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SUMARY 

 

Various researchers starting as early as 1903, have developed many definitions of an ecotone 

(Clements 1905; Livingston 1903; Odum & Barrett 1971). The definition by Holland (1988) 

described ecotones as zones of transition between adjacent ecological systems, having a set of 

unique characteristics defined by space and time scales, and by the strength of interactions between 

adjacent ecological systems (Holland 1988). This definition paves the way for research that may 

exemplify various aspects of landscape ecology and spatial heterogeneity. Although a niche of 

high scientific interest, ecotonal research is very understudied, especially research on using 

Remote Sensing to identify and map fine-scale wetland ecotones. A bibliometric analysis and 

literature review showed that limited research has been conducted on wetland ecotones in southern 

Africa, however with sufficient literature covered on wetland delineation, classification, and 

mapping.  

Wetlands which are highly dynamic and considered moving entities in a landscape due to their 

varying hydroperiods, are especially challenging to map. Two main experiments were carried out 

both of which used Machine Learning (ML) algorithms namely Random Forest (RF) and the naïve 

Bayes classifier. The aim of the first experiment was to review and test remote sensing techniques 

to accurately identify and map distinct vegetation communities within the Du Toits River wetland, 

Western Cape South Africa. The second experiment was then to use probabilistic classification 

measures to map and characterize the ecotones prevailing in a fynbos embedded wetland 

ecosystem. The study used freely available satellite imagery namely Landsat 8 Surface Reflectance 

Tier 1, and Sentinel-2 MSI: MultiSpectral Instrument, Level-2A, obtained from the United States 

Geological Survey (USGS) through open-source resources such as Google Earth Engine (GEE). 

This research suggests that Random Forest (RF) classifier showed great potential in accurately 

mapping landcover, specifically four distinct and dominant vegetation types within the wetland 

namely Prionium serratum, Psoralea pinnata (referred to as palmiet wetland vegetation), a 

condensed group of Pteridium aquilinum, Restio paniculatus and Merxmuellera cincta (referred 

to as Sclerophyllous Wetland Vegetation), and Temporary Wetland Fynbos. RF results showed 

little spectral confusion between classes and produced moderate to high overall accuracies for 

classifications run through both the winter and summer seasons.  

The efficacy of using the fuzzy logic i.e. supervised probabilistic measures to identify and map 

ecotones in a spatially heterogenous landscape was showcased. Probabilistic mapping and fuzzy 

graphs showed complex and diverse ecotones within the wetland. It was evident that clear ecotones 

in the form of rapid and sharp high probabilities of one vegetation type intersected and replaced 
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another. These ecotones may provide useful information about wetland ecosystem functioning and 

how vegetation zones may contribute to wetland ecosystem services (e.g. flood attenuation and 

carbon storage). 

Using a per-pixel based approach to map ecotones is highly useful as ecotones are more complex 

in reality and mapping them as single vector lines is not useful nor accurate. Although this study 

aimed to identify and map fine-scale wetland ecotones, further research using even finer scale data 

and in-depth field analysis that specifically focuses on the identified and mapped ecotonal areas 

will be significant.  

 

KEY WORDS 

alluvial fan, ecotone, image classification, Landsat-8, probabilistic classifier, remote sensing, 

Sentinel-2, wetland, wetland ecotones 
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OPSOMMING 

 

Verskeie navorsers wat so vroeg as 1903 begin het, het baie definisies van 'n ekotoon ontwikkel 

(Clements 1905; Livingston 1903; Odum & Barrett 1971). Die definisie deur Holland (1988) het 

ekotone beskryf as sones van oorgang tussen aangrensende ekologiese sisteme, met 'n stel unieke 

eienskappe wat gedefinieer word deur ruimte en tydskale, en deur die sterkte van interaksies tussen 

aangrensende ekologiese sisteme (Holland 1988). Hierdie definisie baan die weg vir navorsing wat 

verskeie aspekte van landskapekologie en ruimtelike heterogeniteit kan illustreer. Alhoewel 'n nis 

van hoë wetenskaplike belang is, word ekotonale navorsing baie onderbestudeer, veral navorsing 

oor die gebruik van Afstandswaarneming om fynskaalse vleiland-ekotone te identifiseer en te 

karteer. 'n Bibliometriese analise en literatuuroorsig het getoon dat beperkte navorsing oor 

vleiland-ekotone in Suider-Afrika gedoen is, maar met voldoende literatuur gedek oor 

vleilandafbakening, klassifikasie en kartering. 

Vleilande wat hoogs dinamies is en beskou word as bewegende entiteite in 'n landskap as gevolg 

van hul wisselende hidroperiodes, is veral uitdagend om te karteer. Twee hoofeksperimente is 

uitgevoer wat albei Masjienleer (ML) algoritmes gebruik het, naamlik Random Forest (RF) en die 

naïewe Bayes klassifiseerder. Die doel van die eerste eksperiment was om 

afstandswaarnemingstegnieke te hersien en te toets om afsonderlike plantegroeigemeenskappe in 

die Du Toitsrivier-vleiland, Wes-Kaap Suid-Afrika akkuraat te identifiseer en te karteer. Die 

tweede eksperiment was dan om waarskynlikheidsklassifikasiemaatreëls te gebruik om die 

ekotone wat in 'n fynbos ingebedde vleiland-ekosisteem heers te karteer en te karakteriseer. Die 

studie het vrylik beskikbare satellietbeelde gebruik, naamlik Landsat 8 Surface Reflectance Tier 

1, en Sentinel-2 MSI: MultiSpectral Instrument, Level-2A, verkry van die Verenigde State se 

Geologiese Opname deur middel van oopbronbronne soos Google Earth Engine (GEE). 

Hierdie navorsing dui daarop dat Random Forest (RF) klassifiseerder groot potensiaal getoon het 

in die akkurate kartering van landbedekking, spesifiek vier duidelike en dominante 

plantegroeitipes binne die vleiland, naamlik Prionium serratum, Psoralea pinnata (na verwys as 

palmiet-vleilandplantegroei), 'n gekondenseerde groep Pteridium aquilinum, Restio paniculatus 

en Merxmuellera cincta (na verwys as sklerofilagtige vleilandplantegroei), en Tydelike 

Vleilandfynbos. RF resultate het min spektrale verwarring tussen klasse getoon en matige tot hoë 

algehele akkuraatheid getoon vir klassifikasies wat deur beide die winter en somerseisoene loop. 

Die doeltreffendheid van die gebruik van die fuzzy logika d.w.s. toesighoudende 

waarskynlikheidsmaatreëls om ekotone in 'n ruimtelik heterogene landskap te identifiseer en te 
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karteer, is ten toon gestel. Probabilistiese kartering en fuzzy grafieke het komplekse en diverse 

ekotone binne die vleiland getoon. Dit was duidelik dat duidelike ekotone in die vorm van vinnige 

en skerp hoë waarskynlikhede van een plantegroeitipe gekruis en 'n ander vervang het. Hierdie 

ekotone kan nuttige inligting verskaf oor vleiland-ekosisteemfunksionering en hoe 

plantegroeisones kan bydra tot vleiland-ekosisteemdienste (bv. vloeddemping en 

koolstofberging). 

Die gebruik van 'n per-pixel-gebaseerde benadering om ekotone te karteer is baie nuttig aangesien 

ekotone in werklikheid meer kompleks is en om dit as enkelvektorlyne te karteer is nie nuttig of 

akkuraat nie. Alhoewel hierdie studie daarop gemik was om fynskaalse vleiland-ekotone te 

identifiseer en te karteer, sal verdere navorsing deur gebruik te maak van selfs fyner skaaldata en 

meer in-diepte veldanalise wat spesifiek op hierdie geïdentifiseerde en gekarteerde ekotonale 

gebiede fokus, betekenisvol wees. 
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CHAPTER 1:  INTRODUCTION 

“Mapping is fundamental to the process of lending order to the world.”  

