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Abstract

Development of a robot for RoboCup Small Size League,
utilizing a distributed control architecture for a

multi-robot system development platform
A Smit

Department of Mechanical and Mechatronic Engineering
Stellenbosch University

Private Bag X1,Matieland 7602, South Africa

Thesis: MScEng (Mechatronic)
December 2011

RoboCup promotes research in robotics and multi-robot systems (MRS).
The RoboCup Small Size League (SSL), in particular, offers an entry level
opportunity to take part in this field of study. This thesis presents a starting
phase for research in robotics and MRS at Stellenbosch University. It includes
the full documentation of the mechanical, electronic and software design of an
omni-directional soccer robot for RoboCup SSL. The robot is also meant to
operate as a hardware and software development platform for research in MRS.
The platform was therefore designed with high-level programming language
compatibility, a wide range of connectivity, and modularity in mind. The
robot uses a single board computer (SBC) running a Linux operating system
to accomplish these objectives. Moreover, a driver class library was written
in C++ as a software application interface (API) for future development on
the robot platform. The robot was also developed with a particular focus on a
distributed control architecture. "Player" was implemented as the middleware,
which can be used for communication between multiple robots in a distributed
environment. Additionally, three tests were performed to demonstrate the
functionality of the prototype: a PI speed control test, a direction accuracy
test and a static communication test using the middleware. Recommendations
for possible future work are also given.
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Uittreksel

Ontwikkeling van ’n robot vir ’n RoboCup Klein Liga,
deur gebruik te maak van ’n gedesentraliseerde

beheerstelsel vir ’n multi-robot-stelsel
ontwikkelingsplatform

A Smit
Departement Meganiese en Megatroniese Ingenieurswese

Universiteit van Stellenbosch
Privaatsak X1,Matieland 7602, Suid Afrika

Tesis: MScIng (Megatronies)
Desember 2011

RoboCup bevorder navorsing in robotika en multi-robot-stelsels (MRS). Die
RoboCup Klein Liga (KL) bied in die besonder die geleentheid om op intreevlak
navorsing te doen in hierdie veld. Hierdie tesis verteenwoordig die eerste fase
van navorsing in robotika en MRS by Stellenbosch Universiteit. Dit sluit die
volledige dokumentasie van die meganiese, elektroniese en sagteware-ontwerp
van ’n omnidireksionele sokker-robot vir die KL in. Die robot is ook veron-
derstel om te dien as ’n hardeware- en sagteware-ontwikkelingsplatform vir
navorsing in MRS. Die platform is dus ontwerp met ’n verskeidenheid van uit-
breingsmoontlikhede en modulariteit in gedagte asook die moontlikheid om
gebruik te maak van ’n hoë-vlak programmeertaal. Om hierdie doelwitte
te bereik, maak die robot gebruik van ’n enkel-bord-rekenaar met ’n Linux
bedryfstelsel. Verder was ’n sagteware drywer in C++ geskryf om te dien as
’n sagteware-koppelvlak vir toekomstige ontwikkeling op die robot platform.
Die robot is ook ontwikkel met die besondere fokus op ’n gedesentraliseerde
beheerstels. Player was geïmplementeer as die middelware, wat gebruik kan
word vir kommunikasie tussen verskeie robotte in ’n gedesentralliseerde beheer-
stelsel. Daar is drie toetse uitgevoer om die funksionaliteit van die prototipe
te demonstreer, ’n PI spoed beheer toets, ’n rigting akkuraatheidstoets en ’n
statiese kommunikasie toets deur van die middelware gebruik te maak. Aan-
bevelings vir moontlike toekomstige werk word ook verskaf.
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Chapter 1

Introduction

With the fast developing electronic age that we live in, the field of robotics
is becoming more popular and accessible. At the same time, the application
for robots is growing and stretches from toys to lawn mowers to rescue robots.
The research presented in this thesis should be regarded as a starting phase
for research in robotics and multi-robot systems (MRS) at the Department
of Mechanical and Mechatronic Engineering at Stellenbosch University. This
chapter will start with a background section and the motivation for the work.
Thereafter, the objectives for this study are formulated. Finally, the scope of
this research is presented which discusses the boundaries and the outline of
this document.

1.1 Background on RoboCup

RoboCup, which is short for Robot Soccer World Cup, is a national and inter-
national research and education initiative that attempts to promote research
in artificial intelligence (AI) and robotics. It provides a standard research
platform, robot soccer, which allows for the development and integration of
various technologies, while the competition element takes care of motivation
for teams to compete as well as provide entertainment for the public. Robot
soccer is a research field found within the context of MRS and robotics. In
robot soccer, multiple, highly dynamic robots cooperate in a team in order to
play a game of soccer. To accomplish this task, a number of research areas
in AI and robotics enjoy attention, including autonomous agents, multi agent
collaboration, behaviour learning, and sensor-fusion are typical research topics
(Asada et al., 1999).

1
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CHAPTER 1. INTRODUCTION 2

RoboCup is considered as a benchmark for various research areas in robotics
and provides a grand challenge for this domain which classifies it as a landmark
project (a project that will have a socially significant impact). The RoboCup
grand challenge is:

"To develop a team of fully autonomous humanoid robots
that can play and win against the human world champion
soccer team, by the year 2050" (Burkhard et al., 2002).

Building a robot that plays soccer might not seem significant, but the achieve-
ments made along the way to accomplish such a goal will definitely have a huge
impact on technology. This is exactly the purpose of RoboCup’s grand chal-
lenge, to apply the technological advances made in the pursuit of this challenge
to other significant problems areas, for instance robot rescue missions (Tado-
koro et al., 2002; Kitano and Tadokoro, 2001).

RoboCup mainly consists of four events, namely RoboCupSoccer, RoboCu-
pRescue, RoboCupHome and RoboCupJunior. RoboCupSoccer is the main
event, initiating the landmark goal described above. RoboCupRescue aims to
develop highly manoeuvrable robots to participate in search and rescue mis-
sions in large-scale disaster scenarios. Furthermore, RoboCupJunior is also
a robot soccer event but gives the youngsters an opportunity by providing
educational institutions with a much cheaper and simpler challenge. The last
event is RoboCupHome which aims at developing service and assistive robots
for the domestic area.

More attention will be given to RoboCupSoccer since it is the focus of this
research. The RoboCupSoccer event has a number of soccer leagues of which
the Soccer Small Size League (SSL) is of main interest. RoboCup SSL is
named this way because of the size of the robots which is smaller relative to
the other leagues. SSL robots consist of three or four wheels and a kicker and
dribbler device. The robots are capable of holonomic movement. This is the
ability to move in any direction from the starting point without the need to
turn first, as in the case of a normal differential drive. This is also called an
omni-directional drive mechanism (ODM). The robots have onboard control
electronics, typically a microcontroller, to control the motors and onboard
sensors. In a typical SSL soccer mach, the higher level control, for instance
path planning, takes place on a central off-field computer. This computer
monitors the game through an overhead camera and communicates to the
robots over a wireless link. A central control architecture (CCA) like this is
characteristic of the SSL. See Figure 1.1 for an illustration of the centralised
architecture of the RoboCup SSL. Only a brief discussion on RobotCup is given
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CHAPTER 1. INTRODUCTION 3

here as an introduction to the motivation and objectives of this research. A
more thorough description will be given in the next chapter.

Overhead camera

Off-field PC

Soccer Field

Robots

Figure 1.1: Central control architecture (CCA) of the RoboCup SSL (Sho-
pland, 2010; Cincinnati, 2010; Zickler et al., 2010)

1.2 Research Motivation

Universities all over the world participated in the RoboCup challenge since
1997 (Asada et al., 1999). South Africa (SA) has only recently joined the race
to reach the RoboCup goal. Some attempts to build a team of SSL robots
have been made by various universities, but there was no participation on an
international level until 2009. The University of Cape Town (UCT) partici-
pated in the world championships in 2009 and 2010. Other local institutes
such as the Robotics Association of South Africa, the Mechatronics and Ro-
botics Research Group at the University of Kwazulu-Natal (KZN), and some
departments within the Council for Scientific and Industrial Research (CSIR)
also fosters research in robotics, but not necessarily related to RoboCup. Ho-
wever, the Department of Science and Technology (DST) of SA has made
funds available for research in robotics in 2008. This gave the opportunity to
four universities in SA including the University of Cape Town, University of
Kwazulu-Natal (KZN), University of Pretoria (UP) and Stellenbosch Univer-
sity (SUN) to take part in the RoboCup challenge. Hence, the first motivation
for the research that started in 2009 at the SUN’s Department of Mechanical
and Mechatronic Engineering is due to the funding received from the DST.

Furthermore, there has not been many other research activities at SUN in the
field of robotics before 2009. Consequently, everything necessary for robotic
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CHAPTER 1. INTRODUCTION 4

research needed to be built from scratch. Evidently, a set of robots or some
form of development platform was first on the agenda. However, to ensure the
continuation of the research and a broader application field, the development
platform should not be limited to the RoboCup SSL domain, but rather to
also open the door to development in the wider field of MRS. For instance,
the centralised architecture of the SSL does give a lot of space for research in
multi-robot cooperation and coordination, but is not appropriate to investigate
fully autonomous and distributed robotic behaviour.

Therefore, it is of particular interest to go beyond the conventional centralised
control system, towards a hybrid approach, keeping the functionality of the
centralised system but adding the advantages of a distributed architecture.
In this architecture, all robots are equipped with processors capable of high
level autonomous control. The robots are set up to communicate with each
other via a local network instead of receiving commands from the off-field
computer. The distributed control architecture (DCA) is displayed in Figure
1.2. Although the other RoboCup leagues, such as the Medium Size League
(MSL), are more suited for research in distributed multi-robot systems due
to their already distributed nature, the SSL robots are much quicker and less
expensive to develop for the initial phase of research in soccer robots. Also, by
using this hybrid approach, it is possible to conduct research for the RoboCup
SSL, and then at a later stage it will be very easy to shift to the higher leagues
or any other multi-robot research that goes beyond RoboCup.

Overhead camera

Soccer Field

Off-field PC

Robots

Onboard  processors 

Figure 1.2: Distributed control architecture (DCA) for RoboCup SSL pro-
tect(Shopland, 2010; Cincinnati, 2010; Zickler et al., 2010)
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1.3 Research Objectives

Following from the motivation discussed above, the general aim of this research
is to develop a robotic hardware and software development platform at the SU.
The platform is supposed to enable current research in robot soccer as well
as future research in MRS. The primary objective is stated below which is
sub-divided into four secondary objectives.

Primary Objective

Design and manufacture the first prototype of an omni-directional soccer robot
to be used in the RoboCup SSL competition, specifically making provision
for a distributed control architecture in order for the robot to also serve as
a hardware and software development platform for research in robotics and
MRS.

Secondary Objectives

• Design the robot chassis to operate as an ODM that will allow the robot
to be capable of holonomic movement. The chassis must ensure enough
space for all the motors, a kicker and dribbler device and all electro-
nic boards, while still remaining within the specification set out by the
RoboCup rules.

• Design the electronic system that will control the ODM. The system
should enable the robot to function in a CCA as well as a DCA. Evi-
dently, the robot must also be able to communicate directly with an
off-field computer as well as team robots. Furthermore, the electronic
system must be expandable to make provision for future development
and research.

• Develop the firmware and software that will implement the control al-
gorithm for speed control on the motors and also make provision for
position control. The software drivers should give access to all the hard-
ware components on the robot and provide an application interface for
further software development. Furthermore, the software should provide
a communications platform for multiple robots in a distributed environ-
ment.

• As an extra objective, if time permits, develop a second and third proto-
type and test the functionality of the robots in a distributed environment
by performing a certain cooperative task.
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1.4 Research Boundaries

The broad scope of this research has been presented through the discussion on
the motivation and objectives in the previous sections. However, the objectives
are subject to certain boundaries. Firstly, the hardware development of the
robot does not include the development of the kicker and dribbler device. This
task was appointed to a third party. Secondly, the software development does
not go beyond the level of an application interface. Any further development
regarding artificial intelligence and high-level behaviour control was left as a
future research topic. Thirdly, the development of a vision system for the SSL
robots is a complete research field on its own and was also appointed to a third
party.

1.5 Document Outline

The purpose of this document is twofold. Firstly it aims to give a report of the
work that has been done to achieve the above-mentioned objectives. Secondly,
it is meant to serve as a user manual to the robot platform that was developed.
The document should provide enough information to a future researcher to be
able to reproduce the design as well as to built on top of the current platform
and continue the work. The report was written with these goals in mind.

The document follows the following structure. Chapter 2 gives an introduc-
tion to RoboCup and a literature review of the work that was relevant to the
field of interest. The next three chapters, Chapter 3 to 5 consists of a detailed
documentation on the design of the platform. These chapters also correspond
to the first three secondary objectives. A systems engineering approach was
followed throughout the design chapters. Chapter 3 outlines the mechanical
design of the robot platform. Chapter 4 gives a full report of the electronic
system design and development, aiming to give a future developer a good un-
derstanding of the operation of the electronic system. Chapter 5 discusses the
software and firmware that has been developed for the robot platform. The-
reafter, Chapter 6 describes the procedure that was followed in the performed
tests and also gives the results thereof. Finally the research is summarised
and concluded in Chapter 7. The significance of this work will be enlightened
in Chapter 7 which also discusses possible future work. Additional technical
information can be found in the appendices. Appendix A is a compilation
of the mechanical manufacturing drawings of the robot, whereas Appendix B
gives the electronic circuit diagrams. Thereafter, Appendix C is a summary
diagram of the software system. Finally, Appendix D lists the contents of the
CD included with this document.
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Chapter 2

Robot Soccer and Literature
Review

In the previous chapter a brief overview of RoboCup was given as an introduc-
tion to the research field of this thesis. In this chapter, the RoboCupSoccer
event is discussed in more detail. Thereafter, an analytical derivation of the
inverse kinematic equations for the omni-directional drive mechanism (ODM)
is presented. Thereafter, a comprehensive survey on middleware is given. Fi-
nally, the last section discusses related research found in the literature.

2.1 RoboCupSoccer Leagues

Robot soccer is considered as an excellent test bed for MRS. It sets the field
for development in autonomous multi-robot cooperation and collaboration in
a highly dynamic environment. The RoboCupSoccer event is divided into five
competition leagues, each allowing for different aspects of robotics research.
These leagues are formally known as the SSL, which was described in Chap-
ter 1, Middle Size League (MSL), Simulation League, Humanoid League and
Standard Platform League. A closer look at each of these leagues follows in
this section.

2.1.1 RoboCup Small Size League

SSL robots are quite small, 180mm in radius and 150mm in height. In this
league, a game consists of two teams of five robots per team, playing 10 mi-
nutes on a side. The game is played on a carpeted field that is 6.05m long

7
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and 4.05m wide. The game is played with an orange golf ball. A typical ro-
bot consists of a chassis, driving system, kicker and dribbling mechanism and
control electronics.

The chassis is simply a base plate on which the motors are mounted and a
top plate to fit the electronics. A solenoid is fitted inside the chassis that can
extend and retract to create the kicking action. This enables the robot to pass
or shoot the ball to a team mate or into the goal net. The ball speed is also
controllable by adjusting the power on the solenoid and can reach up to 15m/s
(Zickler et al., 2008). Most robots also have a chip kicking mechanism to chip
the ball over the opponent. Moreover, each robot is fitted with a dribbler,
which is a horizontal roller in front of the robot connected to a small motor.
This roller is then used to give the ball a back spin and thereby enabling the
robot to control the ball.

What is significant of these robots is the driving system by which they are
moving around the field, the ODM. This drive mechanism consists of small
custom designed omni-directional wheels fitted to the base plate. These wheels
have little rollers on the circumference of the wheel, enabling the wheel to
move forward as well as sideways simultaneously. By spacing four of these
wheels around the circular base plate, more or less perpendicular to each other,
the ODM is created. This gives the robot the holonomic movement feature
described earlier. The holonomic movement allows the robots to be very fast
and manoeuvrable, making SSL robot soccer very competitive.

To control the motors, the robots also have onboard electronics and a high
speed microcontroller. The ARM 7 core, running at 58MHz, or field program-
mable gate arrays (FPGA’s) are often used (Kriengwattanakul et al., 2008; Wu
et al., 2009). These processors have low power consumption, high performance
and integrated interfacing circuitry. Figure 2.1 depicts a typical robot used in
the RoboCup SSL.

 

Figure 2.1: Typical Small Size League robot (Zickler et al., 2008)
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Apart from the robots, there are two other important components in a SSL
team, namely the vision system and off-field computer. Although the ro-
bots have onboard processors, the processors are only used to perform local
calculations such as motor and dribbler control, sensor data processing and
communication from the off-field computer. The actual game control and AI
is programmed and executed on a separate computer situated next to the field.
The field is also equipped with two high frame rate cameras, 4 meters above
the playing field. Each camera observes one half of the field. This vision sys-
tem provides the global view and determines the position of each robot as well
as the ball. The position is calculated on every image frame at a rate of 60
times per second. Each robot is colour coded with stickers to destinguish them
from each other.

The position information is fed to the AI system which then determines the
next action to take depending on the team strategy. The motion vectors are
then sent to each robot via a wireless link. This type of architecture is known
as central control architecture (CCA), due to the central off-field computer
where the actual control takes place. Figure 2.2 is another illustration of the
the CCA, also showing the two overhead cameras and the referee box. The
referee computer is used to start and stop as well as monitor the game play. The
SSL is designed to allow for hardware development in terms of highly dynamic
and fast robots. It also provides an opportunity for software development in
designing complex control and strategy algorithms for multi-robot cooperation.

Figure 2.2: Central control architecture (CCA) for Small Size League (SSL)
(Martinez-Gomez et al., 2005)

2.1.2 RoboCup Middle Size League

Although the MSL is not directly related to the scope of this project, it is
still discussed in this section to give a broader perspective of RoboCup and
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to point out the differences to the SSL and some similarities to this research.
The most obvious difference between the SSL and the MSL is the physical size
of the robots, 50 cm× 50 cm× 80 cm. The dimensions of the field is larger and
the game is played with a standard soccer ball. The robots make use of an
ODM with three wheels instead of four. One similarity is the dribbler and a
kicker mechanism which is also apparent on a MSL robot.

The MSL also differs from the SSL in the sense that there is no global vision
or off-field computer. It is a requirement in this league that all sensors should
be onboard. Therefore, these robots are equipped with a specially designed
omni-directional vision systems (Azevedo et al., 2009). The vision system
incorporates a hyperboloidal mirror and a vertical camera looking at the lens.
Light from a 360 ◦ radius is then reflected off the mirror into the camera and in
this manner, the robots can "see" in all directions at once. Figure 2.3 portrays
how the camera can see the whole soccer field.

