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Abstract

English

Human infants acquire language in large part through continuous signalling with their
caregivers. By interacting and communicating with their caregivers, infants can observe
the consequences of their communicative attempts (e.g. through parental response) that
may guide the process of language acquisition. We find many similarities between human
language acquisition and the intuition of intrinsic motivation which serves as a basis
of reinforcement learning. In contrast, current trends in natural language processing
disregard this, instead focusing on having larger models and more data to learn the
statistical relationships between words with none of the original goals of language in mind.

Multi-agent reinforcement learning has proven effective for investigating emergent com-
munication between social agents. Most of these studies, however, focus on communication
with discrete symbols. Humans learn language over a continuous channel and language
has evolved through gestures and spoken communication, both of which are inherently
continuous. This channel is also time-varying: interactions take place in unique settings
with different channel acoustics and types of noise. These intricacies are lost when agents
communicate directly with purely discrete symbols.

We therefore ask: are we able to observe emergent language between agents with a
continuous communication channel? And if so, how does learned continuous communication
differ from discrete communication? Our objective is to provide a platform to study
emergent continuous signalling in order to see how it relates to human language acquisition
and evolution. We propose a messaging environment where a Speaker agent needs to
convey a set of attributes to a Listener over a noisy acoustic channel.

This thesis makes two core contributions. Firstly, in contrast to recent studies on
language emergence, we train our agents with deep Q-learning rather than REINFORCE.
When using DQN, we show significant performance gains and improved compositionality.
Secondly, we provide a platform to study spoken emergent language between agents. To
showcase this, we compare discrete and acoustic emergent languages. We show that,
unlike the discrete case, the acoustic Speaker learns redundancy to improve Listener
coherency when longer sequences are allowed. We also find that the acoustic Speaker
develops more compositional communication protocols which implicitly compensates for
transmission errors over the noisy channel. In addition, we show early experiments
with promising results in language grounding (to English) and effective generalisation to

real-world communication channels.

1il
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Abstract iv

Afrikaans

Menslike babas verwerf taal grootliks deur voortdurende seine met hul versorgers. Deur
interaksie en kommunikasie met hul versorgers, kan babas die gevolge van hul kommunika-
tiewe pogings waarneem (bv. deur ouerlike reaksie) wat die proses van taalverwerwing
kan lei. Ons vind baie ooreenkomste tussen menslike taalverwerwing en die intuisie van
intrinsieke motivering wat as basis van versterkende leer dien. Hierteenoor ignoreer huidige
neigings in natuurlike taalverwerking dit, maar fokus eerder daarop om groter modelle en
meer data te hé om die statistiese verwantskappe tussen woorde te leer met geen van die
oorspronklike doelwitte van taal in gedagte nie.

Multi-agent versterking leer het bewys effektief vir die ondersoek van ontluikende
kommunikasie tussen agente. Die meeste van hierdie studies fokus egter op kommunikasie
met diskrete simbole. Mense leer taal oor 'n deurlopende kanaal en taal het ontwikkel deur
gebare en gesproke kommunikasie, wat albei inherent aaneenlopend is. Hierdie kanaal is
ook tyd-variérend: interaksies vind plaas in unieke omgewings met verskillende kanaal
akoestiek en tipes geraas. Hierdie ingewikkeldhede gaan verlore wanneer agente direk met
suiwer diskrete simbole kommunikeer.

Ons vra dus: is ons in staat om opkomende taal tussen agente met 'n deurlopende
kommunikasiekanaal waar te neem? En indien wel, hoe verskil aangeleerde deurlopende
kommunikasie van diskrete kommunikasie? Ons doelwit is om 'n platform te bied om
ontluikende deurlopende seine te bestudeer om te sien hoe dit verband hou met menslike
taalverwerwing en -evolusie. Ons stel 'n boodskap-omgewing voor waar 'n spreker-agent
'n stel eienskappe aan 'n luisteraar moet oordra oor 'n lawaaierige akoestiese kanaal.

Hierdie tesis lewer twee kernbydraes. Eerstens, in teenstelling met onlangse studies
oor taalopkoms, lei ons ons agente op met diepgaande Q-leer eerder as REINFORCE.
Wanneer ons DQN gebruik, toon ons aansienlike prestasiewinste en verbeterde samestelling.
Tweedens bied ons 'n platform om gesproke opkomende taal tussen agente te bestudeer. Om
dit ten toon te stel, vergelyk ons diskrete en akoestiese opkomende tale. Ons wys dat, anders
as die diskrete geval, die akoestiese luidspreker oortolligheid leer om luisteraarsamehang
te verbeter wanneer langer reekse toegelaat word. Ons vind ook dat die akoestiese spreker
meer komposisionele kommunikasieprotokolle ontwikkel wat implisiet kompenseer vir
transmissiefoute oor die raserige kanaal. Daarbenewens toon ons vroeé eksperimente met
belowende resultate in taalbegronding (na Engels) en effektiewe veralgemening na werklike

kommunikasiekanale.
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Chapter 1

Introduction

1.1. Motivation

Reinforcement learning (RL) is increasingly being used as a tool to study language
emergence [1-6]. By allowing multiple agents to communicate with each other while
solving a common task, a communication protocol needs to be established. The resulting
protocol can be studied to see if it adheres to properties of human language, such as
compositionality, generalisation and redundancy [7-10]. The tasks and environments
themselves can also be studied, to see what types of constraints are necessary for human-
like language to emerge [11]. Referential games are often used for this purpose [12-14].
While these studies open up the possibility of using computational models to investigate how
language emerged and how language is acquired through interaction with an environment
and other agents, most RL studies consider communication using discrete symbols.

Spoken language instead operates and emerged over a continuous acoustic channel.
Human infants acquire their native language by being exposed to speech audio in their
environment [15]. By interacting and communicating with their caregivers using continuous
signals, infants can observe the consequences of their communicative attempts (e.g. through
parental responses) that may guide the process of language acquisition [16]. Continuous
signalling is challenging since an agent needs to be able to deal with different acoustic
settings and noise introduced through the channel. These intricacies are lost when agents
communicate directly with purely discrete symbols.

The primary motivation for our research is to bridge the disconnect between current
trends in language processing and our understanding of language acquisition and evolution.
As mentioned, spoken language operates and emerged over a continuous acoustic channel.
Language is also a communication technology [17]: it allows social entities to converse
complex meanings through space via speech. In contrast, current trends disregard this,
instead focusing on having larger models and more data to learn the statistical relationships
between words with none of the original goals of language in mind [18,19]. A detailed
review of language use, philosophy, and goals of language processing is given in Section 3.1.
This leads us to look towards an alternative method of language acquisition and processing.

We can draw many similarities between human language acquisition and the intuition
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of intrinsic motivation which serves as a basis of modern RL. Language is social, and
multi-agent RL is arguably the current state-of-the-art for modelling social interaction. We
are also interested in modelling infant language acquisition, where the process of caregiver
feedback is loosely akin to an RL reward signal. Thus, we consider RL as an alternative

method to model language acquisition in this study.

1.2. Background

Earlier work has considered models of human language acquisition using continuous
signalling between a simulated infant and caregiver [20,21]. However, these models often
rely on heuristic approaches and older neural modelling techniques, making them difficult
to extend. For example, it is not easy to directly incorporate other environmental rewards
or interactions between multiple agents. More recent RL approaches would make this
possible, but as noted, have mainly focused on discrete communication [1,3,5]. These
approaches have proved effective at solving the discrete communication task [4,6] using
REINFORCE [22], an older policy-gradient algorithm with relatively high variance in
performance [23]. Our work tries to bridge the disconnect between recent contributions in
multi-agent reinforcement learning (MARL) and earlier literature in language acquisition
and modelling [24].

One recent exception which does use continuous signalling within a modern RL frame-
work is [25] and the follow-up work [26]. In these studies, a Student agent is exposed
to a large collection of unlabelled speech audio, from which it builds up a dictionary of
possible spoken words. The Student can then select segmented words from its dictionary
to play back to a Teacher, which uses a trained automatic speech recognition (ASR) model
to classify the words and execute a movement command in a discrete environment. The
Student is then rewarded for moving towards a goal position. We will expand on these
studies in Section 3.2.2. We also propose a Student-Teacher setup, but importantly, our
agents can generate their own unique audio waveforms rather than just segmenting and

repeating words exactly from past observations.

1.3. Research question and objectives

As far as we are aware, this study is the first step in answering the larger research question:
are we able to observe emergent language between agents with a continuous acoustic
communication channel, trained using RL? We are also interested in investigating how
learned continuous communication differs from discrete communication. To summarise,

the three main objectives of this study that will assist us in answering these questions are:

1. Propose and develop an environment with the complexities necessary to facilitate
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the emergence of spoken communication between cooperative agents. Spoken com-
munication over a lossy channel must be necessary for the agents to solve a common
task.

2. Design and train agents that learn to “speak” and “hear” spoken communication in

the above-mentioned environment.

3. Analyse the characteristics of the emergent languages developed by these agents. A

comparison should be made to previous work in discrete language emergence.

In our investigation of previous work, we noticed that many discrete language emergence
studies (e.g. [2,4,6]) use REINFORCE as an optimisation technique. Therefore, as an
extension to previous work, we would also like to compare REINFORCE to a slightly
newer technique, DQN.

1.4. Methodology

In this study, we take a systematic approach to achieve the objectives mentioned in
Section 1.3. We first focus on researching and developing a robust environment in which
we may perform all the experiments necessary to answer the larger research question. This
involves first reviewing recent work in discrete language emergence, spoken language acqui-
sition, and referential games. With these insights, we define an appropriate environment
with all the functionality required to observe spoken language acquisition between agents.
Next, we develop a realisation of the environment, including all necessary components.
This includes the design of each agent, the communication channel, and the training setup.

Concretely, we propose the environment illustrated in Figure 1.1, which is an extension
of the referential signalling game used in several previous studies [2,4,27,28]. Here s
represents a set of attribute values the Speaker must communicate to a Listener agent.
Taking these attributes as input, the Speaker produces a waveform as output, which passes

over a lossy acoustic channel. The Listener “hears” the utterance from the Speaker. Taking

Lossy communication
channel

8 —> Speaker Agent

L1
10 Op

Figure 1.1: Environment setup showing a Speaker communicating to a Listener over a
lossy acoustic communication channel f.
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the waveform as input, the Listener produces output §. This output is the Listener’s
interpretation of the concept (set of attribute values) that the Speaker agent tried to
communicate. The agents must develop a common communication protocol such that
s = §. This process encapsulates one of the core goals of human language: conveying
meaning through communication [17].

To train the agents, we use a deep Q-network (DQN) [29,30]. This differs from previous
studies on language emergence (2,4, 6,28] that used REINFORCE [22]. REINFORCE is a
policy gradient method known to have relatively high variance [23], while DQN is a value-
based method which tends to have higher stability. We then perform a set of experiments
that showcase the ability of these agents to learn spoken emergent language in various
environmental setups. In these early experiments, we optimise with both REINFORCE
and DQN in order to compare the two as per our secondary objective. The rest of the
experiments are all related to the investigation of the emergent languages developed by
the agents in various situations. These emergent languages are then also compared to

discrete emergent communication.

1.5. Contributions

Our bigger goal is to explore the question of whether and how language emerges when
using RL to train agents that communicate via continuous acoustic signals. Our proposed
environment and training methodology serves as a means to perform such an exploration,
and the goal of this study is to showcase some capabilities of the platform. We have two
primary contributions in this study. Firstly, we provide a platform to study spoken emergent
language between agents. As a concrete example of the types of research questions we can
answer with our environment, we consider how discrete and acoustic emergent language
differs when agents communicate with sequences of different duration. We show that when
longer sequences are allowed, our acoustic Speaker learns a redundant communication
protocol, using fewer unique phones! per utterance with more repetition of bigrams and
trigrams?. This redundancy improves the coherence of the Listener agent. In contrast,
agents trained to communicate with purely discrete symbols fail to learn such redundancy,
resulting in poor communication when these agents are used in very noisy environments.
The acoustic agents also tend to develop more compositional communication protocols
which implicitly compensate for transmission errors over a noisy channel. In addition
to this, we show early experiments with promising results in language grounding (to a
known human language — English) and effective generalisation to real-world communication

channels.

!Phones are the smallest unit of language and are considered the building blocks of speech.
2A trigram is a contiguous sequence of three units, a bigram a sequence of two units, and a unigram is
a single unit.
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As a second contribution, we compared REINFORCE to DQN as an optimisation
technique. We show significant performance gains and improved compositionality when
using DQN rather than REINFORCE. We highly recommend that future work in language
emergence uses DQN; even for discrete language acquisition.

This work is currently under review at the 22nd International Conference on Au-
tonomous Agents and Multi-agent Systems (AAMAS 2023).

1.6. Thesis overview

In this thesis, we separate our literature review into two chapters. Firstly, in Chapter 2,
we cover the core background concepts relevant to this study without going into detail on
recent work. This includes detailed explanations of RL and language processing methods.
Secondly, in Chapter 3, we provide a comprehensive literature review of the related work
and motivations for considering RL for language acquisition studies. This includes an
overview of recent work in referential games and spoken language acquisition. Expanding
on this recent work, we define our environment in Chapter 4. Our approach to solving
this environment is then discussed, along with details on training and optimisation. In
Chapter 5, we briefly overview the experimental setup and introduce the metrics used
to analyse the emergent communication. We then systematically work through our
experiments in Chapter 6. In this chapter, we first compare REINFORCE to DQN as
two approaches for optimising agents in the task of discrete communication (Section 6.1).
Next, we investigate whether our agents are capable of learning to speak and hear over
a lossy communication channel (Section 6.2). We then perform a detailed analysis of
the emergent language characteristics (Section 6.3). Finally, we include two additional
experiments related to language grounding and real-world performance (Section 6.4). We
end this thesis with a summary and conclusion in Chapter 7; including a detailed overview

of environment extensions and future work.
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Chapter 2

Background concepts

In this chapter, we outline some of the core concepts from machine learning utilised in
this study. Firstly, we provide an introduction to reinforcement learning and how it is
used to optimise agent behaviour through rewards, policies, and action-value estimation.
We also cover two deep learning approximations of reinforcement learning, namely deep
Q-networks and REINFORCE. The latter being used extensively in discrete language
emergence literature.

Secondly, we give a brief overview of the various language processing techniques that
are used throughout this study. We introduce the reader to the deep learning models used
for discrete communication. We then look towards methods of spoken communication in

the form of automatic speech recognition and speech synthesis.

2.1. Reinforcement learning

The following explanation of reinforcement learning (RL) is based on Sutton and Barto [31].
It is one of the three main subsets of machine learning, the others being supervised learning
and unsupervised learning. In contrast to supervised and unsupervised learning, in RL
the data used to update the model is gained through experience, rather than using a
predefined dataset. The RL task is generally phrased as some agent acting in an observable
environment. This makes RL particularly well-suited to real-world optimisation and control
system tasks, such as autonomous vehicles, robotics and game theory. As mentioned
previously in Chapter 1, RL has also been extensively used to study language emergence
within the discrete communication field [1-6]. This stems from the idea that RL can
effectively model social settings, where multiple agents communicate to solve a common
task. This is the primary motivation for using RL as a tool in this study. We would like to
closely model the human experience of language acquisition, where social interaction and
intrinsic reward are vital. Section 3.1 expands on this idea and discusses the motivation
behind using RL for language acquisition in more detail.

There are three core concepts to consider in RL: the environment, the agent, and the
reward signal. The environment defines the setting in which our agent acts. As an example,

consider a game of chess, the environment is the chess board, and the environment state is
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A i
Agent Environment
Reward

R; : Rii1
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State

Figure 2.1: Typical agent-environment interaction.

the current position of all the pieces of the chess board. The agent would be the chess
player and taking an action would be moving your chess pieces. In a multi-agent RL
setting, both players would be agents. The reward signal defines how well the agent is
doing given the current environment state and future trajectory, thereby defining a goal.
Designing an optimal reward signal is a challenging task. In the same chess example,
you could define a positive reward signal for each chess piece the agent takes from the
opponent; or perhaps a more detailed approach would be a reward signal proportional to
the value of each piece taken. You could also define a reward signal only upon winning or
losing the match (referred to as a sparse reward). All of these are valid reward models
aimed at winning a game of chess. The agent is tasked with maximising the cumulative
reward signal, known as the return. You can see the return as the value of taking a set of
moves which take multiple pieces over time — ideally winning the chess game at the end.