- Robert Rundstrum, 1926 

 

 ECOTONES, WETLANDS AND REMOTE SENSING  

As early as the beginning of the 20th century there has been substantial research interest in defining 

and understanding ecotones. Various researchers within the realm of landscape ecology have aimed 

at defining what an ecotone is; describing it as stress lines connecting points of accumulated or abrupt 

change (Livingston 1903); environmentally stochastic stress zones (Clements 1905); or a transition 

zone between two adjacent ecosystems with greater species richness (Odum & Barrett 1971). What 

is common amongst these definitions is that ecotones are boundaries and/or lines, points, or zones of 

change in the structure or composition of a landscape or ecosystem. The late 80s saw attributes that 

were more expressive added to the definition of an ecotone e.g. “a zone of transition between adjacent 

ecological systems, having a set of unique characteristics defined by space and time scales and by the 

strength of interactions between adjacent ecological systems” (Holland 1988). As landscape ecology 

deals with the study of spatial patterns, how a landscape is structured and the effect thereof on 

ecological processes (Pickett & Cadenasso 1995) is of significance to this study. 

 Ecotones 

Additional definitions and expressions of ecotones have developed in the later years of the 21st 

century with each definition progressing in dimensionality as reviewed by Hufkens, Scheunders & 

Ceulemans (2009). Researchers have argued that ecotones are a unique ecosystem in their own right 

and that species richness and abundance tend to peak in ecotonal areas because these areas may hold 

species from two or more neighbouring communities (Kark 2007). However, other researchers argue 

that this may not always be the case but rather that ecotones may serve as either barriers or corridors 

between gene pools (di Castri, Hansen & Naiman 1988); and that “boundaries that fluctuate 

dramatically in space and time will be relatively poor in species” (di Castri, Hansen & Naiman 1988, 

p.10).  

 Inland Aquatic Ecosystems  

In South Africa, inland aquatic ecosystem biodiversity comprises of “river and inland wetland 

ecosystem types as well as their associated species” (Van Deventer et al. 2018). These ecosystems 

are among the most productive, yet most threatened in the world especially as result of “flow 

modification, invasive alien species, overexploitation, water pollution, and the destruction and/or 
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fragmentation of habitat”, and the degree and magnitude of pressures are poorly understood and not 

well monitored (Van Deventer et al. 2018, p.56).  

Approximately 87% of wetlands in the Western Cape are threatened and in a moderate to heavily 

modified or degraded condition due to “inappropriate development, drainage, poor agricultural 

practices, human-induced erosion or infestation by invasive alien species (Helme & Rebelo 2016, 

p.159). Consequently, the need for freshwater inland systems research and restoration in South Africa 

is compelling with rivers and wetlands at the forefront of this need, as freshwater security is essential 

to human well-being and livelihood. International policy and legislation (e.g. the Ramsar Convention) 

over the years has placed emphasis on implementing laws that protect and conserve wetlands due to 

the ecosystem services they provide in both anthropogenic and ecological contexts. The Convention 

on Wetlands, commonly known as the Ramsar Convention, is an international government body of 

more than 90 countries that are interested in worldwide wetland conservation. The Ramsar 

Convention define wetlands as “areas of marsh, fen, peatland, or water, whether natural or artificial, 

permanent or temporary, with water that is static or flowing, fresh, brackish, or salt, including areas 

of marine water the depth of which at low tide does not exceed 6 m” (Ramsar Convention on Wetlands 

2018).  

The National Water Act of South Africa (1998) defines wetlands as “land which is transitional 

between terrestrial and aquatic systems where the water table is usually at or near the surface, or the 

land is periodically covered with shallow water, and which land in normal circumstances supports or 

would support vegetation typically adapted to life in saturated soil” (Republic of South Africa 1998). 

It is noted that land-water transitions are important transitions between terrestrial and aquatic 

ecosystems as these are sites where nutrient concentrations change due to water flows between them, 

and therefore are important buffers between upland terrestrial and aquatic ecosystems (Holland, 

Whigham & Gopal 1990, p.171). Vegetation is typically expected to change between wetland habitat 

and terrestrial habitat as one commonly finds hydrophyte vegetation which is adapted to saturated 

soil conditions and typical of wetland conditions as opposed to terrestrial environmental conditions. 

 Remote Sensing and Conservation  

The relevance and use of Remote Sensing (RS) has seen substantial growth and importance in 

conservation and ecological sciences (Pettorelli et al. 2017) with the launch of a journal titled Remote 

Sensing in Ecology and Conservation in 2014 by Wiley and the Zoological Society of London. The 

aim of this journal was to provide an open-access platform journal “that aims to support 

communication and collaboration among experts in remote sensing, ecology and conservation 

science” (Pettorelli et al. 2017, p.53). Moreover, de Klerk, Burgess & Visser (2018, p.127) note that 

data derived from remote sensing holds a lot of potential to provide finer scale data that is continuous 
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in both space and time. A number of global studies have focused on studying ecotone types using RS 

(Hennenberg et al. 2005; Hou & Walz 2014; Johnston & Bonde 1989; de Klerk, Burgess & Visser 

2018; Hans Ole Ørka et al. 2012) with examples ranging across biomes and land-use boundaries.  

 SIGNIFICANCE OF WETLAND ECOTONE MAPPING 
In the face of climate change, conservation efforts have increased globally as many fauna, flora and 

biomes continue to be under threat, with climate change identified as one of the key pressures on 

inland aquatic ecosystems (Van Deventer et al. 2018). Wetlands provide a number of ecological and 

economic functions such as “water quality improvement, flood regulation and protection, 

groundwater recharge, shoreline stabilisation, fish and wildlife habitat, agriculture production, 

aesthetics and biological productivity” (Nhamo, Magidi & Dickens 2017). Wetlands are especially 

sensitive to climate change “as they are delicately balanced between terrestrial and aquatic influences, 

where species may already find refuge from desiccation” (Helme & Rebelo 2016, p.162). Wetland 

research thus need to be prioritised as significant and invaluable. 

 

Consequently, ecotones which are considered transitional areas where two adjacent ecosystems in the 

case of wetlands are the transition from aquatic to terrestrial or, the wetland boundary- connect as 

abrupt points of change, will be important to map and understand as integral functioning of wetlands. 

Therefore, because there are limited studies on using RS to map and monitor wetland ecotones in 

southern Africa, the purpose of this study is to use remotely sensed data and techniques to map, 

identify and characterize ecotones within an alluvial fan wetland. This study focused on the Du Toits 

River wetland, which is a weakly channelled alluvial fan wetland situated in the north-western margin 

of the Theewaterskloof Dam. Literature notes that the wetland is dominated by the endemic South 

African Red Listed wetland species namely, Prionium serratum- commonly known as palmiet 

(Rebelo, Emsens, et al. 2018). Palmiet vegetation is argued to be an important ecosystem engineer in 

wetlands due to its deep and extensive root structure which is said to have stabilized river valleys 

within the Cape Floristic Region (Job 2014).  However, this unique endemic species continues to be 

highly threatened with degradation and threats such as channel erosion, land-cover change (e.g. 

draining and clearing of wetlands for agricultural land), pollution from agricultural run-off and 

invasive alien vegetation infestations (Rebelo, Emsens, et al. 2018). Moreover, the wetland comprises 

of sclerophyllous wetland species such as sedges/rushes, restios, grasses, herbs, shrubs, and bulbous 

plants (Sieben, Mtshali & Janks 2014). Additionally, at some portions of the wetland one finds the 

presence of Sandstone Fynbos species that belong to three Fynbos vegetation units namely the 

Hawequas Sandstone Fynbos, Elgin Shale Fynbos and Kogelberg Sandstone Fynbos.  
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 RESEARCH PROBLEM FORMULATION 
As there is limited research on wetland ecotone mapping, a study that looks at fine-scale ecotones 

within a fynbos embedded wetland using Remote Sensing, can be of value to add to the fundamental 

emphasis of wetland processes and ecosystem services such as flood attenuation, sediment trapping 

and carbon storage. Various studies have focused on classification, delineation and mapping of 

wetland extent and vegetation (van Deventer et al. 2020; Deventer et al. 2018; Van Deventer et al. 