Figure 2.3: Omni vision system on a Medium Size League (MSL) robot (Aze-
vedo et al., 2009)

The MSL also requires that all processing takes place onboard (no off-field PC
is allowed). Fortunately there is enough space on the robot to fit a laptop (see
Figure 2.4). The laptop is responsible for all high-level control on the robot
and image processing, as well as providing communication between the robots
through a wireless IEEE 802.11 link. Lower level control, for instance motors,
can then be delegated to dedicated microcontrollers which are interfaced to the
laptop through a controller area network (CAN). The CAN bus is a real-time
communications bus for embedded systems.
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(a) Medium Size League (MSL)
robot with onboard laptop

(b) Medium Size League (MSL) ro-
bots and soccer ball

Figure 2.4: Typical robots for RoboCup Medium Size League (MSL) (Azevedo
et al., 2009)

The distributed nature of the MSL and the restrictions that all sensors must be
onboard, allows for research in developing fully real-time autonomous systems.
Therefore, in the light of the objective to develop a distributed system, the
principles used in the MSL is also of interest for this research.

2.1.3 Other Leagues in RoboCupSoccer

RoboCup consists of other leagues that are less relevant to this research, but
will be mentioned briefly. The Humanoid League is the most challenging and
closest to the actual goal of RoboCup. In this league the robots are fully
autonomous and human-like in their physical appearance and operation. A
humanoid robot is shown in Figure 2.5. The research issues that are involved
in this league, includes dynamic walking, running, and kicking of the ball. All
this has to be done while maintaining balance and visual perception of the
ball, other players, and the field.

Figure 2.5: Typical robots for RoboCup Humanoid League (Nimbro, 2010)
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The Standard Platform League uses a humanoid robot as well, but all the
teams are provided with the hardware. The hardware is the same for all
participants, hence the name Standard Platform League. The teams therefore
only need to focus on the software development. The humanoid robot used
for this league is the Nao robot developed by Aldeberan Robotics. The Nao
robot, as shown in Figure 2.6, has 25 degrees of freedom and is equipped with
a number of different sensors including inertial sensor, force sensitive resistors,
Hall effect sensors, and sonar sensors.

Figure 2.6: The Nao robot for RoboCup Standard Platform League (RoboCup,
2009)

Finally, the Simulation League is a software approach to robot soccer. The
game is played using the RoboCup Soccer Simulater software. The server hosts
the match and the two teams can join their players as clients. The simulator
provides a physical 2-dimensional or 3-dimensional simulation framework in
which the virtual soccer players can compete in a dynamic multi-agent envi-
ronment. An example of a typical game is seen in Figure 2.6. The Simulation
League provides a challenging environment for research in AI and multi-agent
software systems.

Figure 2.7: Example of a 3-dimensional soccer simulation (Wikipedia, 2011)
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2.2 Holonomic Movement of an
Omni-directional Robot

Manoeuvrability and speed are two essential requirements in robot soccer and
even more so in the SSL. To accomplish the rapid movement and change of
direction, the conventional differential drive is not sufficient anymore and omni-
directional movement has become an absolute necessity in robot soccer. The
ODM gives the robots the significant ability to move very quickly and im-
mediately in any direction. This section will discuss the principle behind the
ODM used in soccer robots as well as a simple derivation of a kinematic model
for the ODM.

To understand the workings of the ODM, it is necessary to understand the
key element in the system, which is the omni-directional wheel (ODW). In-
dependent rollers are fitted around the circumference of the wheel with their
degree of freedom perpendicular to that of the wheel itself (see Figure 2.8a).
In other words, while the wheel is driven forwards or backwards on the y-axis,
seen in Figure 2.8b, the rollers provides an extra degree of freedom in the
direction of the x-axis, causing the wheel to drift in a diagonal direction.

 

(a) Omni-directional
wheel (ODW)

y

x

(b) ODW that moves
diagonal

Figure 2.8: Omni-directional wheel, (a): (RobotShop, 2011a)

Consider a circular base plate with four ODWs mounted on the edge. This
is seen in Figure 2.9 where the wheels are numbered one to four from the
positive x axis. The wheels are mounted with angles θn and, for the sake
of simplification, the angles are such that the wheels are perpendicular to
each other. Each wheel also has a motor connected to it and can therefore
exert a translational force in the positive or negative direction, resulting in a
translational velocity component of each wheel denoted by vn. One can now
imagine that if all the wheels are turning in the same direction with velocity
vn, and the positive direction is the direction of the arrow, the platform will
just rotate on the spot.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. ROBOT SOCCER AND LITERATURE REVIEW 14

θ1
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θ2

θ4
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Figure 2.9: Omnidirectional platform capable of holonomic movement

Equally evident, if two opposite wheels, for instance 1 and 3, are turning
in opposite directions with both exerting a force in the direction of D, the
platform will move in that direction. In this case the two opposite wheels
are providing the drive in the D direction, while the other two wheels are
stationary and the rollers provide the movement in the D direction. Similarly,
if the platform is moving in the direction of the x-axis, all the wheels are
drifting diagonally. The wheels provide half of the movement and the rollers
the other half. The same can be said for any direction in the x− y plane with
the movement supplied by the rollers and wheels changing, depending on the
direction.

It is now clear that by driving each wheel individually and combining the
forces, the resultant force will drive the platform in any desired direction.
It is noteworthy that this 360 ◦ movement has been accomplished without
any change in orientation of the platform, which is the great advantage of
an omni-directional mobile platform. If rotational movement is added to the
translational movement of the platform, even more interesting manoeuvres can
be achieved, for instance circular and arc formations.

The mathematical problem that now exits is how to make the platform move
along a certain path or simply move in a certain direction. Consider Figure
2.9 again, where the platform’s global velocity is denoted by capital Vx, Vy and
rotational or angular velocity by ω, while small vn denotes the individual wheel
velocities. The question that arises is what should the wheel velocities vn be
in order to obtain a certain global velocity Vx and Vy?

This is not a new problem and many solutions have been proposed in the
literature, with Watanabe (1998) being one of the earlier publications on this
topic. Williams et al. (2002) derived a dynamic model that also includes the
effect of slippage on the wheels. Wasuntapichaikul et al. (2010) is yet another
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example which also included slippage on the wheels by modifying the kinematic
model with some disturbance parameters. However, if the sensors on the robot
are highly accurate and the ground is planar enough, it is accepted to make
some assumptions and to discard the effect of slippage and determine only a
simple kinematic model (Li and Zell, 2009).

For this study the solution of Rojas and Förster (2006) has been chosen for its
simple derivation method. As mentioned above, slippage will be disregarded
in the derivation for simplicity reasons. If the platform is now considered to
move in the positive x direction with speed Vx, then it is seen in Figure 2.10
that wheel 1 has a translational velocity component −Vx sin θ, while the rollers
have a translational velocity of Vx cos θ. In the same way, if the platform is
moving in the positive y direction, then the wheel translational velocity will
be given by Vx cos θ.

Figure 2.10: Translational velocity components of the wheels

The rollers are not actuated and therefore can be discarded for the kinematic
model. Lastly, the rotation of the platform also causes a change in the velocity
of the wheel and needs to be added to the equation. The translational velocity
caused by the rotation of the platform can easily be calculated as Rω, where
R is the radius of the platform and ω the platform’s rotational velocity. The
following equation then holds for wheel n:

vn = −Vx sin θn + Vy cos θn +Rω (2.2.1)

Putting equation 2.2.1 in matrix formation for the four wheels, the inverse
kinematic equation to calculate the wheel velocities are given by the matrix
equation 2.2.2.


v1

v2

v3

v4

 =


− sin θ1 cos θ1 R
− sin θ2 cos θ2 R
− sin θ3 cos θ3 R
− sin θ4 cos θ4 R


Vx

Vy

ω

 (2.2.2)
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or

v = DV (2.2.3)

where v is the wheel velocity vector, D is the inverse kinematic matrix and V
is the global velocity vector. The inverse of this equation can also be obtained
to calculate the global velocity from the locally measured values. This result
is shown in equation 2.2.4:

V = D+v (2.2.4)

where D+ is the pseudo-inverse of the D matrix.

2.3 Middleware in the Robotics Domain

A distributed robotic system consists of a number of modules, each equipped
with certain sensors and actuators. These modules then communicate with
each other to make use of their resources in order to accomplish a challenging
task. This cooperation between the modules becomes a fairly complex sce-
nario to manage and calls for some sort of integration software to handle the
communication and sharing of resources.

Such a software system should provide a framework in which these robot mo-
dules are seamlessly integrated, although distributed. It should operate as one
single module with many functions. Only then will the advantages of a dis-
tributed system be utilised to the fullest. Moreover, the software framework
must provide an interface to the available hardware on the robot module and
also offer services that will ease the functionality and development of the robot
system.

A robot software development framework like this can easily be thought of as
analogous to an operating system for a desktop computer, providing an in-
terface to the user through the mouse and keyboard and also offers software
packages available to the user. Additionally, such a system has a network
connection to communicate to other computers and share their resources. The
only difference is that such an operating system for robots is much more diffi-
cult to develop than its desktop computer counterpart. Hence, robot operating
systems are still in its early stages of development compared to operating sys-
tems such as Microsoft Windows, Linux Ubuntu or Apple Mac OS.
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2.3.1 What is Middleware?

The type of robotic software framework discussed above is more formally
known as middleware. However, the term middleware is not restricted to the
field of robotics, but actually refers to any software system that provides com-
munication between distributed applications. Like the term suggests, middle-
ware positions itself in the middle between the low-level hardware abstraction
layer and the high-level application software. Middleware systems can adopt
different architectures and styles in which it realises the communication. These
different architectures becomes another field of research. However, for the pur-
pose of this study it is only necessary to know that middleware serves as a
communication framework in distributed systems.

A formal definition, according to Goedicke and Zdun (2001), states that "Midd-
leware extends the platform with a framework comprising components, services,
and tools for the development of distributed applications. It aims at the integra-
tion, effective development, and flexible extensibility of the application." From
the definition it is clear that middleware not only provides communication in
a distributed environment, but also extends the platform with functional tools
and services for the development of a distributed system. It is because of these
characteristics, that middleware forms the basis of any software development
framework in distributed or multi-robot systems as well.

2.3.2 Requirements of a Middleware

While the distributed robotic systems has many advantages, it also generates
some challenges like communication and coordination between the different
modules. Middleware is the solution to these challenges. The middleware can
solve these issues by providing hardware abstractions and add functionality to
the system. Other advantages of middleware is the extensibility and reliability
of such a system due to its modular architecture (Namoshe et al., 2008). Moha-
med et al. (2008) also states that data and sensor fusion is another important
aspect that middleware offers. Kramer and Scheutz (2007) lists a number of
aspects that middleware have in order to solve the challenges at hand. The
aspects are simplification, interoperability, heterogeneity, modularity, resource
discovery and configuration.

The first and most important task is merely to simplify the development pro-
cess. Simplification is usually done by providing an easy to use higher-level
abstraction to the developer, and by supporting software re-usability. In this
way, developers can share their code instead of reinventing the wheel.
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A further requirement of middleware is communication and interoperability.
Robots are manufactured by numerous different companies with each having a
different design. These different devices need to communicate with each other.
Therefore, the middleware must provide this interoperability mechanism. Mo-
reover, the robots not only need to communicate, but cooperate with other
devices as well. Therefore, the middleware must also offer a high-level appli-
cation interface to facilitate the collaboration functionality.

Another common issue is the heterogeneity of the robotic devices. If all robots
were the same, writing software for them would be as easy as copying and pas-
ting software code. However, this is not the case, and communication between
devices with different architectures becomes a non-trivial task. The role of the
middleware is to provide an abstraction layer to hide the heterogeneity of the
low-level components and create a uniform interface.

A developer often spends a great deal of time writing his own implementation
of an existing algorithm, instead of reusing existing code, because it simply
does not fit his custom hardware components. If the middleware can provide
these functionalities as extra modules to the framework, then the developer
can easily choose and add the module he needs, instead of spending his time
on rewriting the code.

It has already been said that robots often want to communicate with each
other. Additionally, robots want to communicate with external devices, to
make use of the extra resources and enhance their functionality. Due to the
nature of the situation, the availability of these resources is dynamically chan-
ging. This means that the robot must have the ability to automatically dis-
cover this newly available resource and also configure itself to make use of
it. Thus, middleware also needs to support automatic resource discovery and
configuration.

2.3.3 Review of Middleware Solutions

There are several survey papers in the literature that provides an overview of
the state-of-the-art robotic middleware solutions. A number of survey publica-
tions were reviewed to determine what middleware solution will be appropriate
for this research.

The most recent publication known to the author is that of Mohamed et al.
(2009). It presents an overview of the current solutions and explores the cha-
racteristics and roles of a middleware platform for multi-robots systems and
provides a criteria to evaluate the solutions. Additionally, Mohamed et al.
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(2008) gives a short description of several middleware platforms and states the
main objective of each with no further discussion.

Furthermore, freely available middleware solutions are discussed in Namoshe
et al. (2008) together with an example implementation of a multi-robot co-
operation algorithm using "Player" as the middleware platform. Another in-
terresting survey was done by Shakhimardanov and Prassler (2007), which
provides an overview discussion on three solutions, but moreover, it suggests
a comparison and evaluation methodology for middleware solutions.

The most comprehensive survey is done by Kramer and Scheutz (2007). It
provides a set of features that sets the basis for evaluation criteria, and then
applies these criteria to several middleware platforms or robot development
environments (RDE). Note that a RDE is also called robot software develop-
ment platform (RSDP). Moreover, Kramer and Scheutz (2007) gives a practical
usability evaluation on the architecture design, implementation, and execution
of the RSDPs on a robot. It also includes the impact of the RSDPs on the
multi-robotics field by using the published work as an indicator. These three
evaluation sets (conceptual features, practical implementation and the impact
on the field) are combined to give an overall score to the RSDPs. For this rea-
son, Mohamed et al. (2009) and Kramer and Scheutz (2007) will be considered
as the benchmark surveys for selecting a middleware solution.

From the review of the survey papers, nine middleware solutions were selected.
These solutions were evaluated against the predefined criteria that was deter-
mined by the requirements of this research. A full discussion of the evaluation
will be given in Chapter 5. Only three of the alternatives, Robot Operating
System (ROS), Mobile and Autonomous Robotics Integration Environment
(MARIE) and Player, were studied in more detail and are described below.

Robot Operating System (ROS)

ROS, developed at the Willow Garage Robotics Research Institute (Quigley
et al., 2009), provides the services that are typically found in a normal opera-
ting system for a computer. However, ROS was designed for robots. Typical
services are, for instance, hardware abstraction, low-level hardware control
and communication between processes. It also gives higher-level functionality
by means of stacks that can be added onto the operating system, much like
installing a new program on a normal operating system. Although ROS was
originally designed for large-scale service robots, it is now widely used in many
robotic applications.
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A ROS system is typically a number of nodes that performs the computation,
connected in a peer-to-peer network. Each node serves a different function.
One node will, for instance, do the vision processing and the other will control
the wheels, while a third one does the navigation. This arrangement is called a
computational graph. ROS is designed to be multi-lingual by either implemen-
ting it in the target language or wrapping it in a library. It currently supports
main languages such as C++, Python and Octave. Also, all the algorithms
and drivers are implemented in standalone libraries that have no dependencies
on ROS. This allows for easier reuse of the code beyond its original application.

Mobile Autonomous Robotics Integration Environment (MARIE)

Various robotic software solutions are being developed and they all implement
different communication approaches. This means that most of the program-
ming environments are not compatible with each other. This makes it difficult
to integrate the systems to benefit from each of their unique functionalities, or
to reuse their components. MARIE is a middleware solution with a different
goal in mind. MARIE does not implement yet another way of doing the same
thing, but rather, it aims to integrate multiple applications. It is designed with
three software requirements in mind: Reusing of available solutions, suppor-
ting multiple sets of concepts and abstractions, and supporting a wide range
of communication protocols, mechanisms and robotics standards (Côté et al.,
2006).

MARIE achieves these goals by creating a mediator interoperability layer
(MIL). The MIL is simply a centralised control unit that interacts with each
application. The central control unit, called the mediator, contains two dif-
ferent software components, the application adapter and communication adap-
ter. These adapters serve as the bridge between the external applications and
the mediator. The mediator in turn serves as the bridge between the different
applications. In this way, the applications are able to communicate with each
other without having to support other communication protocols other than its
own, because the mediator does the translation work. MARIE is, therefore,
a programming environment that allows multiple applications, programs and
tools, to operate on one or multiple machines and work together to implement
a versatile robot software framework (Côté et al., 2004).

The Player Project

The Player Project was initially developed for interfacing and simulation of
multi-robot systems (Gerkey et al., 2003). Player has since been greatly ex-
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tended by various researchers over the world and has become the most wi-
dely used multi-robot software development framework. Player implements a
client/server architecture and is, in essence, a distributed device server. The
server provides clients with network-oriented programming interfaces to access
the resources connected to the server (Collett et al., 2005). The Player server
runs on the robot and has access to the robots’ hardware through a built-in
driver.

Player supports a large amount of hardware devices such as cameras, lasers
and range finders. The server also makes provision for custom-built hardware
through a dynamically loadable plug-in driver. A hardware peripheral that is
connected to the player server through a driver, is called a "device". Once the
server is started, a client application can connect to the server and subscribe
to any of the devices available on the robot. The client then has access to
the device through a standard interface. The client application is where the
high-level control algorithms are implemented, for instance obstacle avoidance
and localization.

Such a client application can be executed on either the same robot that is hos-
ting the server or on any other system connected to the server on a network.
This allows a robot to be controlled remotely over a network but moreover,
it allows multiple client connection to a server. In this way different robot
functionalities can be decoupled and executed on separate systems. For ins-
tance, a low-resource robot can have an on-board client programme running
the obstacle avoidance algorithm while the localisation is implemented on a
remotely connected PC with higher processing power. Player also supports
multiple servers to run simultaneously. That means a client can connect to
different servers, in essence different robots, and make use of all the resources
available. This is the main feature of Player and enables distributed control
of multiple robots and sensor fusion.

Furthermore, the server is decoupled from the transport layer or communica-
tion layer, which gives Player the ability to use different network transport
layers, for instance transition control protocol (TCP) sockets (Vaughan et al.,
2001). This feature results that the Player architecture is programming lan-
guage independent. Thus, because the server’s external interface is only a
network interface, the client application can be written in any programming
language that supports a network transport layer. All together, Player is an
established middleware solution and provides good support through its large
user community.
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2.4 Related Work

The architecture of the RoboCup SSL does not particularly support research
in distributed systems, and the MSL is rather more appropriate. Nevertheless,
some attempts have been made to incorporate a distributed system in the SSL
team. Since this approach is the focus of this research, publications on this
topic was reviewed and will be discussed briefly in this section.

Weitzenfeld et al. (2007) extended their SSL architecture to be more functional
in a real-world situation. More specifically, Weitzenfeld et al. (2007) wanted to
extend the capabilities of the robots to operate in search and rescue missions.
The robots were modified to include a local vision system and ad-hoc networ-
king capabilities. This was achieved by replacing the microcontroller with a
Crossbow Stargate single board computer (SBC) and connecting it to a local
web camera and 802.11 communications device. The SBC runs an embedded
Linux operating system and therefore, all AI software that normally runs on
the off-field computer, could easily be transferred to the robot and implemen-
ted locally. Though their work went beyond the scope of SSL, it illustrates
how a team of SSL robots can be used in a distributed scenario.

