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Abstract 

 

A communications protocol is designed for real time control and data handling for a 

Nanosatellite application. The communication protocol is based on the Controller Area 

Network (CAN) technology. The protocol handles different message types such as time 

synchronization, telecommand messages, telemetry acquisition, unsolicited telemetry 

messages, large file transfers and debug messages. 

The design of the protocol entails finding a suitable target microcontroller in which the 

protocol implementation is demonstrated. This requires consideration of a number of 

development factors such as cost, complexity, availability, reliability and operational 

environment (space). The AVR AT90CAN128 microcontroller was chosen as a target 

microcontroller as it gave most of the required factors mentioned above. 

The protocol implementation involves developing low level software drivers, the middleware 

and the application programs to demonstrate handling of each supported message. In the 

implementation the media access scheme and low layer communication is provided by the 

CAN low level kernel (physical and data link layers).  

The protocol performance was evaluated by measuring the software response latencies, the 

bus throughputs and the software efficiencies. Power consumption due to CAN 

communication was also measured. 

System reliability was tested by loading the CAN bus with extreme communication traffic 

and letting the system run for a long time. The observation was that messages were handled 

consistently.
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Opsomming 
 

’n Kommunikasie protokol is ontwerp vir die intydse beheer en data hantering vir ’n 

Nanosateliet toepassing. Die kommunikasie protokol is gebaseer op die “Controller Area 

Network” (CAN) tegnologie. Die kommunikasie protokol hanteer verskillende boodskappe 

soos tydsinkronisasie, afstandsbevel, telemetrie aanvraag, ongevraagde telemetrie, groot lêer 

oordragte en ontfoutings boodskappe. 

Die ontwerp van die protokol behels die vind van ’n geskikte mikrobeheerder waarop die 

protokol gedemonstreer kan word. Dit behels die inagneming van verskeie faktore soos koste, 

kompleksiteit, beskikbaarheid, betroubaarheid asook die operasionele  omgewing (ruimte). 

Die AVR AT90CAN128 mikrobeheerder was gekies aangesien dit aan meeste van die 

voorafgenoemde vereistes voldoen. 

Die implementering van die protokol behels die ontwikkeling van lae vlak sagteware drywers, 

die tussenware en die toepassing programmatuur om die hantering van die ondersteunde 

boodskappe te demonstreer. In hierdie implementasie word die media toegangsskema en lae 

vlak kommunikasie verskaf deur die CAN lae vlak kern ( Fisiese kant data koppel vlakke). 

Die protokol se doeltreffenheid was geëvalueer deur die sagteware se reaksietyd, die bus 

deurset en sagteware effektiwiteit te meet. Die drywingsverbruik as gevolg van die CAN 

kommunikasie is ook gemeet. 

Stelsel integriteit is getoets deur die CAN bus swaar te belaai en die stelsel vir lang, 

aaneenlopende periodes van tyd te laat loop. Dit is bevind dat die boodskappe konsekwent 

hanteer is. 
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Chapter 1  

 

Background 

    

1.1 Introduction 

The development of satellite applications has evolved over the years and the continuous use 

of this technology has expanded over a wide range of applications including communications, 

guidance and navigation systems, military and defense, academic research etc. Satellite 

development has evolved from large earth orbiting satellites (greater than 1000 kilograms) to 

nanosatellites (less than 10 kilograms) and even smaller femtosatellites (less than 0.1 

kilograms). Nanosatellites are commonly developed by universities and the research institutes 

for research or academic purposes.  

One of possibly the most complex satellite projects ever attempted by university students was 

the Stellenbosch University Satellite (SUNSAT) [2]. The research in satellite engineering has 

since SUNSAT been going on at the University of Stellenbosch and a suitable environment 

for this type of research was established when the Electronic Systems Laboratory (ESL) was 

formed in 1991 at the Electrical and Electronic Engineering Department. Using the experience 

and the tools developed in the ESL, the research project reported in this document was 

formulated to develop a communications bus and protocol for a Nanosatellite. 

In realizing the successful development of this project a brief study was done on various 

existing field bus protocols. However, this study focuses on the Controller Area Network 

(CAN) as the preferable candidate, since previous satellite developments used CAN bus 

successfully and that provides for a space tested technology. The CAN bus was chosen for 

various other reasons that will be discussed in the next subsections. 

The bus protocol in this project was designed and developed completely for a Nanosatellite, 

but it is generic enough to be customized and used in any satellite mission. Though 

commercial high layer application protocols, like CANopen, DeviceNet and CANKingdom 

could be used, selecting a suitable communication protocol to support a specific application 

requires an understanding of both the protocol and the application. Whether generic or 

application-specific, a commercial protocol will probably limit the optimization of the system. 
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This optimization may be crucial in applications with tight performance, cost, size, weight, 

and environmental constraints [3].  

A literature survey is done in the following subsections to evaluate whether to design and 

develop a generic communication bus protocol or to customize the commercial higher layer 

application protocols like CANopen, DeviceNet and CANKingdom for a nanosatellite 

application. 

1.2 Project Objectives 

The primary objective of this project was to design a very basic, efficient, highly reliable and 

robust communication protocol for a Nanosatellite application. The protocol is robust if it can 

quickly detect and recover from errors with a high degree of certainty. The protocol efficiency 

is quantified by the data delivered, compared to the raw network bandwidth [12]. The 

protocol reliability is measured by the basic merits to handle extreme communication traffic 

under extreme environmental conditions consistently.  

The protocol should handle all the communications in real time and it should also handle 

scheduled messages timely to be executed periodically depending on the application. An 

auxiliary objective will be to demonstrate the protocol implementation on a cost effective, low 

power microcontroller supporting the chosen communications bus.  

An overall objective was to develop a protocol that will facilitate the communication among 

all the Nanosatellite subsystems as shown in figure 1.1. The CAN bus will be the main 

communications bus, but a private direct communication between certain nodes can be 

implemented using any of the serial bus interface that is seen convenient for the specific 

application. For example, the Onboard Computer (OBC) has direct access to the Mass 

Memory Unit (MMU) using a Serial Peripheral Interface (SPI) standard as shown in figure 

1.1. 
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Figure 1.1: CAN Bus Setup for A Typical Satellite 
  

1.3 Standard Communication Bus Protocols  

In order to carry out the objectives as set out for this project, a very brief survey was done on 

the standard protocols for distributed applications. Most of the protocols studied were 

characterized as primarily addressing three levels of protocol standardization and these levels 

are [12]: 

• Medium Access Control (MAC): this low level sub-layer defines the bus sharing and 

arbitration layer that is a fundamental part of every communication network. The reduction in 

the complexity of the related wiring harness is determined by this part of the communications 

protocol. 

• Protocol Implementation: this consists of the development of software drivers and 

hardware interfacing for the realization of the desired application. This level must suit the 

application and it must offer most features that are required for a simplified protocol 

implementation. The CAN bus specification provides most of these features. 

• High level Application Standards: this level represents the element of the protocol 

that provides cohesion between the applications components e.g. sensors, actuators and the 

application software. It also provides interoperability between the nodes in a network. 

Based on the protocol characterization mentioned above and other factors, including cost, 

availability and complexity, the communication bus standards discussed in the next section 

were considered. However, it should be noted there is a large number of other 
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communications bus standards that can be possible candidates, but only those that presented 

attractive features were considered here.  

1.3.1 Inter-Integrated Circuit (I 2C) Interface 

The I2C bus is a half-duplex, synchronous, multi-master bus requiring only two signal wires: 

Data (SDA) and Clock (SCL) [16].  

I2C uses an addressable communications protocol that allows the master to communicate with 

individual slaves using a 7-bit (standard mode) or 10-bit (High Speed mode) address.  

The I2C bus has three speeds: slow (less than 100Kbps), fast (400Kbps), and high-speed 

(3.4Mbps), each downward compatible. The true limit to I2C link distances is the bit-rate and 

a bus capacitance of 400 picoFarads (pF).  

1.3.2 Serial Peripheral Interface (SPI) 

The SPI bus consists of four signals: master out slave in (MOSI), master in slave out (MISO), 

serial clock (SCK), and active-low slave select (/SS). As a multi-master/slave protocol, 

communication between the master and selected slave uses the unidirectional MISO and 

MOSI lines, to achieve data rates over 1Mbps in full duplex mode. The data is clocked 

simultaneously into the slave and master based on the SCK pulses, provided by the master 

[16]. 

The SPI bus employs a simple shift register data transfer scheme: Data is clocked out of and 

into the active devices in a first-in, first-out fashion [FIFO] [17]. SPI devices can transmit and 

receive data packets in full duplex mode and the communication scheme is shown in figure 

1.2.  

 

Figure 1.2: SPI Communication Scheme  
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Data transfers are performed in eight/sixteen bit blocks. All data transfer is synchronized by 

the serial clock (SCLK).  

A disadvantage of SPI is the requirement to have separate /SS lines for each slave due to its 

lack of built-in addressing, resulting in an increased complexity in connectivity as the number 

of slaves increases. Provided that extra I/O pins are available, or extra board space for de-

multiplexer electronics, this may not be a problem. For small, low-pin-count microcontrollers, 

a multi-slave SPI interface might not be a viable solution [17].  

1.3.3 Microwire  

Microwire is a 4-wire synchronous bus interface developed by National Semiconductor [18].  

Similar to SPI, Microwire is a master/slave bus interface, with serial data out of the master 

(SO), and serial data in to the master (SI), and a signal clock (SK). These correspond to SPI's 

MOSI, MISO, and SCK signals, respectively. There is also a chip select signal, which acts 

similarly to SPI's /SS lines. As a full-duplex bus, Microwire is capable of speeds up to 

625Kbps or slower (bus capacitance dependant).  

Microwire devices come with different protocol standards, based on their data needs. Unlike 

SPI, which is based on one byte or two bytes data packets, Microwire permits a variable data 

length packet.  

Microwire has the same advantages and disadvantages as SPI with respect to multiple slaves, 

which require multiple chip select lines. In some instances, a SPI device will work on a 

Microwire bus, as will a Microwire device work on a SPI bus, although this must be reviewed 

on a per-device basis.  

Both SPI and Microwire are generally limited to on-board communications and wires/tracks 

of typically no longer than 0.15 meters, although longer distances (up to 3 meters) can be 

achieved given proper capacitance and lower bit rates [16].  

1.3.4 Controller Area Network (CAN) 
 

CAN  is a serial asynchronous communications bus protocol which efficiently supports a 

distributed real time control network. It can achieve speeds up to 1 Mbps over a distance of 40 

meters [13]. It was originally developed for automotive applications in the early 1980's, but it 
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has gained popularity over a wide range of applications including satellite applications. The 

CAN protocol was internationally standardized in 1993 as ISO 11898-1 and comprises the 

data link layer and the physical layer of the seven layer ISO/OSI reference model. All other 

services such as error signaling, automatic re-transmission of erroneous frames are performed 

by the CAN controller automatically. 

The Controller Area Network protocol provides:  

• A multi-master distributed architecture, which allows building intelligent and redundant 

systems. If one network node is defect the network is still able to operate.  

• Broadcast communication - A sender of information transmits to all devices on the bus. 

All receiving devices read the message and then decide if it is relevant to them. This allows a 

network-wide coordinated data acquisition capability.  

• Sophisticated error detecting mechanisms and re-transmission of faulty messages. This 

also guarantees data integrity.  

• An 11-bit identifier for standard frame format and 29-bit identifier for an extended 

frame format for addressing. The addressing is message priority based i.e. messages with high 

priority are assigned low identifier values. 

The CAN presents a wide range of attractive features which are not presented here and these 

are explained in detail in Appendix A. 

The CAN protocol allows an 8-byte data packet for each message sent on the bus and this is 

good for real time short messages but it is a disadvantage for message blocks larger than 8 

bytes. 

A higher layer protocol must be developed to implement the application orientated interface, 

since CAN only implements the data link and physical layers. 

1.3.5 Process Field Bus (Profibus) 
 

Profibus is an international open field bus standard that was developed in the late 1980’s. It 

has evolved for the years and three compatible variants of this bus standard have been 

developed [20]:  
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• Profibus-FMS (Field Message Specification): The FMS variant is used for a wide 

range of general applications. 

•  Profibus-DP (Decentralized Periphery): The DP variant is the high-speed solution of 

Profibus. It has been designed and optimized especially for communication between 

automation systems and decentralized field devices. 

• Profibus-PA (Process Automation): The PA variant meets the special requirements of 

process automation, for chemical process control applications. 

The media access control scheme uses a token passing arbitration scheme and the 

communication architecture is multi-master and multi-slave. During design time certain nodes 

are designated as masters and certain nodes as slaves. The communication media is the 

shielded twisted pair cable with RS-485 transceivers [1]. The data link, physical and 

application layers are implemented in hardware for all three Profibus variants. A maximum of 

224 bytes per message can be transmitted on the bus and each network can support up to 32 

nodes [2]. The maximum speed is 1.5 Mbits/s at 200 meters for Profibus-DP. The other 

variants achieve a lower bus speed at the same distance (200m). 

1.4 A preferred Communications Bus and Motivation 

After a comparative study of the above mentioned bus standards it was decided that the CAN 

bus was the best possible choice. A summarized comparative study for the bus protocols 

investigated is presented in table 1.1. The study was based on the most important features that 

will present an efficient protocol development for the Nanosatellite. The decision was mostly 

based on the application; different protocols present different application specific attractive 

features. The choice does not mean the CAN bus is an optimal solution; it has a few 

shortcomings, like the packet data length limited to only 8-bytes. The CAN bus, however, 

gave other attractive features required for a satellite application. These features will be 

discussed next: 

• System Operability – some subsystems developed previously for the Nanosatellite 

already considered using the CAN bus as the main communications bus. This provided a 

simplified communications architecture and system configurability. 
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• Extensive Error Management Capability and Robustness – CAN bus provide a built-in 

error signaling mechanism, which provides for data integrity with minimal effort to service 

these errors in software. Most of the bus standards considered above do not provide for 

automatic error handling and the system software has to implement a full error handling 

mechanism with an increase in development time. 

• Multi-Master Architecture – most bus standards presented in this section implement a 

master/slave architecture and only a single master node can initiate the communication. If this 

node is defect the whole system will fail. The CAN bus architecture makes it easier to add and 

remove nodes without changing the protocol structure. 

• Broadcast Communication – This provides for system transparency and coordinated 

network wide data consistency. Each message will be visible to all nodes on the network and 

each node will choose whether to act on the message or not. The other bus standards 

implement a master/slave communication mechanism in a point-to-point manner and this 

means only the two nodes communicating have access to the data on the bus. 

• Message Oriented Addressing – This reduces the wiring harness, because no address 

lines are needed to address each (selected) node, while for some other bus standards the 

wiring harness becomes worse with an increasing number of nodes. This limits the network 

size and complicates the physical system architecture. It also becomes simpler to configure 

the network with message oriented addressing, as no prior knowledge about other nodes is 

required.  

In summary, it is clear from a satellite application point of view that CAN is the most viable 

solution. It will provide for system reliability and extensive error handling. At a bus speed of 

1 Mbps the CAN bus is ideal for fast real time control applications. However, it is not the 

most efficient protocol when transferring large amounts of data. The packet size constraint is 

not a big problem as it is easy to implement a fragmentation mechanism when transmitting 

large data blocks. Most of the communication required on the Nanosatellite will be short real 

time messages such as telemetry and telecommand packets. 

A suitable bus connection other than the CAN bus may be used between two point-to-point 

nodes if it is deemed the best solution for the required application. In this case the 

communication must be strictly between these two nodes. The OBC and the mass memory 



 
CHAPTER 1. BACKGROUND 
 
 

 

9 

  

unit for the Nanosatellite project typically communicate via a SPI connection when a large 

amount of data is transferred. 

