor konvergentie reekse met positiewe terme wat as 'n handige stuk gereedskap dien in die bewys dat die waardeversameling \(\mathcal{R}(\phi_h^*) \) van \(\phi_h^* \) geslote is. Gestel

\[
a = \sum_{n=1}^{\infty} a_n = a_1 + a_2 + ... + a_n + ... \tag{3.7}
\]

42
waar \(a_n > 0 \) vir elke \(n \in \mathbb{N} \). Beskou alle reekse van die vorm

\[
\sum_{n=1}^{\infty} e_n a_n = e_1 a_1 + e_2 a_2 + \ldots + e_n a_n + \ldots
\]

waar die getalle \(e_i \) onafhanklik van mekaar die waardes 0 of 1 aanneem. Aangesien elke reeks in (3.8) ’n subreeks van (3.7) is, volg dit dat elk van die reekse in (3.8) konvergent is en dat \(0 \leq \sum_{n=1}^{\infty} e_n a_n \leq a \). Laat

\[
A = \left\{ \sum_{n=1}^{\infty} e_n a_n : e_n \in \{0,1\}, n \in \mathbb{N} \right\}
\]

die versameling van alle subsomme van \(\sum_{n=1}^{\infty} a_n \) wees.

Stelling 3.4.1 [BUCH, p.37]

Die versameling \(A \) is geslote.

Bewys:

Laat \((s_m : m \in \mathbb{N}) \) ’n ry in \(A \) wees sodanig dat

\[
s_m = a_{m1} + a_{m2} + \ldots + a_{mn} + \ldots
\]

waar \(a_{mn} \) vir elke \(m \) een van die waardes 0 of \(a_n \) aanneem. Gestel verder dat \(s = \lim_{m \to \infty} s_m \). Die doel is nou om te wys dat \(s \in A \). Beskou

\[
s_1 = a_{11} + a_{12} + \ldots + a_{1n} + \ldots
\]
\[
s_2 = a_{21} + a_{22} + \ldots + a_{2n} + \ldots
\]
\[
s_3 = a_{31} + a_{32} + \ldots + a_{3n} + \ldots
\]
\[
\vdots
\]
\[
s_m = a_{m1} + a_{m2} + \ldots + a_{mn} + \ldots
\]
\[
\vdots
\]

In die ry getalle \(a_{11}, a_{21}, a_{31}, \ldots, a_{m1}, \ldots \) kom een van die getalle 0 of \(a_1 \) oneindig baie keer voor. Laat \(a^*_1 \) die getal voorstel wat hierdie voorwaarde bevredig. In die ry van pare

\[
(a_{11}, a_{12}), (a_{21}, a_{22}), \ldots, (a_{m1}, a_{m2}), \ldots
\]
sal daar 'n oneindige aantal pare bestaan wat a_i^* in die eerste plek bevat. Beskou die ooreenkomstige subry van (3.10) en laat a_2^* die getal 0 of a_2 wees wat in hierdie subry oneindig baie keer in die tweede plek voorkom. In die ry van triplette

$$(a_{11}, a_{12}, a_{13}), (a_{21}, a_{22}, a_{23}), \ldots, (a_{m1}, a_{m2}, a_{m3}), \ldots$$

(3.11)

sal daar dus 'n oneindige aantal triplette bestaan wat a_i^* en a_2^* in die eerste twee plekke bevat. Beskou die subry van ry (3.11) met hierdie eienskap en laat a_3^* die getal 0 of a_3 wees wat oneindig baie keer in die derde plek van die triplette in hierdie subry staan. Deur die proses voort te sit, is die getal a_n^* gedefinieer vir elke n. Die reeks

$$a_1^* + a_2^* + a_3^* + \ldots + a_n^* + \ldots$$

(3.12)

is konvergent aangesien dit 'n reeks van die vorm (3.8) is. Die stelling sal bewys wees as gewys kan word dat die reeks (3.9) na s sommeer. Gestel $s^* = \sum_{n=1}^{\infty} a_n^*$. Die konvergensie van die reeks (3.7) impliseer dat daar vir elke $\varepsilon > 0$ 'n getal $n_0 \in \mathbb{N}$ bestaan sodat

$$\sum_{n=n_0+1}^{\infty} a_n < \frac{\varepsilon}{3}$$

Daar bestaan 'n reeks, se s_i, in (3.9) met $a_1^*, a_2^*, \ldots, a_{n_0}^*$ in die eerste n_0 plekke sodat

$$s_i = a_1^* + a_2^* + a_3^* + \ldots + a_{n_0}^* + a_{i,n_0+1} + a_{i,n_0+2} + \ldots$$

en sodat $|s - s_i| < \frac{\varepsilon}{3}$ vir i groot genoeg. Dan, vir n_0 groot genoeg, volg dit dat

$$|s^* - s| = |(s_i - (a_1^* + a_2^* + a_3^* + \ldots + a_{n_0}^*)) - (s_i - (a_1^* + a_2^* + a_3^* + \ldots + a_{n_0}^*))| + |s_i - s_i|$$

$$\leq |s_i - (a_1^* + a_2^* + a_3^* + \ldots + a_{n_0}^*)| + |s_i - (a_1^* + a_2^* + a_3^* + \ldots + a_{n_0}^*)| + |s_i - s_i|< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Die reeks in (3.12) is 'n reeks van die vorm (3.8) en $s^* \in A$. Aangesien $s = s^*$, is $s \in A$ en gevolglik is A geslote.

Die volgende stelling word benodig in die bewys van die hoofresultaat van hierdie gedeelte.
Stelling 3.4.2 [BUCH, p.39]

As B_1 die Borelklas van $[0,1]$ is en as $\mu : B_1 \to \mathbb{R}$ 'n begrensde maat is, dan is $\mathcal{R}(\mu)$ 'n geslote versameling.

Bewys:

Definieer die funksie $f : [0, 1] \to \mathbb{R}$ deur

$$f(x) = \begin{cases} \mu([0, x)) & \text{as } 0 < x \leq 1 \\ 0 & \text{as } x = 0. \end{cases}$$

Dan is f nie-afnemend en kan dit, vanaf Stelling 3.3.1, soos volg ontbind word:

$$f(x) = g(x) + h(x)$$

en, soos tevore, lei dit tot 'n ontbinding van die maat μ van die vorm

$$\mu(A) = \mu_1(A) + \mu_2(A)$$

vir elke versameling $A \in B_1$. Laat $N = \{\xi_n \in [0,1) : n \in \mathbb{N}\}$ die aftelbare versameling van diskontinuïteite van f voorstel. Dit is bekend dat die versameling $\mathcal{R}(\mu_1)$ 'n geslote versameling is. Verder is

$$\mathcal{R}(\mu_2) = \left\{ \sum_{\xi_n \in A \cap N} S_h(\xi_n) : A \in B_1 \right\}$$

en is hierdie versameling geslote vanaf (3.5), (3.6) en Stelling 3.4.1. Nou moet bewys word dat as $\alpha \in \mathcal{R}(\mu_1)$ en $\beta \in \mathcal{R}(\mu_2)$ dan is $\alpha + \beta \in \mathcal{R}(\mu)$. Neem $\alpha = \mu_1(A)$ en $\beta = \mu_2(B)$, waar $A, B \in B_1$. Laat

$$A^* = (A \setminus (A \cap N)) \cup (B \cap N).$$

Dan is

$$\mu(A^*) = \mu(A \setminus (A \cap N)) + \mu(B \cap N)$$

$$= \mu_1(A \setminus (A \cap N)) + \mu_1(B \cap N) + \mu_2(A \setminus (A \cap N)) + \mu_2(B \cap N).$$

Aangesien $A \cap N$ aftelbaar is, volg dit dat

$$\mu_1(A \cap N) = 0$$

(3.13)
en vanaf die insluiting \(A \setminus (A \cap N) \subseteq [0, 1) \setminus N \), is

\[
0 \leq \mu_2(A \setminus (A \cap N)) \leq \mu_2([0, 1) \setminus N) = 0.
\]

(3.14)

Dus is \(\mu_1(B \cap N) = 0 \) en volg dat

\[
\mu_2(B \cap N) = \sum_{\xi_n \in B \cap N} S_n(\xi_n) = \mu_2(B) = \beta.
\]

(3.15)

Dan is

\[
\mu(A^*) = \alpha + 0 + 0 + \beta = \alpha + \beta
\]

en is die stelling bewys.

In die laaste gedeelte van Deel III bewys Buch een van die hoofresultate van sy artikel, naamlik dat Stelling 3.4.2 uitgebrei kan word na die geval van 'n begrensde maat op 'n abstrakte \(\sigma \)-algebra \(\mathcal{A} \). Laat \(T \) 'n willekeurige versameling wees, \(\mathcal{A} \) 'n \(\sigma \)-algebra van subversamelings van \(T \) en \(p: \mathcal{A} \rightarrow \mathbb{R} \) 'n begrensde maat. Sonder verlies aan algemeenheid kan aangeneem word dat \(p(T) = 1 \). Die basis van die metode wat Buch in Stelling 3.4.3 volg, is dat 'n koppeling \(\leftrightarrow \) bewerkstellig word tussen versamelings van \(\mathcal{A} \) met versamelings uit \(\mathcal{B}_1 \) van Stelling 3.4.2. Dit vorm fase 1 van die bewys van Stelling 3.4.3.

Buch gebruik die Cantor-versameling in fase 1 van sy konstruksies. In fase 2 word getalle van die vorm \(\frac{k}{3^n} \), \(n \in \mathbb{N} \) en \(k = 1, 2, \ldots, 3^{n-1} \), gekoppel aan versameling \(C_{\frac{k}{3^n}} \), waar hierdie versamelings gedefinieer word in terme van die gekoppelde versamelings van \(\mathcal{A} \) uit fase 1. In fase 3 associeer 'n funksie \(f \) die getalle \(\frac{k}{3^n} \) met die waardes \(p(C_*) \), waar \(C_* \in \mathcal{A} \) en \(C_* \leftrightarrow [0, x^*) \in \mathcal{B}_1 \). Die funksie \(f \) word dan aangewend om 'n begrensde maat \(\mu: \mathcal{B}_1 \rightarrow \mathbb{R} \) te definieer waarvan, vanaf Stelling 3.4.2, \(\mathcal{R}(\mu) \) geslote is. Vervolgens word aangetoon dat as \(A_1 \) die \(\sigma \)-algebra is wat deur die klas van versamelings \(C_{\frac{k}{3^n}} \) voortgebracht is, dan geld dat \(\mathcal{R}(p|A_1) = \mathcal{R}(\mu) \). Laastens, die geslotenheid van \(\mathcal{R}(p) \) volg uit die feit dat \(\mathcal{R}(p|A_1) \subseteq \mathcal{R}(p) \), soos wat gewys sal word.

Buch meld dat hierdie voorstelling van versamelings uit \(\mathcal{A} \) in terme van versamelings uit \(\mathcal{B}_1 \) (fase 1 van onderstaande bewys) tot 'n sekere mate as 'n veralgemening van die bekende Peano-konstruksie beskou kan word [PEAN]. Peano het bewys dat die eenheidsvierkant
I^2 in die platvlak die kontinue beeld is van die eenheidsinterval I van reële getalle. 'n Kontinue surjeksie $f : I \rightarrow I^2$ word 'n Peano-funksie genoem; f is nie 'n injeksie nie. Peano het sy funksie f op 'n rekenkundige proses beskryf, terwyl D. Hilbert in 1891 'n meetkundige konstruksie van 'n Peano-funksie gegee het [HILB]. In sy studie van die integrasie van diskontinue funksies het H. Lebesgue in 1910 van Hilbert se metode gebruik gemaak in sy konstruksies [LEBS]. In sy studie van die benadering van funksies uit die Lebesgue-klas L^p ($1 \leq p \leq \infty$) deur eenvoudige funksies (of trapfunksies) het F. Riesz in 1910 ook van die Peano-tipe konstruksie gebruik gemaak, maar onafhanklik van die vorige bydraes van Peano en Hilbert [RIES]. 'n Duidelike behandeling, wat die metode deur Buch gebruik voorstel, oor die werk van Hilbert, Cantor en Lebesgue kan gevind word in die werk van F. Hausdorff [HAU2]. In 1932 het J. von Neumann ook Hausdorff se werk gebruik om 'n koppeling van versamelings te bewerkstellig, ten einde resultate in operatormetodes te bewys [VNEU]. M. de la Vallée Poussin [VAPO] verwelde die werk van Lebesgue (wat op sy beurt weer van die Hilbert-funksie gebruik gemaak het) om die verband
$$\int \int_C f(x,y) dxdy = \int_0^1 f(\phi, p) dt$$
te bewys, met C 'n reghoek en f geparametriseer deur $x = \phi(t), g = p(t), t \in [0, 1]$. In sy werk oor stochastiese prosesse het J. L. Doob 'n sekere reëlwaardige funksie f_λ met behulp van die bogenoemde metodes van Von Neumann gedefinieer [DOOB]. 'n Duidelike behandeling van Peano en Hilbert se werk (en wat die idees agter Buch se argumente illustreer) kan gevind word in [BLME]. 'n Ander beskikbare bron is die kort verklarende artikels van Hans Sagan [SAGA].

Stelling 3.4.3 [BUCH, p.41]

Die versameling $\mathcal{R}(p)$ is geslote in \mathbb{R}.

Skets van die bewys:

Die bewys maak, soos reeds genoem, gebruik van Cantor-versamelings, $C = \{x \in [0, 1] :$
\[x = \sum_{k=1}^{\infty} \frac{a_k}{3^k} \text{ waar } a_k \in \{0, 2\}. \]

Laat

\[(A_n : n \in \mathbb{N}) \]

(3.16)

'n ry in \(A \) wees en beskou 'n ooreenkomsstige ry \((p(A_n) : n \in \mathbb{N}) \) in \(\mathcal{R}(p) \). Gestel \(\lim_{n \to \infty} p(A_n) = a \). Dit moet nou bewys word dat \(a \in \mathcal{R}(p) \), dit wil sê, dat daar 'n versameling \(A \in A \) bestaan sodat \(p(A) = a \). Sonder verlies aan algemeenheid, neem aan dat \(A_2 = T \setminus A_1 \). Die koppeling van versamelings, aangedui deur \(A \leftrightarrow B \) vir versamelings \(A \) en \(B \), word in twee stappe gedoen.

Fase 1

1. \(T \leftrightarrow (0, 1) \)

2. \(T = C_1 \cup C_0 \cup C_2 \), waar \(C_1 = A_1 \leftrightarrow (0, \frac{1}{3}) \); \(C_0 = \emptyset \leftrightarrow (\frac{1}{3}, \frac{2}{3}) \); \(C_2 = A_2 \leftrightarrow (\frac{2}{3}, 1) \)

3. \(C_1 = C_{11} \cup C_{10} \cup C_{12} \), waar \(C_{11} = A_1 \cap A_2 \leftrightarrow (0, \frac{1}{9}) \); \(C_{10} = \emptyset \leftrightarrow (\frac{1}{9}, \frac{2}{9}) \); \(C_{12} = A_1 \cap (T \setminus A_2) \leftrightarrow (\frac{2}{9}, \frac{1}{3}) \)

3.1. \(C_{11} = C_{111} \cup C_{110} \cup C_{112} \), waar \(C_{111} = A_1 \cap A_2 \cap A_3 \leftrightarrow (0, \frac{1}{27}) \); \(C_{110} = \emptyset \leftrightarrow (\frac{1}{27}, \frac{2}{27}) \); \(C_{112} = A_1 \cap A_2 \cap (T \setminus A_3) \leftrightarrow (\frac{2}{27}, \frac{1}{3}) \)

3.2. \(C_{2} = C_{21} \cup C_{20} \cup C_{22} \), waar \(C_{21} = (T \setminus A_1) \cap A_2 \leftrightarrow (\frac{2}{3}, \frac{7}{9}) \); \(C_{20} = \emptyset \leftrightarrow (\frac{7}{9}, \frac{8}{9}) \); \(C_{22} = (T \setminus A_1) \cap (T \setminus A_2) \leftrightarrow (\frac{8}{9}, 1) \)

4. \(C_{12} = C_{121} \cup C_{120} \cup C_{122} \), waar \(C_{121} = A_1 \cap (T \setminus A_2) \cap A_3 \leftrightarrow (\frac{3}{9}, \frac{7}{27}) \); \(C_{120} = \emptyset \leftrightarrow (\frac{7}{27}, \frac{8}{27}) \); \(C_{122} = A_1 \cap (T \setminus A_2) \cap (T \setminus A_3) \leftrightarrow (\frac{8}{27}, \frac{1}{3}) \)

4.1. \(C_{121} = C_{1211} \cup C_{1210} \cup C_{1212} \), waar \(C_{1211} = (T \setminus A_1) \cap A_2 \cap A_3 \leftrightarrow (\frac{2}{3}, \frac{19}{27}) \); \(C_{1210} = \emptyset \leftrightarrow (\frac{19}{27}, \frac{20}{27}) \); \(C_{1212} = (T \setminus A_1) \cap A_2 \cap (T \setminus A_3) \leftrightarrow (\frac{20}{27}, \frac{7}{9}) \)
4. \(C_{22} = C_{221} \cup C_{220} \cup C_{222} \), waar \(C_{221} = (T \setminus A_1) \cap (T \setminus A_2) \cap A_3 \leftrightarrow (\frac{36}{29}, \frac{25}{29}) \); \(C_{220} = \emptyset \leftrightarrow (\frac{25}{29}, \frac{22}{29}) \); \(C_{222} = (T \setminus A_1) \cap (T \setminus A_2) \cap (T \setminus A_3) \leftrightarrow (\frac{22}{29}, 1) \)

Elk van die \(C \)-versamelings só geproduseer is 'n element van \(A \) en is 'n deursnede van soveel faktore as die aantal indeksgetalle. 'n Getal 0 in die laaste plek van die reeks van indeksgetalle beteken dat die versameling leeg is. 'n Getal 1 in die \(n \)-de plek van die reeks, beteken dat \(A_n \) as 'n faktor verskyn en 'n getal 2 in die \(n \)-de plek beteken dat \((T \setminus A_n)\) as 'n faktor verskyn. So is byvoorbeeld \(C_{1121121} = A_1 \cap A_2 \cap (T \setminus A_3) \cap A_4 \cap A_5 \cap (T \setminus A_6) \cap A_7 \) en \(C_{2121120} = \emptyset \).

Fase 2

Elke getal van die vorm \(\frac{k}{3^n} \), waar \(n \in \mathbb{N} \) en \(k = 1, 2, ..., 3^{n-1} \), word nou gekoppell aan 'n versameling \(C_{\frac{k}{3^n}} \). As die getal \(\frac{k}{3^n} \) in die inwendige van 'n interval val wat in fase 1 met die leë versameling gekoppell is, dan is \(C_{\frac{k}{3^n}} \) gelyk aan \(\emptyset \). Die endpunkte van die intervale in fase 1 word soos volg behandel: Kies al die versamelings waarvan die een endpunt van die ooreenkomsstige interval die getal \(\frac{k}{3^n} \) is en wat se reeks van indeks nie 'n 0 bevat nie. Laat \(C_{\frac{k}{3^n}} \) dan gelyk wees aan die deursnede van hierdie versameling. Alle versamelings \(C_{\frac{k}{3^n}} \) is in \(A \). Dit is

\[
\begin{align*}
C_{\frac{1}{3}} &= C_1 \cap C_{12} \cap C_{122} \cap ...
C_{\frac{2}{3}} &= C_2 \cap C_{21} \cap C_{211} \cap ...
C_{\frac{4}{3}} &= C_{11} \cap C_{112} \cap C_{1122} \cap ...
C_{\frac{12}{3}} &= C_{12} \cap C_{121} \cap C_{1211} \cap ...
\end{align*}
\]

Die ontbinding in fase 1 word nou soos volg gewysig:

1. \(T \leftrightarrow [0, 1) \)
2. \(C_1 \setminus C_{\frac{1}{2}} \leftrightarrow [0, \frac{1}{3}); \ C_{\frac{1}{2}} \leftrightarrow \{\frac{1}{3}\}; \ \emptyset \leftrightarrow (\frac{1}{3}, \frac{2}{3}); \ C_{\frac{2}{3}} \leftrightarrow \{\frac{2}{3}\}; \ C_2 \setminus C_{\frac{2}{3}} \leftrightarrow (\frac{2}{3}, 1) \)

3. \(C_{11} \setminus C_{\frac{1}{3}} \leftrightarrow [0, \frac{1}{6}); \ C_{\frac{1}{3}} \leftrightarrow \{\frac{1}{6}\}; \ \emptyset \leftrightarrow (\frac{1}{6}, \frac{2}{6}); \ C_{\frac{2}{6}} \leftrightarrow \{\frac{2}{6}\}; \ (C_{12} \setminus C_{\frac{1}{3}}) \setminus C_{\frac{1}{3}} \leftrightarrow (\frac{3}{6}, 1) \)

3. \((C_{21} \setminus C_{\frac{1}{3}}) \setminus C_{\frac{1}{3}} \leftrightarrow (\frac{3}{6}, \frac{1}{6}); \ C_{\frac{1}{3}} \leftrightarrow \{\frac{1}{6}\}; \ C_{\frac{2}{6}} \leftrightarrow \{\frac{2}{6}\}; \ C_{22} \setminus C_{\frac{2}{6}} \leftrightarrow (\frac{3}{6}, 1) \)

Kyk na [BUCH, tabel 1, figuur 2] vir 'n diagram van die ontbinding van fase 2. Al die versameling in fase 1 en fase 2 is in \(\mathcal{A} \). Elke versameling in die rey (3.16) kan verkry word deur verenigings te neem van versameling in fase 2, byvoorbeeld

\[
A_1 = (C_1 \setminus C_{\frac{1}{2}}) \cup C_{\frac{1}{2}}
\]

en

\[
A_2 = (C_{11} \setminus C_{\frac{1}{3}}) \cup C_{\frac{1}{3}} \cup ((C_{21} \setminus C_{\frac{1}{3}}) \setminus C_{\frac{1}{3}}) \cup C_{\frac{2}{3}} \cup C_{\frac{1}{3}}
\]

Fase 3

Definieer die funksie \(f : [0, 1] \rightarrow \mathbb{R} \) sodat die volgende bevredig word:

\((\alpha) \ f(0) = 0. \)

\((\beta) \ As \ x^* \ 'n \ getal \ van \ die \ vorm \ \frac{k}{3^n} \ is, \ met \ n \in \mathbb{N} \ en \ k = 1, 2, ..., 3^n, \ laat \)

\[
f(x^*) = p(C^*)
\]

waar \(C^* \leftrightarrow [0, x^*). \) Verder, as \(x^* > \frac{7}{6} \), dan is \(f(x^*) = 1 \) aangesien die versameling \(C_{22} \)

leeg is (as die aannames gemaak word dat \(A_2 = T \setminus A_1 \)). As beide \(x_1 \) en \(x_2 \), met \(x_2 > x_1 \), van die vorm \(\frac{k}{3^n} \) is, dan word verkry dat

\[
f(x_2) - f(x_1) = p(D) \geq 0
\]
waar $D \leftrightarrow [x_1, x_2)$. Die funksie f verwerf nou die volgende eienskap: as $x^* (< 1)$ sowel as die getalle $x_1, x_2, ..., x_n, ...$ van die vorm $\frac{k}{2^n}$ is, met $n \in \mathbb{N}$ en $k = 1, 2, ..., 3^n$, en as $x_1 < x_2 < ... < x_n < ... < x^*$ en \(\lim_{n \to \infty} x_n = x^* \), dan is

\[
\lim_{n \to \infty} f(x_n) = f(x^*).
\]

Hierdie gelykheid kan as volg bewys word:

Laat $D_n \leftrightarrow [0, x_n)$ vir elke $n \in \mathbb{N}$ en laat $C^* \leftrightarrow [0, x^*)$. Nou moet gewys word dat

\[
\lim_{n \to \infty} p(D_n) = p(C^*).
\]

Aangesien $D_n \subseteq C^*$ vir elke $n \in \mathbb{N}$ en p begrens is op A, volg dit dat

\[
\lim_{n \to \infty} (p(C^*) - p(D_n)) = p(C^\setminus D_n)
\]
aangesien p subtraktief is. Aangesien $(C^\setminus D_n : n \in \mathbb{N})$ 'n afnemende ry is, volg dit dat

\[
\lim_{n \to \infty} p(C^\setminus D_n) = p(\bigcap_{n=1}^{\infty} (C^\setminus D_n))
\]

\[
= p(C^\setminus \bigcup_{n=1}^{\infty} D_n)
\]

\[
= p(\emptyset)
\]

\[
= 0.
\]

Dus is die bewys klaar. Die funksie het dieselfde eienskap vir $x^* = 1$, want $f(x)$, soos bo vermeld, het die waarde 1 as x van die vorm $\frac{k}{2^n}$ is en $x > \frac{7}{9}$.

(γ) As x_0 'n getal is wat nie van die vorm $\frac{k}{2^n}$ is nie, kies 'n ry $(x_n : n \in \mathbb{N})$ met die eienskap dat $x_n = \frac{k}{2^n}$ vir elke $n \in \mathbb{N}$, $x_1 < x_2 < ... < x_n < ...$ en $x_0 = \lim_{n \to \infty} x_n$. Laat $D_n \leftrightarrow [0, x_n)$ vir elke $n \in \mathbb{N}$. Die versameling $\bigcup_{n=1}^{\infty} D_n$ is onafhanklik van die verkose ry $(x_n : n \in \mathbb{N})$ en hang slegs van x_0 af. Laat $\bigcup_{n=1}^{\infty} D_n \leftrightarrow [0, x_0)$ en skryf

\[
f(x_0) = p(\bigcup_{n=1}^{\infty} D_n).
\]

Die funksie f is nou op $[0,1]$ gedefinieer. Aangesien $(D_n : n \in \mathbb{N})$ 'n toenemende ry is, volg dit dat

\[
f(x_0) = \lim_{n \to \infty} p(D_n).
\]
Buch bewys dan dat \(f \) nie-afnemend en linkskontinu is in elke punt. Soos tevore (kyk na Afdeling 3.3.3) definieer \(f \) 'n unieke maat \(\mu : B_1 \to \mathbb{R} \) sodat

\[
\mu([a, b)) = f(b) - f(a)
\]

(3.17)

vir elke \([a, b)\). Laat \(A_1 \) die \(\sigma \)-algebra wees gegenereer deur die ry (3.16). Dan is \(A_1 \subseteq A \). Vanaf Stelling 3.4.2 volg dit dat \(\mathcal{R}(\mu) \) geslote is. Nou moet bewys word dat \(\mathcal{R}(\mu) = \mathcal{R}(p|A_1) \). Duidelik bevat \(A_1 \) elke \(C \)-versameling wat in die ontbinding in fase 2 voorkom. Aangesien elke versameling \(A_n \) in die ry (3.16) verkry kan word deur verenigings van versamelings in fase 2 te neem, kan \(A_1 \) as 'n \(\sigma \)-algebra gegenereer deur die \(C \)-versamelings van fase 2 beskou word. As die versameling \(C \) in fase 2 gekoppel word aan die punt \(x_0 \), dan is

\[
p(C) = \mu(\{x_0\}).
\]

Dit kan soos volg bewys word:

Duidelik is \(\mu(\{x_0\}) = f(x_0 + 0) - f(x_0) \). Laat \((x_n : n \in \mathbb{N}) \) 'n streng afnemende versameling wees en \(C = \cap_{n=1}^{\infty} D_n \). Dan is

\[
p(C) = p(\bigcap_{n=1}^{\infty} D_n)
\]

\[
= \lim_{n \to \infty} p(D_n)
\]

\[
= \lim_{n \to \infty} (f(x_n) - f(x_0))
\]

\[
= f(x_0 + 0) - f(x_0)
\]

wat die verlangde resultaat is.

Nou word gewys dat as \(D \) 'n versameling in fase 2 is wat gekoppel word aan 'n interval \((x_0, x_1)\), dan is

\[
p(D) = \mu((x_0, x_1)).
\]

Om mee te begin, is

\[
\mu((x_0, x_1)) = \mu([x_0, x_1)) - \mu(\{x_0\})
\]

\[
= f(x_1) - f(x_0) - f(x_0 + 0) + f(x_0)
\]

\[
= f(x_1) - f(x_0 + 0).
\]
Dit moet bewys word dat \(p(D) = f(x_1) - f(x_0 + 0) \). Aangesien \(C \leftrightarrow \{x_0\} \), volg dit dat \(p(D) = p(D \cup C) - p(C) \) en vanaf vergelyings (3.16) en (3.17) volg dit dat
\[
\begin{align*}
p(D) &= f(x_1) - f(x_0) - f(x_0 + 0) + f(x_0) \\
 &= f(x_1) - f(x_0 + 0) \\
 &= \mu((x_0, x_1))
\end{align*}
\]
wat die verlangde resultaat is.

Laat nou \(A \in A_1 \). Daar kan 'n ry \((K_n : n \in \mathbb{N}) \) van versamelings bepaal word sodat elke versameling \(K_n \) 'n eindige of afgetelbare vereniging van versamelings van fase 2 is, sodat

1. \(K_1 \supseteq K_2 \supseteq K_3 \supseteq \ldots \supseteq K_n \supseteq \ldots \);

2. \(A \subset K_n \) vir elke \(n \);

3. \(p(A) = \inf\{p(K_n) : n \in \mathbb{N}\} = \lim_{n \to \infty} p(K_n) \).

Elke versameling \(K_n \in A_1 \) stem ooreen met 'n versameling \(I_n \in B_1 \). Vanaf bostaande opmerkings volg dus dat

- \(\mu(I_n) = p(K_n) \)

- \(I_1 \supseteq I_2 \supseteq I_3 \supseteq \ldots \).

Aangesien \(\bigcap_{n=1}^{\infty} I_n \in B_1 \) en
\[
\mu\left(\bigcap_{n=1}^{\infty} I_n\right) = \lim_{n \to \infty} \mu(I_n) = \lim_{n \to \infty} p(K_n) = p(A)
\]
volg dit dat \(\mathcal{R}(p|A_1) \subset \mathcal{R}(\mu) \). Die omgekeerde insluiting volg deur van soortgelyke argumente gebruik te maak. Aangesien \(\mathcal{R}(p|A_1) \) geslote is, volg dit dan dat \(a \in \mathcal{R}(p|A_1) \subseteq \mathcal{R}(p) \), wat bewys moes word.
3.5 Deel IV

In hierdie gedeelte behandel Buch die twee-dimensionele weergawes van Stellings 3.4.2 en 3.4.3. Laat B_1 die Borelklas van $[0,1)$ wees, $\mu_1 : B_1 \to \mathbb{R}$ en $\mu_2 : B_1 \to \mathbb{R}$ begrensde mate, en laat $p = (\mu_1, \mu_2)$. Neem aan dat $\mu_1([0,1)) = \mu_2([0,1)) = 1$. Onder hierdie aannames volg dat

Stelling 3.5.1 [BUCH, p.49]

$\mathcal{R}(p)$ is 'n geslote subversameling van $[0,1] \times [0,1]$.

Skets van die bewys:

Gestel mate μ_1 en μ_2 is soos bo gedefinieer is. Beskou die funksies $f_1 : [0,1] \to \mathbb{R}$ en $f_2 : [0,1] \to \mathbb{R}$ gedefinieer deur

$$f_1(a) = \begin{cases} 0 & \text{as } a = 0 \\ \mu_1([0,a)) & \text{as } a > 0 \end{cases}$$

en

$$f_2(a) = \begin{cases} 0 & \text{as } a = 0 \\ \mu_2([0,a)) & \text{as } a > 0 \end{cases}.$$

Hierdie nie-afnemende funksies f_1 en f_2 kan vanaf Stelling 3.3.1 geskryf word in die vorms

$$f_1(x) = g_1(x) + h_1(x)$$

$$f_2(x) = g_2(x) + h_2(x)$$

vir $x \in [0,1]$, waar die funksies g_1, g_2, h_1 en h_2 almal nie-afnemende funksies is, en g_1 en g_2 kontinu is op $[0,1]$. Dan kan die volgende ontbinding van μ_1 en μ_2 gekry word:

$$\mu_1(A) = \mu_{11}(A) + \mu_{12}(A) \quad (3.19)$$

$$\mu_2(A) = \mu_{21}(A) + \mu_{22}(A) \quad (3.20)$$

vir $A \in B_1$. Vanaf (3.17) en (3.18) volg dit dat

$$\mathcal{R}(p) = \{(\mu_1(A), \mu_2(A)) : A \in B_1 \}$$

$$= \{(\mu_{11}(A) + \mu_{12}(A), \mu_{21}(A) + \mu_{22}(A)) : A \in B_1 \}$$

$$= \{(\mu_{11}(A), \mu_{21}(A)) + (\mu_{12}(A), \mu_{22}(A)) : A \in B_1 \}.$$
Gestel nou dat $M_1, M_2 \in B_1$ so is dat $(\mu_{11}(M_1), \mu_{21}(M_1)) = (\alpha, \beta)$ en dat $(\mu_{12}(M_2), \mu_{22}(M_2)) = (\gamma, \delta)$. Nou moet 'n versameling $M \in B_1$ gevind word sodat

$$(\mu_1(M), \mu_2(M)) = (\alpha + \gamma, \beta + \delta).$$

Laat $N_1 = \{\xi_n : n \in N\}$ die aftelbare versameling van punte van diskontinuïteite van f_1 en $N_2 = \{\eta_n : n \in N\}$ die aftelbare versameling van punte van diskontinuïteite van f_2 wees. Stel $N_3 = N_1 \cup N_2$ en neem $M = (M_1 \backslash (M_1 \cap N_3)) \cup (M_2 \cap N_3)$. Vanaf (3.13), (3.14), (3.15), (3.17) en (3.18) volg dit dan dat

$$\begin{align*}
\mu_1(M) &= \mu_1(M_1 \backslash (M_1 \cap N_3)) + \mu_1(M_2 \cap N_3) \\
&= \mu_{11}(M_1 \backslash (M_1 \cap N_3)) + \mu_{12}(M_1 \backslash (M_1 \cap N_3)) + \\
&\quad \mu_{11}(M_2 \cap N_3) + \mu_{12}(M_2 \cap N_3) \\
&= \mu_{11}(M_1) + 0 + 0 + \sum_{\xi_n \in M_2 \cap N_3} S_{\eta_1}(\xi_n) \\
&= \mu_{11}(M_1) + \mu_{12}(M_2) \\
&= \alpha + \gamma.
\end{align*}$$

Soortgelyk kan gewys word dat

$$\begin{align*}
\mu_2(M) &= \mu_{21}(M_1) + \mu_{22}(M_2) \\
&= \beta + \delta.
\end{align*}$$

Dus volg dat

$$\begin{align*}
p(M) &= (\mu_1(M), \mu_2(M)) \\
&= (\alpha + \gamma, \beta + \delta) \\
&= (\alpha, \beta) + (\gamma, \delta).
\end{align*}$$

Soos in die bewys van Stelling 3.4.2 volg dit dat as bewys kan word dat die versamelingen $\{(\mu_{11}(A), \mu_{21}(A)) : A \in B_1\}$ en $\{(\mu_{21}(A), \mu_{22}(A)) : A \in B_1\}$ beide geslote is dan sal dit volg dat $\mathcal{R}(p)$ geslote is.
Geval 1: Gestel dat beide \(f_1 \) en \(f_2 \) die volgende bevredig (kyk na Stelling 3.3.1):

\[
D_{f_1}(x_1, x_2) = V_{f_1}(x_1, x_2) \quad \text{en} \quad D_{f_2}(x_1, x_2) = V_{f_2}(x_1, x_2)
\]

vir enige keuse \(x_1 \) en \(x_2 \), waar \(0 \leq x_1 < x_2 \leq 1 \). Beskou die versamelings \(N_1 \) en \(N_2 \) soos bo gedefinieer en laat \(N_3 = N_1 \cup N_2 = \{ \zeta_n : n \in \mathbb{N} \} \). Vir enige versameling \(A \in \mathcal{B}_1 \) is

\[
\mu_1(A) = \sum_{\xi_n \in A} S_{f_1}(\xi_n) = \sum_{\zeta_n \in A} S_{f_1}(\zeta_n)
\]

en

\[
\mu_2(A) = \sum_{\eta_n \in A} S_{f_2}(\eta_n) = \sum_{\zeta_n \in A} S_{f_2}(\zeta_n).
\]

Laat

\[
S_{f_1}(\zeta_n) = a_i
\]
\[
S_{f_2}(\zeta_n) = b_i.
\]

Dan, vanaf die definisie van saltus, is \(a_i \geq 0 \) en \(b_i \geq 0 \) vir elke \(i \in \mathbb{N} \). Vanaf (3.6) is

\[
(\mu_1(A), \mu_2(A)) = \left(\sum_{i=1}^{\infty} e_i a_i, \sum_{i=1}^{\infty} e_i b_i \right)
\]

waar

\[
e_i = \begin{cases}
1 & \text{as } \zeta_i \in A \\
0 & \text{as } \zeta_i \notin A.
\end{cases}
\]

Laat \((p(A_i) : i \in \mathbb{N}) \) 'n ry in \(\mathcal{R}(p) \) wees en gestel dat \(\lim_{i \to \infty} p(A_i) = (s, t) \). Die metode gebruik in die bewys van Stelling 3.4.1 wys dat daar 'n versameling \(A \in \mathcal{B}_1 \) bestaan sodat

\[
p(A) = (s, t).
\]

Die bewys is op die Keuse Aksiom geskoei.

Geval 2: Gestel dat \(f_1 \) en \(f_2 \) beide kontinu is op \([0,1]\). Aangesien \(\mu_1 \) en \(\mu_2 \) aftelbaar additiewe be grense de mate op \(\mathcal{B}_1 \) is, kan \(\mu_1 \) deur middel van Lebesgue-ontbinding soos volg ontbind word:

\[
\mu_1 = \mu_k + \mu_s
\]

waar \(\mu_k \ll \mu_2 \) (dit wil sê, \(\mu_k \) is \(\mu_2 \)-absoluut kontinu) en \(\mu_s \perp \mu_2 \) (dit wil sê, \(\mu_s \) is \(\mu_2 \)-singulier, wat beteken dat daar 'n versameling \(N \in \mathcal{B}_1 \) met \(\mu_2(N) = 0 \) bestaan sodat
\(\mu_s(A) = 0 \) vir elke versameling \(A \in B_1 \) wat \(A \subset [0,1] \setminus N \) bevredig. Vanaf die Radon-Nikodým Stelling volg dit dan dat daar 'n begrensde, nie-negatiewe meetbare funksie \(f : [0,1] \rightarrow \mathbb{R} \) bestaan sodat

\[
\mu_k(A) = \int_A f \, d\mu_2
\]

vir elke versameling \(A \in B_1 \). Verder, aangesien \(A \setminus (A \cap N) \subseteq [0,1] \setminus N \), volg dit dat

\[
\mu_s(A) = \mu_s(A \cap N)
\]

een aangesien \(\mu_2(A \cap N) = 0 \), is

\[
\mu_k(A \cap N) = 0.
\]

Dit het tot gevolg dat

\[
\mu_1(A) = \mu_k(A) + \mu_s(A) = \int_A f \, d\mu_2 + \mu_s(A \cap N) = \int_A f \, d\mu_2 + \mu_s(A \cap N) + \mu_k(A \cap N) = \int_A f \, d\mu_2 + \mu_1(A \cap N)
\]

vir elke versameling \(A \in B_1 \). Nou word daar gekeek na die waardes wat \(\mu_1 \) aanneem wanneer \(\mu_2 \) vas gehou word. Laat \(\gamma \in [0,1] \). Daar bestaan, vanaf die kontinuïteit van \(f_2 \), 'n getal \(t \in [0,1] \) sodat \(f_2(t) = \gamma \). Dan is \(f_2(t) = \mu_2([0,1]) = \gamma \). Laat \(\Gamma = \{ A \in B_1 : \mu_2(A) = \gamma \} \). Dan is \(\Gamma \neq \emptyset \). Laat \(A_1, A_2 \in \Gamma \) en laat

\[
\mu_1(A_1 \cap N) = \alpha \text{ en } \int_{A_2} f \, d\mu_2 = \beta.
\]

Dit kan bewys word dat daar 'n versameling \(A \in B_1 \) bestaan wat \(\mu_2(A) = \gamma \) bevredig, waarvoor \(\mu_1(A) = \alpha + \beta \). Vir hierdie doeleinde, laat \(A = (A_1 \cap N) \cup (A_2 \setminus (A_2 \cap N)) \). Dan is \(\mu_2(A) = \mu_2(A_1 \cap N) + \mu_2(A_2 \setminus (A_2 \cap N)) = \mu_2(A_2) = \gamma \) en vanaf (3.21) en (3.22) volg dit dan dat

\[
\mu_1(A) = \mu_1(A_1 \cap N) + \mu_1(A_2 \setminus (A_2 \cap N)) = \alpha + \int_{A_2 \setminus (A_2 \cap N)} f \, d\mu_2 + \mu_1((A_2 \setminus (A_2 \cap N)) \cap N) = \alpha + \int_{A_2} f \, d\mu_2 = \alpha + \beta.
\]

57
Die geslotenheid van \(\{\mu_1(A) : A \in \Gamma\} \) volg vanaf die volgende twee hulpstelling.

Lemma 3.5.2:

Die versameling \(\Lambda_{\gamma} = \{\mu_1(A \cap N) : A \in \Gamma\} \) is 'n geslote interval.

Bewys:

Kyk na [BUCH, pp.55, 56].

Lemma 3.5.3:

Die versameling \(\Omega_{\gamma} = \{\int_A f d\mu_2 : A \in \Gamma\} \) is 'n geslote interval.

Bewys:

Kyk na [BUCH, pp.56-65].

Dit voltooi dan die skets van die bewys van Stelling 3.5.1.

Hierdie vierde deel van Buch se artikel word afgesluit met 'n twee-dimensionele analoog aan Stelling 3.4.3, dit wil sê, 'n bewys dat Stelling 3.5.1 in die geval van 'n algemene meetbare ruimte \((T', A')\) ook geld.

Laat \(T \) 'n nie-leë versameling wees, \(A \) 'n \(\sigma \)-algebra van subversameling van \(T \) en \(\mu_1 : A \rightarrow \mathbb{R} \) en \(\mu_2 : A \rightarrow \mathbb{R} \) begrensde mate. Laat \(p = (\mu_1, \mu_2) \).

Stelling 3.5.4 [BUCH, p.65]

Die versameling \(\mathcal{R}(p) \) is geslote in \(\mathbb{R}^2 \).

Skets van die bewys:

Laat \((A_n : n \in \mathbb{N}) \) 'n ry in \(A \) wees met die eienskap dat die ry \((p(A_n) : n \in \mathbb{N}) \) in \(\mathcal{R}(p) \) na \((t, s)\) konvergeer. Die doel is om te wys dat daar 'n versameling \(A \in A \) bestaan waarvoor \(p(A) = (t, s) \). Laat \(A_1 \) die \(\sigma \)-algebra wees gegenereer deur die klas \(\{A_1, A_2, ..., A_n, ...\} \) en
laat \(B_1 \) die Borel-klas van \([0,1]\) wees (soos in Stelling 3.4.2). Deur soortgelyke argumente as in die bewys van Stelling 3.4.3 te gebruik, volg dit dat daar ooreenkomsstige begrense mate \(\mu_{11} : B_1 \to \mathbb{R} \) en \(\mu_{21} : B_1 \to \mathbb{R} \) onderskeidelik bestaan sodat \(R(\mu_{11}) = R(\mu_{1}|A_1) \) en \(R(\mu_{21}) = R(\mu_{2}|A_1) \), waar beide \(R(\mu_{11}) \) en \(R(\mu_{21}) \) geslote is (vanaf Stelling 3.4.2). As \(p_1 = (\mu_{11}, \mu_{21}) \), dan is \(R(p_1) = R(\mu_{11}) \times R(\mu_{21}) \) geslote, en \(R(p_1) = R(p|A_1) \). Aangesien \((t, s) \in R(p|A_1) \), volg dit dat daar 'n versameling \(A \in \mathcal{A} \) bestaan sodat \(p(A) = (t, s) \). Dan is die stelling bewys. Deur \(\mu_1 = \mu_2 \) te stel volg dit dat Stelling 3.4.3 'n spesiale geval van Stelling 3.5.4 is.

Buch volstaan dus met laaggenoemde resultaat, en kom tot die gevolgtrekking dat 'n deeglike studie eers gemaak moet word van die funksie \(p \) wat in (\(* \)) van hierdie hoofstuk gedefinieer is [BUCH, p.69].
Hoofstuk 4

Die Konveksiteitstelling

4.1 Inleiding

Volgens die familielegende het die Lyapunov-familie hulle oorsprong by Prins Konstantyn van Galisië, die broer van die bekende Alexander Nevsky. Hierdie manne word geassocieer met die oorlog tussen Rusland en die Sweedse invallers (1240) en die Duitse ridders (1242) by die rivier Neva. Galisië was toentertyd `n prinsdom van Rusland noordoos van Moskou. In die geskiedenis van Rusland is die Lyapunov-familie se passiewolke gees duidelik sigbaar – tydens die Pools-Sweedse invalle van die jare 1598 - 1613 het die drie broers Prokopii, Zakharii en Gregorii Lyapunov `n plaaslike burgermag teen die invallers gelei.

Aan die begin van die 1900's was die Lyapunov-familie baie prominent in intellektuele kringe, onder andere in wetenskap, kuns en medisyne. So was Vasillii Aleksandroovich Lyapunov (1778-1847) `n wiskundige wat saam met Lobachefskii by die Kazan Universiteit gewerk het. Vasillii se seun Michail Vasillievich Lyapunov was die pa van drie bekende seuns, waaronder een die bekende Aleksander Michailovich Lyapunov was – hy was `n student van Chebycheff in St. Petersburg. Die familie-verhoudings het gesorg dat baie van die Lyapunov familielede met mekaar asook met die Sechenovs, Filatovs, Krylovs, Figners, ... trou. Só het hulle in `n mate hulle eie elite-groep ten tyde van die laaste Tsaar opgebou.

Alexei Andreievich Lyapunov is op 8 Oktober 1911 in Moskou in hierdie elite familie gebore. Sy ouers was eie neef en niggie en hulle gemeenskaplike Lyapunov-oupa was `n
broer van Michail Vasillievich Lyapunov. Vandaar dat A. A. soms met die meer bekende A. M. Lyapunov in wiskundegeskrifte verwar word. A. A. se primêre opleiding het hy by die huis ontvang. In 1924 word hy vir die vyfde klas by die eksperimentele skool No. 42 in die Bourman Moskou distrik ingeskryf. Alhoewel die skool meestal as taalkundig gesien is, was daar uitstekende fisika en wiskunde onderwysers vir wie se onderrigmetodes Lyapunov sy lewe lank respek gehad het.

Dit is tydens sy skooljare dat Lyapunov geïnteresseer geraak het in astronomie en selfs die leier van ’n groep entoesiastiese astronome in die skool geword het. Volgens Lyapunov is hy baie verskuil in die Moskou Vereniging van Astronomie Enthoesiaste, want, al het hy nooit ’n astronoom geword nie, is dit volgens hom as gevolg van dié groep dat hy ’n student geword het. Vir interessanseheid: Lyapunov se eerste twee wetenskaplike publikasies het oor astronomie gehandel.

In 1928 begin Lyapunov by die Fisika-Wiskunde Fakulteit by die Moskou Staatsuniversiteit studeer. Hierdie leerervaring was egter van korte duur: nadat Lyapunov geweier het om ’n petisie te teken oor die vernietiging van gewone kerke in Moskou (petisies en veldtoeë van hierdie aard was in daardie tyd hoogmode), het hy konflik gehad met medestudente. Hy het ophou klas bywoon en is aan die einde van 1929 geskors. Lyapunov is nooit weer terug na dié universiteit nie.

Lyapunov se vader, Andrei Nikolayevich Lyapunov, was self ’n wiskundige. Hy was ’n baie sosiale, wyd-geleerde persoon en ’n groot kunsliefhebber en kenner. Dit is grootliks hy wat Lyapunov beïnvloed het – nie net in die ontwikkeling van sy uitkryk oor die lewe en sy wetenskaplike voorliefdes nie, maar ook in sy menseverhoudings. A. N. Lyapunov het, as wiskundige, vir lank saam met die akademikus P. P. Lazarev gewerk en ’n hegte vriendskap met hom gekweek. Hierdie vriendskap het tot Lyapunov se voordeel gestrek toe Lazarev hom in 1930 die pos as laboratorium-assistent by die Staats Geofysisese Instituut in die seismologiese laboratorium aanbied. In 1932, saam met hierdie laboratorium,
beweeg Lyapunov as junior wetenskaplike navorsingsassistent oor na die Olie-Myn Geologiese Instituut.

Lyapunov se verdere wetenskaplike belangstellings het al hoe meer geneig na wiskunde en is gevorm onder die invloed en direkte leierskap van Nikolai Nikolayevich Luzin. Luzin was verbonde aan die Moskou Staatsuniversiteit en aan die Wiskunde-afdeling van die Steklov Instituut. Hy het Lyapunov se uitstaande talent raakgesien en het die gebied van die versamelingsteorie aan Lyapunov bekend gestel. In 1934 word Lyapunov junior wetenskaplike navorsingsassistent by die Departement van Reële Analise van die Steklov Instituut. In die jare 1934-1939 publiseer Lyapunov 'n reeks artikels oor Beskrywende Versamelingsteorie. Daarna werk Lyapunov op die gebied van toepassings van Waarskynlikheidsteorie in natuurwetenskap en tegnologie. Hy fokus veral op die toepassings van waarskynlikheidsmetodes in die ballistiek.

In die tyd net voor die Tweede Wêreldoorlog het Lyapunov se adellike geboorte en sy oortuigings swaar teen hom getel. In 1937 word hy as gevolg van personeelvermindering uit die Steklov Instituut ontslaan. In die twee jaar wat volg, doen Lyapunov kontrakwerk. In 1939 word hy weer aangestel by dieselfde instituut - dié keer as senior wetenskaplike navorsingsassistent.

Toe die oorlog in 1941 in Rusland begin, is drie van Lyapunov se jonger broers na die front gestuur. Lyapunov het geweier om 'n reservis te wees en in 1942 is hy na die Vladimir Militêre Kollege gestuur. Vanaf Oktober 1943 was hy 'n bevelvoerder van 'n peloton wat in die voorste linies geveg het.

In 1946 skryf Lyapunov vir sy doktoraat in by die Steklov Instituut in Moskou. In 1949 behaal hy sy doktorskraad met P. S. Novikov as studieleier.

In 1953 skuif Lyapunov, op uitnodiging van M. V. Keldish, vanaf die Wiskunde Departe-
ment na die Departement van Toegepaste Wiskunde van die Wiskunde Instituut. Dit is hier waar Lyapunov met kubernetika in aanraking kom - dit wat sy hooffokus sou wees vir die res van sy lewe.

Lyapunov het geglo dat die konsepte van wetenskap nie net aan sekere elite behoort nie, maar dat dit deur almal verstaan kon word as dit reg aangebied is. Om hierdie rede het hy deurgaans aandag gegee aan onderrig in sekondêre skole. In die skooljaar van 1972-1973 het Lyapunov, buiten al sy ander aktiwiteite, ‘n Wiskunde en Wetenskap program begin vir die graad 7’s van die skool No. 130 in Akademgorodok Novosibirsk, wat hy later wou uitbrei tot by die graad 12’s. Hierdie eksperiment van hom het egter onvoltooid gebly, aangesien A. A. Lyapunov op 23 Junie 1973 skielik in Moskow, waar hy vir ‘n algemene vergadering van die Akademie van Wetenskap was, oorlede is. Hy is in die Vvedensky begraafplaas in Moskow begrawe.

4.2 Konveksiteitstelling

In 1940 verskyn die eerste van vier artikels onder die titel Sur les fonctions - vecteurs complèment additives (Oor aftelbaar additiewe vektorfunksies) uit A. A. Lyapunov se pen [LYA1]. Die eerste een van hierdie vier artikels bevat die Konveksiteitstelling. Lyapunov werk met ‘n nie-leë versameling T, ‘n σ-algebra A van subversamelings van T en met ‘n begrensde, aftelbaar additiewe maat $\mu : A \to \mathbb{R}^n$. Die terdsaklike artikel (die eerste een van die vier – al vier was in Russies) bevat agt lemmas en drie stellings. Volgens Lyapunov het die maat μ ‘n saltus op ‘n versameling $E \in A$, $\mu(E) \neq 0$, as vir elke versameling $E' \subseteq E$, $E' \in A$, geld dat $\mu(E') = 0$ of $\mu(E') = \mu(E)$. In moderne notasie, en volgens Definisie 2.2.1.3, is so ‘n versameling E dus ‘n atoom met betrekking tot μ. Die Konveksiteitstelling word hier as Lyapunov se eerste twee stellings weergegee, en ‘n bewys sal in Hoofstuk 5 volledig gegee word.
Stelling 4.2.1 [LYA1, p.471]
\(\mathcal{R}(\mu)\) is geslote (omdat \(\mu\) begrens is, is \(\mathcal{R}(\mu)\) dus kompak in \(\mathbb{R}^n\)).

Stelling 4.2.2 [LYA1, p.473]
Indien \(\mu\) geen saltusse het nie (dit wil sê, indien \(\mu\) nie-atomies is), is \(\mathcal{R}(\mu)\) konveks in \(\mathbb{R}^n\).

Voorbeeld 4.2.3 [UHLJ, p.161]
Laat \(\Omega = [0, 2\pi]\) en laat \(\mathcal{A}\) die Borel \(\sigma\)-algebra van subversamplings van \(\Omega\) wees met \(\mu\) die Lebesgue-maat. Kies 'n volledige ortogonale stelsel \((w_n)_{n=0}^{\infty}\) in \(L^2(\mu)\), waar 'n volledige ortogonale stelsel 'n ortogonale stelsel is met \(\langle f, f_n \rangle = 0\) vir elke \(n \in \mathbb{N}\), impliseer dat \(f = 0\). Kies \((w_n)_{n=0}^{\infty}\) verder só dat elke \(w_n\) slegs die waardes 1 of \(-1\) aanneem en sodat \(w_0 = \chi_{[0,2\pi]}\), terwyl \(\int_0^{2\pi} w_n d\mu = 0\) vir \(n \geq 1\). Definieer, vir elke \(n\), \(\lambda_n\) op \(\mathcal{A}\) deur
\[
\lambda_n(E) = 2^{-n} \int_E \frac{1 + w_n(t)}{2} d\mu(t), \quad E \in \mathcal{A}.
\]
Definieer \(m : \mathcal{A} \to l_2\) deur
\[
m(E) = (\lambda_0(E), \lambda_1(E), ..., \lambda_n(E), ...). \tag{4.1}
\]
Let op dat
\[
\lambda_0(E) = \int_E \frac{1 + w_0(t)}{2} d\mu(t) = \frac{1}{2} \left[\int_E d\mu(t) + \int_E w_0(t) d\mu(t) \right] = \frac{1}{2} \left[\int_E d\mu(t) + \int_E \chi_{[0,2\pi]} d\mu(t) \right] = \frac{1}{2} [\mu(E) + \mu(E)] = \mu(E). \tag{4.2}
\]
Vir \(n \geq 1\), gestel dat
\[
U_n = \{ t \in [0, 2\pi] : w_n(t) = 1 \} \text{ en } V_n = \{ t \in [0, 2\pi] : w_n(t) = -1 \}. \tag{4.3}
\]
Dan is \([0, 2\pi] = U_n \cup V_n, U_n \cap V_n = \emptyset\) en \(U_0 = [0, 2\pi]\), en
\[
1 + w_n(t) = \begin{cases}
2 & \text{op } U_n \\
0 & \text{op } V_n
\end{cases}
\]

en
\[
\lambda_n(E) = \frac{1}{2\pi} \int_E (1 + w_n(t))d\mu(t)
= \frac{1}{2\pi} \mu(E \cap U_n).
\] \hspace{1cm} (4.4)

Vanuit (4.4) is
\[
\|m(E)\|_b = \left(\sum_{n=0}^{\infty} |\lambda_n(E)|^2 \right)^{\frac{1}{2}}
= \left(|\lambda_0(E)|^2 + \sum_{n=1}^{\infty} |\lambda_n(E)|^2 \right)^{\frac{1}{2}}
= \left(\left(\frac{\mu(E)}{2\pi} \right)^2 + \sum_{n=1}^{\infty} \left(\frac{1}{2\pi} \mu(E \cap U_n) \right)^2 \right)^{\frac{1}{2}}
\leq \left(\left(\frac{\mu(E)}{2\pi} \right)^2 + \sum_{n=1}^{\infty} \left(\frac{1}{2\pi} \mu(E) \right)^2 \right)^{\frac{1}{2}}
= \left(\left(\frac{\mu(E)}{2\pi} \right)^2 \left(1 + \sum_{n=1}^{\infty} \frac{1}{2\pi} \right) \right)^{\frac{1}{2}}
= \left(\left(\frac{\mu(E)}{2\pi} \right)^2 \left(1 + \frac{1}{3} \right) \right)^{\frac{1}{2}}
\leq 2\mu(E)\text{ vir elke } E \in \mathcal{A}.
\]

Dus is \(m\) 'n aftelbaar additiewe vektormaat van begrensde variasie wat nie-atomies is, aangesien \(\mu\), en dus \(\lambda_n\), nie-atomies is vir \(n \geq 0\).

