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ABSTRACT 

In recent years, consumer demand for fruit and vegetables are increasing due to a shift towards 

healthier and more sustainable diets. However, fruits and vegetables are highly perishable that 

providing the market with high-quality but affordable price is challenging. Also, fruit and 

vegetable diseases, due to fungal pathogens, are major causes of economic loss in agribusiness. 

There are multiple sources of contamination during preharvest and harvest–postharvest stages 

of production and particularly for pomegranate fruit. Pomegranate (Punica granatum L.) is 

undeniably one of the most ancient deciduous fruits in the world with growing increase in its 

demand due to its nutritional and health benefits. These quality issues have necessitated rapid 

and efficient quality and freshness monitoring and analysis tool in the postharvest. In the fruit 

and vegetable industries, quality inspections are mainly manual and mechanical, laborious, 

time-consuming, costly, and subjective. Hyperspectral imaging (HSI) has emerged as a 

powerful non-destructive inspection technique in the agricultural, biosecurity diagnostic and 

food domain recently. HSI is a non-invasive/ non-destructive technique that integrates 

spectroscopy as well imaging to form one system. This combined feature makes it a powerful 

tool for fruit\food quality assessment and defect detection, maturity indexing and 

physicochemical attributes in horticultural products. Therefore, the main objective of this study 

is to assess the application of hyperspectral/multispectral imaging for predicting the major 

quality attributes in fresh pomegranate fruit as well detect the presence of bruise or internal 

defect using artificial neural networks (ANNs). 

Section I (Chapter 1, 2 & 3) provides background information, discussing the general aim and 

objectives (General introduction) of the thesis study. It further provides a comprehensive 

review on recent applications of hyperspectral imaging technology for preharvest and 

postharvest analysis for biosecurity diagnostics in the fruit industry (Chapter 2) and narrowed 

down to applications on pomegranate fruit (Chapter 3). It explores hyperspectral imaging 

architecture, its equipment, image acquisition and data processing. This information is useful 

for those in the growers/ processing industries and food safety and quality control stakeholders 

and provides a review of literature on previous work done on different non-invasive techniques 

for evaluating different processed horticultural products over the last ten years. 

In Section II (Chapter 4, 5 and 6), hyperspectral imaging technique was investigated to evaluate 

maturity quality attributes which includes TSS, TA, pH, and colour components (a*, b*, L*, 

chrome and hue) of intact pomegranate fruit. The ANN prediction models for quality 

parameters performed well, with correlation coefficients from 0.421 to 0.951. three neural 

fitting algorithms were compared for prediction performance, LMG algorithm yielded better 
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results for four of the 9 quality attributes accessed. BR gave the best prediction statistics for 

TA (R2=0.852, MSE=0.024), and b* (R2=0.951, MSE=3.923). The VNIR spectral was applied 

to build model using 6 effective wavelengths. This research study has demonstrated that 

hyperspectral imaging technique in combination with artificial neural network has the potential 

to predict maturity quality attributes of pomegranate fruit. 

Further in section II, two spectral ranges of VNIR and SWIR were deployed in the 

hyperspectral imaging technique to detect the presence of early bruise development of 

“Wonderful” pomegranate fruit, as well as classify bruit based on different levels of bruise 

severity. Scanned images were explored, and spectral data extracted for two surface area of 

interest (ROI and WF). ANN classification model showed model to be able to detect bruise 

immediately after occurrence to an accuracy of 90%. Both methods of data extraction are good 

enough to detect the early bruise damage which is invisible to the naked eye. The results 

confirm hyperspectral imaging technique combined with machine learning methods (ANN) to 

be an effective technique for early bruise detection. For bruise severity study, both SWIR and 

VNIR data yielded highly accurate classification results ranging from 80% - 96.7%. The overall 

average classification accuracy achieved was 93.3% for model to distinguish fruits dropped at 

100cm and 90% for fruit dropped at 60cm height for the VNIR camera. 

Section III (Chapter 7) presents a general discussion on the results and key findings of the 

different chapters of the thesis. It integrates the results from previous chapters. It highlights the 

important practical contribution of this thesis towards successful non-destructive evaluation of 

intact pomegranate fruit. 
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NOMENCLATURE 

1st: First Derivative 

2nd: Second Derivative 

cm-1: per centimetre 

nm: Nanometre 

a*: Redness 

ATR-FT/MIR: Attenuated Total Reflectance-Fourier Transform/Mid-Infrared Spectroscopy 

b*: Yellowness 

BPNN: Back Propagation Neural Network 

BR: Band Ratio 

BRA: Bayesian Regularization Algorithms 

C*: Chroma 

CA: Classification Accuracy 

Corr: Correlation Coefficient 

CV: Coefficient of Variation 

DA; Discriminant Analysis 

DAFB: Days after full bloom 

FNN: Fully-connected Neural Network 

GAE: Gallic Acid Equivalents 

h°: Hue Angle 

HEA: Hierarchical Evolutionary Algorithm 

HSI: Hyperspectral imaging 

IR: Infrared 

k-NN: K-Nearest Neighbour 

L*: Lightness 

LV: Latent Variables 

LDA: Linear Discriminant Analysis 

LLE: Locally Linear Embedding 

LMBA: Levenberg-Marquardt backpropagation algorithm 

LS-SVM: Least Squares Support Vector Machine 

Max: Maximum 
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Min: Minimum 

MLP: Multilayer perceptron 

MSC: Multiplicative Scattering Correction 

MSE: Mean Square Error 

NIRS: Near-Infrared Spectroscopy  

NMR: Nuclear Magnetic Resonance 

PCA: Principal Component Analysis 

PLS: Partial Least Squares 

PLS-DA: Partial Least Squares Discriminant Analyses 

PLSR: Partial Least Squares Regression 

R2: Coefficient of Determination 

RMSEC: Root Mean Square Error of Calibration 

RMSECV: Root Mean Square Error of Cross-Validation 

RMSEP: Root Mean Square Error of Prediction 

RPD: Ratio of Prediction to Deviation 

RSD: Relative Standard Deviation 

SAE: Stacked Auto-Encoders 

SCGBA: Scaled Conjugate Gradient Backpropagation Algorithm 

SD: Standard Deviation 

SIMCA: Soft Independent Modelling of Class Analogies 

SLOG: Simple Logistic 

SMO: Sequential Minimal Optimization 

SNV: Standard Normal Variate 

SPA: successive projections algorithm 

SVM: Support Vector Machine 

TA: Titratable Acidity 

TAC: Total Anthocyanin Content 

TSS: Total Soluble Solid 

TSS/TA: Total Soluble Solid/ Total Acid 

TVC: Total Viable Count 

QDA: Quadratic Discriminant Analysis 

WF: Whole Fruit 

WFS: Whole Fruit Surface 

Y&M: Yeast and Mold count
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CHAPTER 1 

 

 

General introduction 

 

1.1. Background 

Pomegranate (Punica granatum L.), an ancient deciduous fruit of Middle Eastern origin is an 

emerging crop in South Africa [1]. The pomegranate is one of the most important fruits of the 

world which is consumed both as fresh and in processed form such as juice, jams, etc. In the 

past decades, the demand for pomegranate fruit has been increasing due to its nutritional and 

health benefits [2–4]. This global awareness has resulted in considerable increase in 

commercial farming of pomegranate fruit [5]. Fruit inspection and sorting is the core towards 

achieving premium quality produce for fresh consumption and to gain high-return [6] 

Therefore, together with the recent attention for food quality and safety, technologies for 

estimating the fresh quality of pomegranate fruit are being sought [7]. 

At present, fruit are sorted manually or automatically based on their appearance only. However, 

the aril quality attributes are very important for eating satisfaction. In addition, since the 

pomegranate is a non-climacteric fruit, to achieve good quality, it is essential to harvest at the 

optimum stage of ripening [8]. Fast and effective non-destructive methods for fruit maturity 

estimation is crucial to establishing maturity of fruit for harvest. Currently, many objective 

criteria for judging maturity of pomegranate have been used, for example, firmness, total 

soluble solids, titratable acidity, and determination of total anthocyanins. However, standard 

methods for these quality measurements are mostly destructive, slow, and prone to operational 

error. 

Near-infrared spectroscopy (NIRS) and machine vision systems (MVS) were the most 

successful technologies in the past few decades for the automatic quality inspection of  fruits 

and vegetables [9]. However, due to the inability of NIRS system to evaluate spatial features 

of an object and incapability of MVS to capture internal quality attributes, automatic quality 

inspection and defect detection in the fruit and vegitable industry are still challenging [9–13]. 
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Hyperspectral imaging has emerged as a powerful nondestructive inspection technology in the 

agricultural, biosecurity diagnostic and food domain recently. This technique is based on a two-

dimensional (2-D) spatial matrix of vectors, each of which represents a spectrum ranging from 

Visible (VIS) to near infrared (NIR) wavelength to form a three-dimensional (3-D) image 

dataset, known as hypercube. This technology integrates spectroscopy and imaging to acquire 

both spectral and spatial information simultaneously. This combined features makes it a 

powerful tool for fruit\food quality assessment and defect detection, maturity indexing and 

physicochemical attributes in horticultural products [9, 13–15]. 

Hyperspectral technique is however limited by several factors, which includes the speed of 

image acquisition and image data processing. To overcome this problem, studies in recent years 

have been focused on determining a few most effective wavebands by using hyperspectral 

imaging, then implementing it in a multispectral imaging configuration (MSI). Different 

machine learning algorithms have been developed to also improve on the analysis of 

hyperspectral imaging data and model performance in recent times [16]. 

Therefore, the main objective of this study is to assess the application of 

hyperspectral/multispectral imaging for predicting the major quality attributes in fresh 

pomegranate fruit and comparing the performance of prediction models obtained using 

Artificial neural networks (ANNs). Some ANN based machine leaning algorithms are ongoing 

and will require more research attention in the coming years. 

1.2. Problem statement 

The fresh pomegranate fruit quality inspection depends on the appearance (size, shape, color, 

gloss, and freedom from defects and decay) and the eating qualities and nutritive values of the 

arils. Standard methods of fruit internal quality measurement techniques are mostly destructive, 

slow, costly and labor intensive. 

Recently, hyperspectral imaging techniques have gained huge attention in fruit industry for 

quality evaluation and efficient grading [13, 17, 18]. Based on findings demonstrated on other 

fruit, this study aims to investigate the technique for pomegranate fruit. Successful application 

would provide non-destructive inspection of external and internal fruit quality including decay 

and the total soluble solid (TSS), total acidity (TA), and pH of arils in pomegranate using this 

technique. However, the complex image acquisition and image data processing requirements 

of hyperspectral imaging technique are the problems that need critical investigation. In 

addition, the thick rind of pomegranate fruit may increase the challenge even further. 

Handling and processing the high-volume data produced by hyperspectral sensors become 

problematic to store, transfer, process, and make sense. Making its use cumbersome and yet to 
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be optimized. Hence, requiring detailed analysis and optimization to achieve effective data 

reduction and wavelength selection techniques for fast online application. 

1.3. Significance of research 

1.3.1. Aims and objectives 

The aim of this project is to develop optimum hyperspectral/multispectral imaging technique 

and prediction models to non-destructively quantify the major quality attributes of pomegranate 

fruit. The specific objectives are to: 

(1) Determine optimal wavelength range, data pre-processing method and multivariate analysis 

technique for non-destructive measurement and prediction of pomegranate fruit quality 

attributes and maturity classification. 

(2) Investigate the feasibility of hyperspectral imaging for early detection of bruise presence in 

pomegranate fruit. 

(3) Investigate the feasibility of hyperspectral imaging to detect bruise severity on pomegranate 

fruit. 

1.4. Motivation 

Traditional approaches to quality assessment of fruit and vegetables are expensive, time-

consuming, laborious and often demand expert handlers to deal with specialised laboratory 

experiments. Furthermore, there is a growing (both locally and globally) demand for consistent 

supply of safe, nutritious and traceable products by consumers [19]. With the United Nations 

(UN) declaration of food security as part of its sustainable development goal, agribusiness has 

shifted from subjective, destructive testing to objective, non-destructive testing [19, 20]. 

Hyperspectral imaging, as a hybrid system with the added advantage of spectroscopy and 

imaging provides potential advantage over other imaging techniques and spectroscopy 

technique [9]. Its adaptive nature for inline or online application also makes it an efficient non-

invasive inspection technology able to provide information about external and internal quality 

attributes of fruit and horticultural products. 

Several studies have investigated the application of non-destructive measurement techniques 

to assess the internal and external quality attributes of pomegranate whole fruit [21–23] and 

arils [24]. These studies showed varying level of successes in its application with some quality 

parameters showing high accuracy and others showing not so good model performance. 

Hyperspectral/multispectral have been successfully applied for different fruit/food quality 
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evaluation [18, 25–27]. These studies have yielded good and improved predictions models with 

high accuracy. However, to our knowledge, no comprehensive study on the feasibility of 

hyperspectral imaging technique for a quality attributes assessment, disease detection, fruit 

grading and safety inspection for pomegranate fruit has been conducted. This knowledge-gap 

has motivated and necessitated this PhD research project. 

1.5. Thesis structure 

This thesis is structured into three sections each addressing a specific research theme. It is 

structured as follows: 

• Section I: provides background information, discussing the general aim and objectives 

(Chapter 1) of the thesis study and provides a review of literature on previous work done on 

different application of hyperspectral imaging techniques for evaluating quality concerns on 

different fruit and horticultural produces over the last ten years (Chapter 2), while application 

of different non-destructive quality evaluation techniques over the years on pomegranate fruit 

was reviewed in (Chapter 3). 

• Section II: evaluates methodology, results and discussion of the application of hyperspectral 

imaging techniques for the measuring of physicochemical and phytochemical quality attributes 

of pomegranate fruit (Chapter 4), and bruise damage severity detection and development in 

pomegranate fruit (Chapter 5 and Chapter 6). 

• Section III (Chapter 7): presents a summary and a general discussion from the previous 

chapters. It highlights the important practical contribution of this thesis towards successful 

application of hyperspectral imaging for quality evaluation of pomegranate fruit (Chapter 4, 5 

& 6) and finally provides concluding remarks and future research prospects. 

Stellenbosch University https://scholar.sun.ac.za



 

 

6 

 

CHAPTER 2 

 

Hyperspectral imaging technology: A novel method for agricultural and biosecurity 

diagnostics – a review 

Abstract 

Hyperspectral imaging (HSI) was originally developed for remote sensing. It has recently 

emerged as a novel analytical tool for non-destructive food analysis. Recent advances in 

computer technology have led to the development of imaging systems capable of identifying 

quality problems rapidly on the processing line, with the minimum of human intervention. 

Over the years, quality, and safety assessments of fresh and processed horticultural products 

have become increasingly important with issues such as global food security, and with the 

advent of a global pandemic. This paper provides a comprehensive review on recent 

applications of hyperspectral imaging technology for preharvest and postharvest analysis for 

biosecurity diagnostics. It explores hyperspectral imaging architecture, its equipment, image 

acquisition and data processing. This information is useful for those in the fruit processing 

industries, food safety, and quality control stakeholders. 

 

2.1. Introduction 

In recent years, consumer demand for fruit and vegetables has been increasing due to a shift 

towards healthier and more sustainable diets [28]. However, fruit and vegetables are highly 

perishable such that providing the market with high-quality but affordable price is 

challenging. This necessitates rapid and efficient quality and freshness monitoring and 

analysis tool in the postharvest. In the fruit and vegetable industries, quality inspections are 

mainly manual and mechanical, laborious, time-consuming, costly, and subjective [28, 29]. 

The current lack of objective indices for defining “freshness” of fruits or vegetables limits 

the capacity to control product quality, leading to food loss and waste [30]. Consumers’ 
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attention to fruit or vegetable quality has not been limited to external attributes, such as shape, 

size, colour, texture, and various defects, but further extends to internal attributes, including 

the sugar content, firmness, soluble solids content (SSC) and nutritional contents [27, 31]. 

For instance, due to inappropriate and excessive external forces, agricultural products 

like fruit and vegetables can be bruised during postharvest handling and distribution causing 

external and internal defects [32]. Bruise is the most common defect of products like apples 

and pears [33]. Furthermore, the symptoms of this damage may not be visible immediately 

but after a certain period, making the sorting and grading process challenging [34, 35]. Some 

pre-harvest practices, the genetic predisposition of crops, harvesting methods, and 

postharvest storage conditions also play an important role in determining the overall quality 

of fruits and vegetables [36]. Hence, there is strong interest to improve objective quality 

control of fruits, vegetables, and crops. 

Also, fruit and vegetable diseases, due to fungal pathogens, are major causes of economic 

loss in agribusiness [37–39]. There are multiple sources of contamination during preharvest 

and harvest–postharvest stages of production. Conventionally, diseases diagnostics 

approaches are manual and based on visual assessments. Infections not always show up in a 

test at the early stage to the human eyes. Accordingly, manual method of diagnosis is 

generally inaccurate. The polymerase chain reaction (PCR), enzyme linked immune sorbent 

assay (ELISA), fluorescence in situ hybridization and biomarker-based detection technology 

are mostly destructive, involves use of chemicals and trained expert for conducting and 

evaluating the tests [40, 41]. 

For most non-climacteric fruit, quality control requires knowledge of the optimum 

maturity stage for harvesting [2]. Many objective maturity indices are used, for example, 

firmness, total soluble solids, titratable acidity, and determination of total anthocyanins. 

However, the standard methods for these quality indices are destructive, slow, and not 

suitable for an on-line grading system. Access to quality and safe fresh and processed agro 

food is one of the greatest causes of public anxiety [42]. Fresh-cut-produce-associated 

foodborne outbreaks are a major public health concern worldwide. Recent foodborne 

outbreak statistics showed that there is an increasing trend in fresh-cut produce-linked 

outbreaks mostly associated with Salmonella and Escherichia coli O157:H7 as the causative 

agents [43, 44]. This poises an urgent need for food safety and security, and to the 

improvement of effectiveness and efficient non-destructive testing and diagnostic methods 

for fast and affordable quality assessment methods [7, 45]. 
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To this end, non-destructive testing and diagnostic methods have made remarkable 

progress in the last few decades. Among many, near-infrared spectroscopy (NIRS) has been 

widely used in agricultural operations. NIRS uses the near-infrared (NIR) light covering the 

wavelength range of about 750–2500 nm. The light is incident on the food product in the 

form of diffuse reflectance, transmittance or interactance, and the acquired spectra are then 

quantitatively related to the chemical and physical properties of the product to determine crop 

parameters such as water content, sugar content, and other indicators of ripeness, as well as 

measuring chlorophyll fluorescence to determine the need for nitrogen-based fertilizers in 

the preharvest, or to look for bruising not visible to the human eye [34]. However, NIRS is 

point measurement and is inadequate for evaluating the spatial features of the object being 

detected [9, 10, 12]. 

Subsequent innovative technologies focus on imitating the visually human testing 

methods using computer vision (CV) that enables a computing device to inspect, evaluate 

and identify still or moving images [46]. The vision system uses software to identify pre-

programmed features. The system can be used to trigger a variety of set “actions” based on 

the findings and forms a machine vision system (MVS) [37]. Conventional MVS uses 

broadband visible (VIS, 400–700 nm) light in monochromatic or colour mode, and it 

simulates human vision to perform automatic quality inspection of fruits and vegetables [9]. 

The problem of conventional MVS is that it is not suitable for assessing internal quality 

attributes, whether chemical or physical, and it also is not very effective for defect detection, 

due to the lack of sufficient spectral information [47]. 

Advanced machine vision system incorporates spectral and spatial imaging to acquire 

both spectral and spatial information simultaneously. Notably, the hyperspectral imaging 

(HSI) is the technology that have been steadily growing in utility over the past few decades. 

However, the cost and complexity of HSI system limits its application in the fruit and 

vegetable quality control. Fast computers, sensitive detectors, and large data storage 

capacities are needed to implement HSI technique. Significantly large data storage capacity 

is required to store the massive, multidimensional datasets.  

Several researchers have reviewed the potential of HSI, many of these reviews have 

focused on the analytical technology aspect [48], sensors or hardware of the technique [49], 

machine learning methods [50, 51], applications [52] with some specific to applications on 

particular food substances [53, 54], sensory attributes [15] and to other fields like in medicine 

[55], geography [56], remote sensing [57, 58], archaeology [59, 60], and forensic [61]. 

However, issues in the application of HSI as diagnostic tool for biosecurity in the agricultural 
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field is not sufficiently addressed. And this review seeks to fill that knowledge gap. In this 

review, we will report on the recent advances that specifically focus on disease detection 

using multispectral and hyperspectral imaging technology. 

2.2 Fundamentals of machine vision system 

Machine vision system (MVS) refers to the use of computer vision in an industrial or practical 

application or process where it is necessary to execute a certain function or outcome based 

on the image analysis done by the vision system [9]. Hence, MVS performs automatic image 

capturing, evaluation and processing in a broad field of applications including automatic 

inspection, process control, and robotic guidance [62]. A common output from MVS is a 

pass/fail decision [63]. MVS usually includes sample-holding platform, lighting, a camera or 

other imager, a processor, software, and output devices [10, 64]. The imaging camera 

receives light from the object surface and converts it into electrical signals using a charge-

coupled device (CCD). Conventional MVS uses different collections of imaging methods 

that use broadband visible (Vis, 400–700 nm) light in monochromatic or color mode and it 

simulates human vision to perform inspection tasks. The success of an application for the 

inspection of fruits or vegetables depends on the quality of the images that are acquired, 

which largely depends on two factors: the camera and the illumination. The quality of the 

camera mostly relies on advances in technology. The illumination depends on the application 

and the geometry of the sample to be inspected. Conventional MVS has been successfully 

applied in agri-food sector for quality inspection, sorting, and grading of horticultural and 

food products [49, 65]. Table 2.1 highlights notable applications of conventional MVS in the 

fruit and vegetable sector. Color and fruit size were used by Liming and Yanchao, [66] to 

develop a lab-scale automated grading system for strawberry. The developed grading system 

successfully classified the sizes with an error of less than 5%. The accuracy of color and 

shape classifications were 89% and 90%, respectively, with an average grading rate of one 

fruit per 3s. Similarly, López-García et al. [67] developed a CVS that can detect skin defects 

in citrus fruit. One of the shortcomings of conventional MVS is the difficulty in assessing 

internal quality attributes due to the lack of sufficient spectral information [47, 68]. Study 

have shown that spatial information, alone, is insufficient to obtain comprehensive quality 

information, especially for diagnostic application [69]. 

  MSI and HSI techniques are recently advancing techniques to acquire the spatial 

distribution of physical and chemical quantities for objective fruit quality analysis [6, 70]. 

The MSI and HSI are similar in techniques. The main difference is the number of bands and 
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how narrow the bands are. Multispectral imagery generally refers to 3 to 10 bands [10, 44]. 

A hyperspectral image could have hundreds or thousands of bands. Typically, an RGB color 

image falls under the multispectral imagery system since captures three separate images at 

selected ranges of the visible spectrum representing blue, red and green tones. With a higher 

level of spectral detail, HSI gives better capability to see the unseen. However, the 

acquisition, processing and analysis of hyperspectral data is considerably challenging [44]. 

The comparative difference of conventional machine vision (CMVS), spectroscopy, 

multispectral imaging (MSI) and hyperspectral imaging (HSI) is summarized on Table 2.2. 

Table 2.1 Applications of conventional machine vision systems 

Fruit Application Data analysis Accuracy References 

Apple Surface defect ROI Number 

counting, 

RVM 

95,63% [71] 

Citrus Skin defect PCA, BER - [67] 

Table grape Grading  92% - 100% [72] 

Pineapple Maturity Modified basic 

sequential, 

Fuzzy logic, 

Binary ellipse 

mask, Texture 

analysis 

85 – 100% [73–76] 

Pomegranate Grading, 

disease 

detection 

2DLDA, 

FLDA, 

F2DLDA, 

FF2DLDA, 

ANN, ANFIS, 

RSM 

79.7 – 98% [65, 77, 78].  

 

 

Strawberry Grading k-means, 

horizontal 

diameter 

- [66] 
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Watermelon Ripeness ANN 73.33% [79] 

Table 2.2. Comparison of conventional machine vision (CMVS),  spectroscopy, 

multispectral imaging (MSI) and hyperspectral imaging (HSI). 

2.3. Hyperspectral imaging – principles and instrumentation 

2.3.1. Fundamentals of HSI  

Hyperspectral imaging, known also as chemical or spectroscopic imaging, is an emerging 

technique that integrates conventional imaging and spectroscopy to simultaneously collect 

spatial and spectral information from an object [80, 81]. HSI is often referred to as imaging 

spectroscopy, literally translates as imaging “seeing’’, hyperspectral – “many bands”. This is 

because hyperspectral imaging techniques is designed to overcome the limits of 

spectroscopic techniques and vision techniques[6, 82], The fundamentals of HSI is hinged 

on the principle of electromagnetic spectrum and optical behaviour of surfaces when 

irradiated by light [82]. This technique is a powerful non-destructive tool in addressing 

quality and safety issues of fruit and vegetables [83, 84]. It collects images in reflectance and 

transmittance mode with a sensor to define fine wavelength intervals [19, 85]. This resulting 

reflected or transmitted light (photons) contains information about the absorbers near the 

surface of the target material [82]. The key difference between other imaging system and HSI 

is that hyperspectral devices give image output of continuous spectrum for each pixel [85]. 

  A typical HSI system generally consists of 4 parts (Figure 2.1): (1) an imaging unit, 

(2) an illuminating source, (3) a sample stage, and (4) a computer with corresponding control 

software (Figure 2.1). The imaging unit is the core unit and is usually consists of a standard 

zoom lens, a specific spectrograph in conjunction with a charge-coupled device (CCD) or 

Feature CMVS Spectroscopy HSI MSI 

Detect small sized sample YES NO YES YES 

Flexibility of spectral extraction NO NO YES YES 

Generation of quality attributes distribution NO NO YES Limited 

Multi-constituent information NO YES YES Limited 

Spectral information NO YES YES YES 

Spatial information YES NO YES YES 
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complementary metal-oxide-semiconductor (CMOS) camera [86]. The light source produces 

light to illuminate the target [58]. The light source is also the optical probe that detects 

physical structure and chemical components of targets. The purpose of a spectrograph is to 

disperse the captured light into a continuous spectral range. To achieve this purpose, most of 

the spectrographs in HSI systems include optical devices, such as prism, diffraction grating, 

and electronically controlled liquid crystal tuneable filters or acousto‐optic tuneable filter 

[68]. 

 

Figure 2.1: Schematics illustrating the configuration of a hyperspectral system. 

2.3.2. Image acquisition modes 

There are four hyperspectral image acquisition modes or methods, each with its own 

advantages and disadvantages (Figure 2.2) [49, 58], these are: the point scanning (also known 

as the whiskbroom method), line scanning (also known as push broom method), area 

scanning or plane scanning and the single shot or snapshot (Figure 2.2). The merits and 

demerits of the four image acquisition modes are summarised in Table 2.3 
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Figure 2.2: The four primary hyperspectral acquisition modes. Point scanning or 

whiskbroom (a); line scanning or push broom (b); area or plane scanning (c); and single 

shot or snapshot (d). Where x and y represent the spatial dimensions and λ is the 

wavelength.  

Table 2.3 Comparison of the basic image acquisition modes 

Mode Scanning Advantages Disadvantages Application area 

PS One spatial 

coordinate 

at a time. 

Highest 

level of 

spectral 

resolution. 

Very time consuming. 

Requires 

repositioning for 

repeatability of 

results.  

Microscopic imaging. 

  

LS Row of 

pixels scans 

over an area.  

Only a single 

axis of 

spatial 

movement. 

Controlling time of 

exposures is critical. 

Well suited for 

conveyor belt systems 

in the production line. 

