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Abstract

We use Evolutionary Multi-Objective Optimisation (EMOO) algorithms to optimise objec-

tive functions that reflect situations in communication networks. These include functions

that optimise Network Engineering (NE) objective functions in core, metro and wireless

sensor networks. The main contributions of this thesis are threefold.

Routing and Wavelength Assignment (RWA) for IP backbone networks.

Routing and Wavelength Assignment (RWA) is a problem that has been widely addressed

by the optical research community. A recent interest in this problem has been raised by the

need to achieve routing optimisation in the emerging generation multilayer networks where

data networks are layered above a Dense Wavelength Division Multiplexing (DWDM) net-

work. We formulate the RWA as both a single and a multi-objective optimisation problem

which are solved using a two-step solution where (1) a set of paths are found using genetic

optimisation and (2) a graph coloring approach is implemented to assign wavelengths to

these paths. The experimental results from both optimisation scenarios reveal the impact

of (1) the cost metric used which equivalently defines the fitness function (2) the algorith-

mic solution adopted and (3) the topology of the network on the performance achieved by

the RWA procedure in terms of path quality and wavelength assignment.

Optimisation of Arrayed Waveguide Grating (AWG) Metro Networks.

An Arrayed Waveguide Grating (AWG) is a device that can be used as a multiplexer or

demultiplexer in WDM systems. It can also be used as a drop-and-insert element or even

a wavelength router. We take a closer look at how the hardware and software parameters

of an AWG can be fine tuned in order to maximise throughput and minimise the delay.

We adopt a multi-objective optimisation approach for multi-service AWG-based single hop
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metro WDM networks. Using a previously proposed multi-objective optimisation model

as a benchmark, we propose several EMOO solutions and compare their efficiency by

evaluating their impact on the performance achieved by the AWG optimisation process.

Simulation reveals that (1) different EMOO algorithms can exhibit different performance

patterns and (2) good network planning and operation solutions for a wide range of traffic

scenarios can result from a well selected EMOO algorithm.

Wireless Sensor Networks (WSNs) Topology (layout) Optimisation.

WSNs have been used in a number of application areas to achieve vital functions in situa-

tions where humans cannot constantly be available for certain tasks such as in hostile areas

like war zones, seismic sensing where continuous inspection and detection are needed, and

many other applications such as environment monitoring, military operations and surveil-

lance. Research and practice have shown that there is a need to optimise the topology

(layout) of such sensors on the ground because the position on which they land may affect

the sensing efficiency. We formulate the problem of layout optimisation as a multi-objective

optimisation problem consisting of maximising both the coverage (area) and the lifetime of

the wireless sensor network. We propose different algorithmic evolutionary multi-objective

methods and compare their performance in terms of Pareto solutions. Simulations reveal

that the Pareto solutions found lead to different performance patterns and types of layouts.
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Opsomming

Ons gebruik ”Evolutionary Multi-Objective Optimisation (EMOO)” algoritmes om teiken

funksies, wat egte situasies in kommunikasie netwerke voorstel, te optimiseer. Hierdie sluit

funksies in wat ”Network Engineering” teiken funksies in kern, metro en wireless sensor

netwerke optimiseer. Die hoof doelwitte van hierdie tesis is dus drievuldig.

RWA vir IP backbone netwerke

”Routing and Wavelength Assignment (RWA)” is ’n probleem wat al menigte kere in

die optiese navorsings kringe aangespreek is. Belangstelling in hierdie veld het onlangs

ontstaan a.g.v. die aanvraag na die optimisering van routering in die opkomende generasie

van veelvuldige vlak netwerke waar data netwerke in ’n vlak hoër as ’n ”Dense Wavelength

Division Multiplexing (DWDM)” netwerk gele is. Ons formuleer die RWA as beide ’n enkele

and veelvuldige teiken optimiserings probleem wat opgelos word deur ’n 2-stap oplossing

waar (1) ’n stel roetes gevind word deur genetiese optimisering te gebruik en (2) ’n grafiek

kleuring benadering geimplementeer word om golflengtes aan hierdie roetes toe te ken.

Die eksperimentele resultate van beide optimiserings gevalle vertoon die impak van (1) die

koste on wat gebruik word wat die ekwalente fitness funksie definieer , (2) die algoritmiese

oplossing wat gebruik word en (3) die topologie van die netwerk op die werkverrigting van

die RWA prosedure i.t.v. roete kwaliteit en golflengte toekenning.

Optimisering van AWG Metro netwerk

’n ”Arrayed Waveguide Grating (AWG)” is ’n toestel wat gebruik kan word as ’n multi-

pleksor of demultipleksor in WDM sisteme. Dit kan ook gebruik word as ’n val-en-inplaas

element of selfs ’n golflengte router. Kennis word ingestel na hoe die hardeware en sagte-

ware parameters van ’n AWG ingestel kan word om die deurset tempo te maksimeer en ver-

iv
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tragings te minimiseer. Ons neem ’n multi-teiken optimiserings benadering vir multi diens,

AWG gebaseerde, enkel skakel, metro WDM netwerke aan. Deur ’n vooraf voorgestelde

multi teiken optimiserings model as ”benchmark” te gebruik, stel ons ’n aantal EMOO

oplossings voor en vergelyk ons hul effektiwiteit deur hul impak op die werkverrigting wat

deur die AWG optimiserings proses bereik kan word, te vergelyk. Simulasie modelle wys

dat (1) verskillende EMOO algoritmes verskillende werkverrigtings patrone kan vertoon

en (2) dat goeie netwerk beplanning en werking oplossings vir ’n wye verskeidenheid van

verkeer gevalle kan plaasvind a.g.v ’n EMOO algoritme wat reg gekies word.

”Wireless Sensor Network” Topologie Optimisering

WSNs is al gebruik om belangrike funksies te verrig in ’n aantal toepassings waar menslike

beheer nie konstant beskikbaar is nie, of kan wees nie. Voorbeelde van sulke gevalle is oorlog

gebiede, seismiese metings waar aaneenlopende inspeksie en meting nodig is, omgewings

meting, militêre operasies en bewaking. Navorsing en praktiese toepassing het getoon dat

daar ’n aanvraag na die optimisering van die topologie van sulke sensors is, gebaseer op

gronde van die feit dat die posisie waar die sensor beland, die effektiwiteit van die sen-

sor kan affekteer. Ons formuleer die probleem van uitleg optimisering as ’n veelvuldige

vlak optimiserings probleem wat bestaan uit die maksimering van beide die bedekkings

area en die leeftyd van die wireless sensor netwerk. Ons stel verskillende algoritmiese,

evolutionêre, veelvuldige vlak oplossings voor en vergelyk hul werkverrigting i.t.v Pareto

oplossings. Simulasie modelle wys dat die Pareto oplossings wat gevind word lei na ver-

skillende werkverrigtings patrone en uitleg tipes.
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Chapter 1

Introduction

1.1 Background

The potential of evolutionary algorithms was first hinted at by Rosenberg [1] when he no-

ticed that genetic-based search could be used to solve multi-objective optimisation prob-

lems. However little attention was given to this field of study until the last two decades

when interest has grown considerably as indicated in journals, conferences and interest

groups on the Internet. This considerable interest can be explained by the fact that there

are still many open questions in this field of study. The first work in genetic algorithms

was produced by Holland [2]. Since then genetic algorithms have been used to solve many

problems in different fields of study. Although existing Evolutionary Multi-Objective Op-

timisation (EMOO) techniques have proven to be applicable to a number of problems,

not many algorithms have been developed when we compare with traditional methods.

We take advantage of these algorithms and use them in this work to solve some of the

problems that today’s broadband communications are faced with.

1.2 Evolutionary Multi-Objective Optimisation

Evolutionary Multi-Objective Optimisation (EMOO) comprises heuristic search methods

which mimic the evolution of natural selection. EMOOs use the principle of survival of

the fittest, that is in nature individuals compete for scarce resources for their survival and

1
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Chapter 1. Introduction 2

those that are fitter are more likely to survive and breed off-spring for the next generation.

Many multi-objective problems arise in nature . For example we may wish to minimise

the cost of routing the traffic in a network to avoid flow competition on links (interference)

while minimising the delay. These two objectives are in conflict and there is no single point

that minimises both objectives simultaneously. Flow competition avoidance can lead to

routing the traffic over longer routes with longer delays.

Unlike in the single objective optimisation case where one searches for an optimum solution,

in multi-objective optimisation problems the concept of optimality becomes vague as there

is usually no single point that can optimise all the objective functions in question at once.

Methods such as weighted sum [3] combine the two objectives into a single objective to

solve the problem as a single objective optimisation problem. However this method does

not always guarantee an optimum solution because choosing the weight vector can prove to

be a daunting task. Even if one is familiar with the problem, choosing appropriate weights

is not an easy problem because small changes in the weight vector can yield very different

solutions.

It is therefore desirable to find a set of points which present a trade-off between the objective

functions and the user can then choose between those points depending on the situation

at hand.

1.3 Why are EMOOs Suitable?

There are a number of analytical and numerical methods that handle multi-objective opti-

misation problems quite well but their ability to solve some real world problems is limited.

Stochastic optimisation techniques like Tabu search, ant colony optimisation and simu-

lated annealing have also been developed to solve mutli-objective optimisation problems.

However these methods do not guarantee to find optimal trade-off points as the solutions

obtained often get stuck at good approximations [4].

EMOOs use the concept of biological evolution to solve optimisation problems. Several

solutions can be sought in one run through the use of a population. This is because the

population is made of chromosomes each of which represents a possible solution. Although
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they do not guarantee to find very good solution points as is the case in traditional optimi-

sation problems, EMOOs have been widely used and preferred to their traditional methods

counterpart because:

• EMOOs can find a set of trade-off points in a single run using the so-called population

because each chromosome in the population represents a possible solution point from

the search space.

• EMOOs are not vulnerable to the shape of the curve consisting of the solution points

because genetic algorithms work on the encoding of the variables instead of manip-

ulating the variables themselves.

• EMOOs can handle complex problems with discontinuities, noisy functions or even

disjoint feasible spaces.

1.4 Literature Review

In recent years, Evolutionary Multi-Objective Optimisation (EMOO) algorithms have been

used in a number of applications ranging from computer science, engineering, manufactur-

ing, telecommunication etc. A comprehensive list of both Masters and PhD theses can be

found at the Coello website [5], indicating a growing interest in this field.

Simple genetic algorithms have been used to solve the problem of routing in computer net-

works. Mitsuo Gen et al. [6] use a simple genetic algorithm to solve the bi-criteria network

optimisation problem including the Maximum Flow problem (MXF) and the Minimum

Cost Flow problem (MCF). They found a set of trade-off points that give a possible maxi-

mum flow with minimum cost in a network. A faster genetic algorithm for finding network

paths is presented in [7]. The authors claim to have found some flaws in [6] and present

their new algorithm for solving the shortest path problem. It is based on the methodology

of dynamic coding of the priority of vertex and gene weights. Further genetic algorithms

and their variants are used to solve different problems in networks as seen in [8, 9, 10].

Apart from finding a set of paths to route traffic, evolutionary algorithms have been used

in designing networks such as WDM and mobile telecommunication networks. A genetic
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algorithm was used to solve the routing and wavelength assignment problem in WDM

networks [11]. The problem is formulated as a single and a multi-objective optimisation

problem. A hybrid approach is used and it is based on k-shortest pre-computed paths from

each source destination pair. A function that expresses the frequency of occurrence of a

link in different source destination paths is used to evaluate the fitness of the chromosome.

Another genetic algorithm based methodology for optimising multi-service convergence

in metro WDM network is developed in [12]. An optimisation model is developed and

EMOOs are used to solve the Multi-Objective Problem (MOP). An Arrayed Waveguide

Grating (AWG) based network is considered with the aim of providing high throughput

and low delay connectivity. Recent studies have shown that AWG has the potential for

providing a good throughput-delay performance in metropolitan area networks. However

several parameters need to be set, including software and hardware parameters. The study

found that the solution to the MOP can be very useful in the planning and operation of a

variety of traffic scenarios.

A multi-objective genetic algorithm for radio network optimisation is studied in [13]. In

this study, the author formulates the problem of placing a Base Station (BS) in a radio

network as a MOP. Placing a BS is a complex problem as it involves setting up different

antennas at different pre-defined sites. However determining the number of antennas and

their respective configurations may prove to be a complex exercise. Thanks to the powerful

capabilities of EMOO, they have been used to solve this problem and the results found in

real life situations are very encouraging [13].

Further network designs are studied in the case of Wireless Sensor Networks (WSN). A

multi-objective genetic algorithm for the automated planning of a wireless sensor network

to monitor a critical facility is investigated in [14]. The authors examine the placement of

sensor nodes in an optimal way. Sensors are deployed to the ground from an aircraft. An

EMOO is then used to design a WSN that provides clear assessments of movements in and

out of the critical facility. At the same time the design should minimize both the likelihood

of sensor nodes being discovered and the number of sensors to be dropped. Finally, the

optimisation of the WSN is investigated in [15]. In this paper, the multi-objective GA

is used to maximise both the network coverage and the lifetime in a WSN. The sensing

and communication ranges of sensor nodes are kept the same and the results reveal two

interesting types of layouts [15].
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In this thesis we look at the design of core networks, WDM in metro networks and also

in wireless sensor networks. We use some of the models described above and execute the

models on different EMOO algorithms. We compare the results obtained from different

algorithms and draw our conclusions based on the performance of each algorithm.

1.5 Thesis Contributions

Traffic Engineering (TE) and Network Engineering (NE) are two management methods

which are commonly used in communication networks to achieve Quality of Service (QoS)

agreements between the offered traffic and the available resources. TE moves traffic to

where the resources are located in the network while NE moves the network resources to

where traffic is offered to the network. In this thesis we use Evolutionary Multi-Objective

Optimisation (EMOO) algorithms to optimise objective functions that reflect real situ-

ations in communications networks. Some of the functions are TE objective functions

consisting of finding the paths to route the traffic offered to a network, and others are

NE objective functions consisting of assigning the minimum number of wavelengths to the

computed paths in Routing and Wavelength Assignment (RWA) settings. We also con-

sider functions that express the optimal settings of a network by selecting the optimal

working parameters for both hardware (equipment) and software (protocol) components of

a network as these have a significant impact on the performance of a network. In Wireless

Sensor Networks (WSNs), we consider objective functions which do not reflect hardware or

NE requirements directly but seek to optimise the proper placement of nodes where they

are deployed and also maximise their duration of use.

The main contributions of this thesis are

Routing and Wavelength Assignment (RWA) For Fixed IP Back-
bone Networks.

Routing and Wavelength assignment (RWA) is a problem that has been widely addressed

by the optical research community. A recent interest for this problem has been raised by the

need to achieve routing optimisation in the emerging generation multilayer networks where
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data networks are layered above a Dense Wavelength Division Multiplexing (DWDM)

network. We formulate the RWA as both single and multi-objective optimisation problems

which are solved using a two-step solution where (1) a set of paths is found using genetic

optimisation and (2) a graph coloring approach is implemented to assign wavelengths to

these paths. The experimental results from both optimisation scenarios reveal the impact

of (1) the cost metric used which equivalently defines the fitness function (2) the algorithmic

solution adopted and (3) the topology of the network on the performance achieved by the

RWA procedure in terms of path quality and wavelength assignment.

Metro WDM Network optimisation Using Arrayed Waveguide
Grating (AWG) Calibration.

An Arrayed Waveguide Grating (AWG) is a device used as a multiplexer or demultiplexer

in WDM systems. It can also be used as a drop-and-insert element or a wavelength router.

Taking a closer look at how the hardware and software parameters of an AWG can be fine

tuned in order to maximise throughput and minimise the delay, we formulate the AWG

network optimisation as a multi-objective optimisation problem solved using evolutionary

optimisation solutions based on genetic algorithms. Using a previously proposed multi-

objective optimisation model as a benchmark, we propose several EMOO solutions and

compare their efficiency by evaluating their impact on the performance achieved by the

AWG optimisation process. Simulation reveals that (1) different EMOO algorithms can

exhibit different performance patterns and (2) good network planning and operation solu-

tions for a wide range of traffic scenario can result from a well selected EMOO algorithm.