 
 
Table 1.1: Serial Bus Comparison  
 
Bus Type Data 

Size(bytes) 

Max. cable length 

at Max. 

speed(meters) 

Max 

Speed(Mbits/s) 

Number of 

Nodes 

Communic. 

Method 

I2C 1  3Board-distances 3.4 400pF1 Multi-master 

SPI 1 4Board-distances Up to 10 4  Master/Slave 

Microwire variable 4Board-distances 625 kbits/s Capacitance5 Master/Slave 

Profibus 224 200 1.5 32 Master/Slave 

CAN 8 40 1 1282 Multi-master 
1The number of nodes is limited by the bus capacitance of 400 Pico Farads 

2The maximum number of nodes is dependent on the transceiver loading capability and each 
microcontroller has a different fan-out. Most CAN transceivers support 32 nodes per network 
[18]. 

3Practically 3 meters are possible 

 4Practically 0.15 meters are possible 

 5The number of nodes is limited by the bus capacitance and bit rate [16]. 

1.5 Review of Higher Layer Application Protocols (HLP) 

The choice of CAN bus was not the final decision to be made during the protocol design. A 

higher layer protocol is still required to be developed on top of the low level kernel provided 

by CAN controller in the form of a physical layer, data link layer and error handling 

capability. A review was done on the higher layer application protocols that already exist.  

1.5.1   Previous CAN-Protocol Developments in the ESL 

One of the protocols reviewed was the one proposed by J.A. Koekemoer [2]. The proposed 

protocol can be summarized as follows: 
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A dual redundant CAN protocol was proposed, this bus setup used an electromechanical relay 

to manage the CAN traffic between a CAN primary bus and a CAN secondary (backup) bus. 

A standard CAN frame format was used and all the messages were identified by an 11-bit 

identifier. A typical address mechanism proposed for telemetry and telecommand messages is 

shown in figure 1.3. 

 

Figure 1.3: Proposed CAN 11-Bit Frame  

Based on figure 1.3, it was proposed that the protocol will be handled as follows: 

• The most significant bit in the 11-bit arbitration field selects either a telecommand 

message (T&T sel. = 0) or a telemetry message (T&T sel. = 1). Since CAN bus uses a bitwise 

arbitration, this scheme meant that the telecommand message would have the highest priority. 

• The next four bits from the most significant side would be the node address and this 

gives a maximum of 16 nodes. 

• The next bit is reserved and recommended to be 0 for future compatibility. 

• Sixteen different channels are handled by the next 4 bits in the arbitration field. These 

4 bits are meaningless if a telemetry message is sent on the bus and it is recommended that 

they take the sequence: ‘0101’ to minimize bit stuffing. 

Two bytes of the data field were reserved for sub-protocol control within a CAN network but 

this sub-protocol control field was eventually not used because the telemetry messages only 

used 6 bytes and the telecommand messages used only 4 bytes of the data field. 

For a telecommand message on the bus only the node address contains meaningful 

information. The protocol implemented a maximum of 16 telecommand channels. Each node 

used four bytes of the data field to change the status of each channel to one of the following 

states: 00 = reserved and this will have no effect on the channel, 01 = set the channel, 10 = 

reset the channel, 11 = leave the channel unchanged. All 16 telecommand channels were 

addressed in one 4-byte packet. 
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The proposed scheme above is inefficient in a number of ways:  

1) Using an 11-bit identifier with a few reserved bits instead of a 29-bit identifier reduces the 

number of nodes and channels that can be addressed.  

2) Using two bytes of the data field for sub-protocol control purposes which eventually were 

not used, is not a viable solution given the fact that CAN already has a limited bandwidth of 

8-bytes.  

3) Telecommand messages do not make full use of the 11-bit identifier; the reserved bits and 

the other unused bits in the arbitration field could be used to address a specific channel. The 

data field could have been used to set non-discrete states as suggested, e.g. to setup more 

channel control values like a reaction wheel speed reference, calibrating of specific 

parameters, etc. 

Apparently the protocol only handled telemetry and telecommand messages using the CAN 

bus. Large file transfers and code upload were done using the RS-232 transceiver 

(MAX232CWE) interface for testing purposes [2]. No file transfer or code upload handling 

protocol was discussed since the focus was on the command and data handling physical 

architecture and not the protocol details. 

1.5.2   Commercial Higher Layer Application Protocols  
 

A wide range of commercial protocols that are based on CAN technology exist and a review 

of a few was done to evaluate the feasibility of customizing these protocols to the 

requirements of a Nanosatellite application. The commercial higher layer protocols that were 

considered are CANopen and DeviceNet. Each one was briefly studied and a short summary 

about each is given below. CANKingdom is another higher layer application protocol based 

on the CAN technology, but it was not considered because it is designed specifically for 

factory machine systems use. 

1.5.2.1 CANopen 
 

This high layer protocol is derived from the CAN-Application Layer (CAL) technology 

developed by Phillips for Medical Systems. To provide the interoperability and 

interchangeability of different devices to conform to the CANopen protocol requires a 
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standardized application layer, device profiles, communication profile, device functionality 

and system administration [21]. These components are further explained as follows: 

• The application layer provides a set of services and the interfaces to every device on 

the network. 

• The communication profile provides the means to configure devices and the 

communication data and defines how the data is shared between devices. 

• Device profile gives the device-specific attributes (e.g. I/O data handling, sensors, etc.). 

The CANopen protocol derives its functionality from the following CAL application layer 

service elements: 

1) CAN-based Message specification (CMS) - which offers object attributes (data type, 

event, domain, data size etc.) about the message on the CAN bus; to design and specify how 

the functionality of each device (a node) can be accessed through its CAN interface. 

2) Network Management (NMT ) – offers services to support network management, e.g. to 

initialize, start or stop nodes, detect node failures. This is done by a master node. 

3) Distributor (DBT) – offers dynamic distribution of CAN identifiers to the nodes on the 

network by a master node. 

4) Layer Management (LMT ) – offers the ability to change the NMT-address of a node or 

change bit-timing and baud rate of the CAN network. 

CANopen is built on top of these CAL services and the CAL standards and profiles are 

defined by CAN in Automation (CiA) [22]. The relationship between OSI network model and 

CANopen protocol is illustrated in figure 1.4. 
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Figure 1.4: CANopen OSI Model  
 

The CiA DSP-xxx in figure 1.4 stands for CAN in Automation Device Specification Profiles 

and these are standardized by the CiA group [22]. CiA completely specifies how to setup and 

configure any device that is connected on the CAN bus to conform to the CANopen protocol. 

Users of this protocol must customize their application to the device specification profiles 

provided by CiA [22]. 

• CANopen Communication 

The central concept to the CANopen protocol is the device Object Dictionary (OD). The 

CANopen object dictionary is an ordered grouping of objects (parameters of each CAN 

message on the bus e.g. message data type, message identifier, physical data); each object is 

addressed using a 16-bit index. To allow individual elements of structures of data to be 

accessed an 8-bit sub-index is defined. For every node in the network there exists an OD. The 

OD contains all parameters about the messages that are handled by each node and its behavior 

on the network. Optional features in the communication part as well as on the device specific 

part can be added (to the object dictionary) as required for a specific application. The master 

node stores the object dictionary of all nodes in its application code. 

The CANopen communication protocol defines four message types: 
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1) Administrative messages - these messages are implemented based on the Network 

management of the CAL application layer service elements. The master node transmits all 

these messages to the slaves to manage the network. 

2) Service Data Objects (SDO) – these messages implement the transfer of data of any 

length, even for data lengths more than 8 bytes are handled by these messages. However, 

these messages have a considerable overhead (takes 4 bytes of the data field) and only 

transmit 4 data bytes maximum in each CAN message. 

3) Process Data Object (PDO) – these messages are used to transfer real time data; in the 

case of the satellite application these messages will be used for telemetry and telecommand 

messaging. These have no protocol overhead in the data field and CAN messages can be up to 

8 bytes. The data contents in each PDO are defined through the CAN 11-bit identifier.  

The PDO is described by 2 objects in the Object dictionary: 

• PDO Communication Parameter - determines CAN 11-bit identifier used to address that 

specific message. 

• PDO Mapping Parameter – this maps the message to the list of objects in the Object 

dictionary.  

4) Predefined messages or Special function objects - these include synchronisation used 

to synchronize tasks network-wide, particularly for real time control applications. Time stamp 

messages are also provided which gives all the nodes a common time frame. Node/Life 

guarding service is also provided: The master node monitors the state of each node and this is 

called node guarding. When a slave node optionally monitors the state of the master node 

after it received the node guard message, it is known as life guarding. Emergency messages 

are triggered by the occurrence of a device internal error. Boot-up process messages are also 

handled as special function objects, where immediately after power-up the master node 

commands the slaves to enter an  initializing, pre-operational, operational or stopped state . 

The relationship between the CAN communication bus, the Object Dictionary and the 

application software is illustrated in figure 1.5. 
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Figure 1.5: CANopen device bus Interface 
 

The messages are addressed using a CAN 11-bit identifier which is distributed in 2 parts, the 

4-bit function code and the 7-bit node-ID, as shown in figure 1.6. 

 

 
 
Figure 1.6: CANopen 11-bit ID-Distribution  
 

A maximum of 127 nodes is allowed (0 not allowed in the implementation). The function 

code determines 16 possible message objects that can be addressed on the bus. 

This protocol is not very efficient for satellite applications as it is not flexible because it 

already gives defined and standardized messages, while some of these messages may never be 

used. The inherent master/salve architecture centralizes a lot of traffic in one central CPU and 

this is not reliable in case of a master failure. The use of a CAN 11-bit identifier limits 

message types and channels to be addressed. The use of up to 4 bytes for protocol overhead in 

some of the messages is also one of the shortcomings for this protocol. 

The CANopen protocol has an advantage of modularity due to the way it is designed with 

device profiles.  

1.5.2.2 DeviceNet 

DeviceNet is a digital, multi-drop network that connects and serves as a communication 

network between industrial controllers and I/O devices. Each device and/or controller is a 
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node on the network. DeviceNet is a producer-consumer network that supports multiple 

communication network architectures and message prioritization. DeviceNet systems can be 

configured to operate in a master-slave or a multi-master architecture using peer-to-peer 

communication. DeviceNet also has the feature of obtaining electric power from the network. 

This allows devices with limited power requirements to be powered directly from the 

network, reducing the connection points and physical size [23]. 

DeviceNet uses a trunk-line/drop-line topology that provides separate wire pairs for both 

signal and power (8A at 24VDC) distribution as illustrated in figure 1.7. Thick or thin cable 

can be used for either trunk lines or drop lines. End-to-end network length varies with data 

rate and cable thickness (maximum trunk length of 100 meters at maximum baud rate of 500 

kbps, the drop length is limited to 6 meters). 

 

Figure 1.7: DeviceNet Topology  
 

The DeviceNet protocol adapts a Control and Information Protocol (CIP) layer on top of the 

CAN low level protocol [24]. CIP messaging is strictly object oriented (each message is 

handled as an object on the network). Each object has attributes (data), services (commands) 

and behavior (reaction to events). Two different types of objects are defined in the CIP 

specification: Required objects (objects required by the specification to be included in every 

CIP device; these objects include the Identity Object, a Message Router object and a Network 

object) and Application-specific objects (objects that define the data encapsulated by the 

device; these objects are specific to the device type and function.). Vendor-specific or user-

defined objects can also be defined by product vendors or the application program for 

situations where a product requires functionality that is not in the specification.  
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Figure 1.8: DeviceNet Layer Model  
 

The relationship between the DeviceNet network model and the OSI/ISO layer model is 

shown in figure 1.8. The transport layer provides the CIP standard communication profiles 

with which the application layer interfaces. 

The following messaging schemes are supported by the DeviceNet protocol: 

• Polling: The DeviceNet master node asks each device to send or receive an update of its 

status.  

• Strobing: The master node broadcasts a request to all devices for a status update. Node 

numbers can be assigned to prioritize messages.  

• Cyclic: Devices automatically send messages on scheduled intervals and this scheme is 

often used in tandem with Change of State messaging to ensure that the device is still 

functional. 

• Change of State: Devices send messages only when their states change. This occupies 

an absolute minimum of time on the network, and a large network using Change of 

State can often outperform a polling network. This method is the most time efficient, 

but can be the least precise way to obtain information from devices because the 

throughput and response times become statistical instead of deterministic. 
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• Explicit Messaging: The explicit-messaging feature is generally used for configuration 

instead of processing of data. This feature is used to update parameters that change from time 

to time but do not change as often as the process data itself. 

• Fragmented Messages: For data that requires more than maximum 8 bytes of data per 

node per request, the data can be divided into any number of 6-byte segments (there are 2 

bytes of overhead in the data field) and re-assembled at the other end.  

The addressing scheme used is an 11-bit CAN identifier. The 11-bit identifier is distributed 

using an object oriented model, where each message is treated as an object and it has 

attributes and properties. The information in the addressing scheme includes [1]: 

Device Address – this bit field for the node identification refers to a media access identifier 

(MAC ID) and a maximum of 64 nodes can be addressed. The protocol also implements the 

duplicate MAC ID detection algorithm at power-up. 

Class Identifier (Class ID) – the class here refers to a set of objects that represent the same 

type of system component. This 1-bit field combined with the Instance ID and Attribute ID 

identifies device data assigned to each object class such as presence sensing in discrete I/O. 

Instance Identifier (Instance ID) – this bit field with class ID and attribute ID represents the 

actual instance of each object in a class e.g. a specific value in a calibration table. 

Attribute identifier (Attribute ID) – this bit field with class ID and instance ID combination 

gives the status information about an object e.g. filter delays, acceleration rate, I/O on or off. 

The identifier distribution for the message types that DeviceNet protocol supports is generally 

predefined as shown in table 1.2. Each message group object is completely identified by the 3 

message object attributes (class ID, instance ID, and attribute ID). 

The supported message types, in a master/slave architecture example, are grouped as follows: 

• Message Group1: Slave's I/O Change of State or Cyclic Message, Slave's I/O Bit-

Strobe Response Message, Slave's I/O Poll Response Message 

• Message Group2: Master's I/O Bit-Strobe Command Message, Reserved for Master's 

Use, Master's change of state/cyclic acknowledge messages, Slave's Explicit Response 
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Messages, Master's Connected Explicit Request Messages, Master's I/O poll 

command/change of State/cyclic messages, Duplicate MAC ID Check Messages. 

Table 1.2: 1DeviceNet Identifier Distribution  

 

 
1Source: New in Version1.3 of Volume 1 of the DeviceNet Specification [24] 

The other message groups (groups 3 & 4) are dependant on the application, the specific data 

required and the communication architecture. These two groups are defined by device profiles 

but can be customized into user application [24]. 

The DeviceNet protocol provides a number of attractive features like an object oriented 

approach to message handling. The modularity is implemented by device profiles and the 

duplicate node or duplicate identifier detection algorithm. The shortcoming of this protocol is 

its use of an 11-bit CAN identifier, which addresses only 64 nodes per network, instead of a 

29-bit identifier. This limits the number of nodes to be addressed. The multi-architecture 

nature of this protocol implementation gives the designer a degree of flexibility. 

The predefined identifier allocation leaves the designer with only 27 freely available priorities 

for each node. 

Based on the survey done on the high layer application protocols discussed above, it was 

decided that although these protocols could be used for the Nanosatellite application, some of 

them are bounded by the standards that must be conformed to. This constraint limits the 

flexibility and optimization of the protocol that will suit the project requirements. The other 

constraint is that these protocols are limited in the number of addressable nodes on the 

network and they implement a master/slave architecture on top of the CAN protocol. 

