
Classification of Synthesised ISAR
Images of Small Complex Targets

Cullen Stewart-Burger

Thesis presented in partial fulfilment of the requirements for the degree of
Master of Engineering (Electronic) in the Faculty of Engineering at

Stellenbosch University.

Supervisor: Dr D. J. Ludick
Department of Electrical and Electronic Engineering

Co-supervisor: Dr M. Potgieter
Radar and Electronic Warfare, Defence and Security, CSIR

March 2023

Acknowledgements

I would firstly like to thank my supervisor, Dr D.J. Ludick, and co-supervisor, Dr M.
Potgieter, for their continued help and guidance throughout this project. I appreciate you
making time in your busy schedules to assist and encourage me. Additionally, I would like
to express my gratitude towards the CSIR for their financial support towards my studies.
Thanks should also go to Dr T.L. Grobler for his input regarding image classification
techniques, and for pointing me in the direction of capsule networks.
I would be remiss in not mentioning my flatmate, Henlo, for the constant supply of coffee
during the write-up process. This was invaluable.
And finally, I am extremely grateful to my parents for their unwavering love and support.

i

Stellenbosch University https://scholar.sun.ac.za

UNIVERS ITE IT •STELLENBOSCH •UNIVERS ITY

j ou kenn i s v ennoo t • you r know ledge pa r tne r

Plagiaatverklaring / Plagiarism Declaration

ii

By submitting this thesis electronically, I declare that the entirety of the work contained
therein is my own, original work, that I am the sole author thereof (save to the extent
explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch
University will not infringe any third party rights and that I have not previously in its entirety
or in part submitted it for obtaining any qualification.

March 2023

Copyright © 2023 Stellenbosch University
All rights reserved

Stellenbosch University https://scholar.sun.ac.za

Abstract

English

This study examines the application and comparison of several machine learning algorithms
to the problem of classifying inverse synthetic aperture radar (ISAR) images of electrically
small, geometrically complex targets. These algorithms include k-nearest neighbours,
logistic regression, a fully connected neural network and a capsule network. A novel
classifier is proposed, utilizing a capsule network with a reconstruction sub-network, to
perform open-set classification. A dataset of synthetic ISAR images was created from
simulated electromagnetic (EM) target returns and used to train and test the models. The
EM simulation process was performed using a method of moments solver to compute the
backscattering from models of the targets, which are represented as triangular meshes.
Specifically considering geometrically small targets with low radar cross-sections, particular
attention is paid to the performance of the classifiers when signals are received in the low
signal-to-noise ratio regime. The use of a capsule network is found to be highly effective
for both closed-set and open-set classification tasks, out-performing the other traditional
machine learning and deep learning based classifiers investigated in this study (logistic
regression, support vector machines, k-nearest neighbours and fully connected neural
networks). The proposed method of comparing the images formed by the capsule network’s
reconstruction subnetwork to the input image is demonstrated to be an effective technique
for identifying observations of ISAR images of targets that do not belong to any known
classes, i.e. targets which are “unknown” to the classifier. Additionally, it is demonstrated
that the use of the zero-mean normalised cross-correlation coefficient to compare the input
and reconstructed images makes the proposed open-set recognition method more resilient
to noisy inputs when compared to the use of the mean-squared error between the images.
This addresses a commonly overlooked problem that an operational radar’s automatic
target recognition algorithm is not guaranteed to have been trained for all the possible
target types that it will sense in the surveillance volume. The proposed classifier achieves
an F1-score of greater than 0.9 for a test set containing two known and two unknown
classes with signal-to-noise ratios of 6 dB and above.

Afrikaans

Hierdie studie ondersoek die toepassing en vergelyking van verskeie masjienleer-algoritmes
wat gebruik word om ISAR beelde van elektries klein dog geometries kompleks tei-

iii

Stellenbosch University https://scholar.sun.ac.za

Abstract iv

kens te herken. Hierdie algoritmes sluit die volgende tegnieke in: logistiese regressie,
ondersteuningsvektor-masjiene, k-naaste bure en volledig gekoppelde neurale netwerke. ’n
Nuwe klassifiseerder word voorgestel wat gebruik maak van ’n kapsule netwerk met ’n
rekonstruksie-subnetwerk om oopstel klassifikasie uit te voer. ‘n Datastel van sintetiese
ISAR beelde is geskep wat gebaseer is op die gesimuleerde electromagnetiese teiken re-
fleksies en is gebruik vir die opleiding en toets can die herkennings algoritmes. Die EM
simulasie proses het gebruik gemaak van die “method of moments” oplossings tegniek
om die terug gekaatste sein vanaf die teikens te bereken. Die geometrie van die teikens
in hierdie simulasie is voorgestel as ‘n stel gekoppelde driehoekies. Daar word spesifiek
oorweeging gegee aan elektriese klein teikens met laë radardeursnitte, en daar word aandag
geskenk aan die prestasie van die klassifiseerders wanneer hulle seine met laë sein-tot-ruis
verhoudings ontvang as inset. Resulte dui aan dat die gebruik van ’n kapsule netwerk baie
doeltreffend is vir beide geslotestel en oopstel klassifikasietake, en beter presteer as die
ander tradisionele masjienleer- en diep-leer gebaseerde klassifiseerders wat in hierdie studie
ondersoek is (logistiese regressie, ondersteuningsvektor-masjiene, k-naaste bure en volle
gekoppelde neurale netwerke). Die voorgestelde tegniek om die beelde te vergelyk wat
deur die kapsule netwerk se rekonstruksiesubnetwerk gevorm word met die invoerbeeld,
is bewys om doeltreffend te wees om ISAR beelde van teikens te identifiseer wat nie tot
enige bekende klasse behoort nie. Dit wil sê teikens wat onbekend is vir herkennings
algoritmes hiermee identifiseer word. Boonop word daar aangetoont dat die gebruik van die
nulgemiddeld-genormaliseerde kruiskorrelasie-koëffisiënt om die invoer en rekonstrureerde
beelde te vergelyk, die voorgestelde oop-stel erkenning meer bestand maak teen ruiserige
insette in vergelyking met die gebruik van die gemiddelde-kwadraat-fout tussen die beelde.
Hierdeur word ’n algemene uitdaging in outomatiese teiken-herkenning aangespreuk waar
’n operasionele radarstelsel nie gewaarborg is om opgelei te wees op alle tiepes teikens wat
in die die sensor se ruimte gewaar kan word nie. Die voorgestelde klassifiseerder behaal
’n F1-telling van meer as 0.9 vir ’n toetsstel wat twee bekende en twee onbekende klasse
bevat, met sein-tot-ruis verhoudings van 6 dB en hoër.

Stellenbosch University https://scholar.sun.ac.za

Contents

Declaration ii

Abstract iii

List of Figures viii

List of Tables x

Nomenclature xi

1. Introduction 1
1.1. Background . 1
1.2. Problem statement . 2
1.3. Project aims . 2
1.4. Scope . 3
1.5. Publications . 4
1.6. Thesis outline . 4

2. Literature Review 5
2.1. Radar signatures used in target recognition 5

2.1.1. Doppler signatures . 5
2.1.2. High range resolution profiles (HRRP) 6
2.1.3. Radar imaging . 6

2.2. Simulating high-resolution radar . 8
2.2.1. Full-wave methods . 8
2.2.2. Asymptotic methods . 10

2.3. ISAR image formation . 11
2.3.1. Conventional methods . 11
2.3.2. Other methods . 12
2.3.3. Motion compensation . 12

2.4. Classification techniques . 12
2.4.1. Traditional machine learning . 13
2.4.2. Deep learning . 13

2.5. Open-set recognition (OSR) . 14
2.5.1. OSR for automatic target recognition 15

v

Stellenbosch University https://scholar.sun.ac.za

Contents vi

2.6. General image recognition . 16
2.7. Existing works on ISAR image recognition 16

2.7.1. Small targets . 17
2.7.2. Medium-sized targets . 17

3. Dataset Generation 19
3.1. Choice of target models . 19
3.2. Dataset overview . 21
3.3. ISAR theory . 21

3.3.1. Electromagnetic scattering . 21
3.3.2. Imaging plane . 22
3.3.3. Down-range resolution . 22
3.3.4. Cross-range resolution . 23
3.3.5. Unambigious range . 25

3.4. ISAR image formation . 26
3.4.1. Polar reformatting . 27

3.5. Simulation . 28
3.5.1. Image parameters . 29
3.5.2. Simulation parameters . 30

3.6. Simulating different noise-levels . 31
3.6.1. Defining SNR . 31

3.7. Normalisation and upsampling . 32
3.8. Visualising the dataset . 32
3.9. Conclusion . 35

4. Traditional Machine Learning Approaches 36
4.1. Logistic regression (LR) . 36

4.1.1. Theory . 37
4.1.2. Implementation . 40

4.2. Support vector machine (SVM) . 40
4.2.1. Theory . 40
4.2.2. Implementation . 47

4.3. K-nearest neighbours (KNN) . 47
4.3.1. Theory . 48
4.3.2. Implementation . 49

4.4. Experiments . 49
4.4.1. General approach . 50
4.4.2. Training at a single elevation . 50
4.4.3. Training at multiple elevations . 56
4.4.4. Training at other SNRs . 58

Stellenbosch University https://scholar.sun.ac.za

Contents vii

4.4.5. Up-sampling . 60
4.4.6. Conclusion . 64

5. Deep Learning Approaches 65
5.1. The artificial neuron . 66
5.2. Fully-connected neural network (FCNN) 67

5.2.1. Architecture and implementation 67
5.2.2. Training . 68
5.2.3. Results (closed-set) . 69

5.3. Open-set adaptations to the FCNN . 70
5.3.1. Softmax with a reject option . 70
5.3.2. Openmax . 71
5.3.3. Training with an explicit ‘other’ class 72
5.3.4. Testing . 74

5.4. Capsule networks . 76
5.4.1. Basic theory . 76
5.4.2. Implementation . 79
5.4.3. Closed-set results . 80
5.4.4. Open-set adaptation . 82

5.5. Conclusion . 88

6. Conclusion and Recommendations 89
6.1. Conclusion . 89
6.2. Improvements and recommendations . 91

Reference List 92

A. Example FEKO simulation set-up 103

B. ISAR processing script for parallel processing 104

C. KNN implementation 108

D. Capsule network code 109

Stellenbosch University https://scholar.sun.ac.za

List of Figures

2.1. SAR images of two targets from the MSTAR dataset. 7
2.2. Example ISAR images of consumer drones. 7
2.3. Point-scatter model . 9
2.4. The Application of various CEM methods. 11

3.1. CAD models of the selected targets. 20
3.2. ISAR imaging plane. 22
3.3. The range resolution of a monotone pulsed radar. 23
3.4. Radial velocity of a scattering point induced by a target’s rotation. 24
3.5. Fourier transforms of two received echoes at the Rayleigh criterion. 25
3.6. Sampling points in the spatial-frequency domain. 27
3.7. Polar reformatting. 28
3.8. FEKO simulation . 29
3.9. ISAR images of the multirotor drone centred at different azimuth angles. . 33
3.10. ISAR images of the generic cruise missile centred at different azimuth angles. 33
3.11. ISAR images of the model fixed-wing aircraft centred at different azimuth

angles. 33
3.12. ISAR images of the flying-saucer type UFO centred at different azimuth

angles. 34
3.13. ISAR images of the trihedral corner reflector centred at different azimuth

angles. 34
3.14. ISAR images of the multirotor drone with added noise at various SNRs. . . 35

4.1. The logistic sigmoid function, σ(a). 38
4.2. Linearly separable data separated by hyperplanes. 42
4.3. Non-linear mapping to a higher-dimensional feature space. 45
4.4. An unlabelled observation and its nearest neighbours. 48
4.5. KNN decision boundary . 49
4.6. Imaging angles at a single elevation (θ = 0). 51
4.7. Accuracy vs SNR for the LR, KNN and SVM classifiers trained and tested

on a single elevation. 52
4.8. An ISAR image of the drone target imaged at an elevation angle θ = 0◦

and azimuth angle ϕ = 0◦. 53

viii

Stellenbosch University https://scholar.sun.ac.za

List of Figures ix

4.9. ISAR images of the drone target imaged at multiple elevation angles θ

(given in each sub-figure) and azimuth angle ϕ = 0◦ 54
4.10. Accuracy vs SNR for the LR, KNN and SVM classifiers trained on a single

elevation and tested on multiple elevations. 55
4.11. Imaging angles for multiple elevations (−45 ≤ θ ≤ 45). 56
4.12. Accuracy vs SNR for the LR, KNN and SVM classifiers trained and tested

at multiple elevations. 57
4.13. Accuracy vs SNR for the LR classifier trained at various SNRs. 59
4.14. Accuracy vs SNR for the SVM classifier trained at various SNRs. 60
4.15. Images (a) and (c) show example synthetic ISAR images generated from

the drone and missile models respectively. Images (b) and (d) show the
same images up-sampled with a 64-point FFT. 61

4.16. Accuracy vs SNR for the LR classifier trained at various SNRs on up-sampled
ISAR images. 62

4.17. Accuracy vs SNR for the SVM classifier trained at various SNRs on up-
sampled ISAR images. 63

5.1. The structure of an artificial neuron. 66
5.2. Diagram of the FCNN used in this work. 68
5.3. Accuracy vs SNR for the FCNN classifier tested on a closed-set. 69
5.4. Confusion matrices for three open-set adaptations of an FCNN classifier. . 75
5.5. Architecture of the capsule network used in this work. 80
5.6. Accuracy vs SNR for the capsule network tested on the closed test set. . . 81
5.7. Example ISAR images of the drone and missile targets at an SNR of −6 dB. 81
5.8. Examples of ISAR images reconstructed by the capsule network. 83
5.9. Histogram showing the distribution of the MSE between the input and

reconstruction for both known and unknown classes at an SNR of 24 dB. . 84
5.10. Accuracy vs F1-score for the adapted capsule network (using the MSE)

tested on an open test set. 85
5.11. Confusion matrix for the adapted capsule network (using the MSE) tested

on an open test set at 24 dB. 85
5.12. ISAR image reconstruction at a low SNR. 86
5.13. A comparison of MSE and ZNCC. 87
5.14. F1-score vs SNR for the open test set using the capsule network adapted to

use the ZNCC coefficient. 88

Stellenbosch University https://scholar.sun.ac.za

List of Tables

3.1. Breakdown of the number of ISAR images in the dataset 21
3.2. Image parameters. 30
3.3. Calculated simulation parameters. 30

4.1. Hyperparameter values. 51
4.2. Prediction times for KNN, SVM and LR classifiers. 58
4.3. Average prediction times per observation for the LR and SVM classifiers. . 63

5.1. Prediction times for FCNN, KNN, SVM classifiers. 69
5.2. Weighted-F1 scores for the FCNN open-set adaptations. 74
5.3. Prediction times for Capsule Network, FCNN, KNN, SVM classifiers. . . . 82

x

Stellenbosch University https://scholar.sun.ac.za

Nomenclature

Variables and functions

λ Wavelength.

f Frequency.

θ Elevation angle, measured from the horizontal.

ϕ Azimuth angle.

ω Angular frequency.

c Speed of light.

Ω Rotation angle.

Es Scattered electric field.

β Bandwidth.

Rd Down-range distance.

Rc Cross-range distance.

Ud Unambiguous down-range extent.

Uc Unambiguous cross-range extent.

σ(a) Logistic sigmoid function.

xi

Stellenbosch University https://scholar.sun.ac.za

Nomenclature xii

Acronyms and abbreviations

3D Three-dimensional

ANN Artificial neural network

ATR Automatic target recognition

AV Activation vector

AWGN Additive white Gaussian noise

CAD Computer-aided design

CEM Computational electromagnetics

CNN Convolutional neural network

CROSR Classification-reconstruction learning for open-set recognition

CS Compressive sensing

DFT Discrete Fourier transform

EM Electromagnetic

FCNN Fully-connected neural network

FDTD Finite difference time domain

FEM Finite element method

FFT Fast Fourier transform

FMCW Frequency modulated continuous waveform

GMM Gaussian mixture model

GO Geometric optics

GPU Graphics processing unit

GTD Geometric theory of diffraction

HRR High range resolution

HRRP High range resolution profile

ISAR Inverse synthetic aperture radar

KKC Known known classes

KNN K-nearest neighbours

KUC Known unknown classes

LDA Linear discriminant analysis

LFM Linear frequency modulated

LOS Line-of-sight

LR Logistic regression

MLFMM Multi-level fast multipole method

Stellenbosch University https://scholar.sun.ac.za

Nomenclature xiii

MoM Method of moments

MPO Modified physical optics

MRPO Multiple reflection physical optics

MSE Mean squared error

MUSIC Multiple signal classification

NCTR Non-cooperative target recognition

OSR Open-set recognition

PCA Principal component analysis

PEC Perfect electrical conductor

PO Physical optics

PTD Physical theory of diffraction

RCS Radar cross-section

ReLU Rectified linear unit

RWG Rao-Wilton-Glisson

SA Sparse auto-encoder

SAR Synthetic aperture radar

SBR Shooting and bouncing rays

SF Stepped-frequency

SNR Signal-to-noise ratio

SVM Support vector machine

UTD Universal theory of diffraction

UUC Unknown known classes

WGN White Gaussian noise

ZNCC Zero-mean normalised cross-correlation

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

1.1. Background
In recent years, the use of small multi-rotor drones has become increasingly popular for
military, industrial and civil applications [1]. Consumer drones, which are widely available
to the general public, can carry a variety of payloads, such as cameras, delivery packages
or potentially more dangerous items, such as explosive devices. This raises several security
and privacy concerns. Considering this, the ability to detect and classify drones has
become a topic of interest.
As a sensor capable of operating under all weather conditions, day and night, radar is
widely used for detecting, classifying and tracking targets. While radar traditionally
focuses on large targets, such as aeroplanes, ships and large terrestrial vehicles, it can
also be leveraged for use with small targets, such as consumer drones. However, some
considerations should be taken when considering small targets. One of the primary
considerations is that traditional large targets typically have a large radar cross section
(RCS), while small targets, by virtue of their size, tend to have a smaller RCS. As a result,
the radar returns from a tiny target are typically smaller in magnitude and therefore have
a significantly lower signal-to-noise ratio (SNR). One means of increasing the SNR is to
use radar imaging techniques, such as Inverse Synthetic Aperture Radar (ISAR). ISAR
improves the SNR through the coherent integration of multiple radar pulses [2]. Another
advantage of using ISAR for target recognition is that the images produced are highly
interpretable, reflecting the physical structure of the target (with some similarity to optical
images [3]). ISAR images can be presented to a human operator for classification; however,
this requires significant costs and time to train and employ a human operator for these
tasks. Additionally, human operators may be limited in their ability to perform this task
with the required accuracy and speed. The time requirement is particularly noticeable at
low SNRs, where the target structure is challenging to make out through visual inspection.
Another limitation of using human operators identified by [4] is the time required for
classification, typically several seconds.
Automatic systems for target recognition can be used to address some of the shortcomings
of manual classification. Automated systems need only be implemented once and are

1

Stellenbosch University https://scholar.sun.ac.za

1.2. Problem statement 2

capable of forming accurate predictions in minimal time (a couple of microseconds).
Furthermore, modern image classification techniques have been shown to surpass human
accuracy [5]. Numerous techniques for automating this process may be employed, ranging
from specialised techniques developed for radar targets to general image recognition
techniques.
The vast majority of classification algorithms aim to recognise new observations as one
of several known classes. This uses the underlying assumption that all new observations
belong to the closed set of classes used in training. While this is a reasonable assumption
in certain controlled environments, this is not necessarily valid for an automatic target
recognition system. In this case, it is not viable to train a model on every possible target
that could be observed, and the system does not have control over the targets that present
themselves during operation. It is therefore important to consider how an automatic target
recognition system handles unknown targets that do not belong to any known classes.

1.2. Problem statement
Recognising targets using ISAR imaging poses challenges beyond those typically seen
in general image recognition problems. One such challenge is that ISAR images of a
target display high variation, particularly with changes in imaging angle. This variation
includes both affine transformations (such as rotation and translation) as well as distortions
resulting from the complex interaction between targets and the electromagnetic field and
self-occlusion. Additionally, while ISAR imaging improves the SNR of the radar returns,
there is often a significant noise component remaining in the resultant image. Very low
SNRs from small targets with weak EM interactions present challenges for classification
systems, which need to effectively differentiate between the noise and the underlying signal
in order to form a prediction. When considering targets with small radar cross-sections,
this is a notable issue. The final major challenge identified is that the targets observed by
a radar system operating in the field are not guaranteed to belong to any known classes,
or the measurement conditions may not be sufficient to accurately classify an observation.
The common assumption that all targets belong to a closed set of known classes is therefore
not generally valid. As such, it is necessary for a target recognition system to be capable
of recognising when a given observation does not belong to any known class.

1.3. Project aims
The primary aim of this work is to investigate automatic target recognition methods
capable of distinguishing between several small complex targets in real-time. To be of
practical use in a real-world application, the system should meet the following requirements:

Stellenbosch University https://scholar.sun.ac.za

1.4. Scope 3

1. The system is insensitive to changes in the target’s orientation.

2. The system is capable of operating at low SNRs, while maintaining high accuracy.

3. The system is not limited to a closed set of known targets and can handle observations
of unknown targets.

The process for working towards this objective is broken down into the following steps:

1. Generate a dataset of suitable images that can be used for training and testing.

2. Develop an understanding of the methods and techniques used and gain an insight
into how well these methods work through a comparative study of several machine
learning approaches to target recognition.

3. Identify techniques that perform well on closed-set recognition tasks under the first
two conditions (significant changes in imaging angle and low SNRs).

4. Extend promising closed-set recognition techniques to handle open-set recognition.

1.4. Scope
This work focuses on the recognition of small complex targets in a ‘blue-sky’ scenario.
That is, only aerial targets surrounded by empty space are considered. This eliminates
scenarios where clutter or multipath need to be considered. Furthermore, this study only
considers cases where there is only one target present in any given observation. The tasks
of detecting the presence of a target and segmenting the data to separate individual targets
are recommended for future research. To simplify the acquisition of sufficient training data,
this work makes use of computational electromagnetic (CEM) software to simulate the
backscattering from small complex targets. As a further simplification, the targets used
are modelled as perfect electrical conductor (PEC) meshes in free space. While full-wave
CEM solvers were used to calculate the backscattered electric field as accurately as possible
(as opposed to asymptotic solvers), the simulation results will differ from those obtained
through real-world measurements. These simulations do not consider the deflections of
the target structure during operation or moving parts on the target. Additionally, it is
assumed that the motion of the target is known, and does not need to be estimated for the
purposes of focusing or applying motion compensation techniques in the ISAR imaging
process. Although the open-set classification problem is considered, it is only possible to
perform testing on a limited number of small complex targets (which are used to represent
both known and unknown targets).

Stellenbosch University https://scholar.sun.ac.za

1.5. Publications 4

1.5. Publications
Some of the findings of this study have been presented in the following publications:

• C. D. Stewart-Burger, D. J. Ludick and M. Potgieter, “A Comparison of Vari-
ous Machine Learning Algorithms on ISAR Image Classification of Complex Tar-
gets with Varying Levels of Gaussian Noise,” 2021 International Conference on
Electromagnetics in Advanced Applications (ICEAA), 2021, pp. 228-228, doi:
10.1109/ICEAA52647.2021.9539533.

• C. D. Stewart-Burger, D. J. Ludick and M. Potgieter, “Open-set Classification of
Small Complex Targets with ISAR Imaging,” 2022 IEEE International Symposium on
Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI),
2022, pp. 1168-1169, doi: 10.1109/AP-S/USNC-URSI47032.2022.9887003.

• C. D. Stewart-Burger, D. J. Ludick and M. Potgieter, “Application of Capsule
Networks to Open-set Target Recognition of ISAR Images of Small Complex Tar-
gets,” 2022 International Conference on Electromagnetics in Advanced Applications
(ICEAA), 2022, pp. 149-149, doi: 10.1109/ICEAA49419.2022.9899926.

1.6. Thesis outline
Following this introduction, Chapter 2 provides context for this work. This includes
an overview of various radar signatures, image formation techniques, and classification
algorithms that are applied to target recognition problems. This chapter discusses several
similar and related studies from other researchers. The methods used to simulate the EM
interactions of the targets, and the generation of the dataset of ISAR images used for
training and testing are detailed in Chapter 3. Chapter 4 discusses the implementation
of three widely used traditional machine learning algorithms. This discussion includes
the theory and implementation details, how these models are trained on the dataset
and a comparison of the performance of these algorithms. Several investigations into
approaches aimed at improving the performance of these classifiers (through pre-processing
or adaptions to the training process) are also discussed. A similar discussion on various
deep learning techniques follows in Chapter 5. This chapter additionally includes sections
on how these deep learning methods are adapted to handle open-set recognition problems.
The final chapter concludes the thesis with a summary of the findings as well as a discussion
on improvements and recommendations for future work.

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Literature Review

2.1. Radar signatures used in target recognition
Techniques used for radar target recognition are generally based on measurements of a
target’s dynamic characteristics, physical structure or a combination of these. Those
techniques which exploit the target’s physical shape are typically based on the platform’s
range-amplitude signature. In contrast, techniques reliant on the target dynamics make
use of the platform’s frequency-amplitude signature (based on Doppler shifts) [6]. This
section introduces some of the radar signatures frequently used for classification purposes.
While frequency-amplitude and range-amplitude data may be used separately (see Sections
2.1.1 and 2.1.2, respectively), imaging techniques which combine this data are of particular
interest.

2.1.1. Doppler signatures

The earliest forms of primitive radar target recognition (still frequently used in modern
battlefield radar [7]) involve converting radar returns to an audio Doppler signature
and playing this audio to human operators [4]. These operators are trained to classify
targets after listening to these tones. It requires significant time and effort to learn and
perform manual target recognition, and this method relies heavily on the target dynamics
(particularly size and velocity). The use of audio tones is only effective on slow-moving
targets (with Doppler shifts in the audible range) and requires a couple of seconds of
listening time per target. Reference [8] discusses the automation of the above task by using
speech recognition techniques to replace the work performed by human operators. Targets
with moving parts, such as propellers, rotors or jet engine fans, that move relative to the
main body of the target add extra components to the Doppler signature. This effect, known
as micro-Doppler, can be exploited by target recognition systems [9]. As Doppler-based
techniques rely on target motion, these techniques are ineffective in recognising stationary
targets.

5

Stellenbosch University https://scholar.sun.ac.za

2.1. Radar signatures used in target recognition 6

2.1.2. High range resolution profiles (HRRP)

Information about the physical structure of a target can be deduced by generating high
range resolution profiles (HRRP), which resolve the backscattering from the target into
multiple range bins spanning the length of the target. High range resolution (HRR)
techniques obtain this resolution by using a wide bandwidth pulse and then performing
pulse compression. Range compression is usually done by applying a fast Fourier transform
(FFT) to the backscattered data from a linear frequency modulated (LFM) chirp sampled
at evenly spaced frequencies, or a frequency stepped waveform. Other methods, such as
compressed sensing (CS), can also be employed [10]. Li et al. [11], and Zyweck et al. [12]
demonstrate the use of HRRPs in target recognition systems aimed at classifying aircraft.

2.1.3. Radar imaging

Radar imaging goes a step further than HRR processing to produce a high-resolution
two-dimensional image of a target. Geometrically, radar images represent the projection
of the scattering centres of targets of interest onto a two-dimensional plane. Real aperture
imaging, synthetic aperture radar (SAR) imaging and inverse synthetic aperture radar
(ISAR) imaging are three different methods used to form radar images [3].

