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Abstract—Hand posture reconstruction systems based on large
databases of synthetically rendered images of a 3D hand model
offer a simple and flexible means of exploiting domain knowledge
to provide training data. Such systems may also be applied to
other domains in the posture reconstruction field by changing
the model under consideration.

Typically, the index structures used to answer similarity
queries at runtime explicitly contain the prerendered feature
data. However, the combinatorial explosion resulting from the
multiple degrees of freedom available to the human hand severely
limits the complexity of feature data that may be embedded into
the index structure.

The system presented in this paper exploits real-time object-
space rendering techniques to rebalance the preprocessing and
runtime workloads such that the space complexity of the database
relative to the number of degrees of freedom is greatly reduced.

A prototype of the database subsystem is implemented and its
properties investigated to obtain insight into its scaling behaviour.

I. INTRODUCTION

Hand posture reconstruction systems must be able to handle
the multitude of poses that the human hand is capable of
assuming. This is particularly important in applications where
high accuracy is desired, such as sign language recognition
systems.

The combinatorial explosion in the number of possible
poses makes the acquisition of sufficient quantities of real
training data challenging. This stands in marked contrast to
the amount of domain knowledge humans can provide with
respect to the structure and appearance of the hand.

Training data might also be obtained by synthesis and, while
a measure of caution is needed in dealing with synthetic data,
its use may be justifiable in cases where domain knowledge is
extensive. For example, a 3D model of a hand may be created
fairly easily.

Systems of the type under consideration in this paper are
those which make use of a large database of prerendered
feature data, indexed in such a way that a nearest neighbour
search can be performed efficiently. Of particular interest are

the systems demonstrated by Athitsos et al. [1]–[6], and Dick,
Zieren and Kraiss [7] (detailed in Zieren’s PhD dissertation
[8]). The former group focused on unadorned hands, while
the latter made use of coloured gloves.

An important common feature of these systems is the pres-
ence of both structural (index) information and prerendered
feature data within the database. Because the number of
feature data entries is the product of the number of different
settings made available to each individual degree of freedom,
the space needed by the feature data grows exponentially in
the number of degrees of freedom. Due to this behaviour, a
difficult trade-off exists between the complexity of the feature
data and the allowable size of the purely structural part of the
index. The feature part of a database entry tends to be much
larger than the structural portion of that entry, and so becomes
a large constant multiplier in calculating the total database size
(relative to a purely structural database).

One way of addressing this problem is to select features
which can be compactly represented. Zieren et al. followed
this route by choosing to approximate the coloured marker
regions (the fingers and palm marker) as ellipses. Another way,
employed by Athistos and Sclaroff, is to embed the feature
data into a low-dimensional space, effectively compressing
each feature entry to a manageable size.

In the sections that follow, the authors outline a different
approach where synthetic feature data is not stored in the
database, but resynthesised as needed at runtime by effi-
cient real-time rendering techniques. The rendering process
is primed by a separate database containing preprocessed
geometric data obtained from the 3D model. This database,
however, grows linearly with respect to the number of degrees
of freedom. Because the index structure contains only struc-
tural information, there is much greater freedom with regard
to the complexity of the features that may be chosen.
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Fig. 1. Conventional System

II. SYSTEM OVERVIEW

A generalised representation of the systems described by
Athitsos et al. and Dick, Zieren and Kraiss is shown in
Figure 1. Such systems rest on the implicit assumption that the
calculation of feature data is “too difficult” to do at runtime,
and so is finalised during preprocessing.

This creates a heavy burden in the form of a massive
increase in the size of the database. In essence, this repre-
sents an extreme design choice in favour of decreased time
complexity of runtime database queries at great cost in terms
of space complexity (database size). Yet, the index structures
employed typically aim to minimise the number of feature
comparisons, ideally approaching (in the case of exact query
resolution) log2 N of the number of database entries (N ). This
suggests that an increase in computational effort during feature
comparison may be justified in order to achieve a significant
reduction in the size of preprocessed feature data.

Zezula [9] provides an excellent introduction to a large class
of such index structures (those based around metric spaces),
of which the Vantage Point Tree (see Yianilos [10]) is a
particularly elegant illustration.