2016; Nhamo, Magidi & Dickens 2017). The South African National Wetland Map (NWM) which 

provides up to date information on the location, spatial extent and ecosystem types of aquatic inland 

and estuarine ecosystems map ecotones between rivers or inland wetlands and estuaries as river-

estuary ecotones (van Deventer et al. 2020). This study therefore aimed to add to the theoretical 

framework of wetlands as key ecosystems in a landscape, and to explore RS techniques that have the 

potential to enhance understanding these remarkably dynamic systems and their associated ecotones 

at a local scale. This study may also add valuable information to the conservation and management 

of wetland systems that are currently under severe threat in South Africa, using time and cost-efficient 

methods such as Remote Sensing.  

 RESEARCH AIMS AND OBJECTIVES 

To use novel remote sensing approaches and field-based surveys to map and characterize ecotones 

within a fynbos embedded alluvial fan wetland. 

To achieve the research aim, the following objectives have been set: 

1. Review literature to develop a definition of wetland ecotones; identify potential remote 

sensing methods to map wetland ecotones. 

2. Report on the ecology, geomorphology, and provide an overview of the study area. 

3. Develop a sampling scheme and collect field data to identify indicators of palmiet wetland 

vegetation, sclerophyllous wetland vegetation and fynbos species. 

4. Apply Machine Learning approaches to map vegetation cover in the wetland by means of 

supervised classification methods. 

5. Test probabilistic fuzzy classification methods to map wetland ecotones; identify, map, and 

characterize wetland ecotones. 

 RESEARCH METHODOLOGY DESIGN AND THESIS STRUCTURE 

Geographic Information Technology (GIT) encompassing Geographic Information Systems (GIS) 

and Remote Sensing (RS) is a science and technology that helps us understand the earth as a system 

by mapping and therefore visualizing components and processes on earth (Guo et al. 2017). Remote 
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Sensing is a method within GIS that allows one to manipulate, interpret and analyse data from satellite 

imagery non-invasively without coming into contact with the object observed or monitored (Pettorelli 

et al. 2015). Remote Sensing also makes it possible to collect data “over greater spatial and temporal 

extents than is possible through field-based methods” (Pettorelli et al. 2015). This in turn allows for 

monitoring of developments and patterns that develop on the Earth’s surface, which may aid in 

predicting global change accurately enough to support policy makers in making sound decisions 

concerning the protection of our environment. This research is explorative in nature as it involves 

testing various remote sensing methods to map and identify ecotones in a fynbos wetland ecosystem. 

The research approach is deductive as the study makes use of existing remote sensing algorithms. 

The data used in the study will be empirical and quantitative as satellite imagery and in situ soil and 

vegetation observations and surveys will be done.  
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Figure 1.1 Research Design 

 

As shown above, this chapter (Chapter 1) provided an introductory background into the study as well 

as to explain the rationale and significance of this research. The planning and development of the 

research is outlined in the aims and objectives. Chapter 2 provides an overview of relevant literature 

on ecotones, wetlands, and remote sensing. Literature related to ecotones will be sourced mainly from 

landscape ecology fields and wetland ecology. This chapter will also review current and existing 
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4. Results & Discussion 

5. Conclusion 

 

 

Chapter 4 

Mapping and characterizing 

ecotones: 

1. Probabilistic classification 

mapping to identify 

ecotones in wetland. 
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graphs. 

3. Results & Discussion 
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remote sensing literature that deals with mapping of ecotones. The aim of Chapter 3 investigates a set 

of decisions on which remote sensing data to use, development of a sampling scheme and to identify 

a monitoring frequency for the study. Secondary data such as climate, vegetation, and geomorphology 

relevant to the study area will be sourced. Chapter 3 investigates using spectral indices such as the 

Normalized Difference Vegetation Index (NDVI) and Modified Normalized Difference Water Index 

(MNDWI), and supervised, machine learning classification methods to map different land cover 

classes in the study area to distinguish between wetland and fynbos habitat. Chapter 4 further 

investigates identifying, mapping, and characterizing ecotones within the study area using 

probabilistic classification methods. Lastly, Chapter 5 synthesizes and concludes all findings while 

commenting on the value of the study and providing recommendations for further research based on 

this study.
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CHAPTER 2:  ECOTONES, WETLANDS AND MAPPING LITERATURE 

REVIEW 

“The best visualizations never celebrate the data; instead, they make us learn about worldly 

phenomena and forget about the data.”  

                                                                                                                        -Kirk Goldsberry, 2013 

 

 INTRODUCTION AND BIBLIOMETRIC ANALYSIS 

As this study covers aspects from both landscape ecology and Earth Observation, a bibliometric 

search and review was conducted to find peer-reviewed literature that will assist in illustrating three 

objectives which guides the literature review content of this study. The bibliometric review is divided 

into three main sections that covers literature pertaining to ecotones; wetlands and the mapping of 

wetlands; and lastly, probabilistic per-pixel approaches to mapping ecotones. 

 

This bibliometric review made use of Elsevier’s abstract and citation database namely Scopus which 

was accessed via the Stellenbosch University library electronic database (https://www-scopus-

com.ez.sun.ac.za/search/form.uri?display=basic#basic). The papers identified and deemed useful to 

this study were saved, downloaded, and exported to the Mendeley referencing system. 

 

The first objective of the review was to search for published literature that contained the word ecotone 

as well as the definition of an ecotone. The purpose of this objective was mainly to get an idea of, 

and to draw a good summary of the various definitions of an ecotone described over the past decade 

and to refine to one definition that will be used throughout this study. The terms “ecotone” and 

“definition” were used while limiting the search to the past 10 years i.e. “2010-Present”. Articles were 

selected as document type (this limited the search to peer-reviewed, internationally accredited journal 

articles specifically), resulting in 23 articles being identified. The search was refined to subject area 

criteria namely, “Environmental Science; Earth and Planetary Science; Agricultural and Biological 

Sciences”. These subject areas were selected in order to limit the search specifically to ecotone studies 

in environmental, remote sensing, landscape, and biological sciences. Keywords were limited to 

“Ecotone, Biodiversity, Ecology, Image Classification” and importantly, the English language was 

selected. This search resulted in 10 articles which were exported as CSV to an Excel workbook for 

analysis. Of the 10 articles, five made reference to the definition of an ecotone (Cantonati et al. 2020; 

Erdôs et al. 2011; Hanberry 2020; H.O. Ørka et al. 2012; Ranson, Montesano & Nelson 2011) while 
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another five articles did not give a definition of ecotone (Elliott & Whitfield 2011; MacGregor-Fors 

2010; San-José et al. 2010; Schultz, Franco & Crone 2012; Vieira et al. 2016) but rather encompassed 

case studies that discussed various aspects of ecotones, ecological boundaries, edges, and the edge 

effect. What was common amongst the articles is that each dealt with the aspect of change or transition 

between various types of biomes, or ecosystems. The terms gradient, transition, zone, boundary, edge, 

and ecotone were the main terms of reference in all the abstracts of the 10 articles.  

 

The second objective of the bibliometric search was to investigate the status of literature that explores 

mapping of wetlands. The purpose of this was to get a sound comprehension of the literature (local 

and global) that covers wetland mapping, whether it be mapping wetland extent and delineation, or 

wetland vegetation mapping. Search terms included “wetland” and “map”; and “remote sensing” or 

“earth observation” or “MODIS” or “Landsat” or “aerial photography” or “LiDAR” or “SPOT” or 

“Radar” or “Sentinel”. The search was also limited to “2010-Present”, resulting in 145 articles. 