Another noteworthy study is that of Aduthaya et al. (2006). Their research
showed a similar idea of a distributed approach in RoboCup SSL. However,
their system is distributed in the sense that each robot has a number of dedi-
cated microcontrollers instead of having one single main controller that takes
care of a certain task on the robot. These dedicated microcontrollers or sub-
systems are responsible for features such as motor control and sensor data
collection. The robots also incorporated some interesting on-board sensors to
ease the task of the central off-field computer. One such sensor includes an
electronic compass that can determine the orientation of the robot. Another
innovative concept encountered on these robots is the optical mouse position
sensor. Instead of reading the position feedback from the motor encoders, this
sensor is mounted in the middle of the robot and detects x and y position
movement in the same way as an optical computer mouse.

Aduthaya et al. (2006) also made use of a local camera mounted just above
the dribbler. The camera is connected to its own controller, forming another
subsystem. The camera subsystem is then utilised to detect and track the
ball automatically, again sparing processing power on the off-field computer.
However, the processing power of a normal computer is now developed to
such an extent that the attempts to lighten the weight of the off-field PC
have become almost trivial. Still, this research showed innovative approaches
towards a distributed architecture.
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Lastly, the work of Köker and German (2007) is probably the closest to the
objectives of this research. Their research presented an evaluation of the per-
formance of a distributed embedded system in a dynamic environment. Their
goal was to shift the control from the centralised system to the robots for lo-
cal execution of the game play algorithms. This means that while the global
vision system is left as it is, the decision-making and strategy algorithms are
implemented on the robots and the off-field computer only processes imagery
commands.

This approach was achieved by building a small embedded system with a
SBC using the PC/104 form factor. This particular SBC is similar to a very
small, off-the-shelf desktop computer with a 300MHz central processing unit
(CPU). That means the SBC acts as the main controller and communicates
with additional microcontrollers also situated on the robot. In addition to this,
an embedded Linux operating system was built to run on the SBC with uClibc,
which is a small C library for software development in C. The operating system
was patched with a real-time application interface (RTAI) which guarantees a
fast and predictable response from the operating system and thus minimises
delay. No actual field performance tests were performed, but latency tests on
the response times of the system showed that it is a viable solution.

2.5 Conclusion

This research has a particular interest in the RoboCup SSL, although there
are aspects in the MSL that are also related, especially the distributed archi-
tecture. These features of the MSL can be used to develop the distributed
system. Furthermore, the movement of a holonomic robot was investigated
and the inverse kinematic equations was derived. These equations will be used
later on in the control of the robot. The section on middleware clarified the
purpose and the importance thereof in a distributed system. A full evaluation
to determine the best alternative will be given in Chapter 5. Finally, the re-
view of related studies showed valuable insights into different approaches to
distributed systems in RoboCup SSL.
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Chapter 3

Mechanical Design

This chapter gives an account of the mechanical design of the robot plat-
form. A preliminary design was first performed. The preliminary design was a
conceptual level design consisting of setting up the requirements and building
a mechanical model with computer aided design (CAD) software. Thereafter,
the detailed design was performed which included the manufacturing of the
prototype and cycling through the design iterations. Finally a conclusion to
the mechanical design is given at the end of this chapter.

3.1 Preliminary Mechanical Design

The preliminary design section starts with the mechanical design requirements.
Thereafter, the CAD model of all the mechanical parts is described.

3.1.1 Mechanical System Requirements

The first secondary objective of this research is to design the chassis of the
robot. In order to achieve this objective, the mechanical design requirements
were derived from the objectives. The requirements are numbered and will be
referred to as mechanical requirements (MR) and its corresponding number in
the rest of the text, for instance MR 1. The mechanical system is required to:

MR 1. Consist of an omni-directional drive mechanism that provides holonomic
motion to the robot.

24
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MR 2. Minimize the weight of the robot platform.

MR 3. Ensure enough space to fit all motors, the kicker, the dribbler and the
electronics.

MR 4. Be within the maximum dimensions of 180 mm in diameter and 150 mm
in hight.

3.1.2 CAD Model of the Robot Platform

The mechanical robot platform was first modelled in the CAD software pa-
ckage, Inventer 2010. The mechanical design was based on a previous SSL
robot design, made available by the University of Bremen in Germany. The
basic concept of that design was kept, and a few changes were made to fit the
requirements of this research.

The new design is seen in Figure 3.1. The design consists of a circular base
plate with four indents on the sides where the wheels can be exposed to the
surface. On each indent a mount plate is attached perpendicular to the base
plate. A shaft is attached to each mount plate that holds the omni-directional
wheels (ODW) and spur gear. Additionally, the motors are also attached to
the mount plates on the opposite sides of the wheels. Note that the front
wheels are mounted further apart than the back wheels to make space for the
kicker and dribbler devices.

Top plate

Base plate

Mount 
plates

Omni-wheel 
and gears

Motors

Shaft

Figure 3.1: CAD model of the omni-directional mechanism (ODM)
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Furthermore, the pinion gear attached to the motor goes through a hole in the
mount plate to mesh with the spur gear. All these parts together form the
ODM. Another plate is inserted on top in order to cover the drive mechanism
and to separate it from the electronics that are fitted above it. The top plate,
shown transparent, was designed with three holes that are cut away, through
which the wires can connect the motors to the electronic system.

Some parts of the original design from the University of Bremen, for instance
the gears, were not locally available. The gear system and its surrounding
parts were, therefore, redesigned. Another adjustment that was made from the
original design, was the layout of the top plate to fit the custom electronics.
Furthermore, the original ODW were completely redesigned in order to fit the
needs of this study and to simplify manufacturing. The new ODW design is
seen in Figure 3.2a. First, two circular plates, the back and front wheel plates,
are designed with teeth on the circumference. Figure 3.2b shows the back
wheel plate. Then, small rollers were designed as a disc with a groove on the
edge. The rubber o-ring fits into the groove. Each roller has a hole drilled
through the middle and is strung on a wire ring. The ring fits into a small
slot in the wheel back plate so that the rollers are spaced between the teeth
(Figure 3.2c). Finally, the front wheel plate holds everything together. The
complete CAD model of the ODW is seen in Figure 3.2d. This design aimed
for simplified manufacturing and easy assembly.

(a) Small rollers with rubber o-
ring grip

(b) Wheel back plate

(c) Back plate with wire ring
and rollers

(d) Assembly of the ODW

Figure 3.2: CAD model of the omni-directional wheel (ODW)
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Each ODW is driven by a motor and gear system, known as the wheel drive
mechanism (WDM). A newWDMwas also designed, using the locally available
gears. The purpose of the gear system is to reduce the high speed of the motors
to a reasonable speed for the wheels. To achieve this, two spur gears were used,
as seen in Figure 3.3. The spur gear attached to the wheel is seen on the left
and the pinion gear attached to the motor is shown on the right. Also visible
in Figure 3.3 is the spacer that extends the spur gear hub. Moreover, a ball
bearing is placed within the space between the shaft and spacer. The bearing
ensures that the wheels are running smoothly and freely. Detail specifications
will be discussed in the following section.

Bush Pinion gear

Spur gear

Spacer

Bearing

Shaft

Mount plate Motor

Figure 3.3: CAD model of the wheel drive mechanism (WDM)

3.2 Detailed Mechanical Design

This section describes the implementation of the CAD model. Two iterations
were performed during the detailed design phase and the problems that were
encountered are discussed. This section also gives the assembly instructions for
the drive mechanism. The detail manufacturing drawings for the mechanical
system can be found in Appendix A.

3.2.1 First Iteration of the Robot Platform

The first iteration was a prototype manufactured in the local workshop. This
prototype highlighted some problems. The problems were mainly caused by
the adjustments made to the gear system. The different gears caused the
wheels to extend a few millimetres further from the base plate, making the
dimensions of the robot larger than allowed. This was improved by shortening
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the shaft and embedding the spur gear into the wheel. The gear hub can also
be machined off in order to gain some extra space.

Another unexpected issue that was encountered was that the o-rings used on
the rollers were too thick. It prevented some of the rollers from rolling and
therefore, the wheels could not freely slide sideways. Thinner o-rings solved
this problem. Lastly, when the electronic system was designed, it was found
that there was not enough space to fit the battery and all the electronic modules
on the top plate. This problem was also resolved by mounting an extra plate
on the top plate with spacers in between. Figure 3.4 shows the addition of the
extra plate to the CAD model.

Battery 
plate

Figure 3.4: CAD model with battery mount plate

3.2.2 Second Iteration of the Robot Platform

The improvements were incorporated in the second iteration of the mechanical
design. Figure 3.5 displays the final design of the robot. The complete assem-
bly is seen in Figure 3.5a while Figure 3.5b shows only the chassis and drive
system. The base and top plate, seen in Figure 3.5c, were laser cut from 3mm
aluminium. Aluminium was used to minimise the weight, ensure cost effecti-
veness and ease of manufacturing. Furthermore, the rear wheels in Figure 3.5
are spaced at 45 ◦ from the imaginary horizontal x-axis through the middle of
the base plate. The angle between the front wheel shaft and the x-axis is 37 ◦.
This difference in angle provides the extra space in the front of the robot to
fit the kicker and dribbler. Figure 3.5 also shows the additional PVC plate
mounted above the top plate with 35mm spacers to make provision for the
electronics and battery.
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(a) Robot assembly

Y

X

(b) Robot base plate and drive mecha-
nism

(c) Top plate (left) and base plate (right)

Figure 3.5: Final mechanical system

Figure 3.6 and 3.7 displays the ODW in more detail. The rollers and o-rings
can be seen in Figure 3.6a. The 36 PVC rollers were machined in the workshop
of the department of Mechanical and Mechatronic Engineering. A rubber o-
ring, thickness 0.6mm, with an inner diameter of 7mm was slipped onto each
roller before it was stringed on the wire ring with a cross-sectional diameter of
1.5mm. Both the back and front plates were also laser cut from aluminium.
Thereafter, they were machined to create a 0.75mm (half of the wire diameter)
groove across the teeth of each of the plates. This is seen in 3.6b.

(a) Small rollers with rubber o-
ring grip

(b) 0.75 mm Grove in both wheel
plates

Figure 3.6: Final omni-directional wheel design
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Figure 3.7a shows the back plate. The wire ring fits neatly into the groove on
the back plate, shown in 3.7b, and the front plate holds the ring into place.
Figure 3.7c shows the assembled ODW.

(a) Wheel back plate (b) Back plate with wire ring and
rollers

(c) Assembled omni-directional
wheel

Figure 3.7: Final omni-directional wheel design (continued)

The WDM consists of the motor and the two spur gears attached to the wheel
mount plate, as seen in Figure 3.8a. The Delrin moulded spur gears were
sourced from local suppliers. The large spur gear has 50 teeth and a pitch
diameter of 50mm, while the pinion gear has 16 teeth with a pitch diameter of
16mm resulting in a gear ratio of 1:3.125. Figure 3.8a also shows the PVC hub
extension and spacer, holding the 5mm × 16mm ball bearing. The motor,
which is also seen in the 3.8a, will be discussed in the electronic design chapter.
The wheel shafts were manufactured from aluminium in the workshop at the
Department of Mechanical and Mechatronic Engineering, while the rear and
front wheel mount plates were laser cut from aluminium. This is seen in Figure
3.8b. Refer to Appendix A for the full mechanical design drawings.
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(a) Wheel drive mechanism assembly(b) Rear and front wheel mount plates,
and shaft

Figure 3.8: Wheel drive mechanism (WDM)

3.2.3 Assembly Instructions of the Wheel Drive
Mechanism

The robot’s mechanical system was designed for easy assembly. The assembly
can mostly be done intuitively by observing the assembled chassis. However,
the order of the construction of the drive mechanism is not so clearly visible
from pictures and drawings. Therefore, the exploded view in Figure 3.9 depicts
the procedure to assemble the WDM.

Figure 3.9: Disassembled wheel drive mechanism (WDM)

The procedure is split into two phases. The first phase is to assemble the
wheel itself. This includes everything on the right side of the large spur gear.
Starting from the left, the bearing is first placed inside the spacer. Then the
spacer and bearing slips into the groove in the back wheel cover. Thereafter,
the wire ring with the rollers is placed into the slot on the opposite side of the
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back wheel cover. The ring is held into place with the front wheel cover. Only
now can the large spur gear be attached to the wheel with 12mm M3 screws.
These screws go through all the parts and are tightened with nuts on the outer
side of the wheel.

The second phase in the assembly process is to attach everything to the mount
plate. The motor is fastened to the plate with M2 × 8mm screws. Thereafter,
the pinion gear and bush slides onto the motor shaft and is fastened to the
shaft with super glue. Next, the wheel shaft is inserted from the motor’s side
and fastened as seen in Figure 3.9. An 8mm washer is placed onto the shaft,
thereafter, the complete wheel assembly also shifts onto the shaft, and kept in
place with a circlip.

3.3 Conclusion

To ensure that all the requirements have been met, a requirements allocation
table was drawn up. The first requirement (MR 1), to develop an ODM,
was met with the design of the ODWs and chassis base and top plate. MR
2, to minimise the weight was accomplished by using light materials such
as aluminium. MR 3, which was to leave enough space for the kicker and
dribbler, was realised by shifting the front wheels further apart. Finally, MR 4
set the dimensional limits of the robot platform to be 180mm by 150mm. This
was attempted by designing according to the dimensions in the CAD model.
However, due to different gears used, the final measurements showed that the
robot is still 184mm in radius and 115mm in height. This is to be considered
as a future improvement and will be discussed further in the chapter 7.

Table 3.1: Requirement allocation table for the mechanical system

Requirement Method Result

MR 1 Using four omnidirectional wheels and motors Achieved
MR 2 Using aluminium parts and Delrin gears 1.48 kg
MR 3 Spacing the front wheels further apart 50 mm× 50 mm× 105 mm
MR 4 Custom design 184 mm× 115 mm
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Chapter 4

Electronic Design

This chapter will describe the design process of the electronic system. The
process is divided into a preliminary design and a detailed design section. In
the preliminary design section the system is described on a conceptual level.
In the second part of this chapter each functional unit is again described, this
time in full detail in terms of the final design specifications. Where applicable,
a trade-off study of possible solutions is discussed and justification for the
final selection is given in the detail section. This chapter concludes with a
requirements allocation table in which each functional unit in the electronic
system is linked to the electronic requirements.

4.1 Preliminary Electronic Design

This section first discusses the requirements of the electronic system that cor-
responds to the second secondary objective of this research. Thereafter a pre-
design functional analysis is conducted. This analysis consists of a description
of the electronic system in the form of a functional architecture diagram which
describes the function of each sub-component in the system.

4.1.1 Electronic System Requirements

Following from the objective related to the electronic system in Chapter 1, the
following requirements for the electronic system were defined. Each electronic
requirement is numbered and will be referred to as ER and its corresponding
number. The electronic system is required to:

33
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ER 1. Be capable of driving the wheels of the omni-directional platform indi-
vidually.

ER 2. Be able to implement both speed and position control on each wheel.

ER 3. Consist of an on-board processor capable of high-level, autonomous control.

ER 4. Enable the robot to communicate wirelessly to other robots as well as
an off-field computer.

ER 5. Make provision for the attachment of additional sensors or modules, ei-
ther custom or industry standard, that might be required for further
development.

ER 6. Have as low as possible power consumption to operate continuously for
at least one half of a match, which is 10 minutes

4.1.2 Functional Architecture

In order to meet the requirements stipulated above, the electronic system
was first designed at a conceptual level by defining electronic functional units
(EFUs). Figure 4.1 displays how the EFUs are connected in the functional
architecture of the robot’s electronic system.

Hub 

Central 
 controller 

Power unit 

Motor 
controller 

Actuator 

Communication  
device 

Actuator 

Motor 
controller 

Motor 
controller 

Motor 
controller 

Actuator Actuator 

EFU 3  

EFU 6.a  

EFU 1  EFU 4  EFU 2  

EFU 6.d  EFU 6.c  EFU 6.b  

EFU 7.d  EFU 7.c  EFU 7.b  EFU 7.a  

Sensor unit 

EFU 5  

IF 2,4 IF 1,2,4 

IF 4 IF 4 

IF 1,4 IF 1,4 IF 1,4 IF 1,4 

IF 4,5 IF 4,5 IF 4,5 IF 4,5 IF 6 IF 6 IF 6 IF 6 

IF 3 

Figure 4.1: Functional architecture of the electronic system
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Each EFU will perform a set of functions to achieve the requirements. Also
shown in Figure 4.1 are the different interfaces between each of the functional
units. A full description of the interfaces is given in Table 4.1. Each EFU will
be discussed in more detail below.

Table 4.1: Electronic system interface definitions

Interface Definition

IF 1 Serial peripheral interface bus (SPI)
IF 2 Inter integrated circuit bus (I2C)
IF 3 Mini peripheral component interconnect bus (MiniPCI)
IF 4 Electrical power connection
IF 5 Pulse width modulated signal (PWM)
IF 6 Electronic signal connection (Digital)

Hub - EFU 1

The hub, as shown in Figure 4.2, serves as a central connection board. All
the functional units are connected to and from the hub via the appropriate
interfaces. Furthermore, the hub includes an expansion port that brings all
the interface buses together. This enables any external module to be connec-
ted to the selected interface bus. The hub also provides a connection to the
main controller’s general purpose input and output (GPIO) pins that further
contribute to the expandability. Lastly, it contains the main power switch
from where all power can be cut off.

Hub 

Power 
switch 

Expansion 
port 

EFU 2 

EFU 3  

IF 4 

Additional modules 

IF 1,2 

IF 1,2,4 

GPIO EFU 3  
IF 5,6 

Figure 4.2: Hub - EFU 1
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Power Supply Unit - EFU 2

The power supply unit consists of the battery and voltage regulator. It also
includes a safety circuit to protect the circuit against over voltage as well as the
battery from over-discharge. This can be observed in the diagram in Figure
4.3. All the functional units are supplied with power from this unit through
IF 4. To minimise repetition, the power supply unit will be referred to as EFU
2 in all the remaining diagrams and will not be mentioned in the descriptions.

Power supply unit

Battery Regulator

EFU 3-7
IF 4Safety 

circuit 

Figure 4.3: Power supply unit - EFU 2

Central Controller - EFU 3

The central controller (CC) unit, which is shown in Figure 4.4, is the heart
of the robot’s electronic system. The controller is responsible for all high-
level control and it is also interfaced to low-level control modules. The CC
connects to the communications device (EFU 4), sensor unit (EFU 5) and
motor controller (EFU 6) through interfaces 3, 2 and 1, respectively. Note
that EFU 5 and 6 are connected via the Hub (EFU 1).

Central controller

CPU

EFU 6

EFU 4

EFU 5
IF 2

IF 3

IF 1

EFU 2
IF 4

Figure 4.4: Central controller (CC) - EFU 3

Communication Device - EFU 4

The communication device provides wireless communication to other robots
as well as the off-field computer. EFU 4 also allows remote control and easy
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debugging during development. This functional unit consists of a wireless
module which is interfaced to the central controller (EFU 3) via the MiniPCI
(IF 3) slot on the controller. See Figure 4.5 for an illustration of EFU 4.

Communication device

Wireless 
module

EFU 3

EFU 2

IF 4

IF 3

Figure 4.5: Communication device - EFU 4

Sensor Unit - EFU 5

The sensor unit consists of three sensor modules and an analogue to digital
converter (ADC) input. The sensor unit makes provision to attach an accele-
rometer and a compass sensor. Both these sensors are connected to the main
controller through the I2C bus IF 2. An infra-red distance sensor is also in-
cluded to measure distance to an object in the vicinity in front of the robot.
Figure 4.6 depicts EFU 5 and its sub-components.

