Stratigraphic evolution and characteristics of lobes: a high-resolution study of Fan 3, Tanqua Karoo, South Africa.

by

J.M. Neethling

Thesis presented in partial fulfilment of the requirements for the degree of Master of Science at the University of Stellenbosch

Supervisors
Dr. H. de V. Wickens
Dr. D.M. Hodgson

March 2009
Figure 1.1 A simplified geological map of South Africa to show the location of the Tanqua sub-basin (Geological map, Council for Geoscience, 2000). The Laingsburg and Tanqua sub-basins can be seen in (B). The yellow area in (C) represents the total outcrop of the Skoorsteenberg Formation in the Tanqua sub-basin.
Chapter 1 Introduction

Figure 1.2 A diagram illustrating the location of the Ecca Group in the stratigraphy of the Cape-Karoo Succession (Wickens, 1994)
Chapter 1 Introduction

Figure 1.4 Locations of the south Gemsbok River valley outcrops in relation to a depositional diagram for fine-grained turbidites. The red line represents the oblique strike section of the southern Zoet Meisjies Fontein 75 and Rondavel 34 outcrops, and the red line the dip-sections of the Los Kop 74 and Krans Kraal 83 outcrops. Modified from Bouma (2000).

1.5 Methods and Materials

The field area for this study is represented by Figure 1.5. The exposed outcrops represent a 7 kilometre oblique strike-section along the southern Gemsbok River valley, and a 5 kilometre roughly north-south trending dip-section. Several gullies extend westward from this dip-section, providing several shorter up-dip strike-sections.

The outcrops were examined on a centimetre scale by measuring 72 vertical profiles, recording grain-size, bed thicknesses, palaeoflow indicators and other depositional features. Measurements were made using a maximum 1.9 metre retractable Jacob staff and measuring tape. High-resolution digital photographs were also collected of all measured outcrops. Palaeoflow measurements were taken using a Krantz geological compass, with a declination set to 20°.
profiles, using $x^2 = y^2 + z^2 - 2yz \cos \Theta$ (Figure 1.5), and has proven to be a most accurate method.

The vertical profiles were digitised using DSL, an in-house program used by Liverpool University, CorelDraw X3 and Microsoft Excel 2003 (Chapter 5). The CorelDraw profiles were used to create detailed correlation and facies distribution panels. Correlations between profiles were walked out where possible, and determined from a distance using binoculars (easier to get a good lateral overview). The 2D panels were used to describe the stratigraphy and architecture of Fan 3 south of the Gemsbok River valley (Chapter 3). These descriptions, combined with the data from the Lobe project to the north, were used in the construction of a conceptual depositional model for Fan 3 (Chapter 6).

The data were finally manipulated in Petrel (Chapter 7). Petrel was used to create isopach maps, and to create a 3D facies distribution map of Fan 3 south of the Gemsbok River valley. Petrel used the digital data exported from DSL and Excel.

![Figure 1.6 Google Earth (2008) satellite image of the study area, indicating the dimensions and location of the field area.](image-url)
2.4 Terminology

A hierarchical subdivision is used in order to compare the different stratigraphic and architectural elements. The mid- to outer part of Fan 3 can be subdivided into several lobes, each of which consists of one or more lobe-elements. A lobe is defined in the Lobe project as a set of lobe-elements, be they amalgamated or bedded, separated from other lobes by significant thin-bedded, fine-grained siltstone breaks that can be traced along strike and dip for several kilometres. The above terms can be compared with a hierarchical classification provided by Mutti and Normark, 1987, to provide a rough estimate of the time constraints involved during the formation of turbidites. For example, their “Turbidite system” compares with “Lobe-complex” in the Lobe project, whereas their “Turbidite stage” compare to “Lobe”.

Figure 2.1 A summary diagram of the Lowe (1982), Bouma (1962) and Stow and Shanmugam (1980) subdivisions for turbidites (from Shanmugam, 2000).
as apposed to the darker colour of the claystones, as well as the bedding pattern of the siltstones. Siltstones generally display a laminated nature, be it parallel- or ripple-laminated, whereas the laminations of claystones are usually not easy to discern.

Interpretation:

The claystones are interpreted as the result of background suspension sedimentation taking place continuously in the basin. The siltstones are interpreted as low-volume, low-density turbidites. The transitional base and top of the fans respectively mark the initiation and decay of the fans (Hodgson *et al.*, 2006). The true stratigraphic base and top of the fan is rarely identified at outcrop, but is clearly seen in well logs (Luthi *et al.*, 2006) and core (Hodgson *et al.*, 2006) from the research boreholes.