A typical agent-environment interaction is provided in Figure 2.1. Formally, at each
time-step t, the agent makes an observation of the environment S; and outputs an action
A;. The agent executes this action in the environment, updating the environment state.
The agent then receives the updated environment state S;.; along with a reward signal
Ry 1. This is a fully observable environment as the agent state and environment state are

the same.

2.1.1. Action-value estimation

The intuition behind RL is relatively straightforward, but how do we define how an agent
chooses actions given the environment state? One solution is to estimate the value of
a given state and/or actions. If the value can be estimated, we simply need to choose
the state or action that would yield the highest value. We know the reward signal R,

indicates how well the agent is doing at time-step t — defining the goal. We can also define
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the cumulative reward or return Gy = Ry 1 + Ry + Ryy3 + ... as the sum of all future
rewards. The values and returns may also be defined recursively: Gy = Ry + Gy1. The

expected cumulative reward from state s is called the state-value v(s):

v(s) = E[G;| S; = s

(2.1)
= E[Rt+1 + RH—Q + Rt+3 —+ ... |St = S]

These state-values help define the desirability of certain states or actions. For example,
we once again consider a game of chess, where the position of each chess piece is the
environment state S; = s. The state-value v(s) estimates how well the player is currently
doing and might give an indication of whether they are currently winning. Knowing the
value of a state is extremely useful in RL, as it could help an agent choose actions such
that they maximise the future return.

We can also condition the state-value function on a particular action, known as state-
action-value ¢(s, a), action-value, or Q-value. We can think of the Q-value as estimating

the future reward an agent would receive given it takes action A; = a while in state S; = s:

q(s,a) = E[Gt\St =5,A = a]

(2.2)
:]E[Rt+1 +Rt+2+Rt+3+---| St = S,At :CL]

Using the same chess example, the action-value estimates the value of taking a certain
action given the agent is in some state. For instance, taking the opponent’s queen would
likely yield a high action-value, whereas putting your queen in a position where it could
be taken may yield a low action-value.

A policy defines an agent’s behaviour as a probability distribution over actions, usually
denoted as 7(s) = P(als). This helps us when defining our state-values and action-values,
as it gives an indication of trajectory: how an agent will act in future states. The trajectory
is important when estimating future rewards, as without it we do not necessarily know

how an agent would act. We can update our state-value and state-action-value equations:

v(s) = E[G¢| S; = s, Ay ~ m(als)]
= E[Ris1 + v:(Seq1) | St = s, Ar ~ 7(als)] (2.3)
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qr(s,a) = E[Gy| S; = s, Ay = a, 7]
== E[Rt+1 + Uw(St—i-l) ‘ St =S, At = CL] (24)
E[Ri1 + ¢x(Sts1, Aty1) | St = s, Ay = a

Here, we also show the recursive relationship, known as the Bellman Equation [32],
where the value of the current state is recursively defined by the value of the next state.
This property will come in handy when discussing bootstrapping in Section 2.1.2. In
standard RL, we apply a discount factor v € [0, 1] to the estimated value of the resultant
state, defining the desirability for current vs future rewards. In this study, we use a
constant v = 1. Therefore, we leave out the discount factor for brevity. [31] discusses how
this discount factor may be used to tune agent behaviour.

The goal in RL is to find the optimal state-value and state-action-value functions over
all policies m: v*(s) = max, v(s) and ¢*(s,a) = max, ¢(s,a). These above equations can
be combined with dynamic programming or other optimisation techniques to iteratively
update our policy 7 such that we converge on the optimal policy 7*. The policy, state-value,
and action-value are all functions. In RL we want to learn these functions from experience.
Traditional methods involve tabular functions for v, ¢ and w. Iterative solutions such
as dynamic programming, Monte-Carlo evaluation or temporal-difference learning are
commonly used to learn the values of these functions [31].

To assist the reader in understanding the equations above, we provide a brief example

Maze vr(s)

start start

end end

Figure 2.2: An example of an agent solving a maze where each block represents a state s.
The optimal deterministic policy 7(s) and corresponding value function v, (s) are shown.

V()

start

Figure 2.3: A second example of an agent solving a maze. In this example, there are two
valid paths and the deterministic policy 7(s) is sub-optimal.
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in Figure 2.2. Here, an agent must solve a maze. The agent is allowed to take one of four
actions, A; € {up, down, left, right}. The reward is a constant of R; = —1 for each action
taken. In Figure 2.2, we show how a policy 7(s) defines the state values v,(s). Figure 2.3
shows an example where there are two paths to the goal. In this example, the policy m(s)
is sub-optimal — it takes the longer path to the goal. Notice how the value function v, (s)
changes in Figure 2.3 for the sub-optimal policy.

Tabular functions are effective at modelling the value, action-value, and policy at a
small scale. Scalability becomes an issue when there are too many states. Therefore, we
approximate these functions. When using deep neural networks to do these approximations,

it is often called deep reinforcement learning. We consider two such approaches in this
study, deep Q-networks and REINFORCE.

2.1.2. Deep Q-networks

Q-learning is an algorithm used to optimise the action-value function. This is done through
iterated sampling of the Bellman Equations, known as temporal-difference control [31]. In
deep Q-networks (DQN) [29], we approximate the action-value function gy(s,a) =~ ¢-(s, a)
as a neural network parameterised by . We refer to gy(s, a) as a deep Q-network. Mnih
et. al. [29] popularised this approach for solving complex tasks, eventually reaching
human-level performance on the now popular Atari benchmark [30].

The deep Q-learning loss function is relatively straightforward and hinges on the
idea of bootstrapping mentioned before. The loss is calculated as the difference between
the predicted action-value gy(s,a) and the actual value of taking that action Ry ; +

[maxy qo(Si+1,a’)]. Deep Q-learning minimises the mean-squared error loss:

£00) =& | (e + [mgca(Si0,0] = a5 40) | 25

The term max, qo(S;11, a) estimates the value of the resultant state Sy, ;. This is known
as bootstrapping, as we are updating the weights of the Q-network using an estimation
of the actual action value made by that same Q-network. We can also calculate the

Q-learning loss gradient with respect to the weights 6 [29]:

VoL(8) = (Revr + max ao(Ses1,0) = an(Ses Ar) ) Voan(Si, A1) (2.6)

We can now perform gradient descent to update the weights 6:
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0 0 — aVyeL(6) (2.7)

where « is the learning rate. With these equations, we want to minimise the error
between our predicted value of an action and the observed value gained through experience.
If we can minimise this error, our Q-network will provide an accurate estimate of taking
each action given the current state. With this, we simply choose the action with the
highest predicted value — providing us with a trajectory that will maximise our cumulative

reward. We can update our DQN policy as follows:

1 if @ = argmax qp(S, a’)
7(s) = P(als) = o’ (2.8)
0 otherwise

An important consideration in DQN is the trade-off between exploration and exploita-
tion. Exploration refers to an agent exploring uncharted territory through random actions.
Exploitation refers to an agent acting on what it believes is the optimal trajectory given
current knowledge. As an example, imagine you have a favourite restaurant in your area —
you know the food there is good. Every time you want to go out for dinner, you visit this
restaurant. This is referred to as exploitation, as you are exploiting the knowledge that
this restaurant has good food. While you are guaranteed good food, you may be missing
out on even better food at another local restaurant. On the other hand, if you visited a
different restaurant every time you went for dinner, it would be referred to as exploration.
You are exploring multiple possibilities each time you go out for dinner. This comes with
both risk and reward; you risk experiencing a bad restaurant or may be rewarded by
visiting the best restaurant in town. If we only exploit our knowledge, we often end up
with sub-optimal solutions.

There is always a trade-off between exploration and exploitation. Either you exploit
your knowledge and visit a restaurant you know is good, or visit a random restaurant and
perhaps find an even better restaurant. A common approach to this trade-off in DQN
is e-greedy exploration. With some probability €, select a random action at time-step t.
Otherwise, greedily select the action with the highest expected reward. Using the same
example as before, with probability €, visit a random restaurant. Otherwise, visit your
favourite restaurant. With e-greedy, you both exploit your knowledge and occasionally

explore to improve your knowledge.

2.1.3. REINFORCE

Deep Q-learning is referred to as a value-based method since the agent policy is updated

by the learnt action-value function. Another popular approach RL is policy-based (or
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policy gradient) methods, as it is often easier to directly learn the policy without having
to learn the value function and then derive the policy afterwards. One of the earliest
policy gradient methods, REINFORCE [22], is used almost exclusively in current discrete
language emergence literature. In REINFORCE, rather than updating the parameters
of a Q-network through gradient descent, we update a policy network through stochastic
gradient-ascent. The algorithm is used to optimise the policy: a model that generates a
distribution over actions given an input state such that the actions taken maximise the
expected reward.

In REINFORCE we approximate the policy function mg(als) = P(a|S; = s,0) as
a neural network parameterised by 6. Recall that the policy 7 defines a probability
distribution over actions given the state. We can therefore define the performance measure

J(0) for a policy parameterised by 6 by its value-function as
J(0) = vay(5) (2.9)

where v, is the true value function for the policy mg. As mentioned previously, the
value function gives an indication of how well the agent is currently doing following its
policy. The intuition behind REINFORCE is that we simply want to maximise this value
function. To do this, we derive J(#) with respect to the weights 6. This is done through

repeated unrolling of the value function, finally arriving at the performance gradient [31]:

Vo (0) =Er, | ¢r,(St,a)Va(alSy) (2.10)

We can now update our weights 6§ through stochastic gradient-ascent:

0« 0+ aVeJ(0) (2.11)

where « is the learning rate as before. The intuition behind REINFORCE is that

rather than minimising a loss term, we want to maximise our performance [22].

2.2. Language processing

In this section, we will give a brief overview of various language processing techniques
related to deep learning. We first look at language processing for discrete communication,
focusing on both the generation and interpretation of discrete sequences. We then move

on to speech-related methods, specifically ASR and speech synthesis. These explanations
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follow the terminology of Sarker [33].

Recurrent neural networks (RNNs) are particularly useful in language processing for
their sequence processing capability. Specifically, gated recurrent units (GRUSs) [34] form
the basis of all our language processing techniques. The GRU was first proposed by Cho
et al. [34] as a simplification to the state-of-the-art long short-term memory (LSTM)
units. In the same year, Chung et al. [35] proved GRUs performance to be equivalent
to that of LSTM units while being much easier to train and faster to converge due to
fewer parameters required. Both LSTMs and GRUs are capable of retaining long term
information, unlike standard RNNs, thus making them ideal for sequence generation and
sequence-to-sequence models. While transformers with attention [36] may provide better
sequence modelling performance, we opt to use GRUs as a simpler, easier-to-train approach

with fewer parameters.

2.2.1. Discrete communication

Discrete communication is relatively straightforward and can be split into two parts,
encoding (interpreting a sequence) and decoding (producing a sequence). This is performed
over a sequence of discrete units, where each symbol consists of a fixed vocabulary V.
The following explanation of discrete sequence encoding and decoding is based on the

implementation in the Emergence of lanGuage in Games (EGG) toolkit [37].

Discrete sequence decoding

In discrete sequence decoding, we want to go from some fixed-dimensional embedding to a
sequence of discrete units. One of the simplest ways to do this is to pass the embedding as
the initial hidden state of a GRU. An example is shown in Figure 2.4. Each output of the
GRU is passed through a linear layer, reducing the dimension to the size of the vocabulary
|V|, referred to as logits. A softmax over these logits defines a distribution over the set of
symbols V. These symbols are then either sampled or greedily selected to arrive at the
final discrete sequence. We generally use auto-regressive decoding; this means that the
model predicts one token at a time, and each predicted token is used as input back into
the GRU (dashed line in Figure 2.4) to help predict the next token.

We note the use of <s> and </s> in Figure 2.4. The start-of-sequence symbol <s>
indicates to the model when to start decoding. Conversely, the model outputs the end-of-
sequence symbol < /s> when it is done decoding, allowing it to generate arbitrary length
sequences up to a maximum length. It does this by predicting one symbol at a time. If
the </s> token is produced, or the maximum length is reached, the sequence is done

decoding.
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Figure 2.4: Discrete sequence decoding with GRUs. A fixed-dimensional embedding is
decoded into an arbitrary-length sequence of discrete symbols. <s> and </s> represent
the start-of-sequence and end-of-sequence tokens respectively. The horizontal arrows
represent hidden GRU states.

GRU
linear
one-hot
. |00 0]
encodings

<s> a </s>

Figure 2.5: Discrete sequence encoding with GRUs. A sequence of discrete symbols
(starting with <s> and ending with </s>) is passed through a GRU model, with the
final GRU hidden state being used as the fixed-dimensional output encoding.
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Discrete sequence encoding

In discrete sequence encoding, we do the opposite; we want to map a sequence of discrete
units to a single fixed-dimensional embedding. Figure 2.5 gives an example of discrete
sequence encoding. Each symbol in the sequence is first represented with one-hot encoding
and passed through a linear layer. In one-hot encoding, each symbol is represented by
a vector {0, 1}, The vector is all 0 except at the index of the symbol in V, where the
value is 1. The outputs of this linear layer are fed directly as input to a GRU. The final
hidden state of the GRU is then used as the fixed-dimensional embedding.

2.2.2. Automatic speech recognition

When working with spoken language processing, one of the first tasks is how to interpret
speech signals. A common approach is to first transcribe speech into discrete natural
language, allowing us to apply discrete language modelling techniques. When speech is
automatically transcribed with software or machine learning, we refer to it as automatic
speech recognition (ASR). This has become a well-studied area if research within the

machine learning community [38, 39].

Speech signal representations

One of the most common audio signal representations, and the one used in this study, is
the mel-scale spectrogram. A mel-scale spectrogram (or mel-spectrogram) is a sequence of
vectors over time representing the frequency content of an audio signal scaled to mimic
human frequency perception [40]. Consider the raw audio waveform of the utterance
“hello world” in Figure 2.6a. The waveform, sampled at 16 kHz, has the corresponding log
mel-spectrogram as shown in Figure 2.6b. Each vector over time in this mel-spectrogram
represents a 25 ms window sliding over the raw waveform. The hop-length between each
window sample is 10 ms. The frequency content from 64 Hz to 8192 Hz is given in mel-scale
on the y-axis. Mel-spectrograms are an effective tool to represent the linguistic content of
an audio signal.

Some recent approaches consider processing the raw audio waveform directly (e.g. [39]).
While effective, significantly larger datasets and hundred-million-parameter models are

required.

Common model architectures

A simple yet effective end-to-end approach is the model of Deep Speech 2 [38]. Deep
Speech 2 applies a 1D convolutional neural network to the log mel-spectrogram of an audio
signal in order to perform ASR. The full model architecture is shown in Figure 2.7. The

output of the convolutional layers is processed by a bidirectional (the sequence is processed
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(a) Raw waveform of the utterance “hello world” sampled at 16 kHz.
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(b) Log mel-spectrogram of the utterance “hello world”.

Figure 2.6: Raw waveform (a) and the corresponding log mel-spectrogram (b). The
mel-spectrogram gives a two-dimensional representation of the frequency content of the
raw waveform. Each vector over time represents a 25 ms window, with a hop-length of
10 ms between each vector.

forwards and backwards simultaneously) GRU and a multilayer perceptron (MLP) (a set
of linear layers and activation functions).

The state-of-the-art for training end-to-end ASR models, including Deep Speech 2,
involves the use of connectionist temporal classification (CTC) [41]. CTC is a method to
model the probability of a predicted transcript given a target transcript, serving as a loss
function. What makes CTC unique is the ability to handle unaligned sequences. Each

output feature of the model corresponds to a small window of time and may produce more
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logits

D — . — > }_p hello world

Figure 2.7: Deep Speech 2 model architecture. Given a mel-spectrogram of an utterance,
the model produces the corresponding text transcription.

characters than in the target transcript. Therefore, C'TC uses a special padding token e,

which is removed in the final transcription.