Verder, vir \(n \geq 1\), geld dat \(\mu([0, 2\pi]) = 2\pi = \mu(U_n) + \mu(V_n)\) en
\[
0 = \int_{[0,2\pi]} w_n(t)d\mu(t)
= \int_{U_n} w_n(t)d\mu(t) + \int_{V_n} w_n(t)d\mu(t)
= \mu(U_n) - \mu(V_n).
\]

Hieruit volg dat
\[
\mu(U_n) = \pi = \mu(V_n).
\] \hspace{1cm} (4.5)
Beskou, uit (4.1),

\[m([0, 2\pi]) = (\lambda_0([0, 2\pi]), \lambda_1([0, 2\pi]), \ldots, \lambda_n([0, 2\pi]), \ldots). \]

Vanuit (4.2) volg dit dat \(\lambda_0([0, 2\pi]) = \mu([0, 2\pi]) = 2\pi \) en vir \(n \geq 1 \), dat

\[\lambda_n([0, 2\pi]) = \frac{1}{2^n} \mu([0, 2\pi] \cap U_n) = \frac{1}{2^n} \mu(U_n) = \frac{\pi}{2^n}. \] \hspace{1cm} (4.6)

Dus is

\[m([0, 2\pi]) = \left(2\pi, \frac{\pi}{2}, \frac{\pi}{2^2}, \ldots, \frac{\pi}{2^n}, \ldots\right). \]

Die konveksiteit van die waardeversameling \(R(m) \) van \(m \) word nou ondersoek.

Gestel daar bestaan 'n versameling \(E \in \mathcal{A} \) sodat

\[m(E) = \frac{1}{2} m(\emptyset) + \frac{1}{2} m([0, 2\pi]) \]

\[= \frac{m([0, 2\pi])}{2}. \]

Dan volg dit vanuit (4.6) dat

\[m(E) = \left(\pi, \frac{\pi}{2^2}, \frac{\pi}{2^3}, \ldots, \frac{\pi}{2^{n+1}}, \ldots\right). \] \hspace{1cm} (4.7)

Uit (4.1), (4.7) en (4.2) volg dit dan dat \(\lambda_0(E) = \pi = \mu(E) \), en uit (4.1), (4.7) en (4.4) volg dit vir \(n \geq 1 \) dat

\[\lambda_n(E) = \frac{\pi}{2^{n+1}} \]

\[= \frac{\mu(E \cap U_n)}{2^n} \]

waaruit volg dat \(\mu(E \cap U_n) = \frac{\pi}{2} \) vir \(n \geq 1 \). Aangesien \(\mu(E) = \pi = \mu(U_n) \), volg dit vanaf

\[E = (E \cap U_n) \cup (E \setminus U_n) \]

en

\[U_n = (U_n \cap E) \cup (U_n \setminus E) \]

66
dat $\mu(E \setminus U_n) = \frac{\pi}{2} = \mu(U_n \setminus E)$.

Dus kan afgeleid worden dat

$$\mu([0,2\pi] \setminus (E \cup U_n)) = 2\pi - \frac{\pi}{2} - \frac{\pi}{2} - \frac{\pi}{2} = \frac{\pi}{2}. $$

Definieer de functie $f : [0,2\pi] \to \mathbb{R}$ zoals volgt

$$f = \chi_E - \chi_{[0,2\pi] \setminus E}. $$

Dit betekent

$$f(t) = \begin{cases}
1 & \text{as } t \in E \\
-1 & \text{as } t \in [0,2\pi] \setminus E.
\end{cases} $$

Dan is $f w_0 = f$ op $[0,2\pi]$ en

$$\int_0^{2\pi} f w_0 d\mu = \int_0^{2\pi} f d\mu = \int_E d\mu + \int_{[0,2\pi] \setminus E} d\mu = \mu(E) - \mu([0,2\pi] \setminus E) = \pi - (2\pi - \pi) = 0. $$

Vir $n \geq 1$ geld vanuit (4.3) en (4.8) dat

$$f(t)w_n(t) = \begin{cases}
1 & \text{as } t \in E \cap U_n \\
-1 & \text{as } t \in E \setminus U_n \\
-1 & \text{as } t \in U_n \setminus E \\
1 & \text{as } t \in [0,2\pi] \setminus (E \cup U_n).
\end{cases} $$

In die geval geld dat

$$\int_0^{2\pi} f w_n d\mu = \int_0^{2\pi} (\chi_E - \chi_{[0,2\pi] \setminus E})w_n d\mu = \int_{[0,2\pi] \setminus E \cup U_n} f w_n d\mu + \int_{E \setminus U_n} f w_n d\mu + \int_{E \cap U_n} f w_n d\mu + \int_{U_n \setminus E} f w_n d\mu = \mu([0,2\pi] \setminus (E \cup U_n)) + \mu(E \setminus U_n) - \mu(E \cap U_n) - \mu(U_n \setminus E) = \frac{\pi}{2} + \frac{\pi}{2} - \frac{\pi}{2} - \frac{\pi}{2} = 0. $$

67
Aangesien \(f \in L^2([0, 2\pi]) \) en \(f \neq 0 \) is dit teenstrydig met die volledigheid van \((w_n)_{n=0}^{\infty} \) en is \(\mathcal{R}(m) \) dus nie konveks nie.

Voorbeeld 4.2.4

Die Konveksiteitstelling kan ook faal indien die maat atomies en eindig-dimensioneel is:
Laat \(T = \{t_0\}, \mathcal{A} = \{\emptyset, T\} \) en \(\mu : \mathcal{A} \to \mathbb{R} \) gedefinieer word deur \(\mu(T) = 1 \) en \(\mu(\emptyset) = 0 \). Dan is \(\mu \) atomies en \(\mathcal{R}(\mu) = \{0, 1\} \), wat geslote, maar nie konveks is nie.

'n Verdere voorbeeld aangaande \(\mathcal{R}(m) \) word in Afdeling 7.4.2 gegee.

Lyapunov se derde en vierde artikels bevat nog resultate in verband met eindige additiewe vektormate, maar dit is egter nie vir die doeleindes van hierdie studie van belang nie.

Lyapunov se artikels was almal in Russies (met klein dele wat na Frans vertaal is). Aangesien Rusland rondom die stadium waarin Lyapunov se artikels gepubliseer is 'n relatiewe afgesonderde land was, het bitter min wiskundiges van Lyapunov se artikels of stelling geweet. Was dit nie vir 'n fout wat P. R. Halmos begin het nie ([HAL1], kyk na Lemma 5.2.9) sou sake in verband met die Konveksiteitstelling vandag dalk heeltemal anders daar uitgesien het.

Toepassings van Lyapunov se stelling word in latere hoofstukke behandel.
Hoofstuk 5

Die eerste korter bewys van die Konveksiteitstelling

5.1 Inleiding

In hierdie hoofstuk word twee artikels van P. R. Halmos uit die jare 1947 en 1948 bespreek. Die beweegrede agter die artikels is om, eerstens, Buch se artikel ([BUCH]) te verkort, en, tweedens, om Lyapunov se Konveksiteitstelling van 'n eenvoudiger en korter bewys te voorsien. Ten tyde van die skryf van sy 1947-artikel ([HAL1]) was Halmos onbewus van die bestaan van die Konveksiteitstelling van 1940. Die fout wat Halmos in [HAL1] gemaak het, het natuurlik die gevolg gehad dat wiskundiges van Lyapunov se Konveksiteitstelling deur middel van Halmos se 1948-artikel ([HAL2]) bewus geraak het. Dit het tot die eerste toepassings, veralgemenings en uitbreidings van die Konveksiteitstelling in die vroeë 1950's geleid.

Alhoewel Buch se artikel ([BUCH]) volgens homself nie werkelik noemenswaardige resultate gelewer het nie, het dit wel, soos reeds in die vorige hoofstuk genoem, die aandag van die wiskundige P. R. Halmos getrek. In sy boek *I want to be a mathematician: an automathography* ([HAL3]) skryf Halmos:

"As my own focus on measure theory began to waver, I published a couple of comments on other people's measure theory. One was on Liapunov's theorem (to the effect that the ranges of well-behaved vector-measures are closed convex sets). Kai Rander Buch
published a paper on closedness, and that paper made me angry: it struck me as wordy
and pretentious and unnecessarily complicated. Surely one can do better than that, I
said; I thought about the question, saw a way of doing much better, and dashed off a
note to the Bulletin of the A.M.S. My proof was a lot slicker than Kai Rander Buch’s and
a lot shorter, but his was right, and, to my mortification, mine turned out to be wrong.
Both Jessen and Dieudonné wrote and told me that my lemma 5, the crucial lemma, was
false. A pity; it was such a nice lemma. ... Being caught stumbling in public was all
the motivation I needed to sit down and think matters through more deeply and more
effectively. My second note came out a year after the first (1948), and it has been twice
as long (six pages), but it was elegant and correct, and has been quoted quite a bit since
then. It is all superseded now; in 1966 Lindenstrauss came out with the slickest proof to
end all proofs.” [HAL3, p.156]

Soos Halmos self opmerk (”...has been quoted quite a bit since then.”) het beide sy art-
tikels ’n baie belangrike rol in die ontwikkeling van die Konveksiteitstelling gespeel en dus
word dit relatief volledig bespreek.

5.2 Halmos se eerste poging

Laat T enige versameling wees met \mathcal{A} ’n σ-algebra van subversamelings van T. Laat
$\mu : \mathcal{A} \to \mathbb{R}$ en $\nu : \mathcal{A} \to \mathbb{R}$ eindige, nie-negatiewe, aftelbaar additiewe mate wees en
definieer $p : \mathcal{A} \to \mathbb{R}^2$ deur $p(A) = (\mu(A), \nu(A)), A \in \mathcal{A}$. Buch het in [BUCH] die volgende
bewys:

Stelling 5.2.1 $\mathcal{R}(\mu)$ is geslote in \mathbb{R}.

Stelling 5.2.2 $\mathcal{R}(p)$ is geslote in \mathbb{R}^2.

Beskou Stellings 3.4.3 en 3.5.4 vir die onderskeie bewyse.
Die doel van Halmos se 1947-artikel is om eenvoudiger bewyse van bogenoemde twee stellings te gee. Hy noem ([HAL1, p.138]) dat

- Stelling 5.2.1 'n triviaal afleiding van Stelling 5.2.2 is (stel $\nu(A) = 0$),
- daar nie 'n totaal triviaal bewys vir Stelling 5.2.2 vanaf Stelling 5.2.1 gebaseer op elementêre eienskappe van produkruimtes blyk te wees nie en dat
- beide stellings moontlik as spesiale gevalle van 'n stelling oor mate met waardes in gepaste algemene entiteite (byvoorbeeld as elemente van 'n geordende abelse groep) kan verskyn.

Aangesien $\mu(T) < \infty$, bevat T hoogstens aftelbaar veel verskillende atome. Dit volg vanaf onderstaande twee stellings. Voor die stellings egter beskou kan word, moet die volgende net genoem word:

Twee versamelings $E, F \in \mathcal{A}$ is μ-byna oral gelyke versamelings as

$$\chi_E(x) = \chi_F(x) \text{ \mu-byna oral op } T.$$

E en F word dan μ-ekwivalent genoem en word geskryf as $E \sim F$.

Stelling 5.2.3 [ZAAN, p.47]

Gestel $E, F, G \in \mathcal{A}$. Dan volg

1. $E \sim F$ as en slechts as $\mu(E \setminus F) = \mu(F \setminus E) = 0$,
2. as $E \sim F$, dan is $\mu(E) = \mu(F) = \mu(E \cap F)$,
3. as $E \sim F$, en $F \sim G$, dan is $E \sim G$ (dit wil sê, \sim is 'n ekwivalensie relasie).
Bewys:

1. \(E \sim F \iff \chi_E(x) = \chi_F(x) \) \(\mu \)-byna oral op \(T \)
\(\iff \mu(E \setminus F) = 0 = \mu(E \setminus F) \).

2. Omdat \(E \sim F \) volg dit vanaf deel 1 en \(\mu(E) = \mu(E \cap F) + \mu(E \setminus F) = \mu(E \cap F) \leq \mu(E) \) dat \(\mu(E \cap F) = \mu(E \cap F) \). 'n Soortgelyke argument word gevolg om te wys dat \(\mu(F) = \mu(E \cap F) \).

3. As \(E \sim F \) en \(F \sim G \), dan is \(\mu(E \setminus F) = \mu(F \setminus E) = \mu(F \setminus G) = \mu(G \setminus F) = 0 \). Dan is \(E \setminus G = ((E \setminus G) \cap F) \cup ((E \setminus G) \setminus F) \subset (F \setminus G) \cup (E \setminus F) \). Dus is \(\mu(E \setminus G) = 0 \). Netso kan gewys word dat \(\mu(G \setminus E) = 0 \). Dit wil sê, \(E \sim G \).

Hiermee is die bewys voltooi.

Die relasie \(\sim \) is 'n ekwivalensie relasie. Deur dit te gebruik, kan die \(\sigma \)-algebra \(\mathcal{A} \) in \(\mu \)-ekwivalensie klasse ontbind word: as \(E \in \mathcal{A} \) dan is \([E] = \{ F \in \mathcal{A} : E \sim F \} \).

Stelling 5.2.4
Beskou die maatruimte \((T, \mathcal{A}, \mu)\), met \(\mu \) 'n nie-negatiewe aftelbaar additiewe maat. 'n Versameling \(E \in \mathcal{A} \) met \(\sigma \)-eindige maat bevat hoogstens aftelbaar veel atome.

Bewys:

1. Laat \(E, F \in \mathcal{A} \) en laat beide \(E \) en \(F \) atome van \(\mu \) wees. Aangesien \(E \cap F \subset E \), is \(\mu(E \cap F) = 0 \) of \(\mu(E \cap F) = \mu(E) \). Verder, omdat \(F \cap E \subset F \) is \(\mu(F \cap E) = 0 \) of \(\mu(F \cap E) = \mu(F) \). As beide \(E \) en \(F \) atome is, dan is \(\mu(E \cap F) = 0 \) of \(\mu(E \cap F) = \mu(E \setminus F) + \mu(F \setminus E) = 0 \). Dit wil sê,

\[
\mu(E \Delta F) > 0 \text{ of } \mu(E \Delta F) = 0
\]

wat beteken \(E \sim F \) of \(E \sim F \).

Verskillende atome kan dus as onderling disjunk ten opsigte van \(\mu \) beskou word.
Atome word deur middel van \(\sim \) geïdentifiseer.

2. Laat \(E \in \mathcal{A} \) en \(0 < \mu(E) < \infty \), së \(\mu(E) = p \). Laat \(\mathcal{A}^* \) die klas van alle disjunkte atome wees wat in \(E \) (en dus in \(\mathcal{A} \)) is. As \(\mathcal{A}^* = \emptyset \), dan is \(\mathcal{A}^* \) 'n eindige klas. Gestel \(\mathcal{A}^* \neq \emptyset \). Laat

\[
\mathcal{A}_1^* = \left\{ A \in \mathcal{A}^* : \mu(A) \geq \frac{p}{2} \right\}.
\]

\(\mathcal{A}_1^* \) bevat hoogstens twee elemente (want as dit meer as twee elemente bevat elk met maat \(\geq \frac{p}{2} \), dan is die som van die mate \(> p \), wat nie kan wees nie aangesien \(\mu(E) = p \) en al die elemente van \(\mathcal{A}_1^* \) in \(E \) lê).

Laat

\[
\mathcal{A}_2^* = \left\{ A \in \mathcal{A}^* : \mu(A) \geq \frac{p}{3} \right\}.
\]

Dus bevat \(\mathcal{A}_2^* \) hoogstens drie elemente.

Deur so voort te gaan, word 'n versameling

\[
\mathcal{A}_n^* = \left\{ A \in \mathcal{A}^* : \mu(A) \geq \frac{p}{n+1} \right\}
\]

verkry wat hoogstens \(n + 1 \) elemente bevat. Dan is

\[
\mathcal{A}^* = \bigcup_n \mathcal{A}_n^*
\]

wat 'n aftelbare klas is.

Dus, as \(\mu \) 'n eindige maat is, bevat \(E \) 'n aftelbare klas van atome.

3. In die geval waar \(\mu \) 'n \(\sigma \)-eindige maat is op \(E \in \mathcal{A} \), is (per definisie):

\[
E \subset \bigcup_n T_n, \quad T_n \in \mathcal{A} \quad \text{en} \quad \mu(T_n) < \infty \text{ vir alle } n \in \mathbb{N}.
\]

Laat

\[
Y_n = T_n \setminus \bigcup_{i=1}^{n-1} T_i.
\]

73
Dan is
\[E \subseteq \bigcup_{n} Y_n, \quad Y_i \cap Y_j = \emptyset, \quad i \neq j, \quad Y_n \in \mathcal{A} \text{ vir alle } n \in \mathbb{N}, \]
sodat
\[E = \bigcup_{n} (E \cap Y_n) = \bigcup_{n} G_n, \quad \mu(G_n) < \infty. \]

Elke \(G_n \) bevat hoogstens 'n aftelbare aantal disjunkte atome (vanuit stap 2 in die bewys), dit wil sê, \(E \) bevat reeds 'n aftelbare aantal disjunkte atome.
Laat \(F \subseteq E, F \) 'n atoom. Dan is \(\mu(F) > 0 \),
\[F = \bigcup_{n} (F \cap G_n) \]
en
\[\mu(F) = \sum_{n} \mu(F \cap G_n). \]

Nie alle versamelings \(F \cap G_n \) bevredig \(\mu(F \cap G_n) = 0 \) nie. Daar bestaan 'n getal \(n_0 \)
sodanig dat
\[\mu(F \cap G_{n_0}) > 0. \]

Dan is
\[\mu(F) = \mu(F \cap G_{n_0}). \]

Dus vir alle ander versamelings \(F \cap G_n \) geld dat
\[\mu(F \cap G_n) = 0. \]

Omdat
\[\mu(F \setminus (F \cap G_{n_0}) = 0 = \mu((F \cap G_{n_0}) \setminus F) \]
is \(F \sim F \cap G_{n_0} \), wat beteken dat \(F \cap G_{n_0} \) 'n atoom in \(G_{n_0} \) is. Dus, enige atoom \(F \) in \(E \) word met 'n unieke versameling uit 'n aftelbare klas van atome geassosieer.
Daar is dus 'n aftelbare klas van disjunkte atome in \(E \), as \(E \sigma \)-eindig is.
Halmos meld verder dat elke atoom deur presies een punt voorgestel kan word. Dit kan
gedoen word aangesien daar in werklekheid (soos sopas uitgewys) met ekwivalensieklasse
van atome gewerk word. Die verteenwoordigende punt is dus net 'n punt wat in die
deursnede van al die atome in die ekwivalensieklas ŉe, wat dan die hele ekwivalensieklas
verteenwoordig.

Laat \(Y \) die vereniging van die atome van \(T \) wees en skryf \(Z = T \setminus Y \). Stelling 5.2.1 kan
vanaf die volgende drie lemmas afgelei word:

Lemma 5.2.5 [HAL1, p.139]
Elke meetbare versameling \(E \subseteq Z \) van positiewe maat bevat meetbare subversamelings
van willekeurige klein positiewe maat.

Bewys:
Soortgelyk aan die bewys van deel (a) van Stelling 2.2.1.5.

Lemma 5.2.6 [HAL1, p.139]
Die versameling van waardes van \(\mu \) op meetbare subversamelings van \(Z \) is die geslote
interval \([0, \mu(Z)]\).

Bewys:
Soortgelyk aan die bewys van deel (b) van Stelling 2.2.1.5.

Lemma 5.2.7 [HAL1, p.139]
Die versameling van waardes van \(\mu \) op meetbare subversamelings van \(Y \) is geslote.

Bewys:
Laat \(y_1, y_2, \ldots \) die punte van \(Y \) wees (dit wil sê, dit is die atome van \(T \), waar elke \(y_i \) 'n
punt van maat \(\mu(E) \) is vir elke atoom \(E \)).
Laat Γ die versameling van alle rye

$$\gamma = \{\varepsilon_1, \varepsilon_2, \ldots\}$$

wees, waar $\varepsilon_i = 0$ of 1. Elkeen van hierdie rye is begrens.
Beskou nou die diskrete twee-punt ruimte

$$A = \{0, 1\} \subset \mathbb{R}.$$

Definieer die metriek $d : A \times A \rightarrow \mathbb{R}$ deur

$$d(x, y) = \begin{cases}
1 & \text{as } x \neq y \\
0 & \text{as } x = y.
\end{cases}$$

Oop bolle op A word gedefinieer as

$$B_\varepsilon(x) = \{y \in A : d(x, y) < \varepsilon\}.$$

Daar is twee gevalle, naamlik

$$0 < \varepsilon \leq 1 : B(x, \varepsilon) = \{x\} \quad \text{en}$$
$$\varepsilon > 1 \quad : B(x, \varepsilon) = A.$$

Dit wil sê, $\{0\}, \{1\}$ en A is almal oop versamelings. Dus bestaan 'n diskrete topologie

$$\tau_d = \{\emptyset, \{0\}, \{1\}, A\}$$

en (A, τ_d) is kompak.

Beskou $A \times A$ met die diskrete topologie en in die algemeen $\Gamma = \prod_{n \in \mathbb{N}} A_n$, met $A_n = A$, met die diskrete topologie. Hierdie ruimte is kompak (Tychonoff se stelling). Aangesien Γ 'n kompakte topologiese ruimte is, volg dit dat elk van die funksies $\varepsilon_i = \varepsilon_i(\gamma)$ kontinu is.
Vanaf die feit dat $\mu(Y) < \infty$ (μ is in hierdie afdeling deurgaans eindig) tesame met Weierstrass se M-toets volg dit dat die funksie $\phi(\gamma)$ gedefinieer deur die reeks

$$\phi(\gamma) = \sum_{i=1}^{\infty} \varepsilon_i \mu(y_i)$$

76
ook 'n kontinue funksie op Γ is. Dit is bekend dat 'n kontinue afbeelding van 'n kompakte ruimte kompak en dus geslote en begrens is. Aangesien die afbeelding $\phi(\Gamma)$ presies die versameling van al die waardes van μ op subversameling van Y is, is die bewys volledig.

Alhoewel hierdie drie lemmas voldoende is vir die bewys van Stelling 5.2.1, het Halmos eers, met die oog op die bewys van Stelling 5.2.2, twee, volgens hom, maklike topologiese lemmas bewys.

Lemma 5.2.8 [HAL1, p.140]
Laat S 'n willekeurige versameling wees en laat f 'n funksie gedefinieer op S wees wat sy waardes in 'n topologiese ruimte R aanneem. 'n Nodige en voldoende voorwaarde dat daar 'n topologie in S bestaan met betrekking waartoe S kompak en f kontinu is, is dat die afbeelding $f(S)$ 'n kompakte subversameling van R is.

Bewys:
Nodig: Dit is bekend dat die kontinue beeld van 'n kompakte versameling weer kompak is.

Voldoende: Laat $S = \{A \subset S: A = f^{-1}(U), U \text{ oop in } R\}$. Aangesien $\emptyset = f^{-1}(\emptyset)$ volg dit dat $\emptyset \in S$ en aangesien $S = f^{-1}(R)$ volg dat $S \in S$. As $A_\alpha \in S$, $\alpha \in \Lambda$, waar Λ die versameling van indeks is, dan is $\bigcup_{\alpha} A_\alpha = \bigcup_{\alpha} f^{-1}(S_\alpha) = f^{-1}\left(\bigcup_{\alpha} S_\alpha\right) \in S$, waar $A_\alpha = f^{-1}(S_\alpha)$, met S_α oop in R. As $A_1, A_2, \ldots, A_n \in S$, dan is $\bigcap_{i=1}^{n} A_i = \bigcap_{i=1}^{n} f^{-1}(S_i) = f^{-1}\left(\bigcap_{i=1}^{n} S_i\right) \in S$, met $A_i = f^{-1}(S_i)$, $i = 1, 2, \ldots, n$, met S_i oop in R en dus $\bigcap_{i=1}^{n} S_i$ ook oop in R. Dus, S is 'n topologie in S. Laat $S = \bigcup_{\alpha} A_\alpha$, A_α oop in S ($A_\alpha \in S$). Dan is $S = \bigcup_{\alpha} A_\alpha = \bigcup_{\alpha} f^{-1}(U_\alpha) = f^{-1}\left(\bigcup_{\alpha} U_\alpha\right)$, met U_α oop in R. Dit het tot gevolg dat $f(S) \subset \bigcup_{\alpha} U_\alpha$ en omdat $f(S)$ kompak is, geld dit dat $f(S) \subset \bigcup_{i=1}^{n} U_{\alpha_i}$. Hieruit volg dat $S \subset f^{-1}\left(\bigcup_{i=1}^{n} U_{\alpha_i}\right) = \bigcup_{i=1}^{n} f^{-1}(U_{\alpha_i}) = \bigcup_{i=1}^{n} A_{\alpha_i}$, wat beteken dat S kompak is.

Die volgende lemma is die beslissende lemma in hierdie artikel. Dit is egter ook die lemma waaroor beide B. Jessen en J. Dieudonné aan Halmos geskryf het met die nuus dat beide
die bewering en die bewys foutief is. Dit word egter nog steeds hier in die oorspronklike vorm weergegee:

Lemma 5.2.9 [HAL1, p.140]

Gestel dat S 'n versameling is wat 'n kompakte ruimte is met betrekking tot elk van die twee topologieë T_1 en T_2. Laat T die swakste topologie op S wees (dit wil sê, die een met die minste oop versamelings) wat se oop versamelings die oop versamelings van beide T_1 en T_2 bevat. Dan is S kompak met betrekking tot T.

Bewys:

Die klas van alle versamelings van die vorm $U \cap V$, waar U oop is in T_1 en V oop is in T_2, is 'n basis van die oop versamelings van T.

As S oordek word deur versamelings van hierdie vorm, volg dit vanaf die kompakttheid hipotese dat S deur 'n eindige aantal van die U's en 'n eindige aantal van die V's oordek word.

Dan word S oordek deur die eindige klas van versamelings verkry deur elk van die eindige aantal U's se deursnede met elk van die eindige aantal V's te neem.

Die bewys van Lemma 5.2.9 is foutief as gevolg van die volgende aanname:

As S deur versamelings van die vorm $U \cap V$ oordek word, dan is die deursnede van enige U wat voorkom met enige V wat voorkom ook 'n versameling van die oordekking.

Die deursnede van twee kompakte subversamelings van 'n topologiese ruimte is egter nie noodwendig weer kompak nie.

Halmos meld in [HAL2] dat Lemma 5.2.9 waar sou wees as en slegs as elke geslote versameling van enigeen van die gegewe twee topologieë T_1 en T_2 kompak is met betrekking tot die ander topologie. Hierdie voorwaarde in ag geneem, is die volgende 'n voorbeeld waar Lemma 5.2.9 nie waar is nie:
Voorbeeld 5.2.10

Neem \((\mathbb{R}, T)\) as die Euklidiese ruimte. Definieer

\[T^* = \{ T \subseteq \mathbb{R} : T = \emptyset \text{ of } \mathbb{R}\setminus T \text{ is kompak in } (\mathbb{R}, T) \}. \]

\(T^*\) is 'n topologie vir \(\mathbb{R}\):
\(\mathbb{R} \in T^*, 0 \in T^*, T^*\) is geslote onder willekeurige verenigings en eindige deursnedes.

\((\mathbb{R}, T^*)\) is kompak:
Laat \(\mathbb{R} = \bigcup O_\alpha, O_\alpha \in T^*\). Dan is \(\mathbb{R}\setminus O_{\alpha_0}\) kompak in \((\mathbb{R}, T)\). Maar \(\mathbb{R}\setminus O_\alpha\) is kompak in \((\mathbb{R}, T)\) vir elke \(\alpha\), dus is \(O_\alpha\) oop in \((\mathbb{R}, T)\). Verder is \(\mathbb{R}\setminus O_{\alpha_0} \subseteq \mathbb{R} = \bigcup O_\alpha\) wat beteken dat \(O_{\alpha_1}, ..., O_{\alpha_n}\) bestaan sodat \(\mathbb{R}\setminus O_{\alpha_0} \subseteq \bigcup_{n=1}^{\infty} O_{\alpha_i}\). Dus is \(\mathbb{R} = O_{\alpha_0} \cup O_{\alpha_1} \cup ... \cup O_{\alpha_n}\).

\((\mathbb{R}, T^*)\) is egter nie 'n Hausdorff-ruimte nie:
Laat \(A, B \neq \emptyset\) versamelings in \(T^*\) wees en gestel \(A \cap B = \emptyset\). Dan is \(\mathbb{R}\setminus (A \cap B) = \mathbb{R}\) en dus is \((\mathbb{R}\setminus A) \cup (\mathbb{R}\setminus B) = \mathbb{R}\). Maar dit beteken \(\mathbb{R}\) is kompak in \(T\), wat 'n teen spraak is.
Beskou nou weer vir \(\mathbb{R}\) en neem 'n punt \(r = 0\). Definieer

\[\mathcal{F} = \{ T \subseteq \mathbb{R} : \mathbb{R}\setminus T \text{ is eindig of } 0 \in \mathbb{R}\setminus T \}. \]

\((\mathbb{R}, \mathcal{F})\) is 'n \(T_\text{b}\)-ruimte [STSE, p.52].

Verder is \((\mathbb{R}, \mathcal{F})\) kompak:
Laat \(\mathbb{R} = \bigcup O_\alpha\), waar \(O_\alpha \in \mathcal{F}\). Dan is \(0 \in O_{\alpha_0}\) en \(\mathbb{R}\setminus O_{\alpha_0}\) is eindig, sê \(\mathbb{R}\setminus O_{\alpha_0} = \{a_1, a_2, ..., a_p\}\). Dit het tot gevolg dat \(a_1 \in O_{\alpha_1}, ..., a_p \in O_{\alpha_p}\). Dus \(\mathbb{R} = O_{\alpha_0} \cup O_{\alpha_1} \cup ... \cup O_{\alpha_p}\).
Aangesien dit 'n \(T_\text{b}\)-ruimte is, is dit ook Hausdorff.

Laat \(A = [1, 2] \subseteq \mathbb{R}\). A is kompak in \((\mathbb{R}, T)\), \(\mathbb{R}\setminus A \subseteq T^*\), dus is \(A\) geslote in \((\mathbb{R}, T^*)\). Die vraag is nou of \(A\) geslote is in \((\mathbb{R}, \mathcal{F})\)? Dit wil sê is \(\mathbb{R}\setminus A\) oop in \((\mathbb{R}, \mathcal{F})\)? Die antwoord is nee, aangesien \(0 \notin \mathbb{R}\setminus (\mathbb{R}\setminus A) = A\) en \(A\) ook nie eindig is nie.

Dus is \(A\) nie kompak in \((\mathbb{R}, \mathcal{F})\) nie.

As beide \(T_1\) en \(T_2\) in Lemma 5.2.9 Hausdorff is, dan geld die resultaat as en slegs as \(T_1 = T_2\).

Die laaste lemma in [HAL1] lui soos volg:
Lemma 5.2.11 [HAL1, p.140]
As die mate \(\nu_1 \) en \(\nu_2 \) op \(A \) gedefinieer is en as die waardeversameling van elkeen geslopte en begrens is, dan is die versameling van alle punte van die vorm \((\nu_1(A), \nu_2(A)), A \in \mathcal{A} \), geslopte en begrens.

Aangesis Halmos van Lemma 5.2.9 gebruik maak om Lemma 5.2.11 te bewys, word die bewys van laasgenoemde uitgelaat. Tog word daar net kortliks gekyk na hoe Halmos Stellings 5.2.1 en 5.2.2 met behulp van sy lemmas (as afsluiting van sy artikel) bewys het:

As vir elke \(A \in \mathcal{A} \) geskryf kan word

\[
\nu_1(A) = \mu(A \cap Y)
\]

en

\[
\nu_2(A) = \mu(A \cap Z)
\]
dan impliseer Lemmas 5.2.6 en 5.2.7 dat die voorwaardes van Lemma 5.2.11 deur \(\nu_1 \) en \(\nu_2 \) bevreidig word. Dit volg dat die versameling van alle punte van die vorm \((\mu(A \cap Y), \mu(A \cap Z)) \) kompak is. Aangesis die funksie \(f(s, t) = s + t \) kontinu is, volg dit dat die versameling van alle getalle van die vorm

\[
\mu(A) = \mu(A \cap Y) + \mu(A \cap Z)
\]

ook kompak is. Dus is Stelling 5.2.1 bewys. Volgens Halmos is Stelling 5.2.2 dan 'n onmiddellijke afleiding van Stelling 5.2.1 en Lemma 5.2.11. Hierdie metode van bewys wys dat die veralgemening van Stelling 5.2.2 van twee na n dimensies ook waar is.

Dit is interessant dat Halmos nêrens in sy artikel [HAL1] na die Konveksiteitsstelling verwys nie. 'n Mens kan slegs spekuleer dat hy onbewus was van die bestaan van die stelling toe hierdie artikel gepubliseer is. Toe Halmos op 'n stadium (in 1998) gevra is oor wanneer hy bewus geword het van Lyapunov se stelling en wie dit vir hom uitgewys het, het hy geantwoord:
"Neither my memory nor my records are good enough to answer your questions. Let the records of history speak for themselves" [PKPM].

In [HAL2] verwys Halmos wel na Lyapunov. Die doel van hierdie tweede artikel van hom is om 'n eenvoudiger bewys van Lyapunov se resultate te gee.

5.3 Halmos se tweede poging

Die doel van hierdie 1948-artikel van Halmos, [HAL2], is om te bewys dat die waardeversameling van 'n begrensde aftelbaar additiewe maat \(\mu : A \rightarrow \mathbb{R}^N \) geslote is, en dat dit in die nie-atomiese geval ook konveks is, waar \(A \) 'n \(\sigma \)-algebra van 'n nie-leë versameling van \(T \) is. Laat \(\mu = (\mu_1, ..., \mu_N) \) 'n begrensde, aftelbaar additiewe maat wees wat sy waardes in 'n \(N \)-dimensionele reële vektorruimte aannem. Die maat \(\mu \) is nie-negatief as \(\mu_i(A) \geq 0 \) vir elke \(A \in A \) en \(i = 1, 2, ..., N \). Vir 'n een-dimensionele maat \(\mu_0 \) dui \(\mu_0^i(A) \) die totale variasie van \(\mu_0 \) op \(A \) aan en \(\mu^* = (\mu_1^*, \mu_2^*, ..., \mu_N^*) \) is dan 'n nie-negatiewe maat. Die lengte \(|\mu^*| = \mu_1^* + \mu_2^* + ... + \mu_N^* \) is 'n nie-negatiewe reëelwaardige maat. Die maat \(\mu \) is suiwier atomies as daar 'n ry \(\{A_n\} \) van disjunkte meetbare versameling bestaan sodat \(T = \bigcup_{n=1}^{\infty} A_n \) en elke \(A_n \) 'n atoom van elke \(\mu_i, i = 1, 2, ..., N \), is; \(\mu \) is suiwier nie-atomies as geen van sy koërdinate \(\mu_i, i = 1, 2, ..., N \), enige atome het nie, dit wil sê, \(\mu \) is suiwier nie-atomies as elke van sy koördinate \(\mu_i \) nie-atomies is. Kyk na Stelling 5.3.16 en Lemma 10.3.6 in verband met hierdie resultaat. Verder is \(\mu \) semi-konveks as elke meetbare versameling \(A \) 'n meetbare versameling \(F \) bevat waarvoor \(\mu(F) = \frac{d(A)}{2} \); \(\mu \) is konveks as vir elke meetbare versameling \(A \) die klas \(K(\mu, A) \neq \emptyset \), waar

\[
K(\mu, A) = \{\phi : A \rightarrow \mathbb{R} : 0 \leq \phi(x) < 1 \text{ en } \mu(\{x : \phi(x) < \lambda\}) = \lambda \mu(A), 0 \leq \lambda \leq 1\}.
\]

Die maat \(\mu \) is absoluut kontinu met betrekking tot die maat \(\nu \) as \(|\mu^*(A)| = 0 \) vir elke meetbare versameling \(A \) waarvoor \(|\nu^*(A)| = 0 \). Vir enige twee mate \(\mu \) en \(\nu \) bestaan daar 'n meetbare versameling \(A_0 \) sodat \(|\nu^*(A_0)| = 0 \) en \(|\mu^*(A_0)| \neq 0 \) vir elke meetbare versameling \(A \) waarvoor \(|\nu^*(A)| = 0 \), want \(|\mu^*(A_0)| = |\mu^*(A) - \mu^*(A_0)| \) en \(|\nu^*(A)| = 0 \) impliseer dat \(|\mu^*(A)| = 0 \). Aangesien \(|\nu^*(A_0)| = 0 \) volg dit dat \(|\mu^*(A_0)| = 0 \). Dit wil sê,
die maat μ' gedefinieer deur

$$\mu'(A) = \mu(A \setminus A_0)$$

is absoluut kontinu met betrekking tot ν.

Die hoofresultaat van hierdie artikel is:

Stelling 5.3.1 [HAL2, p.421]

Die waardeversameling van elke maat is geslote. Die waardeversameling van elke suiwere nie-atomiese maat is konveks.

Halmos maak gebruik van die volgende elf lemmas om bostaande te bewys:

Lemma 5.3.2 [HAL2, p.417]

As μ 'n semi-konveks maat is en E is enige meetbare versameling, dan bestaan daar 'n ry $\{E_n\}$ van meetbare subversamelings van E sodat vir elke $k = 1, 2, \ldots$ en enige k verskillende positiewe heelgetalle n_1, \ldots, n_k geld dat

$$\mu(E_{n_1} \cap \ldots \cap E_{n_k}) = \frac{1}{2^k} \mu(E).$$

Bewys:

Die bewys is deur middel van wiskundige induksie.

Laat $E_1 \subset E$, sodat

$$\mu(E_1) = \frac{\mu(E)}{2}.$$

Gestel daar bestaan meetbare versamelings E_1, \ldots, E_n wat so gekonstrueer is dat

$$\mu(E_{n_1} \cap \ldots \cap E_{n_k}) = \frac{1}{2^k} \mu(E)$$

vir enige k verskillende heelgetalle n_1, n_2, \ldots, n_k, $1 \leq n_i \leq n$, $i = 1, 2, \ldots, k$. Vir elke E_j, $j = 1, 2, \ldots, n$, is

$$\mu(E_j) = \frac{\mu(E)}{2}$$

82
en \(1 \leq n_i \leq n \). Nou moet gewys word dat 'n versameling \(E_{n+1} \) gekonstrueer kan word, sodat

\[
\mu(E_{n+1}) = \frac{\mu(E)}{2}
\]

en

\[
\mu(E_{n_1} \cap \ldots \cap E_{n_k}) = \frac{1}{2^k} \mu(E)
\]

vir enige \(k \) verskillende heelgetalle \(n_1, n_2, \ldots, n_k \), \(1 \leq n_i \leq n + 1 \), \(i = 1, 2, \ldots, k \).

Beskou versamelings van die vorm

\[
E(\epsilon_1, \ldots, \epsilon_n) = E_{1}^{\epsilon_1} \cap \ldots \cap E_{n}^{\epsilon_n}
\]

waar \(\epsilon_i = 0 \) of \(\epsilon_i = 1 \), \(i = 1, 2, \ldots, n \) (daar bestaan \(2^n \) sulke versamelings). Definieer vir enige versameling \(F \), \(F^0 = T \setminus F \) en \(F^1 = F \). Die waarde van \(\mu \) vir elk so 'n versameling is \(\frac{\mu(E)}{2^n} \). Kies vir elke versameling van die vorm (5.2) 'n meetbare subversameling \(F(\epsilon_1, \ldots, \epsilon_n) \) sodat

\[
\mu(F(\epsilon_1, \ldots, \epsilon_n)) = \frac{\mu(E(\epsilon_1, \ldots, \epsilon_n))}{2} = \frac{\mu(E)}{2^n} \cdot \frac{1}{2} = \frac{\mu(E)}{2^{n+1}}.
\]

Laat \(E_{n+1} = \bigcup(F(\epsilon_1, \ldots, \epsilon_n)) \). Dan volg dat

\[
\mu(E_{n+1}) = 2^n \mu(F(\epsilon_1, \ldots, \epsilon_n)) = \frac{2^n \mu(E)}{2^{n+1}} = \frac{\mu(E)}{2}.
\]

Vanaf die induksie hipotese volg dus dat

\[
\mu(E_{n_1} \cap \ldots \cap E_{n_k}) = \frac{1}{2^k} \mu(E)
\]

vir \(n_1, \ldots, n_k \) met \(1 \leq n_i \leq n + 1 \), \(i = 1, 2, \ldots, k \) en dus is die lemma bewys.
Lemma 5.3.3 [HAL2, p.418]

'n Semi-konveks maat is konveks.

Bewys:
Sonder verlies aan algemeenheid kan slegs die nie-negatiewe mate beskou word. Laat μ 'n nie-negatiewe, semi-konveks maat wees. Laat $\{E_n\}$ 'n ry van meetbare sub-versamplings van 'n meetbare versameling E wees, sodat vir elke $k = 1, 2, \ldots$ en enige k verskillende positiewe heelgetalle n_1, \ldots, n_k

$$\mu(E_{n_1} \cap \ldots \cap E_{n_k}) = \frac{1}{2^k} \mu(E)$$

geld. Laat

$$E_* = \liminf_{n \to \infty} E_n = \{x \in T : x \in E_n \text{ vir alle behalwe 'n eindige aantal versamelingen } E_n \}$$

en definieer die funksie $\phi : T \to \mathbb{R}$ deur

$$\phi(x) = \begin{cases} 0 & \text{as } x \in E_* \\ \sum_{n=1}^{\infty} \epsilon_n(x) / 2^n & \text{as } x \notin E_* \end{cases}$$

waar ϵ_n die karakteristieke funksie van E_n is. Per definisie is $0 \leq \phi(x) < 1$, en verder is ϕ ook meetbaar.

Vir enige diadiese rasionale getal $\lambda = \frac{k}{2^n}$, $n = 0, 1, 2, \ldots$, en $k = 1, 2, \ldots, 2^n$, is dit duidelijk dat

$$\{x : \phi(x) < \lambda\} = E_* \cup \left\{x : \sum_{i=1}^{n} \epsilon_i(x) / 2^i < \lambda\right\}.$$

Aangesien ϕ nie-negatief en meetbaar is, bestaan daar 'n ry van eenvoudige meetbare funksies $(\psi_n)_{n \geq 1}$ sodat

$$0 \leq \psi_n(x) \leq \psi_{n+1}(x), \quad x \in T, n \in \mathbb{N}$$

en

$$\phi(x) = \lim_{n \to \infty} \psi_n(x) \quad \text{vir elke } x \in T.$$
Hierdie funksies word soms as volg gedefinieer: Vir 'n vaste \(n \in \mathbb{N} \), laat

\[
E_{k,n} = \begin{cases}
\{ x \in T : \frac{k}{2^n} \leq \phi(x) < \frac{k+1}{2^n} \} & \text{as } k = 0, 1, \ldots, n2^n - 1 \\
\{ x \in T : \phi(x) \geq n \} & \text{as } k = n2^n
\end{cases}
\]

waar die versamelings \(E_{k,n} \) onderling disjunk is. Laat

\[
\psi_n(x) = \begin{cases}
\frac{k}{2^n} & \text{as } x \in E_{k,n} \text{ en } k = 0, 1, \ldots, n2^n - 1 \\
\frac{n}{2^n} & \text{as } x \in E_{k,n} \text{ en } k = n2^n.
\end{cases}
\]

Dan volg dat

\[
\left\{ x : \sum_{i=1}^{n} \frac{\epsilon_i(x)}{2^i} < \lambda \right\} = \bigcup_{j=1}^{k} \left\{ x : \frac{j-1}{2^n} \leq \phi(x) < \frac{j}{2^n} \right\}
\]

sodat \(\left\{ x : \sum_{i=1}^{n} \frac{\epsilon_i(x)}{2^i} < \lambda \right\} \) dus die vereniging van presies \(k \) onderling disjunkte versamelings is wat elkeen in die vorm \(E_1^i \cap \ldots \cap E_n^i \) (\(\epsilon_i = 0 \) of \(1, i = 1, 2, \ldots, n \)) geskryf kan word. Dan is

\[
\mu(\{ x : \phi(x) < \lambda \}) = \mu(E_*) + \mu\left(\left\{ x : \sum_{i=1}^{n} \frac{\epsilon_i(x)}{2^i} < \lambda \right\} \right).
\]

Uit die definisie van \(E_* \) volg dit dat \(\mu(E_*) = \lim_{n \to \infty} \bigcap_{k=1}^{n} E_k \), en omdat \(\bigcap_{k=1}^{\infty} E_k \) bevat word in 'n versameling van die vorm \(E_{n_1} \cap \ldots \cap E_{n_p} \) volg dit uit (5.1) in Lemma 5.3.2 dat \(\mu(E_*) = 0 \). Dus volg dit dat

\[
\mu(\{ x : \phi(x) < \lambda \}) = \sum_{j=1}^{k} \mu\left(\left\{ x : \frac{j-1}{2^n} \leq \phi(x) < \frac{j}{2^n} \right\} \right)
= \frac{k}{2^n} \mu(E)
= \lambda \mu(E),
\]

(5.3)

Dit is bekend dat enige getal \(\lambda \in [0, 1] \) geskryf kan word in die vorm

\[
\lambda = \sum_{k=1}^{\infty} \frac{a_k}{2^k}, \quad a_k \in \{0, 1\}
\]

en dat hierdie voorstelling uniek is as \(x \) nie 'n getal van die vorm \(\frac{m}{2^n} \), \(m = 1, 3, \ldots, 2^n - 1 \), is nie [NATA]. Die uitbreiding van (5.3) na enige \(\lambda \in [0, 1] \) volg dus uit die aftelbaar
additiwiteit van die maat μ.

Lemma 5.3.4 [HAL2, p.418]
Laat μ 'n nie-negatiewe, konvexe maat wees en laat E enige meetbare versameling wees. As $\phi \in K(\mu, E)$ en as ν 'n maat is wat absoluut kontinu is met betrekking tot μ, dan is

$$\nu(\{x : \phi(x) < \lambda\})$$

'n kontinue funksie van λ, $0 \leq \lambda \leq 1$.

Bewys:
Kies vir enige $\varepsilon > 0$ 'n $\delta > 0$ sodat $|\nu(F)| \leq |\mu^*(F)| < \varepsilon$ vir elke meetbare versameling F waarvoor $|\mu(F)| = |\mu^*(F)| < \delta$ [SAKS]. Neem nou $0 \leq \lambda_1 < \lambda_2 \leq 1$ en $(\lambda_2 - \lambda_1)|\mu(E)| < \delta$.

Dit volg dan dat

$$|\mu(\{x : \lambda_1 \leq \phi(x) < \lambda_2\})| = |\mu(\{x : \phi(x) < \lambda_2 - \lambda_1\})|$$

$$= (\lambda_2 - \lambda_1)|\mu(E)|$$

$$< \delta.$$

Dus geld vanaf die feit dat $\nu \ll \mu$ dat

$$(\lambda_2 - \lambda_1)|\nu(E)| < \varepsilon$$

$$\Rightarrow |(\lambda_2 - \lambda_1)\nu(E)| < \varepsilon$$

$$\Rightarrow |\lambda_2\nu(E) - \lambda_1\nu(E)| < \varepsilon$$

$$\Rightarrow |\nu(\{x : \phi(x) < \lambda_2\}) - \nu(\{x : \phi(x) < \lambda_1\})| < \varepsilon.$$

Dit wil sê, ν is 'n kontinue funksie.

Lemma 5.3.5 [HAL2, p.418]
As μ 'n konvexe maat is en E en F is enige twee meetbare versamelings, dan bestaan daar vir elke λ, $0 \leq \lambda \leq 1$, 'n meetbare versameling $C(\lambda)$ met die eienskappe

1. $C(0) = E$ en $C(1) = F$.

86
2. $\mu(C(\lambda)) = (1 - \lambda)\mu(E) + \lambda(F)$.

3. As μ ook nie-negatief is en as ν absoluut kontinu is met betrekking tot μ, dan is $\nu(C(\lambda))$ 'n kontinue funksie.

Bewys:
Laat ϕ en ψ funksies in $K(\mu, E\setminus F)$ en $K(\mu, F\setminus E)$, respektiewelik, wees. Laat

$$C(\lambda) = (E \cap F) \cup \{x \in E\setminus F : \phi(x) < 1 - \lambda\} \cup \{x \in F\setminus E : \psi(x) < \lambda\}.$$

Dan:

1. $C(0) = (E \cap F) \cup \{x \in E\setminus F : \phi(x) < 1\} \cup \{x \in F\setminus E : \psi(x) < 0\}
 = \{x \in E\setminus F : \phi(x) < 1\} \cup (E \cap F)$, aangesien $\psi \geq 0$ per definisie
 $= E$

 $C(1) = (E \cap F) \cup \{x \in E\setminus F : \phi(x) < 0\} \cup \{x \in F\setminus E : \psi(x) < 1\}
 = (E \cap F) \cup \{x \in F\setminus E : \psi(x) < 1\}
 = F.$

2. $\mu(C(\lambda)) = \mu(E \cap F) + \mu(\{x \in E\setminus F : \phi(x) < 1 - \lambda\}) + \mu(\{x \in F\setminus E : \psi(x) < \lambda\})
 = \mu(E \cap F) + (1 - \lambda)\mu(E\setminus F) + \lambda\mu(F\setminus E)
 = (1 - \lambda)[\mu(E\setminus F) + \mu(E \cap F)] + \lambda[\mu(F\setminus E) + \mu(E \cap F)]
 = (1 - \lambda)\mu(E) + \lambda\mu(F).$

3. Dit volg direk vanaf Lemma 5.3.4, aangesien μ nie-negatief en konveks is en $\nu \ll \mu$.

Afleiding 5.3.6 [HAL2, p.419]:
Dit volg vanaf Lemma 5.3.5 (2) dat die waardeiversameling van 'n konveks maat konveks is.

Lemma 5.3.7 [HAL2, p.419]
As $\mu = (\mu_1, ..., \mu_N)$ nie-negatief en suiwernie-atomies is en as elke μ_i, $1 \leq i \leq N$, absoluut kontinu is met betrekking tot sy voorganger (dit wil sê, $\mu_{i+1} \ll \mu_i$, $i = 1, ..., N - 1$), dan
is μ konveks.

Beweis:

Aangesien semi-konveks konveks impliseer, is dit voldoende om te wys dat μ semi-konveks is. Die maat $\mu = (\mu_1, \ldots, \mu_N)$ is nie-negatief, dit wil sê, $\mu_i(E) \geq 0$ vir elke $E \in \mathcal{A}$ en $i = 1, 2, \ldots, N$. Aangesien μ verder suiker nie-atomies is, beteken dit geeneen van sy koördinate μ_i, $i = 1, 2, \ldots, N$, het enige atome nie.

Die bewys word deur middel van wiskundige induksie gedoen. Vir $N = 1$ geld dat $\mu = \mu_1$; omdat μ nie-atomies is, volg dit uit Lemma 5.3.6 dat daar vir alle meetbare E'n meetbare versameling F, $F \subseteq E$, bestaan sodat $\mu(F) = \frac{\mu(E)}{2}$. Die maat μ is gevolglik semi-konveks, en dus konveks.

Gestel in die geval waar $N > 1$, dat die $(N-1)$-dimensionele maat $\mu' = (\mu_1, \ldots, \mu_{N-1})$ semi-konveks is. Vanaf die induksie hipoteses volg dit dus dat die een-dimensionele maat $\nu' = \mu_N$ absoluut kontinu is met betrekking tot μ'. Aangesien μ' semi-konveks is, volg dit dat enige meetbare versameling E'n meetbare versameling E_0 bevat sodat

$$\mu'(E_0) = \frac{\mu'(E)}{2}.$$

Laat nou $F_0 = E \setminus E_0$. As $\nu'(E_0) = \frac{\nu'(E)}{2}$ dan beteken dit ν' is semi-konveks en dan sal die induksie bewys klaar wees.

Gestel dus nou dat $\nu'(E_0) < \frac{\nu'(E)}{2}$. Dan is

$$\nu'(F_0) = \nu'(E \setminus E_0)$$
$$= \nu'(E) - \nu'(E_0)$$
$$> \frac{\nu'(E)}{2}.$$

Aangesien μ' 'n semi-konvekse maat is, is μ' konveks. Die versameling E_0 en F_0 is meetbaar. Lemma 5.3.5 kan dan toegepas word: vir elke λ, $0 \leq \lambda \leq 1$, bestaan daar 'n
meetbare versameling $C(\lambda)$ sodat

$$
\mu'(C(\lambda)) = (1 - \lambda)\mu'(E_0) + \lambda\mu'(F_0)
$$

$$
= (1 - \lambda)\frac{\mu'(E)}{2} + \lambda\frac{\mu'(E)}{2}
$$

$$
= \frac{\mu'(E)}{2}
$$

en aangesien $\nu' \ll \mu'$ en μ' is nie-negatief, volg dit vanaf Lemma 5.3.5 dat $\nu'(C(\lambda))$ 'n kontinue funksie van λ is. Uit die tussenwaardestelling vir kontinue funksies volg dit dat daar 'n $\lambda \in [0,1]$ bestaan sodat $\nu'(C(\lambda)) = \frac{1}{2}\nu'(E)$.

Dit is bekend dat $\mu = (\mu_1, ..., \mu_N)$ en dat $\mu'(C(\lambda)) = \frac{\mu'(E)}{2}$, $\nu'(C(\lambda)) = \frac{\nu'(E)}{2}$ en dat $\mu = \mu' + \nu'$. Dan is

$$
\mu(C(\lambda)) = (\mu_1(C(\lambda)), ..., \mu_{N-1}(C(\lambda)), \mu_N(C(\lambda)))
$$

$$
= \left(\frac{1}{2}\mu_1(E), ..., \frac{1}{2}\mu_{N-1}(E), \frac{1}{2}\mu_N(E)\right)
$$

$$
= \frac{1}{2}\mu(E).
$$

Dit wil sê, μ is semi-konveks, en dus konveks.

\textbf{Lemma 5.3.8 [HAL2, p.419]}

'N Suiwer nie-atomiese nie-negatiewe maat is konveks.

\textbf{Bewys:}

Gestel μ is 'n suiwer nie-atomiese, nie-negatiewe maat. Om te bewys dat μ konveks is, is dit weer eens voldoende om te wys dat dit semi-konveks is. Laat

$$
\mu'_i = \sum_{n=i}^{N} \mu_n.
$$

Dit wil sê,

$$
\mu'_1 = \mu_1 + \mu_2 + ... + \mu_N
$$

$$
\mu'_2 = \mu_2 + \mu_3 + ... + \mu_N
$$

$$
\vdots
$$

$$
\mu'_N = \mu_N
$$

89
Duidelik is \(\mu_{i+1} \ll \mu_i \), want vir \(\mu_i'(E) = 0 \) volg dit outomatis dat \(\mu_2'(E) = 0 \), aangesien \(\mu \) nie-negatief is, soortgelyk volg dit dat \(\mu_3' \ll \mu_2' \), ensovoorts. Verder is \(\mu_i' \) nie-atomies, \(i = 1, 2, \ldots, N \). Dit wil sê, \(\mu' = (\mu_1', \ldots, \mu_N') \) is suiwere nie-atomies en nie-negatief (per definisie) en \(\mu_{i+1}' \ll \mu_i' \). Alle voorwaardes vir Lemma 5.3.7 word bevredig en dus volg dit dat \(\mu' \) semi-konveks en gevolglik konveks is.