The ultimate decision was to design a protocol from its conception to the implementation so 

that most of project requirements could be met. 
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1.6 Thesis Overview 

In this section a very brief overview of how the rest of the thesis is structured and the contents 

of each section will be presented. The thesis consists of five chapters which build onto one 

another. A basic knowledge of a CAN bus technology is assumed throughout the text and 

detailed information about the CAN protocol is found in the appendices section. 

 

The research requirement leading up to this study was defined when the satellite group in the 

ESL embarked on a project to design and build a Nanosatellite. One of the requirements for 

this project was obviously the need to develop a communications protocol to provide 

coordinated network wide onboard communication needs. 

Finding the communications protocol that will best suit the Nanosatellite application 

instigated the research reported in this document. The first chapter introduces the project by 

looking at various options available and consequently selects the best approach for the 

development of the communications protocol. The CAN bus was chosen with the motivation 

given earlier in this chapter. 

With all the tools and the literature survey covered in chapter one, the protocol was 

conceptualized further when it was decided which messages were to be supported by the 

protocol and how these messages would be handled. Chapter two is where most of the 

important details about the protocol design are covered. This chapter looks at the protocol 

holistically i.e. protocol design from the concept phase to the test platform hardware and the 

methodology used to test and debug the protocol.  

 

Figure 1.9: A CAN Module Schematic  
 

The test platform is based on the AVR AT90CAN128 microcontroller. The test setup 

consisted of two identical nodes and each node has the basic features shown in figure 1.9. 
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Chapter 3 is based mainly on the realization of the protocol implementation. In this chapter 

the hardware and software interfacing details are covered thoroughly. It is in this chapter that 

the conceptual details were evaluated to see whether the design targets were practically 

viable. In this chapter the low level drivers, the protocol software and the application test 

software are developed to meet the design specification. Some decisions were also made to 

modify the initial ideas and to optimize the protocol. As an example, the way large file 

transfers are handled was changed. Originally these transfers were handled by transferring the 

complete file and then to wait for an acknowledgement specifying the counters for the lost 

packets. This was changed to acknowledge every packet and adding a timeout mechanism.  

In chapter 4 various tests were done to evaluate the performance of the communications 

protocol. The main tests reported on were: 

• Measuring the system response times. 

• Measuring the protocol efficiency. 

• Evaluating the system reliability by loading the CAN bus with different messages and to 

leave the communication running for a long time to evaluate consistency of the protocol 

response. 

• The power consumption on the development board was measured and compared to the 

theoretically expected power consumption of the AT90CAN128 CAN controller in active 

mode (33mW). 

Chapter 5 is the conclusion and recommendations. This chapter draws some final conclusions 

about the performance of the protocol. Recommendations are made about future work to 

further develop and optimize the protocol. Other supporting information is presented in the 

appendices, including the software source code. 



   
 

Chapter 2 
 

 

The CAN Protocol Conceptual System Design 
 
 

2.1 Supporting Hardware Consideration 

The choice of the hardware has an influence on the detailed design of the protocol and this 

will be discussed in the subsequent chapters. The most important factors considered in 

choosing the target microcontroller are: low power consumption, small foot print and 

reliability. Based on these requirements and the others features needed for the protocol 

functionality, table 2.1 presents the low-power microcontrollers that were considered.  

Table 2.1: Microcontroller Comparison  

 

Manufacture 
Family-Part 
Number 

ATMEL-8051 

(AT89C51CC03) 

ATMEL-AVR 

(AT90CAN128) 

 
Cygnal-8051 
(C8051F040) 

 
Dallas 
Semi. 
(DS80C410) 

 
Infenion/Siemens 
(C515C-8R/8E) 

 
Phillips 
(P80C591) 

Power 

Supply[Volts] 
3.0 – 5.5 2.7 – 5.5 2.7 – 3.6 3.0 – 3.6 0 – 5.5 4.5 – 5.5 

Active 

Supply 

Current[mA]  

24[5.5 V] 10[ 3.0 V] 
 
10[2.7 V] 

 
35[3.6V] 25.5 [5.5 V] 45[ 5.5] 

Clock Speed 

MHz[MIPS]  

 
40[5] 16[16] 25[25] 75[75] 10[1.66] 16[2.66] 

Number of 

Message 

Objects 

15 15 32 15 15 15 

FLASH 

Program 

(Kbytes) 

64 128 64 64 64  16 

RAM 

(Kbytes) 
18 4 

4 + 256 

bytes 

64 + 512 

bytes 
256 bytes 3 
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A/D 
Channels 
[Bits] 

8[10] 8[10] 8[12] - 8[10] 6[10] 

 
 
Timers 

 

3 4 5 4 3 3 

All the considered microcontrollers support versions CAN 2.0A (11-bit identifier version) and 

CAN2.0B (29-bit identifier version). 

2.1.1 Choosing a Target Microcontroller 

The demonstration platform for the protocol was finally chosen to be a low-power CMOS 8-

bit microcontroller based on the AVR (AT90CAN128) enhanced RISC architecture. The 

choice was informed by the availability of the supporting equipment (in circuit emulators, 

programmers, cost effective compilers etc.), the cost on top of the parametric features shown 

in table 2.1. This microcontroller provides the following attractive features that support 

protocol development and each feature is given a brief description as follows: 

• Up to 16 MIPS at 16 MHz 

• 4 Kbytes Internal SRAM 

• 4 Kbytes E2PROM 

• 128 Kbytes In-System Programmable FLASH memory 

• CAN Controller 2.0A and 2.0B 

• Watchdog timer with On-chip oscillator 

• 8-channel, 10-bit A/D converter 

• 53 programmable I/O lines 

• Operating voltages: 2.7 to 5.5 V; active supply current of 11 mA in a 3.3V supply 

(36mW) at 8 MHz. 

The chip provides more features but only those that are used mostly in the detailed design of 

the protocol were considered in detail. The provided features were enough since the main 
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focus was more on the software development than on the hardware design. The protocol 

design would be very basic and no large memory is needed as the main focus will be to 

facilitate the CAN traffic. 

Again since the project focus was on software development it has to be mentioned that the 

chip was used as embedded on the DVK90CAN128 development board from ATMEL. This 

development board provides extra components and some of them were used for debug 

purposes. 

The AVR AT90CAN128 has two main memory spaces, the Data memory and the Program 

memory space, and these are linear and regular as shown in figures 2.1 and 2.2 respectively. 

The memory map for this microcontroller is shown in table 2.2.  The 128 Kbytes of FLASH 

memory is divided into two sections: the 120 Kbytes Application section and the 8 Kbytes 

Bootloader section. This memory organization makes it possible to program the chip while 

the code on the boot section is running.  

Table 2.2: AT90CAN128 Memory Mapping  

 

Memory Size Start Address End Address 

FLASH 128 Kbytes 0x00000 0x1FFFF1  0xFFFF2 

32 Registers 32 bytes 0x0000 0x001F 

I/O Registers 64 bytes 0x0020 0x005F 

External I/O Registers 160 bytes 0x0060 0x00FF 

Internal SRAM 4 Kbytes 0x0100 0x10FF 

External Memory 0 to 64 Kbytes 0x1100 0xFFFF 

EEPROM 1 Kbyte 0x0000 0x0FFF 

1 Byte addressable,   2 Word (16-bit) addressable 
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Figure 2.1: SRAM Data Memory Map 

The Data Stack area is used to dynamically store local variables, passing function parameters 

and saving registers during interrupt routine servicing. After the initial software code 

compilation, 78 bytes were used for the Data Stack and finally 256 bytes were reserved to this 

memory since the application programs will increase the memory requirements. 

In the protocol implementation the heap area has been assigned a value of 0 since no dynamic 

memory functions are being used. This means that the stack pointer (SP) initial value points at 

the end of SRAM.  

The Hardware Stack area is used for storing the functions return addresses and a maximum of 

512 bytes have been reserved. During the program execution the Hardware Stack grows 

downwards to the Global Variables area from the SRAM end (0x10FF). With this 

arrangement there is enough SRAM memory available for general use. 

The maximum Bootloader section is 8 Kbytes but this can be less depending on the code size. 

The memory is byte addressable for the data memory space and it is both byte and word 

addressable for the program FLASH memory. 



CHAPTER 2. THE CAN PROTOCOL CONCEPTUAL DESIGN 
 
 

 

26 

  

 

Figure 2.2: Program Memory Map 

2.1.2 The Other Supporting Components 

The test platform consisted of two identical development DVK90CAN128 boards [4] from 

ATMEL each equipped with the CAN controller. These boards are also equipped with the 

JTAG interface for parallel programming. The JTAGICEMKII programmer was used to 

program and debug the software based on the AVRSTUDIO 4 integrated development 

environment (IDE). The AVRSTUDIO 4 is freely available on the ATMEL website [4]. 

The PEAK-System’s PCAN PCI card [5] was also used to analyze the traffic on the CAN 

network. 

Most of the software drivers are developed in C as the main programming language compiled 

with CodevisionAVR C compiler [6]. However some small routines are written in assembler 

where optimization for speed was a priority. These sub assembler routines were easily 

compiled using CodevisionAVR C compiler since the compiler handles inline assembler. 

2.1.3 Bus Architecture Overview 

The protocol is designed to work in a distributed CAN bus network. The system test setup 

consists of two development boards each with a CAN microcontroller as mentioned above. 

These CAN microcontrollers are connected to a PCAN PCI card which was used to monitor 
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the CAN traffic. The two development boards are attached through the two wire differential 

lines (twisted pair cable must be used for noise immunity) designed to meet ISO 11898 

specification for CAN communication. The cable is made of two signal wires CAN high 

(CAN_H) and CAN low (CAN_L) with a nominal characteristic line impedance of 120 Ω. 

Line termination is provided through 120 Ω termination resistors that are located at both ends 

of a bus network. A high level connection of the demonstration platform is shown in figure 

2.3. 

 

Figure 2.3: A Terminated CAN Bus Architecture 

Figure 2.3 shows a CAN bus distributed architecture and this demonstrates how the test 

platform has been setup together with the PCAN PCI card. 

The maximum number of CAN nodes, according to the arbitration identifier allocation in 

section 2.2.1 below, is limited to 256 nodes but practically this is limited by the individual 

line driving capability of CAN transceiver (fan-out); a normal number of nodes that can be 

attached to a single CAN bus is between 32 and 64. The ATMEL AT6660 transceiver was 

used as it came embedded on the development board [4]. At speeds of 1Mbps, a maximum 

cable length of 40 meters can be used. This is because the arbitration scheme requires that the 

wave front of the signal can propagate to the most remote node and back again before the bit 

is sampled, as the transmitting node must monitor its own start bit.  
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2.2 The Protocol Design Consideration 

This section describes the development of the protocol from conception to implementation. It 

describes how each of the supported message types is handled by the protocol and the 

prioritisation of the message across the network. The priority of each of these supported 

message types is determined by the CAN 29-bit identifier. 

Every CAN message on the network contains a maximum of 8 bytes of data and this is a 

limitation for large file transfers and thus large files are fragmented into small 8-byte packets 

that can be transmitted on the CAN bus. CAN bus speed can go up to 1Mbps at 8MHz clock. 

These bus considerations are critical to the detail design of the protocol. Another feature of 

the CAN bus is a multi-cast and a multi-master architecture to provide system wide data 

transfer consistency. 

2.2.1 The CAN Identifier Assignment 

The most important design requirement for a CAN protocol is the distribution of the identifier 

information across the messages that will be handled on the CAN bus. The protocol is based 

on CAN 2.0B and it uses the 29-bit ID to implement the supported message types.  The 

priority of the message on the bus is determined by the message ID and it is therefore 

important to assign the identifiers during design time such that the messages intended as high 

priority, for example the most time critical messages. 

The 29 bit ID is divided into four fields as shown in figure 2.4 below. 

 

Figure 2.4: A 29-Bit ID Allocation  

Each of the above fields in the identifier has the following meaning based on the message 

type it tags: 

• Message type field - this field identifies what message type is sent on the network. There 

are 32 possible different message types that can be addressed. Message type 0 is the highest 

priority message. 
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• The file command, control, channel or index field - this is made specific by the type of 

the message sent on the bus; in case of telemetry and telecommand messages this identifies 

the channel and in case of the file or data transfer this field indicates the control or the 

command field that specifies what must be done with the data that is read or written to a 

specific memory address. This field will change to control flow index which monitors the 

incoming data packets. 

• The Source and Destination Address fields – each node will be allocated a unique 

address to be used as the source during transmissions and as a destination address during 

receptions. When a node gets a request it sets its acceptance filter with the destination address 

field to its own node address and accept only frames addressed to it and on response the 

source and destination fields are swapped and a response is sent. 

The supported message types for this protocol are listed in table 2.3 below according to 

priority from the lowest identifier value. 

Time synchronization and debug messages will be broadcast messages as can be seen in table 

2.3 below; their destination address is 0. Every node on the network must have their 

acceptance filters masked to this broadcast address if they want to receive these messages. 

These broadcast messages will not be acknowledged. 

In all transmissions on the CAN bus all the addressing or message identification information 

must be carried in the 29-bit arbitration field and the 8 byte data field must only be used for 

data. All message types except for debug and the time synchronization messages will be 

acknowledged and this acknowledgement will be a message type on its own as can be seen on 

table 2.3.  The xx symbols indicate an unassigned channel, source address or a destination 

address and these are message packet dependant. The third column of table 2.3 gives a brief 

idea of what each message type does. 

Table 2.3: The Protocol Supported Message Types 

 

Message Type Identifier Range Comment/Description 

Time Synchronization 0x0000xx00 Broadcast Unix Time 

Telecommand Request 0x01xxxxxx Command/Request 
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Telecommand Response 0x02xxxxxx Acknowledgement 

Telecommand Not 

Acknowledgement 

0x03xxxxxx Command failure Reason 

Telemetry Request 0x04xxxxxx Request 

Telemetry Response 0x05xxxxxx Response 

Telemetry Not Acknowledgement 0x06xxxxxx Reason 

Unsolicited Telemetry Request 0x07xxxxxx Request for periodic response 

File Header Transfer 0x08xxxxxx Start File transfer 

File Header Transfer 

Acknowledgement 

0x09xxxxxx Response to initiate file 

transfer 

File Data Transfer 0x0Axxxxxx  Data packets 

File Data Transfer 

Acknowledgement 

0x0Bxxxxxx Each data packet 

acknowledged 

File Data Transfer Not 

Acknowledgement 

0x0Cxxxxxx Data packet lost 

Debug Messages 0x0D00xx00  Broadcast string 

 

2.2.2 Message Handling and Prioritization 

Each of the message types in table 2.3 are designed to be handled in a specific way and a 

description of each is detailed in this section. A brief reasoning as to why each message type 

takes a specific priority will also be discussed as each message type is described. 

• Time Synchronization - For the mission life of the satellite the CAN system needs to 

communicate accurate and stable system time for all nodes to synchronize their UNIX time to 

a master clock. Time synchronization should be done at regular intervals to keep all 
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subsystem events within real time limits and the whole system on time and accurate. This 

would avoid using delayed or old data and to execute tasks synchronized with the data 

measurements. 

The master clock on the OBC or the GPS will broadcast the system UNIX time at regular 

intervals. The time will be 6 bytes where the first 4 bytes will determine the time in UNIX 

seconds and the next 2 bytes the second fraction in milliseconds. Time synchronization 

messages have the highest priority on the bus because time accuracy is an important 

parameter for the satellite applications like the attitude determination and control system 

(ADCS).  

The system time will be incremented every 1 millisecond and it can run from a timer interrupt 

of a real-time clock on the OBC. 