Sensor unit

IR 
Distance

Accelerometer

Compass
EFU 2 EFU 3

ADC

IF 4
IF 2

IF 2

IF 6

IF 6

Figure 4.6: Sensor unit - EFU 5

Motor Controller - EFU 6

The motor controller (MC) unit consists of a microcontroller and an H-bridge
(see Figure 4.7). The microcontroller can be programmed in various ways to
drive the H-bridge, which in turn drives the motor through a PWM signal
(IF 5). The microcontroller also makes provision for feedback to implement
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closed-loop control on the motor. Furthermore, a communication link is esta-
blished between the microcontroller (EFU 6) and the central controller (EFU
3) through an SPI interface (IF 2).

Motor controller

Microcontroller

H-bridge

EFU 3

EFU 7

IF 5

IF 1
EFU 2

IF 4

IF 6

Figure 4.7: Motor controller (MC) - EFU 6

Actuator - EFU 7

The actuator unit, in Figure 4.8, consists of the motors and feedback module
connected to the MC (EFU 6). The robot has four motors and also makes
provision for connecting additional motors and controllers through the hub.

Actuator

Motor

Feedback 
module

EFU 6
IF 6

IF 4
EFU 2

Figure 4.8: Actuator - EFU 7

4.2 Detailed Electronic Design

The task of the preliminary design was to make sure that all the required func-
tionality is included in the design. The next step was to determine the detailed
specifications of each functional unit and implement the design. Figure 4.9a
is a picture of the fully assembled robot and Figure 4.9b shows all the func-
tional units of the electronic system mounted on the top plate. The detailed
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design process commenced with a study to determine the state of the art of
the current RoboCup teams. Thereafter, each functional unit was designed
in detail to fit the requirements for the RoboCup SSL. A description of the
detail design of the units is given in this section, with a trade-off study for
alternative solutions where applicable.

BatteryAntennae

(a) Fully assembled robot

Hub

Motor 
Controller

Central Controller Communications device

(b) Electronic system mounted on the top
plate

Figure 4.9: Robot and electronic system

4.2.1 State of the Art in RoboCup SSL

A review was performed in order to get up to date with the most recent
technology used for RoboCup SSL. For this review, the designs of the top
teams in the recent SSL and MSL competitions were used. A summary of the
design specifications is given in Table 4.2.1 From this summary, some insights
and ideas were gathered before the final design decisions were made. Note that
N/A indicates that the information was either not available or not applicable.

The first thing noticeable is that most teams used four wheels, even though
only three wheels are sufficient to carry the robot. It is also evident that bru-
shless DC motors are the most popular. Only one team used normal brushed
motors. Furthermore, most of the SSL teams implemented an embedded so-
lution using a processor, such as the ARM7 linked to an FPGA, or an FPGA
with an internal processor. The FPGA is then configured to implement PI
control and other functions. Team 6, however, made use of a Fox board which

1Team 1: Zickler et al. (2010), Team 2: Wasuntapichaikul et al. (2010), Team 3: Maeno
et al. (2008), Team 4: Nakajima et al. (2010), Team 5: Kriengwattanakul et al. (2008),
Team 6: Laue et al. (2009), Team 7: Neves et al. (2010), Team 8: Käppeler et al. (2010)
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is an embedded Linux processor with USB and Ethernet networking capabili-
ties. In contrast, the MSL robots have a laptop onboard with microcontrollers,
such as the AVR ATmega128 and PIC 18F258, as secondary processors.

All the SSL robots made use of a proximity sensor to measure distance. No
other sensors are installed, except for Team 4 who used a gyroscope sensor.
SSL robots rely mostly on the global vision system for feedback, whereas the
MSL robots have a number of additional sensors including a local camera,
accelerometer and compass. It is also interesting to note that the SSL robots
mostly make use of radio frequency (RF) communication because it is easy to
implement on a microcontroller. In contrast, the MSL robots all use a wireless
ethernet network because of the onboard laptop. The last observation is that
Lithium Polymer (LiPo) batteries seemed to be very popular because of their
high power to weight ratio.

Table 4.2: Most recent technology used by SSL and MSL RoboCup teams

RoboCup teams

Electronic part Team 1
SSL

Team 2
SSL

Team 3
SSL

Team 4
SSL

Team 5
SSL

Team 6
SSL

Team 7
MSL

Team 8
MSL

Number of wheels 4 4 4 4 4 4 3 4
Motor type Brushless Brushless Brushless Brushless Brushless Brushed Brushless Brushless
Motor power output(Watt) 30 30 30 11 N/A 20 150 200
Controller ARM7 FPGA FPGA Renesas FPGA Foxboard Laptop Laptop
Processor speed 58MHz N/A N/A 28MHz N/A 100MHz 2.2GHz 2.2Ghz
Secondary Controller FPGA No No No No AVR PIC N/A
Onboard camera No No No No No No Yes Yes
IR proximity sensor Yes Yes Yes Yes Yes Yes No No
Gyroscope No No No Yes Yes No Yes Yes
Accelerometer No No No No No No Yes Yes
Compass No No No No No No Yes Yes
Wireless communication RF RF RF RF RF WLAN WLAN WLAN
Frequency band 902MHz 2.4GHz 2.4GHz 2.4GHz 900MHz N/A N/A N/A
Battery type LiPo N/A N/A LiPo LiPo LiPo NiMh NiMh
Battery Voltage (V) N/A N/A N/A 14.8 14.8 11.1 12 12
Battery capacity (mAh) 2200 N/A N/A N/A 2200 2000 3700 9000

4.2.2 Detailed Specification

This section describes the EFUs that were designed in the preliminary design
phase on the basis of their detailed specifications.

Hub - EFU 1

The hub was designed mainly to provide a central connection for all the mo-
dules. The hub also exposes the main controller’s GPIO pins and communi-
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cation ports. Hereby, the hub provides an interface for any external modules
through the expansion port. Figure 4.10 shows the GPIO circuit and the ex-
pansion port circuit that form part of the hub. Furthermore, the hub circuit
board also includes the power supply unit (EFU 2) and the sensor modules
(EFU 5) in order to save space.

Figure 4.10: Expansion port and GPIO circuit diagram on EFU 1

Some additions were made to the EFU 1 after the first prototype of the design.
It was found that the central controllers’ SPI port operates at 3.3V, whereas
the motor controllers have a 5V SPI port. Therefore, a voltage level shifter
was needed to convert the 3.3V pins to 5V and vice versa. The TXS0104
voltage level shifter was used for this purpose. Note that this was only an
additional attachment to EFU 1 and not a second prototype. The voltage
shifter was soldered on its own printed circuit board (PCB) and connected to
the hub with a ribbon cable. The photo in Figure 4.11 shows the circuit board
of the hub and indicates where each subcomponent is situated. In Figure 4.12
the voltage level shifter circuit board can be seen.

Power unit

GPIO portExpansion port Sensor ports

Motor controller 
ports 

Motor controller 
ports 

Figure 4.11: Hub - EFU 1
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Figure 4.12: TXS0104 voltage level shifter circuit board

Power Supply Unit - EFU 2

Figure 4.13 displays the circuit for the power supply unit. This circuit supplies
3.3V to the rest of the system by means of the LM 1117 voltage regulator.
Furthermore, it includes a MOSFET that is part of a safety mechanism. This
safety mechanism can be used to switch off power to the motors in case of an
emergency, while the main controller stays powered. Moreover, the battery
voltage is fed to the ADC on the central controller in order to monitor the
battery level. An LED and a push button are also included to indicate system
status and can be used for debugging.

Figure 4.13: Power supply unit circuit diagram - EFU 2

The EFU 2 was constructed as described above. However, the first iteration
of the EFU 2 showed some shortcomings. The safety mechanism did not
function properly because of a wrongly connected MOSFET, which caused
a floating ground level when the MOSFET was not switched off properly.
Another problem was that the 12V from the battery needed to be scaled
down with a voltage divider to 5V, so as not to damage the ADC when
reading the battery level. It was also found that a 5V regulated supply was
needed. Therefore a LM 7805 voltage regulator was added to the circuit. These
problems were resolved with additional circuits attached to the circuit board
and were not included onto the original PCB. However, a second iteration of
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the power supply unit is recommended to include these components. Figure
4.14 depicts the suggested diagram for the improved power supply unit.

Figure 4.14: Improved power supply unit circuit diagram

In order to fullfil ER 6 to maintain the robot’s operation time for at least
10 minutes, the power consumption design was done in the following manner:
The motor controller has a maximum supply current of 25mA, and the three
sensor modules together only consumes 11.65mA. The only components on
the robot that draw a significant amount of power from the battery are the
central controller and the motors. The central controller consumes 400mA
while idling and 1A while performing tasks. The maximum continuous current
consumption, according to the datasheet, is 1.4A for the wheel motors and
0.35A for the dribbler motor. Finally, the communication device has a current
consumption of 80mA. All together it adds up to 7066.65mA, as shown in
Tabel 4.3.

Table 4.3: Power consumption

Component Maximum current (mA)
Motor controller with H-Bridge 25
Sensors 11.65
Motors 5950
Central controller 1000
Communication device 80
Total 7066.65

Equation 4.2.1 shows how the power consumption was calculated if a 2000mAh
battery is used. According to the calculation 4.2.1, a 2000mAh battery will
supply the robot with 7.06A continuously for almost 17 minutes. Note that
this value is calculated with the peak current consumption and not continuous
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consumption. The reason for using the peak value is to over-compensate in
the design. The battery would, therefore, perform slightly better than was
calculated, since the robot does not draw the maximum of 7.06A continuously.
Also note that the kicker, which will be added in the future, is not taken into
consideration yet. However, there is enough space available on the robot to
add an additional battery for the kicker if needed.

Operating time (min) =
Battery capacity

Continuous current
× 60 (4.2.1)

2000

7066.65
× 60 = 16.98 min

Central Controller (CC) - EFU 3

For the CC, a number of possible solutions were considered. It is evident from
the state-of-the-art review that an embedded solution with a FPGA is very
popular for the SSL robots. An alternative to that, also found in the review, is
to use a single board computer (SBC). A SBC is a complete computer on one
small circuit board with all the functionalities of a normal desktop computer.
The alternatives that were considered for the main controller will be discussed
and thereafter, the final solution will be described in more detail.

Looking first at the FPGA in combination with a PIC32 microcontroller, this
solution has the advantages of high-speed and reliable performance due to the
stability of the FPGA. However, the microcontroller, although it is a powerful
processor, does have limitations in terms of high-level control. The SBC on
the other hand, being a small-size computer, opens up a whole new field of
opportunities in robot development. The SBC offers high processing power
and the advantage of connectivity through standard interfaces such as USB
and Ethernet. Moreover, high-level programming languages including C++
and Java allow the developer to easily implement high-level control, such as
path planning or behaviour learning on the SBC. Therefore, five different SBC
alternatives were considered, listed in Table 4.4.2 All the SBCs are Linux com-
patible and also have storage capability through a microSD card. Furthermore,
the operating voltages are all within the desired range of 5− 12V. The rest of
the specifications in Table 4.4 increase in performance from the left column to
the right. Starting from the left, the Foxboard has an ARM9 400MHz proces-
sor and 64MB of RAM. The Foxboard is a convenient small-size board with
standard interfaces which is also listed in the Table. Moving to the next co-
lumn, the Gumstix has a 600 MHz processor and 128MB RAM. The Gumsitx

2Images in Table 4.4 from left to right: ACME (2011), Gumstix (2010), Roboard (2011),
and ADLINK (2011)
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is a very small computer on module (COM) solution and also offers a whole
range of expansion boards to extend the functionality with Wi-Fi, for instance
Bluetooth and GPS. However, the drawbacks of these two solutions are that
both lack an SPI interface, and the Gumstix needs an additional expansion
board for networking capabilities.

The Roboard is the next alternative with a competitive 1GHz processor and
256MB RAM. The Roboard is specifically designed for robotics applications.
It provides a wide range of connectivity, from low-level communication with
SPI and I2C bus, to interfaces such as USB and miniPCI. The Roboard of-
fers all these functionalities while still being within 90x90 mm, which is the
maximum space available on the robot. The last alternative, the PC/104,
is a popular SBC solution with a standard form factor of 90mm × 96mm.
The standard form factor allows several of these boards to be linked together,
stacked on top of each other. However, even though the PC/104 has high pro-
cessing resources, it is not truly suited for a small-sized robotic application.
The PC/104 exceeds the space limit and lacks low-level communication inter-
faces such as SPI and I2C. As a result, after analysing all the alternatives,
the Roboard was chosen as the best solution having all the necessary resources
and fits within the space limitation.

Table 4.4: Alternative solutions for the central controller (CC)

Alternative solutions

PIC32 with
FPGA

FoxBoard
G20

Gumstix Ver-
dex pro

Roboard
RB100

CoreModule
745 PC/104

Properties

Processor Type Atmel ARM9 PXA270 Vortex86DX Atom N450
Processor speed 40 − 80MHz 400 MHz 600 MHz 1GHz 1.6GHz
Memory - RAM 16 − 32KB 64MB 128MB 256MB 2GB
Memory - ROM 32− 256KB MicroSD Micro SD MicroSD SATA
Power input (V) 5 5 1.5-6.5 6-24 5
Dimensions (mm) N/A 66x72 80x20 96x56 90x96
Operating system RTOS Linux Linux Windows Li-

nux
Windows Li-
nux

Interfaces USB SPI I2C
CAN QEM

USB Serial
I2C LAN
GPIO

USB Serial
I2C GPIO

USB Mini-
PCI Serial
SPI I2C
GPIO PWM
LAN

USB Serial
GPIO LAN

The Roboard executes the main control software which is installed on an 8GB
microSD card, together with the operating system. It communicates with the
other modules through the various interfaces, which is shown in Figure 4.15.
The SPI bus is used to send and receive commands to and from all the motor
controllers, while sensors are connected to the I2C interface to separate the
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different types of internal communication. The ADC is used to monitor the
voltage level on the battery as well as the analogue signal from the distance
sensor. Furthermore, the Wi-Fi communications device is connected through
the miniPCI slot on the Roboard. This leaves the USB port open for any extra
devices, for example a local camera.

Lastly, some of the ports on the Roboard can be utilised during development
or debugging of the robot. For instance, a monitor can be connected to the
Roboard by means of a miniPCI VGA card, together with a keyboard and
mouse. This enables easy development directly on the robot. However, an
easier solution is to link the Roboard to the local network through either the
Ethernet port or the Wi-Fi device. Then the central controller can be accessed
remotely from a PC, also connected to the network, through remote desktop
or secure shell (SSH). Finally, the Roboard also provides a functionality to
redirect all onboard activities to the serial port and enables a console login
mode over the serial port. This is especially helpful in emergency cases where
there is no other way to access the controller.

Figure 4.15: Roboard RB 100 for the central controller (CC) - EFU 3 (Ro-
board, 2011)

Communications Device - EFU 4

The Roboard uses IEEE 802.11 (Wi-Fi) for external communication. The
miniPCI slot on the Roboard is used to connect a miniPCIWi-Fi card, enabling
full networking capabilities. The robot can then easily be connected to any ad-
hoc or infrastructure wireless network. Figure 4.16 is a picture of the miniPCI
Wi-Fi card connected to the Roboard.
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Figure 4.16: Communications device - EFU 4 (RobotShop, 2011c)

Sensor Unit - EFU 5

The system was designed to be modular and interchangeable. Thus, the sensors
were not integrated directly into the circuit design. Sensor modules that can
be connected to the central controller via the sensor ports, are rather used.
The I2C bus is also reserved for the connection of sensors. The circuit makes
provision for a compass, an accelerometer and an infrared distance sensor. The
diagrams below in Figure 4.17, displays the circuits used to connect sensor
modules to the system.

Figure 4.17: Sensor connection circuits - EFU 5

The HMC6352 compass module, displayed in Figure 4.18a, is one sensor mo-
dule that fits easily into the port. The compass can be used to give information
regarding the robot’s orientation. Furthermore, a triple axis accelerometer, the
ADXL345 (shown in Figure 4.18b), was also connected to the robot through
the I2C bus. This accelerometer is capable of detecting acceleration up to
16 g on all three axes. These sensors can give extra information on the robot’s
movement in a feedback control system. Lastly, the sensor unit also includes
the Sharp GP2Y0D805Z0f distance sensor that can measure distances of up
to 60mm. This can be used to detect whether the ball is in the vicinity of the
dribbler. The distance sensor can be seen in Figure 4.18c.
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(a) Compass module (b) Accelerometer module (c) Sharp distance sensor

Figure 4.18: The sensors used on the robot, left to right (RobotShop, 2011b;
Sparkfun, 2011b; Pololu, 2011c)

Motor Controller (MC) - EFU 6

The specification for the MC must comply with the rest of the components on
the robot since most of them were already chosen. For instance, the controller
must be able to control a brushed DC motor since that is the motors that is
used. The MC is also required to perform closed-loop control. Therefore, the
controller must be capable of taking the quadrature encoder feedback from
the motors as an input. It must also be capable of supplying the motors
with a maximum current of 1.4A, which is the motor’s maximum current
consumption. Furthermore, the controller should be able to operate at any
voltage below 12V. Space on the robot is limited and therefore the controller
must be as small as possible. The final requirement was that the controller
should be able to connect to the SPI interface since that interface was reserved
for this purpose and provides fast communication.

Several motor controllers that are available on the market were considered.
Table 4.5 shows the controllers that were compared with each other.3 The first
controller that was considered, is the Faulhaber MCDC 3003. This controller
is specifically designed to control the Faulhaber DC motors range. The MCDC
fullfils all the requirements listed above, but some features were not satisfac-
tory. For instance, the controller only supports two communication interfaces,
a serial (RS232) interface and a CAN bus. The serial interface is not suited
for connecting more than one motor and therefore, it cannot be used. The
CAN bus protocol however, supports several motor connections on one bus,
but the Roboard used for the main controller does not support the CAN bus.
Furthermore, the physical dimensions of the MCDC, which is 40mm × 62mm,
are too large considering that four controllers must be fitted onto the robot.
Lastly, the cost of this controller at R 2000 was too expensive, again keeping in
mind that four controllers are needed. For the above-mentioned reasons this

3Images in Table 4.5 from left to right: Phidgets (2010a), Pololu (2011b), Phidgets
(2010b), Sparkfun (2011a), Pololu (2011a), and Faulhaber (2011)
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controller, even though it is specifically designed for the Faulhaber motors,
was rejected.

Other alternatives were also investigated. The Phidget 1060 has the advan-
tage of two channels on one board, thus being capable of driving two motors.
However, the drawbacks are that its continuous current output is too low and
it does not have any input for feedback. The Polulo Qik 2s12v10 and Polulo
MC33887 were also ruled out for not having a feedback input, even though
they are within the parameters of the rest of the specifications. Only two
of the remaining controllers are capable of receiving a feedback signal, inclu-
ding the Polulo jrk and Phidget 1064. However, they can only accommodate
speed control (no position control). Moreover, the feedback signal type was
not matching that of the motor’s quadrature encoder. In conclusion, none of
the controllers found on the market fulfilled the requirements. It was therefore
decided to design a custom motor controller for the robot.