Wireless Sensor Networks Layout optimisation Using Genetic op-

timisation.

WSNs are vital in situations where humans cannot be available for certain tasks. For

example in hostile areas such as war zones or in seismic sensing where continuous inspection

and detection are needed, sensor networks become unavoidable. It is widely recognized

that there is a need to optimise the layout of wireless sensor networks on the ground since

the position on which they land may affect the sensing. Looking particularly at sensors
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deployed in a military zone from an aircraft, we formulate the layout optimisation as a

multi-objective problem that simultaneously maximises both the network coverage (area)

and the lifetime of a WSN. We slightly change the way energy is depleted in a sensor node.

In [15] the energy of a node is depleted by an arbitrary unit each time a node transmits

information. In our case, for every transmission of information, the energy is depleted by

an amount that is proportional to the distance to which the information is sent. We use

several EMOO genetic algorithms to optimise these objective functions. The experimental

results reveal that the Pareto solutions found lead to different performance patterns and

types of layouts.

1.6 Thesis Outline

After presenting the problem at hand and the need to use evolutionary multi-objective

optimisation, chapter 2 introduces evolutionary multi-objective optimisation giving a com-

prehensive background on genetic algorithms and in particular multi-objective genetic al-

gorithms. We describe a few EMOO algorithms giving their working principles and their

characteristics that differentiate them from other algorithms. We also present the main

issue faced by the multi-objective optimisation problem namely, guiding the search to-

wards the optimal region and also maintaining the diversity in the population. We explain

the methods used by recent algorithms in order to tackle these problems. Such strategies

include elitism, fitness sharing and scaling, cell based density and the crowding distance

method.

In chapter 3, we solve the static Routing and Wavelength Assignment (RWA) problem. This

problem is solved in two steps. First, we use both single and multi-objective optimisation

in order to find plausible paths from each source destination pair in a network with the

aim of routing different types of traffic on these paths and eventually introducing network

load balancing. We use a cost function that takes into account link interferences in the

case of single objective optimisation. In the case of multi-objective we add more objectives

namely the weighted link delay as in the case of an M/M/1 queuing system. The results

show that we can find plausible paths that are suitable for different types of traffic. Second,

we use the paths to form a logical network before we use a graph coloring algorithm to
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assign wavelength in the network.

Chapter 4 presents a model which optimises the hardware and software components of

an Arrayed Waveguide Grating (AWG) in a single metropolitan WDM network. AWGs

have shown to provide high throughput and low delay connectivity in metropolitan and

local area networks [12]. However the performance of an AWG largely depends on its

software and hardware parameters. We make use of evolutionary genetic algorithms to

solve this problem by finding suitable parameter combinations. The results are a set of

points that represent throughput delay trade-off points that can also provide low delay for

delay tolerant traffic.

Chapter 5 looks at a WSN where both its coverage and lifetime are maximised. To simplify

the model, we consider sensors where the sensing radius is equal to the communication

radius. This is not always the case in real situations. Designing an effective topology for

a wireless network is never an easy problem especially in the case where the sensor nodes

are dropped randomly. Once the sensors are deployed they must be positioned properly

for their efficient operation. We look particularly at sensors deployed from an aircraft in a

military zone. Their positions on the ground are not certain and the aim is to avoid them

overlapping and being too close. On the other hand they must not be too distant as this

may affect the lifetime of the sensors. This seems to be a difficult problem to solve and

we make use of evolutionary multi-objective optimisation algorithms to solve the problem.

The solutions are points that give us different type of topologies with different values of

the lifetime which may be suitable for specific applications.

We conclude with chapter 6 where we briefly outline the main issues and findings of this

work. We present our contributions and what we have learned from this work. We also

mention challenges and future research work.
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Chapter 2

Evolutionary Multi-Objective
Optimisation

2.1 Introduction

The concept of optimisation in the case of single objective optimisation is straightforward

in the sense that any optimisation technique will find the optimum value (if it exists) of

the objective function. However, real world problems often have more than one objective

function, and in this case we may wish to optimise these objectives simultaneously, giving

rise to the Multi-Objective Problem (MOP). Multi-Objective optimisation, also known as

Multi-Criteria optimisation consists of optimising a number of objective functions subject

to some constraints. The concept of optimum becomes somewhat vague because the ob-

jectives to be optimised are always in conflict. For example we may want to optimise two

objectives, to minimise the cost and improve the reliability of some item. It is clear that

a highly reliable item will cost more and the item with less cost will have low reliability.

It will therefore be difficult to find a solution that optimises both functions at the same

time. The technique is then to find a set of trade-off points which give acceptable values

with respect to each objective.

EMOO has attracted the interest of many researchers since early 1960 [16]. The pioneering

work in the field of MOP was first carried out by Vilfredo Pareto whose name was attributed

to the set of points that constitute an acceptable solution in MOP. There are a number

of traditional methods (direct and gradient methods) to solve MOP problems. However

9
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some problems have mathematical properties (such as discontinuities, noise) that makes it

difficult for the traditional methods to solve. In the past two decades, genetic algorithms

have emerged as a new and promising trend to solve MOP problems. They are able to

eliminate the problems faced by the traditional methods with their successful application

in different fields of study [17]. The category of optimisation techniques that uses GA to

solve MOP problems is referred to as genetic multi-objective optimisation.

2.2 Genetic Algorithms

Working principles

Genetic algorithms are heuristic search methods which are based on the idea of evolution.

They mimic the process of survival of the fittest [18]. It is known that in nature, individual

compete for scarce resources for their survival and those that are fitter are more likely to

survive to the next generation and breed offspring to pass them onto the next generation

while weak individuals die out and disappear.

Living creatures are organisms made of cells which contain chromosomes. Each chromo-

some contains genes each of which encodes a trait. Possible settings of a trait are called

alleles. In order to reproduce, genes recombine and thereafter produce new chromosomes.

However in optimisation terms, a chromosome is usually encoded as a string of zeros and

ones, although there exist other types of encoding [19]. Genes are the bits that form the

chromosome (a set of strings) and an allele would be the value of the gene which may differ

depending on the gene.

Using the so-called population (the set of chromosomes), GAs can explore possible solutions

simultaneously because each individual of the population represents a possible solution in

the search space. Instead of working on the parameters of the problem itself, GAs work on

the encoding of the parameters and then evaluate the goodness of each individual in the

population using a fitness function.

The ability of GAs to perform better on a particular problem relies on how the algorithm

manipulate the chromosomes, how it selects them and how it reproduces new chromosomes
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for the next generation. There are more GA operators used depending on the problem at

hand but the common ones are reproduction, crossover and mutation. During reproduction

individuals are selected to participate in the breeding of new offspring for the next gen-

eration. Crossover involves two chromosomes which combine and exchange parts of their

genes in order to breed new offspring. Mutation involves altering part of the chromosome

by randomly changing part of its genes. Mutation is used in order to introduce diversity

into the population. Crossover and mutation are each used depending on a probability

which determines how often these operations should be carried out.

Basic GA Algorithm

Below we describe the basic GA algorithm and show the corresponding flow chart in figure

2.1.

1. Generate a set of chromosomes (population) at random.

2. Evaluate the fitness of each chromosome in the population.

3. Reproduce a new population by repeatedly carrying out the following operations:

(a) Select two individuals in the population according to their respective fitnesses.

(b) Given the crossover probability, crossover the two selected individuals in order

to breed new offspring.

(c) Mutate the new offspring according to the mutation probability.

4. Replace the old population with the new generated population.

5. Verify if the terminating condition is satisfied to end the algorithm otherwise return

to the second step.
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Figure 2.1: GA flowchart

2.3 MOP Basic Concepts

2.3.1 What is MOP

The problem of MOP consists of simultaneously optimising k objective functions subject

to m constraints which may be inequalities and/or equality constraints. The solution

to the problem is a vector of n decision variables, which presents the trade-off solution.

Throughout this work, we will assume minimisation unless otherwise stated. Formally the

MOP can be formulated as follows:

minimise F (~x) = (f1(~x), . . . , fk(~x))

subject to gi(~x) ≤ 0, i = 1, . . . , m

where ~x ∈ Rn is a vector of n decision variables, fi(~x) are the objective functions and gi(~x)

are inequality constraints.
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2.3.2 Pareto Optimality

Definition:

Pareto dominance A vector u = (u1, . . . , uk) is said to dominate a vector v = (v1, . . . , vn),

written as u � v, if and only if every component ui is less than or equal to vi, and at least

there is one component in u which is strictly less than the corresponding component in v.

This can be formulated as: u � v ⇐⇒ ∀i ∈ 1, . . . , k, ui ≤ vi and ∃i ∈ 1, . . . , k : ui < vi.

Pareto optimality A solution x ∈ U is said to be Pareto optimal if there is not any other

solution x′ ∈ U whose objective vector u′ = F (x′) dominates u = F (x). In other words,

a solution whose objectives can not be improved simultaneously by any other solution is

Pareto optimum.

.
.

. .

.
..

.
Q

P

S N

Z

W

R

V

Cost

Delay

Figure 2.2: Example of a Pareto front

Figure 2.2 shows two axes namely cost and delay. Suppose we wish to minimise both cost

and delay in a telecommunication network. Point Q has a small delay but a high cost

and point W has a small cost with high delay. It is therefore not right to say that either

point is better than the other. In addition, points S and Z have the same characteristics

as points Q, W and none of them can be classified, in any way, as better than the other

points. In fact there are many such points which are known to be non-dominated or non-

inferior points. The curve through these points determines the Pareto front. There are
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other points in the space like the points P, R and V . Taking a look at point V in particular

and comparing it to S, we can see that V has a small value of cost and high value of delay

while point S is the other way around. This raises the question as to whether V is also

in the Pareto set. Since Z has values of both cost and delay which are smaller than V ,

the answer to our question is that V is not in the Pareto set. Points like V are termed

dominated or inferior points.

One thing that is worth mentioning is the difference between the Pareto-Optimal set

and the non-dominated set. When solving MOOP, it is usually difficult to find all non-

dominated solutions due to the large size of the search space. In most cases a sample of the

search space is considered. Points that are not dominated in the sample are known to be

non-dominated solutions. Such points then form a non-dominated set. On the other hand,

a Pareto-optimal set is a non-dominated set when the whole search space is considered

[19].

When dealing with multi-objective optimisation we need to keep the following two aspects

in mind:

• The search must be oriented towards the Pareto-optimal region. This can be accom-

plished by applying proper selection mechanisms and fitness assignments.

• Maintain a diverse population so as to avoid premature convergence with the aim of

getting a well distributed Pareto-optimal front [20].

2.4 MOP Solution Approaches

There are several methods aimed at solving MOP problems. The following are some of

the most well known evolutionary genetic algorithms: Vector Evaluated GA (VEGA) [21],

Multi-objective GA (MOGA) [22], Niche Pareto GA (NPGA) [23], the Pareto Envelope-

based Selection Algorithm for multi-objective optimisation (PESA) [24], the Pareto Archived

Evolutionary Strategy (PAES) [25], the Non-dominated Sorting GA (NSGA) [26], the

Strength Pareto Evolutionary Algorithm (SPEA) [27], the Dynamic Multi-Objective Evo-

lutionary Algorithm (DMOEA) [28], the Rank-density-based Multi-objective GA (RDGA)
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[29] and the Micro-Genetic Algorithm for Multi-objective Optimisation (Micro-GA) [30].

We can classify the above algorithms into three different groups [31].

• Aggregating approaches: this approach reduces the MOP problem to a single objec-

tive optimisation problem by combining (using summation) all objectives into one

objective using weight coefficients.

• Non-Pareto approaches: the selection of individuals for the next generation is based

on the special handling of the objectives and the way in which the population is

manipulated.

• Pareto based approaches: the selection of the new population is based on the domi-

nance of each individual in the population.

Aggregating Approaches:

2.4.1 Weighted Sum Approach

These approaches eliminate the MOP problem and combine the objective functions into

a single objective function in order to form a single objective optimisation problem. This

involves adding the objectives together using weighting coefficients for each objective. The

result is a scalar optimisation problem which can be formulated as follows

min

k
∑

i=1

wifi(~x) where

k
∑

i=1

wi = 1 (2.1)

and the weights wi represent the relative importance of each objective.

This method of solution is straightforward because it is easy to implement. However, the

solution to the problem largely depends on the weights wi. Changing the weights by a

small value can lead to a large change in the obtained solution. Usually the objective with

a high preference is assigned a high coefficient, that is a high value of w, although such a

weight does not reflect in a proportional fashion. In general these weights reflect how to

locate the Pareto points when they are altered because every time we change the weight

vector we also guide the search in a different direction [32].
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The advantage of using this method is that it is easy to implement and it is guaranteed

that the entire set of Pareto points can be found provided that the objective function is

convex [33]. However in case of non-convex functions this claim is no longer true. The

difficulty that arises from this method is to choose appropriate weights and this may prove

to be difficult even if one is familiar with the optimisation problem.

Many variants of this method that can be found in the literature. Murata, Ishibuchi and

Tanaka [34, 35] proposed an approach termed as the random weight approach. Instead of

keeping the weights fixed throughout the run of the algorithm, weights are changed at each

stage during the run of the algorithm. This helps the algorithm to conduct a search in

multiple directions [3].

Gen and Cheng [3, 36] proposed another approach known as the adaptive approach.

Weights are also changed during the run of the algorithm but this approach utilises some

useful information from the population of the current generation in order to re-adjust

weights so as to obtain a search pressure towards a positive ideal point. To find a point

that maximises or minimises all objectives simultaneously is usually difficult. An ideal

point or an ideal positive point is a point that optimises all objectives at the same time

but in multi-objective optimisation such a point is usually not attainable.

Non-Pareto Based Approaches

2.4.2 Vector Evaluated Genetic Algorithm: VEGA

The first algorithm implemented to solve MOP was the Vector Evaluated Genetic Algo-

rithm(VEGA) by David Schaffer [21]. He slightly modified the simple genetic algorithm

by changing the selection operator. Given k objective functions to be optimised, the pop-

ulation is first divided into k sub-populations. The selection operator is applied so that

it selects individuals from each sub-population. The selected individuals are proportional

to each objective function. Next, all k sub-populations are merged and shuffled to form a

population of a fixed size N on which the normal crossover and mutation operations are

carried out.

Although VEGA was proven to be successful in a number of problems, see for example [3],
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Schaffer noticed two problems with his algorithm: first, the algorithm produced solutions

that were non-dominated in local sense because of the limitation of their non-dominance

in the current population [19]. Second, he noticed another problem known as speciation.

Speciation causes bias towards certain regions or individuals in the population. It leads the

algorithm to converge towards a particular optimum region after a number of generations.

To solve the two problems above, Schaffer proposed two heuristics namely the non-dominated

selection heuristic and the mate selection heuristic [19]. The first heuristic penalises domi-

nated individuals in order to avoid their possible massive participation in the next genera-

tion. The second heuristic introduces another type of selection different from the traditional

genetic algorithm where an individual is mated with another one which has the maximum

Euclidean distance in performance space from it [33].

Pareto Based Approaches

Pareto-optimality can be used at least in two ways to drive a rank-based selection mecha-

nism within the genetic algorithm. One way is to rank individuals according to the front

they belong to and the other one ranks individuals based on the number of individuals by

which it is dominated.

2.4.3 Multi-Objective Genetic Algorithm: MOGA

MOGA is one of the multi-objective optimisation algorithm that uses the concept of Pareto

optimality to rank individuals. Fonseca and Fleming [37] proposed a mechanism of ranking

in this fashion. First, all non-dominated individuals are identified and assigned rank 1.

For each of the rest of individuals, the total number of individuals that strictly dominates

it is first found, then the rank of this individual is equal to the number of individuals that

dominates it plus one. For example, an individual xi dominated by 8 other individuals in

the current population will have rank 9.

The fitness assignment is carried out in the following way [37].