• Telecommand messages – In all cases these messages must be less or equal to 8 bytes in 

the data field and no data fragmentation is required. Each message will be acknowledged 

positively or negatively. There are 256 possible telecommand channels and only 15 standard 

telecommand channels are currently reserved for the node and the application program can 

expand the list to include user specific telecommand channels. 

 

Table 2.4: Standard Telecommand Channels  
 

TC Channel Number TC Description Approximate size Units 

0x00 Clear  the Run Time 0 bytes seconds 

0x01 Clear CAN counters 0 bytes - 

0x02 Clear Reset Counters 0 bytes - 

0x03 Execute code at address 2 or 4 bytes Address 

These messages are the second highest priority as can be seen on table 2.3. Table 2.4 lists the 

standard telecommand channels. These are the standard channels implemented in the protocol 

so far. 

If a telecommand request has not been responded to after a specific period, the request for the 

same channel can be made if the source of the request decides to do so. 
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 A typical telecommand sequence exchange will look like figure 2.5 below. The acknowledge 

message will be carrying the previous value of the specific channel or just an 

acknowledgement saying a command has been executed or a not acknowledge message 

specifying the reason. 

 

Figure 2.5: A Telecommand Exchange 

• Telemetry messages – they would be handled the same as the telecommand messages 

above. The difference is on the data field; while the telecommand sends the command data the 

telemetry message will contain no data and it requests data from the destination node. There 

will also be 256 possible telemetry channels with 15 of those being the standard telemetry 

channels. Table 2.5 lists these standard telemetry channels. 

 

• Unsolicited Telemetry – the difference from normal telemetry messages is that 

unsolicited telemetry responds periodically for each request. To setup an unsolicited telemetry 

request, the repeat value and the repeat period must be specified. The repeat period will take 4 

bytes of the 8- bytes data field and a further 2 bytes will determine the repeat value. If there is 

a need to cancel an unsolicited telemetry; a request with the same channel and source address 

must be made with a period of 0 or a repeat value of 0. To setup a request that repeats 

indefinitely a repeat value of 0xFFFF must be specified. An Unsolicited telemetry request will 

be setup as shown in figure 2. 6. 
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Repeat Period in seconds units Repeat Value 

Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] 

Figure 2.6: Unsolicited Telemetry Format 

 
Note: In future the resolution of the repeat period can be increased into a millisecond unit 

resolution but care must be taken in specifying the repeat period because the 32 bit variable 

representing milliseconds will overflow after approximately:  (232/(1000))/(86400) ~ 49.71 

days. So a repeat period of more 50 days cannot be specified and any period specified close to 

overflow would lose that unsolicited telemetry request. 

 

Table 2.5: Standard Telemetry Channels 
  

Channel Number Telemetry Info/Data Approximate Size Units 

0x00 Local Clock UNIX Time 6 bytes Seconds + milliseconds 

0x01 Run Time 4 bytes seconds 

0x02 Temperature 2 bytes 10th of  ºC 

0x03 CAN node Voltage(5V) 2 bytes 100mV 

0x04 CAN node  Current 2 bytes mA 

0x05 TLM Requests 2 bytes - 

0x06 TLM Response (Ack) 2 bytes - 

0x07 TLM  Response (Nack) 2 bytes - 

0x08 TLCMD Requests 2 bytes - 

0x09 TLCMD Response (Ack) 2 bytes - 

0x0A TLCMD Response /Nack 2 bytes  - 

0x0B Reset Count 2 bytes - 
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0x0C Frames received 4 bytes - 

0x0D Frames transmitted 4 bytes - 

0x0E CAN Buss Off Count 2 bytes - 

0x0F CAN Errors 2 bytes - 

• File and data transfers – CAN has a small data payload per packet (8 bytes maximum) 

which minimizes the bus throughput. Large file transfers would then need to be fragmented 

into less than or equal to 8 bytes packets. When a large file is transferred across the CAN bus 

a file transfer header is first sent. The header would contain 4 bytes to specify the memory 

start address and the other 4 bytes of the 8 bytes data field will determine the total data size of 

the file to be transferred.  

During the file header transfer, the second field (the control field) of the 29-bit arbitration 

field will contain the command to specify what data action will follow after the header 

transfer has been acknowledged by the receiver. 

The data transfer will begin immediately after the header acknowledgement and only one 

packet of data will be transferred, the transmitting node will then wait for the 

acknowledgement of that packet. The control field in this case will contain the data index 

which specifies the packet number being transferred and this index is monitored against the 

acknowledge that comes back. If the acknowledged index is not the same as the sent index, 

the packet will be retransmitted. A retransmit will also happen if no acknowledge is received 

within a specified timeout period. A retransmit of the same packet will be tried for 3 times 

after which the whole file is aborted and declared undeliverable. An index sequence count 

mechanisms are implemented at the receiver and if the incoming index is out of sequence the 

packet will be discarded and a not acknowledgement response will be sent. If the packet with 

the same index number is delivered for 3 times the receiver will abort the whole file transfer 

and declare it undeliverable. 

A typical situation that happens during file transfer is demonstrated in figure 2.7. The 

transmitter of the file would be throttled by the receiver, this means that the receiver can send 

a message that the transmitter must stop sending even before the file data is completely 

received and it can also ask it to continue after a while. This throttling process shown in figure 
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2.8 below will depend on the available internal SRAM in the receiving node and the FLASH 

programming procedure for a specific microcontroller when FLASH programming applies 

and it will also depend at why the receiver decides to stop receiving data (e.g. an error on the 

file being delivered, the node wants to execute a different high priority task or it tries to abort 

data transfer because it has detected that the transmitter is faulty). The AT90CAN128 has a 

specific sequence programming the FLASH memory. The sequence is as follows: 

1) Fill a temporary buffer 

2) Perform a page erase 

3) Perform a page write 

The AT90CAN128 FLASH memory is organized in pages and each page is 256 bytes in size. 

In case of FLASH programming the receiver will throttle the transmitter after every 256 bytes 

and after these 256 bytes have been successfully programmed into FLASH memory, a 

continue message will be sent for more data to be programmed into FLASH memory.  

For this microcontroller, programming FLASH and reading from FLASH requires two special 

assembler instructions, Store Program Memory (SPM) and Load Program Memory (LPM) 

respectively. These instructions must reside inside the Bootloader section and the interrupt 

vector table must reside in the Bootloader section as well. This disables the interrupts from 

the application section. It is therefore recommended that caution be taken when programming 

or reading from the FLASH for the AT90CAN128 microcontroller. 

When the full data file has been transferred across, the transmitter will release the connection 

as shown in figure 2.7 below. The receiver of the file will release the connection, reassemble 

the whole file and ultimately act upon it based on the command that was received in the 

header. The typical file commands are: 

• Program the FLASH 

• FLASH Erase 

• Execute program 

• File read 
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Figure 2.7: File Transfer Flow Diagram Example 

 

 
Figure 2.8: Transmitter Data Throttling Mechanism  
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All file commands will be acknowledged either positively or negatively depending on 

whether the file operation was successful or not. 

• Debug Messages – these lowest priority messages will be broadcast by a node which 

wants to send certain debug information on the bus to all the nodes. This debug data will be 

less or equal to 8 bytes. The typical information in the debug message can be the node status, 

a node warning or debug information after a certain operation and will be used by any 

application. Typical debug information message may look like figure 2.9. 

 

Message Type CHL/Control Source Address Destination Address Data 

0x0D 0x00 0xXX 0x00 “String” 

Figure 2.9:  A typical Debug Message  

The 0xXX symbol means any source node can send the debug information and XX is the 

source address. The control or channel field is 0x00 because there is no specific channel 

addressed. In fact this field can contain anything for broadcast messages but it should always 

be 0 for future compatibility and protocol expansion.  Just like the time synchronization this 

message is a broadcast message and therefore it will not be acknowledged. 

2.3 Timing Analysis  

The message priority and arbitration mechanism implemented in the CAN protocol means it 

is difficult to deterministically analyse message latencies on the CAN bus. However, we need 

to know the timing requirements of the application by analyzing the timing behavior of each 

message sent on the bus. To do this time analysis the following assumptions about the way 

messages are sent on the bus are made [1]: 

1) A given message m has a known message length 

2) The identifiers of all messages are known 

3) Once buffered, message m cannot take longer time than Jm to be queued for transmission 

by the CAN controller. 

From the above assumptions, it is possible to compute the worst case latency, Rm of each 

message on the bus. The latency [1] is given by: 
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Rm = Jm + Cm         (2.1) 

Where Jm represents the period of time a message waits in a queue (queuing jitter) and this 

depends on how fast the CAN controller services it’s transmit buffer. Cm is the worst case 

time delay to physically transmit a message on the bus. This does not include delays because 

of contention on the bus. If it is assumed that there are no other messages being transmitted on 

the bus and that the time the CPU takes to service it’s transmit buffer is negligible compared 

to the total physical bus transmit delay then equation 2.1 is simplified to: 

Rm = Cm          (2.2) 

Therefore, for an extended CAN frame,  

Rm = {[stuff bits + total overhead + data bits]} x Tbit 

Rm  = {[(54+8bm)/5] + 67 + 8bm} x Tbit      (2.3) 

Where bm is the message size in bytes which ranges from 0 to 8 bytes and Tbit is the bit time 

on the bus.  From equation (2.3) above and the maximum CAN bus speed of 1 Mbps at a 

maximum data payload of 8 bytes we have the worst case message latency of 154 µs. This 

time analysis is a benchmark calculation and it will be used extensively in Chapter 4 when the 

time analyses are done on each message type and the evaluation of the software drivers 

overhead. 

 



   
 

Chapter 3 
 
 

Detailed Design and Protocol Implementation 
 

This chapter presents the detailed system software design and its implementation. This 

includes the description of how the low level drivers are developed for interfacing with the 

hardware. It also looks at the CAN communication protocol in general. Application software 

used during the system testing, as presented in chapter four, was implemented to test and 

evaluate the CAN protocol. 

3.1 The software structure 

The relation between the OSI/ISO layer model and the proposed CAN bus protocol is shown 

in figure 3.1. The CAN controller implements the entire physical layer and the data link layer 

functionalities in hardware. However the software driver that interfaces to these layers must 

provide a known and stable state during initialization. 

 

 
 

Figure 3.1: A CAN/OSI Reference model  
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The physical and data link layers provide the features required to implement the kernel of the 

CAN bus protocol according to the ISO/OSI reference model. This kernel interfaces to the 

protocol software drivers by initializing the hardware to handle the CAN communication. The 

CAN controller provides the hardware features convenient for acceptance filtering and 

message management.  

There is no networking layer (layer 3) in the implementation of the protocol since there will 

only be a single physical bus and it is not required to have any translation and routing of 

addresses across the network. 

The transport layer (layer 4) is built into the protocol to ensure the delivery of short messages 

and the splitting of messages longer than 8 bytes into packets of 8 bytes or less. The 

fragmented packets are acknowledged and reassembled in this layer. 

There is no session management implemented, as the communication will not be session 

based and if there is a need of a protocol on top of the CAN protocol like the TCP/IP stack, it 

will have to do its own session management as a separate session layer on the CAN protocol. 

The encryption will have to be implemented by the RF node that has the communication link 

with the ground station. In this protocol application no such feature is handled onboard the 

satellite (i.e. no presentation layer). 

For each message to be transmitted or received, the CAN module contains the message 

objects in which all the information regarding the message (e.g. identifier, data bytes, message 

length, etc) are stored.  

During the initialization of the module the software drivers define which message objects 

have their acceptance filter masked for reception and which message objects are to be used for 

transmission. Only if the CAN controller receives a message whose identifier matches the 

node destination address (8 bits of the arbitration field) the message is accepted and the 

application is informed by an interrupt. 

The software is designed with a modular approach as shown in figure 3.2. The software starts 

from initializing the module and all the I/O ports and the peripherals needed for software 

functionality e.g. the hardware timers and watchdog timers, A/D converter etc. This module is 

initialized once at the start of the main function and from there the main function executes an 

infinite loop. On a CAN interrupt the main function halts the process it was running and 
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executes the interrupt and once the interrupt is serviced the flow control goes back to the main 

function and it resumes the task it was executing before interruption. 

  
Figure 3.2: Protocol Software Modules 
 

The main function calls the CAN receive handling function (CanRx ()) if there is a message 

object that has received a valid message and this is done through polling the global receive 

flag in the main function. This flag will be polled until all the message objects have been 

serviced. To service a specific message object a corresponding call back function is 

implemented in the CAN receive handling routine. If the routine that services a specific 

message type is finished it returns to the receive routine and this routine will return to the 

main function as shown in figure 3.2. 

 

 
 
Figure 3.3: Protocol Software Structure 
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The software drivers are developed to sit on top of the physical and data link layers. The 

block diagram in figure 3.3 shows the software structure from the low level device drivers to 

the application interface.                                                                                                                     

3.1.1   CAN interrupt Handling 

The CAN controller interrupt for the AT90CAN128 originates from one of the sources as 

shown in the interrupt structure in figure 3.4 below. The different interrupts that are enabled 

and handled for this protocol are the following: 

• Interrupt on receive complete OK 

• Interrupt on transmit complete OK 

• Interrupt on error (bit error, stuff error, crc error, form error, acknowledge error) 

• Interrupt on “Bus Off” 

There are other interrupts as shown in figure 3.4, but only the necessary interrupts were 

enabled for the protocol development. The interrupt structure in figure 3.4 informs the 

application of any communication that happens on the CAN bus. These interrupts are handled 

by the implemented interrupt handling routine as shown in figure 3.5. 

In figure 3.4 below CANSTMOB is the register which gives the status of each message object 

and this register informs the application through an interrupt. The CANSTMOB is an 8-bit 

register whose interrupt is enabled by activating the specific bits in the CAN general interrupt 

enable register (CANGIE) , for example enable transmission interrupt bit indicated by ENTX 

in figure 3.4. 

When an interrupt occurs the corresponding bit is set in the CANSIT or CANGIT registers. 

CANSIT register indicates the CAN status interrupt for a specific message object. CANGIT 

register is the general interrupt register which gives the general interrupt status of the CAN 

bus and not the interrupt status of a specific message object. 

To acknowledge a message object interrupt, the corresponding bits of CANSTMOB register 

(TXOK, RXOK etc) must be cleared by the software application and similarly for the general 

interrupt bits. 
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Figure 3.4: CAN Interrupt Structure 

If a message has been received causing an interrupt, a receive flag is raised inside the interrupt 

handling routine and the message interrupt flag must be cleared before returning to the main 

function. 

If the interrupt flag has not been cleared, the processor will generate the interrupt again once 

the interrupt routine is exit. If the processor repeats this for a long duration the software will 

hang and the watchdog timer will timeout and reset the node. This is avoided in the software 

as shown in figure 3.5 by handling all possible CAN interrupts and by only enabling the 

required interrupts used by the protocol during node initialization. 

 The receive flag is a global variable which will be polled in the main function to determine 

and service the message object that caused the interrupt. The message object is not serviced 

inside the interrupt handling routine, because the interrupt handling routine must execute as 

fast as possible to make sure that no messages are lost due to long duration functions and 

large code executed inside an interrupt handling function.  

If the main function has serviced the receive flag it will clear this flag and then check if there 

are any pending message objects that still need to be serviced. The CAN interrupt structure in 

figure 3.4 is presented as a flow diagram as shown in figure 3.5 below. Only the transmit OK,  
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receive OK,  “Bus Off” and  CAN error interrupts are enabled and handled by the interrupt 

handling routine. The other interrupts will remain disabled since they are not used for the 

protocol. 

 

 
 
Figure 3.5: CAN Interrupt Flow Diagram 
 

The flow diagram in figure 3.5 is entered if there is an enabled CAN interrupt and once 

entered it checks the interrupt source and the interrupt is handled accordingly. 