2.1.3.1. Real aperture imaging

While most radar imaging techniques require relative motion between the radar and the
target, real aperture imaging uses large (hundreds of metres) antenna arrays to obtain a
very narrow beam width. Real aperture radar can be challenging in practice due to the
difficulties in setting up and calibrating a very large antenna array [3]. The advantage,
however, is that this imaging technique is generally instantaneous. In contrast, motion-
based methods require multiple pulses over time as the motion occurs, which are then
subject to further signal processing.

2.1.3.2. Synthetic aperture radar (SAR) and inverse synthetic aperture radar (ISAR)

SAR overcomes the need for a large physical antenna by using multiple pulses from a
small antenna that moves through space over time to create a synthetically large aperture.
Examples of SAR images of two targets from the MSTAR dataset [13] are provided in
Figure 2.1.

With ISAR, the emulated antenna baseline is formed through the target’s movement
rather than the movement of the antenna [6]. ISAR is generally more difficult than SAR
in practice, as ISAR is typically used with non-cooperative targets whose motion cannot
be controlled by the radar platform. The images formed by these techniques often closely
resemble the physical shape of the target; however certain effects such as self-shadowing

Stellenbosch University https://scholar.sun.ac.za

2.1. Radar signatures used in target recognition 7

Figure 2.1: SAR images of two targets from the MSTAR dataset. The leftmost image
in each row is a photograph of the targets, while the next three are SAR images from
different imaging angles. [14]

and micro-Doppler can cause distortions and artefacts that fall outside the physical bounds
of the target platform (sometimes referred to as ghost scattering). This resemblance to the
physical geometry makes radar images highly intuitive and well suited to non-cooperative
target recognition (NCTR) [3]. Figure 2.2 provides examples of ISAR images from [15],
where the resemblance to the target can be seen despite some distortion. The processing

Figure 2.2: ISAR images (b), (c), (e) and (f) of drone targets (a) and (d), imaged from
various aspect angles. [15] ©2016 IEEE.

required for SAR and ISAR image formation applies coherent integration, which improves
the signal-to-noise ratio (SNR) of the radar returns. This makes SAR/ISAR particularly
useful in situations with a low SNR. Compared to HRRP, ISAR has been shown to be

Stellenbosch University https://scholar.sun.ac.za

2.2. Simulating high-resolution radar 8

more beneficial to the performance of target recognition systems [16]. Section 2.3 further
discusses the formation of ISAR images.

2.1.3.3. Three-dimensional inverse synthetic aperture radar (3D-ISAR)

ISAR processing can be extended to three dimensions in cases where the target exhibits
motion in both azimuth and elevation (relative to the radar). Seybold et al. [17] first
extended ISAR processing to three dimensions. The concept was demonstrated by rotating
targets on a turntable to obtain azimuth motion while the radar antenna was raised to
change the relative elevation. While 3D-ISAR reveals a lot of information about the target
geometry, 3D-ISAR remains challenging outside of an experimental setting, where the
target’s motion cannot be controlled. While 3D-ISAR remains an active area of research,
the practical difficulties of using these techniques with non-cooperative targets limit its
usefulness in NCTR.

2.2. Simulating high-resolution radar
The study of target classification using high-resolution radar requires enormous amounts of
data — particularly when data-intensive methods like machine learning are used. Obtaining
data from a high-resolution radar can be an expensive and challenging exercise. Access
to both high-resolution radars and targets of interest is limited. This problem can be
partially overcome through simulation. Simulations for ISAR imaging can be performed
at several different modelling complexities. Studies such as [18] and [19] use relatively
simple modelling techniques, where the target is modelled by several point-scatters in
three-dimensional space. Figure 2.3 shows an example of a target represented by numerous
point-scatterers and the resulting ISAR image formed in [18]. Such models eliminate the
need for computationally expensive CEM methods but are generally only applicable to
specific problems and do not provide accurate solutions for different target types and
scenarios [20].

Because simplistic scattering models are generally not sufficiently accurate for sim-
ulation, the rest of this section focuses on methods that more accurately calculate the
backscattering based on the target geometry. Various CEM methods capable of calculating
the backscatter from a geometric representation of the target can be used for such simula-
tions. These CEM methods can be broadly split into full-wave (exact) and asymptotic
(approximate) methods, which are discussed in the following sections.

2.2.1. Full-wave methods

Full-wave methods are used to solve Maxwell’s equations [21]. Solutions can be found
using either the integral form of the equations, with techniques such as the method of

Stellenbosch University https://scholar.sun.ac.za

2.2. Simulating high-resolution radar 9

Figure 2.3: Three-dimensional point scatter model (a) used in [18] with the resulting
ISAR image (b).

moments (MoM), or the differential form, using methods such as the finite element method
(FEM) or the finite difference time domain method (FDTD).

2.2.1.1. Method of moments (MoM)

MoM is a well know frequency-domain method used to solve electromagnetic boundary or
volume integral equations [22]. To apply this method to high-resolution radar simulation,
the target geometry is broken down into a mesh of small triangular patches that can be
described by Rao-Wilton-Glisson (RWG) basis functions. The moment equation,

ZI = V, (2.1)

where Z is the impedance matrix and V is a voltage excitation vector, is set up and solved
to calculate a vector of RWG expansion coefficients, I [23]. To obtain an accurate solution,
the geometry should be discretized into a mesh with the size of each mesh element on the
order of λ/10. Problems discretized with N mesh elements require an impedance matrix
of size N2 to be stored in memory, and the runtime for solving (2.1) with a direct linear
solver scales with N3 [24]. As a result, the memory and runtime requirements for solving
problems with electrically large geometries (i.e. structures that are large relative to the
wavelength of the excitation) become prohibitively high. Solving (2.1) can be accelerated
using methods such as the multi-level fast multi-pole method (MLFMM). However, even
with such techniques, the runtimes for problems with a very large number of elements (N)
render this method impractical.

Stellenbosch University https://scholar.sun.ac.za

2.2. Simulating high-resolution radar 10

2.2.2. Asymptotic methods

Numerous methods that approximate the solution to Maxwell’s equations have been
proposed that trade accuracy for computational efficiency [25]. Asymptotic methods thus
overcome the limitations of full-wave methods when applied to electrically large problems.
Significantly, these methods also increase in accuracy as the electrical size of the target
increases. Asymptotic methods can be further divided into ray-based methods and current-
based methods. The former neglects the wave-based properties of electromagnetic radiation
entirely, while the latter makes smaller approximations and serves as an intermediate
between ray-based and full-wave methods.

2.2.2.1. Geometric optics (GO)

GO is a ray-based method that uses rays to trace specular reflections from the target
geometry. While being a very fast method, GO suffers from many inaccuracies. Flat or
singularly curved surfaces are known to sometimes produce infinite scattering results under
GO [26]. While conventional GO neglects diffraction and other edge effects, extensions
such as the geometric theory of diffraction (GTD) or the uniform theory of diffraction
(UTD) are sometimes used in conjunction with GO to account for these effects.

2.2.2.2. Shooting and bouncing rays (SBR)

Similarly to GO, SBR also traces the specular reflections of many rays or ray tubes
launched at the target. However, this method differs from GO in that an equivalent
source is placed at each interaction point between the rays and the target geometry. The
scattering from the target can be calculated by integrating over these equivalent point
sources. SBR is used in [27] to simulate ISAR images of targets with moving parts.

2.2.2.3. Physical optics (PO)

The PO approximation assumes that the surface current is limited to the regions of the
target with line-of-sight visibility to the source, with the surface current over any shadowed
regions being equal to zero. Being a current-based method, PO relates the incident
magnetic field to the induced surface current over the illuminated regions. While PO is
typically more accurate than GO or SBR, this approximation still neglects certain scattering
mechanisms, such as surface waves and edge diffraction. Modified PO (MPO) and the
physical theory of diffraction (PTD) have been proposed as extensions to conventional
PO that account for edge diffraction phenomena. For complex geometries with concave
regions, the PO approximation performs poorly. In such instances, PO can be applied
recursively to model multiple reflections. This is referred to as multiple reflection PO
(MRPO). Wang et al. [28] make use of PO to simulate ISAR imaging of satellites.

Stellenbosch University https://scholar.sun.ac.za

2.3. ISAR image formation 11

Figure 2.4: Various CEM methods and their applications according to [29]. © 2013 IEEE.

Each of the aforementioned CEM methods trades accuracy for computational efficiency.
Figure 2.4 illustrates each of these methods and their appropriate use cases, with coarser
asymptotic methods becoming increasingly appropriate with increasing electrical size.

2.3. ISAR image formation
Several methods for forming ISAR images exist, ranging from relatively straightforward
conventional approaches to significantly more involved approaches proposed to either
improve on certain qualities of the image formed (such as super high-resolution techniques)
or to form ISAR images under specific scenarios (including sparse sampling). While a small
degree of rotational motion is required for ISAR imaging, any excess motion (additional
rotation or translation) can result in a degradation of the image quality in standard ISAR
image formation techniques. For this reason, a number of motion compensation algorithms
which eliminate the effects of the target’s motion can be applied. This section gives a
brief overview of some of the ISAR image formation and motion compensation techniques
commonly used in the literature.

2.3.1. Conventional methods

Conventional methods include Fourier-based and time-frequency-based methods, both of
which are discussed in [30]. The simplest technique for ISAR image formation is a Fourier-
based method, which is valid under the conditions of a small angle (Ω ≤ approx. 6◦ [31])
and narrow bandwidth relative to the centre frequency (β < fc

10 [31]). This method
involves taking a two-dimensional Fourier transform according to the following k-space

Stellenbosch University https://scholar.sun.ac.za

2.4. Classification techniques 12

formulation [15]:
Image(rd, rc) =

∫ ∫
Es(f, ϕ)ejkxrdejkyrddkxdky (2.2)

where
kx = 4πf

c
cos ϕ ≈ 4πf

c
, ky = 4πf

c
sin ϕ ≈ 4πfc

c
ϕ (2.3)

rd and rc are the down-range and cross-range respectively, f is the frequency, ϕ is the angle
of rotation, c is the speed of light and Es is the backscattered electric field as a function
of f and ϕ. This method is used in [15] to form ISAR images of small consumer drones.
Blomerus et al. [32] use a time-frequency method to form ISAR images of small targets.

2.3.2. Other methods

In instances where the small angle and narrow bandwidth approximations are invalid,
other methods or additional motion compensation algorithms are required. One such
algorithm, viz. back-projection, is demonstrated in [33] to produce high-resolution ISAR
images using frequency-modulated continuous waveform (FMCW) radar. Zang et al. make
use of another method based on compressive sensing (CS) to form high-resolution ISAR
images from limited observations. Other methods aimed at enhancing the resolution of
the images formed include the multiple signal classification (MUSIC) [34] algorithm which
is demonstrated by Odendaal et al. [35] and methods that make use of deep learning, such
as [36].

2.3.3. Motion compensation

Some motion compensation methods, such as polar reformatting and phase gradient, can be
used to apply conventional Fourier-based ISAR processing techniques in situations where
either the small angle or narrow bandwidth assumptions are not valid [32]. Reference [37]
demonstrates the use of polar reformatting to apply Fourier-based ISAR processing to
form images of fighter aircraft using both simulated and measured radar cross-section data
(RCS) data. Other motion compensation algorithms aimed at eliminating the effects of
both rotation and translation of the target are discussed in [30].

2.4. Classification techniques
Target classification can be performed in several ways, such as through manual inspection
by trained radar operators or using algorithmic methods. The majority of modern target
recognition systems employ some kind of machine learning approach to the problem —
often in combination with a human operator (i.e. a man-in-the-loop system). That is, they
use training data comprised of numerous examples of possible observations to form models
capable of recognising new observations. Machine learning-based target recognition can be

Stellenbosch University https://scholar.sun.ac.za

2.4. Classification techniques 13

broadly split into two categories, namely traditional machine learning and deep learning,
which are reviewed in the following section.

2.4.1. Traditional machine learning

Traditional machine learning typically relies on a few (often hand-crafted) features in the
form of low-dimensional feature vectors that characterise the data to form models. The
performance of these techniques is generally linked to the choice of features used. This
creates a significant designer overhead in instances where the features are hand-crafted. The
requirement to intelligently pick hand-crafted features can be avoided by using some form
of dimensionality reduction, such as Principle Component Analysis (PCA) [38] or Linear
Discriminant Analysis (LDA) [38] on a high-dimension feature space, such as the pixel
intensities in an image. Both PCA and LDA are, however, limited to linear combinations
of the original features. More sophisticated methods to extract complex features include
Fourier transforms and polar mapping [39] and wavelet coefficients [40]. Open literature
reports on the application of numerous different machine learning algorithms to recognise
targets from ISAR images.

2.4.1.1. Other studies using traditional machine learning

Botha [41] discusses the use of a nearest-neighbour classifier to classify ISAR images of
military aircraft. The study compares the use of extracted features (viz. geometrical
moments, invariant features based on moments, shape features and quantized energy
strips) to the use of ISAR data (in the form of pixel intensities) as inputs to the nearest
neighbour classifier. Similarly, Park et al. [39] also use a nearest-neighbour classifier, but
go a step further by preprocessing the ISAR images to achieve rotational and translational
invariance in an attempt to make the recognition system less sensitive to changes in
imaging angle. Using a similar technique aimed at extracting invariant features, Cexus
et al. [42] compare several machine learning techniques, including Näıve Bayes, Support
Vector Machine (SVM), K-nearest neighbour (KNN) and neural network classifiers.

2.4.2. Deep learning

Deep learning is a subset of machine learning that makes use of multiple layers of repeating
units to form artificial neural networks (ANNs) [43]. As the name suggests, ANNs draw
inspiration from the brain. The basic structure of an ANN is the artificial neuron (discussed
further in Section 5.1), which was proposed to mimic the function of living neurons. In
contrast to traditional machine learning approaches, where there is a focus on extracting a
small number of highly discriminative features, in the deep learning paradigm, there is a
tendency to use a very high dimensional feature space as an input. The rationale here is

Stellenbosch University https://scholar.sun.ac.za

2.5. Open-set recognition (OSR) 14

that while feature extraction can decrease the complexity of the classification problem, the
resulting loss in information causes a decrease in performance. Neural networks are able to
handle the computational complexity associated with processing high-dimensional inputs
since these models are highly parallelisable, and can thus make use of GPU acceleration.
The first few layers of a deep learning model perform complex feature extraction processes,
while classification happens in the final layers.
The most popular deep learning models used in conjunction with ISAR images are
Fully Connected Neural Networks (FCNN) [41,42] and Convolutional Neural Networks
(CNNs) [32,44–48]. Other deep learning methods have also been used in the literature. For
example, in [49], a Sparse Autoencoder (SA) network is used to perform feature extraction
on ISAR images, after which a Softmax classifier was used for classification based on
the extracted features. In another recent paper, Zhou et al. [50] report on the use of a
Capsule Network [51] for ISAR image recognition. In Section 5.4, Capsule Networks will
be explored in more detail, where a method will be proposed to classify targets that are
not included in the training set. While some papers, such as [42] and [41], experiment
with preprocessing steps to perform feature extraction, most models in literature use the
raw ISAR images as inputs to the neural networks.

2.5. Open-set recognition (OSR)
Most classification systems are limited to a fixed number of predefined classes, making the
assumption that all observations belong to a closed set. However, this is a poor assumption
for most automatic target recognition systems. A radar system operating in the field has
little guarantee that it will only observe targets belonging to certain classes. Moreover, in
many circumstances, designers of an automatic target recognition system may not have
examples of all possible classes available for training. As such, there is a necessity to
develop systems that can reliably determine when an observation does not belong to any
known classes. Advanced systems may use some form of unsupervised online learning to
form new classes from previously unknown classes, while simpler systems may simply flag
unknown targets as such. Regardless, the first step is to determine whether or not an
unlabelled observation can be classified according to the known classes.
In OSR, classes can be categorised according to three basic categories according to [52]:

1. Known known classes (KKCs) - Labelled classes with examples available for training.

2. Known unknown classes (KUCs) - Labelled examples available for training/validation
that do not form part of the known classes. This can include miscellaneous examples
that are not part of any distinct class.

3. Unknown known classses (UUCs) - Classes for which no training examples are
available.

Stellenbosch University https://scholar.sun.ac.za

2.5. Open-set recognition (OSR) 15

Modifications for various well-known machine learning algorithms have been proposed
to extend their capabilities to handle unknown classes. A comprehensive summary of
these methods and modifications can be found in [53], which discusses methods for both
traditional machine learning and deep learning models. The methods discussed in [53] are
split into two broad categories:

1. OSR for discriminative models, in which a closed-set model is typically modified
after training to identify unknown observations based on some threshold.

2. OSR for generative models, which includes methods that generate synthetic examples
of UUCs to be used as training examples.

Notable modifications include OpenMax [54], which is proposed to replace softmax [55]
(frequently used in the final layers of deep learning networks) to handle observations of
unknown classes. A novel approach to OSR called Classification-Reconstruction learning
for Open-Set Recognition (CROSR) [56] proposes the use of models trained to both classify
and reconstruct observations from latent representations. In this approach, the accuracy
of the reconstruction is used as a metric to detect unknown classes.

2.5.1. OSR for automatic target recognition

Open-set recognition is frequently overlooked, and there appears to be very little research
into OSR of ISAR images available in open literature. To the best of the author’s knowledge,
the only paper that applies OSR to ISAR images to be found in open literature is [57], in
which the authors used a CNN with an OpenMax [55] layer to classify ISAR images of
ships of both known and unknown classes. Zhao et al. [57] report that using an OpenMax
layer resulted in an 11.8 % gain in precision when compared to the use of a softmax
layer in one experiment. A few recent papers, however, investigate OSR applied to SAR
images [58–60].

Proposing an edge exemplar method which extracts the (closed) boundary of each
known class, [58] demonstrates a classifier with an accuracy of 96.04 % when tested on
the MSTAR dataset [13] where three of the targets are considered known classes and the
remaining seven are considered unknown classes. Unfortunately, no indication is given
regarding the impact on the known class recognition rate when enforcing closed decision
boundaries for the known classes using this method.

The open-set classification problem is decomposed into two tasks by [60]: classification
and anomaly detection. For this task, a network inspired by a conditional generative
adversarial network (CGAN) is proposed. After training a generator and a discriminator
on the known classes, the discriminator learns the distribution of the known class data
and outputs both a class prediction and a score which indicates the confidence that the
input belongs to the classes observed in training. Using the score as an anomaly detector,

Stellenbosch University https://scholar.sun.ac.za

2.6. General image recognition 16

it is possible to differentiate known classes from unknown classes. This method reportedly
outperforms that proposed in [58], achieving an accuracy of 98.8 % when using the same
dataset.

2.6. General image recognition
While there are notable differences between ISAR images and optical images [42], the
similarities should not be overlooked. Many of the challenges in ATR and general image
recognition are shared, and general image recognition is a well-researched field in which
constant progress is being made. For many years, state-of-the-art image recognition
models were CNNs [61–63]. Recently, transformer networks have begun to outperform
CNNs [64,65] and show promise for ATR.
One of the significant challenges associated with ISAR image classification is the significant
within-class variation seen in ISAR images of a target imaged from different angles. Some
of these challenges have been addressed by general image classification techniques. While
CNNs are insensitive to translations in images through translational invariance, they are
sensitive to other deformations and affine transformations. Some studies have proposed
image recognition methods that apply preprocessing techniques, such as Radon and
Fourier-Mellin transforms, to input images to achieve invariance with respect to other
transformations, such as scale, rotation and blur [66,67]. These techniques could benefit
ATR systems, in which such transformations are prevalent. In 2017, Sabour et al. [68]
proposed a model called Capsule Networks (CapsNet), which achieved state-of-the-art
classification performance on the MNIST dataset [69] (images of handwritten digits).
Importantly, the proposed CapsNet architecture extracts equivariant features, which
potentially allow it to recognise observations of an object with different instantiation
parameters (such as translation, rotation or distortion) as equivalent to one another. This
appears well suited to the significant variation found in ISAR images over changes in
imaging angle. Capsule Networks have been shown effective when applied to SAR image
classification [70–74].

2.7. Existing works on ISAR image recognition
There is little existing research on the recognition of ISAR images of small targets under a
metre in length. Studies on small targets such as consumer drones seem to focus on other
radar signatures, such as micro-Doppler [75] rather than ISAR imaging as used in this
work. Existing research into various state-of-the-art techniques for the recognition of both
small and medium targets is discussed below.

Stellenbosch University https://scholar.sun.ac.za

2.7. Existing works on ISAR image recognition 17

2.7.1. Small targets

Reference [76], investigates the use of an eight-layer CNN (five convolutional layers, and
three fully connected layers) to classify ISAR images of three targets ranging from 30 cm
to 60 cm in size. Measurements for the ISAR images were taken in an anechoic chamber at
Ka-band with bandwidths of both 4 GHz and 8 GHz. The authors report a classification
accuracy of 96.00 % and 87.78 % for bandwidths of 4 GHz and 8 GHz, respectively. Their
findings confirm that images formed with narrow bandwidths (resulting in lower range
resolution) significantly impacted the level of structural detail captured in the ISAR images
formed. This in turn impacts the classifier’s ability to differentiate between targets.

2.7.2. Medium-sized targets

There is significantly more research available on ISAR image recognition focusing on targets
with dimensions of a couple of metres (i.e. in the 1–5 m range). Yang et al. [44, 77, 78]
investigate the recognition of ISAR images of satellite targets. All three of these studies
use the same set of ISAR images generated through simulation using mesh targets of five
different satellites. It is noted that with satellite targets, it is generally only necessary
to consider a small range of elevation angles from which the satellite can be imaged [50].
This significantly decreases the variation within each class.

In [77], the ISAR images are pre-processed to extract low-dimensional features before
classification is done. By using a low-dimensional feature space for classification, the
computational efficiency of the target recognition process is reduced. This is more relevant
as the electrical size of the targets (and the size of the ISAR image formed) increases.
Using a support vector machine (SVM) classifier, a classification accuracy of between
97.4 % and 99.8 % (depending on the training/testing data split) is reported across the
five targets.

An ensemble of pre-trained CNN models (trained on optical images) is used with
the same dataset of space targets in [78]. To overcome some of the limitations of deep
CNNs (particularly overfitting and sensitivity to the imaging conditions), the dataset
was augmented by applying various transforms such as rotation, contrast adjustment and
scaling to the images in the dataset. The use of pre-trained models makes it possible to
make use of large CNN models which typically require an enormous amount of training
data with only a small dataset of ISAR images required to perform transfer learning.
Individually, the classification accuracies obtained using the pre-trained models varied
from 69.43–94.43 % depending on the model and the fine-tuning process. Used together as
an ensemble, however, the reported classification accuracy is 97.36 %. Notably, a CNN
model trained on the ISAR data from scratch reportedly achieved a classification accuracy
of 79.25 % — in the same region as the transferred pre-trained models. The takeaways
from this study are that the use of models pre-trained on optical images can be effectively

Stellenbosch University https://scholar.sun.ac.za

2.7. Existing works on ISAR image recognition 18

utilised to recognise ISAR images (with a varying degree of success depending on the
transfer learning is done), and that a stacking ensemble yields better results than any
model used independently.

Rather than focusing on improving the classification accuracy further, [44] focuses on
improving the computational efficiency by proposing an algorithm to search for the optimal
neural network architecture within a specific search space. This enables the researchers
to find a model which maintains a high classification accuracy while being a significantly
smaller, lightweight model compared to those previously investigated.

Zhou et al. [50] propose a novel attention-augmented deformation robust ISAR image
recognition network. This is demonstrated on a different dataset containing ISAR images
of four satellites generated from simulated data (using a physical optics based solver).
Amongst other state-of-the-art neural network architectures, the network proposed by [50]
is compared to a capsule network. In the results, the reported accuracy of the capsule
network is 88 %, while the proposed network achieves a classification accuracy of 91 %
across the four satellites in the practical test set. The paper finds that the proposed
network is more robust with respect to the deformations found in ISAR images than other
networks.

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Dataset Generation

Training supervised machine learning models requires a considerable number of labelled
training examples. Obtaining a sufficient number of ISAR images of several complex
targets through field measurements is challenging and expensive, particularly if one intends
to obtain measurements from numerous aspect angles. Synthesising these measurements
through simulations makes it possible to generate a large amount of data that can be used
for training and testing. Another advantage of simulation is that data can be generated
for targets to which the designers of a target recognition system do not have physical
access or only have restricted access. This is an important consideration, particularly
for military applications, where there is an interest in non-cooperative enemy platforms
(distinct from cooperative, friendly targets which respond to interrogation with a predefined
coded signal to identify themselves). For these reasons, the decision was made to use
simulated data to generate a dataset of synthesised ISAR images in this study. The
electromagnetic simulations were carried out using FEKO [79], after which the scattering
data were processed using a MATLAB script to form images. The dataset includes ISAR
images of various small complex targets, viz., a multi-rotor drone, a missile, a model
fixed-wing aircraft and a flying-saucer type UFO. In addition to the multiple aspect angles
for each target, Gaussian noise was added to the ISAR images at various signal-to-noise
ratios (SNR). Multiple targets and SNRs were added to the dataset for a more realistic
radar environment classification investigation.

3.1. Choice of target models
Renderings of the five CAD models used to represent the selected targets are shown
in Figure 3.1. All the selected targets are between 0.5 m and 1 m in length along their
maximum dimension. The multirotor drone (Figure 3.1a) and the generic cruise missile
(Figure 3.1b) targets were selected as typical targets of interest for a radar system, and
represent the ‘known’ classes. These targets are chosen for their significantly different
geometries, which should make the differentiation between these targets a relatively simple
problem. The remote-controlled model fixed-wing aircraft (Figure 3.1c) and the flying-
saucer type UFO (Figure 3.1d) are selected as examples of other aerial targets. Specifically,

19

Stellenbosch University https://scholar.sun.ac.za

3.1. Choice of target models 20

(a) Multirotor drone. (b) Generic cruise missile. (c) Model fixed-wing aircraft.

(d) UFO (flying saucer). (e) Trihedral corner reflector.

Figure 3.1: CAD models of the selected targets.

these two targets are chosen as examples of targets that designers of ATR systems are
less likely to consider, making them an appropriate choice to represent ‘unknown’ targets.
Importantly, these targets display structural similarity to the first two targets. The model
fixed-wing aircraft and the generic cruise missile both have an elongated body/fuselage,
three tail fins and two larger fins/wings attached to the body. While the multirotor drone
and the UFO targets display less visual similarity, the UFO’s body and four legs resemble
the drone’s body and four arms. This resemblance is more apparent in the ISAR images
produced, as discussed in Section 3.8. The similarity between the targets in each of these
pairs presents a more challenging classification problem.

The intentional choice of targets displaying varying degrees of similarity makes it
possible to differentiate between classification systems with reasonable performance, capable
of differentiating between dissimilar targets, and excellent classification systems, capable
of distinguishing between targets with a similar structure.

The fifth target, a trihedral corner reflector (Figure 3.1e), is somewhat of an outlier,
being a simple geometrical structure rather than a complex target. Despite the simple
shape, a trihedral displays significant variation in its scattering return as the aspect angle
changes. Specular scattering dominates the returns for imaging angles where illumination
occurs at right angles to the trihedral faces, while imaging angles looking into the concave
region are dominated by multiple reflections. Section 5.2 discusses how this simple, well-
known reference structure is used to represent arbitrary structure for open-set recognition.

All of the CAD models used in this study are based on models publicly available
for download and use [80]. The models were improved using CADFEKO to ensure they
could be converted into a mesh appropriate for the computational electromagnetic (CEM)
methods used in this study. For simplicity, the models are approximated as perfect

Stellenbosch University https://scholar.sun.ac.za

3.2. Dataset overview 21

electrical conductor (PEC) structures.