AS  Images the 

entire 2D 

area at once. 

Does not 

require 

translation 

of the 

sensor. 

Is not capable of 

detecting moving 

target on a production 

line 

Is suitable for 

applications where 

sample movement is 

not required. 

SS  Acquires all 

the spatial 

and spectral 

data at once. 

Fastest 

speed  

Lower spatial 

resolution and narrow 

spectral ranges. 

Appears to be the 

preferred future of 

HSI implementation, 
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PS is point scanning mode, LS is line scanning, AS is area scanning and SS is single shot 

scanning. 

2.3.3. Specimen sensing modes 

Figure 3 illustrates the three commonly used sensing modes in the hyperspectral imaging –

reflectance, transmittance and interactance. In reflectance mode (Figure 3a), the light source 

and the detector are mounted at the same side of the sample. In transmittance mode (Figure 

3b), the light source is positioned opposite to the detector, while in interactance mode (Figure 

3c) the light source and detector are positioned parallel to each other on the same side of the 

sample in such a way that light due to specular reflection cannot directly enter the detector. 

  The penetration of light into fruit tissue decreases exponentially with the depth. 

Hence, selection of the specimen sensing modes must consider this phenomenon [51]. 

External quality features such as size, shape, colour, surface texture and surface defects are 

typically detected using reflectance mode [6, 15]. Reflectance mode is the most used setup 

in hyperspectral imaging [87]. In transmittance mode, the detector which is in the opposite 

side of the light source captures the transmitted light through the sample which carries more 

valuable internal information. However, transmittance has a low signal level from light 

attenuation and is affected by the thickness of sample but is often very weak [88]. In 

interactance mode, both light source and the detector are in the same side of sample and 

parallel to each other. The interactance mode is a combination of reflectance and 

transmittance where both light source and the detector are in the same side of sample and 

parallel to each other. Interactance mode can detect deeper information into the sample 

compared to reflectance and reduces the influence of thickness, which is a practical advantage 

over transmittance [10, 12, 52, 64].
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Figure 2.3. The three specimen sensing modes generate a hyperspectral image. (a) The 

reflectance mode. (b) The transmittance mode. (c) The interactance mode. Adapted from Li 

et al. [89]. 

2.3.4. Spectral preprocessing and calibration  

Preprocessing of spectroscopic reflectance data is a necessary step to correct light–distance 

differences in the acquired image data to improve the modelling and analysis of the 

classification problem [90, 91]. Different preprocessing approaches are applied on the raw 

hyperspectral data. The preprocessing aims to limit or completely eliminate undesired effects 

during image acquisition, including light scattering, the morphology of sample surface, size 

of particles, surface roughness, and instrumental noise [85, 92]. Raw data usually undergo 

histogram equalization, filtering, transformation and baseline shifts corrections. Several 

authors have demonstrated increased accuracy of classification models following 

preprocessing [93, 94]. Some of the frequently applied preprocessing methods in literature 

includes Savitzky-Golay smoothing method, the first and second derivative (to eliminates the 

additive baseline and linear baseline), standard normal variate (SNV) (to remove the 

multiplicative interferences due to particle size of the sample), mean-centered (MC), 

multiplicative scatter correction (to reduce the scatter in the spectra) (MSC)[91, 95, 96]. 

HSI systems are generally an assembly of various optical and electronical components. 

Such systems necessitate adjustment of systematic defects or undesirable sensor 

characteristics before performing reliable data analysis [62]. Hence, wavelength calibration 

is crucial in the initial instrumentation stage when a hyperspectral imager is employed for 

analysis. Re-calibration of the instrument is also necessary after some physical changes in 

the instrument, such as when sensor maintenance, upgrading or repairing has been performed 

[62]. The goal of calibration is to improve comparability of such data [44]. Wavelength 

calibration is assigning a discrete wavelength to the hyperspectral image band. A light source 

that produces spectral lines at fixed wavelengths, regression programs, and (optional) 

integrating sphere, or standard white reflectance surface such as spectralon surface are 

required to calibrate the system. HSI system records raw images in radiance. Quality of 

imaged produced is usually very sensitive to the sensors employed for image capturing [62]. 

To minimize the impact of the uneven intensity distribution of the light source and dark 

current in the charge coupled device (CCD) detector on the hyperspectral images, image 

correction is usually performed using known true spectral information. Eqn. (1) provides the 

formula for the image correction. 

𝜌𝑥𝑦(𝜆) = 𝜌𝑟𝑒𝑓(𝜆)
𝑅𝑥𝑦(𝜆)−𝑅𝑑𝑎𝑟𝑘(𝜆)

𝑅𝑟𝑒𝑓(𝜆)−𝑅𝑑𝑎𝑟𝑘(𝜆)
                                                                                                   (2.1) 
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where ⍴ref(λ) is the reflectivity of the 50% grey calibration plate (Zenith Polymer® 

Reflectance standard; SphereOptics GmbH, Germany); Rxy(λ) is the original uncorrected 

hyperspectral image; Rref(λ) the image of the calibration board and Rdark(λ) is the completed 

black image collected after turning off the light source and ⍴xy(λ) the spectra of the corrected 

image. One specialized software that enables this operation is the Breeze software. 

Calibration of a HSI system involves a set up made up as follows; a light source, regression 

programs and a reference surface (usually optional). Figure 2.4 illustrates the calibration set 

up made up of a pencil lamp from Oriel and the emission peaks for a mercury–argon (Hg–

Ar) lamp. The effect of dark current which happens due to thermal effects requires that 

images be corrected after its acquisition [97]. This is because the detectors of the camera 

usually generate the dark current signal and they are added to the signal produced [97]. 

Calibration then enables the separation of the sample reflectance from the system response 

[98]. 

 

Figure 2.4: Wavelength calibration: (a) calibration pencil light (Hg–Ar, Oriel Model 6035) 

with power supply; (b) output spectrum of 6035 Hg-Ar Lamp, run at 18 mA, measured with 

MS257 ™ 1/4 m Monochromator with 50 μm slits [62]. 

2.3.5. Feature extraction of hyperspectral images 

Typically, HSI images contains millions of data point [85]. Effective approach for data 

analysis, data mining, and pattern classification is crucial to extract the desired information, 

such as defects, from images. Multivariate analysis is used to decompose massive quantity 

of features into useful information and establish simple and easier understandable 

relationship between hyperspectral imaging data and the quality attributes of tested samples 

[52, 97]. One of the very effective ways for dimensional reduction in hyperspectral image 

analysis is the PCA method [99]. It enables contextualizing the obtained data by finding the 

dominant spectral data from the captured image. It follows the steps of; reflectance 
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calibration, data reduction and noise/stage background removal. PCA analysis usually aids 

in deciding the number of principal components needed by using the singular value 

decomposition (SVD) method for extracting principal components. 

Ideally, two PCs provide the percentage of variance preservation in suitable for analysis 

[99]. The 1st component of the PCA model explains the majority of the variation in the initial 

sample and used to remove background pixels and interferences that are generally not useful 

for the numerical analysis [99]. For most applications, such as fruit bruise detection, disease 

detection or even maturity estimation of sample, a smaller area of interest on the PCA images 

can be obtained on the scanned fruit using thresholding algorithm to get a region of interest 

(ROI), with size ranging from 50 to 2500 pixels. This further reduction of the entire obtained 

image data into a computed average ROI of the reflectance spectra as shown in Figure 2.5a, 

reduces the data size and dimensionality. This process significantly reduces the complexity 

and improves the accuracy of the classification model. ROI can be manually selected 

depending on the application [100], or using the threshold segmentation method [101], the 

shape can be rectangular[14, 95], or circular [102]. It is often entirely difficult to obtain a 

complete filtered out bruised area of a sample, further analysis of the different regions using 

trained supervised algorithms can be utilized to achieve high-precision classification model 

[103]. 

Many general and specific purpose software have been developed to visualize and 

process large image data as that obtained from HS imaging. Table 2.4 summarizes some of 

the notable HS image processing and data analysis software. In the fresh fruit quality analysis 

and food processing related studies, the Hyperspectral Image Processing-MATLAB, ENVI 

and Evince are the frequently used tools. Particularly for image acquisition purposes, the 

Breeze is prominently used [86, 104, 105]. Other notable image acquisition software include 

spectral cube [106, 107], Spectra SENS [108], VideometerLab2 [109], Spectral imaging 

system HySpex [110], and LabVIEW [71, 111]. They are specialized for hyperspectral image 
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data acquisition and for controlling the entire acquisition set up of the hyperspectral imaging 

system. 

 

Figure 2.5. An illustration of selecting a region of interest on apple fruit in the bruised area 

(B) and non-bruised area (S) to constitute the data, (X) is the area between the bruised area 

and non-bruised area (2.5a), adapted from [103]. Illustration of a binary confusion matrix 

(2.5b) adapted from [95], and a multiple class confusion matrices (2.5c) of the 

backpropagation neural network model for pomegranate bruise detection. 

 

There have been studies showing how advances in machine learning algorithms have 

improved calibration and prediction models [112–114]. The different machine learning 

algorithms and their comparative benefits have been reviewed by several authors [50, 115]. 

Some of the more recent evolution in the field of machine learning includes deep neural 

networks (DNNs) which includes convolution deep neural networks (CNN), very deep 

neutral networks (VDNNs) [112], and deep belief network [116]. 
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Table 2.4. Summary of some of the notable HS image/spectral data processing software 

Software Description References 

ASFit Windows-based for analysis of chromophoric 

dissolved organic matter (CDOM) Ultraviolet-

visible (UV/Vis) spectra. ASFit can also be used 

to study trace metals complexation with 

Dissolved organic matter (DOM) based on 

differential spectra. 

[117, 118] 

EnMAP-Box Python plugin for QGIS. 

Process and visualise hyperspectral remote 

sensing data. Environmental Mapping and 

Analysis Program 

Agricultural Applications (Agri-tools) of the 

EnMAP-Box include: 

- Plant water retrieval (PWR) 

- Vegetation vitality tools (VIs, Analyse Spectral 

Integral, Red Edge Inflection Point) 

- Physically based and hybrid inversion tools 

[119–121] 

HyTools Is a python library for processing airborne and 

spaceborne imaging spectroscopy data. 

[122, 123] 

Hyperspectral 

Image 

Processing - 

MATLAB  

Image Processing Toolbox™ Hyperspectral 

Imaging Library provides MATLAB® functions 

and tools for hyperspectral image processing and 

visualization. 

 

[17, 108, 124] 

SCIATRAN Is a comprehensive software package which is 

designed to model radiative transfer processes in 

the terrestrial atmosphere and ocean in the 

spectral range from the ultraviolet to the thermal 

infrared (0.18–40 μm). 

[125, 126] 
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Environment 

for Visualizing 

Images (ENVI) 

Is a software application used to process and 

analyse geospatial imagery. It bundles together 

several scientific algorithms for image processing 

a lot of which are contained in automated, wizard-

based approach that walks users through complex 

tasks 

[25, 71, 107] 

EPINA Image 

Lab 

Is a Microsoft Windows-based multisensor 

imaging tool for processing and analyzing 

hyperspectral images 

[127] 

Trimble 

eCognition 

Trimble eCognition enables you to accelerate and 

automate the interpretation of your geospatial 

data products by allowing you to design your own 

feature 

[128, 129] 

EVINCE Is a software for multivariate data analysis and 

multivariate image analysis. Its key functionality 

includes analysis and explore large amounts of 

data (>1 000 000 data points), data Reduction, 

information extraction and data visualization 

[109, 110] 

BREEZE Is a software that enables end users collect and 

analyse hyper- and multi-spectral images, and 

then develop and models to solve real-time 

complex problems 

[104] 

Waikato 

Environment 

for Knowledge 

Analysis 

(Weka) 

Is a multipurpose GUI software that contains 

several collections of visualization tools and 

algorithms for data analysis and predictive 

modelling. It supports several standard data 

mining tasks, more specifically, data pre-

processing, clustering, classification, regression, 

visualization, and feature selection. 

[39, 101, 130–132] 

The 

Unscrambler X 

Is a multivariate data analysis software that 

integrates Design-Expert to deliver advanced data 

visualization solution. Some of its features 

includes data analysis, regression and 

[39, 133, 134] 
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classification methods, predictive modelling, 

design of experiments and descriptive statistics 

PLS Toolbox Is one of the most extensively used software for 

multivariate and machine learning analysis and 

for chemometric applications, it is incorporated 

within the MATLAB® computational 

environment but also available as a standalone 

product (Solo). Some of its key features includes 

data exploration and pattern recognition, 

classifications, linear and non-linear regression, 

etc 

[111, 135, 136] 

OPUS Is another leading multivariate software for 

measurement, processing, and evaluation of IR, 

NIR and Raman Spectra. 

[137–139]  

SIMCA Is a popular advanced data analytics software for 

multivariate analysis. It adopts a data-intensive 

analytical approaches such as the use of 

spectroscopy and multi-omics “big data” and 

efficiently analyses and visualizes these data from 

batch processes in real-time for monitoring, 

prediction, and control purposes 

[137, 140] 
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2.3.6 Performance criteria and accuracy metrics 

Prediction models are typically evaluated by use of metrics such as the root mean squared 

error of calibration (RMSEC), cross validation (RMSECV) or prediction (RMSEP) and the 

coefficient of determination (R2) [97]. In general, a good model consists of high R2c, R2p, 

and RPD values, and low RMSEC and RMSEP values as well as a small difference between 

them [141]. Typical values of R2 should range between 0.90 and 0.82 as this are considered 

good models. whereas the values of RPD less than 1.5 and that higher than 3 are regarded as 

unsatisfactory and acceptable results, respectively [51, 142, 143]. 

For most quantitative application of HSI, especially for disease and defects detection, the 

classification accuracy is used to determine the accuracy of the classification model [37]. The 

confusion matrix table (Figure 2.5b and 2.5c) shows how the classifier performs in terms of 

correctly classified samples, wrongly classified samples, and the average overall accuracy. 

For most binary applications, where the classification problem is that of distinguishing 

between two samples groups, bruised and unbruised, or diseased and healthy samples, they 

are referred to as binary (two-class) problem. In a two-class problem, four (4) possible 

outcomes exist [100]. First is the true positive (TP), this is when a sample is positive and the 

classifier recognizes it as positive, then the false negative (FN), this is the instance where a 

positive sample is misjudged and classified as negative, when a negative sample is classified 

as negative, it is counted as a true negative (TN), and finally the instance where negative 

sample is wrongly classified as positive, it is regarded as a false positive (FP)[100, 144]. 

Typical accuracies values range between 85 – 100% [39, 145]. A comprehensive summary 

of performance metrics has been covered by Tripathi and Maktedar, [37]. 

Another performance index for evaluation classifiers is the ROC area under curve value 

(AUC). The ROC curve is a graphical plot of the true-positive rate vs. false-positive rate for 

a binary classifier. It represents a general measure of classifier performance that is invariant 

to the classifier discrimination threshold and the class distribution [146, 147]. Its values range 

between 0–1. With maximum accuracy at 1 and minimum at 0. A random guess separation 

involves an AUC value of 0.5 [101]. 

Other widespread parameters use in literature includes f-measure (sometimes together 

with precision and recall), Kappa statistic and the time spent for. classification [148]..
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2.4. Preharvest applications of hyperspectral imaging technology in remote sensing 

Hyperspectral imaging as a technique for quality or system monitoring originated with the 

airborne imaging spectrometer (AIS) [6]. Over the year, HSI has been shown to provide 

promising solution for a large- scale disease monitoring under field conditions [149]. During 

pre-harvest stage, disease causing pathogens tend to result in either loss of leaves and/or shoot 

area or changes in a leaf color due to a reduction in photosynthetic activity. These changes 

result in differences in spectral responses in the visible/near-infrared (Vis/NIR) regions of 

the Electromagnetic spectrum. However, existing on-farm detection or control strategies are 

cost intensive and increases the likelihood of ground water contamination (environmentally) 

and pesticide residues in agriculture products [150]. 

Precision agriculture involves the use of airborne/satellite devices for remote sensing 

applications. This is normally used at farmland scales due to its low spatial resolution and 

high operating cost and complexity. Unmanned aerial vehicle (UAV) remote sensing has 

been successfully used in many precision agriculture applications for preharvest quality 

detection and diagnostics. 

During production, remote sensing is used in aspects such as pre-season planning, field 

preparation, planting, in-season monitoring, spraying for pest control, harvest, and post-

harvest [151]. It provides a diagnostic tool for early detection of disease infestation in farm, 

orchards and serve to alert farmers on potential problems before they spread widely [151]. 

Since its first use in 1972, Remote sensing has witnessed increased application during the 

last two decades. This is due to technological advancement in global positioning systems 

(GPS), machinery, hardware and software, cloud computing, and internet of things (IoT) with 

hyperspectral and multispectral imaging sensors peaking on the application. Data collection 

for preharvest application of hyperspectral imaging technology is usually collected in various 

platform which includes handheld, aircraft, and satellite device [129]. There has also been 

development for unmanned ground vehicle (UGV) in recent time [152]. 
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2.4.1. Remote sensing diagonostic application of hyperspectral and multispectral 

imaging technology 

The non-destructive pre-harvest spatial yield variability was estimated for carrots using 

proximal hyperspectral and satellite multispectral data [153]. In their study, above ground 

biomass (AGB), canopy reflectance measurements and corresponding yield measures were 

collected from 414 sample sites in 24 fields in Western Australia (WA), Queensland (Qld) 

and Tasmania (Tas), Australia. 

For disease detection, Vanegas et al. [154], applied airborne RGB, multi and hyperspectral 

imagery at two different vineyards with multiple grapevine varieties for the detection of 

phylloxera infestation. The authors used a multispectral MicaSense RedEdge camera to 

capture five discrete spectral bands: 475nm (blue), 560nm (green), 668nm (red), 840nm (red 

edge), 717nm (NIR). They developed a digital model of the vineyard to create a vigor 

assessment and compare it with an expert visual assessment Results showed that both 

assessment correlate to a good level, signaling that the developed method is a good approach 

for generating vigor assessments in vineyards. 

In another study, Abdulridha et al. [155] detected the presence of citrus canker in sugar belle 

(immature) fruit using a UAV mounted with a hyperspectral imaging sensor. The same 

imaging system mounted on a UAV was used to detect citrus canker on tree canopies in the 

orchard. This technique successfully distinguished the late-stage canker-infected fruit with 

92% classification accuracy. The UAV-based technique achieved 100% classification 

accuracy for identifying healthy and canker-infected trees. Other studies on preharvest 

application have been on maturity stages for blueberry [156], disease indices for ‘Flavescence 

Dorée’ Grapevine disease identification [157], salinity level on date palm fruit [158], wheat 

disease detection [159]. A comprehensive review of the different applications of 

hyperspectral imaging for preharvest purposes using remote sensing approach has been given 

by Panda et al., [129]. 
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2.4.2. Challenges of preharvest application of hyperspectral imaging for disease 

diagnosis 

RS systems provide robust and accurate database on the spectral behavior of agricultural 

crops [160]. Such information has found application in many areas such as quality 

monitoring, disease and growth detection, irrigation and crop yield monitoring and farm 

management. Despite the commercial availability and increased use of HSI mounted on RS 

systems for biosecurity diagnosis, it is still not readily available to those in the agribusiness 

as most of the harvesters are not equipped with them [160]. 

The type of sensor used in RS application also plays an important role in determining its 

efficiency. In a study on carrot root yield, the accuracy of two sensors (proximal 

hyperspectral and satellite multispectral sensors) were explored [153]. Results showed that 

vegetation indices derived from hyperspectral sensors produced poorer yield correlation 

coefficients (R2 < 0.1) than similar measures from the multispectral sensors (R2 < 0.57, p < 

0.05), making multispectral sensors better alternative to be deployed for such investigations. 

2.5. Postharvest applications of hyperspectral imaging technology 

2.5.1. Infections and disease diagnostics for fresh agricultural produce 

Starting from harvesting, fruits are highly susceptible to pathogen invasion, pests, and 

microbial contaminations and fruit safety are crucial throughout the supply chain. Removing 

fruits and vegetables with serious defects early can prevent the infection of the whole batch. 

Conventionally, fruits and vegetables are inspected with respect to color, texture, size, and 

shape by conventional machine vision system in the commercial sorting machines. However, 

sorting by defects is still a challenging task due to the high variance of defect types and 

existence of stem/calyx concavities. Some defects may have similar color and texture as 

sound peel, such as bruises, rottenness, or chilling injury. Therefore, recent trends in 

automated sorting are aimed to detect defects based on color, texture, and spectral reflectance 

by using HSI and MSI systems [52, 81]. 

Illumination of samples during imaging is critical for data acquisition using HSI technique. 

Different researchers have applied different light intensity depending on the fruit and the 

Stellenbosch University https://scholar.sun.ac.za



 

26 

 

condition of sample during the acquisition process. Two 50 W halogen lamps adjusted at 

angle of 45° were used to illuminate the camera’s field of view to study disease diagnostics 

in apple fruit [68]. Munera et al. [134], used 12 halogen spotlights of 37 W each and eight 

20W halogen lamps powered by 12V supply source placed in two opposite frames positioned 

at an angle of 45° to the persimmon fruit sample. In the case of apple fruit, eight 20W halogen 

lamps placed in two opposite frames positioned at an angle of 45° towards the conveyor belt 

surface was applied [39]. The reason for these different settings and configuration could be 

attributed to the difference in texture and peel of the various fruits. 

Exposure time for sample scanning varies, for kiwifruit it was 10ms [161], 15ms for 

strawberry [136], 20ms for pear [162], 30ms for kiwifruit [163]. 

 

Figure 2.6: Image of hyperspectral image acquisition set up at the Central Analytical Facility 

(CAF) laboratory, Department of Food Science, Stellenbosch University, South Africa. The 

cameras were mounted above a translation stage which has speed regulation. A 30 cm focal 

length lens with a field of view of 9.470 cm (SWIR) and 9.733 cm (VNIR) was used. The 

illumination source for each camera consisted of two halogen lamps (12V/150W) placed in 

two opposite frames positioned at an angle of 45° and 30 cm above the translation stage.  
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2.5.2. Ground truth data acquisition 

The accuracy of a model depends on the accuracy of the reference or ground truth 

measurement. Sample condition before scanning need to be grouped and identifiable as 

diseased or not infected [39, 146], bruised or not bruised [104, 164, 165]. The number of 

samples and the grouping for diagnostic application using hyperspectral imaging is also key 

to a successful experiment. Most studies usually have samples grouped into 

diseased(inoculated) and control. In a study to detect early decay in citrus, [166], using a total 

of 210 fruits grouped their sample between 80 sound fruits and 130 infected fruits with spores 

of Penicillium digitatum fungi. Classification model was built using 140 (60 sound samples 

and 80 infected samples) which were selected randomly as training set to develop the 

algorithm, whereas the remaining 70 samples (20 sound samples and 50 infected samples) as 

test set to evaluate the performance of algorithm. Their result indicates a high classification 

accuracy of 98.6%. 

In another application on citrus, a total of 240 fruits were studied: 60 sound fruit were used 

as control while 60 inoculated with spores of Penicillium digitatum and 60 inoculated with 

spores of Penicillium digitatum [145]. Similar pattern of sample grouping and control method 

was adopted for mandarin study [167]. Other studies on strawberries where 1800 fruit were 

inoculated with fungal infection and 900 healthy fruit were used as control [39]. It would be 

observed that the ratio of inoculated and control subgroup for most diagnostic application is 

in range of 60:30 with more samples inoculated compared to the control group. 

Diseases and infections are some of the greatest causes of losses in postharvest. Fungal 

infections generate great economic losses to the fruit and agricultural industry [168]. For non-

destructive detection and discrimination, samples must be handled in such a manner that 

accurate ground truth data is captured. Considering the non-destructive nature of technique. 

It means that samples must be artificially inoculated in other to obtain a diseased set of 

samples. Samples are also conditioned and grouped for discriminant analysis purposes. 

Disease pathogens such as bacteria, fungus and viruses can be cultured in laboratories and 

Stellenbosch University https://scholar.sun.ac.za



 

28 

 

used for experimental study. This is the case in many HSI applications for disease detection, 

as it ensures the validity of the ground truth data to be employed for the study. 

The inoculant or pathogen to be used on a fruit sample is usually dependent on the specific 

application. For example, gray mold, caused by Botrytis cinerea Pers., is the most 

economically important postharvest disease of pomegranate. This is also the case for 

strawberries [38, 101]. Other fungi causing fruit rot worldwide include Aspergillus niger, 

Penicillium spp., Alternaria spp., Nematospora spp., Coniella granati and Pestalotiopsis 

versicolor[5, 169]. 

In the citrus industry, decay caused by fungi is among the main cause of decay during post-

harvest phase and handling of the fruit. The fungus Penicillium sp., has been identified to 

lead to the most postharvest loses in citrus packinghouses [145, 146]. Inoculants are usually 

chosen based on susceptibility to the sample under consideration. For most fungal disease 

detection study, the fungi are usually grown on potato dextrose agar (PDA) at 24 °C and 85% 

relative humidity for 7 days prior to inoculation experiments [38]. 

The method of inoculation is another area that defers for different fruit due to the fruit 

physical structure. Fruit with delicate structure and soft tissues or scale are very susceptible 

to tissue damage and infections caused by a wide range of phytopathogenic fungi, bacteria, 

and viruses [38]. Such fruit are usually inoculated by artificial immersion [39]. Li et al. [166] 

applied the inoculant by injection using syringe with steel needle. To inoculate Spinach 

leaves, the bacteria pathogen E. coli was infected by dipping in suspension [170]. In another 

study on citrus, sample inoculation was performed using a suspension of spores [145]. 

Pathogen with a concentration of 106 spores/ml for both fungi, which is sufficient to cause 

infestation in laboratory conditions. 

Literature shows that most inoculation are based on a dissolution of spores in suspension with 

a concentration of 106 spores/ml. This concentration is usually used to produce rottenness 

and have been recommended for numerous applications for sample conditioning during non-

destructive analysis and diagnostics of fruit and vegetables [39, 145, 171]. Spectral data of 

the different samples inoculated with different concentrations of inoculant was acquired 

under the same conditions for all the samples and monitored for fungal growth. The authors 

found that the different species showed increasing spectral signal as the fungus grew and 

were able to detect the presence of fungal contaminants on the maize after 48 h from 

inoculation and incubation. 
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HSI have found huge applications in the field of agriculture for diagnostic purposes. Different 

studies have shown varying range of classification success in applying this non-destructive 

technique for detection of infections and diseases in fruits, vegetable, and some agricultural 

products. Strawberries (Fragaria sp.) was diagnosed for fungal infection [39]. In their study, 

reflectance spectra of fruit were acquired during four days after inoculation and 

discrimination models was built using the backpropagation neural network (BNN) model. 

The prediction accuracy of distinguishing between inoculated and control fruit was higher 

than 97%. This study showed the effectiveness of HSI to successfully be used as diagnostic 

tool for early detection of fungal disease on strawberries. 

The presence green mould and blue mould was investigated on mandarin using a 

Hyperspectral LCTF-based system [167]. Neural Networks was used to segment the 

hyperspectral images and a classifier based on decision trees achieved a very high accuracy 

of around 93%. This result indicates the effectiveness of this technique for non-destructive 

diagnostic application. Similar study was carried  out by [146]. Three different approach was 

analysed, and result ranged between 87.5 – 95.5%. The third approach using the set of four 

input features yielded the highest classification performance (Figure 2.7). 

Figure 2.7: Hyperspectral (RGB and monochromatic) images (530 nm, 640 nm, 740 nm and 

910 nm) acquired by hyperspectral computer vision system of sound mandarins and fruit 

affected by thrips/wind scars, P. digitatum and P. italicum. Adapted from [167]. 