1. Sort the entire population according to the rank of each individual.
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2. Assign a fitness to each individual according to some function, usually linear but not

necessarily by interpolating from the individual with rank 1 to the one with rank

n ≤ N as proposed by Goldberg [18].

3. Average the fitness of the individuals with the same rank so that all of them will be

sampled at the same rate.

As noted by Goldberg and Deb [38], this type of blocked fitness assignment is most likely

to produce a large selection pressure which might in turn cause premature convergence. To

avoid this problem, MOGA uses a niche-formation method to distribute the population over

the Pareto-optimal region. Instead of performing sharing on parameter values, Fleming and

Fonseca [37] used sharing on objective function values. As a consequence of this sharing

scheme, two different vectors with the same objective function values cannot exist at the

same time. As a matter of fact this is undesirable for the decision maker (DM) [19, 32]. A

good aspect of MOGA is that it is relatively easy to implement and quite efficient.

2.4.4 Non-dominated Sorting Genetic Algorithm: NSGA

Srinivas and Deb [26] proposed another algorithm based on the concept of Pareto domi-

nance. Individuals are classified into different layers before crossover and mutation opera-

tion are applied.

At first the population is ranked based on their dominance. All non-dominated individuals

are identified and combined to form the first front. These individuals are then assigned a

large fitness value which is proportional to the population size. The reason for assigning

the same fitness value to these individuals is to give them an equal chance to reproduce.

Later these individuals are shared with their dummy fitness value with the aim of keeping

a diverse population. The fitness is dummy because it is not the fitness of the individ-

ual evaluated on the objective functions. For more information on sharing, the reader

is referred to [39]. These individuals are then temporarily ignored and another layer of

non-dominated individuals is considered and assigned a dummy fitness value smaller than

that of the previous front.

NSGA only differs from the simple GA in the way selection is performed. In this case

stochastic remainder proportionate selection is used. In addition, the classification of indi-
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viduals into several fronts and the use of the sharing operation makes NSGA different from

a simple GA. Individuals in the first front always get the maximum fitness value hence they

always appear more often than the rest of the population in the next generation. This helps

to search for non-dominated regions and results in quick convergence of the population to-

wards non-dominated regions. Sharing is also used to help distribute the search towards

the non-dominated regions. The efficiency of NSGA lies in the way multiple objectives are

reduced to a dummy fitness function using a non-dominated sorting procedure (hence the

name NSGA) [26]. Another good aspect of NSGA is its capability of handling any number

of objectives as well as minimisation and maximisation. NSGA also handles both real and

binary coded variables.

The first version of this algorithm was much criticised for its high computational complexity

of non-dominated sorting, lack of elitism and the need for specifying the sharing parameter.

However Deb et al [40] developed a new version of this algorithm which seems to have

alleviated the three problems cited above. Figure 2.3 taken from [26] shows a flow chart of

the algorithm.

2.5 Population Diversity

We mentioned in subsection 2.3.2 that the crucial point in EMOO is to keep a diverse

population in order to obtain solutions that are uniformly distributed over the Pareto front.

Failure to do so may lead to a phenomenon known as genetic drift. Several approaches

have been proposed to tackle this problem. The following section describes some of those

approaches that have been implemented in a number of evolutionary genetic algorithms

and have proven to work well.

2.5.1 Fitness Sharing

The idea of fitness sharing was first proposed by Goldberg and Richardson [41] and later

by Fonseca and Fleming [22] when they investigated the existence of multiple local optima

for multimodal functions.

Fitness sharing drives the search in unexplored regions of a Pareto front by reducing the
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Figure 2.3: NSGA flowchart

payoff in densely populated areas. Individuals located in such areas are penalised using

some penalty method [42]. The shared fitness fshared of an individual i having fitness fi is

given by:

fshared = fi/ni

where ni is the niche count. A niche count is an estimate of the number of individuals with

whom the fitness fi is shared. The niche count is

ni =

N
∑

j=1

sh(dij)

where N is the population size and dij is the distance between the individuals i and j.
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The distance dij can either be genotypic or phenotypic based. For chromosomes encoded

as binary strings, the Hamming distance is usually used. The Euclidean distance is used

on the other hand when sharing is linked to real parameters of the search space. However,

it was reported that sharing based on phenotypic distance usually performs better than its

genotypic counterpart [43].

The most widely known sharing function is

sh(dij) =















1 − (dij/σs)
α if dij < σs

0 otherwise

(2.2)

where σs denotes the threshold of dissimilarity (also known as the distance cutoff or the

niche radius) and 0 < α ≤ 1 is a parameter that changes the shape of the function. If

α = 1 then sh(dij) becomes linear.

The sharing function describes the level of similarity between two individuals. It takes a

value of one if the two individuals are equal and zero if the distance between them is bigger

than a pre-set threshold of dissimilarity. It returns a value between zero and one if the two

individuals have an acceptable level of dissimilarity.

The advantage of using sharing is that it encourages search in unexplored regions and it

also favours formation of stable sub-populations [43]. However its disadvantage is that σs

must be set beforehand and this requires us to know how far apart the optima are. It is

also a computationally expensive exercise. Another advantage is that some methods have

been developed to increase the effectiveness of sharing [22].

Fitness Scaling

An alternative to improving the efficiency of fitness sharing is to use fitness scaling. A

scaled function increases differentiation between optima and reduces deception [43]. A

common method used to scale the fitness function is to use a power scaling. The scaled

fitness of an individual i is given by:
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fi = fβ
i /ni

where β is a parameter to which power fi is raised and ni is the niche count. The difficulty

with a scaling function lies in the choice of β. If β is large we may end up with highly

fit individuals in the population which can lead to premature convergence. On the other

hand if the value of β is too low, differentiation between optima can be insufficient and

this can prevent the sharing method from appropriately detecting optima. However in

order to prevent premature convergence and increase the efficiency of the sharing method,

annealing the scaling power during the search is recommended [29].

2.5.2 Crowding Distance

Crowding distance methods insert new elements in the population by replacing similar

elements. This approach aims at obtaining a uniform spread of solutions along the Pareto

front. NSGA, the EMOO that was extensively used in this thesis, uses crowding distance.

In NSGA, the crowding distance is used to break the tie between two individuals during

the tournament selection process. Individuals i and j are first selected randomly, and if

they are both in the same front, the one with higher crowding distance is selected. If they

are not in the same front, the one with lower rank is the winner.

There are variants of crowding distance methods such as standard crowding, deterministic

crowding and restricted tournament selection [42].

2.5.3 Cell Based Density

Like the sharing method, cell-based density is also used to keep the population diverse.

This approach divides the objective space into n-dimensional cells where n is the number

of objectives. The density of a cell is defined as the number of the potential solutions in

that cell. Figure 2.4 shows an example where the density of the top left cell is 3 because

it contains 3 solutions while the density of the top right cell is zero because it does not

contain any solution. The density of a particular solution is equal to the density of the cell

in which it is found. Some of the evolutionary algorithms that use this method include
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SPEAII [44] and DMOEA [28].

The main advantage of using the cell-based density approach is that a global density map of

the objective function space is obtained as a result of the density calculation [42]. Another

advantage of this approach is that it is computationally efficient when compared to niche

or neighbourhood-based density techniques.

There exists yet another method for diversifying the population known as clearing. It

is similar to fitness sharing but it is based on the concept of limited resources of the

environment [45].

f1

f2

Figure 2.4: Example of cell density for two functions f1 and f2.

2.5.4 Elitism

Elitism is a mechanism that ensures that highly fit individuals are passed onto the next

generation without being altered by genetic operators. It guarantees that the minimum

fitness of the population can never decrease from generation t to generation t + 1.

In case of single objective GA, an elite is the best solution in a run, and therefore survives to

the next generation. However in multi-objective GA, an elite is a non-dominated solution.

To implement elitism in single objective GA is straightforward. However, due to the large
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set of elites in multi-objective GA, this becomes difficult. Multi-objective GA use two

strategies to implement elitism [42].

i. Maintain elitism solutions in the population.

ii. Storing elitist solutions in an external list.

NSGAII [40] uses the first approach of elitism in order to drive the search towards the

Pareto front regions. The advantage of keeping elites in the populations is its ease of im-

plementation. The second approach keeps elites in an external list and then reintroduces

them in the population afterwards. Such elites are kept in a separate list which is updated

each time a new non-dominated solution is found.

Using elitism usually results in a more rapid convergence of the population toward an opti-

mum solution. However in some applications elitism may improve the chances of locating

an optimal solution while in others it does not, but leads to a premature convergence.
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Chapter 3

Routing and Wavelength Assignment

3.1 Introduction

The scalability of the Internet as seen in the last decade has led Internet Service Providers

(ISPs) to deploy new technologies that improve the utilisation of the network resources.

Most of these networks are Internet Protocol (IP) networks that run on top of the reliable

Transmission Control Protocol (TCP). Some of the protocols that run on top of TCP (on

the application layer) that are utilised by many users include FTP, TELNET, HTTP. The

need to manage and efficiently utilise the available network resources is inevitable. Data

packets are routed along the network paths according to a certain protocol. The most

commonly used protocol in intra-domain routing is the Open Shortest Path First (OSPF)

protocol. In OSPF, traffic is routed along the shortest path.

To a certain extent, we may say that IP networks manage themselves [46]. Every host

that implements TCP adjusts its sending rate to the bandwidth available on the path

to the destination. Routers in their turn periodically compute new paths in the network

depending on changes in the network topology. This has made the Internet an extremely

robust communication network despite problems that it is faced with like rapid growth

and occasional failures. Despite the robustness of an IP network, the mechanisms that

are in place do not ensure the efficient operation of the entire network. Different types of

traffic traverse the same link. Each type of traffic may have its own routing specifications.

For example some traffic may tolerate latency like http traffic while some other traffic

25
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(like Voice over IP) may not. Some of the links may be overloaded while other links are

lightly loaded or underutilised. For example in the sample network shown in figure 3.1,

every packet from S1 to D1 will most likely take the path 1 − 7 − 8 − 5 while the route

1− 2− 3− 4− 5 may be underutilised. This shows the need to split traffic not only among

shortest paths but also among other paths which may be underutilised.

1 2 3 4 5

6 7 8 9

10 11 12 13 14

S1

S2

S3

D 1

D 2

D 3

Figure 3.1: An example of a simple network

3.2 Routing and Wavelength Assignment

3.2.1 Overview

Optical networks that use Wavelength Division Multiplexing (WDM) offer solutions to

the high bandwidth demands that many telecommunication companies experience today.

Optic fiber can carry huge amounts of data where several communication channels are

multiplexed together to transport information from one node to another. The Internet

backbone is mainly made of optic fiber where wavelength routing is used to connect different

access nodes. Data is mainly routed in the optical domain between these access nodes,

that is to say no conversion from electronic to optical or optical to electronic takes place.

Networks that only operate in the optical domain are called all-optical networks.

To be able to connect two nodes in the optical domain a connection similar to circuit

switched network needs to be established. This is accomplished by first determining the

path between two nodes and then allocating a free wavelength on all links between the

source and the destination nodes. The similarity with circuit-switched network lies in

the fact that all bandwidth on this path will be reserved for this connection until the

connection is terminated. Once the connection is terminated, the associated wavelength
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will be available on all links along the path. Such an all-optical path is referred to as a

lightpath and it may traverse more than one fiber link without any intermediate electronic

processing [47]. When a lightpath operates on the same wavelength across all fiber links

that it traverses, the lightpath is said to satisfy the wavelength continuity constraint. The

wavelength continuity constraint dictates that no two identical wavelengths (i.e. of the

same color) should be routed across the same path. The problem that arises in wavelength

routed networks is that, given a certain number of lightpaths, we need to route each

lightpath and assign a single wavelength to it. This problem is known as the Routing and

Wavelength Assignment (RWA) problem.

3.2.2 Formulation of the RWA Problem

The routing and wavelength assignment problem can be stated as follows. Given a set

of lightpaths that need to be established on the network, and a given constraint on the

number of wavelengths, determine the routes over which these lightpaths should be set up

and also determine the wavelengths which should be assigned to these lightpaths so that

the maximum number of lightpaths may be established [48].

We now define and formalise the problem in mathematical terms. We assume that there

is at most one lightpath between every source destination pair. We also assume that no

conversion from electronic to optical or optical to electronic takes place. Let λsd denote

the traffic (in terms of a ligthpath) from any source s to any destination d. λsd = 1 if

there is a lightpath from s to d; otherwise λsd = 0. Let F sd
ij denote the traffic (in terms of

number of lightpaths) that is flowing from source s to destination d on link ij. F sd
ij is one

if there is a lightpath between s and d and ij is a link on that path. The problem can now

be formulated as a linear programming problem

Minimise: Fmax (3.1)

such that:

Fmax ≥
∑

s,d

F sd
ij ∀ ij (3.2)
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∑

i

F sd
ij −

∑

k

F sd
jk =



































−λsd if s = j

λsd if d = j

0 otherwise

(3.3)

λsd = 0, 1 (3.4)

F sd
ij = 0, 1 (3.5)

The RWA problem is equivalent to the graph coloring problem, hence it is an NP-complete

problem [49] but several heuristics have been developed to solve the problem [50, 51]. We

do not attempt to solve the problem as described above, we instead solve the static RWA

[52] that is, first we find the routes using genetic algorithms and then use the graph coloring

algorithm [53] to solve the wavelength assignment problem. Research conducted on RWA

is mainly based on assumptions concerning traffic patterns, availability of wavelengths

converters and desired objectives. The traffic assumptions generally fall into two different

categories, dynamic and static models.

In dynamic models, requests for lightpaths between source destination pairs are not known

beforehand, they instead arrive at random and also terminate at random times. In this

case the objective would be for example to minimise the call blocking probability [47]. In

static models demands are fixed and assumed to be known beforehand. That is to say

lightpaths that are to be set up between every source destination pair are known a priori.

The objective in this case would be to accommodate these demands while minimising the

number of wavelengths used on all links.

We use fictitious African and USA networks as our test networks and solve the static RWA.

In the next section we describe the models used in order to find the routes before we present

the number of wavelengths that each routing scheme was able to find.
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3.3 Routing Problem

3.3.1 Problem Statement

We formulate the routing of traffic in emerging IP networks as both single and multi-

objective optimisation problems which we solve using classical and hybrid genetic optimi-

sations. We adopt the occurrence of links in the computed paths as a cost function used

to achieve load balancing by reducing the interference among competing flows. We adapt

the Non-dominated Sorting Genetic Algorithm (NSGA) [26] to find a Pareto front for the

multi-objective problem. This Pareto front expresses a set of solutions which represent

plausible set of paths that minimise both the interference among competing flows and the

queuing delay in the network. Using both multiplicative and additive composition rules,

we compare the quality of the paths achieved by the different evolutionary optimisation

strategies. In the rest of this chapter the following words are used interchangeably: source

and origin, vertex and node, link and edge.

3.3.2 Single Objective Optimisation

We consider a single objective optimisation model where a physical network is viewed as

a graph G = (N ,L) where N is the set of nodes and L is the set of links. S is a set of

ordered pairs consisting of origin o and destination d, that is

S = {(o, d) | o is the origin node and d is the destination node.}

In most routing schemes traffic is routed along shortest paths. As a result these paths

become overloaded thus causing a bottleneck in the network. It is therefore reasonable to

select a set of paths which may not be the shortest but are lightly loaded. The selection of

lightly loaded paths is achieved by assigning a high cost to all chromosomes that represent

paths that are heavily loaded.

Our aim is to find a set of paths by minimising a penalty function expressing the frequency

of occurrence of each link in the set of paths found between all source destination pairs.

A similar goal consists of finding a set of link weights to be used as routing metrics (cost

metrics) when finding the least cost paths.
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Problem Formulation

Problem 1

Equations (3.6) and (3.7) define the cost functions of a network. We will refer to equations

(3.6) and (3.7) as the power and the additive cost functions respectively.

Nα
l

(Cl − fl)(1−α)
(3.6)

where Nl is the number of flows traversing link l, Cl is the capacity of link l, fl is the

bandwidth used on link l and α is an arbitrary value between zero and one (0 < α < 1).

