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Summary 

Model predictive control has become a standard for most control strategies in modern 
process plants. It relies heavily on process models, which might not always be 
fundamentally available, but can be obtained from time series analysis. The first step 
in any control strategy is to identify or detect changes in the system, if present. The 
detection of such changes, known as dynamic changes, is the main objective of this 
study. In the literature a wide range of change detection methods has been developed 
and documented. Most of these methods assume some prior knowledge of the system, 
which is not the case in this study. Furthermore a large number of change detection 
methods based on process history data assume a linear relationship between process 
variables with some stochastic influence from the environment. These methods are 
well developed, but fail when applied to nonlinear dynamic systems, which is focused 
on in this study.  

A large number of the methods designed for nonlinear systems make use of statistics 
defined in phase space, which led to the method proposed in this study. The 
correlation dimension is an invariant measure defined in phase space that is sensitive 
to dynamic change in the system. The proposed method uses the correlation 
dimension as test statistic with and moving window approach to detect dynamic 
changes in nonlinear systems. 

The proposed method together with two dynamic change detection methods with 
different approaches was applied to simulated time series data. The first method 
considered was a change-point algorithm that is based on singular spectrum analysis. 
The second method applied to the data was mutual cross prediction, which utilises the 
prediction error from a multilayer perceptron network. After the proposed method was 
applied to the data the three methods’ performance were evaluated. 

Time series data were obtained from simulating three systems with mathematical 
equations and observing one real process, the electrochemical noise produced by a 
corroding system. The three simulated systems considered in this study are the 
Belousov-Zhabotinsky reaction, an autocatalytic process and a predatory-prey model. 
The time series obtained from observing a single variable was considered as the only 
information available from the systems. Before the change detection methods were 
applied to the time series data the phase spaces of the systems were reconstructed with 
time delay embedding.  

All three the methods were able to do identify the change in dynamics of the time 
series data. The change-point detection algorithm did however produce a haphazard 
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behaviour of its detection statistic, which led to multiple false alarms being 
encountered. This behaviour was probably due to the distribution of the time series 
data not being normal. The haphazard behaviour reduces the ability of the method to 
detect changes, which is aggravated by the presence of chaos and instrumental or 
measurement noise. Mutual cross prediction is a very successful method of detecting 
dynamic changes and is quite robust against measurement noise. It did however 
require the training of a multilayer perceptron network and additional calculations that 
were time consuming. The proposed algorithm using the correlation dimension as test 
statistic with a moving window approach is very useful in detecting dynamic changes. 
It produced the best results on the systems considered in this study with quick and 
reliable detection of dynamic changes, even in then presence of some instrumental 
noise. 

The proposed method with the correlation dimension as test statistic was the only 
method applied to the real time series data. Here the method was successful in 
distinguishing between two different corrosion phenomena. The proposed method 
with the correlation dimension as test statistic appears to be a promising approach to 
the detection of dynamic change in nonlinear systems. 



 IV

Opsomming 

Model voorspellende beheer het ŉ standaard geword in moderne prosesaanlegte vir 
meeste beheerstrategieë. Die strategie steun swaar op die prosesmodelle, wat nie altyd 
fundamenteel beskikbaar is nie, maar afgelei kan word van tydreeksdata. Die eerste 
stap in enige beheerstrategie is om ŉ verandering in die dinamika van ŉ sisteem te 
identifiseer, indien teenwoordig. Die identifisering van sulke veranderinge, bekend as 
dinamies veranderinge, is die hoofdoel van hierdie studie. In die literatuur is daar 
volop metodes wat verandering in sisteme identifiseer, maar meeste van hierdie 
metodes neem aan dat daar vooraf kennis van die sisteem bestaan, wat nie die geval is 
in hierdie studie nie. Meeste van die metodes wat wel op prosesdata gebaseer is, neem 
aan dat daar ŉ lineêre verwantskap tussen die prosesveranderlikes is, met ŉ 
stochastiese invloed vanaf die omgewing op die sisteem. Hierdie metodes werk egter 
nie wanneer dit op nielineêre sisteme toegepas word nie, wat die hooffokus is van 
hierdie studie. 

‘n Groot aantal metodes ontwikkel vir nielineêre stelsels,  gebruik van statistieke wat 
‘n faseruimte gedefinieer word. Dit het gelei tot die ontwikkeling van die metode wat 
in hierdie studie voorgestel word. Die korrelasiedimensie is ŉ onveranderlike 
kwantiteit wat in ‘n faseruimte gedefinieer word en sy onveranderlikheid word 
beïnvloed wanneer daar ŉ verandering in die sisteem plaas vind. 

In hierdie studie word die voorgestelde metode en twee soortgelyke metodes gebruik 
om veranderinge in tydreeksdata, van gesimuleerde sisteme te identifiseer. Die een 
metode wat saam met die voorgestelde metode getoets word is ŉ 
veranderingspuntopsporingalgoritme wat gebaseer is op singuliere spektrumanalise. 
Die ander een is ŉ gesamentlike kruisvoorspellingalgoritme, wat gebruik maak van ŉ 
multilaagperseptron- neurale netwerk. Die vermoë van die drie metodes om 
veranderinge op te spoor word met mekaar vergelyk.  

Die tydreeksdata is verkry vanaf simulasies met wiskundige vergelykings vir drie 
sisteme, sowel as regte tydreeksdata wat vanaf ŉ laboratorium eksperiment verkry is. 
Die gesimuleerde sisteme wat ondersoek is, is die Belousov-Zhabotinsky reaksie, ŉ 
autokatalitiese sisteem en ŉ jagter-prooisisteem. Die regte tydreeksdata wat ondersoek  
is, is elektrochemiese geraas wat gegenereer is in ŉ korrosiesisteem. Die gemete 
waarnemings van ŉ enkele veranderlike word beskou as die tydreeksdata en die 
enigste informasie wat beskikbaar is oor die sisteem. Om die interne dinamika van die 
sisteme te beskryf word die tydreeksdata in faseruimte ingebed. 
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Al drie die metodes het die veranderinge in die dinamika van die sisteme 
geïdentifiseer deur die tydreekse te analiseer. Die veranderingspuntopsporing 
algoritme het ŉ variërende gedrag van sy opsporingstatistiek getoon. Dit het 
veroorsaak dat die algoritme baie vals alarms genereer waar geen verandering plaas 
gevind het nie. Hierdie variërende gedrag van die opsporingstatistiek is as gevolg van 
die tydreeksdata wat nie normaal verspreid is nie. Die variërende gedrag word 
vererger wanneer die sisteem chaotiese gedrag toon of meetgeraas by die tydreeksdata 
gevoeg word. Die gesamentlike kruisvoorspelling algoritme is ŉ baie suksesvolle 
metode om veranderinge in die dinamika van ŉ sisteem te identifiseer, al is daar 
geraas teenwoordig in die tydreeksdata. ŉ Nadeel van die metode is die vereiste van 
addisionele berekeninge en die opleiding van ŉ multilaagperseptron wat tydrowend 
kan wees. Die voorgestelde algoritme wat gebruik maak van die korrelasiedimensie as 
toetsstatistiek en ŉ bewegende vensterbenadering het die beste vermoë getoon om 
verandering in die dinamika van die sisteme te identifiseer. Die voorgestelde 
algoritme kan dinamiese verandering betroubaar en vinnig identifiseer in die 
teenwoordigheid van meetgeraas. 

Die voorgestelde algoritme is die enigste algoritme wat op die elektrochemiese geraas 
toegepas is. Die voorgestelde algoritme het verskillende korrosieverskynsels 
geïdentifiseer uit die tydreeksdata. Die voorgestelde algoritme met die 
korrelasiedimensie as toetsstatistiek lyk na ŉ belowende benadering om verandering 
in die dinamika van ŉ sisteem te identifiseer. 
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1. Introduction 

Model predictive control (MPC) has become a standard control solution for most 
modern process plants (Sotomayor & Odloak, 2005). MPC is a class of computer 
controlled algorithms that utilises an explicit process model to predict the future 
response of the plant. The controller outputs are calculated so as to minimize the 
difference between the predictive process response and the desire response and to 
minimize deviation from set points. At each sampling instant, the control calculations 
are repeated and the predictions updated based on current measurements (Perry & 
Green, 1997).  

The importance of the process model is obvious and they are generally obtained either 
from a fundamental understanding of the system or from process history data. 
Fundamental models require extensive research and due to the complexity 
(nonlinearity) of most systems such models are rarely obtainable. Thus the importance 
of time series analysis is evident in obtaining models from process history data. A 
better understanding of the physical phenomena producing a particular time series is 
usually obtained from time series analysis, which enables the prediction of future 
behaviour of the process.  

The first step in any control strategy is fault detection, which is the main goal of this 
study. A fault can generally be described as a change in an observed variable or 
process parameter from an acceptable range associated with the process. In the 
context of this study these faults are also referred to as dynamic changes or non-
stationarities and these terms will be used interchangeably throughout the thesis. 
Generally there are three classes of failures or malfunctions that may result in a fault 
(Venkatasubramanian et al., 2003a): 

o Gross parameter changes: Parameter changes arise when there is a 
disturbance entering the process from the environment through one or more 
independent variables. Examples of such parameter changes are the change in 
concentration of a reactant into a reactor or the change in a heat transfer 
coefficient due to fouling of a heat exchanger. 

o Structural changes: Structural changes are caused by failures in equipment 
and change the process itself. They result in a change in the information flow 
between various variables. A stuck valve or broken or leaking pipe is an 
example of such a change. 
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o Malfunctioning sensors: Malfunctioning sensors my result in the observed 
state of a variables being different from the actual state of the variable in the 
system. Sensor faults make the plant partially unobservable, while actuator 
faults make the plant partially uncontrollable. This may lead to processes to 
operate far from optimal conditions or can cause saturation of manipulated 
valves (Sotomayor & Odloak, 2005). 

1.1. Process fault detection and diagnostic algorithms 

Venkatasubramanian et al. (2003a) classify fault detection and diagnostic algorithms 
based on the priori knowledge used. Now the priori knowledge needed for fault 
detection and diagnostics are a set of relationships between observations and failures. 
This may be an explicitly defined lookup table or inferred from some source of 
domain knowledge. The priori domain knowledge may either be developed from a 
fundamental understanding of the process, or gained from past experienced with the 
process. This is referred to as model-based or process-history based priori knowledge 
respectively. 

Model-based priori knowledge can broadly be divided into qualitative and 
quantitative models. These models are developed from a fundamental understanding 
of the system. Qualitative models are derived from first principles and expressed as 
qualitative functions centred around different units in the process. Quantitative 
models are expressed as mathematical relationships between inputs and outputs of the 
system. Work by Sotomayor and Odloak (2005) and Bloch et al. (1995) focuses on 
such quantitative model-based fault diagnosis methods for malfunctioning sensors.  

Process history based priori knowledge on the other hand assume no knowledge of the 
model before hand but only that a large amount of historical process data are 
available. There are also a number of different approaches proposed in the literature 
based on historical process data. Pranatyasto and Qin (2001) proposed a method for 
sensor fault diagnosis based on principal component analysis. Yu et al. (1999) make 
use a radial basis function neural network in their approach to sensor fault diagnosis.  

The schematic diagram in Figure 1.1 classifies different fault detection and diagnostic 
algorithms based on priori knowledge of the process. 
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Figure 1.1: Classification of fault detection and diagnostic algorithms1. 

In order to select a desired fault detection and diagnostic algorithm, different 
approaches are compared against some common characteristics to benchmark the 
various methods. Some of the desirable characteristics looked for in fault detection 
and diagnostic algorithms are (Venkatasubramanian et al., 2003a): 

Quick detection and diagnosis: An algorithm should be quick to detect and diagnose 
faults in process systems. There are however conflicting goals in quick detection of 
faults and tolerable amount of false alarms. A system designed for quick detection is 
usually very sensitive to noise and can lead to disruptions in normal operations. 

Isolability: The ability of the detection and diagnostic system to distinguish between 
different faults. 

Robustness: The detection and diagnostic system should be robust to various noise 
and uncertainties. The performance should degrade gradually and not abruptly with an 
increase in noise and uncertainties. 

Novelty identifiability: In the case of abnormal events the detection and diagnostic 
system should be able to identify these events as novel or unknown. 

Classification error estimate: A useful practical requirement is to project confidence 
levels with decisions made by the system. 

Adaptability: Processes may change due to external inputs, structural changes or 
production quantities and the detection and diagnostic system should be adaptable to 
such changes. 

                                                 
1 Inspired by Venkatasubramanian et al. (2003a) 
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Explanation facility: The ability of the detection and diagnostic system to provide 
explanations on the origin of the fault. 

Modelling requirements: Modelling should be kept to a minimum to ensure fast and 
easy deployment of detection and diagnostic systems. 

Storage and computational requirements: A reasonable balance between 
computational and storage requirements would usually be preferred. 

Multiple fault identifiability: Identifying multiple faults is an important but difficult 
requirement for detection and diagnostic systems to ensure the right decisions are 
made by the system. 

1.2. Detection of change in nonlinear dynamic systems in the 
literature 

Recent interest in nonlinear systems has lead to great progress being made in the 
development of methods for change detection. In the literature a number of different 
methods are presented depending on the approach taken. In this section some of these 
methods are identified and discussed briefly. 

Nonlinear models are rarely available for nonlinear systems and one approach taken 
by Bhagwat et al. (2003) is a multi-linear model-based fault detection scheme. It 
involves decomposition of nonlinear transient systems into multiple linear modelling 
regimes. Kalman filters and open-loop observers are used for state estimation and 
residual generation based on the resulting linear models. Analysis of residuals using 
thresholds, fault lags and logic charts enables detection of faults. Another approach by 
Sobajic et al. (2003) in the absence of a fundamental model is the use of neural 
networks, which are capable of modelling highly nonlinear systems. These models are 
then used to detect changes in the dynamic process conditions. 

A model-free fault detection has been proposed by Fenu and Parisini (1999). An 
entirely different way of applying kernel regression are used which makes it possible 
for the kernel smoother to detect abrupt changes in nonlinear system. 

Principal component analysis is widely applied in multi-variate statistical process 
control but results in substantial information loss when applied to nonlinear systems. 
This has lead to the development several nonlinear principal components analysis 
methods that improve data extraction when nonlinear correlations among variables 
exist. Maulud et al. (2006) proposed a multi-scale principal component strategy that 
utilises the optimal wavelet decomposition to simplify the overall structure. 
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The monitoring of financial markets has also shown strong nonlinearity and historical 
and sequential CUSUM change-point tests are proposed by Andreou and  
Ghysels (2005). Another change-point detection algorithm proposed by Moskvina and 
Zhigljavsky (2000) defines a CUSUM-type statistic. The algorithm is based on 
singular spectrum analysis to obtain a subspace and calculating the detection statistic, 
which is the Euclidean distance between the subspace and phase space vectors. 

The field of medicine also encounters nonlinear systems frequently and recurrence 
quantification analysis, developed by Zbilut and Webber (1992)2 to quantify the 
recurrent plot, has been used to detect onset of muscle fatigue, predict the occurrence 
of cardiac arrhythmia and identify putatively different physiological states (Mario et 
al., 2003). Recurrence quantification analysis is used by Mario et al. (2003) to detect 
small deterministic changes in the electroencephalogram of rabbits. Casdagli (1997) 
describes the use of recurrence plots to detect small change in the driving force of a 
deterministic system. 

The field of electrochemical noise analysis is domination by spectral analysis in the 
literature. These are also process history based methods and there two very common 
approaches taken to distinguish between different corrosion phenomena. The first is 
by using power density plots obtained from the fast Fourier transform or maximum 
entropy method (Anita et al., 2006; Park & Kwon, 2005; Greisiger & Schauer, 2000). 
The second is energy distribution plots obtained from wavelet analysis techniques 
(Cai et al., 2005; Cao et al., 2006; Lui et al., 2006; Zang et al., 2005; Gomez-Duran & 
Macdonald, 2006; Greisiger & Schauer, 2000). Greisiger and Schauer (2000) also 
apply nonlinear statistics such fractal dimensions and Lyapunov exponents to 
electrochemical noise data. 

A novel approach taken by Schreiber (1997) with mutual cross prediction is based on 
the similarity between parts of the time series themselves, rather than similarity of 
parameters derived from the time series by local averaging. In this approach the cross-
prediction error is evaluated, which is the predictability of one segment using another 
as database. 

The dynamics of a nonlinear system is characterised by its attractor in phase space. A 
Method by Hively et al. (1999) construct discrete density distributions of phase space 
points on the attractor and measure the dissimilarity between density distributions via 
χ 2 statistics. Epureanu and Yin (2004) also uses probability density functions of 
sampled attractors for structural health monitoring, based on the identification of 
changes in the vibration characteristics due to changes in material and stiffness 
properties of structures. Two methods by Yu et al. (1999) and Kennel (1997) 
quantifies non-stationarity in terms of the nearest neighbours in phase space. 