 

Table 2.5 gives a summary of the application of HSI for diagnostic testing on selected 

horticultural produce. 
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Table 2.5. Overview of diagnostic applications of multispectral and hyperspectral imaging for disease and infection detection of fresh produce. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E. coli, Escherichia coli; PD, Penicillium digitatum; PI, Penicillium italicum; BC, Botrytis cinerea; CA, Colletotrichum acutatum; LCTF, Liquid 

crystal tunable filters

Produce Detection Sample 

size 

Inoculant Inoculation method Classification 

accuracy 

References 

Apple Rottenness 120 - 220 Penicillium Inoculated with 

liquid suspension 

culture of 

Penicillium spores 

97% - 99% [71, 172] 

Citrus Decay, Black spot -  PD  91% - 100% [166, 173–175] 

Mandarin Decay 240 PD; PI Performed using 

suspension of 

spores 

82.92 – 97.18% [145, 146, 167] 

Peach Fungal 

contamination 

 PD, PI  98.3% - 98.6% [176] 

Spinach leave Decay  E. coli Dipping in 

suspension 

 [170]  

Strawberry Fungal infection 2700 BC; CA Immersion  97 – 99% [39, 177] 

Tomato Virus infection    86 – 95% [178, 179] 
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2.5.3. Other HSI applications in food safety and biosecurity 

2.5.3.1. External damage and defect detection of agricultural produce 

Table 2.5 summarizes application of hyperspectral imaging on different fruits for quality 

attributes and external defects detection. HSI have been deployed for the evaluation of apple 

quality with accuracies ranging from 80.4% to 99% in defect detection application and R2 ≥ 

0.8577 for most qualitative analysis. For banana, MLR and PLSR based models were used 

with accuracies ranging  between 0.53 to 0.97 in R2  and 1.95 to 5.92 in RMSEP [17], 175, 

176]. Lee et al. [102] applied hyperspectral imaging beyond the NIR range of 950–1650 nm 

to detect bruise damage underneath pear fruit skin. The result demonstrated that the best 

threshold waveband ratio detected bruises with the accuracy of 92%. Other attributes of pear 

for which HSI have been applied for its evaluation include firmness, soluble solid content, 

variety identification and physical damage. Other fruit studied showed similar trend in terms 

of their model accuracies and data analysis used (Table 2.6). These studies indicated the 

feasibility of hyperspectral imaging technique to detect external and internal disorder.  
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Table 2.6: Overview of applications of multispectral and hyperspectral imaging for external defects and damages assessment of selected horticultural 

fruit. 

Produce Quality attribute Data analysis Model accuracy References 

Apple Bruise, defect, firmness, 

mealiness, contamination 

PLS-DA, PCA, MNF, SIMCA, 

LDA, SVM, BR, LLE, HEA, 

PLSR, iPLS-DA, SLOG, SMO, 

ESD, kNN,  

CA range between 80.4% - 

99%; R2 ≥ 0.8577. 

[71, 99–101, 103, 104, 

133, 182–186] 

Banana Moisture, firmness, colour MLR, PLSR R2 range between 0.53 - 0.97; 

RMSEP ranged btw 1.95 - 5.92. 

[17, 180, 181] 

Blueberry SSC, firmness, mechanical 

damage 

PLSR, PLS-DA, SVM, FCN R2 = 0.79 – 0.87; CA range 

between 76.7% - 92.5%. 

[131, 147, 164, 187, 188] 

Citrus Decay, canker,  MLP, BR, PCA CA range between 87.46% - 

96.5%; 

[174, 175, 189, 190] 

Cucumber Defect  PLS-DA CA range between 79.8%–

100% 

[191, 192] 

Grape seed Maturity PCA, DA, PLSR R2 ≥ 0.95 [20, 193] 

Jujube Defects PCA, SVM, SIMCA CA range between 93.3% - 

100%; 

[194–197] 
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Kiwifruit Ripeness, firmness, SSC, 

Bruise detection, sugar 

content,  

PLS, PLS-DA, GA, VIP, RBF-

SVM, SPA,  

R2 = 0.76 – 0.98; CA range 

between 93% - 97%. 

[124, 161, 163, 198, 199] 

Limes TSS, TA, maturity PLSR R2 range between 0.69 - 0.83; 

RMSEP ranged btw 0.049% - 

0.288%. 

[200] 

Loquat Defects CARS, PLS-DA, CARS-PLS-

DA 

CA range between 92.3% - 

100% 

[201, 202] 

Mango Mechanical damage, 

infestation 

k-NN, NBC, ELM, DT, LDA 67.46% – 100% [149, 203, 204] 

Peaches Bruise, firmness, chilling 

injury 

PCA, PLSR, LS-SVM, PLS-

DA, ANN, SVM 

CA range between 85.37% -

100%; R2 range between 0.50 - 

0.75 

[25, 205] 

Pear Bruise, firmness, SSC, 

varieties, physical damage 

SVM; RF, PLS-DA, PCA, 

SAE-FNN, FNN, SPA-PLS, 

PLS, PCA, CARS, CARS-PLS 

CA range between 92 - 100%; 

R2 range between 0.78 - 0.99; 

RPD range between 3.05 – 3.68 

[162, 165, 206–209] 

Persimmon Ripeness, firmness LDA, SIMCA, LSSVM, QDA CA range between 62.5 – 

95.3%; R2 = 0.91; RMSEP = 

4.34 

[134, 210, 211] 

Pomegranate pH, TSS, TA, grading,  PLS, MLR, ANFIS, RSM, 

ANN, PLS-DA, SIMCA, PCA 

R2 ≥ 0.88, RPD ≥ 5.01 

, MSE = 0,.202 

[18, 212, 213] 
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Abbreviations: R2, Coefficient of Determination; PCA, Principal Component Analysis, BR; Band Ratio, SVM, Support Vector Machine; PLS-DA, 

Partial Least Squares Discriminant Analyses; SIMCA, Soft Independent Modelling of Class Analogies; LDA, Linear Discriminant Analysis; MLP, 

Multilayer perceptron; MSE, Mean Square Error; CA, Classification accuracy; LLE, Locally Linear Embedding; GA, Genetic Algorithm; VIP, 

Variable Importance in Projection; DA, Discriminant Analysis; PLSR, Partial Least Squares Regression; MLR, Multi-Linear Regression; RBF-SVM, 

Structural Risk Minimisation Support Vector Machine; LS-SVM, Least Squares Support Vector Machine; HEA, Hierarchical Evolutionary Algorithm; 

SLOG, Simple Logistic; SMO, Sequential Minimal Optimization; FCN, Fully Convolutional Networks SAE, Stacked Auto-Encoders; FNN, Fully-

Connected Neural Network; SPA, Successive Projections Algorithm; k-NN, K-Nearest Neighbour; QDA, Quadratic Discriminant Analysis

95% 

Plum SSC, firmness, colour PLSR R2 ≥ 0.8 [214] 

Strawberry 
 

Bruise, fungal infection LDA, ND, ANN 84.6 – 99.9% [27, 39, 101, 177] 

Tomato 
 

Defect, contamination PCA, BR CA ≥ 99% [215–219] 
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2.5.3.2. Adulterants and varietal detection 

HSI has found application as a check for adulterant in powdery and dried as well as to 

detect the origin or variety verification for agricultural processed products. In a similar study, 

Shrestha et al. [220] applied two different classifiers to discriminate different cultivars of 

tomato seed. The authors achieved an accuracy range of 94 - 100 %. SVM–DA proved to 

perform better than PLS–DA in their study. Similar results was achieved in a different study 

on tomato seeds [221]. Xiong et al. [222] used HSI to analyze the presence of polyphenols in 

tea and reported a coefficient of determination R2 = 0.915. Other applications of HSI have been 

reported on spinach seed [223] watermelon seed [224], vegetable oil [225, 226], and for 

determination of storage duration of buhha tea [222]. 

Another area of emerging importance of multispectral/ hyperspectral imaging is in adulteration 

/fraud detection of homogenous food products. Food materials like herbs and spices are usually 

crushed or ground and are susceptible to adulteration at any stage of their long and complex 

supply chain. In addition, some group of adulterants can be really damaging to human health 

when consumed [227]. In a study to diagnose food fraud in black pepper, Orrillo et al. [228] 

investigated the potential of near infrared hyperspectral imaging (NIR-HSI) combined with 

multivariate analysis to identify black pepper adulterated with papaya seeds, a common 

adulterant. Their finding showed that classification models PCA and SIMCA achieved 100% 

accuracy for berry samples and sensitivity was higher than 90% for ground samples. In a similar 

study, certified raw materials (Sceletium tortuosum and Cyclopia genistoides) and herbal tea 

blends were adulterated, and hyperspectral data were acquired for discriminate analysis [229]. 

A partial least squares-discriminant analysis (PLS-DA) model with predictive ability of 95.8% 

was developed. Their results confirm that HSI is a reliable diagnostic visual tool for the quality 

assessment of herbal tea blends. Table 2.7 summarizes the application of hyperspectral imaging 

technique for quality diagnostic of processed products. Further studies on the nondestructive 

quality attributes of various processed horticultural products (dried, powder and oil products) 

have been extensively reviewed [19, 142].
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Table 2.7: Overview of biosecurity applications of multispectral and hyperspectral imaging on 

selected processed horticultural products. 

Produce Detection Wavelength 

range (nm) 

Chemometric 

analysis 

References 

Black 

pepper 

Adulteration 900 – 1710 PCA, SIMCA [228] 

Buhha tea Storage duration  PLS-DA [222] 

Pistachio 

nuts 

Adulteration 2703 - 50000 PLSR [230] 

Spinach 

seed 

Seed viability 395 – 970 PLS-DA [223] 

Tea blend Adulteration  PLS-DA [229] 

Tomatoes Variety 

identification 

375 – 970 nCDA, PCA, PLS-

DA 

[220, 221] 

PCA, Principal Component Analysis; PLS-DA, Partial Least Square Discriminant Analysis; 

PLSR, Partial Least Squares Regression; nCDA, Normalized Canonical Discriminant Analysis, 

SIMCA, Soft Independent Method of Class Analogy. 
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2.6. Challenges in evaluating fruit quality by HSI 

2.6.1. Physical and biological variability 

Apart from the inherent problems related to the acquisition, processing, and analysis of the 

massive hyperspectral image data there are also challenges arising from the physical and 

biological variability of fruit on the application of HSI [69]. Whole surface detection, 

discrimination between defects and stems/calyxes, unobvious defect detection, robustness of 

the feature recognition algorithms, as well as rapid multispectral imaging system development. 

Like every other non-destructive technique, HSI require highly accurate reference 

measurements or ground truth in the case of preharvest application. 

Image acquisition for most application requires that imaged samples are manually arranged 

to expose defect to the camera [216]. This is challenging as it cannot be replicable in an idea 

sorting line for practical application. Research must be geared towards fully automating image 

acquisition protocol to mimic practical applications in packhouses. It has been highlighted the 

different factors that influence the performance of calibration and prediction models of HSI 

imaging technique. Large representative samples size with variability in terms of cultivar 

difference, growing conditions and seasonality should be incorporated in the development of 

accurate and robust classification and calibration models. Accurate selection of image 

acquisition mode, wavelength range, and optimal data pre-processing technique can effectively 

be optimized to achieve higher model accuracy. 

Inoculation of sample for diagnostic application must be cultured, incubated and 

temperature controlled. It is recommended that the right concentration is achieved as well as 

the spore count or CFU/ml. Classifiers greatly influence the performance of model, and with 

evolving data analysis and development, improved classification algorithm is being adopted 

for qualitative and quantitative analysis. 

2.6.2. Dimensionality of hyperspectral images 

Hyperspectral images with their spatial and spectral dimensions are usually large sets of 

information. To this end, data storage and analysis capabilities are frequent limitations of using 

hyperspectral data. Hence, image data size and dimensionality reduction process are very 

important in processing HS images. By implementing dimensionality reduction, redundant 

information can be eliminated. This process considerably simplifies the subsequent processes 

of classification model development. PLS, PCA and ANN methods frequently used to perform 

dimensionality reduction [6, 99, 206]. In this context, several dimensionality reduction methods 

have been proposed [6, 231]. Li et al. 2011 [14] applied PCA based dimensionality reduction 
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technique for bruise detection on oranges. The authors selected the most discriminant 

wavelengths in the range 400–1000 nm and achieved better detection accuracy at six 

wavelengths (630, 691, 769, 786, 810 and 875 nm). Similarly, Wang et al. 2012 [232] applied 

the same technique for sour skin damage detection on onions. 

2.6.3. Insufficient training samples 

Number of samples for training is crucial for artificial neural network-based classification 

problem [233, 234]. Insufficient training samples have been a significant bottleneck for 

supervised HSI classification. This problem considerably hinders the practical application of 

HSI system. Using insufficient training sets can significantly cause overfitting [235], while 

collecting sufficient HS image datasets remains costly and time-consuming [236]. Wambugu 

et al. (2021) [234] summarized and discussed several training sample generation methods 

including data augmentation: transformation-based (translation, flipping, rotation) mixture-

based, or the addition of noise and synthetic data generation (synthesizer network using 

generative adversarial networks (GANs)). Augmentation implements realistic transformation 

to increase the diversity of the training set. Figure 2.8 depicts additional images generated by 

image rotation (top row) and noise injection (bottom row) implemented for fruit category 

identification problem [237]. 

Figure 2.8: Augmentation based new image generation. Generated images by image rotation 

(top row) and generated images by noise injection (bottom row). Adopted from Zhang et al. 

(2019) [237]. 

 

Synthetic image is partly or completely artificially generated following methods such as 

compositing, styled transformation, and foreground and background augmentation, and have 

successfully been applied on images [37]. To address the problem of data shortage, Bird et al. 

[238] applied synthetic data generation using Conditional Generative Adversarial Network on 
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the training data for 2000 epochs, and it learns to generate relatively realistic images (PBP) to 

increase the number of training samples (Figure 2.9). 

 

Figure 2.9: Examples of both real photographs and Conditional GAN outputs (Epoch 2000) for 

the two classes of healthy and unhealthy lemons [238]. 

2.7. Conclusion and future perspectives 

The application and of hyperspectral imaging technique as a diagnostic tool for food 

inspection and biosecurity have been summarised. Various studies have shown varying range 

of application with high accuracy. The combined feature of imaging and spectroscopy enables 

the collection of massive spectral information for every pixel which provides the chemical 

constituents of samples and a chance to refine the data and perform critical analysis adequately 

[94]. 

HSI and MSI as a diagnostic technique for disease and biosecurity monitoring in agri-food 

products, research have demonstrated the potential for non-destructive, rapid, and online 

inspection of fruit qualities. Inspection of maturity or ripeness stage, evaluation of 

physicochemical attributes (firmness, TSS, TA, and varietal and geographical discrimination), 

Stellenbosch University https://scholar.sun.ac.za



 

40 

 

and detection of physical defects and contaminants in fruits are scientifically examined by 

many researchers. Also, the application of HSI and MSI in the quality analysis of processed 

agricultural products like dried seed samples and processed oil products have been reported. 

For real-time online monitoring implementation of hyperspectral imaging technique, high data 

Stellenbosch University https://scholar.sun.ac.za



 

41 

 

CHAPTER 3 

 

 

Pomegranate quality evaluation using non-destructive approaches: A review 

 

Abstract 

Pomegranate (Punica granatum L.) is one of the healthful and popular fruit in the world. The 

increasing demand for pomegranate has resulted from it being processed into different food 

products and food supplement. Researchers over the years are garnering interest in exploring 

non-destructive techniques as an alternative approach for quality assessment of harvest from 

on farm point to retail level. The approach of non-destructive techniques is more efficient, 

inexpensive, faster and yield more accurate results. The aim of this study is to critically review 

recent and previous development in the application of non-destructive techniques in quality 

evaluation of pomegranate fruit. Future trend and challenges of using non-destructive 

techniques for quality evaluation are highlighted in this review paper. Some of the highlighted 

techniques include computer vision, imaging-based approaches, spectroscopy-based 

approaches electronic nose and hyperspectral imaging technique. Our findings shows that most 

of the applications are focused on grading of pomegranate fruit using machine visions systems 

and electronic nose. The measurement of total soluble solids (TSS), titratable acidity (TA) and 

pH as well as other phytochemical quality attributes have also been reported. Value added 

products of pomegranate fruit such as fresh-cut and dried arils, pomegranate juice, 

pomegranate seed oil has been non-destructively investigated for their numerous quality 

attributes. This information is expected to be useful not only for those in the growers/ 

processing industries but also for other agro-food commodities. 
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3.1. Introduction 

For most fruit and vegetables, the features that distinctly indicate quality are four attributes: 

colour (appearance), flavour (taste, smell and aroma), texture and nutritional value [65, 239, 

240]. In general, fruit freshness comprises of its colour, firmness and surface features 

(glossiness and shrivelling) [240]. These attributes affects consumer acceptance, consumption 

and usage of fruits and vegetables as well as their products [241]. In the last few decades, the 

improvement in society's standard of living has led to a significant increase in fruit 

consumption [51]. Some of the mostly consumed fruits includes apple, orange, kiwifruit, peach, 

grape, strawberry, grape, jujube, banana, mango, pomegranate among others. 

Fruit quality control, inspection and sorting are essential to ensure adequate quality and safety  

for fresh consumption and to earn high-return on investment [6, 242, 243]. High quality product 

is still of utmost importance, especially for export market [244]. Pomegranate fruit is consumed 

globally both as fresh and in processed form such as dried arils, juice, seed oil, etc. (Figure 

3.1). It is a fruit-bearing spherically shaped deciduous shrub or small tree [245]. It is composed 

of an internal edible portions called arils, and each aril contains a seed which is surrounded by 

a translucent sac containing juice [1, 169], and an outer hard thick covering called the peel 

[245]. In the past decades, the demand for pomegranate fruit has been increasing due to its 

nutritional and health benefits [2–4]. This global awareness has resulted in considerable 

increase in commercial farming of pomegranate fruit [5, 246]. Recently, pomegranate fruit 

value-added produce have included its peels utilization as animal feed [247, 248], as well as 

rich antioxidant, metabolomic peel extract [249, 250]. 

Recent attention in food quality and safety have resulted in in industry taking greater 

responsibility in finding alternative technological approaches for estimating the fresh quality 

of pomegranate fruit and its value-added produces [18, 212, 251]. Grading is one of the 

activities done in the industry to distinguish fruit quality. It is usually done based on weight, 

size and external rind appearances [252]. At present, pomegranate fruit are sorted based on 

external appearance only due to the thick rind [241, 244]. However, the arils which are delicate 

can be damaged during handling and assuring their quality is crucial [212]. On the other hand, 

pomegranate fruit sorting should be simple and reliable [241, 244]. Hence, fast and effective 

non-destructive methods have become an urgent need for quality detection. 

Non-destructive/non-invasive approaches are recent advances in the evaluation and detection 

of the quality of horticultural fruit and its products [21, 50, 142, 253, 254]. Non-destructive 
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testing (NDT) provides quantitative and qualitative fruit quality data without destruction of the 

sample [255]. Compared to traditional quality analysis methods, NDT allows analysis of intact 

fresh fruit without cut opening or destroying the fruit making it best suited for online 

inspection. 

Some of the widely used NDT techniques include: visible–infrared spectroscopy, Raman 

spectroscopy, nuclear magnetic resonance spectroscopy, X-ray CT and spectral imaging [19]. 

These techniques have been investigated for their potential as analytical tools for the quality 

evaluation of different food samples. Near-infrared spectroscopy (NIRS) and machine vision 

systems (MVS) were the most successful technologies in the past few decades for the automatic 

quality inspection of fruits and vegetables [241]. Spectral imaging which involves 

hyperspectral and multispectral imaging is a hybrid system that utilizes imaging and spectral 

data for fruit quality analysis [18, 212]. 

There are several published reviews that focuses on non-destructive quality measurement of 

fruits such as  mangos [255], citrus [91] and watermelon [256]. Particularly for pomegranate 

fruit, several authors have written extensively on postharvest quality attributes and benefits of 

pomegranate and its products [4, 169, 257, 258]. To the best of our knowledge, no review has 

been published focusing on non-destructive assessment of pomegranate fruit despite several 

application of non-destructive assessment technologies for quality assessment of pomegranate 

fruit. Therefore, the objective of this review is to evaluate recent technological advancements 

and applications of various non-destructive methods for the measurement and prediction of 

external and internal quality attributes of pomegranate fruit and its products. 

3.2. Quality attributes of pomegranate fruit 

The term “quality” can connote the subjective perception of different explicit parameters, 

which can be analysed from different viewpoints [259]. In general, fruit quality is defined by 

four major attributes: colour and appearance, flavour (taste and aroma), texture and nutritional 

value [65, 260]. Pomegranate fruit maturity is perceived by its colour, firmness and surface 

features (glossiness and shrivelling) [240]. These attributes inform consumer acceptance, 

consumption and usage of these fruit as well as its products [241]. Quality assessment of 

pomegranate fruit is a combination of appearance, taste, aroma, and textural properties. 

Consumers judge initial quality based on external properties such as fruit mass, shape, and skin 

appearance (colour, free of cracks, sun scalds, and bruises). Their repeated purchase is based 

on organoleptic properties related to internal attributes these include total soluble solids (TSS), 
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titratable acidity (TA), and flavour (sugar/acid ratio) and phenolic content [2]. Fruit external 

features such as sunburn, cracks, and splits, and other mechanical damages such as bruises are 

also indices used to measure fruit quality and marketability by industry and packhouse operator 

[261, 262]. This section provides a brief overview on the quality attributes used for evaluating 

pomegranate fruit and its products. 

3.2.1. External quality attributes of pomegranate fruit 

Fruit physical properties and condition (aril volume and juice content) play key role in its 

commercialization (marketability, processing, and profitability of the fruit). This is because 

these attributes influence the quality of processed products from the fruit and influence 

consumer behaviours on the consumption of fruits [2, 5]. Colour is one of the most important 

quality attribute as it determines whether a fruit is considered fresh or not [32]. To this end, 

colour is one of the most widely measured product quality attributes in postharvest handling 

and food processing industries. The colour of pomegranate fruit is derived from its natural 

pigments. It changes over time as the fruit goes through maturation and ripening. Colour of 

pomegranate fruit is measured using colorimeter or Mansell colour charts. For the colorimeter, 

colour measurement is based on the CIE L*, a*, b* values. The L*, a*, and b* and C* defines 

the colour space on which human colour perception is based [263]. In defining these attributes, 

Pathare et al. [32]described L* value to represent lightness, a* value represents redness (+a*) 

or greenness (-a*), and b* value represents yellowness (+b*) or blueness (-b*). Another index 

derived from colour include glossiness. Study shows loss of gloss to be undesired and fruits 

with matt peel are being rejected by consumers [242, 243]. Consumer preference is towards 

fruit with deep red, glossy, smooth and slightly shiny surface appearance [264]. Typical values 

for colour attributes for pomegranate fruit at harvest maturity and its products are presented in 

Table 3.1. 

Textural properties help to indicate how pomegranate fruit should be handled [265]. 

Furthermore, texture of pomegranate informs how the fruit response to physiological or 

pathological changes during maturation, ripening or storage [266]. Textural properties which 

include firmness, hardness and toughness of kernel are indicators to fruit resistance to bruise 

damage. Firmer pomegranate fruit and arils are reported to have low membrane lipid 

catabolism and stable shelf life and are thus less likely to be bruised during postharvest 

handling [265, 267]. Typical firmness of pomegranate grown in South Africa varies between 

312.05 N and 390.60 N for whole fruit firmness, 75.53 – 83.76 N (fresh aril) and 220.50 – 

253.98N (dried aril) Table 3.1. 

  

Stellenbosch University https://scholar.sun.ac.za



 

45 

 

Table 3.1: Summary of typical quality indicator values for intact pomegranate fruit and products 

Quality Attributes Cultivar Intact Fruit  Typical Values References 

Fresh Aril Dried Aril Seed Oil Juice  

Weight (g) Bhagwa, Ruby 250.0–509.8 
    

[268, 269] 

Shape index Bhagwa, Ruby 0.91–1.10 
    

[269] 

Volume (cm3) 
 

220–300 
    

[269] 

Sphericity 
 

1.02–1.08 
    

[269] 

Aril yield (%) 
 

46.76–58.82 
    

[269] 

CIE colour coordinates 

(L*) 

Omani, Bhagwa, 

Ruby 

44.15–46.51 25.00–30.88 20.54–33.62 
  

[4, 245, 268, 269] 

(a*) 
 

40.33–43.13 16.06–23.07 12.26–24.44 
 

3.37–4.73 
 

(b*) 
 

– 6.63–7.77 
  

0.15–0.52 
 

(C*) 
 

48.35–53.39 15.75–17.82 12.84–29.83 
 

3.38–4.77 
 

(h°) 
 

30.61–33.07 23.85–25.81  12.00–27.10 
 

3.12–3.30 
 

Moisture (%) Omani, Bhagwa, 

Ruby 

 
66.00–75.58 

    

Total soluble solids 

(%) 

Ruby, Wonderful 
 

28.9 17.5–22.2 
 

50.1–77.3 [268, 270] 

Stellenbosch University https://scholar.sun.ac.za



 

46 

 

TSS (°Brix) 
  

13.70–15.21 1.14–3.15 
 

5.8–14.27 
 

TA (%CA) 
     

3.29–3.93 
 

pH Bhagwa, Ruby, 

Wonderful 

 
3.60–3.87 

   
[4, 268] 

Anthocyanins (mg/100 

g) 

Wonderful 
 

9.73 
   

[268] 

TPC (mg/100 g) 
   

7.03 ± 0.19 
   

TSS/TA 
      

[268] 

PV (meqO2/kg) Wonderful, 

Herskawitz, Acco 

   
0.04–0.35 

 
[271] 

RI 
    

1.5215–1.5218 
  

AV 
   

43.39–125.26 2.00–14.22 
  

TOTOX 
   

105.9 2.53–14.30 
  

TCC (mg β-

carotene/100 g) 

Wonderful, 

Herskawitz, Acco 

   
19.25–22.26 

 
[272] 

TPC (mg GAE/g) 
    

1.91–3.45 
 

[270, 272] 

YI (25 °C) 
  

75.53–83.76 
 

65.47–91.52 
  

Firmness (N) Shavel, Bhagwa, 

Ruby 

101.33–154.63 67.44–99.20 
   

[46,47] 

 

AV = Anisidine value, TOTOX = Total oxidation value, RI = Refractive, PV = Peroxide value, TPC = Total phenolic content, TCC; Total 

carotenoids content, GAE = Gallic acid equivalence, YI; Yellowness index, L*; Lightness, a*; Redness, b*; Yellowness, C*; Chroma, h°; Hue. 
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3.2.2. Internal quality attributes of pomegranate fruit 

Internal quality attributes of pomegranate fruit include the physico-chemical, vitamin C 

content, and antimicrobial properties [4]. These quality attributes range in value depending on 

different factors [273]. Some of the significant amounts of bioactive compounds that constitute 

internal quality attributes of pomegranate fruit includes phenolic acids, flavonoids, and tannins. 

Internal fruit attributes indicate whether fruits can be processed or consumed fresh. Indicators 

like total soluble solids (TSS) and titratable acidity (TA) of a fruit are frequently used. For 

instance, a high TSS and a low TA of a fruit means it can be consumed whilst fresh. Moreover, 

the ratio of TSS to TA of a fruit defines its maturity index (MI) [169, 269]. 

3.2.3. Quality attributes of pomegranate products 

Minimally processed pomegranate arils are the ready to eat and serves as an excellent dietary 

source [246]. The appearance of fresh arils varies from white to deep red depending upon the 

variety [246]. Fresh pomegranate arils have a short shelf-life of between 5 and 8 days [270]. 