Table 4.5: Alternative solutions for the motor controller (MC)

Alternative solutions

Phidget
1060

Polulo jrk Phidget
1064

Polulo Qik
2s12v10

Polulo
MC33887

Faulhaber
MCDC
3003

Specifications

Feedback No Speed Speed No No Position
Speed

Feedback signal N/A Tachometer Phidget
encoder

N/A N/A Quadrature
encoder

Channels 2 1 2 2 2 1
Interfaces USB USB serial USB Serial PWM Serial

CAN
Operating Voltage (V) 5-12 6-16 6-15 6-16 5-28 12-30
Continuous Current (A) 1.5 12 14 13 2.5 3
Peak Current (A) N/A 30 19 30 5 6
Dimensions (mm) 48×56 34×47 76×91 47×54 40×32 40×62
Cost (R) 334 697 816 535 162 2000

The MC was designed to fit the exact requirements mentioned above. It has a
very compact design, with dimension of only 45mm × 25mm, in order to gua-
rantee enough space on the robot. The PIC 18F2431 microcontroller, shown in
Figure 4.21a, was chosen specifically because of its onboard quadrature enco-
der module and high clock frequency of 40MHz. The PIC 18F2431 also has an
SPI interface so that the motor controller can connect to the central controller
through the SPI bus. The PIC also features a serial (RS232) port that can be
used for debugging.
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Figure 4.19: PIC18F2431 microcontroller

Furthermore, the microcontroller is connected to a VNH2SP30 H-bridge in-
tegrated circuit (IC). The microcontroller drives the H-Bridge with a 20 kHz
PWM signal, and the H-bridge in turn drives the motors directly from the
battery. The H-bridge is capable of supplying the motors with a continuous
current of 12A, although the copper tracks on the small-size PCB can only
endure up to 6A. The motors, however, have a maximum current consumption
of 1.4A. The H-bridge is also capable of sensing the current consumption in
the motor which can be used as a protection mechanism. Figure 4.20 shows
the circuit diagram of the H-bridge.

Figure 4.20: VNH2SP30 H-Bridge

The first MC was only a rapid development prototype. The purpose of the
first iteration was to build a low cost version of the controller as quick as
possible in order to test the concept and identify problem issues with the
design. The first prototype used the L6201 H-bridge IC which was changed
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to the VNH2SP30 in the second version, because of a higher current rating.
Figure 4.21a is a photograph of the first prototype and the second iteration is
shown in Figure 4.21b. The second iteration also experienced some problems.
The electromagnetic field, or "back EMF", from the motors caused the PIC to
reset. This was solved with two additional capacitors placed on the PCB. It
is recommended that these capacitors are included in the next iteration of the
design. Refer to the circuit diagram in Appendix B for the improved circuit
diagram.

(a) First prototype of the motor
controller

(b) Second prototype of the motor
controller

Figure 4.21: Motor controller (MC) - EFU 6

Actuator - EFU 7

The motors need to be small enough to fit into the framework, yet strong
enough to accelerate the weight of the robot. The original mechanical design
from Bremen University made use of the Faulhaber 2342CR brushed DC mo-
tors. These motors were therefore already sized for the framework and, to
simplify the design process, they were used for the new design as well. The
brushed DC motors are also easy to control by using a PWM signal and an
H-bridge. The Faulhaber motors have a maximum output power of 17W, a
maximum speed of 7000 rpm and operate at 12V. They also have a built-in
512 lines per revolution magnetic encoder, with a quadrature signal output.
Figure 4.22 is a photo of the Faulhaber 2342CR motor.

4.3 Conclusion

To ensure that all the requirements for the electronic system are met, a re-
quirement allocation table was set up, which is displayed in Table 4.6. The
table maps each one of the functional units to the requirement it is supposed
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Figure 4.22: Faulhaber 2342CR brushed DC motor - EFU 7

to fullfil. The left column shows the electronic requirements (ER) as mentio-
ned in the beginning of this chapter. The rest of the columns display each of
the functional units in the system architecture, shown in Figure 4.1. A star
in the column indicates that the functional unit in that column fullfils the
corresponding requirement.

The hub (EFU 1), apart from bringing all the connections together, fulfils the
purpose of making the system extendible, according to ER 5. The power unit
(EFU 2), with the battery included, fulfills ER 6 of having an operating time
of at least 10 min. EFU 3, which is the main controller, provides the onboard
processor according to ER 3 and also adheres to the extendability requirement
in ER 5. Furthermore, the communications device (EFU 4) fulfils the fourth
requirement by enabling networking capabilities. The sensor module EFU 5
serves the purpose of providing connectivity to additional sensors required in
ER 5. It is also required to control each wheel individually (ER 1) and im-
plement closed-loop control (ER 2), which is fulfilled by the motor controllers
(EFU 6a-d) and the actuators (EFU 7a-d). Lastly, the reader is referred to
Appendix B for detail electronic diagrams.

Table 4.6: Requirement allocation table for the electronic system

Electronic Functional Unit

Requirement EFU 1 EFU 2 EFU 3 EFU 4 EFU 5 EFU 6 EFU 7
ER 1 ∗ ∗
ER 2 ∗
ER 3 ∗
ER 4 ∗
ER 5 ∗ ∗ ∗
ER 6 ∗
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Chapter 5

Software Development

The software system consists of three main components: the firmware, software
driver and middleware. Each of these software components will be discussed
with respect to their development and function in the system. This chapter
first states the requirements for the software system. Thereafter, the software
architecture gives an overview of the whole system and the different software
layers. The three components are then described. Finally, a discussion on
the distributed design of the system is given. The chapter concludes with a
requirement allocation.

5.1 Software Requirements

Requirements for the software system were derived from the third secondary
objective of this research. The requirements are numbered and will be referred
to as software requirement (SR) and its corresponding number. The software
system is required to:

SR 1. Implement the speed control algorithm that controls the motors (on the
firmware).

SR 2. Execute a communication protocol that enables communication between
the motor controllers and the central controller.

SR 3. Provide a software application interface to the hardware for easy future
development.

SR 4. Provide a communication platform for a multi-robot distributed environ-
ment.

53
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5.2 Software Architecture

From an overview perspective the software system consists of a number of
layers. Each layer implements a different level of abstraction. The blocks in
Figure 5.1 represents these abstraction levels from the lowest to the highest,
with each level building on top of the previous one. All the blocks coloured
in blue represents software layers. Some of the layers were built from already
available software libraries. These layers are shown in the light blue blocks,
while the dark blue blocks represent the software layers that has been develo-
ped for this research and will be described in this chapter.

Control software
Middleware client

Middleware 
server

Middleware 
plug-in

Driver library

Roboard library

Firmware

Hardware

TCP 
Network

Operating  system

Figure 5.1: Software architecture

The first level of abstraction is found within the firmware. The firmware runs
on the microcontroller situated on each of the MCs. The firmware grants access
to the motor position and speed through a communication protocol. The next
software level is the Roboard library. This library is shipped with the Roboard
(EFU 3) and is developed specifically for the Roboard’s hardware components.
It consists of a set of functions that can be used to access all the communication
interfaces on the Roboard. Built on top of the Roboard library is the driver
class library. This class provides an abstraction to all the functionalities on
the robot, including the motors, kicker, dribbler and sensors. It can be seen
as a software application interface (API) which a developer can use to control
the robot and implement high-level control algorithms.

The high-level control algorithms form the next level of abstraction indica-
ted by the control software block. Apart from the operating system, this is
the highest level of abstraction. Algorithms such as path planning, obstacle
avoidance, localisation, etc., are implemented at this level. Lastly, the levels
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mentioned up to now would be sufficient for autonomous control of a single
robot, but one more component is needed in a MRS environment, namely the
middleware.

The middleware is presented alongside the control software, indicating that
they are at the same level of abstraction, yet, they are used for different pur-
poses. The control software would be used to control a single robot, for instance
in a testing scenario, whereas the middleware is required in a multi-robot dis-
tributed environment. The middleware includes a server application that hosts
two main components. The first is the middleware plug-in, which is another
abstraction level above the driver library. The plug-in simply provides the
middleware with an interface to the driver library. The second component in
the middleware is the client software. The client software replaces the control
software in a distributed environment and operates at the same level of abstrac-
tion. The important component of the middleware is the network layer. This
enables the system to communicate with the outside world and thus creates
the possibility of a distributed environment.

Finally, the operating system is depicted as the highest level of abstraction.
In reality however, the operating system plays a role in each one of these
abstraction layers, behaving as a mediator between the levels. The operating
system installed on the robot is Linux Ubuntu 10.04. Evidently, all the other
software layers are also Linux-based. Linux was specifically selected as the
development platform because it is open source and has good support for
software development. The remaining sections of this chapter will describe
each software layer in more detail.

5.3 Firmware Design

The firmware was written in C using the Custum Computer Services’(CCS) C
compiler v4 and Microchip MPLAB v8.36 integrated development environment
(IDE). The main purpose of the firmware is to control the velocity of the
motor, using the feedback from the quadrature encoder on the motor. It
also implements a simple communication protocol over SPI in order to receive
commands from the central controller (CC) and send requested data back to
the CC. The firmware was designed to be simple and efficient to ensure a stable
and robust control loop. The program was implemented in a state machine,
which is shown in Figure 5.2.
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Data
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PI Control

3.4
Get Data

  

3.3
Set 

Velocity

  

3.2
Disable 
Motor

  3.1
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Figure 5.2: Firmware state diagram

The state machine has a starting state, a three-state main loop, and four
sub-states. The Setup State (State 0) is only executed once, as soon as the
controller is powered up. The setup process consists of declaring the global and
local variables, configuring the I/O pins and initiating the PWM signal para-
meters and the PI gain constants. It also calculates the conversion constants
that are used to convert between speed and PWM signal as well as converting
the counts on the encoder to actual motor speed and position. By calcula-
ting these constants beforehand, the performance of the main control loop is
increased. The constants are calculated from the geometry parameters of the
motor and wheel which can be set in the firmware.

After the Setup State, the program goes into the main loop which will keep on
executing as long as the power is turned on. The main loop has three states:
namely, PI Control, Update Data and Decode Message. State 1, PI Control,
executes the control function that measures the current motor speed and ad-
justs the output accordingly to reach the set point. The PI gain constants
were determined beforehand by trial and error until satisfactory results were
obtained and set in the firmware as fixed parameters. For this trial and error
process, an extra functionality was built into the firmware which allows the
tuning of the PID gains. Once the tuning is done, this function is disabled in
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the firmware and will not execute at runtime. More detail on the tuning of
the control loop will be given in the next chapter.

The firmware then moves on to the Update Data (State 2). In this state the
current speed and position of the motor is read, converted and stored in the
output buffer. Finally, the third state that the program enters into, is Decode
Message (State 3). In order to understand the workings of the Decode Message
state, the protocol used for communication between the main controller and
the motor controllers must first be explained. The protocol has a master/slave
architecture over an SPI bus. The motor controller is the slave device and
only responds to commands sent by the main controller. Commands are sent
in a package of up to seven bytes. Regardless of the number of data bytes
in the package, it is always sent in the same order and always initiated by
the master. The use of the SPI interface allows full duplex communication;
meaning that for every byte sent by the master the slave sends one byte back
simultaneously. However, the firmware can also operate in half duplex mode
when necessary. Nevertheless, the data in the packet stays the same. Table
5.1 shows the contents of each byte in the data packet.

Table 5.1: Data packet byte allocation

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
Bytes sent by CC Command Speed Speed Direction 0 0 0

Bytes received by CC 0 Position Position Direction Speed Speed Direction

Byte 1 is the command byte sent from the master. The command determines
what action the MC must perform. Four different actions are defined as sub
states of the Decode Messages state. These actions are Enable Motor, Disable
Motor, Set Velocity and Get Data. As soon as the program enters the Decode
Message state, it will check whether a data packet has been received. If that
is the case, the task according to the command byte will be performed. In the
case ofMotor Enable andMotor Disable commands, bytes 2 to 7 are discarded.
These commands ensure that the CC always has full control over the motors.
If the motors are enabled during the start-up process of the CC, glitches on
the data lines can cause the motors to malfunction, leading to motor runaway.
The Enable and Disable functions prevent this and act as a safety mechanism.

The remaining two available commands are the Set Velocity and Get Data. If
a Set Velocity command is received, bytes 2 and 3 contain the speed, which
is the input to the PI control loop, and byte 4 sets the direction. Note that
even though bytes 5 to 7 contain no data, it is still sent because there is data
flowing in the opposite direction in the case of full duplex operation. For half
duplex operation these bytes are discarded. For every byte received, the MC
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loads the current measured position and speed data and sends it to the CC in
full duplex mode. This minimizes communication overhead, while having to
wait for a response after data is requested. Thus, in full duplex mode, when
the Set Velocity command is called in the CC the Get Data is also executed
at the same time. However, in half duplex mode the Get Data command must
be called separately. This is used in cases where the master only needs to read
the current speed and position and not to set a new set point.

5.4 Driver Class Library

The robot hardware driver was written in a C++ class library. The library
contains all the functions necessary to control the robot in the public member
functions of the class. The use of a class library also makes it convenient for
the developer to add the class into an existing application. All the functions
that are available to the developer in the software application interface (API)
are shown in the unified modelling language (UML) diagram in Figure 5.3.

Figure 5.3: Driver class UML diagram

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. SOFTWARE DEVELOPMENT 59

The name of the class is SoBotDriver (SoBot is short for Soccer Robot). The
smaller section at the top as well as the other entries with a minus sign next
to it, are the private class parameters and functions. These are only used
internally by the class. The lower section shows the public member functions
that are available for use. The functions called SoBotDriver are the class
constructor and destructor. The constructor is invoked automatically when
the class object is created and opens all the communication ports on the CC.
The destructor will also automatically close the ports at the end of program
execution.

Only four functions are essential to the control of the robot: Initialise, Shut-
down, Set Vector and Get Vector. The Initialise member function enables all
the hardware on the robot, for instance the motors and sensors. It is very
important to call this function before any other functions are called. The
Initialise function is separate from the constructor so that the developer can
control whenever the hardware, for instance the motors, are enabled. It also
prevents motor runaway caused by glitches on the data lines during the start-
up sequence. The Shutdown function should always be called at the end of
program execution to ensure proper disabling of the hardware.

The most important function is the Set Vector function. This function takes a
2-dimensional(x and y) translational velocity vector and a rotational velocity
as parameters. From these values the individual wheel velocities are calculated
using the formula in Equation 2.2.2 derived in Section 2.2. These velocities
are then sent to the corresponding motors to drive the robot in the desired
direction. Note that the vectors are relative to the local coordinate system of
the robot. Moreover, the function does not take a speed value as input, but
calculates the speed from the resultant vector between the x and y parameters.
To stop the robot, the developer has two options. The first is to simply call
the function with all the parameters set to zero. The second option is to use
the override function with an additional time limit parameter. The robots will
then stop automatically after the time elapsed.

Furthermore, the Get Vector function is used to retrieve the velocity as well as
distance travelled from all four MCs. The values are stored in a data structure
from which the robot’s current velocity and position is calculated and also
stored in the memory. This calculation is done with the kinematic equation
2.2.4, also derived in Section 2.2. It is important to remember that the Get
Vector function only calculates these values and does not return anything. To
retrieve the calculated values, the Get Vel and Get Pos functions can be used
to get the velocity and position, respectively.

The rest of the functions in the class are self-explanatory by their names. These
functions can be used to access the sensors on the robot or activate other digital
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outputs such as the kicker and dribbler. For further detailed explanation of
each function, the reader is referred to Appendix C and the accompanied
CD for the complete software documentation. The full UML diagram of the
software system is shown in Appendix C . A final remark on the drive class
library is that the functions only act as the interface to the robot platform
and no control is implemented. The implementation of position control and
high-level behaviour control is left to the developer.

5.5 Middleware Selection

A survey was done to investigate the availability of middleware in the field
of robotics. The reader is referred to Section 2.3 on middleware for a detai-
led description of the function of middleware. Even though a vast number of
middleware solutions are currently being developed, the technology still has
some shortcomings in the domain of robotics. Nevertheless, the use of a midd-
leware still improves the functionality of a MRS and is almost unavoidable in
a distributed scenario.

Recalling from Section 2.3, middleware is found in any area that is distribu-
ted in nature, and not only in robotics. However, this survey only considered
middleware in the robotics field since that is the topic of interest. In robotics,
middleware can be seen as a sub-division of the broader field of robot software
development platform (RSDP). RSDPs are usually developed with certain soft-
ware functionality and services, depending on the application domain of the
target robot. One such functionality is a distribution mechanism, which is
enabled by the use of middleware. Middleware, in turn, accomplishes a dis-
tribution mechanism through the use of different network transport protocols
such as sockets, Common Object Request Broker Architecture (CORBA) lan-
guage or Internet Communications Engine (ICE). However, this goes beyond
the scope of this research and for the middleware selection it was only required
that the RSDP supports some form of distribution mechanism.

Table 5.2 gives a summary of the RSDP that was considered in this study and
its level of support for a particular functionality. A 0 indicates no support at
all, a 1 indicates partially supported and a 2 represents very good support for
that particular aspect. All the candidates were measured against the criteria
that were determined for this research which is shown in the criteria column.
This column indicates whether that aspect was considered as a requirement or
not with a Yes or No, or a specification where relevant.

Before each RSDP is considered, it is necessary to understand what is meant
with the different aspects in the criteria. Only the ones that might seem am-
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Table 5.2: Comparison of middleware solutions
Middleware

Criteria Aria Player Carmen Miro Marie Fawkes ROS MRS URBI

Operating system Linux Linux
Win-
dows

Linux
Win-
dows

Linux Linux
Win-
dows

Linux linux linux Windows Linux

Programming language C++ C++ C++ C C++ C++ C++ C++,JavaC++
Open source Yes Yes yes yes yes yes yes yes No Yes
Active development Yes Yes Yes No Yes yes yes yes Yes Yes
High-level language Yes Yes No No yes Yes yes Yes Yes Yes
Hardware support No 0 2 2 1 2 1 2 2 2
Simulator Yes 1 2 1 1 2 1 2 2 2
Logging facilities Yes 2 2 2 2 1 2 2 N/A N/A
Debugging facilities Yes 1 2 2 2 2 2 2 N/A N/A
Distribution mechanisms Yes 1 1 1 2 2 2 2 2 2
Scalability No 1 0 1 1 1 1 2 N/A N/A
Documentation Yes 2 2 2 0 1 0 2 2 2
Graphical interface Yes 0 2 1 1 2 1 2 2 2
Software integration Yes 0 1 1 1 2 1 2 1 2
Predefined components Yes 1 2 1 1 1 2 1 2 2
Score(%) 41 70 46 42 61 N/A N/A N/A N/A

biguous are discussed. Firstly, for the operating system, it is evident from the
previous section that RSDP must support the Linux platform and the desired
programming language was chosen to be C++. Furthermore it was requi-
red that the RSDP is still actively being developed and improved with regular
updates. The next requirement, high-level language, refers to the RSDP’s sup-
port for an integrated behaviour language used for robot behaviour control, in
addition to the standard robot hardware control functionality.