3.1.2 Node Initialization and configuration  

In the AVR AT90CAN128 CAN controller there are 15 message objects in total. Each 

message object is handled using the CANPAGE register as a pointer to select one of the 15 

message objects. The message objects are stored as pages and the 15 message objects have the 

same layout or format and they all have the same set of registers used to access the message 

object properties that contain all the information about the message on the CAN bus ( e.g. 

identifier, data bytes, message length, etc). 

The message object registers have no initial (default) state and proper initialization is required 

to make sure the node starts with a known state and the transmit message objects transmit as 

required and the acceptance filters are setup to receive as required. The acceptance filter is a 

CAN hardware mechanism that relieves the CPU from having to handle each and every 
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incoming received CAN message. This allows the CPU to only respond to CAN frames it is 

expecting (i.e. matches the message object acceptance filter). To setup the acceptance filter a 

29-bit identifier mask is setup to enable the bits of the 29-bit identifier that must be checked 

to enable reception. In this protocol the receiving node sets up the identifier mask to match its 

8-bit node address in the destination address field. If the destination address matches, the 

lowest message object number will accept the highest priority message based on the identifier 

value of the incoming message. This message object will store all its values until a new 

initialization is done and a transmission or reception is completed by that message object. 

In this protocol implementation, 11 of the 15 message objects are enabled for reception and 4 

are enabled for transmission. The message objects are reinitialized after use so that there is 

always an available message object for transmission or reception. The other nodes in the CAN 

network can have up to 32 message objects and how these are divided between being in a 

transmit mode or receive mode will depend on the application. One of the 11 message objects 

is enabled for broadcast and the broadcast address is 0, so every node will have their 

acceptance filter setup to receive the message identifier with the destination address of 0. 

As part of initializing the system designer is required to setup all the CAN nodes on the 

network to the same baud rate. The maximum baud rate that can be setup on the CAN 

network is 1 Mbps. The Bosch CAN specification allows the oscillator tolerance of 0.5 % at 

1Mbps. For the AT90CAN128, the maximum oscillator frequency is 16 MHz and to achieve 

baud rates up to 1Mbps a minimum clock frequency of 8 MHz must be setup in order to 

comply with the CAN specification (i.e. one bit time must be between 8 and 25 time quanta 

[1/clock frequency]). 

3.1.3 System Control and Reset 

The system software is developed to prevent the possibility for infinite loops causing the 

software to hang and to eliminate any bugs that will prevent reliable network communication. 

To ensure that the system recovers even in a rare case where the system hangs due to a 

software bug, a watchdog timer is implemented to reset the system if such software 

malfunctioning happens. 

 The watchdog timer times out every 2.2 seconds and it is reset at the beginning of the infinite 

loop in main function. This watchdog timeout period is determined from the total time it takes 

to execute the longest time consuming task possible on the network node. According to the 

overall system design, one second sample period for the attitude determination and control 
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(ADCS) system should be allowed for. It was decided that the watchdog timeout period 

should at least be twice this worst case processing period to give a safety margin and 

sufficient processing time for the other tasks.  

In the AT90CAN128 microcontroller the watchdog timer is clocked from a separate on-chip 

oscillator which runs at 1 MHz. In setting up the timeout period of 2.2 seconds this 1MHz 

clock is divided by the watchdog prescaler. 

Besides this watchdog reset each node can be reset if there is a new code upload. Upon node 

bootup, the Bootloader will evaluate the reset source. If the reset is from the code upload 

command then the boot-loader will jump to the new application code otherwise the boot-

loader will jump to the normal reset vector which will jump to the default current application 

as shown in figure 3.6. All these Bootloader utilities and functionalities are to be implemented 

on the boot-loader section as shown in figure 3.6. 

3.1.4 System Timing 

The system time is generated from a timer interrupt which increments the system time every 

one millisecond. The GPS or the OBC master clock will broadcast the system UNIX time 

every second. All the nodes will synchronize their time to this UNIX time and this time will 

be 6 bytes in length (4 bytes time in seconds and 2 bytes of time in milliseconds). The 

receiving nodes do not acknowledge this message. Each node will also be generating its own 

local time from a timer interrupt and this local time is used by local tasks for time-outs or to 

meet dead lines e.g. the unsolicited telemetry messages that will be scheduled on fixed 

periods.  

In setting up the 1 millisecond timer interrupt for the AT90CAN128 chip, Timer0 is used with 

a timer prescaler factor of 64. The timer prescaler factor of 64 means that we divide the 

system clock (the timer is clocked from 8 MHz system clock) by 64 to have a slower timer 

increment. The 64 prescaler factor was chosen because it divides the 8 MHz clock into an 

integer value that is a small enough for the timer registers, while small prescaler factors (i.e. 8 

and 1) give too fast clock frequencies they need multiplication factors larger than 255. The 

maximum reload value of 255 is possible with an 8-bit timer register. A prescaler larger than 

64 (i.e. 256, 1024) need the floating point multiplication factors, that are not available in this 

8-bit microcontroller, to be loaded on the timer registers. The 64 prescaler gives a time period 

of 125 kHz and the timer will increment by 1/125 kHz = 8 microseconds and when we 

multiply this by 125 we get the intended 1 millisecond time interval. Since Timer0 is an 8 bit 
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timer or counter, we have to start the timer at 255 - 125 = 130 instead of 0 and count to 255. 

This means that we get the timer ticks every 125* 8µs = 1.0000 milliseconds. The timer 

register gets reloaded automatically every 1 millisecond on the timer overflow interrupt for 

accurate time keeping. The 1 millisecond timer interrupt increments the local node system 

time in milliseconds and seconds. However, the local node time gets synchronized both in 

seconds and milliseconds to a periodical time synchronization message received as a 

broadcast message. 

3.2 Subsystem Level Message Handling 

Every message that is transmitted or received on the CAN bus generates an interrupt in the 

CAN controller and the application is informed by this interrupt as explained in section 3.1.1. 

In the case of transmission the use of an interrupt structure is not necessary because the 

transmission is initiated locally. The interrupt structure is affected in a sense that a transmit 

flag will be raised when the message is transmitted and this flag needs to be cleared otherwise 

the software will indefinitely stay in the interrupt handling subroutine. 

 In the case of message reception, an error or a bus-off interrupt flag, the interrupt handling 

subroutine will handle each of these messages accordingly. If a message is received without 

an error, the 16-bit receive status variable flag will be raised and the interrupt will return the 

control to the main function loop. In the main function loop the received flag variable will be 

polled as fast as the main function can execute. Each message received will set a bit in the 16-

bit status receive flag variable and a set bit will indicate the message object number that 

caused the receive interrupt.  

The main function will call the received message handling subroutine, passing the message 

object number as a parameter. The received message handling routine extracts the message 

from the message object and makes the message object available for a new transmission or 

reception. The routine determines the message properties like the message length, the 

message type, the source of the message and possibly the channel. The possible message 

types that can be received are those tabled in table 2.3.  The message handling routine 

implements the callback function to handle each received message type. Each message type is 

handled at a subsystem level as described in the following subsections. 

3.2.1 Subsystem Telemetry Acquisition 

In setting up a telemetry request, a message type specified by the 5 most significant bits of the 

29-bit arbitration field. This 5-bit field is followed by an 8-bit channel which specifies which 
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of the possible 256 channels is requested. The requesting node or subsystem will identify 

itself in the next 8 bits of the 29-bit arbitration field as the source address; the requesting node 

also specifies the destination address in the 8 least significant bits of the 29-bit arbitration 

field.  

Each local node will implement a set of standard telemetry channels and for this protocol 15 

standard channels were implemented and these are tabled in table 2.5. A telemetry channel 

number greater than the implemented channels would be a user application channel number 

and a user telemetry subroutine handles these requests similar to the standard telemetry 

channels. A channel larger than the maximum user channel number would be invalid and a 

not acknowledgement message will be a response to such a message. If there is any data in the 

data field during a telemetry request nothing will be done with the data because a telemetry 

request normally contains no data in the data field. 

In the AT90CAN128 node, the voltage channel was implemented using the voltage reader 

supplied by the DVK90CAN128 development board. The input voltage is sampled by the 

A/D converter. The voltage values are presented in 100mV units. 

The temperature telemetry channel was measured from the DVK90CAN128 development 

board temperature sensor that has a themistor with a negative temperature coefficient (NTC). 

The voltages measured over the NTC are found using the A/D converter. These measured 

voltages are used to calculate the themistor resistance (RT). Each themistor resistance 

corresponds to a temperature value according to equation 3.1. 

T = ß / {ln (RT/R0) + ß /T0}        (3.1) 

Where,  RT = Themistor resistance (Ω) at temperature T (°Kelvin) 
  ß = Themistor beta-value (4250±3%) 
  R0 = Room temperature themistor resistance (100 kΩ±5% at 25 °C) 
  T0 = Room temperature (298 °Kelvin) 
 

A temperature look up table based on equation 3.1 was implemented in software for 

temperatures from -40 °C to +65 °C. Temperature values (1 °C steps) were used to compute 

themistor resistance values. A table of the computed themistor values was stored in memory 

as a look up table for corresponding temperatures. Only positive temperatures were observed 

since the development environment was always indoors. Other standard telemetry channels 

are implemented using the counters that increment or decrement at the change of state of each 

channel.  



CHAPTER 3. DETAILED DESIGN AND PROTOCOL IMPLEMENTATION 
 

 

49 

  

The message handling mechanism for normal telemetry messages apply to unsolicited 

telemetry messages. In the case of unsolicited telemetry, the request will specify the repeat 

period and the repeat count as explained in chapter 2. If the request is invalid, e.g. message 

length not equal to 6 bytes or an invalid channel specified, the message reply will be a not-

acknowledge response. Specifying a repeat period of 0 seconds or a repeat value of 0 will 

abort the ongoing unsolicited telemetry request. The inherent feature about aborting the 

ongoing unsolicited or periodic telemetry request is that only the node that initially made a 

request can abort that request. A maximum of 32 periodic unsolicited telemetry requests can 

be handled simultaneously; once the periodic request has reached its repeat value it will 

automatically clear the slot and make it available. If there are 32 periodic requests running 

simultaneously, then another request will not be allowed and a ‘no slot available’ response 

will be sent. The node that made a request must try again later once a slot becomes available 

again. Although unlikely for this to happen, it is recommended that polling strategy be applied 

by trying every minute until a slot is found. 

3.2.2 Subsystem Telecommand Handling 

The telecommand messages are high priority short messages and therefore are assigned 

identifier values which gives them high priority on the bus. 

Each node that requires a specific remote task to be performed would send a command on the 

CAN bus and it must specify the destination node and the addressed channel. A telecommand 

request contains a command of not more than 8 bytes in the data field. There are 256 

addressable telecommand channels and only a few were implemented for this protocol as a 

means to demonstrate the handling of telecommand messages. The implemented standard 

telecommand messages are presented in table 2.4. In a similar manner to the standard 

telemetry channels, 15 of the possible 256 are reserved for commanding the local node to do 

basic telecommand messages e.g. clearing the node CAN error and message counters. If the 

addressed telecommand channel number is above 15 it will be handled by the user 

telecommand subroutine and if it is above the maximum user channel number it is an invalid 

channel. 

On reception of a valid telecommand request the node will perform the required action and 

send an acknowledgement indicating that the task has been performed. Depending on the 

telecommand requested, the telecommand response or acknowledgement may be used to send 

telemetry data corresponding to the channel addressed. For example, if the telecommand is to 

clear the CAN error and message counters as part of the acknowledgement, the current 
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counter values may be sent. This is possible because the telecommand acknowledgement is a 

message type on its own and if this message type is received it means a requested command 

has been performed and we can use the data field for telemetry data. It has to be noted that a 

maximum of 8 bytes can be sent in a telecommand acknowledge message. 

If a telecommand message is unrecognized or invalid, a telecommand not-acknowledge 

message will be a response to this message. The response in the data field will specify the 

reason why the telecommand was not performed or why it was invalid e.g. the addressed node 

is not allowed to execute the command, the channel is above maximum the user channel or 

the specified value is out of the range. 

In demonstrating telecommand handling, one AVR node was used to command another AVR 

node to clear the counters listed in table 2.4. 

3.2.3 Data Transfers  

In starting a transmission of a large file, a file header is sent which specifies a 4-byte start 

address and a 4-byte data size. If the start address specified tries to access a prohibited 

memory or when the specified data length is longer than the available memory, the 

application must respond with a not-acknowledge response.  

The header must be acknowledged positively within a 1 second timeout period before the data 

transfer begins. If the header has not been acknowledged the transmitter will retry this process 

for 3 times, after which it stops and broadcasts an error message on the bus that the message is 

undeliverable.  

The transmission of messages larger than 8 bytes on the CAN bus requires the fragmentation 

of the message into packets of 8 bytes or less. Once a fragmented packet is sent on the bus, 

the transmitter waits for the acknowledgement before the next packet is sent and this process 

is done until the whole data file is sent over. A timeout mechanism is implemented to provide 

for a robust transmission of the data. After each data packet is transmitted, an 

acknowledgement must be received before a timeout period of 1 second elapses. If no 

corresponding acknowledgement is received within this timeout period a retransmit is done 

and this is retried 3 times after which the file is declared undeliverable. As explained in 

section 2.2.2 the transmitter will be throttled, meaning that the receiver can reply with 

message to the transmitter telling it to stop sending more data. The receiver will then send 

another message when it is ready to receive more from the source of the file data, the 

communication process will then resume again. 
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The file transfer is delivered as shown graphically in figure 2.7 and once the complete file has 

been delivered it will be assembled by the receiver node. The command that was received in  

header will now be executed (e.g. write the data into the FLASH, update the calibration tables 

in the SRAM, or read data from the FLASH and transfer it to the serial modem link to the 

ground station). This is done on the transport layer of the OSI reference layer as shown in 

figure 3.1. 

The most important large file operations handled by the protocol are the following: 

• Code Upload & Execution 

In programming new application code to the FLASH, the AT90CAN128 follows a special 

sequence and the data is buffered in a page by page fashion (a page is 256 bytes). This is a 

classic case where a node during code upload can throttle the transmitting node after a page 

buffer has been filled. The data is delivered by the CAN interface and it is first dumped in the 

SRAM of the receiving node as shown if figure 3.6 below. When the page buffer size data is 

sent the receiving node will send a successful data reception acknowledge with a ‘stop 

sending message’. The sequence that this chip follows to program the FLASH is as follows 

and this is shown in figure 3.6: 

1) Fill the temporary buffer (256 bytes) 

2) Perform a page erase 

3) Perform a page write 

During the FLASH programming sequence the interrupt vectors and the CAN communication 

routines must reside on the boot section. The CAN interrupts and routines will be disabled in 

running application and a copy of the CAN application code must run in the Bootloader 

section. Furthermore, the special Bootloader utilities (e.g. the interrupt vectors and CAN 

service routines, reset vectors, special FLASH programming utility routines [program 

FLASH, erase FLASH memory, read from FLASH memory  and  execute program memory] 

etc.) must reside in the boot section to facilitate the FLASH programming  and to enable the 

start of the new application.   
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Figure 3.6: Code Upload Diagram  
 

The data is transferred from the SRAM into the temporary buffer in the FLASH memory and 

this temporary storage provides non-volatile storage before a page erase at a desired address is 

performed.  

The reason why data is first dumped into the temporary buffer is because a FLASH erase 

operation must be done before writing to a FLASH address. 

If there is any reset or power down during page erase at a specified address, the code segment 

that has been buffered will still be available. This will avoid the corruption of the stable 

running application unless a new code segment is buffered in non-volatile memory. If the 

reset or power down happens during the SRAM to temporary buffer transfer happens, then it 

will not present a problem because nothing is yet erased or corrupted in the old application 

code segment. 