2.2.3. Speech synthesis

The next step in speech processing involves the generation or articulation of discrete
sequences into waveforms, referred to as speech synthesis. The goal is to have a system
that can convert written language into naturally sounding speech signals. We take a look
at three techniques: eSpeak, Festival and Tacotron 2 4+ HiFi-GAN.

eSpeak and Festival

Both eSpeak [42] and Festival [43] are rule-based formant synthesis systems. In eSpeak,
characters are individually synthesised with very limited co-articulation. This means that
there is a very limited influence on neighbouring characters in eSpeak. This results in the
synthesised waveform sounding less natural or smooth than larger synthesisers, which are
typically based on human speech recordings. Festival utilises a much more complex rule
schema, allowing for improved co-articulation and more natural-sounding speech.

To perform text-to-speech in both systems, the target text is first converted to a
sequence of phonetic units (or phones). Phones are the smallest unit of language and are
considered the building blocks of speech. This conversion to phones is done through the
lookup of a phonetic dictionary, where every English word has a corresponding phonetic
description. For example, in eSpeak, the word “square” becomes the phone sequence
(s,k,w,e,0). The rule-based systems then convert each phone to a corresponding waveform.
For this, eSpeak uses additive synthesis where multiple sine waves of varying frequencies
are added together. The prominent frequencies used to determine the sound of a phone
are referred to as formant frequencies. Additive synthesis is not as effective for unvoiced
consonants (e.g. [s] or [th]). In eSpeak, these are made by playing recorded sounds. These

waveforms are then roughly concatenated to generate the final synthesised utterance.
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Figure 2.8: Tacotron 2 [44] system architecture with a HiFi-GAN [45] vocoder.

Tacotron + HiFi-GAN

Recently, researchers have turned to deep learning as a tool for training speech synthesis
systems. The current state-of-the-art in this area is Tacotron 2 [44], a large neural network
model trained to predict mel-spectrogram frames. Tacotron on its own is unable to
directly synthesise waveforms, only mel-spectrograms. For this, we use HiFi-GAN [45].
HiFi-GAN, trained as a generative adversarial network (GAN), produces high-quality
natural speech from mel-spectrograms. GANs are the process of training two competing
neural networks in a zero-sum game. This means that the gain of one network is the loss
of another. In HiFi-GAN, one network generates the mel-spectrograms while another tries
to differentiate between real mel-spectrogram samples and generated mel-spectrograms
output by the generative network. Tacotron and HiFi-GAN are trained independently
on hundreds of hours of real audio samples. Combined, they produce synthesised speech
almost indistinguishable from human speech [45].

The full system architecture of Tacotron 2 is given in Figure 2.8. Tacotron 2 uses an
encoder-decoder architecture. The input text is encoded through an embedding layer, three

convolutional layers and a bidirectional LSTM. The resulting hidden feature representation
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is consumed by the decoder through location-sensitive attention. Attention is a technique
introduced by Vaswani et. al. [36] which improves memory retention in longer sequences.
This allows the decoder to produce the output mel-spectrogram frame-by-frame until a stop
token is reached; allowing Tacotron 2 to generate arbitrary length mel-spectrograms up to
a maximum length. The post-net (Figure 2.8) produces each individual mel-spectrogram
frame and the pre-net (Figure 2.8) encodes the LSTM hidden state for the next frame.
The final output mel-spectrogram is passed through a vocoder, a network that synthesises

a continuous waveform. In our implementation, we use HiFi-GAN as the vocoder.

2.3. Literature summary

In this chapter, we have outlined some of the core concepts used in this study. Specifically,
we covered RL and language processing, with specific details pertaining to deep learning.
For RL, we introduced the two algorithms compared in this study, DQN and REINFORCE.
In the next chapter, we will perform a thorough literature review rather than covering
machine learning concepts. We will look at the higher-level motivations surrounding RL as

a tool for language acquisition, and the relevant recent work in emergent communication.
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Chapter 3

Literature review

We now provide a comprehensive literature review of the work surrounding natural language
processing, language acquisition, and the various attempts to model human communication.
We first look at the current state of language modelling, and the direction of current trends.
This serves as motivation for our work, where we start to consider some aspects ignored
by state-of-the-art language modelling. We highlight the disconnect between real human
language acquisition and these trends. We proceed by considering language acquisition
from a cognitive perspective, alongside tangential attempts to model discrete emergent
communication.

We then look at the recent work directly related to this thesis. We first look at various
referential signalling games and how they are designed to study discrete emergent languages.

Finally, we cover work in spoken language acquisition, which this thesis extends.

3.1. Modelling language acquisition and evolution

Modelling language, and understanding its acquisition and evolution have been studied
throughout history [17,18,46,47]. Despite this, we can still only speculate as to how
natural language emerged and evolved. In this section, we first take a look at the use of
language, the philosophy behind it and the goals of language processing. We then take a
look at the two approaches most commonly used in modelling language acquisition and

communication emergence.

3.1.1. Language use, philosophy, and goals of language processing

What is language? Dor [17] explains that language is a communication technology,
dedicated to the systematic instruction of imagination. We use language to communicate
directly to our interlocutor’s imagination, being a way of sharing and explaining experience
without having them directly experience it. This may be seen as bridging the experiential
gaps between speakers.

“You can’t learn language from the radio” [18]. Language cannot be learned from
linguistic signals alone; with the common belief being that humans rely on non-linguistic
knowledge [46,47]. Bisk et. al. [18] and Linzen [19] reflect on the current direction of

20
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natural language processing (NLP) and argue that many of the assumptions on which
communication relies lie outside of text. Yet, recent breakthroughs in NLP focus on
training large models on massive text corpora. They are far away from the human-like
generalisation to new structures and contexts [19].

Bisk et. al. [18] proposes a notion of world scopes, which go beyond text to consider the
foundations of language in grounding, embodiment, and social interaction. They introduce
five levels of world scope: corpora and representations, the written world, perception,
embodiment and action, and social interaction. The intention of these world scopes is to
be used as a lens to audit the progress of NLP.

The first world scope, corpora and representations, focuses on our past in a data-driven
manner where datasets of naturally generated language are processed and annotated
(stored in written form) for the purpose of learning. The second world scope broadens this
idea to large-scale, raw, unlabeled data from the Internet. The majority of current trends
in NLP (e.g. [38,44,45,48]) fall within these first two world scopes. The third world scope,
perception, considers the world of sights and sound. Language semantics are often based
on our perception of the world around us. This is more closely related to multimodal
NLP (e.g. [49]), where computer vision is often used to augment NLP. The fourth world
scope, embodiment and action, begins to focus more introspectively. Human infants learn
to change their perception and understanding through environment manipulation. We
find this world scope to relate well to the field of reinforcement learning (RL). The fifth
and final world scope, the social world, is hinged on the idea that language is inherently
a tool for interpersonal communication. We hope communication between multi-agent
reinforcement learning (MARL) agents is able to reflect the core ideas of this world scope,
while additionally combining the ideas of perception and embodiment. MARL agents
are able to observe their environment (perception), while also being able to take action
(embodiment).

Human language also has a fundamental constraint, the Now-or-Never bottleneck [50].
Language is processed using a “chunk-and-pass” strategy: it is impossible to store all
the fine-grained acoustics, so we chunk groups of speech sounds together. This poses a
challenge for language processing, we either rapidly process information or it is lost forever.
Christiansen and Chater [50] argue that this Now-or-Never bottleneck has fundamental
implications in studying language emergence. This constraint is common with MARL
communication.

NLP encapsulates a wide range of goals and applications. This includes anything from
creating dynamic scalable speech recognition systems, generating human-like synthetic
speech, and the documentation of low-resource endangered languages [49]. Other applica-
tions include anything related to human-robot interaction and the development of real
autonomous agents. The application most applicable to this research is the understanding

of language origins. We currently do not know for sure where, how and why language
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emerged [17].

3.1.2. Language acquisition from a cognitive perspective

The process of language acquisition was initially studied from a cognitive perspective,
usually considering vocal development in infants [15,51,52]. Human infants acquire their
native language by being exposed to speech audio in their environments [15]; by interacting
and communicating with their caregivers using continuous signals. The basis for these
works stems from behavioural studies of infant development [53].

A popular modelling approach considers imitation learning: a type of social learning
where new behaviours are learnt through imitation [51,52]. Asada [53] claimed that the
speech produced by infants and caregivers may be too different to learn purely through
direct acoustic matching. Instead, Asada argued that the interaction itself between the
infant and caregiver may have an important role to play. A more recent approach by
Howard and Messum [16] used a computational model of an infant, they named Elija.
They conducted experiments where a caregiver would interact with Elija by responding to
the produced utterances. These interactions would serve as a feedback or reward signal to
the unsupervised online learning model, with the goal of encouraging natural-sounding
utterances. The authors found Elija was able to associate its motor patterns with caregiver
responses. This led to Elija being able to pronounce simple words.

Some work, such as Kirby [7], focus more on the learned communication protocol.
Kirby introduced an iterated learning model (ILM) to study the evolution of linguistic
behaviour. This ILM showcased the ability to learn discrete compositional communication

protocols at a small scale with rule-based methods.

3.1.3. Discrete emergent communication

More recent literature has started considering discrete emergent communication modelled
with RL agents. Foerster et. al. [54] introduced the first successful communication
based on deep multi-agent RL. Foerster et. al. introduced two methods, Reinforced
Inter-Agent Learning (RIAL) and Differentiable Inter-Agent Learning (DIAL). The former
method, RIAL, allowed agents to communicate through discrete symbols to solve a simple
cooperative task. Conversely, DIAL uses a centralised approach where gradients are passed
directly through agents. An overview of the RIAL architecture is shown in Figure 3.1.
Here, agent 1 makes an observation S} of the environment and generates a message M}
and action A}. In the next time-step ¢ + 1, agent 2 consumes M}. The notation used
here relates to that used in Section 2.1. The superscript refers to agent 1 and agent 2
respectively. ()-net refers to a DQN value network, and action select refers to the process
of selecting an action given a value-function output. In this case, the Q-net outputs a

value for a message M; and action A;.
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Figure 3.1: RIAL [54] architecture showing two agents interacting with a discrete message
M. Superscripts indicate each respective agent.

Significant advances in discrete language emergence have since been made [2, 3].
Chaabouni et. al. [4] (and more recently [6]) took an in-depth look at the learnt communica-
tion protocol, showing the emergence of compositionality and generalisation. Lazaridou [5]
and Moulin-Frier [24] both provide comprehensive reviews of how MARL may be used as

a computational tool for evolution research.

3.2. Recent work in emergent communication

We now give a quick overview of some recent advances in emergent communication studies.
First, we look at the most common type of environment used to study discrete language
emergence — referential signalling games. We then consider a few exceptions to the discrete

communication trend, where spoken language acquisition is studied.

3.2.1. Referential signalling games

Referential signalling games have become a staple for studying discrete emergent com-
munication. Originally proposed by Lewis [27], the game considers two players, a sender
and a receiver. The core idea is that only one player, the sender, is allowed to observe
the environment state. The sender must communicate the environment state to the
receiver through signalling. With this information, the receiver takes actions within the
environment. Generally, both players have a common goal, although some studies consider
more competitive interaction between agents [55].

The referential game itself may take on many variations, but the core principle remains

the same — a sender communicating with a receiver to solve a common task. The simplest
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form of the game considers a reconstruction task, and proceeds as follows [4]:

1. Sender receives s and generates a message.
2. Receiver consumes the message and produces §.

3. Agents are successful if § = s

The receiver has no direct access to s and has to perform reconstruction solely on the
sender’s message. In this setup, the game becomes analogous to an auto-encoder where the
bottleneck is the communication channel. Some studies instead consider a differentiable
communication channel, comparing gumbel-softmax estimation and supervised learning
to RL [1,2]. In the case of a differentiable communication, the channel takes the form of
a continuous vector allowing gradients to flow. Gumbel-softmax [1] is an approach that
approximates a softmax at the communication channel, allowing gradients to flow through
a discrete channel during training.

Most recent work consider a variant of this referential game where the message is a
sequence of discrete symbols [2,4,6,28]. In these setups, s represents an arbitrary concept.
In this study, we take a similar approach to Chaaubouni et. al. [4], where s represents a
set of arbitrary attribute-values.

Some work considers a variation of the game where s represents an image. One example
considers an MNIST digit reconstruction game [37], where the receiver must reconstruct
MNIST digits. An example is given in Figure 3.2; here, the sender is provided with an
MNIST digit that the receiver must reproduce. Note that the communicated message “6”
is not necessarily related to the input digit three. The reward signal used in this game is
inversely proportional to the mean squared error between the input and reconstructed digit.
With this signal alone, the sender is able to learn how to encode the input digit and have
the receiver generate a rough reconstruction. Similarly, other work has the receiver select
an image from a set of distractors [2,13]. Figure 3.3 gives an example, in this variation the
receiver is not reconstructing the image and is instead using the communication channel
to make informed decisions. For the agents to be successful, the receiver must select the
correct target image out of a set of images. This set of images includes the target image
and two distractors. The distractors are random images from the dataset and are used as
negative samples.

Kaji¢ and Aygiin [12] took a slightly different approach and proposed a game in the
form of a navigation task. In this example, the receiver was placed in a maze environment
with an unknown goal location. The sender agent acted as an observer, knowing the goal
location and position of the receiver, but unable to act in the environment. To solve the
task, the sender had to instruct the receiver on how to move towards the goal.

In all these examples, the communication took the form of a single or sequence of

discrete units. We now take a look at spoken language acquisition.
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Figure 3.2: Example of the MNIST digit reconstruction game. The sender receives an
image of a three, produces message (6,), and the receiver reconstructs a three. The reward
used in this game is the inversely proportional to the mean squared error between the
input and reconstructed digit.

message
3,12,2

Sender

Receiver

Figure 3.3: Example of a referential game with distractors. The receiver selects the
sender’s image from a set of images with the target and two distractors (random images
used as negative samples). In this example, the sender represented the image of a pizza
with the message (3, 12, 2).

3.2.2. Spoken language acquisition

One recent exception which does use continuous signalling within a modern RL framework
is Gao et. al. [25] and the follow-up work [26]. The environment combines the navigation
task of Kaji¢ and Aygiin [12] with spoken acoustic communication. In their approach, a
student (the sender) communicates with a teacher (the receiver) by repeating words from a
learnt dictionary (see Figure 3.4). This learnt dictionary is constructed with unsupervised
word segmentation — a process of splitting a natural language sentence into its component
words [56]. The student plays the segmented words to the teacher, which uses a trained
automatic speech recognition (ASR) system to classify the words into movement commands
in a discrete environment. The student is then rewarded for moving towards the goal
position.

Another approach to spoken language acquisition by Rugayan [57] considered vector-
quantised autoencoders to perform a similar function of unsupervised acoustic unit discovery.
Vector-quantised autoencoders are a type of dimensionality encoder-decoder setup. In

this setup, one network must encode speech signals into a discrete vectors, while another
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Figure 3.4: Student-teacher system of Gao et. al. [25]. The student communicates with
the teacher by repeating words segmented using k-means.

must decode the discrete vectors into the original speech signals. However, instead of a
referential game, only a single agent was considered. In this setup, the agent learnt to
recite numbers in order from zero to nine.

Both the work of Gao et. al. and Rugayan are limited in the way that the sender is
unable to generate novel utterances. In this study, we consider a setup where the agents
may generate their own unique audio waveforms rather than just segmenting and repeating

words from past observations.