3.2.2 Lithofacies 2: Parallel- and ripple cross–laminated siltstone

Description:

These fine- to very fine-grained siltstone units are mostly finely laminated to micro-cross-

Figure 3.1 An example of the siltstone to claystone relation close to the base of the succession. This relation is only present at the base and top of Fan 3, as no claystones are present within the fan succession.
laminated, and are commonly interbedded with layers of very fine-grained sandstone or claystone of a few centimetres in thickness (claystone is only present close to the lithological base of the fan; Fig. 3.1). The sandy units (beds) tend to thicken upwards in the succession, whilst the siltstone units thin to millimetre scale units. The reverse holds true for the top of the succession. The siltstone successions generally form the breaks between the individual lobe elements of Fan 3. This lithofacies can also be treated as a lithofacies association: Johnson et al. (2001) refer to this grouping of siltstone grading into sandstone as thin-bedded turbidites.

In cases where the siltstones form breaks between the sandstone units (lobes), they form a fairly distinct alternating pattern (Fig. 3.2). They consist of alternating fine- and coarse-grained siltstone units, and individual units vary greatly in thickness, as do the successions. The former varies between a few millimetres to almost 30cm, and the latter can be anything from less than 5cm to almost 2 metres. There is no perceivable pattern along strike as to the exact thickness of

Figure 3.2 Alternating relationship between coarse- and fine-grained siltstone that is present throughout the study area. This relationship forms the most common breaks between lobes. They are commonly referred to simply as thin-bedded intervals.
Figure 3.3 An example of the general appearance of structureless sands in the study area. This particular section is located in one of several highly amalgamated channelised areas, with sandstone cliffs reaching 10 metres or more in thickness. Note person for scale underneath the overhang (circle).
Amalgamation of individual sandstone units is common. The contacts with other lithofacies are generally sharp and planar. Irregularities such as those caused by loading and local scouring are also common. Rip-up clasts of finer, softer lithologies (claystones) are commonly associated.

Figure 3.4 Example of the dewatering features found in structureless sands. Here the smaller linear features are present, as well as a much larger dewatering pipe with significant alteration along its edges.
with the amalgamated surfaces. They are common lower down in the succession, associated with the earlier sandstone units. Clasts are generally angular and elongated. Clast-rich units become more prominent higher in the stratigraphy and closer to the margin of the fan, as lower stratigraphic units slowly pinch out.

Several elongated and/or rounded calcareous concretions of various sizes (up to 1 m in diameter) are also present near to the base of some of the thicker sandstone units (Fig. 3.7).

Interpretation:

Structureless sandstones represent the Ta units in the Bouma subdivision. Dewatering features (mostly at the top of the succession in the study area; Fig. 3.4), deformation of the lower contacts (Fig. 3.5), rip-up clasts (Fig 3.6), amalgamation of beds and sole structures can all be used to infer the velocity and density of currents, as well as the transport mechanism active during deposition of the sediment. Clasts are especially common in high-energy channelised environments, whereas sole structures are generally at the base of thicker sandstone units.

Figure 3.5 Groove marks at the base of a structureless sandstone. These marks infer the general orientation of palaeocurrents.
Figure 3.6 Example of a rip-up clast near the base of a thick sandstone unit. This example is near the base of Fan 3, close to the eastern margin of the fan.

Figure 3.7 An example of a particularly large calcareous concretion. Note the concentric growth pattern.
3.2.4 Lithofacies 4: Structured sandstone

Description:

Structured sandstone contains either parallel- or ripple cross-lamination features. Generally these are easily distinguished from structureless sands, but in some cases the latter grades into structured sandstone (Fig. 3.8). Where no clear-cut break could be distinguished between structureless and structured sandstones, the lithofacies was classified as structured sandstone. Wherever the sandstone packages become more stratified, i.e. away from amalgamated or channelised areas, they are referred to as structured sandstone. These beds also tend to show a greater number of sedimentary features.