Assuming that the index structure has been created, one can
imagine another extreme in which the entire rendering opera-
tion is performed each time synthetic feature data is required
during the runtime query process. While trivial to implement,
this solution is unsatisfactory because of its underutilisation
of preprocessing time.

The authors propose a compromise between these two
extremes, grounded in the observation that each finger of the
hand may be rendered separately, and these only affect each
other towards the end of the rendering process during hidden
surface removal. For each viewpoint, and each allowed individ-
ual finger posture, the geometry of the mesh is processed to the
point where it must be combined with other component meshes
for hidden surface removal to begin. Significant savings in
processing time can be made by ensuring that the input to the
final rendering stage is in a convenient form.

A block diagram of the resultant system is shown in
Figure 2. The core difference between this system and the

conventional system shown in Figure 1 is the splitting of the
index structure and the (proto)-feature data. In addition, the
runtime system must now also call the rendering subsystem
in order to obtain synthetic feature data, which is needed to
resolve queries in the index structure.

Both conventional systems discussed previously made use of
standard rasterisation techniques during rendering, producing
an image at some chosen resolution which must then be
processed in a per-pixel fashion towards extracting features.
This has the disadvantage of introducing a trade-off between
accuracy and speed when choosing the image resolution.
However, only the resultant features needed to be stored in
these systems, allowing one to discard the rasterised image.
In order to stop the process just before hidden surface removal,
one would have to store entire synthetic images (along with
depth information in the form of a Z-buffer).

Instead, desiring only the shapes of marker regions, we
forgo rasterisation, performing all processing steps in object
space. This has the advantage of needing only a compact
description of the separate model component geometries as
input.

The detailed operation of the system will now be discussed,
beginning with a description of the workings of the rendering
pipeline.

III. RENDERING PIPELINE

For a general overview of object-space hidden surface
removal algorithms, the reader is referred to Ghali [11]. In
existing literature, algorithms of particular interest are those
proposed by Sechrest and Greenberg [12], and Goodrich [13].
The proposed rendering pipeline draws strongly on the ideas
presented by these authors. It differs, however, in its emphasis
on contour information preprocessing to increase runtime
execution speed. It also differs in its removal of non-silhouette
vertices of non-planar (though locally planar) surfaces in
order to dramatically reduce the space requirements of the
preprocessed data.

From the outset, it seems necessary to process each of the
model’s mesh vertices when performing the render operation
at runtime. This is, however, not necessarily the case. If only
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Fig. 2. Overview of the Proposed System

the visible polygons need to be reconstructed (along with
some descriptor of which surface is associated with each
polygon), a significant reduction in algorithmic complexity can
be achieved.

Key to the system presented here is the need to stop just
short of hidden surface removal. Usually, a description of
the entire surface associated with the 3D model needs to be
available. However, if one guarantees that no two surfaces
intersect anywhere other than their boundary curves, it can
be shown that one no longer needs all the mesh vertices to
remove hidden surfaces. Only those vertices need to be stored
which, from the viewer’s perspective, define the outer edges
of the surfaces. This is illustrated in Figure 3, which shows
how the depth order of two non-intersecting regions may be
determined at the crossing of their boundaries.

This non-intersection criterion is primarily enforced through
careful design of the object mesh. However, combinations of
joint angles leading to physically impossible intersections of
mesh components may be detected during preprocessing, and
then excluded from the index structure. Thus, the runtime
system never needs to consider this question.

The renderer assumes that the effects of perspective are neg-
ligible over the volume of the hand, and performs orthogonal
projection. For added simplicity, the image plane is chosen
to be the plane where z = 0, meaning that projection onto
the image plane requires only dropping the z-component of a
particular vertex.

Rendering a model in this system consists of a preprocessing

phase and a runtime phase, encompassing several steps each.
The output of the various stages is visualised in Figure 4.

A. Preprocessing Phase
1) Rotate partial object mesh according to viewpoint.
2) Backface culling.
3) Remove all internal edges.
4) Create reusable boundary representations for fast

boundary intersection determination.
B. Runtime Phase

1) Combine preprocessed boundary representations.
2) Create graph of boundary intersections.
3) Determine boundary contour visibility.
4) Reconstruct visible polygons.