Keywords used were “Remote Sensing, Wetlands, Wetland, Satellite Imagery and Mapping”; and 

input language selected was “English”. This resulted in 128 articles of which 30 articles were 

randomly selected and exported for further reading and analysis.  

 

The results from this second search generated articles that explore various case studies of researching 

the dynamics of wetland ecosystems (Arshad, Eid & Hasan 2020; Fang et al. 2018; Valderrama-

Landeros et al. 2020; Zhang et al. 2020) using Remote Sensing, along with wetland vegetation 

mapping and delineation (Campbell & Wang 2019; Chang et al. 2020; Hamandawana, Atyosi & 

Bornman 2020; Jiao et al. 2019; Yeo et al. 2020). However, not all 30 papers addressed wetland 

delineation or wetland vegetation mapping explicitly which was the initial aim of the search. Overall, 

all the articles have a commonality in the sensor data used, namely Landsat datasets (Hamandawana, 

Atyosi & Bornman 2020; Masina et al. 2020; Olmanson et al. 2020; Walter & Mondal 2019), LiDAR 

(Campbell & Wang 2019; Pilant et al. 2020; Rapinel et al. 2019), Sentinel-1 or Sentinel-2 (Chang et 

al. 2020; Fitoka et al. 2020; Hakdaoui et al. 2019; Lefebvre et al. 2019; Mahdianpari et al. 2020; 

Pena-Regueiro et al. 2020) and MODIS data (Edvardsson et al. 2019). The RS methods adopted in 

mapping spatial extent, vegetation and change detection in wetlands include a variety of data types 

and supervised classification algorithms. Data types were raw spectral bands, the Normalized 

Difference Vegetation Index, Normalized Difference Water Index (Pena-Regueiro et al. 2020; 

Rupasinghe & Chow-Fraser 2019; Yeo et al. 2020), and Soil Adjusted Vegetation Index (Arshad, Eid 

& Hasan 2020). Supervised Classification of imagery for wetland mapping, assessing and change 

detection used Random Forest, and Support Vector Machine (SVM) algorithms, on per-pixel and 

object-based (Object-Based Image Analysis, OBIA) approaches, (Fitoka et al. 2020; Fu et al. 2017; 
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Hakdaoui et al. 2019; Hamandawana, Atyosi & Bornman 2020; Mahdianpari et al. 2020; Olokeogun 

& Kumar 2020; Pilant et al. 2020; Walter & Mondal 2019).  

 

The third objective of the bibliometric search was aimed at finding literature that used probability 

mapping to describe and map ecotones. The search terms “probability” and “ecotone” and “map” 

were used, limited to the past 10 years i.e. “2010-present”, resulting in eight articles which were 

exported. These eight articles speak to various RS techniques used to study ecotones in different 

landscape settings. For example, a study by Vitali et al. (2019) looked at spatio-temporal patterns of 

pine recruitment and encroachment across anthropogenic upper treeline ecotones in Southern Europe 

(Vitali et al. 2019). Fedrigo et al. (2018) used a Random Forest model to produce high accuracy 

“maps of stand type probability, including areas of transition (the ‘ecotone’) between rainforest and 

eucalypt forest” in south-east Australia (Fedrigo et al. 2018). Ørka et al. (2012) describe using the 

binomial logistic regression approach to produce a probability map that is suitable for monitoring 

changes in the extent and location of a subalpine zone (i.e. the transition between forest and alpine 

vegetation communities) (Hans Ole Ørka et al. 2012). More relevant to this study are two articles that 

resulted from the search i.e. the use of supervised probabilistic classification methods to map ecotones 

between two vegetation types in the Agulhas Plain, South Africa (de Klerk, Burgess & Visser 2018); 

and the use of “ hierarchical modelling and Bayesian inference to predict the probability of wetland 

presence as a continuous gradient with the explicit consideration of spatial structure” thus identifying 

wetland extent, ecotones and hydrological connections (Humphreys et al. 2017).  

 

Although this bibliometric search was used to guide the literature review chapter, additional literature 

beyond the past decade was sourced to get a holistic review of research that has been done on 

ecotones, wetlands, and the mapping and/or monitoring thereof. 

 

 LANDSCAPE ECOLOGY: ECOTONES 

When researching different types of ecosystems, it is important to take into consideration the whole 

landscape. Landscape ecology, which is concerned with studying the “reciprocal effects of spatial 

pattern on ecological processes” (Pickett & Cadenasso 1995, p.31), is an important umbrella term 

when delving further into the studies of specific biomes and ecosystems in ecology. Moreover, it is 

important to note that landscapes are made up of a mosaic of different areas that are differentiated by 

biotic and abiotic structures or compositions- ultimately known as landscape heterogeneity.  
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 Ecotone, Ecological Boundary or Patch? 

According to Cadenasso, Pickett, Weathers & Jones (2003), landscapes consist of two types of 

structures namely patches and boundaries. A patch is defined as “volumes that can be distinguished 

compositionally, structurally, or functionally from adjacent volumes at a given scale” (Cadenasso, 

Pickett, Weathers & Jones 2003, p.751). The example given by Cadenasso and colleagues (2003) to 

describe a patch is of a research question that focuses on forest fragments; the landscape will then be 

divided into patch types that are forest and those that are non-forest. Here, the patch described as 

forest will be assumed to be homogenous in structure, in contrast with the structure of patches 

identified as non-forest (Cadenasso, Pickett, Weathers & Jones 2003, p.751). Boundaries are then 

noted as the component which “marks patch limits; they are the zones between two neighbouring 

patches” (Cadenasso, Pickett, Weathers & Jones 2003, p.751). Strayer and colleagues furthermore 

argue that “[e]cologists use the term boundary (or edge) to refer to a wide range of conceptual and 

tangible structures” (Strayer et al. 2003, p.738). Ultimately, it is important to note that specific 

locations in a landscape can serve as a patch or boundary, depending on the question that the research 

is addressing. An example proposed by Cadenasso and colleagues (2003, pp.751–752) to highlight 

that the same physical space in a landscape can serve as a boundary for one research question, and as 

a patch for a different research question is given as follows. An estuary can be a considered as a patch 

for research questions that address its function and ecosystems services such as being a nursery 

ground for fish. However, it can also be considered a boundary between freshwater and saltwater or 

marine systems in another research question. Hence, this leads one to question whether the term 

ecotone is similar or equal to the terms patch or boundary in landscape ecology. 

 

 It is important to make mention of the detailed account of an ecotone definition that Odum & Barrett 

(1971) describe, which sets the tone for the next section of this literature review which aims to find a 

working definition of ecotone for this study: "A transition between two or more diverse communities 

as, for example, between forest and grassland, or between a soft bottom and hard bottom marine 

community. It is a junction zone or tension belt which may have considerable linear extent but is 

narrower than the adjoining community areas themselves. The ecotonal community commonly 

contains many of the organisms of each of the overlapping communities and, in addition, organisms 

which are characteristic of and often restricted to the ecotone. Often, both the number of species and 

the population density of some of the species are greater in the ecotone than in the communities 

flanking it. This tendency for increased variety and density at community junctions is known as the 

edge effect" (Odum & Barrett 1971) in di Castri, Hansen & Naiman (1988, p.49). Therefore, based 
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on these definitions and linkages provided between them, this study will consider an ecotone 

analogous to an ecological boundary. 

 Ecotone definitions and characteristics 

It can be said that researchers follow the definition of Clements (1905) which contends that ecotones 

are distinctly defined in terms of a spatially rapid vegetation change. This is evident in a study by 

Walker, Wilson, Steel, Rapson, Smith, King & Cottam (2003, p.579) who define an ecotone as a “ 

zone where directional spatial change in vegetation (i.e. qualitative and quantitative species 

composition) is more rapid than on either side of the zone (Lloyd, McQueen, Lee, Wilson, Walker & 

Wilson, 2000)” (Walker et al. 2003, p.579). However, Holland (1988) defined an ecotone as being “a 

zone of transition between adjacent ecological systems, having a set of unique characteristics defined 

by space and time scales and by the strength of interactions between adjacent ecological systems” 

(Holland 1988). This definition not only speaks to vegetation changes per se, but to a transition in 

any ecological system and may include a transition between any habitat forms or landscape mosaics 

such as aquatic-terrestrial, forest-fynbos or freshwater-marine systems.  