3.3. Literature summary

In this chapter, we provided a review of the related work relevant to this study. We
first took a quick look at the history behind language acquisition and evolution, and
some attempts at modelling this process. We continued by covering the recent work on
which this thesis builds. Specifically, we discussed referential signalling games and spoken
language acquisition. In Chapter 4, we will look at combining this work into a single

environment, where we may study spoken language as a referential game.
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Chapter 4

Environment and Proposed Solution

In this chapter, we first define the environment, which takes the form of a referential
communication game. We want to investigate whether we are able to observe emergent
language between agents with a continuous communication channel. Alongside this, we
want to quantify changes in performance and behaviour between discrete and acoustic
communication. The referential communication game, which extends prior work, is
designed to help answer the larger research question of whether we are able to learn
emergent language between agents communicating with a continuous channel. We then
discuss our approach to solving this environment and cover the training and optimisation
details.

4.1. Communication game

Our goal is to see whether we can observe emergent language between agents with a
continuous communication channel. To this end, we extend a well-defined signalling
game environment [27] used to study discrete language emergence. This is advantageous
as we may also answer the question of “what changes?” between discrete and acoustic
communication.

We base our environment on the referential signalling game from [4] and [28]—which
itself is based on [27] and [2]—where a sender must convey a message to a receiver. As
a reminder, in these referential signalling games, two players communicate through a
one-way channel. One agent, the sender, must communicate the environment input to a
receiver. The agents are successful if the receiver is able to reconstruct the environment
input (Section 3.2.1). In the case here, communication takes place between a Speaker
and a Listener over a continuous acoustic channel, instead of sending symbols directly.
In each game round, a Speaker must convey a set of attributes to a Listener agent. The
Speaker needs to transmit these attributes using a speech waveform which is transmitted
over a noisy communication channel, and then received by a Listener agent. The Listener
agent then classifies its understanding of the Speaker’s attributes. If the Speaker’s target
attribute matches the classified attributes from the Listener, the agents are rewarded. The

Speaker is then presented with another set of attributes and the cycle repeats.
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Figure 4.1: Example of a Speaker conveying the concept of a “red square” to a Listener
in English.

Figure 4.1 provides a very simple example where a Speaker is conveying two attributes,
a colour and a shape, to a Listener. In this example, the Speaker conveys the concept of
the red and square attributes over an acoustic communication channel with the English
utterance “red square”. The Listener receives the communicated signal and predicts what
the Speaker was trying to convey. The Listener correctly identified the colour and shape
as red and square, and therefore the agents are rewarded. It is important to note that the
signal passed between the agents takes the form of a continuous acoustic signal, which is
passed over a lossy communication channel.

The core difference between our referential game and that of previous work is the
inclusion of this continuous acoustic channel. This environment is simple yet sufficient
to study the emergence of natural language while providing a platform to investigate
what changes between our acoustic communication and prior work. We want to study the
effects of lossy communication channels that mimic the real-world scenarios where human
language emerged. Because of this, the realism of the communication channel is vital.

In the setup here, the communication is unidirectional from Speaker to Listener. This
may limit the social interaction aspect of the environment as the only feedback the Speaker
receives is the reward signal. In future work, more conversational communication could
be investigated. In Section 7.1 we discuss an extension to this environment to include

multiple communication rounds.

4.2. Approach

To implement and solve the above communication game, we break the environment into four
components: a Speaker agent, a synthesiser, a channel and a Listener agent. The Speaker
agent works with a static synthesiser to produce the audio waveform. This simplifies the
task of the speaker agent, as generating natural-sounding raw waveforms directly is a
challenging task, and will be considered for future work. The utterance generated by the
Speaker and synthesiser is then passed through a realistic lossy communication channel,
where the signal is distorted and noise added. The resulting noisy signal is then received

by the Listener as a mel-spectrogram.
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Figure 4.2: Example interaction of each component and the environment in a single
round.

Formally, in each episode, the environment generates a set of attributes s =
(s1,82,...,8y), defined as N one-hot encoded vectors each representing one of M at-
tribute values, i.e. s; € {0,1}™. The Speaker receives s and generates a sequence of phones
c=(c1,¢9,...,cp), each ¢; € P representing a phone from a predefined phonetic alphabet
P. The phone sequence is then converted into a waveform w,,y, an audio signal sampled
at 16 kHz. For generating the Speaker’s phone sequence, we use a trained text-to-speech
model (Section 2.2.3). A channel noise function is then applied to the generated wave-
form, and the result wy, = f(w;ay) is presented as input to the Listener. The Listener
converts the input waveform to a mel-scale spectrogram: a sequence of vectors over time
representing the frequency content of an audio signal scaled to mimic human frequency
perception [40]. Taking the mel-spectrogram sequence X = (&1, xs,...,xr) of T acoustic
frames as input, the Listener agent outputs a vector § representing its prediction of the
attribute values. The agents are both rewarded if the predicted vector of attributes is
equal to the target vector of attributes s = s.

To make the environment a bit more concrete, we present a brief example in Figure 4.2.
Consider a case where we transmit two attributes (N = 2): one colour and one shape.
Each attribute can take on one of three values (M = 3): sy € {red, green, blue} and
sy € {circle, square, triangle}. The concatenated state representation for red square would
be s = [1,0,0,0,1, O]T. A possible phone sequence generated by the Speaker could be
c = (r,e,d,s,k,w,e,0,</s>). This would be synthesised, passed through the channel, and
then interpreted by the Listener agent. If the Listener’s prediction is § = [1,0,0,0, 1, O]T,
then it correctly interpreted the message as conveying the attributes red square. The
environment would then reward both agents.

The environment reward is calculated as R = % Zf\; r;, where r; is the per-attribute
reward:

0 otherwise
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Since we use an existing text-to-speech system for the Speaker’s output, the Speaker’s
task has in effect been converted to a discrete communication problem. However, the
combination of both agents and their environment is still a continuous communication
task: the noisy channel is based on real acoustic environments and the Listener takes in a
noisy acoustic signal (see Section 4.2.3 for full details). What we have done here is to equip
the Speaker with articulatory capabilities so that these do not need to be learned by the
model. Some studies consider how articulation can be learned [16,52,53], but none of these
does so in an RL environment, rather using a form of imitation learning. In Section 7, we
discuss how future work could consider learning the articulation process itself within our
environment, and the challenges involved in doing so. With this environment setup, if we
remove the synthesiser and channel component, we revert to the discrete communication
environment of [2,4,28]. This will prove useful in later sections where we compare acoustic
communication directly to the discrete case.

Each component is now described in detail.

4.2.1. Speaker agent

The Speaker agent is tasked with generating a sequence of phones ¢ = (¢, ¢a,...,cr)
describing a set of attributes. The set of target attributes is represented by the one-hot
input state s. We use gated recurrent unit (GRU) [58] based sequence generation as
the core of the Speaker agent. The Speaker’s GRU generates a sequence of logits. In
DQN, these logits represented the predicted action-values gg(s) (Section 2.1.2) as shown in
Figure 4.3. As a reminder, these action-values represent the expected reward for choosing
each action (phone sequence) given the input state s. At each output step (from 1 to L),
a softmax over the logits defines a distribution over the set of phone symbols P. During
training, the symbols are sampled based on this distribution to produce c. At test time,
c is greedily selected from the logits. The input state s is embedded through a linear
layer as the initial hidden state of the GRU. We also make use of start-of-sequence and
end-of-sequence tokens, <s> and < /s> respectively, appended to the phone set. These
allow the Speaker to generate phone sequences of arbitrary length, up to a maximum of L.
These phones are then passed to a separate synthesis system, described next.

It is important to note that the Speaker agent is detailed here is not predisposed to
communicate using anything close to English. The agents are allowed to develop any
arbitrary communication protocol. In Section 6.4.1 we consider grounding the learnt

communication to English.

Synthesis implementations

We compare two rule-based synthesis algorithms to the state-of-the-art of deep neural
network synthesis (2.2.3). The rule-based synthesis algorithms, eSpeak [42] and Festival [43],
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Figure 4.3: Architecture of the GRU-based Speaker. For DQN, the logits represent a set
of Q-values for each item in the phonetic vocabulary P.

are both deterministic rule-based synthesis systems. Tacotron 2 [44] and HiFi-GAN [45]
combined are used as the state-of-the-art deep neural network synthesis model. All three
systems allow for speech synthesis from character or phone sequences.

Both eSpeak and Festival do not have direct Python implementations. Instead, wrappers
were implemented that call the respective algorithms from command line using the Python
subprocess module. The module miniaudio [59] is then used to convert the captured
byte sequences to a waveform vector. Librosa [60] is used to resample the waveform to a
consistent target frequency. The Python implementations for both eSpeak and Festival
are given in Listing 4.1 and Listing 4.2 respectively. A list of standard imports for all
Listings is given in Appendix A. Festival does not natively support out-of-domain phone
sequences. To cater for this, we overwrite the phonetic description of “_” in the Festival
lexicon to be our own custom phone sequence. The Festival system then pronounces “_”
as our custom sequence.

To use Tacotron 2 and HiFi-GAN, we use PyTorch models trained on a single speaker.
PyTorch [61] is a Python deep learning framework used to do automatic differentiation.
The models are directly available on PyTorch Hub [61]. These models are loaded and
used for inference. Tacotron 2 generates mel-spectrograms given character or phone
sequences. HiFi-GAN generates audio given mel-spectrograms. Combined they generate

natural-sounding English utterances.
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Listing 4.1: Python wrapper for eSpeak. Given a sequence of phones, eSpeak synthesises
a corresponding waveform in a target language.

def phones_to_speech(
phones: str,
rate: int=16000,
lang: str=’EN’,

) -> np.ndarray:

""" Use eSpeak to convert phones to speech. """

audio_bytes = subprocess.run(
[’espeak-ng’, f’-v{lang}’, ’-z’, ’--stdout’, f’[[{phones}]]’],
stdout=subprocess.PIPE
) . stdout
decoded_audio = decode(audio_bytes,
nchannels=1,
sample_rate=22050,
output_format=SampleFormat.FLOAT32)
decoded_audio = np.array(decoded_audio.samples)
decoded_audio = resample(decoded_audio,

orig_sr=22050,

target_sr=rate)

return decoded_audio

Listing 4.2: Python wrapper for Festival.

def phones_to_speech(
phones: str,
rate: int=16000,
) -> np.ndarray:
""" Use festival to convert phones to speech. """
audio_bytes = subprocess.run(
f"echo \"_\" | text2wave -eval \
>(or (lex.add.entry ‘( \"_\" n ({phones}))) \
(voice_cmu_us_slt_arctic_hts))’ \
-F {ratel}",
stdout=subprocess.PIPE
) .stdout

decoded_audio = decode (
audio_bytes[-44:] + audio_bytes[36+48:-44],
nchannels=1,
sample_rate=rate,
output_format=SampleFormat.FLOAT32

decoded_audio = np.array(decoded_audio.samples)

return decoded_audio

A direct comparison of the three synthesis systems is given in Table 4.1. We find
Festival difficult to work with due to the complicated phone schema and comparatively
slow inference speed. One thing to note about Tacotron 2 + HiFi-GAN is that the model
is specifically trained for English words. This means that the model often malfunctions

when provided with unseen phone sequences. When this occurs, the model is unable to
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Table 4.1: A comparison of various speech synthesis mechanisms. Phone support refers
to whether a synthesiser uses a standard phone set (such as IPA). Speed shows the time
(mean + std) taken to infer the audio waveform of the utterance “hello”.

Property eSpeak [42] Festival [43]  Tacotron 2 [44] + HiFi-GAN [45]
Speed 53.3+0.91 ms 222+ 5.82 ms 276 +14.9 ms
Deterministic Yes Yes No

Quality Low Medium Highest

Phone support Yes No Yes

Multilingual Yes No No

Sample freq 22050 Hz Any 16 000 Hz

output an end-of-sequence token, thereby generating 10-second utterances which are way
above the average of 0.6 seconds. For this reason, we use eSpeak throughout most of
this work, with the exception of the consonant-vowel experiments in Section 6.3.4 where
co-articulation is necessary. eSpeak also has a much faster inference speed (= 5x) than

the other synthesisers.

4.2.2. Listener agent

Given an input mel-spectrogram X, the Listener generates a set of predicted attributes §.
We use two setups for the Listener agent, an end-to-end Listener and a discrete listener
combined with a static phone recogniser. The former predicts § directly from X, while

the latter has an intermediary discretisation step.

End-to-end Listener

The model architecture in Figure 4.4 is roughly based on Deep Speech 2 [38] — a convolution-
based ASR model (Section 2.2.2). The model first applies a set of convolutional layers
over the input mel-spectrogram, keeping the size of the time-axis consistent throughout.
The convolution outputs are then flattened over the filters and feature axes, resulting in a
single vector per time step. Each vector is processed through a GRU, with a linear layer
applied to the final hidden state to produce logits over attributes. An argmax of these
logits gives us a greedy prediction for §. We call this the “end-to-end acoustic Listener”,

as there are no intermediary steps going from the mel-spectrogram input to 8.

Phone recogniser Listener

As an alternative to the above approach, we simplify the task of the Listener: we first
process X through a pre-trained static phone recogniser as shown in Figure 4.5. The
model of the phone recogniser is a direct implementation of Deep Speech 2 [38], as shown
in Section 2.2.2. The model is trained to predict phone sequences of an input audio signal

represented as a mel-spectrogram. The trained phone recogniser has a phone error rate
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Figure 4.4: Architecture of the end-to-end Listener. The Listener predicts § given a
mel-spectrogram X.

phone recogniser phone sequence
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Figure 4.5: Architecture of the phone recogniser Listener. The Listener predicts § given
a phone sequence produced by Deep Speech 2.

(PER) of 6.42%. These phones are then consumed by the Listener agent, embedded with
a linear layer, and then processed by a GRU. The final hidden state of the GRU is passed
through a linear layer and an argmax to arrive at our final greedy prediction for §. The
GRU implementation here follows the discrete sequence encoding from Section 2.2.1. In
our experiments, we denote this approach with a “4 PHONEREC” label. With this agent,
communication is still different to the purely discrete case, since both the Speaker and
Listener need to develop a protocol that can compensate for information loss over the

continuous communication channel (described next).
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4.2.3. Communication channel

The simulated lossy communication channel f consists of two core components: superim-
posed background noise and convolution with a room’s impulse response. We first add
background noise directly to the raw audio signal. The background noise is randomly
sampled from the Clotho audio captioning dataset [62]. We then convolve the resulting
waveform with a room’s impulse response from the Aachen Impulse Response (AIR)
Database [63]. We use five rooms in total. In training, we use the booth, lecture and office
rooms, while for testing, we use the meeting and stairway rooms separately as unseen
evaluation rooms. The full channel function f is shown in Equation 4.2, where n € N is
sampled from the Clotho dataset N, h € H is sampled from the AIR database H, o is a

noise scaling factor, and * denotes convolution.?

f(Wraw) = (Wyaw +0 - M) xh (4.2)

The channel is sufficient in mimicking both realistic background noise (from Clotho)
and realistic channel distortions (impulse response from AIR). We implement the full

channel function in PyTorch [61] as shown in Listing 4.3.

Listing 4.3: PyTorch implementation of the realistic communication channel.

def apply_noise(
wav: torch.tensor, # raw waveform
noise_wav: torch.tensor, # clotho noise sample
impulse_wav: torch.tensor, # room impulse response sample
wav_rms: float = 0.07927095, # measured RMS of eSpeak
snr: float = 10, # target SNR

) -> torch.tensor:

Apply noise according to Equation 3.1 """

# calculate RMS of noise sample and find variance to maintain SNR

noise_rms = np.sqrt(np.mean(noise_wav [:|*%2))

noise_var = self.espeak_rms/((10*x(noise_db/20))*noise_rms)

# extract random segment of the noise sample that fits the original wav sample

noise_wav = noise_wav|[np.random.randint (0,noise_wav.shape[0]-wav.shape[0]) :]

# add scaled noise sample

wav = wav + noise_wav [:wav.shape [0]] #* noise_var

# pad sequences to length N prevent aliasing when applying convolution
N = impulse_wav.shape[0] + wav.shape[0] - 1
N = int (2**(np.ceil(np.log2(N)))) # Round to nearest power of 2

# pad with zeros
impulse_wav = torch.nn.functional.pad(impulse_wav, pad=(0,(N-impulse_wav.shape[0])))

wav = torch.nn.functional.pad(wav, pad=(0,(N-wav.shape[0])))

# apply FFT multiplication and then inverse FFT
wav = torch.fft.irfft(torch.fft.rfft(wav) * torch.fft.rfft(impulse_wav))

return wav

Tn this equation we are overloading the notation, with all vectors representing discrete-time sequences.
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In this implementation, we can set the signal-to-noise ratio (SNR) of the input waveform
relative to the noise sample from Clotho. To do this, we supply the typical root-mean-
square (RMS) of the waveform (measured as 0.0793 for eSpeak) and the target SNR. Using
the measured RMS of the noise sample we calculate a scaling factor o to apply to n to
reach the target SNR:

0 My,
Woms (4.3)

To apply discrete-time convolution, we first convert the waveform and impulse response
to the frequency domain. Recall that frequency-domain multiplication equates to time-
domain convolution. We use the built-in fast Fourier transform functions in PyTorch. To

prevent aliasing, we pad both signals to |wWy,y| + |R| + 1.