Where breaks can be clearly distinguished, the lithofacies can be either parallel- or ripple cross-laminated sandstone (Fig. 3.10). The bed thicknesses of these layers vary greatly. They are

![Figure 3.8](image_url)

Figure 3.8 An example of where the transition between Ta and Tb is not particularly clear-cut. The transition only becomes apparent laterally. This particular feature is fairly common along the Gemsbok River outcrop.
Figure 3.9 An example of the sharp transition between a Tb and Tc succession.
Figure 3.10 Closer views of ripple cross-laminated sandstone: (A) Ripple cross-lamination; (B) Climbing ripple-lamination.
3.2.5 Lithofacies 5: Mud-clast conglomerates

Description:

The term “mud-clast conglomerate (MCC)” is a collective term used to describe a “nest” of rip-up clasts in a matrix of either sand or silt. The clasts generally appear as a collection of small (less than 5 cm) elongated slivers of mud. MCCs can be found either above or below thick sand units. They often resemble lag deposits when found below the base of sandstone beds (Fig. 3.11). All of these deposits have in common the lack of internal structure.

Interpretation:

MCCs commonly form in the thalwegs of channels as a result of bypassing of high-energy flows. Clay clasts can originate during erosive undercutting and by local rip-up by strong, high-density turbidity currents. Lag deposits, as well as debrites (MCCs with large amounts of organic material), represent the final trailing of sediment or debris pulled behind the turbidity flow. The turbulent nature of the flow ensures these are the last components to be deposited, often close to the margin of a lobe.

Figure 3.11 This is how mud-clast conglomerates mostly appear in the study area. This example lies at the base of a large structureless sand, the latter loading into the MCC.
3.3 Stratigraphy

3.3.1 Introduction

Mid- to lower Fan 3 can be subdivided into several lobes, each of which consists of one or more lobe-elements. Figure 3.12 shows the subdivision as defined in the Lobe project.

A fan is built up by a series of stacked lithological units: The initial beds and bed-sets (“bulb” deposits as described by Machado et al., 2004); lobe-elements, singular discrete sedimentary units consisting of stacked beds (Deptuck et al., 2008); lobes, which are separated by significant thin-bedded, fine-grained intervals (referred to as composite lobes by Deptuck et al., 2008); and a lobe complex, or fan (Fig. 3.12). Importantly, a lobe complex will thin to a lobe, and a lobe will thin to a lobe-element, and a lobe-element will thin to an individual bed.

Six lobes have been identified to the north of the Gemsbok River (Prélat et al., in review). Most of these are traceable to the northern pinch-out of Fan 3. Of these six lobes, only five are present south of the Gemsbok River. The missing lobe, Lobe 3, is rarely more than a single bed.

Figure 3.12 Hierarchy of depositional elements in distributive deep-water systems. The division consists of four scales of elements, namely single beds, lobe-elements, lobes and the lobe complex (or fan) defined by the bounding fine-grained units and mappable extent, not thickness. Lobes are separated by interlobe units of fine-grained, thin-bedded siltstones (From Lobe Field Guide, © STRAT Group, University of Liverpool, June 2008).
Figure 3.13 A representative profile (J0820250LK) to show the stratigraphy of Fan 3. Sub Lobe 2 has already pinched out. (A) shows the appearance of Lobe 6 at this profile location. It is less than a metre thick. (B) shows the appearance of Lobe 2, 4 and Lower Lobe 5.
sheets. These sheets can be anything from lobe-scale features to bed-set features, depending on their relative position to an axial zone and the thickness of a lobe.

Palaeocurrent measurements provide an important constraint in determining the depositional environment of a submarine fan (e.g. flow direction and strength), as well as constraining the 3D shape of a lobe or lobe-element. Palaeocurrent indicators include current ripple laminations, parting lineations, and sole structures. All palaeocurrent measurements within a lobe-element are grouped together to give an indication of the behaviour of a specific lobe.

The panels below provide information of the architectural behaviour of the stratigraphic units in 2D space. Panels 1 – 2, 3 and 3 – 4 are oblique strike sections along the mid-fan area (i.e. the Gemsbok River valley). Panel 12 is a dip-section roughly along the fan’s axis. The other panels are small strike sections along the length of Panel 12.

The “Panel X – Y” names represent sections where two originally separate panels were either combined (1 – 2, 8 – 9 and 10 – 11) or where a smaller section intersects a larger one (3 – 4).

Short notes are presented on each panel, focusing on important details found on each panel.

Figure 3.14 Legend for all the correlation panels.
Figure 3.15 Topographical map of the area indicating the locations of the various correlation panels.
Figure 3.25 Palaeoflow directions for Fan 3. (A) is a summary of the whole Fan 3, whereas (B) breaks down the palaeoflow into the main lobes. The yellow blocks represent the areas from which the groups of palaeoflow indicators were taken. The majority of the palaeoflow indicators are ripple laminations.
Highstand System Tracts (HST) are formed during later stages of sea level rise. The early stage of HST in deep water is characterised by hemipelagic mud deposition. This is because of the increase in accommodation space, which ensures that almost none of the coarser sediments are transported beyond the shelf edge. Turbidites can however be deposited during HST in deep water if sediments can accumulate on the shelf edge.