3.2. Dataset overview
The generated dataset contains nearly 1.2 million 27 px×21 px ISAR images. A breakdown
of the number of ISAR images in the dataset is given in Table 3.1.

Table 3.1: Breakdown of the number of ISAR images in the dataset

No. of unique elevation angles 19
No. of unique azimuth angles 242

No. of unique viewing angles 4598
No. of SNRs 17
No. of noise samples per SNR 3

No. of ISAR images per target 234498
No. of target models 5

Total no. of ISAR images 1172490

For each of the five chosen targets, images were generated over a range of aspect angles
from -45 to 45 degrees elevation and 360 degree coverage in azimuth. Through the addition
of additive white Gaussian noise (AWGN) to the simulated data, the ISAR images are
repeated at 17 SNRs ranging from −24 dB to 24 dB at 3 dB intervals. The remainder of
this chapter gives a theoretical background on ISAR imaging and the techniques used to
simulate and generate these images.

3.3. ISAR theory

3.3.1. Electromagnetic scattering

The electromagnetic pulse transmitted by a radar induces surface currents on targets that
interact with the radiated field. These surface currents, in turn, radiate an electromagnetic
field known as the scattered field. A portion of the scattered field is propagated in
the direction of the radar receiver, where this excitation is sensed. The scattered field
is a function of the target geometry, motion and material composition (amongst other
things, such as frequency, aspect angle etc.), and this information is thus encoded into the
scattered field [3]. Target classification systems rely on these phenomena and utilise the
characteristics of the received signal to extract information about the target platform to
form predictions. Because the scattered field originates from surface currents distributed
across the target, it is possible to differentiate between the scattering contributions from
different parts of the target, given sufficient resolution. The term high-resolution radar is

Stellenbosch University https://scholar.sun.ac.za

3.3. ISAR theory 22

generally used to describe systems capable of resolving individual scattering centres on a
single target.

3.3.2. Imaging plane

ISAR is a technique used to achieve high resolution in two dimensions. The scattering
contributions are projected onto a two-dimensional plane separated into multiple down-
range and cross-range bins (also termed range of cross-range cells). The projection plane is
shown in Figure 3.2. The down-range dimension (y) is aligned with the radar line-of-sight
(LOS) (ra). The second dimension, cross-range (x), is formed perpendicular to both the
down-range axis (y) and the axis of rotation of the target (ω0).

Figure 3.2: Projection plane used in ISAR imaging, with the cross-range and down-range
axes depicted by x and y, respectively [81]. (Reproduced with permission from Elsevier.)

3.3.3. Down-range resolution

For a single-frequency pulsed radar with constant amplitude A, the waveform can be
expressed as

sT (t) = A sin (2πfct) rect
(

t− T

2

)
(3.1)

where fc is the carrier frequency and rect(t) is the rectangular window function, given as

rect(t) =

1, for− T
2 ≤ t ≤ T

2

0, elsewhere.
(3.2)

In the case of a monotonic pulsed waveform such as this, the range resolution (i.e. the
minimum distance at which two scattering centres can be differentiated) is inversely

Stellenbosch University https://scholar.sun.ac.za

3.3. ISAR theory 23

proportional to the pulse duration T . The relationship between the pulse duration T and
the range resolution ∆R can be expressed as

∆R = cT

2 (3.3)

where c is the speed of light. Figure 3.3 shows that for scattering centres with a down-range
separation less than this (i.e. the distance required for a round trip between the scattering
centres, the echos begin to overlap.

T

TT

∆R = cT
2

ST (t)

Figure 3.3: Range resolution of a monotone pulsed radar is limited by the spacing (in
time) between echoes from points separated in range. The resolution corresponds to the
spacing which reduces the gaps between echos of the returned pulses to zero.

Given that the energy in the transmitted pulse is proportional to the pulse duration,
we find that when using a monotone pulsed radar, there is a trade-off between the energy
in the received echo (and therefore SNR) and the range resolution as the pulse duration is
varied. This trade-off is often unacceptable, particularly when considering small targets
with a small RCS. Using a frequency-modulated waveform and applying pulse compression
makes it possible to use a longer pulse duration (and therefore maintain a reasonable
SNR) without sacrificing range resolution. Both linear frequency modulated (LFM) and
stepped frequency (SF) waveforms are possible candidates for this approach. In both of
these cases, it can be shown that the range resolution ∆Rd is inversely proportional to the
bandwidth β of the transmitted signal [32],

∆Rd = c

2β
. (3.4)

3.3.4. Cross-range resolution

Scattering centres contained within the same range bin of a rotating target can be separated
by the Doppler shift induced by this motion. Figure 3.4 illustrates that for a target with a
rotational velocity of ω (rad/s) about a fixed axis perpendicular to the radar line-of-sight,
the radial velocity of a scattering centre situated at a distance rc from the centre of rotation

Stellenbosch University https://scholar.sun.ac.za

3.3. ISAR theory 24

ω

Radar line-of-sight

Target’s axis of rotation
(perpendicular to page)

ωrc

rc

Figure 3.4: Radial velocity of a scattering point induced by a target’s rotation. The
velocity vector of an arbitrary point on the target is depicted by the solid arrow labelled
ωrc where rc is the radial distance to the centre of rotation.

in the cross-range direction is ωrc. This radial velocity induces an instantaneous Doppler
shift,

fD = 2ωrcfc

c

= 2ωrc

λ

(3.5)

where fc is the centre frequency of the radar. Using (3.5), it can be found that two
scattering centres in the same range bin, separated by a distance δrc in the cross-range
direction, exhibit a frequency difference

δfD = 2ωδrc

λ
. (3.6)

Rearranging (3.6), we find
δrc = λδfD

2ω
. (3.7)

From this, it is apparent that the cross-range resolution is proportional to the Doppler
resolution. Let the assumption be made that the angular velocity, ω remains constant over
the coherent integration time TN . For an SF radar that transmits a pulse train, sT (t),
with N pulses over a duration of TN per burst, the received signal from two scatterers
in the same range bin with different Doppler shifts, fD1 and fD2, will be the sum of
these two frequency-shifted echos, sR1(t) and sR2(t). Figure 3.5 shows the spectra of the
components of the received signal with the minimum frequency difference required to
resolve the individual components according to the Rayleigh criterion. This is met when
the peak of one of the components coincides with the minimum (magnitude) of the other.
For signals with a pulse duration of TN , these minima occur 1

TN
Hz on either side of the

Stellenbosch University https://scholar.sun.ac.za

3.3. ISAR theory 25

Figure 3.5: Fourier transforms of two received echoes at the Rayleigh criterion.

peak. The Doppler resolution can therefore be expressed as

∆fD = 1
TN

. (3.8)

The cross-range resolution, ∆Rc can therefore be expressed by setting δfD in (3.7) to the
Doppler resolution as expressed in (3.8),

∆Rc = λ∆fD

2ω

= λ

2ωTN

= λ

2Ω

(3.9)

where ωTN = Ω is the angle through which the target rotates during the observation
period.

3.3.5. Unambigious range

Another factor to consider is the extent of the region imaged in each dimension. This
range is easily expressed as the product of the resolution in each dimension and by the
number of samples used. The unambiguous down-range extent Ud is therefore given by

Ud = N∆Rd

= Nc

2β

(3.10)

for an SF radar with N steps or an LFM radar sampled at N equally spaced intervals. In
this case, the bandwidth can be expressed as β = N∆f , where ∆f is the frequency step

Stellenbosch University https://scholar.sun.ac.za

3.4. ISAR image formation 26

size. From this, (3.10) simplifies to

Ud = c

2∆f
. (3.11)

When the extent of the target in the down-range dimension is greater than the
unambiguous range Ud, scattering points that lie outside of this are not imaged correctly.
Depending on the type of radar used, these scattering points will either be missed or, in
the case of an SF radar, will result in aliasing. This effect, known as fold-over, is discussed
with examples in [30].

For the unambiguous range extent in the cross-range dimension, the same logic
applied to the calculation of the down-range extent can be used. For an ISAR image
generated from M range profiles (from the same number of chirps/bursts over the
observation time), the cross-range resolution Uc can be expressed (using (3.9)) as

Uc = M∆Rc

= Mλ

2Ω .
(3.12)

If the target rotates through an angle Ω with a constant angular velocity over M chirp-
s/burst, the angle of rotation between bursts (ie. the angle step-size) can be expressed as
∆ϕ = Ω

M
. Using this, (3.12) can be written as

Uc = λ

2∆ϕ
. (3.13)

3.4. ISAR image formation
Once the far-field backscattered field, Es(f, ϕ), has been calculated over a range of
frequencies and incident angles and arranged according to (3.18), ISAR images can be
formed. The ISAR image f(x, y) is related to the scattered field data according to

f(x, y) = 1
BWkΩ

∫ ϕ2

ϕ1

∫ k2

k1
Es(k, ϕ)e2j(k cos ϕx+k sin ϕy)dkdϕ (3.14)

where k = 2πf
c

is the wave-number and BWk = k2− k1 is the wave-number bandwidth [37].
In situations where the frequency bandwidth is small relative to the centre frequency fc

and the imaging angle is small, the approximations

k ≈ kc

= 2πfc

c

(3.15)

Stellenbosch University https://scholar.sun.ac.za

3.4. ISAR image formation 27

and
cos ϕ ≈ 1
sin ϕ ≈ ϕ

(3.16)

can be made, respectively. Under these conditions, [31] shows that (3.14) can be approxi-
mated by the 2D inverse Fourier transform of the backscattered field. The simulations in
this work, however, do not respect these conditions and cannot make direct use of this
approximation. To form ISAR images under conditions where a large bandwidth (relative
to fc) and large imaging angle are used, a technique called polar reformatting is used.

3.4.1. Polar reformatting

Sampling the backscattered electric field uniformly with respect to the frequency and
azimuth angle results in a non-uniform sampling grid in the spatial-frequency domains
(i.e. the kx-ky plane) as illustrated in Figure 3.6 [31]. Noting that kx = k cos ϕx and

12

N-1
N

2

M-1
M

Figure 3.6: Sampling points in the spatial-frequency domain [31]. (Reproduced with
permission from John Wiley and Sons.)

ky = k sin ϕy, (3.14) can be written as

f(x, y) = 1
BWkΩ

∫ ϕ2

ϕ1

∫ k2

k1
Es(k, ϕ)e2j(kx+ky)dkdϕ . (3.17)

From this, it is clear that there is a Fourier relationship between kx and x and between
ky and y. The use of a discrete Fourier transform (DFT), however, requires uniform
sampling of the data in this (kx-ky) domain. This can be achieved by interpolating the
data sampled in a polar format to a uniform Cartesian grid, as shown in Figure 3.7 (i.e.
polar reformatting). In this study, polar reformatting is done using bilinear interpolation.

Stellenbosch University https://scholar.sun.ac.za

3.5. Simulation 28

Original data
Reformatted data

Figure 3.7: Interpolation of the electric field data from a polar format to a uniform
Cartesian grid [31]. (Reused with permission from John Wiley and Sons.)

While the interpolation in polar reformatting is known to introduce unavoidable numerical
noise, [54] notes that this method is significantly less computationally complex than
numerical integration of (3.14). Before using a 2D FFT on the reformatted data to form an
image, the data is windowed using a 2D Hamming window with a sidelobe level of −42.5 dB.
The use of this windowing function reduces the sidelobe levels of the point-spread function,
resulting in a clearer image with better-defined peaks at a slight cost to the resolution
(as a result of the greater bandwidth of the Hamming window compared to a rectangular
window).

3.5. Simulation
In this study, the measurement of each target with a single polarised (VV) SF radar
operating at C-band (with a centre frequency fc = 5.55 GHz) was simulated. While higher
frequencies could potentially be used to obtain a higher resolution, using a C-band with a
limited bandwidth radar emphasises the challenges associated with classifying small targets.
At the chosen centre frequency, the electrical sizes of the targets are around 15λ-18λ. This
is small enough that full-wave CEM simulations remain a viable option, while asymptotic
methods may suffer from a loss in accuracy at smaller scattering centres located on the
targets. Simulations of the EM interactions with the PEC target models were therefore
carried out using the MoM solver in FEKO [79]. Using this solver, the backscattered
electric field was calculated for each target, illuminated by a vertically polarised plane
wave over a range of frequencies and incident angles. The simulation parameters, such
as the frequencies and azimuth angle steps used, are discussed later in this section. The
incident angles used for these measurements range from -45 to 45 degrees elevation and 360
degree azimuth coverage of the target (with azimuth steps calculated in Section 3.5.2) at
each elevation, as illustrated in Figure 3.8. This angular coverage ensures that the dataset
represents a significant variety of aspect angles from which ISAR images are formed. Once

Stellenbosch University https://scholar.sun.ac.za

3.5. Simulation 29

Figure 3.8: FEKO configuration to measure the RCS of a target from many incident
angles.

the backscattering has been calculated for each target, these data can be organised into
matrices that correspond to measurements taken for a synthetic aperture. Specifically, the
measurements obtained by an SF radar sensing a target with a turntable rotation can be
synthesised by organising the data into a matrix such as

Es(f, ϕ) =

Es(f1, ϕ1) Es(f1, ϕ2) · · · Es(f1, ϕm) · · · Es(f1, ϕM)
Es(f2, ϕ1)

...
Es(fn, ϕ1) . . Es(fn, ϕm) . .

...
Es(fN , ϕ1) Es(fN , ϕM)

(3.18)

where Es(fn, ϕm) is the far-field backscattered electric field from the target for frequency
fn and azimuth angle ϕm at a single elevation. Since this study considers a single polarised
radar, only the vertically polarised component of the scattered electric field is recorded.
ISAR processing can then be used on these data to form an image of the target.

3.5.1. Image parameters

To obtain the necessary information about a target to perform tasks such as classification, it
is important that the resolution of the ISAR images is fine enough to discern discriminating
features. A finer resolution results in more information about the structure of the target
being imaged. It is also important that the imaging extents are sufficient to image the full
target.

For many applications, it is a sensible choice to attempt to use the same resolution

Stellenbosch University https://scholar.sun.ac.za

3.5. Simulation 30

for both the down-range and cross-range. Doing so avoids perceived distortions in the
resulting image due to different scales on each dimension. In light of this, a resolution of
5 cm was chosen for both dimensions, which results in 10 samples on the smallest target.

Considering that the selected targets have a maximum size of 1 m along the longest
dimension, an unambiguous range in each dimension of 1 m may seem to be sufficient. In
practice, however, it is noted that smearing in the down-range direction (possibly due
to delayed scattering due to complex scattering mechanisms such as multiple reflections
or the broadening of specular returns due to windowing) causes the image of the target
to extend beyond the unambiguous range. The undesirable aliasing resulting from this
is avoided by adding an additional 25 % to the unambiguous range in the down-range
dimension. The desired imaging parameters designed for are shown in Table 3.2.

Table 3.2: Image parameters.

Image parameter Value
Down-range resolution (∆Rd) 5 cm
Cross-range resolution (∆Rc) 5 cm
Down-range unambiguous range (Ud) 1.25 m
Cross-range unambiguous range (Uc) 1.0 m

3.5.2. Simulation parameters

From Section 3.3, it can be seen that the down-range resolution, down-range unambiguous
range, cross-range resolution and unambiguous cross-range are determined by the band-
width, frequency step-size, imaging angle and imaging angle step-size, respectively. These
simulation parameters are therefore carefully chosen in consideration of the desired image
parameters. Table 3.3 shows the simulation parameters calculated using the relationships
discussed in Section 3.3. Note that the step sizes for both the frequency and angle incre-
ments are rounded down such that the total number of steps to get to the bandwidth or
imaging angle, respectively, is an integer value.

Table 3.3: Calculated simulation parameters.

Simulation parameter Value
Bandwidth (β) 3.00 GHz
Frequency step-size (∆f) 115.4 MHz
Number of frequency steps (Nf) 27
Imaging angle (Ω) 30.9◦

Angle step-size (∆ϕ) 1.5◦

Number of angle steps (Na) 21

Stellenbosch University https://scholar.sun.ac.za

3.6. Simulating different noise-levels 31

3.6. Simulating different noise-levels
In order to study the impact of SNR on the classification algorithms investigated, this work
required the dataset to contain examples of ISAR images generated from data sampled
at various noise levels. To achieve this, white Gaussian noise was added to the sampled
backscattered electric field data, E(f, ϕ), before any ISAR processing was performed.
Images were generated at SNRs ranging from −24 dB to 24 dB with 3 dB increments while
adjusting the power of the noise relative to that of the sampled electric field.

3.6.1. Defining SNR

SNR is conventionally defined as the ratio of the mean power of the signal to the mean
power of the noise [82]. In the case of a signal, x[n], with additive white Gaussian noise
with variance σ2, the SNR is conventionally defined as

SNR =
∑N−1

n=0 |x[n]|2
Nσ2 . (3.19)

From this definition, it is apparent that any energy-conserving transform, such as the
Fourier transform, does not affect the SNR defined in (3.21). Once an ISAR image is
formed, it is clear that in this domain, the energy of the signal is limited to certain localised
regions (i.e. the scattering centres), while the noise energy is evenly distributed over the
entire domain (i.e. white). In this case, the conventional definition, which averages the
signal power over the entire domain, is not appropriate. This work, therefore, adopts
a different definition of SNR, proposed by [82], which only considers regions where the
energy is above the −3 dB point relative to the maximum (similar to the definition of SNR
used in communications where the signal is only considered in its bandwidth). For this
definition, we consider a signal x[n] and let

B = {n : |x[n]|2 ≥ 0.5×max(|x[n]|2)} . (3.20)

Reference [82] then defines the SNR as

SNR ≜
∑

n∈B |x[n]|2
|B|σ2 (3.21)

where |B| is the cardinality of B. This definition provides a more meaningful measure of
SNR and is used in this study to determine the required variance σ2 of the white Gaussian
noise necessary to achieve the desired SNRs. It is also noted that augmenting the (training)
dataset through the addition of noise is also a widely used technique in machine learning
that has been shown to reduce overfitting [83]. To make use of this, three independent
noise samples were added to each synthetic aperture for each SNR. Other processing steps

Stellenbosch University https://scholar.sun.ac.za

3.7. Normalisation and upsampling 32

frequently used in ISAR image generation are normalisation and upsampling.

3.7. Normalisation and upsampling
Normalisation can ensure that the images are independent of factors affecting the mag-
nitude, such as range, antenna gain, etc. This is desirable for classification tasks, where
these factors offer little to no information regarding the identity of the target. In this
work, each ISAR image is normalised to the peak absolute value in the final image.

The perceived resolution of the output image can be increased by zero-padding the
sampled aperture before applying the 2D Fourier transform. This technique is frequently
used in the formation of ISAR images, as it results in visually appealing images with
more pronounced scattering centres. While this technique superficially improves the image
quality and may make the data more interpretable (to human operators), this is merely a
method of interpolating the data (often termed DFT interpolation) and does not actually
improve the resolution or add information. Because no information is added, zero-padding
is not used for the most part in this study. In Section 4.4.5, a small experiment is carried
out with images which have been upsampled using this technique to investigate its impact
on machine learning based classification algorithms.

3.8. Visualising the dataset
Each ISAR image is stored as a 2D matrix of complex values. Figures 3.9 to 3.13 display
normalised ISAR images of each of the target models, imaged from various aspect angles.
The absolute values of each pixel are used to plot these images. The CAD models
superimposed on the bottom right of each image indicate the approximate orientation of
the target. In all of these figures, the negative range direction points towards the radar.
The visual similarity between Figure 3.9b and Figure 3.12a provides a good demonstration
of how ISAR images of two targets with dissimilar geometries can result in very similar
ISAR images. It is quite conceivable that a human operator or machine learning model
(particularly one which has been trained on only one of these targets) may misclassify
these images. This highlights the necessity for a robust open-set classification algorithm
capable of discriminating between similar images such as these.

Figure 3.14 provides examples of ISAR images generated at various SNRs. Here the
target and aspect angle have been kept constant.

Stellenbosch University https://scholar.sun.ac.za

3.8. Visualising the dataset 33

(a) 0◦ elevation, 0◦ azimuth (b) 0◦ elevation, 45◦ azimuth

Figure 3.9: ISAR images of the multirotor drone centred at different azimuth angles.

(a) 0◦ elevation, 0◦ azimuth (b) 0◦ elevation, 45◦ azimuth

Figure 3.10: ISAR images of the generic cruise missile centred at different azimuth
angles.

(a) 0◦ elevation, 0◦ azimuth (b) 0◦ elevation, 45◦ azimuth

Figure 3.11: ISAR images of the model fixed-wing aircraft centred at different azimuth
angles.

Stellenbosch University https://scholar.sun.ac.za

3.8. Visualising the dataset 34

(a) 0◦ elevation, 0◦ azimuth (b) 0◦ elevation, 45◦ azimuth

Figure 3.12: ISAR images of the flying-saucer type UFO centred at different azimuth
angles.

(a) 0◦ elevation, 0◦ azimuth (b) 0◦ elevation, 45◦ azimuth

Figure 3.13: ISAR images of the trihedral corner reflector centred at different azimuth
angles.

Stellenbosch University https://scholar.sun.ac.za

3.9. Conclusion 35

(a) SNR = 24 dB (b) SNR = 12 dB

(c) SNR = 0 dB (d) SNR = −12 dB

Figure 3.14: ISAR images of the multirotor drone with added noise at various SNRs.

3.9. Conclusion
After first outlining the theory behind ISAR imaging, this chapter details the process
taken to generate a dataset of ISAR images of several small complex targets. Efforts were
made to make the simulated data a better approximation of real-world measured data
through the addition of white Gaussian noise. In the following chapters, this dataset is
used to train and test machine learning classifiers to perform automatic target recognition.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Traditional Machine Learning
Approaches

The applications of three traditional machine learning algorithms (viz. logistic regression,
k-nearest neighbours and support vector machine) are discussed in this chapter. All of
these techniques are well-known machine learning approaches that have been applied to a
broad range of problems in other studies. Each of the chosen algorithms has a slightly
different approach to the classification task and therefore comes with its own set of pros and
cons. These differences are discussed in detail in the relevant sections for each technique.
It was specifically decided to investigate both linear and non-linear classifiers to gauge the
degree to which a (simple) linear classifier is applicable. While none of these approaches is
a state-of-the-art image recognition technique, there are a number of reasons to investigate
their performance. The first motivation behind the use of these algorithms is to generate
a baseline for the dataset with which the performance of more advanced (deep-learning)
machine-learning approaches, discussed in Chapter 5, may be compared. Secondly, through
this investigation, insight into the difficulty and nature of the classification task at hand
can be gained. The use of a logistic regression classifier, specifically, gives insight as to
whether the classes are linearly separable in the feature space (or to what extent this
approximation works). Additionally, the impact of variability in the training- and test sets
(with regards to both the imaging angle and SNR) is investigated here. This is more easily
achieved with traditional machine learning algorithms than with deep learning models, as
there are fewer hyper-parameters to tweak during these investigations.

4.1. Logistic regression (LR)
Logistic regression (LR) is a linear classification algorithm that calculates a hyper-plane
that best separates two labelled classes. Being a probabilistic model, LR estimates the
probability that an observation belongs to each class, rather than merely assigning a
predicted class. The probability of a class prediction is related to the distance of the
observation from the hyperplane with the logistic function. Being a linear classifier, LR
cannot create complex decision boundaries. While LR is limited in its ability to model

36

Stellenbosch University https://scholar.sun.ac.za

4.1. Logistic regression (LR) 37

complex datasets, its simplicity means that LR has very fast prediction times. This is
relevant for real-time classification, which is essential when considering the classification
of targets that pose a potential threat. Being a probabilistic discriminative model, LR
directly estimates P (C = k|x), the probability that an observation x belongs to class k

(rather than modelling the joint distribution p(x, y), as is the case with a probabilistic
generative model). This has the advantage of more efficiently utilising the training data
to distinguish between classes while discarding properties of the data which are common
between classes and offer no discriminative value. Although the LR classifier is a binary
classifier, a generalised extension, known as softmax regression or multinomial logistic
regression, can be used for multi-class classification [84]. It is worth noting that many
deep-learning models, such as that used in [49], implement a Softmax classifier as the final
layer of the model. As a result, the logistic regression classifier gives a good baseline with
which the performance of other models (such as the model to be discussed in Section 5.2)
can be compared to.

Despite the fact that the ISAR dataset considered in this study is unlikely to be linearly
separable, the use of LR helps gauge whether a linear approximation can still be used.
If a linear classifier still provides reasonable performance at a reduced computational
cost, it is worth consideration. Section 4.1 provides a theoretical background of LR and
how the model parameters can be found, followed by details on how this algorithm was
implemented.

4.1.1. Theory

Logistic regression gets its name from the logistic sigmoid function,

σ(a) ≜ 1
1 + exp(−a) , (4.1)

which maps the input a to a value between 0 and 1, as illustrated in Figure 4.1. Specifically,
considering a binary classification problem with classes C1 and C2, the logistic sigmoid
function is used to relate the posterior probability to the observation x according to

P (C = C1|x) = σ(wT x + w0), (4.2)

where w and w0 are the trainable model parameters. This expression can be simplified by
redefining w to include the bias term and prepending a 1 to the observation feature vector
as shown:

x =

1
x0
...

xd

 , w =

w0

w1
...

wd

 . (4.3)

Stellenbosch University https://scholar.sun.ac.za

4.1. Logistic regression (LR) 38

-6 -4 -2 2 4 60

0.5

1

Figure 4.1: The logistic sigmoid function, σ(a).

With this new definition, the posterior for C1 becomes

P (C = C1|x, w) = σ(wT x). (4.4)

The decision boundary, i.e. at P (C = C1|x, w) = P (C = C2|x, x) = 0.5, is given by

wT x = 0. (4.5)

4.1.1.1. Training

Let us consider a training dataset D : {xn, yn}, where yn denotes the class membership of
each observation xn (let yn = 0 and yn = 1 correspond to C1 and C2 respectively). Fitting
a logistic regression model to the training data involves finding values for w that maximise
the likelihood of the data conditioned on w, p(D|w).
For convenience sake, the observations and class labels in the training data can be separated
as X = {x1, x2, ..., xn} and y = {y1, y2, ..., yn}. Assuming that yn is only dependent on
xn, the likelihood to be maximised can be written as,

p(D|w) = p(X, y|w) = P (y|X, w)p(X|w)

= p(X)
N∏

n=1
p(yn|X, w)

= p(X)
N∏

n=1
P (yn|xn, w),

(4.6)

Stellenbosch University https://scholar.sun.ac.za

4.1. Logistic regression (LR) 39

noting that X is independent of w. Given that yn follows a Bernoulli distribution, we can
express the final term in (4.6) as

P (yn|xn, w) = P (C1|xn, w)yn(1− P (C1|xn, w))1−yn

= σ(wT xn)yn(1− σ(wT xn))1−yn ,
(4.7)

where (4.4) has been used. Substituting (4.7) into (4.6), the likelihood becomes

p(D|w) = p(X)
N∏

n=1
σ(wT xn)yn(1− σ(wT xn))1−yn . (4.8)

While maximising (4.8) will theoretically yield values that correctly fit the model
parameters w to the data D, this expression can lead to issues with numerical stability
in practice (resulting from the product of many small terms). It is, therefore, common
practice to rather minimise the negative log-likelihood,

E(w) ≜ − ln p(D|w) = −
N∑

n=1
{yn ln σ(wT xn)+(1−yn) ln (1− σ(wT xn))}− ln p(X). (4.9)

It can be seen that this expression can be minimised by making w arbitrarily large, without
changing the position boundary (noting that (4.5) is unaffected by scalar multiples of w).
It is, therefore, necessary to restrict the value of w either through constrained optimisation
(eg. imposing wT w = 1) or through the addition of penalty terms. The benefit of using
the latter approach is that it can be used as a form of regularisation, as discussed below.