Laat \(\phi(\mu) = \mu' = (\mu_1 + \mu_2 + \ldots + \mu_N, \mu_2 + \ldots + \mu_N, \ldots) \). Dan is \(\phi \) lineër; laat \(L = \phi^{-1} \).

Dan is \(L(\mu') = \mu \). Laat \(E \) enige meetbare versameling wees. Dan bestaan daar 'n versameling \(E_0 \subset E \) sodat \(\mu(E_0) = (L(\mu')(E_0)) = L(\mu'(E)) = \frac{1}{2}L(\mu(E)) = \frac{1}{2}L(\mu')(E) = \frac{1}{2}\mu(E) \). Dan is \(\mu \) semi-konveks en dus konveks.

Lemma 5.3.9 [HAL2, p.420]

'n Suiwer nie-atomiese maat is konveks.

Bewys:

Beskou die maat \(\mu = (\mu_1, \ldots, \mu_N) \). Aangesien \(\mu \) suiwere nie-atomies is, volg dit dat geen \(\mu_i, i = 1, 2, \ldots, N \), enige atome bevat nie. Vir elke \(i = 1, 2, \ldots, N \) bestaan daar 'n meetbare versameling \(E_i \) sodat

\[
\mu_i(E \cap E_i) \geq 0
\]

en

\[
\mu_i(E \setminus E_i) \geq 0
\]

vir elke meetbare versameling \(E \subseteq E_i \). Dus is

\[
0 \leq \mu_i(E \cap E_i) \leq \mu_i(E) \leq \mu_i(E_i)
\]

(wat net die definisie van nie-atomies is).

Beskou nou die versamelaars \(E_{i_1}^1 \cap \ldots \cap E_{i_N}^\varepsilon \), waar \(\varepsilon_i = 0 \) of \(1, i = 1, 2, \ldots, N \). Daar bestaan \(2^N \) sulke versamelaars. Op elke meetbare subversameling van enige van dié versamelaars, sal elke van die mate \(\mu_1, \ldots, \mu_N \) dieselfde teken hê, aangesien elke \(E_i \) meetbaar is en \(\mu_i(E \cap E_i) \geq 0 \) vir meetbare \(E_i \). Verder, as \(\varepsilon = 0 \), dan is \(E_i^0 = T \setminus E_i \). Dan bestaan die
versamelingsfunksie \(\mu_{a_1, \ldots, a_n} = (\pm \mu_1, \ldots, \pm \mu_N) \). As die tekens vooraan elke keer so gekies word dat dit 'n nie-negatiewe maat is, dan kan Lemma 5.3.8 toegepas word om te kry dat \(\mu_{a_1, \ldots, a_n} \) semi-konveks, en dus konveks, is. Dus is die stelling bewys.

Vir die volgende lemma is dit nodig om eers 'n definisie in te voer:

Definisie 5.3.10 [GRHE, p.37]

'N Hipervlak \(H(p, \alpha) \) in \(\mathbb{R}^m \) is die versameling van alle punte \(x \in \mathbb{R}^m \) wat \(p \cdot x = \alpha \) bevredig vir 'n nie-nul vektor \(p \in \mathbb{R}^m \) en 'n skalar \(\alpha \), dit wil sê,

\[
H(p, \alpha) = \{ x \in \mathbb{R}^m : p \cdot x = \alpha \}.
\]

Die vektor \(p \) word die normaal van \(H \) genoem.

Die volgende lemma en bewys het Halmos uit [LYA1] oorgeneem. Tewens, as 'n mens fyn oplet, dan bevat Halmos se Lemmas 5.3.3 en 5.3.4 ook idees wat in [LYA1] se Lemma II voorkom.

Lemma 5.3.11 [HAL2, p.420]

As \(\mu \) 'n maat is met 'n konveks waardeversameling \(\mathcal{R}(\mu) \) en \(\Pi \) is 'n steunhipervlak van die afsluiting \(\overline{\mathcal{R}(\mu)} \), dan is \(\mathcal{R}(\mu) \cap \Pi \neq \emptyset \).

Bewys:

Laat \(L \) 'n reële, lineêre funksie op die waardeversameling van \(\mu \) wees, sodat

\[
\Pi = \{ \xi : L(\xi) = \lambda \}
\]

vir 'n reële getal \(\lambda \) (per definisie van 'n steunhipervlak). Aangesien \(\Pi \) 'n steunhipervlak van \(\overline{\mathcal{R}(\mu)} \) is, kan geskryf word

\[
\lambda = \inf\{L(\mu(E)) : E \in \mathcal{A}\}
\]

want per definisie van steunhipervlak is \(\Pi = \{ \xi : L(\xi) = \lambda \} \), waar \(L(\xi) \geq \lambda \) vir elke meetbare \(E \) en \(L(\xi) = \lambda \) vir 'n meetbare \(E \).

91
Aangesien 'n numeriese maat altyd sy minimum aanneem, bestaan daar 'n meetbare versameling E sodat

$$L(\mu(E)) = \lambda.$$

Vir hierdie E volg dit duidelik dat

$$\mathcal{R}(\mu) \cap \Pi \neq \emptyset$$

aangesien $\mu(E) \in \mathcal{R}(\mu)$ en $\mu(E) \in \Pi$.

Lemma 5.3.12 [HAL2, p.420]

As μ 'n maat is met waardeversameling $\mathcal{R}(\mu)$ en $\xi \in \mathcal{R}(\mu)$, dan bestaan daar 'n maat μ' waarvan die waardeversameling $\mathcal{R}(\mu')$ verkry word uit 'n translasie van $\mathcal{R}(\mu)$ met $-\xi$.

Verder, as μ konveks is, dan is μ' ook konveks.

Bewys:

Gestel $\xi = \mu(A)$. Skryf

$$\mu'(E) = \mu(E \setminus A) - \mu(E \cap A).$$

Vir elke meetbare versameling E kan geskryf word

$$\mu'(E) = \mu((E \setminus A) \cup (A \setminus E)) - \mu(A).$$

Dus is $\mathcal{R}(\mu') \subseteq \mathcal{R}(\mu) - \xi$.

Verder is

$$\mu(E) - \xi = \mu'((E \setminus A) \cup (A \setminus E))$$

sodat volg dat $\mathcal{R}(\mu) - \xi \subseteq \mathcal{R}(\mu')$. Dit wil sê, $\mathcal{R}(\mu') = \mathcal{R}(\mu) - \xi$.

Gestel verder dat μ semi-konveks, en dus konveks, is. Vir enige meetbare versameling E, laat F_- en F_+ meetbare subversamelings van $(E \setminus A)$ en $(E \cap A)$, respektiewelik, wees, sodat

$$\mu(F_-) = \frac{\mu(E \setminus A)}{2}$$

92
\[\mu(F_+) = \mu(E \cap A) \]

Dan volg
\[
\mu'(F_- \cup F_+) = \mu'(F_-) + \mu'(F_+)
= \mu(F_- \setminus A) - \mu(F_+ \setminus A) + \mu(F_+ \setminus A) - \mu(F_+ \setminus A)
= \mu(F_-) - \mu(F_+)
= \frac{\mu(E \setminus A)}{2} - \frac{\mu(E \cap A)}{2}
= \frac{\mu'(E)}{2}.
\]

Dus is \(\mu'\) semi-konveks, en dus konveks.

Lemma 5.3.13 [HAL2, p.420]
Die waardeversameling van 'n konveks maat is geslote.

Bewys:
Die bewys is deur middel van wiskundige induksie. Laat \(\mu = (\mu_1, \ldots, \mu_N)\) 'n konveks maat met waardeversameling \(\mathcal{R}(\mu)\) wees.

As \(\mathcal{R}(\mu)\) een-dimensioneel is, dan is \(\mu(E) = \mu_0(E)\xi\), waar \(\mu_0\) 'n numeriese maat en \(\xi\) 'n vektor is. Dan is \(\mathcal{R}(\mu)\) geslote.

Gestel nou dat \(\mathcal{R}(\mu)\) geslote is vir dimensie nie groter as \(N - 1\) nie. Die \(N\)-dimensionele geval word bewys deur te wys dat \(\overline{\mathcal{R}(\mu)} \cap \Pi \subset \mathcal{R}(\mu)\) vir elke steunhipervlak \(\Pi\) van \(\overline{\mathcal{R}(\mu)}\). Vanaf Lemma 5.3.11 is dit bekend dat \(\Pi \cap \mathcal{R}(\mu) \neq \emptyset\). Dus ontmoet \(\Pi\) en \(\mathcal{R}(\mu)\) mekaar in minstens een punt, sê \(\xi\). Vanaf Lemma 5.3.12 is dit bekend dat \(\mathcal{R}(\mu) - \xi\) die waardeversameling van 'n konveks maat is. Sonder verlies aan algemeenheid kan dus aangeneem word dat \(\Pi\) die oorsprong bevat (per definisie van 'n steunhipervlak bereik dit sy minimum op \(\mathcal{R}(\mu)\) en ook alle waardes \(\leq \alpha\)). Laat \(L\) 'n lineêre funksie wees sodat
\[
\Pi = \{\xi : L(\xi) = 0\}.
\]
\[
\inf \{L(\mu(E)) : E \in \mathcal{A}\} = 0.
\]

Definieer 'n funksie \(\nu\) deur \(\nu(E) = L(\mu(E))\). Hierdie funksie is 'n nie-negatiewe numeriese maat (\(\mu\) is 'n maat). Laat \(E_0\) 'n meetbare versameling wees sodat \(\nu(E_0) = 0\) en sodat die maat \(\mu^-\), gedefinieer deur \(\mu^-(E) = \mu(E \setminus E_0)\), absoluut kontinu is met betrekking tot \(\nu\).

Laat \(\mathcal{R}(\mu^+)\) die waardeversameling van die maat \(\mu^+\) voorstel, waar \(\mu^+(E) = \mu(E \cap E_0)\). Aangesien

\[
L(\mu^+(E)) = L(\mu(E \cap E_0)) = \nu(E \cap E_0) = 0
\]

volg dit dat \(\mathcal{R}(\mu^+) \subset \Pi\).

Volgens die induksie hipotesis is \(\mathcal{R}(\mu^+)\) dus geslote (die dimensie van 'n steunhipervlak van 'n versameling met dimensie \(N\) is \((N - 1)\)). As \(\xi \in \overline{\mathcal{R}(\mu)} \cap \Pi\), dan bestaan daar 'n ry \(\{E_n\}\) van meetbare versamplings sodat \(\mu(E_n) \to \xi\) en dus

\[
\nu(E_n) = L(\mu(E_n)) \to L(\xi) = 0.
\]

Dit volg dat \(\mu(E_n \setminus E_0) = \mu^-(E_n) \to 0\) en dus \(\mu^+(E_n) = \mu(E_n \cap E_0) \to \xi\). Aangesien \(\mu^+(E_n) \in \mathcal{R}(\mu^+)\) en \(\mathcal{R}(\mu^+)\) geslote is, volg dit dat \(\xi \in \overline{\mathcal{R}(\mu^+)} \subseteq \mathcal{R}(\mu)\) en dus dat \(\overline{\mathcal{R}(\mu)} \cap \Pi \subseteq \mathcal{R}(\mu)\).

Opmerking 5.3.14: In 1966 het V. Baumann [BAUM] aangetoon dat as \(\overline{\mathcal{R}(\mu)} \cap \Pi\) begrens is dan is \(\overline{\mathcal{R}(\mu)} \cap \Pi \subseteq \mathcal{R}(\mu)\).

Lemma 5.3.15 [HAL2, p.421]

Die waardeversameling van 'n nie-negatiewe maat is geslote.

Bewys:

Laat \(\mu = (\mu_1, \ldots, \mu_N)\) 'n nie-negatiewe maat wees en laat \(M = (m_{ij})\) 'n nie-singuliere
\((N \times N)\)-matriks wees met positiewe elemente. Skryf
\[\mu' = (\mu'_1, ..., \mu'_N) = M\mu \]
waar elk van die nie-negatiewe mate \(\mu'_1, ..., \mu'_N\) absoluut kontinu is met betrekking tot elke ander een. Aangesien die waardeversameling van \(\mu\) verkry kan word vanaf die waardeversameling van \(\mu'\) deur \(M^{-1}\) toe te pas, kan aangeneem word dat \(\mu\) ook die absoluut kontinue eienskap het, dit wil sê, enige atoom van enigeen van die \(\mu_i, i = 1, 2, ..., N\), is ook 'n atoom van al die ander koördinate. As \(Y\) die vereniging van die (hoogstens aftelbare) gemene atome is en \(Z = T \setminus Y\) en as \(\mu'(E) = \mu(E \cap Y)\) en \(\mu''(E) = \mu(E \cap Z)\), dan is \(\mu'\) suiwier atomies en \(\mu''\) is suiwier nie-atomies. Verder is \(\mathcal{R}(\mu) = \mathcal{R}(\mu') + \mathcal{R}(\mu'')\). Die geslotenheid van \(\mathcal{R}(\mu'')\) volg vanaf Lemmas 5.3.9 en 5.3.12, terwyl die geslotenheid van \(\mathcal{R}(\mu')\) in Lemma 5.2.7 bewys word.

In [HAL2] gebruik Halmos 'n begrensde aftelbaar additiewe maat \(\mu = (\mu_1, \mu_2, ..., \mu_N)\). Dit is duidelik dat 'n atoom vir \(\mu\) ook 'n atoom is vir minstens een koördinate \(\mu_i\). Dat die omgekeerde nie waar is nie, kan soos volg geïllustreer word:
Laat \(T = \{a_1, a_2\}\) en \(A = \{\emptyset, \{a_1\}, \{a_2\}, T\}\). Laat die maat \(\mu = (\mu_1, \mu_2)\) soos volg gedefinieer wees:
\[\mu_i(\{a_j\}) = \begin{cases} 1 \quad & \text{as } i = j \\ 0 \quad & \text{as } i \neq j \end{cases} \]
Dan is \(T\) 'n atoom vir \(\mu_1\) en vir \(\mu_2\), maar nie vir \(\mu\) nie.

Halmos het ook in [HAL2] die maat \(\mu\) as suiwier nie-atomies gedefinieer as elkeen van sy koördinate \(\mu_i, i = 1, 2, ..., N\), nie-atomies is. L. E. Dubins en E. H. Spanier het in 1961 die volgende stelling bewys wat tot gevolg het dat so 'n maat \(\mu = (\mu_1, \mu_2, ..., \mu_N)\) vervolgens as bloot nie-atomies getipeer kan word. Kyk na Lemma 6.2.2 vir 'n toepassing.

Stelling 5.3.16 [DUSP, p.9]
Die maat \(\mu = (\mu_1, \mu_2, ..., \mu_N)\) is nie-atomies as en slegs as elke \(\mu_i, i = 1, 2, ..., N\), nie-atomies is.
Bewys:
Omdat 'n atoom vir μ ook 'n atoom vir minstens een μ_i is, volg dit dat as alle μ_i nie-atomies is, dan is μ self nie-atomies. Vir die omgekeerde, word deur induksie bewys dat as A 'n atoom vir die vektormaat $\nu_k = (\mu_1, \mu_2, ..., \mu_k)$ is, dan bestaan daar 'n atoom vir die vektormaat $\nu_{k+1} = (\mu_1, \mu_2, ..., \mu_{k+1})$. Vir A geld dat $A = A' \cup A''$, waar μ_{k+1} nie-negatief is op alle subversamelings van A' en nie-positief op alle subversamelings van A'', uit die Hahn Ontbinding Stelling. Een van die versamelings A' of A'' is weer 'n atoom vir die maat ν_k. Veronderstel daar bestaan 'n atoom, sê A, vir ν_k sodat μ_{k+1} nie-negatief is op alle subversamelings van A. Laat

$$\Lambda = \{B \subseteq A : B \text{ is 'n atoom vir } \nu_k\}.$$

Die klas Λ is geslote onder eindige deursnedes, en dus ook onder aftelbare deursnedes. Daar bestaan dan 'n versameling $B_0 \subseteq A$ sodat $\mu_{k+1}(B_0) \leq \mu_{k+1}(B)$ vir alle $B \in \Lambda$. Die versameling B_0 is 'n atoom vir ν_k, dus geld dat $\nu_k(B') = 0$ of $\nu_k(B') = \nu_k(B_0)$ vir elke meetbare deelversameling B' van B_0. Omdat $\mu_{k+1}(B') \leq \mu_{k+1}(B_0) \leq \mu_{k+1}(B)$, geld dus dat $\nu_{k+1}(B') = 0$ of $\nu_{k+1}(B') = \nu_{k+1}(B_0)$, wat beteken dat B_0 'n atoom vir ν_{k+1} is. Dit voltooi die bewys.

Opmerking 5.3.17: Halmos [HAL2] bewys sy hoofstelling vir 'n begrensde maat $\mu = (\mu_1, \mu_2, ..., \mu_N)$. In 1966 het W. P. Byers [BYER] met behulp van 'n voorbeeld aangetoon dat as μ nie-atomies en onbegrens is, dan is $R(\mu)$ steeds konveks, maar nie geslote nie.

Halmos is geken as 'n uitmuntende spreker sowel as skrywer. Hy was 'n aktiewe lid van die AMS en het in 1981-1982 gedien as vise-president van hierdie instansie. Gedurende sy leeftyd het hy ook verskeie toekennings vir sy bydrae tot die wiskunde ontvang. Op 2 Oktober 2006 is Paul R. Halmos in California oorlede.
Hoofstuk 6
Eerste toepassings van die Konveksiteitstelling

6.1 Inleiding

Die eerste toepassings van die Konveksiteitstelling was in die vakgebied Statistiek. In 1951 publiseer die Amerikaanse statistikus David Blackwell twee artikels wat beide verband hou met Lyapunov se Konveksiteitstelling. Hierdie artikels bevat nie net uitbreidings van die Konveksiteitstelling nie, maar ook van die eerste toepassings daarvan in die Statistiek. In [BLA2] skryf Blackwell "...as our methods differ in detail, though not in essential idea, from those of Halmos, ...". Afgesien daarvan dat die artikels op mekaar bou, is dit ook insiggewend om na die onderliggende geskiedenis van idees te kyk.

Verder word die artikels van Chernoff, Richter en Kellerer, wat uitbreidings van die Konveksiteitstelling bevat, ook in hierdie hoofstuk gemeld.
6.2 Twee uitbreidings van die Konveksiteitstelling

In hierdie afdeling word twee uitbreidings van die Konveksiteitstelling deur Blackwell [BLA1] bespreek, tesame met enkele statistiese interpretrasies.

Die notasie is as volg: Laat T 'n nie-leë versameling wees, \mathcal{A} 'n σ-algebra van subversamelings van T en gestel die mate op \mathcal{A} is aftelbaar additief.

Blackwell formuleer Lyapunov se stelling soos volg:

Konveksiteitstelling [BLA1, p.112]

Laat $\mu_1, \mu_2, \ldots, \mu_n$ reëelwaardige nie-atomiese mate op \mathcal{A} wees. Die versameling $\mathcal{R}(\mu) = \{(\mu_1(E), \mu_2(E), \ldots, \mu_n(E)) : E \in \mathcal{A}\}$ van vektoere $(\mu_1(E), \mu_2(E), \ldots, \mu_n(E))$ is konveks.

Stelling 6.2.1 Uitbreiding 1 [BLA1, p.112]

Laat $\mu_1, \mu_2, \ldots, \mu_n$ reëelwaardige nie-atomiese mate op \mathcal{A} wees. Laat A enige subversameling van n-dimensionele Euklidiese ruimte \mathbb{R}^n wees. Laat $f = a(x) = (a_1(x), a_2(x), \ldots, a_n(x))$ enige \mathcal{A}-meetbare funksie gedefinieer op T met waardes in A wees en definieer

$$v(f) = \left(\int a_1(x)d\mu_1, \ldots, \int a_n(x)d\mu_n \right).$$

Die versameling $\mathcal{R}(v(f))$ van vektoere $v(f)$ is konveks in \mathbb{R}^n.

Vir die bewys van hierdie uitbreiding word die volgende lemma benodig:

Lemma 6.2.2, [MARZ, p.101]

Laat T 'n nie-leë versameling wees met \mathcal{A} 'n σ-algebra van subversamelings van T. Gestel $\mu_1, \mu_2, \ldots, \mu_n$ is nie-atomiese reëelwaardige mate op \mathcal{A} en $f_i = a_i(x) = (a_{i1}(x), a_{i2}(x), \ldots, a_{in}(x))$ is 'n meetbare funksie op T, met $i = 1, 2$. Dan is die versamelingsfunksie $w : \mathcal{A} \to \mathbb{R}^{2n}$ gedefinieer deur

$$w(E) = \left(\int_E a_{11}(x)d\mu_1, \ldots, \int_E a_{1n}(x)d\mu_n, \int_E a_{21}(x)d\mu_1, \ldots, \int_E a_{2n}(x)d\mu_n \right).$$
'n nie-atomiese maat.

Bewys:
Laat $p_i : A \to \mathbb{R}$ en $q_i : A \to \mathbb{R}$ vir $i = 1, 2, ..., n$ onderskeidelik gedefinieer word deur $p_i(E) = \int_E a_{1i}d\mu_i$ en $q_i(E) = \int_E a_{2i}d\mu_i$ vir elke $E \in A$. Dit is bekend dat p_i en q_i reëelwaardige mate is. Dui die variasie van μ_i deur $v(\mu_i)$ aan, $i = 1, 2, ..., n$. Dan is $v(\mu_i)$ 'n nie-negatiewe maat op A, $i = 1, 2, ..., n$. Beskou die mate $m_i, n_i : A \to \mathbb{R}$ onderskeidelik gedefinieer deur

$$m_i(E) = \int_E |a_{1i}|dv(\mu_i)$$

en

$$n_i(E) = \int_E |a_{2i}|dv(\mu_i).$$

Die variasies van p_i en q_i is onderskeidelik

$$v(p_i(E)) = \sup \sum_{j \in J} |p_i(E_j)|$$

$$\leq \sup \sum_{j \in J} \int_{E_j} |a_{1i}|dv(\mu_i)$$

$$= m_i(E)$$

en (netso)

$$v(q_i(E)) \leq n_i(E).$$

Omdat $m_i \ll v(\mu_i)$ en $n_i \ll v(\mu_i)$, volg dit uit bostaande dat $v(p_i) \ll v(\mu_i)$ en $v(q_i) \ll v(\mu_i)$ vir $i = 1, 2, ..., n$. Gevolglik geld dat $p_i \ll v(\mu_i)$ en $q_i \ll v(\mu_i)$ vir $i = 1, 2, ..., n$. Nou word aangetoon dat $v(\mu_i)$ nie-atomies is:
Neem aan $\mu_i(E) \neq 0, E \in A, i = 1, 2, ..., n$. Vanaf die feit dat μ_i nie-atomies is, volg dit dat daar 'n versameling $E' \in A, E' \subset E$ bestaan sodat $0 \neq \mu_i(E') \neq \mu_i(E)$. Gevolglik is

$$\mu_i(E \setminus E') \neq 0.$$ Vanaf die definisie van variasie is $v(\mu_i, A) \geq \|\mu_i(A)\|$ en dus is $v(\mu_i, E), v(\mu_i, E')$ en
$v(\mu_i, E\setminus E')$ almal eindige positiewe reële getalle, aangesien vir elke i, $\mu_i(E) < \infty$. Dit wil sê,

$$0 < v(\mu_i, E') < v(\mu_i, E) \quad i = 1, 2, ..., n.$$

Dus, $v(\mu_i)$ is nie-atomies vir $i = 1, 2, ..., n$. Nou kan bewys word dat p_i nie-atomies is.

Gestel p_i is atomies. Laat E enige atoom van p_i wees. Dan is $p_i(E) \neq 0$, $E \in \mathcal{A}$.

Aangesien $p_i \ll v(\mu_i)$, volg dit dat $v(\mu_i, E) \neq 0$, $i = 1, 2, ..., n$. Laat $v(\mu_i, E) = \varepsilon$ vir elke $i = 1, 2, ..., n$. Aangesien $v(\mu_i)$ nie-atomies is vir elke $i = 1, 2, ..., n$ bestaan daar 'n versameling $E^* \subseteq E$ sodat $v(\mu_i, E^*) = \frac{\varepsilon}{2}$ vir elke $i = 1, 2, ..., n$. Dan is $v(\mu_i, E\setminus E^*) = \frac{\varepsilon}{2}$ vir elke $i = 1, 2, ..., n$. Aangesien p_i atomies is (vanaf die aanname), volg dit dat of $p_i(E^*) = 0$ of $p_i(E\setminus E^*) = 0$. Definieer nou die versameling $E_1 \in \mathcal{A}$ deur

$$E_1 = \begin{cases}
E^* & \text{as } p_i(E^*) = 0 \\
E\setminus E^* & \text{as } p_i(E\setminus E^*) = 0.
\end{cases}$$

Dan is $E_1 \subseteq E$, $p_i(E_1) = 0$ en $v(\mu_i, E_1) = \frac{\varepsilon}{2}$ vir elke $i = 1, 2, ..., n$.

Aangesien $0 < v(\mu_i, E\setminus E^*) = \frac{\varepsilon}{2}$ bestaan daar 'n versameling $E^{**} \subseteq E\setminus E^* \subseteq E$ sodat $v(\mu_i, E^{**}) = \frac{\varepsilon}{2^2}$ vir elke $i = 1, 2, ..., n$ en, $p_i(E^{**}) = 0$ of $p_i(E\setminus E^{**}) = 0$. Definieer nou die versameling $E_2 \in \mathcal{A}$ deur

$$E_2 = \begin{cases}
E^{**} & \text{as } p_i(E^{**}) = 0 \\
E\setminus (E_1 \cup E^{**}) & \text{as } p_i(E\setminus E^{**}) = 0.
\end{cases}$$

As $p_i(E^{**}) = 0$, dan is $p_i(E_2) = 0$. As $p_i(E\setminus E^{**}) = 0$, dan is

$$p_i[E\setminus (E_1 \cup E^{**})] = p_i[(E\setminus E_1)\setminus E^{**}]$$
$$= p_i(E\setminus E_1) - p_i(E^{**})$$
$$= p_i(E) - p_i(E_1) - p_i(E^{**})$$
$$= p_i(E\setminus E^{**}) - p_i(E_1)$$
$$= 0.$$

Gevolglik is $E_2 \subseteq E\setminus E_1$, $p_i(E_2) = 0$ en $v(\mu_i, E_2) = \frac{\varepsilon}{2^2}$ vir elke $i = 1, 2, ..., n$.

Deur so voort te gaan, word in die algemeen verkry dat 'n versameling $E_{k+1} \subseteq E\setminus \bigcup_{j=1}^{k} E_j$...
bestaan sodat \(v(\mu_i, E_{k+1}) = \frac{1}{2k\pi} \) vir elke \(i = 1, 2, \ldots, n \) en \(p_i(E_{k+1}) = 0, \ k = 2, 3, \ldots \).

Laat \(E_0 = E \setminus \bigcup_{j=1}^{\infty} E_j \). Die versamelings \(E_j, j = 1, 2, \ldots \), is onderling disjunk (so gedefinieer).

Dus is

\[
v(\mu_i, E_0) = v(\mu_i, E) - \sum_{j=1}^{\infty} v(\mu_i, E_j) = 0.
\]

Dan, aangesien \(p_i \ll v(\mu_i) \) vir elke \(i = 1, 2, \ldots, n \), is \(p_i(E_0) = 0 \).

Aangesien \(E = \bigcup_{j=0}^{\infty} E_j \) volg dit dat \(p_i(E) = 0 \). Maar dit weerspreek die feit dat \(p_i(E) \neq 0 \).

Dus is \(p_i \) nie-atomies. Op soortgelyke wyse kan gewys word dat \(q_i \) nie-atomies is. Dan

\[
w(E) = (p_1(E), p_2(E), \ldots, p_n(E), q_1(E), q_2(E), \ldots, q_n(E))
\]

en \(w \) is dan nie-atomies vanuit Stelling 5.3.16.

Bewys van Stelling 6.2.1:

Laat \(v(f_i) = v_i, f_i(x) = [a_{i1}(x), \ldots, a_{in}(x)], i = 1, 2 \) en beskou die 2n-dimensionele maat

\[
w(E) = \left(\int_E a_{11}(x) d\mu_1, \ldots, \int_E a_{1n}(x) d\mu_n, \int_E a_{21}(x) d\mu_1, \ldots, \int_E a_{2n}(x) d\mu_n \right).
\]

Verder is

\[
w(T) = \left(\int_E a_{11}(x) d\mu_1, \ldots, \int_E a_{1n}(x) d\mu_n, \int_E a_{21}(x) d\mu_1, \ldots, \int_E a_{2n}(x) d\mu_n \right) = (v(f_1), v(f_2))
\]

Kies \(\alpha \in (0, 1) \). Aangesien \(w \) 'n begrensde nie-atomiese maat is, is dit vanaf die Konveksiteitsstelling bekend dat die waardeversameling van \(w \), naamlik \(\mathcal{R}(w) \), konveks is. Dus

\[
\alpha w(T) + (1 - \alpha) w(\emptyset) \in \mathcal{R}(w)
\]

en dus, \(\alpha w(T) = \alpha(v_1, v_2) = (\alpha v_1, \alpha v_2) \in \mathcal{R}(w) \). Daar bestaan dus 'n versameling \(E_\alpha \in A \) sodat \(w(E_\alpha) = (\alpha v_1, \alpha v_2) \). Dan is \(w(T \setminus E_\alpha) = w(T) - w(E_\alpha) = (v_1, v_2) - (\alpha v_1, \alpha v_2) = (1 - \alpha)(v_1, v_2) = ((1 - \alpha)v_1, (1 - \alpha)v_2) \in \mathcal{R}(w) \).

101
Dit geld dan dat

\[\alpha v(f_1) + (1 - \alpha) v(f_2) = \alpha v_1 + (1 - \alpha) v_2 \]

\[= \left(\int_{E_\alpha} a_{11}(x) d\mu_1, \int_{E_\alpha} a_{12}(x) d\mu_2, \ldots, \int_{E_\alpha} a_{1n}(x) d\mu_n \right) + \]

\[\left(\int_{T \setminus E_\alpha} a_{21}(x) d\mu_1, \int_{T \setminus E_\alpha} a_{22}(x) d\mu_2, \ldots, \int_{T \setminus E_\alpha} a_{2n}(x) d\mu_n \right) \]

\[= \left(\int (a_{11}(x) \chi_{E_\alpha} + a_{21}(x) \chi_{T \setminus E_\alpha}) d\mu_1, \int (a_{12}(x) \chi_{E_\alpha} + a_{22}(x) \chi_{T \setminus E_\alpha}) d\mu_2, \ldots, \int (a_{1n}(x) \chi_{E_\alpha} + a_{2n}(x) \chi_{T \setminus E_\alpha}) d\mu_n \right) . \]

Laat \(f : T \rightarrow A \) gedefinieer word deur

\[f = f_1 \chi_{E_\alpha} + f_2 \chi_{T \setminus E_\alpha} . \]

Dan is \(f \) meetbaar en \(\alpha v(f_1) + (1 - \alpha) v(f_2) = v(f) \in \mathcal{R}(v(f)) \). Dus is \(\mathcal{R}(v(f)) \) konveks en die stelling is bewys.

Die Konveksiteitsstelling is 'n spesiale geval van Uitbreiding 6.2.1, waarin \(A = \{(0, 0, \ldots, 0), (1, 1, \ldots, 1)\} \subset \mathbb{R}^n \). Dan is \(f = (\chi_E, \chi_{E_1}, \ldots, \chi_{E_n}) \), \(E \in A \), wat tot gevolg het dat \(v(f) = (\mu_1(E), \mu_2(E), \ldots, \mu_n(E)) = \mu(E) \) en \(\mathcal{R}(v(f)) \) is kompakt en, in die nie-atomiese geval, konveks.

In die taal van Statistiek kan hierdie uitbreiding soos volg herformuleer word, waar \(\mu_1, \mu_2, \ldots, \mu_n \) nou waarskynlikheidsmate is:

Die statistikus neem \(x \) waar, en moet nou 'n besluit \(d \) maak. Elke besluit het 'n verlies tot gevolg, wat afhang van die besluit \(d \) en van die ware onderliggende verdeling van \(T \) (waaruit \(x \) getrek is). As die ware verdeling \(u_i \) is, is die verlies gelyk aan \(a(i, d) \). 'n Suwer strategie is 'n deterministiese funksie \(d(x) \), dit wil sê, op grond van die waarneming \(x \), word besluit \(d(x) \) gemaak. 'n Gemengde strategie sal wees indien die statistikus oor \(k \) verskillende funksies \(d_1(x), \ldots, d_k(x) \) beskik en dan een van die strategieë kies met waarskynlikhede \(p_1, p_2, \ldots, p_k \) waar \(\sum_{i=1}^{k} p_i = 1 \). Gestel \(d_i(\cdot) \) is gekies, dan word besluit \(d_i(x) \)
geneem. 'n Strategie is 'n meetbare funksie \(f = a(x), f : T \to A \), sodanig dat wanneer die uitkoms \(x \) plaasvind, die waarde van die strategie \(a(x) \) is. In meer eenvoudige taal is 'n strategie, vir die statistikus, 'n funksie \(f = a(x), f : T \to A \), wat spesifiseer watter aksie geneem moet word (dit wil sê, watter verliesvektor gekies moet word) wanneer \(x \) waargeneem word.

In 'n statistiese besluitnemingsprobleem waarin daar slegs 'n eindige aantal moontlike verspreidings is wat elk nie-atomies is, is gemengde strategieë van die statistikus se kant af onnodig aangesien enigiets bereikbaar met 'n gemengde strategie reeds deur 'n suiwre strategie bereik kan word.

Hierdie herformulering in statistiese taal kan as volg verduidelik word: \(\mu_1, \ldots, \mu_n \) is waarskynlikheidsmate en \(x \) is 'n waarneming gekies volgens een van hulle. Nadat \(x \) waargeneem is, moet die statistikus 'n aksie \(d \) van 'n versameling \(D \) van moontlike aksies kies. Sy verlies deur aksie \(d \) te kies, word aangedui deur \(a(1, d), \ldots, a(n, d) \) wanneer die ware distribusie van \(x \) respektiewelik \(\mu_1, \ldots, \mu_n \) is. Dus kan die keuse van \(d \) beskryf word as die kies van \(n \) punt \(a \in A \), waar \(A \) bestaan uit die versameling van verliesvektore \(\{a(1, d), \ldots, a(n, d)\}, d \in D \). Natuurlik kan verskeie punte \(d \) tot dieselfde \(a \) lei. Twee \(d \)'s met dieselfde \(a \) kan geïdentifiseer word sodat daar geen verlies aan algemeenheid is om \(A \) te beskou as die versameling van alle moontlike aksies nie.

Slegs \(A \)-meetbare strategieë word beskou. Die verwagte verliesvektor van 'n strategie \(f \) word gegee deur \(\nu(f) = (\int a_1(x)d\mu_1, \ldots, \int a_n(x)d\mu_n) \). Die \(i \)-de komponent is die verwagte verlies van \(f \) wanneer die ware verspreiding \(\mu_i \) is. Dus is die waardeversameling van \(\nu(f) \), naamlik \(R(\nu(f)) \), die versameling van verwagte verliesvektore verkrygbaar deur suiwre strategie \(f \). Deur van gemengde strategieë gebruik te maak, kan die statistikus alle vektore in die konveksie versameling deur \(R(\nu(f)) \) bepaal, vind en slegs daardie. (Dit is al bewys dat \(R(w) \) 'n konveksie versameling is. Hierdie bewys kan uitgebrei word van \(i = 1, 2 \) na \(i = 1, 2, \ldots, k \). Dit wil sê, dat as \(R(\nu(f)) \) reeds 'n konveksie versameling is, dan word niks meer bereik deur van gemengde strategieë gebruik te maak nie.

Blackwell noem dat bostaande bespreking net van toepassing is op die aksie wat geneem
moet word nadat 'n toetspunt \(x \) vanaf opeenvolgende toetsing of andersins verkry is en
dat daar in die nie-atomies geval geen verdere bydrae gemaak word deur gemengde aksies
(besluite) te gebruik nie. Dit is egter nogsteeds moontlik dat 'n mengsel van toetsplanne
(byvoorbeeld om 'n muntstuk op te skiet om te besluit of nog 'n waarneming gedoan moet
word of nie), selfs in die nie-atomies geval, 'n verwagte verliesvektor tot gevolg kan hê
wat nie verkrygbaar is deur enige een toetsplan nie. Dit blyk egter dat niets gebaat word
daardeur om toetsplanne te meng nie; mits die toetsplanne ruimte laat vir minstens een
waarneming en mits die verspreiding van hierdie waarneming nie-atomies is.
Bostaande kan formeel saamgevat word in die volgende stelling:

Stelling 6.2.3 [BLA1, p.114]
Laat \(x = (x_1, x_2, \ldots) \) 'n ry van kansveranderlikes wees waarvan die saamgestelde verspreiding
een van die waarskynlikheidsverspreiding \(\mu_1, \ldots, \mu_n \) is. Laat \(S_1, S_2, \ldots, S_N \) opeen
volgende keusefunksies wees wat elk 'n waarneming \(x_1 \) vereis. Gestel verder dat die
verspreidings van \(x_1 \) onder \(\mu_1, \ldots, \mu_n \) nie-atomies is. Dan is enige verwagte verliesvektor
wat verkrygbaar is vanaf 'n mengsel van \(S_1, S_2, \ldots, S_N \) ook verkrygbaar vanaf 'n enkele
keusefunksie \(S \).

Bewys:
Laat \(d_j(x) \) die verlies van \(S_j \) wees wanneer die verspreiding van \(x \) \(\mu_i \) is (die verlies is 'n
funksie van \(x \) sowel as \(i \) en \(j \) aangesien die koste van waarnemings kan verander met elke
\(x \)). Dan is \(a_j = (E d_{ij}, \ldots, E d_{nj}) \), \(E \in A \), die verwagte verliesvektor van \(S_j \).
Aangesien \(S_1, S_2, \ldots, S_n \) almal vir \(x_1 \) waarnem, hoewel die statistiek nie 'n keuse-procedure
te kies tot nadat \(x_1 \) waargeneem is nie. 'n Moontlike keuse-procedure is 'n verdeling \(D \)
v an die toetsruimte in \(N \) onderling (disjunkte) eksklusiewe \(x_1 \)-versamelings \(D_1, D_2, \ldots, D_N \).
Dan word die keuse-procedure \(S_j \) gebruik as \(x_1 \in D_j \).
Die verwagte verliesvektor van \(D \) is

\[
v(D) = \left(\sum_{j=1}^{N} \int_{D_j} \phi_{ij}(x_1) d\mu_1(x_1), \ldots, \sum_{j=1}^{N} \int_{D_j} \phi_{nj}(x_1) d\mu_n(x_1) \right)
\]

104
waar $\phi_{ij}(x_1)$ die voorwaardelike verwagting van d_{ij} met betrekking tot x_1 is.

As \mathcal{D} die keuse is met $D_j = T$ en $D_i = \emptyset$ vir $i \neq j$, dan is $v(\mathcal{D}) = a_j$. Dus is dit voldoende om $\mathcal{R}(v(\mathcal{D}))$ konveks te bewys (want in daardie geval word niks meer verkry deur van gemengde strategieë gebruik te maak nie). Die konveksiteit van $\mathcal{R}(v(\mathcal{D}))$ is 'n spesiale geval van die volgende stelling, vir die geval waar $\mu_1, \mu_2, \ldots, \mu_n$ waarskynlikheidsmate is.

Ten einde die waardeversameling van $v(\mathcal{D})$ konveks te bewys, word die volgende stelling, en uitbreiding van die Konveksiteitstelling, benodig:

Stelling 6.2.4, Uitbreiding 2 [BLA1, p.114]

Laat μ_1, \ldots, μ_n nie-atomiese mate op 'n σ-algebra \mathcal{A} van subversamelings van 'n ruimte T wees. Laat $\phi_{ij}(x), i = 1, 2, \ldots, n, j = 1, 2, \ldots, N, \mathcal{A}$-meetbare funksies van x wees, elkeen integreerbaar oor T. Laat $\mathcal{D} = (D_1, D_2, \ldots, D_N)$ 'n ontbinding van T in N disjunkte versamelings wees, en definieer

$$v(\mathcal{D}) = \left(\sum_{j=1}^{N} \int_{D_j} \phi_{1j}(x_1) d\mu_1(x_1), \ldots, \sum_{j=1}^{N} \int_{D_j} \phi_{nj}(x_1) d\mu_n(x_1) \right).$$

Die waardeversameling van $v(\mathcal{D})$ is konveks.

Bewys:

Laat $\mathcal{D}_k = (D_{k1}, \ldots, D_{kN}), k = 1, 2$, twee ontbindings van T wees. Daar moet bewys word dat vir enige $\alpha \in [0, 1]$, bestaan daar 'n \mathcal{D} met $v(\mathcal{D}) = \alpha v(\mathcal{D}_1) + (1 - \alpha)v(\mathcal{D}_2)$. Skryf nou

$$m_{ij}(B) = \int_{B} \phi_{ij} d\mu_i, B \in \mathcal{A}$$

en beskou die $2nN$-dimensionele maat $w(B) = m_{ij}(B \cap D_{kj})$, $i = 1, \ldots, n; j = 1, \ldots, N; k = 1, 2$.

Aangesien $w(B)$ nie-atomies is (Lemma 6.2.2) volg dit vanaf die Konveksiteitstelling dat daar 'n versameling $B \in \mathcal{A}$ bestaan met $w(B) = \alpha w(T)$. Dit wil sê, $m_{ij}(B \cap D_{kj}) = \alpha m_{ij}(D_{kj})$. Dan is $w(T \setminus B) = (1 - \alpha)w(T)$ sodat $m_{ij}((T \setminus B) \cap D_{kj}) = (1 - \alpha)m_{ij}(D_{kj})$.

105
Definieer $D_j = B \cap D_{1j} \cup (T \setminus B) \cap D_{2j}$, $j = 1, ..., N$ en $D = (D_1, ..., D_N)$. Dan is

$$v(D) = \sum_{j=1}^{N} (m_{1j}(D_j), ..., m_{nj}(D_j))$$

$$= \alpha \sum_{j=1}^{N} (m_{1j}(D_{1j}), ..., m_{nj}(D_{1j})) + (1 - \alpha) \sum_{j=1}^{N} (m_{1j}(D_{2j}), ..., m_{nj}(D_{2j}))$$

$$= \alpha v(D_1) + (1 - \alpha)v(D_2).$$

Dus is die stelling bewys.

6.3 Verdere uitbreidings van die Konveksiteitstelling

In Blackwell se tweede artikel ([BLA2]) verkry hy weereens resultate wat uitbreidings van Lyapunov se stelling is. Halmos skryf in sy resensie van hierdie artikel vir die Mathematical Reviews, sien MR12-810, "...the author's proofs are ingenious modifications of those used by the reviewer [HAL2]." Blackwell noem self in sy artikel dat die essensiële idees daarin nie van Halmos s'n verskil nie, maar hy noem ook dat die metodes in detail wel verskil. Die idees van Blackwell is verder belangrik vir die algemene ontwikkeling omdat hy die eerste persoon was wat die Konveksiteitstelling in terme van integrale uitgedruk het – idees wat deur ander na hom gebruik en uitgebou is. Die bewyse van resultate wat in hierdie afdeling uitgelaat word, verskyn almal volledig in [BLA2].

Laat $\mu_1, \mu_2, ..., \mu_p$ afstelbare additiewe lading op A wees en laat A enige begrensde subver-

sameling van 'n Euklidies p-ruimte wees, sê van \mathbb{R}^p. As $f : T \to A$ 'n A-meetbare funksie

is, met $f = a(x) = (a_1(x), a_2(x), ..., a_p(x))$, laat $v(f) = (\int a_1(x)d\mu_1, \int a_2(x)d\mu_2, ..., \int a_p(x)d\mu_p)$
en $\mathcal{R}(v(f))$ die versameling van sulkte puntje van $v(f)$ wees. Blackwell bewys dat (i) wanneer A geslote is, is $\mathcal{R}(v(f))$ geslote en (ii) wanneer $\mu = (\mu_1, ..., \mu_p)$ nie-atomies is, is $\mathcal{R}(v(f))$ konveks. Soortgelyk as Halmos in [HAL2] beskou Blackwell twee gevalle, naamlik die geval waar μ atomies is asook die geval waar μ nie-atomies is. Hy doen dit deur T as volg te onttind: $T = T_1 + T_2$, met μ atomies oor T_1 en nie-atomies oor T_2. Dan is $\mathcal{R}(v(f))$ slegs die vektorsom van \mathcal{R}_1 en \mathcal{R}_2, waar \mathcal{R}_1 die waardeversameling van $v(f)$ op T_1 is en \mathcal{R}_2 die waardeversameling van $v(f)$ op T_2 is.

106
Opmerking 6.3.1: As $\mu : A \rightarrow \mathbb{R}$ 'n eindige nie-negatiewe maat is en $\mu_i \ll \mu$, $i = 1, 2, \ldots, p$, dan bestaan daar vanaf die Radon-Nikodým Stelling funksies $g_1, g_2, \ldots, g_p : T \rightarrow \mathbb{R}$ sodat $\mu_i(E) = \int_E g_i(t)\,d\mu$, $i = 1, 2, \ldots, p$. So 'n maat μ bestaan wel. Laat byvoorbeeld $\mu = \sum_{i=1}^{p} |\mu_i|$, waar $|\mu_i|$ die totale variasie van μ_i is, $i = 1, 2, \ldots, p$. Verder is die funksies g_i, $i = 1, 2, \ldots, p$, μ-byna oral uniek. As f A-meetbaar is, waar $f(t) = (a_1(t), a_2(t), \ldots, a_p(t))$ vir elke $t \in T$, dan is

$$v(f) = \left(\int a_1(t)\,d\mu_1, \int a_2(t)\,d\mu_2, \ldots, \int a_p(t)\,d\mu_p \right)$$

$$= \left(\int (a_1 g_1)(t)\,d\mu, \int (a_2 g_2)(t)\,d\mu, \ldots, \int (a_p g_p)(t)\,d\mu \right).$$

Beskou die multifunksie $F : T \rightarrow \mathbb{R}^p$ gedefinieer deur

$$F(t) = \{x \in \mathbb{R}^p : x = ((a_1 g_1)(t), (a_2 g_2)(t), \ldots, (a_p g_p)(t)),$$

waar $f(t) = (a_1(t), a_2(t), \ldots, a_p(t))$ vir elke $t \in T\}$$

en laat

$$S_{F} = \{h : T \rightarrow \mathbb{R}^p : h \text{ is } A \text{-meetbaar en } h(t) \in F(t) \text{ } \mu\text{-byna oral op } T\}$$

die versameling A-meetbare selektors van F wees. Die integrasie van multifunksies word in Hoofstuk 8 bespreek, maar die sogenaamde Aumann-integraal van F word egter vir oomblik in oënskou geneem:

$$\int F(t)\,d\mu = \left\{ \int h(t)\,d\mu : h \in S_{F} \right\}$$

$$= \left\{ \left(\int (a_1 g_1)(t)\,d\mu, \int (a_2 g_2)(t)\,d\mu, \ldots, \int (a_p g_p)(t)\,d\mu \right) : h \text{ is meetbaar, } h(t) = (a_1(t), a_2(t), \ldots, a_p(t)) \text{ vir elke } t \in T \right\}$$

$$= \mathcal{R}(v(h)).$$

Dit word in Stelling 9.2.3 bewys dat as μ nie-atomies is, dan is $\mathcal{R}(v(h))$ konveks. Die Aumann-integraal het toepassings in die wiskundige ekonomie, kyk na Hoofstuk 9.
Stelling 6.3.2 [BLA2, p.391]
As \(\mu \) atomies is en \(A \) is geslote, dan is \(\mathcal{R}(v(f)) \) geslote.

Bewys:
Gestel \(T = S_1 \cup S_2 \cup \ldots \) is die ontbinding van \(T \) in atome. Dan is elke \(\mathcal{A} \)-meetbare funksie konstant byna oral oor elke \(S_i \), want as \(S_i \) 'n atoom is, beteken dit \(\mu(S_i) \neq 0 \) en vir elke \(A \subset S_i \) is \(\mu(A) = 0 \) of \(\mu(A) = \mu(S_i) \), en andersins sal 'n meetbare funksie vir \(S_i \) ontbind in twee disjunkte meetbare subversamelings, elkeen met nie-nul maat. Elke funksie word gespesifiseer deur 'n ry \(\{v_i : i \in \mathbb{N}\} \), waar \(v_i \) die waarde is wat die funksie byna oral op \(S_i \) aanneem. Toelaatbare funksies is rye van punte van \(A \). Aangesien \(A \) begrens is, volg dit dat elke ry \(\{f_j : j \in \mathbb{N}\} \) van toelaatbare funksies 'n subry het wat \(\mu \)-byna oral na 'n funksie \(f^* \) konvergeer. Vanaf die geslotenheid van \(A \) volg dit dat \(f^* \) sy waardes ook in \(A \) aanneem. Dus is \(f^* \) toelaatbaar. As \(v(f_j) \rightarrow \xi \) dan is \(v(f^*) = \xi \), sodat \(\mathcal{R}(v(f)) \) geslote is.

In die nie-atomiese geval bewys Blackwell die konveksiteit van \(\mathcal{R}(v(f)) \) met behulp van die volgende:

Lemma 6.3.3 [BLA2, p.392]
As \(\mu \) enige nie-atomiese, nie-negatiewe maat op 'n Borel \(\sigma \)-algebra \(\mathcal{A} \) van subversamelings van \(T \) is, en \(f \) is enige \(\mu \)-integreerbaar funksie, dan bestaan daar 'n versameling \(S \in \mathcal{A} \) sodat \(\mu(S) = \left(\frac{1}{2}\right)\mu(T) \) en \(\int_S f(x)d\mu = \frac{1}{2} \int f d\mu \).

Stelling 6.3.4 [BLA2, p.392]
As \(\mu \) enige nie-atomiese, nie-negatiewe maat op 'n \(\sigma \)-algebra \(\mathcal{A} \) van subversamelings van \(T \) is en \(f_1, \ldots, f_n \) is enige \(\mathcal{A} \)-meetbare funksies met \(\int f_id\mu < \infty, i = 1, \ldots, n \), dan bestaan daar 'n Borel \(\sigma \)-algebra \(\mathcal{B} \subset \mathcal{A} \) sodat \(\mu \) nie-atomies is op \(\mathcal{B} \) en vir elke \(D \in \mathcal{B} \) is
\[
\int_D f_i(x)d\mu = \mu(D) \int f_i(x)d\mu.
\]
Hierdie stelling tesame met Lemma 6.3.3 kan gebruik word om die volgende stelling te bewys:

Stelling 6.3.5 [BLA2, p.393]

As μ nie-atomies is, dan is $R(v(f))$ konveks.

Hierdie stelling kom ook in Blackwell se eerste artikel [BLA1] voor en word daar bewys. Blackwell gebruik dan die nie-atomiesheid van μ en die geslotenheid van A om die geslotenheid van $R(v(f))$ te bewys.

Stelling 6.3.6 [BLA2, p.393]

Gestel A is geslote en laat L_1, \ldots, L_k enige lineêre funksies op p-dimensionele ruimte wees. Laat $\overline{R(v(f))}$ die afsluiting van $R(v(f))$ wees. Definieer verder $\lambda_i = \min\{L_i(r) : r \in \overline{R(v(f))}\}$, $S_1 = \{r \in \overline{R(v(f))} : L_1(r) = \lambda_1\}$ en induktief vir $1 < i \leq k$, $\lambda_i = \min\{L_i(r) : r \in S_{i-1}\}$, $S_i = \{r \in S_{i-1} : L_i(r) = \lambda_i\}$. Dan bestaan daar 'n punt $r \in R(v(f))$ waarvoor $L_i(r) = \lambda_i$, $i = 1, \ldots, k$.

Stelling 6.3.7 [BLA2, p.395]

As μ nie-atomies is en A is geslote, dan is $R(v(f))$ geslote.

Vir die bewys van hierdie stelling is die volgende lemma nodig:

Lemma 6.3.8 [BLA2, p.395]

Laat B enige geslote, begrensde konveksse versameling wees en laat D enige konveksse versameling met die volgende eienskap wees: (*) Vir enige lineêre funksies L_1, \ldots, L_k, as gedefinieer word $\lambda_i = \min\{L_i(x) : x \in B\}$, $B_i = \{x \in B : L_i(x) = \lambda_i\}$ en, induktief vir $1 < i \leq k$, $\lambda_i = \min\{L_i(x) : x \in B_{i-1}\}$, $B_i = \{x \in B_{i-1} : L_i(x) = \lambda_i\}$, dan is daar 'n punt $d \in B \cap D$ met $L_i(d) = \lambda_i$, $i = 1, \ldots, k$. Dan $B \subseteq D$.

109
Hierdie lemma kan deur middel van induksie op die dimensie van B bewys word. As B een-dimensioneel is, dit wil sê 'n kompakte interval, dan moet D die endpunkte van B bevat, sodat $B \subseteq D$. Gestel die lemma geld vir versameling B van dimensie minder as k en laat B k-dimensioneel wees. Die deursnit B_1 van B met enige steunhipervlak $L_1(x) = \lambda_1$, waar $\lambda_1 = \min\{L_1(x) : x \in B\}$, is 'n geslote konvekske versameling van dimensie minder as k en besit die eienskap (*) relatief tot D. Vanaf die induksie hipoteese is $B_1 \subseteq D$. Dus bevat D die deursnit van B met elke steunhipervlak, sodat $B \subseteq D$ volg.

Bewys:

Vanaf Stelling 6.3.5 volg dit dat $\mathcal{R}(v(f))$ konveks is. Stelling 6.3.6 tesame met Lemma 6.3.8 het tot gevolg dat $\mathcal{R}(v(f))$ geslote is.

Stelling 6.3.9 [BLA2, p.395]

As A geslote is, dan is $\mathcal{R}(v(f))$ geslote.

Bewys:

Deur μ in sy atomiese en nie-atomiese dele te ontbind met onderskeie waardeversameling \mathcal{R}_1 en \mathcal{R}_2, volg hierdie resultaat uit Stellings 6.3.2 en 6.3.7, deur op te let dat $\mathcal{R}(v(f)) = \mathcal{R}_1 + \mathcal{R}_2$.

Blackwell skets die volgende toepassing van sy resultate in hierdie artikel in statistiese besluitneming en spelteorie in die speciale geval waar $\mu_1, \mu_2, ..., \mu_p$ waarskynlikheidsmate is. Speler I (die natuur) kies 'n heelgetal $i = 1, 2, ..., n$. 'n Punt t word dan vanaf T gekies volgens die verspreiding μ_i, en speler II (die statistikus) neem t waar. Hy kies dan 'n punt $a = (a_1, a_2, ..., a_p) \in A$ en verloor die hoeveelheid a_i. 'n Strategie vir speler II is 'n funksie $f = a(t)$ wat aan elke punt $t \in T$ 'n punt a toekryf wat gekies moet word wanneer t waargeneem word. Die vektor $v(f)$ is die verwagte verliesvektor, waar die i-de koördinaat die verwagte verlies is van speler II wanneer speler I vir i kies en strategie f volg. Dus is $\mathcal{R}(v(f))$ die versameling van alle verliesvektore van speler II. Deur van
gemengde strategieën gebruiken te maken, kan speler II as 'n verwagte verliesvector presies die punte in die konveks versameling bepaal deur $\mathcal{R}(v(f))$ kry. Dus, wanneer $\mathcal{R}(v(f))$ konveks is, kan enige vektor wat deur 'n gemengde strategie verkry kan word reeds deur 'n suiwer strategie verkry word. As $\mathcal{R}(v(f))$ net geslote is, blyk dit nie van enige besondere speltoretiiese belang te wees nie. Wanneer $\mathcal{R}(v(f))$ egter konveks en geslote is, het speler II 'n goeie suiwer strategie. Die resultate van [BLA2] het dan tot gevolg: as $\mu_1, \mu_2, \ldots, \mu_p$ nie-atomics is, dan is 'n gemengde strategie onnodig. Verder, as A ook geslote is, dan het speler II 'n goeie suiwer strategie. Hierdie gedagtegang word in Afdeling 6.4 verder gevoer wanneer drie artikels van A. Dvoretzky, A. Wald en J. Wolfowitz bespreek word wat handel oor die uitsakeling van ewekansigheid onder gepaste voorwaardes.