Real communication channel

As an extension to the simulated realistic communication channel, we also consider using
a real communication channel to train and evaluate our agents. This would allow us
to test the generalisation of our agents to a real-world environment. In such a setup,
the generated audio waveforms of the Speaker agent would be played over a physical
loudspeaker in various scenarios (such as a postgraduate student lab). A microphone
would simultaneously record the audio which would then be passed to the Listener agent.
Such a setup could be performed in multiple rooms with varying levels of noise.

As a robust implementation of the real communication channel, a Raspberry Pi is used
to run a Flask [64] REST web interface as shown in Figure 4.6. A Raspberry Pi [65] is a
small Unix-based microprocessor with sufficient functionality to run Python-based web
servers. The local device used to train and evaluate the agents would send and receive
audio waveforms over the network to the Raspberry Pi using a POST request. This is
equivalent to uploading an input audio file to a web page and receiving the resultant audio
file in return. The Flask server implementation is given in Listing 4.4.

The biggest constraint with this real communication channel is training time. In our
simulated realistic communication channel, we can process audio waveforms much faster
than in real time. With the real communication channel, the audio playback would of
course be in real-time — resulting in a slow-down of up to 100x. For this reason, we
restrict the usage of the real communication channel to the small-scale experiments in
Section 6.4.2. As future work, we could consider using multiple Raspberry Pi’s in multiple

room environments (see Section 7.1 for discussion).
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Noisy room

Figure 4.6: Real communication channel using a microprocessor and web interface. The

channel sends a POST request to a Raspberry Pi web server.

Listing 4.4: Flask web server for audio recording and playback.

app = Flask(__name__)

Qapp.route(’/play’ ,methods = [’POST’])
def play():
if request.method —— ’POST’:

wav = np.array(request.json[’audio’])
rec = sd.playrec(wav, samplerate=request.json|[’sr’],
sd.wait ()
rec = np.array(rec) [:,0]
return jsonify({’recording’: rec.tolist()})

return ’Error’

app.run(host="192.168.196.1", debug=True)

channels=1)

37
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4.3. Training and optimisation

To train our agents we follow the approach of Chaaubouni et. al. [4], which differs slightly
from standard deep RL (e.g. [29,30]). In standard RL, a replay buffer is used to store past
experiences when acting in an environment. A replay buffer [29] stores state transitions.
Each state transition contains the state S;, the action taken A;, the reward received Ry,
and the resultant state S;y;. During training, a batch of state transitions is sampled and
used to update the weights 6 according to the gradient update equation of either DQN
(Section 2.1.2) or REINFORCE (Section 2.1.3).

Due to the nature of our referential game and finite number of states, a replay buffer
is not necessary. To train our agents, we simply iterate over every possible combination of
attribute values s. For each s, the agents produce an action A; and receive a reward R;.
We use these values to update the weights as described in Section 2.1.2, without having to
store state transitions. We do not need to store the resultant state as our environment
consists of only a single step.

We implement our acoustic environment and DQN in the EGG toolkit [37], which
already has support for the discrete referential game and REINFORCE optimisation. All
models are implemented in PyTorch [61], which is used to perform automatic differentiation

and network parameter updates.

4.3.1. Optimisation

Most previous emergent language studies use REINFORCE [22], a policy-gradient algo-
rithm, for Speaker optimisation. The algorithm is used to optimise the policy: a model
that generates a distribution over actions given an input state such that the actions taken
maximise the expected reward — see Section 2.1.3 for details. REINFORCE is known
to have high variance and often struggles to consistently converge [23]. Therefore, we
compare REINFORCE to DQN [29].

In DQN, the Q-network is used to estimate the value of actions given the current
environment state. The Q-network of the Speaker generates a sequence of phones ¢ in
every communication round until the end-of-sequence token is reached. The sequence of
phones may be seen as predicting an action sequence per environment step, while standard
RL generally only predicts a single action per step. To train such a Q-network, we modify
the general DQN gradient-descent update given in Equation 2.6. Since we only have a
single communication round, our environment is analogous to a one-arm bandit problem,
meaning our target is simply the reward R, (the Syy; term falls away). A one-armed bandit
is a slot machine game where each round is independent of the previous [31]. Therefore,

we can calculate the Q-learning loss gradient with respect to the weights 6 as follows:
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i=1

where R; is the environment reward, S; is the environment state, A; is the action, and
q=(q1,q,--.,qr). For the Speaker, ¢; is the value of performing the action ¢; at output
1. For the Speaker, the environment state would be the desired concept S; = s and the
actions would be A; = ¢ = (¢1, o, ..., CL).

We can also use DQN for Listener optimisation but found it to be slightly less stable
than the approach from previous studies where the cross-entropy between s and the
Listener’s prediction of § is optimised. Therefore, to be consistent with prior work, we also
use cross-entropy to optimise the Listener. Using cross-entropy to optimise the Listener
means we are essentially treating the Listener as a policy network, where the output is a
distribution over actions.

For REINFORCE optimisation, the approach is more standard. We simply treat the
whole sequence as a single action and calculate the gradient ascent loss following the
equations in Section 2.1.3. As a reminder, the derived performance gradient is calculated

as:

VoJ(0) =Er, |>_ qr,(St,a)Ve(alSy) (4.5)

In our setup, ¢, (St a) is the observed reward for taking action a in state S;. We then

update our weights 6 of the policy my(a|s) through gradient ascent (Section 2.1.3).

4.4. Chapter summary

In this chapter, we first proposed an extension to the referential games used in previous
work, where the agents must learn to use spoken communication. This environment provides
a platform to study the properties of the spoken emergent language. We continued to
discuss our approach to this environment, where we split the task into components. At

the end of the chapter, we discussed how we train and optimise our agents.
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Experimental Setup

In this chapter, we detail the experimental setup. We begin by discussing the general
implementation details. We then proceed to introduce the metrics used to evaluate the
emergent communication developed by the agents. These metrics include generalisation,

compositionality and redundancy.

5.1. Implementation details

For our Speaker agent, we use eSpeak as our speech synthesiser. eSpeak is a parametric
text-to-speech software package that uses formant synthesis to generate audio from phone
sequences. We also experimented with using Festival and Tacotron 2 + HiFi-GAN, but
instead favoured eSpeak due to its fast inference, simpler phone scheme, and multi-language
support. In Section 6.3.4 we perform consonant-vowel co-articulation experiments using
Tacotron 2 + HiFi-GAN. In our experiments, the use of an existing speech synthesiser
allows us to focus on the emergence of phonotactic and lexical structure in multi-agent
interaction without having to simultaneously focus on articulatory learning (learning to
produce individual speech sounds). In future work we may look to relax some of these
assumptions: see Section 7 for a complete discussion.

In each communication round, the Speaker is allowed to generate up to L phones. The
default phone set used is P = {a,e,i,0,u}. These are a subset of the available eSpeak
phones, denoted here using the international phonetic alphabet (IPA). All experiments
are performed with a fixed input size of N = 4 (attributes) and M = 5 (attribute
values), giving a total input size |S| = MY of 625 attribute combinations. All models
are trained until convergence, which always occurs before 50 training epochs. In all
experiments, except the grounding experiments of Section 6.4.1, the Speaker and Listener
agent are trained simultaneously. All other setup settings match the default configuration
of the compo_vs_generalization [4] environment in EGG [37], more details are given in
Section 5.1.1.

40
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Table 5.1: General training setup and model hyperparameters.

Parameter  Description Value
Training parameters
framework Python implementation framework PyTorch
optimiser PyTorch model parameter optimiser Adam
batch_size Optimiser number of samples per batch 128
learning rate Optimiser learning rate 0.001
runs Runs per experiment across different seeds 5
n_epochs Maximum number of epochs 50
n_tune_epochs Maximum number of epochs when using pre- 10
trained models
Model parameters
h_size Size of hidden dimension of GRUs and linear 256
layers
gru_layers Number of GRU layers 2
emb_size Size of embedding layers 30
activation_func Activation function used on linear layers ReLU
Speech processing parameters
conv_layers Number of 1D convolutional layers 3
conv_kernel size Width of each 1D convolution kernel 3
conv_stride Stride of each 1D convolution kernel 1
conv_pad Total padding of each 1D convolutional layer 2
conv_n filters Number of filters per convolutional layer 64
nmels Number of mel-spectrogram features 40
n_fft Mel-spectrogram window width 25 ms
hop_length Mel-spectrogram window stride 10 ms
fmin Mel-spectrogram minimum frequency 64 Hz
f max Mel-spectrogram maximum frequency 8192 Hz
sample rate Audio waveform sample frequency 16 kHz
Hardware setup
gpu Graphics processing unit Nvipia RTX
2080 SUPER
cpu Central processing unit INTEL i7-10700k
vram Available GPU virtual memory (used by models) 8 GB
ram Available memory (used by datasets and cache) 64 GB

5.1.1. Setup and hyperparameters

Unless otherwise stated, all experiments follow the general setup and hyperparameters as

defined in Table 5.1. The training parameters were optimally chosen by trial and error given

hardware constraints. Model parameters follow the implementations of previous work [4].

The convolutional and mel-spectrogram parameters follow common implementations for

speech processing [38].
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5.1.2. Computational complexity and training time

In the majority of our experiments, the agents are trained for 50 epochs and must transmit a
total of |S| = 625 input attribute combinations (M =5, N = 4). This results in a training
time per run of around ~ 3 hours. The computational complexity is linearly proportional
to the number of input combinations |S|. Early on we performed one experiment with
|S| = 10000 over 50 epochs and the run took two days. The computational complexity
of our system is therefore O(n) in terms of the input dimension. The computational
complexity is also linearly proportional to the number of training epochs and independent
of message parameters.

Overall, the biggest influence on training time is the speed of the synthesisers discussed

in Section 4.2.1. Approximately 80% of an episode’s run-time is taken up by the synthesiser.

5.2. Metrics

In this section, we introduce some of the metrics used to analyse the emergent languages.
The primary metric used to assess the performance of our models is accuracy. Specifically,
we calculate the mean accuracy per attribute over all input combinations. This is equivalent
to the mean environment reward R (Section 4.2) for all environment states. The accuracy
for random predictions is inversely proportional to the number of attribute values. For
our models we therefore have a random baseline accuracy of ﬁ = % = 20%.

In addition to accuracy, we are concerned with the quantification of three other

properties — generalisation, compositionality, and redundancy.

5.2.1. Generalisation

Generalisation refers to a model’s ability to handle novel input combinations. For example,
a model is trained to classify two attributes, a colour and a shape. A red triangle and a
blue square are used as training samples. At test time we ask it to classify red square and
a blue triangle. The attribute combination of red square and blue triangle has never been
seen by the model, but the individual attributes have appeared during training. We say
the model is able to generalise if it is able to classify these novel inputs by learning to
understand an input could have any combination of attributes.

To test this, we uniformly sample a set of attribute combinations that will be hidden
during training — referred to as a uniform holdout set. During test time, we will evaluate
the accuracy of the model in classifying these unseen attribute combinations. If the learnt
communication protocol is not general, the agents will be unable to classify the unseen

attributes and achieve low accuracy.
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5.2.2. Compositionality

Compositionality in our context refers to a language or communication protocol. A
compositional language is one in which we reuse symbols to denote the same attributes of
a communicated concept. For example, we have three colours red, green and blue, and
three shapes triangle, square and circle. We are tasked with labelling all nine combinations
of colour and shapes. A naive approach would be to use a unique symbol for every
combination, ignoring the fact that there are repeated attributes. This approach would
use a total of 9 symbols. A compositional approach would be to have a symbol for each
attribute value (one for each colour and one for each shape). This would total 6 symbols
for the same number of concept combinations. The naive approach uses multiplicatively
more symbols as the number of attribute values increases. If we had x colours and y
shapes, we would require z - y total symbols, whereas a compositional approach would
only require x + y symbols. In human language, these symbols take the form of words.

A model may be able to generalise and not necessarily be compositional. For example
red triangle may be represented by “AB”, and blue square may be represented by “AC”,
the model may generalise and learn a unique protocol where “CB” represents the unseen
blue square. The communication protocol may be arbitrary as long as it is still able
to communicate the information correctly. But this does not mean the protocol is
compositional. Although, Auersperger and Pecina [6] showed that there is a correlation
between generalisation and compositionality, which contrasts prior work which found no
correlation [4].

We use three metrics to quantify compositionality: topographic similarity, positional

disentanglement, and bag-of-symbols disentanglement.

Topographic similarity

The most widely-used metric in the discrete emergent language literature is topographic
similarity [2,66]. Topographic similarity, or topsim, studies the structural similarity
of the emergent communication in terms of Spearman p correlation between the input
and message space. We calculate this by taking the correlation between all pairwise
edit distances in the input and message spaces. This metric gives an indication of how
compositional a learnt communication protocol is by finding the correlation between which
message symbols are reused for the same input combinations. For this metric, higher
is better and the maximum value is 1 when the input and message space are perfectly
correlated.

In addition to topographic similarity, [4] introduced positional disentanglement and
bag-of-symbols disentanglement as alternative measures of compositionality. In contrast to
topographic similarity, which is correlation-based, these methods use entropy to measure

compositionality.
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Positional disentanglement

Positional disentanglement, or posdis, measures the positional contribution of symbols
to meaning. Suppose we have a message ¢ = ¢y, ¢, ..., ¢y, of fixed length L, where each
symbol ¢; represents a character from alphabet V of size K. Let ¢/ = sort I(cj;a) be
the mutual information between the j-th symbol and each input attribute a sorted in
descending order. z{ is therefore the highest mutual information between symbol ¢; and
all attributes, while 4} is the second highest. Denoting H (¢;) as the entropy of the j-th
position (used as a normalising term), we define the positional disentanglement as:
L& (] )
posdis = LJZ1 H(c)

Similar to topsim, higher is better with a range of values between 0 and 1. Intuitively,
to do well in positional disentanglement, the change of a single input attribute should
correspond to only a single symbol change in the message ¢. This would maximise the
difference between the mutual information between the symbol changed and all other

symbols.

Bag-of-symbols disentanglement

Bag-of-symbols disentanglement, or bosdis, measures distinct symbol meaning but does so
in a permutation-invariant way. We adjust the equation of positional disentanglement to
now consider the mutual information between attributes and symbol occurrences regardless
of position. Let n; be a counter of the occurrences of the j-th symbol in e. We let
v = sort I(nj;a) be the mutual information between the number of occurrences of the j-th
symbol and each input attribute a sorted in descending order. We define the bag-of-symbols

disentanglement as:

Similar to topsim and posdis, higher is better with a range of values between 0 and 1.
Unlike positional disentanglement, where the change of a single input attribute should
correspond to the change of a single symbol, bag-of-symbols disentanglement is related to
the number of symbol occurrences in ¢. Therefore, the change of a single input attribute
should correspond to a single change in the occurrences of a specific symbol in the message
c. This would maximise the difference between the number of symbols used per attribute

combination, making the metric invariant to the symbol position.