4.1.1.2. Regularisation

A sufficiently complex model can be forced to tightly fit the training data in a way that does
not generalise well to observations outside the training set. This problem, known as over-
fitting, can be addressed through regularisation, which reduces how ’tightly’ the decision
boundary is formed around data points that lie close to the boundary. Regularisation can
be applied to LR by adding a regularisation term 1

2λ
wT w to the negative log-likelihood,

E(w). This gives a new cost function

J(w) = E(w) + 1
2λ

wT w = −
N∑

n=1
{yn ln σ(wT xn) + (1− yn) ln (1− σ(wT xn))} − ln p(X)

(4.10)
to be minimised. Note that the regularisation term added here introduces an additional
parameter, λ. Hyperparameters such as this are optimised through the use of a validation
set, as discussed in Section 4.4.

Stellenbosch University https://scholar.sun.ac.za

4.2. Support vector machine (SVM) 40

4.1.2. Implementation

Using the described theory, an LR classifier was implemented in MATLAB. Rather than
implementing an optimisation algorithm from scratch, the BFGS (Broyden, Fletcher,
Goldfarb, and Shanno [85–88]) Quasi-Newton method implemented in the Optimisation
Toolbox was employed to minimise (4.10). This method requires an expression for the
gradient, which is calculated as

∇E(w) =
N∑

n=1
(σ(wT xn)− yn)xn. (4.11)

Once the model parameters w have been set, predictions for new observations xnew are
then calculated as,

ynew = σ(wT xnew) ≥ 0.5. (4.12)

4.2. Support vector machine (SVM)
The support vector machine (SVM) classifier has a lot in common with LR, in that it is
also a linear classifier which separates two classes with a hyper-plane. The first major
difference between LR and SVM is how the optimal hyperplane is defined. While the
optimal decision boundary according to LR is defined through a statistical approach, SVM
defines the optimal decision boundary based on the geometrical properties of the data.
More precisely, LR maximises the likelihood of the training data, while SVM maximises
the margin between the decision boundary and the nearest observations (support vectors).
Due to this property, SVM is termed a large margin classifier. A more in-depth explanation
of SVM is provided below, with a formal definition of the optimal hyperplane (decision
boundary) and details on the training procedure. This is followed by a discussion on how
the kernel trick can be used to form a non-linear decision boundary in the original feature
space by mapping the data to a new, higher-dimensional, feature space. The section then
concludes with the implementation details of the SVM used in this study.

SVM is widely used in general image classification [89], and has also been applied to the
classification of ISAR images in previous studies [90, 91]. The ability to create non-linear
decision boundaries in the input feature space makes SVM an appropriate technique for
the classification of the ISAR images used in this study.

4.2.1. Theory

Consider once again the training data D = {xn, yn}. For this section, it is helpful to assign
the class labels such that yi = 1 indicates class C1 (also referred to as the positive class)
and yi = −1 indicates class C2 (or the negative class). Any hyperplane in the feature space

Stellenbosch University https://scholar.sun.ac.za

4.2. Support vector machine (SVM) 41

can be described by the set of points in x which satisfy the equation

wT x− b = 0, (4.13)

where w is a normal vector to the hyperplane and b
||w|| gives the offset (in the direction of

w) of the hyperplane from the origin. Note that w need not necessarily be a unit vector
in this definition. We will begin by formulating SVM for linearly separable data, before
extending the concept to include data that is not linearly separable.

4.2.1.1. Formulation for linearly separable data

If we assume that the data is linearly separable, it follows that there exist (at least) two
parallel hyperplanes that separate the two classes. These hyperplanes, shown in Figure
4.2, can be described by

wT x− b = 1 (4.14)

and
wT x− b = −1 (4.15)

where any point on or above (4.14) belongs to C1 and any point on or below (4.15) belongs
to C2. The hyperplane that lies mid-way between these two planes is therefore described
by

wT x− b = 0, (4.16)

The region between the bounding hyperplanes, known as the margin, can be calculated as

d = 2
∥w∥

. (4.17)

For SVM, the objective is to find two such planes that maximise the margin d. The
hyperplane that lies mid-way between two hyperplanes with maximum separation is
referred to as the maximum-margin hyperplane. From (4.17) it is apparent that in order
to maximise the margin d, ∥w∥ should be minimised. This is done under the constraint

yi

(
wT x− b

)
≥ 1 (4.18)

to ensure that the observations for each class remain on the correct side of the margin.
Under this condition, this is known as a hard-margin SVM. It should be noted that the
decision boundary found by SVM is dependent only on the observations that lie close
to the decision boundary (on the hyperplanes defining the margin), and is completely
independent of the rest of the data. The data points lying on the margin are known as
support vectors.

Stellenbosch University https://scholar.sun.ac.za

4.2. Support vector machine (SVM) 42

Margin

Figure 4.2: Linearly separable classes (represented by the blue circles and red squares)
separated by parallel hyperplanes (dashed lines). [92] ©2019 IEEE.

4.2.1.2. Extension to data that is not linearly separable

Previously, we made the assumption that the training data D is linearly separable. It is
obvious, however, that this is not the general case. To extend the use of SVM to data
that is not linearly separable, the hinge loss function

max
(
0, 1− yi

(
wT x− b

))
(4.19)

is employed. This function reduces to 0 in situations where (4.18) is satisfied but, for
all observations on the wrong side of the margin, increases linearly with respect to the
distance from the margin. It is therefore possible to create a ‘soft’ margin by relaxing
the constraints in (4.18) and penalising choices of w with the hinge loss (4.19). The
optimisation goal thus becomes minimising

∥w∥2 + C

[
1
n

N∑
i=1

max
(
0, 1− yi

(
wT x− b

))]
(4.20)

where the hyperparameter C can be adjusted to control the trade-off between the size of
the margin and the extent to which the condition (4.18) is relaxed. Large values of C

cause the SVM to behave similarly to the hard-margin SVM, while allowing it to work on
data which are not linearly separable. Techniques used to approach the task of minimising
(4.20) are discussed below.

Stellenbosch University https://scholar.sun.ac.za

4.2. Support vector machine (SVM) 43

4.2.1.3. Computation

Minimising (4.20)) can be approached using numerous optimisation techniques. Because
the expression in (4.20) is a convex function in w and b, gradient descent methods such as
sub-gradient descent can be used [93]. The classic approach [94], however, which involves
reducing (4.20) to a quadratic programming problem, is outlined here. To start off, let
us introduce a variable Z = (ζ1, ..., ζn) where ζi = max

(
0, 1− yi

(
wT xi − b

))
. With this,

the optimisation problem can be rewritten to minimise

∥w∥2 + C

[
1
n

N∑
i=1

ζi

]
(4.21)

subject to

yi

(
wT xi − b

)
≥ 1− ζi (4.22)

ζi ≥ 0, ∀i . (4.23)

From this, we can construct a Lagrangian using Lagrangian multipliers Λ = (α1, ..., αn)
and R = (r1, ..., rn) to enforce constraints (4.22) and (4.23), respectively,

L(w, Z, b, Λ, R) = wT w + C

n

N∑
i=1

ζi −
N∑

i=1
αi

[
yi

(
wT xi + b

)
− 1 + ζi

]
−

N∑
i=1

riζi (4.24)

The saddle point of L(w, Z, b, Λ, R) can be found where

∂L

∂W
= 2w− C

n

N∑
i=1

αiyixi = 0 (4.25)

∂L

∂b
= C

n

N∑
i=1

αiyi = 0 (4.26)

and

∂L

∂ζi

= C

n
− αi − ri = 0 . (4.27)

Rearranging, we find that at this point

w = C

2n

N∑
i=1

αiyixi , (4.28)

N∑
i=1

αiyi = 0 , (4.29)

Stellenbosch University https://scholar.sun.ac.za

4.2. Support vector machine (SVM) 44

and

ri = C

n
− αi . (4.30)

The solution to the original optimisation problem can therefore be found by substituting
these expressions for w, ri and ∑N

i=1 αiyi into the Lagrangian (4.24) and maximising with
respect to αi:

maximise f(α1, ...αn) =
N∑

i=1
αi −

1
2

N∑
i=1

N∑
j=1

yiαi

(
xT

i xj

)
yiαi (4.31)

subject to

N∑
i=1

αiyi = 0, (4.32)

0 ≤ αi ≤
C

n
. (4.33)

This maximisation problem with linear constraints can be solved in αi with quadratic
programming algorithms or, alternatively, methods such as coordinate descent [95]. Notably,
it can be shown that α = 0 for any xi on the correct side of the margin and 0 < αi ≤ C/n

when xi lies on the margin boundary (i.e. xi is a support vector). It has already been
shown that w can be expressed as a linear combination of support vectors in (4.28). The
hyperplane offset value, b, can be recovered by substituting the coordinates of a support
vector xi (choosing an index i such that 0 < αi ≤ C/n) into

yi

(
wT xi − b

)
= 1

b = wT xi − yi

(4.34)

noting that y−1
i = yi since yi = ±1. The fact that the maximisation problem obtained in

(4.31) only requires the dot product of two vectors xi and xj is noted here. The importance
of this property is highlighted below, in the discussion of how the kernel trick is applied.

4.2.1.4. Non-linear kernels

In general, it is unreasonable to expect that ISAR images of different classes are linearly
separable. This study, therefore, needs to consider non-linear classification algorithms.
While an algorithm that separates two classes with a hyperplane is strictly a linear classifier,
there is no reason why classification should be performed in the original feature space.
It is possible that data which are not linearly separable in the original feature space X
can be transformed to a new, often higher dimensional, feature space V in which the two

Stellenbosch University https://scholar.sun.ac.za

4.2. Support vector machine (SVM) 45

classes are linearly separable via a non-linear mapping function φ : X → V such that

vi = φ (xi) . (4.35)

Figure 4.3 demonstrates this concept with an example, where the mapping v = (v1, v2, v3) =
(x1, x2, x2

1 + x2
2) is used to transform two class data from a feature space where the classes

are linearly inseparable to one where the classes are linearly separable.

Figure 4.3: An example from [92] of how a non-linear mapping can be used to convert a
linearly inseparable problem to one which is linearly separable in a higher dimensional
feature space. ©2019 IEEE.

A direct approach to using the above concept would be to transform the entire
dataset into the new feature space first, before using an SVM on the transformed dataset.
Computing the coordinates in the new feature space for every data point is, however,
computationally expensive. It is worth recognising that for the optimisation problem in
(4.31), the transformed feature space V is only needed for computation of the dot product
xi · xj, and we are at no point directly interested in the full representation of the data in
this space. The kernel trick [96] can therefore be utilised. A kernel function which maps
the inner product of any two vectors xi and xj (in X) in another feature space V ,

k (xi, xj) = ⟨φ (xi) , φ (xj)⟩V (4.36)

can be used to perform the necessary calculations in V without the overhead requirement
of transforming the entire dataset to the new feature space. In fact, an explicit definition
of φ(·) is not necessary and it is even possible to use kernels that correspond to mappings
to infinite dimensional feature spaces [96, p. 825]. Any function satisfying Mercer’s
condition [97] may be used as a kernel function, however, popular choices of kernel
functions include [92]:

• Polynomial kernel: k (xixj) =
(
xT xj + a

)b

Stellenbosch University https://scholar.sun.ac.za

4.2. Support vector machine (SVM) 46

• Gaussian radial basis function: k (xi, xj) = exp (−a∥xi − xj∥2)

• Hyperbolic tangent: k (xi, xj) = tanh
(
axT

i xj + b
)

where a and b are scalar hyperparameters to be considered. Kernel functions can be used
by replacing every inner product in the above linear SVM formulation with the desired
kernel function. The optimisation task (4.31) therefore becomes

maximise f(α1, ...αn) =
N∑

i=1
αi −

1
2

N∑
i=1

N∑
j=1

yiαi (φ (xi) · φ (xj)) yiαi (4.37)

=
N∑

i=1
αi −

1
2

N∑
i=1

N∑
j=1

yiαi (k (xi, xj)) yiαi (4.38)

subject to

N∑
i=1

αiyi = 0, (4.39)

0 ≤ αi ≤
C

n
. (4.40)

While it is known that w in the transformed space can be described by

w = C

2n

N∑
i=1

αiyiφ (xi) , (4.41)

finding w with this definition is problematic in the absence of an explicit mapping function
φ(·) (as may be the case for certain choices of kernel function). Class predictions can,
however, be computed without first explicitly finding w, as is discussed below.

4.2.1.5. Prediction

Once the optimal hyperplane has been found, forming class predictions for a new observation
xnew is as straightforward as determining which side of the decision boundary the unlabelled
data lie. This can be written

ynew = sign
(
wT φ (xnew)− b

)
. (4.42)

For implicit definitions of φ(·), however, we require an expression that does require w or
the mapping φ(·). The offset parameter b can be calculated by finding some index i such

Stellenbosch University https://scholar.sun.ac.za

4.3. K-nearest neighbours (KNN) 47

that 0 < αi ≤ C/n, where it is known that φ (xi) lies on the margin boundary, and solving

b = wT φ(xi)− yi

=
 N∑

j=1
αjyjφ(xj) · φ(xi)

− yi

=
 N∑

j=1
αjyjk(xj, xi)

− yi

(4.43)

The class prediction for a new observation xnew can then be calculated with

ynew = sign
(
wT xnew − b

)
= sign

 N∑
j=1

αjyjk(xj, xi)
− b

 .
(4.44)

It is noted that SVM is not probabilistic, and is therefore only capable of forming
discriminative class predictions and does not output a probability P (y = 1|x). Platt
scaling [98] can, however, be used for probabilistic classification using SVM.

4.2.2. Implementation

This study makes use of the SVM implementation used in the MATLAB Statistics and
Machine Learning Toolbox. This implementation is straightforward to use, where the
mdl = fitcscvm(...) function creates a model from the data and hyperparameters passed
to it. The model can be queried with the y_new = predict(x, mdl) function to generate
predictions (where x is an unlabelled ISAR image to be classified). Section 4.4 further
explains how the dataset of ISAR images was used to train and test this algorithm.

4.3. K-nearest neighbours (KNN)
The third traditional machine learning classifier investigated, k-nearest neighbours, is
a conceptually simple technique. In contrast to LR and SVM, the KNN algorithm is
not a statistical model. The rationale behind the KNN algorithm is the assumption
that observations of the same class are grouped together in the feature space. KNN,
therefore, infers the class membership of new (unlabelled) observations by considering
the distances to the k nearest labelled observations. Because inference is done using
the labelled data directly rather than using a model of the data, KNN does not involve
any trainable parameters that need to be optimised. Hence, there is no training step
required. This property can be beneficial in that new labelled data can be added at any
time to update, which allows it to be updated in real-time. The ability to be updated in
real-time could be extremely advantageous for a target recognition system operating in a

Stellenbosch University https://scholar.sun.ac.za

4.3. K-nearest neighbours (KNN) 48

dynamic environment where the types of targets observed change over time. The major
disadvantage, however, is that this comes at the cost of speed and computational efficiency.
The run-time of the KNN algorithm scales poorly with both the size of the labelled dataset,
as well as the dimensionality of the data. For target recognition purposes, faster prediction
times are desirable, as this gives more time for the user of the system to react (particularly
when the target is identified as a threat). Other studies have previously used KNN to
recognise targets with ISAR imaging [90,91]. The KNN algorithm is formalised below.

4.3.1. Theory

Consider a set of labelled data D = xn, yn and a unlabelled data-point xnew. The first step
of the KNN algorithm involves calculating the distance, dn from each labelled observation to
the unlabelled observation. A variety of distance metrics may be employed (eg. Euclidian
distance, Manhattan distance or Minkowski distance), however, this work specifically
makes use of the Euclidean distance,

dn = ||xnew − xn|| (4.45)

Using this metric, the k nearest labelled data points are selected to form a set of nearest
neighbours N , as shown in Figure 4.4. The unlabelled observation xnew is finally assigned
to the modal class in the set N .

Figure 4.4: An unlabelled observation shown in relation to its nearest neighbours. Circled
regions indicate different sets N for various values of k. Red and blue dots represent
labelled observations and the respective colour of the highlighted regions indicates to
which class a new observation in that region will be assigned. [99] ©2019 IEEE.

The number of neighbours to be considered, k, is a hyper-parameter that should be
optimised appropriately (discussed in Section 4.4). It should be noted that, in general,
increasing k reduces the effect of noise on the classification error, while smaller values of

Stellenbosch University https://scholar.sun.ac.za

4.4. Experiments 49

k result in more complex decision boundaries [100]. Figure 4.5 shows how increasing k

has a smoothing effect on the non-linear decision boundary. For a two-class problem, k is
generally chosen as an odd number to avoid tied votes.

Figure 4.5: KNN decision boundary with (from left to right) k = 1, k = 3, k = 5 and
k = 7 for an arbitrary dataset from [101]. ©2012 IEEE.

4.3.2. Implementation

Pseudocode for the KNN algorithm is given in Algorithm 4.1 which accepts a list of known
observations X ref with corresponding labels y ref and an unlabelled observation x new.
The corresponding MATLAB implementation can be found in Appendix C.

Algorithm 4.1: Pseudo code for the KNN implementation used in this study.
for x ∈ X ref do

d← x− x new
end for
d sorted← sort(d) ▷ Sort in ascending order.
y pred← mode(d sorted[1, .., k])
return y pred

4.4. Experiments
The three machine learning algorithms being investigated were compared under various
training and testing conditions. Specifically, the conditions were adjusted to examine the
effect of the variation between the test set and the training set (i.e. varying the imaging
angles used), the effects of adjusting the SNR of the training data and the impact of
upsampling the ISAR images. In this section, both the closed-set classification accuracy
and the prediction times are assessed under these various conditions. Section 4.4.1 outlines
the aspects of the investigation and training approach common across all the experiments.
The sections following this discuss the specific details of each experiment and report on
the results.

Stellenbosch University https://scholar.sun.ac.za

4.4. Experiments 50

4.4.1. General approach

All of the experiments in this chapter implement binary classifiers trained on two of the
five classes from the dataset. In all instances, these two classes are the multirotor drone
and missile classes. Each ISAR image is represented by a matrix of complex values. The
classification algorithms used here, however, require the input to be a real-valued feature
vector for each observation. In open literature, there is a constant debate around using
raw radar data or using some preprocessing and feature extraction. In this study the raw
pixel of the ISAR images are used for the following reasons:

1. The use of handcrafted features is tedious and challenging, and it is, therefore,
desirable to avoid this to reduce design overhead.

2. The results from the traditional machine learning classifiers are meant to form
a baseline with which the deep learning techniques can be compared. For a fair
comparison, we wish to apply the same pre-processing steps (deep learning techniques
are designed to work on the raw data).

3. The resolution of the images is low enough (27px × 21px) that the use of the raw
pixel data is still a viable option.

To transform the complex-valued matrices into real-valued feature vectors, the matrices
were flattened and the complex values were split into their real and imaginary components
(resulting in two features per complex value). This results in a vector with 27×21×2 = 1134
features for each observation (i.e. a single ISAR image), which can be used as inputs for
the classification algorithms.

4.4.2. Training at a single elevation

The first experiment’s objective was twofold:

1. To get a performance comparison between the classification algorithms used on a
simplified problem.

2. To evaluate each classifier’s ability to generalise to observations from imaging angles
outside of what they are trained on.

For this purpose, a subset of the dataset, containing ISAR images generated from a
single elevation angle θ = 0◦ (illustrated in Figure 4.6) was used. Since only one elevation is
considered, this subset displays significantly less variance than the full dataset, simplifying
the classification problem. Of the images generated at this elevation, 70% of the images
(corresponding to 70% of the azimuth angles used) were used for training, while the
remainder was set aside for testing. Note that for this experiment, only ISAR images

Stellenbosch University https://scholar.sun.ac.za

4.4. Experiments 51

Figure 4.6: Imaging angles at a single elevation (θ = 0).

without added noise were used for training. The LR, SVM and KNN classifiers were then
trained using this reduced training set.

4.4.2.1. Hyperparameter tuning

A small validation set comprised of ISAR images with no added noise was used to tune the
hyperparameters associated with each algorithm. The optimal hyperparameters λ and k

for the LR and KNN classifiers, respectively, were determined empirically by plotting the
accuracy obtained with the validation set against the hyperparameter value. The MATLAB
implementation of SVM conveniently automates the optimisation of the numerous SVM
hyperparameters using a grid-search algorithm. Table 4.1 summarises the hyperparameter
choices used for testing.

Table 4.1: Hyperparameter values.

LR: λ 0.001
KNN: k 1
SVM: C (BoxConstraint in MATLAB implementation) 930.66

kernel function Gaussian
kernel scale 2.75

4.4.2.2. Results: Testing at a single elevation

Once trained, the models were tested on the ISAR images generated from the same
elevation angle, that were previously set aside (excluded from training). Figure 4.7 plots
the test accuracy against the SNR for each of the classifiers. From these results, it can be
seen that all three classifiers achieve reasonable classification accuracy at high SNRs. The
KNN classifier achieves a classification accuracy of 100 % on this test set for SNRs as low
as −3 dB, after which the classification accuracy begins to decline. The SVM classifier has
a slightly poorer accuracy than the KNN classifier, maintaining a 98-99 % classification
accuracy for SNRs above 6 dB. It can be observed, however, that the SVM classifier is
more susceptible to image quality degradation as a result of noise as the classification
accuracy declines below an SNR of 6 dB. Of the three algorithms, LR performs notably

Stellenbosch University https://scholar.sun.ac.za

4.4. Experiments 52

-15 -10 -5 0 5 10 15 20 25

SNR (dB)

70

75

80

85

90

95

100
A

cc
ur

ac
y

[%
]

Accuracy vs SNR

SVM (gausian)
Logistic regression
KNN (k = 1)

Figure 4.7: Accuracy vs SNR for the LR, KNN and SVM classifiers trained and tested
on a single elevation. All classifiers achieve reasonable accuracy for high SNRs, which
then drops off as the SNR decreases. The KNN classifier performs significantly better
than the other two methods.

worse (with regard to accuracy). This poor performance can be attributed to the fact that
the data is not linearly separable in the input feature space. The LR classifier lacks the
complexity to properly fit the training data.

4.4.2.3. Results: Testing at multiple elevations

In many situations, designers of a target recognition system have limited amounts of
training data. It is, therefore, relevant to investigate each classifier’s ability to handle
observations of targets imaged from aspect angles significantly different to those used in
training. Each classifier, trained at a single elevation (0◦), was tested on a set of images
generated for multiple elevation angles to gauge the classifiers’ ability to generalise to
novel observations. The multiple-elevation test set contained ISAR images of the targets
imaged at elevation angles from −45◦ to 45◦. To provide some indication of the variation
between the training and test sets, Figure 4.8 shows an example of an ISAR image of the
drone target imaged at an elevation of 0◦ (used in the training set), while Figure 4.9 shows
ISAR images of the same target at the same azimuth angle but at different elevations
(used in the test set).

Stellenbosch University https://scholar.sun.ac.za

4.4. Experiments 53

Figure 4.8: An ISAR image of the drone target imaged at an elevation angle θ = 0◦ and
azimuth angle ϕ = 0◦.

The accuracy obtained on this test set is plotted against SNR in Figure 4.10. Both the
LR and SVM classifiers are observed to generalise poorly to ISAR images generated from
novel aspect angles outside of the training data’s range, achieving a maximum classification
accuracy of 63 % and 78 %, respectively. On the other hand, the KNN classifier continues to
perfectly classify the test set for SNRs above 18 dB and maintains a classification accuracy
>99 % for SNRs above 3 dB, despite the significant variation between the training and test
sets. The most observable difference in the KNN algorithm’s performance between the
single- and multiple-elevation test sets is that when tasked with classifying data outside
the training domain (with regard to aspect angle), the KNN classifier is slightly more
sensitive to noise.

Stellenbosch University https://scholar.sun.ac.za

4.4. Experiments 54

(a) θ = −45◦ (b) θ = −30◦

(c) θ = −15◦ (d) θ = 15◦

(e) θ = 30◦ (f) θ = 45◦

Figure 4.9: ISAR images of the drone target imaged at multiple elevation angles θ (given
in each sub-figure) and azimuth angle ϕ = 0◦

Stellenbosch University https://scholar.sun.ac.za

4.4. Experiments 55

-25 -20 -15 -10 -5 0 5 10 15 20 25

SNR (dB)

50

55

60

65

70

75

80

85

90

A
cc

ur
ac

y
[%

]

Accuracy vs SNR

SVM (gausian)
Logistic regression
KNN (k = 1)

Figure 4.10: Accuracy vs SNR for the LR, KNN and SVM classifiers trained on a single
elevation and tested on multiple elevations. Here it can be seen that the KNN handles the
out-of-distribution observations significantly better than the other two classifiers which
are unable to effectively classify ISAR images from novel imaging angles outside of those
observed in training.

Stellenbosch University https://scholar.sun.ac.za

4.4. Experiments 56

4.4.3. Training at multiple elevations

Following the experiment where the classifiers were trained with data from a single elevation,
the classifiers were retrained using data from multiple elevation angles (45◦ above the
horizontal to 45◦ below the horizontal) and all azimuth angles, as shown for the drone
target in Figure 4.11. Again, the training data only included ISAR images with no added
noise, with a 70:30 split between the training and test set.

Figure 4.11: Imaging angles for multiple elevations (−45 ≤ θ ≤ 45).

4.4.3.1. Results

The new models were tested on the full test set, containing ISAR images of the two target
models imaged at multiple elevation and azimuth angles (i.e. the same test set as used
in Section 4.4.2) above. The results are plotted in Figure 4.12. Comparing the results
obtained with the new models in Figure 4.12 to the results from the old model trained on
a single elevation (Figure 4.10), it can be seen that the SVM and KNN classifiers benefit
significantly from the increased training set. The range of SNRs over which the KNN
classifier is capable of perfect classification extends down to 0 dB, and the accuracy only
begins to drop significantly from −9 dB. The increased performance of the KNN classifier
can be attributed to the increase in labelled observations to which new observations are
compared.

While the SVM classifier trained on a single elevation achieved a maximum classification
accuracy of 78 %, training with multiple elevation angles enabled it to achieve a classification
accuracy between 98 and 99 % for high and moderate SNRs (>0 dB). Interestingly, in
this SNR range, the SVM classifier shows better performance when trained and tested
on multiple elevations (Figure 4.12) than when trained and tested on a single elevation
(Figure 4.7), despite the fact that the latter classification problem is a subset of the former.
This is an interesting consequence of the use of the kernel trick. Increasing the number
of observations in the training set effectively increases the rank (number of dimensions
used) of the data in the mapped feature space. As a result, increasing the number of

Stellenbosch University https://scholar.sun.ac.za

4.4. Experiments 57

-25 -20 -15 -10 -5 0 5 10 15 20 25

SNR (dB)

50

55

60

65

70

75

80

85

90

95

A
cc

ur
ac

y
[%

]
Accuracy vs SNR

SVM (gausian)
Logistic regression
KNN (k = 1)

Figure 4.12: Accuracy vs SNR for the LR, KNN and SVM classifiers trained and tested
at multiple elevations. While the KNN and SVM algorithms manage to fit the data well,
the logistic regression classifier is unable to fit the data when ISAR images from multiple
elevation angles are used.

training observations increases the SVM’s ability to map the data to a feature space in
which the classes are linearly separable. It is worth noting, that the SVM classifier was
able to perfectly fit the training data (which is only possible for data which is linearly
separable in the mapped feature space). For SNRs below 0 dB, the SVM classifier displays
high sensitivity to noise.