Dummy functions for the programming sequence mentioned above have been provided for in 

the protocol implementation and the future application developer must develop these 

functions together with the Bootloader software. 

Once the complete file is written in FLASH memory the boot software will jump to the new 

application on a ‘code execute’ command from a specific address, otherwise the code that is 

in the Bootloader section will stay executing.  It is recommended that once the new code has 

been uploaded or a specific part of the code in FLASH is updated, the new application can be 

started. 
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Figure 3.7: Code Segment Update and Code Upload  
 

Two common update procedure flow charts are shown in figures 3.7. Figure 3.7a describes 

updates for small parts of FLASH e.g. a constant table stored in FLASH memory. Figure 3.7b 

shows a large code upload at a specified address and data length. 

 

• Reading Data from Memory 

On reception of a ‘read request header’ command, the local node will evaluate the start 

address and the length to see if the request tries to access a valid memory address.  If a request 

tries to read from an invalid or a prohibited address, the application program will send a ‘not 

acknowledge’ response, specifying that a wrong address is being accessed.  If the request is 

valid, the local node acknowledges the header and initialize the file transfer as if data transfer 

request was done locally (i.e. it will send the header message and wait for an 

acknowledgement).  It will then start to transfer the data from the requested address. While 

receiving the data, the process can get aborted or throttled by the node that requested the data. 

The node being ‘read requested’ will not specify a start address for the data requested, but it 
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will specify the data length. The node that requested the data will store the data in its own 

predetermined memory address.  

Reading from the FLASH memory would most probably be for the reason that is illustrated in 

figure 3.7a above. This figure shows a small piece of code to be updated, e.g. a parameter 

table being read from the FLASH to modify and then by writing it back to the FLASH. 

 

The temporary buffer is not necessary when reading from the FLASH and the code is read 

directly form the FLASH memory to the SRAM. 

It must be noted that the work on the boot software application is in development in this 

protocol and must be further refined to interface with the data transfers as explained above. 

Reporting on the data transfer mechanisms is done here, because extensive work was already 

done on this, but could not be implemented as the boot software was not completely 

developed due to time constraints. Once the boot software is developed, then the data can be 

programmed into the FLASH.  The programming of the FLASH needs subroutines to erase 

and program the FLASH.  The code must reside in the Bootloader section, especially the code 

using the SPM and LPM instructions for the AT90CAN128 microcontroller.  

In testing the large data file transfers in the protocol, large blocks (e.g. 2 kbytes) of data were 

transferred into the SRAM from the source node.  Dummy functions (nothing is done in these 

functions, just a return to the caller) were implemented as boot software and the whole 

process of file transfer was carried out as explained in this section. 

3.2.4 Debug Messages 

These low priority messages were implemented by broadcasting a text string on the CAN bus 

and the nodes receiving this text string will store it on a local variable which could be read 

and acted upon. These messages are not acknowledged and can be used by an application that 

wants to report anything on the bus or warn other nodes about anything happening on the 

CAN bus or to warn other nodes about errors or to broadcast a node’s status and health. 



   
 

Chapter 4 
 
 

 

Protocol Performance and Implementation Results  
 

In evaluating the protocol performance, the software response time for each supported 

message type was measured. The system was also stress-tested by continuously sending 

messages one after another as fast as possible and observed when the system software started 

to malfunction.  The maximum practical bus speed was also observed as the messages were 

sent from the minimum CAN bus speed (5kbps) to the maximum CAN bus speed (1Mbps) 

but only selected bus speeds were tested as the PCAN PCI card provided discrete bus speeds 

for monitoring and testing. Power consumption is also measured when there is 

communication on the CAN bus as well as when CAN bus is idle. 

4.1 Hardware Performance Measurements  

As mentioned in the previous chapters, the protocol was demonstrated on two 

DVK90CAN128 development boards and the measurements here include the other board 

components. The two development boards were supplied from a 5V DC power supply. The 

hardware system setup is shown in figure 4.1 below.  

 

Figure 4.1: System Test Setup  
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The board current measured when there was no CAN communication on the bus was 42 mA. 

When a 2-kilobytes file transfer was initiated on the CAN bus the current increased from 

42mA to 43 mA and when the file transfer was completed the current just normalized back to 

42mA. These were only possible current measurements regarding the CAN bus protocol and 

the software drivers as this was a development board and no specific hardware components 

were designed.  

The expected AVR AT90CAN128 power consumption when the microcontroller is used in a 

board designed for only CAN communication and Nanosatellite application should ideally be 

close to the power characteristics shown on page 386 of the AT90CAN128 datasheet [4]. The 

attractive power consumption for this microcontroller is when it is supplied from a 3.3V 

supply and it draws 10mA at 8 MHz 

The supply voltage was measured as well on the configuration pads supplied on the board to 

compare it with the 5V from the power supply and the actually measured value was 5V ± 0.5 

for a number of measurements taken. The voltage was also measured using the voltage 

reading capability of the board. The voltage coming into the board was connected to one of 

the inputs of the analog to digital converter and the output was measured and the 

measurements were 5V ± 0.3 for a number of measurements that were taken. The voltage 

reading capability was used to supply the voltage value as a telemetry data. The board had no 

current sensor and thus no current telemetry data were measured. 

4.2 Software Time Response 

The time measurements were based on the maximum CAN bus speed of 1 Mbps. The latency 

of each of the supported message types was measured when one specific message type was 

sent on the bus.  The timing analyses become complex when more than one message is sent 

randomly on the CAN bus. The message priority and bus contention arbitration mechanisms 

add to the complexity of timing analysis. The latencies measured the time it took from 

sending a request to the time the total response is received and these are listed in table 4.1. 

 

The message latencies were measured using one of the port pins in microcontroller. The pin 

was pulled high when the transmission started and it was pulled low when the response was 

completely received. The time duration with the pin high was measured for each of the 

messages. However, for the broadcast messages, i.e. the time synchronization and debug 

messages, where no response is received, the latency is measured as the time it took to write 
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the message into the transmit buffer until it has been transmitted. This time duration was 

measured by pulling an I/O pin high when the transmit routine is entered and pulled low when 

the transmit complete flag has been raised. 

 

Table 4.1: Message Latencies  
 
Message Type Data Size  Latency 

Normal Telemetry 0 bytes request + 4 bytes response 900 µs 

Unsolicited telemetry 6 bytes request + 6 bytes response 1.2 ms 

Telecommand 4 bytes command + 8 bytes response 1100 µs 

File Data Transfer 2 Kbyte (256 8-byte messages) +  256 

bytes( 1 byte acknowledgements) 

214 ms 

Time synchronization 6 bytes 468 µs 

Debug message  8 bytes 300 µs 

 

The port pins were used, because the smallest time resolution the system time was setup for 

was a millisecond from the timer interrupt routine. This meant that time measurements below 

millisecond resolutions needed a software change in the timer interrupt routine that was used 

for system time. 

 The results in table 4.1 show that the software overhead contributes significantly to the 

message response latencies. For example the 2 Kbyte file transfer without any software 

overhead should be transferred as follows: 

Total bits = 8-Byte Header + 1-byte Header Ack +  

256 (8-byte) data packets + 256(1-byte) data Ack’s      (4.1)  

The total bits sent for this 2 Kbyte file transfer including the protocol overhead (start bits + 

CRC bits + arbitration bits + stuff bits etc) is:  

 Total Data in Bits = 154 + 98 + 154*256 + 98* 256  = 64764 bits   (4.2) 
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For a maximum CAN bus speed (1 Mbps) this 2 Kbyte file transfer should take:  

64764*1e-6 = 64.764 ms 

This is just a theoretical value and it assumes that the data is transmitted continuously in 

sequence without delay between CAN packets. This is an impractical approach on the CAN 

network, because there has to be a software overhead which makes sure the data is stored at a 

required location and be transferred in a correct sequence, thus the need to have the protocol. 

Due to the CAN packet data field limit, to transfer a 2 Kbyte file on the CAN bus there has to 

be a fragmentation of the file into 8-byte packets. This fragmentation mechanism will take its 

time to fragment the file and send the correct fragments in sequence. The software also adds a 

bit of overhead when it checks the index sequence at the receiver end before each packet is 

acknowledged. At the transmitter the acknowledged index is also checked before the next 

packet is sent. The propagation delays are also not included in the theoretical value above. 

The message latency of 214 ms is therefore a realistic value given the software overhead to 

implement the file transfer protocol explained above. The other message latencies are also 

within acceptable real time response limits, for example sending a 6-byte time 

synchronization message should theoretically take 138 µs but it takes 468 µs because of the 

software overhead. 

4.2.1 Main Loop Execution Time Response 

All the application programming interface routines are handled by the main function using the 

flags. The main function just initializes the software drivers and then enables the watchdog 

timer at the start of the infinite loop as shown in figure 4.2. 
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Figure 4.2: Main Function Flow Diagram  

The CPU will execute this main loop as fast as possible and the software was optimized such 

that no messages would be lost as a result of a main loop that takes too long to service all the 

service routines and to execute all required application tasks. 

The main loop frequency was measured with the following events happening with all the 

interrupts enabled (timer interrupt always incrementing the system time every millisecond): 

1) Minimum execution time with no CAN activity on the bus (no messages to handle but 

just checking flags and servicing interrupts). 

2) Maximum execution time with a lot of CAN activity on the bus (most CAN supported 

message types handled on the bus). 

 

Table 4.2: Main Loop Execution Time  
 

Main Loop Event Execution Time 

Minimum execution time with no CAN 

messages on the bus 

370 ns (2.70MHz) 

Maximum execution time for a lot of CAN 

activity handled 

19.00 µs 

(52.63KHz) 
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The loop execution time for each of the above main function events is listed in table 4.2. In 

order to quantify how fast the main loop executes and eventually determine how frequent the 

main loop is polled would depend on the complete application code that will be executed from 

the main function. 

4.3 Bus Throughput and Protocol Software Efficiency 

The data rates and the protocol efficiency of the complete protocol cannot be quantified into a 

single deterministic value. The data rate and the transmission efficiency depend on numerous 

CAN protocol factors such as message type, which determines the priority of the message on 

the CAN bus, the length of the message, etc. These values must be quantified for each 

message type and only that message type must be transferred on the bus when these values are 

measured. 

In theory, for a 29-bit identifier message with a maximum CAN payload of 8-bytes, it can be 

shown that the data efficiency is the ratio of the actual data to the protocol overhead.  

Protocol packet overhead is all non-data bits added by the protocol to ensure proper routing 

and reliable transportation (e.g. CRC, stuff bits, acknowledgements, and arbitration bits)[12]. 

Efficiency = Actual Data transferred/ (Actual data + protocol overhead)   (4.3) 

Therefore, CAN bus Efficiency = 64 bits/ (64+90) = 41.6 %, but this value looks at the 

desired data efficiency without any delays and assumption that only this data is sent on the 

bus. The maximum data throughput would be 416Kbps if the bus speed is 1Mbps for an 8-

byte transfer. As an example of quantifying the data rate and the software efficiency we look 

at debug message latency discussed above. 

It is simple to quantify data transfer rate and the code efficiency like this: An 8-bytes debug 

message is transferred in 300 µs. This means we are transferring at 213.33 kbps (64bits/ 300 

µs) instead of 1Mbps (21.33% effective data rate). From section 2.3 it was shown that it takes 

154 µs to transfer an 8-byte message on the CAN bus at a maximum bus speed of 1Mbps 

excluding the propagation delays and the software overhead. For an 8-btye debug message, 

which is transferred in 300 µs, the Software efficiency = 154/300 = 51.33%. The total data 

throughput efficiency for an 8-byte debug message is then the product of the CAN bus and 

Software efficiency: Total data throughput efficiency = 41.6% x 51.33% = 21.3%. This is the 

same value as the effective data rate calculated above but viewed from efficiency approach. 
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The efficiencies and data rates of the other message types can be calculated in the same way 

as shown for the debug message above and these were calculated and listed in table 4.3 

below. 

 
Table 4.3: Throughputs and Efficiencies  
 

Message Type Effective Data Rate 

(kbps) 

Protocol Software 

Efficiency (%) 

Total Data 

Throughput (%) 

Debug Message 213.33 51.33 21.35 

Time Synch. 102.56 29.49 12.27 

Telemetry 35.55 23.55 9.79 

Unsolicited 

Telemetry 

80.00 23.00 9.57 

File Data 

Transfers 

86.47 30.26 12.59 

Telecommand 87.27 25.09 10.44 

The general data throughput for different message lengths on the CAN bus is plotted for an 

extended frame format and the standard frame format as shown in figure 4.3. These graphs are 

plotted with the assumption that there is only one message on the CAN bus and there are no 

priority and bus contention issues.  

The implementation specific bus throughput graphs for different message types with different 

message lengths can be computed like in table 4.3 and be compared to figure 4.3. Different 

message types have different fixed message lengths depending on the application and to 

compute data throughputs the length of a message must be known and the transfer speed be 

measured. The throughput should be the same as in figure 4.3 besides that the transfer speed 

would be reduced due to propagation delays and the software overhead as discussed above. 
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Figure 4.3: CAN Bus Throughput  

4.4 Software Reliability 

 In testing how reliable the software handled all possible CAN communication, a test was 

done where multiple message types were sent on the CAN bus. A total of 8 unsolicited 

telemetry requests were made from the PCAN PCI card to run simultaneously. The two 

development boards kept requesting telemetry data from each other. One node was setup to 

transfer 2 kilobytes of data while it also broadcasted time synchronization message. All the 

communication described above continued for a long time and the performance was 

consistent. 

 Different messages were also sent from the PCAN PCI card and the two boards just handled 

them efficiently. The messages from the PCAN PCI card were sent using the spacebar on the 

keyboard. When the spacebar was pressed indefinitely the messages were sent from the PCI 

card as quick as the CAN controller embedded on the card could transmit the messages, and 

the CAN software still preformed as expected and no messages were lost.  

The software functionality was tested at most CAN bus speeds (5kbps to 1Mbps), especially 

those that are provided by the PCAN PCI card, and it gave the expected performance. Testing 
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the bus performance at non-standard speeds, e.g. 570 kbps could be done but the tests that 

were done at the standard CAN bus speeds (5kbps to 1Mbps) provided by the PCAN PCI card 

for monitoring were enough tests for reliable handling of messages on the CAN bus. To 

compute and setup the bit timings for testing at different baud rates the procedure provided in 

Appendix B must be followed [8].  

 
 
 
 
 
 



   
 

Chapter 5 
 
 
 

Conclusion and Recommendations 
 
 
 

The primary objective of this research project was to design a communication protocol that 

will handle real time messages onboard a Nanosatellite. To achieve this, a survey was done on 

various communication bus standards and high application layer protocols. The research was 

driven by a number of factors specific for the Nanosatellite application and these include use 

of low power components, cost, flexibility and reliability. 

5.1 Conclusion 

The communication protocol was designed to handle Nanosatellite messages on a CAN bus.  

The design included specifying the types of messages the protocol would handle and the 

implementation thereof. To implement an efficient and reliable communications protocol the 

CAN bus protocol standard was chosen for the lower communication layers as motivated in 

chapter one of this document. The CAN specification only provided for the low level 

communication protocol (physical layer and the data link layer). This meant that the higher 

application protocol needed to be designed on top of the CAN protocol specification to handle 

a Nanosatellite application. 

A survey was conducted on the higher application layer protocols including the previous 

protocols developed in the ESL and the CAN based commercial protocols like CANopen and 

DeviceNet. It was concluded that these commercial protocols would limit the flexibility and 

the optimization of the Nanosatellite application since these protocols are optimized for 

general use. The protocol was then developed from conception to the implementation with 

consideration of specific Nanosatellite requirements. 