Therefore, to extend the shelf-life pomegranate arils are often processed into dried arils (Figure 

3.1). 

Dried pomegranate arils are products of pomegranate fruit and often referred to as ‘anardana’ 

[274, 275]. They are prepared by pre-treating fresh pomegranate arils to a constant temperature 

of 60 ± 2°C [274, 276] until they reach a moisture content of between 9.33 and 15.73% [277]. 

The dehydrated arils have a sugar content between 13.7- 15.1°Brix and an acidic content 

ranging between (0.24 - 0.38%). Table 1 shows different parameters used to evaluate the 

quality attributes for dried pomegranate arils. One area of quality lapse is the processing of 

immature and unripe fruits in the production of anadama which usually result in dried arils with 

poor colour and quality. Typically, dried aril is prepared with matured fruit [278]. Effect of 

processing technique on dried aril have been investigated [270]. In this study, the authors 

compared hot-air and freeze-drying method to process dried aril. They recommended freeze-
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drying which lowered degradation for parameters such as colour, total phenolic content, and 

total anthocyanin content. 

Figure 3.1: Pomegranate whole fruit and its different products (a): Whole fruit (b) fresh cut 

fruit (c) fresh aril, (d) dried aril, (e) seed oil; (f) juice. 

 

Pomegranate seed oil comprises 12–20% of total seed weight [279]. The seed oil comprises of 

more than 80% conjugated octadecatrienoic fatty acids, with high content of punicic acid (9-

cis, 11-trans, 13-cis, 18:3). The fatty acids comprises over 95% of the oil, of which 99% is 

triacylglycerols [280]. Seed oil can yield oil and ranging from 13.70 to 18.55% depending on 

the extraction method, solvent used and seed pre-treatment [271, 281]. Pomegranate seed oil 

is esteemed for its refractive index, yellowness Index, peroxide value, total carotenoids content 

and total phenolic content [279, 281]. Literature suggests that seed oil quality varies with 

respect to cultivar, fruit growing region and seed oil processing techniques [281, 282]. Kaseke 

et al. [281] reported ‘Acco’ to yield higher pomegranate seed oil (16.09%), followed by 

‘Herskawitz’ (15.13%) and ‘wonderful’ cultivar (14.68%). The authors noted a significant 

improvement in oil yield (17% - 23%) after blanching dried seeds at 95 C for 3 min. 

Pomegranate juice is another value-added by product of pomegranate fruit. Juice yield varies 

between 67.75 to 74.05 (mL per 100 g arils) depending on the cultivar, maturity stage and 

growing location [283, 284]. The juice contains 85.4% water, 10.6% total sugars, 1.4% pectin, 

0.2-1.0% polyphenols [1, 280]. These quality indexes differ from one fruit to another and this 
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discrepancy may be due to differences in juice extraction methods, pomegranate cultivar and 

fruit maturity[283–285]. 

3.3. Non-destructive methods for quality evaluation of intact pomegranate fruit 

3.3.1. Infrared (IR) Spectroscopy  

Infrared technology employs the principle of interactions between matter that contains 

molecular bonds with the electromagnetic radiation in the near and mid-infrared range. NIR 

and MIR spectroscopy cover an electromagnetic range of 12500–4000 cm−1 or 800–2500 nm 

(NIR) and 4000–400 cm−1 or 2500–25000 nm (MIR), respectively [12, 21]. In recent years, the 

application of near infrared spectroscopy (NIRS) in agricultural product have been growing in 

terms of instrumentation and spectra analysis techniques to measure SSC, fruit firmness, pH, 

and TA of fruits [253, 286, 287]. 

3.3.1.1. Application on intact fruit 

Pomegranate fruit quality attributes have been assessed non-destructively using the NIRS by 

several researchers. Attributes like TSS, TA and pH are most frequently correlated with NIRS 

measurements and predicted with high accuracy [11, 24]. Arendse et al. [11] compared two 

NIRS acquisition modes to evaluate both external and internal quality of intact pomegranate 

fruit. This study evaluated external attributes to include fruit weight, firmness, and colour 

components (a*, Chroma, hue angle), and internal attributes such as TSS, pH, TA, sugar to 

acid ratio (TSS: TA), BrimA, total phenolics, total anthocyanin and vitamin C. The authors 

reported good prediction statistics for both acquisition methods namely, emission head and 

integrating sphere. Emission head acquisition method was observed to yield best prediction for 

9 quality attributes of the 13 analysed. 

Khodabakhshian et al. [288] estimated maturity and several quality parameters of “Ashraf” 

variety of pomegranate fruit. Attributes include TSS, TA and pH were assessed during four 

distinct maturity stages and model was developed using partial least squares regression. The 

authors applied several pre-processing methods and obtained R2 values for prediction ranging 

from 0.73 – 9.2. Their result showed model performance to improve with pre-processing of 

data. Best performing model was obtained when a combination of SNV, median filter, D1 and 

mean centre was applied. 

For whole pomegranate fruit, Arendse et al. [289] developed models for several colour 

components (a*, C*, h°). The authors reported prediction statistics for a* (R2 = 0.90 and RPD 

= 3.34), C* (R2 = 0.83 and RPD = 2.43) and h° (R2 = 0.83 and RPD = 2.50). Another 
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physiological disorder prevalent in pomegranate fruit is the presence of husk scald [289]. In a 

study to defect biochemical markers associated with the development of husk scald, Arendse 

et al. [289] applied Fourier transform near infrared reflectance spectroscopy to technique 

evaluate biochemical markers associated with the development of husk scald. The authors 

qualitatively discriminate between healthy and scalded fruit by classifying fruit into three 

categories, namely, healthy, moderate scald and severe scald. Using orthogonal partial least 

squares discriminant analysis (OPLS-DA), they achieved a classification accuracy of 100% 

healthy, 92.6% moderate scald and 93% severe scald showing high prediction model. 

3.3.1.2. For internal quality parameters 

Infrared spectroscopy is one of the mostly used non-destructive techniques for pomegranate 

quality assessment. It has found application in quality inspection, variety, and specie 

discrimination and even as quality control over disease infections. Particularly for pomegranate 

fruit, it has been implemented coupled with chemometric analysis for varying fruit quality 

indices [11, 24], all showing different degree of accuracies. (Table 6.2). Some of the parameters 

being measured includes total soluble solids, pH, titratable acidity, BrimA, aril hue, total 

phenolic concentration, total anthocyanin concentration, vitamin C concentration, aril firmness 

and aril colour components. 

To evaluate pest infestation of pomegranate fruit by carob moth larvae, also known as 

“Ectomyelois ceratoniae” Jamshidi et al. [290], utilised visible/near-infrared (Vis/NIR) 

spectroscopy as an optical non-destructive technique in combination with supervised and 

unsupervised pattern recognition methods to detect the presence of carob moth larvae in 

pomegranate fruit. PCA and PCA-DA model were developed by authors with the best PCA-

DA model achieving prediction accuracy of 90.6%. This study shows the feasibility of Vis/NIR 

spectroscopy for rapid screening of pomegranate fruit infested by carob moth. In a similar 

study, SIMCA and PLS-DA was used to discriminate carob moth infestation [23]. The authors 

achieved a prediction accuracy ranging from 86 – 90%). These results showed the potential of 

IR spectroscopy as a fast and efficient technique for internal quality evaluation. 

Maturity index was investigated using the attributes TSS, TA and pH for pomegranate fruit 

[18]. In this study, the authors applied different pre-processing methods for the development 

of PLS calibration and prediction models for the different quality parameters. Results showed 

that the prediction of TSS (R2 = 0.92, RMSEP = 0.23o Brix, RPD = 6.38) gave the best model 

and was developed when Standard Normal Variate (SNV), median filter, and first derivative 

were used as pre-processing. Similar pre-processing combination also yielded the best model 

for TA (R2 = 0.93, RMSEP = 0.26, RPD = 5.31). The prediction of pH was best when SNV, 
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median filter and second order derivative was used as pre-processing technique with (R2 = 0.85, 

RMSEP = 0.064, and RPD = 4.94). This study shows that the application of different pre-

processing techniques effects the performance of the developed models and further studies 

should focus on the application of several spectral pre-processing to non-destructively predict 

maturity of pomegranate fruit. In a similar study, reflectance and transmission modes spectral 

data were acquired in the range of 400 – 1100 nm to determine TSS, TA and pH of pomegranate 

fruit [291]. The authors found both spectral acquisition mode feasible for non-destructive 

application on pomegranate fruit with the reflectance mode providing better accuracy for 

measurement of TSS, pH and firmness. Table 3.2 summaries application of NIRS for quality 

different quality evaluation. 

3.3.1.3. Application on processed products 

Increasing demand for pomegranate fruit has necessitated the processing of the intact fruit into 

different value-added products. Some of these products include fresh and dried aril [24, 270], 

seed oil [271] pomegranate juice [292]. The use of IR spectroscopy has also been extended for 

non-invasive evaluation of these different processed products. It can been applied as a quality 

control measure for the authentication of pomegranate juice concentrate [293]. The authors 

investigated the adulteration of pomegranate juice concentrate (PJC) with grape juice 

concentrate (GJC). By applying partial least square (PLS) regression of the spectra, the authors 

obtained high accuracy in prediction of the GJC adulterant concentration in PJC with a 

correlation coefficient, R2 of 0.975. Further analysis of PJC to predict % titratable acidity and 

total solids yielded model with high R2 values of 0.9114 and 0.9916, respectively. 
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Table 3.2: Summary of applications of Vis/NIR spectroscopy for intact pomegranate quality analysis 

Quality attributes Prediction Statistics Data analysis References 

TSS 

TA 

pH 

R2 = 0.960, RMSEP = 0.092 °Brix 

R2 = 0.920, RMSEP = 0.19% 

R2 = 0.920, RMSEP = 0.089 

PLS, PCA [288] 

 

 

TSS 

TA 

pH 

R2 = 0.920, RMSEP = 0.23 °Brix 

R2 = 0.930, RMSEP = 0.26% 

R2 = 0.800, RMSEP = 0.064 

PLS, PCA [18] 

 

 

TSS 

TA 

pH 

TAC 

TPC 

Brim A 

TSS/TA 

Hue angle 

Vitamin C 

Chroma 

R2 = 0.781, RMSEP = 0.28% 

R2 = 0.768, RMSEP = 0.13% 

R2 = 0.849, RMSEP = 0.06 

R2 = 0.626, RMSEP = 0.09 g /l 

R2 = 0.889, RMSEP = 0.11 g /l  

R2 = 0.762, RMSEP = 0.39 

R2 = 0.868, RMSEP = 0.74 

R2 = 0.466, RMSEP = 1.67 

R2 = 0.762, RMSEP = 0.09 g/l 

R2 = 0.830, RMSEP = 2.15 

PLS, PCA [292] 
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TA; Titrable acidity, TAC; Total anthocyanins content, TPC; Total phenolic content, TSS; Total soluble solid, PCA; Principal component analysis, 

PLS; Partial least squares, CA; Classification accuracy, PLS-DA; Partial least squares- Discriminant analysis 

a* 

Firmness (N) 

Hue 

Fruit Weight  

R2 = 0.909, RMSEP = 1.61 

R2 = 0.830, RMSEP = 7.45 

R2 = 0.839, RMSEP = 1.67 

R2 = 0.621, RMSEP = 0.013 

TSS 

Firmness (N) 

pH 

R2 = 0.940, RMSEP = 0.21 °Brix 

R2 = 0.940, RMSEP = 0.68 

R2 = 0.860, RMSEP = 0.069 

PLS, PCA [291] 

 

 

Ectomyelois ceratoniae 

infestation 

CA = 97.9% PCA-DA [290] 

Presence of husk scald CA ≥ 92.6% OPLS-DA [289] 

Carob moth infestation CA ≥ 86% PLS-DA [23] 
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In another study, Boggia et al. [294] developed a screening method based on ultraviolet and 

visible (UV-Vis) regions spectroscopy combined with multivariate analysis to assess addition 

of water and other filler juice to pomegranate juice. In this study, 14 pomegranate juices (PG), 

27 grape juices, 11 apple juices (AP) and seven mix fruit juices containing pomegranate juice 

were analysed and their absorption spectra in the range 190–1100 nm were obtained using an 

Agilent 8453 spectro-photometer with a 1 nm resolution. Spectral data from their study showed 

clear lines between profile of different juice samples (Figure 3.2). The authors found that the 

first two PCs yielded 96.8% of total variance which explains a satisfactory separation among 

the different juice categories. The spectral region around 250–300 nm had the greatest 

importance (loading value) on PC 1. All the juices containing pomegranate indicated high 

absorptions in this region, except for apple juices which showed weak absorptions. 

Figure 3.2. Spectral profile of different fruit juice samples analysed using a UV–VIS 

spectroscopy-based method. Red lines for authentic lab prepared pomegranate juices (PA), 

ginger lines for commercial pomegranate juices, blue line for commercial grape juices and 

green lines for commercial apple juices. Adopted from Boggia et al. [294]. A is for absorbance. 

 

A comparative study to analyse the performance of mid and near infrared spectrometers for 

evaluating juice quality was conducted by Arendse et al. [292]. Several quality attributes 

including phytochemical, and antioxidant were evaluated with all showing varying degree of 

success. The authors observed that spectral acquisition modes (WineScan, MPA and the Alpha-

P instruments) impacted on the performance of the prediction models for different attributes of 
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the juice with the instruments in the mid infrared region (WineScan and the Alpha-P 

instruments) outperforming the multipurpose analyser (MPA)  instrument in the near infrared 

region. 

Pomegranate seed oil have also been investigated for its many quality attributes using IR 

spectroscopy technique [295]. Fourier transform near-infrared (FT-NIR) and mid-infrared (FT-

MIR) spectroscopy was employed to predict the quality attributes of pomegranate seed oil. The 

authors used partial least squares regression to construct prediction models. Their study 

reported good prediction model for total carotenoid content (TCC) R2 = 0.8045, peroxide value 

(PV) R2 = 0.620 and refractive index (RI) R2 = 0.8092. Similar success was recorded for 

application on dried pomegranate aril [245]. These results demonstrated the potential of 

infrared spectroscopy combined with chemometric analysis to be used as a useful technique 

for rapid screening of pomegranate oil quality attributes. 

In a study comparing three spectroscopic techniques, UV–visible spectroscopy (200 – 800 nm) 

Mid-infrared spectroscopy (4000 – 650 cm−1) and Fluorescence spectroscopy (300 – 800 nm), 

pomegranate see oil was evaluated for free fatty acid values and fatty acid profiles [296]. The 

authors also discriminated the adulteration of cold pressed pomegranate oil with sunflower oil 

and observed that Mid-IR range provided the best results regarding in discriminating the 

mixing of cold pressed PSO with sunflower oil. 

For the assessing of microbial quality of minimally processed pomegranate aril, Adiani et al. 

[297] acquired FTIR data pre-processed in three different ways viz; raw FTIR spectrum, first 

derivative for FTIR spectrum and peak integrated data of FTIR spectrum to develop prediction 

model. The authors analysed for total viable count (TVC) and yeast and mold count (Y&M). 

and obtained R2 values of 0.909 for raw FTIR spectral data, 0.619 for FTIR first derivative data 

and 0.830 for Peak integrated data. Results showed that PLS-R models performed best for 

predicting microbial quality when FTIR first derivative data was used while ANN showed 

better model performance when applied on raw FTIR spectral data during model development. 

When spectral data pre-processed with peak integrated data was used, developed models 

showed poor performance for prediction in both ANN and PLS-R. 

Arendse et al. [24] applied FT-NIR to develop calibration model for freshly extracted 

pomegranate aril. In this study, the authors acquired NIR data over two spectral equipment 

MPA FT-NIR spectrometer and MATRIX-F FT-NIR spectrometer (Bruker Optics, Ettlingen, 

Germany) of wavelength range of 800 - 2500 nm. Quality attributes assessed includes total 

soluble solids, titratable acidity, pH, BrimA, aril firmness, total phenolic concentration, total 

anthocyanin concentration and vitamin C concentration and several colour attributes with 
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model showing accurate predictions of 8 quality parameters. Recently, similar study has been 

carried out on fresh pomegranate aril [288], dried pomegranate [245]. The authors in these 

studies reported accurate prediction models for different quality attributes of fresh and dried 

arils. Table 3.3 provides a summary of the different application for evaluation of different 

products of pomegranate fruit. NIR spectroscopy is the most frequently used technique and is 

commercially available [21]. Though the NIRS is popular, sand somewhat preferred by experts, 

some of its limitation includes high operational cost, impracticality for in-line application and 

technical issues [21]. 

3.3.2. Raman Spectroscopy 

Raman spectroscopy is another non-destructive technique used for the quality analysis of fruits 

and vegetables [298]. This technique, named after an Indian physicist, Sir Chandrasekhara 

Venkata Raman (1888 – 1970), was developed based on the phenomena of inelastic scattering 

of light. The technique is based on the fact that inelastic collision occurs between an incident 

photon and a molecule of the sample when samples are irradiated [299]. The concept and 

principle of Raman and its theoretical basis have been discussed in detail by many researchers. 

Raman Spectroscopy has several advantages in food analysis than other techniques [253, 298, 

300]. 
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Table 3.3: Summary of applications of Vis/NIR spectroscopy for processed pomegranate product quality analysis 

Products Quality attributes Prediction Statistics Data analysis References 

Fresh aril TSS 

TA 

pH 

TAC 

TPC 

Brim A 

Firmness 

TSS/TA 

Hue angle 

Vitamin C 

Chroma 

a* 

R2 = 0.875, RMSEP = 0.30% 

R2 = 0.855, RMSEP = 0.10% 

R2 = 0.851, RMSEP = 0.10 

R2 = 0.705, RMSEP = 0.13 g /l 

R2 = 0.864, RMSEP = 0.11 g /l  

R2 = 0.834, RMSEP = 0.43 

R2 = 0.684, RMSEP = 6.71 N 

R2 = 0.822, RMSEP = 1.03 

R2 = 0.885, RMSEP = 4.19 

R2 = 0.848, RMSEP = 0.09 g/l 

R2 = 0.783, RMSEP = 2.31 

R2 = 0.735, RMSEP = 1.67 

PLS, PCA [24] 

 

 

Minimally processed 

aril 

TVC 

T&M 

R2 = 0.909, SEP = 0.914 

R2 = 0.929, SEP = 0.777 

ANN 

PLS-R 

[297] 

Dried aril TA 

TSS/TA 

pH 

a* 

R2 = 0.850, RMSEP = 0.041 

R2 = 0.756, RMSEP = 1.951 

R2 = 0.863, RMSEP = 0.131 

R2 = 0.720, RMSEP = 1.815 

PLS, SVM [245] 
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Chroma R2 = 0.703, RMSEP = 1.986 

 

PJ TSS 

TA 

pH 

TAC 

TPC 

Brim A 

TSS/TA 

Hue angle 

Vitamin C 

Chroma 

a* 

R2 = 0.923, RMSEP = 0.31% 

R2 = 0.862, RMSEP = 0.11% 

R2 = 0.670, RMSEP = 0.17 

R2 = 0.663, RMSEP = 0.19 g /l 

R2 = 0.591, RMSEP = 0.18 g /l  

R2 = 0.906, RMSEP = 0.40 

R2 = 0.768, RMSEP = 1.00 

R2 = 0.466, RMSEP = 1.67 

R2 = 0.709, RMSEP = 0.11 g/l 

R2 = 0.832, RMSEP = 3.81 

R2 = 0.816, RMSEP = 3.78 

PLS, PCA [292] 

Aril TSS 

TA 

pH 

R2=0.92, RMSEP=0.23o Brix 

R2 = 0.93, RMSEP = 0.26% 

R2 = 0.85, RMSEP=0.064 

PLS [18] 

PJ Adulteration 

TA 

TSS 

R2 = 0.975 

R2 = 0.911 

R2 = 0.991 

PCA, PLS [293] 

PSO TCC 

PV 

R2 = 0.8045 

R2 = 0.620 

PLSR [245] 
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PV; Peroxide value, PSO; Pomegranate seed oil, PJ; Pomegranate juice, OPLS-DA; Orthogonal partial least square-discriminant analysis, PLS-R; 

partial Least square regression, ANN; Artificial neural networks, RI; Refractive index, TA; Titratable acidity, TCC; Total carotenoid content, 

TVC; Total viable count, Y&M; Yeast and mold count. 

RI R2 = 0.8092 

PSO Adulteration detection CA ≥ 88% OPLS-DA [296] 
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It has also frequently applied in fresh fruit and vegetable quality analysis [255, 301]. 

Khodabakhshian [291] applied modified polynomial, self-modelling mixture analysis (SMA) 

and spectral information divergence (SID) pre-processing techniques, combined with PLS 

regression, to develop tannin content prediction models. Prediction accuracy of models 

predicting tannin content in the three parts of pomegranate fruit: rind, aril and white spongy 

tissue have R2 value of 0.960, 0.925 and 0.922, respectively. 

More recently, a pattern recognition-based Raman spectroscopy technique was investigated for 

non-destructive quality assessment of pomegranates [302]. The authors used both supervised 

and unsupervised pattern recognition methods and distinguished different maturity stages of 

pomegranate “Ashraf variety”. The partial least squares discriminant analysis (PLS-DA) and 

soft independent modelling of class analogy (SIMCA) were compared, showing prediction 

accuracies of 95% and 82%, respectively. The authors further considered two stages of maturity 

(“immature” and “mature”). The SIMCA based on PCA modelling was able to completely 

categorize the samples in two classes: immature or mature, with classification accuracy of 

100%. Figure 3.3a provides image of inner pomegranate fruit at different maturity stages. 

Spectral profile of Raman shift for the different development stages have also been shown in 

Fig. 3.3b. Three Raman spectral peaks (650, 1357 and 1590 cm−1), were identified to be those 

similar to pure tannin. SID values were indicative of the different maturity stages, the authors 

observed decreasing SID values from stage 1 to stage 4 of pomegranate fruit maturity. 
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Figure 3.3a: Fruit samples and arils of pomegranate (Ashraf cultivar) at different maturity stages: Immature stage; 88 days after full bloom 

(DAFB); half-ripe stage, 109 DAFB; half-ripe stage, 124 DAFB; and full- ripe stage, 143 DAFB. Adapted from [302] 
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Figure 3.3b: A Raman spectra profile of four different maturity stages of intact pomegranate fruit at different maturity stages. Stage 1 (88), stage 

2 (109), stage 3 (124), and stage 4 (143) DAFB. Adopted from [302]. 

 

Stellenbosch University https://scholar.sun.ac.za



 

63 

 

3.4. Imaging-based non-destructive techniques for evaluating pomegranate quality 

3.4.1. Machine vision systems (MVS) 

Machine vision has been extensively used in agriculture over the last few decades [303]. Part 

of the reasons for this is the advances in the arena of digital imaging and data processing 

techniques that encourage intelligent control methods. In the agricultural industry, quality 

evaluation based on visual appearance such as colour attributes are subjective. Hence, machine 

vision systems play an important role in the field of automated preharvest and postharvest 

applications. Machine vision is widely applied for sorting and grading of agricultural, 

horticultural and food products [252, 303]. Evolving technologies in machine learning, big data 

acquisition, big data processing, internet of things and analytics have ushered the concept of 

industry 4.0 [304]. Machine vision in combination with machine learning have been applied to 

address different quality control problems in the field of agriculture [37] and the pomegranate 

industry [144, 252]. 

3.4.1.1 Application on intact fruit 

Fashi et al. [213] applied machine vision technique to measure the pH of pomegranate fruit of 

Qom cultivar. In their study, images of 200 fruit were acquired and analysed using three 

different image processing algorithms. In total, the authors investigated 10 different colour 

channels of which the image corresponding to six of these channels are shown in Figure 3.4. 

Fourteen selected inputs were fed into the model along with the values for pomegranate pH, as 

model was developed for sensitivity analysis. Result showed the Adaptive Neuro-Fuzzy 

Inference System (ANFIS) and ANN based models achieved a regression coefficient (R2) value 

greater than 0.980 while response surface methodology (RSM) based model achieved an R2 

value of 0.754. 
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Figure 3.4: Different colour images of pomegranate fruit using machine vision systems for 

quality grading. The colour channels are described as (3a): RGB, (3b): Gray scale, (3c): CMY, 

(3d): HSV, (3e): YCbCr and (3f): YUV. Adapted from [315]. 

 

Different two-dimensional linear discriminant analysis approaches were explored for machines 

vision technique in pomegranate fruit grading [77]. In this study, four different linear 

discriminant analysis methods were compared: traditional two-dimensional linear discriminant 

analysis (2DLDA), fractional two-dimensional linear discriminant analysis (FLDA), fuzzy 

two-dimensional linear discriminant analysis (F2DLDA), and fractional fuzzy two-

dimensional linear discriminant analysis (FF2DLDA). The authors used a digital camera (EOS 

550D, Canon Inc., Japan) to capture high-quality pomegranates images of size 3456×2304 

pixels and a resolution of 0.03 mm/ pixel. They found that of the four algorithms investigated, 

the FF2DLDA gave the best classification accuracy (97%) for grading pomegranate colour. 

This study confirmed the importance of image data analysis techniques on model prediction 

efficiency and accuracy. 

Similar result was reported by Kumar et al. [144] in development of ANN based classification 

model for pomegranate fruit sorting application. The authors used spatial domain features and 
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wavelet features techniques for image features extraction. The results showed the superior 

classification performance of wavelet features (91.3%) compared to spatial domain features 

(77.46%). Their study revealed good accuracy thereby showing the potential of machine vision 

systems in grading and sorting of pomegranate fruit non-destructively. In another study, images 

of 1800 pomegranates were acquired using a closed metal compartment and a total of 134 

features were extracted and used to train ANN based classification model in pomegranate fruit 

grading application [252]. The authors implemented image segmentation and histogram 

equalization followed by wavelet denoising steps for pre-processing of the image data. The 

study reported a classification accuracy of 97.83%. 

3.4.1.2. Application on processed products 

MVS have been also used in the evaluation of pomegranate arils quality analysis. For instance, 

Blasco. [305] established a prototype capable of correctly separating arils travelling at a speed 

of 1m s-1 and which were separated by a distance of at least 20 mm. This system accurately 

discriminated aril membranes from the arils. However, the system required human intervention 

to differentiate between the different categories of the arils. Blasco et al. [306] further 

investigated the feasibility of two different image segmentation methods for automatic sorting 

of pomegranate (Punica granatum) arils. One of the methods uses a threshold on the R/G ratio 

and the other takes a more complex approach based on Bayesian-Linear Discriminant Analysis 

(LDA) in the RGB space. Both methods offered an average classification accuracy of 90%. 

The authors were able to successfully implement a prototype system for inspecting and sorting 

of arils which could handle a maximum throughput of 75 kg/h. 

In a different study, Fashi et al. [78] classified pomegranate arils into three categories according 

to three different indexes of healthiness, redness, and size) using MVS. Four features were 

extracted and used to train, test and validate adaptive neuro fuzzy inference system (ANFIS), 

response surface methodology (RSM) and artificial neural network (ANN) models. The authors 

found the ANN model performing best (with 98% of classification accuracy) for grading 

pomegranate aril based on colour and aril size. Results for the other two models showed 

classification accuracy of 95.5% (ANFIS) and 75.5% (RSM). Table 3.4 provides a summary 

on the application of MVS for quality assessment of pomegranate fruit and arils. 

Machine intelligence, which helps to eliminate the bias of subjective manual sorting, is of 

tremendous impact on pomegranate fruit quality analysis [65]. Grading is one quality category 

that is performed based on weight, size and external rind appearance. Studies have shown that 

disease, pests, and infestation can also be detected using MVS [65] though quite a difficult task 
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considering the variation of disease or defect type and how they manifest on fruit [303]. Using 

appropriate image pre-processing and colour space conversion, region of interest segmentation 

and analysis of flaws, diseases and defects can be accurately detected. 