Opmerking 6.3.10: Karlin en Studden het in hulle boek oor Tchebycheff-sisteme [KAST] 'n bewys van Lyapunov se stelling gegee wat nog eenvoudiger is as dié van Halmos [HAL2] en Blackwell [BLA1].

6.4 Die Uitsakeling van Ewerkansigheid

A. Dvoretzky, A. Wald en J. Wolfowitz het in 1950 een en in 1951 twee artikels geskryf aangaande die uitsakeling van ewekansigheid in sekere statistiese probleme. Hierdie artikels is onder die eerste om Halmos [HAL2] asook Lyapunov [LYA1] aan te haal. Deur terug te kyk oor die afgelope 56 jaar is dit duidelik dat hierdie artikels inderdaad baanbrekers in die spesifieke veld was. Die inbring van karakteristieke funksies van meetbare versameling in die teorie rondom die Konveksiteitsstelling van Lyapunov het metertyd wyd uitgekring, tot sover as in die Beheertreorie se 'bang-bang' beginsel. Dvoretzky, Wald en Wolfowitz se drie artikels word afsonderlik beskou.
6.4.1 Formulering van stellings

Die hoofresultaat van [DWW1] is om te wys dat gemengde strategieë uitgeskakel kan word uit statistiese keuses gegrond op die waarneming van variante met continue verdeelingsfunsies, en van spele van soortgelyke struktuur. Volgens die skrywers is die versameling van resultate in hierdie artikel, gemotiveer deur hul belangstelling in statistiese probleme. Hierdie artikel bevat resultate oor spele- en beslissingsprobleme. Dworetzky, Wald en Wolfowitz noem dat hulle metodes tot meer algemene resultate lei as wat in [DWW1] voorgestel word. Hierdie meer algemene resultate word in [DWW2] toegepas op sekwensiële spele. [DWW1] word in relatief baie detail weergegee omrede dit 'n uitbreiding van die Konveksiteitstellings bevat, maar ook omdat dit van die eerste toepassings van die stelling in hierdie uitgebreide vorm bevat. In hierdie afdeling word ses stellings uit [DWW1], elk sonder 'n bewys, weergegee. Die bewyse word in 6.4.2 gegee.

Laat T 'n nie-leë versameling wees, A 'n σ-algebra van subversameling van T en μ_k, $k = 1, 2, \ldots, p$, begrensde, reële aftelbaar additiewe mate op A.

Stelling 6.4.1.1 [DWW1, p.256]

Laat η_j, $j = 1, 2, \ldots, n$, reële nie-negatiewe A-meetbare funksies wees wat

$$\sum_{j=1}^{n} \eta_j(t) = 1 \text{ vir alle } t \in T$$

bevredig. As die mate μ_k, $k = 1, 2, \ldots, p$, nie-atomies is, dan bestaan daar 'n ontbinding van T in n disjunkte subversameling S_1, S_2, \ldots, S_n met die eienskap dat

$$\int_{T} \eta_j(t)d\mu_k = \mu_k(S_j) \quad j = 1, 2, \ldots, n; \quad k = 1, 2, \ldots, p$$

Hierdie stelling se bewys maak gebruik van Lyapunov se Konveksiteitstellings, en is ook 'n uitbreiding daarvan.

Die vereiste dat die mate nie-atomies moet wees, is van kardinale belang aangesien dit

112
hierdie aannamie is wat verantwoordelik is vir die moontlikheid om gemengde strategieë uit te skakel in die spele wat hier behandeld word. Dit is in teenstelling met die eindige spele wat oorspronklik deur J. von Neumann en O. Morgenstern beskou is [VOMO]. D. Blackwell, wat die Mathematical Reviews se resensent vir [DWW1] is, skryf in sy resensie dat die spesiale geval van Stelling 6.4.1.1 waar \(\eta_1 = \alpha \chi_A + (1 - \alpha) \chi_B \) en \(\eta_2 = 1 - \eta_1 \), met \(0 < \alpha < 1 \) en \(A, B \in \mathcal{A} \), net eenvoudig die Konveksiteitsstelling is: die waardeversameling van \((\mu_1(A), \mu_2(A), ..., \mu_\pi(A)) \) is konveks.

Beskou nou 'n twee-persoon nulsum spel waar speler I 'n eindige aantal suiwier strategieë \(i \), \(i = 1, 2, ..., m \), het, terwyl speler II se suiwier strategieë uit \(\mathcal{A} \)-meetbare funksies \(l : T \rightarrow \mathbb{R} \) bestaan wat slegs die waardes \(1, 2, ..., n \) anneem. Die uitkomst van hierdie spel wanneer hierdie strategieë gebruik word, word gegee deur

\[
K(i, l(t)) = \sum_{j=1}^{n} \mu_{ij}(A_j) \tag{6.3}
\]

waar \(A_j = \{ t \in T : l(t) = j \} \) en waar \(\mu_{ij} : \mathcal{A} \rightarrow \mathbb{R}, i = 1, 2, ..., m; j = 1, 2, ..., n \) reëlwaaide, begrensde en aftelbaar additiewe mate is. In die algemeen kan strategieë, gemeng of suiwier, voorgestel word deur vektore \(\xi = (\xi_1, \xi_2, ..., \xi_m) \) met nie-negatiewe komponente wat sommeer na een, terwyl die algemene strategie van II geskryf kan word as 'n vektorfunksie \(\eta(t) = (\eta_1(t), \eta_2(t), ..., \eta_n(t)) \) waar die komponente almal nie-negatiewe \(\mathcal{A} \)-meetbare funksies is wat (6.1) bevredig. Wanneer hierdie strategieë gebruik word, is die uitkomst

\[
K(\xi, \eta(t)) = \sum_{i=1}^{m} \xi_i \sum_{j=1}^{n} \int T \eta_j(t) d\mu_{ij}(t).
\]

'Suwer strategie van speler II kan ook voorgestel word deur die vektor \(\eta = (\eta_1, \eta_2, ..., \eta_n) \), waar \(\eta_j(t) \in \{0, 1\} \) vir \(j = 1, 2, ..., n \) en vir alle \(t \in T \). Die volgende kan maklik van Stelling 6.4.1.1 afgelei word:

Stelling 6.4.1.2 [DWW1, p.257]

As die mate \(\mu_{ij} : \mathcal{A} \rightarrow \mathbb{R}, i = 1, 2, ..., m; j = 1, 2, ..., n \), nie-atomes is, dan bestaan
daar vir elke suiwre strategie \(\eta(t) \) van speler II 'n suiwre strategie \(\eta^*(t) \) wat ekwivalent is daaraan, dit wil sê, sodat \(K(\xi, \eta(t)) = K(\xi, \eta^*(t)) \) vir alle strategieë \(\xi \) van speler I.

In meeste gevalle word die mate \(\mu_{ij} : A \to \mathbb{R} \) gedefinieer deur \(\mu_{ij}(A) = \int_A a_{ij}(t)d\mu_i(t) \), waar die mate \(\mu_i : A \to \mathbb{R}, i = 1, 2, ..., m \), die bogenoemde eienkappe het en waar die funksies \(a_{ij} : T \to \mathbb{R} \) A-meetbaar en \(\mu_i \)-integreerbaar is. Die volgende stelling volg wanneer die funksies \(a_{ij} \) almal konstant is.

Stelling 6.4.1.3 [DWW1, p.257]
As \(\mu_{ij}(A) = a_{ij}\mu_i(A) \) in Stelling 6.4.1.2, dan bestaan daar enige \(\eta(t) \) 'n suiwre strategie \(\eta^*(t) \) ekwivalent aan \(\eta(t) \) vir alle keuses van die konstantes \(a_{ij} \).

Nou word daar teruggegaan na Stelling 6.4.1.1, maar in plaas daarvan om die geval te beskou waar daar 'n eindige aantal mate \(\mu_k, k = 1, 2, ..., p \), bestaan, word die geval nou beskou waar die indeks \(k \) in 'n abstrakte ruimte \(K \) varieer. Voer die metriek \(\rho \) op die ruimte \(K \) in deur \(\rho(k, k') = \sup\{|\mu_k(A) - \mu_{k'}(A)| : A \in A\} \). Dit is duidelik dat as al die ander voorwaardes van Stelling 6.4.1.1 bevredig word en as die ruimte \((K, \rho) \) voorwaardelik kompak is, dan, gegee \(\varepsilon > 0 \), bestaan daar 'n ontbinding van \(T \) in disjunkte versamelings \(A_j \in A \) sodat

\[
\left| \int_T \eta_j(t)d\mu_k(t) - \mu_k(A_j) \right| < \varepsilon \quad j = 1, 2, ..., n; \quad k \in K.
\]

Nou word twee-persoon nulsom spele weer beskou (soos voorheen beskryf) met die verskil hierdie keer dat die beperking dat \(i \) slegs oor 'n eindige versameling varieer (dit wil sê, \(i = 1, 2, ..., m \)) verslap word en dat \(i \) toegelaat word om oor 'n willekeurige ruimte \(\mathcal{I} \) te verander. Die uitkoms as suiwre strategieë gebruik, word weer deur (6.3) gegee, terwyl dit in die algemeen gegee word deur

\[
K(\xi, \eta(t)) = \int_{\mathcal{I}} \left(\sum_{j=1}^{n} \int_T \eta_j(t)d\mu_{ij}(t) \right) d\xi_i
\]
waar $\xi = (\xi_i)$ 'n waarskynlikheidsverdeling oor I is wat die eerste speler se strategie voorstel. Vanaf hierdie toepassing van Stelling 6.4.1.1 volg:

Stelling 6.4.1.4 [DWW1, p.258]

As die mate $\mu_{ij}, i \in I, j = 1, 2, ..., n$, nie-atomies is en (I, ρ) is 'n voorwaardelik kompakte metriese ruimte met

$$
\rho(i, i') = \max_{1 \leq j \leq n} \sup \{ \| \mu_{ij}(A) - \mu_{i'j}(A) \| : A \in A \} \quad i, i' \in I
$$

dan bestaan daar vir elke $\varepsilon > 0$ en elke strategie $\eta(t)$ van speler II 'n suiwere strategie $\eta^*(t)$ van hierdie speler wat $|K(\xi, \eta^*(t)) - K(\xi, \eta(t))| < \varepsilon$ bevredig vir alle strategieë ξ van speler I.

Die skrywers gaan voort om 'n omvangrykende klas van vaste steekproefgrootte beslissingsprobleme in Statistiek te beskryf. 'n Variant t met waardeversameling in 'n q-dimensionele Euklidiese ruimte T word verdeel volgens 'n onbekende een van 'n eindige aantal m verdelings, waar die moontlike (kummulatiewe) verdelingsfunksies gegee word deur $F_i(x), i = 1, 2, ..., m$. 'n Waarneming (wat in die algemeen beteken 'n toets van grootte q) word gemaak en na aanleiding van die waargenome waarde t kan die statistikus enigene van die n beslissings j maak (in baie gevalle is $m = n$ en moet die statistikus dan besluit wat die ware verdeling is). As $F_i(t)$ die ware verdeling is, t die waargenome waarde is en die j-de beslissing word gemaak, dan ly die statistikus 'n verlies $w_{ij}(t)$, waar die funksie $w_{ij} : T \to \mathbb{R}$ eindig, nie-negatief en A-meetbaar is. As die statistikus in sy waarneming van die waarde t die verskeie keuses met waarskynlikhede $\eta_j(t)$ neem (die η_j is nie-negatiewe A-meetbare funksies wat (6.1) bevredig), dan is die risiko, of verwagte verlies, wanneer $F_i(t)$ die ware verspreiding het,

$$
r_i(\eta) = \sum_{j=1}^{n} \int w_{ij}(t) \eta_j(t) dF_i(t).
$$

Weereens is die beslissingsfunksie η ewekansigry as vir elke t alle behalwe een van die $\eta_j(t)$ verdwyn. Die volgende resultaat word van Stelling 6.4.1.1 afgelei:
Stelling 6.4.1.5 [DWW1, 258]
As die verdelingsfunksies nie-atomies is (bedoelende hier dat geen punt 'n positiewe waarskynlikheid het nie), dan, gegee enige beslissingsfunksie η, bestaan daar 'n ewekansigvrye beslissingsfunksie η* ekwivalent daaraan, dus sodat \(r_i(\eta^*) = r_i(\eta) \) vir \(i = 1, 2, ..., m \).
Verder, as die verliesfunksies \(w_{ij}(t) \) gereduseer kan word na konstantes \(w_{ij} \), dan bestaan daar 'n ewekansigvrye \(\eta^* \) ekwivalent aan \(\eta \) vir alle keuses van konstantes \(w_{ij} \) gelyktydig.

In die laaste gedeelte van [DWW1] voer die skrywers 'n uitbreiding na spele met verskeie bewegings, dit wil sê, sekwensiële spele, in. In 'n sekwensiële prosedure word die steekproefgrootte nie vooraf gegee nie. Die probleem kan soos volg geformuleer word:

'n Oneindige ry van reële toevalsveranderlikes \((t_1, t_2, ..., t_q, ...)\) word volgens 'n onbekende een van 'n eindige aantal verdelingsfunkies \(F_i(t_1, t_2, ..., t_q, ...) \), \(i = 1, 2, ..., m \), versprei. Die statistikus het weer die keuse van 'n eindige aantal \(n \) van (terminale) beslissings. Sy beslissingsreël \(δ \) bestaai uit reëlwaardige nie-negatiewe \(A \)-meetbare funksies \(δ_{νq}(t_1, t_2, ..., t_q, ...) \), \(ν = 0, 1, 2, ..., n; q = 1, 2, ... \) wat

\[
\sum_{ν=0}^{n} δ_{νq}(t_1, t_2, ..., t_q, ...) = 1 \text{ vir alle } -\infty < t_1, ..., t_q < \infty
\]

bevredig. Die beslissingsreël, aangedui deur \(δ \), word soos volg geïnterpreteer: Volgens die waargenome waarde (die procedures waarin daar 'n positiewe waarskynlikheid is om die finale beslissing te bereik voor 'n enkele waarneming gemaak is uitgesluit) \(t_1 \), kies die statistikus om \(δ \) voort te gaan met die proefneming en nog 'n waarneming te maak of om te stop met verdere proefneming en 'n eindbeslissing \(j, j = 1, 2, ..., n \), met waarskynlikhede \(δ_{01}(t_1) \) of \(δ_{j1}(t_1) \), \(j = 1, 2, ..., n \), respektiewelik, te maak. As dit besluit is om voort te gaan met die proefneming, dan word 'n waarde \(t_2 \) waargeneem en kan daar dan weer eens besluit word om \(δ \) aan te gaan met die proefneming of om 'n eindbeslissing \(j \) met waarskynlikhede \(δ_{02}(t_2) \) of \(δ_{j2}(t_2) \), \(j = 1, 2, ..., n \), onderskeidelik te maak. Kan so voortgaan. Die risiko of verwagte verlies as \(F_i \) die ware verdeling is en die beslissingsreël \(δ \) gekies is, word gegee
deur
\[r_1(\delta) = \sum_{q=1}^{\infty} \sum_{\nu=0}^{n} \int Y_q \delta_{\nu q}(t_1, t_2, ..., t_q) \delta_{01}(t_1) \delta_{02}(t_1, t_2) ... \delta_{0(q-1)}(t_1, t_2, ..., t_{q-1}) dF_{\nu q}(t_1, t_2, ..., t_q) \]

waar \(Y_q \) die \(q \)-dimensionele ruimte van \(t_1, t_2, ..., t_q \) is, \(v_{\nu q}(t_1, t_2, ..., t_q) \) reëlwêrdige, nie-negatiewe, \(A \)-meetbare funksies is (wat die totale verlies en koste verbonde aan die proefneming voorstel) en \(F_{\nu q}(t_1, t_2, ..., t_q) \) die verdelingsfunksie van \(t_1, t_2, ..., t_q \) wanneer \(F_i \) die ware verdeling is, is. Die sekwensiële beslissingsreël \(\delta \) word ewekansigvry genoem as vir alle \(t_1, t_2, ..., t_q, q = 1, 2, ..., \) almal behalwe een van die \(n + 1 \) funksies \(\delta_{01}(t_1, t_2, ..., t_q), ..., \delta_{nt}(t_1, t_2, ..., t_q) \) gelyk is aan nul.

Stelling 6.4.1.6 [DWW1, p.259]

As die \(m \) een-dimensionele verdelingsfunksies \(F_i(t_1), i = 1, 2, ..., m \), kontinu is, dan bestaan daar, gegee enige sekwensiële beslissingsreël, 'n ewekansigvrye opeenvolgende sekwensiële beslissingsreël ekwivalent daaraan. Verder, as die funksies \(v_{\nu q}(t_1, t_2, ..., t_q) \) gereduseer kan word na konstantes \(v_{\nu q} \), dan bestaan daar 'n ewekansigvrye beslissingsfunksie, ekwivalent aan die gegeewe een, vir alle keuses van konstantes \(v_{\nu q} \) gelyktydig.

In statistiese toepassings is \(v_{\nu q}(t_1, t_2, ..., t_q) \) gewoonlik nul en word slegs beslissingsreëls beskou waarvan die waarskynlikheid van eindeksperimentering in 'n eindige aantal stappe is.

6.4.2 Toepassing van die Konveksiteitstelling in die uitskakeling van ewekansigheid

In die openingsreëls van [DWW2] meld die skrywers dat die algemene bestaan van minimaks strategieë en ander belangrike eienkappe in die teorie van statistiese beslissingsfunksies ([WALD]) en die speletorie ([VOMO]) afhang van die konveksiteit van die ruimte van beslissingsfunksies en die konveksiteit van die ruimte van strategieë. Die konveksiteit kan verkry word deur die gebruik van ewekansige beslissingsfunksies en van gemengde
strategieë. In hierdie afdeling word weer na Stelling 6.4.1.1 (wat 'n uitbreiding van die Konveksiteitstelling is) gekyk en word aangetoon hoe dit toegepas word tot die statistiese beslissingsprobleem waar die aantal verdelings en beslissings eindig is (Stelling 6.4.2.2). Enkele ander uitbreiding van Stelling 6.4.2.2 sal vermeld word. Die notasie mag plek-plek van die in 6.4.1 verskil.

Beskou die volgende besluitnemingsprobleem:

Laat \(x \) die generiese punt in 'n \(q \)-dimensionele Euklidiese ruimte \(X \) (die beperking na 'n Euklidiese ruimte is nie essensieel nie, soos opgemerk in die vorige gedeelte in die geval van die sekwensiële spele), en laat \(\Omega \) 'n gegee klas van kumulatiewe verdelingsfunksies \(F \) op \(X \) wees. Die kumulatiewe verdelingsfunkisie \(F \) van die vektor kansveranderlike \(T = (T_1, T_2, \ldots, T_n) \) met waardeversameling in \(X \) is onbekend, maar dit is bekend dat \(F \in \Omega \). Daar bestaan 'n gegee ruimte \(D \) waarvan die elemente \(d \) die moontlike beslissings voorstel wat deur die statistikus in die onderhawige probleem, gemaak kan word. Laat \(W(F, d, t) \) die verlies aandui wat gely word wanneer \(F \) die ware verdeling van \(T \) is, \(d \) die beslissings is wat gemaak is, en \(t \) die waargenome waarde van \(T \) is. Definieer die afstand tussen twee elemente \(d_1, d_2 \in D \) deur

\[
\rho(d_1, d_2) = \sup\{|W(F, d_1, t) - W(F, d_2, t)| : F \in \Omega \text{ en } t \in T\}.
\]

(6.4)

Laat \(B \) en \(B_0 \) die Borel \(\sigma \)-algebras van \((D, \rho) \) en \(T \) onderskeidelik wees. Neem aan \(W \) is begrens op \(\Omega \times D \times T \) en dat \(W(F, \bullet, \bullet) B \times B_0 \)-meetbaar is. 'n Beslissingsfunkisie \(\eta \) is 'n funksie wat met elke \(t \in T \) 'n waarskynlikheidsmaat op \(B \) assosieer. 'n Beslissingsfunkisie \(\eta \) is ewekansigvry as die waarskynlikheidsmaat \(\eta(t) \) vir elke \(t \) die waarskynlikheid een aan 'n enkele punt \(d \in D \) toekom; \(\eta(t)\{\{d\}\} = 1 \). Vir enige versameling \(D^* \subseteq D, D^* \in B \), dui die simbool \(\eta(D^*|t) \) die waarskynlikheidsmaat van \(D^* \) volgens \(\eta(t) \) aan. In hierdie artikel is vir enige gegee \(D^* \) die funksie \(\eta(D^*|t) \) 'n Borel-meetbare funksie van \(t \). Die gebruik van 'n beslissingsfunkisie \(\eta \) deur die statistikus beteken dat hy volgens die volgende reël te werk gaan:

Laat \(t \) die waargenome waarde van \(T \) wees. Die element \(d \in D \) word deur 'n onafhanklike kansveranderlike mekanisme gekies wat op só 'n wyse gekonstrueer word dat vir enige versameling \(D^* \subseteq D, D^* \in B \), die waarskynlikheid dat die verkose element \(d \) ingesluit is
in D^*, gelyk is aan $\eta(D^*|t)$.

Gegewe die stekproefpunt t en gegee dat η die keusefunksie is wat gebruik word. Die verwagte verlies $W(F, d, t)$ word gegee deur

$$W^*(F, \eta, t) = \int_D W(F, d, t) d\eta(t).$$ \hspace{1cm} (6.5)

Die verwagte waarde van die verlies $W(F, d, t)$ wanneer F die ware verdeling van T is en η die beslissingsfunksie is wat gebruik is (maar t is onbekend), is

$$r(F, \eta) = \int_T W^*(F, \eta, t) dF(t).$$ \hspace{1cm} (6.6)

Die uitdrukking in (6.6) word die risiko genoem wanneer F waar is en η gebruik word.

Die beslissingsfunksies η en η^* is ekwivalent as

$$r(F, \eta^*) = r(F, \eta) \text{ vir alle } F \in \Omega$$ \hspace{1cm} (6.7)

en hulle is sterk ekwivalent as vir elke versameling $D^* \subseteq D$, $D^* \in \mathcal{B}$,

$$\int_T \eta(D^*|t) dF(t) = \int_T \eta^*(D^*|t) dF(t) \text{ vir alle } F \in \Omega.$$ \hspace{1cm} (6.8)

As η en η^* sterk ekwivalent is, dan is hulle ekwivalent vir enige verliesfunksie wat 'n funksie van slegs F en d is. Vir enige $\varepsilon > 0$ is η en η^* ε-ekwivalent as

$$|r(F, \eta) - r(F, \eta^*)| \leq \varepsilon \text{ vir alle } F \in \Omega.$$ \hspace{1cm} (6.9)

en sterk ε-ekwivalent as

$$\left| \int_T \eta(D^*|t) dF(t) - \int_T \eta^*(D^*|t) dF(t) \right| \leq \varepsilon$$ \hspace{1cm} (6.10)

vir alle $D^* \in \mathcal{B}$ en vir alle $F \in \Omega$.

Stelling 6.4.2.1 [DWW2, p.3]

Soos Stelling 6.4.1.1, maar hierdie keer met die volgende toevoeging: As $\eta_j^*(t) = 1$ vir elke $t \in T_j$ en $\eta_j^*(t) = 0$ vir elke ander t, $j = 1, 2, ..., m$, dan kan vergelyking (6.2) geskryf word as

$$\int_T \eta_j(t) d\mu_k(t) = \int_T \eta_j^*(t) d\mu_k(t) \quad j = 1, 2, ..., n; \quad k = 1, 2, ..., p.$$ \hspace{1cm} (6.11)
Hierdie uitbreiding van die Konveksiteitstelling vorm deel van die grondslag waarvan meeste van die resultate in [DWW2] afgelei word.

Die volgende resultaat in [DWW2] toon ooreenkoms met Stelling 6.4.1.5 en behandel die geval waar Ω en D beide eindig is en elke $F \in \Omega$ nie-atomies is; laat $\Omega = \{F_1, F_2, \ldots, F_q\}$ en $D = \{d_1, d_2, \ldots, d_n\}$, met elke F_i nie-atomies, $i = 1, 2, \ldots, q$. 'n Beslissingsfunksie η word nou gegee deur $\eta(t) = (\eta_1(t), \eta_2(t), \ldots, \eta_n(t))$, met $\eta_j(t) \geq 0$ vir elke $j = 1, 2, \ldots, n$ en $\sum_{j=1}^{n} \eta_j(t) = 1$. Hier is $\eta_j(t)$ die waarskynlikheid dat die keuse d_j geneem sal word wanneer t die waargenome waarde van T is. Die risiko wanneer F_i waar is en die beslissingsfunksie η gebruik word, word nou gegee deur

$$ r(F_i, \eta) = \sum_{j=1}^{n} \int_{T} W(F_i, d_j, t) \eta_j(t) dF_i(t). \quad (6.12) $$

'N Ewekansigvrye beslissingsfunksie η^* is 'n vektorfunksie waarvan die komponente η^*_j slegs die waardes 0 of 1 kan aanneem vir alle t, met ander woorde, elke η_j is 'n karakteristieke funksie van 'n versameling. Vir enige meetbare subversameling A van T, laat

$$ \mu_{ij}(A) = \int_{A} W(F_i, d_j, t) dF_i(t) \quad i = 1, 2, \ldots, q; \quad j = 1, 2, \ldots, n. \quad (6.13) $$

Dan is die mate μ_{ij} eindig, nie-atomies en afterbaal additief. Dan word vergelyking (6.12)

$$ r(F_i, \eta) = \sum_{j=1}^{n} \int_{T} \eta_j(t) d\mu_{ij}(t). \quad (6.14) $$

As T in Stelling 6.4.2.1 (en ook in 6.4.1.1) die q-dimensionele Euklidiese ruimte X van hierdie gedeelde is, dan kan die mate $\mu_1, \mu_2, \ldots, \mu_p$ in Stelling 6.4.2.1 vervang word met die versameling $\{\mu_{ij} : i = 1, 2, \ldots, q; j = 1, 2, \ldots, n\}$. Dan volg dit vanaf Stelling 6.4.2.1 dat daar 'n ewekansigvrye beslissingsfunksie η^* bestaan sodat

$$ \int_{T} \eta_j(t) d\mu_{ij}(t) = \int_{T} \eta^*_j(t) d\mu_{ij}(t) \quad i = 1, 2, \ldots, q; \quad j = 1, 2, \ldots, n. \quad (6.15) $$

Vanuit bostaande volg

Stelling 6.4.2.2 [DWW2, p.5]

As Ω en D eindig is en as elke element F van Ω nie-atomies is, dan bestaan daar vir enige
beslissingsfunksie η 'n ekwivalente ewekansigvrye beslissingsfunksie η^*.

Deur te stel $W(F,d,t) \equiv 1$, lewer vergelyking (6.15) die volgende stelling op:

Stelling 6.4.2.3 [DWW2, p.5]
As Ω en D eindig is en as elke element F van Ω nie-atomies is, dan bestaan daar vir elke beslissingsfunksie η 'n sterk ekwivalente ewekansigvrye beslissingsfunksie η^*.

In [DWW2] word voorts aandag geskenk aan die uitskakeling van ewekansigheid in

1. die geval waar $\Omega = \{F_1, F_2, \ldots, F_q\}$ eindig is, met elke element van Ω nie-atomies

2. die sekwensiële geval.

Ook in hierdie gevalle word sterk gesteun op die Konveksiteitstelling via Stellings 6.4.1.1 en 6.4.2.1.

[DWW2] bevat voorbeelde om te wys dat Stellings 6.4.2.2 en 6.4.2.3 nie uitgebrei kan word na die geval waar daar oneindig baie verspreidings sonder beperkings is nie. Trouens, die voorbeeld wys dat daar 'n toelaatbare beslissingsfunksie η bestaan wat nie ekwivalente ewekansigvrye beslissingsfunksies η^* toelaat nie. 'n Toelaatbare funksie is 'n beslissingsfunksie met risikofunksie $r(F)$ waarvoor daar geen ander beslissingsfunksie met risikofunksie $r'(F)$ bestaan sodat $r'(F) \leq r(F)$ vir elke $F \in \Omega$, waar die gelyk-aan teken geld vir minstens een $F \in \Omega$. Die onmoontlikheid van so 'n uitbreiding hou verband met die feit dat die Konveksiteitstelling nie geld wanneer oneindig baie mate beskou word nie (kyk na Afdeling 7.4).

6.4.3 'n Veralgemening van die Konveksiteitstelling
Hierdie is die laaste een van die drie artikels van Dvoretsky, Wald en Wolfowitz wat bespreek word. Die doel van hierdie artikel is om maattheoretiese resultate aangaande die
waardeversameling van mate te bewys. Stelling 6.4.3.4 kan beskou word as 'n veralgemening van die Konveksiteitstelling van Lyapunov. Die artikel [DWW3] toon ook dat die voorafgaande resultate toepassings in Statistiek en Spelteorie het.

Laat \(T \) soos tevore 'n nie-leë versameling wees, \(A \) 'n \(\sigma \)-algebra van subversameling van \(T \) en \(\mu \) 'n afstapbaar additiewe maat op \(A \). Die maat \(\mu \) kan negatiewe asook oneindige waardes aanneem. 'n Trapfunksie is 'n \(A \)-meetbare funksie met eindige waardeversameling. As \(n \in \mathbb{N} \) en \(\eta_j : T \to \mathbb{R} \), \(j = 1, 2, \ldots, n \), is nie-negatiewe \(A \)-meetbare funksies wat

\[
\sum_{j=1}^{n} \eta_j(t) = 1 \text{ vir elke } t \in T
\]

bevredig, dan word \(\eta = (\eta_1, \eta_2, \ldots, \eta_n) \) 'n waarskynlikheids \(n \)-vektor genoem, en die funksies \(\eta_j \) word die komponente van hierdie vektor genoem. As die komponente \(\eta_j \) almal trapfunksies is, dan word \(\eta \) 'n waarskynlikheids trap \(n \)-vektor genoem, aangedui deur \(\eta^0 \). As \(\eta_j(t) \in \{0, 1\} \) vir \(j = 1, 2, \ldots, n \) en vir elke \(t \in T \) (dit wil sê, as vir elke \(t \in T \), een \(\eta_j(t) = 1 \) en al die ander is 0) dan word \(\eta \) 'n suiwer \(n \)-vektor genoem, aangedui deur \(\eta^s \). As \(\eta^s = (\eta_1^s, \eta_2^s, \ldots, \eta_n^s) \) en \(\eta_j^s = \chi_{A_j} \), \(A_j \in A \), dan is \(\{A_1, A_2, \ldots, A_n\} \) 'n disjunkte partisie van \(T \) in meetbare versameling. Omgekeer, as \(\{A_1, A_2, \ldots, A_n\} \) 'n disjunkte partisie van \(T \) in meetbare versameling is, en \(\eta_j^s = \chi_{A_j} \), dan is \(\eta^s = (\eta_1^s, \eta_2^s, \ldots, \eta_n^s) \) 'n suiwer \(n \)-vektor. Die vektor \(\eta^s \) word ook 'n onbinding \(n \)-vektor genoem ooreenkoms met die onbinding \(T = A_1 \cup A_2 \cup \ldots \cup A_n \). Laat \(\mu_k \), \(k = 1, 2, \ldots, p \), mate op \(A \) wees en laat \(\eta \) 'n waarskynlikheids \(n \)-vektor wees. Dui die \(n\)-dimensionele vektor

\[
\left(\int_T \eta_1(t) d\mu_1(t), \ldots, \int_T \eta_p(t) d\mu_p(t) \right)
\]

aan deur \(\nu(\eta) = (\nu(\eta_1, \mu_1, \mu_2, \ldots, \mu_p) \). Laat \(V_n = V_n(\mu_1, \mu_2, \ldots, \mu_p) = \{ \nu(\eta) : \eta \text{ is 'n waarskynlikheids } n \text{-vektor} \} \) die \(n \)-waardeversameling van \(\mu_1, \mu_2, \ldots, \mu_p \) wees. Soortgelyk, laat \(V_n^0 = V_n^0(\mu_1, \mu_2, \ldots, \mu_p) = \{ \nu(\eta^0) : \eta^0 \text{ is 'n waarskynlikheids trap } n \text{-vektor} \} \) die trap \(n \)-waardeversameling van \(\mu_1, \mu_2, \ldots, \mu_p \) wees, en \(V_n^* = V_n^*(\mu_1, \mu_2, \ldots, \mu_p) = \{ \nu(\eta^s) : \eta^s \text{ is 'n suiwer } n \text{-vektor} \} \) die onbinding \(n \)-waardeversameling van \(\mu_1, \mu_2, \ldots, \mu_p \) wees.
Stelling 6.4.3.1 [DWW3, p.61]
As \(\mu_1, \mu_2, ..., \mu_p \) eindige mate is, dan is die versameling \(V_n \) vir elke \(n \in \mathbb{N} \) 'n kompakte konveksie versameling in Euklidiese \(np \)-dimensionele ruimte.

Gedeeltelijke bewys:
Slegs die konveksiteit van \(V_n \) word bewys.
As \(A = v(\eta) \in V_n \) en \(A' = v(\eta') \in V_n \), dan is elke punt op die segment wat \(A \) en \(A' \) verbind van die vorm, met \(c \in (0, 1) \),

\[
cA + (1 - c)A' = v(c\eta + (1 - c)\eta') \in V_n
\]

omdat \(c\eta + (1 - c)\eta' \) 'n waarskynlikheids \(n \)-vektor is.
Die kompaktheid van \(V_n \) verg 'n veel langer bewys, tesame met 'n hulpstelling.

As \(C \) 'n kompakte konveksie versameling in 'n lineêre ruimte is, dan dui \(ext(C) \) alle ekstreempunte van \(C \) aan. As \(A \in A \), dan is \(A \) 'n \(\mu \)-nul versameling as \(\mu(B) = 0 \) vir alle versamelings \(B \subseteq A, B \in A \).

Stelling 6.4.3.2 [DWW3, p.64]
As die mate \(\mu_1, \mu_2, ..., \mu_p \) eindig is op \(A \) en \(v(\eta) \in ext(V_n) \), dan is die versameling \(Y = \{ t \in T : 0 < \eta_j(t) < 1 \} \) vir minstens een \(j = 1, 2, ..., n \) 'n nulversameling vir elk van die mate \(\mu_1, \mu_2, ..., \mu_p \). In besonder is \(ext(V_n) \subseteq V_n^* \).

Bewys:
As \(Y \) nie 'n nulversameling vir die maat \(\mu_{k_0} \), \(1 \leq k_0 \leq p \) is nie, dan bestaan daar heelgetalle \(j_0 \) en \(j_1 \) met \(1 \leq j_0 \leq j_1 \leq n \), 'n getal \(\delta > 0 \), en 'n meetbare versameling \(Z \subseteq Y \), sodat

\[
\delta < \eta_j(t) < 1 - \delta \quad \text{vir } t \in Z \text{ en } j = j_0, j_1,
\]

en

\[
\mu_{k_0}(Z) \neq 0.
\]
Laat \(\zeta = (\zeta_1, \zeta_2, \ldots, \zeta_n) \) die vektor wees wat gedefinieer word deur

\[
\zeta_{jk}(t) = -\zeta_{jk}(t)\begin{cases}
\delta & \text{as } t \in Z \\
0 & \text{as } t \notin Z
\end{cases}
\]

met alle ander komponente gelyk aan 0. Vanaf (6.19), volg dit dat \(\eta + \theta \zeta \) ’n waarskynlikheids \(n \)-vektor is wanneer \(\theta \in [-1, 1] \). Aangesien

\[
\int_T (\eta_{jk}(t) + \zeta_{jk}(t))d\mu_k(t) - \int_T (\eta_{jk}(t) - \zeta_{jk}(t))d\mu_k(t) = 2\delta \mu_k(Z) \neq 0
\]

is die punte \(v(\eta + \zeta) \) en \(v(\eta - \zeta) \) verskillend. Dit is egter duidelik dat, soos \(\theta \) van -1 tot 1 toeneem, die punt \(v(\eta + \theta \zeta) \) vanaf die punt \(v(\eta - \zeta) \) tot by die punt \(v(\eta + \zeta) \) beweeg langs die segment wat die twee punte met mekaar verbind. Verder, aangesien \(v(\eta) \) die middelpunt van hierdie segment is, is \(v(\eta) \notin \text{ext}(V_n) \). As \(v(\eta) \in \text{ext}(V_n) \), dan is \(Y \) ’n nulversameling vir al die mate \(\mu_k \). Dus, as \(\eta^*(t) = \eta(t) \) vir \(t \notin Y \) en, sê \(\eta^* = 1 \) vir alle \(t \in Y \), dan bevredig hierdie ontbindingsvektor \(\eta^* \) die vergelyking \(v(\eta^*) = v(\eta) \). Dit wys dat \(\text{ext}(V_n) \subseteq V_n^* \).

Die volgende resultaat bewys ’n verband tussen die \(n \)-waardeversameling en die trap \(n \)-waardeversameling van die eindige mate \(\mu_1, \mu_2, \ldots, \mu_p \).

Stelling 6.4.3.3 [DWW3, p.65]

As die mate \(\mu_1, \mu_2, \ldots, \mu_p \) eindig is op \(A \), dan is \(V_n^0 = V_n \) vir elke \(n \). Meer presies, elke punt van \(V_n \) kan voorgestel word deur \(v(\eta^0) \), waar \(\eta^0 \) ’n waarskynlikheids \(n \)-vektor is waarvan die komponente nie meer as \(2^{n+p+1} \) verskillende waardes aanneem nie.

Bewys:

Volgens Stelling 6.4.3.1 is \(V_n \) ’n kompakte konvekske versameling in Euklidiese \(np \)-dimensionele ruimte. As gevolg van die \(p \) vergelykings

\[
\sum_{j=1}^{n} \int_T \eta_j(t)d\mu_k(t) = \mu_k(T)
\]

124
is \(V_n \) in 'n \(N = (np - p) \)-dimensionele lineêre deelruimte geleë. Dan, vir elke punt \(P \in V_n \), volg dat \(P = \sum_{i=1}^{N+1} c_i P_i \), waar \(P_i \in \text{ext}(V_n) \) en \(c_i \geq 0 \) vir \(i = 1, 2, ..., N+1 \) en \(\sum_{i=1}^{N+1} c_i = 1 \). Volgens Stelling 6.4.3.2, geld dit dat \(P_i \in v(\eta_i) \), waar \(\eta_i \) 'n ontbindings \(n \)-vektor is, \(i = 1, 2, ..., N+1 \). Deur te stel \(\eta^0 = \sum_{i=1}^{N+1} c_i \eta_i \), geld dat \(P = v(\eta^0) \). Vir elke \(t \) is elke komponent van \(\eta(t) \) gelyk aan \(\sum_{i \in K} c_i \), waar \(K \subseteq \{1, 2, ..., N+1\} \). Omdat daar \(2^{N+1} = 2^{np+p+1} \) sulke subversamplings is, volg die bewys van die stelling.

Bostaande benadering is in 1980 deur Z. Artstein verbeter deurdat hy bewys het dat dit die komponente nie meer as \(2np + 2 \) verskillende waardes aanneem nie [ARTI, p.178].

Stelling 6.4.3.4 is 'n veralgemening van die Konveksiteitstelling.

Stelling 6.4.3.4 [DWW3, p.66]

As die mate \(\mu_1, \mu_2, ..., \mu_p \) eindig en nie-atomies is, dan is \(V_n^* = V_n \) vir elke \(n \in \mathbb{N} \).

Bewys:

Volgens Stelling 6.4.3.1 is \(V_n \) kompak en konveks. Na aanleiding van Stelling 6.4.3.3 is dit voldoende om te wys dat \(V_n^* = V_n^0 \). Laat dan nou wees \(\mu = (\mu_1, \mu_2, ..., \mu_p) \). Vanaf [HAL2] volg dit dat \(R(\mu) = \{(\mu_1(A), \mu_2(A), ..., \mu_p(A)) : A \in \mathcal{A} \} \) kompak en konveks is. Aangesien \(\mu(\emptyset), \mu(T) \in R(\mu) \) as \(0 \leq c \leq 1 \), dan is \((1-c)\mu(\emptyset) + c\mu(T) = c\mu(T) \in R(\mu) \). Dus bestaan daar 'n versameling \(A \in \mathcal{A} \) sodat \(\mu(A) = c\mu(T) \), dit wil sê,

\[
\mu_k(A) = c\mu_k(T) \quad k = 1, 2, ..., p.
\]

(6.20)

Om die res van die stelling te bewys, word die volgende lemma benodig:

125
Lemma 6.4.3.5 [DWW3, p.66]

As $\mu_1, \mu_2, ..., \mu_p$ eindig en nie-atomies is en $c_1, c_2, ..., c_n$ is nie-negatiewe getalle wat $c_1 + c_2 + ... + c_n = 1$ bevredig, dan bestaan daar 'n ontbinding van T in n disjunkte versamelings $\{A_1, A_2, ..., A_n\} \subseteq A$ met die eienskap dat

$$\mu_k(A_j) = c_j \mu_k(T) \quad j = 1, 2, ..., n; \quad k = 1, 2, ..., p.$$ \hspace{1cm} (6.21)

Bewys:

Volgens (6.20) bestaan daar 'n versameling $A_1 \in A$ wat (6.21) bevredig vir $j = 1$, dit wil sê, $\mu_k(A_1) = c_1 \mu_k(T)$ vir $k = 1, 2, ..., p$. Laat $A_1 = \{A \in A : A \subseteq T \setminus A_1\}$. Dan is $R(\mu|A_1)$ kompak en konveks. Aangesien $\mu(\emptyset), \mu(T \setminus A_1) \in R(\mu|A_1) \subseteq R(\mu)$, volg dit dat

$$\left(1 - \frac{c_2}{c_2 + c_3 + ... + c_n}\right) \mu(\emptyset) + \frac{c_2}{c_2 + c_3 + ... + c_n} \mu(T \setminus A_1) = \frac{c_2}{c_2 + c_3 + ... + c_n} \mu(T \setminus A_1) \in R(\mu|A_1),$$

waar $\frac{c_2}{c_2 + c_3 + ... + c_n} = 0$ as $c_2 = c_3 = ... c_n = 0$. Dan bestaan daar 'n versameling $A_2 \subseteq T \setminus A_1$ sodat $\mu(A_2) = \frac{c_2}{c_2 + c_3 + ... + c_n} \mu(T \setminus A_1)$.

Vir $k = 1, 2, ..., p$, is

$$\mu_k(A_2) = \frac{c_2}{c_2 + c_3 + ... + c_n} \mu_k(T \setminus A_1)$$

$$= \frac{c_2}{c_2 + c_3 + ... + c_n} (\mu_k(T) - c_1 \mu_k(T))$$

$$= \frac{c_2}{c_2 + c_3 + ... + c_n} (1 - c_1) \mu_k(T)$$

$$= c_2 \mu_k(T).$$

Op dieselfde wyse kan 'n versameling $A_j \subseteq T \setminus \bigcup_{i=1}^{j-1} A_i$ verkry word wat (6.21) bevredig vir $j = 1, 2, ..., n - 1$. Dan is

$$\mu_k(T \setminus \bigcup_{j=1}^{n-1} A_j) = 1 - (c_1 + c_2 + ... + c_{n-1}) \mu_k(T)$$

$$= c_n \mu_k(T).$$

Laat $A_n = T \setminus \bigcup_{j=1}^{n-1} A_j$. Dan geld (6.21) vir $j = 1, 2, ..., n$ en vir $k = 1, 2, ..., p$.

126
Bewys van Stelling 6.4.3.4 vervolg:
Laat η^0 enige trap n-vektor wees. Dan kan T ontbind word in 'n eindige aantal disjunkte versameling $T_r \in \mathcal{A}$ waarvoor al die komponente van η^0 konstant is. Vanaf Lemma 6.4.3.5 kan T_r verder ontbind word in n disjunkte versamelingen $\{A_{i,r}, A_{2,r}, ..., A_{n,r}\} \subseteq \mathcal{A}$ sodat
\[\mu_k(A_{j,r}) = \int_{T_r} \eta_j^0(t) d\mu_k(t) \quad j = 1, 2, ..., n; k = 1, 2, ..., p. \quad (6.22) \]
Neem $A_j = \cup_r A_{j,r}$, $j = 1, 2, ..., n$. Dan, vanaf bostaande vergelyking, volg dit dat
\[\int_{T_r} \eta_j^0 d\mu_k(t) = \mu_k(A_j) \quad j = 1, 2, ..., n; \quad k = 1, 2, ..., p. \]
Dus stem die punt $v(\eta^0; \mu_1, \mu_2, ..., \mu_p)$ ooreen met die punt $v(\eta^*; \mu_1, \mu_2, ..., \mu_p)$, waar $\eta_j^* (t) = 1$ as $t \in A_j$ en 0 andersins. Dan is $V_n^0 \subseteq V_n^*$. Aangesien die omgekeerde insluiting duidelik is, is die stelling bewys.

Opmerking 6.4.3.6: (1) Die Konveksiteitstelling meld dat wanneer die voorwaardes van Stelling 6.4.3.4 bevredig word, dan is die versameling $\{ (\mu_1(A), \mu_2(A), ..., \mu_p(A)) : A \in \mathcal{A} \}$ konveks en kompak in p-dimensionele Euklidiese ruimte. Stelling 6.4.3.4 kan gesien word as 'n veralgemening van die Konveksiteitstelling:
\[V_n^* = \{ v(\eta^*) : \eta^* \text{ is 'n suiwre } n \text{-vektor} \} \]
\[= \{ (\int \chi_A(t) d\mu_1(t), \int \chi_A(t) d\mu_2(t), ..., \int \chi_A(t) d\mu_p(t)) : A \in \mathcal{A} \} \]
\[= \{ (\mu_1(A), \mu_2(A), ..., \mu_p(A)) : A \in \mathcal{A} \} \]
\[= \mathcal{R}(\mu) \]
waar $\mu = (\mu_1, \mu_2, ..., \mu_p)$. Dit is maklik om te sien dat die Konveksiteitstelling ekwivalent is aan die stelling dat die versameling van alle punte
\[\{ (\mu_1(A), \mu_2(A), ..., \mu_p(T \setminus A), \mu_1(T \setminus A), \mu_2(T \setminus A), ..., \mu_p(T \setminus A)) : A \in \mathcal{A} \} \text{ in } 2p \text{-dimensionele} \]
Euklidiese ruimte konveks en kompak is. Dit is presies dieselfde as die aannames dat V_n^* konveks en kompak is vir $n = 2$.

(2) As daar in Stelling 6.4.3.4 nie aangeneem word dat die mate $\mu_1, \mu_2, ..., \mu_p$ nie-atomies is nie, dan hoe V_n^* nie konveks te wees nie. Dit bly egter kompak. Dit kan gesien word.
deur die ontbinding in nie-atomiese en suiwier atomiese dele wat dan apart behandel kan word, soos wat in [HAL2] gedoen is.

(3) Vir sekere toepassings is die volgende van belang: As η 'n waarskynlikheids n-vektor is, dan bestaan daar 'n suiwier n-vektor η^* met $v(\eta^*) = v(\eta)$ met die verdere eienskap dat vir elke $t \in T$ en $j = 1, 2, ..., n$, die verdwyning van $\eta_j(t)$ die verdwyning van $\eta_j^*(t)$ impliseer. Hierdie stelling volg maklik vanaf Stelling 6.4.3.4. Tews T kan inderdaad ontbind word in 'n eindige aantal meetbare versamelings Y met die eienskap: As $\eta_j(t) = 0$ vir 'n $t \in Y$, dan is $\eta_j(t) = 0$ vir alle $t \in Y$. Laat $j_1, j_2, ..., j_m$ die j wees waarvoor $\eta_j(t) > 0$, $t \in Y$. Definieer nou $\eta^*(t)$ vir $t \in Y$ deur Stelling 6.4.3.4 op die m-vektor gevorm deur die komponente toe te pas en deur te neem $\eta_j(t) = 0$ vir alle ander j en $t \in Y$. Deur hierdie definisies vir alle versamelings Y te combineer, word 'n η^* met die verlangde eienskap verkry.

Stelling 6.4.3.4 kan nou uitgebrei word na die geval van willekeurige (en nie noodwendig eindige) nie-atomiese mate:

Stelling 6.4.3.7 [DWW3, p.68]

As die mate $\mu_1, \mu_2, ..., \mu_p$ nie-atomies is, dan geld vir elke $n \in \mathbb{N}$ dat $V_n = V_n^*$.

Die komponente van $V(\eta)$ is nie meer noodwendig eindig nie en daar behoort na V_n en V_n^* gekyk te word as ingebied in Euklidiese ruimte wat uitgebrei is om toe te laat dat elke koördinaat ook oneindige waardes kan aanneem.

Dvoretzky, Wald en Wolfowitz noem dat die toepassings van die resultate verkry in [DWW3] in meer detail in [DWW2] bespreek is. Hulle skets egter nog steeds 'n toepassing van Stelling 6.4.3.4 (tesame met die uitbreiding) in die gebied van statistiese beslissingsprobleme. So 'n toepassing vind neerslag in die volgende probleem oor 'n ewekansigvrye beslissingsfunksie [DWW3, p.73]:

128
Laat \(y = \{y_1, y_2, ..., y_r\} \) 'n ewekansige vektor wees, waar \(r \in \mathbb{N} \). Vir elke punt \(t = (t_1, t_2, ..., t_r) \) van die \(r \)-dimensionele Euklidiese ruimte \(T \), laat \(F(t) \) die waarskynlikheid aandui waarvoor \(y_i < t_i \) vir \(i = 1, 2, ..., r \); dit is, \(F \) is die verdelingsfunksie van \(y \). Daar word aangeneem dat die verdelingsfunksie \(F \) onbekend is. Dit is wel bekend dat \(F \) een van die verdelingsfiksies \(F_1, F_2, ..., F_m \) is. 'n Waarneming \(t \) op \(y \) word gemaak en die statistikus kan afhangend van dié waargenoome waarde \(t \) enige van die \(n \) beslissings \(j, j = 1, 2, ..., n \), maak. Laat \(W_{i,j}(t) \) die verlies gely deur die statistikus wees wanneer die ware verdeling van \(y F_i(t) \) is, met \(t \) die waargenoome waarde van \(y \) en wanneer die \(j \)-de beslissing gemaak is. Dit word aangeneem dat \(W_{i,j} \) 'n eindige nie-negatiewe en \(A \)-meetbare funksie van \(t \) is. As die statistikus, terwyl die waarde \(t \) waargeneem word, verskeie beslissings met waarskynlikhede \(\eta_j(t) \) maak, waar hierdie nie-negatiewe \(A \)-meetbare funksies is wat (6.1) bevredig, dan word die risiko, of verwagte verlies, wanneer \(F_i \) die ware verdelingsfunksie is, voorgestel deur:

\[
r_i(\eta) = \sum_{j=1}^{n} \int_{T} W_{i,j}(t) \eta_j(t) dF_i(t).
\]

Die beslissingsfunksie \(\eta_j \) word ewekansigvry genoem as vir alle \(t \), alle \(\eta_j(t) \), behalwe een, verdwyn. Stelling 6.4.3.4 het dan die volgende tot gevolg: As die verdelingsfiksies \(F_i, i = 1, 2, ..., m \), nie-atomics is, dan, gegee enige beslissingsfunksie \(\eta \), bestaan daar 'n ewekansigvrye beslissingsfunksie \(\eta^* \) sodat \(r_i(\eta) = r_i(\eta^*) \), \(i = 1, 2, ..., m \).

Soever die spelteorie aangaan, kan bostaande statistiese beslissingsprobleem as volg geïnterpreteer word as 'n nul-som twee-persoon spel:

Speler I het 'n eindige aantal suiker strategieë \(i, i = 1, 2, ..., m \), terwyl 'n suiker strategie van speler II 'n ewekansigvrye beslissingsfunksie \(\eta^* \) ('n ontbindings-\(n \)-vektor) is. As \(i \) die suiker strategie van speler I is en \(\eta^* \) is die suiker strategie van speler II, dan kan die uitkoms gedefinieer word as

\[
R[i, \eta^*(t)] = r_i(\eta^*).
\]

'Bn Gemengde strategie van speler I word voorgestel deur 'n vektor \(\xi = (\xi_1, \xi_2, ..., \xi_m) \) met nie-negatiewe komponente wat sommeer na een, terwyl 'n gemengde strategie van speler
II genee word deur 'n waarskynlikheids n-vektor. Die verwagte waarde van die uitkoms ooreenkomstig met die gemengde strategieë ξ en η word genee deur

$$R[\xi, \eta(t)] = \sum_{i=1}^{m} \xi_{i} r_{i}(\eta).$$

Die resultaat vir die statistiese keuse probleem kan in spelteorie as volg geformuleer word: As die verdelingsfunksies F_{i}, $i = 1, 2, ..., m$, nie-atomies is, dan bestaan daar vir enige gegewe gemengde strategie η van speler II 'n suiker strategie η^* sodat $R[\xi, \eta^*(t)] = R[\xi, \eta(t)]$ vir alle strategieë ξ van speler I.

In die literatuur word Dvoretzky, Wald en Wolfowitz se drie artikels [DWW1], [DWW2] en [DWW3] veral baie gebruik in die teorie oor regverdige verdeling, soos byvoorbeeld in [DUSP], [BARB] en [LEGU]. Baie van die latere werk oor regverdige verdeling verwys nie meer na Dvoretzky, Wald en Wolfowitz nie, maar wel na [DUSP]. Kyk na Hoofstuk 10.

Opmerking 6.4.3.8: E. L. Lehmann formuleer die Fundamentele Lemma van Neyman en Pearson (wat in Afdeling 2.3 bespreek is), soos volg [LEH1, p.65]:

As P_{0} en P_{1} waarskynlikheidsverspreidings is met onderskeie digthede p_{0} en p_{1} met betrekking tot 'n maat μ. ('n Mens kan $\mu = P_{0} + P_{1}$ neem.)

(i) **Bestaan.** Om die hipoteese $H : p_{0}$ teen die alternatief $K : p_{1}$ te toets, bestaan daar 'n toets ϕ en 'n konstante k sodat

$$E_{0} \phi(X) = \alpha$$

en

$$\phi(x) = \begin{cases}
1 & \text{wanneer } p_{1}(x) > kp_{0}(x) \\
0 & \text{wanneer } p_{1}(x) < kp_{0}(x).
\end{cases}$$

(X is 'n variant.)

(ii) **Voldoende voorwaardes vir 'n mees krachtige toets.** As 'n toets (*) en (**) bevredig vir 'n k, dan is dit op sy krachtigste deur p_{0} teen p_{1} op vlak α te toets.

(iii) **Nodige voorwaarde vir 'n mees krachtige toets.** As 'n toets ϕ op sy krachtigste is op
vlak α wanneer dit vir p₀ teen p₁ toets, dan bevrederig dit (***) μ-byna oral vir 'n sekere k. Dit bevrederig ook (*), tensy daar 'n toets van grootte < α en van mag 1 bestaan.

In [LEH1, p.110, Probleem 3] behandel Lehmann die volgende (kyk na Afdeling 2.3):
Indien die toetsruimte T Euklidies is, en P₀ en P₁ het digitheide met betrekking tot Lebesgue-maat, dan bestaan daar 'n ewekansigvrye 'mees krachtige toets' om vir P₀ teen P₁ te toets op enige betekenisvolle vlak α.
Hierdie resultaat is 'n gevolg van die bovermelde Fundamentele Lemma tesame met die volgende lemma:

Lemma Laat f(x) ≥ 0 en ∫ₐ f(x)dx = a. As 0 ≤ b ≤ a, dan bestaan daar 'n meetbare deelversameling B van A sodat ∫ₐ f(x)dx = b.