Lowstand System Tracts (LST) are formed during relative sea level fall. They are characterised by a basinward shift in coarser sediment deposition. Gravity processes, such as sediment gravity flows, play an important role in moving sediment beyond the shelf edge.

Transgressive System Tracts (TST) are formed during that part of relative sea level rise when the rate of accommodation space increase exceeds the rate of sediment supply into the basin. A TST is characterised by basin filling, and is contained within basinal mudstone in deep water.

![Figure 4.1 A simple diagram from Sixsmith (2000) showing the surfaces and zones used to describe a turbidite.](image-url)
Assuming some allogenic control over lobe deposition, a general pattern of sea-level fluctuation can be inferred. The entire lobe complex was deposited during LST (relatively shallower sea-level). On a more micro-scale, internal variation within the lobe complex shows a

Figure 4.2 Application of sequence stratigraphy on the outcrops of Fan 3 of the southern Gemsbok River valley.
pattern of variable flooding. Lobes and lobe-elements were each deposited during an early LST (ELST) followed by fine-grained deposition after an initial fan flooding surface (IFFS).

The lengths of the flooding stages correspond to the progradation-aggradation-retrogradation pattern as described by Hodgson et al. (2006) for Fan 3. Fig. 4.3 is a dip section schematic of the outcrops to the south of the Gemsbok River valley to the northern pinch-out of Fan 3. The figure was modified from Prélat et al. (in review) in order to show both Upper and Lower Lobe 4. Lobe 5 was left unchanged, as Upper Lobe 5 has a similar pattern to Lobe 6. The red box represents the observed outcrops of this study (the area south of the Gemsbok River valley). The figure is not drawn to scale. The Sub Lobes and Lobes 1 and 2 represent the progradational phase, or initial basin-ward shift of Fan 3. Lobes 4 through Lower Lobe 5 are aggradational, gradually building the bulk of the fan. This part constrains the largest part of the fan, in terms of thickness and spatial and volumetric extent. Upper Lobe 5 and Lobe 6 are more retrogradational, at least this is their appearance in the study area. Their thickness never matches that of the underlying lobes, which are much thicker down-dip. Also, Lobe 6 pinches out over almost 6 kilometres along the Gemsbok River valley, but has only a single identified axial zone and remains mostly structured away from this zone.

The above pattern is also reflected on the micro-scale. The length of the gradation stages determined the duration of the ELSTs, and as a result the volume of the lobes that were deposited during that stage. To illustrate this graphically, a line diagram is presented on the right in Fig. 4.2. A curve to the right means a relative lowering of sea-level, where as a curve to the left is a relative increase in sea-level. It should be noted that the longest ELST is again an

![Figure 4.3 Schematic of a dip section through mid to distal Fan 3 to illustrate the different stages of deposition. Modified from Prélat et al. (in review).](image-url)
metres), only the top GPS coordinates were used to reference the positions of the profiles, as they are generally more accurate and display smaller errors (better overhead coverage). For this reason, the bottom coordinates, as well as the tops and bottoms of every bed in relation to the top GPS coordinates, were calculated in Excel for later use. GPS measurements were taken using UTM standards.

The data gathered in the field proved more difficult to use in Petrel than expected. None of the lobes had the same regional extent (E-W and N-S extent). Figure 5.1 shows an example of what the final spreadsheets looked like. It shows the tops and bases of all individual lobes and lobe-elements defined for use in Petrel. These numbers were calculated by subtracting measured thicknesses from the topmost GPS coordinate.

<table>
<thead>
<tr>
<th>Profile Name</th>
<th>X Coordinate</th>
<th>Y Coordinate</th>
<th>Top L6</th>
<th>Base L6</th>
<th>Top UL5</th>
<th>Base UL5</th>
<th>Top LL5</th>
<th>Base LL5</th>
<th>Top UL4</th>
<th>Base UL4</th>
<th>Top LL4</th>
<th>Base LL4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Figure 5.1 Part of one of the spreadsheets used to calculate top and base values for use in Petrel. The yellow cells represent areas where no data were present in the initial creation of the spreadsheet. The values were calculated during the later stages of modelling in order to facilitate the process in Petrel.
The yellow cells in Figure 5.1 represent areas where no data were present in the field, i.e. either through lack of outcrop, erosion or pinch-out, or where lobe-sets were too amalgamated to separate (between white cells). The values in these cells were calculated in order to give all lobes the same regional extent. This makes using them in Petrel a lot easier.