                                                 
2 Cited in Mario et al. (2003). 
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By far the most common approach to detect dynamic changes in nonlinear systems in 
the literature is the used of the following three nonlinear statistics: Lyapunov 
exponents, correlation dimension and various entropies. Lyapunov exponents are used 
by Phillips (2005) to distinguish between new steady states of geomorphic systems. A 
method by Übeyli and Güler (2004) uses Lyapunov exponents as inputs to a 
multilayer perceptron neural network to detect changes in the chaotic 
electrocardiogram of patients with partial epilepsy. 

Continuous multiresolution entropy proposed by Torres et al. (2001) computes the 
entropy evolution by means of sliding windows at each scale of the continuous 
wavelet transform of the given signal. The continuous multiresolution entropy is 
sensitive to changes in the dynamic complexity of attractors and is used in varies 
methods (Torres et al., 2006; Rosso & Mairal, 2002; Torres & Gamero, 2000; Torres 
et al., 2003; Añino et al., 2003; Wu & Chen, 1999) to detect change in nonlinear 
dynamic systems. 

The correlation dimension as test for changes in dynamic nonlinear and chaotic 
systems is found extensively throughout the literature due to its ease of calculation. 
The correlation dimension has been used for machine health monitoring (Graig et al., 
2000), condition monitoring of robot joints (Trendafilova & Van Brussel, 2001), 
vibration fault diagnosis of rolling element bearings (Logan & Mathew, 1996), 
monitoring and surveillance of nuclear power plants (Montesino et al., 2003) and 
structural health monitoring (Nichols & Virgin, 2003). A method by Manuca and 
Savit (1996) uses the correlation integral, which is the first step in correlation 
dimension estimates, itself to test for non-stationarity in processes. 

The popularity in the literature and ease of calculation of the correlation dimension 
has lead to the development of a method, with the correlation dimension as test 
statistic, for detecting change in nonlinear systems proposed in this study. 

1.3. Objectives, scope and approach 

The main objective of the study is to detect changes in complex process systems. That 
is to detect dynamic changes in the deterministic structure of the system producing the 
signal (time series). These may be instantaneous or relatively slow dynamic changes 
with respect to the sampling period. 

Linear stochastic systems are a well developed and documented field in the literature, 
with one of the most comprehensive studies probably by Basseville and  
Nikiforov (1993). This study focuses on dynamic nonlinear systems that have a 
dominant deterministic part with the possibility of chaotic behaviour. The data 
considered are the time series obtained from a monitoring a single variable of the 
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system. It is also assumed that no prior knowledge of the system under investigation 
is available. The detection algorithms considered is thus process history based. 

The three techniques considered in the study are quantitative statistics (Figure 1.1). 
The first technique considered is a change-point detection algorithm based on singular 
spectrum analysis (SSA) as proposed by Moskvina and Zhigljavsky (2000). This 
algorithm is very similar to the principal component analysis branch in Figure 1.1. 
The two phase space methods considered in this study are mutual cross prediction, a 
method proposed by Schreiber (1997), and the correlation dimension as test statistic. 
Previous work at this institution by Bezuidenhout (2004) has proposed the correlation 
dimension as a potential test statistic to detect dynamic changes. 

The approach is not only limited to simulated systems, but one experimental system is 
also considered in the study. The three different methods specified for dynamic 
change detection are applied to the signals from the simulated systems. Different 
levels of instrumental noise are also added to the simulated data, since real data are 
never without the presence of noise. From the results obtained by the analysis the 
performance of the different methods are evaluated and compared on their ability to 
detect different dynamic changes, response time required and robustness to noise.  

The analysis of the experimental data is however limited to the method of correlation 
dimension as test statistic, since the format of the data is not suited for the other two 
methods. 

The general hypothesis of this thesis is that change in nonlinear dynamic systems can 
be detected by monitoring of appropriate statistics describing the topology of the 
attractor of the dynamic system. This hypothesis will be examined through the 
following specific objectives: 

o To conduct a literature survey of methods used to detect change in nonlinear 
dynamic systems. 

o The development of a phase space methodology to detect changes in nonlinear 
dynamic systems. 

o Comparison of the proposed algorithm with others on simulated case studies. 

1.4. Thesis layout 

First the basic theory behind phase space analysis is discussed in chapter 2. This 
includes time delay embedding, embedding by singular spectrum analysis and 
invariant characteristics of the dynamic process. The approaches of the different 
change detection methods are discussed in chapter 3. A description of the simulated 
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systems, to which the change detection methods are applied, is given in chapter 4. In 
chapter 5 the different dynamic change detection methods are applied to simulated 
data. The application of the correlation dimensions as test statistic to the experimental 
data is discussed in chapter 6. Finally the conclusions and limitations of the dynamic 
change detection methods, based on the results obtained, are discussed in chapter 7. 
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2. Nonlinear time series 

analysis with phase space 

methods 

A time series is a sequence of time ordered measurements usually at equally spaced 
time intervals. These measurements can be obtained from a physical system or a 
computer simulated system. Analyzing a time series usually has two goals: 
Characterizing the system and predicting its future behaviour. The most interesting 
systems are usually those producing time series that show irregular behaviour as time 
progresses. Say the possible states of a system are represented by points in a finite 
dimensional phase space. Then the transition from one state 

1t
x  at time 1t  to its state 

at 2t  is governed by a deterministic rule that can be described in continuous time as a 
set of ordinary differential equations: 

)( txF
dt
dx

=           (2.1) 

or in discrete time as: 

)(1 nn xfx =+           (2.2) 

A dynamic system can then be seen as any set of ordinary differential equations 
giving the time evolution of the state of the system from knowledge of its previous 
history. Thus for a purely deterministic system all future states can be predicted once 
its present state is fixed. In real-world systems pure determinism is rather unlikely, 
since all systems interact with their surroundings. 

A more traditional approach to irregularity in time series is that external random 
influences, known a noise, may be acting on the system. The irregularity can easily be 
explained by the external random influences, while the structure found in the 
sequence is defined by linear dynamic rules. The most general linear model is the 
autoregressive moving average (ARMA) process (Schreiber, 1999): 

∑ ∑
= =

−− +=
M

i

N

i
niinin bxax

1 0
1η         (2.3) 
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where nη  are uncorrelated Gaussian increments. Although this linear stochastic 

description might seem attractive there are many situations where it fails since the 
linear equations can only lead to exponential growth or periodic oscillation 
(Schreiber, 1999). 

Chaos theory indicates that there are nonlinear, chaotic systems producing very 
irregular data with purely deterministic equations (Kantz & Schreiber, 1997). Thus 
chaotic motion can be described as the evolution of the state of the system with 
sensitive dependence on initial conditions. Chaotic behaviour occurs very often in 
chemical engineering processes and even though long term prediction of such systems 
is impossible, there are certain invariant characteristics that can describe the system 
qualitatively. 

2.1. Phase space reconstruction 

Every state of a dynamic system can be described uniquely by a point in phase space. 
In order to describe the evolution of the states of the system in phase space, referred 
to as the trajectory or an attractor of the system, all relevant dynamic variables should 
be measured. This is seldom possible in practical cases where only a limited number 
of variables is available. Say a system is generated by k  differential equations 
producing a flow in Euclidean space3 kR . When n  independent quantities 
Q 1,Q 2,...,Q n  can be measured simultaneously, each point in phase space is associated 
with a point in Euclidean space nR . The measurement function 

F(state) = (Q 1,Q 2,...,Q n )         (2.4) 

then maps kR  to nR . If F  is an embedding, it is a map that does not collapse  
points (one-to-one map) or tangent directions (Sauer et al., 1991). There is a number 
of theorems which specify the precise conditions when trajectories in the 
reconstructed phase space are equivalent to that in the original phase space.  

However, in many cases it is only possible to observe as few as one dynamic variable 
of a dynamic system. The problem is going from this scalar measurement (time series) 
to the reconstructed phase space in which invariant quantities can be measured. 
Takens (1983)4 dealt with delay coordinate maps and developed the delay embedding 
theorem, which makes phase space reconstruction of a single variable’s time series 
possible. 

                                                 
3 Euclidean space – A generalization of the 2- and 3-dimensional metric spaces where the 
generalization applies to the concepts of distance, length and angle to a coordinate system in any 
number of dimensions. 
4 Cited in Abarbanel (1996) and Kantz and Schreiber (1997). 
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2.1.1. Time delay embedding 

Takens theorem as extended by Sauer et al. (1991) is formally described as: 

Theorem 2.5 (Fractal delay embedding prevalence theorem): Let Φ be a flow on an 
open subset U  of ℜk , and let A be a compact subset of U  of box-counting 
dimension d0 . Let de > 2d0 be an integer, and let T > 0. Assume that A contains at 
most a finite number of equilibria, no periodic orbits of Φ of period T  or 2T , at most 
finitely many periodic orbits of period 3T,4T,...,nT , and that the linearization of 
those periodic orbits have distinct eigenvalues. Then for almost every smooth function 
h on U , h :U → ℜ , the delay coordinate map F(h,Φ,T) :U → ℜd e : 

F(h,Φ,T)(x) = (h(x),h(Φ−T (x)),h(Φ−2T (x)),...,h(Φ−(de −1)(x)))  (2.5) 

is: 

1. One-to-one on A. 

2. An immersion5 on each compact subset C  of a smooth manifold contained in 
A . 

The original formulation of Takens embedding theorem required that de > 2k +1 but 
is replaced with de > 2d0. Furthermore the word “generic” is replaced with 
“prevalent” meaning for almost all smooth functions h on U  are an embedding. 

Now an observed scalar signal ))(()( txhts = , given the measuring function 
h :U → ℜ , with a sampling time st  that results in a time series )( sn ntss = , can be 

used to reconstruct the states of the system (Hegger et al., 1998): 

yn = (sn ,sn−T ,sn−2T ,...,sn−(de −1)T )       (2.6) 

where T  and de  are the time delay and embedding dimension respectively and 
n =1,...,N . The reconstruction is also illustrated in Figure 2.1. The phase space 
vectors yn  obtained from the reconstruction replace the scalar time series sn  and 
produce an attractor that describes the dynamic behaviour of the system under 
investigation. Thus invariant quantities such as fractal dimensions, Lyapunov 
exponents and entropies are obtained from the reconstructed phase space which are 
identical to those in the original phase space (Kantz & Schreiber, 1997). 

                                                 
5 Immersion - A smooth map F on A  is an immersion if the derivative map DF(x)  is one-to-one at 
every point x  of A . 
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Figure 2.1: State space reconstruction by time delay embedding6. 

Making use of equation 2.6 to perform time delay embedding, requires two 
parameters to be specified. These two parameters are the time delay T  and embedding 
dimension de . Care should be taken when selecting values for these parameters and 
some general techniques exist to assist in the decision-making. 

(a). Choosing the optimal time delay 

Embedding data with different time delays will produce reconstructions that are 
diffeomorphically7 equivalent, but geometrically different. This is illustrated in  
Figure 2.2. A too small time delay leads to a strong correlation of successive elements 
of the delay vectors. This cause all the delay vectors to be clustered around the 
diagonal in the edℜ  space, unless the embedding dimension is very large. A too large 
time delay will lead to a reconstruction with excessive folds in the data. This will 
bring states close together in the reconstruction that is not close together in the actual 
phase space. When noise is present in the system, as with all practical systems, the 
effect is just aggravated. Thus choosing a suitable time delay is a crucial when any 
useful information wants to be gathered from the reconstruction. 

Two commonly used methods to find the optimum time delay are the linear 
autocorrelation function and the average mutual information statistic. 

                                                 
6 Inspired by Aldrich (2002). 
7 Diffeomorphism – A smooth mapping (one-to-one) with a smooth inverse. 



 13

 
Figure 2.2: Phase space reconstructions obtained from different time delays a) too small time delay b) 

too large time delay c) optimal time delay. 

(i). Linear autocorrelation function 

The autocorrelation function is defined as (Kantz & Schreiber, 1997): 

CT =

1
N

(xn − x )(xn +T − x )
n=1

N

∑
σ 2        (2.7) 

Where x = 1
N

xn
n=T

N

∑  and σ 2 =
1
N

(xn − x )2

n=T

N

∑ . This function indicates the expectation 

of observing xn +T  a time T  after observing nx . The autocorrelation function decays 

with an increase in the time delay T . Thus at a time delay T  where the 
autocorrelation function CT  first reach its first zero indicates that the two coordinates 
are linearly uncorrelated and is a good estimate to use as time delay for an embedding. 
This may indicate no relation on the nonlinear independence of the coordinates, but at 
least give a good estimation of a time delay. 
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(ii). Average mutual information 

The average mutual information is a popular method of determining the time delay. It 
uses the idea of information theory to define the optimal time delay. The average 
mutual information is the information we already possess about a value xn +T  if we 
know nx . It is given by (Fraser and Swinney, 1986): 

IT = P(xn,xn +T )
n=T

N

∑ log2
P(xn ,xn +T )

P(xn )P(xn +T )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥      (2.8) 

Where )(⋅P  and ),( ⋅⋅P  are the individual probability and joint probability densities 
respectively. When two measurements are completely independent of each other, then 
P(xn, xn +T ) factorizes to P(xn, xn +T ) = P(xn )P(xn +T )  which leads to equation 2.8 
tending to zero. Fraser and Swinney (1986) suggested that the first minimum of IT  is 
used as the time delay of the embedding. At this point the coordinates are sufficiently 
independent of each other to spread the reconstruction, but not so independent that 
they have no connection with each other.  

Figure 2.3 illustrates how different results are obtained for a signal analysed by the 
two methods. When the reconstructed attractors are studied, the time delay suggested 
by the autocorrelation function caused the attractor to have excessive folds. The 
reconstructed attractor obtained from the time delay by the average mutual 
information will be preferred in this case since the attractor is unfolded nicely. The 
two methods will not always suggest different time delay values and in such instances 
any one of the values may be used.  

Fraser and Swinney (1986) however state that the first minimum of the average 
mutual information is a superior choice to that of the first zero of the autocorrelation 
function.  
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Figure 2.3: Two methods to determine the time delay and their embeddings a) time series b) average 

mutual information T = 20 c) autocorrelation function T = 89 d) attractor for T = 20 e) attractor for 
T = 89. 

(b). Choosing the optimal dimension 

The optimum embedding dimension is the smallest value for ed  that provides a 

proper reconstruction. When a too small value is selected for the embedding 
dimension ed  the reconstruction lacks information and leads to an improper 

reconstructed phase space. Just selecting an arbitrary large embedding dimension will 
also provide some additional practical problems. A considerable increase in 
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computational time are experienced for a too large embedding dimension since it 
increases exponentially with an increase in embedding dimension. 

Although Takens (1983) originally states that an embedding dimension de > 2k +1 is 
required for the proper unfolding of an attractor Sauer et al. (1991) showed that 
de > 2d  will be sufficient. Since the true dimension k  and box-counting dimension d  
is rarely available Kennel et al. (1992) developed the algorithm of false nearest 
neighbours (FNN) to determine the minimum embedding dimension. In contrast to 
the theorems the algorithm of FNN might suggest embedding dimension less than 2d  
for certain systems. This is particularly useful when limited computing resources are 
available. 

False nearest neighbours appear only when the attractor is viewed in too a small 
embedding dimension. The idea of the algorithm is too identify neighbours in a 
reconstructed state space with a dimension of ed  and if they fail to be neighbours in a 

reconstruction with a dimension of 1+ed  they are false neighbours. The minimum 

embedding dimension ed  is thus where the algorithm fails to identify any false 

nearest neighbours. 

The method of false nearest neighbours tends to fail on excessively noisy data and 
Kennel and Abarbanel (2002) further developed an algorithm called false nearest 
strands. The idea behind the method is the same as false nearest neighbours except 
pairs of strands are identified as neighbours. This method tends to provide corrections 
for time series that show a high degree of autocorrelation, over sampled data and 
sparsely populated regions of an attractor. These effects make the estimate of the 
embedding dimension ed  by the false nearest neighbours algorithm less accurate.  

2.1.2. Embedding by singular spectrum analysis (SSA) 

Singular spectrum analysis is an alternative approach to obtain a systems 
reconstructed phase space. In theory both methods, time delay embedding and SSA, 
give an embedding that is equivalent but with limited amount of noisy data it is not 
always the case. SSA does not relay as heavily on the calculation of the time delay 
that may be influenced considerably in the presence of a fair amount of noise. This 
makes the embedding by SSA a very attractive method since noise is usually present 
in data obtained from practical systems. 