In contrast, the performance of the LR classifier only shows a marginal increase when
trained with multiple elevations. This is unsurprising given that the data is not linearly
separable in the input feature space. In this instance, once the optimal hyperplane has
been found, an increase in training data does not contribute anything to the model. The
data remains linearly inseparable, and the LR classifier lacks the complexity to form a
non-linear decision boundary.

4.4.3.2. Runtimes

For a target recognition system, while classification accuracy is important, this is not the
only performance metric to consider. For a system performing real-time classification, the

Stellenbosch University https://scholar.sun.ac.za

4.4. Experiments 58

prediction speed is also of interest. Note that the training time is less important since this
is a once-off cost that doesn’t affect the normal operation of a target recognition system.
Table 4.2 reports the prediction times for each of the classifiers and captures the impact of
the training set size on the prediction speed. All computations were performed on an Intel
i7-7700HQ CPU.

Table 4.2: Prediction times for KNN, SVM and LR classifiers.

Classifier
Average prediction time for a single observation [ms].

Single elevation 19 elevations
(340 training observations) (6460 training observations)

LR 0.0365 0.0376
SVM 0.0382 1.3000
KNN 2.5000 48.8000

From these results, it is observed that the KNN classifier has significantly longer
prediction times than the other two classifiers. Additionally, this prediction time increases
linearly with the size of the labelled dataset. Despite the KNN classifier’s excellent
classification accuracy, in the case of large datasets the prohibitively long prediction times
limit its suitability to real-time automatic target recognition systems. The LR and SVM
classifiers are shown to form predictions significantly faster. In the case of the LR classifier,
this time is constant with respect to the size of the training set. While the SVM classifier
prediction time remains low in these examples, it should be noted that the prediction
speed scales poorly with the number of support vectors (and hence the size of the training
set).

4.4.4. Training at other SNRs

In the previous experiments, it is noted that the training sets only contained ISAR images
with no added noise. In an attempt to make the classifiers less sensitive to noise, the effect
of including examples of noisy images in the training data was investigated. The models
were retrained on multiple training sets comprised of ISAR images of the two targets at
all recorded aspect angles (azimuth and elevation), with each training set using images
with a different SNR (in the range −24-24 dB). For each combination of aspect angle and
SNR, three noise samples were used.

4.4.4.1. Results

The classifiers were tested on the same test set used previously (i.e. the 30 % split not
used in training). Figures 4.13 and 4.14 depict the results for the LR and SVM classifiers,
respectively. The KNN classifier was not included in this investigation due to its lengthy
prediction times (we have also already seen good performance from this classifier for SNRs
as low as −6 dB).

Stellenbosch University https://scholar.sun.ac.za

4.4. Experiments 59

-25 -20 -15 -10 -5 0 5 10 15 20 25

Testing SNR [dB]

45

50

55

60

65

70

A
cc

ur
ac

y
[%

]

Logistic Regression
Accuracy vs SNR

-24 dB
-21 dB
-18 dB
-15 dB
-12 dB
-9 dB
-6 dB
-3 dB
0 dB

3 dB
6 dB
9 dB
12 dB
15 dB
18 dB
21 dB
24 dB
Inf

Training SNR

Figure 4.13: Accuracy vs SNR for the LR classifier trained at various SNRs. Adding a
small amount of noise to the training data improves the noise sensitivity of the classifier,
while too much noise degrades performance.

Looking at Figure 4.13, it can be seen that while training the LR classifier at lower
SNRs (in the range 24–0 dB) does not have a significant effect on the accuracy when tested
on the test set with an SNR of 24 dB. When tested at lower SNRs, however, it is observed
that the addition of noise to the training data improves the classifier’s sensitivity to noise.
The general trend is that for training SNRs between 0 and 24 dB, as the SNR of the
training set decreases, the classifier’s ability to accurately classify targets at lower SNRs
increases. Training with SNRs below 0 dB, however, has a detrimental effect and reduces
the classification accuracy overall. At training SNRs below −18 dB, the quality of the
training data decreases to the point where the LR algorithm cannot separate the classes
and the classification accuracy drops to approximately 50 % (i.e. as good as a random
guess).

For the SVM classifier, Figure 4.14 shows that for training SNRs between 24 and 0 dB,
the addition of noise results in a slight decrease in the maximum accuracy obtained when
the test set SNR is above 3 dB. As the training SNR approaches 0 dB, however, the SVM

Stellenbosch University https://scholar.sun.ac.za

4.4. Experiments 60

-25 -20 -15 -10 -5 0 5 10 15 20 25

Testing SNR [dB]

45

50

55

60

65

70

75

80

85

90

95

100
A

cc
ur

ac
y

[%
]

Support Vector Machine
Accuracy vs SNR

-24 dB
-21 dB
-18 dB
-15 dB
-12 dB
-9 dB
-6 dB
-3 dB
0 dB
3 dB
6 dB
9 dB
12 dB
15 dB
18 dB
21 dB
24 dB
Inf

Training SNR

Figure 4.14: Accuracy vs SNR for the SVM classifier trained at various SNRs. Adding a
small amount of noise to the training data improves the noise sensitivity of the classifier
despite decreasing the performance at very high SNRs. The addition of too much noise
degrades performance overall.

classifier remains accurate over a larger range of testing SNRs. For training SNRs below
−3 dB, the accuracy of the SVM classifier drops significantly as the training SNR decreases.
Despite these trends, the SVM classifier trained without any added noise in the training
data appears to result in the best overall performance.

4.4.5. Up-sampling

For ISAR images presented to human operators, up-sampling is used often to provide a
smoother interpolated image in which it is easier to see the detail of the target. Examples
of this are shown in Figure 4.15. While higher-resolution images are easier for a human
to interpret, up-sampling does not add any more information to the image. Additionally,
using a higher image resolution is computationally expensive when it comes to training
a machine learning algorithm (ML) on thousands of such ISAR images. This poses the

Stellenbosch University https://scholar.sun.ac.za

4.4. Experiments 61

question of whether up-sampling is beneficial to machine learning algorithms.

Figure 4.15: Images (a) and (c) show example synthetic ISAR images generated from
the drone and missile models respectively. Images (b) and (d) show the same images
up-sampled with a 64-point FFT.

This experiment investigates the effects of using up-sampling (through FFT interpola-
tion) as a pre-processing step. This is done by training and testing the classifiers on ISAR
images that have been up-sampled with a 64-point FFT. These results can be compared to
those obtained in Section 4.4.4, which uses the same testing and training data, but without
the up-sampling. To examine the effects, both the classification accuracy and prediction
times are considered. Again, the KNN classifier was excluded from this investigation due
to its prohibitively slow prediction times.

4.4.5.1. Results

The results obtained using the up-sampled ISAR images with the LR classifier are shown
in Fig. 4.16. The same general trends for performance versus training SNR (as with the
previous results in Figure 4.13) can be seen, where training with a moderate SNR (0 dB
to 6 dB) yields the best performance. It is interesting to note that the use of up-sampled
ISAR images has a negative effect on the accuracy of the LR classifier at moderate to high
SNRs, however, it can be noted that the use of up-sampled ISAR images improves the
performance of classifiers trained at low training SNRs (dash-dotted lines).

Stellenbosch University https://scholar.sun.ac.za

4.4. Experiments 62

-25 -20 -15 -10 -5 0 5 10 15 20 25

Testing SNR [dB]

45

50

55

60

65

70

A
cc

ur
ac

y
[%

]

Logistic Regression
Accuracy vs SNR

-24 dB
-21 dB
-18 dB
-15 dB
-12 dB
-9 dB
-6 dB
-3 dB
0 dB

3 dB
6 dB
9 dB
12 dB
15 dB
18 dB
21 dB
24 dB

Training SNR

Figure 4.16: Accuracy vs SNR for the LR classifier trained at various SNRs on up-sampled
ISAR images. This has a negative impact compared to the use of data which has not
been up-sampled.

As seen in Fig. 4.17, the maximum accuracy of the SVM trained with up-sampled ISAR
images is less than 70 %. This shows a significantly degraded performance when compared
to images obtained without using up-sampling. One possible explanation is that the SVM
hyper-parameters (such as the number of support vectors) were optimised with respect
to both accuracy and training/prediction time. Owing to the fact that training with the
up-sampled ISAR images is significantly more computationally expensive, accuracy was
forfeited in favour of viable training and prediction times.

4.4.5.2. Prediction times

Table 4.3 shows the average prediction times for a single observation for the LR and
SVM classifiers. In each case, the prediction time increases when the ISAR images are
up-sampled, as this introduces more input features. The LR classifier has significantly
faster prediction times (below 10 µs), that scale reasonably when up-sampled ISAR images

Stellenbosch University https://scholar.sun.ac.za

4.4. Experiments 63

-25 -20 -15 -10 -5 0 5 10 15 20 25

Testing SNR [dB]

45

50

55

60

65

70

A
cc

ur
ac

y
[%

]

Support Vector Machine
Accuracy vs SNR

-24 dB
-21 dB
-18 dB
-15 dB
-12 dB
-9 dB
-6 dB
-3 dB
0 dB

3 dB
6 dB
9 dB
12 dB
15 dB
18 dB
21 dB
24 dB

Training SNR

Figure 4.17: Accuracy vs SNR for the SVM classifier trained at various SNRs on up-
sampled ISAR images. This has a significant negative impact compared to the use of
data which has not been up-sampled.

are used. The SVM classifier is, however, a few orders of magnitude slower. Moreover, the
SVM prediction times scale poorly with the number of input features. This is a severe
limitation for the SVM classifier, as it cannot form predictions in real time under these
conditions.

Table 4.3: Average prediction times per observation for the LR and SVM classifiers.

Algorithm Average prediction time [ms]
No up-sampling With up-sampling

LR 0.0056 0.0606
SVM 11.535 3363.5

Stellenbosch University https://scholar.sun.ac.za

4.4. Experiments 64

4.4.6. Conclusion

Three traditional machine learning approaches were tested on a binary classification
problem, with the goal of automatically discerning between two classes given an ISAR
image of the target in question. Despite having two significantly different classes, the raw
pixel data presents a linearly inseparable problem. As a result, it was observed that the
LR classifier, which forms a linear decision boundary, was incapable of forming accurate
class predictions given a dataset of images generated from significantly different aspect
angles.

The KNN and SVM classifiers, which are capable of forming more complex non-linear
decision boundaries both achieved a much higher classification accuracy. While the best
SVM model maintained a classification accuracy of >97 % when classifying observations
with an SNR ≥0 dB, the KNN was able to perfectly classify the test set in the same SNR
range. Moreover, the KNN classifier continued to form class predictions with an accuracy
above 95 % for SNRs as low as −6 dB. It was noted that the inclusion of noisy training
examples (with a high to moderate SNR in the range 0–24 dB) generally improves the
classifiers’ sensitivity to noise without significantly impacting the accuracy at high SNRs.

While the KNN classifier clearly performed best with regard to classification accuracy,
the KNN algorithm was many magnitudes slower than the others even on this relatively
small dataset. With larger datasets, KNN is too slow to be used for real-time target
recognition.

Finally, it was found that the use of FFT interpolation to form smoother images does
not benefit the selected traditional machine learning algorithms. Rather, the resulting
increase in input dimensions has a detrimental effect on the prediction speed, particularly
for the SVM classifier.

While the KNN and SVM classifiers perform reasonably well, the fact that these
classifiers do not estimate the likelihood of their predictions is problematic when considering
open-set recognition. Open-set recognition requires some measure of the confidence of
the classifier in its prediction. The next chapter focuses on machine learning algorithms
that are capable of not only forming accurate class predictions but also estimating their
confidence in their predictions, with an emphasis on open-set classification.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Deep Learning Approaches

Deep learning techniques, which make use of artificial neural networks (ANN), are com-
monly applied to image recognition problems. The basic unit of an ANN, an artificial
neuron (discussed further in Section 5.1), mimics a biological neuron which outputs an
impulse (value) related through some non-linear mechanism to its input. The output of one
neuron can be directed toward the input or another, creating a more complex non-linear
function.

Taking inspiration from the structure of the brain, ANNs are comprised of multiple
layers of artificial neurons. These models have a number of applications, including image
recognition tasks. While deep learning techniques typically take longer to train and require
more training data than traditional machine learning techniques, their modular structure
can be used to build large networks capable of fitting more complex data. In addition to
this, ANNs can have relatively fast prediction times (particularly when accelerated using
modern GPUs).

This chapter investigates the application of two different types of ANN to ISAR
image recognition. The first network is a fully-connected feed-forward network (FCNN)
(Section 5.2), which, being arguably the simplest type of neural network, demonstrates
the effectiveness of deep learning approaches to ISAR image classification [102]. The
second network, a capsule network (CapsNet) [51,68], was chosen to specifically address
some of the challenges associated with the classification of ISAR images (in particular the
challenges arising from the variation resulting from imaging targets imaged from different
aspect angles). Section 5.4 discusses, in-depth, how capsule networks are well-suited to
classifying ISAR images with a significant intra-class variation.

In addition to the above, this chapter also considers how these networks can be adapted
to perform open-set classification. The ability of classification systems to appropriately
handle observations from classes not included in the training data is often overlooked.
However, in the case of automatic target recognition systems, this could prove very useful
where the types of targets observed cannot exclusively be determined a priori.

65

Stellenbosch University https://scholar.sun.ac.za

5.1. The artificial neuron 66

5.1. The artificial neuron
The structure of an artificial neuron, which accepts a finite number N inputs to produce a
single output, is shown in Figure 5.1. Mathematically, an artificial neuron is modelled by
applying some non-linear activation function a(z) to the weighted sum of its inputs x1–xN

and a bias term b [103]. The weights w1–wN and the bias term b (often represented as w0

applied to a unit input) can be adjusted to influence how each input affects the output.
This can be expressed as

y = a (wx) . (5.1)

Typical choices for the activation function a(z) include:

• The sigmoid function,
a(z) = 1

1 + e−z
, (5.2)

• The hyperbolic tan function,

a(z) = tanh(z) = 2
1 + e−2z

− 1, (5.3)

• The rectified linear unit (ReLU),

a(z) =

0, for x < 0

x, for x ≥ 0.
(5.4)

• The softmax function,
a(z)i = ezi∑K

j=1 ezj
(5.5)

Σ

x1

x2

x3

x4

x5

xN

w1
w2

w3
w4
w5

wN

a(z)

bias (b)

y

Figure 5.1: The structure of an artificial neuron. The output y is found by applying
some non-linear function to the weighted sum of the inputs x1 to xN .

As discussed in the following sections, neural networks can be constructed by connecting
multiple neurons to one another.

Stellenbosch University https://scholar.sun.ac.za

5.2. Fully-connected neural network (FCNN) 67

5.2. Fully-connected neural network (FCNN)
In the context of neural networks, two layers which are connected in such a way that the
inputs to each neuron in one layer are connected to the outputs of every neuron in the
previous layer are termed fully-connected layers [104]. A fully-connected neural network,
also often referred to as a multi-layer perceptron (MLP), is therefore comprised of a series
of fully connected layers. An example (and the architecture used in this study) is given in
Figure 5.2. The layers of an ANN include a single input layer, a single output layer and
one or more hidden layers between the input and output layers. The number of neurons
in the input and output layers corresponds to the number of features and the number
of classes, respectively. The number and size of the hidden layers can be adjusted and
tuned through experimentation to find suitable values. In general, the more neurons per
hidden layer, and the more layers in the network, the more complex the network becomes
(enabling it to perform more challenging tasks). The benefits of a larger network are
generally offset by the amount of time and training data required to train the model and
the potential for overfitting as the model’s complexity increases. A single hidden layer is
sufficient to approximate any function that contains a continuous mapping from one finite
space to another [105]. Furthermore, according to [105], a network with two hidden layers
is theoretically capable of representing functions of any kind.

Once a model architecture has been decided, the training process is used to find the
optimal weights and biases. In training, the weights are generally adjusted using the
back-propagation algorithm [106]. While the back-propagation algorithm is not discussed
in-depth here, it is an efficient implementation of the chain rule [107], and calculates
the gradient of the loss function with respect to the weights one layer at a time, moving
backwards through the network.

5.2.1. Architecture and implementation

In this study, a very basic FCNN with one hidden layer, given in Figure 5.2, is first used
to perform binary classification. The size of the input layer matches the number of input
features for a flattened 27× 21 px image with 2 channels (i.e. for the real and imaginary
components of an ISAR image), and the output layer contains a neuron for each of the 2
classes. The number of neurons in the hidden layer was chosen as two-thirds of the size of
the input layer, based on the guidelines given in [105]. For the hidden layer, the neurons
use a ReLU activation function, while the output layers apply a softmax activation to
ensure that the outputs are in the range 0 < yk < 1 and sum to 1 (over all the outputs).

Stellenbosch University https://scholar.sun.ac.za

5.2. Fully-connected neural network (FCNN) 68

1

2

3

n

1134

1

2

n

756

1

2

X1

X2

X3

Xn

X1134

y1

y2

Input Hidden Output

Figure 5.2: Diagram of the FCNN used in this work. The single hidden layer contains
756 neurones.

The network described above was implemented with Tensorflow 2.0 [108]. Listing 5.1
shows a snippet of the code used to define and train the network.

1 import tensorflow as tf
2 model = tf.keras . models . Sequential ([
3 tf.keras. layers . Flatten (input_shape =(21 , 27, 2)),
4 tf.keras. layers .Dense (756 , activation ='relu '),
5 tf.keras. layers .Dense (2)
6])
7

8 loss_fn = tf. keras. losses . SparseCategoricalCrossentropy (from_logits =True
)

9

10 model . compile (optimizer ='adam ',
11 loss=loss_fn ,
12 metrics =['accuracy '])
13

14 model .fit(X_train , y_train , epochs =5, validation_data =(X_val , y_val))

Listing 5.1: Code snippet to define and train a FCNN with Tensorflow 2.0.

5.2.2. Training

The training set described in Section 4.4.3, comprised of ISAR images of the drone and
missile targets imaged at various elevation and azimuth angles with no added noise, was
used to train the FCNN. After training, the model was capable of perfectly classifying the
training set (i.e. 100 % classification accuracy).

Stellenbosch University https://scholar.sun.ac.za

5.2. Fully-connected neural network (FCNN) 69

5.2.3. Results (closed-set)

The results obtained when testing on a (closed-set) test set comprised of the drone and
missile ISAR images not used in training are presented below. Figure 5.3 shows the
accuracy of the FCNN when tested on this test set at various SNRs, while Table 5.1 lists
the average prediction times for a single observation for the FCNN classifier as well as the
KNN and SVM classifiers from Chapter 4 (using the same training and test sets).

-25 -20 -15 -10 -5 0 5 10 15 20 25

Testing SNR [dB]

45

50

55

60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y
[%

]

FCNN
Accuracy vs SNR

Figure 5.3: Accuracy vs SNR for the FCNN classifier tested on a closed-set.

Table 5.1: Prediction times for FCNN, KNN, SVM classifiers.

Classifier Average prediction time [ms].
FCNN 0.0445
SVM 1.3000
KNN 48.8000

It can be seen that the accuracy of the FCNN classifier is comparable to the KNN and
SVM classifiers discussed in Chapter 4. It maintains a classification accuracy of >99 %
for testing SNRs above 9 dB, after which the accuracy decreases with the SNR of the test
set. When it comes to the prediction times, however, the FCNN is considerably faster
than the traditional machine learning algorithms. Table 5.1 shows that the FCNN forms
predictions approximately two orders of magnitude faster than the SVM classifier and
three orders of magnitude faster than the KNN classifier. Additionally, while we recall
that the prediction times for the KNN and SVM algorithms scaled with the size of the
training set, this is not the case with an FCNN. As mentioned previously, the training
times (not reported here) are of less significance than the prediction times, since training

Stellenbosch University https://scholar.sun.ac.za

5.3. Open-set adaptations to the FCNN 70

can be performed separately, before the deployment of a system, and the training time
does not affect normal operation. The other major advantage of the FCNN over the SVM
and KNN algorithms is that the FCNN outputs scores for each class, which reflect the
confidence in the model’s prediction, rather than just the predicted class. This property is
extremely useful in flagging observations which are potential misclassifications, and can
potentially also be used for open-set recognition, as discussed in the following section.

5.3. Open-set adaptations to the FCNN
Although the trained FCNN is capable of classifying the test set comprised of ISAR images
of the known classes (observed in training) with a high degree of accuracy, an automatic
target recognition system should also be capable of handling observations that do not
belong to any known classes. In this section, we discuss three common ways of adapting a
trained FCNN to handle observations of unknown classes.

5.3.1. Softmax with a reject option

For closed-set classification, the output of each output neuron yk can be interpreted as
the probability that a given observation belongs to class k. Using this idea, it is possible
to flag or reject class predictions where the probability of the prediction is below some
threshold τ .

Given the nature of the softmax function, an FCNN using a softmax activation in the
output layer makes the inherent assumption that any observation belongs to one of K

known classes. As a result, the output of the K output neurons sum to unity,

K∑
k=1

yk = 1. (5.6)

Due to this closed-set assumption, it is found that the probability of any observation
belonging to none of the known classes is zero according to the model (i.e. there is a closed-
set assumption). This method of applying some threshold to the output of the softmax
layers is therefore not technically open-set recognition, since the closed-set assumption is
still made [53]. One might hope that the estimated probability of the most-likely class
according to the network is relatively low. This, however, is not necessarily the case, as is
shown in Section 5.3.4.

This method is included here, however, to demonstrate its shortcomings and motivate
the necessity for more rigorous approaches to open-set recognition. Additionally, this
method is easy to implement, as it does not require any modifications to the trained network.
The other open-set adaptations discussed below address some of these shortcomings.

Stellenbosch University https://scholar.sun.ac.za

5.3. Open-set adaptations to the FCNN 71

5.3.1.1. Implementation

The only implementation detail to consider is the methodology used to determine the
threshold value τ . Since the value of τ influences how sensitive the classifier is to false
positives, adjusting this value trades the classifier’s precision against its recall. Although
the optimal balance between precision and recall may vary from system to system, in this
study the optimal balance is considered to be where the harmonic mean of the precision
and recall (i.e. F1-score) is maximised. The optimal value for τ is therefore estimated
using a small (open) validation set, and plotting the F1-score against the threshold value
τ . The threshold τ = 0.997, corresponding to the maximum F1-score on the validation
set, was used for testing the classifier.

5.3.2. Openmax

OpenMax [54] was proposed to address some of the problems of the softmax function when
applied to open-set recognition. This algorithm replaces the softmax layer of a neural
network and predicts the probability that an observation belongs to an unknown class
using meta-recognition techniques and the Extreme Value Theory (EVT). This is achieved
by first modelling the outputs of the final layer before the softmax function (termed the
activation vectors AV) for each of the known classes. These models are in turn used to
adjust the estimated probability that a given observation belongs to each class. The details
of the OpenMax algorithm, and the implementation details follow below.

5.3.2.1. Algorithm

After training the FCNN, the activation vectors (AV), vi are calculated for each training
observation xi. For each known class k, the mean activation vector (MAV) µk is calculated
over all the correctly classified images in that class:

µk =
∑

i

(Si,k) , (5.7)

where Si,k = vi for each correctly classified observation xi in class k. The distance from
each AV to the MAV for the relevant class is then calculated. Finally, a Weibull distribution
ρk is fitted to the η largest distances for each class using the LibMR [109] FitHigh function

ρk = (τk, κk, λk) = FitHigh (∥Sk − µk∥, η) (5.8)

where τk, κk, λk are the shifting, shape and scale parameters of the Weibull distribution.
Section 5.3.2.2 discusses how the value for the hyperparameter η is chosen. At prediction
time, the class probability estimates are updated by using the Weibull cumulative density
function to calculate the probability ωk that the AV of a new observation belongs to

Stellenbosch University https://scholar.sun.ac.za

5.3. Open-set adaptations to the FCNN 72

each class according to the distributions calculated for that class. In practice, only the
top α classes need to be considered, and it is not necessary to adjust the activations
corresponding to the other classes. This results in

ωs(i)(x) = 1− α− i

α
exp

(
−
(
∥x− τs(i)∥

λs(i)

)κs(i)
)

(5.9)

where s(i) is the class corresponding to the ith highest activation for i = 1, . . . , α. The
revised AV is then calculated by multiplying the original activation vector v(x) by the
weightings ω(x),

v̂ = v((x)) · ω(x) (5.10)

The activation corresponding to the probability that the observation belongs to an unknown
class is then defined as

v̂0 =
∑

i

vi(x)(1− ωi(x)). (5.11)

The final probabilities can finally be calculated from the revised AV as

P (y = k|x) = ev̂k(x)∑K
i=0 ev̂i(x) . (5.12)

Importantly, it is noted that, when using the OpenMax algorithm, the sum of the
estimated class probabilities does not sum to unity over the known classes (i.e. the
closed-set assumption is not made). Although this means that it is not strictly necessary
to reject known class predictions based on their estimated probabilities, [54] notes that
the algorithm does nonetheless benefit from applying some threshold ϵ.

5.3.2.2. Implementation

In this work, we used an adaptation of the implementation presented in [54] rewritten in
Tensorflow 2.0 (based on [110]). The optimal values for the hyperparameters η, α and ϵ

were found experimentally by optimising the F1-score of a validation set. The final choices
for these values were 5, 1 and 0.996, respectively. For the meta-recognition functions, this
implementation makes use of the libMR library [109].

5.3.3. Training with an explicit ‘other’ class

The third approach to using an FCNN to perform open-set classification is to include an
additional class representing all unknown classes during training. This explicit definition
of an ‘other’ requires numerous examples of known unknown observations to effectively
train the model. Using this approach to open-set classification assumes that the ‘other’
class used in training is representative of all unknown targets. In practice, acquiring
sufficient data and compiling such a dataset is extremely challenging, if possible at all. It is

Stellenbosch University https://scholar.sun.ac.za

5.3. Open-set adaptations to the FCNN 73

particularly challenging to verify that the known unknown examples adequately represent
the unknown unknown classes. Despite these challenges, this method often produces
reasonable results, even in situations where the ‘other’ class used in training is a fairly
poor approximation for all unknown classes.

5.3.3.1. Implementation

In this work, rather than attempting the (impossible) task of compiling an exhaustive
collection of arbitrary targets to represent all unknown targets, ISAR images formed from
white Gaussian noise (WGN) were used. The rationale behind this is that images generated
from white noise should be distributed relatively evenly throughout the feature space, thus
encouraging the decision boundary for each of the known classes to exclude all regions in
the feature space that do not contain examples of known classes. After some preliminary
experimentation, it was noticed that the unstructured (noise-only) nature of the ISAR
images used to represent the ‘other’ class had the undesirable effect of encouraging the
classifier to classify any structured (containing some target) observations as known classes.
This effect was particularly prevalent when attempting to classify observations at low
SNRs. Combatting this required the addition of ISAR images containing some structure
to the ‘other’ class. This was achieved through the inclusion of ISAR images of a trihedral
corner reflector. A trihedral corner reflector is chosen for the following properties:

1. A trihedral corner reflector is a reasonable example of a simple target that is unlikely
to be a target of interest to a target recognition system (hence being considered a
known unknown class)

2. This target produces strong reflections (particularly from look-angles that look into
the concave portion), thus resulting in ISAR images with clear structure.

3. The number of scattering centres and their location varies significantly as the imaging
angle changes. (We want to increase within-class variation as much as possible for
the ‘other’ class.)