In general, one basic rule was followed: the thickness of the siltstones-breaks separating lobes were set to 20 cm in areas where no outcrop data were present. To keep things simple, it was assumed that the sandstones were amalgamated, which is probably not far from reality.

In some cases the sand-prone lobes pinched out. For these instances the 20 cm siltstone breaks

![Figure 5.2](image.png)
Figure 5.2 An example of how DSL (left) and CorelDraw (right) displays the same vertical profile, in this case J4930008LK. DSL’s digital usage of data makes it very useful for exporting into other programs, whereas CorelDraw provides a better visual display of the data.
Deposition of Fan 3

6.1 Introduction

This chapter will attempt to explain some of the depositional features described in previous chapters, particularly Chapter 3. The 2D outcrop maps will be used in conjunction with the isopach maps generated in Petrel.

A “fan” is not the immediate result of a turbidity deposit, but rather the combination of many smaller events. A study by Machado et al. (2004) outlined three distinct deposits (based on age

![Diagram](image)

Figure 6.1 Three depositional models for turbidity currents as suggested by Machado et al. (2004). These models are based on age and complexity. Initially, a turbidity current forms a bulb. Given time and a constant sediment supply, several bulbs can build a lobe.
and complexity) based on studies of the modern Mississippi, Amazon and Indus deltas, as well as the Paraíba do Sul/Carapebus (Fig. 6.1). These deposits can build upon themselves in order to form the larger deposits. In other words, several relatively small “bulb” deposits (singular turbidity flow deposits, equivalent to beds and even lobe-elements) can form a lobe channel. If enough of these lobe channels are present, a “lobe” can form. A fan is then the final product of several lobes stacked together. As an ancient analogy the Tanqua Fan Complex is a prime example.

6.2 Finger-shaped deposits of Fan 3

The pattern suggested by Machado et al. (2004) gives lobes a more “finger-like” appearance near the distal parts and margins, as opposed to a “classic” lobe shape. These features are shown in Figure 6.1. Several such features have been observed by the Liverpool teams to the north of the Gemsbok River, closer to the pinch-out of Fan 3 (Prélat et al., in review). These features are present in Lobes 4, 5 and 6, the last lobes to pinch out. In outcrop, they appear as major thickenings of a lobe after a steady thinning. They can appear within less than a hundred metres, and disappear just as fast, thickening a lobe by several metres within a very short distance (up to 8 metres within less than a hundred metres in the study area).

![Figure 6.2 Example of the bedded nature of the finger-shaped axial zones. The correlated section at the top can be traced for hundreds of meters along strike, whereas the “extra” section at the base is very localised, with less than a hundred metres lateral extent. Note the large amount of mud-clast conglomerates at the top of the thickest sandstone. Here it resembles a debrite, with significant amounts of organic material.](image)

83
Generally, these features are well structured (Fig. 6.2), with beds and lobe-elements clearly defined and separated by siltstone or claystone (mostly claystone, whereas the rest of the lobe is separated almost exclusively by siltstone). They can also appear as structureless sandstone, with large concentrations of dewatering features. What they all have in common are the mud-clast conglomerates, located at the top and above the thicker sandstones, and the lack of major scouring at the base. In the study area this thickening would erode less than 2 metres compared to more than 8 meters of thickening. It should be noted that the outcrop in Fig. 6.2 did show more than 2 metres of erosion, however, this was into the underlying muds, and not into sandstones. Nowhere in the study area do these features (the axial zones in the central section) erode into older sandstone units.

Also, some display features that resemble a squeeze effect, where mud or sand is forced into plastic (soft-sediment) deformation by a relatively sudden increase in overburden. To the north, these features were observed within the lobe. In the study area, one such feature was identified in the claystones 2 metres below the thickest sections of sandstone. Figure 6.3 shows such a feature, located in the claystones below the lobe.

![Image](image.png)

Figure 6.3 Example of the plastic (soft-sediment) deformation observed in the units below a finger-shaped axial zone. This example is a siltstone located in the claystones about 2 meters below a significantly thickened lobe (Upper Lobe 4).
Figure 6.4 Example of the difference between the first isopach maps and the final product. Both represent Lower Lobe 5. (A) used the old, larger polygon, and the colour scales were automatically adjusted to the minimum and maximum values. (B) used the constrained polygon and the colour scale was manually set to 10 metres. The results may appear similar, but there are some significant differences: (B) has a much smaller degree of contouring. The purple in (B) is both a result of outcrop not revealing the whole of the lobe (in the west and south), as well as true thinning (east).
accomplished by using Upper Lobe 5 and Lobe 6 as single axial zone analogies, and Lobes 2, 4 and Lower Lobe 5 as multiple axial zone analogies.