Equation (3.6) can be expressed in logarithmic form as

α ln(Nl) + (α − 1) ln(Cl − fl) + (1 − α) × ln(C⋆) (3.7)

wehre C⋆ is the maximum link capacity i.e C⋆ = maxl∈L{Cl} and the term (1−α)× ln(C⋆)

is added to avoid the expression being negative. For example if Cl = 100, fl = 30, Nl = 3

and α = 0.5 the first two terms yield −1.5749.

The main objective is to find a set of link weights that will result into finding optimal

paths minimising the functions in equation (3.6) and (3.7).

Problem 2

In a genetic optimisation setting, the optimum paths are obtained from a chromosome with

the least cost. For example if a chromosome consists of paths whose links do not appear in

any other paths, this will be the optimum chromosome. Let a chromosome be presented

as H = Pij , · · · , Pod where Pod represent a path chosen randomly from the set of all paths

found between the source o and the destination d. We define E(Pod) as the set of links in

the path Pod. Now, let K⋆ =
⋃

∀Pod∈H E(Pod). A cost cl is assigned to each link l ∈ K⋆

where cl is the number of paths in H having l as an edge.

The problem can now be formulated as an optimisation problem as follows:

Minimise G(H) =
∑

∀l∈K⋆

N cℓ (3.8)
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where N is the number of nodes in the network. As expressed by equation (3.8), the

penalty function to be minimised is expressed as a power function which is computationally

expensive. However this function (referred to as link occurrence or simply occurrence) has

been selected to differentiate low and high cost paths by setting a large gap between them.

The mathematical formulation above is derived from [54] and illustrated by Figure 3.2. The

objective function to be minimised is presented as follows. Each chromosome is associated

with a cost which measures its fitness. A cost refers to a value that the function takes

when evaluated in each chromosome and the fitness of a chromosome is a measure of this

value. The smaller the value the higher the fitness will be and vice versa.

The Genetic Algorithm

In this section we present the genetic algorithm that we have used in order to solve the

problems (3.6), (3.7) and (3.8). We also present its features as well as issues pertaining to

its implementation.

Initialization Of The Population

The daunting task in any genetic algorithm is the encoding of the chromosome to represent

the relevant problem. In this case each chromosome is represented by genes (a set of one or

more bits) which point to paths in the look-up table. Figure (3.2) displays an example of

a typical chromosome. Genes of a chromosome are generated randomly with each decimal

value of a gene representing the index of a path for a particular source destination pair.

In each source destination pair a path is selected randomly and its index is converted to

binary and so represents an actual path in the look-up table. A candidate chromosome

therefore contains genes, each one of them pointing to a path in all source destination pairs.

Therefore, from a single chromosome one gets plausible paths for all source destination pairs

in the network.

Crossover and Reproduction

Crossover is performed according to a certain probability. Unlike other typical crossovers

where two chromosomes exchange one or more bits at random, in this case the exchange

of genes is also random but in addition the exchange is done in a way that the identity of
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a path is not changed. This is to avoid a gene pointing to a non existent path index. A

roulette wheel selection is then applied to reproduce chromosomes for the next generation.

This selection method is fitness proportional, that is to say fitter individuals (with lower

cost) have a great chance of being selected and passed onto the next generation while

weaker ones (with higher cost) are less likely to be selected but left out and discarded.

Mutation

The mutation operation is carried with a small probability of 0.01; this is in hope that it

will strengthen weak individuals. This operation is also aimed at introducing diversity in

the population by bringing in features that are not presently in the parent chromosomes.

Offspring obtained from crossover are modified by randomly changing some parts of their

chromosome bearing in mind that the gene should point to a candidate path in that

respective source destination pair.

0000 0010 0100 0111

3 4 5 6 7 10

3 4 5 6 7 8 10

3 4 5 10 11 8 10

3 8 5 10 11 8 10

3 4 7 10

3 4 5 6 7 8 10

3 4 7 10

5 2 10 11 20

5 8 10 11 20

5 7 10 12 20

5 2 10 12 20

5 6 9 12 20

5 2 10 14 20

1 7 8 2 17

1 2 8 12 17

1 6 8 12 17

1 6 9 10 17

1 5 9 11 17

2 6 8 12 14

2 3 4 14

2 7 9 11 14

2 5 9 10 14

2 6 9 14

2 3 7 14

2 3 4 7 14

Chromosome

Figure 3.2: A typical chromosome: each gene encodes a path corresponding to one source
destination pair

In figure 3.2, the first block from the left shows paths from source 3 to destination 10, the

second one from 5 to 20, the third one from 1 to 17 and the last block on the right shows

paths from source 2 to destination 14. In each block a single path is randomly selected,

thus the chromosome in the figure represents possible paths from each source destination

pair in the network.
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Crossover

Mutation

Local Search

Init Population

Pass Network and Traffic

Fitness Evaluation

Fitness Calculation

Parents Selection

Offspring Generation

Replacement

Return ResultTerminate?
No Yes

Figure 3.3: MA algorithm

The Memetic Algorithm

Memetic Algorithms (MAs) belong to a class of evolutionary algorithms referred to in this

thesis as HybridGA. They use a hybrid optimisation model where local search is used

to complement the global search implemented by classical GAs to improve the genetic

fitness of the individuals through hill-climbing. Local search is used to speed up the

convergence process towards an optimal solution while at the same time avoiding premature

convergence. We consider a memetic algorithm illustrated in Figure 3.3(a) where the fitness

of each chromosome is evaluated using either of the functions in equations (3.6), (3.7) or

(3.8) depending on whether a multiplicative, an additive composition rule or link occurence

is used.

3.3.3 Multi-Objective optimisation

In the multi-objective case, in addition to the objective in equation (3.8) we add the delay

as another objective and try to minimise the two objectives simultaneously. The link delay
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is taken as in the case of an M/M/1 queueing system and it is given by fl/(Cl − fl) where

fl is the total used bandwidth used on link l and Cl the capacity of link l.

Problem Formulation

Problem 1

The multi-objective problem is :

Minimise















F (H) = 1
Cl−fl

G(H) = Nl

(3.9)

Problem 2

The multi-objective problem is :

Minimise















F (H) = fl

Cl−fl

G(H) =
∑

∀l∈K⋆ N cl

(3.10)

To solve the above multi-objective optimisation problems we have used a slight modification

of the Non-dominated Sorting Genetic Algorithm (NSGA) proposed by Srinivas and Deb

[26].

3.3.4 Multi-Objective Solution

We have used NSGA to solve our multi-objective problem. The working principles and

features of NSGA are explained in section 2.4.4. To be able to use it to solve our problem

we have added a few features that we mention below. Note that they are mostly based on

the encoding of the chromosome.

- Population encoding: Although the original NSGA solves problem encoded in both

real and binary variables, in our case we first encode all chromosomes as binary variables.

Stellenbosch University  http://scholar.sun.ac.za



Chapter 3. Routing and Wavelength Assignment 35

The length of a chromosome is not entered as an input since it is not known before hand

because it depends on the size of the network in question.

- The maximum and minimum values of the functions to be optimised are also not

known a priori, they are therefore not entered as inputs.

- Objective functions are not entered as inputs but these are calculated based on the

occurrence of an edge in a set of paths to be found at run time.

- More program features have been embedded in NSGA. For example modules that

read a network topology and traffic demands, those that find all paths leading from each

source to destination and those that evaluate the fitness of each chromosome which is later

evaluated as the objective function value.

- Finally the best population is represented in both real (representing Pareto points)

and binary (representing chromosome with acceptable routing paths) encodings.

3.3.5 Simulation Results

Single Objective

We ran both the genetic and memetic algorithms with the following parameters:

Initial population : 100; Number of generations :100; Probability of crossover: 0.9; Proba-

bility of mutation :0.01.

To solve the problem we simulated these algorithms on two test networks. The African

network (see Figure 3.12(b)) and the USA network (see Figure 3.12(a)). For the African

network we considered 930 source destination pairs with 31 nodes and 128 links. In the

USA network, we consider 506 source destination pairs and the network consists of 23

nodes with 76 links. The results found by our genetic algorithms were compared with

those found by the HybridGA that uses the cost function described in equations (3.6),

(3.7) and (3.8) and then route the traffic so that the above cost functions are minimised.

We looked at the similarity the paths found by each algorithm. We give as input to the

program, two sets of paths from each algorithm and the number of nodes in the network.
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Out of the total number of routes (routes used by HybridGA and GA) we wanted to know,

from each source destination pair, the number of routes used by both algorithms, the

number of routes exclusively used by each algorithm and the number of routes that share

some links (at least one but not all) from each algorithm.

The statistics of paths found by both algorithms on the African and the USA network are

displayed in tables 3.1, 3.2, 3.3 and 3.4. From these tables we see that the statistics of

both networks change with parameter α as expected. This means that as we vary the value

of α we get different routes and performance. The first two tables (3.1 and 3.2) show the

percentage of routes used by each algorithm and the last two (3.3 and 3.4) show the route

lengths.

In column 3 of table 3.1 we observe that 41.3% of routes in the USA network are used

by both algorithms meaning that 41.3% routes of the two algorithms being compared are

identical. What is worth mentioning is that the additive function finds a larger percentage

of routes that are used by both algorithms when the value of α is 0.5. For the African

network (see table 3.2) the additive function still finds a larger percentage (31.94% ) but

this time when the value of α is 0.25. In terms of the overall number of routes that are

used by both the algorithms when all three functions are compared, we notice that the

additive function finds a larger percentage followed by the power function and lastly the

occurrence function follows.

Column 4 of tables 3.1 and 3.2 reveals 0% of routes that share some links but not all.

This means that from each source destination pair, routes found by each algorithms do not

have any link in common. Lastly column 5 and 6 of the same tables show the percentage

of routes that are exclusively used by each algorithm. For example in the last row, each

algorithm uses 36.46% of the routes and 27.08% of routes are used by both algorithms.

Tables 3.3 and 3.4 show that GA mostly uses longer paths (at least one more node) than

HybridGA. This tells us that GA will not only choose the shortest paths at times but

mostly avoid congested links as a result of paths it chooses to route on. In all cases, the

routes found by GA have a larger standard deviation, meaning that most of its paths have

lengths that vary greatly from the average length.

Figures 3.4 and 3.5 show the usage of the most used routes by the two different algorithms
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Table 3.1: Percentage of routes used by each algorithm for the USA network
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Occurrence - 24.31 % 0% 37.85% 37.85 %
α = 0.25 39.13 % 0% 30.43% 30.43 %

Power α = 0.5 38.74% 0 % 30.63% 30.63%
α = 0.75 25.49% 0% 37.25% 37.25%
α = 0.25 40.12 % 0% 29.94% 29.94 %

Additive α = 0.5 41.3% 0 % 29.35% 29.35%
α = 0.75 27.08% 0% 36.46% 36.46%

for both networks. We can see that the percentage is 100% meaning that all routes found

by the algorithms are used. Figures 3.6 and 3.7 show the percentage of route length (

number of hops) for both algorithms. Figures 3.8 and 3.9 show route multiplicity. We see

from the graph that one route is mostly used from each source destination pair and in a

few cases two routes are used. The percentage of source destination pairs using one route

is more than 90% for both algorithms. Finally, figures 3.10 and 3.11 show the routes that

are used by both the algorithms as explained above.
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Figure 3.4: Route usage for the African net-
work
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Figure 3.5: Route usage for the USA network
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Table 3.2: Percentage of routes used by each algorithm for the African network
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Occurrence - 14.41 % 0% 42.8% 42.8 %
α = 0.25 26.88 % 0% 36.56% 36.56 %

Power α = 0.5 22.47% 0 % 38.76% 38.76%
α = 0.75 17.31% 0% 41.34% 41.34%
α = 0.25 31.94 % 0% 34.03% 34.03 %

Additive α = 0.5 30.85% 0 % 34.62% 34.62%
α = 0.75 14.3% 0% 42.85% 42.85%

Table 3.3: Statistics for the USA network, displaying the maximum and the average lengths
and standard deviation
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Hybrid(Occurrence) - 8 3 1.66
α = 0.25 7 3 1.38

Hybrid (Power) α = 0.50 7 3 1.38
α = 0.75 10 3 1.84
α = 0.25 6 2 1.68

Hybrid (Additive) α = 0.50 6 2 1.68
α = 0.75 8 3 1.53

GA (Occurrence) - 12 4 2.18
α = 0.25 12 4 2.03

GA (Power) α = 0.50 12 4 1.97
α = 0.75 12 4 1.94
α = 0.25 12 4 2.07

GA (Additive) α = 0.50 12 4 2.05
α = 0.75 8 3 1.98
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Table 3.4: Statistics for the African network, displaying the maximum and the average
lengths and standard deviation

F
u
n
ct

io
n
s

&
al

go
ri

th
m

p
ar

am
et

er

M
ax

.
le

n
gt

h

av
g.

le
n
gt

h

st
d
D

ev

Hybrid(Occurrence) - 11 3 2.36
α = 0.25 9 3 1.79

Hybrid (Power) α = 0.50 3 3 1.79
α = 0.75 11 3 2.23
α = 0.25 8 3 1.77

Hybrid (Additive) α = 0.50 8 3 1.77
α = 0.75 12 4 2.26

GA (Occurrence) - 14 5 2.43
α = 0.25 15 5 2.61

GA (Power) α = 0.50 16 5 2.49
α = 0.75 15 4 2.63
α = 0.25 15 4 2.61

GA (Additive) α = 0.50 14 4 2.58
α = 0.75 14 4 2.68
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Figure 3.6: Route lengths for the African net-
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Figure 3.8: Route multiplicity for the African
network
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Figure 3.9: Route multiplicity for the USA
network

Routes used by HybridGA and GA :  17.3%

Routes that share some links:  0.0%

Routes used only by HybridGA:  41.3%

Routes used only by GA:  41.3%

Figure 3.10: Route used by both algorithms for the African network (power function with
α = 0.75)

3.3.6 Multi-Objective Optimisation

Like other evolutionary multi-objective optimisation algorithms, there is no optimum so-

lution. The term optimum means finding a set of point(s) which will give all objective

functions acceptable values to the decision maker. In case of NSGA we have run the sim-
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Routes used by HybridGA and GA :  25.5%

Routes that share some links:  0.0%

Routes used only by HybridGA:  37.3%

Routes used only by GA:  37.3%

Figure 3.11: Route used by both algorithms for the USA network (power function with
α = 0.75)

ulation on the African network where we minimised the functions in equations (3.9) and

(3.10). We ran the simulation with the following parameters:

Initial population : 200, number of generations :100, probability of crossover: 0.8,

probability of mutation :0.01, distribution index for real variable SBX crossover: 5,

distribution index for real variable polynomial mutation: 10.

The optimum paths can now be chosen by hand from the set of Pareto points which

represent a chromosome fitness. Having a chromosome at hand we can obtain the paths

from its genes that point to the paths of each source destination pair.

The simulation was run for several different parameters and it showed that more Pareto

points are obtained as the number of generations start reaching 100. However, increasing

the number of generations beyond 100 yields no further improvement.

Figures 3.13(a), 3.13(b), 3.14(a) and 3.14(b) show the Pareto fronts obtained from both the

African and the USA networks respectively using two different problems. From the figures,

we observe that the USA network has relatively small delay and cost when compared to
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Figure 3.12: The USA (a) and African (b) networks

the African network. This is because the USA network has fewer links (a smaller network)

compared to the African network.

The Pareto points obtained from both problems on both networks are displayed in tables

3.7, 3.8, 3.9 and 3.10.

What explains the larger objective function values for African network is its larger size

compared to the USA network. This leads us to a reasonable deduction that when the

network is large the cost and delay also increase. When we have a large network, we have

more paths because of more source destination pairs. This will increase the probability of

a link occurring in those paths thus increasing the cost. In case of delay, more occurrence

( a link occurs in many paths) implies that the link has a high number of flows because it

is traversed more frequently. The number of flows is proportional to the bandwidth used

on that link and finally increases the delay because the link will be heavily loaded.