The properties and characteristics of ecotones are essential to discuss when trying to understand the 

definition of an ecotone. Various researchers have documented different properties of ecotones and 

their unique characteristics in both spatial and temporal extents, or specific ecosystems. Walker and 

colleagues (2003) express several general properties of ecotones such as “vegetational sharpness, 

physiognomic change, occurrence of a spatial community mosaic, many exotic species, ecotonal 

species, spatial mass effect, and species richness higher or lower than either side of the ecotone”. To 

support these generalizations, Walker et al. (2003, p.579) attempt to sample five types of ecotones in 

order to explore the prevalence of these properties, and base their definition of ecotones as rapid 

vegetation changes, on their findings across a diversity of ecosystems i.e. scattered mangroves, 

through salt marsh, rush-marsh, scrub and woodland to pasture ecosystems. This study used methods 

such as quadrat vegetation sampling with various statistical analysis and algorithms to identify the 

types of ecotones and their properties. The study found that ecotones displayed sharp changes in 

species composition; change in plant physiognomy; community mosaics; some unique ecotonal 

species; more species occurred frequently in the ecotone than in adjacent habitat; and that in one 

ecotone species richness was higher than in the adjacent habitat. In summary, the study concluded 

that ecotone characteristics depend on a particular ecological setting or environment and the ecology 

of the species present, rather than being definite general ecotone properties (Walker et al. 2003).  
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Additionally, a study by Kamel (2003) noted that there are different types of ecotones which can be 

classified according to the factors which affect their characteristics, and which is the most unstable 

part of an ecosystem due to its sensitivity to environmental changes. This means that an ecotone will 

be classified based on the environmental stress and biological interactions that form the ecotone. The 

results of this study led to ecotones being grouped into three main classifications with the first being 

climatic ecotones which can be subdivided into thermo-ecotone where temperature is the main 

limiting factor; and hygro-ecotone where humidity is the main limiting factor. The second ecotone 

classification is edaphic ecotones which is controlled by the edaphic (soil condition) factors. Edaphic 

ecotones can be subdivided into a further three categories namely geo-ecotone which is affected by 

either soil texture or soil depth or both; hydro-ecotone which is affected by the status of water in the 

soil; and lastly chemo-ecotone which is affected by soluble ions in the soil. The third and final ecotone 

classification as identified by Kamel (2003) is biological ecotones. This ecotone classification can be 

subdivided into external biological ecotone which concerns the boundaries between adjacent 

ecosystems and need the same demands to survive; and secondly internal biological ecotone which 

concerns “the relations between individuals in the same ecosystem, especially at the period of change 

from one aspect to another” (Kamel 2003, p.1559). 

 

Holland, Whigham & Gopal (1990) delve further into the characteristics of ecotones in wetlands. In 

coastal wetland ecosystems such as estuaries, temporal variability may have an impact on the ecotone 

e.g. the exchange of material between upstream rivers or open water bodies and estuaries downstream 

occur once or twice daily due to the tidal cycles (Holland, Whigham & Gopal 1990). Additionally, 

inland wetland ecotones allow for the exchange of nutrients and material across boundaries. Holland, 

Whigham & Gopal (1990) refer to these as transfers across lateral boundaries, which include 

“transfers from the upland to the wetland (upland-wetland ecotone), or from the wetland into open 

water (wetland-open water ecotone), from groundwater aquifers into soils or across vegetation zones 

with each zone dominated by different species (wetland-wetland ecotones)” (Holland, Whigham & 

Gopal 1990, p.174). Importantly, wetland open-water ecotones may change spatially as wetlands 

expand into open water areas such as lakes, or as wetlands erode (Holland, Whigham & Gopal 1990). 

This is important to consider in this study as the Du Toits River wetland, which is an alluvial fan, 

expands into the open waters of the Theewaterskloof Dam.  

Kark (2007) describes an ecotone as a zone where ecological communities, biotic regions or 

ecosystems coincide and often rapidly shift from one ecosystem or region to another. Kark (2007) 

also notes that ecotones occur along ecological gradients which are created as a result of spatial shifts 

in elevation, climate, soil, nutrients and various other environmental factors. It is further argued that 
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ecotones “commonly coincide with areas of sharp climatic transition along environmental gradients” 

and show a diversity of boundary types. These boundaries range from natural, to human generated 

ecotones e.g. fire breaks, urban structures, forest edge clear-cuts etc. (Kark 2007). As previously 

noted, it is evident that ecotones do occur within aquatic and terrestrial systems and have both spatial 

and temporal properties that vary across ecosystem types or biomes (Holland, Whigham & Gopal 

1990).  

The past ten years has shown an array of literature written about ecotones and their characteristics; 

Hufkens, Scheunders & Ceulemans (2009) review and highlight the trends and issues that have 

dominated research about ecotones between 1996-2006. Moreover, Senft (2009) based their Masters 

dissertation on species diversity patterns at ecotones. The study aimed to clarify species richness 

patterns at ecotones and the underlying mechanisms of these patterns. It was found that generally, 

higher species richness did not occur within the ecotone than the adjacent vegetation, and “that the 

species present were mostly also present on either side of the transition, with very few species unique 

to the ecotone” (Senft 2009). This is similar to results that Walker et al. (2003) found and is described 

in earlier text. In summary, ecotones can be seen as distinct zones of rapid change or the spaces 

between adjacent ecological habitats that show unique ecological properties (Cadenasso, Pickett, 

Weathers & Jones 2003; Holland, Whigham & Gopal 1990; Odum & Barrett 1971). Furthermore, 

ecotones are said to have areas of high turnover and species diversity, and often species that are 

unique to the ecotone (Kark 2007). However, other researchers have counter-argued this and found 

different results that show relatively less species diversity in the ecotone than to adjacent habitats 

(Hou & Walz 2014; Senft 2009). Ultimately, the Holland (1988) definition which describes the 

ecotone as a transition zone between neighbouring ecological systems that is characterized by unique 

properties which are defined by space and time scales, and by the strength of interactions between the 

adjacent ecological systems, will provide the foundation of this study. This is based on the idea that 

characteristics of ecotones will be influenced by interactions between two adjacent ecosystems with 

unique properties i.e. between and from upland fynbos and palmiet or peatland conditions.  

 Freshwater Ecosystems: Ecotones and Wetlands 

Freshwater ecosystems, a tangible yet finite resource, refers to “all inland water bodies whether fresh 

or saline, including rivers, lakes, wetlands, sub-surface waters and estuaries” and are said to face high 

levels of threat with more than half of South Africa’s river and wetlands being threatened (Van 

Deventer et al. 2018). Highly valuable to humans and biodiversity, freshwater ecosystems thus need 

effective conservation actions to ensure a sustainable supply for future needs. Rivers and wetlands 

are crucial for the survival of all living species and provide essential ecosystem services such as the 

provision of water, flood attenuation, water and flood regulation and erosion control (Van Deventer 
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et al. 2019, p.33). These ecosystem contributions or services are just a few to mention, however, the 

value of inland aquatic ecosystems and freshwater on earth is immeasurable.  