SSA is base on performing a singular value decomposition (SVD) of the trajectory 
matrix obtained from the original time series. The basic SSA algorithm consists of 
four steps: embedding, SVD, grouping and reconstruction (Moskvina & Zhigljavsky, 
2000). 
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Step 1: Embedding 

The embedding is performed in a similar way than time delay embedding. The data is 
embedding with a time delay of T =1 and embedding dimension that is at least equal 
to the point of linear decorrelation of the data. This point is at fist minimum or first 
zero crossing of the autocorrelation function. Now let x1, x2,..., xn  be a time series of 
length N . Let M  be an integer value that is at least equal to the point of linear 
decorrelation of the data and set K = N − M +1. The M -lagged vectors can then be 
defined as: 

X j = (x j ,x j +1,...,x j +M −1)
T  for j =1,2,...,K       (2.9) 

The trajectory matrix is then: 

X = (xi+ j−1)i, j=1
M ,K = [X 1,X 2,...,X K ]       (2.10) 

Step 2: SVD of the trajectory matrix 

The singular value decomposition of the matrix X  is done through obtaining the 
eigenvalues and eigenvectors of the lag-covariance matrix: 

S = X X T  of size M × M         (2.11) 

The eigenvalues λ1 ≥ λ2 ≥ ... ≥ λM  of S  are arranged in decreasing order with their 
corresponding orthonormal eigenvectors U1,U2,...,UM  of S . Let d  be the number of 
nonzero eigenvalues λi , then the eigenvectors or principal components (PCs) of 
matrix X X T  are: 

Vi = X TUi  for i =1,2,...,d         (2.12) 

The result obtained from the SVD is a reconstructed d  dimensional state vector that is 
a projection onto the first d  principal components of the trajectory matrix: 

Y = Y 1 + Y 2 + ...+ Y d          (2.13) 

where 

Y i = λiUiVi
T  for i =1,2,...,d         (2.14) 

Step 3: Grouping 

The set of nonzero indices {1,2,...,d} is divided into two groups: 

I = {1,2,..., l} and I = {l +1, l + 2,...,d}      (2.15) 
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where the first l components describe and the signal and the lower d − l  components 
correspond to noise. Thus the result of the step provides a reconstruction of the signal: 

Y I = Y i
i∈I
∑           (2.16) 

Step 4: Reconstruction 

When the SSA is used for noise reduction purposes this step is used to reconstruct the 
time series. By averaging over the diagonals i + j = constan t  of the matrices Y I  and 
Y I  two series zt  and ε t  are obtained respectively. Thus the SSA decomposition of the 

original time series into two series is: 

xt = zt + ε t  where t =1,2,...,N        (2.17) 

The series zt  again correspond to the signal and the residual series εt  to noise. 

2.2. Invariant characteristics of the dynamics 

One approach towards characterization of the dynamics of a system is based on 
estimating invariant characteristics of a system in phase space. By invariant is meant 
that these characteristics are independent of changes in the initial conditions of the 
orbit and are independent of the coordinate system in which the attractor is observed. 
Thus for a particular system there should be no change in the quantity of the measure 
whether it is estimated in the original or any reconstructed phase space. This makes it 
possible to estimate these characteristic quantities for experimental data even though 
the true phase space might be unknown. 

Three major groups of classifiers that have emerged are the fractal dimensions, 
Lyapunov exponents and entropy. Fractal dimensions are characteristics of the 
geometric structure of the attractor. That is to relate the way the points on the attractor 
are distributed in the ed -dimensional space. The Lyapunov exponents are a 

characteristic of how the orbits of an attractor move apart or together under the 
evolution of the dynamics (Abarbanel, 1996). The entropy in turn is a notion of the 
degree of uncertainty in being able to predict a future state of the system. 

2.2.1. Fractal dimensions 

Dimensions are a characteristic of the geometric structure of the attractor. The 
attractors of simple periodic and quasi-periodic systems have simple geometries such 
as set of points, closed curves and torii (Judd, 1992). Attractors of chaotic dynamic 
systems however have fractal geometries and are called strange attractors. In general a 
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strange attractor has a small scale structure that is repeated on arbitrarily small length 
scales. This is illustrated in Figure 2.4 and is known as self-similar sets of an attractor. 

 
Figure 2.4: Construction of a self-similar set a) chaotic attractor b) enlargement of region defined by 

rectangle in (a) c) enlargement of region defined by rectangle in (b). 

There are several ways to quantify the self-similarity of a geometrical object. One 
such way is the Hausdorff dimension, which has formed the basis for other 
dimensions. However, owing to computational limitations the box-counting 
dimension 0d  is calculated instead. The box counting dimension is closely related to 

the Hausdorff dimension and presents the upper bound on the Hausdorff dimension 
(Kantz & Schreiber, 1997). 

(a). Box-counting dimension ( 0d ) 

Consider a point set in ℜde . This point set is covered with hypercubes or boxes with 
side length ε  and call G(ε) the number of boxes which contain at least one point. 
Then for a self-similar set (Kantz & Schreiber, 1997): 

G(ε) ∝ε−d0 , 0→ε         (2.18) 
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The box-counting dimension 0d  can then be defined as: 

d0 =
lim

ε → 0
loge (G(ε))

loge
1
ε

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

        (2.19) 

The box-counting dimension is generally calculated and recalculated for increasing 
embedding dimensions. For embedding dimensions less than of equal to the true box-
counting dimension the estimate of the box-counting dimension will be the same as 
the embedding dimension ( edd =0 ). This will happen until the geometric structure of 

the attractor is fully unfolded. Embedding the data into a higher dimension will not 
cause a significant increase in the box-counting dimension. This is the true value of 
the box-counting dimension. 

Although the box-counting dimension can be calculated easily, it is not suitable as an 
algorithm for extracting dimensions from experimental data (Kantz & Schreiber, 
1997). The edge effects due to the finite size of the attractor are severe and not easily 
overcome. The box-counting dimension ignores the distribution of the points on the 
attractor since it measure only whether a box contain at least one point or not. When 
more weight needs to be given to those parts visited more frequently on the attractor, 
there is a family of dimensions, the generalised or Renyi dimensions (Kantz & 
Schreiber, 1997). 

(b). Generalised Dimension )( qd  

The generalised correlation integral is defined as (Kantz & Schreiber, 1997): 

∫ −=
x

q
q xdpxpC )()()( 1

εε         (2.20) 

For self-similar set: 

qdq
qC )1()( −∝ εε , 0→ε        (2.21) 

Now the generalised dimension qd  is defined as: 

)(log
)(log

1
1

0
lim

ε
ε

ε e

qe
q

C
q

d
−→

=         (2.22) 

In the case where 0=q  the generalised dimension qd  is equivalent to the box-

counting dimension 0d . The other two fractal dimensions most commonly examined 

are the information )( 1d  and correlation )( 2d  dimensions. 
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(c). Information dimension )( 1d  

The information dimension can be thought of as the dimension of the “core set” which 
is the part of the attractor that contains most of the points. It is the average amount of 
information needed to specify a point x  with accuracy ε. The information dimension 
also specifies how this amount of information scales with resolution ε . It accounts for 
the differences in the distribution density of the points covering the attractor. By 
setting 1=q  in the generalised dimension equation 2.22 and applying l’Hospital rule 
yields the information dimension as (Kantz & Schreiber, 1997): 

εε e

i
iei pp

d
log

log

0
lim

1

∑
→

=          (2.23) 

Where ip  is the probability of a point being in the thi  partition: 

∑
=
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)(          (2.24) 

The generalised dimension is a non-increasing function in q , thus the correlation 

dimension 2d  is calculated as the lower bound of the information dimension d1. The 
reason for this is the correlation dimension is much easier to calculate for a limited 
amount of data. 

(d). Correlation dimension )( 2d  

The correlation dimension as a measure to quantify the “strangeness” of an attractor 
has been introduced by Grassberger and Procaccia (1983). When 2=q  in the 
generalised dimension equation 2.22 it becomes: 

εε e

i
ie p

d
log

log

0
lim

2

2

∑
→

=         (2.25) 

The ∑
i

ip 2  in equation 2.25 is a two point correlation function that measures the 

probability of finding two random points within a certain radius ε . Grassberger and 
Procaccia (1983) suggested a simple algorithm to calculate the correlation dimension. 
They defined the correlation function to estimate the ∑

i
ip 2  term in equation 2.25 as: 
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 22

Where ix  and jx  are points defining the trajectory of the attractor and )(xΘ  is a 

Heaviside step function: 0)( =Θ x  if 0≤x and 1)( =Θ x if 0>x . The sum basically 
count the number of inter point distances that is smaller than ε . In the limit of an 
infinite amount of data we expect )(εNC  to scale like a power law: 

2)( d
NC εε ∝ , 0→ε          (2.27) 

Thus the correlation dimension can be defined as: 

ε
ε

ε e

Ne C
N

d
log

)(loglim
0

lim
2 ∞→→

=        (2.28) 

Figure 2.5 illustrates this probing of a hypersphere of radius ε  on one of the points 
defining the trajectory of the attractor. The correlation sum is calculated for a number 
of different hypersphere radii iε  and a graph is constructed that plots )(log εNe C  

against )(log εe . The slope of this graph where 0→ε  should approach the 

correlation dimension 2d .  

 
Figure 2.5: Correlation dimension calculation by Grassberger and Procaccia (1983) algorithm. 

This is however not the case when limited amount of data is used. The graph will 
jump irregularly for small values of ε  because of insufficient amount data points. 
This is known as small scale effects. For this reason there is looked at the 
intermediate, but still small values of ε  where a constant slope is present. This is 
known as the scaling range and a reliable estimation of the correlation dimension can 
be drawn from this region. At large hypersphere radii ε  the graph will flatten. This is 
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due to the finite size of the attractor and known as the large scale effects. This is all 
illustrated in Figure 2.5. 

This algorithm wasn’t however without flaws. Lai and Lerner (1998) showed that the 
scaling region is sensitive to the choice of embedding time delay. Judd (1994) also 
indicated that linear correlation in the data set misleads the algorithm to wrongly 
show convergence to some low dimension, which could then be misinterpreted for 
inherently low-dimensional dynamics. Judd further points out the deficiencies of the 
Grassberger and Procaccia (1983) algorithm (Judd, 1992): 

1. The first problem is inherent in all methods that are based on calculations of 
inter point distances. From a sample trajectory of length n  there are 

2/)1( −nn  interpoint distances, but these are not all independent. The triangle 
inequality states that the distance between two points is no more than the sum 
of the distances from a third point. 

2. The smoothness of the correlation function is misleading because it contains a 
lot of statistically correlated information. The correlation function )(εNC  

which is the number of interpoint distances less than ε  becomes more 
statistically correlate as ε  is increased. Thus some less weight must be given 
to large ε  values. 

3. Examples have been given where the scaling region reflects only large scale 
properties of an attractor and do not reflect information about the dimension of 
the attractor. Taking a scaling region also completely ignores information 
about small distances between points, which is still information about scaling. 
There is no reason for throwing away information if the data is not corrupted 
noise. 

4. The algorithm also gives no estimate of the error in of the dimension estimate. 
This is because the error in fitting a straight line through the scaling region is 
not an estimate of the error in the estimation of the dimension, but rather an 
error in the straight line fit.  

Judd (1992) proposes a modified algorithm on the Grassberger and Procaccia (1983) 
algorithm. The new algorithm replaces the linear scaling region by fitting a 
polynomial of the order of the topological dimension in the region. The correlation 
dimension is also expressed for inter point distances below a specific scale 0ε  as 

illustrated in Figure 2.6.  Now not only a single value of the correlation dimension is 
compared but rather the clustering of correlation dimension estimation curves 
calculated by Judd’s (1992) algorithm. This allows the examination of the micro- and 
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macroscale of the reconstructed dynamic attractor with the correlation dimension. 
Judd’s (1992) proposed algorithm for the correlation dimension is valid for 0εε < : 

)()( 2 εεε qC d
N ∝ , 0→ε         (2.29) 

Where )(⋅q  is a polynomial of order of the topological dimension. Judd (1992) also 
further proposes a form of confidence levels for the correlation dimension with his 
new algorithm. He also states that the algorithm is accurate for correlation dimension 
estimates up to four ( 42 <d ). 

 
Figure 2.6: Representation of the correlation dimension estimate by Judd’s (1992) algorithm. 

2.2.2. Entropy 

Entropy is a concept fundamental to thermodynamics. It is a thermodynamic quantity 
describing the amount of disorder in the system. This concept can be generalised to 
characterise the amount of information stored in more general probability 
distributions  (Kantz & Schreiber, 1997). For a time series the entropy characterise the 
amount of information, on average, a single measurement provide about the state of 
the system. Thus the amount of information already possessed about the future states 
given the past observations. The entropy measures the divergence of pairs of nearby 
orbits. 
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Just as the case with the generalised or Renyi dimensions there exist a series of 
entropy measures, the order-q Renyi entropies. They characterise the amount of 
information which is needed in order to specify the value of an observation with a 
certain precision when the probability density function is know. What makes the 
entropy relevant for nonlinear time series analysis is the inverse of the entropy is the 
time scale relevant for the predictability of the system. It also supplies topological 
information about the folding process. Calculating the entropies are however difficult 
since the computation requires more data points than dimension estimates and 
Lyapunov exponents. The order-q entropies qh  are defined as (Kantz & Schreiber, 

1997): 

hq =
lim

de → ∞
Hq (de +1) − Hq (de )       (2.30) 

With )(mHq  being the block entropies of block size de . A critical problem with the 

computation is the limit of the embedding dimension de → ∞ . This is overcome by 
calculating )(εqC  for increasing embedding dimensions then: 

Cq (de,ε) ∝εd qe− Hq (d e )          (2.31) 

For values of ε  inside the scaling region of the dimension plots the factor qdε  is 
almost constant and the entropy qh  can be determine by plotting qh  versus ε  for 

various m . 

hq (de ,ε) = Hq (de +1,ε) − Hq (de,ε) = loge

Cq (de,ε)
Cq (de +1,ε)

    (2.32) 

For a sufficiently large de  the graph will converge towards a constant qh  as illustrated 

in Figure 2.7. As in the case of fractal dimension estimates the correlation dimension 

2d  is the most robust and computable and the same goes for the correlation entropy 

2h . The correlation entropy is the lower bound of the Kolomogorov-Sinai entropy 1h . 
The significance of this is that typically for a linear deterministic system the 
Kolomogorov-Sinai entropy 1h  will be zero, for a linear stochastic system it will be 
infinite and finite for a deterministic nonlinear system. A positive finite entropy is 
also typical of a chaotic system, as illustrated in Figure 2.7. 
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Figure 2.7: Converging of entropy 2h  as embedding dimension is increased. 

2.2.3. Lyapunov exponents 

The Lyapunov exponents are a measure of the divergence of the orbits or trajectories 
that define an attractor.  This is an indication of the sensitivity to initial conditions and 
unpredictability of a dynamic system that characterise chaos. Predominantly periodic 
systems trajectories may diverge over the course of time, but the divergence will not 
be very dramatic. Thus we only speak of chaos when the divergence is exponentially 
fast. There are as many Lyapunov exponents for a dynamic system as there are phase 
space dimension (Kantz & Schreiber, 1997), thus defining exponential divergence in 
each direction of phase space. Figure 2.8 illustrates the concept of Lyapunov 
exponents. 

The Lyapunov exponents λ i  are determined by following the time evolution of two 
initially similar points (Kantz & Schreiber, 1997). For the maximal Lyapunov 
exponent let ta and tb  be two initially similar points that are separated by a distance 

tt ba −=0δ . At a time step tΔ  the separation of the two point’s trajectories, tta Δ+  

and ttb Δ+ , are ttttt ba Δ+Δ+Δ −=δ . The divergence of the trajectories can be expressed 

as: 

t
t e Δ

Δ = .
0

λδδ           (2.33) 
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Rearranging gives: 

λ = 1
Δt

loge
δ0

δΔt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟          (2.34) 

 
Figure 2.8: Divergence of orbits/trajectories of an attractor. 

A positive finite Lyapunov exponent characterise the presence of chaos, and exponent 
λ ≤ 0 characterise a periodic attractor. For a random attractor (noise) the exponent 
will tend to infinity. Because of the finite size of an attractor two trajectories can‘t 
separate further then the size of the attractor. Thus equation 2.34 is only valid during 
times tΔ  for which tΔδ  remain small. Thus a mathematical more rigorous definition 

will have to involve a first limit 00 →δ such that a second limit ∞→Δn  can be 

performed without the trajectories separating beyond the attractor’s size. 

Generally experimental data are contaminated with noise and its influence can be 
minimised by using an appropriate averaging statistics when computing the maximal 
Lyapunov exponent. A method of determining the exponent by Kantz and Schreiber 
(1997) is to choose a point 

0nβ of the time series in the embedding space and select all 

the neighbours within a distance ε . Then compute: 

S(Δn) =
1
N

loge
1

U (βn0
)

sn0 +Δn − sn +Δn
β n ∈U (β n0 )

∑
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

n0 =1

N

∑      (2.35) 
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Where ns  is a point in the neighbourhood U (βn0
) with a diameter ε  and nΔ  the time 

span. Since the minimum embedding dimension de  and optimal distance ε  might be 
unknown, )( nS Δ  should be calculated for a variety of both values. The size of the 
neighbourhood should be as small as possible but still sufficient to have a few 
neighbours. If for some range of nΔ  the function )( nS Δ  exhibits a robust linear 
increase, the slope is an estimate of the maximal Lyapunov exponent. If there exists 
no linear increase the data reflects the lack of exponential divergence of nearby 
trajectories (Hegger et al., 1998). 