Die bewys van die lemma volg direk uit [HAL4, p.174, Problem 2], maar dit is natuurlik 'n spesiale geval van die Konveksiteitstelling, aangesien die integrasie hierbo met betrekking tot die Lebesgue-maat is, wat nie-atomies is.

6.4.4 'n Uitbreiding van die Konveksiteitstelling

Laat (T, A) 'n maatruimte wees. 'n Maat μ : A → ℝ hoef nie noodwendig nie-negatief te wees nie. Laat μᵢⱼ, i = 1, 2, ..., k; j = 1, 2, ..., pᵢ afgetelbaar additiewe eindige mate op A wees. Laat C die klas van alle A-partisies {T₁, T₂, ..., Tₖ} van T in k onderling disjunkte versamelings wees. As μ, ν : A → ℝ mate is, dan is μ ≪ ν as en slegs as |μ| ≪ |ν|, waar
\(|\mu|\) die totale variasie van \(\mu\) is. Assosieer met elke \(P = \{T_1, T_2, \ldots, T_k\} \in \mathcal{C}\) die vektor
\[
v(P) = (\mu_{11}(T_1), \mu_{12}(T_1), \ldots, \mu_{1p_1}(T_1), \mu_{21}(T_2), \mu_{22}(T_2), \ldots, \mu_{2p_2}(T_2), \ldots, \mu_{k1}(T_k), \ldots, \mu_{kp_k}(T_k))
\]
en laat die funksie \(v\) die assosiasie beskryf. Die versameling van al hierdie waardes \(v(P)\) word deur \(\mathcal{R}(v(P))\) aangedui. 'n Versameling \(E \in \mathcal{A}\) word 'n atoom van \(v\) genoem as die vektor \(w(E)\) met komponente \(\mu_{ij}(E), i = 1, 2, \ldots, k; j = 1, 2, \ldots, p_i,\) nie nul is nie en as vir elke versameling \(F \in \mathcal{A}, F \subset E \Rightarrow w(F) = w(E), \delta F(F) = 0.\) Die funksie \(v\) is nie-atomies op \(F \in \mathcal{A}\) as geen van die mate \(\mu_{ij}\) 'n atoom op 'n subversameling van \(F\) het nie (in ooreenstemming met Stelling 5.3.16). Verder is \(w\) suiker atomies op \(F\) as daar 'n aftelbare ry \(\{F_i\}\) bestaan, waar die \(F_i\)'s onderling disjunkte atome van \(v\) is en waar \(F = \cup_i F_i.\)

Dit is nie moeilik om te sien dat, ooreenkomstig met enige atoom \(E\) van enige van die mate \(\mu_{ij},\) daar 'n atoom \(F \subset E\) van \(v\) bestaan en dat \(T\) uitgedruk kan word as die vereniging van twee disjunkte versamelingk \(T_1\) en \(T_2\) nie, waar \(v\) nie-atomies is op \(T_1\) en suiker atomies is op \(T_2.\) Dus kan die bewys vir die kompaktheid en, in die nie-atomiese geval, die konveksiteit van \(\mathcal{R}(v(P))\) gedoen word soos in [HAL2].

Die hoofresultaat van Chernoff se artikels is die volgende:

Stelling 6.4.4.1 [CHER, p.725]
Die waardeversameling \(\mathcal{R}(v(P))\) is kompak; as \(v\) nie-atomies is, dan is \(\mathcal{R}(v(P))\) konveks.

Die bewys is gebaseer op die volgende vyf lemmas, waarvan slegs sommige van die bewyse geskets word. Die eerste lemma is 'n uitbreiding van die Konveksiteitstelling — die geval waar \(k = 1\) is in der waarheid die konveksiteitsdeel van die Konveksiteitstelling.

Lemma 6.4.4.2 [CHER, p.723]
As \(v\) nie-atomies op \(T\) is, dan is \(\mathcal{R}(v(P))\) konveks.
Bewys:
Laat \(a = v(P_1) \) en \(b = v(P_2) \), waar \(P_1 = \{E_1, E_2, ..., E_k\} \in \mathcal{C} \) en \(P_2 = \{F_1, F_2, ..., F_k\} \in \mathcal{C} \) en gestel dat \(\lambda \in [0, 1] \). Beskou die vektormaat \(\mu \) met komponente \(\mu_{rs} \), \(r = i, j; s = 1, 2, ..., p_r \), waar \(E \in \mathcal{A} \), \(E \subseteq E_i \cap F_j \). Vanaf die Konveksiteitstelling is \(\mathcal{R}(\mu) \) konveks en dus kan \(E_i \cap F_j \) in twee disjunkte meetbare versamelinges \(V_{ij} \) en \(W_{ij} \) ontbind word sodat \(\mu_{rs}(V_{ij}) = \lambda \mu_{rs}(E_i \cap F_j) \), \(r = i, j; s = 1, 2, ..., p_r \) en dus \(\mu_{rs}(W_{ij}) = (1 - \lambda) \mu_{rs}(E_i \cap F_j) \), \(s = 1, 2, ..., p_j \). Beskou die partisie \(P = \{G_1, G_2, ..., G_k\} \), waar \(G_i = \cup_{j=1}^{p_i} [V_{ij} \cup W_{ij}] \). Dit volg direk dat \(v(P) = \lambda a + (1 - \lambda)b \), en hiermee is die bewys voltooi.

Lemma 6.4.4.3 [CHER, p.723]
As vir 'n gegewe versameling van konstantes \(\alpha_{ij}, i = 1, 2, ..., k; j = 1, 2, ..., p_i \), en vir enige \(P = \{E_1, E_2, ..., E_k\} \in \mathcal{C} \), \(h(P) = \sum_{i,j} \alpha_{ij} \mu_{ij}(E_i) \), dan bereik \(h \) 'n maksimum op \(\mathcal{C} \).

Bewys:
Laat \(\nu = \sum_{i,j} |\mu_{ij}| \). Dan is \(\mu_{ij} \ll \nu \) en volg dit vanaf die Radon-Nikodym Stelling dat daar unieke funksies \(f_{ij} : T \rightarrow \mathbb{R}, i = 1, 2, ..., k; j = 1, 2, ..., p_i \), bestaan sodat \(\mu_{ij}(E) = \int_{E} f_{ij}(t) d\nu \) vir elke \(E \in \mathcal{A} \). Laat
\[
\nu_i(E) = \sum_{j=1}^{p_i} \alpha_{ij} \mu_{ij}(E) \quad \text{en} \quad g_i(t) = \sum_{j=1}^{p_i} \alpha_{ij} f_{ij}(t).
\]
Dan is \(\nu_i(E) = \int_{E} g_i(t) d\nu \). Laat
\[
T_{i_1i_2...i_r} = \{ t \in T : g_{i_1}(t) = g_{i_2}(t) = ... = g_{i_r}(t) > g_j(t) \text{ vir alle } j \neq \{i_1, i_2, ..., i_r\} \}.
\]
Die lemma volg nou. Ook is dit vanaf die lemma duidelik dat 'n nodige en voldoende voorwaarde vir 'n partisie om \(\sum_{i,j} \alpha_{ij} \mu_{ij}(E_i) \) te maksimeer, dat \(T_{i_1i_2...i_r} \subseteq (E_{i_1} \cup E_{i_2} \cup ... \cup E_{i_r}) \), behalwe vir 'n versameling van \(\nu \)-maat nul.

As \(\nu \) nie-atomies is op \(T \), dan is \(\overline{\mathcal{R}(v(P))} \) konveks. 'n Steunhipervlak \(\Pi \) van \(\overline{\mathcal{R}(v(P))} \) kan geskryf word as \(\sum_{i,j} \alpha_{ij} x_{ij} = c \), waar nie alle \(\alpha_{ij} \) gelyk is aan nul nie en waar \(c = \)
sup \sum_{i,j} \alpha_{ij}\mu_{ij}(E_i). \quad \text{Dus}

Afleiding 6.4.4.4 [CHER, p.724]

As \(v \) nie-atomies is op \(T \) dan is \(\Pi \cap \overline{\mathcal{R}(v(P))} \neq \emptyset \).

Lemma 6.4.4.5 [CHER, p.724]

As \(v \) nie-atomies is op \(T \), dan is elke punt van \(\Pi \cap \overline{\mathcal{R}(v(P))} \) 'n limietpunt van \(\Pi \cap \mathcal{R}(v(P)) \).

Chernoff gebruik die term 'terminale punt' van 'n konvekse versameling om 'n randpunt met betrekking tot die laagste-dimensionele hipervlak wat die versameling bevat, aan te dui.

Lemma 6.4.4.6 [CHER, p.724]

As \(v \) nie-atomies is op \(T \), dan is \(\mathcal{R}(v(P)) \) geslote.

In die bewys van bostaande lemma gebruik Chernoff die feit dat daar deur enige punt van \(\mathcal{R}(v(P)) \) 'n steunhipervlak \(\Pi \) bestaan sodat \(\sum_{i,j} \alpha_{ij}\mu_{ij} \) nie identies konstant is vir alle punte van \(\mathcal{R}(v(P)) \) nie. Dit is dan voldoende vir \(\Pi \cap \overline{\mathcal{R}(v(P))} \) om geslote te wees. Die bewys word dan deur induksie op \(k \) en die getal \(p \) van nie-nul mate betrokke in \(v \), voortgesit. Die geval \(k = 1 \) is triviaal en vir die geval \(k > 1 \), \(p = 1 \) volg die geslotenheid vanaf die Konveksiteitstelling. Sien [CHER, p.725] vir die geval waar \(k > 1, p > 1 \).

Lemma 6.4.4.7 [CHER, p.725]

As \(v \) suiwere atomies is, dan is \(\mathcal{R}(v(P)) \) geslote.

Stelling 6.4.4.1 volg uit die bostaande lemmas. Die begrensdeheid van \(\mathcal{R}(v(P)) \) volg vanaf die feit dat die mate eindig is.
6.4.5 Verdere uitbreidings van die Konveksiteitstelling

H. Richter publiseer in 1963 die artikel [RICH] (en later 'n regstelling van hierdie artikel) waarin hy veralgemeen dit wat Blackwell gedaan het. Laat \(\mu_1, \mu_2, \ldots, \mu_n \) afetbaar additiewe eindige ladings wees op \(A \), \(F : T \to V \) (met \(V \) eindig-dimensioneel) 'n multifunksie, \(f : T \to V \) 'n funksie, waar \(f(t) = (a_1(t), a_2(t), \ldots, a_n(t)) \) vir elke \(t \in T \) sodat \(f \in S_F \) (in die notasie van Hoofstuk 8) met \(S_F \) die klas van alle \(A \)-meetbare selektors van \(F \). Laat \(I_F \) die klas van alle integreerbaar selektors van \(F \) aandui. Dan is

\[
\mathcal{R}(\nu(f)) = \left\{ \left(\int a_1(t)d\mu_1, \int a_2(t)d\mu_2, \ldots, \int a_n(t)d\mu_n \right) : f = a_1, a_2, \ldots, a_n \in I_F \right\}.
\]

Die volgende stelling is meer algemeen as Stelling 6.2.1, wat deur Blackwell bewys is.

Stelling 6.4.5.1 [RICH, p.86]

As die mate \(\mu_1, \mu_2, \ldots, \mu_n \) almal nie-atomies is, dan is \(\mathcal{R}(\nu(f)) \) konveks in \(V \).

Richter definieer die hulpfunksie \(g : V \to \mathbb{R} \) van 'n begrensde nie-leë subversameling \(G \) van \(V \) deur

\[
g(q) = \inf\{(q, r) : r \in G\}
\]

waar \(q \in V \) en \((q, r) \) die binneprodukt van \(q \) en \(r \) voorstel. Die hoofstelling van die artikel word met behulp van vyf lemmas bewys (verwys na [RICH]) en sien soos volg daaruit:

Stelling 6.4.5.2 [RICH, p.86]

As die mate \(\mu_1, \mu_2, \ldots, \mu_n \) almal nie-atomies is, die multifunksie \(F : T \to V \) die einskap het dat \(\text{ext}(\overline{\text{core}}(F(t))) \subseteq F(t) \) vir elke \(t \in T \), die versamplings \(F(t) \) gelykmatig begrens is en die hulpfunksie \(g_t \) van \(F(t) \) \(A \)-meetbaar is vir elke \(q \in V \), waar \(g_t(q) = g(q, t) = \inf\{(q, r) : r \in F(t)\} \), dan is \(\mathcal{R}(\nu(f)) \) kompak en konveks in \(A \).

Kort na die verskyning van bogenoemde artikel (ook in 1963), publiseer Richter 'n eenbladsy artikel [RIC2] waarin hy sekere voorstellings maak wat die bewysie in sy vorige artikel sou verbeter.

135
In 1964 publiseer H. Kellner 'n artikel [KELL] wat nie net Richter se resultate uitbrei na die σ-eindige geval nie, maar ook 'n korter bewys vir Richter se hoofstelling gee.

Stelling 6.4.5.3 [KELL, p.204]

As die mate \(\mu_1, \mu_2, ..., \mu_p\) nie-atomies, σ-eindig en aftelbaar additief is op \(\mathcal{A}\) en as
\[F : T \rightarrow V \text{ en } g_i : V \rightarrow \mathbb{R} \] gedefinieer is soos in Stelling 6.4.5.2, dan is die versameling \(\mathcal{R}(v(f))\) kompak en konveks in \(V\).

Richter se werk oor die integrasie van 'n multifunksie is later weer deur R. J. Aumann genoem in sy artikel [AUM2].
Hoofstuk 7

Toepassings van die Konveksiteitstelling in optimeringsprobleme

7.1 Inleiding

Van die belangrikste bydraes in die tema oor die uitbreiding van die waardeversamplings van vektormates buite statistiek, is gemaak deur David Blackwell en Samuel Karlin. Karlin se artikel [KARL] wat in 1953 gepubliseer is en wat die ekstreempunte van sekere funksieruimtes beskou, was veral 'n baanbreker. Vanaf sy studies is stellings in verband met die waardeversameling van eindige vektormate as spesiale gevalle afgelei. Die ekstreempunt stellings wat Karlin in sy artikel ontwikkel het, het ook onafhanklike belangrikheid – baie van die idees kan statisties geïnterpreteer en toegepas word in terme van die vervanging van ewekansige toetse deur nie-ewekansige toetse.

I. Kluvánek [KLUV] merk op dat dit wil voorkom asof Karlin gemotiveer was deur optimeringsprobleme – dit lank voordat optimeringsprobleme in die mode was. Verder merk Kluvánek ook op dat Karlin se invloed ver strek; nie net is dit Karlin se idees wat agter die welbekende Lindenstrauss se bewys van Lyapunov se stelling sit nie (verwys na [LIND]), maar ook is dit sy idees wat aanleiding gegee het tot baie van die onlangse werk oor optimering.
7.2 Karlin

Beskou 'n nie-leë versamelings T en 'n σ-algebra \mathcal{A} van subversamelings van T waarop 'n eindige maat $\mu : \mathcal{A} \to \mathbb{R}$ gedefinieer is. Laat $L(\mu, \mathcal{A})$ die ruimte van alle integreerbare funksies met betrekking tot μ wees en $M(\mu, \mathcal{A})$ die ruimte van alle essensieel begrensde meetbare funksies op T. Dit is bekend dat $M(\mu, \mathcal{A})$ die topologiese duaal van $L(\mu, \mathcal{A})$ is. Voordat Karlin se artikel beskou word, moet die volgende definisie en twee stellings eers in oënskou geneem word:

Definisie 7.2.1 [DIES, p.148]
Laat K 'n subversameling van 'n vektorruimte X wees. 'n Nie-leë versameling $S \subseteq K$ word 'n ekstremversameling van K genoem as $x \in K$, $y \in K$, $0 < t < 1$ en

$$(1 - t)x + ty \in S$$

tot gevolg het dat $x, y \in S$.

'n Ekstreempunt is 'n ekstremversameling bestaande uit een punt.

Dui die topologiese duaal van 'n genormeerde lineêre ruimte X aan deur X'.

Krein-Milman Stelling [RUDI, p.75]
As K 'n nie-leë kompakte konveksse subversameling van 'n Banach-ruimte X is, dan het K minstens een ekstreempunt, en is K die geslote konvekske omhulsel van sy eie ekstreempunte.

Bewys:
Laat Δ die klas van alle nie-leë kompakte ekstreem subversamelings van K wees. Omdat $K \in \Delta$, is $\Delta \neq \emptyset$. Die klas Δ het die volgende eienskappe:
(a) As Δ' enige nie-leë subkлас van Δ is, en as $S = \cap \{A : A \in \Delta'\}$, dan is $S \in \Delta$, behalwe as $S = \emptyset$;
(b) As $S \in \Delta, f \in X'$, $\mu = \sup \{f(x) : x \in S\}$ en $S_f = \{x \in S : f(x) = \mu\}$, dan is $S_f \in \Delta$.

138
Bewys van (a): S is 'n geslote subversameling van K, dus is S kompak. As $x, y \in K$, $0 < t < 1$, en $tx + (1-t)y \in S$, dan is $tx + (1-t)y \in A$ vir elke $A \in \Delta'$; omdat elke $A \in \Delta'$ 'n ekstreemsversameling van K is, volg dat $tx + (1-t)y \in A$ vir elke $A \in \Delta'$, dus $tx + (1-t)y \in S$, en $S \in \Delta$.

Bewys van (b): Gestel dat $tx + (1-t)y = z \in S_f$, waar $x, y \in K$ en $0 < t < 1$. Omdat $z \in S$ en $S \in \Delta$, volg dit dat $x, y \in S$. Dus, $f(x) \leq \mu$ en $f(y) \leq \mu$. Omdat $\mu = f(x)$ en f lineêr is, volg dit dat $f(x) = \mu = f(y)$. Dus, $x \in S_f$ en $y \in S_f$, wat beteken dat $S_f \in \Delta$.

Ons bewys nou dat K minstens een ekstreempunt het:

Gestel dat $K_0 \in \Delta$. Laat $\Delta_0 = \{ A \in \Delta : A \subseteq K_0 \}$. Omdat $K_0 \in \Delta_0$, is $\Delta_0 \neq \emptyset$. Definieer 'n parsieële ordening \preceq in Δ_0 deur te stel dat $K_1 \preceq K_2$ in Δ_0 wanneer $K_1 \subseteq K_2$. Dan bevat (Δ_0, \preceq) 'n maksimale ketting Ω. Gestel $M = \cap\{ A : A \in \Omega \}$. Omdat Ω 'n klas van kompakte versameling met die eindige deursnee eienskap is, is $M \neq \emptyset$. Uit (a) volg dan dat $M \in \Delta_0$. Die maksimaliteit van Ω impliseer dat geen egte subversameling van M 'n element van Δ is nie. (Indien D 'n egte subversameling van M is, en $D \in \Delta$, dan is $D \in \Delta_0$ en $\Omega \cup \{ D \}$ is dan 'n ketting in Δ_0 sodat $\Omega \subseteq \Omega \cup \{ D \}$ wat die maksimaliteit van Ω weerspreek.)

Ons toon aan dat M 'n eenpuntversameling is:

Laat $x, y \in M$, met $x \neq y$. Dan bestaan 'n $f \in X'$ sodat $f(x) < f(y)$. Dan is $f(x) < \sup \{ f(b) : b \in M \} = \mu$. Dan is $M \cap M_f$ 'n egte subversameling van M, asook 'n element van Δ. Dit weerspreek wat reeds aangetoon is. Dus is M 'n eenpuntversameling, en K het ekstreempunte. Ons het ook bewys dat $E(K) \cap K_0 \neq \emptyset$, waar $E(K)$ die versameling ekstreempunte van K is; dus elke kompakte ekstreemversameling van K bevat ekstreempunte van K. Omdat $E(K) \subseteq K$ en K konveks is, volg dat $\co(E(K)) \subseteq \co(K) = K$, en omdat K geslote is, geld dat $\overline{\co}(E(K)) \subseteq K$, en dit toon ook dat $\overline{\co}(E(K))$ kompak is. Om die omgekeerde te bewys, gestel dat $x_0 \in K$ en $x_0 \notin \overline{\co}(E(K))$. Dan bestaan 'n $f \in X'$ sodat $f(x) < f(x_0)$ vir elke $x \in \overline{\co}(E(K))$. As K_f soos in (b) bo gedefinieer is, dan is $K_f \in \Delta$. Die keuse van $f \in X'$ impliseer dat $K_f \cap \overline{\co}(E(K)) = \emptyset$, wat in stryd is met die feit dat elke kompakte ekstreempuntversameling van K (soos K_f) ekstreempunte van K bevat. Dus $K \subseteq \overline{\co}(E(K))$, en die stelling is hiermee bewys.

139
Banach-Alaoglu Stelling [BERB, p.193]

Gestel \(X \) is 'n genormeerde lineêre ruimte. Die geslote eenheidsbal van \(X' \) is swak*-kompak; dit wil sê, die versameling

\[
B = \{ f \in X' : \| f \| \leq 1 \}
\]

is kompak in die swak*-topologie.

Bewys:

As \(f \in B \subset X' \), dan is, vir elke \(x \in X \),

\[
|f(x)| \leq \|f\| \|x\| \leq \|x\|.
\]

Definieer die volgende versameling:

\[
D_x = \{ \lambda \in \mathbb{R} : |\lambda| \leq \|x\| \}.
\]

Dan is \(f(x) \in D_x \) vir elke \(x \in X \). Aangesien \(D_x \) geslote en begrens is, volg dit dat \(D_x \) kompak is. Vanaf Tychonoff se stelling is die ruimte

\[
D = \prod_{x \in X} D_x
\]

met die produkttopologie daarop gedefineer, ook kompak. Laat \(\pi_x : D \to D_x \) die kanoniëse afbeelding van \(D \) op \(D_x \) wees. Definieer op \(B \) die relatiewe topologie geïnduseer deur die swak*-topologie. Die bewys sal volledig wees as gewys kan word dat \(B \) homeomorf is aan 'n sekere geslote subversameling \(C \) van \(D \). Dit wil sê, as daar 'n afbeelding \(L : B \to C \) bestaan waar \(L \) bijektief is en beide \(L \) en \(L^{-1} \) kontinu is. As so 'n homeomorfisme bestaan, sal dit beteken dat \(B \) kompak is.

As \(f \in B \), dan is \(f(x) \in D_x \) vir alle \(x \in X \) (vanaf die eerste deel van die bewys). Definieer dan \(L : B \to D \) soos volg:

\[
Lf = (f(x))_{x \in X}.
\]
Die element \(Lf = (f(x))_{x \in X} \) van \(D \) het die spesiale eienskap dat die \(x \)-de koördinaat 'n lineêre funksie van die indeks \(x \) is. As \(C \) dus geneem word as die versameling van alle \((\lambda(x))_{x \in X} \) in \(D \) sodat
\[
\lambda_{y+z} = \lambda_y + \lambda_z
\]
en
\[
\lambda_{\mu y} = \mu \lambda_y
\]
vir alle \(y, z \in X \) en \(\mu \in \mathbb{R} \), dan is \(L(B) \subseteq C \). Aangesien elke \(f \) lineêr is, is elke \(Lf \) per definisie van \(L \) lineêr. Dus is \(L(B) = C \).
As \((\lambda(x))_{x \in X} \in C \), dan is dit duidelijk vanaf die feit dat \(x \in X \) dat die funksie \(f : X \to \mathbb{R} \) gedefinieer deur
\[
f(x) = \lambda_x
\]
'n lineêre funksionaal op \(X \) is. Verder volg vanaf
\[
|f(x)| = |\lambda_x| \leq \|x\|
\]
dat \(f \in B \) en dat
\[
Lf = (f(x))_{x \in X} = (\lambda(x))_{x \in X}.
\]
Die bewys word deur die aantoon van die volgende 3 stappe voltooi:

1. \(L \) is injektief (dit is klaar bekend is dat \(L \) surjektief is).
2. \(C \) is 'n geslote subversameling van \(D \) en dus kompakt.
3. \(L \) beeld \(B \) bikontinu af op \(L(B) = C \).

1. As \(f, g \in B \) en \(Lf = Lg \), dit is \((f(x))_{x \in X} = (g(x))_{x \in X} \), dan is \(f(x) = g(x) \) vir alle \(x \in X \) wat geskryf kan word as \(f = g \). Dus is \(L \) injektief.
2. Maak \(y, z \in X \) vas. Beskou die afbeelding \(\phi : D \rightarrow \mathbb{R} \) gedefinieer deur

\[
\phi((\lambda(x))_{x \in X} = \lambda_{y+z} - \lambda_y - \lambda_z.
\]

Laat \(u = (\lambda(x))_{x \in X} \). Dan kan geskryf word

\[
\phi(u) = \pi_{y+z}(u) - \pi_y(u) - \pi_z(u) \quad u \in D.
\]

Duidelik is \(\phi \) kontinu sodat die versameling

\[
\phi^{-1}({\{0}\}) = \{(\lambda(x))_{x \in X} \in D : \lambda_{y+z} = \lambda_y + \lambda_z\}
\]
geslote is in \(D \). Dui bostaande vergelyking aan deur \(C_{y,z} \). Soortgelyk, vir 'n vaste \(w \in X \) en \(\mu \in \mathbb{R} \), is

\[
\{(\lambda(x))_{x \in X} \in D : \lambda_{\mu w} = \mu \lambda_w\}
\]
ook geslote in \(D \) en word dit aangedui deur \(C_{\mu,w} \).

Dan is

\[
C = (C_{y,z}) \cap (C_{\mu,w})
\]

waar \(y, z, w \in X \) en \(\mu \in \mathbb{R} \). Aangesien die deursnede van geslote versamelings geslote is, volg dit dat \(C \) geslote is in \(D \).

3. Aangesien \(L \) ook injectief is (vanaf deel 1), beeld \(L \) vir \(B \) bijektief af op \(L(B) = C \). Maak \(f_0 \in B \) vas. Neem \(z \in X \) en \(\varepsilon > 0 \). 'n Subbasis-oop omgewing van \(f_0 \) vir die relatiewe swak*-topologie op \(B \) het die vorm

\[
V = \varepsilon^{-1}(f_0(z) - \varepsilon, f_0(z) + \varepsilon) \cap B
\]

\[
= \{f \in X' : z(f) \in (f_0(z) - \varepsilon, f_0(z) + \varepsilon)\} \cap B
\]

\[
= \{f \in X' : |z(f) - f_0(z)| < \varepsilon\} \cap B
\]

\[
= \{f \in X' : |f(z) - f_0(z)| < \varepsilon\}
\]

\[
= \{f \in B : |f(z) - f_0(z)| < \varepsilon\}.
\]
Dan is

\[L(v) = \{ (f(x))_{x \in X} : f \in V \} \]
\[= \{ (f(x))_{x \in X} : f \in B \text{ en } |f(z) - f_0(z)| < \varepsilon \} \]
\[= \{ (f(x))_{x \in X} : f \in B \text{ en } |\pi_z(Lf) - \pi_z(Lf_0)| < \varepsilon \} \]

wat duidelijk 'n subbasis-oop omgewing van \(Lf_0 \) is vir die relatiewe topologie geïnduseer deur die topologie \(D \) op \(C = L(B) \). Dit voltooi die bewys.

Vanaf die Banach-Alaoglu Stelling volg dit dat die eenheidsbal van \(M(\mu, A) \) kompak is in die swak*-topologie.

Laat \((\bigotimes L^n) \) die direkte produk van \(L(\mu, A) \) \(n \) keer wees en laat \((\bigotimes M^n) \) die direkte produk van \(M(\mu, A) \) \(n \) keer wees. Deur die norm reg te kies, kan verkry word dat \((\bigotimes M^n) \) die duaalruimte van \((\bigotimes L^n) \) is, dit wil sê, \((\bigotimes M^n) = (\bigotimes L^n)' \). Dan kan \((\bigotimes M^n) \) ook beskryf word as die ruimte van alle \(n \)-vektore, waar elke \(n \)-vektor 'n essensieel begrensde meetbare funksie is. Dit wil sê, \((\bigotimes M^n) = \{ \varpi : T \to \mathbb{R}^n : \varpi = (x_1, x_2, \ldots, x_n), x_i \in M, i = 1, 2, \ldots, n \} \). Laat \(A \) 'n kompakte konvexe versameling in Euklidiese \(n \)-ruimte wees. Laat \(M_A = \{ \varpi \in (\bigotimes M^n) : \varpi(t) \in A \ \mu \text{-byna oral in } T \} \). Dus, vir byna elke \(t \) is \(\varpi(t) = (x_i(t)) \) in \(A \). Laat \(B \) bestaan uit alle ekstreempunte van \(A \) en laat \(\overline{B} \) die afsluiting van \(B \) wees. Die versameling \(M_A \) is: (1) konvex, (2) begrens en (3) swak*-geslote.

Bewys:

1. Omdat \(A \) konvex is, volg dit vir \(y, z \in A \) en \(\alpha \in (0, 1) \), dat \(\alpha y + (1 - \alpha)z \in A \).
 Laat \(\overline{x}, \overline{y} \in M_A \). Dan, \(\alpha \overline{x}(t) + (1 - \alpha)\overline{y}(t) \in A \ \mu \text{-byna oral in } T \), wat beteken dat \(\alpha \overline{x} + (1 - \alpha)\overline{y} \in M_A \). Dus is \(M_A \) konvex.

2. Die begrensdeheid van \(M_A \) volg uit die begrensdeheid van \(A \).

3. Laat \(\overline{x}_0 \) 'n swak*-limiet van \(M_A \) wees. Gestel \(\overline{x}_0 \notin M_A \). Dit impliseer die bestaan van 'n versameling, \(E \), van positiese eindige maat sodat \(\overline{x}_0(E) \notin A \). 'n Versameling \(H \subset \mathbb{R} \) word 'n hipervlak genoem as daar reële getalle \(a_1, a_2, \ldots, a_n, c \) bestaan (met
\(a_i \neq 0 \) vir minstens een \(i \) sodat \(H \) uit alle punte \(x = (x_1, x_2, ..., x_n) \) bestaan wat
\[\sum a_i x_i = c \] bevredig [(RUDI, p.85)]. Vanaf hierdie definitie en die feit dat \(A \) begrens is,
is dit duidelik dat \(A \) deur 'n aftelbare aantal hipervlakke bepaal kan word. Vanaf die
Skeidende hipervlak stelling kan daar 'n vlak \((\xi_i) \), \(i = 1, 2, ..., n \), gekonstrueer word
sodanig dat \(\sum \xi_i \eta_i > c \) vir \(\{\eta_i\} \in A \), terwyl \(\sum \xi_i x_i^0(E_1) < c - \varepsilon \) vir 'n versameling
\(E_1, E_1 \subseteq E \), van positiewe maat. Dan volg dat \(\{\eta_i\} \in A \), maar \(x_i^0(E) \notin A \) en dus
is \(x_i^0(E_1) \notin A \). Definieer die funksie \(\bar{w}(t) \) in \(\bigotimes L^n(\mu, A) \) soos volg:

\[
\bar{w}(t) = \begin{cases}
\frac{\xi_i}{\mu(E_1)} & \text{vir } t \in E_1 \\
0 & \text{vir } t \notin E_1
\end{cases}
\]

Verder word die binneprodukt gedefinieer deur \((\bar{w}, \bar{x}) = \sum w_i x_i d\mu \). As \(\bar{x} \in M_A \)
dan is \((\bar{w}, \bar{x}) \geq c \), terwyl \((\bar{w}, \bar{x}_0) < c - \varepsilon \). Maar dan kan \(\bar{x}_0 \) nie 'n swak*-limietpunt
van \(M_A \) wees nie. Dus volg dat \(\bar{x}_0 \in M_A \).

Aangesien die eenheidsfeer van \(\bigotimes M^n \) kompak is in die swak*-topologie, volg dit vanaf
die feit dat \(M_A \) swak*-geslote en begrens is, dat \(M_A \) ook swak*-kompak is, kyk na [DIES,
p.13].

Vanaf die Krein-Milman Stelling volg dit dus dat \(M_A \) ekstreem punte het. Die eerste
stelling van Karlin karakteriseer hierdie ekstreem punte. Let op dat \(M_{\bar{B}} = \{\bar{x} \in \bigotimes M^n :
\bar{x}(t) \in \overline{B} \mu \text{- byna oral in } T\} \).

Stelling 7.2.2 [KARL, p.604]

Elke ekstreem punt van \(M_A \) is 'n element van \(M_{\bar{B}} \).

Bewys:
Laat \(\bar{x}_0 = (x_i^0) \) 'n ekstreem punt van \(M_A \) wees en gestel dat \(\bar{x}_0 \notin M_{\bar{B}} \) lê. Daar bestaan
'n \(\varepsilon_0 \) sodat \(\bar{x}_0 \notin M_B(\varepsilon_0) \), waar \(\overline{B}(\varepsilon_0) \) bestaan uit die afsluiting van die versameling van
punte van \(A \) verkry vanaf \(\overline{B} \) deur die beskrywing van 'n \(\varepsilon_0 \) sfeer rondom elke punt in
B. Gestel andersens dat \(\varepsilon_n \to 0 \) en dat \(\overline{x}_0 \in M_{\mathcal{B}(\varepsilon_n)} \) vir elke \(n \). Dit wil sê, daar bestaan 'n versameling \(E_n \) van maat 0 sodanig dat die waardeversameling van \(\overline{x}_0 \) in \(M_{\mathcal{B}(\varepsilon_n)} \) is. Aangesien \(\mu(\sum E_n) = 0 \), kan afgelei word dat \(\overline{x}_0 \in M_{\cap \mathcal{B}(\varepsilon_n)} = M_{\mathcal{B}} \), wat 'n teenpraak is. Dus bestaan daar 'n versameling \(E \) met \(\mu(E) > 0 \), sodat \(\overline{x}_0(t) \notin \overline{B}(\varepsilon_0) \) vir \(t \in E \). Dit volg dan dat 'n konstante vektor \(\overline{a} \) van klein grootte bestaan sodat \(\overline{x}_0 \pm \overline{a} \in A \) is wanneer \(t \in E_0 \subset E \). Laat

\[
\overline{\phi}(t) = \begin{cases}
\overline{a} & \text{as } t \in E_0 \\
0 & \text{as } t \notin E_0.
\end{cases}
\]

Gevolglik is \(\overline{x}_0 = \frac{(x_0 + \overline{\phi})}{2} + \frac{(x_0 - \overline{\phi})}{2} \) met \(\overline{x}_0 + \overline{\phi}, \overline{x}_0 - \overline{\phi} \in M_A \). Dit weerspreek die feit dat \(\overline{x}_0 \) 'n ekstreempunt van \(M_A \) is. Dus is die stelling bewys.

Opmerking 7.2.3: Die versameling \(M_{\mathcal{B}} \) is nie noodwendig 'n subversameling van die versameling van ekstreempunte van \(M_A \) nie, maar die versameling \(M_B \) is wel.

Lyapunov se Konveksiteitsstelling meld dat as \(\mu_1, \mu_2, ..., \mu_n \) nie-atomiese mate is gedefinieer op 'n \(\sigma \)-algebra van versameling, dan is die span in Euklidiese ruimte van die \(n \)-voude \((\int \! x(t) \, d\mu_j(t)) \) verkry deur \(x(t) \) beurtelings oor alle karakteristieke funksies van meetbare versameling te laat varieër, konveks en geslote. Dus volg dit dat die versameling van alle \(n \)-voude \((\int \! x(t) \, d\mu_j(t)) \) met \(0 \leq x(t) \leq 1 \) dieselfde versameling onderspan. Dit is reeds in Afdeling 6.2 opgemerk.

Laat nou \(M[A, \mu_j] = [\overline{\xi}_i, i = 1, 2, ..., n] \) met \(\overline{\xi}_i = \int \overline{x}(t) \, d\mu_i(t) \) en \(\overline{x} \in M_A \). Aangesien \(\overline{x} \in M_A \subset (\otimes M^n) \), volg dit dat \(\overline{x} \) 'n meetbare funksie is met betrekking tot elke \(\mu_j \). Hierdie versameling punte kan ook gesien word as 'n Euklidiese \(nm \) ruimte. Die volgende stelling gebruik nie net die konveksiteitsdeel van die Konveksiteitsstelling nie, maar ook van [BLA2, p.392].

Stelling 7.2.4 [KARL, p.605]

As \(\mu_i, i = 1, 2, ..., n \), nie-atomiese mate is, dan is elke ekstreempunt van die versameling
A van alle $\overline{x}(t)$-meetbare μ_i wat $\overline{x} \in M_A$ en $\overline{b}_i \leq \int \overline{x} d\mu_i \leq \overline{a}_i$ bevredig, 'n element van M_B.

Opmerking 7.2.5: (1) Die vektor ongelykheid $\int \overline{x} d\mu_i \leq \overline{a}_i$ beteken dat die ongelykheid geld vir elke komponent van die vektor.
(2) As $\text{ext}(A) = \overline{\text{ext}}(A)$, dan is $\text{ext}(M_A) = M_{\text{ext}(A)}$ vanaf Stelling 7.2.2 en Opmerking 7.2.3.
(3) As $\mu = \mu_1 + \mu_2 + ... + \mu_n$ dan volg dit vanaf die Radon-Nikodým Stelling dat $\mu(E) = \int_E f_i(t) d\mu_i(t)$, $f_i \in L(\mu, A)$. Vanaf die konvexiteitsstelling is begrensd de swak*-kompakte versameling in $M(\mu, A)$ kompak. Volgens Stelling 7.2.4 word die versameling Γ van ekstreempunte van alle $\overline{x}(t)$ in M_A wat $\overline{b}_i \leq \int \overline{x} f_i(t) d\mu_i(t) \leq \overline{a}_i$ bevredig, bevat in M_B as μ nie-atomiese is. In Stelling 7.2.4 word dus net die konvexiteitsdeel van Lyapunov se stelling gebruik.

Stelling 7.2.4 kan gebruik word om die volgende uitbreiding van Lyapunov se stelling te verkry:

Stelling 7.2.6 [KARL, p.606]
Laat μ_j, $j = 1, 2, ..., n$, nie-atomiese, eindige mate wees. Dan is $M[A, \mu_j] = M[\overline{B}, \mu_j]$.

Bewys:
Laat \bar{x}_0 enige punt in $M_A \subseteq (\otimes M^n)$ wees. Stel $\bar{\xi}_i = \int \bar{x}_0 d\mu_i$. Laat Γ die versameling van alle \bar{x} in M_A wees waarvoor $\bar{\xi}_i = \int \bar{x} d\mu_i$. Hierdie versameling is swak*-geslote en konveks en dus kompak (Opmerking 7.2.5(3)). Daar bestaan dus 'n ekstreempunt \bar{x}_1 van Γ. Vanaf Stelling 7.2.4 volg dit dat $\bar{x}_1 \in M_B$ en dat $\int \bar{x}_1 d\mu_i = \bar{\xi}_i = \int \bar{x}_0 d\mu_i$. Dit wil sê dat $M[A, \mu_j] \subseteq M[\overline{B}, \mu_j]$.

Dit is bekend dat $\overline{B} \subseteq A$. Dus is $M[\overline{B}, \mu_j] \subseteq M[A, \mu_j]$ en is die stelling bewys.

Opmerking 7.2.7: 'n Gevolgtrekking van bostaande stelling is dat die versameling $M[\overline{B}, \mu_j]$ konveks en kompak is in \mathbb{R}^{mp}. Dit volg vanaf die konvexiteit en geslotenheid.
van $M[A, \mu]$. Vir 'n belangrike toepassing van die bostaande stelling, sien C. Castaing [CAS1, p.122]. In die stelling beskou Castaing 'n lokaal kompakte ruimte T, 'n positiwye maat μ op T, 'n n-dimensionele ruimte E en 'n multifunksie $F : T \rightarrow E$, met $F(t)$ nie-leeg en kompak in E vir elke $t \in T$. Dan is $S_\text{co}(F)$ swak*-kompak, en as μ nie-atomies is, dan is $\int F(t)d\mu = \int (\text{co}F)(t)d\mu$, waar $S_\text{co}(F)$ die versameling van meetbare selektors van die multifunksie $\text{co}(F)$ is, waar $\text{co}(F(t))$ die konveksse omhulsel van $F(t)$ is.

Afleiding 7.2.8 [KARL, p.607]
Laat C enige geslote, begrensde versameling in \mathbb{R}^m voorstel. Dan is $M[C, \mu]$ konveks en geslote as μ nie-atomies is.

Stelling 7.2.9 [KARL, p.607]
Laat $B = B$. Dan is die versameling van ekstreempunte van M_A nie swak*-geslote nie en die ekstreempunte van M_B en M_A is ry-swak-geslote.

Bewys:
Neem aan dat die versameling van ekstreempunte van M_A swak*-geslote is. Laat \bar{x} enige element uit M_A voorstel en beskou enige integreerbare funksies $f_1(t), f_2(t), \ldots, f_n(t)$.
Vanaf Stelling 7.2.4 bestaan daar 'n ekstreempunt \bar{x}_0 sodat

$$\int f_i\bar{x}d\mu = \int f_i\bar{x}_0d\mu \text{ vir } i = 1, 2, \ldots, n.$$
(\bar{x}_0 hang natuurlik af van die keuse van f_1, f_2, \ldots, f_n.) Laat $G(f_0) = \left\{ \bar{x}_0 : \bar{x}_0 'n \text{ ekstreepunt van } M_A \text{ en } \int \bar{x}_0 f_0d\mu = \int \bar{x}_f f_0d\mu \right\}$. Die aanname impliseer dat $G(f_0)$ swak*-geslote en nie-leeg is. Elke eindige deursnede van die $G(f_0)$ is swak*-geslote en nie-leeg. Aangestel die ekstreempunte van M_A swak*-geslote en dus kompak is, volg dat

$$L = \cap G(f_0) \neq 0.$$
Laat $\bar{x}_0 \in L$. Dan is

$$\int \bar{x}fd\mu = \int \bar{x}_0 fd\mu$$

147
vir elke integreerbare \(f \). Dus is \(\overline{x} = \overline{x}_0 \) \(\mu \)-byna oral. Dit wil sê, dat elke \(\overline{x} \) in \(M_A \) 'n punt in \(M_B \) is. Maar aangesien \(A \) uit meer as een punt bestaan, is bogenoemde resultaat nie moontlik nie. Dus is die versameling van alle ekstreempunte van \(M_A \) nie swak*-geslote nie.

Vir die tweede deel van die bewys: As \(\overline{x}_n \) swak na \(\overline{x} \) konvergeer, dan konvergeer \(\overline{x}_n \) minstens byna oral na \(\overline{x} \) en \(\|\overline{x}_n\| < C \). Dus, as \(\overline{x}_n \in M_B \) dan is \(\overline{x} \) duidelijk ook in \(M_B \) omdat \(B \) geslote is.

Stelling 7.2.9 kan soos volg gedemonstreer word:

Vanaf Stelling 7.2.2 volg dit dat die ekstreempunte van die versameling van alle Lebesgue-meetbare positiewe funksies wat deur die getal 1 begrens word, uit alle karakteristieke funksies bestaan. In besonder is

\[
s_n(t) = \frac{1}{2} + \frac{r_n(t)}{2}
\]

waar

\[
r_n(t) = (sgn)sin^{2n+1} \pi t
\]

vir elke \(n \) 'n ekstreempunt, met \(r_n \) wat die Rademacher-funksies voorstel. Die ortogonaliteit en begrensdeheid van \(r_n(t) \) impliseer vir enige integreerbare funksie dat

\[
\lim_{n \to \infty} f(t)r_n(t)dt = 0.
\]

Gevolglik konvergeer \(s_n(t) \) swak* na die funksie wat identies gelyk aan \(\frac{1}{2} \) is, wat duidelik nie 'n ekstreempunt is nie.

Tot dusver is nog net die eindige geval beskou. Al die voorafgaande teorie kan egter ook uitgebrei word na die oneindige geval, soos gedemonstreer deur die volgende:

Die ruimte \(M^\infty = (\bigotimes M(\mu, A))^\infty \) word gedefinieer as die aftelbaar oneindige direkte produk van \(M(\mu, A) \). As \(\overline{f} \in M^\infty \), dan is \(\overline{f} = (f_1, f_2, ..., f_i, ...) \), waar \(f_i \in M(\mu, A) \) vir elke \(i \in \mathbb{N} \). Laat \(l^\infty \) die Banach-ruimte aandui wat uit alle begrensde ryte bestaan. Dan is
\(l^\infty = (l^1)' \), waar \(l^1 \) die ruimte van alle rye \((x_n : n \in \mathbb{N}) \) voorstel waarvoor \(\sum_{n=1}^{\infty} |x_n| < \infty \).

Dus is begrense swak*-geslote versamelings in \(l^\infty \) swak*-kompak en konvexe begrense swak*-geslote versamelings word in die swak*-topologie onderspan deur ekstreempunte.

Die volgende voorbeeld is 'n uitbreiding van die voorafgaande werk na die oneindige geval.

Laat \(M_A = \{ \bar{f} \in M^\infty : 0 \leq f_i(t) \leq 1, i \in \mathbb{N}, t \in T \} \). Laat \(B = \{ (b_i) \in l^\infty : b_i = 0 \) of \(b_i = 1 \}. \) Dan is \(\text{ext}(M_A) = \{ \bar{f} : \bar{f}(t) \in \text{ext}(B) \) vir byna elke \(t \in T \}. \) Verder is \(M_A \) swak*-geslote. Dit volg dat as additionele lineêre voorwaarde \(\int \bar{f}(t) d\mu_i = \alpha_i, i = 1, 2, ..., p \), gestel word met \(\mu_i \) nie-atomies, dan word geen verdere ekstreempunte verkry nie. Dit het, soos Stelling 7.2.6 die konveksiteit en swak*-geslotenheid van die onderspanning in \(l^\infty \) van \((\int \bar{f} d\mu_i)_{i=1}^{p} \) tot gevolg.

Op die laaste paar bladse van [KARL] bestudeer Karlin die ekstreempunte van die versameling \(L \) bestaande uit die positiewe reguliere mate van totale variasie gedefinieer op 'n swak-kompakte Hausdorff-ruimte \(T \) waarop sekere lineêre beperkings geld.

7.3 Lindenstrauss

Soos reeds genoem, het Karlin se artikel en die idees daarin verteenwoordig ook 'n groot rol in die ontwikkeling van die Konveksiteitstelling gespeel in die opsig dat dit hierdie idees is wat aanleiding gegee het tot die Israelse wiskundige Joram Lindenstrauss se 1966-bewys van die Konveksiteitstelling. Volgens Halmos is dit "the slickest proof to end all proofs" [sien Afdeling 5.1] van die Konveksiteitstelling. Dit was 'n baanbreker in 'n nuwe benadering tot die Konveksiteitstelling deurdat dit die eerste keer is dat die Konveksiteitstelling deur middel van funksionaanalise bewys is – 'n bewysmethode wat sedertdien baie gebruik is, soos wat later bespreek sal word.

Soos in Karlin se artikel, berus 'n groot deel van Lindenstrauss se bewys van die Konveksiteitstelling op die Banach-Alaoglu Stelling asook die Krein-Milman Stelling.
Lindenstrauss se weergawe van die Konveksiteitstelling en sy kort bewys daarvan lyk soos volg (met ontbrekende stappe by die bewys ingevoeg):

Stelling 7.3.1 [LIND, p.971]

Laat $\mu_1, \mu_2, \ldots, \mu_n$ eindige nie-atomiese positiewe mate op 'n maatruimte (T, \mathcal{A}) wees. Dan is die versameling van punte in \mathbb{R}^n van die vorm

$$(\mu_1(A), \mu_2(A), \ldots, \mu_n(A))$$

met $A \in \mathcal{A}$, geslote en konveks.

Bewys:

Die bewys word deur induksie op n gedoen. Die bewys vir $n = 1$ is dieselfde as dié van die induksiestap wat hieronder volg.

Gestel $\mu = \mu_1 + \mu_2 + \ldots + \mu_n$ en laat

$$W = \{g \in L^\infty(\mu) : 0 \leq g \leq 1\}.$$

Dit is bekend dat $L^\infty(\mu) = (L^1(\mu))'$ en dat die geslote eenheidsbal B_1 van $(L^1(\mu))'$ swak*-kompak is (Banach-Alaoglu). Dit is ook duidelik dat $W \subset B_1$. Ons toon aan dat W swak*-kompak is deur te bewys dat dit swak*-geslote is.

1. Dit is duidelik dat $g \in W$ as en slegs as $0 \leq \int fg d\mu \leq \int f d\mu$ vir elke $f \in L^1(\mu)$, $f \geq 0$.

2. Laat $\Phi : L^\infty(\mu) \to (L^1(\mu))'$ gedefinieer word deur $\Phi(g) = x^*_g$ vir elke $g \in L^\infty(\mu)$, en waar

$$x^*_g(f) = \int fg d\mu \quad \text{vir elke } f \in L^1(\mu).$$

Gestel die ry $(g_m : m \in \mathbb{N})$ in W konvergeer in die swak*-topologie na g. Dan, vir elke $f \in L^1(\mu)$ geld dat $f(g_m) \to f(g)$ as $m \to \infty$. Dus, $g_m(f) \to g(f)$ as $m \to \infty$ vir elke
$f \in L^1(\mu)$. Dan, $x^*_m(f) \to x^*_\nu(f)$ as $m \to \infty$ vir elke $f \in L^1(\mu)$. Dit beteken dat

$$\int fg_m d\mu \to \int fg d\mu$$

as $m \to \infty$ vir elke $f \in L^1(\mu)$. Hierdie geld ook vir elke $f \in L^1(\mu)$, $f \geq 0$. Omdat $\int fg_m d\mu \leq \int fd\mu$ vir sulke f, volg dit vanuit (1) bo dat $g \in W$, want $0 \leq \int fg d\mu \leq \int fd\mu$ vir elke $f \in L^1(\mu)$ met $f \geq 0$. Gevolglik is W swak*-geslote, en dus ook swak*-kompak.

Die versameling W is ook konveks:

Neem $g, h \in W$ en $\alpha \in [0, 1]$. Dan is

$$0 \leq \alpha g(x) + (1 - \alpha)h(x)$$
$$\leq \alpha \|g\|_\infty + (1 - \alpha)\|h\|_\infty$$
$$\leq \alpha 1 + (1 - \alpha)1$$
$$= 1 \quad \text{vir alle } x \in T.$$

Definieer die afbeelding $L : W \to \mathbb{R}^n$ deur

$$Lg = \left(\int_T g d\mu_1, \int_T g d\mu_2, \ldots, \int_T g d\mu_n\right)$$

vir elke $g \in W$. Die afbeelding L is affien:

Dit volg aangesien W konveks en \mathbb{R}^n 'n vektorruimte is en aangesien, vir $\lambda \in [0, 1]$ en $g, h \in L^\infty$,

$$L((1 - \lambda)g + \lambda h) = \left(\int_T ((1 - \lambda)g + \lambda h) d\mu_1, \int_T ((1 - \lambda)g + \lambda h) d\mu_2, \ldots, \right.$$

$$\int_T ((1 - \lambda)gd\mu_1 + \lambda h d\mu_1, \int_T ((1 - \lambda)gd\mu_2 + \lambda h d\mu_2 +$$

$$\int_T \lambda hd\mu_2, \ldots, \int_T ((1 - \lambda)gd\mu_n + \lambda h d\mu_n)$$

151
\[
= \left(1 - \lambda\right) \int_T g d\mu_1 + \lambda \int_T h d\mu_1, (1 - \lambda) \int_T g d\mu_2 + \lambda \int_T h d\mu_2, ..., (1 - \lambda) \int_T g d\mu_n + \lambda \int_T h d\mu_n \\
= (1 - \lambda) \left(\int_T g d\mu_1, ..., \int_T g d\mu_n \right) + \lambda \left(\int_T h d\mu_1, ..., \int_T h d\mu_n \right) \\
= (1 - \lambda) Lg + \lambda Lh.
\]

\(L\) is ook begrens:

Dit is bekend dat \(\int_T g d\mu_i \leq \int_T d\mu_i = \mu_i(T)\) vir elke \(g \in W\) en \(i = 1, 2, ..., n\). Dus is

\[
\|L(g)\| = \sqrt{\left(\int_T g d\mu_1\right)^2 + \cdots + \left(\int_T g d\mu_n\right)^2} \\
\leq \sqrt{\left(\mu_1(T)\right)^2 + \cdots + \left(\mu_n(T)\right)^2} \\
\leq \sqrt{n \cdot \text{maks}\{(\mu_1(T))^2, ..., (\mu_1(T))^2\}} \\
= K
\]

waar \(K\) 'n konstante is. Dus is \(L\) begrens. Aangesien \(L\) ook affien is, volg dit dat \(L\) kontinu is in die swak*-topologie (elke begrensde lineêre operator is kontinu). Omdat elke \(\mu_i\) absoluut kontinu is met betrekking tot \(\mu\), volg dit uit die Radon-Nikodym Stelling dat daar funksies \(h_i \in L^1(\mu)\) bestaan sodat \(d\mu_i = h_i d\mu\), \(i = 1, 2, ..., n\). Vir elke \(g \in W\), volg dan dat \(L(g) = x_g^* (h_1, h_2, ..., h_n)\), wat dui dat \(L\) 'n swak*-kontinue lineêre afbeelding is van \(L^\infty(\mu)\) na \(\mathbb{R}^n\). Gevolglik is die versameling \(L(W)\) kompak en konveks in \(\mathbb{R}^n\). Nou word aangetoon dat \(L(W) = \mathcal{R}(\mu)\), die waardeversameling van \(\mu\):

Laat \(\mu(E) \in \mathcal{R}(\mu)\), met \(E \in \mathcal{A}\). Dan,

\[
\mu(E) = (\mu_1(E), \mu_2(E), ..., \mu_n(E)) \\
= \left(\int \chi_E d\mu_1, \int \chi_E d\mu_2, ..., \int \chi_E d\mu_n \right) \\
= L \chi_E \in L(W).
\]

152
Dus, \(\mathcal{R}(\mu) \subset L(W) \). Vir die omgekeerde, laat \(\lambda = (\lambda_1, \lambda_2, ..., \lambda_n) \in L(W) \subset \mathbb{R}^n \) en stel

\[
W_0 = L^{-1}(\lambda_1, \lambda_2, ..., \lambda_n) = \{g \in W : Lg = \lambda\}.
\]

Die versameling \(W_0 \) is nie-leeg en swak*-geseolte, en is dus nie-leeg en swak*-kompak in \(L^\infty(\mu) \), wat 'n lokaal konveks se Hausdorff-ruimte is. Gevolglik het \(W_0 \) minstens een ekstreempunt, se \(g \). As aangetoon kan word dat \(g = \chi_A \), met \(A \in \mathcal{A} \), dan volg dat

\[
\lambda = Lg = L\chi_A = (\mu_1(A), \mu_2(A), ..., \mu_n(A)) = \mu(A) \in \mathcal{R}(\mu).
\]

Dit toon aan dat \(L(W) \subset \mathcal{R}(\mu) \), en die stelling sal hiermee bewys wees. Vir dié doeleindes, gestel egter dat \(g \) nie 'n karakteristieke funksie van 'n meetbare versameling is nie. Dan bestaan 'n \(\varepsilon > 0 \) en 'n versameling \(Z \in \mathcal{A} \) met \(\mu_1(Z) > 0 \) en sodat \(\varepsilon \leq g \leq 1 - \varepsilon \) op \(Z \). Aangesien \(\mu_1 \) nie-atomies is, bestaan daar 'n versameling \(A \subset Z \) sodat \(\mu_1(A) > 0 \) en \(\mu_1(Z \setminus A) > 0 \). Uit die induksie-hipoteze bestaan versamelingen \(B \subset A \) en \(C \subset Z \setminus A \) sodat

\[
\mu_i(B) = \frac{1}{2}\mu_i(A), \quad \mu_i(C) = \frac{1}{2}\mu_i(Z \setminus A) \quad i = 2, 3, ..., n.
\]

Kies getalle \(s \) en \(t \) sodat \(|s| \leq \varepsilon, |t| \leq \varepsilon, s^2 + t^2 > 0 \) en

\[
s(\mu_1(A) - 2\mu_1(B)) = t(\mu_1(Z \setminus A) - 2\mu_1(C)).
\]

Laat \(h = s(2\chi_B - \chi_A) + t(\chi_{Z \setminus A} - 2\chi_C) \). Dit volg dat \(\int h d\mu_i = 0 \) vir \(i = 1, 2, ..., n \). Die funksie \(h \) is nie die nul-element van \(L^\infty(\mu) \) nie, want as \(x \in Z \setminus A \), dan is \(h(x) = t \) of \(h(x) = -t \), terwyl as \(x \in A \), dan is \(h(x) = s \) of \(h(x) = -s \), en \(s \) en \(t \) is nie gelyktydig 0 nie. Dit volg uit

\[
|h| \leq |s|\|2\chi_B - \chi_A\| + |t|\|\chi_{Z \setminus A} - 2\chi_C\|
\]

dat, op \(T \),

\[
|h(x)| \leq \varepsilon \leq g(x) \leq 1 - \varepsilon \leq 1 - |h(x)|.
\]

As \(h(x) \geq 0 \), dan, \(h(x) \leq g(x) \leq 1 - h(x) \), dus,

\[
0 \leq g(x) - h(x) \leq 1 - 2h(x) \leq 1
\]

153
en dus is \(g - h \in W \).