Machine vision system for quality inspection is made up of four basic components: acquisition, 

segmentation, feature extraction and classification [303] Camera quality for image capturing 

and data storage has witnessed huge improvement in recent time. Recently, interest is growing 

in the direction of multiple sensing techniques [307]. A typical image processing flow chart for 

defect detection has been proposed by Pandey et al. [65] (Figure 3.5). The technique identified 

three infection severity classes: worst (infection covered over 75% of the surface), average (30 

– 75%) and good (less than 30%). MVS has also found application for on-tree counting of 

pomegranate fruit [308–310]. 

The downside of the digital image system for food quality application is its limitation in 

capturing or detecting internal defects or internal quality [241]. To this end, in most 

packhouses, pomegranate product classification is not based on internal quality [241]. This has 

necessitated the need to finding other effective technique for internal quality assessment for 

pomegranate fruit [11, 212]. 
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Figure 3.5: Flow chart of disease detection algorithm using colour space conversion method  

Stellenbosch University https://scholar.sun.ac.za



 

68 

 

Table 3.4. Summary of application of different non-destructive assessment for pomegranate quality attributes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Technique Application Data analysis Accuracy References 

X-ray Volume estimation STA  [311] 

MVS Grading 2DLDA, FLDA, F2DLDA, 

FF2DLDA 

97% [77] 

MVS Grading ANN 97.83% [252] 

MVS Grading ANN 77.46 - 91.3% [144] 

NMR Black heart PLS-DA 92% [312] 

E-nose system Fungal disease LDA, BPNN, and SVM 100% [313] 

MVS Disease  - 79.73% [65] 

Raman Spectroscopy Tannin changes PLS R2 = 0.9603 [291] 

MVS Aril color and size ANN, ANFIS, RSM 75.5 – 98% [78] 

E-nose Fruit ripening PCA, LDA 95.2%. [314] 
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Table 3.4 Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHT; 

Circular Hough Transform, ER; Error rate, LOS; level of significance, MSI; Multispectral imaging, PLS, MLR; Multiple linear regression, TSS; 

Total soluble solids; TA; Titratable acidity, 

Technique Application Data analysis Accuracy References 

MVS pH ANFIS, RSM, ANN R2 = 0.984, MSE = 0,.202 [213] 

Raman  Maturity indexing PLS-DA, SIMCA and PCA 95% [302] 

X-Ray Disease detection - t value = 0.469 with a 95% 

los 

[315] 

MVS Industrial grading of fresh aril LDA, threshold on the R/G 

ratio 

83.3 – 100% [306] 

MVS Preharvest yield estimation adaptive threshold algorithm ER = 9,1% [308] 

MVS on tree fruit recognition RGB, HSV and YCC colour 

space analysis 

100% [309] 

MVS Yield estimation CHT, K-Means Clustering R2 = 0.7652 [310] 

MSV Physicochemical attributes PCA, PLS-R  [212] 

HSI Maturity indexing PLS-DA 95.0%, [212] 

MSI TSS, TA and pH PLS, MLR R2 ≥ 0.88, RPD ≥ 5.01 

 

[18] 
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3.4.2. Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) 

The basic principle of NMR spectroscopy is developed on the scientific fact that most elements 

have at least one isotope and therefore are magnetic. It was first successfully applied for 

measurement by Bloch and Purcell for which they were jointly awarded the Nobel prize in 

Physics in 1952 [316, 317]. For example, 1H, 13C, 31P have a magnetic moment and can absorb 

resonance energy when placed in a strong magnetic field [318]. Several studies have shown 

that NMR and MRI can be used to measure and quantify several physical and chemical 

properties of pomegranate fruit [244, 312]. 

In a study using MRI, Khoshroo et al. [244] successfully classified pomegranate (cv. ‘Malas-

e-Torsh’) fruits into semi-ripe, ripe and over-ripe classes and detected internal defects. The 

authors applied Gray level Co-occurrence Matrix (GLCM) and Pixel Run-Length Matrix 

(PRLM) features. Classification and internal defect identification accuracies were higher with 

GLCM features. Interestingly, combining 7 GLCM and 4 PRLM features resulted a 

classification accuracy of 98.33 % and the lowest type I and II errors confirming the potential 

of MRI as a powerful tool in pomegranate fruit quality analysis. 

In order to determine the presence of black heart disease on pomegranate fruit, Zhang & 

McCarthy, [312] applied proton NMR relaxometry to investigate the water T2 relaxation 

distribution in infected and healthy pomegranate fruit and to obtain information that indicates 

tissue damage. Partial least square discriminant analysis (PLS-DA) of the MR image provides 

a model with 92% accuracy in detecting the presence of black heart in pomegranate fruit. This 

study also highlighted that the significant change in T2 relaxation distribution in arils after 

infection which indicate that T2 relaxation time is a good indicator of black heart in 

pomegranate. In another study, Zhang et al. [312] measured TSS, TA and pH of pomegranate 

fruit based on partial least square (PLS) analysis of acquired MR images of the fruit. This 

approach correlates the destructively obtained reference data with corresponding MR imaging. 

The MR image based PLS predictive model achieved R2 values of 0.54, 0.6, and 0.63 for TA, 

pH and TSS levels, respectively. 

 3.4.2. X-ray computed tomography 

X-ray computed tomography (CT) is a non-destructive technique that reconstructs 2-

dimentional images into 3-dimentional models for quantification and characterisation of 

horticultural produce. CT offers considerable advantages over other imaging techniques since 

it provides a large field of view [19, 319, 320]. This ensures whole sample surface to be scanned 

without preparation [321, 322]. X-rays CT is mostly applied in two ways in the food industry: 

for inspection of foreign bodies in food products for quality control and secondly to irradiate 
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food (a process that destroys bacteria). One distinct feature of the X-ray CT is that it measures 

variation in material density of the sample. This is based on the attenuation of X-ray that 

depends on the density of the irradiated object [319, 320]. 

The application of X-ray CT for characterization and quantification of pomegranate is 

summarized in Table 3.5. In a study that quantified the various parts of the fruit, Magwaza & 

Opara [7], employed X-ray CT imaging technique. This technique assesses and quantifies the 

distribution of edible (arils) and non-edible (albedo) parts of the fruit non-destructively. The 

authors developed linear regression models with high accuracy (R2 values of 0.83 and 0.89, 

respectively, to predict volumes of albedo (external skin plus internal soft tissue) and arils). 

Another study employed soft X-ray technique for non-destructive quality analysis of 

pomegranate fruit [315]. The authors analysed the acquired images using the image processing 

toolbox - MATLAB (Figure 3.6) and were able to measure the exact area of defects based. 

 

Figure 3.6: The Image processing and the defect identification algorithm flowchart for soft X-

Ray application in detection of defect in pomegranate fruit. Adapted from [315]. 

 

In a similar study, Arendse et al. [323] investigated sample of twenty-three pomegranate fruit 

by X-ray CT technique. Sizes of physical attributes including length, diameter and peel 

thickness were estimated. Their result showed that average fruit length, diameter, radius and 

peel thickness were 76.67±2.93 mm, 86.82±3.34 mm, 44.19±2.93 mm and 4.67±0.60 mm, 

respectively. A plot of reference measurement against X-ray CT values shows R2 values for 

the volume of peel, arils, kernels, juice content, air space and single aril of 0.97, 0.84, 0.90, 

0.87, 0.82, and 0.80, respectively. 
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Also, the juice content, volume of the peel and density of intact pomegranate fruit were 

estimated using X-ray CT technique [324, 325]. In fact, the application of X-ray CT  is diverse 

in the food industry (Schoeman et al., 2016), for identification and quantification of internal 

structures of fruit [7, 311, 325], and to detect bruise damage [326]. 

3.4.3. Hyperspectral and multispectral imaging 

Multispectral imaging (MSI) and hyperspectral imaging (HIS) techniques are recently 

advancing techniques to acquire the spatial distribution of physical and chemical quantities for 

objective fruit quality analysis [6, 327]. The MSI and HSI are similar in techniques. The main 

difference is the number of bands and how narrow the bands are. Multispectral imagery 

generally refers to 3 to 10 bands [20] and hyperspectral image could have hundreds or 

thousands of bands. Having a higher level of spectral detail, HSI gives better capability to see 

the unseen. However, the acquisition, processing and analysis of hyperspectral data is 

considerably challenging [44]. The comparative difference of conventional machine vision 

(CMVS), near-infrared spectroscopy (NIRS), multispectral imaging (MSI) and hyperspectral 

imaging (HSI) is summarized on Table 3.4. 

Table 3.5 Comparison of conventional machine vision (CMVS), near-infrared spectroscopy 

(NIRS), multispectral imaging (MSI) and hyperspectral imaging (HSI) 

 

Typical HSI system usually consists of a detector, illumination source, spectrograph, and a 

power supply unit [328]. A set up of image acquisition and the subsequent image processing 

workflow is shown in Figure 3.7. 

 

 

Feature CMVS Spectroscopy HSI MSI 

Detect small sized sample YES NO YES YES 

Flexibility of spectral extraction NO NO YES YES 

Generation of quality attributes distribution NO NO YES Limited 

Multi-constituent information NO YES YES Limited 

Spectral information NO YES YES YES 

Spatial information YES NO YES YES 
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Figure 3.7: Schematics illustrating the configuration of a hyperspectral system. 

 

Several authors have reviewed the application of HSI/MSI for food quality evaluation [20, 253, 

329, 330]. The use of HSI and MSI for non-destructive assessment of pomegranate fruit quality 

is quite limited in literature as compared to Vis/NIRS. Khodabakhshian et al. [18] applied the 

MSI within the wavelength range of 200 - 1100 nm for online quality assessment of 

pomegranate fruit. The authors developed regression models using both partial least square 

(PLS) and multiple linear regression (MLR) methods for TSS, TA and pH of pomegranate fruit. 

The performances of the developed MLR based prediction model was for TSS (R2 = 0.97, 

RMSEP = 0.22°Brix, RPD = 5.77), pH (R2 = 0.94, RMSEP = 0.038, RPD = 4.98) and TA (R2 

= 0.92, RMSEP = 0.26, RPD = 5.22). Munera et al. [212] compared the capability of both 

machine vision techniques and hyperspectral imaging to predict the physicochemical properties 

and maturity stages of ‘Mollar de Elche’ pomegranate fruit (intact and fresh-cut aril). The 

authors applied PLS regression to develop models for discriminating different maturity stages. 

They reported classification accuracy of 95% for intact fruit and 100% for aril with HSI system 

and 84.3% for intact fruit and 85.7% for aril with MVS. These findings demonstrated the 

superior performance of HSI system compared to MVS. 
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3.5. Electronic-nose (e-nose) 

The electronic nose (e-nose) is another non-destructive technique that have been applied for 

quality analysis of fruit. The e-nose is designed to simulate the human sense (smell) in 

identifying and realizing the complex aromas of fruits by employing a chemical sensors array 

[314]. Typical e-nose set up comprises of data acquisition, an array of metal oxide 

semiconductor (MOS) sensors, gas sensors and a power supply unit. Figure 3.8 illustrates the 

setup of a typical e-nose system. 

 

Fig. 3.8: Illustration of a typical data acquisition set up for an e-nose system application. 

Adapted from [314]. 

 

In a research study, Sanaeifar et al. [314] applied a low-cost e-nose system based on six MOS 

sensors for non-destructive recognition of different pomegranate varieties viz; “Ferdows”, 

“Rabab” and “Saveh”. The authors applied principal component analysis (PCA) and linear 

discriminant analysis (LDA) techniques and achieved a classification accuracy of 95.2%. E-

nose has also been applied for the detection of diseases [313]. The authors compared three 

different data analysis methods: LDA, back propagation neural network (BPNN) and support 

vector machine (SVM). Their result showed BPNN to have the highest accuracy of 100% in 

the detection of 0, 25, 50, 75, and 100% infected fruit. 

3.6. Challenges of non-destructive measurement for pomegranate fruit 

The different Non-destructive testing (NDT) approach for quality assessment of pomegranate 

fruit are characterised by different challenges. One area of challenge with the application of 

NIRS, which is the widely used approach for quality evaluation, is its acquisition set up. Several 

studies demonstrated the importance of mode of acquisition of spectral data on the accuracy of 

predictive models [331]. 

MVS technique carries great potential as a fruit quality inspection tool, however, it is limited 

in its inability to detect internal defects and internal qualities [241]. It is ineffective for inline 
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packhouse operations as it tends to miss internal defects. MVS is effective for grading (which 

is mostly based on size, weight, and colour). Also, spectral data have shown to better perform 

over image (spatial) data for analysis on pomegranate fruit [212]. Also, illumination has crucial 

role in determining the effectiveness of imaging techniques. An adaptive threshold value is 

proposed during image processing analysis to counter the influence of illumination. There is 

also the case of cross polarisation during image acquisition of fruit sample. Researchers have 

been able to reduce this effect by placing polarising filters as shields in front of the lamps as 

well as camera lenses [77]. This approach helps to minimize the problem of bright spots and 

specular reflection when imaging pomegranate fruit. 

X-ray CT system usually requires high voltages to generate two-dimensional (2D) radioscopic 

fruit images. Typical voltage requirement ranges from 100kV to 45 kV voltage [315, 326]. 

Such lengthy exposure time as well as the effect of radiation has sparked some health concerns 

regarding the use of X-ray CT [324]. Another major challenge with the X-ray CT technique is 

the acquisition time. Arendse et al. [325] reported a total scanning time of one hour for each 

sample showing the very slow image acquisition characteristics of this technique. This problem 

renders this technique undesirable for automated and online grading applications. Future 

improvement in computing time and image acquisition would greatly improve the X-ray 

system as a real-time/inline quality evaluation technique. 

Very limited research investigation of electronic nose exhibited the possibility for the accessing 

pomegranate fruit quality have been implemented and further studies should be aimed at 

utilizing the capability of the e-nose technique for other quality attributes evaluation. 

Hyperspectral images with their spatial and spectral dimensions are usually large sets of 

information. To this end, data storage and analysis capabilities are frequent limitations of using 

hyperspectral data. Hence, image data size and dimensionality reduction are very important in 

HS image applications. By implementing dimensionality reduction, redundant information can 

be eliminated. This process considerably simplifies the subsequent processes of classification 

model development. PLS, PCA and ANN methods frequently used to perform dimensionality 

reduction [6, 99, 206]. 

3.7. Conclusion and prospects 

This review has reported the application of different non-destructive techniques for the 

evaluation of intact pomegranate fruit and its products. The application of infrared 

spectroscopy has shown to predict the internal quality attributes such as soluble solid content, 

acidity, its ratio, and vitamin C content. well as firmness. External attributes such as the 

presence of husk scald, carob moth larvae infestation, adulteration, has also been implemented 
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and accomplished for pomegranate fruit. Most of the imaging techniques focuses on the 

evaluation of external parameters ranging from fruit colour, size, and appearance. It is 

recommended that future research in imaging techniques should focus on improving its data 

acquisition speed and reducing the large data size and focus on detecting diseases and pest in 

pomegranate fruit. Findings from this review shows that very little have been achieved in 

investigating the feasibility of HSI and MSI for pomegranate quality analysis. Future research 

must explore the potential of this technique for a holistic quality analysis assessment of 

pomegranate fruits. The non-destructive techniques reviewed in this paper shows the 

capability, benefits, application and the evaluation of pomegranate fruit quality attributes. 
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CHAPTER 4 

 

 

Early bruises detection on pomegranate (Punica granatum L.), using hyperspectral 

imaging coupled with artificial neutral network algorithm 

 

 

Abstract 

Bruise damage is one of the many causes of fruit quality reduction and postharvest losses that 

often occurred during fruit pre-harvest and post- harvest handling operations. The detection of 

fruit bruise, especially for early detection, has in recent times, received increased global 

attentions. In this study, vis-NIR hyperspectral imaging technique coupled with artificial neural 

network was used to detect surface bruise of pomegranate. A total of 60 pomegranate fruit (cv. 

Wonderful) sample were grouped into three different after bruised time regime (immediate, 7 

days, and 14 days) groups of 30 samples each. Two hyperspectral imaging setups: visible and 

near infrared (400 to 1000 nm) and short wavelength infrared (1000 to 2500 nm), were utilized 

to obtained spectral and spatial data of samples of the different groups. After comparing 

different pre-treatment methods, standard normal variate (SNV) transformation method with 

the best performance was selected for exported spectral data pre-processing. After spectral pre-

processing, the average spectrum of the whole fruit surface (WF) and region of interest (ROI) 

of each sample served as input to a two-layer feed-forward artificial neural network (ANN) 

machine learning algorithm for classification model development. The results showed bruising 

accuracies to range from 80% - 90% on the same day of bruise. Overall bruise accuracy was 

86.7% for bruised sample and 90% of sound samples. Model was able to recognize bruise 

immediately with an accuracy of 90% immediately, 100% after 7 days of bruise damage and 

100% accuracy after 14 days of bruise impact. Model recognition accuracy increased with the 

increase in days of bruise occurrence. It can be concluded that vis-NIR hyperspectral imaging 

has certain feasibility in the early bruise detection of fruits. This study demonstrated the 

potential of using hyperspectral imaging technology in sensing and classification of early 

bruise on pomegranate fruit.  
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4.1. Introduction 

Bruise damage is the most common type of mechanical damage that affects fresh horticultural produce. 

It reduces quality to the consumer and decreases the income to the growers alike [239, 332, 333]. 

Bruise damage is usually as a result of fruits being subjected to high impact and vibration [239, 262, 

332]. Bruise damage occurs when the bruised fruit outer tissue fails without rupturing after being 

induced to excessive mechanical stress [239, 332, 334]. Some of these tissue failure of the skin of fresh 

produce results from the effect of large external force on fruit surface and occurs during impact, 

compression or vibration against a hard surface or on against fruit leading to cell breakage [36, 239]. 

Several factors have been attributed to the cause of fruit bruise damage, some of these includes genetic 

(species/genotype), seasonality, climate change and environmental conditions, farming/orchard 

practices; and the effect of fruit properties [36, 261], the major contributing factor have been linked to 

the amount of mechanical energy applied and absorbed by produce during its preharvest and 

postharvest handling chain [261, 262, 335]. 

Pomegranate (Punica granatum L.) is a notoriously ancient deciduous fruit of Middle Eastern origin 

with over 500 different cultivars grown in different parts of the world including South Africa [169, 

264, 336]. Pomegranate fruit is mostly consumed as fresh arils but can also be savored in its processed 

form such as juice, dried arils, jams, etc. Pomegranate fruit industry have received boost in revenue 

and production due to the ever-increasing demand which have been linked to its nutritional and health 

benefits [3, 4, 337, 338]. Some of the health benefit associated with its consumption include; 

prevention of inflammatory diseases, induction of anti-proliferative, and enhances antimetastatic side 

effects in human [169]. 

Studies show pomegranate fruit to be very susceptible to bruise damage [332], and most bruises tend 

to occur during transportation back and forth orchard and packhouse during postharvest handling of 

the fruit [261, 262]. It has also been suggested the most bruise damage do take place during harvest in 

the farm, fruit unloading at the packhouses and vibrations during conveyance on the processing line 

[261]. Opara et el. [261] reported a significant correlation between bruised fruits and decay/insect 

damage. This indicates that bruised fruit are prone to insect attack as bruising makes the affected spot 

on the fruit rind soft and susceptible to insect attack. Several other studies has shown the detrimental 

effect of bruise on the physical and biochemical quality of pomegranate fruit [339, 340]. 

The economic losses in the fruit and vegetable industry related to bruising are considerable [239, 341]. 

Bruise damage to pomegranate fruit, considerably reduces the market value and causes huge economic 

loss [261, 262], as these fruits do not meet export quality and are devalued at marketplace (Figure 4.1). 
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Figure 4.1. Pomegranate fruit manifesting bruise damage conditions (a) physical injury on the rind 

causing peel discoloration; (b) peel browning as the result of bruised damaged 
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Pomegranate fruit possess very hard and thick rind/peel, different from other fruit with soft tissues and 

surface like apple, pear, etc. [21]. Early detection of bruises on pomegranate fruit is difficult due to the 

tough and leathery skin or rind [332]. Hence, detection is only visible long after the impact [326]. Now 

in industry, bruises are identified through manual line inspection by expert sorters who are trained to 

visually remove bruised fruit during line operation. The ever-increasing demand to meet growing 

consumer market for fresh pomegranate fruit has rendered this approach for bruise detection 

ineffective. Manually picking up suspected bruised fruit is laborious, time consuming and very 

subjective and no longer sustainable. Therefore, researchers are finding alternative technology to under 

such task more efficiently and guarantee rapid and non-destructive detection of early bruise damage. 

Research findings have reported pomegranate fruit to respond physiologically to bruise damage [339]. 

Some of the changes associated with bruise damage include increased peel electrolyte leakage (PEL), 

higher browning score and increased polyphenol oxidase (PPO) enzyme activity. The incident of high 

respiration rate after undergoing bruise damage has also been reported [339]. Physico-chemical 

changes such as the changes in total soluble solids (TSS), titratable acidity (TA), Brix-to-acid ratio 

(TSS: TA) and Brim A have also been observed after fruit are exposed to bruising [339]. There have 

been numerous studies evaluated such quality attributes nondestructively using spectroscopic analysis 

[11, 295, 324]. However, spectroscopic assessment by a spectrophotometer has a drawback as 

compared to an imaging approach, this is because it measures a relatively small area of the sample of 

interest. With the development of optical sensors, research has witnessed the emergence of the 

hyperspectral imaging system. 

Hyperspectral imaging (HSI) system is a dynamic technology that is now being used for non-

destructive inspection in the agricultural, biosecurity and food domain. HSI is a non-invasive/ 

nondestructive technique that merges spectroscopy and imaging into one system [48, 342, 343]. It is 

developed by creating images from more than one spectral component of the electromagnetic 

wavelength from the same region of an object and at the same scale [54]. Extracted data (hypercubes) 

from HSI systems are 3-dimensional (3D) structures and they consist of two spatial and one spectral 

dimension [48, 328] which provides more reliable diagnostic data than traditional machine vision or 

spectroscopy techniques in analyzing the characteristics of objects. 

HSI combines with machine learning algorithms for data analysis and model development [112, 344]. 

Particularly for object image identification and recognition in the postharvest industry, several deep 

learning methods have been explored for fruit quality analysis [114, 345, 346]. For most applications, 

the Convolutional neural networks (CNN) is preferred in most state-of-the-art computer vision tasks 

over traditional deep learning algorithms such as Multilayer Perceptron (MLP), Linear Regression 

(LR), Random Forest, Support Vector Machine, etc. [114, 344, 347]. One challenge of CNN is its 
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tendency to take long to train model due to complexity of input data and often requiring high 

computation power resources [347, 348]. The MLP on the other hand, has shown to provide excellent 

results in some classification problems[145, 235, 346]. The MLP method employed in this study, is an 

ANN based system, that consist of simple processing units called neurons. They work on the 

relationship between a set of inputs and outputs by updating internal interconnections called weights 

using the back-propagation algorithm. Some of its advantages includes ability to work with nonlinear 

data, robustness, trainability and generalization of data, lower test time [346, 349]. Typical, an MLP 

network is composed of a set of source nodes as input layer, one or more hidden layers of computation 

nodes, and an output layer of nodes [350]. Non-destructive technique have found application in 

different fruit defects, bruise and disease detection studies [19, 142]. Particularly for bruise detection, 

several studies have been investigated, Examples includes apples [89, 101, 185], strawberries [177, 

351], blueberries [147, 352], peaches [205], kiwifruit [199], pears [206, 208], jujube [194], cucumbers 

[353], and so forth. Studies on time of bruise could provide vital information that allows bruised fruits 

to be sorted and graded more effectively. It could also be crucial in monitoring the development of 

bruise damage as it makes damage fruits prone to infections [130, 185]. For example, Ferrari et al. 

[185], developed PLS-DA models for discriminating time of bruise incidence on ‘Pink Lady’ apple 

fruit dataset, input data were considered in three classes i.e., recent bruises (day1), day 3, and day 6 

after bruising. The authors achieved classification results of 91.33%, 91.27% and 98.44% for day 1, 

day 3 and day 6 after bruising respectively. Thereby proving the efficacy of HSI in distinguishing 

bruise time and development. Another author in a different study also distinguished apple fruit time of 

bruise occurrence [354]. Results showed the model achieved higher accuracy when classifying older 

bruise (3days after) than first day (1h) after bruise. The study demonstrated hyperspectral imaging 

system developed in the spectral region of 400 and 1000 nm was effective in the early detection of 

bruises on ‘McIntosh’ apples. 

These studies all recommended HSI as a promising tool for non-destructive application for bruise 

damage diagnosis. However, pomegranate possesses a different challenge for bruise detection due to 

its thick peel. To the best of our knowledge, no study has attempted to investigate early bruise detection 

on pomegranate fruit using hyperspectral imaging. Therefore, the aim of this research is to investigate 

the potential of a hyperspectral imaging system to be employed for early detection of bruise damage 

on pomegranate fruit and to verify the ability of the system to discriminate recent from old bruises. To 

carry out this study, we explore three specific objectives: (1) To develop classification model to 

distinguish bruised and healthy (unbruised) fruit, (2) To investigate the effect of spectral range on 

classification model accuracy and (3) To identify the effect of full image data (WF) and region of 

interest (ROI) of exported spectral data on model classification accuracy. 
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4.2. Materials and Methods 

4.2.1. Fruit procurement and sample preparation 

In this study, pomegranate fruit (cv. Wonderful) of commercial harvest maturity was procured from 

Sonlia pack-house in the Western Cape region, South Africa. Sample pomegranates of average weight 

of 280 ± 45g were individually sorted, washed and stored at 7.0 ± 1°C and 90 ± 2% RH, which is the 

recommended storage condition for optimum storage of pomegranate fruit [11]. A total of 60 

pomegranate fruit without visible surface defects were selected from the prepared samples. The fruit 

samples used were of average TSS values of 16.36± 1.05 °Brix, and TSS/TA of 10.08± 2.13%. 

4.2.2. Bruise simulation 

Samples were split into two groups of 30 samples, Group A representing dropping induced bruising 

level, 60 cm, and Group B, unbruised. Simulated drop impact bruise was carried out according to 

Hussein et al. [339]. Samples from Group A were dropped from 60 cm height and allowed to fall on 

ceramics surface once before being caught (Figure 4.2). Bruise damage was created on the middle 

(sideways) around the equatorial region of the fruit. Considering that samples were fruit of the same 

average size. Impact energy (Ei, mJ) absorbed by the dropped fruit for each drop height was calculated 

using equation 4.1: 

𝐸𝑖 = 𝑚𝑔ℎ                                                                                                                                           (4.1) 

Where m is the mass of each individual pomegranate fruit, g is the gravitational constant, and h is the 

drop height. The calculated average impact energy was 680 mJ. 

 

Figure 4.2. Bruise simulation set up. picture of pomegranate fruit sample under drop impact bruise 

from 60 cm height (a) fresh unbruised fruit sample (b) fruit placed at 60 cm drop height (c) bruised 

fruit sample after fruit dropped under free fall due to gravity. 

4.2.3. Hyperspectral image acquisition system 

To investigate the effect of spectral range on classification model accuracy, samples were scanned 

using two different hyperspectral imaging cameras: HySpex VNIR-1800 camera and HySpex SWIR-

384 camera (NEO; Norsk Electro Optikk, Norway). Both sets of cameras are installed together, and 
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imaging of sample is carried out simultaneously at the Central Analytical Facility (CAF) Vibrational 

Spectroscopy Unit at Stellenbosch University (Figure 4.3a). 