The Pareto points provide us with sets of paths on which we can route different types of

traffic depending on their delay sensitivity. For delay sensitive traffic like VoIP, a Pareto

point with a delay value of 0.276 and cost 135852 (in case of the USA network problem 1)

may be a good choice. On the other hand, email traffic for instance may take any other

point with relatively high delay. In conclusion, achieving different routes with different

characteristics may be of practical importance. Instead of all traffic taking the shortest

paths and in turn overloading the network, we may use the Pareto points to give us suitable

paths for different traffic scenarios.
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Table 3.5: Table showing wavelengths for the African network

Obj. function α λ Algorithm
Occurrence − 157 Hybrid

− 78 GA
α = 0.25 85 Hybrid
α = 0.25 82 GA

Power α = 0.50 84 Hybrid
α = 0.50 81 GA
α = 0.75 162 Hybrid
α = 0.75 79 GA
α = 0.25 85 Hybrid
α = 0.25 80 GA

Additive α = 0.50 85 Hybrid
α = 0.50 79 GA
α = 0.75 126 Hybrid
α = 0.75 79 GA

Table 3.6: Table showing wavelengths for the USA network

Obj. function α λ Algorithm
Occurrence − 74 Hybrid

− 56 GA
α = 0.25 55 Hybrid
α = 0.25 53 GA

Power α = 0.50 55 Hybrid
α = 0.50 54 GA
α = 0.75 97 Hybrid
α = 0.75 61 GA
α = 0.25 55 Hybrid
α = 0.25 54 GA

Additive α = 0.50 55 Hybrid
α = 0.50 52 GA
α = 0.75 64 Hybrid
α = 0.75 53 GA
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Table 3.7: Pareto points for problem 1 for the African network

F (H) G(H)
553345 0.5489377
533021 1.238070
545926 0.9415441
536114 1.178173
535335 1.187310
534877 1.189187
544771 0.9435672
545964 0.9341992
537567 1.049727
546876 0.8583523
551092 0.5553029
529557 1.256382
551862 0.5534490
550125 0.5617487
541084 0.9512489
536371 1.173479
540738 1.001054
538564 1.002640

Table 3.8: Pareto points for problem 2 for the African network

F (H) G(H)
184000 0.1815765
183811 0.1826236
185323 0.1797125
185546 0.1796613
182209 0.1832482
185591 0.1795608
184316 0.1803357
184607 0.1797683
184399 0.1798227
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Table 3.9: Pareto points for problem 1 for the USA network

F (H) G(H)
130648 0.2915859
135517 0.2797399
132302 0.2806475
131852 0.2847039
128143 0.2923844
131317 0.2851849
133681 0.2797650
132168 0.2813254
135852 0.2764559
133678 0.2806319
131011 0.2893453
131230 0.2861803
132330 0.2806472
130527 0.2920086

Table 3.10: Pareto points for problem 2 for the USA network

F (H) G(H)
416368.6 0.6752853
408520.4 0.7565617
404133.8 0.7748202
409470.5 0.7102838
413599.9 0.6821854
406588.9 0.7596590
408310.3 0.7576518
408526.7 0.7409281
406065.3 0.7745344
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Figure 3.13: Pareto front of the African network

3.4 Wavelength Assignment

After finding a set of paths for each of the algorithms that we have described in the

previous sections we are now in the position to assign wavelengths to each set of paths.

We find the number of wavelengths but we do not route packet traffic between source and

destination nodes over the logical topology. We assume that the wavelength continuity

constraint is not violated, that means no conversion from electronic to optical or optical

to electronic takes place in the network. Once the lightpath routes are fixed the remaining

wavelength assignment problem can be represented as a graph coloring problem. Each

lightpath corresponds to a node in the graph, and two nodes are set as neighbours only if
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Figure 3.14: Pareto front of the USA network

the respective lightpaths share at least one common link. The objective is to configure a

lightpath between each node pair. The graph coloring algorithm [53] assigns the smallest

feasible wavelength channel to each lightpath in the descending order of node degree in the

graph. There are many graph coloring algorithms and each algorithm may yield different

results. The graph coloring algorithm used finds the number of wavelengths each of the

routing scheme can achieve but this number is not necessarily the optimum.
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Discussion of Results

Single Objective

The number of wavelengths depends on the size of the network. The larger the network the

more wavelengths will be assigned to it. With our two networks this was not an exception

as the African network was assigned more wavelengths compared to the USA network.

Tables 3.5 and 3.6 show the number of wavelengths obtained by both algorithms using

three different objective functions. Link occurrence is the worst as it obtains the highest

number of wavelengths in both networks. This explains the problem of a link appearing in

several paths at the same time. It not only has the bad effect of congesting the network

but also results in assigning a large number of wavelengths. In terms of the performance

of all objective functions the additive function is again the best having a minimum of 80

and 52 wavelengths for the African and the USA networks respectively. However what is

interesting is the relatively small number of wavelengths that GA was able to find compared

to hybridGA. Shortest paths are usually preferable but this choice may have to be sacrificed

at times to allow more lightpaths to be set up. GA found a small number of wavelengths

as most of its paths are also not shortest paths.

Multi-Objective

The solution to the MOP is a set of trade-off points which represent a routing scheme (set

of paths). Tables 3.11 and 3.12 show the number of wavelengths obtained in both networks

using the objective functions in equations (3.9) and (3.10). For problem 1 in the African

network, the best Pareto point in terms of the smallest number of wavelengths is the points

with values G(H) = 535335 and F (H) = 1.18 with 73 wavelengths. However the delay

is greater than 1 which is not a desirable situation in a network. For the USA network

the maximum and minimum number of wavelengths are 48 and 57 respectively regardless

of the objective function used. For problem 2 in the African network, the maximum and

minimum number of wavelengths are 71 and 82 respectively. We conclude that the small

number of wavelengths is obtained with a Pareto point having relatively high values of

both objective functions and in particular G(H).
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Table 3.11: Pareto points with corresponding wavelengths for the African network

Problem 1 Problem 2
G(H) F (H) No. of λ G(H) F (H) No. of λ
553345 0.5489377 80 184000 0.1815765 78
533021 1.238070 79 183811 0.1826236 77
545926 0.9415441 76 185323 0.1797125 76
536114 1.178173 80 185546 0.1796613 82
535335 1.187310 73 182209 0.1832482 79
534877 1.189187 81 185591 0.1795608 71
544771 0.9435672 78 184316 0.1803357 76
545964 0.9341992 88 184607 0.1797683 80
537567 1.049727 83 184399 0.1798227 80
546876 0.8583523 76 - - -
551092 0.5553029 84 - - -
529557 1.256382 80 - - -
551862 0.5534490 80 - - -
550125 0.5617487 74 - - -
541084 0.9512489 79 - - -
536371 1.173479 74 - - -
540738 1.001054 81 - - -
538564 1.002640 75 - - -

Stellenbosch University  http://scholar.sun.ac.za



Chapter 3. Routing and Wavelength Assignment 50

Table 3.12: Pareto points with corresponding wavelengths for the USA network

Problem 1 Problem 2
G(H) F (H) No. of λ G(H) F (H) No. of λ
130648 0.2915859 48 416368 0.6752853 48
135517 0.2797399 51 408520 0.7565617 51
132302 0.2806475 48 404133 0.7748202 48
131852 0.2847039 53 409470 0.7102838 53
128143 0.2923844 55 413599 0.6821854 55
131317 0.2851849 57 406588 0.7596590 57
133681 0.2797650 48 408310 0.7576518 48
132168 0.2813254 54 408526 0.7409281 54
135852 0.2764559 53 406065 0.7745344 53
133678 0.2806319 47 - - -
131011 0.2893453 50 - - -
131230 0.2861803 48 - - -
132330 0.2806472 50 - - -
130527 0.2920086 51 - - -
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Chapter 4

Optimisation of an AWG-based
Metro WDM Network

4.1 Introduction

One of the key issues in today’s telecommunications networks is the need to communicate

faster and to be able to provide information when we need it, how we need it and where we

need it. The number of Internet users has increased dramatically in recent years as reported

by most service providers [10, 55, 56]. It has also been observed that many Internet users

are using more and more bandwidth-intensive networking applications such as voice and

video. This gives rise to the need for having network infrastructures in place that meet

such high bandwidth demands. Such infrastructures should provide more bandwidth than

current high speed networks such as ATM.

Recent studies [57, 58] have indicated that optical single hop Wavelength Division Mul-

tiplexing (WDM) networks have the potential to provide high network throughput and

low delay connectivity in metropolitan and local area settings [12]. This is the case for a

WDM network using an Arrayed Waveguide Grating (AWG). However, the best perfor-

mance of such networks highly depends on the parameter settings of the AWG. In order to

get a better throughput-delay performance, hardware parameters such as the degree of the

underlying AWG and the degree of the combiners and splitters must be set properly. In

addition the software parameters, Medium Access Control (MAC), such as node back-off

probability or the number of control slots must also be set correctly.

51
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This chapter addresses the issue of optimising an AWG-based metro WDM network with

the objective of improving performance by simultaneously maximising the throughput

and minimising the delay. This optimisation problem involves setting up the network

parameters consistently. These two objectives are in conflict and choosing appropriate

parameters is a difficult task due to the large search space. We make use of genetic

algorithms to set up the parameters and the results are Pareto points with either high

throughput and moderate delay or low delay but with moderate throughput. In real life

such points are of practical importance depending on the traffic type we may wish to route.

For example, HTTP or FTP traffic are not very delay-sensitive and points which yield high

throughput and moderate delay may be well suited here. On the other hand delay sensitive

traffic such as Voice over IP (VoIP) may be well suited for such points where the delay

is low with a moderate throughput. All such points constitute the Pareto front which is

important in the provisioning and planning of new networks in order to determine the best

architecture. It is also crucial in controlling the efficient operation of installed network

hardware [12].

We make use of EMOO algorithms to solve the problem of maximising throughput while

minimising the delay in an AWG-based metro network. To achieve this, we use four

different EMOO algorithms. The results obtained by all the algorithms are very similar.

However the performance of each algorithm differs from one another. The same problem

is developed and solved in [12] using the Multi-Objective Genetic Algorithm (MOGA)

[22]. Our contribution is that we have solved the problem with more than one EMOO and

compared the results obtained by each as well as the performance of each algorithm. Before

we describe the network and model used, we first devote the section below to describing

WDM system.

4.2 Wavelength Division Multiplexing

A single fiber can transport several multiplexed channels to form a higher speed channel.

Several technologies are in place to multiplex channels but most of them do not use a large

portion of the available fiber bandwidth. Time Division Multiplexing (TDM) can be used

in either the optical or the electrical domain. In TDM, each channel is allocated a time
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slot to transmit information and then waits for its turn after other channels have had the

opportunity to transmit. Other methods exist such as Sub-Carrier Multiplexing (SCM),

Space Division Multiplexing (SDM) and Code Division Multiplexing (CDM). All these

methods do not utilise a large portion of fiber bandwidth either because of limitations in

sub-carrier frequencies and data rates by the available electrical and optical components

or they become too complex and costly to utilise [59]. The solution to utilising a large

portion of the bandwidth available in fiber is to use wavelength division multiplexing.

With WDM using fiber optic technology, we can achieve enormous bandwidth (up to 50

Tera bits per second), low signal attenuation (up to 0.2dB/km), low signal distortion, low

power requirements and low cost [60].

Different signals can be independently transmitted on a single fiber with each of them

located at a different wavelength. Data can be routed on these wavelengths where each

wavelength acts as a communication path by acting as the signature address of the origin,

destination or routing. To be able to route traffic on these wavelengths we need equipment

that is wavelength selective so as to allow recovery, routing and transmission of specific

wavelengths. Some of the devices that operate in WDM systems include optical filters,

multiplexers and demultiplexers, splitters, star couplers, wavelength routers, optical cross-

connects, wavelength converters, transmitters and receivers. The reader is referred to

[61, 62] for details concerning the operational principal and physical properties of all the

above components.

In this chapter we will focus on a particular component known as the Arrayed Waveguide

Grating (AWG) also known as the Optical Phased Arrayed (PHASAR), Phase Arrayed

Waveguide Grating (PAWG) or Waveguide Grating Router (WGR). Figure 4.1 shows an

example of a simple WDM system. Optical signals at n different wavelengths from separate

transmitters are combined in a multiplexer as shown on the left of the diagram. After

being transmitted through a high-bandwidth optical fiber, the combined optical signals

are demultiplexed at the receiving end to each receiver. Each receiver selectively recovers

only one wavelength by using a tunable optical filter.
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Figure 4.1: An example of a simple WDM system

4.3 Arrayed Waveguide Grating

4.3.1 Overview

Arrayed Waveguide Grating is a device that allows multiple wavelengths to be combined

and separated in a wavelength division multiplexing system. It can be used as a dispersion

slope compensator, wavelength router and drop-and-insert element [62]. Its popularity can

be attributed to its capabilities of multiplexing/demultiplexing a high number of optical

signal at a relatively low loss [63]. Several networks ranging from Local Area Networks

(LANs), Passive Optical Networks (PONs) and national scale networks have been increas-

ingly using AWG as a passive wavelength router. AWG is efficient due to its passive

wavelength reuse. Being passive implies that it inherently requires no electric power to

perform its task.
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4.3.2 Architecture of AWG and Working Principles

An Arrayed Waveguide Grating can achieve three functions. These include periodic wave-

length routing, spectrum slicing and wavelength reuse. Wavelength reuse is crucial in

increasing the throughput-delay performance, which is the subject of this chapter. An

N ×N AWG can simultaneously accept N input signals (wavelengths) at each of its input

ports and route each signal to a particular output using one Free Spectral Range (FSR). If

we have a 4× 4 AWG and we launch 8 wavelengths in one of its input ports, the FSR will

be 4. This means that every fourth wavelength will be routed to the same output port.

No collisions occur in a AWG because it is a non-blocking device [64].

The physical degree of an AWG, denoted by D, is the number of wavelengths per FSR.

In the example above the degree is four and it is generally referred to as an 4 × 4 ar-

rayed waveguide grating. Using R fixed FSRs, R ∈ N, we can achieve R simultaneous

transmissions between a particular AWG input port and an arbitrary AWG output port.

AWG can also achieve spectrum slicing. Spectrum slicing means implementing broad-

casting in WDM networks that are based on wavelength-sensitive devices [65]. When N

broadband Light Emitting Diodes (LED) are launched in an input port, an AWG slices the

broadband spectrum in such a way that in each FSR, one slice is routed to either AWG

output port. Therefore with R FSRs, there are exactly R slices at each FSR. While both

wavelengths and broadband signals can be simultaneously used at the same AWG input

port, their use differs. Wavelengths serve as channels to carry data whereas broadband sig-

nals are well suited for carrying control information. Since each wavelength and broadband

signal can be applied in all AWG input ports at the same time and no channel collision can

occur at an AWG input port, a D×D AWG can therefore spatially reuse each wavelength

D times. Also, listening to a slice restricts the receiver to wavelengths that originate from

the same AWG input port as a slice [65].
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4.4 AWG-Based Network

4.4.1 Network Architecture

Figure 4.2 shows an example of a D × D AWG-based simple network. It consists of N

different nodes each equipped with a single fiber for receiving information on one side

and another fiber on the opposite side for sending information. Each transmitting fiber is

connected to a wavelength-insensitive S×1 combiner. A combiner is a device that combines

several input optical signals (usually from fibers) into one or several output fibers. Each

receiving part is equivalently connected to a wavelength-insensitive 1×S splitter. A splitter

is a device that splits multiple optical signals from a single optical signal. In this considered

network a combiner collects data from S attached nodes and a splitter distributes signals

to S nodes at each output port. Each node can transmit on different wavelengths at the

same time, thus increasing the degree of concurrency. Since every node is connected to

a combiner on its receiving part and also to a splitter on its transmitting part, opposite

combiners and splitters must have the same number of ports. However this should not

be regarded as a restriction on combiners and splitters. They may have different degrees

where we wish to expand the network. In this thesis, only combiners/splitters of the same

degree are considered in order to ensure uniformity of power losses throughout all nodes

[65].