The hardware support aspect is an indication of built-in drivers for third-
party devices, for example cameras and other sensors. This was investigated
in the study but not considered as a requirement since most hardware used on
the robot is custom-made which will not be supported anyway. A simulation
environment allows testing of complex control algorithms or even analyses of
rigid body dynamics. This was also included as a requirement to improve
future development opportunities. Logging facilities enables the RSDP to
gather information of the system at runtime, such as execution errors and
performance statistics, whereas debugging tools can be used to evaluate an
application while developing, for instance, graphical representation of sensors.

The distribution mechanism is the component that enables a RSDP to function
as a middleware. This should certainly be part of the criteria. Scalability
determines how the system performance will change once the number of nodes
or robots is increased. In most cases this effect is only considerable in the
range of hundreds of nodes in a system. Therefore it is not such an important
factor for this study since the number of robots will not be in that range.
A software product without proper documentation is often very difficult to
implement, especially when it is desired to customise the source code. Proper
documentation of the RSDP was considered as an important aspect.
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Software integration is the RSDP’s ability to integrate with external software
for sharing and reuse of existing software. This is a notable aspect that can
greatly improve development time and effort. Some RSDPs also include prede-
fined components or software libraries for localisation, path planning or neural
networks which also simplifies the development considerably. The last aspect
that was considered in the study is an overall score value. This was not part
of the criteria but was used as a guideline. The score value was obtained from
a comprehensive survey that was done by Kramer and Scheutz (2007) on a
number of RSDPs. This value was calculated by investigating the RSDPs on
three aspects, namely the support of different features, the practical usability
and implementation, and the impact of the system in the field, corresponding
with the number of published works.

Amongst the many RSDPs currently available, it was found in the literature
that the ones listed in Table 5.2 were the most popular and widely used. These
middleware alternatives will be discussed briefly. Firstly Carnegie Mellon Ro-
bot Navigation Toolkit (CARMEN), is a robot control software system written
for basic single robot navigation (Montemerlo et al., 2004). CARMEN was the
first to be ruled out because of its lack of C++ language support and not being
actively developed any more. Miro, or Middleware for Robots (Utz et al., 2002)
is a distributed object-orientated framework for mobile robot control. Howe-
ver, the documentation proved to be unsatisfactory. Miro was also difficult to
implement and only partially supports most of the criteria aspects.

Aria (Advanced Robot Interface for Applications) is basically a set of C++
classes for mobile robot control. Aria was developed for MobileRobots Inc.
robots, but is freely available (Activmedia, 2005). Aria also only partially sup-
ports, or has no support at all, for most of the required criteria. Alternatively,
Fawkes is a component-based software framework for real-time robotic applica-
tions (Niemueller, 2009). It is also used by a RoboCup team at the University
of Cape Town in South Africa. Although Fawkes seemed to be promising, the
documentation was, once again, the stumbling block and therefore, it could
not be implemented successfully.

Microsoft Robotics Studio (MRS) is a comprehensive robotics development
environment. MRS might have been a viable solution, but it is a commercial
product that needs a licence, and can only run on a Microsoft Windows based
platform (Jackson, 2008). Therefore MRS was also discarded from the options
list. URBI, or Universal Robot Body Interface, is a partially open source ro-
botics development software package from Gostai (Baillie, 2005). URBI is, in
reality, a C++ based programming language extended with a behaviour scrip-
ting language called urbiscript. URBI was developed particularly to enable
event-driven and parallel code execution in robotics applications. Although
URBI itself is open source, the simulation environment and other packages
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must be purchased. This alternative was also rejected since its application
focus is different from that of this research.

Finally, only three options remained which were selected as the top three candi-
dates: namely, Player, MARIE (Mobile and Autonomous Robotics Integration
Environment) and ROS (Robot Operating System). These middleware solu-
tions were investigated in more detail. The reader is reminded that Table 5.2
contains the detailed information on these alternatives. The full description
can be found in Section 2.3. All three RSDPs are competing against each other
in all of the aspects that were considered in the criteria. Even though they all
showed to be a viable solution, Player was finally selected. From the literature
review it was found that Player was the most widely used and established
RSDP in the robotics field, which makes the support for development very
good. Player also received the highest overall score according to the survey
done by Kramer and Scheutz (2007).

5.6 Distributed System

The middleware, Player, forms the basis of the distributed system used for
this project. Player is based on a client/server software model. Everything
in Player is built around the Player server. The server is sandwiched between
four additional abstraction layers and acts as the host that manages all com-
munication above and below it (see Figure 5.4). Additionally, the client and
the driver both play an important part, while the proxies and the plug-in layer
are the only interfacing components that "glue" everything together.

Client
• Behaviour control

Proxies
• Provides interfaces to client

Sever
• Manage communication

Plug-in
• Links interface with devices

Driver
• Contains hardware specific code

Figure 5.4: Software layers above and below the middleware
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The driver, as discussed in the previous section, contains the hardware-specific
code necessary to access and control all the devices on the robot, whereas the
client library contains the high-level robot behaviour control code. Further-
more, the Player server supplies a number of predefined software interfaces,
such as a position control interface. The plug-in links each device on the robot
with a corresponding interface which grants access to the device. These inter-
faces are then shared via the server through the so-called proxy. In other words,
the driver is linked to the interfaces supplied by the server with the plug-in,
while the client is linked to the server through the proxies that provide access
to those interfaces.

The server manages all communication by means of Transfer Control Protocol
(TCP) sockets as the distribution mechanism, in other words, it uses a network
connection. This means that the communication between the client and the
server does not necessarily have to be on the same physical platform or even
in the same programming language. It operates in the same way as multiple
computers on a network. The computers can have different operating systems
but still communicate with each other through the TCP network. It is this
attribute of Player that was used to implement the distributed system. Figure
5.5 shows two robots and an off-field computer. Each runs a separate instance
of the Player server and a client application. All the nodes in the system are
connected through a wireless network using TCP sockets and the proxies from
Player.

Wireless
link

Robot 1

Operating system

Player server 

Player 
Client Driver

Robot 2

Operating system

Player server 

Player 
Client Driver

Off-field Computer

Operating system

Player server 

Player 
Client GUI

Figure 5.5: Distributed system architecture

The client program on Robot 1 can control itself as well as all on-board devices,
and it also has access to the resources on Robot 2. For instance, Robot 1
can access the position sensors or retrieve the current velocity of Robot 2.
Additionally, the off-field PC has the same connection to the robots and can
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also access all the resources on Robot 1 and 2. The off-field computer can,
therefore, be used to do runtime debugging or remotely control the robots.

5.7 Conclusion

All the components in the software system were selected, and developed where
necessary, in fulfilment of the requirements that were set out in the beginning
of this chapter. These requirements are briefly mentioned again and mapped
to the software component that fulfils it. The firmware was developed to imple-
ment the speed controller as well as to provide a communication link to enable
the CC to access the motors. This was in fulfilment of SR 1 and 2. Further-
more, the driver class library was written according to the requirements of SR
3. Finally, the middleware serves the purpose of providing a communication
platform amongst several robots. Therefore, the middleware was used to fulfil
the requirements of SR 4.

Table 5.3: Requirement allocation table for the software system

Software component

Requirement Firmware Driver library Middleware
SR 1 ∗
SR 2 ∗
SR 3 ∗
SR 4 ∗
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Chapter 6

Implementation and Testing

In order to demonstrate the basic functionality of the robot, three tests were
conducted. The fist test illustrates the operation of the motor controllers
(MC) and at the same time is used to determine the proportional, integral
and derivative (PID) gain values for the speed controller. The second test
shows how the electronic system controls the omni-directional drive mechanism
(ODM) to move the robot in any direction without turning. This test also
determines the current accuracy of the movement in an open-loop system. The
third test was performed to verify whether non-complex communication can
be achieved with the middleware. This chapter concludes with final comments
on the test results.

6.1 Speed Control Test

The speed controller on each motor ensures that the robot moves at the desired
speed, regardless of the resistance on the wheels due to inertia and friction.
This test consisted of speed measurements that were taken to determine the
PID gains for the speed controller. The gains had to be tuned such that the
robot will reach the target speed in the shortest possible time with a reasonable
amount of overshoot. This section describes the procedure that was followed
during the testing.

For the speed control test the robot was set up for normal operation with the
test application running on the central controller (CC). Furthermore, the PID
test option in the firmware was enabled. This activates a built-in function
that will take speed measurements at a pre-determined sampling rate when

66
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the motors are turning. The built-in function also enables the serial commu-
nication port on the MC. The MC’s serial port was connected to a PC that is
running a custom Matlab script. The script captures the speed measurements
sent from the MC and plots the data after each test run. Only one motor
controller was used to take the measurements. The firmware programmer was
also connected to the MC in order to program the gain values and start the
test runs. An iterative tuning method was used, which requires several test
runs and changing of the gain values. It would be unpractical to let the robot
move with the serial cable and programmer connected. The robot was, there-
fore, rather placed on a stand to allow the wheels to run freely in the air. The
speed control test setup can be seen in Figure 6.1.

Figure 6.1: Setup for speed control tests

For each test run, the desired PID gains and target speed were set in the firm-
ware and programmed onto the MC. Thereafter, the controller was powered
on and fed with a step input command from the CC. This activated the motor
and started the measurements. While the motor was running freely, samples
were taken every 5ms with a total of 200 samples, resulting in a 1 sec test
run. The target speed was chosen to be 50% of the maximum wheel speed,
which is 2000 rpm. Thus, the set point was set to 1000 rpm throughout all
the tests. By repeating this procedure several times and adjusting the gains
each time, starting with the proportional and then adding the integral gain,
the PID controller was tuned to give the desired response.

Figure 6.2 shows the results of five tests with different gain values. The motor
speed, in rpm, is plotted on the y-axis while the x-axis shows time in seconds.
The noise that is visible on the graph is caused by the tolerances on the
encoder measurements. However, the error is small enough to ignore and
smooth operation was still achieved despite of the noise. Starting with the
bottom red line, the proportional gain was set to 1, while the integral and
derivative gains were left at 0. This resulted in an offset in the settling speed at
760 rpm. The next two lines, green and cyan, show how the output shifts closer
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to the set point as the proportional gain is increased to 2 and 3, respectively.
As expected with proportional gain only, the motor reacts faster but does not
settle at the desired set point.

The remaining offset was removed by adding the integral gain. The black line
represents the motor speed with the proportional and integral gain set to 3
and 0.01, respectively. This gain setting results in the motor speed reaching
the desired set point in 0.12 s and settles almost immediately. In order to
let the robot have a quick starting speed the controller was tuned to allow a
small overshoot. The overshoot was achieved with a further increase in the
integral gain to 0.013, leaving the proportional gain at 3. The top blue line
shows the motor speed response with a quicker rise time of 0.1 sec, but settling
time of 0.4 s due to the 4% overshoot. A further addition of a derivative gain
did not improve the results considerably and since the derivative gain normally
amplifies the noise on the measurements, it was left at 0. Sufficient results were
obtained with only proportional and integral gains of 3 and 0.013, respectively.
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Figure 6.2: Step response for different PID gains

Due to the practical reasons mentioned above, the test was simplified by letting
the wheel run freely. However, in order to confirm the validity of these results,
a single comparison test was also conducted with the robot running on the
floor without changing the gain values. The test was executed in the same
manner as the previous ones. In this case, the serial cable and programmer was
disconnected and the robot was allowed to spin on the floor. The measurements
were recorded on the robot and extracted through the serial cable afterwards.
Figure 6.3 shows that the overshoot was reduced to 2.7% if compared to the
blue line in Figure 6.2. The reduction in the overshoot could be due to the fact
that all four motors are now contributing to the spinning of the robot and the
PI controller does not need to push the motor as hard. Nevertheless, this result
shows that tuning the PID gains with free running wheels did not compromise
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the performance of the speed controller considerably. Furthermore, the speed
tests revealed that only PI control is sufficient to control the speed of the
motors.
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Figure 6.3: Speed measurements for different PID gains

Finally, a last test was performed to investigate the speed response of the robot
while running in a straight line on the same surface. The robot was accelerated
from standstill to 0.5m/s with a step input command. This test was repeated
8 times, each in a different direction, and then averaged to get the results
shown in Figure 6.4. It is clear that the response differs considerably from
the previous tests. The response shows a 28% overshoot, whereas the previous
test had a 4% overshoot. The sudden high overshoot can be explained by
the fact that more inertia and friction is present when the robot is moving
forward, instead of spinning on the spot. This causes the controller to have a
slower response time and a higher overshoot to compensate for the inertia. It is
therefore concluded that more accurate results will be obtained if the controller
is tuned while the robot is moving forward instead of spinning. However, this
is a tedious process since all four MC will have to be reprogrammed for every
change in the gain values. Another recommendation is to do the initial tuning
with a lower overshoot if it is desired. Nevertheless, the current response still
shows satisfactory performance for development purposes and demonstrates
the functionality of the speed controller.
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Figure 6.4: Step response for robot with 0.5m/s set point

6.2 Directional Accuracy Test

The omni-directional robot is capable of moving in any direction, directly from
the starting point. However, due to the geometry of the wheels, accuracy in
each direction will differ. The purpose of the directional accuracy test was to
determine the amount of deviation as the robot moves in different directions.

The second purpose of this test is to demonstrate the integrated functionality
of the robot’s mechanical, electronic and software systems. A simple movement
of the robot in a straight line illustrates the matrix calculation to determine
the individual wheel speeds. It also puts the motor controllers, as well as the
ODM, to the test. At the same time, the movement of the robot was recorded
and used for the last test in the previous section. Note that only speed control
was implemented on the robot and not position control. It is thus an open-
loop system in terms of position control. Therefore, this test determines the
open-loop accuracy of the robot when moving along a straight line.

The experiment was conducted on the felt surface of a standard RoboCup SSL
soccer field. The robot was placed in the centre of the field and orientated
so that the y-axis was in the length of the field and the x-axis in the width.
First, the robot was started up normally with the test application running.
Then the robot was connected to a laptop through the Wi-Fi network from
where it was remotely controlled. Furthermore, using the driver library, a
function was written which takes samples of the robot’s position and speed
during the test, while saving the data on the microSD card. This position and
speed information was gathered from the on-board motor encoders. Note that
there was not a vision system available and the external measurements were
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performed manually with a measuring tape. Figure 6.5 shows the setup for
this test.

Figure 6.5: Direction accuracy test setup

For each test, the robot received a unity direction vector and a speed value as
input. The robot then moved from the origin, which was the centre of the field,
in the direction of the vector for 2 s. During this period measurements were
taken every 100ms. The speed input was kept constant at 0.5m/s throughout
the test. The reason for this speed value was to minimise the effect of slip
on the wheels, while still maintaining a reasonable speed. Furthermore, the
direction vectors were spaced 45 ◦ appart, starting at the positive y-axis and
moving clockwise. After each test, the robot’s position from the origin was
measured with the measuring tape and manually inserted into the data set.
The data was then copied by means of the Wi-Fi connection to the laptop
and plotted in Matlab. Finally, before and after every test the robot test
application was restarted to reset the position data in the memory. Each
direction test was performed six times and the average values are reflected in
Figure 6.6a. Figure 6.6b indicates how the robot was orientated during the
tests which corresponds with the polar graph in Figure 6.6a (x-axis at 0 ◦).
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Figure 6.6: Robot deviation and orientation
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The polar graph shows the results of tests in the eight different directions. The
red line represents the input direction vector sent from the central controller,
while the blue line represents the path measured by the encoders. The green
line is the actual path that the robot followed. From the graph it is clear
that the robot deviates from its desired path as it moves further and further,
indicated by the offset between the red lines and the green lines. The deviation
error, for each direction, is given by the angle between these two lines. Note
that the length of the lines are normalised and does not represent the radial
distance of the robot’s travel. The distance is not of any significance for the
direction test since the robot moves in a straight line and the error in direction
would stay the same for any distance travelled.

If the lines in Figure 6.6 are investigated, it is very difficult to spot a trend in
the behaviour of the robot. One would also expect a more symmetrical graph
around the y-axis due to the symmetry in the geometry of the robot. This is
not the case. However, these results still remain valid and some conclusions
can be drawn from them. The most probable reason for the unevenness is
slip occurring between the wheels and the surface. Another reason could be
small imperfections in the motor controllers and motors, causing them to be
asynchronous. Thus, not starting at exactly the same time causes a small
initial jerk in a different direction at the starting point.

The deviation errors for the robot path are shown in Table 6.1. Note that
a negative sign implies a deviation in the clockwise direction and a positive
sign implies an anti-clockwise deviation. It is evident that the robot is most
accurate in the direction of the y-axis, 90 ◦ and 270 ◦. The robot only deviates
1.71 ◦ and 2.97 ◦ in these two directions respectively, whereas the deviation in
the direction of the x-axis is significantly larger, 7.77 ◦ and 21.88 ◦ in the 0 ◦

and 180 ◦ direction, respectively. The explanation for this behaviour lies in the
geometry of the robot wheels.

Recall that the wheels are not perpendicular to each other, but are spaced
closer to the x-axis. The wheels are thus more parallel to the y-axis than to
the x-axis. If the robot moves in the direction of the y-axis, the wheels are
facing the direction of movement and experience more grip on the surface. On
the other hand, if the robot moves in the direction of the x-axis, the wheels
are almost perpendicular to the direction of movement, having less grip. This
means slip can occur more easily and there is less control over the robot, which
causes the error in direction.
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Table 6.1: Robot path direction and encoder deviation

Deviation in degrees

Direction (deg) 0 45 90 135 180 225 270 315

Robot path deviation (deg) -7.77 10.85 -1.71 -13.22 21.88 4.65 -2.97 -1.74
Encoder deviation (deg) 8.42 -10.54 1.25 14.39 -21.51 -4.68 2.38 0.64

Furthermore, the bottom row of Table 6.1 shows the error in the encoder mea-
surements. Note that the encoder deviation (blue line) is calculated relative to
the path deviation (green line). In other words, these values in the third row
of Table 6.1, shows the deviation of the encoder measurements from the actual
robot path. From 6.6 it is clear that according to the encoders the robot is
moving with practically 100% accuracy, even though it is not. This confirms
that the major reason for the accuracy deviation of the robot is slippage on
the wheels, since the wheels are turning correctly according to the encoders
but not relative to the ground.

A last important remark is that during the tests that were performed above, the
duration of the battery life was recorded. Over a total of five tests, consisting
of 0.5m/s speed tests, the average battery life was 2.5 h. When the robot
was left only on stand-by, the battery lasted 4 hours. Unfortunately no tests
were performed to determine the battery consumption during maximum motor
operation. However, from the results above, it can be assumed during the
competition that the battery would last at least more than 10 minutes.

6.3 Static Communication Test

In order for several robots to operate in a distributed environment, commu-
nication between them is vital. It was already discussed in Chapter 5 how
Player is used as a middleware to accomplish this task. The purpose of the
static communication test is to demonstrate how the middleware accomplishes
a communication link between the robots.