Each step of the process will now be discussed in greater
detail.

A. Preprocessing phase

1) Partial mesh rotation according to viewpoint: Changes
in viewpoint are simulated by rotating mesh vertices, keeping
the viewer located at positive infinity along the z-axis, looking
towards the origin.

2) Backface culling: All triangles which have their back-
faces turned towards the viewer are removed.

3) Remove all internal edges: Assuming the object is rep-
resented by surface meshes built from triangles, each edge is
associated with at most two triangles. Internal edges are those
edges which have two forward facing triangles associated



A

Y

X

B

Fig. 3. An example showing two surfaces A and B, with A being closest to
the viewer. Note the intersecting projection boundary points which determine
the visibility of the overlapping surface regions.

with them. Since backface culling has been performed, all
triangles are turned towards the viewer, and this step consists
of removing all edges which have two triangles associated with
them. This leaves only the boundary contours.

4) Create reusable boundary representations: The line in-
tersection algorithm makes use of a priority queue to order the
contours in a convenient way. The sort operation needed during
queue construction can be performed on the partial mesh
boundaries, easing the subsequent runtime merging operations.

First, boundary contours are decomposed into curves with
vertices arranged in lexicographic order. For vertices v1 and
v2, v1 is lexicographically before v2 if and only if either
x(v1) < x(v2), or x(v1) = x(v2) and y(v1) < y(v2). The
curves are annotated to indicate which side the associated
surface (if any) is attached to, as well as the descriptor of
that surface.

These curves are inserted into a priority queue, sorted by
the first vertex in each curve. This priority queue serves as
input to the runtime rendering system. Note that, at this point,
the space complexity of the data need only be O(k), where
k is the number of boundary points. Essentially, this means
that a representation has been found consisting of only the
projected “shape” of the object. The space complexity, there-
fore, scales roughly with contour length and complexity, rather
than surface area and complexity. This similarly reduces the
subsequent time complexity of runtime rendering operations.

B. Runtime operation

1) Combine preprocessed boundary representations:
The rendering operation commences with merging (non-
destructively) the priority queues containing the boundary
information from each mesh component. The details of this
operation depend on the representation of priority queues. For
complex models, a Fibonacci heap [14] delivers constant time
merge operations (balancing the work of merging structures
across later dequeueing operations, which each have amortised
O(log(m)) complexity). However, in the case of simpler
models, a simple sorted list representation may be preferable
to avoid unnecessary overhead.

2) Create graph of boundary intersections: The boundary
contour intersections are now determined using a version of the
Bentley-Ottmann algorithm [15]. The authors’ implementation

(a) (b) (c)

(d) (e)

Fig. 4. The stages of the rendering pipeline, illustrated using a complete
hand mesh — Preprocessing phase: (a) Wireframe hand model; (b) Mesh
component boundaries decomposed into lexicographically sorted curves —
Runtime phase: (c) Line intersection graph construction; (d) Determination of
line QI; and, (e) Visible polygon reconstruction.

closely follows that of [16], but takes additional advantage of
the continuity of curves.

Essentially, the Bentley-Ottmann algorithm operates by con-
sidering events of interest in lexicographic order. Unprocessed
events are stored in a priority queue called the X-structure.
Initially, this structure contains only the start events of each
curve, provided by the previous step in the rendering process.

A list of currently active curves is maintained in what is
called the Y -structure. When a curve is first encountered, an
entry for it is created in the Y -structure in a way which main-
tains the current y-ordering of the active curves. In this way,
only the neighbours of a curve within the Y -structure need to
be considered to find the next possible intersection. A further
reduction in curve comparisons may be achieved by ensuring
that intersections are removed from each mesh component’s
preprocessed boundary information, eliminating the need for
comparing curves from the same mesh component.

Intersection events, when detected, are inserted into the X-
structure to be handled when intervening events have finished
processing. An intersection essentially changes the order of
elements in the Y -structure.