As \(h(x) \leq 0 \), dan, \(-h(x) \leq g(x) \leq 1 + h(x)\), dus,

\[
0 \leq g(x) + h(x) \leq 1 + 2h(x) \leq 1
\]

en dus is \(g + h \in W \). Verder \(L(g - h) = Lg - Lh = Lg = \beta \), dus \(g - h \in W_0 \). Netso is \(g + h \in W_0 \). Maar \(g = \frac{g+h}{2} + \frac{g-h}{2} \), en \(g + h \neq g - h \). Dit weerspreek die gegewe dat \(g \) ’n ekstreempunt van \(W_0 \) is. Gevolglik is \(g = \chi_A \) vir ’n \(A \in \mathcal{A} \), en is die stelling hiermee bewys.

Net soos by die Konveksiteitstelling het verskeie weergawes van Lindenstrauss se bewys na die publikasie die lig gesien, soos byvoorbeeld [RUDI], [MUPO, p.105] en [AUBI, p.577].

Rudin se alternatiewe bewys lyk as volg [RUDI, p.120]:

Bewys:

Assosieer met elke begrensde meetbare reëlle funksie \(g \) die vektor

\[
\Lambda g = \left(\int g d\mu_1, \ldots, \int g d\mu_n \right)
\]

in \(\mathbb{R}^n \). Laat \(\sigma = |\mu_1| + \ldots + |\mu_n| \). As \(g_1 = g_2 \) \(\sigma \)-byna oral, dan beteken dit

\[
\sigma(\{x \in T : g_1(x) \neq g_2(x)\}) = 0
\]

dit wil sê,

\[
|\mu_1|(\{x \in T : g_1(x) \neq g_2(x)\}) + \ldots + |\mu_n|(\{x \in T : g_1(x) \neq g_2(x)\}) = 0.
\]

Aangesien daar met nie-negatiewe mate \(|\mu_i| \) gewerk word, is

\[
|\mu_i|(\{x \in T : g_1(x) \neq g_2(x)\}) = 0 \quad \text{vir elke } i = 1, 2, \ldots, n.
\]

Per definisie is

\[
\Lambda g_1 = \left(\int g_1 d\mu_1, \ldots, \int g_1 d\mu_n \right)
\]

en

\[
\Lambda g_2 = \left(\int g_2 d\mu_1, \ldots, \int g_2 d\mu_n \right).
\]

154
Dan is $A g_1 = A g_2$, want $\int g_1 d\mu_i = \int g_2 d\mu_i$, $i = 1, 2, \ldots, n$.

A kan dus as 'n lineêre afbeelding van $L^\infty(\sigma)$ na \mathbb{R}^n beskou word.

Elke μ_i is absoluut kontinu met betrekking tot σ. Vanaf die Radon-Nikodým Stelling volg dus dat daar funksies $h_i \in L^1(\sigma)$ bestaan sodat

$$d\mu_i = h_i d\sigma, \quad 1 \leq i \leq n.$$

Dus is A 'n swak*-kontinue lineêre afbeelding van $L^\infty(\sigma)$ na \mathbb{R}^n (want $L^\infty(\sigma) = (L^1(\sigma))'$). Definieer nou

$$K = \{ g \in L^\infty(\sigma) : 0 \leq g \leq 1 \}.$$

Dit is reeds bekend dat K konveks is (sien die bewys van Stelling 7.3.1). Aangesien $g \in K$ as en slegs as

$$0 \leq \int f g d\sigma \leq \int f d\sigma$$

vir elke nie-negatiewe $f \in L^1(\sigma)$, is K swak*-geslote. Verder volg dit vanaf die Banach-Alaoglu Stelling dat K swak*-kompak is aangesien K in die geslote eenheidsbal van $L^\infty(\sigma)$ lê en self swak*-geslote is.

Aangesien A 'n swak*-kontinue, lineêre afbeelding is, behou dit die eienskappe van K. Verder is dit bekend dat die swak*-topologie, die swak-topologie en die sterk-topologie ooreenstem in \mathbb{R}^n. Dus volg dit dat $A(K)$ 'n kompakte, konveksse versameling in \mathbb{R}^n is. Daar moet nou net bewys word dat $\mathcal{R}(\mu) = A(K)$, waar \mathcal{A} die σ-algebra is waarop die mate $\mu_1, \mu_2, \ldots, \mu_n$ gedefinieer is. Gestel χ_E is die karakteristieke funksie van 'n versameling $E \in \mathcal{A}$. Dan is $\chi_E \in K$ (per definisie van karakteristieke funksie) en $\mu(E) = A(\chi_E) \in \Lambda(K)$. Dit beteken $\mathcal{R}(\mu) \subseteq A(K)$.

Kies nou 'n punt $p \in A(K)$ en definieer

$$K_p = \{ g \in K : A g = p \}.$$

Daar moet nou bewys word dat K_p 'n funksie χ_E bevat sodat $\mu(E) = p$. Dit is bekend dat K_p konveks is (aangesien $K_p \subset K$). Aangesien A kontinu is, is K_p swak*-kompak. Vanaf die Krein-Milman Stelling volg dit dat K_p 'n ekstreempunt bevat. Gestel $g_0 \in K_p$ en g_0
is nie 'n karakteristieke funksie in \(L^\infty(\sigma) \) nie. Dan bestaan daar 'n versameling \(E \in \mathcal{A} \) en 'n \(r > 0 \) sodat \(\sigma(E) > 0 \) en \(r \leq g_0 \leq 1 - r \) op E. Laat \(Y = \chi_E \cdot L^\infty(\sigma) \). Aangesien \(\sigma(E) > 0 \) en \(\sigma \) nie-atomies is, is \(\dim Y > n \). Dus bestaan 'n \(g \in Y \) wat nie die nulelement van \(L^\infty(\sigma) \) is nie, sodat \(\Lambda g = 0 \) en sodat \(-r < g < r\). Dit wil sê \(g_0 + g, g_0 - g \in K_p \).

Maar dan is \(g_0 \) nie 'n ekstreempunt van \(K_p \) nie. Dit beteken dat elke ekstreempunt van \(K_p \) 'n karakteristieke funksie is. Dus, \(p = \Lambda(\chi_E) = \mu(E) \in \mathcal{R}(\mu) \). Dit bewys die stelling.

In 1974 publiseer R. E. Jamison 'n artikel \(A \) quick proof for a one-dimensional version of Liapounoff's theorem [JAMI]. In hierdie artikel maak Jamison van Zorn se lemma gebruik om 'n kort bewys van 'n een-dimensionele weergawe van Lyapunov se stelling te gee. Voor sy stelling en bewys beskou word, word 'n nodige definisie en stelling net kortliks genoem.

Definisie 7.3.2 [HEST, p.177]

Gestel \(\mathcal{A} \) is 'n \(\sigma \)-algebra van subversamelings van 'n Hausdorff-ruimte \(T \) sodanig dat \(B(T) \subset \mathcal{A} \), waar \(B(T) \) die definisieversameling van 'n Borel-maat \(\mu \) op \(T \) is. 'n Maat \(\mu \) op \(\mathcal{A} \) is regulier as

- vir elke kompakte \(K \subset T \) is \(\mu(K) < \infty \)
- vir elke \(A \in \mathcal{A} \) is \(\mu(A) = \inf \{ \mu(U) : A \subset U \text{ en } U \text{ is oop in } T \} \)
- vir elke oop \(U \subset T \) is \(\mu(U) = \sup \{ \mu(K) : K \subset U \text{ en } K \text{ is kompakt in } T \} \).

Stelling 7.3.3 [SIMM, p.111]

'N Topologiese ruimte is kompakt as en slegs as elke klas van geslote versamelings met leë deursnede 'n eindige subklas met leë deursnede bevat.

Jamison se weergawe van 'n een-dimensionele Konveksiteitstelling en sy bewys lyk soos volg:
Stelling 7.3.4 [JAMI, p.507]
Gestel dat μ 'n reguliere maat gedefinieer op die Borel-klas van 'n kompakte Hausdorff-
ruimte T is. As die maat van enige enkelpunt subversameling van T nul is, dan bestaan
daar vir elke $\beta \in [0, \mu(T)]$ 'n kompakte subversameling D van T met $\mu(D) = \beta$.

Bewys:
As $\beta = \mu(T)$, dan is $D = T$ en as $\beta = 0$, neem $D = \emptyset$. As $\{D_i : i \in I\}$ 'n dalende klas van kompakte subversamelings van T is, dan geldt $\cap_{i \in I} D_i \subseteq D_i$ en $\mu(\cap_{i \in I} D_i) \leq \mu(D_i)$, vir alle $i \in I$, sodat $\mu(\cap_{i \in I} D_i) \leq \inf_i \mu(D_i) = \lambda$. Gestel $\mu(\cap_{i \in I} D_i) < \lambda$. Aangesien μ 'n reguliere maat is, bestaan daar 'n versameling U_λ wat oop is in T sodat $\cap_{i \in I} D_i \subseteq U_\lambda$ en $\mu(\cap_{i \in I} D_i) \leq \mu(U_\lambda) < \lambda$. Die klas $\{D_i \cap U_\lambda' : i \in I\}$ is 'n dalende klas van kompakte versamelings met $\cap_{i \in I} D_i \cap U_\lambda' = \emptyset$.

$$U_\lambda' = T \setminus U_\lambda,$$ wat geslote is; $D_i \cap U_\lambda' = D_i \cap (T \setminus U_\lambda) \subseteq D_i$.

Dan is $(\cap_{i \in I} D_i \cap U_\lambda') = (\cap_{i \in I} D_i) \cap U_\lambda' = \emptyset$, want $\cap_{i \in I} D_i \subseteq U_\lambda$.

Vanaf Stelling 7.3.3 volg dit dat daar 'n eindige deelklas van $\{D_i \cap U_\lambda' : i \in I\}$ met leë
deursnede bestaan; omdat dit 'n dalende ry is, is die doorsnede van die vorm $D_{i_0} \cap U_\lambda'$, wat leeg is. Dus is $D_i \cap U_\lambda' = \emptyset$ vir minstens een i, sê i_0. Dan is $D_{i_0} \subseteq U_\lambda$ en $\mu(D_{i_0}) \leq \mu(U_\lambda) < \lambda$. Dit is egter teenstrydig met die definisie van λ. Dus is $\mu(\cap_{i \in I} D_i) = \inf_i \mu(D_i) = \lambda$.

Laat nou $0 < \beta < \mu(T)$. Aangesien μ regulier is, is

$$\mu(T) = \sup\{\mu(K) : K \subseteq T \text{ en } K \text{ kompak in } T\}.$$

Dan is $\beta < \mu(T)$ sodat $\mu(T) - \beta > 0$. Kies $N_0 \in \mathbb{N}$ so groot dat $\mu(T) - \frac{1}{N_0} > \beta$. Dan bestaan daar vir elke $n \in \mathbb{N}, n \geq N_0$, 'n kompakte versameling K_n in T, sodat

$$\mu(T) - \frac{1}{n} < \mu(K_n) \leq \mu(T).$$

Dus is $\beta < \mu(T) - \frac{1}{N_0} \leq \mu(T) - \frac{1}{n} < \mu(K_n) \leq \mu(T)$ vir alle $n \geq N_0$. Laat $A = \{K \subseteq T : K \text{ is kompak en } \mu(K) \geq \beta\}$. Beskou die ry

$K_{N_0}, K_{N_0+1}, K_{N_0+2}, \ldots$ in A. Herbenoem die versamelings na E_1, E_2, E_3, \ldots. Laat $D_1 = E_1, D_2 = E_1 \cup E_2, D_3 = E_1 \cup E_2 \cup E_3, \ldots$. Elke D_n is kompakt. Dan is $D = \{D_n : n \in \mathbb{N}\}$ 'n ketting in A. Daar bestaan dus kettings in A. Neem enige ketting P in A. Dan is P is

lineër geordend, $\cap P$ is die kleinste lid van \mathcal{P}, $\cap P \subseteq A$ vir alle $A \in P$ en $\mu(\cap P) \geq \beta$. Dus
is \(\cap P \in A \). Dit wil sê, \(A \) het 'n minimum element \(D \) wat dan \(\mu(D) \geq \beta \) bevredig (vanaf die Minimum Beginsel [KEJ]).

Gestel dat \(\mu(D) > \beta \). Dan is \(D \neq \emptyset \). Laat \(x \in D \). Vanaf die hipotesis is \(\mu(\{x\}) = 0 \).

Omdat \(T \) kompak en Hausdorff is, is \(\{x\} \) kompak. Omdat \(\mu \) regulier is, geld dat \(\mu(\{x\}) = \inf\{\mu(U) : U \text{ is oop in } T \text{ en } \{x\} \subset T\} \). Daar bestaan dus 'n oop versameling \(U \) met \(x \in U \) en \(\mu(U) < \mu(D) - \beta \). Dan is

\[
D = (D \setminus U) \cup (D \cap U)
= (D \cap U') \cup (D \cap U)
\subseteq (D \cap U') \cup U
\]

en

\[
\mu(D) \leq \mu(D \cap U') + \mu(U)
< \mu(D \cap U') + (\mu(D) - \beta)
\]

waarvan volg dat \(\beta < \mu(D \cap U') \). Maar \((D \cap U') \) is kompak, word eg bevat in \(D \) aangesien \(x \notin (D \cap U') \) en \(D \cap U' \in A \). Dit weerspreek egter die minimaliteit van \(D \). Dus is \(\mu(D) = \beta \).

'N Meer algemene vorm van bostaande stelling kan gesien word in [HEST, p.185, oefening 12.59], waarin \(T \) 'n lokaal kompakte Hausdorff-ruimte is, en \(D \) 'n \(\sigma \)-kompakte versameling is.

Soos reeds genoem, was Lindenstrauss se bewys van Lyapunov se stelling die begin van die oorgang tussen maatteorie en funksionaalanalise.

7.4 Die oneindig-dimensionele weergawe

Die oneindig-dimensionele weergawe van die Konveksiteitstelling was vanuit 'n analitiese oogpunt af vir lank nie 'n opsie nie. Dit het egter verander met die publikasie van 'n artikel van J. F. C. Kingman en A. P. Robertson [KIRO] in 1968. In hierdie artikel gee hulle 'n spesiale geval waaronder die Konveksiteitstelling in oneindige-dimensie ook geld.
Alhoewel Kingman en Robertson se artikel onafhanklik van enige invloed van Lindenstrauss geskryf is (hulle artikel is in 1966 voorgelope), is dit interessant om op te merk dat van hulle idees tog ooreenstem met dié van Lindenstrauss.

7.4.1 Kingman en Robertson

In [KIRO] word die waardeversameling van 'n vektormaat $\mu = (\mu_\theta)$ beskou, waar Θ 'n algemene versameling is. Indien μ 'n digtheidsfunksie het, dit wil sê, wanneer daar 'n positiewe eindige maat ν op (T, \mathcal{A}) bestaan met betrekking waartoe elke μ_θ absoluut kontinu is, waardes in \mathbb{R}^Θ aanneem, dan gee die hoofresultaat 'n nodige en voldoende voorwaarde vir $\mathcal{R}(\mu|S) = \{\mu(A) : A \in \mathcal{A} \text{ en } A \subseteq S\}$ om, vir elke meetbare $S \in \mathcal{A}$, kompak en konveks te wees.

Laat (T, \mathcal{A}, ν) 'n eindige maatraumte wees (met ν positief); $L_1 = L_1(T, \mathcal{A}, \nu)$ is die Banach-ruimte bestaande uit alle ekwivalensieklasse van ν-integreerbare funksies op T. Die Banach-ruimte $L_\infty = L_\infty(T, \mathcal{A}, \nu)$, bestaande uit alle essensieel begrensde meetbare funksies op T, is die dualruimte van L_1; L_∞ word onder die swak* topology beskou.

Vanaf die Banach-Alaoglu Stelling volg dit dat die geslote eenheidsbal in L_∞ kompak is in die $\sigma(L'_1, L_1) = \sigma(L_\infty, L_1)$ topologie. Verder is die positiewe keël (kyk na [EDWS]) ook geslote onder hierdie topologie, waar 'n keël in L_∞ gedefinieer word as 'n subversameling P van deur L_∞ waar $\lambda P \subseteq P$ vir elke $\lambda > 0$, en die positiewe keël dan voorgestel word deur

$$P = \{f \in L_\infty : f(x) \geq 0\}.$$

Die deursnede van die geslote eenheidsbal en die positiewe keël

$$K = \{\phi \in L_\infty : 0 \leq \phi(x) \leq 1 \text{ byna oral}\}$$

is 'n konvekske en kompakte versameling (die bewys is soortgelyk aan dié van Lindenstrauss [LIND]). Laat K_0 die versameling van ekstreempunte van K wees. Soortgelyk aan Rudin se bewys van die Konveksiteitstelling [RUDI, p.120] kan dit gewys word dat alle
karakteristieke funksie van meetbare versamelings ekstreem is in K en dat dit die enigste ekstreempunte is. Dus, K_0 bestaan uit karakteristieke funksies van versamelings $S \in A$.

Laat $M \subset L_1$; M^\perp dui die versameling van alle $\phi \in L_\infty$ aan waarvoor $\int \phi f d\nu = 0$ vir alle $f \in M$. Dit wil sê,

$$M^\perp = \left\{ \phi \in L_\infty : \int \phi f d\nu = 0, f \in M \right\}.$$

Hierdie versameling is swak*-geslote:

Laat $(\phi_n : n \in \mathbb{N})$ 'n ry in M^\perp wees, sodat $\phi_n \to \phi$ in die swak*-topologie. Dit is bekend dat $\phi \in L_\infty$. Vir $\phi \in M^\perp$, moet $\phi(g) = \int \phi g d\nu = 0$. Aangesien $\phi_n \to \phi$ in die swak*-topologie, volg dit dat vir elke $g \in L_1 \subset L_1''$ is

$$g(\phi_n) \to g(\phi).$$

Dit kan ook geskryf word as

$$\phi_n(g) \to \phi(g)$$

aangesien $L_1 \subset L_1''$, $M \subset L_1$ en $\phi \in L_1 = L_\infty$. Dit is egter ook bekend dat elke $\phi_n(g) = 0$, $n = 1, 2, ..., en dat L_\infty 'n Hausdorff-ruimte is (sodat die limietpunte dus uniek is). Dit wil sê, $(\phi_n : n \in \mathbb{N})$ konvergeer na $0 = \phi(g)$, wat beteken dat $\phi \in M^\perp$. Dus is M^\perp swak*-geslote. Tewens, M^\perp is 'n swak*-geslote deelruimte van L_∞.

Verder, $M^\perp(S) \subset M^\perp$ is die versameling van alle ϕ wat ν-byna oral op $T \backslash S$ gelyk aan nul is, dus

$$M^\perp(S) = \{ \phi \in M^\perp : \phi(t) = 0 \ \nu\text{-byna oral op } T \backslash S \}.$$

Op soortgelyke wyse as vir M^\perp kan gewys word dat die versameling $M^\perp(S)$ 'n swak*-geslote deelruimte van L_∞ is.

Definisie 7.4.1.1 [KIRO, p.348]:

Die versameling M word dun genoem as vir $\nu(S) > 0$, $M^\perp(S)$ nie die nul-subruimte van L_∞ is nie.
Vir M om dun te wees, beteken dit dus dat as $\nu(S) > 0$ bestaan daar 'n nie-nul vektor in $M^\perp(S)$. Verder, as N die geslote subruimte is wat deur M voortgebring word, dan is N dun as en slegs as M dun is.

Lemma 7.4.1.2 [KIRO, p.348]

As M dun is, dan is $K \subset K_0 + M^\perp$.

Bewys:

Laat $\phi_1 \in K$. Dan is M^\perp en dus $\phi_1 + M^\perp$, konveks en swak*-geslote.

Dus is $K_1 = K \cap (\phi_1 + M^\perp)$ konveks en kompak. Vanaf die Krein-Milman Stelling volg dit dat K_1 'n ekstreempunt bevat, sê ϕ_0. As ϕ_0 nie 'n karakteristieke funksie is nie, dan bestaan daar 'n $\varepsilon > 0$ en 'n meetbare versameling S met $\nu(S) > 0$ sodat

$$
\varepsilon \leq \phi_0(x) \leq 1 - \varepsilon
$$

op S. Aangesien M dun is, bestaan daar 'n nie-nul ϕ in $M^\perp(S)$ waarvoor

$$
|\alpha \phi(x)| \leq \varepsilon
$$

vir klein genoeg positiewe α. Dan is

$$
\phi_0 \pm \alpha \phi \in K_1.
$$

Dit weerspreek egter die feit dat ϕ_0 'n ekstreempunt in K_1 is. Dus is ϕ_0 die karakteristieke funksie van 'n meetbare versameling en behoort ϕ_0 aan K_0. Dan is

$$
\phi_0 \in \phi_1 + M^\perp \Rightarrow \phi_0 - \phi_1 \in M^\perp,
$$

$$
\Rightarrow \int (\phi_0 - \phi_1) f d\nu = 0
$$

$$
\Rightarrow \int \phi_0 f d\nu - \int \phi_1 f d\nu = 0
$$

$$
\Rightarrow \int \phi_0 f d\nu = \int \phi_1 f d\nu
$$

$$
\Rightarrow \int (\phi_1 - \phi_0) f d\nu = 0.
$$
Dus is \(\phi_1 - \phi_0 \in M^\perp \), sodat volg dat \(\phi_1 \in K_0 + M^\perp \).

Die bewys wat Kingman en Robertson vir onderstaande resultaat gee, word aansienlik uitgebrei.

Lemma 7.4.1.3 [KIRO, p.348]
As \(M \) 'n eindige versameling is en \(\nu \) is nie-atomies, dan is \(M \) dun.

Bewys:
Die bewys word deur induksie gedoen. Gestel \(M \) bevat \(n \) punte \(f_1, f_2, \ldots, f_n \). Gestel verder dat die lemma geld vir versamelings met minder as \(n \) punte. Gegee nou enige versameling \(S \) met \(\nu(S) > 0 \). Aangesien \(\nu \) nie-atomies is, bestaan daar 'n partisie \(S = A \cup B \) van \(S \) in disjunkte meetbare subversamelings van positiewe maat.

Vanuit die induksiehypoteese bestaan daar nie-nul funksies \(\phi, \psi \in L_\infty \) wat byna oral nul is op die komplemente van \(A \) en \(B \), onderskeidelik. Volgens die induksiehypoteese is die versameling \(M \) (met minder as \(n \) punte) dun, dit wil sê, \(M^\perp(A) \) is nie die nul-subsuimte van \(L_\infty \) nie en \(M^\perp(B) \) is nie die nul-subsuimte van \(L_\infty \) nie. Daar bestaan dus 'n nie-nul funksie \(\phi \in M^\perp(A) \subset M^\perp \subset L_\infty \) sodat \(\int \phi f_i d\nu = 0 \), \(i = 1, 2, \ldots, n-1 \), en \(\phi(t) = 0 \) \(\nu \)-byna oral op \(T \setminus A \). Netso bestaan daar 'n nie-nul funksie \(\psi \in M^\perp(B) \subset M^\perp \subset L_\infty \) sodat \(\int \psi f_i d\nu = 0 \), \(i = 1, 2, \ldots, n-1 \), en \(\psi(t) = 0 \) \(\nu \)-byna oral op \(T \setminus B \). Laat nou \(M = \{f_1, f_2, \ldots, f_{n-1}, f_n\} \) en laat \(N \) die subsuimte van \(L_1 \) wees wat deur \(M \) voortgebring word. Ons toon aan dat \(N \) dun is, wat sal impliseer dat \(M \) dun is. Omdat \(T \setminus S \subset T \setminus A \) en \(T \setminus S \subset T \setminus B \) geld vir die nie-nul funksies \(\phi \) en \(\psi \) dat \(\phi(t) = 0 \) \(\nu \)-byna oral op \(T \setminus S \) en \(\psi(t) = 0 \) \(\nu \)-byna oral op \(T \setminus S \). Laat \(\alpha_1 f_1 + \alpha_2 f_2 + \ldots + \alpha_{n-1} f_{n-1} + \alpha f_n \in N \), met \(\alpha \neq 0 \). Dan geld dat

\[
\int \phi(\alpha_1 f_1 + \alpha_2 f_2 + \ldots + \alpha_{n-1} f_{n-1} + \alpha f_n) d\nu = \int \alpha \phi f_n d\nu \\
= \alpha \int \phi f_n d\nu \\
= 0
\]
want uit die induksiehypotese geld die lemma vir een-punt versamelings \(\{f_n\} \). Netso, as
\[\beta_1 f_1 + \beta_2 f_2 + \ldots + \beta_{n-1} f_{n-1} + \beta f_n \in N, \text{ met } \beta \neq 0, \]
dan geld dat \(\int \beta \psi f_n d\nu = \beta \int \psi f_n d\nu = 0 \).

Die nie-nul funksie \(\alpha \phi + \beta \psi \) het dus die eienskappe dat \((\alpha \phi + \beta \psi)(t) = 0 \) -byna oral op \(S \), en \(\int (\alpha \phi + \beta \psi) f d\nu = 0 \) vir alle \(f \in N \). Gevolglik is \(N^\perp(S) \) nie die nul-subruimte van \(L_\infty \) nie; \(N \) is dan dun, en gevolglik is \(M \) ook dun. Hiermee is die stelling bewys.

Lemma 7.4.1.4 [KIRO, p.348]

As \(\nu \) nie-atomies is, dan is \(K_0 \) dig in \(K \) onder die swak*-topologie op \(L_\infty \). As \(\nu \) atomies is, dan is \(K_0 \) geslote in \(K \).

Bewys:

Laat

\[U = \left\{ \phi \in L_\infty : \int \phi f_r d\nu | \leq 1 \text{ vir } 1 \leq r \leq n \right\} \]

'n tipiese omgewing van die oorsprong vir die swak*-topologie wees. Dan, as \(M = \{f_r : 1 \leq r \leq n\} \) en \(\nu \) is nie-atomies, is

\[K \subseteq K_0 + M^\perp \subseteq K_0 + U. \]

Die versameling \(K \) word dus bevat in die swak*-afsluiting van \(K_0 \).

Aangesien \(K_0 \) die versameling ekstreempunte van \(K \) is, is \(K_0 \subset K \). As \(\nu \) atomies is, dan kan \(T \) geskryf word as die disjunkte vereniging van hoogstens aftelbaar veel atome \(T_n \) en elke \(\phi \in L_\infty \) is \(\nu \) -byna oral konstant op \(T_n \) (Stelling 5.2.4). Dan is

\[K_0 = \bigcap_n \{ \phi \in L_\infty : \phi(x) = 0 \text{ of } 1 \text{ byna oral op } T_n \} \]

\[= \bigcap_n \left\{ \phi \in L_\infty : \int \phi f_n d\nu = 0 \text{ of } \nu(T_n) \right\} \]

waar \(f_n \) die karakteristieke funksie van \(T_n \) is. Dus is \(K_0 \) geslote vir die swak*-topologie op \(L_\infty \).
Opmerking 7.4.1.5 [KIRO, p.348]: ’n Dun versameling hoef nie noodwendig eindig of eindig-dimensioneel te wees nie. Om dit te illustreer, laat $T = S_1 \cup S_2 \cup \ldots \cup S_n \cup \ldots$, waar $S_i \cap S_j = \emptyset$ vir $i \neq j$ en $\nu(S_i) > 0$ vir elke $i = 1, 2, \ldots$. Definieer

$$M = \{f : f \text{ konstant op elke } S_i\}.$$

Die versameling M is dun en ’n oneindig-dimensionele subruimte van L_1.

Laat $\mu = (\mu_\theta : \theta \in \Theta)$ nou ’n klas van eindige ladings op (T, \mathcal{A}) wees wat elk absolut kontinu is met betrekking tot ’n eindige positiewe maat ν. Vanaf die Radon-Nikodým Stelling bestaan daar funksies f_θ in $L_1 = L_1(T, \mathcal{A}, \nu)$ sodat $d\mu_\theta = f_\theta d\nu$. Dan is $f = (f_\theta)$ ’n digtheidsfunksie vir μ en beide μ en f neem hulle waardes in die ruimte $E = \mathbb{R}^\Theta$ onder die produk topologie aan. Laat $M = \{f_\theta : \theta \in \Theta\}$. Die volgende stelling is die hoofresultaat van [KIRO].

Stelling 7.4.1.6 [KIRO, p.349]

Laat T, \mathcal{A}, μ, E en M wees soos vooraf beskryf. Dan, as M dun is, dan is die waardeversameling $\mathcal{R}(\mu|S)$ van μ op S konveks en kompakt in E vir elke meetbare versameling S in \mathcal{A}.

Bewys:

Vir elke θ is die afbeelding

$$\phi \mapsto \int \phi d\mu_\theta = \int \phi f_\theta d\nu$$

lineêr op $L_\infty = L_\infty(T, \mathcal{A}, \nu)$. Verder is die afbeelding ook kontinu vir die swak*-topologie op L_∞, aangesien $\phi \in L_\infty$ en ϕ dus ’n begrensde, lineêre funksionaal is.

Dus, as

$$u(\phi) = \left(\int \phi d\mu_\theta : \theta \in \Theta \right)$$

dan is $u : L_\infty \to E$ ’n continue, lineêre afbeelding met kern

$$u^{-1}(0) = \left\{ \phi \in L_\infty : \int \phi f_\theta d\nu = 0 \text{ vir elke } \theta \right\} = M^\perp.$$
Verder is $\mathcal{R}(T)$ die versameling van alle waardes aangeneem deur μ vir $A \in \mathcal{A}$, wat die versameling van alle

$$u(\phi_0) = \left(\int \phi_0 d\mu_0 \right)$$

is soos ϕ_0 deur die versameling K_0 van karakteristieke funksies van versamelings $A \in \mathcal{A}$ beweeg. Dus is $\mathcal{R}(T) = u(K_0)$.

Aangesien M dun is, volg dit vanaf Lemma 7.4.1.2 dat

$$u(K) \subseteq u(K_0 + M^+) \subseteq u(K_0) \subseteq u(K).$$

Maar K is kompak en konveks en u is lineêr en kontinu, dus is $\mathcal{R}(T)$, wat gelyk is aan $u(K)$, kompak en konveks.

As S enige meetbare subversameling van T is, kan bostaande argument op die beperking van μ tot $\mu|S$ toegepas word om te wys dat $\mathcal{R}(\mu|S)$ kompak en konveks is.

In die teenoorgestelde rigting geld die volgende resultate:

Lemma 7.4.1.7 [KIRO, p.349]

In die notasie van Stelling 7.4.1.6 volg

1. as M 'n digte subruimte van L_1 onderspan, dan is $\mathcal{R}(T)$ nie konveks nie; as ν ook nie-atomies is, dan is $\mathcal{R}(T)$ nie kompak nie.

2. as M nie dun is nie, dan bestaan daar 'n meetbare versameling S waarvoor $\mathcal{R}(\mu|S)$ nie konveks is nie.

3. as ν suwier atomies is, dan is $\mathcal{R}(\mu|S)$ kompak vir elke meetbare versameling S.

Vanaf Stelling 7.4.1.6 en Lemma 7.4.1.7 kan die volgende afgelei word:

Afleiding 7.4.1.8

Die waardeversameling $\mathcal{R}(\mu|S)$ van μ op S is konveks (en kompak) vir elke meetbare versameling S as en slegs as M dun is.
Die Konveksiteitstelling van A. A. Lyapunov is nou net 'n spesiale geval van die resultate deur Kingman en Robertson verkry wanneer die maat \(\mu \) as eindig-dimensioneel geneem word.

Kingman en Robertson sluit hulle artikel af deur ook die geval van mate wat hulle waardes in 'n lokaal konvekse topologiese vektorruimte aanneem, te beskou.

7.4.2 Die swak Konveksiteitstelling vir die sterk topologie

Die doel van Uhl se 1969-artikel ([UHLJ]) is om te wys dat die norm-asluiting van die waardeversameling van 'n maat van begrensde variasie met waardes in 'n Banach-ruimte, wat 'n refleksiewe ruimte of 'n separabele duaalruimte is, kompak is en, in die nie-atomiese geval, konveks.

Laat \(X \) 'n Banach-ruimte wees, \((T, A, m)\) 'n maatruimte, en \(m : A \rightarrow X \) 'n maat van eindige variasie \(|m| \) met betrekking tot \(A \), waar

\[
|m|(A) = \sup \left\{ \sum_{i \in I} \| m(A_i) \| : \{ A_i : i \in I \} \text{ is 'n eindige disjunkte subklas van } A \text{ en } A = \bigcup_{i \in I} A_i \right\}.
\]

In die volgende definisie is \(\mu : A \rightarrow \mathbb{R} \) 'n eindige maat op \(A \).

Definisie 7.4.2.1 (Radon-Nikodým Eienskap)

'n Banach-ruimte \(X \) het die Radon-Nikodým eienskap met betrekking tot \((X, A, \mu)\) as daar vir elke \(\mu \)-kontinue vektormaat \(m : A \rightarrow X \) van begrensde variasie 'n \(g \in L_1(\mu, X) \) bestaan sodat

\[
m(E) = \int_E g \, d\mu \quad \text{vir alle } E \in A.
\]

'n Banach-ruimte \(X \) het die Radon-Nikodým Eienskap as \(X \) die Radon-Nikodým Eienskap het met betrekking tot elke eindige maatruimte.

Uhl formuleer sy stelling soos volg:
Stelling 7.4.2.2
Laat X 'n Banach-ruimte wees wat 'n reflexiewe ruimte of 'n separabele dualruimte is. As $m : \mathcal{A} \to X$ eindige variasie $|m|$ met betrekking tot \mathcal{A} het, dan is $\overline{\mathcal{K}(m)}$ kompak in die norm topologie op X, waar $\overline{\mathcal{K}(m)}$ die afsluiting van die waardeversameling van m is. Verder, as m nie-atomies is, dan is $\overline{\mathcal{K}(m)}$ ook konveks.

Aangesien reflexewe Banach-ruimtes en separabele dualruimtes die Radon-Nikodým Eienskap (RNE) het ([DIUH, p.76 en 79, onderskeidelik]), en Uhl se bewys op die RNE berus, kan Stelling 7.4.2.2 soos volg herformuleer en bewys word:

Stelling 7.4.2.3 (Swak Konveksiteitsstelling vir die sterke topologie) [DIUH, p.266]
Laat X 'n Banach-ruimte wees met die Radon-Nikodým Eienskap en laat $m : \mathcal{A} \to X$ van eindige variasie $|m|$ wees met betrekking tot \mathcal{A}. Dan is $\overline{\mathcal{K}(m)}$ norm-kompak. Verder, as m nie-atomies is, is $\overline{\mathcal{K}(m)}$ ook konveks.

Bewys:
Daar bestaan 'n funksie $f \in L_1(X, |m|)$ sodat

$$m(E) = \int_E f \, d|m|$$

vir alle $E \in \mathcal{A}$.

Definieer vir elke eindige \mathcal{A}-partisie P van T die operator $\phi_P : L_\infty(\mathbb{R}, |m|) \to X$ deur

$$\phi_P(g) = \int E P(f) \, g \, d|m|,$$

waar

$$E P(f) = \sum_{E \in P} \left(\frac{\int_E f \, d|m|}{|m|(E)} \right) X_E,$$

met die afspraak dat $\frac{0}{0} = 0$, kyk na [DIUH, p.68].

Aangesien P 'n eindige klas is, is elke ϕ_P 'n kompakte lineêre operator, kyk na [DIUH,
As \(\phi : L_\infty(\mathbb{R}, |m|) \rightarrow X \) gedefinieer word deur
\[
\phi(g) = \int fgd|m|,
\]
dan is
\[
\|\phi(g) - \phi_P(g)\| = \| \int E_P(f)gd|m| - \int fgd|m| \|
\]
\[
= \| \int (E_P(f) - f)gd|m| \|
\]
\[
\leq \| \int (E_P(f) - f)\|g\|_\infty \|d|m| \|
\]
\[
= \|E_P(f) - f\|_1 \|g\|_\infty.
\]
Dan volg dit dat
\[
\lim_P \|\phi - \phi_P\| = 0
\]
in die uniforme operator topologie, kyk na [DIUH, Lemma 1, p.67]. Dus is \(\phi \) kompak.
Aangesien \(\phi \) 'n kompakte lineêre operator is, is
\[
m(A) = \{\phi(\chi_E) : E \in \mathcal{A}\}
\]
relatief kompak in \(X \), wat beteken \(\overline{\mathcal{R}(m)} \) is kompak.

Nou moet bewys word dat \(\overline{\mathcal{R}(m)} \) konveks is. Laat \(x_1, x_2 \in \overline{\mathcal{R}(m)} \). Laat \(\varepsilon > 0 \) en kies \(E_1, E_2 \) so dat \(\|x_i - m(E_i)\| < \frac{\varepsilon}{2} \) vir \(i = 1, 2 \). Kies 'n partisie \(P \) wat die triviale partisies \(\{E_1, T \setminus E_1\} \) en \(\{E_2, T \setminus E_2\} \) verfyn en wat \(\|E_P(f) - f\|_1 < \frac{\varepsilon}{2}, f \in L^1(X, |m|), \) bevredig. Dan is \(\int_{E_i} E_P(f)d|m| = m(E_i), \) vir \(i = 1, 2 \). Verder het die maat \(\int_{E_i} E_P(f)d|m| \) 'n konveks waardeversameling. Dit volg vanaf Lyapunov se stelling aangesien \(m \), en dus \(|m| \), nie-atomies is en 'n eindig-dimensionele waardeversameling het. Dus, as \(\alpha \in [0, 1], \) dan bestaan daar 'n versameling \(E_0 \in \mathcal{A} \) sodat
\[
\int_{E_0} E_P(f)d|m| = \alpha m(E_1) + (1 - \alpha)m(E_2).
\]
Dus, als $x_1, x_2 \in \overline{R(m)}$, dan

$$\|\alpha x_1 + (1 - \alpha)x_2 - m(E_0)\| \leq \alpha \|x_1 - m(E_1)\| + (1 - \alpha)\|x_2 - m(E_2)\| + \left\| \int_{E_0} E_p(f)dm - \int_{E_0} f dm \right\|$$

$$< \frac{\alpha \varepsilon}{2} + (1 - \alpha)\frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

wat die stelling bewys.

Afleiding 7.4.2.4

Onder dieselfde hypotease as stelling 7.4.2.3, as $R(m)$ geslote is, dan is dit norm-kompak ook. As m nie-atomies is en $R(m)$ is geslote, dan is dit kompak en konveks.

Uhl beskou dan twee voorbeelde. Die eerste een illustreer die feit dat as die hypotease op X versak word, die gevolgtrekking van die stelling nie meer waar is nie. Die tweede voorbeeld (Voorbeeld 4.2.3) is 'n aangepaste weergawe van die voorbeeld wat Lyapunov in 1946 gepubliseer het om te wys dat 'n maat die hypoteese van Stelling 7.4.2.3 kan bevrindig en nog steeds nie 'n konveks of kompakte waardeversameling kan hé nie.

Voorbeeld 7.4.2.5 [UHLJ, p.161, DIUH, p.261]

Laat A die versameling van Borel-versameling van die interval $[0,1]$ wees en laat μ die Lebesgue-maat wees. Definieer die maat $m : A \rightarrow L_1(\mathbb{R}, \mu)$ deur

$$m(E) = \chi_E.$$

Aangesien

$$\|m(E)\|_1 = \|\chi_E\|_1 = \mu(E)$$

is m aftelbaar additief en van begrensde variasie. Die maat m is nie-atomies:

Laat $A \in A$ sodat $m(A) \neq 0$. Omdat $\|m(A)\|_1 = \mu(A)$, volg dit dat $\mu(A) > 0$. Omdat μ nie-atomies is, bestaan 'n versameling $A_1 \subset A$, $A_1 \in A$, sodanig dat

$$0 < \mu(A_1) < \mu(A).$$
Omdat $\mu(A_1) = \|m(A_1)\|_1$, volg dat $m(A_1) \neq 0$. Omdat $\mu(A \setminus A_1) > 0$, volg dat

$$0 < \mu(A \setminus A_1) = \|m(A \setminus A_1)\|_1$$

$$= \|\chi_A - \chi_{A_1}\|$$

en dan is $\chi_A \neq \chi_{A_1}$. Dus is $m(A) \neq m(A_1)$, wat betekent dat m nie-atomies is.

As $\Pi \subseteq A$ 'n partisie van $[0,1]$ is, dan is dit duidelik dat

$$\sum_{E \in \Pi} \|m(E)\|_1 = \sum_{E \in \Pi} \|\chi_E\|_1$$

$$= \sum_{E \in \Pi} \int \chi_E d\mu$$

$$= \sum_{E \in \Pi} \mu(E)$$

$$= 1.$$

Laat $(m(E_n) : n \in \mathbb{N})$ 'n ry in $\mathcal{R}(m)$ wees en laat $m(E_n) \to f$ as $n \to \infty$, waar $f \in L_1(\mathbb{R}, \mu)$. Dus, $\chi_{E_n} \to f$ as $n \to \infty$. Dit volg voluit die Dominerende Konvergentsdsetting vir die Bochner-integraal dat $\lim_{n \to \infty} \mu(E_n) = \int f d\mu$. Omdat μ nie-atomies is, volg uit die Konveksiteitsetting dat $\mathcal{R}(\mu)$ kompak is, en dus is $\int f d\mu \in \mathcal{R}(\mu)$. Daar bestaan dan 'n $E \in A$ sodat $\mu(E) = \int f d\mu$, wat betekent dat f met χ_E geïdentifiseer kan word. Gevolglik is $f = m(E) \in \mathcal{R}(m)$ en $\mathcal{R}(m)$ is dus gesloten.

Nou moet net gewys word dat $\mathcal{R}(m)$ nie konveks of kompak is nie.

Laat $E_m = \bigcup_{n=1}^{2^m-1} E_{mn}$, met $m \in \mathbb{N}$ en $n = 1, 2, ..., 2^m-1$, waar

$$E_{mn} = \left[\frac{2(n-1)}{2^m}, \frac{2(n-1)}{2^m}\right].$$

Laat $i \neq j$; veronderstel dat $i > j$, sê $i = j + k$, $k \in \mathbb{N}$. Dan kan geskryf word

$$E_i = \bigcup_{n=1}^{2^i-1} E_{in} = E_{11} \cup E_{12} \cup ... \cup E_{12^{i-1}}$$

$$= \left[0, \frac{1}{2^i}\right] \cup \left[\frac{2i}{2i}, \frac{3}{2i}\right] \cup ... \cup \left[\frac{2^i - 2}{2^i}, \frac{2^i - 1}{2^i}\right]$$

$$= \left[0, \frac{1}{2^{j+k}}\right] \cup \left[\frac{2j+k}{2^{j+k}}, \frac{3}{2^{j+k}}\right] \cup ... \cup \left[\frac{2^{j+k} - 2}{2^{j+k}}, \frac{2^{j+k} - 1}{2^{j+k}}\right]$$
\[E_j = \bigcup_{n=1}^{2^j-1} E_{jn} = E_{j1} \cup E_{j2} \cup \ldots \cup E_{j2^j-1} = \left[0, \frac{1}{2^j} \right] \cup \left[\frac{2}{2^j}, \frac{3}{2^j} \right] \cup \ldots \cup \left[\frac{2^j - 2}{2^j}, \frac{2^j - 1}{2^j} \right]. \]

Die maksimale aantal intervallen \(E_{ip} \) uit \(E_j \) wat in elke interval \(E_{jn} \) uit \(E_j \) val, kan as volg bereken word:

Neem die interval \([0, \frac{1}{2^j}]\) in \(E_j \). Dan impliseer die ongelykheid

\[
\frac{(2n - 1)}{2^i} = \frac{(2n - 1)}{2^{j+k}} \leq \frac{1}{2^j}
\]

dat

\[n \leq 2^{k-1} + \frac{1}{2^k}. \]

Dit wil sê, daar lê \(n = 2^{k-1} \) intervalle van \(E_i \) in elke interval van \(E_j \). Beskou nou die linker endpunt van die \(n = (2^{k-1} + 1) \)-de interval uit \(E_i \): as \(n = 2^{k-1} + 1 \), dan is

\[
\frac{(2n - 1)}{2^{j+k}} = \frac{2(2^{k-1} + 1 - 1)}{2^{j+k}} = 2^{k-j-k} = \frac{1}{2^j}
\]

wat beteken dat die punt saam met die regterendpunt van die interval \([0, \frac{1}{2^j}]\) val. Tussen die punte \(\frac{1}{2^j} \) en \(\frac{2}{2^j} \) lê daar weer \(2^{k-1} \) intervalle uit \(E_i \) ensovoorts.

Nou word die waarde van

\[
\| \chi_{E_i} - \chi_{E_j} \|_1 = \int \| \chi_{E_i} - \chi_{E_j} \| d\mu = \int \chi_{E_i \Delta E_j} d\mu = \int \chi_{E_i \setminus E_j} d\mu + \int \chi_{E_j \setminus E_i} d\mu = \mu(E_i \setminus E_j) + \mu(E_j \setminus E_i)
\]

dit bereken.

171
\[E_j \setminus E_i = E_j \setminus E_{j+k} \]
\[= \bigcup_{n=1}^{2^{j-1}} \left(\left[\frac{2(n-1)}{2^j}, \frac{2(n-1)}{2^j} \right] \setminus \bigcup_{r=(n-1)2^k+1}^{(2n-1)2^{k-1}} \left[\frac{2(r-1)}{2^{j+k}}, \frac{2(r-1)}{2^{j+k}} \right] \right) \]

sodat volg

\[\mu(E_j \setminus E_i) = \sum_{n=1}^{2^{j-1}} \left[\mu \left(\left[\frac{2(n-1)}{2^j}, \frac{2(n-1)}{2^j} \right] \right) - \sum_{r=(n-1)2^k+1}^{(2n-1)2^{k-1}} \mu \left(\left[\frac{2(r-1)}{2^{j+k}}, \frac{2(r-1)}{2^{j+k}} \right] \right) \right] \]
\[= \sum_{n=1}^{2^{j-1}} \left[\frac{1}{2^j} - \sum_{r=(n-1)2^k+1}^{(2n-1)2^{k-1}} \frac{1}{2^{j+k}} \right] \]
\[= \frac{2^{j-1}}{2^j} - \sum_{n=1}^{2^{j-1}} \sum_{r=(n-1)2^k+1}^{(2n-1)2^{k-1}} \frac{1}{2^{j+k}} \]
\[= 2^{-1} - \sum_{n=1}^{2^{j-1}} \frac{1}{2^{j+k}} \cdot (2(n-1)2^{k-1} - (n-1)2^k - 1 + 1) \]
\[= 2^{-1} - \sum_{n=1}^{2^{j-1}} \frac{1}{2^{j+k}} \cdot 2^{k-1} \]
\[= 2^{-1} - 2^{-1-j} \cdot 2^{j-1} \]
\[= 2^{-1} - 2^{-2} \]
\[= 2^{-2}. \]

\'n Soortgelyke argument toon dat \(E_i \setminus E_j \) die vereniging is van \(2^{k-1} \cdot 2^{j-1} \) disjunkte intervalle, elkeen met lengte \(\frac{1}{2^{j+k}} \). Dus is

\[E_i \setminus E_j = \bigcup_{n=1}^{2^{j+k-2}} I_n \]

en

\[\mu(E_i \setminus E_j) = 2^{k+j-2} \cdot 2^{-j-k} \]
\[= 2^{-2}. \]

172
Saamgevat volg dus dat

$$\|x_{E_1} - x_{E_2}\|_1 = 2^{-1}$$

wat betekent dat \(R(m)\) (alhoewel gesloten) nie kompakt is nie, aangesien daar 'n ry in die waardeversameling van \(m\) bestaan, \(\{m(E_i)\}\), wat geen konvergente deelry het nie. Gevolglik is \(\overline{R(m)}\) nie kompakt nie.

Laastens toon ons aan dat \(\overline{R(m)}\) nie konveks is nie:
Beskou \(m([0, \frac{1}{2}))\), \(m([\frac{1}{2}, 1]) \in R(m) \subseteq \overline{R(m)}\). Ons toon aan dat \(\frac{1}{2}m([0, \frac{1}{2})) + \frac{1}{2}m([\frac{1}{2}, 1]) \notin \overline{R(m)}\). Let op dat

$$\frac{1}{2}m([0, \frac{1}{2})) + \frac{1}{2}m([\frac{1}{2}, 1]) = \frac{1}{2}x_{[0,\frac{1}{2})} + \frac{1}{2}x_{[\frac{1}{2},1]}$$

$$= \frac{1}{2}x_{[0,1]}.$$

Verder, vir \(E \in A\),

$$\left\| m(E) - \frac{1}{2}x_{[0,1]} \right\|_1 = \left\| x_E - \frac{1}{2}x_{[0,1]} \right\|_1$$

$$= \left\| \frac{1}{2}x_E - \frac{1}{2}x_{[0,1]\backslash E} \right\|_1$$

$$= \int \left| \frac{1}{2}x_E - \frac{1}{2}x_{[0,1]\backslash E} \right| \, d\mu.$$

Definieer 'n funksie \(g : [0, 1] \rightarrow \mathbb{R}\) soos volg:

$$g(x) = \frac{1}{2}x_E(x) - \frac{1}{2}x_{[0,1]\backslash E}(x).$$

Dan

$$g(x) = \begin{cases}
\frac{1}{2} & \text{as } x \in E \\
-\frac{1}{2} & \text{as } x \in [0, 1]\backslash E
\end{cases}.$$
Dus is

\[\|m(E) - \frac{1}{2} \chi_{[0,1]}\|_1 = \int |g(x)|d\mu \]

\[= \int \frac{1}{2}d\mu \]

\[= \frac{1}{2}\mu([0,1]) \]

\[= \frac{1}{2}. \]

Gevolglik is \(\frac{1}{2}\chi_{[0,1]} \notin \overline{R(m)} \); dus is \(\overline{R(m)} \) (en ook \(R(m) \)) nie konveks nie.

Alhoewel die maat \(m \) dus van eindige variasie en nie-atomies is, is \(\overline{R(m)} \) nie kompakt en nie konveks nie, want \(L_1(\mathbb{R}, \mu) \) is nie-refleksief nie, en alhoewel dit separabel is, is dit nie 'n duaalruimte nie. Die ruimte \(L_1(\mathbb{R}, \mu) \) het natuurlik ook nie die RNE nie.

Opmerking 7.4.2.6: Ons het reeds in Voorbeeld 4.2.3 gesien dat as die maat \(m : A \rightarrow X \) en die ruimte \(X \) die voorwaardes van Stelling 7.4.2.2 en Stelling 7.4.2.3 bevredig, dan is \(R(m) \) nie noodwendig kompakt en konveks nie.

7.4.3 Nuwe terminologie

In die artikel [KNOW] definiere G. Knowles 'n Lyapunov-maat as 'n vektormaat \(m : A \rightarrow X \) (\(X \) 'n reële Banach-ruimte) met die eienskappe dat \(R(m|E) \) konveks is vir elke \(E \in A \) en \(R(m) \) swak-kompakt. Kyk ook na [KLUV, p.118] en [KASH] vir hierdie definisie. In [VLAD, p.14] definieer Olga Vladimirskaya die begrip 'Lyapunov Eienskap' soos volg: 'n Banach-ruimte het die Lyapunov Eienskap as elke nie-atomiese aftelbaar-additiewe vektormaat met waardes in \(X \), 'n Lyapunov-maat is.

Hierdie nuwe belangstelling in die Konveksiteitsstelling is gewek na Kingman en Robertson se deurbraak na die oneindig-dimensionele geval, en verder ook nadat 'n oneindig-dimensionele uitbreiding van die lineêre kontrole-stelsel in 1969 deur Hermes en LaSalle [HELA] bewys is, soos wat in Hoofstuk 10 aangestip sal word.
Hoofstuk 8
Multifunksies

8.1 Inleiding

In hierdie hoofstuk word enkele resultate aangaande multifunksies waarin die Konveksiteitstelling toegepas word, behandel. Die hoofdoel van hierdie artikel is egter om te dien as 'n grondslag vir die werk wat in Hoofstuk 9 behandel sal word. Veral word daar aandag geskenk aan voorwaardes waaronder meetbaarheid van 'n multifunksie in die sin van Pls en meetbaarheid in die sin van Aumann ekwivalent is. Dit word dan gebruik om uiteindelik, in Hoofstuk 9, die konveksiteit van gemiddelde voorkeurversamelings te bewys, wat 'n verdere toepassing van A. A. Lyapunov se Konveksiteitstelling illustreer.

Multifunksies dateer uit 1926 toe W. A. Wilson [WILS] die begrip van 'n multifunksie ingevoer het ten einde die idees van liminf en lim sup van 'n ry \(A_n : n \in \mathbb{N} \) van deelversamelings van 'n topologiese ruimte (in die sin van F. Hausdorff [HAU1]) te veralgemeen. Kyk veral ook na K. Kuratowski [KURA, p.32]. Dekpuntstellings vir multifunksies is deur verskeie skrywers bewys – kyk byvoorbeeld na S-N. Patnaik [PATN]. Multifunksies word wyd toegepas in die gebied van veralgemeen differensiaalvergelykings, veral in die gebied van beheerteorie, waar dit die vorm

\[\dot{x}(t) \in F(t, x(t)); \quad \dot{x}(t) = \frac{d}{dt}(x(t)), \]

het, waar \(F \) 'n multifunksie is. Kyk na T. Parthasarathy [PART] vir voorbeelde van hierdie soort vergelykings.
8.2 Terminologie

Gestel dat T en U nie-leê versamelings is en dat 2^U die klas van alle nie-leê deelversamelings van U is. 'n Funksie $F : T \to 2^U$ word 'n multifunksie genoem en voorts aangedui deur $F : T \to U$, met $F(t) \in 2^U$.

Laat $A \subseteq U$. Die swak inverse van A ten opsigte van F word gedefinieer deur

$$F^- (A) = \{ t \in T : F(t) \cap A \neq \emptyset \}$$

en die sterk inverse word gedefinieer deur

$$F^+ (A) = \{ t \in T : F(t) \subseteq A \}.$$

Verder is $F^- (\emptyset) = F^+ (\emptyset) = \emptyset$. Vir elke $A \subseteq U$, geld dit dat $F^+ (A) \subseteq F^- (A)$. Verder is $D(F) = T$ en $R(F) = \bigcup_{t \in T} F(t)$. 'n Standaard verwysing na die basiese eienskappe van multifunksies, soos byvoorbeeld sterk en swak inverses, is [BERG].

Definisie 8.2.1 [CAS6]

'n Multifunksie $F : T \to U$ is A-meetbaar (in die sin van Plís) as $F^-(C) \in A$ vir elke geslote deelversameling C van U.

Opmerking 8.2.2: As $F : T \to U$ A-meetbaar is, dan is dit nie noodwendig waar dat $F^-(O) \in A$ vir elke oop deelversameling O van U nie.

Lemma 8.2.3 [MARZ, p.37]

Gestel U is 'n topologieëse ruimte sodat elke geslote deelversameling C van U 'n G_δ-versameling is (byvoorbeeld, as U 'n metriëse ruimte is), en $F : T \to U$ is 'n multifunksie.
As F A-meetbaar is, dan volg dit dat $F^-(O) \in A$ vir elke oop deelversameling O van U.