As the focus of this study is to map and understand the characteristics of wetland ecotones, it is 

important to keep in mind the definition of a wetland, classification, vegetation types, and soils of 

wetlands in South Africa specifically, to gain a deeper and better understanding of how to approach 

identifying and mapping ecotones in a wetland. The National Water Act (1998) define wetlands as 

“the land which is transitional between terrestrial and aquatic systems where the water table is usually 

at or near the surface, or the land is periodically covered with shallow water, and which land in normal 

circumstances supports or would support vegetation typically adapted to life in saturated soil.” If one 

is to break down this definition into different parts, it can be said that there are three distinct attributes 

to a wetland ecosystem i.e. transition between terrestrial and aquatic systems; the periodic inundation 

of shallow water; and typically, hydrophytic vegetation presence. This is also the only legislated 

wetland definition in the country (Department of Water Affairs and Forestry 2005; Ollis et al. 2013; 

Republic of South Africa 1998). It is worth mentioning that in a global context, Tiner (2016) notes 

that wetland is a generic term that is used to define “the universe of wet habitats including marshes, 

swamps, bogs, fens, and seasonally waterlogged areas. Wetlands are environments subject to 

permanent or periodic inundation or prolonged soil saturation sufficient for the establishment of 

hydrophytes and/or the development of hydric soils or substrates unless environmental conditions are 

such that they prevent them from forming” (Tiner 2016, p.1). Thus it is important to recognize that 

although wetlands may differ in various biomes across the globe with “regional differences in 

hydrologic regimes, climate, soil-forming processes, and geomorphologic settings”, common 

distinctive characteristics of these ecosystems is the presence of varying periods of saturation, hydric 

soils and wetland plant communities which have evolved over time (Tiner 2016, p.1). 

As previously mentioned, ecotones are said to be zones of change or transition from one ecological 

system, community, or region to another. Therefore, one carefully needs to consider three things as 

guiding principles when defining wetland ecotones, especially in the context of this thesis: 

1. At which point is there a change from terrestrial or upland fynbos habitat to wetland habitat? 

2. Which factors will determine this change: is it hydrology, soil, vegetation or all three 

combined?  

3. Based on its definition, is a wetland therefore itself simply the ecotone between land and 

water? Or can ecotones exist within a wetland and how? 
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Holland, Whigham & Gopal (1990) provide two wetland types namely tidal wetlands and inland 

wetlands to represent the ecotones in these systems. According to Holland, Whigham & Gopal (1990, 

p.172) tidal wetlands encompass tidal salt marshes, tidal freshwater marshes and brackish tidal 

wetlands whilst inland wetland ecosystems are inland freshwater marshes, northern peatlands and 

swamps. Moreover, Holland, Whigham & Gopal (1990) note that wetlands have external and internal 

boundaries with distinct vegetation types and thus some wetland ecotones can be clearly delineated 

while others difficult to distinguish. In conclusion, it can be said that ecotones will have different 

characteristics depending on the type of ecosystems that are adjacent to one another as well as the 

overall biogeographic region: “Ecotones are necessarily context dependent: they don’t exist without 

areas of relatively homogeneous composition, they don’t exist without defined communities, and they 

are dependent on a user-defined spatial extent” (Senft 2009).  

As wetlands are highly dynamic and complex ecosystems, factors such as the biogeographic setting, 

geology, vegetation cover, and inundation levels of the area of interest are important to consider when 

attempting to identify and map ecotones therein.  

 Measuring and Mapping of Ecotones 

As there is a plethora of definitions of ecotones, similarly there are various approaches to measuring 

or quantifying ecotones. Researchers have used methods such as looking at beta diversity (species 

turnover) which is often used when studying gradients (Williams 1996; Williams, De Klerk & Crowe 

1999). Beta-diversity refers to “the change in species as one moves between habitats, communities or 

ecosystems” (Kark 2007; Williams 1996) and is a useful way to see patterns and trends of change 

between communities. Kark (2007) also notes that the measuring of ecotones often depends on the 

data that is available. Literature in the bibliometric search also showed that ecotones have been 

mapped and measured using a variety of RS sensor data such as the coarse scale MODIS (Fox, 

Vandewalle & Alexander 2017), LiDAR (Jenkins & Frazier 2010; Moradkhani, Baird & Wherry 

2010; H.O. Ørka et al. 2012), medium resolution sensors such as Landsat (Bharti, Adhikari & Rawat 

2012; Galgamuwa, Wang & Barden 2020; Xu et al. 2018; Yang et al. 2015), through to finer spatial 

(high spatial resolution) scale data such as QuickBird and GeoEye (Beck et al. 2015).  

 

An example of a study that uses RS to map ecotones is by Hou & Walz (2014) who attempt to extract 

small biotopes and ecotones from multi-temporal RapidEye data and high resolution normalized 

digital surface model. The study aimed to combine object-based, and per-pixel image analysis. 

Importantly, the Normalized Difference Vegetation Index and Normalized Difference Water Index 

were used in the classification process. Whereas de Klerk, Burgess & Visser (2018) use supervised 

probabilistic classification methods to investigate the “location, width and character of ecotones 
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between acid Sandstone and alkaline Limestone fynbos on the Agulhas plain at the southern tip of 

Africa, known for rapid speciation of plants and exceptional plant biodiversity at the global scale” 

(de Klerk, Burgess & Visser 2018). The results of both these studies show the efficacy of imagery 

classification and analysis in mapping and understanding ecotones at different scales and in different 

ecological systems. It is also noted in literature that soil moisture plays an important role in controlling 

plant distribution and community composition across ecotones (Kamel 2003; Marfo et al. 2019). 

Therefore soil moisture properties will also be important to consider in this study as RS techniques 

will be applied to map and delineate ecotones within a wetland, where soil inundation and surface 

reflection may play a role in the classification of vegetation types and ultimately, the mapping of the 

ecotones within the system. 

 

Kark (2007) further notes that other research methods have been used to detect and quantify ecotones 

such as “simulation modelling, geographic information systems (GIS), remote sensing, and statistical 

tools that enable quantification and analysis of ecotones of different types and over several spatial 

scales”, and which often depends on available data (Kark 2007, p.3). When using GIS as a means of 

quantifying ecotones, two spatial models are applied namely vector (point, line or polygon features) 

and raster (pixel or x-y based features) (Kark & van Rensburg 2006). Using a vector model approach 

may be useful for human-induced features (or even human-made ecotones) as these will often appear 

linear. Moreover, Kark & van Rensburg (2006) note that a vector-based approach will allow for the 

calculation of area, length, “fractal dimensions and the analysis of spatial relationships between 

features” (Kark & van Rensburg 2006, p.33). However, it is further argued that the use of vector 

models may have contributed to “boundary regions being ignored, appearing as a one-dimensional 

line on the map, with emphasis given to the comparison between units defined as more homogenous 

(e.g. distinct vegetation communities or ecoregions)” (Kark & van Rensburg 2006, p.33). This 

argument is reinforced by de Klerk, Burgess & Visser (2018) who note that on most maps-whether 

paper or a GIS database- ecotones are often presented as a single line “regardless of their actual extent 

on the ground, or whether they are derived from field mapping (e.g. SANBI 2006-), expert synthesis 

(Dinerstein et al. 2017), or statistical analysis of gridded databases (Linder et al. 2012)” (de Klerk, 

Burgess & Visser 2018, p.125). Moreover, it can be said that the characteristics such as the strength 

and breadth of different ecotones can vary substantially and that a single hard line cannot be an 

appropriate or accurate means of mapping ecotones (de Klerk, Burgess & Visser 2018; Williams 

1996). As boundaries, edges and ecotones are much more complex in reality than in theory, a raster-

based approach may thus be more appropriate as it can be applied over multiple spatial scales (Kark 

& van Rensburg 2006) and the cells or pixels in a raster are “given a different value so that the location 

of ecotones and steepness of gradients” can be more easily mapped and analysed. For example, de 
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Klerk, Burgess & Visser (2018) make use of fuzzy probabilistic classifiers to assign graded (fuzzy) 

membership to imagery in order to map the location, extent and characteristics of ecotones at a 

landscape level between two vegetation types in the Agulhas Plain, South Africa. It is important to 

note that generally, traditional hard classifiers present a feature in binary classes, whereas fuzzy 

classifiers assign graded membership to pixels (de Klerk, Burgess & Visser 2018) and therefore 

probabilistic soft classifiers might be deemed more useful in this study as it provides “a probability 

distribution over a set of classes, where each pixel is assigned a strength membership value for each 

class being mapped” (de Klerk, Burgess & Visser 2018, p.128). 