4. Trihedral corner reflectors are commonly used for the calibration of radar systems,
so it is expected that data on these targets is readily available for designers of an
automatic target recognition system.

The results section reports on the use of this combined ‘other’ class containing both ISAR
images generated from WGN and ISAR images of the trihedral corner reflector from
Chapter 3. When testing, a threshold is also applied to the prediction scores (from the
softmax output), combining the benefits of training with an open class with the threshold
method mentioned previously.

Stellenbosch University https://scholar.sun.ac.za

5.3. Open-set adaptations to the FCNN 74

5.3.4. Testing

After applying the three open-set adaptations to the FCNN, the modified networks were
tested on an open-set test set. This test set contains ISAR images of the two known
targets (specifically the 30 % split not seen in training) as well as an equal number of
ISAR images of the fixed-wing aircraft and flying-saucer type UFO target which represent
unknown unknown classes. For this investigation, only ISAR images with an SNR of 24 dB
are considered — it will be shown that even at this (high) SNR, the open-set performance
is less than desirable.

5.3.4.1. Metrics

Since the dataset is imbalanced (i.e. 25 % drone class, 25 % missile class and 50 % unknown
classes), it is less meaningful to report the total accuracy of the classifier. For this reason,
rather than simply reporting the accuracy, confusion matrices are shown for each test case.
This gives significantly more insight into the performance of each classifier and indicates
where the failure cases are. From the confusion matrices, both the precision,

precision = Number of correct classifications for class k

Total number of observations assigned to class k
, (5.13)

and recall,
recall = Numer of correct classifications for class k

Total number of observations of class k
, (5.14)

can be calculated. To compare the algorithms to one another, however, a single value
metric is more useful. For this, the F1-score (i.e. the harmonic mean of the precision and
recall) is calculated for each class, and the weighted average is reported for each algorithm.

5.3.4.2. Results

The confusion matrices from testing each open-set adaptation to the FCNN are shown in
Figure 5.4, while Table 5.2 shows the corresponding weighted-F1 scores. The adaptation

Table 5.2: Weighted-F1 scores for the FCNN open-set adaptations.

FCNN Adaptation Weighted-F1 score
Softmax with a reject option 0.7981
OpenMax layer 0.7989
Training with an explicit ‘other’ class 0.9179

using a softmax layer with a reject option performs open-set classification fairly poorly
with an F1-score of 0.7981 on the test set. Additionally, it can be seen that replacing the
output layer with an OpenMax layer results in negligible improvement. From the confusion
matrices in Figures 5.4a and 5.4b, it is noticed that the majority of the misclassifications
are instances where targets from the unknown classes were falsely assigned to the drone

Stellenbosch University https://scholar.sun.ac.za

5.3. Open-set adaptations to the FCNN 75

(a) Classification with a reject option (using the
softmax layer).

(b) Replacing the final layer with an OpenMax
layer.

(c) Training with an explicit ‘other’ class.

Figure 5.4: Confusion matrices for each of the three open-set adaptations of the FCNN
classifier. (Tested on an open-set test set with a SNR of 24 dB for each test image.)

class. As a result, the classifiers have a low recall for the unknown classes and a low
precision for the drone class. This is particularly noticeable for the UFO target, where the
recall is <50 %. The poor performance of the classification with a reject option technique
highlights the limitations of the softmax output layer. The lack of improvement when
adapting the network to use an OpenMax layer can be attributed to the fact that the
FCNN was trained only to discriminate between the known classes. As a result, the model
only extracts and pays attention to discriminative features, and is not encouraged to
retain other information about the observations that are useful for open-set recognition.
The activation vectors used in the OpenMax algorithm are not particularly informative
regarding whether a given observation belongs to a known or an unknown class.

Training the FCNN with an explicit ‘other’ class gave better results, however with an
F1-score of 0.9179 on the test set, there is still room for improvement. Furthermore, it
is noted that the performance of this technique is likely highly sensitive to the training
and test sets used (specifically the relationship between the ‘other’ class used in training
and the unknown targets used for testing). This is, therefore, not a particularly rigorous

Stellenbosch University https://scholar.sun.ac.za

5.4. Capsule networks 76

approach.
From these results, it is concluded that a rigorous approach to open-set classification

which retains more information about the target than just that required to discriminate
between the known classes is required. This partially motivates the use of a capsule
network, as discussed in the following section.

5.4. Capsule networks
Capsule networks were proposed by Hinton et al. [51] to overcome some of the shortcomings
of other neural networks, such as FCNNs and convolutional neural networks (CNN).
Specifically, capsules seek to encode the instantiation parameters (referred to as the ‘pose’
in [51]) of a given observation. Furthermore, capsule networks recognise and estimate the
instantiation parameters of the sub-elements of an observation (such as the rotor, wingtip,
fins or fuselage of a target), and use this information to recognise larger entities through
the (spacial) relationships between their constituent parts. Importantly, the instantiation
parameters found are equivariant — meaning that they change in a deterministic manner
for different instantiations (orientation, scale, translation etc.) of the same entity. This
means that different observations of the same entity are recognised as such (i.e. the
same entity, but with different instantiation parameters), even when there is significant
variation in the observations [51]. Other neural networks, such as CNNs, which do not
do this require enormous amounts of training data, since observations of the same entity
under different conditions (such as rotation) are not inherently related to one another
in the model — i.e. every instantiation has to be learned independently. The fact that
capsule networks recognise the relationship between these observations of the same entity
allows capsule networks to be trained on significantly less data [111]. This is an important
consideration for automatic target recognition systems, as there is often a limited amount
of data available for training.

Because the part-whole relationships and instantiation parameters are built into the
network, capsule networks are, by design, highly effective at recognising objects from
different viewing angles. This makes capsule networks highly suitable for the classification
of ISAR images, which display significant variation with imaging angle. Reference [49]
specifically notes that the image variation resulting from various radar imaging views
poses a difficult challenge to recognition systems that use ISAR images. Capsule networks
specifically address this challenge.

5.4.1. Basic theory

While the basic unit for most artificial neural networks is the artificial neuron, capsule
networks make use of ‘capsules’. Before explaining how capsule networks work, we first

Stellenbosch University https://scholar.sun.ac.za

5.4. Capsule networks 77

introduce these units.

5.4.1.1. Capsules

Capsules are small groups of neurons which function as a single unit. Rather than
outputting a scalar value (as is the case with an artificial neuron), a capsule outputs an
activation vector 1. The length of the activation vector is used to represent the probability
that a feature or entity is present, while the individual elements of the vector estimate
the instantiation parameters (which could include the orientation, size, deformation and
position) of that entity relative to an implicit canonical version [51]. While neurons use
non-linear activation functions such as the logistic sigmoid or ReLU, capsules introduce a
non-linearity through the squashing function [68],

vi = ∥si∥2

1 + ∥si∥2
si

∥si∥
, (5.15)

where vi is the vector output of capsule i given an input si. This is simply a non-linear
scaling of the input vector, which shrinks vectors down such that their length is less than
one.

5.4.1.2. Structure

Like in other neural networks, capsules are organised into multiple layers. Some earlier
layers may be fully-connected or convolutional layers to perform basic feature extraction,
but the final layers which handle the more complex entities should be capsule layers. The
most common way of connecting capsule layers to one another is through routing-by-
agreement [68], which is outlined below.

5.4.1.3. Dynamic routing algorithm

Through this algorithm, each capsule i, with output vector ui, in one layer forms a
prediction of the output vector ûj|i of each capsule j in the subsequent layer by means of
some learned weight matrix Wij,

ûj|i = Wijui. (5.16)

The final input vector sj of each capsule j in the latter layer is calculated as the weighted
sum of these predicted outputs from the previous layer,

sj =
∑

i

cijûi|j, (5.17)

1Despite sharing the same name, the activation vector referred to here is not the same as the activation
referred to in Section 5.3.2, which is the activation of an entire layer.

Stellenbosch University https://scholar.sun.ac.za

5.4. Capsule networks 78

where the weighting cij is the coupling coefficient between two capsules. The coupling
coefficients are determined during the routing process from the log prior probabilities bji

that capsule i should be routed to capsule j,

cij = ebij∑
k ebik

. (5.18)

The logits bij are initialised to 0, before being readjusted over r routing iterations. In each
routing iteration, the agreement aij = vj · ûj|i between the current output vj of capsule j
and the prediction ûj|i made by capsule i is added to the initial logit bij. This process is
then repeated in the next routing iteration. In this way, the coupling coefficients between
the capsules in one layer and the capsules in the next layer are increased where there is
a strong agreement between the output and the prediction and are decreased where the
agreement is weak. A summary of this algorithm can be found in [68, Procedure 1].

In the case of convolutional capsule layers, each capsule outputs a matrix of vectors
to each type of capsule in the following layer. In this case, it is necessary to define a
weighting vector for each element in the output matrix, as well as for each capsule type in
the second later layer. Otherwise, the procedure remains the same.

5.4.1.4. Network output and training

The final layer of a capsule network contains a single capsule for each class. The estimated
probability that a given observation belongs to each class is given by the length (L2-
norm) of the output vector of the corresponding class capsule. For training, the network
parameters are adjusted to minimise the margin loss Lk for each class capsule k,

Lk = Tk max (0, 0.9− ∥vk∥)2 + 0.5 (1− Tk) max (0, ∥vk∥ − 0.1)2 , (5.19)

where Tk = 1 for observations of class k. The second term in (5.19) is used to prevent the
lengths of the output vectors in the class capsules from shrinking to 0 during the initial
training period [68]. The total loss is then the sum of the margin loss for all class capsules.
Note, however, that a capsule network predicts more than just the class probabilities
since each class capsule outputs a vector. The network can be trained to encode the
instantiation parameters of each observation with these vectors. This is done through
reconstruction regularisation.

5.4.1.5. Reconstruction regularisation

Reconstruction regularisation works by routing the output of the class capsules to a
decoder network trained to generate a reconstruction X̂ of the original input observation
X. Before sending the class capsule’s output to the reconstruction network, this output
is masked such that only the activity vector of the correct class is present and all other

Stellenbosch University https://scholar.sun.ac.za

5.4. Capsule networks 79

vectors are set to 0. The mean squared error,

MSE = 1
n

n∑
i=1

(
Xi − X̂i

)2
, (5.20)

is then added to the training losses. The reconstruction loss is scaled down by a factor
of 0.0005 to ensure that the margin loss dominates the training loss. This ensures that
the capsule network retains sufficient information to fully describe the input (through the
latent representation given by the class capsules).

Although [68] uses reconstruction primarily as a regularisation technique to prevent
overfitting, this study makes further use of the model’s ability to reconstruct the inputs.
Section 5.4.4 discusses how the reconstructions are used to perform open-set recognition.

5.4.2. Implementation

This study uses a similar capsule network architecture to that demonstrated in [68], which
was designed to classify handwritten digits from the MNIST dataset [69]. Since the ISAR
images used in this study are similar in size and complexity to the MNIST images, there
is little need to adapt the architecture.

Originally, an attempt was made to support ISAR images with complex pixel values
(represented by separate real and imaginary channels), but it was found that while the
classification accuracy was reasonable, the model was unable to properly reconstruct
the inputs. It is possible that the dimensionality of the output vectors (i.e. the latent
representation of the observations) was insufficient to capture the phase information,
or the reconstruction network lacked the necessary complexity. It was found, however,
that using the absolute values of the ISAR images produced reasonable results, and it
was possible to accurately reconstruct this data. The capsule network designed to work
with the (normalised) absolute pixel intensities of the ISAR images, represented by a
two-dimensional matrix of real values, is reported on below.

Figure 5.5 shows the network architecture, which has a single standard convolutional
layer followed by two capsule layers. The standard convolutional layer contains 256, 9× 9
filters, uses a stride of 1 and the ReLU activation function. This layer acts as a basic
local feature detector. The first capsule layer, the primary capsules, uses 32 channels
of 8-dimensional capsules. Each primary capsule contains 8, 9 × 9 convolutional filters
and uses a stride length of 2. The total output of the primary capsule layer is therefore
8× 8× 32, 8-dimensional vectors. This output is routed using routing-by-agreement to the
final capsule layer, class capsules, which uses a 16-dimensional capsule for each class. The
lower portion of Figure 5.5 shows the reconstruction network, which is comprised of three
fully-connected layers of 512, 1024 and 1024 neurons, respectively. The two hidden layers
in the reconstruction network use ReLU activation, while the final layer uses a sigmoid

Stellenbosch University https://scholar.sun.ac.za

5.4. Capsule networks 80

9x9

32

824

8
16

2

256

32

32

16

ReLU Convolution Primary CapsulesInput Class Capsules

9x9

512 1024 1024
Reshape

ReconstructionFully connected ReLU layers
Masked Class
Capsule output

2

Figure 5.5: Architecture of the capsule network used in this work. The input is fed
through a single normal convolutional layer and two convolutional capsule layers to give
the output vectors which are used for classification. The output vectors are masked by
the predicted class before being used by the reconstruction sub-network to reconstruct
the input.

activation since the pixel intensities of the normalised ISAR images are known to lie in
the range of zero to one. This network was implemented in Tensorflow 2.0 and was based
on the implementation in [112].

5.4.3. Closed-set results

The model was trained on normalised ISAR images of the drone and missile targets which
represent known targets. For training, we used a 70 % split of the total number of images
in each of the known classes without any added noise (i.e. the same training set used
in Sections 4.4.3 and 5.2). The although the model was capable of perfectly separating
the training set after roughly 20 epochs, the model was trained for a total of 150 epochs,
which significantly improved the quality of the reconstructions. The capsule network was
then tested on a closed test set comprised of the remaining 30 % split of the ISAR images
of the drone and missile targets, over a range of SNRs. Figure 5.6 plots the F1-score
obtained with the closed test set against the SNR. From the results, it can be seen that the
capsule network achieves close to perfect classification on the closed set for SNRs above
−3 dB. From −6 dB and below, the F1-score drops off, however, it should be noted that at
this SNR, the structure of the targets is barely visible from the ISAR images. Figure 5.7
contains a selection of ISAR images of the drone and missile targets at this SNR (−6 dB)
to demonstrate the lack of visible target structure. The first two rows of Figure 5.7 are

Stellenbosch University https://scholar.sun.ac.za

5.4. Capsule networks 81

-25 -20 -15 -10 -5 0 5 10 15 20 25

SNR [dB]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
1-

sc
or

e

F1 score vs SNR

Figure 5.6: Accuracy vs SNR for the capsule network tested on the closed test set. Perfect
classification is achieved for all SNRs above −3 dB.

images of the drone target, while the bottom two are images of the missile target. At this
SNR, even a trained human operator would have difficulty classifying the targets in these
images, while the capsule network still manages to obtain an F1-score of 0.9314.

Figure 5.7: Example ISAR images of the drone (top two rows) and missile (bottom two
rows) targets at an SNR of −6 dB. At this SNR it is difficult for a human operator to
identify the target structure.

Stellenbosch University https://scholar.sun.ac.za

5.4. Capsule networks 82

5.4.3.1. Prediction times

The average time taken by the capsule network to form a class prediction for a single
observation is shown in Table 5.3, along wide the times for the previously discussed
classifiers. It can be seen that while the capsule network is an order of magnitude slower
than the FCNN (note that this is primarily caused by the inner loop in the routing
algorithm), it is still significantly faster than the traditional machine learning algorithms,
KNN and SVM. This makes capsule networks a better fit for performing real-time target
recognition.

Table 5.3: Prediction times for Capsule Network, FCNN, KNN, SVM classifiers.

Classifier Average prediction time [ms].
Capsule Network 0.6934
FCNN 0.0445
SVM 1.3000
KNN 48.8000

5.4.4. Open-set adaptation

A number of approaches to adapting the capsule network to perform open-set recognition
were investigated. Attempts at rejecting predictions with a class prediction score (L2-norm
of the class capsule output) below a certain threshold proved unreliable. Using Gaussian
mixture model (GMM) clustering to model the distribution of the class capsule outputs
was not found to be useful, since it was found that there is a significant overlap between
the distributions of the known and unknown classes (hence it is not possible to effectively
separate out the unknown classes). One approach of open-set recognition, however, showed
much more promise and is discussed below.

5.4.4.1. Using reconstruction for open-set classification

It is recalled that the capsule network was trained to accurately reconstruct ISAR images
of the known classes. Additionally, since the input to the reconstruction network is first
masked according to the predicted class, it is found that the reconstruction is conditioned
on this class prediction. As a result, it is found that while the capsule network is capable
of accurately reconstructing the input when the class prediction is correct, the similarity
between the reconstruction and the original input is poor when the reconstruction network
is conditioned on the incorrect class. Naturally, the reconstruction is conditioned on the
correct class whenever the network forms an accurate class prediction, and is conditioned
on the incorrect class whenever the prediction is incorrect. This includes instances where
the observation belongs to an unknown class, as the network is only capable of conditioning
the input to the decoder on one of the known classes. This is demonstrated in Figure 5.8,
which visually compares the quality of the reconstructions for five observations from each

Stellenbosch University https://scholar.sun.ac.za

5.4. Capsule networks 83

of the two known targets (the drone and missile targets) and two unknown targets (the
fixed-wing model aircraft and the flying-saucer type UFO). It can be seen here that the
reconstructions of the unknown classes are notably less similar to the input images. The

(a) Input.

(b) Reconstruction.

Figure 5.8: Example reconstructions (b) corresponding to the input observations (a) for
two known and two unknown classes at an SNR of 24 dB. Note that the known targets
(top two rows) are more accurately reconstructed than the unknown targets (bottom two
rows). The reconstructions are clearly biased towards the known classes.

quality of the reconstruction can be quantified by the mean squared error (MSE) between
the input and the reconstruction. By plotting a histogram (Figure 5.9) of the MSE for
both the known and unknown classes, it is seen that it is possible to find some threshold
value that separates the majority of the unknown classes from the known ones. For any
reconstruction with an MSE above this threshold, the observation can be flagged as an

Stellenbosch University https://scholar.sun.ac.za

5.4. Capsule networks 84

Figure 5.9: Histogram showing the distribution of the MSE between the input and
reconstruction for both known and unknown classes at an SNR of 24 dB.

unknown target. The optimal threshold was determined experimentally by plotting the
F1-score against the MSE threshold for a small validation set.

5.4.4.2. Results (MSE)

An open test set was created by expanding the closed test set to include ISAR images of the
model fixed-wing aircraft and flying-saucer type UFO (i.e. the same open test set described
in Section 5.3.4), which represent targets from unknown classes. The capsule network,
adapted to flag unknown classes based on the MSE between the input and reconstruction,
was then tested on this open test set, and the F1-scores were calculated over a range of
SNRs. These results are plotted in Figure 5.10, alongside the results previously obtained
on the closed test set. From these results, it can be seen that the modified capsule network
performs excellently at high SNRs, with an F1 score above 0.95 on this test set for all
SNRs at 15 dB and above. From the confusion matrix in Figure 5.11, it can be seen that
at the highest test SNR (24 dB), there are only 54 misclassifications from the 16872 targets
tested. The capsule network performing open-set recognition is, however, significantly more
sensitive to noise than the network performing closed-set classification. It has previously
been noted that for an automatic target recognition system aimed at recognising small
targets, the performance at low SNRs is important, and needs to be addressed.

Stellenbosch University https://scholar.sun.ac.za

5.4. Capsule networks 85

-25 -20 -15 -10 -5 0 5 10 15 20 25

SNR [dB]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
1-

sc
or

e

F1 score vs SNR

Open-set (MSE)
Closed-set

Figure 5.10: Accuracy vs F1-score for the adapted capsule network (using the MSE)
tested on the open test set. The closed-set results are included for reference.

Figure 5.11: Confusion matrix for the adapted capsule network (using the MSE) tested
on an open test set at an SNR of 24 dB.

Stellenbosch University https://scholar.sun.ac.za

5.4. Capsule networks 86

5.4.4.3. Improvement

To improve the model’s open-set classification accuracy at low SNRs, the results and
reconstructions (upon which the open-set recognition system works) were investigated
further. Inspecting the reconstructions at low SNRs (given in Figure 5.12), it is observed
that the network continues to form reasonably good reconstructions of the target even when
there is a significant amount of noise in the input. The obvious issue to note, however, is
that the model acts as a denoising filter since it only attempts to reconstruct the signal. The
fact that the noise in the input is not reproduced results in a high MSE between the noisy
input and reconstructed signal even when the network is producing good reconstructions
of the signal and forming accurate class predictions for the known classes. For unknown
classes, the signal reconstruction is still notably worse at low SNRs (this is desirable).
This shows that the MSE is not the best metric to use, as it is negatively impacted by the

(a) Input (SNR = 3 dB). (b) Reconstruction.

(c) Ground truth.

Figure 5.12: Example reconstructions (b) corresponding to noisy input observations
with an SNR of 3 dB (a) for two known and two unknown classes, with the ground truth
(ISAR images with no added noise) given in (c). Each row shows five randomly selected
examples. The reconstructed images have reduced noise levels and are more similar to
the ground truth than the input images (for known targets).

input noise. Instead, this requires some method of comparing the reconstruction to the
underlying signal in the input in a way that is less sensitive to the SNR. Although the

Stellenbosch University https://scholar.sun.ac.za

5.4. Capsule networks 87

ground truth is given in Figure 5.12, this information is, obviously, not available during
regular operation.

The detection of a known signal in a noise-corrupted sample is a well-known problem
in signal processing and is commonly addressed by finding the cross-correlation between
the corrupted sample and the reference signal [113]. If the signal is present in the sample,
there should be a strong cross-correlation (measured by the cross-correlation coefficient).
Applying this principle in two dimensions, this work makes use of the zero-mean normalised
cross-correlation (ZNCC) as a metric to estimate the probability that the reconstructed
signal found by the capsule network is present in the input. The ZNCC is found by
subtracting the mean µ and dividing by the standard deviation σ of the pixel intensities for
each image (input and reconstruction) before calculating the cross-correlation. Since the
reconstructed signal is expected to be in the same local position as the signal in the input
(i.e. there should be no translation), it is only necessary to calculate the cross-correlation
at this point to find the peak (cross-correlation coefficient). Figure 5.13 compares the
ZNCC and MSE as metrics, showing that using the ZNCC makes it much easier to separate
the unknown classes from the known classes for low SNRs.

(a) MSE. (b) ZNCC coefficient.

Figure 5.13: Histograms of the MSE (a) and ZNCC coefficient (b) between the recon-
structed images and input images at an SNR of 3 dB. Much better separation can be
seen with the use of the ZNCC coefficient.

5.4.4.4. Results (ZNCC)

After adapting the capsule network a second time, using the ZNCC coefficient as a metric
rather than the MSE, the network was tested again on the open test set. The threshold for
the ZNCC coefficient was determined in the same way as that for the MSE, by plotting the
F1 against the threshold value for a validation set. These results are given in Figure 5.14.
These results show that the use of the ZNCC coefficient improves the capsule network’s
ability to perform open-set recognition (when compared to the use of the MSE). The

Stellenbosch University https://scholar.sun.ac.za

5.5. Conclusion 88

-25 -20 -15 -10 -5 0 5 10 15 20 25

SNR [dB]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
1-

sc
or

e

F1 score vs SNR

Open-set (MSE)
Open-set (ZNCC)
Closed-set

Figure 5.14: F1-score vs SNR for the open test set using the capsule network adapted to
use the ZNCC coefficient to identify unknown classes (including the previous results for
comparison). Using the ZNCC shows significant improvement over the MSE.

difference is particularly noticeable in the SNR range from −6 dB to 15 dB. The improved
open-set classifier maintains an F1-score greater than 0.9 for all SNRs from 6 db and above.
While the performance of the open-set classifier is worse than the close-set classifier, this
is to be expected given that the open-set problem is significantly more complex.

5.5. Conclusion
In this chapter, two deep-learning approaches, FCNNs and capsule networks, are introduced
and applied to the ISAR image classification problem. These methods (particularly
the capsule network) are shown to be highly effective when applied to the closed-set
classification problem. Open-set adaptations for both types of networks were investigated,
giving mixed results. It was found that given the FCNN’s discriminative nature, it
does not retain sufficient information about the targets to perform open-set classification
reliably. On the other hand, the capsule network, which uses reconstruction regularisation
to ensure sufficient information is retained to describe the observations fully, could be
adapted to handle observations of unknown classes effectively. The capsule network was
adapted to recognise observations of unknown classes by comparing the reconstructed image
(where reconstruction is conditioned on a known class) to the original input ISAR image.
Furthermore, attention was paid to improving the open-set adapted capsule network’s
performance by reducing its sensitivity to noise, thereby making it more appropriate for
classifying small targets.

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Conclusion and Recommendations

6.1. Conclusion
In this study, a dataset of synthetic ISAR images was generated using CEM simulation
and a Fourier-based ISAR processing technique. The dataset contains ISAR images of
four small complex targets (two of which were used to represent known classes and two
to represent unknown unknown classes) and one simple corner reflector target (used as a
known unknown target). Chapter 3 detailed the process that was used to generate and
process the synthetic ISAR data and provides some examples of the generated images.

The preliminary investigation into the application of traditional machine learning
algorithms, reported on in Chapter 4, produced several findings. It was found that a simple
linear classification technique, LR, was unable to effectively separate the known classes
with sufficient accuracy. The non-linear traditional machine learning techniques, KNN
and SVM, were significantly more successful at accurately classifying new observations of
known classes. It was further found that introducing examples of ISAR images partially
corrupted with noise (up to an SNR of approximately 15 dB) into the training set reduced
the classifiers’ sensitivity to noise in the training set. Fourier interpolation, however, while
producing more aesthetically pleasing images, did not benefit the performance of these
algorithms and resulted in lower computational efficiency. Despite the high classification
accuracy on the closed set, two major limitations of these (KNN and SVM) algorithms
were noted. Firstly, the time required to form predictions of the class membership of new
observations using the SVM and KNN algorithms scaled with the size of the training data.
Even with a relatively small training set of only two targets, the average prediction times
were found to be larger than desirable for real-time classification. Secondly, while these
techniques showed promise in the closed-set classification problem, these algorithms only
provide the class prediction and do not estimate the probability that a given observation
belongs to each class. This makes it difficult to gauge the uncertainty in each prediction,
which is required in some way to enable the classifier to handle observations of targets
which do not belong to any of the known classes.

The shortcomings of the traditional machine learning algorithms used for image
classification prompted the investigation into deep learning approaches using ANNs.

89

Stellenbosch University https://scholar.sun.ac.za

6.1. Conclusion 90

The first type of ANN investigated, an FCNN, demonstrated a classification accuracy
comparable to the traditional machine learning approaches, lying somewhere between that
achieved by the SVM and the near-perfect classification accuracy achieved by the KNN
classifier for SNRs above 0 dB. Although the FCNN did not improve on the closed-set
classification accuracy, it was found that its similar classification accuracy came at a
significantly lower computational cost compared to KNN. The prediction times for the
FCNN were two to three orders of magnitude faster than those of the two non-linear
traditional machine learning models. Furthermore, it was shown that the class scores given
by the FCNN could be used to some degree to handle observations of targets belonging to
unknown classes. The best-performing open-set adaptation of the FCNN did not, however,
rely on the FCNN’s known class prediction scores, but rather used an explicit ‘other’ class
in training to approximate all classes other than the known classes. With this method,
the FCNN achieved an F1-score of at most 0.918 on the open test set (at the highest
SNR, 24 dB). Although three such open-set adaptations to FCNNs were explored, none of
these approaches resulted in satisfactory open-set classification accuracy. It was suggested
that the fact that the FCNN was trained to specifically extract discriminative features
for the known classes, imposes a limit on the effectiveness of open-set adaptations to
FCNNs. For a classifier to minimise open-set risk, it should retain more information
about the target than just that required to differentiate between the known classes. From
this, it appears evident that for effective open-set classification, it is insufficient to simply
adapt a closed-set classifier and expect reasonable results. When selecting an appropriate
classification algorithm, the open-set classification task should be considered from the
beginning. This partially motivated the investigation of the second type of ANN discussed
in this study, a capsule network.