Single axial zones are the mid-fan continuations of channels which are mostly restricted to more proximal locations. A general appearance is an area of focussed flow, characterised by

Figure 6.6 Schematic of the structure of a lobe. The diagram illustrates the transition from channel to channelised sheets, and channelised sheets to sheets. The single axial zone is the transition zone from confined flow to unconfined floor spreading. Also indicated is the position of the southern Gemsbok Valley outcrop in relation to Lobes 2, 4, 5 and 6.
shape. Note that there are no “hard lines” separating the zones. The reason for this is that the transitions are often not abrupt, and grading between them is common.

6.4.1 Lobe stacking

Topography can have a major influence on the flow direction of sediment gravity flows, ranging from diverting to complete damming of flows (Kneller and Buckee, 2004; Prather et al., 1999; Pickering et al., 1989). Topography can constitute a basin floor feature, or result from the presence of a previous deposit. In a distributive system, a deposit from a single flow has the appearance of a thickened “mid-section”, the equivalent of a channel, with thinning sheet deposits moving away from the centre. The channelised area would constitute a topographic high, and the sheet deposits topographic lows. Basic physics dictates that a flow should follow the path of least resistance. A new flow would therefore divert around the obstacle. The exact behaviour of a turbidity current in such a situation depends on the forward velocity of the flow, the height of the topographic obstruction, the density of the flow, and the density stratification of the flow (Alexander and Morris, 1994; Lane-Serff et al., 1995). The result of such behaviour would appear in a strike section as laterally or vertically stacked flows, or a combination of stacking patterns.

The mid-fan strike section stacking pattern of all the lobes is shown in Figure 6.7. Note that this diagram is not to scale, and that anything to the right of the red line is unknown (the line represents the western end of the Gemsbok River valley outcrop). The lobes of mid Fan 3 show a

![Figure 6.7 Schematic to illustrate the strike section stacking pattern of Fan 3 in the mid-fan area (southern Gemsbok River valley) The red line represents the western end of outcrop in the valley. Not to scale.](image-url)
Figure 6.8 Schematic of the probable locations of the Lobes in order to illustrate their positions relative to each other. Also shown is the inferred stepping pattern for the lobes. The black arrows represent basinward stepping (progradation), the yellow arrows represent aggradation, and the red arrows represent back stepping.
7.2 Petrel Modelling

Schlumberger’s Petrel is a powerful software package capable of modelling most aspects of a petroleum reservoir. It includes a myriad of algorithms developed to create visual representations of complex physical features in 3D. For this project, only a small part of the program’s capabilities was exploited, namely the grid building and facies modelling features and the ability to create isopach (thickness) maps. The aim here was to create a 3D representation of the conceptual depositional model (Chapter 6). For a short description of some of the algorithms

![Figure 7.1 A 3D view in Petrel, looking north, of the wells and well-tops used. These data represent all 72 vertical profiles (wells).](image-url)
7.2.1 Field size

Figure 7.1 is a view from the south, showing the entire study area. Both the wells and their associated well tops are shown. The entire study area covers an area of almost 10 kilometres from east to west, and about 7 kilometres from north to south. The entire area could not be included as is for the initial modelling attempts. The layout and positions of lobes and lobe-
While the Kriging algorithm is useful, the nature of the input data from this study makes it difficult for the algorithm to function properly (according to Petrel’s Online Help files). For this reason, the Convergent Interpolation algorithm, which is the default algorithm, was used to form the surfaces used in building the grid for modelling. This algorithm was far more accurate in keeping to the data (Fig. 7.4 B). To make it even more accurate, a “well adjustment” was completed by adding the well tops as a constraint. The result was a surface that made contact with all the data points, even though it had a bit of a bulleted appearance (most detail centred around wells).