 

Another example of a per-pixel RS method to quantify and map ecotones is the application of the 

moving split window (MSW) method (van der Maarel 1976) which enables one to detect regions 

“where the variance of neighbouring samples along a gradient is highest. The basic idea is to detect 

edges by finding the areas with the highest rate of change among adjacent pixels” (Kark & van 

Rensburg 2006, p.34). The MSW technique is one of the most popular multivariate techniques in 

literature used to detect and map ecotones along one-dimensional data such as transects (Brownstein 

et al. 2013; Choesin & Boerner 2002; Hennenberg et al. 2005; Johnston & Bonde 1989; Walker et al. 

2003). In using the MSW technique, transects are usually subjectively positioned; gradient-oriented 

and placed perpendicular to areas that are presumed to be boundary/boundaries (Choesin & Boerner 

2002; Erdos et al. 2014). Typically, at one end of a transect a window is assigned and split into two 

half windows, which are ultimately compared using a dissimilarity function. Windows are then 

shifted along the transect and computed along all positions of the transect, repeatedly until the end of 

the transect. Where the dissimilarity function is plotted against spatial boundaries, peaks will appear 

i.e. boundaries and/or ecotones (Erdos et al. 2014). In the case of using the MSW method to analyse 

satellite imagery, plots/transects are the pixels of the image which are then compared based on their 

reflectance (Chang et al. 2003; Erdos et al. 2014).  

 

As the above section of the review has highlighted that ecotones are generally expected to be 

ecological areas of high transition and change, a more detailed account of per-pixel methods to detect 

and map ecotones, and which data is most suitable to use will be discussed following a preceding 

review of wetland classification, vegetation, soils, and mapping of wetlands. 

 SOUTH AFRICAN INLAND AQUATIC ECOSYSTEMS 

The Freshwater Consulting Group on account of the South African National Biodiversity Institute 

(SANBI) have compilated and provided a user manual titled Classification System for Wetlands and 

other Aquatic Ecosystems in South Africa (Ollis et al. 2013) which aims to describe and classify 
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inland wetlands and aquatic ecosystems. This classification system is based on the principle that 

hydrology and geomorphology determines the way in which an aquatic ecosystem functions (Ollis et 

al. 2013). Therefore, a hydrogeomorphic (HGM) approach to “wetland classification is founded 

(Brinson 1993), whereby hydrological and geomorphological characteristics are used to distinguish 

primary wetland units” (Ollis et al. 2013, p.5). Simply stated, the South African Wetland 

Classification System (Ollis et al. 2013) aims to describe wetlands in terms of the profile of the “basin 

where water is stored, and the main inputs and outputs of water in that basin” (Sieben, Mtshali & 

Janks 2014, p.2) and has a six-tiered structure: 

 

 

                                                                                              Source Ollis et al. (2013, p.5)     

                          

Wetlands are classified under the Level 4 structure of the guideline namely the Hydrogeomorphic 

(HGM) unit, i.e. “the main ‘unit’ by which a single wetland can be recognized” (Sieben, Mtshali & 

Janks 2014, p.2). The HGM units are distinguished based on landform, hydrological characteristics 

and hydrodynamics (Ollis et al. 2013, p.18). Wetlands are grouped as a unique type of inland aquatic 

ecosystem (Ollis et al. 2013) based on the definition which highlights that a wetland is distinctly 

considered an ecosystem transitioning between aquatic and terrestrial habitats (Republic of South 

Africa 1998).  

 

In South Africa, a wide range of existing ecosystem services are potentially provided by these six 

wetland types, broadly categorized as: supporting services, regulating services, provisioning services, 

and cultural services (Van Deventer et al. 2019). Supporting services include “soil formation, primary 

production, nutrient cycling, water recycling”; regulating services include “air quality, local climate 

regulation, global climate regulation, water regulation, flood hazard regulation, storm hazard 

regulation, pest regulation, regulation of human diseases, noise and visual buffering”(Van Deventer 

et al. 2019, p.33). Provisioning services include the provision of fresh water, food, fibre, fuel, “genetic 

resources, natural medicines and pharmaceuticals, ornamental resources, clay, mineral, aggregate 

 

“The tiered structure progresses from Systems (Marine vs. Estuarine vs. Inland) at 

the broadest spatial scale (Level 1), through Regional Setting (Level 2) and 

Landscape Units (Level 3), to Hydrogeomorphic (HGM) Units at the finest spatial 

scale (Level 4). At Level 5, Inland Systems are distinguished from each other 

based on the hydrological regime and, in the case of open waterbodies, the 

inundation depth- class”.  
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harvesting, energy harvesting from natural air and water flows”(Van Deventer et al. 2019, p.33). 

Lastly cultural ecosystem services which include “cultural heritage, recreation and tourism, aesthetic 

value, spiritual and religious value, inspirational value, social relations, educational and 

research”(Van Deventer et al. 2019, p.33). 

 Wetland classification  

The purpose of wetland classification is to create and support an inventory of wetlands by 

“standardising and defining terms to describe wetland types to allow successful wetland conservation 

and management” (Finlayson & van der Valk 1995) in Grenfell et al. (2019, p.2). Wetland 

classification systems are usually based on a selected wetland definition which Grenfell et al. (2019) 

argue is often based on the definition by Cowardin et al. (1979), which requires that a wetland meets 

one or more of the following criteria: “(1) it supports hydrophytes at least periodically, (2) the 

substrate is composed of undrained hydric soil and/or (3), the substrate is non-soil and is saturated or 

covered by shallow water at some time during the growing season of each year” (Grenfell et al. 2019, 

p.2). It is evident that these criteria are also listed in the National water Act (1998) definition of a 

wetland.  

 

The traditional wetland classification guide of Ollis et al. (2013) categorize six broad wetland types 

based on their HGM units. These six types are floodplain wetland, channelled valley-bottom wetland, 

unchannelled valley-bottom wetland, depression, seep and lastly, a wetland flat (Ollis et al. 2013).  

 

 

                                                                        Source: Ollis et al. (2013, p.17) 

Figure 2.1 Illustration of the landscape setting of the inland systems of South Africa, based on the HGM units 
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Although wetland classifications are aimed at creating a standardized inventory and guide for how to 

identify and classify wetlands across the country, Grenfell et al. (2019) argue that the current 

classification system (Ollis et al. 2013) is not always accurate in that wetlands do not always fit neatly 

into a category. In addition, depending on the spatial and temporal scale of observation, different 

processes will be at play in a system, and affects which wetland type is assigned to a specific study 

area. Grenfell and colleagues (2019) introduced a genetic classification system that is focused on the 

mode of wetland formation, and is based on the “understanding that genetic processes impact on the 

outcome hydrology, sedimentology, geomorphology, ecosystem service provision, and long-term 

dynamics of wetlands in drylands” (Grenfell et al. 2019, p.1). This genetic classification describes 

four wetland types based on the sediment source; i.e. colluvial, alluvial, Aeolian and geochemical, 

which are then subdivided into eight wetland types namely; hillslope seep, floodplain, valley-bottom, 

plain, blocked-valley, alluvial fan, aeolian depression, and geochemical depression (Grenfell et al. 

2019, p.1). It is important to briefly note the process of wetland formation within a landscape before 

discussing the different wetland types. Grenfell et al. (2019) state that “wetlands usually occur in 

areas of flow accumulation concentration, whether from surface flow (channel or surface runoff) or 

inter-flow (within soil and bedrock), or occasionally at locations of groundwater discharge” (Grenfell 

et al. 2019, p.2). Furthermore, due to extensive semi-arid conditions that are associated with the sub-

tropical high pressure belt in southern Africa, the majority of wetlands occur along drainage lines 

(Grenfell et al. 2019).  