Chapter 5 outlines how reconstruction regularisation is used in conjunction with capsule
networks to ensure that sufficient information about each target observation is retained to
fully describe the observation (for known classes). It is demonstrated how a capsule network
can be leveraged to perform open-set classification — recognising when the known-class
prediction is a poor fit, and flagging the corresponding observation as an unknown class.
To do this, a novel approach is proposed whereby a comparison of the original ISAR
image input and the ISAR image reconstructed from the latent representation encoded
by the capsule network is used to separate known and unknown classes. Owing to this
and the way in which capsule networks handle variations in the observation as the target
undergoes different transformations, excellent results were obtained for both the closed-set
and open-set classification tests. It is further shown that changing the metric used to
compare the reconstructed images to the input image (from MSE to ZNCC), improves the
capsule network’s open-set classification performance at lower SNRs.

The final capsule network model was ultimately shown to maintain an F1-score greater
than 0.9 for SNRs at 6 dB and above when tested on a test set containing observations of

Stellenbosch University https://scholar.sun.ac.za

6.2. Improvements and recommendations 91

targets from two known classes and two unknown classes. The capsule network is thus a
viable option for the classification of ISAR images for known and unknown targets. There
still is room for improvement in classification at low SNR levels. This meets the project
aims that were set out in Chapter 1.

6.2. Improvements and recommendations
The classifiers presented in this study are trained and tested on a limited set of synthetic
ISAR images generated from CEM simulation. Verifying the results obtained in this
work using ISAR images generated from measured data is therefore an obvious extension.
Gathering and processing measured data to form ISAR images would likely require more
sophisticated processing techniques, such as the use of compressive sensing to handle sparse
measurements and motion compensation techniques. It would be particularly useful if it
could be verified that models trained on synthetic data, which is more easily obtainable,
remain effective when tested on measured data. Additionally, the inclusion of more known
classes would increase the complexity of the classification task at hand. Future work could
be done to investigate how well the proposed techniques perform under these conditions.

There is also room for improvement on the final open-set classifier (the capsule network)
at low SNRs. While this work showed some improvement in the classifier’s sensitivity to
noise, the performance on the open test set is still far below that obtained on the closed
set at lower SNRs. Preprocessing of the noisy inputs could potentially be used to further
improve the system’s sensitivity to noise. These preprocessing techniques could include
denoising techniques, such as the use of a denoising auto-encoder, to improve the SNR.
Alternatively, the use of a blob-detection algorithm could be used to extract the structure
of the target from the ISAR image — potentially reducing the effect of noise in the inputs
to the classifier.

Various improvements to capsule networks have previously been proposed and demon-
strated on other datasets, such as the MNIST dataset in other studies [111]. Some of these
improvements, such as the use of matrix capsules [114] might be demonstrated to show
similar improvements when applied to the classification of ISAR images.

Stellenbosch University https://scholar.sun.ac.za

Reference List

[1] M. Pieraccini, L. Miccinesi, and N. Rojhani, “RCS measurements and ISAR images
of small UAVs,” IEEE Aerospace and Electronic Systems Magazine, vol. 32, no. 9,
pp. 28–32, 2017.

[2] W.-K. Lee and K.-M. Song, “Enhanced ISAR Imaging for Surveillance of Multiple
Drones in Urban Areas,” in 2018 International Conference on Radar (RADAR),
2018, pp. 1–4.

[3] J. É. Cilliers, “Information Theoretic Limits on Non-cooperative Airborne Target
Recognition by Means of Radar Sensors,” Ph.D. dissertation, UCL (University
College London), 2018.

[4] A. Stove and S. Sykes, “A Doppler-based target classifier using linear discriminants
and principal components,” in 2003 Proceedings of the International Conference on
Radar (IEEE Cat. No.03EX695), 2003, pp. 171–176.

[5] S. Dodge and L. Karam, “A Study and Comparison of Human and Deep Learning
Recognition Performance under Visual Distortions,” in 2017 26th International
Conference on Computer Communication and Networks (ICCCN), 2017, pp. 1–7.

[6] Cohen, “An overview of radar-based, automatic, noncooperative target recognition
techniques,” in IEEE 1991 International Conference on Systems Engineering, 1991,
pp. 29–34.

[7] G. E. Smith, K. Woodbridge, and C. J. Baker, “Micro-Doppler Signature Classifica-
tion,” in 2006 CIE International Conference on Radar, 2006, pp. 1–4.

[8] E. Reid, M. Lewis, E. Hughes, E. Reid, M. Lewis, and E. Hughes, “The Application
of Speech Recognition Techniques to Radar Target Doppler Recognition: A Case
Study,” in 2006 IET Seminar on High Resolution Imaging and Target Classification,
2006, pp. 145–152.

[9] A. Hanif, M. Muaz, A. Hasan, and M. Adeel, “Micro-Doppler Based Target Recogni-
tion With Radars: A Review,” IEEE Sensors Journal, vol. 22, no. 4, pp. 2948–2961,
2022.

92

Stellenbosch University https://scholar.sun.ac.za

Reference List 93

[10] Z. Shi, J. Li, Y. Zhang, and X. Lu, “HRR radar imaging based on compressed
samples using dynamic dictionaries,” in IET International Conference on Radar
Systems (Radar 2012), 2012, pp. 1–6.

[11] H.-J. Li and S.-H. Yang, “Using range profiles as feature vectors to identify aerospace
objects,” IEEE Transactions on Antennas and Propagation, vol. 41, no. 3, pp.
261–268, 1993.

[12] A. Zyweck and R. Bogner, “Radar target classification of commercial aircraft,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 32, no. 2, pp. 598–606, 1996.

[13] E. R. Keydel, S. W. Lee, and J. T. Moore, “MSTAR extended operating conditions:
a tutorial,” in Algorithms for Synthetic Aperture Radar Imagery III, E. G. Zelnio
and R. J. Douglass, Eds., vol. 2757, International Society for Optics and Photonics.
SPIE, 1996, pp. 228 – 242. [Online]. Available: https://doi.org/10.1117/12.242059

[14] S. Wang, Y. Wang, H. Liu, and Y. Sun, “Attribute-guided multi-scale prototypical
network for few-shot SAR target classification,” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, vol. 14, pp. 12 224–12 245, 2021.

[15] C. Li and H. Ling, “An Investigation on the Radar Signatures of Small Consumer
Drones,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1–1, 01 2016.

[16] Novak, “A comparison of 1D and 2D algorithms for radar target classification,” in
IEEE 1991 International Conference on Systems Engineering, 1991, pp. 6–12.

[17] J. Seybold and S. Bishop, “Three-dimensional ISAR imaging using a conventional
high-range resolution radar,” in Proceedings of the 1996 IEEE National Radar
Conference, 1996, pp. 309–314.

[18] J. Wei, S. Shao, H. Ma, P. Wang, L. Zhang, and H. Liu, “High-
Resolution ISAR Imaging with Modified Joint Range Spatial-Variant Autofocus
and Azimuth Scaling,” Sensors, vol. 20, no. 18, 2020. [Online]. Available:
https://www.mdpi.com/1424-8220/20/18/5047

[19] W. Zhou, C.-m. Yeh, R.-j. Jin, J. Yang, and J.-s. Song, “Rotation estimation for
wide-angle inverse synthetic aperture radar imaging,” Journal of Sensors, vol. 2016,
2016.

[20] B. Haywood, R. Kyprianou, and A. Zyweck, “ISARLAB: A radar signal processing
tool,” in Proceedings of ICASSP ’94. IEEE International Conference on Acoustics,
Speech and Signal Processing, vol. v, 1994, pp. V/177–V/180 vol.5.

[21] J. Maxwell and T. Torrance, A Dynamical Theory of the Electromagnetic Field, ser.
Torrance collection. Wipf & Stock, 1996.

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1117/12.242059
https://www.mdpi.com/1424-8220/20/18/5047

Reference List 94

[22] W. Gibson, The Method of Moments in Electromagnetics. CRC Press, 2014.

[23] S. Makarov, Antenna and EM Modeling in MATLAB, ser. A Wiley-Interscience
publication. Wiley, 2002.

[24] D. P. Xiang, “Fast mesh-based physical optics for large-scale electromagnetic
analysis,” 2016. [Online]. Available: http://hdl.handle.net/10019.1/100185

[25] D. Davidson, Computational Electromagnetics for RF and Microwave Engineering.
Cambridge University Press, 2005.

[26] C. Balanis, L. Sevgi, and P. Ufimtsev, “Fifty years of high frequency diffraction,”
International Journal of RF and Microwave Computer-Aided Engineering, vol. 23,
07 2013.

[27] R. Bhalla and H. Ling, “ISAR image simulation of targets with moving parts using
the shooting and bouncing ray technique,” in Proceedings of IEEE Antennas and
Propagation Society International Symposium and URSI National Radio Science
Meeting, vol. 3, 1994, pp. 1994–1997 vol.3.

[28] F. Wang, T. F. Eibert, and Y.-Q. Jin, “Simulation of ISAR Imaging for a Space
Target and Reconstruction Under Sparse Sampling via Compressed Sensing,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 53, no. 6, pp. 3432–3441, 2015.

[29] E. Lezar and U. Jakobus, “GPU-acceleration of the FEKO electromagnetic solution
kernel,” 2013 International Conference on Electromagnetics in Advanced Applications
(ICEAA), pp. 814–817, 2013.

[30] T. Küçükkılıç, “ISAR imaging and motion compensation,” Master’s thesis, Middle
East Technical University, 2006.

[31] C. Ozdemir, Inverse synthetic aperture radar imaging with MATLAB algorithms.
John Wiley & Sons, 2012, vol. 210.

[32] N. Blomerus, J. Cilliers, and J. de Villiers, “Development and Testing of a Low Cost
Audio Based ISAR Imaging and Machine Learning System for Radar Education,” in
2020 IEEE International Radar Conference (RADAR), 2020, pp. 766–771.

[33] A. K. Roy, S. A. Gangal, and C. Bhattacharya, “Demonstration of backprojection
algorithm for ISAR image formation with FMCW radar,” in 2016 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), 2016, pp. 1078–1081.

[34] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE
Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280, 1986.

Stellenbosch University https://scholar.sun.ac.za

http://hdl.handle.net/10019.1/100185

Reference List 95

[35] J. Odendaal, E. Barnard, and C. Pistorius, “Two-dimensional superresolution radar
imaging using the MUSIC algorithm,” IEEE Transactions on Antennas and Propa-
gation, vol. 42, no. 10, pp. 1386–1391, 1994.

[36] C. Hu, L. Wang, Z. Li, and D. Zhu, “Inverse Synthetic Aperture Radar Imaging
Using a Fully Convolutional Neural Network,” IEEE Geoscience and Remote Sensing
Letters, vol. 17, no. 7, pp. 1203–1207, 2020.

[37] A. Bilal, S. M. Hamza, Z. Taj, S. Salamat, and M. Abbas, “ISAR Imaging using FFT
with Polar Reformatting of Measured RCS,” in 2020 3rd International Conference
on Computing, Mathematics and Engineering Technologies (iCoMET), 2020, pp.
1–5.

[38] A. Khan and H. Farooq, “Principal component analysis-linear discriminant analysis
feature extractor for pattern recognition,” arXiv preprint arXiv:1204.1177, 2012.

[39] S.-h. Park, J.-h. Jung, S.-h. Kim, and K.-t. Kim, “Efficient classification of ISAR
images using 2D Fourier transform and polar mapping,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 51, no. 3, pp. 1726–1736, 2015.

[40] S. Fulin, L. Dafang, N. Liang, and S. Huadong, “Feature extraction and selection
based on ATR of ISAR image,” in Proceedings 7th International Conference on
Signal Processing, 2004. Proceedings. ICSP ’04. 2004., vol. 2, 2004, pp. 1415–1418
vol.2.

[41] E. Botha, “Classification of aerospace targets using superresolution ISAR images,” in
Proceedings of COMSIG ’94 - 1994 South African Symposium on Communications
and Signal Processing, 1994, pp. 138–145.

[42] J.-C. Cexus, A. Toumi, and M. Riahi, “Target recognition from ISAR image using
polar mapping and shape matrix,” in 2020 5th International Conference on Advanced
Technologies for Signal and Image Processing (ATSIP), 2020, pp. 1–6.

[43] J.-G. Lee, S. Jun, Y.-W. Cho, H. Lee, G. B. Kim, J. B. Seo, and N. Kim, “Deep
learning in medical imaging: general overview,” Korean journal of radiology, vol. 18,
no. 4, pp. 570–584, 2017.

[44] H. Yang, Y.-s. Zhang, C.-b. Yin, and W.-z. Ding, “Ultra-lightweight CNN
design based on neural architecture search and knowledge distillation: A novel
method to build the automatic recognition model of space target ISAR images,”
Defence Technology, vol. 18, no. 6, pp. 1073–1095, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214914721000763

Stellenbosch University https://scholar.sun.ac.za

https://www.sciencedirect.com/science/article/pii/S2214914721000763

Reference List 96

[45] A. Avadhani, S. Chaudhari, P. Gacheria, and S. Ahuja, “Inverse Synthetic-Aperture
Radar (ISAR) Images Recognition Using Deep Learning,” in 2020 Advanced Com-
puting and Communication Technologies for High Performance Applications (ACC-
THPA), 2020, pp. 293–298.

[46] B. Xue and N. Tong, “Real-World ISAR Object Recognition Using Deep Multimodal
Relation Learning,” IEEE Transactions on Cybernetics, vol. 50, no. 10, pp. 4256–4267,
2020.

[47] S. Zaied, A. Toumi, and A. Khenchaf, “Target classification using convolutional
deep learning and auto-encoder models,” in 2018 4th International Conference on
Advanced Technologies for Signal and Image Processing (ATSIP), 2018, pp. 1–6.

[48] Y. Li, B. Yang, Z. He, and R. Chen, “An ISAR Automatic Target Recognition
Approach Based on SBR-based Fast Imaging Scheme and CNN,” in 2020 IEEE
MTT-S International Wireless Symposium (IWS), 2020, pp. 1–3.

[49] X. He, N. Tong, and X. Hu, “Automatic recognition of ISAR images based on deep
learning,” in 2016 CIE International Conference on Radar (RADAR), 2016, pp. 1–4.

[50] X. Zhou, X. Bai, L. Wang, and F. Zhou, “Robust ISAR Target Recognition Based
on ADRISAR-Net,” IEEE Transactions on Aerospace and Electronic Systems, pp.
1–1, 2022.

[51] G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming auto-encoders,” in
International conference on artificial neural networks. Springer, 2011, pp. 44–51.

[52] W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability Models for Open Set
Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 36, no. 11, pp. 2317–2324, 2014.

[53] C. Geng, S.-J. Huang, and S. Chen, “Recent Advances in Open Set Recognition: A
Survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43,
no. 10, pp. 3614–3631, 2021.

[54] A. Bendale and T. E. Boult, “Towards open set deep networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp. 1563–1572.

[55] B. Gao and L. Pavel, “On the properties of the softmax function with application in
game theory and reinforcement learning,” arXiv preprint arXiv:1704.00805, 2017.

[56] R. Yoshihashi, W. Shao, R. Kawakami, S. You, M. Iida, and T. Naemura,
“Classification-reconstruction learning for open-set recognition,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp.
4016–4025.

Stellenbosch University https://scholar.sun.ac.za

Reference List 97

[57] W. Zhao, A. Heng, L. Rosenberg, S. T. Nguyen, L. Hamey, and M. Orgun, “ISAR
Ship Classification Using Transfer Learning,” in 2022 IEEE Radar Conference
(RadarConf22), 2022, pp. 1–6.

[58] S. Dang, Z. Cao, Z. Cui, and Y. Pi, “Open Set SAR Target Recognition Using Class
Boundary Extracting,” in 2019 6th Asia-Pacific Conference on Synthetic Aperture
Radar (APSAR), 2019, pp. 1–4.

[59] E. Zelnio and A. Pavy, “Open set SAR target classification,” in Algorithms for Syn-
thetic Aperture Radar Imagery XXVI, ser. Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, vol. 10987, Jul. 2019, p. 109870J.

[60] X. Ma, K. Ji, L. Zhang, S. Feng, B. Xiong, and G. Kuang, “An Open Set Recognition
Method for SAR Targets Based on Multitask Learning,” IEEE Geoscience and
Remote Sensing Letters, vol. 19, pp. 1–5, 2022.

[61] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” in Advances in Neural Information Processing
Systems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds., vol. 25.
Curran Associates, Inc., 2012. [Online]. Available: https://proceedings.neurips.cc/
paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[62] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[63] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[64] X. Zhai, A. Kolesnikov, N. Houlsby, and L. Beyer, “Scaling vision transformers,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022, pp. 12 104–12 113.

[65] J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini, and Y. Wu,
“Coca: Contrastive captioners are image-text foundation models,” arXiv preprint
arXiv:2205.01917, 2022.

[66] B. Xiao, J.-F. Ma, and J.-T. Cui, “Combined blur, translation, scale and rotation
invariant image recognition by Radon and pseudo-Fourier–Mellin transforms,”
Pattern Recognition, vol. 45, no. 1, pp. 314–321, 2012. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0031320311002883

[67] X. Wang, B. Xiao, J.-F. Ma, and X.-L. Bi, “Scaling and rotation invariant analysis
approach to object recognition based on Radon and Fourier–Mellin transforms,”

Stellenbosch University https://scholar.sun.ac.za

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0031320311002883

Reference List 98

Pattern Recognition, vol. 40, no. 12, pp. 3503–3508, 2007. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0031320307002063

[68] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,”
Advances in neural information processing systems, vol. 30, 2017.

[69] L. Deng, “The mnist database of handwritten digit images for machine learning
research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[70] Z. Yang and S. Jing, “SAR image classification method based on improved capsule
network,” Journal of Physics: Conference Series, vol. 1693, no. 1, p. 012181, dec
2020. [Online]. Available: https://doi.org/10.1088/1742-6596/1693/1/012181

[71] H. Ren, X. Yu, L. Zou, Y. Zhou, X. Wang, and L. Bruzzone, “Extended
convolutional capsule network with application on SAR automatic target
recognition,” Signal Processing, vol. 183, p. 108021, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0165168421000608

[72] R. Shah, A. Soni, V. Mall, T. Gadhiya, and A. K. Roy, “Automatic Target Recognition
from SAR Images Using Capsule Networks,” in Pattern Recognition and Machine
Intelligence, B. Deka, P. Maji, S. Mitra, D. K. Bhattacharyya, P. K. Bora, and S. K.
Pal, Eds. Cham: Springer International Publishing, 2019, pp. 377–386.

[73] C. Schwegmann, W. Kleynhans, B. Salmon, L. Mdakane, and R. Meyer, “Synthetic
Aperture Radar Ship Detection Using Capsule Networks,” in IGARSS 2018 - 2018
IEEE International Geoscience and Remote Sensing Symposium, 2018, pp. 725–728.

[74] Y. Gao, F. Gao, J. Dong, and H.-C. Li, “SAR image change detection based on
multiscale capsule network,” IEEE Geoscience and Remote Sensing Letters, vol. 18,
no. 3, pp. 484–488, 2020.

[75] S. Björklund, “Target detection and classification of small drones by boosting on
radar micro-doppler,” in 2018 15th European Radar Conference (EuRAD), 2018, pp.
182–185.

[76] X. Zou, A. Deng, Y. Hu, S. Hua, L. Zhang, S. Xu, and W. Zou, “High-resolution
and reliable automatic target recognition based on photonic ISAR imaging system
with explainable deep learning,” arXiv preprint arXiv:2212.01560, 2022.

[77] H. Yang, Y. Zhang, and W. Ding, “A fast recognition method for space targets
in ISAR images based on local and global structural fusion features with lower
dimensions,” International Journal of Aerospace Engineering, vol. 2020, pp. 1–21,
2020.

Stellenbosch University https://scholar.sun.ac.za

https://www.sciencedirect.com/science/article/pii/S0031320307002063
https://doi.org/10.1088/1742-6596/1693/1/012181
https://www.sciencedirect.com/science/article/pii/S0165168421000608

Reference List 99

[78] ——, “Multiple Heterogeneous P-DCNNs Ensemble With Stacking Algorithm: A
Novel Recognition Method of Space Target ISAR Images Under the Condition of
Small Sample Set,” IEEE Access, vol. 8, pp. 75 543–75 570, 2020.

[79] “Simulation for Connectivity, Compatibility, and Radar — Altair FEKO,” 2020.
[Online]. Available: https://www.altair.com/feko/

[80] “GrabCAD Community.” [Online]. Available: https://grabcad.com/dashboard

[81] M. Zhan, P. Huang, X. Liu, G. Liao, Z. Zhang, Z. Wang, and H. Fan, “An ISAR
imaging and cross-range scaling method based on phase difference and improved axis
rotation transform,” Digital Signal Processing, vol. 104, p. 102798, 2020. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S1051200420301433

[82] X.-g. Xia, G. Wang, and V. Chen, “Quantitative SNR analysis for ISAR imaging using
joint time-frequency analysis-Short time Fourier transform,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 38, no. 2, pp. 649–659, 2002.

[83] C. M. Bishop, “Training with Noise is Equivalent to Tikhonov Regularization,”
Neural Computation, vol. 7, no. 1, pp. 108–116, 01 1995. [Online]. Available:
https://doi.org/10.1162/neco.1995.7.1.108

[84] D. Böhning, “Multinomial logistic regression algorithm,” Annals of the institute of
Statistical Mathematics, vol. 44, no. 1, pp. 197–200, 1992.

[85] C. G. BROYDEN, “The Convergence of a Class of Double-rank Minimization
Algorithms 1. General Considerations,” IMA Journal of Applied Mathematics, vol. 6,
no. 1, pp. 76–90, 03 1970. [Online]. Available: https://doi.org/10.1093/imamat/6.1.76

[86] R. Fletcher, “A new approach to variable metric algorithms,” The Computer
Journal, vol. 13, no. 3, pp. 317–322, 01 1970. [Online]. Available: https:
//doi.org/10.1093/comjnl/13.3.317

[87] D. Goldfarb, “A family of variable-metric methods derived by variational means,”
Mathematics of computation, vol. 24, no. 109, pp. 23–26, 1970.

[88] D. F. Shanno, “Conditioning of quasi-newton methods for function minimization,”
Mathematics of computation, vol. 24, no. 111, pp. 647–656, 1970.

[89] M. A. Chandra and S. Bedi, “Survey on SVM and their application in image
classification,” International Journal of Information Technology, vol. 13, no. 5, pp.
1–11, 2021.

Stellenbosch University https://scholar.sun.ac.za

https://www.altair.com/feko/
https://grabcad.com/dashboard
https://www.sciencedirect.com/science/article/pii/S1051200420301433
https://doi.org/10.1162/neco.1995.7.1.108
https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.1093/comjnl/13.3.317

Reference List 100

[90] P. L. Cross, “Maritime automated targets recognition algorithm test bed for high
resolution isar imagery,” in 2013 IEEE International Conference on Technologies
for Homeland Security (HST), 2013, pp. 369–374.

[91] F. Ma, Y. He, and Y. Li, “Comparison of aircraft target recognition methods based
on ISAR images,” in 2022 IEEE 10th Joint International Information Technology
and Artificial Intelligence Conference (ITAIC), vol. 10, 2022, pp. 1291–1295.

[92] F. N. Khan, Q. Fan, C. Lu, and A. P. T. Lau, “An Optical Communication’s Perspec-
tive on Machine Learning and Its Applications,” Journal of Lightwave Technology,
vol. 37, no. 2, pp. 493–516, 2019.

[93] D. Sculley, “Large scale learning to rank,” 2009.

[94] C. Cortes and V. Vapnik, “Support-Vector Networks,” in Machine Learning, 1995,
pp. 273–297.

[95] S. J. Wright, “Coordinate descent algorithms,” Mathematical Programming, vol. 151,
pp. 3–34, 2015.

[96] M. A. Aizerman, “Theoretical Foundations of the Potential Function Method in
Pattern Recognition Learning,” Automation and Remote Control, vol. 25, pp. 821–
837, 1964.

[97] J. Mercer, “Xvi. functions of positive and negative type, and their connection the
theory of integral equations,” Philosophical transactions of the royal society of
London. Series A, containing papers of a mathematical or physical character, vol.
209, no. 441-458, pp. 415–446, 1909.

[98] J. Platt, “Probabilistic Outputs for Support Vector Machines and Comparisons to
Regularized Likelihood Methods,” Adv. Large Margin Classif., vol. 10, 06 2000.

[99] K. Taunk, S. De, S. Verma, and A. Swetapadma, “A Brief Review of Nearest Neighbor
Algorithm for Learning and Classification,” in 2019 International Conference on
Intelligent Computing and Control Systems (ICCS), 2019, pp. 1255–1260.

[100] B. Everitt, S. Landau, and M. Leese, Cluster Analysis, ser. A Hodder Arnold
Publication. Wiley, 2001. [Online]. Available: https://books.google.co.za/books?
id=htZzDGlCnQYC

[101] R. Souza, R. Lotufo, and L. Rittner, “A Comparison between Optimum-Path
Forest and k-Nearest Neighbors Classifiers,” in 2012 25th SIBGRAPI Conference on
Graphics, Patterns and Images, 2012, pp. 260–267.

Stellenbosch University https://scholar.sun.ac.za

https://books.google.co.za/books?id=htZzDGlCnQYC
https://books.google.co.za/books?id=htZzDGlCnQYC

Reference List 101

[102] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, M. Hasan,
B. C. Van Essen, A. A. Awwal, and V. K. Asari, “A state-of-the-art survey on deep
learning theory and architectures,” Electronics, vol. 8, no. 3, p. 292, 2019.

[103] M. A. Nielsen, Neural networks and deep learning. Determination press San
Francisco, CA, USA, 2015, vol. 25.

[104] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of deep
neural network architectures and their applications,” Neurocomputing, vol. 234, pp.
11–26, 2017.

[105] J. Heaton, Introduction to Neural Networks with Java. Heaton Research, 2008.
[Online]. Available: https://books.google.co.za/books?id=Swlcw7M4uD8C

[106] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations
by error propagation,” California Univ San Diego La Jolla Inst for Cognitive Science,
Tech. Rep., 1985.

[107] G. W. Leibniz, The early mathematical manuscripts of Leibniz. Courier Corporation,
2012.

[108] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015, software
available from tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[109] W. J. Scheirer, A. Rocha, R. Michaels, and T. E. Boult, “Meta-Recognition: The
Theory and Practice of Recognition Score Analysis,” IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), vol. 33, pp. 1689–1695, 2011.

[110] A. Neupane and W. Z. E. Amri, “aadeshnpn/OSDN,” https://github.com/
aadeshnpn/OSDN, 2020.

[111] M. Kwabena Patrick, A. Felix Adekoya, A. Abra Mighty, and B. Y. Edward,
“Capsule Networks – A survey,” Journal of King Saud University - Computer and
Information Sciences, vol. 34, no. 1, pp. 1295–1310, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1319157819309322

[112] X. Guo, “Xifengguo/capsnet-keras,” https://github.com/XifengGuo/CapsNet-Keras/
tree/tf2.2, 2020.