As earlier state there is a Lyapunov exponent for each dimension in state space. 
Determining them is unfortunately quite hard but Kantz and Schreiber (1997) 
proposed the following algorithm: let nx  and ny be two nearby trajectories in a de  

dimensional phase space separated by an infinitesimal distance nδ . The time 

evolution of their distance is: 

)()(11 nnnn xFyFxy −=− ++         (2.36) 

)()( 2
11 nnnnnnn xyOxyJxy −+−=− ++       (2.37) 

Where )( nyF is expanded around nx and )( nnn xJJ =  is the de × de  Jacobian matrix 

of F  at x . Given nnn xy −=δ , the modulus one step later can be computed. Let Vi 

and iΛ  be the eigenvector and eigenvalue of J  respectively, then decompose nδ  into 

these vectors with coefficients β i : 

δn +1 = β iΛ iVi∑          (2.38) 

Each arbitrary point of the phase space will find different eigenvectors and 
eigenvalues of the Jacobian since it is position dependent. The Lyapunov exponent λ i  

is defined as the normalised logarithm of the modulus of the thi  eigenvalue iΛ  of the 

product of all Jacobians along the trajectory (in time order) in the limit of an infinitely 
long trajectory: 

λ i =
lim

N → ∞
1
N

loge Λ i
(N )         (2.39) 

Where iΛ  is defined by: 

Jnui
(N ) = Λ i

(N )ui
(N )

n=1

N

∏         (2.40) 
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This set of de  different Lyapunov exponents is called the Lyapunov spectrum. This 
method was first suggested by Sano and Sawada (1985) and Eckmann and Ruelle 
(1985) independently. The method is later on applied to a hydrodynamic experiment 
by Eckmann et al. (1986) and compared to that of Sano and Sawada (1985). Sano and 
Sawada (1985) states that the minimum amount of points required is N > de (L /ε)d1  
where de  is the embedding dimension, d1 the information dimension and L  the 
horizontal extent of the attractor. A typical value for ε /L  is 3-5%. 

The Lyapunov exponents are typically arranged in decreasing order, 
λ 1 > λ 2 > ...> λ d e

, with at least λ 1 > 0 for a chaotic system. The sum of the positive 

Lyapunov exponents can be used to estimate the Kolomogorov-Sinai entropy (Hegger 
et al., 1998). 
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3. Methodology: detecting 

dynamic change with 

phase space methods 

Whether a time series is analysed for system identification or forecasting in MPC 
many practical problems usually arise when parameters describing the system are 
subjected to changes at unknown time instances. All the invariant statistics described 
in chapter 2 are also under the assumption that the time series under investigation are 
not subjected to such changes. In this chapter methods are discussed to identify such a 
parameter change, also referred to as a non-stationarity. Before the algorithms can be 
discussed a clearer understanding of stationarity are required. 

A signal is called stationary if all transition properties from one state of the system to 
another are independent of time within the observation period (Kantz & Schreiber, 
1997). In general there are two reasons for a measured series to be non-stationarity. 
The first being inadequate sampling of the system to capture the total dynamics of the 
system and the second being a change in the deterministic rules governing the 
dynamics of the system, also known as a dynamic change. 

The first instance is an analytical error that can be avoided by sampling at a sufficient 
high sampling frequency, usually two to ten times that of the highest frequency 
describing the dynamics of the system, and analysing a sufficiently long time series 
ensuring that the total dynamics of the system is captured. To ensure that a 
sufficiently long time series is analysed an invariant characteristic measure is 
calculated for a fraction of the times series. The measure is then recalculated for a 
larger fraction of the time series. Under constant deterministic rules governing the 
dynamics of the system the invariant characteristic measure should converge once a 
certain fraction of the time series is reach, indicating a sufficiently long time series for 
analysis of the measure. 

The second instance of non-stationarity is what the analysts are interested in when an 
actual change in the dynamics of the system occur. This can be in the form of a 
normally constant parameter changing instantaneously or drifting slowly over time. 

There exist a number of statistical tests for stationarity in data proposed in the 
literature (Schreiber, 1997; Manuca & Savit, 1996; Kennel 1997; Hively et al., 1999;  
Yu et al., 1999). Most of the tests are based on the following idea (Schreiber, 1997): 
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1. The time series of the system under investigation are divided into a number of 
segments. 

2. A test statistic is calculated for each of the segments of the time series. 

3. The results of the test statistic of all the segments are compared and if there 
exists a significant difference, variation outside statistical fluctuations, the 
time series is regarded as non-stationary.  

The importance of the choice of test statistic is obvious. A simple statistic such as the 
mean or standard deviation is not particularly good. The statistic is arbitrary and not 
related to any geometric properties of an attractor, which captures and characterise the 
dynamics of a dynamic system. Unless the particular statistic estimates a parameter 
deemed physically or dynamically important the power of such an arbitrary choice 
against various sorts of non-stationarity will vary greatly. Applying such a statistic 
could also overestimate the significance of the difference. Observed dynamic data are 
correlated and classical statistical estimations of confidence rely heavily on the 
independence of the observations. An example is measuring empirical means of 
segments of a chaotic time series and performing classical t-test for their equality will 
quite often reject null hypothesis of stationarity, even when data comes from noise 
free stationary experiments such as the Lorenz attractor (Kennel, 1997). Such 
methods do not identify non-stationarity reliably. 

Then there are a number of statistical process control (SPC) techniques such as 
standard Shewhart control charts, moving average control charts and CUSUM control 
charts discussed comprehensively by Basseville and Nikiforov (1993). Further 
multivariate statistical process control (MSPC) tools are also available where 
principal component analysis (PCA) is combined with SPC (Wise & Gallagher, 
1996). PCA is one of the favourite tools used for data compression and information 
extraction. It finds combinations of variables and factors that describe the major 
trends in a data set. Once the PCA model has been developed control limits can be 
placed on the process scores, sum of scores T 2  and overall residual Q for fault 
detection. 

Similarly to MSPC tools a change-point detection algorithm by Moskvina and 
Zhigljavsky (2000) has been developed and implemented in a software package. This 
algorithm is based on using SSA to obtain a subspace in ℜM  and calculating the 
detection statistic, the Euclidean distance between the subspace and phase space 
vectors. 

The main problem with these techniques is that they were designed to detect changes 
in constant mean, linear Gaussian sequences. This presents some problems when 
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applied to nonlinear and chaotic systems since the geometric properties of the 
attractor are again not considered. 

One test statistic that suffers considerably from non-stationarity in the data is the 
correlation dimension. The correlation dimension is used extensively throughout the 
literature for the detection of non-stationarity (Logan & Mathew, 1996). A simple 
drift of parameters usually causes an increase in dimensionality, while most other 
types of non-stationarities and insufficient sampling yield spuriously low estimates 
(Kantz & Schreiber, 1997). 

A change detection algorithm using the correlation dimension as test statistic is 
proposed and discussed together with the change-point detection algorithm and 
another phase space method, nonlinear cross prediction, in this section. These 
algorithms are applied to data in chapter 5 that was obtained from simulated systems 
discussed in chapter 4. The data is in the form of a single variable’s observed time 
series with a change being induced at some point. The observed time series will be 
analysis as if no knowledge of the underlying dynamics of the system is known. 

3.1. Change-point detection with singular spectrum analysis 

The four steps of singular-spectrum analysis are described in chapter 2. In this section 
only the change-point detection algorithm as implemented in the software by 
Moskvina and Zhigljavsky (2000) will be discussed. Now if the original time series 
are divided into a number of segments, with the first segment having a length of N  
data points. Then K = N − M +1 with M  being the lag parameter, which is an integer 
value.  

In the third step of the SSA algorithm a particular combination of a certain number 
l < M  of the eigenvectors determines an l-dimensional hyperplane LI  in ℜM . The 
distance between the vectors X j ( j =1,...,K) and the l-dimensional hyperplane LI  is 

controlled by the choice of I  and can be reduced to a rather small value. If the next 
segment are selected and there is no change in the deterministic structure of the 
system, then the distance between the l-dimensional hyperplane LI  and X j , j ≥ K  

should stay reasonably small. But if at a certain time τ  a dynamic change occur then 
the distance between the l-dimensional hyperplane LI  and X j , j ≥ K + τ  will be 

expected to increase. Figure 3.1 is an illustration of the hyperplane obtained from the 
first part of the time series and how the attractor moves away as a dynamic change is 
encountered. 
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Figure 3.1: Embedded time series with l-dimensional hyperplane obtained from eigenvectors of the 

first 6000 data points. 

In the implementation of the algorithm the singular value decomposition are applied 
to a sequence of time intervals [n +1,n + m] where n = 0,1,... is the iteration number 
and m  is the length of the time interval the trajectory matrix is computed from. This 
implementation accommodates the presence to detect instantaneous as well as slow 
dynamic changes. 

3.1.1. Description of the algorithm  

The algorithm proposed by Moskvina and Zhigljavsky (2000) as implemented in the 
software package is described as follow: 

Let x1, x2,..., xN  be a time series with N ≤ ∞  and choose two integers: an even integer 
m,(m < N) the window width and the lag parameter M . Also set K = N − M +1. Now 
for each n = 0,1,...,N − m  construct the trajectory matrices over the time intervals 
[n +1,n + m]: 

X (n ) = (xn + i+ j−1)i, j=1
M ,K =

xn +1 xn +2 ... xn +K

xn +2 xn +3 ... xn +K +1

... ... ... ...
xn +M xn +M +1 ... xn +m

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

    (3.1) 
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The columns of X (n )  are the vectors X j
(n )( j =1,...,K), where X j

(n ) = (xn + j ,...,xn +M + j−1)
T  

for j ≥ −n +1. The lag-covariance matrix is defined as Rn = X (n )(X (n ))T  for each n . 
The SVD of Rn  gives a collection of M  eigenvectors, and a particular combination I  
of l < M  of them determines an l-dimensional subspace Ln,I  of the M -dimensional 
space ℜM  of vectors X j

(n ) . Now Pi1
,...,Pil

 are the l eigenvectors that determines the 

subspace Ln,I  and the sum of squares of the distance between the vectors 
X j

(n ) = ( j = p +1,...,q), the test matrix, and the subspace Ln,I  are denoted by Dn,I ,p,q .  

Since the eigenvectors are orthonormal, the squared Euclidean distance between an  
M -vector Z  and the subspace Ln,I  spanned by the l eigenvectors Pi1

,...,Pil
 is: 

Z 2 − PT Z
2

= ZT Z − ZT PPT Z       (3.2) 

where •  is the usual Euclidean norm and P  is the (M × l)-matrix with columns 
Pi1

,...,Pil
. It is also the difference between the squared norms of the vector Z  and the 

projection of Z  to the space Ln,I . The squared distance Dn,I ,p,q  is the sum of these 

differences for the vectors X j
(n )  constituting the test matrix. Therefore: 

Dn,I ,p,q = (X j
(n ))T X j

(n ) − (X j
(n ))T PPT X j

(n )( )
j= p +1

q

∑      (3.3) 

When a dynamic change occurs at a certain point τ  it is expected that the vectors 
X j = X j−n

(n )  with j > τ  lie further away from the l-dimensional subspace Ln,I  than the 

vectors X j  with j ≤ τ . Thus when n  changes, the sequence Dn,I ,p,q  starts growing 

somewhere around ˆ n  such that ˆ n + q + M −1 = τ . This means that ˆ n = τ − q − M +1 is 
the first value of n  such that the test sample xn + p +1,...,xn +q +M −1 contains a point with a 

change. The sequence Dn,I ,p,q  will continue to grow for some time depending on the 

signal and the relations between p , q and N . The sequence Dn,I ,p,q  will reach a 

maximum and will decrease to its original level or perhaps a new level depending on 
the signal after the change-point (Moskvina & Zhigljavsky, 2000). 

In order to obtain a decision rule the normalised sum of squared distances is defined 
as follow: 

˜ D n,I ,p,q =
1

M(q − p)
Dn,I ,p,q        (3.4) 
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The ratio S n  is then defined as: 

S n =
˜ D n,I ,p,q

μn ,I

         (3.5) 

where μn,I  is an estimate of the normalised sum of squared distances ˜ D j,l,p,q  at the 

time intervals [ j +1, j + m] where the hypothesis of no change can be accepted. Here 
the largest value of m ≤ n  is selected so that the hypothesis of no change is accepted. 
A CUSUM-type statistic is the defined as: 

W1 = S 1, Wn +1 = Wn + S n +1 − S n −
κ

M(q − p)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

+

, for n ≥1   (3.6) 

where (a)+ = max{0,a} for any a ∈ ℜ and κ =
1

3 M(q − p)
. The algorithm 

announces a structural change of the time series once the statistic Wn > h  with the 
threshold h  defined as: 

h = 2tα

M(q − p)
1
3

(q − p)(3M(q − p) − (q − p)2 +1)      (3.7) 

with tα  the (1−α)-quantile of the standard normal distribution. 

Figure 3.2 and Figure 3.3 illustrate the results obtained from a numerical example 
analysed with the software implementing the algorithm. 

 
Figure 3.2: The detection statistic ˜ D n,I ,p,q  obtained for a dynamic change. 
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Figure 3.3: The CUSUM statistic Wn  obtained for a dynamic change. 

3.1.2. Choice of parameters 

The first parameter that has to be specified is the window width m . This parameter 
specifies the size of the base sample, which determines the l-dimensional subspace 
Ln,I . The size of m  depends on the kind of dynamic changes that should be detected. 
A general rule is that m  should be reasonably large. However choosing m  too large 
might smooth out all changes in the time series. Then m  should also be smaller than 
τ  and all other distances between sequential change-points. Choosing m  to small 
cause a haphazard behaviour of the moving squared distance Dn,I ,p,q , which may lead 

to a high frequency of false alarms because outliers might be recognized as dynamic 
changes. 

The next two parameters are the length Q and location p  of the test sample. A 
general recommendation is to choose p ≥ K , this ensures that the columns of the base 
and test matrices are different. Numerical simulations have shown that Q = q − p =1 is 
often very reasonable and even optimal (Moskvina & Zhigljavsky, 2000). To obtain a 
smoother behaviour of the test statistic Dn,I ,p,q  the length Q of the test sample should 

be increased so that Q >1. Choosing Q too large might again cause the test statistic 
Dn,I ,p,q  to become too smooth for any dynamic changes to be observed.  



 37

3.2. Mutual cross prediction to detect change 

Mutual cross prediction is a test for non-stationarity proposed by Schreiber (1997). 
The test is based on the similarity between different parts of the time series itself, 
rather than the similarity of parameters derived from the time series. In this approach 
the cross-prediction error, which is the predictability of one segment using another 
segment as database, is evaluated. 

Let x1, x2,..., xn  be a time series that is divided into r  continues segments of length l 
where the i th segment is denoted by Si

l . Now traditionally a statistic γ i is calculated 
for each segment and compared with other segments or the whole time series. Should 
a statistical significant difference exists the series is classified as non-stationary. Now 
Schreiber (1997) defines a statistic on pairs of segments, γ ij = (Si

l ,S j
l ), in particular 

the cross-prediction error.  By using the statistic γ ij  on pairs of segments the number 

of parameters calculated increase from r = n / l  to r2 = (n / l)2 . Although the 
information gained are largely redundant for the purpose of statistical testing since the 
γ ij  for different i, j  are not expected to be independent, different and more hidden 

kinds of non-stationarity can be detected (Schreiber, 1997). In general a more detailed 
picture about the nature of the changes are created to locate the segments where non-
stationarity exist. The main purpose of the test is to compare the information captured 
in the paired statistic γ ij = (Si

l ,S j
l ) relative to the diagonal terms γ ii = (Si

l ,Si
l ) . 

In principle γ ij = (Si
l ,S j

l ) can be any quantity which is sensitive to differences in the 

dynamics in Si
l  and S j

l  respectively. In this study the statistic used is the mean square 

prediction error obtained by fitting a multilayer perceptron (MLP) neural network 
model to Si

l  and predicting S j
l  one step into the future with the model. Refer to 

appendix A for a description of the models used in this study. 

Now the time series s1,s2,...,sn  is divided into r  continues segments of length l so that 
the i th segment is denoted by Si

l . Select two segments so that Si
l = (x1,...,xn ) and 

S j
l = (y1,...,yn ). Now choose two integers, an embedding dimension de  and time delay 

T , so that embedding vectors Xt = (xt ,xt−T ,xt−2T ,..., xt−(d e −1)T ) and 

Yt = (yt ,yt−T ,yt−2T ,...,yt−(de −1)T )  in the same de  dimensional phase space are formed. 