Bewys:
As O 'n willekeurige oop subversameling van U is, dan is $O = \bigcup_{n=1}^{\infty} C_n$, waar die versamelings C_n almal geslote is in U. Dus is

$$F(t) \cap O \neq \emptyset \iff F(t) \cap C_n \neq \emptyset \text{ vir } n$$

waaruit volg dat

$$F^-(O) = \bigcup_{n=1}^{\infty} F^-(C_n) \in A.$$

Afleiding 8.2.4 [MARZ, p.38]
As U 'n topologiese ruimte is sodat elke geslote deelversameling C van U 'n G_δ-versameling is en as $F : T \to U$ 'n A-meetbare multifunksie is, dan is $F^+(C) \in A$ en $F^-(O) \in A$ met O oop in U.

Definisie 8.2.5 [MARZ, p.39]
'N Multifunksie $F : T \to U$ is punt-P as vir elke $t \in T$, $F(t)$ die eienskap P het.

Laat (U, d) 'n metriese ruimte wees. Gestel K is die klas van alle nie-leë kompakte deelversameling van U. Die Hausdorff-semi-metrik ρ in K word dan gedefinieer deur

$$\rho(X, Y) = \sup_{x \in X} \rho(x, Y),$$

177
waar \(X, Y \in \mathcal{K} \), en

\[
\rho(x, Y) = \inf_{y \in Y} d(x, y)
\]

die afstand tussen die punt \(x \) en die versameling \(Y \) is. Die Hausdorff-metrik \(\delta \) in \(\mathcal{K} \) word gedefinieer deur

\[
\delta(X, Y) = \max\{\rho(X, Y), \rho(Y, X)\}
\]

vir enige \(X, Y \in \mathcal{K} \). Dit is bekend (sien [DBRU, p.354]) dat as \((U, d) \) volledig (kompak, separabel) is, dat \((\mathcal{K}, \delta) \) respektiewelik volledig (kompak, separabel) is.

Lemma 8.2.6 [MARZ, p.44]

As \(U \) 'n metriese ruimte is en \(F : T \to U \) is 'n punt-kompakte multifunksie (dit wil sê, \(F : T \to \mathcal{K} \) is 'n funksie) met die eienskap dat \(F^{-1}(O) \in \mathcal{A} \) vir elke oop versameling \(O \) in \(U \), dan is \(F \) \(\mathcal{A} \)-meetbaar.

Stelling 8.2.7 [MARZ, p.46]

Gestel \(U \) is 'n separabele metriese ruimte en \(\mathcal{K} \) die klas van alle nie-leë en kompakte deelversamelings van \(U \). As \(F : T \to U \) 'n punt-kompakte multifunksie is, dan is die volgende ekvivalent:

1. \(F : T \to U \) is 'n \(\mathcal{A} \)-meetbare multifunksie

2. \(F : T \to \mathcal{K} \) is 'n \(\mathcal{A} \)-meetbare funksie.

R. J. Aumann [AUM1] voer in 1965 die Borel-meetbaarheid (of grafiek-meetbaarheid) van multifunksies in as 'n gerieflike stuk gereedskap in sy model van 'ewewig in markte' in die wiskundige ekonomie. Die grafiek van 'n multifunksie \(F : T \to U \) word voorgestel deur die versameling

\[
G(F) = \{(t, u) \in T \times U : u \in F(t)\}.
\]

Aumann beskou 'n geval waar \(T = [0, 1] \) en waar \(F : T \to \mathbb{R}^n \) 'n multifunksie is. Hy definieer meetbaarheid van 'n multifunksie as volg:
$F : T \to \mathbb{R}^n$ is Borel-meetbaar as $G(F) \in B_{T \times \mathbb{R}^n}$, waar $B_{T \times \mathbb{R}^n}$ die Borel σ-algebra van die produkruimte $T \times \mathbb{R}^n$ is.

Definisie 8.2.8 [BOUR, p.121]

'n Topologiee ruimte T word Pools genoem as T 'n aftelbare basis het en só metriseerbaar is dat dit volledig is. 'n Poolse ruimte is dus 'n separabele volledige metriese ruimte.

Die definisie van meetbaarheid van 'n multifunksie wat deur Aumann gebruik is, is gebaseer op twee Proposities van K. Kuratowski [KURA], naamlik Proposies 4, p.365, en Proposies 2, p.398. In gekombineerde vorm lewer hulle die resultaat dat 'n multifunksie $f : T \to Y$, met T en Y beide Pools, Borel-meetbaar is as $G(f) = \{(t, y) : y = f(t)\} \in B_{T \times Y}$.

In [DESC] beskou Debreu en Schmeidler die geval van 'n σ-eindige maastruimte (T, A, μ), A 'n σ-algebra van deelversameling van T, en 'n multifunksie $F : T \to \mathbb{R}^n$. Hulle beskou die klas

$$A \times B_{\mathbb{R}^n} = \{A \times B : A \in A \text{ en } B \in B_{\mathbb{R}^n}\}$$

waar $B_{\mathbb{R}^n}$ die Borel σ-algebra van \mathbb{R}^n is en waar die σ-algebra voortgebracht deur $A \times B_{\mathbb{R}^n}$ aangedui word deur $T(A \times B_{\mathbb{R}^n})$.

Definisie 8.2.9 [DESC]

In bostaande notasie word 'n multifunksie $F : T \to \mathbb{R}^n$ meetbaar genoem as

$$G(F) \in T(A \times B_{\mathbb{R}^n})$$

Ten einde die verband te bewerkstellig tussen die verskillende vorme van meetbaarheid van multifunksies (Plis, Debreu, Debreu en Schmeidler, Aumann) word enkele resultate uit die beskrywende versamingsleer benodig. Die bron wat in hierdie verband gebruik word is [KUMO].

179
8.3 Meetbaarheid van multifunksies

Gestel T is 'n nie-leë versameling en laat $N = \{0, 1, 2, \ldots\}$, E dui die versameling van alle eindige rye van natuurlike getalle N aan en $N = \mathbb{N}$ dui die versameling van alle oneindige rye van natuurlike getalle aan. As $\phi \in N$ en $n \in N$ dan kan 'n tipiese element van E geskryf word as $\phi|n = \{\phi(0), \phi(1), \ldots, \phi(n - 1)\}$.

Definisie 8.3.1 [MARZ, p.51]

'N Multifunksie $F : E \to T$ word 'n bepalende stelsel genoem. As $\phi|n \in E$, dan skryf ons $F(\phi|n) = A_{\phi|n} \subset T$.
Laat $\phi \in N$ en definieer

$$P_\phi = \bigcap_{n \in N} A_{\phi|n}$$

en

$$A(F) = \bigcup_{\phi \in N} P_\phi = \bigcup_{\phi \in N} \bigcap_{n \in N} A_{\phi|n}.$$

$A(F)$ is die kern van die bepalende stelsel $F : E \to T$. Die operasie wat lei vanaf F na $A(F)$ word die operasie (A) of die Suslin-operasie genoem. Die versameling $A(F)$ word soms 'n A-versameling, 'n analitiese versameling of 'n Suslin-versameling genoem.

Laat T 'n nie-leë klas van deelversamelings van T wees. Dan is

$$A(T) = \{A(F) : F \text{ is 'n bepalende stelsel, } F : E \to T \text{ met } F(\phi|n) \in T \text{ vir elke } \phi|n \in E\}.$$

As $P \in A(T)$, dan word P 'n Suslin T-versameling genoem.

Lemma 8.3.2 [KUMO, p.129]

Vir enige klas T bestaan daar 'n unieke klas $B(T)$ wat geslote is met betrekking tot af-teelbare verenigings en af-teelbare deursnedes, $T \subset B(T)$ en $B(T)$ is die kleinste klas met hierdie eienskappe.
Stelling 8.3.3 [MARZ, p.54]
$T \subseteq A(T)$; $A(A(T)) = A(T)$; $A(T)$ is geslote met betrekking tot aftelbare verenigings en aftelbare deursnedes; $B(T) \subseteq A(T)$; $A(T)$ is die kleinste klas wat vir T bevat en wat geslote is met betrekking tot die operasie A.

Definisie 8.3.4 [MARY, p.161]
'n Klas T van deelversameling van T word 'n kompakte klas genoem as enige ry in T met die eindige deursnee eienskap 'n nie-leë deursnede het.

Laat $T \neq \emptyset$, $Y \neq \emptyset$. Laat $Z \subseteq T \times Y$. Die projeksie van Z op T word gegee deur

$$p_T(Z) = \{t \in T : \text{daar bestaan } y \in Y \text{ sodat } (t, y) \in Z\}.$$

Stelling 8.3.5 [MARY, p.161, 163]
As T 'n klas van deelversameling van T is, \mathcal{Y} is 'n kompakte klas van deelversameling van Y, $Z = T \times \mathcal{Y} = \{A \times B : A \in T \text{ en } B \in \mathcal{Y}\}$ en as $Z \in A(Z)$, $Z \neq \emptyset$, dan is $p_T(Z) \in A(T)$.

Stelling 8.3.6 [SAKS, p.50]
As (T, A, μ) volledig is en $F : E \rightarrow A$ is 'n bepalende stelsel, dan is $A(F) \in A$ en $A(A) \subseteq A$.

In die notasie van Stelling 8.3.6 volg dus dat

$$A(A) = A.$$

Laat (T, A, μ) volledig wees en laat U 'n topologiese ruimte wees. Dui deur $T(A \times B_U)$ die σ-algebra voortgebring deur die klas $A \times B_U$ aan, waar

$$A \times B_U = \{A \times B : A \in A, B \in B_U\}.$$

Stelling 8.3.7 [DBRU, p.357]
As (T, A, μ) volledig is en as $E \in A(A \times B_U)$ (met U 'n Poolse ruimte), dan is $p_T(E) \in A$.

181
Vanaf Lemma 8.3.2 en Stelling 8.3.3 volg dit dat $T(A \times B_U) \subseteq A(A \times B_U)$. Dus

Afleiding 8.3.8 [MARZ, p.62]
As (T, A, μ) volledig is en U is Pools, volg dit dat as $E \in T(A \times B_U)$, dan is $p_T(E) \in A$.

Lemma 8.3.9 [MARZ, p.63]
As (T, A, μ) volledig is, U is Pools en $F : T \rightarrow U$ is 'n multifunksie met $G(F) \in A(A \times B_U)$, dan is

$$F^{-}(X) \in A$$

vir alle $X \in B_U$.

Bewys:
$T \in A, X \in B_U$ impliseer dat $T \times X \in A \times B_U \subseteq A(A \times B_U)$. Dan is

$$G(F) \cap (T \times X) \in A(A \times B_U)$$

wat tot gevolg het, uit Stelling 8.3.7, dat

$$F^{-}(X) = p_T[\{G(F) \cap (T \times X)\}] \in A.$$

Stelling 8.3.10 [MARZ, p.65]
As (T, A, μ) volledig is, U is Pools en $F : T \rightarrow U$ is punt-geslote, dan is die volgende ekwivalent:

1. F is A-meetbaar
2. $G(F) \in T(A \times B_U)$
3. Vir alle $X \in B_U$ is $F^{-}(X) \in A$ en $F^{+}(X) \in A$.

Die volgende stelling gee die voorwaardes waaronder die verskillende vorme van meetbaarheid van 'n multifunksie ekwivalent is.
Stelling 8.3.11 [MARZ, p.66]
Laat \((T, \mathcal{A}, \mu)\) volledig wees, met \(U\) Pools, \(F : T \to U\) punt-kompak en \(\mathcal{K}\) die klas van alle nie-leë kompakte deelversamplings van \(U\) (toegerus met die Hausdorff-metriek). Dan is die volgende ekwivalent:

1. \(F : T \to U\) is \(\mathcal{A}\)-meetbaar
2. \(F : T \to \mathcal{K}\) is \(\mathcal{A}\)-meetbaar
3. \(G(F) \in T(\mathcal{A} \times \mathcal{B}_U)\)
4. Vir alle \(X \in \mathcal{B}_U\) is \(F^-(X) \in \mathcal{A}\) en \(F^+(X) \in \mathcal{A}\).

8.4 Selektors

Voorts word 'n Bochner-tipe integraal (die teorie van die Bochner-integraal word as bekend aanvaar, en die bronse wat gebruik word is Dunford en Schwartz [DUSC], Diestel en Uhl [DIUH] en Dinculeanu [DINC]) van multifunksies behandel en enkele resultate waarin die Konveksiteitstelling toegepas word, word getoon.

Beskou 'n vaste maatruihte \((T, \mathcal{A}, \mu)\), met \(\mathcal{A}\) 'n \(\sigma\)-algebra van deelversamplings van \(T\).

Definisie 8.4.1 [MARZ, p.67]
Gestel \(U\) is 'n topologiese ruimte en \(F : T \to U\) 'n multifunksie. 'n \(\mathcal{A}\)-meetbare funksie \(f : T \to U\) word 'n \(\mathcal{A}\)-meetbare selektor van \(F\) genoem as \(f(t) \in F(t) \mu\)-byna oral op \(T\).

Dui die klas van alle \(\mathcal{A}\)-meetbare selektors van \(F\) aan deur \(\mathcal{S}_F\).

Lemma 8.4.2 [MARZ, p.68]
Gestel \(U\) is 'n Poolse ruimte en \(F : T \to U\) 'n punt-geslote \(\mathcal{A}\)-meetbare multifunksie. Dan het \(F\) 'n \(\mathcal{A}\)-meetbare selektor.
Definisie 8.4.3 [MARZ, p.98]
Gestel $F : T \to U$ is 'n multifunksie en $f \in S_F$. As f μ-integreerbaar is, dan word f 'n integreerbare selektor van F genoem.

Die versameling van alle μ-integreerbare selektors van F word deur I_F aangedui.

Definisie 8.4.4 [MARZ, p.98]
'n Multifunksie $F : T \to U$ word p-integreerbaar begrens genoem, $1 \leq p \leq \infty$, as daar 'n $k \in L_p^c(\mu)$ bestaan sodanig dat

$$\sup \{ \|u\| : u \in F(t) \} \leq k(t) \quad \mu$$-byna oral op T.

As $p = 1$, dan word F integreerbaar begrens genoem.

Definisie 8.4.5 [MARZ, p.98]
Gestel $F : T \to U$ is 'n multifunksie en $A \in \mathcal{A}$. Dan is

$$\int_A F \, d\mu = \left\{ \int_A f \, d\mu : f \in I_F \right\}.$$

Let op dat $\int_A F \, d\mu$ bestaan selfs as F nie \mathcal{A}-meetbaar is nie.

Stelling 8.4.6 [MARZ, p.99]
As U 'n separabele Banach-ruimte is en $F : T \to U$ is 'n integreerbaar begrensde puntgeslote \mathcal{A}-meetbare multifunksie, dan is $\int_A F \, d\mu \neq \emptyset$ vir elke $A \in \mathcal{A}$.

Bewys:
Dit volg vanaf Gevolg 8.4.2 dat $S_F \neq \emptyset$. As k die beperkende funksie is, dan volg dit vanuit $\|f(t)\| \leq k(t)$ μ-byna oral op T, dat $f \in I_F$. Dus is $\int_A F \, d\mu \neq \emptyset$.

184
Stelling 8.4.7 [MARZ, p.99]
Gestel \((T, A, \mu)\) is volledig, \(U\) is 'n separabele Banach-ruimte en \(F\) is 'n \(p\)-integereerbare begrensde multifunksie met die eienskap dat \(G(F) \in \mathcal{T}(A \times B_U)\), dan is \(\int_A Fd\mu \neq \emptyset\) vir elke \(A \in A\).

Daar bestaan hoofsaaklik drie selektorstellings wat van belang is.

Stelling 8.4.8 [MARZ, p.68]
Gestel \(U\) is 'n Poolse ruimte en \(F : T \rightarrow U\) is 'n punt-geslote multifunksie. As \(F^{-1}(O) \in A\) vir elke oop deelversameling \(O\) van \(U\), dan is \(S_F \neq \emptyset\).

Uit Lemma 8.2.3 en Stelling 8.4.8 volg

Gevolg 8.4.9 [MARZ, p.68]
In die notasie van bostaande stelling, as \(F : T \rightarrow U\) \(A\)-meetbaar en punt-geslote is, dan is \(S_F \neq \emptyset\).

Stelling 8.4.10 [CAS4, p.116]
Gestel dat \(U\) 'n Poolse ruimte is en \(F : T \rightarrow U\) 'n punt-geslote \(A\)-meetbare multifunksie. Dan bestaan daar 'n aftelbare versameling \(M = \{f_i : i \in I\}\) van \(A\)-meetbare selektors van \(F\) sodat

\[
F(t) = M(t) = \{f_i : i \in I\}
\]

vir elke \(t \in T\).

Definisie 8.4.11 [DINC, p.71]
'n Hausdorff-ruimte wat die kontinue beeld van 'n Poolse ruimte is, word 'n Suslin-ruimte genoem.

Opmerking 8.4.12: (1) 'n Multifunksie met die eienskap (*) het Castaing-representasie.
(2) M. Valadier [VALA] het die resultaat in Stelling 8.4.10 uitgebrei na die geval waar \(U\)
'n Suslin-ruimte is, op voorwaarde dat \(G(F) \in T(A \times B_U) \).

Stelling 8.4.13 [MARZ, p.77]
Gestel \((T, A, \mu)\) is 'n volledige maatriemte, \(U\) 'n Suslin-ruimte en \(F : T \rightarrow U\) 'n multifunksie met die eienskap dat \(G(F) \in T(A \times B_U) \). Dan is \(S_F \neq \emptyset \).

D. Blackwell was die eerste navorser wat die Konveksiteitstelling uitgebrei het deur na versamelings van sekere vektor-integraal in \(\mathbb{R}^n \) gekyk het. Hy het bewys dat die waardeversamelings van sekere vektor-integraal met waardes in \(\mathbb{R}^n \) kompak is en, in die nie-atomiese geval, ook konveks (reeds in Hoofstuk 6 behandel). Die konveksiteitsdeel van Blackwell se resultate is, soos genoem, deur H. Richter veralgemeen [RICH].

Gestel \((T, A, \mu)\) is 'n maatriemte, \(U\) 'n Banach-ruimte en \(F : T \rightarrow U\) 'n multifunksie. In die volgende drie gevalle is \(\int_A F d\mu \) konveks:

1. As \(A \in A \) en \(I_F = \emptyset \), dan is \(\int_A F d\mu = \emptyset \).
2. As \(A \in A \), \(\mu(A) = 0 \) en \(I_F \neq \emptyset \), dan is \(\int_A F d\mu = \{0\} \).
3. As \(A \in A \) en \(I_F = \{f_0\} \), dan is \(\int_A F d\mu = \{\int_A f_0 d\mu\} \).

Die volgende stelling is 'n uitbreiding van die Konveksiteitstelling.

Stelling 8.4.14
Gestel die Banach-ruimte \(U\) is eindig-dimensioneel, \(F : T \rightarrow U\) is 'n multifunksie, \(A \in A\) en \(\mu\) is nie-atomies. Dan is \(\int_A F \) konveks.

Hierdie stelling word in Hoofstuk 9 as Stelling 9.2.3 bewys.

In 1965 is 'n artikel van R. J. Aumann [AUM1] gepubliseer wat spesifiek oor multifunksies in die geval van eindige maatriemtes handel. Daar word in die volgende hoofstuk 'n bietjie meer daaroor gesê. Daar is egter heel party ander artikels wat na aanleiding van [AUM1]
gepubliseer is. Só het die Italianers P. Pucci en G. Vitillaro in 1984 die artikel [PUVI] gepubliseer waarin die werk van Aumann voortgesit is. Hulle beskou verder 'n algemene σ-eindige nie-atomiese maatriumte, in plaas van 'n eindige een soos [AUM1].

A. Bressan en F. Flores [BRFL] bestudeer die basiese eienskappe van Aumann-integrale. Hulle wys ook op skere toepassings daarvan, byvoorbeeld 'n toepassing op die beheerde golfunksie, wat op \(Q = [0, a] \times [0, b] \) gedefinieer word as

\[
z_{xy} = f(x, y, u) \quad u(x, y) \in U \subseteq \mathbb{R}^m
\]

met grenswaardes

\[
z(x, y) = \psi(x, y) \quad (x, y) \in dQ,
\]

waar \(U \) kompak is en bevat word in die bal \(B(0, r) \), \(\psi \) kontinu is op die grens \(dQ \), die funksie \(f : Q \times U \rightarrow \mathbb{R}^n \) kontinu is in \(u \), meetbaar met betrekking tot \(x \) en \(y \) en waar \(f \)

\[
|f(x, y, u)| \leq \alpha_1(x, y) \quad \text{vir alle } (x, y) \in Q, \ u \in U
\]

bevredig vir 'n funksie \(\alpha_1 \in L_p \).
Hoofstuk 9

Toepassings in die ekonomie

9.1 Inleiding

'n Gebied waarin die Konveksiteitstelling 'n groot impak gehad het, is Ekonomie. Die persoon aan wie die aanvanklike impak grootliks te danke is, is die wiskundige R. J. Aumann. Aumann is in 1930 in Duitsland gebore en het in 1938 saam met sy gesin na Amerika verhuis. Hy voltooí in 1955 sy doktorsgraad (in Knoopteorie) en sluit in dieselfde jaar aan by die groep van Princetown Universiteit wat navorsing doen oor wiskundige toepassings in, onder andere, die industrie. Dit is in hierdie tydperk wat Aumann die belangrikheid van spelteorie ontdek en dit is dan ook in hierdie veld wat Aumann 'n baie belangrike rol speel. Nie net help Aumann om spelteorie te vorm nie, maar hy speel ook 'n onmisbare rol in die vorming van baie van die teorie van Wiskundige Ekonomie. Sy bydrae was van so 'n aard dat hy in 2005, soos G. Debreu voor hom in 1983, die Nobelprys vir Ekonomiese Wetenskappe verwerf het.

In 1956 sluit Aumann aan by die Instituut van Wiskunde aan die Hebraneuse Universiteit in Jerusalem. Hy is steeds professor aan hierdie universiteit.

9.2 Die toepassings

R. J. Aumann meld in [AUM3] dat A. Wald [WALD] reeds in 1951 die streng behande- ling van die bestaan van 'n mededingende ewewig in 'n mark onder die aandag van die
ekonome gebring het. In die jare daarna het ander skrywers die bestaan van mededingende ewewigte (ekwilibria) deeglik beskryf en uitgepluis, meestal onder die aannames van konvexe voorkeure, dit is, waar die versameling van kommoditeitsbondels wat in 'n voorkeur-of-neutrale verhouding tot 'n gegeewa bondel staan, konveks is. In 'n mark waarin 'n groot aantal handelaars teenwoordig is en waarin geeneen die mark noemenswaardig kan beïnvloed nie, kan met die konvexiteitsaanname weggedoen word. Volgens Aumann [AUM3] word daar geargumenteer dat die voorkeure van 'n groot aantal van individueel onbeduidende handelaars 'n kollektiewe konveks effek sal hê, selfs al is geen individu se voorkeur konveks nie.

Aumann stel in [AUM2] voor dat die mees geskiekte model vir 'n mark met 'n groot aantal individueel onbeduidende handelaars een so genaamde esoterisering van handelaars. Hierdie idee is eintlik reeds in ekonomie deur name soos Allen en Bowley [ALBO] en in spelteorie deur Shapley [SHAP] gebruik. Die idee van 'n ideale ekonomie was egter Aumann s'n [KIRM]. 'n Soortgelyke model bestaan in Fisika waar, byvoorbeeld, 'n groot aantal partikels in 'n vloeistof vir wiskundige geriewe word deur 'n kontuinuum van deeltjies. Die vraag het ontstaan of dit moontlik is om die bestaan van mededingende ewewig in 'n mark met 'n kontuinuum van handelaars te bewys, selfs as die voorkeure van die handelaars nie konveks is nie. In [AUM3] bevestig Aumann dat dit wel die geval is en hy bevestig terselfdertyd die mag en wye strekking van die kontuinuum-van-handelaars benadering in die markteorie.

Dit word algemeen aanvaar dat die idee van mededingende ewewig in 'n mark slegs beduidend is indien daar perfekte kompetisie bestaan, dit wil sê, indien daar 'n groot aantal individueel onbeduidende handelaars teenwoordig is. In [AUM2] beskryf Aumann sy model en stel en bewys sy hoofstelling, waaraan hier aandag geskenk sal word.

Aumann se Model [AUM2, p.42]:
Daar word deurgaans met 'n Euklidiese ruimte E^n gewerk, waar n die aantal verskillende
kommoditeite is waarmee daar in die mark handel gedryf word. Bo-skrifte dui koördinate aan.

As \(x, y \in E^n \), dan beteken

\[
x > y \text{ dat } x^i > y^i \text{ vir elke } i,
\]

\[
x \geq y \text{ beteken dat } x^i \geq y^i \text{ vir alle } i \text{ en}
\]

\[
x \geq y \text{ beteken dat } x \geq y, \text{ maar nie } x = y.
\]

Die integraal van 'n vektorfunksie word geskryf in terme van die integrale van die komponente. Die puntproduk van \(x, y \in E^n \) word geskryf as \(x \cdot y = \sum_{i=1}^{n} x^i y^i \).

Die kommoditeitsbondel \(x \) is 'n punt in die nie-negatiewe ortant \(\Omega \) van \(E^n \). Die interval \([0,1]\) is die versameling handelaars, aangedui deur \(T \). Die terme maat, meetbaar, integraal en integreerbaar is almal in die sin van Lebesgue. Alle integrale is met betrekking tot die veranderlike \(t \), die handelaar. 'n Nul-versameling is 'n versameling met Lebesgue-maat nul, en nulversameling is van handelaars word deurgaans geëgnoore.

'n Toedeling van kommoditeitsbondels aan handelaars is 'n integreerbare funksie \(f : T \rightarrow \Omega \). Daar is 'n aanvangstoedeling \(i \) waar \(i(t) \) die bondel is waarmee handelaar \(t \) die mark betree.

1. Dit word aanvaar dat

\[
\int t(t) dt > 0. \tag{9.1}
\]

Intuïtief beteken dit dat geen kommoditeit totaal afwesig van die mark is nie.

Vir elke handelaar is daar 'n relasie \(\succeq_t \) op \(\Omega \) gedefinieer; dit word die voorkeur-of-neutraliteitsrelasie genoem. Hierdie relasie is 'n quasie-ordering: dit is transities, refleksief en volledig, waar laasgenoemde beteken dat vir alle \(x, y \in E^n \) dit geld dat \(x \succeq_t y \) of \(y \succeq_t x \).

Die relasie \(\succ_t \) is die voorkeurrelasie en die relasie \(\sim_t \) die neutraliteitsrelasie:

\[
x \succ_t y \text{ as } x \succeq_t y , \text{ maar nie } y \succeq_t x
\]

\[
x \sim_t y \text{ as } x \succeq_t y \text{ en } y \succeq_t x.
\]

Verdere aannames wat gemaak word is die volgende:

2. Wenslikheid van die kommoditeite: \(x \geq y \) impliseer dat \(x \succ_t y \).
3. **Kontinuïteit in die kommoditeite:** Vir elke \(y \in \Omega \) is die versamelings \(\{ x \in \Omega : x \succ_equal_t y \} \) en \(\{ x \in \Omega : y \succ_equal_t x \} \) oop relatief tot \(\Omega \).

4. **Meetbaarheid:** As \(x \) en \(y \) toedelings is, dan is die versamelings \(\{ t \in T : x(t) \succ_equal_t y(t) \} \) meetbaar.

'\(\text{n Toewysing is 'n toedeling } x \text{ sodat} \)

\[
\int x(t) \, dt = \int i(t) \, dt. \tag{9.2}
\]

'\(\text{n Prysvektor is 'n element } p \in \mathbb{R}^n \text{ sodat } p \geq 0. \) 'n Mededingende ewewig is 'n paar \((p, x) \)

bestaande uit 'n prysvektor \(p \) en 'n toewysing \(x \) sodanig dat vir alle handelaars \(t \), \(x(t) \)

maksimaal is met betrekking tot \(\succ_equal_t \) in die begrotingsversameling

\[
B_p(t) = \{ x \in \Omega : p \cdot x \leq p \cdot i(t) \}.
\]

Let op dat \(B_p(t) \) 'n multifunksie is.

Stelling 9.2.1 [AUM3, p.4]

Onderwewig aan bostaande vier voorwaardes bestaan daar 'n mededingende ewewig.

Om hierdie stelling te bewys, word daar eers 'n hulpstelling bewys. Laat \(M \) 'n mark wees bestaande uit 'n positiewe heelgetal \(n \) (die aantal kommoditeite), 'n aanvangstoedeling \(i \) en voorkeur- en neutraliteitsrelasies \(\succ_equal_t \) op \(\Omega \) vir elke handelaar \(t \). Die voorwaardes wat in (1) op die aanvangstoedeling gestel is, word nou versterk deur aan te neem dat

\[
i(t) > 0 \quad \text{vir elke } t . \tag{9.3}
\]

Dit beteken dat 'n positiewe hoeveelheid van elke kommoditeit in die begin deur elke handelaar aangehou is. Verder voldoen 'n bondeel \(x \) aan handelaar \(t \) se wense (kortweg gestel: \(x \) voldoen) as \(x \succ_equal_t y \) vir alle \(y \in \Omega \). Voorwaarde (2) word as volg verslap:

(5) **Swak wenslikheid:** Tensy \(y \) voldoen, impliseer \(x > y \) dat \(x \succ_equal_t y \).

Let op dat (5) 'n dubbele verswakking van (2) is; die hipotese \(x \geq y \) word vervang deur \(x > y \) en 'n toegewing vir voldoening is gemaak (voldoening is onmoontlik onder (2)).
In die hulpstelling word voldoening vereis. Daar word gesê dat daar by $v(t)$ kommoditeitsgewys voldoen word aan handelaar t se wens as vir alle bondels x en alle kommoditeite i sodat $x^i \geq v^i(t)$, geld dat

$$x \sim_t (x^1, x^2, \ldots, x^{i-1}, v^i(t), x^{i+1}, \ldots, x^n).$$

Intuïtief beteken dit dat die wens vir die i-de kommoditeit aan voldoen is wanneer die hoeveelheid van die kommoditeit $v^i(t)$ is, al wil handelaar t dank nog steeds meer van ander kommoditeite j hê, waarvan hy minder as $v^j(t)$ het.

Die bestaan van 'n $v(t)$ wat kommoditeitsgewys aan wenslikheid voldoen is aanvaarbaar, aangesien dit slegs beteken dat daar 'n bogrens bestaan op die hoeveelheid kommoditeite wat winsgewend deur 'n individu gebruik kan word, onafhanklik van watter ander kommoditeite beskikbaar is of nie. Die vereiste dat v 'n toedeling is, dit wil sê integreerbaar is, beteken dat daar 'n bondel bestaan, naamlik $\int v$, wat onder die handelaars versprei kan word sodat elke handelaar se wens kommoditeitsgewys aan voldoen word. Ons neem aan dat:

Daar bestaan 'n toedeling v sodat elke handelaar t se wens kommoditeitsgewys aan voldoen word by $v(t)$.

Die volgende aanname word ook benodig:

Voldoeningsvoorwaarde: x kan slegs voldoen as $x > i(t)$.

Die hulpstelling is dan as volg:

Stelling 9.2.2 [AUM3, p.5]

Laat M 'n mark wees wat voorwaardes (1) - (5) bevredig. Dan het M 'n mededingende ekwilibrium.

Voor bostaande stelling bewys kan word, moet 'n belangrike element vir die bewys eers gedefinieer word: 'n Voorkeurversameling word gedefinieer deur $C_y(t) = \{x \in \Omega : x \succ_t y \},$
vir elke \(y \in B_p(t) \). Dit wil sê, die voorkeursameling \(C_p(t) \) is vir elke handelaar \(t \) en vir elke prysvektor \(p \) gedefinieer as die versameling van kommoditeitsbondels wat in die voorkeur-of-neutraleitsrelasie staan tot alle elemente van die begrotingsversameling \(B_p(t) \). Die gemiddelde voorkeursameling word as volg gedefinieer:

\[
\int C_p(t) \, dt = \left\{ \int f(t) \, dt : f \text{ is 'n toedeling só dat } f(t) \in C_p(t), \text{ vir alle } t \in T \right\}.
\]

\(\int C_p(t) \, dt \) is die versameling van alle gemiddelde bondels wat tussen die handelaars versprei kan word só dat elke handelaar ten minste net so tevrede is as wat hy sal wees wanneer hy sy aanvanklike bondel verkoope en (volgens sy standaarde) die beste met sy opbrengs teen prys \(p \) koop. Aangesien geen aannames betreffende konveksiteit ten opsigte van die voorkeure gemaak is nie, is die individuele voorkeursamelingen \(C_p(t) \) nie noodwendig konveks nie. Die gemiddelde voorkeursameling \(\int C_p(t) \, dt \) is egter konveks soos wat in hierdie hoofstuk nog vermeld sal word. Hierdie feit rus op die Konveksiteitstelling en die feit dat die Lebesgue-maat (wat nie-atomies is) op die kontinuüm van die handelaars gedefinieer is. Aangesien daar 'n kontinuüm van handelaars is, is die versameling \(\int C_p(t) \, dt \) konveks.

Die bewys van die hulpstelling steun in 'n groot mate op die konveksiteit van \(\int C_p(t) \, dt \) en kan in die volgende stappe aangepak word:

- Daar moet bewys word dat daar 'n unieke punt \(c(p) \in C_p(t) \) bestaan wat die naaste is aan \(\int i(t) \, dt \). Laat dan \(h(p) = c(p) - \int i(t) \, dt \).

- Laat \(P = \left\{ p \in \Omega : \sum_{i=1}^{n} p_i = 1 \right\} \).

- Definieer die funksie \(f : P \to P \) deur

\[
f(p) = \frac{p + h(p)}{1 + \sum_{i=1}^{n} h_i(p)}.
\]

- \(f \) bevat dan (volgens Brouwer se vaste punt stelling [DUSC]) 'n vaste punt \(q \).
• Dan is \(q \left(1 + \sum_{i=1}^{n} h^i(p) \right) = q + h(q) \), en kan dit bewys word dat \(h(q) = 0 \).

• Dit volg dat \(\int i(t)dt \in \int C_q(t) \). Dus bestaan 'n toedeling \(f_0 \) sodat \(\int f_0(t)dt = \int i(t)dt \) en \(f_0(t) \in C_q(t) \), vir alle \(t \).

• Laastens kan dan bewys word dat \(f_0(t) \in B_q(t) \) vir alle \(t \), sodat volg dat \((q, f_0) \) 'n mededingende ekwilibrium is.

Vir bogenoemde bewys om volledig te wees, moet die bestaan, uniekheid, kontinuïteit en nie-negatiwitheid van \(h(p) \) nog bewys word. Die bewys hiervan is grotendeels geskoei op vier resultate uit [AUM1].

In [AUM1] werk Aumann met multifunksies \(F : T \rightarrow E^n \), met \(T = [0, 1] \), die kontinuum van handelaars en met die Lebesgue-integraal en -maat op die Borel-versamelings van \(T \). Borel-meetbaarheid in die sin van Aumann is soos in Hoofstuk 8 uiteengesit. Stelling 9.2.3 (reeds geformuleer as Stelling 8.4.14) hieronder bewys Lemma 5.1 op p.8 in [AUM1] en Theorem 1 op p.2 in [AUM3], maar die bewys is nie die van Aumann nie, en bevat aspekte van 'n bewys deur H. Richter [RICH].

Stelling 9.2.3 [AUM1, p.8]
Gestel die Banach-ruimte \(U \) is eindig-dimensioneel, sé \(U = \mathbb{R}^n \), \(F : T \rightarrow U \) is 'n multifunksie, \(A \in \mathcal{A} \) en \(\mu \) is nie-atomies. Dan is \(\int_A Fd\mu \) konveks.

Bewys:
Gestel dat \(\mu(A) > 0 \) en dat \(I_F \) nie leeg of 'n eenpunt versameling is nie, waar \(I_F \) die versameling van alle \(\mu \)-integreerbare selektors van \(F \) aandui. Laat \(f \in L^1_{\mathbb{R}^n}(T, \mathcal{A}, \mu) \) en definieer die maat \(n : \mathcal{A} \rightarrow \mathbb{R}^n \) soos volg:

\[
n(E) = \int_E f d\mu, \quad E \in \mathcal{A}.
\]
Aangesien

\[\sum_{j \in J} \| n(E_j) \| = \sum_{j \in J} \int_{E_j} |f| d\mu \]
\[\leq \sum_{j \in J} \int_{E_j} \| f \| d\mu \]
\[= \int_{E} \| f \| d\mu \]
\[\leq \int \| f \| d\mu \]
\[< \infty \]

waar \(\{ E_j : j \in J \} \) 'n eindige partisie van \(E \) is, volg dit dat \(n \) van eindige variasie \(|n| \) is.

Omdat

\[|n|(E) = \int_{E} \| f \| d\mu \]

vir elke \(E \in A \)

volg dit dat \(|n| \ll \mu \). Dus is \(n \ll \mu \). Soos in die bewys van Lemma 6.2.2 volg dat \(n \) nie-atomies is.

Laat \(\int_A f_1 d\mu \in \int_A Fd\mu \) en \(\int_A f_2 d\mu \in \int_A Fd\mu \) met \(\int_A f_1 d\mu \neq \int_A f_2 d\mu \) en \(\int_A f_1 d\mu \neq 0 \).

Definieer die mate \(n_1, n_2 : A \rightarrow \mathbb{R}^n \) deur

\[n_i(E) = \int_{E} f_i d\mu, \quad E \in A \text{ en } i = 1, 2. \]

Weer uit Lemma 6.2.2 volg dit dat \(n_1 \) en \(n_2 \) nie-atomies is. Beskou die ruimte \(\mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n} \) met die norm \(\| \cdot \| \) gedefinieer deur

\[\| x \| = \left(\| x_1 \|^2 + \| x_2 \|^2 \right)^{\frac{1}{2}} \]

met \(x = (x_1, x_2) \in \mathbb{R}^n \times \mathbb{R}^n \). Definieer die maat \(p : A \rightarrow \mathbb{R}^n \times \mathbb{R}^n \) deur

\[p(E) = \left(\int_{E} f_1 d\mu, \int_{E} f_2 d\mu \right), \quad E \in A. \]
Dan is
\[
\sum_{j \in J} \|p(E_j)\| = \sum_{j \in J} \left[\left(\int_{E_j} f_1 d\mu \right)^2 + \left(\int_{E_j} f_2 d\mu \right)^2 \right]^{1/2}
\leq \sum_{j \in J} \left[\left(\int_{E_j} \|f_1\| d\mu \right)^2 + \left(\int_{E_j} \|f_2\| d\mu \right)^2 \right]^{1/2}
= \sum_{j \in J} \left[\left(|n_1|(E_j) \right)^2 + \left(|n_2|(E_j) \right)^2 \right]^{1/2}
\leq \sum_{j \in J} \left[\left(|n_1|(E_j) + |n_2|(E_j) \right)^2 \right]^{1/2}
= \sum_{j \in J} (|n_1|(E_j) + |n_2|(E_j))
< \infty.
\]

Verder is \(p \) ook nie-atomies, want gestel dat \(E' \) n atoom van \(p \) is. Dan geld dat as \(E' \subset E, E' \subset A \), dan is \(\delta p(E') = 0 \) of \(p(E \setminus E') = 0 \). Dit impliseer dan dat \(n_1(E') = 0 = n_2(E') \) of \(n_1(E \setminus E') = 0 = n_2(E \setminus E') \), wat die nie-atomiesheid van \(n_1 \) en \(n_2 \) weerspreek.

Omdat \(p \) begrens en nie-atomies is, volg dit vanuit die Konveksiteitsstelling dat \(\mathcal{R}(p) \) konveks is in \(\mathbb{R}^n \times \mathbb{R}^n \). Nou, \(p(A), p(\emptyset) \in \mathcal{R}(p) \) en \(p(A) \neq 0, p(\emptyset) = 0 \). Vir enige \(\alpha \in [0, 1] \) geld dat
\[
\alpha p(A) + (1 - \alpha) p(\emptyset) = \alpha p(A) \in \mathcal{R}(p).
\]

Verder bestaan daar 'n versameling \(A_\alpha \in A \), \(A_\alpha \subset A \), sodat \(p(A_\alpha) = \alpha p(A) \). Dan is
\[
\alpha p(A) = \left(\alpha \int_A f_1 d\mu, \alpha \int_A f_2 d\mu \right) = p(A_\alpha) = \left(\int_{A_\alpha} f_1 d\mu, \int_{A_\alpha} f_2 d\mu \right).
\]

Aangesien \(A \setminus A_\alpha \in A \), volg dit dat \(p(A \setminus A_\alpha) \in \mathcal{R}(p) \) en
\[
p(A) = p(A \setminus A_\alpha) + p(A_\alpha) = p(A \setminus A_\alpha) + \alpha p(A).
\]

196
Dus is
\[p(A \setminus A_\alpha) = (1 - \alpha) p(A) \]
\[= (1 - \alpha) \left(\int_A f_1 d\mu, \int_A f_2 d\mu \right) \]
\[= \left(\int_{A \setminus A_\alpha} f_1 d\mu, \int_{A \setminus A_\alpha} f_2 d\mu \right). \]

Definieer die integreerbare funksie \(f_\alpha : T \to U \) deur
\[f_\alpha = f_1 \chi_{A_\alpha} + f_2 \chi_{T \setminus A_\alpha}. \]

Dan is \(f_\alpha \in I_F \) en \(f_\alpha \chi_A = f_1 \chi_{A_\alpha} + f_2 \chi_{A \setminus A_\alpha}. \)

Dus is
\[\int_A f_\alpha d\mu = \int_{A_\alpha} f_\alpha d\mu + \int_{A \setminus A_\alpha} f_\alpha d\mu \]
\[= \int_{A_\alpha} f_1 d\mu + \int_{A \setminus A_\alpha} f_2 d\mu \]
\[= \alpha \int_A f_1 d\mu + (1 - \alpha) \int_A f_2 d\mu \]

wat bewys dat \(\int_A F d\mu \) konveks is.

Die volgende resultaat is weer geformuleer in die notasie van [AUM1], met \(F : [0, 1] \to E^n \) en \(F \) Borel-meetbaar.

Lemma 9.2.4 [AUM1, p.8]

As \(F \) Borel-meetbaar is en \(F(t) \) is nie-leeg vir elke \(t \), dan bestaan daar 'n meetbare funksie \(f \) sodat \(f(t) \in F(t) \) vir alle \(t \).

In [AUM1] is dit soos volg geformuleer: As \(F : [0, 1] \to E^n \) Borel-meetbaar en integreerbaar begrens is (Definisie 8.4.4) dan is \(\int F d\mu \neq \emptyset \).

Lemma 9.2.4 volg direk uit Stelling 8.3.10 en Stelling 8.4.6, wat meer algemene resultate is.
Lemma 9.2.5 [AUM1, p.8]
As \(F_1, F_2, \ldots \) 'n ry van multifunksies is wat almal deur dieselfde integreerbare funksie be- grens word, dan is \(\lim \sup F_k \geq \lim \sup \int F_k \).

Lemma 9.2.6 [AUM1, p.8]
As \(F_p(t) \) kontinu is in \(p \) vir elke vaste \(t \) en Borel-meetbaar is in \(t \) vir elke vaste \(p \in P \), en as alle \(F_p \) begrens word deur dieselfde integreerbare funksie, dan is \(\int F_p \) kontinu in \(p \).

Om sy hoofstelling te bewys, benader Aumann 'n algemene mark \(M \) deur 'n ry van markte \(M_k \) wat die voorwaardes van die hoofstelling bevredig. Vanaf die hulpstelling het hierdie \(M_k \) dus mededingende ekwilibria \((q_k, y_k)\). Aumann gebruik dan hierdie ekwilibria om 'n paar \((q, y)\) te konstrueer wat die mededingende ekwilibrium in die oorspronklike mark \(M \) is.

Nou keer ons terug na die definisie van die funksie \(h \), naamlik na \(h(p) = c(p) - \int i(t) dt \).
Om die bestaan, uniekheid, kontinuïteit en nie-negatiwiteit van \(h \) te bewys, moet bewys word dat \(\int C_p(t) dt \) geslote, nie-leeg, konveks en kontinu (in \(p \)) is. Hierdie eienskappe word in [AUM1] bewys, deur onder andere aan te toon dat \(C_p \) 'n Borel-meetbare multifunksie is, en deur gebruik te maak van die algemene resultate Stellings 8.2.3 - 8.2.6.

9.3 Gevolge

Daar is heel party artikels wat na aanleiding van Aumann se artikels gepubliseer is. Só het die Italianers P. Pucci en G. Vitillaro in 1984 na aanleiding van [AUM1] die artikel [PUVI] uitgebring waarin die werk wat deur Aumann gedoen is voortgesit is. Hulle beskou 'n algemene \(\sigma \)-eindige nie-atomiese maatriumte, in plaas van 'n eindige een.

A. Bressan en F. Flores [BRFL] bestudeer die basiese eienskappe van Aumann-integrale. Hulle wys ook op sekere toepassings daarvan, byvoorbeeld 'n toepassing op die beheerde
golffunksie, wat op \(Q = [0, a] \times [0, b] \) gedefinieer word as

\[z_{xy} = f(x, y, u) \quad u(x, y) \in U \subseteq \mathbb{R}^n \]

met grenswaardes

\[z(x, y) = \psi(x, y) \quad (x, y) \in dQ, \]

waar \(U \) kompak is en bevat word in die bal \(B(0, r) \), \(\psi \) kontinu is op die grens \(dQ \), die funksie \(f : Q \times U \rightarrow \mathbb{R}^n \) kontinu is in \(u \), meetbaar met betrekking tot \(x \) en \(y \) en waar \(f \)

\[|f(x, y, u)| \leq \alpha_1(x, y) \quad \text{vir alle} \ (x, y) \in Q, u \in U \]

bevredig vir 'n funksie \(\alpha_1 \in L_p \).

In [DEBR] noem G. Debreu dat L. Walras [WALR] eerste met die wiskundige model van 'n mededingende ekonomie vorendag gekom het om die toestand van ekwilibrum deur 'n groot aantal van klein agente wat deur markte interaksie het, te probeer verdiepler. Hierdie teorie van Walras, soos hy self erken het, was egter nie volledig nie in die sin dat die bestaan van minstens een so 'n ekwilibrum nie bewys kon word nie. 'n Bewys van die Walsarie se ekwilibrum (andersins bekend as mededingende ekwilibrum) het wiskundiges vir jare besig gehou. A. Wald was die eerste om in 1935 met 'n bewys vir die bestaan van mededingende ekwilibrum vorendag te kom. In [DEBR] takel Debreu ook Walras se bestaansprobleem - deur van vier verskillende benaderings gebruik te maak. Een van hierdie benaderings is die gebruik van Brouwer se vastepunt stelling (net soos Aumann [AUM3, p.5]). Verder maak Debreu ook gebruik van algoritmes, die teorie van vastepunt indeks van 'n afbeelding asook 'n differentiaal proses.

W. Hildenbrand beskou die kern van 'n ekonomie [HILD]. Hy definieer die kern van 'n ekonomie as bestaande uit al die toestande van die ekonomie waarop geen van die agente in die ekonomie kan verbeter nie. 'n Groep agente kan verbeter op 'n toestand van die ekonomie as die groep, op enige moontlike manier, kan verseker dat elke lid van daardie groep beter daaraan toe is, maak nie saak wat die ander agente buite die groep doen nie. Hildenbrand bewys dat die mededingende ekwilibrum tot die kern behoort. In die geval
waar elke agent se invloed weglatbaar klein is, stem die kern en die mededingende ekwilibrium ooreen.

H. Richter publiseer in 1963 die artikel [RICH] (en later 'n regstelling van hierdie artikel) waarin hy veralgemeen dit wat Blackwell gedoen het. Laat $\mu_1, \mu_2, \ldots, \mu_n$ afstelbaar additiewe eindige mate ladinges wees op A, $F : T \to V$ (met V eindig-dimensioneel) 'n multifunksie, $f : T \to V$ 'n funksie, waar $f(t) = (a_1(t), a_2(t), \ldots, a_n(t))$ vir elke $t \in T$ sodat $f \in S_F$ (in die notasie van Hoofstuk 8) met S_F die klas van alle A-meetbare selektors van F. Laat I_F die klas van alle integeerbare selektors van F aandui. Dan is

$$\mathcal{R}(\nu(f)) = \left\{ \left(\int a_1(t) d\mu_1, \int a_2(t) d\mu_2, \ldots, \int a_n(t) d\mu_n \right) : f = a_1, a_2, \ldots, a_n \right\} \in I_F \right\}.$$

Die volgende stelling is meer algemeen as Stelling 6.2.1, wat deur Blackwell bewys is.

Stelling 9.3.1 [RICH, p.86]

As die mate $\mu_1, \mu_2, \ldots, \mu_n$ almal nie-atomies is, dan is $\mathcal{R}(\nu(f))$ konveks in V.

Richter definieer die hulpfunksie $g : V \to \mathbb{R}$ van 'n begrensde nie-loë subversameling G van V deur

$$g(q) = \inf \{ \langle q, r \rangle : r \in G \},$$

waar $q \in V$ en $\langle q, r \rangle$ die binneproduk van q en r voorstel. Die hoofstelling van die artikel word met behulp van vyf lemmas bewys (verwys na [RICH]) en sien as volg daaruit:

Stelling 9.3.2 [RICH, p.86]

As die mate $\mu_1, \mu_2, \ldots, \mu_n$ almal nie-atomies is, die multifunksie $F : T \to V$ die eienskap het dat $\text{ext}(\overline{\text{co}}(F(t))) \subseteq F(t)$ vir elke $t \in T$, die versameling $F(t)$ gelykmatig begrens is en die hulpfunksie g_t van $F(t)$ A-meetbaar is vir elke $q \in V$, waar $g_t(q) = g(q, t) = \inf \{ \langle q, r \rangle : r \in F(t) \}$, dan is $\mathcal{R}(\nu(f))$ kompak en konveks in V.

200
Kort na die verskyning van bogenoemde artikel (ook in 1963), publiseer Richter 'n eenbladse artikel [RIC2] waarin hy sekere voorstellings maak wat die bewysse in sy vorige artikel sou verbeter.

In 1964 publiseer H. Kellerer 'n artikel [KELL] wat nie net Richter se resultate uitbrei na die σ-eindige geval nie, maar ook 'n korter bewys vir Richter se hoofstelling gee.

Stelling 9.3.3 [KELL, p.204]

As die mate $\mu_1, \mu_2, ..., \mu_p$ nie-atomies, σ-eindig en afsetbaar additief is op A en as $F : T \to V$ en $g : V \to \mathbb{R}$ gedefinieer is soos in Stelling 9.3.2, dan is die versameling $R(u(f))$ kompak en konveks in V.

201
Hoofstuk 10

Toepassings in Regverdige Verdeling

10.1 Inleiding

Die probleem van regverdige verdeling is universeel en kom al van die begin van tyd af aan. So kry ’n mens voorbeeld in die Bybel soos dié van Kain en Abel, en Jakob wat vir Laban gewerk het - in beide gevalle het een party gevoel dat hulle te nagekom word.

Die eerste eksplisiete regverdige verdeling aangeteken in die geskiedenis is dié van koning Salomo se voorstel om ’n baba deur twee ma’s geëi in twee te sny. Eintlik was dit nie regtig ’n oplossing vir hulle probleem nie, maar meer ’n spel om die regte ma van die bedriëër te onderskei — dit was nie regtig sy intensie om die baba te halveer nie!

Die meer algemene voorkoms van regverdige verdeling in die Bybel is dié van hoe om land of besittings te verdeel. ’n Meer hedendaagse voorbeeld daarvan (en een waarmee die meeste ouers op ’n sekere stadium te doen kry) is dié van hoe om ’n koek (as voorbeeld - meeste ouers kan seker aan baie ander voorbeelde ook dink) tussen twee kinders te verdeel sodanig dat beide tevrede is. Die mees algemene oplossing vir hierdie probleem is die sny-en-kies metode. In só ’n geval kry die een kind die voorreg om die koek in twee te sny, terwyl die ander kind die voorreg het om eerste ’n stuk te kies.

Vir interessantheid: die eerste melding gemaak van hierdie ’sny-en-kies’ metode is sowat 2800 jaar gelede in ’n storie, Theogeny, deur ene Hesiod [BRT2, p.10]. In hierdie verhaal
moet die Griekse gode, Prometheus en Zeus, 'n porsie vleis verdeel. Prometheus begin deur die vleis in twee hopies te verdeel, terwyl Zeus die eerste opsie het op 'n hopie vleis.

'n Volledige behandeling van die teorie van 'Regverdige Verdeling' val buite die bestek van hierdie tesis. Hoogstens word die deurgaanse gebruik van nie-atomiese mate en die Konveksiteitstelling genoem en beklemtoon. Van die idees wat gebruik word in die teorie van 'Regverdige Verdeling' gaan terug na Lemma 6.4.3.5 van hierdie tesis, wat 'n resultaat uit [DWW3] is.

10.2 Terminologie

By regverdige verdeling is daar hoofsaaklik twee terme wat baie voorkom, naamlik:

- 'proporsioneel', wat beteken dat elk van die n spelers dink dat hy of sy $\frac{1}{n}$-de van die koek gekry het [BRT1, p.9] en

- 'jaloesie-vry', wat beteken dat elk van die n spelers dink dat hy of sy die grootste en waardevolste deel gekry het (volgens sy of haar eie oordeel) en niemand dus beny word nie [BRT2, p.2].

Hierdie twee terme is ekwivalent as daar slegs twee spelers is. Wanneer daar egter drie of meer spelers is, geld die ekwivalensie nie meer nie, aangesien daar nou 'n moontlikheid bestaan dat twee van die drie spelers ontevrede kan wees (almal behalwe die snyer).

J. B. Barbanel [BARB] versterk in 1994 die bestaande idees van regverdige en jaloesie-vrye koek verdeling en noem dit super jaloesie-vrye koek verdeling. Hy bewys dat daar só 'n super jaloesie-vrye partisie van die koek tussen n mense bestaan as en slegs as die n mate wat deur die mense gebruik word om die koekgroottes mee te meet, lineêr onafhanklik is.

Volgens S. J. Brams en A. D. Taylor [BRT1, p.9] kan die resultate van proporsionele en jaloesie-vrye verdelings in vier klasse Verdeel word, naamlik:
1. Bestaanstellings

2. 'Bewegende mes' oplossings

3. Algoritmes

4. Protokolle

1. Hierdie stellings is gewoonlik gebaseer op Lyapunov se Konveksiteitstelling of weergawes daarvan — meer hieroor word later in die hoofstuk bespreek.

2. Daar is twee 'bewegende mes' oplossings. Die eerste een is L. E. Dubins en E. H. Spanier [DUSP] se weergawe van die Banach-Knaster laaste vermindering prosedure, wat as volg werk: 'n skeidsregter hou die mes bokant die koek (wat vir ons doeleindes reghoekig is) en beweeg dit teen 'n konstante tempo stadig oor die koek parallel met die aanvanklike posisie van die mes. Op enige tydstip kan enige van die spelers 'stop' sê. Wanneer dit gebeur, kry die speler wat 'stop' gesê het die stuk aan die linkerkant van die mes [DUSP]. Sien [JONE] vir 'n geval waar al die deelnemers (by beskou die geval waar daar n deelnemers is) terselfde tyd 'stop' sê. Die tweede 'bewegende mes' oplossing is 'n oplossing van W. Stromquist wat 'n jaloesie-vrye verdeling tussen drie mense lewer [STRO].

3. 'n Goeie voorbeeld van 'n algoritme is die skema van D. R. Woodall [WOOD] waarvolgens elk van die n deelnemers, volgens sy of haar eie maat, streng meer as \(\frac{1}{n} \) van die koek kry.

4. 'n Protokol is 'n rekenaar programmeerbare interaktiewe prosedure waar vrae aan die deelnemers gestel word en waar hulle antwoorde toekomstige keuses kan beïnvloed. Dit is by protokolle wat name soos H. Steinhaus, S. Banach en B. Knaster baie voorkom.