A low cost test setup was chosen after a survey on microcontrollers supporting a CAN 

interface. The test setup was chosen to be an AVR (AT90CA128) 8-bit CMOS 

microcontroller which provided attractive features (e.g. power consumption of 33mW at 5V) 

and it had a lot of software development support. Two identical AVR development boards 

were used in the system setup and a PCAN PCI card was used to monitor the traffic on the 

CAN bus. Messages like telemetry, telecommand, time synchronization, debug information 
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and large file transfers were specified as the main communication messages for the 

Nanosatellite. 

In order to manage the communication on the CAN bus, one of the design procedures was to 

distribute CAN identifiers according to the priority of each message on the bus. Low level 

hardware drivers, middleware software drivers and the application programs were developed 

to evaluate the full protocol functionality. 

The performance results of the developed protocol implementation were measured in terms of 

software efficiency, bus throughput, software response latencies and software reliability under 

extreme bus traffic conditions. All the messages were handled by the protocol as expected and 

the performance measurements are presented in chapter four of this document. 

The results can be summarized as follows: 

• The software response times for each of the messages were within the real time limits. 

Latencies were as expected greater than theoretically deterministic values because of the 

software overhead.  

• The bus throughputs and software efficiencies are within the acceptable limits. These 

were further endorsed by the system that reliably handled all CAN traffic when left to run for 

a long time. 

• When large messages are transferred, acknowledging each and every packet reduced the 

protocol efficiency drastically (e.g. file transfer bus throughputs of 12.59 %) but this 

improved reliability, data consistency and reduced software complexity. 

• The power consumption was 42 mA (at 5VDC) when there was no CAN 

communication and it increased to 43mA when a CAN packet was sent. These power 

measurements were done with extra development board components. More absolute CAN 

communication power measurements can be done once a new node with only components 

necessary for CAN communication has been designed. 

The AVR microcontroller requires a certain procedure to be followed when programming 

large files or when code uploads are needed to the FLASH memory. The procedure included 

the requirement to develop Bootloader software and certain programming procedures to reside 

inside the Bootloader section. The latter will facilitate the firmware updates or large file 
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transfers. The development of the Bootloader software also demanded an additional time 

frame. It was decided that to demonstrate large file transfers, large data blocks will be 

transferred from the SRAM of a source node to the SRAM of the destination node. Once the 

Bootloader software has been developed a final step will be to program the data into FLASH 

memory. The following subsection recommends how code updates and large file transfers 

should be programmed to FLASH memory. 

5.2 Recommendations 

This section presents some suggestions for future work to further optimize the functionality of 

the developed communications protocol. 

As mentioned above, the software was completely developed on the AVR development 

boards. It is recommended that a new hardware design be completed, based on an AVR 

AT90CAN128 microcontroller to evaluate the protocol when only the necessary components 

for the CAN communication are used. Another hardware consideration can be to develop the 

protocol on a microcontroller that has a large SRAM and FLASH capacity, since the 

AT90CAN128 chip provides only 4 kbytes of SRAM and 128 kbytes of FLASH. A memory 

constraint was noted during protocol development as ultimately only 2 kbytes of data could be 

used to test large file transfers because of the limited size of SRAM memory. An alternative 

to the SRAM constraint would be to connect an external SRAM as suggested on the 

AT90CAN128 data sheet. 

When transferring large messages, Bootloader software must be programmed to transfer data 

to the FLASH memory. Dummy subroutines were implemented in the software to show how 

the Bootloader software should interface with the file transfer routines. Assembler low level 

code is also presented in Appendix C for the subroutines that must be implemented in the 

Bootloader for the AVR microcontroller. Other microcontrollers may have a different 

mechanism of programming FLASH and therefore the sample code will not apply to them. 

Another important future consideration will be to test the software when the number of 

communication nodes increase from the current three nodes used during testing. This will 

increase the CAN communication on a large network to evaluate the software reliability and 

software response latencies under extreme communication load which could affect the real 

time performance of the system. 
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The protocol was implemented on a single CAN bus physical layer and this means if the bus 

fails then the whole system fails. It is therefore recommended that the redundant (backup) 

physical bus be developed since the OBC already provides two CAN bus interfaces. However, 

a protocol extension is required to accommodate the architectural changes as it will affect the 

network management and routing of the data between the two bus networks. 
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Appendix A 
 
 

Controller Area Network - CAN Information 
 
 
 

A.1 What is CAN? 

Controller Area Network (CAN) is a serial network that was originally designed for the 

automotive industry, but has also become a popular bus in industrial automation as well as 

other applications. The CAN bus is primarily used in embedded systems, and as its name 

implies, is the network established among microcontrollers. It is a two-wire, half duplex, 

high-speed network system and is well suited for high speed applications using short 

messages. Its robustness, reliability and the large support from the semiconductor industry are 

some of the benefits with CAN. 

CAN theoretically addresses up to 2032 (CAN standard frame format) or more than 5 million 

(CAN extended frame format) devices (assuming one node with one identifier) on a single 

network. However, due to the practical limitation of the hardware (transceivers), the number 

of nodes per network is determined by the transceiver fan-out. It offers high-speed 

communication; up to 1 Mbits/s thus allows real-time control. In addition, the error 

confinement and the error detection capability makes it more reliable in noise critical 

environment.  

A.2 CAN standards 

The original specification is the Bosch specification. Version 2.0 of this specification is 

divided into two parts:  

• Standard CAN (Version 2.0A). Uses 11 bit identifiers.  

• Extended CAN (Version 2.0B). Uses 29 bit identifiers.  

The two parts define different formats of the message frame, with the main difference being 

the identifier length.  
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There are two ISO standards for CAN. The difference is in the physical layer, where ISO 

11898 handles high speed applications up to 1Mbit/second. ISO 11519 has an upper limit of 

125kbit/second. 

A.3 How CAN works? 

Introduction 

As stated earlier, CAN is a multimaster network. It uses CSMA/CD+AMP (Carrier Sense 

Multiple Access/Collision Detection with Arbitration on Message Priority). Before sending a 

message the CAN node checks if the bus is busy. It also uses collision detection. In these 

ways it is similar to Ethernet. However, when an Ethernet network detects collision both 

sending nodes stop transmitting. They then wait a random time before trying to send again. 

This makes Ethernet networks very sensitive to high bus loads. The CAN protocol solves this 

problem with the principle of bit wise arbitration.  

A.3.1 Principle 

Data messages transmitted from any node on a CAN bus do not contain addresses of either 

the transmitting node or of any intended receiving node.  

Instead, the content of the message is labelled by an identifier that is unique throughout the 

network. All other nodes on the network receive the message and each performs an 

acceptance test on the identifier to determine if the message, and thus its content, is relevant 

to that particular node.  

If the message is relevant, it will be processed; otherwise it is ignored.  

A.3.2 Identifiers and arbitration 

The unique identifier also determines the priority of the message. The lower the numerical 

value of the identifier, the higher the priority. This allows arbitration if two (or more) nodes 

compete for access to the bus at the same time.  

The higher priority message is guaranteed to gain bus access as if it were the only message 

being transmitted. Lower priority messages are automatically re-transmitted in the next bus 

cycle or in a subsequent bus cycle if there are still other, higher priority messages waiting to 

be sent.  
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Each CAN message has an identifier which is 11 bits (CAN specification part A) or 29 bits 

(part B). This identifier is the principal part of the CAN arbitration field, which is located in 

the beginning of each CAN message. The identifier identifies the type of message, but is also 

the message priority.  

The bits in a CAN message can be sent as either high or low. The low bits are always 

dominant, which means that if one node tries to send a low and another node tries to send a 

high, the result on the bus will be a low. A transmitting node always listens on the bus while 

transmitting. A node that sends a high in the arbitration field and detects a low knows that it 

has lost arbitration. It stops transmitting, letting the other node, with a higher priority 

message, continue uninterrupted.  

Two nodes on the network are not allowed to send messages with the same ID. If two nodes 

try to send a message with the same ID at the same time arbitration will not work. Instead, 

one of the transmitting nodes will detect that its message is distorted outside of the arbitration 

field. The nodes will then use the error handling of CAN, which in this case ultimately will 

lead to one of the transmitting node being switched off (bus-off mode).  

A.3.3 Remote frames 

There are two kinds of frames in CAN - remote frames and data frames. Data frames are used 

when a node wants to transmit data on the network, and are the "normal" frame type.  

Remote frames can be described as a request for information. A frame with the RTR bit set 

(see description of the CAN message format) means that the transmitting node is asking for 

information of the type given by the identifier. A node which has the information available 

should then respond by sending the information on the network.  

Depending on the implementation of the CAN controller the answer may be sent 

automatically. Simpler CAN controllers (BasicCAN) can not respond automatically. In this 

case the host microcontroller is made aware of the remote request and has to send the data.  

A.3.4 Message formats 

A.3.4.1   Format of a CAN message 

In a CAN system, data is transmitted and received using Message Frames. Message Frames 

carry data from a transmitting node to one, or more, receiving nodes.  
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The CAN protocol supports two Message Frame formats.  

The two formats are:  

- Standard CAN (Version 2.0A)  

- Extended CAN (Version 2.0B)  

Most 2.0A controllers transmit and receive only Standard format messages, although some 

(known as 2.0B passive) will receive extended format messages but then ignore them. 2.0B 

controllers can send and receive messages in both formats.  

A.3.4.2     CAN 2.0A Format 

A Standard CAN (Version 2.0A) Message Frame consists of seven different bit fields:  

- A Start of Frame (SOF) field. This is a dominant (logic 0) bit that indicates the beginning of 

a message frame.  

- An Arbitration field, containing an 11 bit message identifier and the Remote Transmission 

Request (RTR) bit. A dominant (logic 0), RTR bit indicates that the message is a Data Frame. 

A recessive (logic 1) value indicates that the message is a Remote Transmission Request 

(otherwise known as Remote Frame). A Remote Frame is a request by one node for data from 

some other nodes on the bus. Remote Frames do not contain a Data Field.  

 

Figure A.1: CAN Version 2.0A Message Frame 

Fig CAN 2.0A Message Frame 

- A Control Field containing six bits:  

* Two dominant bits (r0 and r1) that are reserved for future use, and  
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* A four bit Data Length Code (DLC). The DLC indicates the number of bytes in the Data 

Field that follows  

- A Data Field, containing from zero to eight bytes.  

- The CRC field, containing a fifteen-bit cyclic redundancy check code and a recessive 

delimiter bit. 

- The Acknowledge field, consisting of two bits. The first is the Slot bit which is transmitted 

as a recessive bit, but is subsequently overwritten by dominant bits transmitted from all other 

nodes that successfully receive the message. The second bit is a recessive delimiter bit.  

- The End of Frame field, consisting of seven recessive bits.  

Following the end of a frame is the Intermission field consisting of three recessive bits. After 

the three bit Intermission period the bus is recognized to be free. Bus Idle time may be of any 

arbitrary length including zero.  

A.3.4.3    CAN 2.0B Format 

The CAN 2.0B format provides a twenty nine (29) bit identifier as opposed to the 11 bit 

identifier in 2.0A.  

Version 2.0B evolved to provide compatibility with other serial communications protocols 

used in automotive applications in the USA. To cater for this, and still provide compatibility 

with the 2.0A format, the Message Frame in Version 2.0B has an extended format.  

The differences are:  

- In Version 2.0B the Arbitration field contains two identifier bit fields. The first (the base ID) 

is eleven (11) bits long for compatibility with Version 2.0A. The second field (the ID 

extension) is eighteen (18) bits long, to give a total length of twenty nine (29) bits.  

- The distinction between the two formats is made using an Identifier Extension (IDE) bit.  
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Figure A.2: CAN 2.0B Message Format  

- A Substitute Remote Request (SRR) bit is included in the Arbitration Field. The SRR bit is 

always transmitted as a recessive bit to ensure that, in the case of arbitration between a 

Standard Data Frame and an Extended Data Frame, the Standard Data Frame will always have 

priority if both messages have the same base (11 bit) identifier.  

All other fields in a 2.0B Message Frame are identical to those in the Standard format.  

A.3.5 Error detection and fault confinement 

The error detection, signaling and fault confinement defined in the CAN standard makes the 

CAN bus very reliable. The built in error detection of the controllers together with the error 

signaling make sure that the information is correct and consistent. Faulty nodes will go to 

modes where they do not disturb the traffic on the bus. 

A.3.5.1   The CAN error process 

1. The error is detected by the CAN controller (a transmitter or a receiver).  

2. An error frame is immediately transmitted.  

3. The message is cancelled at all. 

4.  The status of the CAN controllers are updated  

5. The message is re-transmitted. If several controllers have messages to send, normal 

arbitration is used.  

A.3.5.2    Error detection 

Error detection is handled automatically by the CAN controller. The detected errors are:  
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• Bit errors:  

1. Bit stuffing error - normally a transmitting node inserts a high after five consecutive 

low bits (and a low after five consecutive high). This is called bit stuffing. A receiving node 

that detects more than five consecutive bits will see a bit stuffing violation.  

2. Bit error - A transmitting node always reads back the message as it is sending. If it 

detects a different bit value on the bus than it sent, and the bit is not part of the arbitration 

field or in the acknowledgement field, an error is detected.  

• Message errors:  

1. Checksum error - each receiving node checks CAN messages for checksum errors.  

2. Frame error - There are certain predefined bit values that must be transmitted at 

certain points within any CAN Message Frame. If a receiver detects an invalid bit in one of 

these positions a Form Error (sometimes also known as a Format Error) will be flagged.  

3. Acknowledgement Error - If a transmitter determines that a message has not been 

acknowledged then an ACK Error is flagged.  

A.3.5.3     CAN controller error modes 

A CAN controller can be in one of three states: 

1. Error active - the normal operating mode for a controller. Messages can be received 

and transmitted. Upon detecting an error, an active error flag is sent.  

2. Error passive - a mode entered when the controller has frequent problems transmitting 

or receiving messages. Messages can be received and transmitted. On detecting an error while 

receiving, a passive error flag is sent.  

3. Bus off - entered if the controller has serious problems with transmitting messages. No 

messages can be received or transmitted until the CAN controller is reset by the host 

microcontroller or processor.  

The state machine is implemented in the CAN controller which determines the mode of the 

controller for counters - the transmit error counter and the receive error counter. The 

following rules apply: 
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1. The CAN controller is in error active mode if transmit is less or equal to 127 and if the 

receive count is less or equal to 127.  

2. It becomes error passive if transmit error count is greater than 127 but less or equal to 

255 or if the receive error count is greater than 127.  

3. Bus off is entered if transmit error count is greater than 255.  

Once the CAN controller has entered bus off state, it must be reset by the host microcontroller 

or processor in order to be able to continue operation. This is shown graphically in figure A.3  

 

Figure A.3: CAN Error States 
          Source: [1], p91, fig. 41-5 

A.3.5.4     Error signaling 

When an error is detected by a node it sends an error flag on the bus. This prevents any other 

node from accepting the message and ensures consistency of data throughout the network.  

The active error flag consists of six low bits, and is used if the node transmitting the error 

frame is in active error state. As low is dominant all other nodes will detect bit stuffing 

violation and send their own error flags. After this, nodes that want to transmit (including the 

one sending the interrupted message) will start to do so. As usual, the node whose message 

has the highest priority will win arbitration and send its message.  

If the CAN controller is in error passive mode the error frame will consist of six passive 

(high) bits. Since the error flag only consists of passive bits, the bus is not affected. If no other 
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node detected an error, the message will be sent uninterrupted. This ensures that a node 

having problems with receiving can not block the bus. 

All of this advanced error handling is done automatically by the CAN controller, without any 

need for the host microcontroller to do anything. This is one of the big advantages of CAN.  