Stellenbosch University https://scholar.sun.ac.za

https://books.google.co.za/books?id=Swlcw7M4uD8C
https://www.tensorflow.org/
https://github.com/aadeshnpn/OSDN
https://github.com/aadeshnpn/OSDN
https://www.sciencedirect.com/science/article/pii/S1319157819309322
https://github.com/XifengGuo/CapsNet-Keras/tree/tf2.2
https://github.com/XifengGuo/CapsNet-Keras/tree/tf2.2

Reference List 102

[113] S. Adrián-Mart́ınez, M. Bou-Cabo, I. Felis, C. D. Llorens, J. A. Mart́ınez-Mora,
M. Saldaña, and M. Ardid, “Acoustic signal detection through the cross-correlation
method in experiments with different signal to noise ratio and reverberation con-
ditions,” in International conference on Ad-Hoc Networks and wireless. Springer,
2014, pp. 66–79.

[114] G. E. Hinton, S. Sabour, and N. Frosst, “Matrix capsules with EM routing,” in
International conference on learning representations, 2018.

Stellenbosch University https://scholar.sun.ac.za

Appendix A

Example FEKO simulation set-up

103

Stellenbosch University https://scholar.sun.ac.za

Appendix B

ISAR processing script for parallel
processing

1 % Constants
2 c = 2.997 e8;
3

4 %Get input data
5 rcs = ReadFFE ('D:\ Masters \Feko Results \ plane1_FarField1 .ffe ');
6

7 field = fieldnames (rcs);
8 field = field {1};
9 phi = unique (rcs .(field).Phi);

10 n_a_tot = length (phi);
11 freq = unique (rcs .(field).freq);
12 f_range = freq(end)-freq (1);
13 n_f = length (freq);
14 n_os = 1;
15 n_a = 21;
16 ang_range = phi(n_a)-phi (1);
17 theta = unique (rcs .(field). Theta);
18 n_theta = length (theta);
19

20 %set up data matrix
21 r1 = complex (zeros(n_f , n_a_tot , n_theta));
22 for m = 1: n_theta
23 for n = 1: n_a_tot
24 ind = (rcs .(field).Phi == phi(n)) & (rcs .(field).Theta == theta(

m));
25 r1(:, n, m) = rcs .(field). Re_Etheta (ind)+1j*rcs .(field).

Im_Etheta (ind);
26 end
27 end
28

29 %Split the data into multiple azimuth ranges
30 prev_size = 0;
31 for m = 1: n_theta
32 data_temp = azSplit (r1(:, :, m), n_a , 1);

104

Stellenbosch University https://scholar.sun.ac.za

Appendix 105

33 if(˜ exist('data ', 'var '))
34 data = data_temp ;
35 else
36 data = cat (3, data , data_temp);
37 end
38 end
39

40 %Set up grid for interpolation to cartesian grid
41 fxStart = freq (1);
42 fyStart = tan(deg2rad (phi (1)))* fxStart ;
43 fyEnd = tan(deg2rad (phi(n_a)))* fxStart ;
44 fxEnd = sqrt(freq(end)ˆ2 - fyEnd ˆ2);
45

46 fx_d = (fxEnd - fxStart)/(n_f -1);
47 fy_d = (fyEnd - fyStart)/(n_a -1);
48

49 x_samp = fxStart :fx_d:fxEnd ;
50 y_samp = fyStart :fy_d:fyEnd ;
51

52 [X_samp , Y_samp] = meshgrid (x_samp , y_samp);
53

54 f_samp = sqrt(X_samp .ˆ2 + Y_samp .ˆ2);
55

56 ang_samp = rad2deg (atan(Y_samp ./ X_samp));
57

58 f_samp_ind = min(max ((f_samp - freq (1))*n_f/ f_range + 1, 1) , n_f);
59 ang_samp_ind = min(max ((ang_samp - phi (1))*n_a/ ang_range + 1, 1), n_a);
60

61 % Generate noise -free example
62 ISAR = complex (zeros(n_os*n_f , n_os*n_a , size(data , 3)));
63 for i = 1: size(data , 3)
64 ISAR (:, :, i) = GenerateISAR (data (:, :, i), n_os);
65 end
66

67 %save noise -free example
68 filename = sprintf ('ISAR/ plane1ISAR ');
69 %save(filename , 'ISAR ', '-v7.3');%, '-nocompression ');
70

71 snrs = -24:3:24;
72 parfor j = 1: length (snrs)
73 snr = snrs(j);
74 n_examples = 10;
75 ISAR = complex (zeros(n_os*n_f , n_os*n_a , n_examples *size(data , 3)));
76 for example = 1: n_examples
77 %add white gausian noise to the signal
78 data_noisy = complex (zeros(n_f , n_a , size(data , 3)));
79 for i = 1: size(data , 3)

Stellenbosch University https://scholar.sun.ac.za

Appendix 106

80 %add noise according to Xiang -Gen Xia , Genyuan Wang and V. C
. Chen , " Quantitative SNR analysis for ISAR imaging using joint time -
frequency analysis -Short time Fourier transform ," in IEEE
Transactions on Aerospace and Electronic Systems , vol. 38, no. 2, pp.

649 -659 , April 2002
81 dat = data (:, :, i);
82 beta = abs(dat).ˆ2 >= 0.5* max(abs(dat).ˆ2 , [], 'all ');
83 Psignal = 10* log10(sum(abs(dat(beta)).ˆ2)/sum(beta (:)));
84 p = 10* log10(bandpower (dat (:)));
85 data_noisy (:, :, i) = awgn(dat , snr , p);
86 end
87

88 for i = 1: size(data_noisy , 3)
89 ISAR (:, :, i+(example -1)*size(data_noisy , 3)) = GenerateISAR

(data_noisy (:, :, i), n_os);
90 end
91 end
92 ISAR = ISAR ./ max(abs(ISAR), [], [1 2]);% normalise
93 filename = sprintf ('ISAR_norm / plane1ISAR_ % ddB_norm ', snr);
94 parsave (filename , ISAR);%, '-nocompression ');
95 end
96

97 f_inc = freq (2) -freq (1);
98 a_inc = (phi (2) -phi (1))*pi /180;
99 UA_r = c/(2* f_inc);

100 UA_cr = c/(freq (1) *2* a_inc);
101

102 range = (0:(n_os*n_f -1))/(n_os*n_f)*UA_r - UA_r /2;
103 crange = (0:(n_os*n_a -1))/(n_os*n_a)* UA_cr - UA_cr /2;
104

105 %plot ISAR image
106 figure ;
107 imagesc (crange , -range , 1000* abs(ISAR (:, :, 1)));
108 colormap 'jet ';
109 xlabel ('Crossrange [m]');
110 ylabel ('Range [m]');
111 colorbar ;
112

113 function parsave (fname , ISAR)
114 save(fname , 'ISAR ', '-v7 .3');
115 end
116

117 function ISAR = GenerateISAR (r1 , n_os)
118 n_f = size(r1 , 1);
119 n_a = size(r1 , 2);
120 %HRR generation
121 window = hamming (n_f);

Stellenbosch University https://scholar.sun.ac.za

Appendix 107

122 G_win = sum(window);
123 win = repmat (window ,[1 n_a]);
124 HRR = fftshift (fft(win .*r1 ,n_os*n_f ,1) , 1)/ G_win ;
125

126 %ISAR generation
127 window = hamming (n_a).';
128 G_win = sum(window);
129 win = repmat (window ,[(n_f*n_os) 1]);
130 ISAR = fftshift (fft(win .*HRR ,n_os*n_a ,2) , 2)/ G_win;
131 end

Listing B.1: ISAR processing script.

Stellenbosch University https://scholar.sun.ac.za

Appendix C

KNN implementation

1 function [y_pred] = KNN(x_new , X_ref , y_ref , k)
2 %KNN
3 % Input Arguments :
4 % x_new
5 % The unlabelled observation to be classified .
6 % X_ref
7 % A list of known observations .
8 % y_ref
9 % The class labels corresponding to X_ref.

10 % k
11 % The number of nearest neighbours to consider
12 %
13 % Output Arguments :
14 % y_pred
15 % The predicted class label of x_new .
16 %
17 % Description :
18 % Predicts the class of x_new according to the KNN algorithm .
19

20 % Calculate the distances .
21 d_vec = X_ref - x_new ;
22 d = vecnorm (d_vec , 2, 2);
23

24 % Assign x_new to the modal class of the k nearest neighbours .
25 [˜, ind] = sort(d);
26 y_pred = mode(y_ref(ind (1:k)));
27 end

Listing C.1: KNN.m

108

Stellenbosch University https://scholar.sun.ac.za

Appendix D

Capsule network code

1

2 '''
3 Capsule network code adapted from https :// github .com/ XifengGuo /CapsNet -

Keras :
4

5 MIT License
6

7 Copyright (c) 2017 Xifeng Guo
8

9 Permission is hereby granted , free of charge , to any person obtaining a
copy

10 of this software and associated documentation files (the " Software "), to
deal

11 in the Software without restriction , including without limitation the
rights

12 to use , copy , modify , merge , publish , distribute , sublicense , and/or
sell

13 copies of the Software , and to permit persons to whom the Software is
14 furnished to do so , subject to the following conditions :
15

16 The above copyright notice and this permission notice shall be included
in all

17 copies or substantial portions of the Software .
18

19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , EXPRESS
OR

20 IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY ,
21 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT . IN NO EVENT SHALL

THE
22 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER
23 LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING

FROM ,
24 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS

IN THE
25 SOFTWARE .
26 '''

109

Stellenbosch University https://scholar.sun.ac.za

Appendix 110

27

28 import numpy as np
29 from sklearn . metrics import confusion_matrix
30 import tensorflow as tf
31 from tensorflow .keras import layers , models , optimizers
32 from tensorflow .keras import backend as K
33 from tensorflow .keras.utils import to_categorical
34 import matplotlib . pyplot as plt
35 from utils import combine_images
36 from PIL import Image
37 from capsuleLayers import CapsLayer , PrimaryCaps , Length , Mask
38 import h5py as h5
39

40 K. set_image_data_format ('channels_last ')
41

42

43 def CapsNet (input_shape , n_class , routings , batch_size):
44

45 dim_caps = 16
46 x = layers . Input(shape = input_shape , batch_size = batch_size)
47 conv1 = layers . Conv2D (filters =256 , kernel_size =9, strides =1, padding

='valid ', activation ='relu ', name='conv1 ')(x)
48 primcaps = PrimaryCaps (conv1 , dim_caps =8, n_chanels =32, kernel_size

=9, strides =2, padding ='valid ')
49 digitcaps = CapsLayer (num_caps =n_class , dim_caps =dim_caps , routings =

routings , name='digitcaps ')(primcaps)
50 out_caps = Length (name='capsnet ')(digitcaps)
51

52

53 # Decoder
54 y = layers . Input(shape =(n_class ,))
55 masked_by_y = Mask ()([digitcaps , y])
56 masked = Mask ()(digitcaps)
57

58 decoder = models . Sequential (name='decoder ')
59 decoder .add(layers . Dense (512 , activation ='relu ', input_dim = dim_caps

* n_class))
60 decoder .add(layers . Dense (1024 , activation ='relu '))
61 decoder .add(layers . Dense(np.prod(input_shape), activation ='sigmoid ')

)
62 decoder .add(layers . Reshape (target_shape = input_shape , name='out_recon

'))
63

64 train_model = models .Model ([x, y], [out_caps , decoder (masked_by_y)])
65 eval_model = models .Model (x, [out_caps , decoder (masked)])
66

67 noise = layers .Input (shape =(n_class , dim_caps))

Stellenbosch University https://scholar.sun.ac.za

Appendix 111

68 noised_digitcaps = layers .Add () ([digitcaps , noise])
69 masked_noised_y = Mask ()([noised_digitcaps , y])
70 manipulate_model = models .Model ([x, y, noise], decoder (

masked_noised_y))
71 return train_model , eval_model , manipulate_model
72

73

74 def margin_loss (y_true , y_pred):
75 L = y_true * tf. square (tf. maximum (0. , 0.9 - y_pred)) + \
76 0.5 * (1 - y_true) * tf. square (tf. maximum (0., y_pred - 0.1))
77

78 return tf. reduce_mean (tf. reduce_sum (L, 1))
79

80

81 def train(model , # type: models .Model
82 data , args):
83 """
84 Training a CapsuleNet
85 :param model: the CapsuleNet model
86 :param data: a tuple containing training and testing data , like `((

x_train , y_train), (x_test , y_test))`
87 :param args: arguments
88 : return : The trained model
89 """
90 # unpacking the data
91 (x_train , y_train), (x_test , y_test) = data
92

93 # callbacks
94 log = callbacks . CSVLogger (args. save_dir + '/log.csv ')
95 checkpoint = callbacks . ModelCheckpoint (args. save_dir + '/weights -{

epoch :02d}. h5', monitor ='val_capsnet_accuracy ',
96 save_best_only =True ,

save_weights_only =True , verbose =1)
97 lr_decay = callbacks . LearningRateScheduler (schedule = lambda epoch :

args.lr * (args. lr_decay ** epoch))
98

99 # compile the model
100 model . compile (optimizer = optimizers .Adam(lr=args.lr),
101 loss =[margin_loss , 'mse '],
102 loss_weights =[1. , args. lam_recon],
103 metrics ={'capsnet ': 'accuracy '})
104

105 def train_generator (x, y, batch_size):
106 train_datagen = ImageDataGenerator ()
107 generator = train_datagen .flow(x, y, batch_size = batch_size)
108 while 1:
109 x_batch , y_batch = generator .next ()

Stellenbosch University https://scholar.sun.ac.za

Appendix 112

110 yield (x_batch , y_batch), (y_batch , x_batch)
111

112 model .fit(train_generator (x_train , y_train , args. batch_size),
113 steps_per_epoch =int(y_train . shape [0] / args. batch_size),
114 epochs =args.epochs ,
115 validation_data =((x_test , y_test), (y_test , x_test)),

batch_size =args. batch_size ,
116 callbacks =[log , checkpoint , lr_decay])
117

118 model . save_weights (args. save_dir + '/ trained_model .h5')
119 print('Trained model saved to \'%s/ trained_model .h5\'' % args.

save_dir)
120

121 from utils import plot_log
122 plot_log (args. save_dir + '/log.csv ', show=True)
123

124 return model
125

126

127 def test(model , data , args):
128 from sklearn . mixture import GaussianMixture as GMM
129 from sklearn . metrics import confusion_matrix , f1_score
130 from scipy. signal import correlate2d
131 import pickle
132 x_test , y_test = data
133 print(x_test . shape)
134 print(y_test . shape)
135 print(np. argmax (y_test , 1))
136 y_pred , x_recon = model. predict (x_test , batch_size =114)
137 zncc = []
138 xc = []
139 x_recon_norm = x_recon - np.mean(x_recon , axis =(1 , 2))[:, np.newaxis

, np. newaxis]
140 x_test_norm = x_test - np.mean(x_test , axis =(1 , 2))[:, np.newaxis ,

np. newaxis]
141 sigma_recon = np.std(x_recon , axis =(1 , 2))
142 sigma_test = np.std(x_test , axis =(1, 2))
143 x_recon_norm = x_recon_norm / sigma_recon [:, np.newaxis , np. newaxis]
144 x_test_norm = x_test_norm / sigma_test [:, np.newaxis , np. newaxis]
145 for i in range (0, x_recon . shape [0]):
146 xc = np. append (xc , correlate2d (np. squeeze (x_test_norm [i, :, :]) ,

np. squeeze (x_recon_norm [i, :, :]) , 'valid '))
147 zncc = xc
148 zncc_known = zncc[np. argmax (y_test , 1) <= 1]
149 zncc_unknown = zncc[np. argmax (y_test , 1) > 1]
150 histo = plt. figure ()
151 print(zncc.shape)

Stellenbosch University https://scholar.sun.ac.za

Appendix 113

152

153 threshold = args. threshold
154 if(threshold == 0):
155 #find threshold
156 threshold = get_threshold (zncc_unknown , zncc_known)
157 print(" threshold = %10f" % threshold)
158 with h5.File(args. save_dir_snr + "/ threshold .hdf5", "w") as f:
159 f. create_dataset (" threshold ", data= threshold)
160

161 b = np. histogram (zncc , bins =100) [1]
162 plt.hist(zncc_unknown , b, color ='red ', alpha =0.5)
163 plt.hist(zncc_known , b, color='blue ', alpha =0.5)
164 histo . savefig (args. save_dir_snr + "/ histogram .png")
165

166 y_pred_am = np. argmax (y_pred , 1)
167 y_pred_am [zncc < threshold] = 2
168 conf_mat = confusion_matrix (np. argmax (y_test , axis =1) , y_pred_am)
169 conf_mat_plt = plt. figure ()
170 plot_conf_mat (conf_mat)
171 with open(args. save_dir_snr + "/zncc. pickle ", 'wb ') as f:
172 pickle .dump(zncc , f)
173 conf_mat_plt . savefig (args. save_dir_snr + "/ conf_mat .png")
174 print('-' * 30 + 'Begin : test ' + '-' * 30)
175 y_expected = np. argmax (y_test , 1)
176 y_expected [y_expected > 1] = 2
177 f1 = f1_score (y_expected , y_pred_am , average =" weighted ")
178 print('F1 -score :', f1)
179 print('Test acc:', sum(y_pred_am == y_expected)/ y_test .shape [0])
180

181 img = combine_images (np. concatenate ([x_test [16:16856:421] , x_recon
[16:16856:421]]) , height =8)

182 image = img * 255
183 Image . fromarray (image. astype (np. uint8)).save(args. save_dir_snr + "/

real_and_recon .png")
184 print ()
185 print('Reconstructed images are saved to %s/ real_and_recon .png ' %

args. save_dir_snr)
186 print('-' * 30 + 'End: test ' + '-' * 30)
187 plt. imshow (plt. imread (args. save_dir_snr + "/ real_and_recon .png"))
188

189 # return F1 score
190 return (f1)
191

192 def get_threshold (dist1 , dist2):
193 #this is not very efficient , but should work
194 overlap_max = np.max(dist1)
195 overlap_min = np.min(dist2)

Stellenbosch University https://scholar.sun.ac.za

Appendix 114

196 overlap_1 = np.sort(dist1 [dist1 > overlap_min])
197 overlap_2 = np.sort(dist2 [dist2 < overlap_max])
198 thresholds = np. linspace (overlap_min , overlap_max , 1000)
199 costs = np. full_like (thresholds , np. Infinity)
200 i = 0
201 for threshold in thresholds :
202 costs [i] = np.sum(overlap_1 > threshold) + np.sum(overlap_2 <

threshold)
203 i+=1
204 return thresholds [np. argmin (costs)]
205

206 def plot_conf_mat (conf_mat):
207 conf_mat_new = conf_mat [:, 0:3]
208 n_classes = 4
209 import seaborn as sns
210 mask = [[1, -1, -1],\
211 [-1, 1, -1],\
212 [-1, -1, 1],\
213 [-1, -1, 1]]
214 conf_color = conf_mat_new *mask
215 ax = sns. heatmap (conf_color , cmap = 'coolwarm_r ', annot= conf_mat_new

, fmt="d" ,\
216 vmin=- y_test .shape [0]/ n_classes , vmax= y_test . shape [0]/ n_classes ,

snap=True ,\
217 linewidths =1, linecolor ='k', xticklabels =[" Drone", " Missile ", "

Other "],\
218 yticklabels =[" Drone", " Missile ", "UFO", "Fixed -wing"], cbar=

False , square = False)
219 ax. set_xlabel (" Predicted label", size =12)
220 ax. axvline (x=3, color='k',linewidth =2)
221 ax. axhline (y=4, color='k',linewidth =2)
222 #ax. set_xticklabels ([" Drone", " Missile ", " Other "], rotation =30)
223 ax. set_ylabel ("True label ", size =12)
224 ax. set_title (" Confusion Matrix ")
225 #plt.show ()
226

227 def load_isar (snr):
228 import h5py as h5
229 import math
230 os.chdir("D:\ Masters \ Classifiers \ISAR - Classification ")
231 n_examples = 3
232 n_classes = 2
233 obs_per_class = 4598*2
234 X = np.empty ((0, 32, 32) , dtype = [('real ', '<f8'), ('imag ', '<f8')

])
235 y = np.empty ((0 ,32 , 32) , int)
236 indx = 0

Stellenbosch University https://scholar.sun.ac.za

Appendix 115

237 for c_name in (" droneISAR_32_ "+str(snr)+" dB_norm ", " missileISAR_32_ "
+str(snr)+" dB_norm "):

238 with h5.File(" ISAR_norm \\"+ c_name +".mat", 'r') as f:
239 c = f['ISAR ']
240 s = 13794
241 X = np. append (X, c[0:s, :, :], axis = 0)
242 y = np. append (y, np.full ((s, 1), indx))
243 indx = indx + 1
244 with h5.File(" shuffle_ind .mat", 'r') as f:
245 shuffle_ind = np. squeeze (np.array (f.get('shuffle_ind '), int)) -1
246

247 for c_name in (" ufoISAR_32_ "+str(snr)+" dB_norm ", " plane1ISAR_32_ "+
str(snr)+" dB_norm "):

248 with h5.File(" ISAR_norm \\"+ c_name +".mat", 'r') as f:
249 c = f['ISAR ']
250 s = 13794
251 X = np. append (X, c[0:s, :, :], axis = 0)
252 y = np. append (y, np.full ((s, 1), indx))
253 indx = indx + 1
254

255 X = X[:, :, :, np. newaxis]
256 X = np.sqrt(np. square (X['real ']) + np. square (X['imag ']))
257 train_ind = np.zeros (242 , dtype=bool)
258 train_ind [shuffle_ind [1: math.floor (0.7*242)]] = True
259 train_ind = np.tile(train_ind , 19* n_classes * n_examples)
260 train_ind_ext = np. append (train_ind , np. full_like (train_ind , False))
261 test_ind = ˜np. append (train_ind , train_ind)
262 X_train = X[train_ind_ext]
263

264 # convert y to 1-hot encoding
265 y = tf. one_hot (y, 4)
266 y_train = y[train_ind_ext]
267 X_val = X[test_ind]
268 y_val = y[test_ind]
269 del X
270 os.chdir("D:\ Masters \ Classifiers \ISAR - Classification \ CapsNet ")
271 return (X_train , y_train), (X_val , y_val)
272

273 if __name__ == " __main__ ":
274 import os
275 import argparse
276 from tensorflow .keras. preprocessing .image import ImageDataGenerator
277 from tensorflow .keras import callbacks
278

279 # setting the hyper parameters
280 parser = argparse . ArgumentParser (description =" Capsule Network for

ISAR image classification .")

Stellenbosch University https://scholar.sun.ac.za

Appendix 116

281 parser . add_argument ('--epochs ', default =10, type=int)
282 parser . add_argument ('--batch_size ', default =114 , type=int)
283 parser . add_argument ('--lr', default =0.001 , type=float ,
284 help=" Initial learning rate")
285 parser . add_argument ('--lr_decay ', default =0.9 , type=float ,
286 help="The value multiplied by lr at each epoch .

Set a larger value for larger epochs ")
287 parser . add_argument ('--lam_recon ', default =0.392 , type=float ,
288 help="The coefficient for the loss of decoder ")
289 parser . add_argument ('-r', '--routings ', default =3, type=int ,
290 help=" Number of iterations used in routing

algorithm . should > 0")
291 parser . add_argument ('--debug ', action ='store_true ',
292 help="Save weights by TensorBoard ")
293 parser . add_argument ('--save_dir ', default ='./ result ')
294 parser . add_argument ('-t', '--testing ', action ='store_true ',
295 help="Test the trained model on testing dataset "

)
296 parser . add_argument ('-w', '--weights ', default =None ,
297 help="The path of the saved weights . Should be

specified when testing ")
298 parser . add_argument ('--threshold ', default =0, type=float ,
299 help="The threshold value to use when separating

known/ unknown classes ")
300 args = parser . parse_args ()
301 print(args)
302

303 if not os.path. exists (args. save_dir):
304 os. makedirs (args. save_dir)
305

306 # load data
307 (x_train , y_train), (x_test , y_test) = load_isar (24)
308

309 # define model
310 model , eval_model , manipulate_model = CapsNet (input_shape = x_train .

shape [1:] ,
311 n_class =len(np. unique (

np. argmax (y_train , 1))),
312 routings =args.routings

,
313 batch_size =args.

batch_size)
314 model . summary ()
315

316 # train or test
317 if args. weights is not None: # init the model weights with provided

one

Stellenbosch University https://scholar.sun.ac.za

Appendix 117

318 model . load_weights (args. weights)
319 if not args. testing :
320 train (model =model , data =((x_train , y_train), (x_test , y_test)),

args=args)
321 else: # as long as weights are given , will run testing
322 if args. weights is None:
323 print('No weights are provided . Will test using random

initialized weights .')
324 eval_model . load_weights (args. weights)
325 snrs = range (24 , -25, -3)
326 f1 = []
327 for snr in snrs:
328 (x_train , y_train), (x_test , y_test) = load_isar (snr)
329 args. save_dir_snr = args. save_dir + "/" + str(snr) + "dB"
330 if not os.path. exists (args. save_dir_snr):
331 os. makedirs (args. save_dir_snr)
332 f1. append (test(model =eval_model , data =(x_test , y_test), args

=args))
333 plt.plot(snrs , f1)
334 plt.show ()
335 with h5.File(args. save_dir + "/ F1_vs_snr .hdf5", "w") as f:
336 f. create_dataset ("SNR", data=snrs)
337 f. create_dataset ("f1", data=f1)

Listing D.1: Capsule network code. (Adapted from [112])

Stellenbosch University https://scholar.sun.ac.za

	Declaration
	Abstract
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background
	Problem statement
	Project aims
	Scope
	Publications
	Thesis outline

	Literature Review
	Radar signatures used in target recognition
	Doppler signatures
	High range resolution profiles (HRRP)
	Radar imaging

	Simulating high-resolution radar
	Full-wave methods
	Asymptotic methods

	ISAR image formation
	Conventional methods
	Other methods
	Motion compensation

	Classification techniques
	Traditional machine learning
	Deep learning

	Open-set recognition (OSR)
	OSR for automatic target recognition

	General image recognition
	Existing works on ISAR image recognition
	Small targets
	Medium-sized targets

	Dataset Generation
	Choice of target models
	Dataset overview
	ISAR theory
	Electromagnetic scattering
	Imaging plane
	Down-range resolution
	Cross-range resolution
	Unambigious range

	ISAR image formation
	Polar reformatting

	Simulation
	Image parameters
	Simulation parameters

	Simulating different noise-levels
	Defining SNR

	Normalisation and upsampling
	Visualising the dataset
	Conclusion

	Traditional Machine Learning Approaches
	Logistic regression (LR)
	Theory
	Implementation

	Support vector machine (SVM)
	Theory
	Implementation

	K-nearest neighbours (KNN)
	Theory
	Implementation

	Experiments
	General approach
	Training at a single elevation
	Training at multiple elevations
	Training at other SNRs
	Up-sampling
	Conclusion

	Deep Learning Approaches
	The artificial neuron
	Fully-connected neural network (FCNN)
	Architecture and implementation
	Training
	Results (closed-set)

	Open-set adaptations to the FCNN
	Softmax with a reject option
	Openmax
	Training with an explicit `other' class
	Testing

	Capsule networks
	Basic theory
	Implementation
	Closed-set results
	Open-set adaptation

	Conclusion

	Conclusion and Recommendations
	Conclusion
	Improvements and recommendations

	Reference List
	Example FEKO simulation set-up
	ISAR processing script for parallel processing
	KNN implementation
	Capsule network code