Stellenbosch University https://scholar.sun.ac.za

5.2. Metrics 45
Case I: random Case II: perfect Case III: single attribute
topsim: 0.065 topsim: 1.000 topsim: 0.577
posdis: 0.062 posdis: 1.000 posdis: 1.000
bosdis: 0.069 bosdis: 0.000 bosdis: 1.000

Figure 5.1: Examples of three learnt communication strategies. The metrics for topsim,
posdis, and bosdis are also shown.

Analysis of compositionality metrics

We have introduced three metrics to quantitatively measure the compositionality of a
message protocol relative to an input space. While these metrics are effective, they do
not come without their flaws. In Figure 5.1 we present three cases as examples of a learnt
communication strategy. In this example, there are two attributes that can take on three
values each. The message space is discrete with a vocabulary V = {‘a’,‘b’,‘c’} and a
maximum length of two. For illustrative purposes, we vary each attribute from 0-2 along
the rows and columns respectively. The intersection between each attribute value is then
the learnt utterance of that attribute combination. For example, “aa” in Case II is the
utterance for the attribute combination (0,0).

In Case I of Figure 5.1, the learnt communication protocol is completely random. As
we would expect, all three compositionality metrics for this case are very low. This is
because a random communication protocol is very unlikely to be compositional. In Case
II, we present a perfect communication protocol. Here, the first character of the utterance
corresponds to the first column attribute, and the second character corresponds to the
row attribute. As expected, the compositionality for Case II is perfect for both topsim
and posdis. Surprisingly, the value of bosdis is 0.000. This is likely due to the way bosdis
is related to the number of symbol occurrences. In Case III, we show a simple example
where both characters are related to the same column attribute. Here we find both posdis
and bosdis reach a value of 1.000, while topsim reaches 0.577. This is interesting, as both
posdis and bosdis indicates a perfectly compositional message while it actually only has
limited compositionality (also indicated by the topsim).

The maximum accuracy of each example is proportional to the number of unique

utterances per attribute combination. Therefore, the maximum accuracies in Figure 5.1
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are 67%, 100% and 33% for Case I, Case II and Case III respectively. These maximum
accuracies and the metrics of Case III (in Figure 5.1) suggest that there is a lower bound
of accuracy for which these metrics hold.

Overall, the most consistent metric is topographic similarity or topsim. The most
inconsistent metric is bosdis, which agrees with recent work [6]. For this reason, we can

generally ignore the bosdis metric in our experimental results.

5.2.3. Redundancy

Human language is not always entirely compositional. While we do have a very high level
of compositionality, we often use superfluous words to denote the same meaning depending
on context. For example, in English, we use different words for denoting gender such as he
vs him, when the meaning remains relatively the same. Or in Afrikaans, we use the word
“nie” twice in one sentence to indicate a negative. It is possible that these are used to aid
in understanding and improve clarity when communicating. We refer to this behaviour as
redundancy.

To measure redundancy we perform quantitative comparisons of the symbols used in
the emergent protocol. We compare two metrics, the number of unique symbols and the
number of repeats. If a communication protocol is redundant, it will likely use fewer unique
symbols per utterance, decreasing the likelihood that an important symbol is lost during
transmission. Similarly, it will likely repeat phonetic unigrams, bigrams and trigrams. A
trigram is a contiguous sequence of three units, a bigram a sequence of two units, and a
unigram is a single unit. Therefore, for a redundant communication protocol, we would

expect fewer unique symbols and more repeated symbols per utterance.

5.3. Chapter summary

In this chapter we first discussed the details on implementing the approach proposed
in Section 4.2. This included an overview of the five main system variants, including a
discrete baseline. We then outlined the metrics that will be used to evaluate the emergent

communication protocols.
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Experiments

In this study, we propose two contributions that expand on previous work. The first
approach compares REINFORCE to DQN (Section 6.1). We do this in contrast to
previous language emergence work, which solely focuses on REINFORCE optimisation.
Next, we focus on the core contribution of this study — learning to speak and hear through
multi-agent communication over a continuous acoustic channel (Section 6.2). We then
systematically analyse the properties of the emergent languages and compare them for
each setup (Section 6.3). Finally, we include two additional experiments performed earlier

in this work — language grounding and real-world performance experiments.

6.1. REINFORCE vs DQN

We first explore DQN as an alternative optimisation technique to REINFORCE for
language emergence. As mentioned in Section 4.3.1, REINFORCE is said to have relatively
high variance and often struggles to consistently converge [23]. We investigate this claim
and compare it to the alternative, DQN.

Experimental setup. For this experiment, we use an identical setup to Chaaubouni et.
al. [4], which is essentially a purely discrete version of our proposed acoustic environment. In
these experiments, we only switch out the optimisation method to DQN from REINFORCE
(Section 4.3.1). We only consider discrete communication here, as we want an environment
where we can compare DQN directly with previous work. The agents are trained for
50 epochs and must transmit a total of 625 attribute combinations (M = 5, N = 4).
Five experiments are performed. We compare DQN and REINFORCE with the metrics
of Chaaubouni et. al. [4]. This includes accuracy per-attribute and three measures of
compositionality (Section 5.2). For the first compositionality metric, we study the structural
similarity of the emergent communication in terms of Spearman p correlation between
the input and message space, a metric known as topographic similarity or topsim [2,66].
This metric gives an indication of how compositional a learnt communication protocol
is by finding the correlation between which message symbols are reused for the same
input combinations. For example, if we had to communicate the attributes “red square”

and “red triangle” and used the sequence “aaa” to do so in both cases, we would get

47
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Figure 6.1: Mean accuracy per attribute of REINFORCE and DQN agents throughout
training. The 95% confidence bounds are shown over five runs.

a high topsim. If, however, we used “aaa” in the first case and “eee” in the second to
indicate the colour, we would get a low topsim. We also include positional disentanglement
(posdis) and bag-of-symbols disentanglement (bosdis) as secondary compositionality metrics
(Section 5.2). For these metrics, higher is better and the maximum value is 1.

Experimental results. The accuracy per attribute throughout training is presented in
Figure 6.1. It is immediately clear that DQN has a much lower variance than REINFORCE;,
indicated by the narrower confidence bounds. In fact, DQN consistently converges on
100% accuracy for all five runs. This is not the case for REINFORCE, where the accuracy
converged on 97.8 + 1.5% (mean+tstd). Interestingly REINFORCE seemed to learn faster
initially with slightly lower variance, and is the first to reach an accuracy of 90% after
approximately 6 epochs, which DQN only reaches after approximately 9 epochs.

The compositionality metrics for both optimisation techniques is shown in Table 6.1.
As a reminder, higher is better with a maximum value of 1 for all compositionality metrics.
We find that DQN outperforms REINFORCE for both topsim and posdis. For bosdis,
REINFORCE does slightly better. As mentioned previously in Section 5.2.2, bosdis is quite
inconsistent and can likely be ignored for our setup. The metric we are most concerned
with is topsim. We measured the topsim of the REINFORCE communication protocols to
be 0.387+0.012 (mean+std), which aligns with the results of Chaaubouni et. al. [4]. DQN
reaches almost double the topsim performance of REINFORCE reaching 0.691 + 0.083.
This is much higher than the topographic similarity of previous work [2,4,28]. In the rest
of this study we will focus on topsim as the compositionality metric due to its consistency.

Overall, DQN seems to be better suited as a tool to optimise agents when studying

language emergence.
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Table 6.1: Compositionality metrics of the learnt message protocol for both REINFORCE
and DQN. The metrics are reported as mean + std over five runs.

Optimiser topsim posdis bosdis
REINFORCE 0.387 £0.012 0.095£0.048 0.175 £ 0.035
DQN 0.691 +0.083 0.386 +0.174 0.083 +0.014

6.2. Learning to speak and hear

In this section, we investigate if our agents can learn to speak and hear within a lossy
communication channel. As a baseline solution, we train the Speaker and Listener models
of Chaaubouni et. al. [4] to solve the discrete communication task (identical to the setup
in Section 6.1). During training, the discrete units generated by the Speaker are directly
consumed by the Listener. During the evaluation, we follow the same procedure as our
acoustic implementation (Section 4.2). We first map the discrete units of the discrete
Speaker to the same phone set P used by our acoustic Speaker, thereafter utilising an
identical synthesis and channel noise setup. A pre-trained phone recogniser, based on
Deep Speed 2 [38] (Section 4.2.2), is then used to interpret the waveform as discrete units
which are fed to the discrete Listener. This baseline thus represents the setting where
discrete-only agents are trained and then employed in an acoustic environment using fixed
symbol-to-waveform and waveform-to-symbol models.

In the experiments of this section, we compare five main system variants:

1. DISCRETE: Our baseline follows the discrete implementation described above, where
we first train the agent to solve the discrete communication task. The agent is
then evaluated in the acoustic communication channel of Section 4.2.3. To do this,
the discrete units are mapped to phones, which are synthesised and passed over
the channel. A pre-trained phone recogniser (Section 4.2.2) then converts back to

discrete units for the Listener.

2. Acoustic E2E: This approach combines our acoustic Speaker model (Section 4.2.1)
with the end-to-end (E2E) Listener model (Section 4.2.2). As a reminder, the end-to-

end Listener converts directly from a mel-spectrogram to the predicted attributes S.

3. Acoustic* E2E: We consider a variant of the above model where the agents are

pre-trained; in this case, the Speaker agent is initialised with the weights of the

DISCRETE Speaker. We denote system variants that use pre-training with a “*.

4. Acoustic + PHONEREC: Our fourth approach combines the same acoustic Speaker

model with the phone recogniser (PHONEREC) Listener (Section 4.2.2). The phone
recogniser used here is identical to that of the DISCRETE approach. We use this
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variant as a direct comparison to the DISCRETE model, as neither are able to update

the weights of the static phone recogniser.

5. AcousTtic* + PHONEREC: The final approach uses pre-training with Acous-

TiIC + PHONEREC. In this approach, both the Speaker and Listener are initialised
with the weights of the DISCRETE agents.

6.2.1. Approaches in noisy environments

We start by comparing different system variants in noisy environments, with the goal of
seeing how discrete-only training compares with training an acoustic agent. As a reminder,
the discrete agents are trained exclusively for symbolic communication, while the acoustic
agents are trained in an environment with channel noise.

Experimental setup. In these experiments, all agents use a fixed sequence length
of L = 5. The acoustic models are trained with the full lossy communication channel
described in Section 4.2.3, including background noise samples from Clotho that are scaled
to correspond to a 10 dB signal-to-noise-ratio (SNR). We study the results when training
with both REINFORCE (used in previous work) and our DQN optimisation approach
(Section 4.3.1). All models are evaluated in both the training and evaluation environments
(Section 4.2.3). We study the accuracy per attribute: the average number of attributes
correctly communicated out of all attribute combinations (Section 5.2). We also study the
topsim as a quantitative measure of compositionality. For this metric, higher is better and
the maximum value is 1.

Experimental results. The results for models optimised with REINFORCE and
DQN are presented in Table 6.2 and Table 6.3 respectively. All the models optimised with
DQN outperform their REINFORCE counterparts, with particularly large improvements in
compositionality (as measured by the topsim metric). A detailed analysis of REINFORCE
versus DQN in the discrete setting is given in Section 6.1. When looking only at the DQN
results, we see that the acoustic models (rows 2 to 5) are consistently able to adapt to the
noisy environment and outperform the DISCRETE model (row 1). The end-to-end models
(with and without pre-training, rows 2 and 3) outperform the models using the phone
recogniser (rows 4 and 5). This is to be expected as the Listener can directly adapt to the
noisy environment by updating the weights of the “hearing” portion of the model — this is
not possible when using a fixed phone recogniser. Nevertheless, by comparing the system
in row 1 with those in rows 4 and 5, we see that the acoustic models that use the same
phone recogniser as the DISCRETE model are able to adapt their communication protocol
in order to mitigate the effects of the channel noise. While the DQN models (Table 6.3) are
not as reliant on discrete pre-training as the REINFORCE models (Table 6.2), we still find
it to ease the learning process and improve results — illustrated by the relative performance
difference between rows 2 and 3 for REINFORCE vs DQN. The best-performing model
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Table 6.2: Per attribute accuracy and topographic similarity of various models trained
with REINFORCE in both the training and evaluation environments. ACOUSTIC* uses
the discrete baseline for pre-training. Each model was trained five times. We observe a
maximum result standard deviation of 0.02 over all seeds.

REINFORCE
Model train rooms eval. rooms topsim
1 DISCRETE 0.621 0.612 0.387
2 Acoustic E2E 0.611 0.566 0.275
3 Acoustic* E2E 0.973 0.950 0.373
4 AcousTiC + PHONEREC 0.539 0.535 0.358
5 AcousTtic* + PHONEREC 0.609 0.591 0.387

Table 6.3: Per-attribute accuracy and topographic similarity of various models trained
with DQN in both the training and evaluation environments. ACOUSTIC* uses the discrete
baseline for pre-training. Each model was trained five times. We observe a maximum
result standard deviation of 0.02 over all seeds.

DQN
Model train rooms eval. rooms topsim
1 DISCRETE 0.649 0.649 0.691
2 Acoustic E2E 0.956 0.789 0.519
3 Acoustic* E2E 0.986 0.958 0.707
4 AcousTiCc + PHONEREC 0.682 0.674 0.747
5 AcousTic* + PHONEREC 0.726 0.710 0.745

overall is the AcousTic* E2E model, where the Speaker is pre-trained (row 3 of Table 6.3).
While pre-trained models already have an established communication protocol, the models
without pre-training have to learn to deal with the communication loss at the same time,
increasing the difficulty of learning. This is much more apparent in the REINFORCE
models. In terms of compositionality, the acoustic DQN models tend to have slightly
higher topographic similarity than the DISCRETE model, reaching a similar performance
to that achieved in the discrete-only study of [6].

In the experiments that follow, we will focus on a subset of the different DQN-optimised
models from Table 6.3. Specifically, we will compare the discrete model (row 1) to both the
pre-trained AcousTic* E2E (row 3) and AcousTtic* + PHONEREC (row 5) approaches.
We choose the AcousTIiC* + PHONEREC models as a direct comparison to the discrete
models, as both are restricted by the performance of the static phone recogniser. We
also chose the best performing model overall (AcousTic* E2E) to see how the learnt

communication protocol varies based on the Listener dynamics.
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6.3. Emergent language characteristics

Previously in Section 6.2, we have shown that we are able to observe emergent language
between agents communicating through a continuous acoustic channel. We also found that
our acoustic models outperformed the discrete baseline in the acoustic communication task.
To better understand these differences in performance, we now look towards investigating
the emergent communication protocols directly. We first look at the effects of increased
noise and sequence length and then analyse the compositionality and redundancy of the

emergent language. We then perform experiments on the choice of vocabulary.

6.3.1. Increasing noise and sequence length

To better understand the difference in emergent language between discrete and acous-
tic communication, we evaluate the DISCRETE and AcousTIiC* + PHONEREC mod-
els with various configurations of the lossy communication channel. While Acous-
TIC* + PHONEREC does not perform as well as AcousTic* E2E, we choose to focus on
AcousTiCc* + PHONEREC in this set of experiments as it allows for a fairer comparison to
the DISCRETE model. Both these models are restricted by the imperfect phone recogniser.
The AcousTic* + PHONEREC model must adapt without updating the weights of the
listening component. Therefore, it must develop a communication strategy to compensate
for transmission errors over the noisy channel and static phone recogniser. These properties
allow us to better see the differences in the communication protocols resulting from discrete
vs acoustic training.

Experimental setup. Concretely, we consider performance in settings with a lossless
communication channel (no room), a set of rooms with no background noise, and the
same set of rooms with 10 dB SNR background noise sampled from Clotho. Three room
setups are considered: an evaluation of the rooms seen during training, an evaluation
of the unseen meeting room, and an evaluation of the unseen stairway. The models are
trained and evaluated with a maximum phone length L of both 5 and 8 in order to see
the effect of varying sequence lengths.