Prior to undergoing imaging of the samples, the system was set up as follows. The distance between 

sample and camera was set to 20.5 cm; the grey standard was fixed at 68 mm from above the spectral 

ranges from 400 to 1000 nm and 950 to 2500 nm for the VNIR and SWIR cameras, respectively. The 

SWIR camera has 384 spatial pixels and 288 spectral wavebands with a spectral interval of 6 nm. The 

VNIR camera has 1800 spatial pixels and 186 wavebands with a 3.26 nm spectral interval. The cameras 

were mounted above a translation stage which has a speed regulation system. A 30 cm focal length 

lens with a field view of 9.470 cm (SWIR) and 9.733 cm (VNIR) were used. Reflectivity reference 

data were obtained for each fruit. Hence, each image was obtained as a three-dimensional image block 

(x, y, λ), including 1800 × y pixels on the space dimension (x, y), and 128 bands at 3.26‐nm intervals 

within a range of 400 to 1000 nm on the spectral dimension (λ). The camera specifications for both 

equipment is elaborated and compared in (Table 4.1).  

Sample imaging was carried out on 1st day, 7th day and 14th day after simulated bruising to evaluate 

the ability of the hyperspectral imaging to discriminate the different days after bruising. After imaging 

on the different days, samples were returned to the cold room and stored at 7.0 ± 1 °C and 90 ± 2% 

RH. 

 

Figure 4.3. Pomegranate fruit sample under scanning using a hyperspectral imaging system (a) Set up 

of image acquisition from two line scanning hyperspectral imaging cameras combined; HySpex VNIR-

1800 camera and the HySpex SWIR-384 camera (NEO; Norsk Electro Optikk, Norway) (b) Schematic 

of hyperspectral imaging system: consisting of a CCD camera, a Spectrograph with a standard C-

mount zoom lens, a halogen lighting unit, a white nylon fabric tent, and a PC supported with image 

acquisition software.
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Table 4.1. Summary of hyperspectral imaging system, comparison of SWIR and VNIR camera 

specifications 

 

 

Samples were placed with the top end facing the hyperspectral imaging system to ensure that the bruise 

impacted surface is captured. The acquisition time of one scan of the fruit surface for VNIR and SWIR 

cameras was less than one minute. The whole hyperspectral imaging set-up was controlled by PC 

supported with HySpex software for spectral image acquisition, binning, and camera and motor 

control. 

4.2.4. Hyperspectral image calibration 

Raw acquired hyperspectral images are usually impacted by uneven intensity distribution of the light 

source and dark current in the charge coupled device (CCD) detector, to minimize this effect, image 

correction was performed using known true spectral information. Eqn. (2) provides the formula for the 

image correction. 

𝜌𝑥𝑦(𝜆) = 𝜌𝑟𝑒𝑓(𝜆)
𝑅𝑥𝑦(𝜆)−𝑅𝑑𝑎𝑟𝑘(𝜆)

𝑅𝑟𝑒𝑓(𝜆)−𝑅𝑑𝑎𝑟𝑘(𝜆)
                                            (4.2) 

where ⍴ref(λ) is the reflectivity of the 50% grey calibration plate (Zenith Polymer® Reflectance 

standard; SphereOptics GmbH, Germany); Rxy(λ) is the original uncorrected hyperspectral image; 

Rref(λ) the image of the calibration board and Rdark(λ) is the completed black image collected after 

turning off the light source and ⍴xy(λ) the spectra of the corrected image. 

Main specifications SWIR VNIR 

Spectral range 930 – 2500 nm 400 – 1000 nm 

Spatial pixels 384 1800 

Spectral channels  288 186 

Spectral sampling 5.45 nm 3.26 nm 

FOV* 16° 17° 

Pixel FOV across/along* 0.73/0.73 mrad 0.16/0.32 mrad 

Bit resolution 16 bit 16 bit 

Noise floor 150 e- 2.4 e- 

Dynamic range 7500 20000 

Peak SNR (at full resolution) >1100 >255 

Max speed (at full resolution) 400 fps 260 fps 

Power consumption 30 W 30 W 

Dimensions (l-w-h) 38 – 12 – 17.5 cm 39 – 9.9 – 15 cm 

Weight 5.7 kg 5.0 kg 

Camera interface CameraLink CameraLink 
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The system operation and image acquisition were carried out using ‘Breeze’ software (version 

2021.1.5, Umeå, Prediktera, Sweden) installed on a computer running the Windows 10 operating 

system. The acquired images were corrected with a 50% grey reference (Zenith Polymer® Reflectance 

standard; Sphere Optics GmbH, Germany) and a dark reference. The corrected images were imported 

into Breeze software version 2021.1.5 (Prediktera, Umeå, Sweden) and converted to absorbance. The 

Breeze version 2021.1.5 and Evince version 2.7.13 software (Prediktera, Umeå, Sweden) were used to 

extract spectral information, select effective wavelengths, minimize irrelevant information including 

noise and background signal caused by random interference. Subsequent hyperspectral data processing 

was implemented on the Image Processing Toolbox™ Hyperspectral Imaging Library in MATLAB® 

(The MathWorks, Inc., Natick, Massachusetts, United States). 

4.2.5. Explorative analysis using PCA 

The original hyperspectral image of the pomegranate fruit obtained from the hyperspectral cameras 

(Figure 4.3a). It follows the steps of; reflectance calibration, data reduction and noise/stage background 

removal (Figure 4.3b). PCA analysis is one of the most efficient methods for dimensional reduction in 

hyperspectral image analysis [182]. It enables contextualizing the obtained data by finding the 

dominant spectral data from the captured image (Figure 4.4). 

Figure 4.4 A plot of principal component analysis (PCA) coefficients vs wavelength of the SWIR HS 

image. 
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4.2.6. Selection of effective wavelength images 

To perform optimal wavelengths selection, we propose a novel method, the noise-whitened Harsanyi–

Farrand–Chang (NWHFC) method. The NWHFC is a virtual dimensionality (VD) approach developed 

from the Neyman–Pearson detection theory-based thresholding methods [355, 356]. The NWHFC is 

an improvement on the Harsanyi–Farrand–Chang (HFC) method, with an inclusion of noise estimation 

that decorrelates noise with signal sources for improved signal detection [355, 356]. For each sample, 

the number of spectrally distinct endmembers were estimated using the noise-whitened Harsanyi–

Farrand–Chang (NWHFC) and the corresponding bands were identified using PCA method (Figure 

4.5 and 4.6) for dimensionality reduction. 

Figure 4.5, top row, displays the first five spectral bands of the original data of unbruised fruit. 

Variability is not significant both between bands and spatially on the fruit surface. Figure 4.5, bottom 

row, shows the same fruit seen with the identified five informative bands. Clearly, differentiations 

comes both spatially and spectrally with the informative bands. The same informative bands used on 

a fruit that was bruised by dropping from 60 cm height is shown in Figure 4.6. The accentuation of the 

bruise mark in the bottom raw (viewed with the informative bands) is apparent. The residences of the 

five effective bands are shown as vertical dashed line on the class mean spectra of the two cameras. 

 

Figure 4.5 Display of the first 5 spectral bands in the input data cube (top row) and the five most 

informative bands (bottom row) of a typical pomegranate fruit without bruise 
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Figure 4.6 Display of the first 5 spectral bands in the input data cube (top row) and the five most 

informative bands (bottom row) of a typical unbruised pomegranate fruit. 

 

For each fruit, ROI and whole fruit surface (WFS), averaged reflectance values at the five effective 

wavelengths were obtained and used as training data for the classification model development. 

Selecting out the informative bands and disregarding the redundant bands considerably decreases the 

data size for the subsequent classification model development. A more compact classification model 

was obtained by the data dimensionality reduction as described. 

Some differences are observed between pomegranate fruit bottom and its surface as the fruit is not flat, 

this usually results in slight variations on the measured sample spectra. The magnitude of this variation 

depends on the individual sample involved. Internal chemical composition of some samples may result 

in greater variation. However, to eliminate this fluctuation, the standard normal variable (SNV) 

transformation was applied for spectral preprocessing. The SNV reduces disturbance in spectral data 

by correcting spectra with the mean and standard deviation of each spectrum [103]. After the 

explorative PCA analysis, the average spectra of each sample were extracted and saved separately for 

classification model development. 

4.2.7. Data processing and analysis 

Supervised classification models based on a two-layer feed-forward artificial neural network (ANN), 

with sigmoid hidden and softmax output neurons was used to classify inputs into two target (for bruise 

detection) and three target (bruise severity) categories. The ANN learning system attempts to imitate 

the neurological processing of human beings in its computational technique [50, 357]. It simulates 

human intuition in its decision-making system and classifying permutations. Its ability to learn and 
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make a generalize decision on the behavior of any complex and nonlinear process makes it stand out 

as a powerful modeling tool [50, 358]. The network splits data into training set (70%), validation (15%) 

and test set (15%). Reflectance data for each selected wavelength was used as out input data to the 

neural network for training, validation and test data set of the classification model. The input data is 

designated as the variable (X), while the target/class is the variables (Y). Target class (Y) must 

correspond in rows as the input variables (X). To achieve this, a dummy binary-coded matrix of equal 

rows as the X was created. In this study, for the case of bruise detection, 2-column response matrix Y 

was introduced in which samples belonging to the first class (bruised) were described by the dependent 

vector [1 0] while the (No bruise) class were represented by the vector [0 1]. In the case of a combined 

days after bruise, a 3-column matrix was generated with the first class immediate after bruise described 

by [1 0 0], day 7 after bruise [0 1 0], and day 14 after bruise [0 0 1], respectively. Classification was 

accomplished by using the machine learning and deep learning functions in MATLAB. Classification 

performances were evaluated based on its overall classification accuracy for training set, test set and 

validation set as well as class error. A good model should possess high classification accuracy and 

low-class error. A model with a 100% classification accuracy means that the model made no 

classification error. 

4.3. Results and discussions 

4.3.1. Spectral Analysis 

In this study, to investigate the effect of spectral extracted from the entire fruit surface (WFS) and that 

of a specified region of interest (ROI) on model classification accuracy, spectral data from the two 

different portions of the imaged fruit sample were utilised for classification model development. The 

spectral profiles for both the ROI and the entire fruit surface for the two different cameras (spectral 

range) are shown in Figure 4.7a -4.7d. 
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Figure 4.7. Representative reflectance spectra of ROIs data (a) VNIR and (b) SWIR wavelength 

regions and whole fruit surface (c) VNIR and (d) SWIR, for bruised and sound samples of 

pomegranate fruit. 

 

The spectral of the ROI (Figure 4.7a and 4.7b), showed a distinctive difference between bruise and 

sound sample as compared to that of the entire fruit surface (Figure 4.7c and 4.7d). This indicates that 

spectral was more informative of the precise region of the fruit as compared to spectral of the entire 

fruit surface. Though, a slight difference between bruised and sound sample is still noticed on this 

spectral profile of the extracted whole fruit data. 
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Also, the average spectra of ROIs as well as full fruit surface representing bruises at different stages 

(unbruised, immediately (day1), 7days, and 14 days) were illustrated (Figure 4.8) for ROI and (Figure 

4.9) for whole fruit surface (WFS). The reflectance from bruised surface was consistently lower than 

that from the normal tissue over the entire spectral region. This observation has been made by several 

researchers [101, 147, 354]. This decrease of reflectance of bruised tissue can be attributed to the fact 

that there is an outflow of water from the surface of the sample that have been bruised [101, 182]. 

 

Figure 4.8. The average spectra of ROIs representing bruises at different stages; unbruised, 

(immediately(day1), 7days, and 14 days) data (a) VNIR and (b) SWIR wavelength. 

 

Reflectance spectral for bruised samples for the different days after bruise regime as well as unbruised 

samples is also shown in Figure 4.8a (VNIR spectral range) and Figure 4.8b (SWIR spectral range). 

for ROI, and that of the whole fruit surface spectral range (WF) Figure 4.9a (VNIR spectral range) and 

4.9b (VNIR spectral range). It can be observed that the lower spectral was observed for the samples 

immediately after bruise damage (red). Since early bruise detection is our main concern, the figure 

illustrates the system can detect bruises at this stage, proving it could detect even for later period as 

well. 
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Figure 4.9. The average spectra of entire fruit surface (WFS) representing bruises at different stages 

unbruised, (immediately(day1), 7days, and 14 days) data (a) VNIR and (b) SWIR wavelength 

 

It is obvious that the spectral signature difference between the bruised and sound samples immediately 

after bruise is of key importance. Spectral curve shows the highest difference in reflectance between 

the bruised and unbruised tissue in the SWIR wavelength region (Figure 4.9b), as compared to the 

visible region (Figure 4.8a). Similar trend was observed in apple bruise detection [354] as well as 

blueberry bruise detection [147]. Both authors reported that this difference in these wavelengths is 

caused by the outflow of water from the bruised tissues in the first period after damage. 

4.3.2. Optimal classification model performance for VNIR camera 

Table 4.1 summarizes the classification accuracies for the different spectral ranges, days of bruise 

occurrence and the fruit area surface considered. For the VNIR spectral range, the model showed good 

classification accuracy ranging from 83.3% – 90% on the first day of impact bruise (Figure 4.9). The 

ANN classifier recognized sound fruit 90% better than the bruised samples 86.7% for the ROI and 

83.3% for the WF pixel (Figure 4.9a and 4.9b). The recognition accuracy increased as bruise stayed 

beyond the first day (Appendix A1). For day 7 and day 14 after bruise, under the ROI pixel, model 

made 100% accuracy for sound samples and only wrongly classified 1 sample of the bruised sample. 

For the WF surface, accuracy was 96.7% for sound samples and 90% for bruised samples for day 7 

and 100% for day 14 after bruise damage. Similar trend was observed in the study on apple [95]. The 

authors reported recognition to increase from 1 min after bruise (87.04%) to an accuracy of 98.15% 

after day 4 of bruising. Fu and Wang, [206] reported an increase in recognition accuracy from 86.67% 

immediately after bruise to 96.67% 3 days after bruising. Zhu & Li [95] employed PLS-DA algorithm 

for rapid detection of apple bruises and reported bruise development resulting increased recognition 

accuracy from 86.11% immediately to 97.22% after 4days of bruising. 
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The results from the ROI were slightly higher than those when the whole fruit (WF) surface was used. 

Under WF as input data, model yielded an accuracy of 96.7% for sound samples and 90% for bruised 

samples. Similar trend is reported for Golden Delicious apple [185]. The authors applied the whole 

signal and recognition rate was 64.23% and when an interval of 10 was considered, accuracy increased 

to 92.2%. Higher classification accuracy was obtained for the early detection of bruises on ‘McIntosh’ 

apples for older bruises as compared to recent ones [354]. 

4.3.3. Optimal classification model performance for SWIR camera 

The summary of classification model performance for the SWIR spectral range is given in Table 4.2. 

On the first day of bruise damage, under the region of interest, model accuracy ranged from 83.3-

86.7% and 80-83.3% for the WF. The confusion matrix (Figure 4.10a and 4.10b) illustrates how model 

correctly or incorrectly classified bruised and sound sample on immediately after impact bruise 

damage. Under the ROI input data, Of the total samples 30 sound samples, model recognized 26 as 

sound, and wrongly group 4 samples as bruised (Figure 4.10a), yielding an accuracy of 86.7%, a lower 

recognition rate was observed for the bruised samples (83.3%) as model correctly classified 25 of the 

30 samples as bruised and 5 as sound sample. For the WF surface, recognition accuracy was 80% for 

bruised sample and 83.3% for sound samples (Figure 4.10b). The model performance of the SWIR 

spectral range was slightly lower than that of the VNIR input spectral. when spectral data from the 

entire fruit surface (WF) was considered. The model had correctly classified sound and bruised 

samples at 90% and 83.3% respectively under the VNIR spectral range, while for the SWIR spectral 

data, recognition accuracy for both sound and bruised samples were 83.3% and 80% respectively 

(Figure 4.10b). 

For the model after 7th days after bruising, accuracies ranged from 93.3% to 100% for both spectral 

ranges under consideration which is an improvement compared to that of day 1 (Table 4.3). For both 

spectral ranges, data from the ROI showed 100% accuracy for sound samples, for bruised samples, 

accuracy was 96.7% for VNIR spectral range and 93.3% for SWIR spectral range when the ROI was 

considered. The results were slightly lower when the entire fruit surface was used. Under WF as input 

data, the model yielded an accuracy of 96.7% for sound samples and 90% for bruised samples for 

VNIR data and 93.3% accuracy for both sound and bruised samples for SWIR data. A full confusion 

table is presented in Appendix A1 and A2. 
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The trend shows that model classified samples better as bruise developed, also VNIR spectral data  

Figure 4.10. Confusion matrix for the independent test set on the VNIR spectral data immediately after 

bruise damage. ROI (4.10a), WF (4.10b). The x axis refers to the true categories, and the y axis refers 

to the classifier outputs. The integers in the matrix show a number of samples. The color encodes the 

percentage of a class of blocks (x) classified into a predicted class (y). 

 

Table 4.3 presents the overall performance accuracy of the classification model for the different days 

of bruise detection on pomegranate fruit. It shows clearly that the highest recognition accuracy 

achieved immediately after bruising is 88.3%, the average increased to 98.3% a week after bruise 

damage, after 14 days of bruising, model achieved a 100% accuracy. 

Baranowski et al. [133] also reported better model accuracies for the VNIR input data (90%) than the 

SWIR input (85%) in their study on apple. Model consistently showed slightly better recognition 

accuracy for sound fruit classification over bruised samples. This trend is observed in a similar study 

on strawberry [351]. The authors obtained the highest classification accuracy of 99.9% for healthy 

samples and 86.1% for bruised samples. 
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Figure 4.11. The confusion matrix obtained of the classification performance for SWIR spectral data 

immediately after bruise damage. ROI (4.11a), WF (4.11b); The x axis refers to the true categories, 

and the y axis refers to the classifier outputs. The integers in the matrix show several samples. The 

color encodes the percentage of a class of blocks (x) classified into a predicted class (y). 

 

4.3.4. Classification model performance for combined data for bruise detection 

Table 4.4 presents the results for the combined data of the bruised samples on the different days after 

bruising. Figure 4.12 illustrates the confusion matrix of the classification based on the ANN model. 

For both VNIR and SWIR spectral ranges, the highest accuracy achieved was 86.7% and 83.3% 

respectively for the 14th day after bruising. Bruise recognition on the first day was poor 53.3% for 

SWIR and 60% for VNIR, of the 30 samples bruised on first day, model classified 16 samples 

accurately, misplaced 12 samples as bruised on the 7th day and 2 wrongly classified as bruised on the 

14th day (Figure 4.12b). 

Figure 4.12. Summary of confusion matrices from test data illustrating model performance for the 

combined days after bruise for the 50 by 50 region of interest for both SWIR and VNIR input data (a) 

SWIR classification performance (b) VNIR classification performance. 
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Table 4.2: Classification result of test data set of ANN model for distinguishing sound (NB –not bruised) and bruised (BR) tissues based on VNIR and 

SWIR reflected for the extracted (ROI) and the image of whole fruit surface of fruit samples 

Day 1  SWIR    VNIR    

 Sample 

number 

Correctly 

classified 

Misclassified Accuracy 

(%) 

Sample 

number 

Correctly 

classified 

Misclassified Accuracy 

(%) 

ROI Sound 30 26 4 86.7 30 27 3 90 

 Bruised 30 25 5 83.3 30 26 4 86.7 

WF Sound 30 25 5 83.3 30 27 3 90 

 Bruised 30 24 6 80 30 25 5 83.3 

          

DAY 7          

 SWIR VNIR 

 Sample 

number 

Correctly 

classified 

Misclassified Accuracy Sample 

number 

Correctly 

classified 

Misclassified Accuracy 

ROI Sound 30 30 0 100 30 30 0 100 

 Bruised 30 28 2 93.3 30 29 1 96.7 

WF Sound 30 28 2 93.3 30 29 1 96.7 

 Bruised 30 28 2 93.3 30 27 3 90 

DAY 14          

 SWIR VNIR 
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 Sample 

number 

Correctly 

classified 

Misclassified Accuracy Sample 

number 

Correctly 

classified 

Misclassified Accuracy 

         

ROI Sound 30 30 0 100 30 30 0 100 

 Bruised 30 29 1 96.7 30 30 0 100 

WF Sound 30 30 0 100 30 30 0 100 

 Bruised 30 28 2 93.3 30 30 0 100 
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Table 4.3. Overall performance of the test data of classification model for the different days of 

bruise detection on pomegranate fruit using the ANN algorithm 

 

Bruise days Wavelength Accuracy (%) 

ROI WF 

Immediately (Day1) SWIR 85 81.7 

 VNIR 88.3 86.7 

1 week after (Day7) SWIR 96.7 93.3 

 VNIR 98.3 93.3 

2 Weeks after (Day14) SWIR 98.3 96.7 

 VNIR 100 100 

 

 

Table 4.4. Combined performance of the classification model for the different days of bruise 

detection on pomegranate fruit using the ROI data 

 

 

Figure 4.10 shows a plot of overall classification accuracies against the different days of bruise 

development (immediate, 7days and 14 days). As can be observed, detection on day one was 

88.3% for ROI and 86.7% for the WF input under the VNIR spectral range. Though slightly 

lower, the SWIR spectral range also obtained relatively similar accuracy, with model yielding 

85% for the ROI and 81.7% for the WF. 

 

Days of bruising 

Combined model classification performance  

Wavelength Sample number Accuracy (%) Class error (%) 

Day 1 SWIR 

VNIR 

30 

30 

50 

53.3 

50 

46.7 

Day 7 SWIR 

VNIR 

30 

30 

73.3 

73.3 

26.7 

26.7 

Day 14 SWIR 

VNIR 

30 

30 

76.7 

86.7 

23.3 

13.3 
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Figure 4.13. Chart showing different recognition accuracies for the model developed for the different 

days after bruise, for (a) VNIR spectral range, (b) SWIR spectral range. 

 

This result gradually increased as we moved from day 7 up to day 14, indicating as bruise 

developed, model was able to accurately detect bruise presence. This finding has been reported 

on other application for different fruits [99, 206]. The difference studies show initial high 

accuracy for early detection, thereby indicating the hyperspectral imaging system can be 

utilized as non-destructive testing technique. 

 

4.4 Conclusions 

The results confirm hyperspectral imaging technique combined with machine learning methods 

(ANN) to be an effective technique for early bruise detection. Both image surfaces considered 

showed bruise can be detected in early stage of bruising with an accuracy of 88.3%. The overall 

highest classification accuracy achieved was 100% during the 7th and 14th day after bruising. 

The model accuracy increases with the increase in days of bruise occurrence. Overall accuracy 

on first day of bruise occurrence was 90%. Both methods of data extraction are good enough 

to detect the early bruise damage which is invisible to the naked eye. This study presents a 

feasibility in the early bruise detection of pomegranate fruit using the hyperspectral imaging 

technique. Although this paper focused on pomegranate bruise development inspection, the 

techniques employed for data extraction and manipulation presented in this study are easily 

adaptable and can be suitable to other food applications. 

Accuracy of prediction of classification can be improved by increasing the number samples. In 

this study 30 samples were scanned per class (no bruise, dropped from 60 cm or dropped from 

100 cm). Hence, a total of 90 samples were scanned. This amount is in the range most previous 

studies have reported. Lab scale HS imaging system is costly and time-consuming and doing 
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such experiment in replicates is a challenge. To augment this bottleneck, this research 

implemented data dimensionality reduction by using effective wavelength selection technique.   
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CHAPTER 5 

 

 

Vis-NIR and SWIR hyperspectral imaging method to detect bruises in pomegranate 

fruit 

 

 

Abstract 

Fresh pomegranate fruit is susceptible to bruising, a common type of mechanical damage 

during harvest and at all stages of postharvest handling. Accurate and early detection of such 

damages in pomegranate fruit plays an important role in fruit grading. This study investigated 

the detection of bruises in fresh pomegranate fruit using hyperspectral imaging technique. A 

total of 90 sample of pomegranate fruit were divided into three groups of 30 samples, each 

representing purposefully induced pre-scanning bruise by dropping samples from 100 cm and 

60 cm height on a metal surface. The control has no pre-scanning bruise (no drop). Two 

hyperspectral imaging setups were examined: visible and near infrared (400 to 1000 nm) and 

short wavelength infrared (1000 to 2500 nm). Region of interest (ROI) averaged reflectance 

spectra was implemented to reduce the image data. For all hypercubes a principal components 

analysis (PCA) based back-ground removal were done prior to segmenting the region of 

interest (ROI) using the Evince® multi-variate analysis software 2.4.0. For each sample, the 

number of spectrally distinct features were estimated using the noise-whitened Harsanyi–

Farrand–Chang (NWHFC) method implemented in MATLAB, and the corresponding bands 

were identified using PCA method. A two-layer feed-forward artificial neural network (ANN) 

is used for classification. The accuracy of bruise severity classification ranged from 80 to 

96.7%. When samples from both bruise severity (Bruise damage induced from a 100cm and 60 

cm drop heights respectively) cases were merged, class recognition accuracy were 88.9% and 

74.4% for the SWIR and Vis-NIR, respectively. This study implemented the method of 

selecting out informative bands and disregarding the redundant ones to decrease the data 

dimensionality. This study demonstrated the potential of using hyperspectral imaging 

technology in sensing and classification of bruise severity in pomegranate fruit.  
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5.1. Introduction 

Pomegranate (Punica granatum L.) is undeniably one of the most ancient deciduous fruit in the world 

[4, 169, 264]. With its origin traceable to the Middle East, it has expanded and is now been grown 

across the world, even meeting commercial export in South Africa [270, 338]. Pomegranate fruit can 

be consumed as fresh arils or in its processed form such as juice, dried arils, jams, etc. In the past 

decades, the demand for pomegranate fruit has been increasing due to its nutritional and health benefits 

[2, 3, 264]. It has been recounted to be highly effective for preventing inflammatory diseases and 

induces anti-proliferative and antimetastatic side effects in human [169]. 

Bruise is the most common type of postharvest mechanical injury affecting pomegranate fruit [261, 

262]. Bruise reduces fruit quality and causes considerable post-harvest losses and decreases the income 

[239, 333, 335]. Bruise usually results when the fruit is subjected to high impact and vibration [34, 

261, 333]. Bruise damage normally manifest when the outer tissue of the fruit fails without rupturing 

due to excessive mechanical stress [239, 334, 335]. Studies show that most bruises occur during 

harvest and transportation to the packhouse and during handling in the packaging processing line. 

Studies has shown the detrimental effect of bruise on the physical and biochemical quality of 

pomegranate fruit [335, 340]. The economic losses in the fruit and vegetable industry due to bruising 

is substantial [34, 341]. In the pomegranate industry, bruise damage reduces the market value 

considerably and causes a huge economic loss [261, 262], as bruised fruits do not meet export quality 

and are devalued at marketplace. 

Unlike other fruit with soft tissues and thin rind/peel such as apples and pear, early detection of 

bruises on pomegranate fruit is difficult due to the tough and leathery skin of this fruit [332]. Bruise 

on pomegranate fruit is only visible long after the impact [326]. Typically, in the industry, bruises are 

identified through visual inspection by trained panels or line operators and removed manually. This 

approach for bruise diagnosis is laborious, time consuming and subjective. Therefore, there is a need 

for alternative technology for a rapid and non-destructive detection of early bruise damage. Study 

shows that pomegranate fruit responds physiologically and in some physico-chemical changes when 

they undergo bruises. This is indicative in the changes in total soluble solids (TSS), titratable acidity 

(TA), Brix-to-acid ratio (TSS:TA) and BrimA when exposed to bruising [326]. Spectroscopic analysis 

is gaining widespread research attention because of its ability to extract this huge chemical information 

content for predicting and analysis of this samples [342]. 