4.4.2 Medium Access Control (MAC) Protocol

Figure 4.3 shows an example of a data packet handled by a MAC protocol. There are three

reasons why data handling is performed by the MAC protocol [65].

1. Since we are considering a single-hop network, there are no intermediate nodes or

alternative routes in our network. As a result packet switching is handled by the

MAC sublayer because of the absence of the network layer.

2. Fast transceivers with a limited tuning range are used in order to avoid latency. As

a consequence there are fewer channels than nodes. This results in nodes sharing

channels, calling for the MAC protocol for the control of these channels.
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Figure 4.2: An example of a AWG-based simple network

3. In order to provide full connectivity, each transceiver has to be tuned over at least

one FSR. This is because of the routing characteristics of an AWG. Hence all nodes

share all wavelengths raising the need of a MAC protocol.

A frame is divided into F slots, F ∈ N, where the length of the slot equals the transmission

time. The frame is divided into two major slots namely M slots with 1 ≤ M < F and F−M

slots. The first M slots are mainly for control information processing. The coordination

of control messages takes place in M slots prior to transmission. Data packets are sent

in the remaining F − M slots allowing receivers to be tuned to any arbitrary wavelength.

Now we describe how the MAC protocol works from both the transmitting and receiver

end. From the transmitting part, if a node has no data to send, the light emitting diode

and the Laser Diode (LD) remain idle. When a node has data to send, say node j with
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Figure 4.3: A typical frame of a data and control packet

1 ≤ j ≤ N , and this packet arrives at node i 6= j, 1 ≤ i ≤ N , node i’s LED broadcasts a

control packet in one of the M slots of the frame allocated to the AWG input port where

node i is attached to. The data packet can be of variable length L where 1 ≤ L ≤ F and

the units are described in slots.

On the receiving part, every node learns about all activities of the other nodes and the

success or failure of its own control packets. This is achieved by each node tuning its own

receiver to one of the corresponding channels during the first M slots of each frame. In

frame k, 1 ≤ k ≤ D, each receiver collects the control packets originating from nodes that

are attached to AWG input port k [58].

4.5 Formulation of The Multi-Objective Problem

4.5.1 Network Overview

In this section we formulate the multi-objective optimisation problem by first describing

the network based on an AWG [66]. The following model is based on the one developed in

[67]. We consider an arrayed waveguide grating with degree D. Each node in the network

is connected to S × 1 combiners on one side and to 1 × S splitters on the opposite side.

In total the network connects N = DS nodes. There are R adjacent FSRs at each input
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Table 4.1: Table displaying parameters of the optimisation model

Hardware parameters

N : Number of nodes in the network.
Λ : Number of usable wavelengths at each AWG port.
D : Degree of AWG.
R : Number of FSRs.
S : Degree of combiner and splitter.

Software parameters

F : Number of slots in a frame.
M : Number of reservation slots in a frame.
K : Length of short packets in slots.
p : Re-transmission probability of a control packet in ALOHA contention.

Traffic parameters
σ : Packet generation probability.
q : Probability that a given packet is long.

Objective functions
TH : Average network throughput in transmitting nodes.

Delay : Average packet delay in slots.

port, each consisting of D wavelengths. Therefore the total number of wavelengths at each

AWG port is Λ = DR. The MAC protocol runs an attempt-and-defer type of protocol,

that is to say a data packet is only transmitted after the corresponding control packet has

been successfully transmitted [12].

The transmission time of a packet is divided into cycles. Each cycle consists of D frames

which in turn consists of F slots. Each frame is divided into control and data slots.

The length of the slot is equal to the transmission time of the control packet. At the

beginning of transmission cycle, a node that is not backlogged generates a new packet with

probability σ. It generates a long packet of size F slots with probability q. The probability

of generating a short packet of size K = F −M is 1− q. The transmission protocol of the

control packets in slots M is based on slotted ALOHA contention. The protocol requires

all nodes to be tuned to one of the LED slices carrying the control information [12].

4.5.2 Objective Function

We now describe the model derived in [67]. We consider the case where M ≤ F . Let E[L]

be the expected number of successfully scheduled long packets that originate from a given

fixed AWG input port to a given fixed AWG output port per cycle. Similarly, let E[S] be
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the number of such short packets. Let v be the fraction of idle (not backlogged) nodes in

steady state. The arrival rate of control packets to a given control slot is given by

β =
S

M
[σv + p(1 − v)]. (4.1)

Let Z denote the number of successful control packets destined to a given output port in

a given frame. The probability that Z is equal to k is given by:

P (Z = k) =

(

M

k

)

(βe−β

D

)k(

1 −
βe−β

D

)M−k

, k = 0, . . . , M. (4.2)

Let q̃ be the probability that a given packet corresponds to a long data packet. Since long

packets are more difficult to schedule and thus generally need more transmission time than

short packets, we have q̃ > q. Finally the expected number of scheduled long packets is

E[L] =
M

∑

k=0

E[L|Z = k]P (Z = k) (4.3)

=
M

∑

k=0

min(k, R)q̃

(

M

k

)

(βe−β

D

)k(

1 −
βe−β

D

)M−k

= q̃

[

R −

min(R,M)
∑

k=0

(

M

k

)

(βe−β

D

)k(

1 −
βe−β

D

)M−k

(R − k)

]

= q̃
[

R −

min(R,M)
∑

k=0

P (Z = k)(R − k)
]

= q̃ϕ(β).

where ϕ(β) = R −
∑min(R,M)

k=0 P (Z = k)(R − k).

Similarly the expected number of scheduled short packets is
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E[S] =

R
∑

k=0

(1 − q̃)kP (Z = k) + (1 − q̃)R

M
∑

k=R+1

P (Z = k) (4.4)

+

M
∑

k=R+1

[

k−R
∑

j=1

γj

k−R
∑

m=j

(

k − R

m

)

(1 − q̃)mq̃k−R−m

]

P (Z = k)

= (1 − q̃)

[

R −
R

∑

k=0

(R − k)P (Z = k)

]

+

M−R
∑

j=1

γj

M−R
∑

m=j

M
∑

k=m+R

(

k − R

m

)

(1 − q̃)mq̃k−R−mP (Z = k)

=: h(q̃, β),

where γj accounts for the packing of the short packets into the schedule and is given

depending on these two cases:

Case 1. If ⌊F/K⌋ − 1 > 0

γj =
∑

m:m≤vj

(

R

m

)

q̃(1 − q̃)R−m

Case 2. If ⌊F/K⌋ = 1

γj =















1, if j < (D − 1)R⌊F−M
k

⌋

0, otherwise

The average throughput of the network is therefore given by:

TH = D2FE[L] + KE[S]

FD
(4.5)

Equation (4.5) is defined as the average number of transmitting nodes in a slot or the

average number of transmitted packets data packets per frame.

In equilibrium, the number of serviced long packets and short packets is equal to the number

of newly generated long and short packets [12]. The probability that a given control packet

corresponds to a long data packet is:

q̃ = q
Sσv

Dϕ(β)
(4.6)
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and

(1 − q)
Sσ

D
v = h(q̃, β). (4.7)

We used code from Numerical Recipes in C++ [68] to obtain the values of E[S] and E[L]

respectively. To solve the following problem we first find the values of E[L] and E[S]. But

first we numerically solve for v from equation (4.7). We then introduce the obtained value

of v into equation (4.1) to obtain β which is in turn inserted into equation (4.3) to obtain

ϕ(β).

The values of ϕ(β) and v are inserted in equation (4.6) to obtain the value of q̃. Fi-

nally we solve for E[L] and E[S] from equations (4.3) and (4.4) respectively using EMOO

algorithms.

Since v is the fraction of idle nodes in steady state, it takes on values between zero and

one. We have set the number of nodes to 320, if there are 60 nodes in steady state then v

will be 0.1875. β is the arrival rate of control packets and it therefore takes positive values.

However the system is assumed to have nodes which can only hold one data packet and

one control packet in the buffer at a time [67]. At last, q̃ is a probability and therefore

takes its values between zero and one.

The mean packet delay is defined as the average time period is slots from the generation

of the control packet corresponding to a data packet until the transmission of the data

packet. The average delay is

Delay =

[

S

D
(

E[L] + E[S]
) −

1 − σ

σ

]

DF. (4.8)

We now determine the decision variables and the constraints imposed on them. Almost

all parameters (see Table 4.1 ) take integer values except for the packet re-transmission

probability p which takes real values in the interval [0, 1]. The hardware decision variable

D is greater than two, D > 2 and D ≤ Λ where Λ is the maximum number of wavelengths

channels. We restrict D to values which are powers of two because the number of ports in

commercially available photonic equipments is a power of two.

R is also an integer such that R = Λ/D. The larger R, the more parallel channels we
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will have and hence the larger the output. Combiners and splitters are arranged in such a

way that minimises the required degree S; which in turn minimises the splitting loss in the

combiners/splitters. Hence we set S = ⌈N/D⌉. The variable F can take any values greater

than 1, while the variable M is restricted between 1 and F inclusive. However no particular

values are imposed on M and F , instead we let the algorithms find the appropriate ones.

4.6 Experimental Results

We present our experiment results based on the simulations we performed using differ-

ent EMOO algorithms. These include the Non-dominated Sorting GAII [40], the Multi-

Objective GA [22], the Pareto Archived Evolutionary Strategy [25] and the Micro-Genetic

Algorithm for multi-objective optimisation [30]. Our objective functions, throughput and

delay, have F and M as decision variables; the rest of the parameters are given as in-

puts. The algorithms then find suitable combinations of such variables which give the best

acceptable solutions.

Each of the four algorithms solves the problem in a slightly different way depending on the

selection method used and the way the population is kept diverse. However they all have

certain elements in common. First a set of chromosomes is randomly generated. These

chromosomes represent candidate solutions to the problem. Each chromosome is then

evaluated against the objective functions in order to find its fitness. Since we are solving

a MOP problem, fitter individuals are identified based on their dominance. Mutation is

applied to chromosomes so as to introduce diversity and strengthen weaker individuals

whereas crossover breeds new individuals using a combination of two individuals. In the

case of a binary mutation a bit in a chromosome is flipped and for a real binary mutation

a small value is either added to the chromosome or subtracted from it. Chromosomes that

are non-dominated are given a bigger chance of being selected and participate in the next

generation. After maximum generation only non-dominated individuals will make part of

the solution. For more details on how genetic algorithms are used in order to optimise

functions, the reader is referred to [18].
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4.6.1 Parameter Settings

In all our numerical experiments we have set the number of nodes to 320 and the maximum

number of wavelengths at each AWG port to 8. That is N = 320 and Λ = 8. We allow σ,

p, and q to take values between zero and one inclusive. We restrict the values of F and M

in [1, 100] such that 1 ≤ M ≤ F . We only consider a 2× 2 and a 4× 4 AWG that is to say

D can only take two values namely 2 and 4.

For genetic algorithm parameters we set the population size of 100, the maximum gen-

eration to 100, for NSGAII and MOGA, and for PAES and Micro-GA the maximum

population was set to 5000. Further parameters such as the probability of crossover and

the probability of mutation probabilities were set to 0.9 and 0.01 respectively. We discuss

the results from the obtained Pareto points using different combinations of parameters

and then evaluate the performance of each EMOO genetic algorithm making a comparison

between them.

4.6.2 Solution Approaches: EMOO Algorithms

We used the four algorithms which all solve multi-objective optimisation problems. NS-

GAII [40] and MOGA [22] were described in chapter 2 sections 2.4.4 and 2.4.3 respectively.

We now briefly describe the working principles of the other two algorithms namely PAES

and Micro-GA. For more details, the reader is referred to [25] and [30] respectively.

Micro-GA uses traditional genetic algorithm operators such as tournament selection, two

point crossover and mutation with a small population to reinitialise the process of gen-

erating the Pareto front. To maintain diversity, it uses an adaptive grid similar to one

described in section 2.5.3. This cell based density method together with elitism provide a

good technique to solve multi-objective problems in a way that is computationally efficient.

Micro-GA uses three different forms of elitism with only one non-dominated vector being

arbitrarily selected in each generation and copied to the next generation. In addition, it

uses an archive, a place where identified non-dominated solutions are temporarily kept.

These non-dominated individuals are introduced in the population afterwards and some of

them are used in the initial population in order to start a new evolutionary cycle.

PAES also uses elitism and cell based density as a method to keep the population diverse.
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Starting with one randomly generated chromosome, PAES finds good Pareto points in the

following way. First a copy of this chromosome is made and then mutated in order to

produce a new chromosome. If the new candidate solution is found to be non-dominated it

is archived. The archive is a way for not only storing non-dominated individuals but also

used as a pool for parent selection.

We begin by comparing the performance of an AWG having degree two and four respec-

tively. We observe from figure 4.4 that for the same parameters an AWG with degree four

performs much better as it produces not only considerably higher throughput but reduces

the mean delay by half. This is as expected because as we increase the degree of AWG we

are able to use more wavelengths which increases the network throughput and decreases

the delay. However we notice the exponential behaviour of the two scenarios. For a degree

two AWG, the delay explodes just before it reaches 16. This behaviour is observed in all

our experiments and it tells us that there is a certain limit to the traffic that the network

can handle, anything else will lead to long queues thus causing large delays.
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Figure 4.4: Pareto front obtained for σ = 0.9
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Traffic Analysis

We observe from figure 4.5 that low traffic (small value of σ) will provide relatively low

throughput depending on the value of q. When we have a large transmission probability of

long packets we are more likely to have a large number of short packets to transmit thus

resulting in a large throughput and a small delay. For q = 0.8 we have a large delay of up

to more than 2500 slots whereas for q = 0.3 the delay is as low as 1000 slots. The reason

behind this is that there are exactly (D − 1)R retransmission slots for short packets in

each cycle of the AWG input ports. Furthermore, having a large fraction of long packets

results in more failures of packets scheduling. This will in turn require more and more

retransmissions of the corresponding control packets. As a consequence larger delays will

be observed.

A small value of σ does not only achieve low delay but also a low throughput. This can

be explained by the fact that a small number M of control slots is sufficient to ensure a

reasonably large success probability in the control packets contention. This happens when

an idle node generates new packets at the beginning of a cycle with a small probability

σ [12]. A small value of M will yield a small frame length F and in turn will yield short

cycle length DF resulting in small delays.

Figures 4.6 and 4.9 on the other hand show the Pareto front obtained from relatively high

traffic having a probability of packet regeneration of σ = 0.9. The two figures show that

for a low value of q we have low delays whereas for a high value of q we have high values of

the mean delay. We also observe an increase in the traffic regeneration probability which

results in an increase in the throughput of the network. What we know is that we can only

schedule at most R long packets and (D − 1)R short packets at each D AWG input port

in a single cycle. We can at most use a total of Λ scheduled long packets and Λ(D − 1)

short packets per cycle in the entire network. However short packets are allowed to take up

the transmission slots of long packets. Therefore when D is large, the network will allow a

large number of short packets to be scheduled which results in a larger throughput. This

is a because of the capability of an AWG to spatially reuse all Λ at all D ports of an AWG.

However a larger D may increase the delay in the network if we keep the frame length

constant. This is a result of a larger cycle length DF , which increases the delay incurred

by the control packet pre-transmission coordination and re-transmissions, which operate
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Figure 4.5: Pareto front for σ = 0.1, q = 0.3 and q = 0.8

on a cycle basis [12].

4.6.3 Comparison of the Algorithms

All of these algorithms use Pareto dominance to evaluate the goodness of a solution. They

also use elitism in order to provide convergence while keeping the population diverse. While

NSGAII and MOGA use fitness sharing to diversify the population, PAES and Micro-GA

on the other hand use cell based density.