Experimental results. The results are shown in Table 6.4 and Table 6.5 for no
background noise and 10 dB SNR background noise respectively. We see that for a
maximum phone length L = 5, the AcousTIC* 4+ PHONEREC models perform marginally
better than the DISCRETE models in all the cases (with and without noise), as also was the
case in Table 6.3. Somewhat surprisingly, when background noise is present (Table 6.5) and
the DISCRETE model is allowed to use L = 8 symbols instead of L. = 5, the performance
drops. This is likely due to an increased probability that one or more phones are lost over
the communication channel in longer sequences. Despite this, due to the increased channel

capacity when L = 8, the AcousTIiCc* 4+ PHONEREC model is able to counteract the
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Table 6.4: Accuracy of the discrete and acoustic agents evaluated in various acoustic
environments and no background noise. AcousTIC* + PHONEREC refers to the pre-
trained acoustic 4+ phone recogniser model. Meeting and stairway refer to the two
evaluation rooms, where the stairway has more echos than the meeting room. Each model
was trained five times. We observe a maximum standard deviation of 0.03 over all runs
for all results.

No background noise

Model L no room training rooms meeting stairway
DISCRETE ) 0.992 0.780 0.794 0.594
Acoustic* + PHONEREC 5 0.945 0.808 0.798 0.634
DISCRETE 8 0.998 0.728 0.801 0.546
Acoustic* + PHONEREC 8 0.950 0.806 0.826 0.635

Table 6.5: Accuracy of the discrete and acoustic agents evaluated in various acoustic
environments and 10 dB SNR background noise. AcousTic* + PHONEREC refers to
the pre-trained acoustic 4+ phone recogniser model. Meeting and stairway refer to the
two evaluation rooms, where the stairway has more echos than the meeting room. Each
model was trained five times. We observe a maximum standard deviation of 0.03 over all
runs for all results.

10 dB SNR background noise

Model L training rooms meeting stairway
DISCRETE 5 0.651 0.703 0.604
Acoustic* + PHONEREC 5 0.726 0.751 0.664
DISCRETE 8 0.564 0.666 0.544
Acoustic* + PHONEREC 8 0.677 0.731 0.640

information loss and retain performance comparable to its L = 5 counterpart. This causes
the AcousTic* + PHONEREC model to do significantly better for longer sequences, with
13.3% better relative performance over the DISCRETE case in the meeting and stairway
rooms with background noise (Table 6.5). We see similar results in Figure 6.2, where we
plot evaluation accuracy as a function of L: again we observe the DISCRETE model drops
in performance after L = 4, while the AcousTic* + PHONEREC plateaus without a
performance drop. The performance drop at L = 2 is due to the channel capacity falling
below the total number of attribute combinations (|S| < |P|*). This means the agents are
unable to express all possible input combinations given the limited channel capacity.

Both the discrete and acoustic models perform best in the meeting evaluation room,
where the acoustic dynamics are relatively clean. The models perform worst in the stairway
evaluation room, where there are a lot of surfaces for sound to echo off of. The models
also experience a large performance decrease when significant background noise is present,
as can be seen by comparing the no background noise results of Table 6.4 to the 10 dB
SNR background noise of Table 6.5.
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Figure 6.2: Per-attribute accuracy as a function of maximum phone length L. The 95%
confidence bounds over five runs are shown.

6.3.2. Emergent compositionality and redundancy

The learnt communication protocols of each agent from the previous section are now
investigated qualitatively. The goal here is to take a deeper dive into the emergent
communication protocols of each model, in an attempt to understand how and why the
acoustic models outperform the discrete ones. To do this, we take samples of the phone
sequences produced by the Speaker agent of each model.

Table 6.7 and Table 6.6 respectively show samples of the learnt communication strategy
of the AcousTic* + PHONEREC and DISCRETE case with L = 8. For comparison, we
also show samples of the AcousTic* E2E Speaker in Table 6.8. Each entry in the tables
corresponds to the phone sequence generated by the Speaker for different attribute values.
s1 and sg are varied from 0 to 5 across the columns and rows, respectively, while s3 and
s4 are fixed. Following the example from Section 4.2 where s; represents a colour, each
column could represent a colour value (e.g. red, green, blue).

By comparing the phones used per utterance in Table 6.6 to Tables 6.7 and 6.8, it
is immediately clear that both acoustic Speakers tend to use fewer unique phones per
utterance, and also tend to repeat phonetic unigrams, bigrams and trigrams. A trigram is
a contiguous sequence of three units, a bigram a sequence of two units, and a unigram a
single unit. For instance, as shown in Table 6.7, to communicate this specific combination
of s3 and sy, the Speaker tends to use the repeated bigram [oi]. The same behaviour is
observed in Table 6.8, with both acoustic Speakers repeating this bigram, despite being
trained independently and with a completely different Listener setup. This is interesting,
as the two acoustic models have no direct motivation to learn similar protocols, other than

overcoming the transmission errors of the noisy communication channel.
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Table 6.6: Sample of phone sequences produced by the DISCRETE Speaker for L = 8.
Each entry corresponds to a combination of four attributes: where we vary the first two
attributes (s and s2), while keeping the last two attributes fixed (s3 and s4).

S1
0 1 2 3 4
© | auieueuo uiieueoo oiaeueou aiaeueou iiaeeoeo
— | ailuoooi uiiuoooi oiiuoooi  aiiuoooi  iiiuoooi
& | uuleueou uuleoeol ouieueou auieoeol iuieueou
™ | aileueoe eileueoo oileueoco alieueoe iiieueoe
<t | aaieeueo eaieoeoi oaieeouo aaieeoui iaieeouo

Table 6.7: Sample of phone sequences produced by the AcousTic* + PHONEREC
Speaker for L = 8. Each entry corresponds to a combination of four attributes: s; and
s9 varying, while s3 and sy are fixed. The bigram [oi] has been highlighted in bold.

S1
0 1 2 3 4
© | auaaoioi eaaooioi oaaoioio aeaoioio ioaoioii
— | aoaoioio uoaooioi ooaoioio aoaoioio ioaoioio
& N | auaaooio uuaaoooi uuaaoooi auaoooii iuaaooio
o | eeauiooi eeaoioio oeaoioio aeaoioio ieaoioio
< | aaaaooio eaaooo0ili  0aaoooii aaaoooii iaaaooio

Table 6.8: Sample

of phone sequences produced by the Acoustic* E2E Speaker for
L = 8. Each entry corresponds to a combination of four attributes: s; and s» varying,

while s3 and s4 are fixed. The bigram [oi] has been highlighted in bold.

s1
0 1 2 3 4
© | auaeeoio eeaoeoie oeaeoioi aeaeoioi ieaeoioi
— | alauoioi eilaooioi oiauoioi ajaooioi iiaoioie
@ & | uuaeeoio uuaeoioi ouaeceoio auacoioi iuaeeoio
o | aeaeeoio eeaoeoie oeaeeoio aeaeoioi  ieaeeoio
<* | aaaeeolo eaaoeoie oaaeeoio aaaeoiol iaaeeoio

The average number of repeated phones in the AcousTic* + PHONEREC Speaker’s
utterances is 2.89, while the DISCRETE Speaker has 3.19 repeated phones per utterance.
This is an indication that the acoustic Speaker is learning a redundant communication
protocol, assisting the coherency of the Listener through repetition. Table 6.9 shows the
number of repeated bigrams and trigrams for each model. Both acoustic models tend to
repeat bigrams and trigrams, with the AcousTic* E2E model having fewer repeats. This
is likely due to repetition not being as necessary when the network weights of the “hearing”

portion may be updated. This repetition is not as present in the discrete case, where the
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Table 6.9: Number of repeated bigrams and trigrams per utterance for each model

(L =8).
Model bigrams  trigrams
DISCRETE 1.623 0.277
Acoustic* + PHONEREC  2.680 0.935
Acoustic* E2E 2.073 0.554

communication strategy uses more unique phones per utterance: on average, the DISCRETE
Speaker uses 4.074 unique characters per utterance, with the Acoustic* + PHONEREC
Speaker using fewer phones at 3.649.

All the acoustic and discrete Speakers exhibit high levels of compositionality. For
example, all three cases in Tables 6.6 to 6.8 begin with [a] where s; = 3 and [i] where
s1 = 4. Another example can be seen in that the second phone tends to correspond with s,
in all cases. These tables qualitatively show the levels of topographic similarity measured
in Section 6.2.1 (specifically Table 6.3).

6.3.3. Choice of vocabulary

Another way that the acoustic models are able to improve over the discrete case is
in their choice of vocabulary. The distribution over phones for the DISCRETE and
AcousTiCc* 4+ PHONEREC models are shown in Figure 6.3 (L = 5). Figure 6.4 shows
the phone error rate (PER) per phone of the static phone recogniser (Section 4.2.2) over
the noisy communication channel (Section 4.2.3). The discrete model has no knowledge
of the acoustic dynamics and therefore defaults to a (roughly) evenly distributed usage

of all phones. In the case of the AcousTic* + PHONEREC models, the agent learns to

0.251 HEl DISCRETE
EE AcousTic* + PHONEREC

0.20 1

0.15 1

0.10 1

0.05 1

0.00- :

a (S] | (0} u

phones

distribution

Figure 6.3: Distribution over phones for the learned communication protocols of Dis-
CRETE and ACOUSTIC* + PHONEREC models.
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Figure 6.4: PER per phone when using the static phone recogniser over the noisy acoustic
channel. The subset of phones used in our experiments is highlighted in red.

use phones that have a lower PER — the phone distribution is inversely proportional to
the PER shown in Figure 6.4. We can quantify this relationship using the Spearman p
correlation between the phone distribution and the phone accuracy (1 — PER). We find
the AcousTIiC* + PHONEREC model has a positive correlation 0.64 £ 0.17 (mean =+ std

over five runs), while the discrete case has no significant correlation 0.17 £ 0.59.

6.3.4. Consonant-vowel experiments

As an extension to the experiments on vocabulary choice, we now update the vocabulary
to include both consonant and vowel phones. This allows us to study the effects of
co-articulation, and whether the Speaker is able to develop a protocol similar to human
language. In English, we regularly switch between vowels and consonants in a single word,
and rarely repeat two vowels or two consonants after each other.

Experimental setup. Concretely, we use the phone set P = {a,k,i,0,s}. The
AcousTic* E2E model is trained in the same manner as Section 6.3.2, where L = 8.
Since eSpeak has limited co-articulation, we also train the setup with the Tacotron
2 + HiFi-GAN synthesiser (Section 4.2.1). We then analyse the emergent communication
protocol, counting the number of consonant-vowel (CV), vowel-consonant (VC), consonant-
consonant (CC), and vowel-vowel (VV) pairs. We compare these numbers to a reference
set of 58 110 common English words.

Experimental results. Samples of the eSpeak and Tacotron 2 + HiFi-GAN Speakers
are presented in Table 6.10 and Table 6.11 respectively. Similar to Section 6.3.2, we show
how the utterances change based on the attribute values of s; and ss. In these samples,
we find the Tacotron 2 + HiFi-GAN Speaker (Table 6.10) switches between consonants
and vowels slightly more often than the eSpeak Speaker (Table 6.11). Notice how the
utterances in both tables look slightly more natural than those of Section 5.2.2. This is
because English words tend to alternate between consonants and vowels. Audio samples
are available online at kevineloff.github.io/learning-to-speak/.

Table 6.12 shows the number of consonant-vowel (CV), and vowel-consonant (VC)


https://kevineloff.github.io/learning-to-speak/
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Table 6.10: Sample of phone sequences produced by the Acoustic* E2E Speaker
for L =8, P = {a,k,i,0,s}, and the Tacotron 2 + HiFi-GAN synthesiser. Each entry
corresponds to a combination of four attributes: s; and so varying, while s3 and s4 are

fixed.

S1
0 1 2 3 4
© | soookiik siooiiik oookiiki aiokikik ikokiiki
— | aoookiik sooiiiii  oooiiiilk aoooikii ioooiiik
& ™| asooikili ssooiiili  osoiiitk  asooiilk  isooiiii
o | kkookiik skoiiiik  okoiiiik  kkoikiik  ikoiiiik
<t | iiookiik siooiiik oioikiik aiookiik iiooiiik

Table 6.11: Sample of phone sequences produced by the AcousTtic* E2E Speaker
for L = 8, P = {a,k,i,0,s}, and the eSpeak synthesiser. Each entry corresponds to a
combination of four attributes: s; and so varying, while s3 and s4 are fixed.

S1
0 1 2 3 4
© | aiokssos  kiokosos  oiokssos  aiokssos  iiokssos
— | iiosooss Si0000ss  0i0S00Ss  aiooooss  110000Ss
@ | as0000ss ksooooos 0S0000Ss  aso000ss  1S0000Ss
o | aiokssoo  kiokssos  oiokssoo  aiokssos  iiokssoo
<t | aaokooos kaokooos o0aokooos aaokooos iaokooos

pairs for both synthesisers. We also show the number of consonant and vowel phone pairs
for a dataset of 58 110 common English words. This reinforces this idea of English often
alternates between consonants and vowels, 61% (CV + VC) of all pairs switch between
consonants and vowels. For English, there are also a similar amount of CV and VC pairs.
We see similar behaviour in Tacotron 2 + HiFi-GAN, where there are a similar amount
of CV and VC pairs. Overall, Tacotron 2 + HiFi-GAN and eSpeak have fewer pairs
alternating between consonants and vowels, (43% and 39% respectively). In the case of
eSpeak, the number of vowel-consonant pairs is much higher than consonant-vowel pairs.

Table 6.12 also shows the number of consonant-consonant (CC) and vowel-vowel (VV)
pairs. We find that English barely ever has vowel pairs, and often has consonant pairs.
Tacotron 2 + HiFi-GAN has the opposite behaviour where there are more vowel pairs
than consonant pairs. Qualitatively when listening to the audio, the samples of Tacotron
2 + HiFi-GAN tend to collapse repeated vowels into a single phonetic unit. This behaviour
does not occur in eSpeak with its limited co-articulation. Overall, the CC and VV columns
of Table 6.12 are biased towards the phonetic vocabulary used. English has 26 alphabetic
characters, 5 of which are vowels. The phone set P used in this experiment has 3 vowels
and 2 consonants. Thus, we would expect a bias towards vowel pairs being much more

frequent than consonant pairs.



Stellenbosch University https://scholar.sun.ac.za

6.4. Additional experiments 59

Table 6.12: Normalised number of consonant and vowel phone pairs per utterance. The
baseline uses 58 110 common English words.

Synthesiser cv vc cc Vv
Tacotron 2 + HiFi-GAN 0.22 0.21 0.19 0.38
eSpeak 0.16 0.23 0.39 0.23
English 0.30 0.31 0.36 0.03

Table 6.13: Generalisation accuracy on the uniform holdout set for each model. Each
model was trained five times. We observe a maximum standard deviation of 0.03 over all

seeds.
Model training set  holdout set
DISCRETE 0.649 0.630
AcousTtic* E2E 0.958 0.945
Acoustic* + PHONEREC 0.710 0.686

6.3.5. Generalisation

Generalisation is another important property of language. We want our agents to be able
to generalise to novel input combinations, as described in Section 5.2.1. To reiterate with
an example, two agents could learn to communicate red square and blue triangle during
training. The agents generalise if they are able to successfully communicate blue square
and red triangle as unseen validation combinations.

Experimental setup. In this setup we train the DISCRETE, AcousTic* E2E, and
AcousTic* + PHONEREC models as described in Section 6.2 (L = 5). Before training the
agents, we uniformly sample 10% (63 total combinations) of the attribute combinations to
be used as a holdout set. This holdout set is then removed from the training set and only
used during evaluation. All results are presented using the evaluation setup of Section 6.2.

Experimental results. The evaluation results on the uniform holdout set are
presented in Table 6.13. As a comparison, we also include the evaluation accuracy of the
training set. Overall, we find all models generalise very well to the uniform holdout set,
with a minimal performance drop compared to the training set. Interestingly, we find no
clear difference between each model. This indicates that generalisation is not necessarily

influenced by whether the learnt communication is continuous or discrete.