There have been different imaging and feature extraction approaches for fruit bruise detection and 

measurement [359–362]. The shortcoming with most of these approaches is the need for wider spectral 

range [342]. Spectroscopic assessment for fruit quality gained attention in research as viable 

nondestructive technique for quality attributes and grading [11, 290, 363]. Other imaging techniques 
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that have been applied for bruise detection in recent times include X-ray [326], Thermal imaging (TI) 

[362], Magnetic resonance imaging (MRI) [364], Fluorescence imaging (FI)[183, 365] as well as 

hyperspectral imaging [366, 367]. 

Hyperspectral imaging (HSI) has emerged as a powerful non-destructive inspection technique in the 

agricultural, biosecurity diagnostic and food domain recently. HSI is a non-invasive/ nondestructive 

technique that integrates spectroscopy as well imaging to form one system [343]. It is developed by 

creating images from more than one spectral component of the electromagnetic wavelength from the 

same region of an object and at the same scale[54]. The data extracted (hypercubes) from HSI systems 

are 3-dimensional (3D) structures that consist of two spatial and one spectral dimension[48, 328]. This 

non-destructive approach has been proposed for detections of different fruit defects [19, 142]. It has 

been employed for disease detection [39, 166], common defects [14, 202, 368, 369], physical damage 

[102], and in particular for bruise detection [99, 100, 182, 186]. Some of the specific fruits that have 

been investigated for bruise damage includes; apples [101, 185, 205], strawberries [177, 351], 

blueberries [147, 352], peaches [205], kiwifruit [199], pears [206, 208], jujube [194], cucumbers [353], 

and so forth. These studies reported successes in accurate classification of bruise severity suggesting 

the potential of implementing the technique. However, there has been no known study reported on 

bruise detection on pomegranate fruit. It is expected that for the different fruit texture, peel type and 

morphology, and the different causative factors to bruises on fruit, it is still difficult to decide exactly 

the most suited hyperspectral system to deploy for detection of bruises on pomegranate fruit. This 

study seeks to explore this novelty to detect and classify bruise and level of bruise severity on 

pomegranate fruit. 

5.2. Materials and methods 

5.2.1. Fruit procurement and sample preparation 

In this study, pomegranate fruit (cv. Wonderful) was procured from Sonlia pack-house in the Western 

Cape region, South Africa. Sample pomegranates were individually washed and stored at 7.0 ± 1°C 

and 90 ± 2% RH, which is the recommended storage condition for optimum storage of pomegranate 

fruit [11]. The reference bruising tests, and the subsequent hyperspectral scanning were taken for 

harvest mature pomegranates. The fruit samples used were of average TSS values of 16.36± 1.05 °Brix, 

and TSS/TA of 10.08± 2.13%. 

5.2.2. The reference bruised fruit samples 

Bruise damages were created on the middle (equatorial) region of the fruit by dropping fruit from a 

predefined height onto a steel surface with side of the fruit perpendicular to the metal surface. This 
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experiment follows the previously developed method by Hussein et al. [335] (Figure 4.2). Each 

pomegranate fruit was dropped once from a given height to the metal surface and caught by hand after 

the first rebound to avoid multiple impacts. Following impact tests, fruit were incubated at ambient 

condition (19 – 22 °C, 60 ± 5 % RH) for an hour prior to image acquisition. A total of 90 pomegranates 

were used for this study. Samples were sub-divided into three groups of 30 samples, each representing 

dropping induced bruising level: 100 cm, 60 cm, and no drop (not bruised) (Figure 4.2). Assuming the 

fall was nearly free, impact energies applied on the fruit surface were calculated according to impact 

force from falling object. The calculated average impact energy was approximately 760 ± 0.5 mJ and 

680 ± 0.8 mJ for the falling from 100 cm and 60 cm heights, respectively. 

All data analysis and pre-processing of hyperspectral data is as detailed in chapter 4 materials and 

methods. 

5.3. Results and discussions 

5.3.1. Principal component analysis (PCA) 

One of the very effective ways for dimensional reduction in hyperspectral image analysis is the PCA 

method [103]. It enables contextualizing the obtained data by finding the dominant spectral data from 

the captured image. It follows the steps of; reflectance calibration, data reduction and noise/stage 

background removal (Figure 4.2). 
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Figure 5.1 depicts the averaged spectral of all the samples scanned with the VNIR (Figure 5.1(a)) and 

SWIR (Figure 5.1 (b)) cameras squeezed out using the Evince software (version 2.7.10, Prediktera, 

Sweden). Evince extracted the spatial (horizontal and vertical), and spectral profiles from the image 

display. Each sample fruit exhibited a unique spectral signature based on the sample's composition, 

surface structure, viewing geometry, etc. The assumption is that bruising can create its own signature 

by affecting the surface structure and composition. However, the overall shape (locations of 

wavelength bands where highs and lows) is similar across the electromagnetic spectrum for all samples 

in both cameras. Hence, the classification parameter this study used to identify bruise se-verity and 

presence/absence of a bruise was based on reflectance values at bands than the overall shape of the 

spectra. 

Figure 5.1. Spectral characteristic curves of the SWIRL data. average spectra of the hyperspectral 

images of all samples. 
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Figure 5.2. Class mean spectral of the three bruise severity classes of the VNIR (a) and SWIR (b) 

camera. The vertical dashed lines identified the most informative bands selected by the effective 

wavelength selection technique. 

 

5.3.2. Classification model development for bruise fruit detection 

The test set results for bruise detection classification accuracy of the VNIR and SWIR data are 

summarized on Table 5.1. The results for classification were grouped into three groups or levels of 

severity, group 1 comprised fruit bruised at 60 cm and unbruised fruit, group 2 was made up of samples 

bruised at 100 cm and unbruised samples and finally group 3 which combined the two-bruised fruit 

samples (60 cm vs 100 cm). For bruise severity classification training, each ROI averaged reflectance 

values at the five wavelengths (1 × 5), presented to the classification model, is accompanied by a (1 × 

3) target matrix where each column indicates a category with a one in either element 1, 2, or 3, defining 

the desired network output (no bruising, bruised at 60 cm and 100 cm). On the other hand, the bruise 

classification problem, which is a binary (two-class) problem distinguishing between bruised and 

unbruised samples, is accompanied by a (1 × 2) target matrix where each column indicates a category 

with a one in either element 1 or 2. The ANN pattern recognition algorithm divides the data randomly 

into training (70%), testing (15%) and validation (15%) sets during model development. 
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The effect of the structure of the artificial neural network (number of hidden neurons and random 

division of sample into training, testing and validation sets) on the performance of the classification 

was evaluated using the test set model performance provided by the confusion matrices. Confusion 

matrix is a very popular measure used while solving classification problems and it is used in this paper 

to report the classification performances. For the bruise severity classification which has three classes, 

the confusion matrix is a 3 x 3 and the bruise classification, which is binary, has a 2 x 2 confusion 

matrix. 

5.3.2.1. Classification performance for SWIR camera 

The ANN model accurately discriminated between bruised fruit from unbruised ones (Table 5.1). The 

confusion matrix showing the performance of the model in classifying bruised and unbruised 

pomegranate fruit is shown in Figure 5.3a for severity SI and Figure 5.4a for severity SII for the SWIR 

camera. For the first severity stage SI (60 cm drop height), the model showed an average recognition 

accuracy of bruised samples and unbruised samples to be 76.7% and 90% respectively. The last column 

of the matrix indicates the ratio of the number of correctly classified samples to the number of all the 

total samples classified (Figure 5.3a). In the first column, for a total of 30 bruised samples, 23 were 

correctly classified as bruised while 7 were misclassified as unbruised. In the second column, out of 

the 30 unbruised samples, 27 were correctly recognized as unbruised while only 3 samples were 

misclassified. This yielded an overall classification accuracy of 83.3% and a classification error of 

16.7%. Similar accuracy was obtained by [95]. The authors investigated bruises on apple using HSI. 

The classification model was trained using Adaboost algorithm coupled with Savitzky–Golay and 

MSC preprocessing, model yielded an accuracy of 98.61%. The performance of the second severity 

group is presented (Figure 5.4a). The classification accuracy for this severity level (SII) improved as 

compared to the severity level I (SI). The average recognition accuracy improved from 83.3% (Figure 

5.3a) to 93.3% (Figure 5.4a). The same accuracy was maintained for the unbruised samples, but a 

higher accuracy was obtained as 29 of the samples bruised under 100 cm drop height were rightly 

classified. For the third category, SIII, comprising of samples bruised at 60 cm height (30) and those 

bruised at 100 cm height (30) from both SI and SII respectively were combined, model showed an 

average classification accuracy of 80% (Figure 5.5a). model performance showed high false positive 

and true negative of 8 out of 30 samples for 60 cm drop bruised samples and 4 out of 30 samples for 

100 cm drop bruised samples. This shows model accurately classified SII (86.7%) data as compared 

to SI data (73.3%). 
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5.3.2.2. Classification performance for VNIR camera 

The results for the model recognition accuracy are listed in Table 5.2. Different model accuracy for all 

three cases study is shown (Figure 5.3b, Figure 5.4b and 5.5b). As can be seen from the results, for 

bruise severity category one (SI), the VNIR model slightly outperformed the SWIR model, achieving 

an accuracy of 83.3% and 96.7% for bruised and unbruised samples (Figure 5.3b). The confusion 

matrix shows that for 30 samples bruised from a drop height of 60 cm, 25 were rightly recognized 

while 5 were wrongly classified. The second column indicates that only 1 of the 30 unbruised samples 

was wrongly classified. This resulted in an average classification of 90% and class error of 10%. 

For the case of severity category two (SII), the model showed similar performance to the SWIR, 

achieving an equal average accuracy of 93.3%. Unlike the SWIR, the model misclassified 3 samples 

of 100cm dropped bruise samples out a total of 30 samples and correctly classified 27, achieving a 

90% accuracy and class error of 10% (Figure 5.4b). The study on kiwifruit when applying VNIR-HSI 

system for bruise detection resulted similar low classification error of 14.5% [107]. For the VNIR 

camera, it can be observed that the unbruised samples were always better recognized compared to the 

bruised data, irrespective of the bruise severity. 

Similar trend was observed in several studies on bruising and detection of other defects on pome fruits 

[99][369]. The result indicate that model was able to achieved higher accuracies as the severity 

heightened, this was contrary to findings by [103]. The authors reported lower identification accuracy 

for severely bruised samples. Both cameras performed equally as they both obtained an average 

accuracy of 93.3%. The confusion matrix for model performance for a combined data is presented in 

(Figure 5.5). model showed higher recognition accuracy for SII samples (93.3%) as compared to SI 

(90%). The VNIR data set performed slightly better than the SWIR when both bruised samples were 

grouped together. The average classification accuracy for the VNIR was 91.7% while that of the SWIR 

was 80%. The result indicates that the model was able to recognize the different bruise severity when 

they are modelled against each other. Some of the reasons for model misclassification might be as a 

result of light scattering effect during image data acquisition[103]. The shiny nature of pomegranate 

fruit could have an impact of how light penetrates the fruit during imaging. 

For the third category, SIII, comprising of samples bruised at 60cm height (30) and those bruised at 

100cm height (30) using the VNIR camera (Figure 5.5b). The model showed 90% accuracy in 

classifying samples bruised at 60cm drop height and 93.3% classification for samples bruised from a 

100cm drop height. The overall accuracy of this discrimination between the two-bruise severity was 

91.7%. This means the model could identify bruised samples from unbruised samples as well as detect 

the different bruise severities when grouped together. 
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Figure 5.3. The confusion matrix of the classification performance of the first severity SI case study, 

where samples bruised from a 60 cm drop height (1) and unbruised sample (2) for SWIR (a), and VNIR 

(b) 

Figure 5.4. The confusion matrix of the classification performance of the second severity SII case 

study, where samples bruised from a 100 cm drop height (1) and unbruised sample (2) for SWIR (a), 

and VNIR (b) 
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Figure 5.5. The confusion matrix of the classification performance of the third category (SIII) case 

study, where samples bruised from a 60cm drop height (1) and 100cm drop height sample (2) for 

SWIR (a), and VNIR (b) 

5.3.3. Classification model development for combined data for bruise detection 

Table 6.2 gives the combined classification performance of the ANN model for bruise detection of 

pomegranate fruit. Figure 5.4 illustrates the confusion matrix of the classification based on the ANN 

model. The columns of the matrix refer to the true categories, and the rows refer to the classifier 

outputs. For instance, for the SWIR (Figure 5.6a), of the 30 sample fruits in the first block (60 cm 

drop), 25 were correctly classified as “60 cm drop” 2 were classified as “100 cm drop” and 1 was 

classified as “No drop”. Of the 30 “100 cm drop”, 4 were wrongly classified as “60 cm drop,” 25 were 

correctly classified, and 1 was wrongly classified as “No drop.” Of the 30 “No drop”, all the 30 were 

correctly classified. The bottom row and the extreme-right column of the confusion matrix summarizes 

the performance of the classification model. Accordingly, the overall accuracy of the ANN model in 

classifying the SWIR data was 88.9% (classification error of 11.1%) and for the VNIR data the 

classification accuracy was 74.4% (classification error of 25.6%) (Figure 5.6b). This result agrees with 

the study on blackspot by [370], where they concluded that SWIR achieved better results than VNIR 

data (98.56% against 95.46%). The results of sound samples classified as sound (true positives) (90% 

and 100%), were better than results for bruised samples classified as bruised (83.3%, 70%). This is the 

case for most reported study. [371], reported 93% for non-bruised apples correctly classified and 86% 

accuracy for bruised samples. 

Applying Adaboost algorithm for visual detection of bruises in apple, Zhang and Li [95] observed out 

of the 54 samples of intact apples, 52 was correctly classified and only 2 was wrongly classified 

yielding an accuracy of 96.3%, while for the bruised samples, 87.04% was achieved. 

For jujube bruise detection, Zeng et al. [194] achieved almost 100% accuracy for healthy sample 

detection, in the NIR region, the authors attributed the lower accuracy for bruised samples to (browning 

coloration) of the bruised jujube samples which is similar to the healthy ones and made classification 

difficult. 

Classification accuracies can also be impacted by the state of the sample, at the time of image 

acquisition. [372], compared static and online application of multispectral data. The authors found 

classification accuracies to be higher for the static data (91.5%) as compared to the online (samples in 

motion on a translation stage) (87.3%). 
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Figure 5.6. Summary of confusion matrices obtained for the combined ANN model for both SWIR 

and VNIR input data (a) SWIR classification performance (b) VNIR classification performance. 
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Table 5.1. Summary of results for the different bruise severity of pomegranate fruit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type 

 

 

Spectra range 

Test set  

Sample number Correct 

class 

Incorrect 

Class 

Accuracy (%) 

 

Sound 

(Unbruised) 

SWIR 

 

VNIR 

30 

 

30 

27 

 

29 

3 

 

1 

90 

 

96.7 

 

Bruised at 60cm 

SWIR 

 

VNIR 

30 

 

30 

23 

 

25 

7 

 

5 

76.7 

 

83.3 

 

Bruised at 100cm 

SWIR 

 

VNIR 

30 

 

30 

29 

 

27 

1 

 

3 

96.7 

 

90 

Combined 60cm 

and 100cm 

SWIR 

 

VNIR 

30 

 

30 

22 

 

27 

8 

 

3 

73.3 

 

90 
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Table 5.2. Combined performance of the classification model for bruise severity detection on pomegranate fruit. 

 

 

 

 

 

 

Drop distance (cm) 

Combined test set result for ANN model classification 

Wavelength Sample number Accuracy (%) Class error (%) 

SI SWIR 

VNIR 

30 

30 

83.3 

90 

16.7 

10 

SII SWIR 

VNIR 

30 

30 

93.3 

93.3 

6.7 

6.7 

SI and SII SWIR 

VNIR 

30 

30 

80 

91.7 

20 

8.3 
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5.4. Conclusions 

This study investigates the detection and classification of bruises on pomegranate fruit surface 

using hyperspectral imaging system. The use of VNIR and SWIR cameras were explored. The 

result of the classification accuracy metric indicated that both cameras were able to accurately 

recognize bruised and unbruised pomegranate fruit samples. Both SWIR and VNIR data 

yielded highly accurate classification results ranging from 80% - 96.7%. The overall average 

classification accuracy achieved was 93.3% for model to distinguish fruits dropped at 100cm 

and 90% for fruit dropped at 60 cm height for the VNIR camera. Model performance was 

slightly lowered when both severity cases were combined, and model was able to accomplish 

a recognition accuracy of 80% and 91.7% for both SWIR and VNIR camera respectively. The 

model accuracy increases with the increase in bruise severity (93.3%). This study laid a 

foundation for further development of an in-line inspection system using hyperspectral imaging 

technique for bruise detection on pomegranate fruits. 

While gathering satisfactory datasets is very important, HS imaging tasks are still costly and 

time-consuming. Usually, HS image data sets are not enough for training artificial neural 

networks for classification model development. Using the raw HS image, as is, can easily create 

a high dimensional data that can significantly cause overfitting. To augment this bottleneck, 

this paper implemented data dimensionality reduction by selecting out informative bands and 

disregarding the redundant ones. The study developed a more compact classification model by 

the data dimensionality reduction method. 
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CHAPTER 6 

 

 

Non-destructive assay of internal quality of pomegranate fruit by Vis-NIR 

hyperspectral imaging 

 

 

Abstract 

The demand for high-quality pomegranate fruit is increasing globally, as the fruit has several 

health benefits. Alternative ways to assess fruit quality attributes that are fast, accurate and 

non-destructive are being implemented to meet strict quality control for safety and consumers’ 

satisfaction. This paper evaluated the potential and feasibility of hyperspectral imaging 

technique for measuring quality attributes of pomegranate fruit. Hyperspectral image scanning 

was done by using visible and near infrared (Vis-NIR) (400 to 1000 nm) camera. After 

scanning, samples were crushed to extract the juice and total soluble solids (TSS), titratable 

acidity (TA), pH and color components (L*, a*, b*) were measured using conventional 

techniques. The possibility was investigated to determine whether key fruit attributes, namely, 

total soluble solids (TSS); titratable acidity (TA), TSS/TA could be determined on intact 

pomegranate fruit using hyperspectral imaging technique with artificial neural network 

prediction model. The study implemented effective band method to reduce the data 

dimensionality and data augmentation technique to increase the training data set. A two-layer 

feed-forward network with sigmoid hidden neurons and linear output neurons was used to fit 

the reflectance values at the effective wavelength to quality attributes (TSS:TA ratio and TA). 

Three different network training algorithms: Levenberg-Marquardt backpropagation (LMBA) 

algorithm (LMBA), Bayesian regularization algorithms (BRA) and Scaled conjugate gradient 

algorithm (SCGA) were compared. The optimum model achieved a prediction correlation 

coefficient (R2) and root mean square error of prediction (RMSEP) for TA of 0.852 and 0.024, 

respectively. TSS:TA ratio prediction has R2 of 0.861 and MSE of 0.665. These results have 

established that hyperspectral imaging technique combined with artificial neural network 

regression algorithm provide very useful approach that allows rapid screening of pomegranate 

maturity quality parameters. 
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6.1. Introduction 

Pomegranate (Punica granatum L.), an ancient deciduous fruit of Middle Eastern origin is an 

emerging crop in South Africa [1, 169]. Pomegranate is gaining global acceptance as 

consumers are utilizing the fruit both as fresh and in processed form such as juice and jams 

[246, 264, 373]. In the past several decades, the demand for pomegranate fruit has been 

increasing due to its nutritional and health benefits [2, 3, 264]. This global awareness has 

resulted in considerable increase in commercial farming of pomegranate fruit [5, 374]. Fruit 

inspection and sorting is the core towards achieving pack of uniform produce as regards to 

quality specifications, size, colour, etc. [6]. Therefore, together with the recent attention for 

food quality and safety, technologies for estimating the quality of fresh pomegranate fruit are 

being sought [7, 44]. 

At present, pomegranate fruit is sorted manually or automatically based on its physical 

appearance. However, it is the aril part that is edible and determines the eating satisfaction. 

In addition, since pomegranate is a non-climacteric fruit, it is essential to harvest it at 

optimum ripening stage (assessed by juice TSS, TA and TSS:TA ratio ) to retain good quality 

in the postharvest [375]. Currently, many objective criteria for judging maturity of 

pomegranate have been used, for example, firmness, total soluble solids, pH, titratable 

acidity, and others [2, 376]. However, standard methods for these quality measurements are 

mostly destructive, slow, and prone to operational error as it involves human visual 

inspection.  

Some of the existing standard destructive methods used for quality control include high 

performance liquid chromatography (HPLC), gas chromatography–mass spectrometry (GC-

MS), spectrometric, colorimetric and microbiological methods [12, 377, 378]. The 

agribusiness industry is now shifting attention towards objective, fast, real-time and non-

chemical detection technology, for quality assessment [15, 19, 57, 142]. Recently, non-

destructive techniques like multispectral and hyperspectral imaging techniques are being 

utilized to assess the different quality concerns of pomegranate fruit [11, 290, 297, 379]. 

Many excellent reviews have been written in the last five years on the most frequently used 

non-destructive quality assessment techniques [19, 57, 142]. 

Hyperspectral imaging has emerged as a powerful non-destructive inspection tool in the 

agricultural, biosecurity diagnostic and food quality monitoring and control domain recently 

[48, 380]. This technique is based on a two-dimensional (2-D) spatial matrix of vectors, each 

of which represents a spectrum ranging from VIS to NIR to form a three-dimensional (3-D) 

image dataset, known as hypercube [380]. This technology integrates spectroscopy and 
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imaging to acquire both spectral and spatial information simultaneously. This combined 

features makes it a powerful tool for fruit\food quality assessment and defect detection, 

maturity indexing and physicochemical attributes in horticultural products [9, 13, 14]. 

Hyperspectral images with their spatial and spectral dimensions are usually large sets of 

information. To this end, data storage and analysis capabilities are frequent limitations of 

using hyperspectral data. Hence, image data size and dimensionality reduction process are 

very important in preparing HS images for model development. By implementing 

dimensionality reduction, redundant information can be eliminated. This process 

considerably simplifies the subsequent processes of classification model development. PLS, 

PCA and ANN methods frequently used to perform dimensionality reduction [170, 381]. In 

this context, several dimensionality reduction methods have been proposed [382, 383]. Li et 

al. [14] applied PCA based dimensionality reduction technique for bruise detection on 

oranges. The authors selected most discriminant wavelengths in the range 400–1,000 nm and 

achieved better detection accuracy at six wavelengths (630, 691, 769, 786, 810 and 875 nm). 

Similarly, Wang et al. [232] applied the same technique for sour skin damage detection on 

onions. 

Artificial neural network (ANN) has gained wide acceptance as a machine learning tool for 

its predictive and classification ability [25, 50]. ANN is a type of supervised learning 

network, built from the principle of the human neuron system [357]. This algorithm is a 

computational based technique, usually when fed an input data, it tries to simulates the human 

intuition in making decisions and drawing conclusions, input data can be complex, noisy, 

irrelevant, and partial [25, 357]. One key highlight of the ANN is its adaptability in learning, 

yields good generalization and is very noise tolerance [50]. It has been utilized for several in 

diagnostic application for fruit quality [25, 144, 357], and provides more robust algorithms 

and higher accuracy than unsupervised methods [50]. 

Number of samples for training is crucial for artificial neural network-based classification 

problems [235]. Insufficient training samples have been a significant bottleneck for 

supervised HSI classification. This problem considerably hinders the practical application of 

HS image-based systems. Using insufficient training sets can significantly cause overfitting 

[235], while collecting sufficient HS image datasets remains costly and time-consuming 

[236]. Wambugu et al. [234] summarized and discussed several training sample generation 

methods including data augmentation: transformation-based (translation, flipping, rotation), 

mixture-based, or the addition of noise and synthetic data generation (synthesizer network 

using generative adversarial networks (GANs)). Augmentation implements realistic 
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transformation to increase the diversity of the training set. Zhang et al. [237] implemented 

additional images generation technique by image rotation, image gamma correction, scale 

transformation and noise injection in fruit category identification problem. HS image data 

augmentation technique is usually applied in classification problems than fruit internal 

quality prediction models. 

Specifically for pomegranate fruit, Khodabakhshian et al. [18] develop a prototype 

multispectral imaging system for online quality assessment. The authors developed 

prediction models based on the four effective wavelengths (700, 800, 900, and 1000 nm). 

Multiple linear regression (MLR) was applied, and the model yielded good prediction 

accuracy for TSS (R2 = 0.97, RMSEP=0.22), TA (R2=0.92, RMSEP=0.26) and pH (R2=0.94, 

RMSEP=0.038). In a similar study to estimate maturity of pomegranate fruit, Munera et al. 

[212] combined spectral and color data obtained from pomegranate fruit cv. ‘Mollar de 

Elche’ and developed prediction models for physicochemical properties such as total soluble 

solids, titratable acidity, maturity index, BrimA, internal colour, total phenolic compounds 

content and antioxidant activity. However, model performance for these parameters showed 

poor results with R2p ranging between 0.45 – 0.85 for intact fruit using spectral data as input 

data. The authors demonstrated that hyperspectral imaging has better and greater potential to 

monitor some physicochemical properties and maturity of the intact fruit compared to color 

image data. Both studies highlighted the potential of HSI to non-destructively predict fruit 

maturity attributes. 

In this study, the capability and potentiality of HS imaging technique coupled with artificial 

neural network model to quantify TSS/TA and TA non-destructively on intact pomegranate 

fruit is explored. Key fruit attributes, namely, total soluble solids (TSS); titratable acidity 

(TA), TSS/TA were determined on intact pomegranate fruit using hyperspectral imaging 

technique with artificial neural network prediction model. The study aimed to implement 

effective band selection method to reduce the data dimensionality and data augmentation 

technique to increase the training data set. A two-layer feed-forward network with sigmoid 

hidden neurons and linear output neurons will be explored to fit the reflectance values at the 

effective wavelength to quality attributes (TSS:TA ratio and TA). 

6.2. Materials and methods 

6.2.1. Fruit procurement and sample preparation 

This research was performed during the 2021 season with commercially mature pomegranate 

fruit (cv. Wonderful). Fruit maturity and storage condition is as already indicated in the 

previous chapter. A total of 100 fruit were procured from Sonlia pack-house (33°34′851″S, 
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19°00′360″E) and transported to Postharvest Technology and Research Laboratory, 

Stellenbosch University. Upon arrival, fruit without any physical defect and with good 

appearance were sorted and placed under cold storage at 7 ºC before experiment was 

performed. Pomegranate fruit samples from three (3) maturity stages according to Mphahlele 

et al., [284], were selected for this study, and grouped into unripe (100 DAFB), mid-ripe (121 

DAFB) and full-ripe stage (141 DAFB). 