We begin with our comparison by looking at the number of generations against the number

of Pareto points found by NSGAII and MOGA. Figures 4.10 and 4.11 show the number of

Pareto points found by the two algorithms as the evolution cycle evolves. The maximum

generation is set to 100 and we observe that NSGAII finds 200 as early as from the 20th

generation. On the other hand MOGA takes longer to stabilise as the number of Pareto

points steadily increase before remaining constant at the 65th generation. NSGAII thus

finds more Pareto points more quickly than its MOGA counterpart. However we cannot

judge on this basis that NSGAII is a better algorithm than MOGA. A lesson to learn from
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Figure 4.6: Pareto front of an 2×2
AWG for σ = 0.9 and q = 0.9
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Figure 4.7: Pareto front of an 2×2
AWG for σ = 0.9 and q = 0.4
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Figure 4.8: Pareto front of an 4×4
AWG for σ = 0.9 and q = 0.9
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Figure 4.9: Pareto front of an 4×4
AWG for σ = 0.9 and q = 0.4
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here is that to increase the number of generations may in some instances leads to a large

number of Pareto points. On the other hand a high number of maximum generations will

not necessarily improve the number of Pareto points as is observed in case of NSGAII and

MOGA after 20 and 65 generations respectively.
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Figure 4.10: Generation counter
vs number of Pareto points for
NSGAII
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Figure 4.11: Generation counter
vs number of Pareto points for
MOGA

Similarly figures 4.12 and 4.13 show the number of Pareto points obtained by both PAES

and Micro-GA respectively. One thing that is noticeable is that the maximum generations

of both PAES and Micro-GA are greater than those of NSGAII and MOGA. Micro-GA

finds more Pareto points before it changes the behaviour around generation 300 to 550 then

continues finding more Pareto points before it stabilises just after the 1000th generation.

From there on the number of points remains constant but a few down peaks are observed

indicating a slight change in the number of points. On the other hand PAES finds points

but does not stabilise until generation 2000. However a few fluctuations are observed

indicating the change in the number of Pareto points obtained just after 2000th generation.

This behaviour can be explained by the nature of genetic algorithms themselves which are

sensitive to parameters settings and operators used.

Next we show the Pareto front obtained by all the four algorithms. They all display the

same behaviour except, for the number of Pareto points found at each generation, they
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Figure 4.12: Generation counter
vs number of Pareto points for
PAES
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Figure 4.13: Generation counter
vs number of Pareto points for
Micro-GA

are almost the same. Figures 4.14, 4.15,4.16 and 4.17 show different Pareto fronts. What

is noticeable from all the graphs is the shape of the Pareto front which is the same for all

algorithms as expected. However the difference also lies in the way the points are located

along the curve. NSGAII seems to allocate these points evenly thus forming a smooth

curve along the two axes. Both PAES and MOGA have points concentrated between 7

and 8 while Micro-GA also tries to spread the points but not as much as NSGAII.

There might be many reasons why the different algorithms behave differently in finding

trade-off points. First of all each problem may have specific parameter settings such as

crossover probability, population size, mutation probability and the number of genera-

tions. For the sake of a fair comparison we have kept the same population size for both

NSGAII and MOGA. In addition MOGA uses fitness sharing on objective function values

whereas NSGAII uses sharing on the dummy fitness of each individual and this fitness is

proportional to the population size. To rank individuals, NSGAII keeps them in different

fronts and then assigns them different ranks according to their respective fronts before

the stochastic selection process is applied. On the other hand MOGA first identifies all

non-dominated individuals and assigns them rank one. For the rest of individuals each

one is assigned a rank that is proportional to the number by which it is dominated. The

ranking scheme can affect the final solution because selection is carried out based on these

Stellenbosch University  http://scholar.sun.ac.za



Chapter 4. Optimisation of an AWG-based Metro WDM Network 71

ranks.

In terms of execution speed we have run all our simulations on a 1.73 GHz Pentium IV ma-

chine with 512 RAM. It took 2.8 seconds for NSGAII to run and 0.47 seconds for MOGA.

Apart from a good spread of Pareto points that NSGAII finds, it is also worth mentioning

that MOGA found the lowest points with delay 2.9694 slots and a corresponding through-

put of 40.0148 packets per frame and also the lowest run time.

We also compare trade-off points found by PAES to those found by Micro-GA. They both

use archives to keep their non-dominated individuals and use cell density as a way to keep

diversity in the population. Examining figures 4.16 and 4.17 we see that Micro-GA finds

points which are well spread out between delay values ranging from 4 to 8 while most

delay values for PAES are concentrated between 7 and 8. However we also see that PAES

finds delay values slightly below one as shown in table 4.2. Both PAES and Micro-GA use

archives and divide the solution space into grids depending on the number of objectives.

For example if we have two objectives the solution space is divided into squares and if the

number of objectives is three the solution space is divided into cubes. For PAES the size of

the archive indicates the number of desired solutions and the number of subdivisions of the

solution space in the grid is used to encourage diversity. On the other hand Micro-GA uses

the archive to keep non-dominated individuals [30]. It also uses an adaptive grid similar

to the one used in PAES in order to encourage diversity in the population. However this

adaptive grid requires two parameters namely the expected size of the Pareto front, that is

the number of desired solutions points, and the number of positions in which we will divide

the solution space for each objective. This number of positions is similar to the number of

subdivisions in PAES and in these experimental results we set it to 15. The archive size for

both algorithms was set to 200. Despite similarities in the two algorithms, their respective

working principals are quite different thus explaining the slight differences in the obtained

results. The way the population is initialised and the selection process is different. On the

running time issue it took PAES 1.0 second while Micro-GA took 0.53 seconds.

Although these algorithms have shown a slight difference in the Pareto points obtained the

general results are almost the same as they all find Pareto fronts having the same shape.

The issue of time also depends on the implementation of each algorithm and based on

these differences one cannot judge that one algorithm is better than the other.
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Figure 4.14: Pareto front for NS-
GAII
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Figure 4.15: Pareto front for
MOGA
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Figure 4.16: Pareto front for
PAES
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Figure 4.17: Pareto front for
Micro-GA
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Table 4.2: Pareto points for PAES
Mean Delay Throughput

0.77 39.79
2.45 39.84
3.86 39.79
3.97 39.84
4.12 41.34
5.26 58.76
6.00 79.87
7.12 182.73
7.95 3895.04

Table 4.3: Pareto points for Micro-GA
Mean Delay Throughput

4.00 39.7778
4.24 42.33
5.01 53.25
5.55 65.09
6.07 82.75
6.49 105.41
7.02 162.83
7.50 322.84
7.95 3974.58

Having performed simulations on four different algorithms we can now conclude by high-

lighting what we have observed. To this end a performance measure is needed in order to

classify which of the algorithms has produced better results. Assessing the performance

measure of EMOO is a multi-objective optimisation problem on its own. However the three

most important aspects that can be used to assess the performance are [69]:

1. Maximise the number of Pareto points found.

2. Assuming we know the true Pareto front, we must minimise the distance of the Pareto

front found by the algorithm with respect to the true Pareto front.

3. The Pareto front must be smooth and as uniformly distributed as possible.
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Table 4.4: Pareto points for NSGAII
Mean Delay Throughput

4.000005 39.77
4.515496 45.66
5.003341 53.09
5.495291 63.52
6.036289 81.02
6.530263 108.25
7.009696 160.66
7.500816 318.74
7.960000 3977.75

Table 4.5: Pareto points for MOGA
Mean Delay Throughput

2.9694 40.0148
4.11628 40.983
5.04577 53.9384
5.60567 66.5515
6.20554 88.9328
6.80361 136.013
7.03839 169.491
7.53625 351.372
7.95992 3974.28

Knowing the shape of the true Pareto is not possible [69] and our case is not an exception

due to the nature of the problem we are solving. However points 1 and 3 were taken into

account. In terms of the number of Pareto points all algorithms found the same number

of Pareto but at different maximum number of generations with NSGAII finding the total

number of Pareto at the lowest maximum generation. In terms of finding Pareto points

with fewer generations NSGAII was the first, followed by MOGA then Micro-GA and

finally PAES. In terms of the smoothness of Pareto front NSGAII found the smoothest as

seen from figure 4.14. MOGA also found one that is relatively smooth with PAES and

Micro-GA trailing. Based on these observations one would rank NSGAII as an algorithm

with the best performance on this particular problem.
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Chapter 5

Layout Optimisation of a Wireless
Sensor Network

5.1 What are Sensor Networks ?

Wireless Sensor Networks (WSN) consist of a large number of nodes. Usually when a large

number of devices collaborate wirelessly and asymmetrically in a many-to-one data flow,

they also constitute a sensor network [70]. These devices may be cameras, tiny computers

or microphones. Sensor nodes (herein referred to as sensors) may perform different tasks

such as sensing, communicating and processing. They are used to monitor environments,

sensing may differ depending on the application. It may be seismic, acoustic, chemical,

or physiological. Depending on the sensing, sensors are applied to provide home security,

machine failure diagnosis, surveillance, animal or plant monitoring, military operations

and chemical or biological detection. Sensors with different capabilities and processing

powers may be deployed in the same field. However in a WSN three types of nodes exist:

these include sensor nodes, relay nodes and sink nodes. The sensor node performs the task

of reporting any activities happening in its surroundings. A relay node acts as a transit

node and thus receives information and passes it to other nodes near it. A sink node acts

as a Base Station (BS) as in cellular networks. All other nodes send their information

to the sink node and the sink sends all information via satellite to a home base station

where the information is processed. Every sensor can communicate or sense within a

certain distance. A unit disk is usually considered for this matter and the distance of

75
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communication/sensing is referred to as the communication/sensing radius. Sensing or

communication may be achieved either by radio waves or light [71].

The area of deployment of WSN may depend on the application. Such areas may be

wooded, mountainous or urban. The major problem with sensors is their limited source of

energy. They operate on battery power and once the node is deployed, its battery cannot

be replaced. The first important aspect of WSN is therefore to maximise the available

energy in each sensor. The deployment of sensors may be random or deterministic. In

the deterministic case, each sensor is placed in a pre-defined location with the objective

of using the least number of sensors. In random deployment, for example in an airdrop,

a large number of sensors is usually deployed because of the uncertainty of their landing

position on the ground. The second important aspect of a WSN is coverage. When sensors

are deployed, they must cover an area that is as large as possible. Coverage is fundamental

and crucial as it reflects on how well the target field will be monitored or observed by the

sensors.

5.2 Sensor Coverage

When we deploy sensors we must keep in mind how they should be placed in order to cover

a larger area. Sensors must cover a certain area or monitor certain points in a terrain.

Different types of coverage have been studied in WSN [72]. They can be classified into

three categories [73]: area coverage, point or target coverage and barrier coverage. In area

coverage, the objective is to cover the whole monitored field. Point or target coverage

addresses the issue of covering a set of discrete points or targets whose locations are known

before hand. Finally, barrier coverage consists of finding a path in a sensor field that every

point of this path satisfies a certain application-specified property.

The coverage of an area of targets must be complete [72]. It is such an important factor

that Meguerdichian et al. [74] considered it as a measure of the Quality of Service (QoS)

of the sensing function.

Figure 5.1 shows area coverage where a square must be covered by four circles. Figure 5.2

shows point coverage where the targets are the three dashed squares inside the big square

which must all be covered. Lastly, figure 5.3 shows the path which must be fully monitored
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by sensors.

Figure 5.1: Area coverage Figure 5.2: Point coverage Figure 5.3: Barrier coverage

5.3 Sensor Design Issues

Sensors come in different types with various sizes, weights and cost restrictions which

impact resource availability. They are not only limited in power but also in processing

and communication capabilities. They can be organised and collaborate together in order

to perform larger sensing tasks. Each sensor may have its own specifications and may

be designed to perform a specific task but sensors of the same type are usually deployed

together. For example, the temperature and relative humidity sensor MEP510 by Crossbow

Technology Inc. is of size 6.35 cm × 4.13 cm × 3.81 cm and of weight 89.8 grams [72].

Generally, a sensor can be in one of the following four modes or states: transmit, receive,

sleep and idle. In the sleep state, the radio is turned off and in idle mode the sensor

is neither receiving nor transmitting any information. The power usage for this WINS

Rockwell seismic sensor for transmit, receive, idle and sleep operational modes are: 0.7W ,

0.36W , 0.34W and 0.03W respectively. The power consumed during sensing is 0.02W [73].

5.4 Sensor Energy Consumption

Once sensors are deployed in the field, the objective is to have them operate for as long as

possible so that they can collect as much information as needed. However we can only limit

the energy consumption up to a certain level using different mechanisms. Every activity
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in the network consumes energy. When a node transmits, receives or is idle, its energy

is depleted. Once the energy is exhausted in a node, such a node cannot do anything

anymore and therefore no longer forms part of the network. Several studies have been

conducted in order to seek strategies that help reduce the energy consumption in sensors

[75, 76, 77, 78]. The time that a WSN takes in operation before it ceases to function

is referred to as the network lifetime. More precisely, the network lifetime is the period

from the network setup to the time that the deployed network cannot provide adequate

coverage. While sensor energy is only consumed when the network is up, the consumption

of such energy also depends on other factors. Therefore, to maximise the network lifetime,

aspects such as the circuits of the sensor, the architecture, algorithms and protocols must

be energy efficient [75]. The way sensors are connected may also reduce/increase energy

consumption. Activity scheduling is used and it helps reduce the consumption of energy in

sensors [73, 72]. In sensor activity scheduling, decisions are made on which sensors need to

be in which states and for how long in order to attain certain network coverage requirement

and a long network lifetime.

A survey on energy consumption has been written by Raghunathan et al. [79] provides

information pertaining to energy consumption in Rockwell’s WINS node and MEDUSA-

II. For WINS, tuning the radio receiver increases the power consumption from 383 mW

to 752 mW and 10 mW to 22 mW for MEDUSA-II. Using the transmitter increases the

power consumption from 771 mW to 1081 mW for WINS and from 19 mW to 27 mW for

MEDUSA-II [71].

Since the power limitation is such a constraint on WSN, it is acceptable to perform signif-

icant amounts of data processing and computation in order to reduce the amount of radio

communication.

5.5 The Optimisation Model

5.5.1 Overview

Sections 5.2 and 5.4 show that it is important to maximise both coverage and lifetime in a

WSN. Some optimisation models also include finding the optimum number of sensors to be

deployed in a field [14]. In this thesis we present a mathematical model derived from [15] to
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maximise both the coverage and lifetime. Recent operations in hostile environments such

as war zones and disaster areas have demonstrated the limitations of surveillance performed

by high altitude platforms such as satellites, Unmanned Aerial Vehicles (UAVs) and U2

surveillance aircraft. To be able to monitor an environment from a long distance may prove

to be difficult. Thanks to technological advancements, WSNs provide an efficient way for

monitoring areas remotely.

In this model we consider an hostile area where sensors cannot be deployed on the ground

by humans. The deployment will be accomplished by an aircraft that will drop sensors

from the air. The position of such sensors on the ground is uncertain, therefore a large

number of them may be deployed but the aircraft has a limited capacity and can therefore

only deploy a fixed number.

5.5.2 Assumptions

We assume that sensors are of the same type and the communication and sensing radii

are the same and denoted by Rc and Rs respectively. All sensors can send or receive

their own data or act as relay nodes. At the center of the area, we have a sink node

that we refer to as the High Energy Communicating Node (HECN). All sensors send

their data to the HECN which in turn sends all information via satellite to a home base

station for final reporting. Only sensors which can communicate with the HECN either

directly or indirectly are considered in the calculation of the objective functions. For every

transmission of information, the energy is depleted by an amount that is proportional to

the distance to which the information is sent. That is to say, a node consumes more energy

when it is far from the node to which it is sending data. Sensors are deployed in an area

that is assumed to be square and flat. A sensor can sense any activity happening within

its radius Rs and it can communicate up to a maximum distance Rc.

5.5.3 Calculation of Objective Functions

Our aim is to maximise the network coverage and lifetime. These two objectives are in

conflict. If we want to cover a large area, sensors must be far apart from each other in such

a way that their individual sensing areas do not overlap. On the other hand if we want to
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have maximum lifetime, we must not keep sensors too far apart. Each sensor must be close

to the HECN so that it does not act as relay node but only transmits its own data. This

is clearly against the idea of having a larger coverage thus showing that the two objectives

are in conflict. As in any multi-objective problem, finding a solution to this problem will

mean to find a set of Pareto points. Such points will give us a choice representing layouts

with high coverage and moderate lifetime or vice versa.