The model f , a MLP neural network, is trained to predict xi one step into the future, 
so that xt +1 = f (Xt ) . The model f , which was built on the segment Si

l = (x1,..., xn ), is 
now used to predict yi one step into the future, thus ˆ y t +1 = f (Yt ). The test statistic 
γ ij = (Si

l ,S j
l ), the mean square prediction error, can now be evaluated by: 
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γ ij = (Si
l ,S j

l ) = MSE =
1

n − T(de −1) +1
(yt − ˆ y t )

2

t=T (d e −1)+1

n

∑    (3.8) 

When diagonal segments are selected, the model is simulated with the data it was 
trained on and the test statistic γ ii = (Si

l ,Si
l )  should be expected to produce its lowest 

values. This is illustrated in the results obtained from an example in Figure 3.4 and 
Figure 3.5. 

From these figures it is also clear that a change in dynamics exists in segment 6, since 
the model build on segments 1 to 5 are able to predict the first 5 segments quite well, 
but fail to do so there after. Again when the model are build on segments 7 to 11 it 
predicts the last 5 segments quite well but fail to do so with the first 5 segments. Thus 
the dynamics of the system has changed in the 6th segment and stayed constant there 
after. 

Now a decision rule is created to evaluate whether a prediction errors differs 
significantly to be associated with a dynamic change. A 95% confidence limit on the 
MSE is created for the stationary parts of the time series by assuming a normal 
distribution of the MSE and using the following equation: 

MSE95% lim it = MSE + tdf ,αS        (3.9) 

Where MSE  is the mean of the MSE, S2 is the variance of MSE and tdf ,α  is the value 

from the t -table that corresponds to a right-hand tail area of α  for a t -distribution 
with df  degrees of freedom. For example in Figure 3.4 a 95% confidence limit is 
created on segments 1 to 5. Should the prediction MSE of a segment by a model from 
the stationary part of the time series be higher than the confidence limit, a change in 
the dynamics of the system is identified for that segment. The same holds for the 
prediction MSE of a segment from the stationary part of the time series. Should the 
prediction MSE be higher than that of the confidence limit the segment from which 
the model was built, is identified as having different dynamics as that from the 
stationary part. 
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Figure 3.4: Mutual cross prediction errors expressed in 2 dimensions. 

 
Figure 3.5: Mutual cross prediction errors expressed in 3 dimensions. 
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3.3. Correlation dimension as test statistic to detect change 

The presence of non-stationarities in a time series will have an influence on the 
geometrical structure of a system’s attractor. As discussed in chapter 2 the correlation 
dimension is an invariant measure of the topological structure of an attractor and 
should lose its invariant property once a non-stationarity is encountered in a time 
series. The correlation dimension can be estimated by a number of methods, but in 
this study the Judd (1992) algorithm is used. What makes the Judd (1992) algorithm 
so attractive is unlike the Grassberger and Procaccia (1983) algorithm, which 
produces a binary value for the correlation dimension, the Judd (1992) algorithm 
express the correlation dimension over a range of inter-point distances. This should 
enable the test to detect dynamic changes over a range of scales, which will not be 
averaged out as in the case of a single binary value. 

Now there are several ways in which the test statistics can be applied to an observed 
time series. An obvious method will be to divide the time series into a number of 
segments and estimate the test statistic for each of these segments. Should the test 
statistic estimations differ significantly from each other the series will be regarded as 
non-stationary, indicating that a change has occurred. 

However, there are some limitations to this approach. The estimation of the 
correlation dimension requires sufficiently long data sets, which will lead to few 
estimations when only a short time series is available. For example: there are only 
enough data available to divide the time series into just three segments and not one of 
the estimations of the different segments give the same result, as illustrated in  
Figure 3.6. The only information obtained from this result is that some change 
occurred in the second segment, but it is still unclear whether another change occurred 
in the third segment. It is also still unclear whether the dynamic change was in the 
form of an instantaneous change or a slow drift. Real time monitoring will also have a 
slow response time since long time interval will be required to collect sufficient data 
for the next estimation. 

An improved approach will be to use fixed size segments that are overlapping, a 
moving window approach. This eliminates the problem of short time series that can’t 
be divided into many segments. This approach will be able to determine when the 
change is induced and whether it is an instantaneous change or slow drift. This 
approach also presents the possibility of real time monitoring, since only a small 
number of new observations are required. The new data are combined with previous 
data to produce a sufficiently long data set for estimation of the test statistic. This 
approach is illustrated in Figure 3.7. 
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Figure 3.6: Correlation dimension estimated for three parts of a time series. 

 
Figure 3.7: Moving window approach. 
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The result obtained from this approach is illustrated in Figure 3.8. No dynamic change 
is observed within the first two segments, since their correlation dimension curves are 
quite similar, a more formal approach to test similarity will be introduced later. In 
segment three a change in the dynamics of the system has occurred, not only causing 
the correlation dimension curve to increase but also to change its shape. When the last 
two segments are studied, the correlation dimension curves do not differ that much 
again, but they are different from those related to the first two segments. With closer 
inspection it is also clear that the change was instantaneous at the 6000th time interval 
since the two segments leading up to and following the 6000th time interval are 
similar respectively. 

The moving window approach proofed to be superior and will be used for analysis of 
the simulated case studies in chapter 5. 

 
Figure 3.8: Result obtained from moving window approach. 

In order to quantify the similarity between correlation dimension curves a decision 
rule is created. This is done by dividing the scaled length axis ( x-axis) into a number 
of segments and creating 95% confidence intervals on the correlation dimension 
estimates for each segment with the following equation: 

d2 = d2 ± tdf ,α / 2S         (3.10) 
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Where d2  is the mean of the correlation dimension, S2 is the variance of correlation 
dimension and tdf ,α / 2  is the value from the t -table that corresponds to a right-hand tail 

area of α /2 for a t -distribution with df  degrees of freedom. For equation 3.10 to be 
valid a normal distribution of the correlation dimension estimates is assumed for 
stationary data. 

Now to obtain sufficient data to create the 95% confidence interval a calibration set is 
generated (simulated) in this study. This calibration set has the same parameters as the 
starting conditions of the simulated case studies and is sufficiently long to obtain 20 
correlation dimension estimates from non-overlapping segments. 

The procedure to specify normal process with confidence limits: 

1. Simulate time series data (calibration set), with parameters the same as starting 
conditions of system, sufficiently long to obtain 20 correlation dimension 
estimates from (non-overlapping segments). 

2. Determine suitable embedding parameters for phase space reconstruction. The 
time delay T  is estimated with either the autocorrelation function or average 
mutual information and the embedding dimension de  with the FNN algorithm. 

3. Divide the data into a number of non-overlapping segments of length N , 
sufficiently long to capture the full dynamics of the system, and embed each 
segment using the above embedding parameters (time delay T  and embedding 
dimension de ). 

4. Estimate the correlation dimension of the segments characterising the 
topology of the attractor that represents the normal process behaviour 
(dynamics of the system). Also estimate the mean and 95% confidence 
intervals from these estimates. 

The procedure to monitor nonlinear time series for changes: 

1. Simulate new data until a sufficient long time series, N  samples, has been 
obtained. The new data can be combined with previous data to produce time 
series of sufficient length N , as described by the moving window approach, 
for more rapid monitoring. 

2. Embed the data with the same embedding parameters, time delay T  and 
embedding dimension de , determined for the normal process. 

3. Estimate the correlation dimension for the new time series data and compare it 
with the normal process’s estimates and limits. If the correlation dimension 
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falls outside the confidence limits of the normal process data, a change in the 
dynamics of the system has occurred. 

 
Figure 3.9: Schematic diagram of calibration and monitoring procedure using the correlation 

dimension as test statistic. 
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3.4. Summary of methodologies 

Table 3.1 : Summary of parameters required for different change detection methods. 

  
Change-Point 

Algorithm Mutual Cross Prediction Correlation Dimension 

Lag parameter M  Time delay T  
Set of eigenvectors 
retained I  Embedding dimension de  

Length of base set m  Model parameters: 

Time delay T  

Length of test set Q Weights 

Parameters 
to be 

Specified 

Position of test set p   Number of neurons 
Embedding dimension de

Decision 
Rule 

CUSUM-type 
statistic ≥ Threshold 

MSE of MLP ≥ 95% 
confidence limit 

Correlation dimensions 
outside 95% confidence 

limits 
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4. Description of simulated 

case studies 

Since the stationarity of real world experimental results is usually unknown, all three 
case studies considered in this chapter are simulated systems. A dynamic change is 
also induced in the simulation but the starting location, duration and size of the 
change are known for evaluation of the change detection algorithms. In chapter 5 the 
change detection algorithms are applied to the simulated systems discussed in this 
chapter. 

4.1. Belousov-Zhabotinsky reaction (BZ reaction) 

The Belousov-Zhabotinsky reaction is basically an unstable chemical reaction that 
maintains self-oscillations and propagating waves, which may display chaos under 
certain conditions. The reaction is the transition-metal-ion catalyzed oxidation and 
bromination of an organic dicarboxylic acid by bromate ions in an acidic aqueous 
medium (Zhang et al., 1993). The reaction was first founded by Boris Belousov in 
1951 and was proven true later on by Anatol Zhabotinsky (Lu & Teulilo, 2001). Field 
et al. (1972) proposed the first detailed chemical mechanism for the BZ reaction. 
They also included a set of reaction rate constants based on thermodynamic data and 
experimental results that were available at the time. The chemical mechanism 
contains 15 chemical species and 11 reaction steps. 

Györgyi et al. (1991) introduced a model consisting of 11 dynamic variables and 19 
reactions that are able to exhibit deterministic chaos. They further reduced the model 
to 4 and 3-variable models for deterministic chaos (Györgyi & Field, 1991). The 
model used for the simulation in this case study, Model N, which was proposed by 
Györgyi & Field (1992) has the following chemical scheme (Zhang et al., 1993): 

(1) VHYX 2→++          (4.1) 

(2) XVHAY +→++ 2         (4.2) 

(3) VX →2          (4.3) 

(4) ZXHAX +→++
2
1        (4.4) 
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(5) XZX
2
1

→+         (4.5) 

(6) YZV →+          (4.6) 

(7) productsMZ →+         (4.7) 

Where −= 3BrOA , += HH  and MAM =  are chemicals of constant concentrations. 

The concentrations of −= BrY , 2HBrOX = , )(IVCeZ =  and BrMAV =  are 
variables of the model. The rates and constants are: 

]][][[11 YXHkr = , 6
1 100.4 ×=k        (4.8) 

][]][[ 2
22 YHAkr = , 22 =k        (4.9) 

2
33 ][Xkr =  , 30003 =k         (4.10) 

5.05.15.0
44 ]])[[(][][ XZCHAkr −= , 2.554 =k     (4.11) 

]][[55 ZXkr = , 70005 =k         (4.12) 

]][[66 VZkr α= , 09.06 =k        (4.13) 

]][[77 ZMkr β= , 23.07 =k         (4.14) 

By assuming that Y  is a fast variable the system of scaled differential equations are: 
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Where 0/Ttime=τ  and 1
20 )10( −= AHCkT  are the scaled time with scaling factors: 

0/ XXx = , 5
2

20 / kAHkX = , 5
2

20 /4 kAHkY = , 0/ ZZz = , )40/(0 MCAZ = , 

0/VVv =  and 2
0 /4 MAHCV =  which are the scaled concentration variables. The 

approximation of the fast variable Y is: 
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Where C  is the total cerium ion concentration and α , β , and fk  are adjustable 

parameters. Zhang et al. (1993) have shown chaotic behaviour for these chemical 
conditions at: 1.0=A M, 25.0=M M, 26.0=H M, 000833.0=C M, 9/6000=α  
and 23/8=β  for different windows of fk , which is the flow rate. 

The reaction model is simulated with the ODE45 subroutine in MATLAB 7.2 at a 
sampling rate of 0.00025 with initial values as follow: 

x0 = 0.0099
z0 = 2.2001
v0 = 0.4582

         (4.19) 

After the first 10 000 stationary data points are obtained a dynamic change is 
introduced in the form of a slow drift of the constant parameter fk , the flow rate. The 

parameter fk  slowly drifts from 4.5 ×10−4 s−1 to 5.0 ×10−4 s−1  over the next 10 000 

data points. This drift is in the form of a step function, thus k f  increase with linear 

increments every 1 000 data points, with the first increase at the 10 000th data point 
and the last increase at the 19 000th data points. For the last 10 000 data points the 
parameter fk  is again kept constant at its final value. Thus a time series of 30 000 

observations for each variable, x , z  and v , are obtained. The x-variable, as used for 
modelling by Györgyi & Field (1991), is considered as the only measurable variable 
and is used as the time series data obtained from the system under investigation. The 
result obtained from the simulation is illustrated in Figure 4.1. 

To ensure that all the internal dynamics of the system are captured, a discrete Fourier 
transform is performed that produced a continuous spectrum, as can be expected for a 
chaotic system, with the highest frequency of about 1000 Hz8. Thus the sampling 
period of 4000Hz should be sufficient to capture all the dynamics of the system. 

The dynamic behaviour of the system is reconstructed by embedding the time series 
data into phase space. The first step in phase space reconstruction is to determine the 
embedding parameters. First the time delay is estimated with the autocorrelation 
function or the average mutual information statistic as illustrated in Figure 4.2 and 
Figure 4.3. 

                                                 
8 No calculations shown here. 
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Figure 4.1: Time series obtained from BZ reaction model simulation a) all 30 000 data points b) 1000 

data points. 

The first zero value of the autocorrelation is at 24 time steps, where the first minimum 
value of the average mutual information is obtained at 41 time steps. Since the 
autocorrelation is a linear statistic and the average mutual information is seen as a 
superior choice as discussed in chapter 2, a time delay of 41 time steps is selected for 
the embedding. 

Next the embedding dimension is determined by the FNN algorithm. In Figure 4.4 it 
is evident that there are no more FNN after three dimensions. This is as expected 
since the system is described by three deterministic equations, equation 4.15 to 4.17, 
and thus all the states of the system can be represented in three dimensions. 

Now that all the embedding parameters have been evaluated for time delay 
embedding, the reconstruction is performed with equation 2.6 and the results 
illustrated in Figure 4.5. A typical strange attractor, filling the embedding space but 
still bounded, characteristic of chaotic systems, is obtained in Figure 4.5. To further 
investigate the possibility of chaos the maximal Lyapunov exponent was estimated at 
λ max ≈ 0.0066 for the first 10 000 data points. The positive Lyapunov exponent 
suggests chaotic behaviour. 
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Figure 4.2: Autocorrelation function of BZ reaction data with first zero value at T = 24 . 

 
Figure 4.3: Average mutual information of BZ reaction data with first minimum indicated at T = 41. 
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Figure 4.4: False nearest neighbours of BZ reaction data ( de = 3). 

 
Figure 4.5: Reconstructed state space of BZ reaction data with time delay of T = 41 and embedding 

dimension of de = 3. 
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4.2. Autocatalytic process 

The autocatalytic process considered in this simulation consists of two parallel, 
isothermal autocatalytic reactions taking place in a continuous stirred tank reactor 
(CSTR) (Lee & Chang, 1996). The system is capable of producing self-sustained 
oscillations based on cubic autocatalysis with catalyst decay at certain parameters. 
The system proceeds mechanically as follow: 

BBA 32 →+          (4.20) 

CB →           (4.21) 

BBD 32 →+          (4.22) 

Where A, B and C are participating chemical species. The reaction rates are governed 
by the following rate equations: 

2
1 BAA cckr =−           (4.23) 

BC ckr 2=           (4.24) 

2
3 BDD cckr =−          (4.25) 

Where 1k , 2k  and 3k  are the rate constants for the chemical reactions and Ac , Bc  and 

Dc  are concentrations of species A, B and D respectively. To describe the system by 
three ordinary differential equations the dimensionless concentration, ratios of species 
in feed and dimensionless time is described as follow: 

X =
CA

CA ,0

, Y =
CD

CD,0

, Z =
CB

CB ,0

     (4.26) 

a =
k1CB ,0

2 V
Q

, b =
k3CB ,0V

Q
, c =

k2V
Q

     (4.27) 

γ1 =
CA ,0

CB ,0

, γ 2 =
CD,0

CB ,0

       (4.28) 

τ =
t.Q
V

         (4.29) 

The ordinary differential equations governing the system is then defined by: 

21 aXZX
dt
dX

−−=          (4.30) 



 53

21 bYZY
dt
dY

−−=         (4.31) 

dZ
dt

=1− (1+ c)Z + γ1aXZ 2 + γ 2bYZ 2       (4.32) 

Lee and Chang (1996) have shown that for 18000=a ; 400=b ; 80=c ; γ1 =1.5; 
γ 2 = 4.2 and with initial conditions 00 =X ; 00 =Y ; 00 =Z , the system exhibits 

chaotic behaviour. 