Tydens die Tweede Wêreldoorlog het die probleem oor of daar 'n regverdige verdeling van 'n koek vir n deelnemers bestaan die wiskundige Hugo Steinhaus baie geïnteresseer. Hy het toe met 'n oplossing vir n = 3 vorendag gekom. Steinhaus se vraag oor of daar
'n Oplossing vir \(n > 3 \) gevind kan word, is deur sy studente (en later kollegas) Stefan Banach en Bronislaw Knaster beantwoord toe hulle 'n oplossing in die vorm van 'n protokol vir willekeurige \(n \) gevind het (sien [BRT1, p.13]). Daaroor het hulle bewys dat daar 'n verdeling van 'n koek in \(n \) dele bestaan sodat die \(j \)-de stuk \(\frac{1}{n} \)-de van die koek werd is volgens die \(j \)-de maat. Dit is hierdie prosedure van Banach en Knaster wat vir die eerste keer in 1961 deur Dubins en Spanier gepubliseer is [DUSP]. Volgens Brams en Taylor [BRT2, p.33] is dit interessant dat daar geen historiese rekord is oor of Steinhaus bewus was van die feit dat sy oplossing vir \(n = 3 \) sonder enige toevoegings of veranderinge ook 'n oplossing vir die geval \(n = 4 \) bied nie.

Dubins en Spanier [DUSP, p.2] meld dat die Banach-Knaster metode by die deel van enige voorwerp toegespas kan word mits (i) die waarde wat enigeen van die deelnemers aan enige deel van die voorwerp heg, gelyk is aan die som van die waardes geheg van die subdele wanneer die deel in 'n eindige aantal subdele verdeel word en (ii) wanneer die waarde vir elke deelnemer van die potensiële sny kontinu verander soos die mes oor die voorwerp beweeg word.

Daar is nog twee bekende probleme (buiten dié van 'n koek verdeel) wat te make het met regverdige verdeling:

Die 'Probleem van die Nyl' is as volg: Elke jaar oorvloei die Nyl en oorspoel dele van die landbougrond van 'n Egiptiese dorpie, of verwoes dit. Die waarde van die verskillende dele van die grond hang af van die hoogte van die vloed. Die vraag is nou: bestaan daar 'n moontlikheid om aan elk van die \(k \) inwoners 'n stuk grond te gee waarvan die waarde \(\frac{1}{k} \)-de van die totaal sal wees, onafhanklik van die hoogte van die vloed? [DUSP]

Bostaande probleem laat 'n oneindige aantal vloedhoogtes toe, en in so 'n geval het W. Feller [FELL] bewys dat hierdie probleem nie noodwendig 'n oplossing het nie. Daar bestaan egter wel 'n oplossing as daar sleks 'n eindige aantal, sê \(n \), moontlike vloedhoogtes van die Nyl is (dit volg vanaf afleiding 9.2 - wat nog volg).

Neyman en Pearson [NEP2] se probleem van soortgelyke gebiede (sien afleiding 2.3) hou nou verband met hierdie probleem. In 1946 het G. Darmois [DARM] bewys dat boe-
noemde twee probleme in der waarheid ekwivalent is.

Die 'Hamtoebroodjie-probleem' van S. Ulam (wat sy naam verkry het van 'n skets deur Steinhaus, sien [DUSP]) is as volg: Gestel daar is 'n toebroodjie bestaande uit brood, botter en ham. Bestaan daar 'n metode om hierdie broodjie te halveer sodat beide helftes ewe veel van al drie bestande bevat?

In die algemeen kan die probleem herformuleer word na die vraag of \(n \) liggame in Euklidiese \(n \)-ruimte gelyktydig deur middel van 'n hipervlak halveer kan word [DUSP].

10.3 Die toepassing

Dubins en Spanier gee in die tweede deel van [DUSP] die wiskundige detail oor hoe om 'n koek regverdig te verdeel asook oor hoe om bogenoemde 'Hamtoebroodjie-probleem' op te los. Die oplossing van die 'Hamtoebroodjie-probleem' lei tot die oplossing van die algemene biseksie probleem, waar met soortgelyke gebiede, met verhouding \(\frac{1}{2} \) tussen die gebiede, gewerk word. 'n Oplossing van die biseksie probleem lei op sy beurt weer tot 'n oplossing vir die 'Probleem van die Nyl'.

Gestel \(\mu = (\mu_1, ..., \mu_n) \) is 'n aftelbaar additiewe maat op 'n \(\sigma \)-algebra \(\mathcal{A} \) van subversameling-

ings van 'n versameling \(T \), met elke \(\mu_i \) 'n eindige reëelwaardige maat, \(i = 1, 2, ..., n \). Laat \(P = \{ A_1, ..., A_k \} \) 'n geordende partisie van \(T, A_j \in \mathcal{A}, 1 \leq j \leq k, \) wees. Met elk so 'n partisie word 'n \(n \times k \) matriks van reële getalle \(M(P) = (\mu(A_j)) \) geassosieer. Die hoofdoel is dan om te wys dat die waardeversameling \(\mathcal{R}(M) \) kompak is. Die geval \(k = 2 \) is reeds deur Lyapunov [LYA1] in die vorm van die Konveksiteitsstelling bewys.

Die hoofresultaat in [DUSP] word in effek eksplisiet in [DWW1] geformuleer en bewys en volg ook vanaf stellings in [BLA2]. Die hoofstelling is:

Stelling 10.3.1 [DUSP, p.5]

As \(\mu \) nie-atomies is, dan is \(\mathcal{R}(M) \) 'n kompakte, konveksie versameling van matriks.

206
Nou word die 'koeksny-probleem' eers weer onder oë geneem. Laat α_j 'n versameling van n nie-negatiewe getalle wes sodat $\sum \alpha_j = 1$. Die i-de persoon kry die α_i-de stuk van die koek in terme van die maat μ_i. As $\alpha_i = 0$, dan kry die i-de persoon niks van die koek nie, en is die aantal deelnemers dan minder as n. Dus is daar geen verlies aan algemeenheid deur aan te neem dat $\alpha_i > 0$ nie. Verder, as $A \in \mathcal{A}$, dan is $\mu_i(A)$ die waarde van die versameling A wat die i-de persoon kry. Die volgende resultaat wys dat T verdeel kan word op so 'n wyse dat elke persoon glo dat die j-de persoon α_j van T kry:

Afleiding 10.3.2 [DUSP, p.5]

As elke μ_i 'n nie-atomiese waarskynlikhedsmaat is, dan, gegee k en $\alpha_1, ..., \alpha_k \geq 0$ met $\sum \alpha_j = 1$, bestaan daar 'n partisie $A_1, ..., A_k$ van T sodat $\mu_i(A_j) = \alpha_j$ vir alle $i = 1, 2, ..., n$ en $j = 1, 2, ..., k$.

Bewys:

Laat $P_j, j = 1, 2, ..., k$, die partisie wees waarin $A_j = T$ en A_r leeg is as $r \neq j$. Dan is $M(P_j)$ die matriks wat 1'e in die j-de kolom het en 0'e in elke ander posisie. Stelling 10.3.1 impliseer dat $\sum \alpha_j M(P_j)$ in $\mathcal{R}(M)$ is. Dus bestaan daar 'n partisie P sodat die j-de kolom van $M(P)$ gelyk is aan die j-de kolom van $\sum \alpha_j M(P_j)$ sodat al P as inskrywings dus gelyk is aan α_j.

Afleiding 10.3.2 gee ook 'n bevestigende antwoord tot die 'Probleem van die Nyl', op voorwaarde dat daar slegs 'n eindige aantal vloedhoogtes is. As daar minstens twee persone bestaan met verskillende mate, dan sal elk van die n persone betrokke streng meer as $\frac{1}{n}$ van T ontvang, soos die volgende stelling bewys:

Afleiding 10.3.3 [DUSP, p.6]

Gestel dat elke μ_i 'n nie-atomiese waarskynlikhedsmaat is en dat $\mu_i \neq \mu_j$ vir 'n $i \neq j$. Laat $\alpha_i > 0$ met $\sum \alpha_i = 1$. Dan bestaan daar 'n partisie $A_1, ..., A_n$ sodat $\mu_i(A_i) > \alpha_i$ vir
elke \(i \).

[DUSP] fokus dan op die bestaan van beste (of maksimale) partisies waar aan die partisie \(P \) die waarde \(\sum_{j} \mu_j(A_j) \) toegeweke word, en dat een partisie beter is as 'n ander as sy waarde groter is. Die volgende stelling wys dat sulke beste partisies wel bestaan as elk van die mate \(\mu_i \) aftebaar additief is.

Stelling 10.3.4 [DUSP, p.7]

Laat \(\mathcal{A} \) 'n \(\sigma \)-algebra van subversamelings van \(T \) wees en laat \(\mu_i, 1 \leq i \leq n \), 'n aftebaar additiewe reëelwaardige maat op \(\mathcal{A} \) wees. Dan word die suprema van \(\sum \mu_i(A_i), 1 \leq i \leq n \), bereik as \(P = \{ A_1, A_2, \ldots, A_n \} \) die geordende meetbare partisies van \(T \) deur loop.

'n Ander metode om 'n optimale partisie te kry, is om 'n partisie te vind wat die hoeveelheid maksimeer van die persoon wat die minste ontvang, het en om, tussen sulke partisies, die een te vind wat die hoeveelheid van die persoon wat tweede minste ontvang het te maksimeer, ensovoorts. Dit wil sê, rangskik vir elke partisie \(P = \{ A_1, \ldots, A_n \} \) die getalle \(\mu_j(A_j) \) in nie-afnemende volgorde en noem die resulterende ry

\[
a_1(P) \leq \ldots \leq a_n(P).
\]

\(P \) word 'n optimale partisie genoem as vir enige partisie \(P' \) of \(a_i(P) = a_i(P') \) vir alle \(i \) of as \(j \) die kleinste \(i \) is sodat as \(a_i(P) \neq a_i(P') \), dan is \(a_j(P') < a_j(P) \).

Op 'n soortgelyke wyse, as ons \(T \) volgens die verhoudings \(\alpha_i \) (dit wil sê, \(\mu_i(A_i) \geq \alpha_i \)), \(\alpha_i > 0 \) en \(\sum \alpha_i = 1 \), verdeel, laat ons

\[
a_1(P) \leq \ldots \leq a_n(P)
\]

die nie-afnemende orde van die getalle \(\frac{\mu(A_i)}{\alpha_i} \) wees. Die kompaktheid van die versameling van vektore \(\mu_1(A_1), \ldots, \mu_n(A_n) \) impliseer die bestaan van optimale partisies. Hierdie vektor is die diagonaal van die matriks \((\mu_i(A_j)) \), \(1 \leq i, j \leq n \), wat die hoeveelheid voorstel wat elke persoon glo elke deelnemer in die partisie \(A_1, \ldots, A_n \) ontvang. Die kompaktheid van hierdie versameling matrikse het die kompaktheid van die diagonaal tot gevolg. Dus
moet die voorwaardes waaronder die waardeversameling \(\mathcal{R}(M) \) van al hierdie matriks kompak is, gevind word.

Die kompaktheid van \(\mathcal{R}(M) \) sal bewys wees as daar 'n topologie op die klas \(\mathcal{P} \) van \(k \)-partisies \(P = A_1, ..., A_k \) gevind word sodat (i) \(\mathcal{P} \) kompak is en (ii) as \(M(P) = (\mu_i(A_j)) \), dan is \(M \) 'n kontinue matriks-waardige funksie op \(\mathcal{P} \).

Stelling 10.3.5 [DUSP, p.9]
Laat \(\mu = \mu_1, ..., \mu_n \) gedefinieer wees op die klas \(\mathcal{A} \) van alle subversamelings van 'n aftelbare versameling \(T \) met waardes in Euklidiese \(n \)-dimensionele ruimte. Gestel dat, wanneer \(A_p \to A \) in \(T \), dan is \(\mu(A_p) \to \mu(A) \). Dan is die versameling van alle matrikse \((\mu_i(A_j)) \), \(1 \leq i \leq n, 1 \leq j \leq k \), 'n kompakte versameling, soos wat \(A_1, ..., A_k \) al die partisies van \(T \) deurloop.

Met verwysing na Definisie 2.1.2.3, as die versameling \(E \in \mathcal{A} \) 'n atoom vir \(\mu \) is, dan is dit ook 'n atoom vir elke koördinataat \(\mu_i \), as \(\mu_i(E) \neq 0 \). Die omgekeerde is egter nie waar nie: as \(T = \{a_1, a_2\} \) en \(\mathcal{A} \) is die magsversameling van \(T \), laat

\[
\mu_i(\{a_j\}) = \begin{cases}
1 & \text{as } i = j \\
0 & \text{as } i \neq j.
\end{cases}
\]

Dan is \(T \) 'n atoom vir \(\mu_1 \) en vir \(\mu_2 \), maar \(T \) is nie 'n atoom vir \(\mu = (\mu_1, \mu_2) \) nie. Daar teenoor geld die volgende resultaat uit [DUSP], wat reeds as Stelling 5.3.16 bewys is.

Lemma 10.3.6 [DUSP, p.9]
\(\mu \) is nie-atomies as en slegs as elke \(\mu_i \) nie-atomies is.

In die tweede laaste afdeling van [DUSP] word Lyapunov se stelling bewys. Dit is as gevolg van die feit dat die konveksiteitstelling wat Dubins en Spanier benodig (naamlik dat die waardeversameling \(\mathcal{R}(M) \) van die \(n \times k \) matriks-waardige funksie van partisies, konveks is as \(\mu \) nie-atomies is) 'n direkte afleiding van die Konveksiteitstelling is. Lyapunov se stelling is die laaste stap om vanaf die Hamtoebroodjie-stelling, via die algemene
biseksie stelling, tot by die matrikskonveksiteit te beweeg.

In die laaste afdeling moet nog net bewys word dat $\mathcal{R}(M)$ kompak is. Aangesien die kompaktheid nie so geredelik soos die konveksiteit vanaf Lyapunov se stelling volg nie, volg [DUSP] weer eens dieselfde algemene patroon as Halmos deur die atomiese en nie-atomiese dele apart te beskou. Eindelik word die volgende verkry:

Stelling 10.3.7 [DUSP, p.16]

Die waardeversameling $\mathcal{R}(M)$ van die $n \times k$ matriks-waardige funksie M van partisies $P = A_1, ..., A_k$, gedefinieer deur $M(P) = (\mu_i(A_j))$, is kompak.

Dus volg dit dat daar wel optimale partisies bestaan.

Regerdige verdeling word natuurlik nie net op die sny van koek toegepas nie. In [SCVI] word dieselfde tegnieke gebruik vir 'n ekonomiese model met eindig baie agente. Verder beskou J. Legut [LEGU] die klas van koöporatiewe spele in 'n sekondêre verdeling van 'n voorwerp T tussen n spelers en word dieselfde metodes ook in [LEWI] gebruik in 'n voorbeeld oor statistiese keuseorie.
Hoofstuk 11

Toepassings in die Beheertheorie

11.1 Inleiding

Waar daar ook al aktiewe menslike betrokkenheid is, bestaan die probleem van die beste, die optimale, wyse van beheer altyd. Die druk op ekonomie en tegnologie het aanleiding gegee tot optimieringsprobleme en het, sodoende, nuwe vertakkinge van die Wiskunde tot gevolg gehad. In die 1940's het ondersoeke in verband met probleme in die ekonomie tot 'n nuwe vertakking van wiskundige analise geleë, naamlik lineêre en konveksie programmering. Op daardie tydstip het probleme oor die beheer van lugvaart-tuie en tegnologiese prosesse van kompleksse strukture baie aandag begin geniet. Na aanleiding hiervan is daar in die middel 1950's 'n wiskundige teorie geformuleer, bekend as Optimale Beheertheorie. Die inkorporering van die Konveksiteitstelling in Optimale Beheertheorie is grootliks te danke aan die wiskundige J. P. LaSalle en sy 'bang-bang' beginsel, wat later in meer detail bespreek sal word. Eers word daar met 'n kort opsomming oor die geskiedenis van hierdie man wat so 'n groot rol in die gebruik van Lyapunov se stelling in Beheertheorie gespeel het, gegee.

Joseph Pierre LaSalle het, anders as Lyapunov en Neyman, beplan om politieke wetenskap te studeer aan die staatsuniversiteit van Louisiana. Nadat hy sy studies begin het, is hy aangeraai dat lesings in Wiskunde en Logika baie goeie voorbereiding sou wees vir sy studie van die regte. Hy het egter spoedig besef dat Wiskunde sy eintlike belangstelling was. In 1947 is LaSalle, wat op daardie tydstip 'n lid van die Departement Wiskunde
by die Universiteit van Notre Dame was, as besoekende professor by Princeton Universiteit. Dit is hier waar hy bevriend geraak het met professor S. Lefschetz, wat die persoon was wat LaSalle aan die wonder van differensiaalvergelykings voorgestel het. In 1958 het LaSalle Notre Dame verlaat en hom by Lefschetz by die RIAS (Research Institute for Advanced Study) in Baltimore aangesluit [HALE].

11.2 Die Konveksiteitstelling

Soos reeds genoem, was Optimale Beheerteorie hoogmode in die middel 1950's. Die teoretiese probleem van optimale beheer het egter eers in die vorm van 'n tyd-optimale beheer probleem voorgekom. Volgens hierdie probleem kan enige punt wat binne 'n tyd t deur 'n toelaatbare kontrole ('n meetbare funksie) bereik kan word, binne dieselfde tydperk deur 'n 'bang-bang' kontrole bereik word. R. Bellman, I. Glicksberg en O. Gross het in [BEGG] bewys dat tyd-optimale kontroles wel bestaan. A. F. Filippov [FILI] het 'n baie algemene bestaanstelling vir tyd-optimale kontrole bewys, waaraan op 'n latere stadium meer aandag gegee sal word.

LaSalle se vroeë werk in Beheerteorie het juis oor hierdie 'bang-bang' beginsel gehandel. In sy eie woorde is hierdie beginsel as volg: "If a control system is being operated from a limited source of power and if one wishes to have the system change from one state to another in minimum time, then this can be done at all times using properly all the power available" [LAS1]. In meer wiskundige terme kan die 'bang-bang' beginsel as volg gedefinieer word:

Definisie 11.2.1

As 'n sekere toestand deur 'n kontrole $u(t)$ wat waardes in 'n kompakte, konveksie ver- sameling K aanneem, bereik kan word, dan kan dieselfde uitkomste verkry word deur 'n kontrole te gebruik wat slegs ekstremewaardes van K aanneem.
'n 'Bang-bang kontrole' kan dus as volg gedefinieer word:

Definisie 11.2.2

'n 'Bang-bang kontrole' is 'n kontrole, 'n meetbare funksie, wat slegs die ekstremwaardes van die kompakte konvekske versameling waarin dit gedefinieer is, aanneem.

In 1969 publiseer H. Hermes en J. P. LaSalle die boek *Functional analysis and time optimal control* [HELA] waarin die volgende twee stellings verskyn:

Stelling 11.2.3 [HELA, p.22]

Neem $I \subset \mathbb{R}$, met $\mu(I) < \infty$. Beskou die versameling Ψ gedefinieer deur

$$\Psi = \{ u \in L^\infty(I) : 0 \leq u(t) \leq 1 \}.$$

Neem y as 'n kolom-vektorfunksie met komponente y_1, y_2, \ldots, y_n in $L^1(I)$. Dan is die versameling

$$M = \left\{ \int_I y(t)u(t)dt : u \in \Psi \right\}$$

konveks en kompak.

Stelling 11.2.4 Die Bang-Bang Beginsel [HELA, p.23]

Laat I, Ψ en M gedefinieer wees soos in Stelling 11.2.3. Definieer

$$\Psi^0 = \{ \chi_E : E \text{'n meetbare subversameling van } I \}.$$

Laat

$$M^0 = \left\{ \int_I y(t)u^0(t)dt : u^0 \in \Psi^0 \right\}.$$

Dan is $M = M^0$.

Soos wat Hermes en LaSalle self te kenne gee, is hulle bewys van Stelling 11.2.4 geskoei op Lindenstrauss se bewys van die Konveksiteitstelling.

213
Skets van bewys van Stelling 11.2.4

Definieer die funksie \(L : L^\infty \rightarrow E^n \) deur \(L(u) = \int_0^1 y(t)u(t)\,dt \). \(L \) is swak*-kontinu (soos in die bewys van Stelling 7.3.1). Dit beteken \(M^0 \subset M \). Verder sal \(M \subset M^0 \) as die versameling \(L^{-1}(a) = \{ u \in \Psi : L(u) = a \} \) vir elke \(a = (a_1, a_2, ..., a_n) \in M \) 'n karakteristieke funksie bevat. Verder, \(L^{-1}(a) \) is 'n nie-leë, geslote, konvexe subversameling van die swak*-kompakte versameling \(\Psi \) wat beteken dat \(L^{-1}(a) \) swak*-kompak is en dus is \(ext(L^{-1}(a)) \neq \emptyset \). Laat \(g \in ext(L^{-1}(a)) \). Dan (soos in die bewys van Stelling 7.3.1) word aangetoon dat \(g = \chi_A \), vir 'n Lebesgue-versameling \(A \) van \(I \), wat die stelling dan bewys.

Soos gesien kan word in die skets van die bewys van Stelling 11.2.4 kan die 'bang-bang' beginsel met behulp van die Konveksiteitstelling bewys word. Die stelling van Lyapunov is egter ook 'n onmiddellike gevolg van die 'bang-bang' beginsel ([AADK]) wat dus beteken dat die twee ekwivalent is. Verder geld Stelling 11.2.4 vir algemene lineêre sisteme. In 1954 bewys LaSalle [LAS2] dat as daar, vir 'n spesiale vorm van 'n gekontroleerde tweede orde nie-lineêre vergelyking, 'n unieke 'bang-bang' kontrole bestaan wat beter is as al die 'bang-bang' kontroles, hierdie 'bang-bang' kontrole die beste van alle moontlike kontroles is.

Die 'bang-bang' beginsel is vir jare intuitive deur ingenieurs gebruik. Die formulering en bewys daarvan deur LaSalle het 'n stortvloed nuwe artikels tot gevolg gehad [KLUV]. Baie van die werk as gevolg daarvan gepubliseer was slegs nuwe bewysse van Lyapunov se stelling. 'n Hele aantal artikels het veralgemenings van toestande waaronder die 'bang-bang' beginsel geld, bewys. Daar is ook 'n hele aantal insigryke werk gepubliseer wat baie van die beginsels betrokke in optimering uitgekeer het en wat eenheid gebregt het onder die benadering van optimeringsprobleme. 'n Paar artikels sal in oënskou geneem word.
11.3 Veralgemenings van die bang-bang beginsel

Soos reeds genoem, het die optimale beheerprobleem eers in die vorm van 'n tyd-optimale probleem bestaan. Aangesien die algemene bewys wat A. F. Filippov [FILI] vir hierdie probleem voorgestel het 'n groot rol gespeel het in die werk oor optimale beheer probleme, word sy werk eers vlugtig beskou.

Filippov se artikel is in 1959 in Russies gepubliseer en in 1962 deur L. W. Neustadt in Engels vertaal [FILI]. Hierdie artikel handel hoofsaaklik oor die bestaan van 'n oplossing vir die tyd-optimale probleem in die klas van begrensde meetbare funksies. Filippov se probleem lyk soos volg:

Gegewe 'n stelsel van \(n \) vergelykings waar \(x \) en \(f \) \(n \)-dimensioneke vektoere is, \(u = u(t) \) die beheerparameters is en \(u(t) \in Q(t, x(t)) \) vir alle \(t, x \), waar \(Q \) 'n gegee versameling is waarin \(u \) waardes aanneem \((u \) is dus 'n seletor van \(Q) \). Vind vir 'n gegee \(x^0 \) en \(x^* \) 'n funksie \(u(t) \) sodat die oplossing \(x(t) \) van

\[
\frac{dx}{dt} = f(t, x, u)
\]

(11.1)

met \(u = u(t) \), en aanvangsvoorwaarde \(x(0) = x^0 \), die punt \(x^* \) in die minste moontlike tyd bereik; \(u(t) \in Q(t, x(t)) \).

Daar word aanvaar dat \(f \) kontinu is in alle veranderlikes, \(u \) kontinu en differensieerbaar is met betrekking tot \(x \) en \(u(t) \in Q(t, x(t)) \). Verder word aanvaar dat \(Q(t, x(t)) \) geslote is en dat, wanneer \(u(t) \in Q(t, x(t)) \), \(f(t, x, u) \) 'n versameling \(\mathcal{R}(t, x) \) beskryf. Dit wil sê \(\mathcal{R}(t, x) = \{f(t, x, u) : u(t) \in Q(t, x(t))\} \).

Filippov se hoofresultaat is die volgende:

Stelling 11.3.1 [FILI, p.76]

Gestel die bogenoemde voorwaardes word bevredig en dat \(\mathcal{R}(t, x) \) konveks is vir elke \(t \) en \(x \). Gestel daar bestaan minstens een meetbare funksie \(\tilde{u}(t) \in Q(t, \tilde{x}(t)) \) sodat die oplossing \(\tilde{x}(t) \) van (11.1) met \(u = \tilde{u}(t) \) en aanvangswaarde \(\tilde{x}(0) = x^0 \), \(x^* \) in 'n sekere tyd \(t^* > 0 \) bereik. Dan bestaan daar 'n optimale beheer (met ander woorde 'n meetbare funksie)
$u(t) \in Q(t, x(t))$ sodat die oplossing $x(t)$ van (11.1), met beginvoorwaarde $x(0) = x^0$, die punt x^* in die kleinste moontlike tydperk bereik.

Die resultate van Filippov is op die konveksiteit en kompaktheid van die versameling

$$\mathcal{R}(t, x) = \{ f(t, x, u) : u(t) \in Q(t, x(t)) \}$$

gegrond. So ook die resultate van die oorgrote meerderheid artikels oor die bestaan van optimale beheerkontroles. Daar is egter geen rede om te verwag dat vergelykings wat vanaf 'n fisiese probleem opgestel word aan die konveksiteitsbeperkings sal voldoen nie. In 1962 het J. Warga [WAR2] voorgestel dat 'n stelsel wat nie aan die konveksiteitsbeperkings voldoen nie, 'verslap' kan word deur 'n groter versameling van toelaatbare waardes van f te gebruik. Warga het die Konveksiteitstelling verslap deur die versameling van toegelate waardes te vergroot na die konveks omhulsel van die versameling waarin f waardes aanneem. L. W. Neustadt publiseer in 1963 'n artikel [NEU1] waarin hy 'n ander moontlikheid ondersoek waaronder konveksiteitsbeperking nie noodwendig bevredig hoef te word nie. Neustadt werk met die geval waar f lineêr is. Sy hoofresultaat lyk as volg:

Stelling 11.3.2 [NEU1, p.113]

Die toelaatbare versameling

$$B(t) = \{ (t, x) : t \in [t_1, t_2], (t, x) \text{ toelaatbaar} \}$$

is onder die regte voorwaardes kompak.

In sy bewys definieer Neustadt 'n versameling R_τ as volg:

$$R_\tau = \left\{ \int_{t_0}^\tau x^{-1}(t)q(t)dt : q(t) \text{ meetbaar, } q(t) \in \phi(U, t), t \in [t_0, \tau] \right\}.$$ \hfill (11.4)

Om te bewys dat R_τ konveks en geslote is, gebruik Neustadt Blackwell se bewys van Lyapunov se stelling [BLA2], kyk na Stelling 6.3.5 van hierdie tesis. Neustadt noem dat sy hoofresultaat verkry kan word deur 'n klein uitbreiding van Blackwell se Stelling 6.3.5. L. M. Sonneborn en F. S. van Vleck brei die resultate deur Neustadt verkry uit deur
addisionele vereistes op te lê, sien [SOVV].

C. Olech noem in [OLE1] dat sy artikel basies 'n verfyning en uitbreiding van die resultate van sowel Neustadt as LaSalle is. Dit handel oor die bestaan van 'n ekstreme oplossing van die beheerstelsel

\[
\frac{dx}{dt} = A(t)x + f(t, u)
\]

waar \(A(t) \) die afgeleide van die fundamentele matriks-oplossing van die sisteem

\[
\frac{dx}{dt} = A(t)x
\]

is.

In [HERM], gepubliseer in 1964, bewys H. Hermes die volgende:
Laat \(T \) ’n kompakte metriese ruimte wees en \(y_i, i = 1, 2, \ldots, k \) kontinue vektor funksies met \(y_i : T \to \mathbb{R}^n \). Laat \(\mu \) ’n nie-negatiewe, eindige reguliere Borel-maat wees. Vir elke \(x \in T \) is \(A(x) = \{y_1(x), \ldots, y_k(x)\} \) en dui \(\text{co}A(x) \) die konvekske omlusel van \(A(x) \) aan. Associeer met elke \(\mu \)-meetbare funksie \(z \) gedefinieer op \(T \) die vektor \(v(z) = (\int_T z_1(x) \, d\mu, \ldots, \int_T z_k(x) \, d\mu) \) en laat \(\mathcal{R}(A) \) die waardeversameling van \(v(z) \) wees vir alle meetbare funksies \(z \) met \(z(x) \in A(x) \). Laat \(\mathcal{R}(\text{co}A) \) die waardeversameling van \(v(z) \) aandui vir alle \(z(x) \in \text{co}A(x) \). Hermes wys dan dat \(\mathcal{R}(A) = \mathcal{R}(\text{co}A) \). Hermes pas hierdie resultaat dan toe op ’n klas van versameling om stellings te verkry wat soortgelyk is aan die van Warga [WAR2] en Neustadt [NEU1].

In 1964 skryf die wiskundige H. Halkin twee artikels wat beide in 1965 gepubliseer word.
In sy eerste artikel neem hy \(T = [0, 1] \), \(\mathcal{A} \) die Borel- \(\sigma \)-algebra van \(T \), \(\mu \) die Lebesgue-maat, \(\mathcal{B} \) ’n kontinue subalgebra van \(\mathcal{A} \) (dit wil sê, \(\mathcal{B} \subset \mathcal{A} \) sodat vir elke \(B \in \mathcal{B} \) daar ’n klas van versameling \(\{D_\alpha : \alpha \in [0, 1]\} \subset \mathcal{B} \) bestaan met \(D_1 = B, \mu(D_\alpha) = \alpha \mu(B) \) en \(D_{\alpha_1} \subset D_{\alpha_2} \) as \(\alpha_1 < \alpha_2 \) en \(f \in L^1(T, \mu, \mathbb{R}^n) \),

\[
L(f, B) = \left\{ \int_D f \, d\mu : D \in \mathcal{B} \right\}.
\] (11.5)

217
Die hoofresultaat van [HAN1] is die volgende:

Stelling 11.3.3
As B 'n kontinue subalgebra is en $f \in L^1(T, \mu, \mathbb{R}^n)$, dan is $L(f, B)$ geslote en konveks. (Hierdie voorwaarde is in 1964 deur Halkin self verder veralgemeen deur die voorwaarde op B verder te verslap en slegs die konveksiteit, en nie ook die geslotenheid van $L(f, B)$ nie, te verkry.)

1. As $A = B$, dan geld Lyapunov se Konveksiteitstelling.
2. As $B = \{ A \in A : \chi_A \text{ is } \mu\text{-byna oral op } [0,1] \text{ kontinu } \}$ en $f \in L^1(T, \mu, \mathbb{R}^n)$ en analities op $[0,1]$, dan verkry ons 'n toepassing van die Konveksiteitstelling in Beheertheorie.

In Halkin se tweede artikel [HAN2] brei hy die werk wat LaSalle gedoen het, uit. In LaSalle se weergawe van die 'bang-bang' beginsel is 'n 'bang-bang' stuurfunksie 'n meetbare funksie wat slegs ekstreempunte as waarde aanneem. Halkin wys dat dieselfde beginsel geld as die 'bang-bang' stuurfunksie stuksgewys kontinu is. Hy gebruik 'n veralgemening van Lyapunov se stelling ([HAN1]) om die konveksiteit en geslotenheid van die waardeversameling van 'n vektorintegraal te bewys.

Z. Artstein [ART2] bewys in 1980 dat die 'bang-bang' beginsel in lineêre beheersisteme direk vanaf die volgende lemma bewys kan word:

Lemma 11.3.4 [ART2, p.173]
Laat C 'n geslote konvekske subversameling van 'n topologiese vektorruimte V wees sodat elke geslote konvekske subversameling van C 'n ekstreempunt het. Lat U 'n topologiese vektorruimte wees, $A : C \rightarrow U$ kontinu en affien en $y \in A(C)$. Dan bestaan 'n element $x \in C$ sodat $A(x) = y$ en $\dim W_C(x) \leq \dim W_{A(C)}(y)$, waar $W_C(x)$ die subruimte van V is wat uit alle veklore $y \in V$ bestaan sodat vir $|t| > 0$ klein genoeg is $x + ty \in C$.

218
Artstein se benadering vereis dus net dat die gepaste kontinue afhanklikheidseienskap bevredig moet word vir die 'bang-bang' beginsel om te geld.

R. A. Aló, T. Alvager en A. de Korvin publiseer in 1979 'n artikel [AADK] waarin hulle 'n nuwe tipe nie-lineêre integraal invoer wat sekere nie-lineêre afbeeldings $L^\infty(\mu)$ voorstel, waar μ eindig is. Hulle verkry dan 'n tipe 'bang-bang' stelling asook 'n tipe Lyapunov stelling vir hierdie integraal.

Die oorsig van I. Kluvaněk en G. Knowles [KLKN] dui die maniere aan waarop die algemene Lyapunov stelling in beheersisteme met verspreide parameters gebruik kan word.

Soos reeds genoem, is die Konveksiteitstelling ekwivalent aan die 'bang-bang' beginsel. Dus is dit nie verbasend dat, soos met Lyapunov se stelling, daar aanvanklik relatief min oor die oneindig-dimensionele weergawe van die 'bang-bang' beginsel gepubliseer is. I. Kluvaněk en G. Knowles bespreek in [KLKN] die 'bang-bang' beginsel vir stelsels met begrensde kontroles in oneindige dimensies. Nog 'n wiskundige wat die oneindige geval aangedurf het, is P. L. Falb [FALB]. Hy poog om resultate analoog aan die vir eindig-dimensionele stelsels te vind. In sy artikel gee hy egter 'n voorbeeld, wat baie aan dié van Lyapunov herinner (sien weer Hoofstuk 4), om te wys dat die 'bang-bang' beginsel nie vir oneindig dimensionele stelsels geld nie, al word daar met Hilbert-ruimtes gewerk.

'N Voorbeeld van waar die Konveksiteitstelling in artikels aangaande Beheerteorie gebruik is, is die artikel [PAPA] deur N. S. Papageorgiou. Papageorgiou beskou 'ontbindbare' versameling, waar 'n versameling $K \subseteq L^1(T)$, T 'n Banach-ruimte, 'ontbindbaar' is as vir alle meetbare versameling A en alle $f_1, f_2 \in K$, $\xi_A f_1 + \xi_{\overline{A}} f_2 \in K$. In [PAPA] bestudeer Papageorgiou die eienskappe van sulke versameling en verkry hy nuwe resultate aangaande die swak-kompaktetheid van $L^1(T)$. Hy bestudeer ook die afbeelding van 'ontbindbare' versameling onder kontinue, lineêre operatore en dit is by hierdie studie wat hy die stelling van Lyapunov gebruik.

Papageorgiou neem (Ω, Σ, μ) as 'n σ-eindige, nie-atomiese maatriumte. Hy begin deur 'n
Lyapunov-tipe stelling te bewys:

Stelling 11.3.5

As T 'n Banach-ruimte is, Y is 'n Banach-ruimte met die Radon-Nikodým Eienskap, $K \neq \emptyset$ is 'n 'ontbindbare' subversameling van $L^1(\Omega, T)$ en $L : L^1(\Omega, T) \to Y$ is 'n kontinue lineêre operator, dan is $\overline{L(K)}$ konveks, waar s die sterk- topologie op Y aandui.

Die toepassings van die gevolge van bostaande stelling strek wyd en het baie nuttige toepassings in Beheerteorie.
Hoofstuk 12

Toepassings van Lindenstrauss se bewysmetode

Statistiek, Ekonomie en Beheerteorie is gebiede waarin Lyapunov se Konveksiteitstelling relatief baie gebruik is en nogsteeds (soms in meer verskuilde vorme) gebruik word. Die Konveksiteitstelling is egter in baie ander gebiede ook gebruik. Baie van die toepassings van die Konveksiteitstelling maak, na Lindenstrauss se publikasie, gebruik van die metode wat Lindenstrauss gebruik het. Hoe Lyapunov se stelling en Lindenstrauss se bewysmetode in ander gebiede gebruik is, word nou baie kortliks beskou.

- In 1981 het N. Azarnia en J. D. Maitland Wright [AZMW] resultate vir operatorse in Von Neumann-algebras bewys, wat Lyapunov se stelling tot gevolg het as dit in kommutatiewe algebras toegepas word. Deur die hele artikel teen stel \(Y \)'n reële Banach-ruimte voor, \(A \)'n Von Neumann-algebra, \(A \) die ruimte van selftoegevoegde elemente van \(A \), \(P \) die versameling projeksies in \(A \) en vir elke \(e \in P \) is \(P_e = \{ q \in P : q \leq e \} \).

Azarnia en Maitland Wright definieer 'n norm-normale operator as 'n lineêre operator \(L : A \rightarrow Y \), waar \(L \)'n kontinue afbeelding vanaf die eenheidsbal \(A \), met die swak*-topologie daarop gedefinieer, na \(Y \), met die swak-topologie daarop gedefinieer, is. Verder noem hulle dat 'n norm-normale lineêre operator \(L : A \rightarrow Y \) die Lyapunov-Eierskap het as vir elke \(e \in P \), \(\{ L_p : p \in P_e \} \)'n swak-kompakte, konvekte subversameling van \(Y \) is.
Die hoofstelling van [AZMW] is die volgende:

Stelling 12.1 [AZMW, p.257] Laat A die self-toegevoegde deel van 'n Von Neumann-algebra wees. Laat Y 'n Banach-ruimte wees en laat $L : A \rightarrow Y$ 'n norm-normale lineêre operator wees. Dan is die volgende drie bewerings ekwiwalent.

1. Vir elke nie-nul projeksie e is die beperking van L tot eAe nie injektiief nie.
2. Vir elke positiewe, nie-nul x in A bestaan daar 'n $y \in A$ sodat $x^{\frac{1}{2}}yx^{\frac{1}{2}} \neq 0$,
 maar $L(x^{\frac{1}{2}}yx^{\frac{1}{2}}) = 0$.
3. L het die Lyapunov Eienskap, dit wil sê $\{Lp : p \in P_e\}$ is 'n swak-kompakte konveks versameling vir elke $e \in P$.

In die bewys van hierdie stelling, word daar ook van Lindenstrauss se bewysmetode gebruik gemaak, deurdat Azarnia en Maitland Wright in die bewys dat die tweede deel van die stelling die derde deel impliseer 'n versameling $K = \{a \in A : 0 \leq a \leq 1 \text{ en } La = Lx\}$, $x \in A$ met x nie 'n projeksie nie, invoer en bewys dat die versameling swak*-kompak en konveks is. Vanaf die Krein-Milman Stelling volg dus dat $\text{ext}(K) \neq \emptyset$. Enkele stappe verder word die versameling $C = \{La : 0 \leq a \leq 1 \text{ en } a \in A\}$ ingevoer, wat gebruik word om te bewys, deur die kontinuïteit van L, dat $\{Lp : P \in P_e\}$ wel swak-kompak en konveks is.

* H. Choda, M. Enomoto en M. Fujii [CHEF] het ook met Von Neumann-algebras gewerk. Die doel van hulle artikel was om, anders as die artikels wat tot op daardie stadium gepubliseer is, 'n nie-kommutatiewe weergawe van Lyapunov se stelling weer te gee en die weergawe deur middel van 'n veralgemening toe te pas. Choda, Enomoto en Fujii begin deur eerstens Lyapunov se stelling vir Von Neumann-algebras te stel. Neem deurgaans vir A as 'n nie-atomiese Von Neumann-algebra (sodat A dus geen nie-nul minimum projeksies het nie) en laat A^P die versameling van alle projeksies in A wees. Dan kan Lyapunov se stelling as volg geformuleer word:

Stelling 12.2

Laat ϕ_1, \ldots, ϕ_n normale positiewe lineêre funksionale op A wees. Dan is $\{(\phi_1(e), \ldots, \phi_n(e)) :$
\[e \in A_P, e \leq f \mid \text{vir alle } f \in A_P \} \text{ 'n kompakte konvexe subversameling van } \mathbb{R}^n \text{ vir elke } f \in A_P.\]

Bewys:

Vir \(a \in A \), laat \(\Lambda : A \to \mathbb{C}^n \) 'n \(\sigma \)-swak-kontinue lineêre afbeelding wees gedefinieer deur \(\Lambda(a) = (\phi_1(a), \ldots, \phi_n(a)). \) Omdat \(K = \{ a \in A : 0 \leq a \leq 1, af = fa = a \} \) \(\sigma \)-swak-kompak en konveks in \(A \) is, is \(\Lambda(K) \) ook \(\sigma \)-swak-kompak en konveks. Dan is dit voldoende om te wys dat \(\Lambda(K) \subseteq \Lambda(A_P^*). \) Choda, Enomoto en Fujii bewys dit deur middel van teenpraak, deur die bewys van Rudin [RUDI, p.120] te gebruik, soos uiteengesit in Afdeling 7.3 van hierdie tesis.

Dus maak Choda, Enomoto en Fujii gebruik van 'n bewys soortgelyk aan dié van Lindenstrauss om Lyapunov se stelling vir Von Neumann-algebras te bewys.

- C. A. Akeman en J. Anderson [AKAN] gebruik in 1991 Lindenstrauss se metode om nuwe veralgemenings van Lyapunov se stelling in die gebied van algebraïese operator teorie voor te stel deur gebruik te maak van Lindenstrauss se metode. 'n Swak*-kontinue lineêre afbeelding \(\Psi \) vanaf 'n abelse, nie-atomiese Von Neumann-algebra \(\mathcal{N} \) na 'n eindige komplekse vektorruimte word beskou. Verder word aangeneem dat \(a \in (\mathcal{N}_+)_1 \) die positiewe deel van die eenhedebsal van \(\mathcal{N} \) is. Dan bestaan daar 'n ekstreemypunt (dit wil sê, 'n afbeelding) \(p \) van \((\mathcal{N}_+)_1 \) sodat \(\Psi(p) = \Psi(a) \). Akeman en Anderson definieer dan 'n Lyapunov stelling vir \(C^* \)-algebras.

- H. P. Wynn [WYNN], wat ook in Statistiek gewerk het, het met die volgende probleem in die teorie van superpopulasie modelle gewerk: 'n Populasie \(S \) van \(N \) eenhede wat \(i = 1, \ldots, N \) gemerk is, het karakteristiek \(Y_i \) wat geheg is aan eenheid \(i \), \(i = 1, \ldots, N \). Die enigste \(Y_i \) wat egter in oënskou geneem word, is die \(Y_i \) van 'n monster \(s \subseteq S \) wat \(n \) verskillende eenhede bevat. Die \(Y_i \) word beskou as 'n monster van 'n superpopulasie, dit wil sê, hulle het 'n gesamentlike verspreiding \(f_Y(.|\theta) \) wat
deur onbekende parameters \(\theta = (\theta_1, \ldots, \theta_2) \) geparametriseer word. Die probleem is nou om 'n \(s \subset S \) te verkry wat 'n goeie benadering van \(\theta \) tot gevolg sal hê.

Volgens Wynn word bogenoemde probleem baie min bestudeer, alhoewel dit (volgens hom) baie nou verband hou met 'n hele aantal probleme in keuseetheorie en beheerteorie. Die doel van Wynn se artikel is dus om hierdie probleem meer in diepte te beskou.

Wynn begin sy ondersoek deur sy probleem eers meer abstrak uit te druk. \((T, \mathcal{A}, \xi_0) \) stel 'n waarskynlikheidsruimte voor. \(D(\xi_0, v) \) stel die versameling voor van alle submate \(\xi \) wat absoluut continu is met betrekking tot \(\xi_0 \). Verder definieer Wynn die funksie

\[
m_i(\xi) = \int_T g_i f_\xi d\xi_0 \quad (i = 1, \ldots, l)
\]

waar \(f_\xi \) die digtheid van \(\xi \) met betrekking tot \(\xi_0 \) is en elke \(g_i, i = 1, \ldots, k \), 'n integreerbare funksie is. Wynn stel dan

\[
m(\xi) = (m_1(\xi), \ldots, m_l(\xi)).
\]

Die hoofstelling van [WYNN] is ook die stelling wat nou verband hou met Lyapunov se Konveksiteitstelling en lui as volg:

Stelling 12.3

Laat \(\xi_0 \) nie-atomies wees. Dan bestaan daar vir enige \(\xi \in D(\xi_0, v) \) 'n \(\xi^* \in D^*(\xi_0, v) \) sodat \(m(\xi^*) = m(\xi) \), waar \(D^*(\xi_0, v) = \{ \xi \in D(\xi_0, v) : \text{daar bestaan 'n } A \in \mathcal{A} \text{ sodat } \xi(A) = \xi_0(A) \text{ en } \xi(\overline{A}) = 0 \} \).

Die bewys van hierdie stelling is soortgelyk aan Lindenstrauß se bewys van Lyapunov se stelling. Die volgende is net 'n deel van die bewys opgesom:

\(m_0(\xi) = \xi(T) \) word saamgevoeg om \(m(\xi) = (m_0(\xi), m_1(\xi), \ldots, m_l(\xi)) \) te vorm. Dan word \(z = (v, m_1, \ldots, m_l) \in \{ m(\xi) : \xi \in D \} \) beskou. Later in die bewys word verkry dat \(m^{-1}(z) = W_0 \subset W \) en dat \(W_0 \) 'n swak*-kompakte subversameling van \(W \) is.

224
Vanaf die Krein-Milman Stelling volg dan dat die ekstrempuntes van W_0 van die vorm χ_A is, met $A \in \mathcal{A}$. ...

Hierdie stelling verander in essensie enige optimale sub-maat probleem gebaseer op $m(\xi)$ na 'n optimum subversameling probleem oor die $A \in \mathcal{A}$.

- I. Berkes en H. P. Rosenthal publieer in 1985 'n artikel [BERO] waarin hulle die nodige en voldoende inherente voorwaardes verskaf waaronder 'n ry van toevalsveranderlikes 'n byna uitruilbare subry bevat. Berkes en Rosenthal definieer 'n ry van variante T_n, gedefinieer op 'n waarskynlikheidsruimte, as byna uitruilbaar as dit slegs 'n klein afwyking van 'n uitruilbare ry is nadat 'n gepaste vergroting van die waarskynlikheidsruimte gemaak is. Dit wil sê, nadat die ruimte vergroot is, bestaan daar 'n ry (Y_n) met $\sum |T_n - Y_n| < \infty$ byna oral. In Berkes en Rosenthal se ondersoek na nodige en voldoende voorwaardes het hulle die Maharam lemma nodig. Hierdie lemma kan soos volg verwoord word:

Maharam lemma [BERO, p.479]

(T, \mathcal{L}, P) is 'n waarskynlikheidsruimte, \mathcal{L} is nie-atomies oor \mathcal{A}. Dan is enige \mathcal{A}-meetbare funksie f, $0 \leq f \leq 1$, byna oral gelyk aan die voorwaardelike waarskynlikheid van 'n $D \in \mathcal{L}$.

In die bewys van hierdie lemma word daar weereens 'n versameling $K = \{g \in L^\infty(P) : 0 \leq g \leq 1\}$, met $A \in \mathcal{A}$, gekonstrueer en word daar, soos by Rudin se bewys van Lyapunov se stelling, bewys dat die versameling K 'n ekstrempunt bevat. Dus maak Berkes en Rosenthal indirek gebruik van Lindenstrauss se bewysmetode.

- In [MARZ] word Lyapunov se stelling ook gebruik wanneer P. Maritz die volgende bewys:
Stelling 12.4
Laat \((T, A, m)\) 'n volledige maatruieme wees, \(m : A \to \mathbb{R}^n\) 'n nie-atomiese maat en \(F : T \to \mathbb{R}^n\) 'n integreerbaar begrensde punt-geslote konvekske meetbare multifunksie. Dan is \(\int_A F \, dm = \int_A (\operatorname{ext} F) \, dm\), \(A \in A\).

Bewys:
\(S_F = \{ f : T \to \mathbb{R}^n : f(t) \in F(t)|m|-byna oral op T \}\.
Dan het \(F\) Castaing-voorstelling wat beteken dat \(S_F \neq \emptyset\).
Daar bestaan 'n \(k \in L_1(|m|), \|f\|_1 \leq \int kd|m| = K\), vir alle \(f \in S_F\). Laat \(X = \{ f \in L_1(m) : \|f\|_1 \leq K \}\). Dan is \(X\) swak*-kompak, \(S_F \subset X\) en \(S_F\) is swak*-kompak en konveks. Laat \(P_A : S_F \to \mathbb{R}^{np}\) gedefiniereer word deur \(P_A(f) = \int_A f \, dm, A \in A\). Dan is \(P_A\) affien en kontinu as \(S_F\) die swak*-topologie het [DUSP, p.422]. Daar bestaan 'n \(g \in S_F\) sodat \(y = P_A(g) = \int_A g \, dm\), en \(g(t) \in \operatorname{ext} F(t)\).

- E. Akin publiseer in 1995 'n artikel [AKIN] met idees oor nuwe benaderings vir die 'koeksny-probleem' (regveridgee verdeling). Die stelling in sy artikel wat vir die doel van hierdie oorsig belangrik is, lyk soos volg:

Stelling 12.5
Laat \(\mu_i : \Omega \to \mathbb{R}, i = 1,\ldots,N\), eindige mate wees. Die versameling van evalueringsmatrikke verkry vir alle \(M\)-toedelings is 'n kompakte konvekske subversameling van die vektorruimte van reële \(N \times M\) matrikke. As die mate nie-atomies is, word elke evalueringsmatriks geassosieer met 'n partisie.

Akin bewys hierdie stelling op 'n wyse baie soos dié van Rudin se weergawe van Lindenstrauss se bewys van die Konveksiteitstelling.
S. Campi, A. Colesanti en P. Gronchi [CACG] beskou vir 'n gesentreerde konvekte liggaam $K \subset \mathbb{R}^n$, $n \geq 3$, die klas \mathcal{H}_K van alle konvekte liggame met dieselfde afbeeldingsliggaam as K. Hulle verskaf nodige en voldoende voorwaardes vir K om Blaschke-ontbind te kan word in \mathcal{H}_K. Een van die hoofresultate van hierdie artikel is die volgende:

Stelling 12.6

K is 'n gesentreerde simmetriesige liggaam sodat die $(n - 1)$-area maat σ_K van K nie-atomies is. Dan het 'n konvekte liggaam \mathcal{H} dieselfde liggaamsafbeelding as K, en is B-ontbindbaar as en slegs as daar 'n anti-simmetriesige subversameling Ω van S^{n-1} bestaan sodat

$$\sigma_{\mathcal{H}}(\omega) = 2\sigma_K(\omega \cap \Omega)$$

vir elke van die Borel-versamelings S^{n-1}.

Hierdie bewys volg dié van Lindenstrauss se bewys vir die Konveksesiteitstelling:

Bewys van Stelling 12.6

Laat Ω 'n anti-simmetriesige Borel-subversameling van S^{n-1} wees en definieer $W = \{ f \in L^\infty(\Omega, \sigma_K) : 0 \leq f \leq 1 \}$. Definieer verder die afbeelding $L : W \to \mathbb{R}^n$ deur

$$L(f) = \int_{\Omega} [zf(z) - z(1 - f(z))]d\sigma_K(z).$$

As \mathcal{H} dieselfde liggaamsafbeelding as K het, dan is

$$0 = \int_{\Omega} [zR_{\mathcal{H}}(z) - zR_{\mathcal{H}}(-z)]d\sigma_K(z)$$

dit wil se, $L(\frac{1}{2}R_{\mathcal{H}}) = 0$, waar $R_{\mathcal{H}} = \frac{\partial \mu}{\partial \sigma_K}$. Nou word $f \in L^{-1}(0)$ uitgebrei na 'n funksie \overline{f} op S^{n-1} sodat $\overline{f}(z) + \overline{f}(-z) = 1$ vir alle z. Daar bestaan dan 'n \mathcal{H} sodat $\overline{f} = \frac{1}{2}R_{\mathcal{H}}$. Dan is \mathcal{H} nie ontbindbaar nie as en slegs as $\frac{1}{2}R_{\mathcal{H}}|\Omega \in \text{ext}(L^{-1}(0))$. Dus, met \mathcal{H} soos bo, is, soos reeds deur Lindenstrauss bewys, $\frac{1}{2}R_{\mathcal{H}} = \chi_A$, waar A 'n
anti-simmetriese subversameling van S^{n-1} is. Die omgekeerde geval is triviaal.

- J. Hagler publiseer in 2002 'n artikel [HAGL] oor die isometriese kopieë van L^1 in duaal Banach ruimtes. Die hart van Hagler se artikel is die volgende stelling:

Stelling 12.7

Laat T 'n Banach-ruimte wees en laat $u : L^1 \to T'$ 'n isometrie wees. Laat $S : T' \to L^1$ 'n lineêre afbeelding wees met $\|S\| = K$ en $Su = id_{L^1}$. Laat (δ_n) 'n afnemende ry wees met $\delta_0 < \frac{1}{2}$ en $\lim_{n \to \infty} \delta_n = 0$. Dan bestaan $(f_{n,i})$ in L^1 en $(x_{n,i})$ in T vir $(n, i) \in T$ en eindige subversamelings A_n in T vir $n \geq 0$ sodat

1. $\|f_{n,i}\| = 1$ en $f_{n,i} \geq 0$ byna oral vir alle $(n, i) \in T$.
2. $|\text{supp}(f_{n,i}) \cap \text{supp}(f_{n,j})| = 0$ as $i \neq j$.
3. As $a \in A_m$, dan is $uf_{n,i}(a) = uf_{m,j}(a)$ as $(n, i) \succ (m, j)$.
4. Vir elke n, laat $F_n = \{f_{n,i} : i = 0, \ldots, s^n - 1\}$. Dan is $u^*(A_n)|_{F_n}$ 'n δ_n-digte versameling in die eenheidsfeer van F_n^* sodat

- $\|a\| \leq 1 + \delta_n$ vir alle $a \in A_n$, en
- $u^*(A_n)|_{F_n}$ bevat die norm een funksionele $y_{n,i}^*$ in F_n^* bi-ortogonaal tot die $f_{n,i}$'s.
5. $\max_i |t_i| \leq \|\sum_{i=0}^{2^n-1} t_i x_{n,i}\| \leq K(1 + \delta_n) \max_i |t_i|$ vir alle n en skalare $(t_i)_{i=0}^{2^n-1}$.
6. As $n \geq m$, dan is

$$u f_{n,i}(x_{m,j}) = \begin{cases} 1 & \text{as } (n, i) \succ (m, j) \\ 0 & \text{andersins.} \end{cases}$$

In die bewys word Lyapunov se Konveksiteitstelling eksplisiet genoem en toegepas om te bewys dat daar wel meetbare versamelings $O_i \subseteq \text{supp}(f_{k-1,i})$ bestaan vir $0 \leq i \leq 2^{k-1} - 1$ sodat

$$\int_{O_i} \Psi_{n,j} f_{k-1,i} dt = \frac{1}{2} \int \Psi_{n,j} f_{k-1,i} dt \quad \text{vir } 0 \leq n \leq k - 1, 0 \leq j \leq 2^n - 1.$$
P. Berti, L. Pratelli en P. Rigo [BPRI] gebruik in hulle 2006-artikel Lyapunov se stelling in die bewys van een van hul lemmas om aan te toon die waardeversameling van 'n spesifieke nie-atomiese maat die interval [0, 1] is.
Naskrif

Duidelik is Lyapunov se stelling nie net 'n goeie stuk wiskunde in eie reg nie, maar ook 'n krachtige stuk gereedskap wat 'n groot impak in vele ander gebiede buite die Wiskunde, soms direk en soms indirek, gehad het. V. Ya Arsenin som die Konveksiteitstelling die beste op wanneer hy die volgende skryf ([ARSE]):

"Certain mathematical theorems are like natural laws and are always in view. We constantly return to them, and find newer and newer applications and proofs. Among these theorems are A. A. Lyapunov's theorem on the range of additive vector functions of sets (1940)."
Verwysings