We define the coverage as the union of the disks of radii Rs centered at each connected

sensor normalised by the total area. Let C denote the coverage and A the total area of the

disks. The network coverage is therefore given by

C =
{

n
⋃

i=1

πR2
s(xi, yi)

}

/A (5.1)

To find the total area covered by circles (covered area) we have repeatedly calculated the

intersection of two circles then subtract it from their total area. There exist methods to

find the intersection between two circles but finding intersection of more than two circles

has to be done in a repetitive way. First of all we find the total area of all the circles and

denote it by total area. Then, for each circle we find its intersection with any other circle

with which it overlaps. We call this area overlap area. We add all these overlapping areas

together to form what we call total overlap area. The covered area is then the difference

between the total area and the total overlap area as expressed by

coverage area = total area −
∑

overlap area

Similarly, let L denote the network lifetime and Tmax the maximum sensor lifetime obtained

by assuming that each sensor is directly connected to the HECN. We define the lifetime as

the ratio of the time to first sensor failure (no more energy) and the maximum lifetime of

the sensor. It is given by:

L = min
i=1...n

(Tfailure,i)/Tmax (5.2)

As mentioned in our assumptions, all sensors gather information at the same time and then

send this information to the HECN. We call this a sensing cycle. During each sensing cycle,

sensors can send data to the HECN either directly or through multiple hops in the network.
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In the second case some sensors devote their energy to acting as relay nodes. In order to

find routes from each node to the HECN, we use Dijkstra’s shortest path algorithm. The

cost of an outgoing edge is weighted as the inverse of the remaining energy in the node

[15]. We repeat the number of sensing cycles until the energy of at least one sensor is

completely drained. This number will give us the maximum sensing cycle a particular

layout can perform.

5.5.4 Problem Formulation

The multi-objective problem of maximising both the coverage and the lifetime can be

formulated as

Maximise







C =
{

⋃n

i=1 πR2
s(xi, yi)

}

/A

L = mini=1...n(Tfailure,i)/Tmax

(5.3)

5.5.5 Algorithmic Solution

One problem with genetic algorithms is to find a proper problem encoding. Failure to do

so may result in obtaining wrong answers or in solving a different problem. In this case

problem encoding was not a problem. The design variables are the x and y coordinates.

A chromosome is represented by the points that indicate the position of each sensor in the

XY plane. In this example we consider a network consisting of ten nodes. This is not

a restriction because this number can be changed as wished. However the computational

complexity must be taken into account as it may increase with a large number of nodes.

A typical chromosome will be

Chromosome [x1, y1, x2, y2, . . . , x10, y10]

For genetic algorithms, we have encoded each chromosome as a binary string consisting of

80 bits. Each set of four bits encodes an x or a y coordinate. Each eight bits therefore

encodes the x and the y coordinates of one sensor. There are a fixed number of ten nodes

thus making a total of eighty bits. To obtain a real value out of the binary string, we first
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convert it to its decimal equivalent. If m is its binary equivalent, the corresponding real

number r is given by: r = a + m b−a
2n−1

where n is the length of the sub-string and [a, b] is

the interval in which r lies. In our case n = 4, a = 0 and b = 16 because we encode each

coordinate with four bits and the area considered is of length 16. For example, r = 0.0 for

the string 0000 and 16 for the string 1111. The real value corresponding to the string 0010

is 2.133 while 10.667 corresponds to the binary string 1010.

5.6 Experimental Results

5.6.1 Parameter Settings

We have solved the coverage problem using two algorithms, namely NSGAII [40] and

Micro-GA [30]. The solutions obtained by these two algorithms are trade-off points. The

two algorithms are different in their working principles and thus require different param-

eter settings. However we kept the same probability of mutation and crossover for both

algorithms. The mutation probability was set to 0.1 while the crossover probability was

set to 0.9. The number of generations was set to 125 and 300 for NSGAII and Micro-GA

respectively.

To be able to use both algorithms we have made some modifications by incorporating

some more features. These include the Dijkstra shortest path algorithm, programs that

read the topology of the network while keeping track of all routes and sensing cycles. Each

chromosome encodes a set of centres that represents a particular layout and subsequently

the lifetime. Once we know the centers, we know the position of each sensor and we use

Dijkstra’s algorithm to find the path for each source destination pair. We repeat this for

all nodes until we get the sensing cycle. The radii of communication and sensing is set to

two arbitrary units.

5.6.2 Genetic Operators

The performance of genetic algorithms relies on its operators namely crossover , muta-

tion and reproduction. As the evolution cycle evolves each chromosome undergoes changes
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through mutation and new chromosomes are bred using crossover. Chromosomes are passed

to the next generation using reproduction which mainly selects individuals based on their

dominance (see section 2.3).

Mutation is used with the aim of introducing diversity and strengthening weaker individ-

uals. This operation is performed with a small probability as shown in the sub-section

above. Sensors are moved from one position to another when a chromosome is mutated.

A change in one bit of a chromosome corresponds to a different position of a sensor whose

bit was changed. Such a small change in a chromosome may yield a large change in the

value of the objective function. For example a sensor with coordinates whose bits are

represented by the two sub-strings 0100 and 1011 correspond to the real values 4.2667 and

11.733. After mutation the bits indicated in bold in two sub-strings are changed and the

new sub-strings become 0101 and 1001 with corresponding real values 5.33 and 9.60. This

sensor that was located at (4.2667, 11.733) will move after mutation to another position

(5.33, 9.60).

Once a sensor has moved, it may or may not be part of the shortest path and the sensing

cycle will also be affected. In some cases it may be moved far away and become discon-

nected.

The crossover operation combines two chromosomes to produce a single chromosome. The

idea of combining two chromosomes is to get a new chromosome which is fitter and in our

case we adjust the positions of the sensors so as to get a layout with a larger coverage and

lifetime. Layouts that do not produce a larger lifetime and coverage are eliminated by the

reproduction operator. Since we are solving a multi-objective problem, chromosome dom-

inance is evaluated and dominated chromosomes are discarded according to the algorithm

working principles. The evolution cycle will continue until the maximum number of gener-

ation is attained. Non-dominated chromosomes will constitute the solution to the problem

and they will be evaluated using the two objectives in order to obtain the corresponding

coverage and lifetime.
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5.6.3 Pareto Points Analysis

Figures 5.4 and 5.5 show the evolution cycles as a function of the number of Pareto points

of Micro-GA and NSGAII respectively. The two graphs show that both algorithms could

hardly find a good number of Pareto points. Micro-GA could only find 16 points whereas

NSGAII managed to find only 32 as seen from the highest points on both graphs. Both

graphs fluctuate, with the number of Pareto points found at each generation decreasing

or increasing. The general behaviour of the graphs is however increasing although they

decrease at certain generations with NSGAII strictly increasing between 40th and 50th

generations. Micro-GA shows a similar increasing behaviour but the number of Pareto

points found remains the same between generations before changing thus having like a

stepwise continuous function.
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Figure 5.4: Generation counter
vs number of Pareto points for
Micro-GA
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Figure 5.5: Generation counter vs
number of Pareto points for NS-
GAII

Figure 5.6 and 5.7 show the Pareto fronts for both algorithms. Every solution point found

represents a certain layout with its corresponding lifetime. The larger the coverage the

smaller the corresponding lifetime will be and vice versa. That is to say, if we want to

maximise the coverage we have to reduce the lifetime and that is why such points are called

trade-off points. Two fundamental types of layouts were found. Sensors are either packed

together around the HECN or slightly away from it (figure 5.8) or they form clusters (figure
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5.9). Another interesting layout is observed where sensors are aligned to form a linear array

as seen in figures 5.10(a) and 5.10(b).
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Figure 5.6: Pareto front for
Micro-GA
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Figure 5.7: Pareto front for NS-
GAII

5.7 Layout Analysis

The solution to an optimisation problem gives us the Pareto points which represent different

combinations of coverage and lifetime. Such combinations may be suitable to different users

depending on the application domain or what they want to achieve. In our experimental

results, three different layouts have been found while analysing the layout of sensors. These

layouts include sensors being packed together or organised into cluster groups and finally

sensors being aligned into a linear array. We will briefly discuss each of the layouts below.

Sensors Packed Together

Figure 5.8 shows sensors packed together around the HECN. This type of layout is good

when we want to have a larger lifetime. It is ideal for applications that do not require a

large area coverage. However when sensors are packed together, interference becomes a

problem as radio signal interference may hinder proper communication between sensors.
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Results obtained by NSGAII as shown in figure 5.8(a), show sensors being concentrated

around the HECN as opposed to results obtained by Micro-GA (see figure 5.8(b)). In

figure 5.8(a), each sensor will most likely use its energy to only transmit its own data

thus maximising the lifetime of the network. However the penalty we get from this is that

sensors overlap and therefore cover a smaller area. Figure 5.8(b) also shows sensor packed

together but covering a slightly larger area. In this case some of the sensors are not close

to the HECN, hence they send their data through at least one transit node. The energy

can still be conserved and at the same time a relatively larger area can be covered.

Sensors Organised Into Groups

Figure 5.9 shows the sensors arranged into groups to form clusters. For Micro-GA (figure

5.9(a)) sensors are grouped into three different clusters. One group consists of four sensors

and the other two consist of three sensors each. In this scenario, the sensors are somewhat

far apart from each other thus trying to maximise the coverage. While trying to remain

distant from each other and avoid overlap they risk leaving the area they are intended to

monitor. The main problem with this situation is the energy that will be consumed for each

transmission of information. Recall that energy is depleted by an amount proportional to

the distance which the node is sending data. The further apart sensors are the more energy

will be consumed thus shortening the network lifetime. Another undesirable effect of this

is that, instead of sensors communicating directly with the HECN most of them will be

relaying data. However for applications that may require a large area coverage this layout

may be useful.

Sensors Organised into a Linear Array

Figure 5.10 shows another interesting layout that we observed where the sensors are aligned

into a linear array. Clearly this type of layout is bad as it does not cover a larger area

although it gives a network lifetime that is relatively good. The coverage is minimised

because the sensors overlap. However this layout may be of practical importance in barrier

coverage where we want to monitor the whole path covered by the linear array.
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(a) NSGAII algorithm for Coverage = 0.29 and Lifetime = 0.82
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(b) Micro-GA algorithm for Coverage = 0.37 and Lifetime =
0.55

Figure 5.8: Sensors packed together around the HECN

5.8 Analysis of the Performance of the Algorithms

The two algorithms used are fundamentally different and it is therefore reasonable that

different results were obtained. As mentioned earlier, the number of Pareto points obtained

was relatively small. Both algorithms found the same type of layouts except for NSGAII

which found one more layout (linear array). However most of the Pareto points found for
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(a) Micro-GA algorithm for Coverage = 0.43 and Lifetime =
0.25

-5

 0

 5

 10

 15

 20

-5  0  5  10  15  20
-5

 0

 5

 10

 15

 20

-5  0  5  10  15  20

XX

YY

(b) NSGAII algorithm for Coverage = 0.39 and Lifetime = 0.23

Figure 5.9: Sensors organised in a hub-and-spoke pattern

both algorithms showed two fundamental layouts: sensors packed together or organised

into clusters. Damien et al. [15] used MOGA [22] to solve this problem and found the

same two fundamental layouts as mentioned above. They also investigated the impact of

sensing and communication radii. They concluded that the ratio of the sensing to the

communication range can be a discrimination factor [15]. We also found one more layout

besides the two fundamental ones and have used more than one multi-objective algorithm
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to solve the problem thus looking at the problem from a different perspective. The Pareto

points found by Micro-GA are relatively better than those found by its NSGAII counterpart

as shown in tables 5.1 and 5.2. For a lifetime of 1, Micro-GA found 33% coverage where

NSGAII could only find 19% coverage. But one aspect of NSGAII that is worth to mention

is that it found more Pareto points than Micro-GA at a lower maximum generation.
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(a) linear array for Coverage = 0.29 and Lifetime = 0.82
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Figure 5.10: Sensors nodes in a linear array
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Coverage Lifetime
0.192563 1
0.26965 0.880817
0.285955 0.879347
0.286744 0.829867
0.297204 0.820937
0.298533 0.523847
0.334819 0.4397
0.341789 0.415012
0.34786 0.412543
0.347954 0.402826
0.357849 0.390535
0.363465 0.38628
0.391799 0.267623
0.39945 0.234951
0.421788 0.17733
0.423315 0.174125
0.437523 0.145971
0.4461 0.130213

Table 5.1: Sample of Pareto points
found by NSGAII

Coverage Lifetime
0.337433 1
0.348848 0.996176
0.374284 0.75717
0.386498 0.755258
0.394668 0.476099
0.400449 0.399618
0.412344 0.370937
0.420402 0.361377
0.422902 0.304015
0.423707 0.260038
0.434613 0.250478
0.43868 0.246654
0.438906 0.217973
0.444488 0.208413
0.447609 0.202677
0.451937 0.189293
0.469578 0.133843
0.472973 0.0936902

Table 5.2: Sample of Pareto points
found by Micro-GA
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Chapter 6

Conclusion and Future Work

We applied Evolutionary Multi-Objectve Optimisation (EMOO) algorithms to three dif-

ferent types of network problems to achieve different routing optimisations: (1) efficient

Routing and Wavelength Assignment (RWA) in IP backbone networks (2) optimisation of

Arrayed Wave-guided Grating (AWG) Metro networks and (3) Wireless Sensor networks

(WSNs) topology (layout) optimisation.

Efficient Routing and Wavelength Assignment (RWA)

in IP backbone networks.

Genetic optimisation algorithms were used in this thesis to achieve Routing and Wavelength

Assignment (RWA) for IP backbone networks using a two-step process where (1) a set of

optimal paths is found using genetic optimisation and (2) graph coloring techniques are

used to assign wavelengths to these paths. The path comparison made raises the issue of

the interplay between single- and multi-objective optimisation to evaluate the similarity

between the set of paths found by a single objective optimisation model and the set of

paths represented by some of the Pareto points. The mechanism used to extract the path

sets from a Pareto front was explained in this thesis but the comparison between paths

has been reserved for future research work.

91
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Optimisation of Arrayed Wave-guided Grating (AWG)

Metro networks.

We examined the problem of maximising throughput and minimising delay in a AWG-

based metropolitan WDM network using four different EMOO algorithms. These include

the Non-dominated Sorting GAII [40], the Multi-Objective GA [22], the Pareto Archived

Evolutionary Strategy [25] and the Micro-Genetic Algorithm for multi-objective optimi-

sation [30]. Future work will look at various degrees of the AWG and their respective

performance on the basis of throughput-delay trade-off points. Instead of looking at a

single-hop AWG-based network, it would be interesting to study the performance of AWG

in a multi-hop network. Hagen et al. [64] compared a single-hop to a multi-hop AWG-

based WDM network in terms of mean hop distance and aggregate capacity. They also

analysed which of the two networks type provides higher capacity for a given number of

nodes. They concluded that the capacity depends on the cost ratio of fixed-tuned and

tunable transceivers and on the tuning latency of the tunable transceivers. More evolu-

tionary algorithms may also be used to solve the problem and compare their respective

performance.

Wireless Sensor networks (WSNs) Topology (layout)

Optimisation.

We examined the problem of maximising the coverage and lifetime in a wireless sensor

network. We used two different EMOO algorithms namely NSGAII [40] and Micro-GA

[30]. We found three types of layouts two of which were also found in [15]. The model

considered in this thesis does not take signal attenuation into account when sensors send

data to distant nodes. It would be interesting to consider how the signal strength decreases

as the distance increases. The model did not also take radio interference into account. The

network lifetime is defined as the lifetime of a single sensor in the network, the network

may still function even if a single node fails. However if the node’s position was critical

it can lead the whole network to fail. There is therefore a need to redefine the network

lifetime and see how it will affect both the coverage and lifetime. The coverage might also
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depend on the number of sensors deployed. However, deploying more sensors might not

necessarily increase the coverage especially in the case where sensors are dropped randomly.

To incorporate the number of sensors as a third objective in the model can be interesting

in order to analyse its impact on lifetime and coverage.
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