The system is simulated with the ODE45 subroutine in MATLAB 7.2 at a sampling 
rate of 0.005. For the first 10 000 observations the same parameters as specified by 
Lee and Chang (1996) are used. A dynamic change is then introduced by creating a 
hypothetical case where the feed concentrations of A  and D increase slightly. 
Although the exact increase of A  and D are not considered, it can be reasoned from 
equations 4.28 that this will cause an increase in the dimensionless parameters γ1 and 
γ 2 . Thus over the next 10 000 observations the parameters, γ1 and γ 2 , drift slowly 
from their starting values, γ1 =1.5 and γ 2 = 4.2, to γ1 =1.55 and γ 2 = 4.25. The drift 
is again in the form of a step function, thus γ1 and γ 2  increase with linear increments 
every 1 000 data points, with the first increase at the 10 000th data point and the last 
increase at the 19 000th data points. The parameters are again kept constant at their 
new values, γ1 =1.55 and γ 2 = 4.25, for the final 10 000 observations. The 30 000 
observations of the X  variable, illustrated in Figure 4.6, is considered as the only data 
available from the system, as used by Bezuidenhout (2004). 

 
Figure 4.6: Time series obtained from autocatalytic process model simulation a) all 30 000 data points 

b) 1000 data points. 
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The sampling period of 200Hz also seems reasonable since the highest frequency 
component obtained from the Fourier spectrum is about 20Hz. Reconstructing the 
phase space is again done by time delay embedding which is summarized in  
Figure 4.7. A typical strange attractor is again obtained with a maximal Lyapunov 
exponent estimated at λ max ≈ 0.0052 for the first 10 000 observations, suggesting 
chaotic behaviour of the system. 

 
Figure 4.7: Summary of state space reconstruction by time delay embedding of the autocatalytic 

process data a) autocorrelation function ( T =14 ) b) average mutual information (T =17) c) FNN 
( de = 3) d) reconstructed state space with T =17 and de = 3. 
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4.3. Lotka-Volterra predator-prey model 

Some of the most interesting dynamics in the biological world are the interaction 
between species. Recently there have been many developments in use of biological 
processes in process engineering. Thus the relevance of studying such a predator-prey 
model is evident. 

The Lotka-Volterra was one of the first models introduced to describe the interactions 
between predator and prey species. It was first proposed by an American biophysicist 
Alfred Lotka and an Italian mathematician Vito Volterra in 1925. These types of 
models have broader relevance to other fields of study as well, such as a bio-physical 
coastal ecosystem model by Dowd (2005), a atmospheric chemistry model by Wang 
et al. (2002), a juvenile salmon migration model by Anderson (2005) and a model on 
plankton predation rates by Lewis and Bala (2006). A predator-prey model proposed 
by Lindfield and Penny (2000) is evaluated in this study. It is based on the following 
two differential equations: 

CXYXk
dt
dX

−= 1          (4.33) 

DYXYk
dt
dY

−= 2         (4.34) 

Where k1 is the rate of prey population growth, C  the encounter rate (reaction rate), 
k2 the predator’s efficiency to turn food into offspring (conversion efficiency) and D 
the predator death rate. The model is a nonlinear system that is not able to exhibit 
chaotic behaviour since only two variables are present. An oscillating behaviour are 
established when the constant parameters are set at 21 =k , 102 =k , 002.0=D  and 

001.0=C . Image a hypothetical situation where the environment is changed to favour 
the conversion efficiency k2, i.e. temperature of reactor increases to favour 
conversion in a biological reactor. This will increase the rate at which the prey 
population grow k1. Also an increase in encounter rate C  and predator death rate D 
can now be expected. Thus the parameters changing as follow: 
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Now the system is simulated with the ODE45 subroutine in MATLAB 7.2 with a 
sampling rate of 0.02 seconds and starting values of the two variables, X and Y, at 
100 and 5000 respectively. The parameters are kept constant at their starting values 
for the first 10 000 observations where after a dynamic change, the hypothetical 
situation, is introduced. Over the next 10 000 observations the parameters drift slowly 
as described in the hypothetical situation .The drift is again in the form of a step 
function, thus the parameters increase with linear increments every 1 000 data points, 
with the first increase at the 10 000th data point and the last increase at the 19 000th 
data point. Thereafter the parameters are kept constant at the end values described in 
the hypothetical situation for the final 10 000 observations. The X -variable, 30 000 
observations, is considered as the only data available from the system under 
investigation. The result obtained from the simulation is illustrated in Figure 4.8. 
From a discrete Fourier transform the highest frequency component present in data is 
10 Hz. Thus the sampling frequency of 50 Hz should be adequate to capture all the 
dynamics of the system. 

 
Figure 4.8: Time series obtained from the predator-prey model simulation a) all 30 000 data points  

b) first 1000 data points. 

Reconstructing the phase space is again done by time delay embedding which is 
summarized in Figure 4.9. Although a very small number of FNN are still present in 
two dimensions, it should be borne in mind that t is a purely deterministic system, and 
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therefore three dimensions were selected for embedding, where the number of FNN 
was zero. 

 
Figure 4.9: Summary of state space reconstruction by time delay embedding of the predator-prey data 
a) autocorrelation function ( T = 26) b) average mutual information ( T = 74) c) FNN ( de = 3) d) 

reconstructed state space with T = 74 and de = 3. 
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5. Detecting dynamic change 

in simulated case studies 

In this chapter the dynamic change detection algorithms discussed in chapter 3 are 
applied to the three simulated case studies described in chapter 4.The methods are: 

o Change-point detection based on SSA (section 3.1). 

o Nonlinear cross prediction of forecasting error from MLP model (section 3.2). 

o Using the correlation dimension as detection statistic (section 3.3). 

It is important to note that in this section onwards, reference to the correlation 
dimension will imply the Judd (1992) variant of the correlation dimension, i.e. the 
correlation dimension as a function of scale, as opposed to the binary value obtained 
from the Grassberger and Procaccia (1983) implementation. 

5.1. Detecting dynamic change with the change-point detection 
algorithm 

The change-point detection algorithm is based on determining an l-dimensional 
hyperplane by SSA for a base set and determining the sum of squares of the distance 
between the l-dimensional hyperplane and a test set. Should a change in dynamics be 
encounter an increase in the detection statistic is expected. 

5.1.1. Belousov-Zhabotinsky reaction 

The first step in the algorithm is to perform the reconstruction of the time series with 
SSA. Two parameters are required for the SSA, the lag parameter M  and the first l 
principal components that describe the main trends of the signal. The lag parameter 
M = 24 is obtained from the autocorrelation function in Figure 4.2. The trajectory 
matrix is then obtained by time delay embedding with a time delay T =1 and an 
embedding dimension de = M = 24 .  

The second step, the singular value decomposition of the trajectory matrix, is then 
performed and the eigenvalues obtained are shown in Figure 5.1. The first 2 principal 
components are selected to describe the signal of the BZ reaction data. The time series 
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is then reconstructed with the 2 principal components and the result is illustrated in 
Figure 5.2. 

 
Figure 5.1: Eigenvalues of lag-covariance matrix of BZ reaction data ( M = 24). 

 
Figure 5.2: Reconstructed time series of BZ reaction data ( M = 24 and I = 2). 

Finally the parameters for the detection statistic Dn,I ,p,q  are selected. A reasonably 

large window width for the base set, m = 400, is selected in order to avoid a 
haphazard behaviour of the detection statistic. Then a large test set, Q = 300 with 
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p =124 , is chosen to ensure smooth behaviour of the detection statistic. The results 
obtained from the test statistics are illustrated in Figure 5.3 and Figure 5.4. 

 
Figure 5.3: Detection statistic Dn,I ,p,q  obtained for BZ reaction data ( M = 24, I = 2, m = 400, 

Q = 300 and p =124 ). 

 
Figure 5.4: CUSUM statistic Wn  obtained for BZ reaction data. 
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5.1.2. Autocatalytic process 

The same procedure was followed as in section 5.1.1 with modified parameters 
summarized in the caption of Figure 5.5. 

 
Figure 5.5: Summary of results from change-point detection algorithm for autocatalytic process data  

a) eigenvalues ( M =14) b) reconstructed time series ( I = 2) c) detection statistic Dn,I ,p,q  

( m = 400, Q = 400 and p =14 ) d) CUSUM statistic Wn . 

5.1.3. Lotka-Volterra predator prey model 

The same procedure was followed as in section 5.1.1 with modified parameters 
summarized in the caption of Figure 5.6. 
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Figure 5.6: Summary of results from change-point detection algorithm predator-prey data  

a) eigenvalues ( M = 26) b) reconstructed time series ( I = 4 ) c) detection statistic Dn,I ,p,q  

( m = 400, Q = 220 and p = 206) d) CUSUM statistic Wn . 

5.1.4. Discussion of results obtained with change-point detection algorithm 

The results obtained from all three simulated case studies indicated that dynamic 
change is present in the time series data. A dynamic change is identified when a value 
of the CUSUM statistic Wn  above the threshold is obtained. The increase of the 
CUSUM statistic Wn  is due to an increase of the mean level of detection statistic 
Dn,I ,p,q , as observed in Figure 5.3 and Figure 5.6c. Once the non-stationarity is 

encountered the mean level of the detection statistic Dn,I ,p,q  changes due to the 

changing shaped of the attractor. In the cases of the BZ reaction and predator-prey 



 63

model the attractors change in such a way that it moves further away from the base 
set’s l-dimensional subspace, thus causing the increase in the detection statistic 
Dn,I ,p,q . Refer to Figure 5.7a for an illustration of the last 1000 data points (green 

points) of the BZ reaction projected onto the essentially two-dimensional (2D) 
subspace (red points) defined by the first two principal components of the first 1000 
data points (black points) of the BZ reaction, as indicated by the variance explained 
by each PC. Note that the black and green points do not lie in this 2D-subspace. 
Clearly the sum of the squared distances between the red and green points are larger 
than the sum of squared distances between the black and blue points (projection of the 
black points onto its first two principal components). Hence the initial increase of the 
test statistic. Figure 5.7b illustrates each segment (first 1000 and last 1000 data points) 
projected onto its own 2D-subspace (defined by first two principal components), but 
there is only a small difference between the two planes. Thus the sum of the squared 
distances between the red and green points (last 1000 data points) are still larger than 
the sum of squared distances between the black and blue points (first 1000 data 
points) explaining the higher average level of the test statistic for the final 10 000 data 
point. 

The predator-prey data produced the best behaviour of the detection statistic Dn,I ,p,q  

and the CUSUM statistic Wn  (Figure 5.6c and Figure 5.6d). An increase to above the 
threshold of the CUSUM statistic Wn  are observed due to the increasing mean level 
of the detection statistic Dn,I ,p,q  cause by non-stationary data points being included in 

the base and test stets. A final peak of the detection statistic Dn,I ,p,q  can be observed 

before it settles down into its final mean level. The decrease after the peak is due to 
less and less non-stationarity data being included in the base set and thus the base 
set’s l-dimensional subspace and test set’s vectors coming closer to one another in 
phase space. The decrease is terminated once no more non-stationarity data is 
included in the base set and a new level is reach since for any further iterations the 
base set and test set are from the same stationary series. The CUSUM statistic Wn  
also decreases to below the threshold as the detection statistic Dn,I ,p,q  reaches its new 

level, indicating that no more dynamic changes are present. 

The haphazard behaviour of the detection statistic Dn,I ,p,q  in all three cases is due to 

the data not having a Gaussian normal distribution and using only a limited number 
(base window width m  and test window width Q) of data points to calculate the 
detection statistic Dn,I ,p,q . The chaotic behaviour of the autocatalytic process and BZ 

reaction aggravates the irregular behaviour of the detection statistic Dn,I ,p,q  even more 

because of the irregular shape of the attractor since limited data is considered. The 
aggravated irregular behaviour causes multiple false alarms to be detected by the 
CUSUM statistic Wn . Increasing the two parameters m  and Q have a smoothing 
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effect on the detection statistic Dn,I ,p,q , but the effect of the change in dynamics is also 

smoothed out. 

Figure 5.7: Projection of data segments onto lower subspaces a) BZ reaction data, both segments onto 
first segments 1st 2PCs b) BZ reaction data, each segment onto their own 1st 2PCs c) Autocatalytic 

process data, both segments onto first segments 1st 2PCs d) Autocatalytic process data, each segments 
onto their own 1st 2 PCs. 

In the case of the autocatalytic process the attractor changes from having chaotic 
properties that fill the subspace to a nonlinear “thin” attractor that are embedded in the 
chaotic attractor. This causes the sum of the squared distances between the final 1000 
data points and its projection onto its own 2D-subspace to be less than that of the first 
1000 data points projection onto its own 2D-subspace, as illustrated in 
 Figure 5.7d. This explains the decrease in average level of detection statistic Dn,I ,p,q  

as illustrated in Figure 5.5c. It can thus be argued that the alarm for dynamic change 
by the CUSUM statistic Wn  is actually caused by the chaotic behaviour rather than 
the structural change of the attractor. 
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In the cases of the predator-prey data and BZ reaction data the algorithm is quick to 
detect structural changes, less than 1000 non-stationary data points required, but 
multiple false alarms are encountered in the presence of chaotic behaviour. 

A major disadvantage of the algorithm is that in the case where it fails to detect a slow 
dynamic change, the change is integrated into the “normal” state of the system. Thus 
the dynamics of the system can continue to change until a system with total different 
dynamics is obtained, without the algorithm ever detecting a change. To avoid this 
problem perhaps a better implementation of the algorithm will be to select one base 
sample against which all test samples will be tested. This will prevent the algorithm 
from detecting multiple changes and identifying a new steady state after a dynamic 
change. 

5.1.5. Effect of noise on change-point detection algorithm 

The ability of the algorithm to detect dynamic changes is influenced by the presence 
of noise (Figure 5.8 and Figure 5.9). The presence of noise aggravates the irregular 
behaviour of the detection statistic Dn,I ,p,q , which may lead to an increase in false 

alarms by the CUSUM statistic Wn  as in the case of the autocatalytic process. As can 
be expected there is an increase in the overall mean level of detection statistic Dn,I ,p,q  

as the noise level increases. This is due to the vectors being scattered more in higher 
dimensions and are thus further away from the l-dimensional subspace, increasing 
their squared distances. This scattering effect of the noise has the same effect on the 
detection statistic Dn,I ,p,q  as a dynamic change has on it. Thus decreasing the ability of 

the algorithm to resolve dynamic changes. Even changing parameters to obtain 
smoother behaviour of the detection statistic Dn,I ,p,q  will also cause the dynamic 

change to be smoothed out. 
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Figure 5.8: Results of change-point detection algorithm on noisy data a) detection statistic Dn,I ,p,q  of 

BZ reaction data (5% noise) b) CUSUM statistic Wn  of BZ reaction data (5% noise) c) detection 
statistic Dn,I ,p,q  of BZ reaction data (15% noise) d) CUSUM statistic Wn  of BZ reaction data (15% 

noise) e) detection statistic Dn,I ,p,q  of autocatalytic process data (5% noise) f) CUSUM statistic Wn  of 

autocatalytic process data (5% noise). 
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Figure 5.9: Results of change-point detection algorithm on noisy data a) detection statistic Dn,I ,p,q  of 

autocatalytic process data (15% noise) b) CUSUM statistic Wn  of autocatalytic process data (15% 
noise) c) detection statistic Dn,I ,p,q  of predator-prey data (5% noise) d) CUSUM statistic Wn  of 

predator-prey data (5% noise) e) detection statistic Dn,I ,p,q  of predator-prey data (15% noise)  

f) CUSUM statistic Wn  of predator-prey data (15% noise). 
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5.2. Detecting dynamic change with mutual cross prediction 

Mutual cross prediction is a test for non-stationarity based on predicting one part of a 
time series by using another part as database. In this particular case a multilayer 
perceptron network (MLP) is trained to predict one step into the future of a certain 
part of the time series. The same MLP is then used to predict one step ahead for a 
different part of the time series. The prediction errors of the two parts are then 
compared. The results are displayed on a two-dimensional map. Should one part be 
selected before a dynamic change and the second part after a significant increase in 
the prediction error is expected, no matter whether the first part is used to predict the 
second part or the other way around. In this section the mean square error (MSE), 
squared difference between the predicted values and actual values, is used as the 
prediction error. A decision rule is created by calculating a 95% confidence limit of 
the prediction MSE for the stationary parts of the time series. A dynamic change is 
identified once a prediction MSE is higher than the confidence limit. 

The time series of each simulation is divided into several parts using the moving 
window approach. Note that Table 5.1 also indicate the labels representing the 
different segments as is used in the proceeding figures. 

Table 5.1 : Division of data into different segments. 