Changes of curve direction are also scheduled as events,
and these trigger checks for future intersections along the new
curve segment. The termination of a curve leads to its removal
from the Y -structure.

When a group of events have the same image plane projec-
tion, representing some combination of the preceding cases,
somewhat more complex behaviour results. Ultimately though,
the proper order of the active curves within the Y -structure
must be maintained after all events have been processed. This
may be done by performing a small sort operation on the
relevant subsequence of the Y -structure.

The output of the algorithm is a graph. At each point in the
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Fig. 5. Illustration of Quantitative Invisibility

image plane where an event is processed, a node is created
which connects the curves passing through it. The curves are
noted as edges between nodes in the output graph.

The algorithmic complexity of this entire rendering step
depends on the time complexity of the X-structure merging,
insertion and dequeueing operations, and the average number
of active contours within the Y -structure during operation.
Specifically, encountering a new curve triggers a search for the
proper insertion point in the Y -structure. However, careful use
of backpointers to Y -structure elements in events inserted into
the X-structure make the search operation constant time for
the other operations. The number of events processed equals
the sum of curve beginnings, changes in curve direction, curve
endings, as well as the number of intersections between curves.

3) Determine boundary contour visibility: Appel [17] intro-
duced the concept of Quantitative Invisibility (QI), the number
of surfaces between the viewer and the contour. By considering
all boundary intersections, QI may be “propagated” through
the resulting graph to determine contour visibility.

Figure 5 illustrates line visibility in terms of QI. Note that
changes in QI occur only at boundary crossings.

There are two caveats to take into consideration. Firstly,
only the depth order is determined by boundary crossings.
Thus, only the relative order of the two surfaces within the
global list of surfaces present at the boundary intersection
is known, and not their absolute positions within the list of
surfaces. Secondly, it may occur that there are no boundary
intersections between to surfaces (for example, where a surface
is either entirely in front of or behind another surface).

It is clear that the absolute QI needs to propagate along
continuous contours, changing at intersections. In order to pro-
vide a graph which is fully connected in 3D, one may provide
auxiliary contours which are unassociated with a surface, but
pass through regions which are known to be free of surfaces,
meaning QI may be safely propagated along them. Connecting
isolated boundary contours with such auxiliary contours allows
absolute QI to propagate throughout the intersection graph.
Note their presence (running through the finger cores and the
palm) in Figures 4b through 4d.

QI propagation takes the form of a depth-first traversal of
the boundary intersection graph, only following continuous
connections. The traversal must start at a point of known QI.
We select the first point considered by the Bentley-Ottmann
algorithm. At least one curve must start at this point, and the
top-most one should then have a QI of zero.

Intersections with boundary contours have the effect of
either increasing or decreasing the current QI by one, or by
leaving it unchanged, depending on whether the intersecting
boundary curve passes in front of or behind the current curve.
If the intersecting curve passes in front of the current curve, its
associated surface and the relative directions of the two curves
within the image plane determine whether the change is an
increase or a decrease, representing respectively the occlusion
or the uncovering of the current curve.

4) Reconstruct visible polygons: Visible polygon recon-
struction is performed in two steps. During the first step, the
depth order of surfaces present in the arc between neighbour-
ing edges around a node is determined.

A depth-first traversal is performed, selecting a known
visible edge by, again, considering the first node outputted
by the Bentley-Ottmann algorithm. There are no surfaces at a
point just anticlockwise from the closest edge clockwise from
the vertical. The initial (empty) surface list is located here.

From this edge, going clockwise, the algorithm enumerates
the surface lists between each pair of edges. At each edge, the
current surface list is recorded as the surface list anticlockwise
of the edge. If the edge has an associated surface, the edge’s QI
is used as an index into the current surface list for insertion
or removal according to the direction in which the surface
extends. The resulting surface list is recorded as the surface
list clockwise of the current edge.

If an edge connects to an unvisited node, the edge is
traversed (after all edges at the current node have been
considered) and the process repeated. A surface list bordering
the new node is obtained by observing that a surface list
clockwise of an edge at the first end-node is the surface list
anticlockwise of the edge at the other end-node.