A.3.6 Bit timing 

CAN has advanced features for coping with the time delays found in long bus lengths (in 

comparison to the bit rate) and coping with differences in clock crystal frequencies for nodes 

on the bus. 

The choice of bit timing is very important since it decides the bit rate, the sample point and 

the ability to resynchronize. 

A.3.6.1     Bit segments  

Each bit is divided into four segments - the synchronization segment, the propagation segment 

and the phase segments one and two. Each segment consists of one or more time quanta. 

A time quantum is a fixed amount of time which is derived from the CAN controller clock 

with a prescale factor. 

 

Figure A.4: CAN Bit Timing 

A.3.6.2     Synchronization segment (Synch_Seg) 

The synchronisation segment is used to synchronise the various nodes on the bus. When a bit 

is sent on the bus, the leading edge is expected to be within this segment. 

This segment is always one time quantum long. 

A.3.6.3     Propagation segment (Prop_Seg) 

The Propagation Segment is needed to compensate for the delay in the bus lines.  
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The segment size is programmable between 1 and 8 time quanta. 

A.3.6.4     Phase Segment 1 (Phase_Seg1), Phase Segment 2 (Phase_Seg2) 

These segments can be used lengthened or shortened by resynchronization. 

A.3.7     Resynchronization 

Resynchronization is done to compensate for bus delays and nodes that have different crystal 

frequencies. Synchronisation is normally only done on the edge from recessive to dominant 

bus level. 

A.3.7.1     Hard resynchronization 

When the bus is idle and the controller detects a start bit, it resynchronizes itself so that the 

edge is inside the Synch segment. Hard resynchronization can only be made for the first bit in 

a frame. 

• Resynchronisation within a frame 

CAN controllers have the ability to synchronise on bit edges as well as within a CAN frame. 

The (re)Synchronisation Jump Width (SJW) decides the maximum number of time quanta 

that the controller can resynchronise every bit. 

• Resynchronisation of a receiver to a slower transmitter is handled as follows:  

If a recessive-to-dominant edge appears inside TSEG1 and the edge is less than or equal to 

SJW quanta inside, TSEG1 is restarted. If the edge was more than SJW quanta inside, TSEG1 

is lengthened with SJW quanta. 

• Resynchronisation of a receiver to a faster transmitter:  

If a recessive-to-dominant edge appears inside TSEG2, TSEG2 is shortened by the number of 

quanta necessary to make the edge be outside TSEG2. However, TSEG2 can be shortened no 

more than SJW quanta. 

A.3.8 CAN bus physical layer 

The physical layer is not part of the Bosch CAN standard. However, in the ISO standards 

transceiver characteristics is included.  
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CAN transmits signals on the CAN bus which consists of two wires, a CAN-High and CAN-

Low. These 2 wires are operating in differential mode; that is they are carrying inverted 

voltages (to decrease noise interference). The voltage levels, as well as other characteristics of 

the physical layer, depend on which standard is being used.  

A.3.8.1     ISO 11898 

The voltage levels for a CAN network which follows the ISO 11898 (CAN High Speed) 

standard are listed in table. 

Table A.1: CAN Bus Voltage Levels  

Signal Recessive State (Volts) Dominant State (Volts) 

Level Min Nominal Max Min Nominal Max 

CAN-High 2.0 2.5 3.0 2.75 3.5 4.5 

CAN-Low 2.0 2.5 3.0 0.5 1.5 2.25 

Note that for the recessive state, nominal voltage for the two wires is the same. This decreases 

the power drawn from the nodes through the termination resistors. These resistors are 120 Ω 

and are located on each end of the wires.  

A.3.8.2     ISO 11519 

The voltage levels for a CAN network which follows the ISO 11519 (CAN Low Speed) 

standard are described in the table below. 

Table A.2: CAN Bus Voltage Levels  

Signal Recessive State (Volts) Dominant State (Volts) 

Level Min Nominal Max Min Nominal Max 

CAN-High 1.6 1.75 1.9 3.85 4.0 5.0 

CAN-Low 3.1 3.25 3.4 0 1.0 1.15 

ISO 115519 does not require termination resistors. They are not necessary because the limited 

bit rates (maximum 125 kbps) make the bus insensitive to reflections. 
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The voltage level on the CAN bus is recessive when the bus is idle.  

A.3.9 Bus lengths 

The maximum bus length for a CAN network depends on the bit rate used. It is required that 

the wave front of the bit signal has time to travel to the most remote node and back again 

before the bit is sampled. This means that if the bus length is near the maximum for the bit 

rate used, one should choose the sampling point with utmost care. 

Below is a table of different bus lengths and the corresponding maximum bit rates. 

Table A.3: Practical Maximum Bus Lengths 

 

A.3.10     Media 

According to the ISO 11898 standard, the impedance of the cable shall be 120 +- 12 Ω. It 

should be twisted pair, shielded or unshielded. Work is in progress on the single-wire standard 

SAE J2411. 

A.3.11    CAN implementations 

• Different implementations - BasicCAN and FullCAN 

There is no standard on how CAN controllers shall be implemented or how they shall 

communicate with their host microcontroller. There are two main implementation strategies 

for CAN controllers today. They are called BasicCAN and FullCAN.  

The main difference between these strategies is how interesting messages are filtered out, that 

is how it is decided what messages are interesting and which are not. There are also 

differences in how remote frames are answered, and on how messages are buffered. The 

differences will effect how much load is put on the host microcontroller.  
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• BasicCAN 

BasicCAN is usually used in cheaper standalone CAN controllers or in smaller 

microcontrollers with integrated CAN controller.  

A BasicCAN controller normally has two receive buffers and one transmit buffer. The receive 

buffers are arranged in a FIFO structure, and a message can be received into one buffer while 

the microcontroller is reading the information from the other buffer. If a message is received 

while both receive buffers are full, the oldest messages are kept. This means that newer 

messages might be lost if the host microcontroller does not read the messages fast enough.  

A message is sent by writing it to the transmit buffer.  

Interesting messages are filtered out using two registers that operate on the message identifier. 

Each bit in the identifier is checked against the filter. If the message matches the filter it is 

stored in one of the receive buffers.  

Each bit of the identifier filter can be set to '1', '0' or 'don't care'. Often the filter only operates 

on eight of the eleven bits in the identifier (standard CAN). This means the three lower bits in 

the identifier are always 'don't care'.  

When BasicCAN is used it is important to choose identifiers with utmost care, so that the 

window of the filter can be kept as small as possible. All messages that are let through the 

filter must be read and checked by the microcontroller. This means that the final filtering is 

done in software.  

A BasicCAN controller has no support for automatically answering remote frames, which 

means that the application will have to handle them. This will put extra load on the 

microcontroller or processor, but will make sure that the value returned is updated. 
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Table A.4: BasicCAN features 

Transmit The application fills complete Tx register Including ID,RTR, data length, 

data: every ID can be transmitted 

Receive Every masked CAN message can be received. Normally two receive 

buffers in FIFO structure Global message filtering. It is normally not 

possible to set up the filter so that only the interesting messages are let 

through: final filtering must be done by the application 

Remote Frame 

handling 

Remote frames are answered by the application 

Overrun 

philosophy 

Keep the oldest message (newer messages will be lost) 

 

• FullCAN 

FullCAN is used in more expensive, high performance CAN controllers and microcontrollers. 

The FullCAN controller has a set of buffers called mailboxes. On initialization, each mailbox 

is assigned an identifier and is set to transmit or receive.  

When the CAN controller receives a message it checks the mailboxes in order to see if there is 

a receive mailbox with the same identifier as the message. If such a mailbox is found, the 

message is stored in it and the host controller is notified. Otherwise the message is discarded.  

When transmitting a message, the message length and data is written to the transmit mailbox 

with the correct identifier.  

If a remote message is received the controller checks the remote identifier against the transmit 

mailboxes. If a match is found, the controller automatically sends a message with the 

identifier and data contained in that mailbox. This means that the microcontroller gets a lower 

load, and that the software does not have to handle remote messages. However, if the mailbox 

has not been updated in a long time, the information sent to the network will be old. This has 

to be considered when writing the software.  
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With a FullCAN controller it is possible to filter out only the exact message types that are 

interesting. This type of controller will therefore give a lower load on the host 

microcontroller. 

FullCAN controllers have support for automatically answering remote frames. This will 

decrease the load on the host microcontroller or processor, but may also mean that old 

information is sent. It is very important to take this into consideration when writing your 

application. 

Table A.5: FullCAN features  

Transmit Transmit mailboxes initialized once. Only data bytes written before 

transmission. 

Receive Only messages with the IDs defined in receive mailboxes can be received 

No double buffering for mailboxes. Full acceptance filtering (only the 

exact message IDs are let through). 

Remote Frame 

handling 

Remote frames are answered automatically by the controller. 

Overrun 

philosophy 

Keep the newest message (older messages with the same ID will be lost). 



   
 

Appendix B 
 

 

 

CAN Baud Rate Setting 
 

A method for CAN baud calculations that uses the AT90CAN128 data sheet CAN example 

baud rate settings as a basis is presented here. A desired AVR clock speed and baud rate must 

be specified, then use the examples to get the Tprs, Tph1, Tph2 and Tsjw values. 

Looking at the AT90CAN128 data sheet, page 266 section 19.12, Examples of CAN Baud 

Rate Setting, note the CAN Baud Rate, TQ and Tbit columns. It should be noticed that if you 

convert TQ into seconds: BAUD = 1 / (TQ * Tbit) 

Using simple algebra we get this formula for the Time Quanta (TQ) value:  

TQ = 1 / (BAUD * Tbit) 

Because Tbit must be 8 or higher, an 8 MHz clock is the slowest possible AVR clock for the 

maximum 1 mega-baud CAN operation (8000000 / 8 = 1000000). Also because the maximum 

AVR clock is 16 MHz (1 / 16000000 = 6.25 E-8), the smallest TQ possible (within the AVR 

specifications) with prescaler BRP [5:0] = 0 is 0.0625 microseconds (6.25 E-8seconds). 

As per the CAN specification, Tbit must be at least from 8 to 25. 

If you pick a desired baud rate, then use Tbit = 8 you can calculate the required TQ which we 

will call TQ8: TQ8 = 1 / (BAUD * 8) 

Then use Tbit = 25 and calculate the required TQ which we will call TQ25 (so you have a 

range of possible TQ values). TQ25 = 1 / (BAUD * 25) 

Examine TQ8 and TQ25 to make sure they are equal or larger than CLKio (your AVR I/O 

clock is the AVR speed taking CLKPR and CKDIV8 into account) divided into 1. Any TQ 

value for a given Tbit (8 to 25) value that is too small means it cannot be used. For an 

example, look at the data sheet 8 MHz clock in 19.12 Examples of CAN Baud Rate Setting. 

You will see that at 1 mega-baud an 8 MHz AVR I/O clock is 0.125 microseconds and it 

matches a TQ8 of 0.125 microseconds. A TQ9 is 0.11111 microseconds, which is a smaller 
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value than the AVR CLKio which is as fast as the AVR can go at that clock speed. So, TQ9 is 

too small to be used at this baud rate and CLKio speed. Do not try to use any Tbit values that 

do not meet the time quanta limitations. 

Next take your CLKio frequency (AVR system clock divided by the CLKPR value) and 

multiply it by TQ8: TDIV8 = (CLKio * TQ8) – 1 

 Round TDIV8 off to an integer. This will be the required prescaler divider BRP [5:0] bit 

value in decimal. Because BRP [5:0] is only 6 binary bits, TDIV8 must always be in the 0 and 

63 decimal value range. If TDIV8 is larger than 63 decimal it means you cannot set the 

BRP[5:0] to a high enough value for that baud rate at Tbit = 8. You could use CLKPR to 

reduce CLKio if you really wanted to use Tbit = 8 for some reason. 

Now you can do: TDIV25 = (CLKio * TQ25) – 1 and round it off to an integer (it must also 

be 0 to 63 or it cannot be used). 

What TDIV8 and TDIV25 tell you is what range of BRP [5:0] prescaler values are possible 

for your desired baud rate. When rounding off the TDIV8 and TDIV25 prescaler values 

recalculate the TQ values: TQ8 = TDIV8 + 1 / CLKio 

TQ25 = TDIV25 + 1 / CLKio 

Note that the original TQ8 and TQ25 values may change in the above formulas because of the 

TDIV8 and TDIV25 round off. 

Next there is something else the data sheet that 19.12 Examples of CAN Baud Rate Setting 

can teach us. You will notice that: Tbit = Tsyns + Tprs + Tphs1 + Tphs2 

Tsyns is the built in 1 TQ long synchronization bit, so its value is fixed as a 1 at all times 

which gives us: Tbit = 1 + Tprs + Tphs1 + Tphs2 

In fact there is a pattern in the examples table. The Tprs, Tph1, Tph2 and Tsjw values are 

always the same for a given Tbit value (it does not matter what the clock speed or baud rate 

is). We can take a shortcut here and copy the pattern values for a new baud rate that is not in 

the table. The data sheet has Tbit values for 20, 16, 15, 12, 10 and 8. So, using your custom 

baud rate pick one of these Tbit values and calculate your TQ. Then use CLKio and TQ to 

calculate your prescaler division integer. If the prescaler division calculation does not need 

rounding off into an integer, your baud rate will be perfect. If there is any remainder to round 

off your baud rate will not be perfect (use the first formula to figure out your actual BAUD 
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rate). Lastly, copy the Tprs, Tph1, Tph2 and Tsjw values (CANBT2 and CANBT3) for the 

same Tbit value as the one you used. This is method to quickly setup what should be a 

workable CAN baud setting for CANBT1, CANBT2 and CANBT3 using a custom baud rate 

or custom AVR system clock frequency.  

Here is a 9600 baud example with an AVR 7.3728 MHz system clock and CLKPR of 0 (i.e. 

CLKio = 7.3728 MHz). 

TQ = 1 / (BAUD * Tbit) 

TQ8 = 1 / (9600 * 8) = 1.302 E-05 

TQ25 = 1 / (9600 * 25) = 4.166 E-06 

TDIV = (CLKio * TQ) – 1 

TDIV8 = (7372800 * 1.302 E-05) – 1 = 95 

TDIV25 = (7372800 * 4.166 E-06) – 1 = 29.72 (rounded to 30) 

Notice that a TDIV8 of 95 exceeds the BRP [5:0] maximum value of 63, so it is not usable. 

However, since TDIV25 is under the 63 maximum value we know it is possible to use other 

Tbit values higher than 8. Since we have to pick from the existing table 20, 16, 15, 12, 10 

selection, lets just go to Tbit = 16. 

TQ16 = 1 / (9600 * 16) = 6.510 E-06 

TDIV16 = (7372800 * 6.510 E-06) – 1 = 47 

There is no remainder in TDIV16, so 9600 baud is a perfect baud rate at this AVR clock 

speed with Tbit set to 16. If we double check, even though we do not have to because of the 

perfect baud rate match: 

TQ16 = (TDIV16 + 1) / CLKio 

TQ16 = (47 + 1) / 7372800 = 6.510 E-06 

This tells us BRP [5:0] = 47 decimal which is 101111 binary and formats into CANBT1 as 

1011110 binary or 0x5E hex. 

Then we just take the existing Tprs, Tph1, Tph2 and Tsjw values for Tbit = 16. So, we get: 
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CANBT1 = 0x5E 

CANBT2 = 0x0C 

CANBT3 = 0x37 
 

A general alternative to the method above for all microcontrollers is a CAN calculator that 

can be downloaded from a free website [11]. In this calculator you just put the baud rate and 

the clock frequency and the calculator will compute the CAN bit timing values with all 

possible combinations. 
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