In order to illustrate the problem with the Kriging algorithm with this data-set, Appendix D
Figure 7.4 Two of the initial surfaces created in Petrel. (A) used the Kriging algorithm, whereas the Convergent Interpolation (CI) algorithm was used for (B). Note the difference in surface shape between the two methods: Kriging created a much smoother surface but was unable to keep to the data, whereas CI managed to honour the data points to an acceptable degree.
7.2.4 Grids, Zones and Layering

Grids, zones, and layering are key features used to define a model. A grid is defined by using the surfaces created above (after Z adjustments), and providing the x and y dimensions for each cell. In this case, the dimensions were set to 20 metres a side. Because of computational constraints, the cells could not be any smaller. They need not be smaller for this model, as all wells are located far enough apart that a grid of 20x20 metres would place each well in its own cell (wells should not share a cell). The second problem with the original data arises here: all the data were used for the grid, but only a part of the western part of the field area was used, as this is the only place where all 5 boundary polygons overlap. Thus the grid was much smaller than intended.

The grid is defined in the z-axis by zones, the Petrel analogue for architectural elements such as lobes. They were built by using the “conformable” command, which forces them to follow the correlated well tops. Fig. 7.5 is an example of these zones as created in the initial runs.

Layering can be seen as the z-dimension of the cells. For the first few attempts it was set to 20 centimetres, and layered using the “Follow-top” command, which sets the cell layering parallel to the top of the zone. The choice between “follow top” and “follow base” was based on the fact that all the data used were based on the top z-value for each well, but refer to whether a unit should show top-lap or down-lap. Again the layering thickness was limited by the computer’s processing ability. This layering will also be used to up-scale (block) the lithofacies from the well-logs. The thickness of the layers determines whether a field measured feature will be visible or not. The DSL logs included all measured layers, but a too low resolution during layering in Petrel will average out these layers, resulting in a loss of data.

![Figure 7.5](image)

Figure 7.5 This figure shows the zones created in the first grid run. The surfaces created from the larger polygons caused some major pinch-out features when grouped together. One of the reasons for this is because they used different polygons, and as such the Z values could not be correctly adjusted.
<table>
<thead>
<tr>
<th>DSL Lithofacies</th>
<th>Reduced Lithofacies</th>
<th>Chapter 3 Lithofacies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>Background</td>
<td>Hemipelagic Suspension Deposits</td>
</tr>
<tr>
<td>Mudstone</td>
<td>Background</td>
<td></td>
</tr>
<tr>
<td>Mudstone / Siltstone (>50%)</td>
<td>Siltstone</td>
<td>Parallel- and ripple-cross-laminated siltstone</td>
</tr>
<tr>
<td>Siltstone / Mudstone (>50%)</td>
<td>Siltstone</td>
<td></td>
</tr>
<tr>
<td>Laminated / Rippled Siltstone</td>
<td>Siltstone</td>
<td></td>
</tr>
<tr>
<td>Siltstone / Sandstone (>50%)</td>
<td>Structured Sandstone</td>
<td>Structured Sandstone</td>
</tr>
<tr>
<td>Sandstone / Siltstone (>50%)</td>
<td>Structured Sandstone</td>
<td></td>
</tr>
<tr>
<td>Laminated / Rippled Sandstone</td>
<td>Structureless Sandstone</td>
<td>Structureless Sandstone</td>
</tr>
<tr>
<td>Climbing Ripple Lam. Sandstone</td>
<td>Structureless Sandstone</td>
<td>Structureless Sandstone</td>
</tr>
<tr>
<td>Structured Sandstone</td>
<td>Structureless Sandstone</td>
<td>Structureless Sandstone</td>
</tr>
<tr>
<td>Structureless Sandstone (Sheet)</td>
<td>Structureless Sandstone</td>
<td>Structureless Sandstone</td>
</tr>
<tr>
<td>Structureless Sandstone (Channel)</td>
<td>Structureless Sandstone</td>
<td>Structureless Sandstone</td>
</tr>
<tr>
<td>Channel Lag (Mud-clast conglomerate)</td>
<td>Mud-Clast Conglomerate</td>
<td></td>
</tr>
<tr>
<td>Channel Lag (Sand-clast conglomerate)</td>
<td>Mud-Clast Conglomerate</td>
<td></td>
</tr>
<tr>
<td>Slump (sandstone)</td>
<td>MCC</td>
<td></td>
</tr>
<tr>
<td>Slump (Mud)</td>
<td>MCC</td>
<td></td>
</tr>
<tr>
<td>Debrite</td>
<td>MCC</td>
<td></td>
</tr>
</tbody>
</table>