The final step in polygon reconstruction considers each
node in lexicographic order. At every visible edge (edges
with QI = 0) which has a surface associated with it, the
surface list clockwise of it is taken as a starting point. The
surface list is marked as “visited”, but if it has already
been marked previously, the current edge is ignored instead.
Assuming the list was unmarked, the next visible edge is
found and its anticlockwise surface list marked as visited. A
recursive traversal is performed, following the boundary in an
anticlockwise fashion, marking the appropriate clockwise and
anticlockwise surface lists as needed. When a surface list is
discovered that has already been visited, it must be the first
edge where the traversal began. The edges visited are now
concatenated into a list of polygon vertices which, together
with the surface descriptor, form one element in the output
list of polygons.

IV. EXPERIMENTAL METHODOLOGY

A prototype system was implemented in order to test the
scaling behaviour of the preprocessed partial feature database.

A hand model was created based on a set of component
meshes representing the fingers and palm. Each finger is
controlled separately by selecting from predefined sets of joint
parameters. The sets of joint parameters were purposefully



chosen to be the same as those presented by Zieren [8], in
order to use that system as a baseline. Accordingly, the thumb,
index finger, middle finger, ring finger and pinky have 7, 9, 8,
9 and 9 possible settings respectively.

The set of possible viewpoints was, again, chosen to match
Zieren [8] as closely as possible, in which the database
contained 105 viewpoints. For the prototype, the viewpoints
were derived from a spherical covering of 130 points, made
available in tabular form by Sloane et al. [18].

All the necessary preprocessing for runtime operation was
performed. In the next section, key characteristics of the
resulting partial feature database are examined and contrasted
with the baseline system.

V. RESULTS AND DISCUSSION

The number of component mesh entries in the prototype
database equals 130 ·(7+9+8+9+9) = 5460. This contrasts
sharply with the baseline database which, without elimination
of impossible combinations, contains 105 · 7 · 9 · 8 · 9 · 9 =
4286520 feature data entries (after elimination, this was re-
duced to 2451960). At runtime, the baseline system is reported
to have used approximately 477Mb for storing feature data,
each entry using 204 bytes. While retrieval of feature data
is trivial in this case, it should be clear that even at relatively
rough quantisation of finger postures, the combinatorial growth
of the database places severe constraints on the complexity of
feature data. In order to reduce feature complexity, fingers
were approximated as ellipse-shaped markers.

In the prototype database, each component mesh entry
consists of a list of curves, each curve containing a list
of vertices and up to two associated surface descriptors. It
was found that the total number of vertices is 542937 (of
which 305271 are unique). The number of pregenerated curves
equalled 197948, implying an average of approximately 2.74
vertices per curve entry.

Assume each vertex is composed of a triplet of double-
precision floating point numbers (64 bits each). The total
space requirement to store the 305271 unique vertices is then
approximately 7Mb. If a curve is composed of an array
of vertex references (32-bit pointers), an array length (32-
bit integer) and a pair of 32-bit integer surface descriptor
identifiers, the 197948 curve objects require only (542937 ·
4) + (3 · 4 · 197948) ≈ 4.33Mb. Similarly, defining a
component mesh entry as an array of curve references along
with an array length, the component mesh entries require
5460 · 4 + 197948 · 4 ≈ 0.77Mb of storage. In total, the
prototype database can be stored in under 20Mb.

It is immediately apparent that the space requirements
are far lower in the prototype database than the baseline
system. If one further notes that the prototype database also
allows a far greater amount of detail to be represented (fully
detailed silhouettes, as opposed to approximating ellipses), the
advantage of this approach becomes clear.

VI. CONCLUSION

It has been shown that a significant reduction in the runtime
space complexity of a database driven posture reconstruction

system can be achieved by foregoing hidden surface removal
during database construction. In support of this, an efficient,
object space, procedure for hidden surface removal and visible
polygon reconstruction has been presented that limits the
necessary increase in time complexity. The rendering pipeline
was implemented and used to generate a prototype feature
database. The resulting feature database compares favourably
in terms of compactness and the amount of detail available
during query processing at runtime.
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