In order to perform such a test, at least two robots are necessary. However,
only one robot was functional. Nevertheless, since it is only a static test and
since the controller on the robot is nothing other than a small computer, a
normal PC can be used to obtain similar results. Therefore, a laptop was
used to simulate the second robot. The same operating system (Ubuntu) that
runs on the robot was installed on a virtual machine on the laptop, together
with the middleware server and client application. A wireless link was also
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established between the laptop and the robot by using Player. Note that this
setup is the same as in all the previous cases where the robot needed to be
remotely controlled. In this case the middleware is used for communication,
instead of a direct wireless link. Figure 6.7 depicts the setup for this test.
The reader is referred to Section 5.6 for a more detailed description of the
distributed system using Player.

Robot 

Operating system

Player server 

Player 
Client Driver

Laptop (Simulated robot)

Operating system

Player server 

Player 
Client

Wireless
link through 
middleware

Figure 6.7: Static communication test setup

The client application on the laptop can access the functions in the driver
class library through the middleware. Thus, the test was performed by calling
the Set Vector function from the client application on the laptop (simulted
robot), commanding the robot to move. With the Get Vector function data
was requested from the robot and sent to the laptop. This test proved to be
successful and demonstrates a simple data transfer from one robot to another
using the middleware.

6.4 Conclusion

The first test showed that speed control was successfully achieved. It also
revealed that only a PI controller is sufficient to control the motors. The
controllers were initially tuned to have an overshoot of 4%, which resulted
in a 28% overshoot due to the inertia. This overshoot will give the robot a
faster starting time, bringing the robot up to the set point speed within 0.22
seconds. Furthermore, the direction accuracy test gave some valued insights
into the open-loop performance of the robot. The robot has a minimum tra-
cking deviation of 1.71 ◦ and a maximum error of 21.88 ◦. It also showed the
difference in the accuracy caused by the geometry of the robot. These results
will be meaningful to any future development, when implementing a position
control system. The battery also showed satisfactory performance by lasting
2.5 h on average during the tests. Finally, a static communication test demons-
trated that Player can be used to send and receive data between the robots.
A further discussion on these results can be found in the next chapter.
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Conclusion

Chapter 1 stated that the primary objective of this research was to design and
manufacture a first prototype of the omni-directional robot for RoboCup SSL
for Stellenbosch University. It was also mentioned in the objective that the
design should make provision for a distributed control architecture (DCA), in
order for the robot to be used as a development platform for research in multi-
robot systems (MRS). To accomplish this objective, the research was devided
into four secondary objectives. Each of these objectives will be discussed in
this chapter by recalling the means by which it was achieved throughout the
research. Then the conclusions and the implications thereof are discussed.
Also, since the robot platform is meant for further research, recommendation
for future work will be given where it is applicable. Finally the chapter will
conclude with a final remark on the significance of this work.

The first secondary objective relates to the mechanical design of the robot
platform in Chapter 3. It stated that the robot should be capable of holonomic
movement. This feature is absolutely essential for the robot to compete in the
RoboCup SSL. Therefore, the omni-directional drive mechanism (ODM) was
designed in order to achieve this objective. An existing design was used for
this purpose and adjusted where necessary. However, the omni-directional
wheels (ODWs) were redesigned for easy manufacturing and assembly. The
tests in Chapter 6 demonstrated how the drive mechanism enables the robot
to move in any direction without changing orientation, thus being a holonomic
platform as required from the objective.

Additionally, it was said that the platform should ensure enough space for a
dribbler and kicker device. The platform makes provision for these devices
with an open space of 50mm × 50mm × 105mm. It is also left open at the
rear of the robot to give the opportunity to use a solenoid kicker, since these
devices usually need the extra space for the pull back spring. However, other
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kicker designs, such as a linear actuator, should also fit easily into the availible
space. The construction of a kicker and dribbler should be considered for
further development. Nevertheless, the extra space was achieved by widening
the front wheel placement to have a 37 ◦ angle with the x-axis, instead of
45 ◦ like the rear wheels. This adjustment caused some degradation in the
performance of the ODM as it was found in the accuracy tests in Chapter 6.
The robot had an average deviation of 21.88 ◦ in the direction of the x-axis.
However, it is important to note that this was only an open-loop test. The
accuracy will be greatly improved once a feedback system is used to correct
this error. This issue will be discussed later on in this chapter with some
suggestions on how to improve the accuracy.

Furthermore, the RoboCup rules require that the SSL robots may not exceed
a radius of 180mm and a height of 150mm. The robot is within the limit
regarding the height, at 110mm without the battery, and only 135mm inclu-
ding the battery and electronics. This even leaves space for an extra battery if
required. However, some problems were experienced during the redesign and
manufacturing of the omni-wheels and gears, which caused a few extra milli-
metres on the sides of the robot. This was improved in the second iteration of
the design, although the problem still persisted. The result was that the robot
has a radius of 184mm. This problem can be solved by machining off some of
the parts to gain that extra 2mm on a side. Due to time limitations, it was not
done since it did not influence any of the other requirements. However, this is
recommended as a future consideration. Finally, although the weight limit was
not an initial requirement, it was added as an additional design consideration
to maximise the performance of the end product. A total weight of 1.48 kg
was achieved by using aluminium as the primary material for the robot.

Secondly, the objective in Chapter 1 that corresponds to the electronic design
in Chapter 4, stated that the electronic system is needed to control the ODM.
In order to control the ODM, the system should provide functionality for speed
as well as position control on each motor. A number of motor controllers
(MCs) were considered, although none of the alternatives were satisfactory.
The most probable solution was the Faulhaber MCDC motion controller which
was designed specifically for the motors that were used in this research. Yet,
this alternative was also rejected due to the cost and lack of an SPI interface.
Therefore, the MC was designed with the requirements of this research in
mind. The first consideration was to design for the position and speed control.
The PIC18F2431 contains a quadrature encoder module which simplified this
task. It is also capable of having a very high sampling rate with a maximum
clock frequency of 40MHz. Moreover, the MC was designed to have very
small dimensions, only 45mm × 25mm, in order to fit four of the PCBs
on the platform. The speed tests in Chapter 6 also showed how the MCs
were successfully used to accomplish PI speed control. The controller was
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deliberately tuned to have an overshoot, to give the robot a quick reaction time.
However, this response can easily be adjusted if desired in future applications.
Another future recommendation was to manufacture a third version of the
MC and include the capacitors, as mentioned in Chapter 4, which is used to
counter the effect of the motor back-EMF.

Furthermore, a very important aspect that was stated in the objectives, is the
provision of a distributed architecture. Also, the robot platform should provide
the opportunity for further research and development, since it is intended
as a test bed for MRS. The former and the latter statements go hand in
hand. It was also mentioned in the motivation in Chapter 1, that by using
a hybrid system, not only can research in RoboCup SSL be conducted but
additional opportunities for future research are created. It was, therefore, a
major design consideration to design the electronic system accordingly. Three
design guidelines were followed to achieve these objectives. The guidelines
were: design for high-level programming language compatibility, design for a
wide range of connectivity and design for modularity.

High-level programming languages, such as C++ or Java as opposed to C or
Assembler, offers a vast amount of reusable libraries and classes for robot deve-
lopment, especially for research in AI and autonomous behaviour. Therefore,
the Roboard RB 100, which is a SBC, was chosen for the central controller to
support these languages. Moreover, the SBC supports a number of different
connectivity options, such as USB, RS232, SPI and PCI. This wide range of
standard interfaces creates the opportunity to expand the system easily, which
further contributes to the robot being a research platform. One example of
this, that has been implemented for this research, was to use the PCI interface
to give the robot Wi-Fi capabilities, thereby, also adhering to the objective that
requires communication to the off-field computer, as well as directly between
the robots.

Furthermore, the guideline to design for modularity also contributes to the
research platform, by making it easy to add or change any of the modules, wi-
thout compromising the rest of the system. For instance, if at a later stage it is
decided to use brushless DC motors rather than the current brushed motors,
the MCs can simply be replaced with the desired controller and connected
to the CC via the appropriate interface. This is also a recommendation that
can be considered for future development. The brushless DC motors can offer
a better power output performance over the physical size of brushed motors.
Nevertheless, the modular design approach does have some disadvantages. Be-
cause the modules are separate from each other, they need to be connected
with wires or ribbon cable. These wires can get tangled and cause problems
with the communication, especially when long power and signal lines run to-
gether, and the impedances are not matched. There are, however, precautions
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that can be taken to avoid these problems. Therefore, the modular approach
remains a more desirable solution.

Thirdly, it was an objective of this research to develop the firmware and soft-
ware that will utilise the electronics, to implement basic control on the robot.
The first level of control, before any other form of control can be implemen-
ted, is speed control. Chapter 5 described how the control algorithm for a PI
speed controller was implemented in the firmware on the MC. The technique of
using a state machine, ensured that the firmware is robust and reliable, since
a failure on this level can easily send the robot off track. Again, the speed
tests in Chapter 6 demonstrates the successful implementation of the speed
controller. The next level of control is position control. In order to accomplish
position control, some form of position feedback is essential. The firmware also
includes a function capable of reading the position from the motor encoders,
thereby determining the position of the robot. However, the results from the
accuracy tests in Chapter 6 showed that these measurements were inaccurate
between 0.64 ◦ and 21.51 ◦. The reason for this is not because of faulty en-
coders, but mainly because of slippage on the wheels as it was concluded in
Chapter 6. Therefore, in order to implement position control, the slippage
must be minimised or another means of feedback must be used.

This can be achieved in one, or a combination of the following ways. A dif-
ferent set of PI gains can be determined to slow down the response of the speed
controller and thereby reduce slippage. However, this will be a compromise
to the quick response of the robot. A more desirable approach would be to
use a ramp input instead of a step input. This would gradually increase the
speed of the robot and reduce slippage. Another more advanced technique
is to implement the algorithms mentioned in Williams et al. (2002) and Ro-
jas and Förster (2006), to detect when slippage occurs on the wheels. This
information can then be used to discard the faulty readings and improve the
measurements from the encoders. Additionally, the encoder measurements can
be supplemented with data from the accelerometer. Sensor fusion techniques
can then be applied to determine a more accurate position measurement. The
most viable solution would be to acquire an external measurement, such as
from a vision system. This would give the exact position of the robot even
when slippage occurs. Nevertheless, the firmware makes provision for posi-
tion control, and it is recommended for future development to consider these
methods for a position control system.

In addition, the objective required that the software should provide a software
application interface to the robot platform. This goes hand in hand with what
was stated in the primary objective, that the robot is supposed to be a soft-
ware development platform for research in robotics. Therefore, the software
driver class library was developed as described in Chapter 5. The library offers
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a number of functions that can be used by a developer to access and control
all the hardware on the robot. It is evident that this leaves plenty of space
for future development. One suggestion is to implement a path planning and
path following algorithm. These algorithms and high-level behaviour control
can be implemented with a behaviour language such as XABSL (Extensible
Agent Behaviour Specification Language). Furthermore, the implication of
the class being written in a high-level programming language, is that a deve-
loper can make use of the libraries, algorithms and resources that are already
available for robotic applications. For instance, for this research Player was
implemented together with the driver library, to accomplish communication
for multiple robots in a distributed environment. This was also stated as part
of the objectives. Chapter 5 described how Player utilises a TCP network
and client/server model to achieve communication between the robots and the
off-field computer. The significance of this is, firstly, that it contributes to
the distributed approach of this research by means of the TCP network. Se-
condly, that it adds to the robot being a development platform by means of
the client/server model. The latter is because the client/server model allows
the robot (server) and the application software (client) to be totally separate
from each other, in terms of programming language and physical location, thus
giving the researcher more freedom of choice and opportunity for development.

Fourthly, an extra objective was given to, if time permits, develop an additional
robot and test the distributed system as a whole, by performing a cooperative
task in a dynamic distributed environment. One example of such a task would
involve two or more robots to move from one formation to another. For ins-
tance, from standing in a line to forming a circle. This is typically what will
be required from the robots in RoboCup SSL competitions or most MRS as-
signments. Evidently, this task must be performed without any support from
the off-field computer, other than supplying the vision. Such a task would
require the robots to be aware of their own locations, as well as there fellow
teammates’ positions relative to them. However, this level of control was not
possible, since it would require either an overhead vision system or very accu-
rate position feedback from local sensors. Even though a second prototype was
indeed developed, neither of the formerly mentioned necessities were available.
The distributed test could not be performed and this objective was, therefore,
only partially achieved. A simple static communication test was, however, per-
formed. This test demonstrated that data can easily be transferred between
the robots in a static environment through Player, thus sharing their resources.
In the same manner it would be possible to transfer data between the robots
in a dynamic environment to achieve some cooperative task, once a position
control system is also available. It is therefore recommended as another future
research opportunity to investigate the performance of Player as a middleware
in a distributed environment using the developed robot platform.
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In conclusion, it is evident that all the required objectives for this research
were achieved successfully, with the exception of the additional objective being
partially met. However, several suggestions were made on how to improve the
position measurements in order to continue this objective in future work. Each
design requirement was carefully considered and implemented using a system
design approach. This complete design process was documented to give the
developer a comprehensive understanding of the robot platform. Furthermore,
lessons were learned during the development of this first prototype, and recom-
mendations were made on how to improve it. Also, through this research a
number of future research opportunities arose, which was mentioned in this
chapter. All in all, this research encompassed three technological fields, me-
chanical, electronic and software, integrating them to create a versatile deve-
lopment platform for future research in robotics and MRS.
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Mechanical Design Drawings

This appendix contains the manufacturing drawings for the mechanical system
of the robot.
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STUDENT No. 15979199 DRAWN BY: A SMIT REVIEWED:

ITEM
DESCRIPTION

QTY MATERIAL / SPECIFICATION

SCALE ON A3 1:1.5

MEASUREMENTS IN mm

SHEET No.  1  OF  1  SHEETS No. 00/00/00

TITEL: Robot Assembly

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

A A

BS 4183 - M3 x 816Slotted cheese head 

machine screws

9

00/00/031Battery Mount8

M3 x 404Battery Mount Spacer7

04/00/001Front Right Drive 

Assembly

6

01/00/001Rear Right Drive 

Assembly

5

00/00/021Top Plate4

02/00/001Rear Left Drive 

Assembly 

3

03/00/001Front Left Drive 

Assembly

2

00/00/011Base Plate1

UNLESS OTHERWISE STATED

TOLERANCES 0,1

ANGLES 1

1

4

8

7

3

2

6

5

9
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SCALE ON A3 1:1

MEASUREMENTS IN mm

SHEET No.  1  OF  1  SHEETS No. 00/00/01

TITEL: Base Plate

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

Aluminium1Base Plate1

UNLESS OTHERWISE STATED

TOLERANCES 0,1

ANGLES 1

3.17

6

4

7

0

2
8
.
2
4

46.24

59.48

53.41

37.89

45.0°

4
5
.
8
1

5
3
.
4
1

3
7
.
8
9

R90

4
5

25

2
1

4
1

67

6

7

9

3

NOTE: THIS PART NEEDS 

TO BE LASER CUT. 

DIMENSIONS ONLY FOR 

ADDITIONAL REFERENCE

NOTE: HOLES ARE 

SYMMETRICAL AROUND 

VERTICAL LINE (DATUM B)

NOTE: ALL HOLES TO BE 

DRILLED WITH RESPECT 

TO DATUM A AND B

A

B

38 HOLES 
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DESCRIPTION

QTY MATERIAL / SPECIFICATION

SCALE ON A3 1:1

MEASUREMENTS IN mm

SHEET No.  1  OF  2  SHEETS No. 00/00/02

TITEL: Top Plate

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

Aluminium1Top Plate1

UNLESS OTHERWISE STATED

TOLERANCES 0,1

ANGLES 1

1
9

5
4

11 9

R5

R88

R2

1
0

R2

17

43

58

13

37

1
0

6

1
0

4

6

5
0

7
0

3

68

67

NOTE: THIS PART NEEDS

TO BE LASER CUT. 

DIMENSIONS ONLY FOR 

ADDITIONAL REFERENCE

NOTE: ALL DIMENSIONS 

ARE SYMMETRICAL 

AROUND HORIZONTAL 

LINE (DATUM A)

A

56

B
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DESCRIPTION

QTY MATERIAL / SPECIFICATION

SCALE ON A3 1:1

MEASUREMENTS IN mm

SHEET No.  2  OF  2  SHEETS No. 00/00/02

TITEL: Top Plate

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

Aluminium1Top Plate1

26.00

39.00

41.00

2
7
.
2
5

5
9
.
4
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28.24

45.81

45.91

5
3
.
4
1

3
7
.
8
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53.41

37.89

4
3
.
0
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3
9
.
0
5

11.83

1
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.
5
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.
9
0

8
0
.
9
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6
.
9
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5
.
0
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2
5
.
0
0

4
6
.
2
4

37.50

29.50

77.66

46.25

18.00

22.00

314 HOLES 

8 HOLES M3

12 HOLES M2

37

NOTE: ALL HOLES ARE 

TO BE DRILLED WITH 

RESPECT TO DATUM A 

AND B

NOTE: ALL 

DIMENSIONS ARE 

SYMMETRICAL 

AROUND HORIZONTAL 

LINE (DATUM A)

A

B
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STUDENT No. 15979199 DRAWN BY: A SMIT REVIEWED:

ITEM
DESCRIPTION

QTY MATERIAL / SPECIFICATION

SCALE ON A3 1:1

MEASUREMENTS IN mm

SHEET No.  1  OF  1  SHEETS No. 00/00/03

TITEL: Battery Mount

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

PVC1Battery Mount1

UNLESS OTHERWISE STATED

TOLERANCES 0,1

ANGLES 1

34 HOLES 

8 HOLES M2

12 X 45° 

18 X 45° 

18 X 45° 

12 X 45° 

1
6

1
6

1
6

1
6

1
0
7

9
6

79

72

67

64

21

18

7

1
6
7

1
6
4

1
4
0

1
2
6

1
2
2

4
4

4
0

2
6

2

3
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ITEM
DESCRIPTION

QTY MATERIAL / SPECIFICATION

SCALE ON A3 1:1

MEASUREMENTS IN mm

SHEET No.  1  OF  1  SHEETS No. 01/00/00

TITEL: Rear Right Drive Assembly

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

A

AS 1427 - M2 x 86ISO metric machine 

screws

10

AS 1427 - M3 x 84ISO metric machine 

screws

9

01/00/041Bush8

01/00/031Motor Spur Gear7

01/00/021Rear Right Drive Mount6

ANSI B 27.7M - 3AMI-81Circlip5

DIN 125 - A 8.41Washer4

01/00/011Wheel Shaft3

01/01/001Omni Wheel Assembly2

FAULHABER CATALOGUE 2342S012CR1Motor1

UNLESS OTHERWISE STATED

TOLERANCES 0,1

ANGLES 1

10

7

8

2

1

3

4

6
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STUDENT No. 15979199 DRAWN BY: A SMIT REVIEWED:

ITEM
DESCRIPTION

QTY MATERIAL / SPECIFICATION

SCALE ON A3 3:1

MEASUREMENTS IN mm

SHEET No.  1  OF  1  SHEETS No. 01/00/01

TITEL: Wheel Shaft

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

Aluminium4Wheel Shaft1

UNLESS OTHERWISE STATED

TOLERANCES 0,1

ANGLES 1

3
2
8

2

1

1
 
x
 
3
0
°

25

8

6

5

8

4 HOLES M3
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ITEM
DESCRIPTION

QTY MATERIAL / SPECIFICATION

SCALE ON A3 2:1

MEASUREMENTS IN mm

SHEET No.  1  OF  1  SHEETS No. 01/00/02

TITEL: Rear Right Drive Mount

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

Aluminium1Rear Right Drive Mount1

UNLESS OTHERWISE STATED

TOLERANCES 0,1

ANGLES 1

7

23

15

2
7

3
2

3
7

5

9

1
7

1
3

2
2

35

43

50

26

2
7

5
2

R52

6 HOLES 

 THRU

 3.5 x 90° 8

3

4 HOLES 

 THRU 

 5.5 x 90°

12

56

4

3

22

5

4 HOLES M3  10

NOTE: THIS PART NEEDS 

TO BE LASER CUT. 