Table 7.1 Summary table of the lithofacies used. The DSL lithofacies were grouped in order to better match the lithofacies descriptions as given in Chapter 3.
Figure 7.6 Well J4930008LK. The detailed representation (A) is from Petrel. It shows both lithofacies lists used, namely the DSL lithofacies in the left column (lithofacies group C) and the reduced lithofacies in the middle column (lithofacies group D). The column to the right shows the result of proportional layering. The DSL profile (B) is again provided as a comparison.
Figure 7.7 The proportion of lithofacies present before and after lithofacies modelling. The percentage of a lithofacies present is shown on the y-axis, and the lithofacies are listed on the x-axis. The red column represents the original 1D lithofacies as provided by the well logs (reduced from the DSL lithofacies); the green represents the lithofacies proportions after up-scaling (the blocked wells); and the blue logs are the proportions (in 3D) after the lithofacies have been modelled in 3D. The aim is for the 3D model lithofacies to honour the 1D input data in 3D. The results, however, show a decrease in structureless sandstone and a proportional increase in structured sandstone.
Figure 7.8 The results of the first facies model run, using the Kriging algorithm, and it is immediately evident that too little variation is present (17 lithofaces were used, yet only 3 are visible). (B) is the cross-section through (A). The purple balls represent well data points.
Figure 7.9 The facies model using the Sequential Gaussian algorithm. (B) is the cross-section through (A). Note the large variation in lithofacies that can be observed, as opposed to the Kriging model in Fig 5.12.
1. The quality and nature of the input data are critical. While good data can be gained from a 2D outcrop, or even 1D well-logs, without decent 3D spread of data it is near impossible to get a truly accurate and reliable representation of information in 3D data analysis.

2. Close quality control of the data and results is important. Modelling is a highly iterative process, and errors can occur at any level of the process.

3. The scale at which 3D data analyses can be done relies heavily on the hardware that is available. Without decent computing ability much data can be lost simply because of too low resolutions. This can have major consequences when the presence or absence of barriers to hydrocarbon movement is critical to the productivity of a field.

4. Knowing what to use and where to use it makes the final output more reliable.

Figure 7.12 This figure attempts to show the accuracy with which Petrel created the facies model in regards to the up-scaled wells. With enough wells to constrain the algorithms, Petrel can produce accurate and realistic facies models.
PetroSA Presentation

The presentation was given as per agreement with PetroSA for the aid provided with the modelling section of this project.
Aims

- Assessment of the transition of channelised lobe deposits into sheet deposits downdip
- Production of a high-resolution outcrop map, detailing the internal architecture, facies association and lobe-set characteristics of mid-fan fan 3.
- Incorporation of mapping and borehole data collected during current studies in the area, namely the Lobe project
- Data manipulation in Petrel
Current work

- Project hand-in: 1 September 2008
- Finishing Write-up
Appendix C Petrel Thickness Maps
Appendix C Petrel Thickness Maps

C

D
Appendix C Petrel Thickness Maps
Appendix C Petrel Thickness Maps
Figure C.1 The first set of Thickness Maps.
Appendix C Petrel Thickness Maps
Appendix C Petrel Thickness Maps

![Map M](image1)

![Map N](image2)
Figure C.2 The final set of Thickness Maps.

Figure C.2 Legend

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Lobe 6</td>
</tr>
<tr>
<td>B</td>
<td>Interlobe F</td>
</tr>
<tr>
<td>C</td>
<td>Upper Lobe 5</td>
</tr>
<tr>
<td>D</td>
<td>Intralobe 4</td>
</tr>
<tr>
<td>E</td>
<td>Lower Lobe 5</td>
</tr>
<tr>
<td>F</td>
<td>Interlobe E</td>
</tr>
<tr>
<td>G</td>
<td>Upper Lobe 4</td>
</tr>
<tr>
<td>H</td>
<td>Intralobe 3</td>
</tr>
<tr>
<td>I</td>
<td>Lower Lobe 4</td>
</tr>
<tr>
<td>J</td>
<td>Interlobe C and D</td>
</tr>
<tr>
<td>K</td>
<td>Upper Lobe 2</td>
</tr>
<tr>
<td>L</td>
<td>Intralobe 2</td>
</tr>
<tr>
<td>M</td>
<td>Lower Lobe 2</td>
</tr>
<tr>
<td>N</td>
<td>Interlobe B</td>
</tr>
<tr>
<td>O</td>
<td>Lobe 1</td>
</tr>
<tr>
<td>P</td>
<td>Interlobe A</td>
</tr>
<tr>
<td>Q</td>
<td>Sub Lobe 2</td>
</tr>
<tr>
<td>R</td>
<td>Intralobe 1</td>
</tr>
<tr>
<td>S</td>
<td>Sub Lobe 1</td>
</tr>
</tbody>
</table>