Segment Data range Label Segment Data range Label 

1 1-5000 1-5k 14 13000-18000 13k-18k 
2 1000-6000 1k-6k 15 14000-19000 14k-19k 
3 2000-7000 2k-7k 16 15000-20000 15k-20- 
4 3000-8000 3k-8k 17 16000-21000 16k-21k 
5 4000-9000 4k-9k 18 17000-22000 17k-22k 
6 5000-10000 5k-10k 19 18000-23000 18k-23k 
7 6000-11000 6k-11k 20 19000-24000 19k-24k 
8 7000-12000 7k-12k 21 20000-25000 20k-25k 
9 8000-13000 8k-13k 22 21000-26000 21k-26k 

10 9000-14000 9k-14k 23 22000-27000 22k-27k 
11 10000-15000 10k-15k 24 23000-28000 23k-28k 
12 11000-16000 11k-16k 25 24000-29000 24k-29k 
13 12000-17000 12k-17k 26 25000-30000 25k-30k 

5.2.1. Belousov-Zhabotinsky reaction 

A MLP model predicting one step into the future is build for each segment specified 
in Table 5.1. Before the model is trained the architectural structure of the MLP is 
specified. Since the reconstructed phase space vectors of the system are used as inputs 
to the network the number of input nodes are equal to the embedding dimension, in 
this case de = 3. Since the time series considered in the simulated case studies 
consists of observations from only one variable the output layer also consists of only 
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one node to produce one output. To ensure that training and prediction time are 
reduced to a minimum only one layer of hidden nodes is selected. The number of 
nodes in this hidden layer is obtained by minimizing the Schwartz Information 
Criterion (SIC), see appendix A. The network is first trained for 3 hidden nodes for 
which the SIC is calculated. The number of hidden nodes is them increased by 1 and 
the network is retrained with a recalculation of the SIC. As soon as there is three 
consecutive iterations without an improvement of the SIC the number of hidden nodes 
that produced the last improved SIC is considered for the model. Figure 5.10 is a 
graphic illustration of the use of the SIC to determine the number of hidden nodes 
( NHN ). 

 
Figure 5.10: SIC for number of hidden nodes for the 26th segment of the BZ reaction data. 

The same number of hidden nodes (10) is used for all 26 models build to reduce the 
variability of the models. Each of the 26 segments is divided into a training and 
validation set for training of the MLP to ensure good generalisation and that 
overfitting does not occur. 

Now all the models are used to predict each of the 26 segments. Some of the results 
obtained from the 26th segment’s model are illustrated in Figure 5.11 to Figure 5.16. 
There is a definite deterioration in the performance of this model when segments from 
before or during the non-stationarity period are predicted.  
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Figure 5.11: Acquired and actual time series obtained from one step prediction of 26th segment with 

26th segment’s model. 

 
Figure 5.12: Performance of one step prediction of 26th segment with 26th segment’s model. 
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Figure 5.13: Acquired and actual time series obtained from one step prediction of 14th segment with 

26th segment’s model. 

 
Figure 5.14: Performance of one step prediction of 14th segment with 26th segment’s model. 
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Figure 5.15: Acquired and actual time series obtained from one step prediction of 1st segment with 26th 

segment’s model. 

 
Figure 5.16: Performance of one step prediction of 1st segment with 26th segment’s model. 
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Perhaps a better illustration of the performance of the 26th segment’s model is  
Figure 5.17 that illustrates the MSE obtained for the whole range of segments. The 
95% confidence limit is also indicated on Figure 5.17. The prediction MSE obtained 
for all the segments up to the 18th segment are above the 95% confidence limit. These 
segments (segment 1 to 18) are thus identified as having different dynamics from that 
of the last 8 segments. 

A 2-dimensional colour map (Figure 5.18) is used to illustrate the results obtained 
when the whole range of segment models are used to predict the whole range of data 
segments, with the MSE as the measure to evaluate the prediction error. 

 
Figure 5.17: Prediction MSE of all 26 segments with 26th segment’s model, the 95% confidence limit 

obtained from segments 21 to 26 (stationary part) is also indicated. 
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Figure 5.18: Mutual cross prediction with MSE for BZ reaction data ( T = 41, de = 3, NHN =10). 

5.2.2. Autocatalytic process 

The same procedure was followed as in section 5.2.1 with modified parameters 
summarized in the caption of Figure 5.19. 

 
Figure 5.19: Mutual cross prediction with MSE for autocatalytic process data ( T =17, de = 3, 

NHN =10). 
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5.2.3. Lotka-Volterra predator prey model 

The same procedure was followed as in section 5.2.1 with modified parameters 
summarized in the caption of Figure 5.20. 

 
Figure 5.20: Mutual cross prediction with MSE for predator-prey data ( T = 74, de = 3, 

NHN =10). 

5.2.4. Discussion of results obtained with mutual cross prediction 

When examining the results from all three case studies, Figure 5.18 to Figure 5.20, a 
definite diagonal area where the lowest prediction errors are obtained can be 
identified. This is expected since the diagonal is the prediction of a segment on which 
the model was trained. The segments close to the diagonal also produce low 
prediction errors since these segments are still much similar to the segment the model 
was trained on. The performance of the models build from segments within the non-
stationarity period, segments 11 to 16, does however deteriorate as segments further 
away from the diagonals are considered for prediction. This is due to the changing 
shape of the attractor in phase space as the dynamics of the system changes causing 
the MLP to generalise poorly. 

Two definite square blocks, from segments 1 to 10 and 17 to 26 with similar low 
prediction errors, can also be identified in Figure 5.18 to Figure 5.20. The first 6 
segments from the block defined by segments 1 to 10 are from the initial stationary 
part of the time series thus containing only stationarity data, hence the similar low 
prediction errors. In the remaining 3 segments of that block, segments 7 to 10, only a 
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small amount of non-stationary data are included and the parameters have only 
changed slightly by the time of this segment. Thus no real change in the prediction 
errors is observed for these segments predicted by the previous 6 segments’ models or 
their models used to predict the previous 6 segments. A similar trend is observed for 
the block defined by segments 17 to 26, this time only the last 6 segments being that 
of the stationary part of the time series after the induced dynamic change. 

The performance of a model continues to deteriorate when a non-stationarity in the 
form of a slow drift is encountered. This can be observed by studying the prediction 
errors of the first 6 segments in Figure 5.18 to Figure 5.20. An increase in the 
prediction error is observed from around the 11th segment up to the 17th segment from 
where on the prediction error stay reasonably constant again. This plateau is a result 
of a stationary part of the time series being reached, but with total different dynamics 
than that of the segment the model was build from. This explains the large prediction 
errors that are still present in predicting the last 6 segments with the first 6 segments’ 
models even though they are all from the stationary parts of the time series. 

In Figure 5.18 and Figure 5.19 it is also noticeable that the models from the first 6 
segments predict the last 6 segments better than the last 6 segments predicting the first 
6 segments. This can be explained by some parts of the attractor of the nonlinear last 
6 segments being embedded into that of the chaotic attractor of the first 6 segments, 
but not the other way around as illustrated in Figure 5.21. 

When the prediction errors of the first stationary part, segments 1 to 6 predicted by 
models from segments 1 to 6, is compared to that of the stationary part after the 
dynamic change, segments 21 to 26 predicted by models from segments 21 to 26, an 
decrease is observed (Figure 5.19). This is a good illustration of the limited 
predictability of a chaotic system, the first stationary part, compared to that of a 
nonlinear system, the second stationary part. 

Generally the method of nonlinear cross prediction using the MSE of a MLP network 
model is a very successful method to test for dynamic changes. The decision rule was 
implemented by using the average MSE value obtained over the stationary parts (first 
6 or last 6 segments) for a particular segment. The number of non-stationary data 
points required to detect a dynamic change were 3000 data points for the predator 
prey system, 5000 data points for the autocatalytic process and 4000 data points for 
the BZ reaction. The method does however require long computational periods due to 
model training and cross prediction, which is calculations on additional data sets, and 
isn’t ideally suited for online monitoring. 
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Figure 5.21: Some parts of 26th segment’s attractor embedded in 1st segment’s attractor. 

5.2.5. Effect of noise on nonlinear cross prediction 

Even with the added noise levels the method of nonlinear cross prediction is still able 
to identify the dynamic changes in the observed time series from the three simulated 
systems (Figure 5.22). Only in the case of the autocatalytic process is additional non-
stationary data points (now 6000 data points) required to detect a dynamic change. 
The MSE does however increase for the prediction of all the segments as the level of 
noise increases, as can be expected since noise adds a degree of unpredictability. 

The method is however not noise proof and at some arbitrary high level of noise it 
will be impossible to extract useful information from the attractors of the systems. 
This will cause only random noise to be modelled preventing any changes to be 
resolved. 
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Figure 5.22: Summary of mutual cross prediction with MSE a) BZ reaction data (5% noise)  

b) BZ reaction data (15% noise) c) autocatalytic process data (5% noise) d) autocatalytic process data 
(15% noise) e) predator-prey data (5% noise) f) predator-prey data (15% noise). 
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5.3. Detecting dynamic change with correlation dimension as test 
statistic 

The correlation dimension is a statistic defined in phase space which characterises the 
topological structure of an attractor. It characterises the topological structure of the 
attractor by the inter point distance distribution of the points defining an attractor over 
a range of length scales. Under constant system specifications it is also an invariant 
measure and is expected to change once a dynamic change in the system parameters is 
present. The algorithm proposed by Judd (1992) is used to estimate the correlation 
dimension in this section and is expressed over a range of length scales. The shape 
and region of the correlation dimension curve is considered when evaluating change 
in the correlation dimension. The observed time series from the simulated case studies 
is again divided into different segments as specified in Table 5.1. 

5.3.1. Belousov-Zhabotinsky reaction 

It is important to note that the same phase space reconstruction is used as for the 
classification of the time series in section 4.1. In the case of the BZ reaction the data 
is embedded with a time delay T = 41 and an embedding dimension of de = 3. 

Now the first step in estimating the correlation dimension is evaluating the correlation 
function, equation 2.26. This function evaluates the number of data points within a 
certain distance ε from each other for a range of inter point distances. This correlation 
sum is expressed on a log-log axis as a function of inter point distances ε as 
illustrated in Figure 5.23a. When examining the slopes of the three curves enlarged in 
Figure 5.23b a steeper gradient is observed for the 1-10 000 data points segment than 
the other two segments. These differences in the gradients of the correlation sum 
curves already indicate the possibility of a change in dynamics. A higher correlation 
dimension is thus expected for the 1-1000 data points segment which is obtained in 
Figure 5.23c by fitting a polynomial of the order of the topological dimension to the 
curves, as specified by the Judd (1992) algorithm. 

Now in Figure 5.23c three correlation dimensions are obtained, and there is a definite 
difference between the first two curves, 1-10 000 and 10 001-20 000 data points, and 
the last curve, 20 001-30 000 data points. The dynamics of the system defined by the 
third curve, 20 001-30 000 data points, are thus different from those of the first two 
curves due to some parametric change. The problem now is whether the difference 
between the first two curves is of significant level to deduce that the dynamics of the 
systems defining these curves are different. To overcome this problem a decision rule 
is created by providing 95% confidence limits on the correlation dimension for the 
stationary parts of the monitored time series. This is done by first simulating a 
calibration data set (Figure 3.9), with the same parameters as the initial conditions of 
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the monitored time series, sufficiently long to obtain 20 correlation dimension 
estimates from non-overlapping segments. A similar calibration data set is also 
simulated for the parameters at the end conditions of the monitored time series. The 
95% confidence limits are then determined for the correlation dimension estimates 
from these 20 segments, as illustrated in Figure 5.24. 

 
Figure 5.23: Summary correlation dimension estimate a) Correlation sum of the BZ reaction data  
b) Enlargement of region defined by rectangle in (a) c) Correlation dimension for correlation sum 

curves in (a). 

The monitored time series is now analysed by determining the correlation dimension 
for each of the segments defined in Table 5.1. The results are plotted together with the 
mean and the 95% confidence interval limits of the two stationary parts of the time 
series, as illustrated in Figure 5.25. 
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Figure 5.24: 95% limits of the correlation dimension for the stationary parts of the BZ reaction data. 

 
Figure 5.25: Correlation dimension estimates of the BZ reaction data by the moving widow approach 

with the mean and 95% confidence intervals of the stationary parts (T = 41, de = 3). 
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5.3.2. Autocatalytic process 

The same procedure was followed as in section 5.3.1 with modified parameters 
summarized in the caption of Figure 5.26. 

 
Figure 5.26: Correlation dimension estimates of the autocatalytic process data by the moving widow 

approach with the mean and 95% confidence intervals of the stationary parts ( T =17, de = 3). 

5.3.3. Lotka-Volterra predator prey model 

The same procedure was followed as in section 5.3.1 with modified parameters 
summarized in the caption of Figure 5.27. 

 
Figure 5.27: Correlation dimension estimates of the predator-prey data by the moving widow approach 

with the mean and 95% confidence intervals of the stationary parts ( T = 74, de = 3). 
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5.3.4. Discussion of results obtained with correlation dimension as test 
statistic 

The correlation dimension is very successful in identifying the dynamic changes in all 
three the simulated case studies. Generally there is an increase in the correlation 
dimension as a change is encountered. This is due the extra variability of the system 
because of the changing parameters effectively becoming “variables” and increasing 
the dimensionality of the attractor. This effect is probably best observed in the result 
from predator-prey data, Figure 5.27. A significant increase, to outside the 95% 
confidence limits, of the correlation dimension is observed for the very first segment 
containing non-stationary data (segment 6k-11k). Then a decrease in the correlation 
dimension can also be observed as the system becomes stable again and more 
stationary data are included in the segments (segments 17k-22k to 20k-25k). 

The increase in the correlation dimension might not be observed in the autocatalytic 
process, Figure 5.26, due to the over shadowing effect of moving from a chaotic state 
of the system to a normal nonlinear state. This causes the tremendous decrease in the 
correlation dimension observed in the cases of the BZ reaction (Figure 5.25) and 
autocatalytic process (Figure 5.26). The chaotic behaviour observed at the initial 
states of the BZ reaction and autocatalytic process cause larger variations of the 
correlation dimension estimates due to limited amount of data used per estimation. 
Larger confidence limits are therefore required explaining why the change in 
dynamics can only be identified after about 3000 to 5000 non-stationarity data points. 

In all three cases a difference in the correlation dimension between the stationary 
parts of the time series can be also observed. This enables the correlation dimension 
to identify instantaneous dynamic changes as well, even if non-overlapping windows 
were used to divide the data into segments. 

5.3.5. Effect of noise on the correlation dimension as test statistic 

The correlation dimension does suffer in the presence noise. A general increase in the 
statistic can be expected as the noise level increases (Figure 5.28 to Figure 5.33). 
Noise increases the complexity of an attractor, which explains the increase of the 
correlation dimension. This however does not prevent the correlation dimension from 
recovering some structure of the attractors and resolving the dynamic changes in the 
cases of the BZ reaction and autocatalytic process (Figure 5.28 to Figure 5.31). The 
response time increases slightly and ranges from about 1000 to 5000 non-stationary 
data points required to resolve a dynamic change. 

The predator-prey system suffers more severely from the added noise. At both levels 
of added noise the stationary parts are overlain and the statistic won’t be able to 
distinguish between the different stationary parts. The correlation dimension does 
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however show a significant increase for estimations of the non-stationary part of the 
data and will still be able to resolve some dynamic changes (Figure 5.32 and Figure 
5.33). 

Eventually the presence of an arbitrary high level of noise will cause the statistic to be 
unable to identify any structure or geometric properties of the attractor. Thus no 
changes will be detected and similar results for time series and random (surrogate) 
data can be expected. 

 
Figure 5.28: Correlation dimension estimates of the noisy BZ reaction data (5% noise) by the moving 

window approach with the mean and 95% confidence intervals of the stationary parts. 
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Figure 5.29: Correlation dimension estimates of the noisy BZ reaction data (15% noise) by the moving 

window approach with the mean and 95% confidence intervals of the stationary parts. 

 
Figure 5.30: Correlation dimension estimates of the noisy autocatalytic process data (5% noise) by the 

moving window approach with the mean and 95% confidence intervals of the stationary parts. 
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Figure 5.31: Correlation dimension estimates of the noisy autocatalytic process data (15% noise) by 

the moving window approach with the mean and 95% confidence intervals of the stationary parts. 

 
Figure 5.32: Correlation dimension estimates of the noisy predator-prey data (5% noise) by the 
moving window approach with the mean and 95% confidence intervals of the stationary parts. 
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Figure 5.33: Correlation dimension estimates of the noisy predator-prey data (15% noise) by the 

moving window approach with the mean and 95% confidence intervals of the stationary parts. 

5.4. Summary of results obtained from simulated case studies 

Table 5.2 : Summary of results obtained. 