DIMENSIONS ONLY FOR 

ADDITIONAL REFERENCE

NOTE: HOLES TO BE 

BORED WITH RESPECT 

TO DATUM A and B

A B
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DESCRIPTION

QTY MATERIAL / SPECIFICATION

SCALE ON A3 5:1

MEASUREMENTS IN mm

SHEET No.  1  OF  1  SHEETS No. 01/00/03

TITEL: Motor Spur Gear

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

DELRIN 1 MODULE 16 TEETH4Motor Spur Gear1

UNLESS OTHERWISE STATED

TOLERANCES 0,1

ANGLES 1

5

10

6
4

18

NOTE: THIS PART NEEDS TO 

BE MACHINED FROM THE 

ORIGINAL PART ACCORDING 

TO DIMESIONS
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STUDENT No. 15979199 DRAWN BY: A SMIT REVIEWED:

ITEM
DESCRIPTION

QTY MATERIAL / SPECIFICATION

SCALE ON A3 12:1

MEASUREMENTS IN mm

SHEET No.  1  OF  1  SHEETS No. 01/00/04

TITEL: Bush

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

Copper4Bush1

UNLESS OTHERWISE STATED

TOLERANCES 0,1

ANGLES 1

3

5

10
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A ( 1 : 1 )

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT
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STUDENT No. 15979199 DRAWN BY: A SMIT REVIEWED:

ITEM
DESCRIPTION

QTY MATERIAL / SPECIFICATION

SCALE ON A3 1:1

MEASUREMENTS IN mm

SHEET No.  1  OF  1  SHEETS No. 02/00/00

TITEL: Rear Left Drive Assembly

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

A

AS 1427 - M2 x 86ISO metric machine 

screws

10

AS 1427 - M3 x 84ISO metric machine 

screws

9

02/00/041Bush8

02/00/031Motor Spur Gear7

02/00/021Rear Left Drive Mount6

ANSI B 27.7M - 3AMI-81Circlip5

DIN 125 - A 8.41Washer4

02/00/011Wheel Shaft3

02/01/001Omni Wheel Assembly2

FAULHABER CATALOGUE 2342S012CR1Motor1

UNLESS OTHERWISE STATED

TOLERANCES 0,1

ANGLES 1

6
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PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT
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STUDENT No. 15979199 DRAWN BY: A SMIT REVIEWED:

ITEM
DESCRIPTION

QTY MATERIAL / SPECIFICATION

SCALE ON A3 2:1

MEASUREMENTS IN mm

SHEET No.  1  OF  1  SHEETS No. 02/00/02

TITEL: Rear Left Drive Mount

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

Aluminium1Rear Left Drive Mount1

UNLESS OTHERWISE STATED

TOLERANCES 0,1

ANGLES 1

8 THRU

3.00

4 HOLES 

 THRU 

 5.5 x 90°

30

12 THRU

R5.00

5
2

4
7
.
3
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35.45

4
3
.
1
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3
4
.
6
1
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3
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0
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0
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0
0

3
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.
8
6

42.81

4 HOLES M3  10

5

56

4

3

22

26

2
7

26 HOLES  THRU

 3.5 x 90°

NOTE: THIS PART 

NEEDS TO BE LASER 

CUT. DIMENSIONS 

ONLY FOR ADDITIONAL

REFERENCE

NOTE: HOLES 

TO BE BORED 

WITH RESPECT 

TO DATUM A and

B

 

A

B
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A ( 1 : 1 )

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT
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STUDENT No. 15979199 DRAWN BY: A SMIT REVIEWED:

ITEM
DESCRIPTION

QTY MATERIAL / SPECIFICATION

SCALE ON A3 1:1

MEASUREMENTS IN mm

SHEET No.  1  OF  1  SHEETS No. 03/00/00

TITEL: Front Left Drive Assembly

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

AS 1427 - M2 x 86ISO metric machine 

screws

10

AS 1427 - M3 x 84ISO metric machine 

screws

9

03/00/041Bush8

03/00/031Motor Spur Gear7

03/00/021Front Left Drive Mount6

ANSI B 27.7M - 3AMI-81Circlip5

DIN 125 - A 8.41Washer4

03/00/011Wheel Shaft3

03/01/001Omni Wheel Assembly2

FAULHABER CATALOGUE 2342S012CR1Motor1

A

UNLESS OTHERWISE STATED

TOLERANCES 0,1

ANGLES 1

6
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PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT
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ITEM
DESCRIPTION

QTY MATERIAL / SPECIFICATION

SCALE ON A3 2:1

MEASUREMENTS IN mm

SHEET No.  1  OF  1  SHEETS No. 03/00/02

TITEL: Front Left Drive Mount

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

Aluminium1Front Left Drive Mount1

UNLESS OTHERWISE STATED

TOLERANCES 0,1

ANGLES 1

12 THRU

5
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3

4 HOLES

 THRU

 5.5 x 90°
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4 HOLES M3  10
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22.00
4

3

26 HOLES  THRU

 3.5 x 90°

R5

2
5

28

NOTE: THIS PART 

NEEDS TO BE LASER 

CUT. DIMENSIONS 

ONLY FOR ADDITIONAL

REFERENCE

NOTE: HOLES TO BE 

DRILLED WITH 

RESPECT TO DATUM A 

AND B
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B
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A ( 1 : 1 )

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT
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STUDENT No. 15979199 DRAWN BY: A SMIT REVIEWED:

ITEM
DESCRIPTION

QTY MATERIAL / SPECIFICATION

SCALE ON A3 1:1

MEASUREMENTS IN mm

SHEET No.  1  OF  1  SHEETS No. 04/00/00

TITEL: Front Right Drive Assembly

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

A

AS 1427 - M2 x 86ISO metric machine 

screws

10

AS 1427 - M3 x 84ISO metric machine 

screws

9

04/00/041Bush8

04/00/031Motor Spur Gear7

04/00/021Front Right Drive Mount6

ANSI B 27.7M - 3AMI-81Circlip5

DIN 125 - A 8.41Washer4

04/00/011Wheel Shaft3

04/01/001Omni Wheel Assembly2

FAULHABER CATALOGUE 2342S012CR1Motor1

UNLESS OTHERWISE STATED

TOLERANCES 0,1

ANGLES 1

6
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PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT
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STUDENT No. 15979199 DRAWN BY: A SMIT REVIEWED:

ITEM
DESCRIPTION

QTY MATERIAL / SPECIFICATION

SCALE ON A3 2:1

MEASUREMENTS IN mm

SHEET No.  1  OF  1  SHEETS No. 004/00/02

TITEL: Front Right Drive Mount

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

Aluminium1Front Right Drive Mount1

UNLESS OTHERWISE STATED

TOLERANCES 0,1

ANGLES 1
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26 HOLES  THRU

 3.5 x 90°6

4 HOLES 

 THRU

 5.5 x 90°

R5

4 HOLES M3  10

3

4 22

A

B

NOTE: HOLES TO 

BE DRILLED WITH 

RESPECT TO 

DATUM A AND B

NOTE: THIS PART 

NEEDS TO BE LASER 

CUT. DIMENSIONS ONLY

FOR ADDITIONAL 

REFERENCE

60
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A ( 1.5 : 1 )

B-B ( 1.5 : 1 )

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT
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STUDENT No. 15979199 DRAWN BY: A SMIT REVIEWED:

ITEM
DESCRIPTION

QTY MATERIAL / SPECIFICATION

SCALE ON A3 1:1.5

MEASUREMENTS IN mm

SHEET No.  1  OF  1  SHEETS No. 01/01/00

TITEL: Omni Wheel Assembly

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

2080088 GOST 10058-90  (8 X 16 X 5)1Single-row radial ball 

bearings

10

AS 1112 - M3  Type 55ISO metric hexagon nuts9

AS 1427 - M3 x 165ISO metric machine 

screws

8

01/01/051Wheel Spur Gear7

Rubber ID 7 x 136O-ring6

GALVANISED STEEL BINDING WIRE 1.25 

(Length 188)

1Wire ring5

01/01/041Hub Extension/Spacer4

01/01/0336Omni Wheel Roller3

01/01/021Bottom Wheel Plate2

01/01/011Top Wheel Plate1

A

B

B

UNLESS OTHERWISE STATED

TOLERANCES 0,1

ANGLES 1

9

3
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5
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8
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A ( 5 : 1 )

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT
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STUDENT No. 15979199 DRAWN BY: A SMIT REVIEWED:

ITEM
DESCRIPTION

QTY MATERIAL / SPECIFICATION

SCALE ON A3 2:1

MEASUREMENTS IN mm

SHEET No.  1  OF  1  SHEETS No. 01/01/02

TITEL: Bottom Wheel Plate

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

Aluminium4Top Wheel Plate1

A

UNLESS OTHERWISE STATED

TOLERANCES 0,1

ANGLES 1

6.5

1.5R

10°

3

35 HOLES 

on PCD 10

8.5

R30

65

3

NOTE: THIS PART 

NEEDS TO BE LASER 

CUT. DETAIL VIEW A 

TO BE MACHINED
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A ( 5 : 1 )

B-B ( 2 : 1 )

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
E

D
U

C
A

T
I
O

N
A

L
 
P

R
O

D
U

C
T

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
E

D
U

C
A

T
I
O

N
A

L
 
P

R
O

D
U

C
T

1

1

2

2

3

3

4

4

5

5

6

6

A A

B B

C C

D D

STUDENT No. 15979199 DRAWN BY: A SMIT REVIEWED:

ITEM
DESCRIPTION

QTY MATERIAL / SPECIFICATION

SCALE ON A3 2:1

MEASUREMENTS IN mm

SHEET No.  1  OF  1  SHEETS No. 01/01/02

TITEL: Bottom Wheel Plate

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

Aluminium4Bottom Wheel Plate1

A

B

B

UNLESS OTHERWISE STATED

TOLERANCES 0,1

ANGLES 1
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35 HOLES 

on PCD 10

3

0

R

10°
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NOTE: THIS PART NEEDS

TO BE LASER CUT. 

DETAIL VIEW A AND 

SECTION VIEW B TO BE 

MACHINED
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PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT
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STUDENT No. 15979199 DRAWN BY: A SMIT REVIEWED:

ITEM
DESCRIPTION

QTY MATERIAL / SPECIFICATION

SCALE ON A3 10:1

MEASUREMENTS IN mm

SHEET No.  1  OF  1  SHEETS No. 01/01/03

TITEL: Omni Wheel Roller

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

PVC144Omni Wheel Roller1

UNLESS OTHERWISE STATED

TOLERANCES 0,1

ANGLES 1
1
.
5
0

.
2
5

.50

1.50

8.00
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PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT
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ITEM
DESCRIPTION

QTY MATERIAL / SPECIFICATION

SCALE ON A3 4:1

MEASUREMENTS IN mm

SHEET No.  1  OF  1  SHEETS No. 01/01/04

TITEL: Hub Extension/Spacer

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

PVC4Hub Extension/Spacer1

UNLESS OTHERWISE STATED

TOLERANCES 0,1

ANGLES 1

16

35 HOLES  

on PCD 10

6

30
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A-A ( 3 : 1 )

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT
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SCALE ON A3 3:1

MEASUREMENTS IN mm

SHEET No.  1  OF  1  SHEETS No. 01/01/05

TITEL: Wheel Spur Gear

DATE: 25/01/11

STELLENBOSCH UNIVERSITY

A

A

DELRIN 1 MODULE 50 TEETH4Wheel Spur Gear1

UNLESS OTHERWISE STATED

TOLERANCES 0,1

ANGLES 1

8.5

16

42

55 HOLES  THRU

 5 x 90° on PCD 10

6

NOTE: THIS PART 

NEEDS TO BE 

MACHINED FROM 

ORIGINAL PART 

ACCORDING TO 

DIMESIONS 

1

1
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Electronic Design Drawings

This appendix includes all the electronic circuit diagrams. It first shows the
currently used circuits and then the recommended improved circuits that were
discussed throughout Chapter 4. These improved circuits are indicated with
x.1 in the version number. A bill of material is also given for the currently
used circuits in Figure 1 and Figure 2.
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Bill of Materials Hub Circuit Diagram
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Footprint Comment #Column Name Error:LibRefDesignator Description Quantity

CAPPR2-
5x6.8

Cap C1, C2 Capacitor 2

CAPC1608L Cap C3, C4 Capacitor 2
DSO-F2/D6.1LED1 D1 Typical INFRARED GaAs LED 1

PIN-W2/E2.8 Fuse F1 Fuse 1
HDR1X2 Power In 7V - 

20V
P1 Header, 2-Pin 1

DIP-6 Compass P2 Header, 3-Pin, Dual row 1
HDR1X2 Roboard Power P3 Header, 2-Pin 1
HDR1X8 Accelerometer P4 Header, 8-Pin 1
HDR2X11 GPIO P5 Header, 11-Pin, Dual row 1
HDR2X5 Expansion P6 Header, 5-Pin, Dual row 1
HDR2X5 IR Sensor P7 Header, 5-Pin, Dual row 1
HDR1X5 MotorController1 P8 Header, 5-Pin 1

HDR1X2 MCPower1 P9 Header, 2-Pin 1
HDR1X5 MotorController2 P10 Header, 5-Pin 1

HDR1X2 MCPower2 P11 Header, 2-Pin 1
HDR1X5 MotorController3 P12 Header, 5-Pin 1

HDR1X2 MCPower3 P13 Header, 2-Pin 1
HDR1X5 MotorController4 P14 Header, 5-Pin 1

HDR1X2 MCPower4 P15 Header, 2-Pin 1
HDR1X5 MotorController5 P16 Header, 5-Pin 1

HDR1X2 MCPower5 P17 Header, 2-Pin 1
SFM-
T3/E10.7V

MOSFET-N Q1 N-Channel MOSFET 1

RESC1608L Res3 R1, R2, R3, R4, R5, R6, R7, R8, R9 Resistor 9
SPST-2 SW-SPST S1 Single-Pole, Single-Throw Switch 1
IT-2175 IT-2175 S2 Tactile Switch, DPST; Thru-Hole; Vertical; 

Rating DC 12V, 50mA (max)
1

MP04A_M LM1117DT-3.3 U1 800mA Low-Dropout Linear Regulator 1
36

Approved Notes  

Figure 1: Bill of materials for the hub - EFU 1
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Bill of Materials Motor Controller Circuit Diagram

Source Data From: MotorController_v2.SchDoc

Project: Robot_Motor_Controller.PrjPcb

Variant: None

Creation Date: 2011/01/28 05:36:14 PM
Print Date: 40571 40571.73355

Footprint Comment #Column Name Error:LibRefDesignator Description Quantity

PK03 µA78L05ACPKR U1 Positive-Voltage Regulator 1

R38 XTAL Y1 Crystal Oscillator 1
J1-0603 Res3 R1, R2, R3, R4, R5, R6 Resistor 6
SOIC300-
28_N

PIC18F2431-
I/SO

U2 Enhanced FLASH Microcontroller with 
nanoWatt Technology, High Performance 
PWM and A/D, 16K FLASH, 28-Pin SOIC, 
Standard Volt Range, Industrial 
Temperature

1

3.2X1.6X1.1 LED2 D1 Typical RED, GREEN, YELLOW, AMBER 
GaAs LED

1

HDR2X6 Header 6X2 P3 Header, 6-Pin, Dual row 1
HDR1X5 Com. Port P5 Header, 5-Pin 1
HDR1X5 Program Port P4 Header, 5-Pin 1
HDR2X3 Motor Port P2 Header, 3-Pin, Dual row 1
HDR1X2 Motor Power P6 Header, 2-Pin 1
HDR1X2 Source P1 Header, 2-Pin 1
PCBCompon
ent_1

VNH2SP30 U3 1

1608[0603] Cap Semi C3, C4, C5, C6, C7 Capacitor (Semiconductor SIM Model) 5
B Cap Pol1 C1, C2 Polarized Capacitor (Radial) 2

24
Approved Notes  

Figure 2: Bill of materials for the motor montroller (MC) - EFU 6
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Software Diagram

The complete software system that includes all the classes is shown in Figure
3.
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Figure 3: UML diagram of the software system
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CD Contents

The attached CD contains the following items:

1. The mechanical drawings from Appendix A as well as the Inventer CAD
model files.

2. The electronic circuits shown in Appendix B together with the electronic
design files for Altium Designer.

3. All the software that was written for this research, including the driver
class library, the Payer middleware plug-in, and the firmware for the MC
as well as the documentation thereof.

4. Raw data from the performed tests and the Matlab scripts that were
used to proses and plot the data.

5. Installation files for third-party software that is needed for development
on the platform including the Player server, Roboard RB 100 library and
Linux distributions.

6. Instructions on how to set up a completely installed image file that can
be copied to the micro-SD card on the central controller (CC). The image
includes all the software needed for development on the platform.

7. Datasheets, bill of materials, photos, videos and research papers.

Contact the author at: allasmit@gmail.com

120

Stellenbosch University  http://scholar.sun.ac.za

mailto:allasmit@gmail.com

	Declaration
	Abstract
	Uittreksel
	Acknowledgements
	Dedications
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background on RoboCup
	Research Motivation
	Research Objectives
	Research Boundaries
	Document Outline

	Robot Soccer and Literature Review
	RoboCupSoccer Leagues
	RoboCup Small Size League
	RoboCup Middle Size League
	Other Leagues in RoboCupSoccer

	Holonomic Movement of an Omni-directional Robot
	Middleware in the Robotics Domain
	What is Middleware?
	Requirements of a Middleware
	Review of Middleware Solutions

	Related Work
	Conclusion

	Mechanical Design
	Preliminary Mechanical Design
	Mechanical System Requirements
	CAD Model of the Robot Platform

	Detailed Mechanical Design
	First Iteration of the Robot Platform
	Second Iteration of the Robot Platform
	Assembly Instructions of the Wheel Drive Mechanism

	Conclusion

	Electronic Design
	Preliminary Electronic Design
	Electronic System Requirements
	Functional Architecture

	Detailed Electronic Design
	State of the Art in RoboCup SSL
	Detailed Specification

	Conclusion

	Software Development
	Software Requirements
	Software Architecture
	Firmware Design
	Driver Class Library
	Middleware Selection
	Distributed System
	Conclusion

	Implementation and Testing
	Speed Control Test
	Directional Accuracy Test
	Static Communication Test
	Conclusion

	Conclusion
	List of References
	Appendices
	Mechanical Design Drawings
	Electronic Design Drawings
	Software Diagram
	CD Contents