6.2.2. Hyperspectral image data acquisition 

Hyperspectral images were acquired for 97 samples of pomegranate fruits using a prototype 

hyperspectral imaging system and performed at the Central Analytical Facility (CAF) 

Vibrational Spectroscopy Unit of Stellenbosch University. The Vis-NIR hyperspectral 

imaging cameras, HySpex VNIR-1800 was used to acquire hyperspectral image data of 

pomegranate fruit. In the VNIR camera, images are acquired at wavelengths ranging from 

400 to 1000 nm with a waveband of 186 and spectral resolution of 3.26 nm. Figure 1 

illustrates the hyperspectral image acquisition system and the formation of three‐dimensional 

hyperspectral data (hypercube). The VNIR has spatial pixels (x) of 1800 which corresponds 

to the number of photodetectors along the spatial dimension of the detector array of the 

camera. The second spatial dimension (y) is the number of pixels in the scanning direction 

and is physically bounded by the size of the scene and the speed of the translation stage. A 

30 cm focal length lens with field view of 9.733 cm were used. Reflectivity reference data 

were obtained for each fruit. Hence, each image was obtained as a three-dimensional image 

block (x, y, λ), including 1800 × y pixels on the space dimension (x, y), and 186 bands at 

3.26‐nm intervals within a range of 400 to 1000 nm on the spectral dimension (λ). The camera 

was mounted above a translation stage which has a speed regulation system (Figure 6.2). 
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6.2.3. Reference measurement 

Destructive measurements: total soluble solids (TSS), titratable acidity (TA), pH and colour 

attributes (L*, a*, b*) ware taken for each pomegranate fruit. For individual fruit sample, rind 

colour components were measured using a calibrated colour Chroma Meter (CR-400 Minolta 

Corp, Osaka, Japan). Colour parameters which includes Chroma (C*) and Hue angle (h°) was 

derived from the colour components L*, a*and b* as described by Pathare et al. [32]. Individual 

fruit were manually peeled and the extracted arils were juiced using a Liquafresh juice 

extractor. The juice was filtered through a 1 mm sieve and immediately used to measure the 

TSS, pH and TA. Total soluble solids (TSS) content was measured using digital hand-held 

refractometer (Palette, PR-32α, Atago, Tokyo, Japan) and results were expressed in percentage. 

The pH values were determined at room temperature using a calibrated pH meter (Crison, 

Model 00924, Barcelona, Spain). Titratable acidity (TA) was measured by diluting 2 mL of 

supernatant in 70 mL of distilled water and titrating with 0.1M NaOH using a Metrohm 862 

compact titrosampler (Herisua, Switzerland) results were expressed in percentage of citric acid. 

TSS/TA was also calculated [11]. These measurements were performed in three repetition per 

individual fruit and average was calculated expressed as mean ± SD. 

 

Stellenbosch University https://scholar.sun.ac.za



 

122 

 

 

Figure 6.1: Schematic of the hyperspectral imaging system (a) and its picture (b). Hyperspectral image data acquisition was obtained at the CAF 

Centre, Department of Food Science building, Stellenbosch University. A line scanning hyperspectral camera is placed above a moving translation 

stage, and lighting is being provided by two dimmable halogen lamps.

Stellenbosch University https://scholar.sun.ac.za



 

123 

 

6.2.4. Hyperspectral image calibration 

To minimize the impact of the uneven intensity distribution of the light source and dark current 

in the charge coupled device (CCD) detector on the hyperspectral images, image correction 

was performed using known true spectral information. Eqn. (4.1) provides the formula for the 

image correction. 

6.2.5. Spectral profile extraction 

The original hyperspectral images (hypercubes) (Figure 6.2(a)) were imported into Evince 

software (version 2.7.10, Prediktera, Sweden). At this stage, a single hypercube is about 6GB 

in size. Spatial cropping of the HS image (Figure 6.2(b)) reduced the data size to 2 GB. Evince 

further used for PCA exploration of the HS image (Figure 6.2(c)) and PCA based segmentation 

of the fruit (Figure 6.2 (d)) and compile the file to transfer to MATLAB. At this stage the file 

size is considerably reduced (≈0.5GB) and fast and easy processing possible. 

 

 

Figure 6.2: A typical explorative PCA analysis. Segmentation of the pomegranate fruit on the 

hyperspectral image. 

 

6.2.6. Data analysis 

Hyperspectral data processing was implemented using the hyperspectral imaging library in 

MATLAB® (The MathWorks, Inc., Natick, Massachusetts, United States). The HS image 

processing workflow is summarized in Figure 6.3. 
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Figure 6.3: The overall workflow for developing HS imaging bases artificial neural network 

fruit quality predictor model. 

 

6.2.6.1. Effective wavelength selection 

Effective wavelength selection was carried out as discussed in chapter 4 and chapter 5. 

6.2.6.2. Data augmentation 

For data augmentation, a manual procedure was implemented to take segments form the HS 

images of each fruit with size about 50 × 50 pixels were excised (Figure 6.4) with the help of. 

The number of segmented hypercubes taken from each fruit original HS image was according 

to its TSS class as summarized in Table 6.1. This way each HS image provided additional 

augmented sample HS image for training. For each segment, average reflectance value 

corresponding to the selected most informative bands were computed and compiled as model 

inputs with the corresponding values of fruit quality as target output. After data augmentation, 

the number of samples within one TSS group is shown in Table 6.1. 
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Figure 6.4: Data augmentation for generating additional hypercube for training. This 

augmentation procedure generated 12 hypercubes from a single HS image. 

 

Table 6.2 The mean °Brix, and STDV denotes the standard deviation of samples in each group 

TSS Mean STDV 

10.98 to 15.9 14.86 0.69 

16.0 to 16.9 16.13 0.27 

17.0 to 17.85 16.96 0.21 

 

6.2.6.3. Predictive ANN model development 

A two-layer feed-forward network with sigmoid hidden neurons and linear output neurons 

(Figure 6.5) was used to fit the reflectance values from the effective wavelength to fruit quality 

data (TSS:TA ratio and TA). This type of ANN is suited for multi-dimensional mapping 

problems given arbitrarily consistent data and enough neurons in its hidden layer [40]. Three 

different network training algorithms: Levenberg-Marquardt backpropagation (LMBA) 

algorithm (LMBA), Bayesian regularization algorithms (BRA) and Scaled conjugate gradient 

algorithm (SCGA) were compared. The fitting process train the neural network on the set of 

ROI averaged reflectance values to produce an associated set of target fruit quality indices. 

Once the neural network has fit the data, if forms a generalization of the input-output 

relationship and can be used to generate outputs for inputs it was not trained on. Hence, a 

trained and ready model takes reflectance values at the selected bands of a sample as input and 

predict its quality (total soluble solids (TSS:TA ratio) and titratable acidity (TA)). 
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Figure 6.5: Data augmentation for generating additional hypercube for training. This 

augmentation procedure generated 12 hypercubes from a single HS image. 

 

The input data (reflectance values at the three informative bands of 1430 samples) is randomly 

divided into 70% training, 15% validation and 15% testing. So, the 3-3-2 neural network 

topology was taken as the optimum topology. A topology with the smaller number of hidden 

neurons and with good performance is the one we are looking for. A model with too many 

neurons memorizes each exemplar pair (noise and all) rather than generalizing from the data 

in the same way as a polynomial of high degree memorizes each data points [384]. After 

training, the model validation is carried out and it is used to measure network generalization, 

it brings the training measure to a halt when generalization stops improving. The test 

performance does not impact on the training and thus provides an independent measure of 

network performance during and after training [385]. 

Prediction performance of the model is measured in correlation analysis between model 

predictions and target values (regression R2) and using the mean squared error (MSE). A good 

model should have an R2 value close to 1 to show a close relationship between outputs and 

target and lower MSE values. MSE should be close to zero which mean no error exit between 

outputs and targets and a small difference between the MSE for training and test result. 

 

6.3. Results and discussion 

 6.3.1. Fruit quality 

The statistical values (mean, standard deviation (SD) and range) for reference data for selected 

maturity parameters of intact pomegranate fruit are presented in Table 6.2. Results show that 

the reference measurement values were quite varied and covered a large range of the mean 

data. Studies categorise pomegranate fruit maturity under three groups, depending on days after 
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full bloom [284], typically, fruit harvested between 82 - 100 DAFB are grouped as unripe, then 

those between 110 - 140 DAFB are considered mid-ripe, while fruit harvested between 141-

165 DAFB are said to be fully ripe [269, 284]. The TSS/TA ratio as well as BrimA index have 

been established as a reliable maturity index for pomegranate fruit [273, 289, 391, 392]. The 

TSS/TA ratio often defines the taste of pomegranate fruit during development [212]. Typical 

TSS/TA values of pomegranate “Wonderful” fruit for unripe maturity stage range between 7.8 

± 2.6 and 10.2± 2.2, and increase as the fruit moves to mid-ripe stage, this values range from 

10.7 ± 2.7 to 16.8± 3.6, fully ripe maturity stages are reported to have TSS/TA vary from 12.2 

± 3.5 to (16.6 ± 2.8 depending on the growing location [284]. 

Table 6.2 shows the mean, standard deviation, minimum and maximum value of results 

obtained from the reference data for the different quality parameters of "Wonderful” 

pomegranate fruit samples selected for this study. It shows TSS/TA values to range between 

4.792 to 15.67 for the different maturity stages, this results is similar to those reported by 

Mphahlele et al., [284]. The fruit maturity was estimated using similar range of data. 

6.3.2. Spectral characteristics 

The full and averaged reflectance spectral profile for intact pomegranate fruit (cv. Wonderful) 

are presented in Figure 6.6. The spectral signature follows similar trends for all the fruit (Figure 

6a), the average spectral (Figure 6b) shows a high reflectance within the wavelength of 400 – 

600 nm, and then lowers. The PCA loading for effective wavelength selection is shown in 

Figure 6.7. For PCA analysis, loading shows only 4 PC were selected and utilized for further 

analysis. The reason for PCA analysis was to reduce the dimensionality of the dataset, while 

retaining most of the variability. 

 

Figure 6.6: Full and averaged reflectance spectral profile for intact pomegranate fruit (cv. 

Wonderful) for the Vis-NIR spectral range. 
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The principal component analysis conducted on the selected optimal wavelengths showed that 

the first four components explained 98.73% (PC1–86.06%, PC2 – 9.76%, PC3 – 2.23% and 

PC4–0.70%) (Figure 6.7). 

Figure 6.7: Loading score for PCA analysis for in the spectral range of 400 – 1000 nm. 

 

The effective wavelength can be selected using the pixel purity index (PPI) method 

implemented on original hyperspectral data cube by using the noise-whitened Harsanyi–

Farrand–Chang (NWHFC) method implemented in MATLAB. Figure 6.4 shows different 

phase of the spectral data analysis of the original RGB image data to the PCA data. 

Figure 6.8 illustrates the selected most effective wavelength achieved using the pixel purity 

index (PPI) method. It shows the most effective or optimal wavelengths for predicting quality 

attributes of pomegranate fruits. This means the reflectance at 407, 639, and 917 nm contain 

the peak chemical information for regression model development. 
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Table 6.2. Mean, standard deviation (SD) and range of values for reference data for selected 

ripeness parameters of intact pomegranate fruit. 

 

6.3.3. Model development using all three mapping algorithms 

The development of models using LMBA, BRA and SCGBA algorithms was done for each 

quality parameter while evaluating different pre-processing methods; whereby, the latter were 

selected based on high R2 values, and low MSE values. The best performing models for quality 

parameters are presented in Table 6.3. 

 

6.3.3.1. Model performance for TA analysis  

The total acidity of pomegranate fruit was adequately mapped with its spectral data, model 

statistics using achieved best performance using the BR algorithm (R2 = 0.851, MSE = 0.428) 

for training and (R2 = 0.700, MSE = 0.4283) for test model. Figure 6.8a shows the scatter plot 

for model performance of TA. The overall average R2 of 0.696 was obtained. 

 

  

Parameters  Reference 

values 

  

 Mean SD Min Max 

C* 42.69 4.65 32 51.66 

TA 1.67 0.33 1.08 2.57 

TSS 16.36 1.05 10.95 17.85 

TSS/TA 10.09 2.13 4.79 15.67 

Hue 40.23 10.25 22.42 67.34 

pH 2.99 0.13 2.68 3.355 

a* 32.55 6.99 14.62 45.46 

b* 26.52 4.79 13.61 36.74 

L* 50.60 5.63 38.06 65.55 
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Table 6.3. Summary of network training and test model performance for ripeness quality 

attributes of pomegranate fruit 

LMBA, Levenberg-Marquardt backpropagation algorithm; BRA, Bayesian regularization 

algorithms; SCG, Scaled conjugate gradient backpropagation algorithm; L*, lightness; a*, 

redness; C*, Chroma; h*, hue angle; TSS, total soluble solid; TA, titratable acidity; pH, 

Potential hydrogen, TSS/TA, total soluble solid/ total acid; R2; Coefficient of determination; 

MSE, mean square error. 

 

Figure 6.8: Measured (target) against predicted (output) for TA for training (a), test (b) and 

overall (c) sets using selected spectral data. 

 

6.3.3.2. Model performance for TSS/TA analysis 

The results show model obtaining for TSS/TA ratio a regression coefficient R2 = 0.86, MSE= 

0.428) for the training set and test model (R2 = 0.847, MSE = 0.4283). Model achieved better 

results for TSS/TA compared to the model by Munera et al. [212]. The author reported 

Quality 

parameter 

Algorithm Training set Test set 

R2 MSE R2 MSE 

TSS LMBA 0.421 0.428 0.422 0.398 

TA BRA 0.852 0.024 0.699 0.134 

TSS/TA SCGA 0.861 0.665 0.847 0.528 

pH LMBA 0.828 1.296 0.850 1.187 

a* LMBA 0.933 3.962 0.712 3.870 

b* BRA 0.950 3.926 0.885 3.870 

C LMBA 0.830 9.139 0.739 9.465 

L* LMBA 0.919 2.456 0.869 2.316 

hue SCGA 0.843 35.084 0.824 32.806 
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prediction R2 of 0.78 and RMSE of 0.72. Figure 6.9 shows the scatter plot for the TSS/TA 

fitting model. 

 

Figure 6.9. Measured (target) against predicted (output) for TSS/TA for training (a), test (b) 

and overall (c) sets using selected spectral data. 

 

6.3.3.3. Model performance for pH analysis  

The pH is another important index for quality and maturity estimation for pomegranate fruit, 

pH values often range between 2.8 – 3.4 depending on cultivar and maturity stage [269, 284]. 

It indicates the acidic/sour taste of the fruit, reference data shows pH to range between 2.68 – 

3.355, across the three different maturity stages. The highest R2 value and the lowest MSE for 

the prediction of pH was achieved to be 0.828 and 0.4283 respectively, this was obtained using 

the LMB algorithm. The R2 for test set was 0.8495. Similar results was obtained for pH in a 

study pomegranate using PLS model [23], the author achieved R2 values of 0.85 and RMSEP 

value of 0.064, respectively. The scatter plot for the output vs target is presented in Figure 6.10. 

 

Figure 6.10. Measured (target) against predicted (output) for pH for training (a), test (b) and 

overall (c) sets using optimum wavelength selected spectral data. 

 

 

6.3.3.4. Model performance for color analysis 

For colour parameters, model development using the Levenberg-Marquardt backpropagation 

algorithm yielded good prediction models with R2 = 0.9331 training set for redness (a*), 0.421, 
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hue showed R2 = 0.843 for training and 0.824 for test model. Similar result was obtained for 

Lightness (L) and Chroma (C*) with R2 for the training set 0.919 and 0.830 respectively. 

The statistical data for model development showed that both LMB algorithm yielded 

reasonably accurate training and test models as compared to the other two algorithm. Of the 9 

selected quality attributes assessed, 4 achieved better correlation coefficient with a* (redness) 

achieving the high R2 value of 0.933. Similar results were achieved by Model for color 

performed better than those plum [89], the authors achieved for redness a* an R2 value of 0.81 

and for b* R2= 0.86. 

Summary of the measured (target) against predicted (output) sets for all color parameter is 

presented in Figure 6.11. The parameters are arranged in redness a* (6.1I), Chroma (6.11II), 

hue (6.11III), and Lightness L (6.11IV). 

 

6.3.4 Classification according to maturity stage 

Tables 6.4 shows the training, test and overall set results of the models to discriminate the 

maturity stage using spectral data of the intact pomegranate fruit. The overall result shows 

model to achieve an accuracy of 84.4% and class error of 15.6%. the highest accuracy was 

obtained for the ripe classification with a 96.7% accuracy. In the test set, both unripe and ripe 

fruit obtained 100% accuracy. This is similar to result obtained by Munera et al., [212], the 

authors achieved 100% for immature fruit, 95% for half ripe and 90% for ripe fruit. The 

confusion matrices of illustrating classification model performance for the different fruit 

maturity categories are presented on Figure 6.12. 
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Table 6.4. Summary of classification result for maturity stage discrimination using the spectral 

data of the intact pomegranate fruit 

 

Figure 6.11. Confusion matric showing classification model performance for maturity 

discrimination of pomegranate fruit into different maturity stages using TSS/TA data. 

 

TSS/TA 

 

Class 

 Training set Test set Overall 

set 

Range Class 

error 

(%) 

Accuracy 

(%) 

Class 

error 

(%) 

Accuracy 

(%) 

Class 

error 

(%) 

Accuracy 

(%) 

Unripe 4.79 - 9.0 17.4 82.6 0 100 16.7 83.3 

Semi-

ripe 

9.1 – 11.5 25 75 33.3 66.7 26.7 73.3 

Ripe 11.6 – 15.67 16.1 83.9 0 100 3.3 96.7 
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Figure 6.12. Measured (target) against predicted (output) for the combined training and test 

sets on optimum model performance of redness a* (6.12a), Chroma C* (6.12b), hue (6.12c), 

and lightness L (6.12d). 
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6.4. Conclusion 

This study developed regression model based on Vis-NIR hyperspectral imaging data using 

neural fitting algorithms. Three different algorithms were utilized with all sowing varying 

degree of accuracy. All model showed good correlation between the VNIR spectral extracted 

from a 50x50 region of interest on the fruit surface and the quality attribute considered except 

for the TSS prediction. Neural network was effectively applied in optimally selecting three 

wavelengths (407, 639, and 917 nm), using pixel purity index (PPI) values of each variable 

(wavelength). Models developed using Vis-NIS spectral data presented good model accuracies, 

the R2 values for colour attributes were very high ranging from 0.824 to 0.951. This research 

demonstrates the feasibility of hyperspectral reflectance imaging technique to predict maturity 

quality attributes of pomegranate fruit. 

Future study in this area of research should expand more by including the prediction model to 

incorporate pomegranate fruit cultivars differences and other internal quality attributes such as 

total phenolics content, total anthocyanin content, vitamin C, etc. The HSI system can also 

potentially be further developed as a low-cost multi-spectral imaging system using the key 

wavelengths identified from the calibration models, this may lead to improved and better 

calibration models especially for TSS and other related attributes. These findings can be 

employed by the pomegranate processing industry to develop a grading/sorting system to 

rapidly evaluate several organoleptic and physicochemical attributes of pomegranate fruit. 
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SECTION III 

 

 

Chapter 7: General discussion & conclusions 

References, Appendices 
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CHAPTER 7 

 

 

General discussion and conclusions 

 

7.1. Introduction 

Pomegranate (Punica granatum L.) fruit has seen tremendous growth in commercial exports 

within South Africa over the past decade. Over 1000 hectares have been commercially planted 

within South Africa reaching a total of over 8000 tons of exported pomegranate fruits. 

Considering that pomegranate cultivar Wonderful is the most widely grown and consumed 

cultivar on a global scale, it accounts for a total production of 56% of pomegranates grown 

within South Africa. One of the major challenges the pomegranate industry faces in its quest 

for waste reduction and higher economic returns is through efficient quality and freshness 

monitoring and analysis tool in the postharvest handling chain. 

The rising global safety concerns for fruit and vegetables that meet the desire of local and 

international consumer has necessitated the advancement of research into non-invasive/non-

destructive quality analysis, however, in the fruit and vegetable industries, quality inspections 

are mainly manual and mechanical, laborious, time-consuming, costly, and subjective. 

Hyperspectral imaging (HSI) has emerged as a powerful non-destructive inspection technique 

in the agricultural, biosecurity diagnostic and food domain recently. HSI is a non-invasive/ 

non-destructive technique that integrates spectroscopy as well imaging to form one system 

[343]. It is developed by creating images from more than one spectral component of the 

electromagnetic wavelength from the same region of an object and at the same scale [253]. The 

data extracted (hypercubes) from HSI systems are 3-dimensional (3D) structures that consist 

of two spatial and one spectral dimension [48, 328]. This combined feature makes it a powerful 

tool for fruit\food quality assessment and defect detection, maturity indexing and 

physicochemical attributes in horticultural products. 

Hyperspectral technique is however limited by several factors, which includes the speed of 

image acquisition and image data processing. To overcome this problem, studies in recent years 

have been focused on determining a few most effective wavebands by using hyperspectral 

imaging, then implementing it in a multispectral imaging configuration (MSI). Different 
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machine learning algorithms have been developed to also improve on the analysis of 

hyperspectral imaging data and model performance in recent times [16]. 

Therefore, the main objective of this study was to assess the application of 

hyperspectral/multispectral imaging for predicting the major quality attributes in fresh 

pomegranate fruit as well detect the presence of bruise or internal defect using artificial neural 

networks (ANNs). 

Section I: Review of literature which includes a summary of hyperspectral imaging technique 

application for diagnostic fruit disease and defects detection as well review non-destructive 

efforts towards application for pomegranate fruit evaluation. 

Section II: Application of hyperspectral imaging technique to monitor early bruise detection 

and development and bruise severity on pomegranate fruit as well the assay of internal quality 

of intact pomegranate fruit. 

 

7.2. General discussion 

7.2.1. Application of hyperspectral imaging technique for early bruises detection on 

pomegranate (Punica granatum L.), coupled with artificial neural network algorithm  

Pomegranate fruit possess very hard and thick rind/peel, different from other fruit with soft 

tissues and surface like apple, pear, etc. [21]. Making the possibility of visible early indication 

on the fruit surface very difficult [339]. Manually picking up suspected bruised fruit is 

laborious, time consuming and very subjective and no longer sustainable. Therefore, prompting 

researchers into looking at alternative techniques for bruise detection. 

Studies have shown that hyperspectral imaging (HSI) is a dynamic technology that is now 

being used for non-destructive inspection in the agricultural, biosecurity and food domain. HSI 

is a non-invasive/ non-destructive technique that merges spectroscopy and imaging into one 

system, such combination of spectral and spatial data can be harnessed to extract deeper 

information on the fruit [388]. Its feasibility have been explored for several studies and all 

yielding accurate results [101, 185]. No study has yet been conducted testing its potential on 

pomegranate fruit, hence this study has investigated the potential of a hyperspectral imaging 

system to be employed for early detection of bruise damage on pomegranate fruit. The results 

confirm hyperspectral imaging technique combined with machine learning methods (ANN) to 

be an effective technique for early bruise detection. Both image surfaces considered showed 

bruise can be detected in early stage of bruising with an accuracy of 88.3%. The overall highest 

classification accuracy achieved was 100% during the 7th and 14th day after bruising. 
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Although this paper focused on pomegranate bruise development inspection, the techniques 

employed for data extraction and manipulation presented in this study are easily adaptable and 

can be suitable to other food applications. 

 

7.2.2. Application of hyperspectral imaging technique for pomegranate bruise severity 

detection using Vis-NIR and SWIR hyperspectral imaging data 

This study has demonstrated the potential of hyperspectral imaging integrated with artificial 

neural network in distinguishing different bruising degrees on pomegranate fruit. Effective 

wavelength selection for optimum model performance by selecting the number of spectrally 

distinct features were estimated using the noise-whitened Harsanyi–Farrand–Chang (NWHFC) 

method implemented in MATLAB, and the corresponding bands were identified using PCA 

method. The results have shown that both spectral ranges of the two different cameras explored 

were efficient in classifying the bruise and to their different severity with accuracy of detection 

ranging from 80% - 96.7%. The overall average classification accuracy achieved was 93.3% 

for model to distinguish fruits dropped at 100cm and 90% for fruit dropped at 60cm height for 

the VNIR camera. Model performance was slightly lowered when both severity cases were 

combined, and model was able to accomplish a recognition accuracy of 80% and 91.7% for 

both SWIR and VNIR camera respectively. The model accuracy increases with the increase in 

bruise severity (93.3%). This study laid a foundation for further development of an in-line 

inspection system using hyperspectral imaging technique for bruise detection on pomegranate 

fruits. 

 

7.2.3. Application of hyperspectral imaging technique for non-destructive assay of 

internal quality of pomegranate fruit and maturity classification 

Consumers preference for fresh horticultural products is often biased towards the external 

aspects of the quality as related to size, appearance and colour characteristics [32]. Repeated 

consumption of the said fresh produce is most determined by consumer satisfaction based on 

sensory characteristics such as soluble solids content (SSC), titratable acidity (TA), soluble 

solids to acid (SSC/TA) ratio [389, 390]. The study conducted in chapter 6 evaluated the 

maturity quality attributes of intact pomegranate fruit. All model using the VNIR data showed 

good correlation between the VNIR spectral extracted from a 50x50 region of interest on the 

fruit surface and the quality attribute considered. Less model accuracy was observed for the 

TSS prediction with both hyperspectral imaging system. The NWHFC method was applied in 
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optimally selecting three wavelengths (407, 639, and 917 nm), in the VNIR spectral range. 

Models developed using the SWIR spectral data showed very poor regression model, while 

those developed using the Vis-NIS spectral data presented good model accuracies, the R2 

values for colour attributes were very high ranging from 0.824 to 0.951. Spectral data was 

qualitatively analysed to discriminate different fruit maturity, model obtained the highest 

accuracy for ripe with a classification accuracy of 96.7%, while unripe fruit was classified 

correctly 83.3% accuracy and mid-ripe 73.3%. This research demonstrates the feasibility of 

hyperspectral reflectance imaging technique to predict selected maturity attributes of 

pomegranate fruit. 

 

7.3. General conclusion and recommendations 

In conclusion, this thesis made a significant contribution to the potential application of 

hyperspectral imaging technique for postharvest diagnostic testing method for pomegranate 

fruit.  It summarized various application of HSI as a diagnostic tool for food inspection and 

biosecurity over the past decade (2012 - 2022). The combined feature of imaging and 

spectroscopy enables the collection of massive spectral information for every pixel which 

provides the chemical constituents of samples and a chance to refine the data and perform 

critical analysis adequately. It is expected that future research studies could utilize the three 

effective wavebands of 407, 639 and 917nm in the VNIR wavelength range to develop and 

implement fast and efficient multispectral online bruise detection system for pomegranate fruit. 

In this study, we have utilized limited sample size, and halogen light source and ANN classifier 

for model development, future studies can also explore larger sample size, investigate the effect 

of different lighting source, preprocessing methods, and classifiers for a more robust qualitative 

and quantitative study. Overall classification accuracy ranged between 81.7 – 88.3% for early 

detection of bruise damage, and between 83.3% - 93.3% for distinguishing bruise severity of 

pomegranate fruit. This technique employed in the present study can be utilized for other 

horticultural fruits and vegetables. Factors such as fruit geometry and presence of husk, calyx 

and seasonality were not considered in the model development reported in the thesis. It is, 

therefore, recommended that for successful commercial online application, future studies need 

to consider such factors as increased sample size, additional cultivars, growing locations, and 

seasonality.  
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Appendix 

Figure A1. The confusion matrix obtained of the classification performance for VNIR spectral 

data during the different bruise development, Day 1 ROI (a), WF (b); Day 7 ROI (c), WF (d); 

Day 14 ROI (e), WF (f). The x axis refers to the true categories, and the y axis refers to the 

classifier outputs. The integers in the matrix show number of samples. The color en-codes the 

percentage of a class of blocks (x) classified into a predicted class (y). 

 

 

Figure A2. The confusion matrix obtained of the classification performance for SWIR spectral 

data during the different bruise development, Day 1 ROI (a), WF (b); Day 7 ROI (c), WF (d); 

Day 14 ROI (e), WF (f). The x axis refers to the true categories, and the y axis refers to the 

classifier outputs. The integers in the matrix show number of samples. The color en-codes the 

percentage of a class of blocks (x) classified into a predicted class (y). 
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Figure A3. Full spectral profile of bruised pomegranate fruit on day 1 after bruise damage 

Figure A4. Full spectral profile of bruised pomegranate fruit on day 7 after bruise damage 
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Figure A5. Full spectral profile of bruised pomegranate fruit on day 14 after bruise damage 
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