Change-Point 
Algorithm 

Mutual Cross 
Prediction 

Correlation 
Dimension 

System Amount 
of Noise 

Points* False 
Alarms Points* False 

Alarms Points* False 
Alarms

No Noise 1000 5 4000 - 4000 - 
5% Noise 1000 14 4000 - 4000 - BZ Reaction 

15% Noise 3000 1 4000 - 5000 - 
No Noise 6000 4 5000 - 3000 - 
5% Noise 1000 11 5000 - 2000 - 

Autocatalytic 
Process 

15% Noise no change detected 6000 - 5000 - 
No Noise 1000 - 3000 - 1000 - 
5% Noise 4000 - 3000 - 1000 - 

Predator-prey 
Model 

15% Noise 3000 1 2000 - 1000 - 

Points* - Number of points after the change required by the algorithm to detect a change in the system. 
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6. Detecting dynamic 

change in electrochemical 

noise data 

In this chapter the spontaneously generated current and potential signals produced by 
a freely corroding system are investigated. These current and potential fluctuations are 
known as electrochemical noise. The data are obtained from a laboratory experiment 
but the details of the experiment and procedure are not considered in this study, only 
the analysis of the signals. 

Since the data obtained from the experiments are in the form of three separate signals 
only the correlation dimension as test statistic is used to detect dynamic changes 
between the different signals. The implementation of the change point detection 
algorithm that was used doesn’t allow three separate data sets as inputs. Combining 
the three data sets will cause unnatural jumps at the points where the signals were 
joined, which will easily be recognised by the algorithm, but won’t be a true 
representation of the algorithm’s performance. Although mutual cross prediction is 
not considered in this study, it might be interesting to test the performance of the 
algorithm with similar data in future studies. In this section referring to the correlation 
dimension will again refer to the correlation dimension curve as a function of scale, 
the shape and the space it occupies, produced by Judd’s (1992) algorithm. 

6.1. Background and experimental setup 

Electrochemical noise has long been studied as a mean to detect localized corrosion 
phenomena such as pitting, cervice corrosion and cavity attack. The spontaneous 
apparently random corrosion current is related to the kinetics of the reaction, while the 
corrosion potential is related to the process thermodynamics. 

Legat et al. (1998) did a study on various types of corrosion processes and analysed 
the electrochemical noise by means of the chaos theory. They found that the chaotic 
analysis was very useful for determining the type of corrosion. García et al. (2003) 
also concluded that during pitting corrosion of steel in a NaCl solution the 
electrochemical noise signals are of chaotic nature and that chaotic analysis provided 
more data concerning the type of corrosion. 
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In this study the aqueous corrosion of austenitic stainless steel is considered. The 
experimental setup (Figure 6.1) consists of a corrosion cell containing 500 ml  of the 
corrosive solution. Connected to the cell is a voltammograph (CV-27) connected to a 
Hewlett-Packard 34970A data acquisition unit for output to a computer. The 
electrochemical current is measured at 500 ms intervals with a three-sensor 
configuration. The current is measured between the two identical working electrodes 
consisting of austenitic stainless steel 304 strips, which were polished and degreased 
in hexane prior to use.  

The two corrosive solutions considered in this study are distilled water (H2O) and 
hydrochloric acid (HCl). The current measurements obtained from the experiments 
are illustrated in Figure 6.2 to Figure 6.4. 

 
Figure 6.1: Experimental setup of corrosion cell. 

 
Figure 6.2: Current measurements obtained from corrosion cell with HCl (Run 18) as corrosive 

solution. 
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Figure 6.3: Current measurements obtained from corrosion cell with H2O (Run 7) as corrosive 

solution. 

 
Figure 6.4: Current measurements obtained from corrosion cell with H2O (Run17b) as corrosive 

solution. 

6.2. Phase space reconstruction 

In order to perform surrogate data analysis on the acquired signals phase space 
reconstruction of the data are required. This is done by time delay embedding for 
which two parameters are required, a time delay T  and embedding dimension de . 
Since the test statistic, the correlation dimension, is relatively invariant under different 
phase space reconstructions, all 3 time series are embedded with the same embedding 
parameters. The normal process, Run 18, against which the other runs are tested is 
considered to estimate the embedding parameters. 

Now after considering the first zero of the autocorrelation function at T = 7  
(Figure 6.5) and the first minimum of the average mutual information at T = 9  
(Figure 6.6), a time delay of T = 9 is selected. Similar results, T between 7 and 9, are 
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obtained for the other two time series, Run 7 and Run 17. Thus the selected time delay 
of T = 9 should be adequate for the reconstruction of all three time series. 

The embedding dimension is obtained by the false nearest neighbours algorithm 
(Figure 6.7), which suggests that an embedding dimension of de = 8 should be 
sufficient. Similar results are also obtained for Run 7 and Run 17 implying that all the 
dynamics of the three systems should be captured in the phase space reconstructions 
of Figure 6.8. 

 
Figure 6.5: Autocorrelation function of electrochemical noise (Run 18). 

 
Figure 6.6: Average mutual information of electrochemical noise (Run 18). 
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Figure 6.7: False nearest neighbours of electrochemical noise (Run 18). 

 
a) 

 
b) 
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c) 

Figure 6.8: Phase space reconstruction of all 3 signals a) Run 18 b) Run 7 c) Run 17. 

Although it might seem that the attractors obtained from the reconstructions in  
Figure 6.8 has little geometric structure, it should be considered that they are view in 
only 3 dimensions when they are actually defined in 8 dimensions, where they might 
have a definite geometric structure.  

6.3. Methodology for detecting change in electrochemical noise 
signals 

The methodology for detecting dynamic change in electrochemical noise data is 
divided into two parts. The first part is associated with specifying the normal process 
and providing confidence limits where the second part in turn is associated with the 
monitoring of the system. 

The procedure to specify normal process with confidence limits: 

1. Collect for a sufficiently long period time series data representative of normal 
process behaviour. 

2. Determine a suitable time delay T  and embedding dimension de  for phase 
space reconstruction. 

3. Divide the data into a number of segments of length N , sufficiently long to 
capture the full dynamics of the system, and embed each segment using the 
above embedding parameters (time delay T  and embedding dimension de ). 

4. Estimate the correlation dimension of the segments characterising the 
topology of the attractor that represents the normal process behaviour 
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(dynamics of the system). Also estimate the mean and confidence intervals 
from these estimates (refer to section 3.3 for confidence interval estimation). 

The procedure for monitoring of the system: 

4. Collect new process data until sufficient long time series, N  samples, has been 
obtained. 

5. Embed the data with the same embedding parameters, time delay T  and 
embedding dimension de , determined for the normal process. 

6. Estimate the correlation dimension for the new time series data and compare it 
with the normal process’s estimates and limits. If the correlation dimension 
falls outside the confidence limits of the normal process data, signal a change 
in the dynamics of the system. 

6.4. Results obtained from electrochemical noise data 

 
Figure 6.9: Correlation dimension estimates of the 3 different electrochemical (all data). 
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Figure 6.10: Correlation dimension estimates obtained by procedure specified in section 6.3 with 

L = 8000 data points. 

6.5. Discussion of results obtained from electrochemical noise 

When all the experimental time series data per run are considered, a difference in the 
correlation dimension estimates from different corrosive mediums can already be 
observed, as illustrated in Figure 6.9. The correlation dimension of the corrosion in a 
HCl solution, Run 18, is much lower than that produced by the corrosion in distilled 
water, Run 7 and Run 17. The correlation dimensions of Run 7 and Run 17 are also 
very much similar as can be expected since the same corrosive medium, distilled 
water, are used. 

For a more comprehensive study each of the electrochemical noise signals is divided 
into a number of segments and analysed as specified in section 6.3. The result 
obtained is illustrated in Figure 6.10. Again a difference in the correlation dimension 
from the electrochemical noise signals of corrosion in different solutions can be 
identified. All except one of the correlation dimension estimates from Run 7 and Run 
17 (distilled water solution) falls outside the 95% confidence limits for the correlation 
dimension of Run 18 (HCl solution). The correlation dimension estimates of Run 7 
and Run 17 is also very similar indicating that the systems producing these signals 
might be the same. 
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The correlation dimension curves are estimated with Judd’s (1992) algorithm, which 
is only accurate up to about 4, and the estimates obtained ranged between 2 and 8. 
Although this might present a problem the correlation dimension is a pivotal test 
statistic meaning that the probability distribution is the same for all processes 
consistent with the hypothesis, in this case corrosion in a HCl solution. Thus the 
actual correlation dimension value is not as important as the separation between the 
correlation dimension curves obtained from corrosion in different solutions. 
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7. Conclusions 

In this study a data-driven method for detecting change in nonlinear system is 
proposed and compared with two other similar methods proposed in the literature. 
These algorithms were applied to nonlinear simulated data: the BZ reaction, an 
autocatalytic process and a predator-prey system. The proposed algorithm was also 
applied to real process data, the electrochemical noise from a freely corroding system. 
The ability of the different algorithms to detect dynamic changes was compared and 
the insight gained from the study is briefly discussed below: 

• Although a large number of papers has been published on nonlinear systems, 
relatively few are on detecting change in such systems from data, particularly 
in process engineering where no satisfactory method has yet been proposed. 
The most common approach in the literature is the use of the following three 
nonlinear statistics: Lyapunov exponents, correlation dimension and various 
entropies. This led to the development of the algorithm proposed in this study, 
which uses the correlation dimension as test statistic. 

• All three the algorithms relied on the embedding of the time series data into 
phase space. The first minimum of the average mutual information was used 
to estimate the time delay for time delay embedding, where after the 
embedding dimension was obtained from the FNN algorithm. In the case of 
embedding by SSA the point of linear decorrelation was obtained from the 
first zero of the autocorrelation function. A subjective choice is required to 
obtain the set of eigenvectors retained in the embedding. Although the 
embedding parameters were successfully estimated with these guidelines, no 
objective way of estimating them is available. 

• Even though the change-point detection algorithm did identify the dynamic 
changes in the simulated time series data, the detection statistic had a very 
irregular behaviour. The irregular behaviour, which is due to the data not 
having a normal distribution, was aggravated even more by the presence of 
instrumental noise or chaotic behaviour. This led the algorithm to produce 
multiple false alarms and even a failure to detect any change in one case. 
Although the algorithm detects dynamic changes fast, the presence of multiple 
false alarms and poor robustness to specified parameters have to be reckoned 
with. 

• The two-dimensional map produced by the mutual cross prediction algorithm 
gives a good indication on the existence of dynamic changes in a system. The 
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method also appeared to be robust in the presence of measurement noise. 
Although the algorithm was reliable, it did require additional calculations and 
the training of am MLP, which was time consuming, making it not suited for 
online monitoring. 

• The proposed algorithm using the correlation dimension as test statistic proved 
to be useful for the detection of change in nonlinear time series data. The 
method showed a good robustness to the embedding parameters that were 
required, despite some indications to the contrary in the literature. Although 
the performance of the algorithm deteriorated as instrumental noise was added 
to the simulated data, it was still able to identify the changes in the noisy time 
series data considered in this study. 

• An advantage that the methods of correlation dimension as test statistic and 
mutual cross prediction has over the change point detection algorithm is that a 
slow change will not be integrated into the normal state of the system. 
However, these two methods require a calibration data set where no change is 
present, which are not required by the change point detection algorithm. 

• The proposed method with the correlation dimension as test statistic was also 
applied to real electrochemical noise data. Here the method was able to 
distinguish between the different corrosion current signals, which were 
obtained from the corrosion of stainless steel in water and hydrochloric acid. 
Thus the proposed method was able to distinguish between two different 
corrosion phenomena, i.e. uniform and localised corrosion, underscoring its 
potential as a useful approach to detect dynamic change in nonlinear systems. 

7.1. Future developments 

Although the proposed method with the correlation dimension as test statistic 
appears to be a promising approach to detecting change in nonlinear systems, 
more work needs to be done with real-world data. 

More over, future work should also explicitly assess the robustness of the method 
with regards to parameter misspecification, window length, etc. 
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Appendix A: 

implementation of 

multilayer perceptron 

neural network in this 

study 

Multilayer perceptron networks are a subset of artificial neural networks and are 
known as universal approximators that can fit continuous curves or response surfaces 
to data with an arbitrary degree of accuracy, at least in theory. Artificial neural 
networks were originally inspired by the brain that consists of millions of 
interconnected neurons. Similarly artificial neural network consists of interconnected 
simple process units, also called neurons or nodes, organised in different layers. Only 
through the collective behaviour of theses neurons are artificial neural networks able 
to form an approximation of complex functions. 

A MLP network typically consists of an input layer, one or more hidden layers and an 
output layer as indicated in Figure A.1. The nodes in a particular layer are connected 
to the nodes in successive layers by weighted connections. The weights define the 
internal relationship between the input and output of the network and are adjusted by 
training the network, once the network structure is defined.  

Before the network can be trained, the overall structure of the network has to be 
defined. This includes the number of layers, number of nodes per layer and types of 
nodes. First the input layer should be defined. Since the embedding vectors are used 
as the input vectors, the number of nodes in the input layer should thus be equal to the 
embedding dimension. The input layer is generally not a true layer since these nodes 
are only used to distribute the input signals to the nodes in first hidden layer. 

The number of hidden layers and number of neurons per hidden layer depends on the 
complexity of the system under investigation. A single hidden layer of nodes proofed 
to be adequate for the systems considered in this study. One way to estimate the 
optimum number of hidden nodes is by minimizing the Schwartz Information 
Criterion (SIC) (Judd & Mees, 1996). 
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SIC = N log Vθ ,Z ,i

N
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ + dm log(N)

i=1

p

∑       (A.1) 

Where θ  denote a particular set of model parameters and N  are the number of 
observations in data set Z . The model order dm  is the number of model parameters of 
a model structure and depends on the number of input nodes m , output nodes p  and 
hidden nodes S . 

dm = S(m + p)         (A.2) 

The model fitness norm Vθ ,Z  is defined as: 

Vθ ,Z =
1
N

1
2

(yt − ˆ y t,θ )2

t=1

N

∑        (A.3) 

with ˆ y t,θ  and yt  being the model predicted system output and the observed system 
output respectively. 

 
Figure A.1: Structure of a typical multilayer perceptron neural network. 
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Now the type of nodes used for the hidden layers have to be specified. Each node 
model consists of a processing element with a set of inputs as well as one output as 
illustrated in Figure A.2. 

 
Figure A.2: Model of a single neuron/node. 

The output of the node can be expressed as: 

z = f ( wixi
i=1

b

∑ ) = f (wT x)       (A.4) 

The weight vector w  and input vector x  are defined as: 

w = [w1,w2,...,wb ]T         (A.5) 

and 

x = [x1, x2,...,xb ]T         (A.6) 

The function f (wT x)  is referred to as the activation function of a node. The argument 
of the activation function is sometimes referred to as the potential of the node, in 
analogy to the membrane potentials of biological neurons (Aldrich, 1998). Sigmoidal 
activation functions are used widely in neural network applications and a typical 
transfer function is illustrated in Figure A.3. The activation function used for the 
hidden layer nodes is a hyperbolic tangent sigmoid transfer function (‘tansig’) with 
wT x = φ  and is defined as: 

f (φ) =
2

(1+ e−2φ )
−1        (A.7) 
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Figure A.3: hyperbolic tangent sigmoid activation function (‘tansig’). 

An additional input x0 , with associated weight w0 , referred to as a bias can be 
defined for some nodes. This input has a fixed value of -1 but like the other inputs has 
an adjustable weight. A bias input value is sometimes used to offset the output of the 
MLP to enable the MLP to form accurate representations of process trends. 

The output layer consists of only one node since the there are only one output, the 
observed time series. The purpose of the output layer node is basically to combine the 
signals obtained from the hidden layers nodes to produce a single output. Thus the 
activation function used for the node is a linear transfer function (‘purelin’). 

Now that the network architecture is defined the weights are fitted to a training set 
consisting of actual input and output values of the system. Training typically occurs 
by means of an algorithm designed to minimise the mean square error between the 
target output and the actual output of the MLP through incremental modification of 
the weight matrix. During the learning process information is propagated back 
through the MLP in order to update the weights. The Levenberg-Marquardt algorithm 
optimizes the weights of the MLP through backpropagation and converges faster than 
most other training algorithms (Barnard, 1999).  Training of the MLP network is 
terminated when the MLP network has leaned to generalise the relationships 
exemplified by the training data.  

The ability of a MLP network to generalise is measured by means of cross-validation. 
During cross-validation the performance of the network is evaluated against a data set 
not used during training, the validation set. A serious disadvantage of the MLP trained 
with backpropagation is it may suffer from overfitting9. One simple modification 
proposed by Witten and Frank (2005) is early stopping. Here the validation error is 

                                                 
9 Overfitting – The model fits the training data well but fails to generalise untrained data, caused by 
using a much larger network than what is required. 
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monitored and the training algorithm is terminated once the validation error start to 
increase, indicating overfitting to the training data. 

A more comprehensive description of MLP networks can be found in textbooks such 
as (Haykin, 1999). 
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Appendix B: papers based 

on work done in this study 

B.1. Aldrich, C., Qi, B.C., and Botha, P.J., (2006), Analysis of 
electrochemical noise with phase space methods. Minerals Engineering, Vol. 
19, No. 14, pp. 1402-1409. 

B.2. Aldrich, C., and Botha, P.J., (2006), Detecting change in complex 
process systems with phase space methods. Industrial and Engineering 
Chemistry Research, submitted. 
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