6.4. Additional experiments

In this section we include some of the smaller experiments performed earlier in this work.
By smaller, we mean we down-scaled the number of input attribute combinations with
two setups: single-attribute (M =1, N = 4) and two-attribute (M =2, N =4). In these
experiments, we train the AcousTiCc* E2E model with a slightly simpler noise scheme.
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The channel applies Gaussian white noise scaled to a target SNR. We also include other
effects such as time and frequency masking, Librosa [60] warping and a band-pass filter.
We include two main experiments in this section: language grounding and real-world

experiments.

6.4.1. Language grounding

Although the Speaker uses an English phone set, up to this point there has been no reason
for the agents to actually learn to use English words to convey the concepts. In this
subsection, either the Speaker or Listener is predisposed to speak or hear English words, and
the other agent needs to act accordingly. One scientific motivation for this setting is that
it can be used to study how an infant learns language from a caregiver [15]. To study this
computationally, several studies have looked at cognitive models of early vocal development
through infant-caregiver interaction; Asada [53] provides a comprehensive review. Most of
these studies, however, considered the problem of learning to vocalise [16,52,67], which
limits the types of interactions and environmental rewards that can be incorporated into
the model. We instead simplify the vocalisation process by using an existing synthesiser,
but this allows us to use modern MARL techniques to study continuous signalling.

We first give the Listener agent the infant role, and the Speaker will be the caregiver.
This mimics the setting where an infant learns to identify words spoken by a caregiver.
Later, we reverse the roles, having the Speaker agent assume the infant role. This represents
an infant learning to speak their first words and their caregiver responds to recognised
words. Since here one agent (the caregiver) has an explicit notion of the meaning of a
word, this process can be described as “grounding” from the other agent’s perspective (the
infant).

Experimental setup. We first consider a setting where we have a single set of
4 attributes S = {up, down, left, right}. Here the agents will be required to use actual
English words to convey these concepts. In the setting where the Listener acts as an
infant, the caregiver Speaker agent speaks English words; the Speaker consists simply of a
dictionary lookup for the pronunciation of the word, which is then generated by eSpeak.
In the setting where the Speaker takes on the role of the infant, the Listener is now a
static entity that can recognise English words; we make use of a dynamic time-warping
(DTW) system that matches the incoming waveform to a set of reference words and selects
the closest one as its output label. 50 reference words are generated by eSpeak. In these
experiments, we use the full eSpeak English phone set of 164 phones. This means the
action-space of the Speaker agent is very large (|P|*), and would be near impossible to
explore entirely. Therefore, we provide guidance: with probability e = 0.05, choose the
correct ground truth phone sequence for s. We also consider the two-attribute case where

either the Speaker or Listener is tasked to speak two English words at a time; DTW is too
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computationally expensive for the static Listener in this case, so here we first train the
Listener in the infant role and then fix it as the caregiver when training the Speaker.
Experimental results: grounding the Listener. Here the Listener is trained while
the Speaker is a fixed caregiver. The Listener agent reached a mean evaluation reward of
1.0, indicating the agent learnt to correctly classify all 4 target words 100% of the time
(Figure 6.5). The Listener agent was also tested with a vocabulary size of 50, consisting of

the 50 most common English words including the original up, down, left, and right. With

this setup, the Listener still reached a mean accuracy of 0.934.
Experimental results: grounding the Speaker. We now ground the Speaker

agent by swapping its role with that of the infant. The Speaker agent reaches a mean
accuracy of 0.983 (Figure 6.5) over five runs, indicating it is generally able to articulate
all of the 4 target words. Table 6.14 gives samples of one of the experiment runs and
compares them to the eSpeak ground truth phonetic descriptions.

Although appearing very different to the ground truth, the audio generated by eS-
peak of the phone sequences is qualitatively similar. The reader can confirm this for
themselves by listening to the generated samples. The audio samples are available on-
line (kevineloff.github.io/learning-to-speak/). As seen in Figure 6.5, we find the Speaker
struggles to converge in comparison to the Listener. This is likely owed to the difficulty of

exploration for the Speaker agent. It is a lot less likely for the Speaker to stumble across

the correct target utterance.

Experimental results: grounding generalisation. Analogous to Section 6.3.5,
we perform generalisation experiments. We now have infant and caregiver agents in
a setting with two attributes (M = 2, N = 4), specifically s; € {up, down, left, right}

and sy € {fast, medium, reqular, slow}. For this experiment, we increase L = 12, to
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Figure 6.5: Mean evaluation accuracy of Speaker and Listener. The 95% confidence

bounds over five runs are shown.


https://kevineloff.github.io/learning-to-speak/

Stellenbosch University https://scholar.sun.ac.za

6.4. Additional experiments 62

Table 6.14: Table of the target word, ground truth phonetic description, and trained
Speaker agent’s predicted phonetic description.

Target word  Ground truth  Predicted phones

up AD Avb
down davn dav

left left le
right 1art 1aifjn

accommodate for the longer ground truth phonetic descriptions. Four combinations are
unseen during training (the holdout set): up-slow, down-regular, left-medium, and right-fast.
Again we consider both role combinations of infant and caregiver. Figure 6.6 shows the
results when training a two-word Listener agent. The agent reaches a mean accuracy of 1.0
for the training set and 0.952 for the holdout set. This indicates that the Listener agent
learns near-optimal generalisation. As mentioned above, for the case where the Speaker is
the infant, the DTW-based fixed Listener was found to be impractical. Thus, we use a
static Listener agent pre-trained to classify 50 concepts for each s; and s;. This totals
2500 unique input combinations. The results of the two-word Speaker agent are shown in
Figure 6.7. The grounded Speaker agent does not perform as well as the Listener agent,
reaching a mean accuracy of 0.821 for the training set combinations and 0.539 for the
holdout set. The grounded Speaker also has a much higher variance (seen by the wide
bands in Figure 6.7).

We have replicated the experiments in this subsection using the Afrikaans version
of eSpeak, reaching a similar performance to English. The Afrikaans two-word Listener
reached 1.0 on the training set and 0.82 on the holdout set. The Afrikaans two-word
Speaker performed slightly worse with 0.72 on the training set and 0.41 on the holdout

set. This shows our results are generally not language specific.

6.4.2. Real-world performance

An important consideration of this research direction is the application of agents in
real-world scenarios. As humans, we are exposed to noisy environments, yet we learn to
sufficiently filter signals from noise. From a young age, human infants learn to communicate
with their caregivers in the presence of abundant noise. We also want to illustrate concretely
the benefit of being able to specify an acoustic channel during training.

Experimental setup. For simplicity, we focus on the grounded Listener agent. Using
a similar setup to the grounded listener agent in Section 6.4.1, we generate a set of audio
samples by the static speaker agent. These audio samples are played through a speaker in
an environment with considerable background noise (a postgraduate student lab). The

trained model is then evaluated on these recorded audio samples. We augment the training
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Figure 6.6: Mean evaluation accuracy of grounded two-word Listener on the training
and holdout sets. The 95% confidence bounds over five runs are shown.
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Figure 6.7: Mean evaluation accuracy of grounded two-word Speaker on the training and
holdout sets. The 95% confidence bounds over five runs are shown.

of our listener agent by implementing a band-pass filter (BPF) in the lossy communication
channel. The filter’s lower and upper critical frequencies are uniformly distributed over
1 to 250 Hz and 6500 to 7500 Hz respectively. These values were chosen based on the
characteristics of our physical communication channel setup.

Experimental results. Figure 6.8 shows the mel-spectrograms of the raw audio
samples generated by the static speaker agent, the noisy recordings of these audio samples,
and the simulated channel function. We see similar distortions in the recorded and
simulated mel-spectrograms, although the recorded sample has much higher background

noise at lower frequencies.
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Figure 6.8: Mel-spectrogram samples of the static speaker agent saying “up down left
right”. The raw noiseless output is shown, along with the recorded and simulated mel-
spectrograms excluding time and frequency masking.

Table 6.15: Mean reward of the listener agent evaluated on recorded audio. The 95%
confidence bounds are shown.

Channel
Noise Masking Warping BPF Reward
- 0.679 (£0.05)
30 dB 0.842 (£0.03)
30 dB v 0.892 (£0.04)
30 dB v’ v 0.913 (£0.03)
30 dB v’ v’ v 0.975 (£0.01)

The performance of the listener agent on the noisy audio recording is shown in Table 6.15.
These results show the importance of a noisy communication channel to generalising to a
real-world scenario. The agent generalises much better when all channel effects are used
during training, reaching a perfect accuracy on most runs.

Simulating agents with a continuous communication channel will prove useful in future
work on human-robot interaction [68,69]. We may be able to train agents to communicate
in a simulated environment that translates well to human interaction in a real-world
setting. Future work may consider having agents be trained with physical noisy channels,

allowing them to gain real-world experience.
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6.5. Chapter summary

In this chapter, we covered experiments related to the two core contributions of this study.
Firstly, we compared REINFORCE (used in prior work) to DQN and proved that DQN
is much better suited for language emergence studies due to the lower learning rate and
improved convergence. Secondly, we showed that agents are able to learn to speak and hear
when communicating over a lossy acoustic channel. Thereafter, we performed experiments
analysing the properties of the emergent languages developed by our agents and compared
them to the discrete setup. Finally, we showcased some additional experiments related to

language grounding and real-world performance.
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Summary and Conclusion

This thesis has laid the foundation for investigating whether we can observe emergent
language between agents using a continuous acoustic communication channel trained
through RL. Our acoustic environment allows us to see how the channel conditions affect
the language that emerges. In this environment, we observe that the acoustic Speaker learns
redundancy which improves Listener coherency. We also observe how the Speaker learns
to update the emergent communication protocol to minimise errors due to the imperfect
Listener. We proposed two variations of the acoustic setup, one with a static phone
recogniser and an end-to-end variation. When analysing the emergent communication
protocols, we found that agents trained with a communication channel learn similar
strategies of repetition, often repeating the same bigrams. Alongside this, the acoustic
agents learn to be more compositional than the purely discrete agents; which implicitly
compensate for transmission errors over a noisy channel. These are examples of emergent
linguistic behaviour that is not modelled in a purely discrete setting. Additionally, in our
small-scale experiments, we demonstrated promising results in language grounding (to
English) and effective generalisation to real-world performance.

This work expands on [25,26], where an agent uses spoken communication to convey
meaning to a fixed listener (Section 3.2.2). In their setup, the spoken communication is
restricted to fixed audio snippets from a discovered dictionary. In contrast, our Speaker
agent has the ability to generate unique audio waveforms. On the other hand, our Speaker
can only generate sequences based on a fixed phone set (which is then passed over a
continuous acoustic channel). This differs from earlier work [16, 52, 53] that considered
a Speaker that learns a full articulation model in an effort to come as close as possible
to imitating an utterance from a caregiver; this allows a Speaker to generate arbitrary
learnt units. We have thus gone further than [25,26] but not as far as these older studies.
Despite these shortcomings, our approach has the benefit that it is formulated in a modern
multi-agent RL setting and can be easily extended. Future work can therefore consider
whether articulation can be learnt as part of our model — possibly using imitation learning
to guide the agent’s exploration of the very large action space of articulatory movements.
This speaks to the modularity of our setup, where any number of components may be
switched out.

We have also shown that DQN is better suited for this sort of referential game

66
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environment than REINFORCE, reaching similar performance to that achieved in the
discrete-only study of [6]. We highly recommend other practitioners working on emergent
communication to consider DQN as an alternative method for optimisation — perhaps in

combination with the models used in [6].

7.1. Environment extensions and future work

Due to the novelty of combining speech processing and RL, there is much to be explored
and discovered. In this section, we will discuss some of the environment extensions,
future work, and ideas that were developed throughout writing this thesis. In fact, some
of the future work mentioned here has been visited briefly, but due to time and scope
constraints did not make it into the final thesis. We first discuss extensions to the real
communication channel. We then consider variations of the Speaker used in this study,
where the Speaker may develop continuous actions. Finally, we discuss an environment

extension with multiple agents (>2) and multiple communication rounds.

7.1.1. Real communication channel

As mentioned previously, an important consideration of this research direction is the
application of agents in real-world scenarios. In this study, we included a small subset
of experiments related to real-world performance in Section 6.4.2. In future, we should
consider a larger focus on these experiments. To do this, we should allocate more time
to training and evaluating agents trained in real acoustic environments. We could set
up multiple Raspberry Pi web servers in multiple acoustic environments, using some
environments for training and some for validation and testing. This would be relatively
easy to implement due to our modular Raspberry Pi web server approach.

In future, the latest models should be fully evaluated on the real communication
channel in various settings. This would validate the efficacy of our simulated realistic

communication channel.

7.1.2. Continuous speaker

One of the biggest concerns in our work is the discretisation of the Speaker agent outputs.
As humans, it is a more-or-less continuous muscle actuation system that produces speech.
As an alternative to producing phones, we could allow the Speaker to produce continuous
actions. Continuous control is not new to RL, algorithms such as Deep Deterministic
Policy Gradient (DDPG) [70] have proven effective in solving continuous action-space
environments.

We propose two approaches: one using continuous control of a simulated vocal tract,

and one using direct control of HiFi-GAN [45]. The first approach would involve the use
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Figure 7.1: DDPG update equations for a continuous Speaker agent.

of a simulated vocal tract, where the agent would be able to control the variables used to
produce sound. The second approach is slightly more complex and uses the state-of-the-art
in speech synthesis: HiFi-GAN. There is a variant of HiFi-GAN trained on HuBERT [39]
codes — a sequence of 768-dimensional speech feature embedding every 20 ms. The goal
of the Speaker in this case would be to predict a sequence of continuous HuBERT codes
rather than a sequence of discrete phones. Figure 7.1 shows the first attempt at a DDPG
actor-critic setup for the continuous Speaker. Initial testing of this approach seemed

promising, although difficult to extend to large numbers of input combinations.

7.1.3. Multi-agent multi-round environment

In the experiments carried out in this study, we only considered a single communication
round between two agents. This could be expanded to a setup where each agent has both
a speaking and listening module, and these composed agents then communicate with one
another. Future work could therefore consider multi-round communication games between
two or more agents. Such games would extend our work to the full MARL problem, where
agents would need to “speak” to and “hear” each other to solve a common task.

A possible realisation of such a game could involve a similar setup to the referential game
used in this study. In the current setup, there are two agents with one-way communication.
A simple approach to encourage two-way communication is to have both agents be a
Speaker and a Listener. This would mean that both agents are provided with a set of
attribute values that they require the other agent to predict. As a concrete example, let us
refer to the agents as agent A and agent B. At the start of each episode, agent A is given
red triangle, and agent B is given blue square. We refer to this as each agent’s internal
goal, this goal involves another agent. Now, agent A must predict blue square and agent B

must predict red triangle. To be successful, agent A must communicate with agent B and
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Agent B predict
blue square!

Agent A

Agent C predict

red triangle!

Agent B

Agent C

& = {blue, square}

§ = {red, triangle}

Figure 7.2: Example of a three-agent game where each agent has its own internal goal.

vice-versa.

This can easily be extended to a situation where we have more than two agents. In this
case, we would provide each agent with a target agent. At the start of each episode, each
agent is given a target agent as well as a set of attribute values that the target agent must
output. An example is provided in Figure 7.2, where we have three agents communicating.
Agent A wants agent B to predict blue square and agent B wants agent C to predict red
triangle. The agents then have a set of communication rounds, where they explain to each
other what their internal goals are. To be successful, agent B outputs blue square and
agent C predicts red triangle once the communication rounds are over.

While the environment itself is simple to extend, this brings some challenges at the
same time. In typical multi-agent RL, adding more agents exponentially increases learning
difficulty, let alone the need to both do both tasks of sending and receiving messages. Our
current optimisation technique would also no longer be sufficient, as there will be multiple
communication rounds and the equations would need to be adjusted. We would also now

require a replay buffer to store state transitions.
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Appendix A

Code Listings

Listing A.1: Python imports used in code listings.

import subprocess # Module used to call CLI applications (eSpeak and Festival)
import numpy as np # Matrix and vector manipulation

from miniaudio import SampleFormat, decode # Used to decode byte strings into audio
from librosa import resample # Used to resample audio signals

import torch # PyTorch automatic differentiation

from flask import Flask, request, jsonify # Flask web server

import sounddevice as sd # audio playback and recording Python module
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