 

Ultimately, when classifying wetlands, it is important that one thinks about the wetlands historically 

as part of the landscape, not as single units, but rather as systems that are interconnected with drainage 

lines in the landscape (Grenfell et al. 2019). 

  Wetland vegetation 

As established in the above section, it can be said that there are different types of wetlands, each 

characterised by unique topography, geomorphological features and/or a combination of hydrology 

regimes and vegetation types. However, the most important characteristic that determines habitat 

conditions in a wetland is the hydrology regime i.e. water flow in and out of the wetland (Mitsch & 

Gosselink 2000). Hydrological conditions determine whether a wetland is temporarily or permanently 

flooded; contains flowing or still-standing water; has channelled or diffuse flow; inundated or 

saturated soils; and ultimately where various types of sediments are deposited in the wetland (Sieben, 

Mtshali & Janks 2014). These wet, and damp habitat conditions in turn influence vegetation 

composition, as wetland vegetation respond to hydrology and topography, by forming zones of either 

dominant plant species, or a complex mosaic of diverse plant species (Richards 2001). Sieben, 
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Mtshali & Janks (2014) additionally note that water quantity and quality are the two most important 

aspects that affect plant communities in wetland environments. Wetland vegetation are adapted to 

growing in substrates that are anaerobic (i.e. devoid of oxygen) for at least some parts of the year, 

and are affected by altered soil chemistry influenced by prolonged periods of saturation and 

inundation  (Department of Water Affairs and Forestry 2005; Richards 2001; Sieben, Mtshali & Janks 

2014). Tiner (2016, p.26) additionally argues that vegetation itself has a substantial effect on the 

hydrology of a site. It must be noted that vegetation (hydrophytes), hydrology and soil 

(hydromorphic) conditions are the three determining factors of wetland ecosystem presence 

(Department of Water Affairs and Forestry 2005; Ollis et al. 2013; Richards 2001; Sieben, Mtshali & 

Janks 2014). 

 

Vegetation is one of the most visible aspects of a wetland environment and plays an important role in 

wetland functioning (Sieben, Mtshali & Janks 2014) such as slowing down overland runoff, soaking 

and storing rainwater to replenish the groundwater table, help bind soil together and reduce soil 

erosion, and helping with intercepting and trapping sediment and silt from land runoff thus filtering 

and purifying water flowing through the wetland (Richards 2001). Moreover, literature has noted that 

some species remove toxins in their tissues through sequestration and trap sediments in an “anoxic 

environment where anaerobic bacteria reduce many nutrients to a gaseous form. Both of these 

processes have a positive impact on water quality (Cronk & Fennessy 2001)” in (Sieben, Mtshali & 

Janks 2014, p.4). 

 

Classification of plants according to occurrence in wetlands 

A global approach to identifying wetland vegetation is based on the classification by Reed (1988) 

who primarily attempted to delineate wetlands, and wetland vegetation by using a wetland-indicator 

species approach. This entails categorizing vegetation based on their most likely occurrence in 

wetlands and non-wetlands, into four groups namely obligate wetland (ow) species, facultative 

wetland (fw) species, facultative (f) species and facultative dry-land (fd) species with an estimated 

percentage of occurrence in wetlands as displayed in the table below: 
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Table 2.1 Classification of plants according to occurrence based on Reed (1988) in Department of Water Affairs & 

Forestry (2005) 

 
Obligate wetland (ow) species Almost always grows in wetlands (>99% of occurrences). 

Facultative wetland (fw) 

species 

Usually grow in wetlands (67-99% of occurrences) but occasionally are 

found in non-wetland areas. 

Facultative (f) species Are equally likely to grow in wetlands and non-wetlands (34% - 66% 

occurrences). 

Facultative dry-land (fd) 

species 

Usually grow in non-wetland areas but sometimes grow in wetlands 

(estimated probability 1- 34%) 

 

However, a more recent reference of this classification approach is in Brand et al. (2018, p.8) who 

refer to Tiner (Tiner 1999) and Cronk & Fennessy (2001) as references to wetland indicator plants 

i.e. the degree to which species are associated with wetlands: 

 

Table 2.2 Classification of plants according to occurrence in wetlands based on Tiner (1999) and Cronk & Fennessy 

(2001) in Brand et al. (2018)  

 
Obligate wetland (OBL) estimated probability >99% in wetlands. 

Facultative wetland (FAWC) estimated probability 67% - 99% in wetlands. 

Facultative (FAC) estimated probability 34% - 66% in wetlands 

Facultative Upland (FACU) estimated probability 67% - 99% occur outside wetlands, occasionally 

found in wetlands (estimated probability 1% - 33%) 

Obligate Upland (UPL) estimated probability >99% occur outside wetlands. 

 

These two tables show that the classification approaches are the same, except that the category names 

and abbreviations have changed from the original Reed (1988) classification i.e. Obligate wetland 

previously abbreviated (ow) is now (OBL), Facultative wetland previously (fw) is (FAWC), 

Facultative species previously (f) is now (FAC), Facultative dry-land previously (fd) is now 

Facultative Upland (FACU) and an additional category has been added namely Obligate Upland 

(UPL) (Brand et al. 2018). Furthermore, it is contended that wetlands are generally characterised by 

grasses, although sedges are often the dominant plants occurring in the wettest parts of a wetland 

(Sieben, Mtshali & Janks 2014).  
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The National Wetland Vegetation Database (Sieben, Mtshali & Janks 2014) under the support of the 

Water Research Commission (WRC) provides a comprehensive report of wetland vegetation in South 

Africa. The purpose of this report was to compile a standardized database of vegetation data for 

wetlands across the country so that sound conservation planning, and monitoring can be implemented 

nationally. Vegetation occurring in wetlands are important in terms of their indicator value as they 

can assist ecologists to “interpret the environmental conditions and changes therein in the wetlands” 

(Sieben, Mtshali & Janks 2014, p.iii). This database of vegetation looks at vascular plants as an 

important feature as they are present in all wetlands. Thus, the application of the database is suitable 

for application to wetlands and riparian areas across the country, regardless of their diversity in the 

different bioregions of the country (Sieben, Mtshali & Janks 2014).  

 

A brief account of inland wetland vegetation based on vegetation cover and vegetation form is 

described below and referenced from both the South African Wetland Classification System, hereafter 

referred to as SAWCS (Ollis et al. 2013) and National Wetland Vegetation Database (NWVD) 

(Sieben, Mtshali & Janks 2014). Ollis and colleagues (2013) contend that vegetation cover 

characteristics affect the composition of biota within an inland wetland and the ecosystem functions 

that the wetland can perform. The SAWCS (2013) recognizes two categories of vegetation cover in 

an inland wetland namely vegetated- with four sub-categories- and unvegetated, which is not further 

sub-divided and consists of either bare substratum, open water or a fluctuation between these two 

states (Ollis et al. 2013, p.57). The four sub-categories of vegetation form in the vegetated category 

include aquatic vegetation, herbaceous vegetation, shrubs/thicket vegetation and forest which are 

each briefly described: 

 

Aquatic Vegetation 

Aquatic vegetation encompasses plants that are “found principally on or below the water surface” and 

are categorized into three groups namely floating aquatic vegetation, submerged aquatic vegetation 

and algal mat. However, although emergent macrophytes “are plants that are rooted in the substratum 

of an aquatic ecosystem but that emerge above the water surface (if present), with most of the plant 

structures visible above the surface” they are not considered aquatic vegetation. This is because 

emergent macrophytes do not primarily occur on or below the water surface and should be classified 

as herbaceous vegetation or if they are woody, as shrubs/thicket or forest vegetation (Ollis et al. 2013, 

p.58). 
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Herbaceous vegetation 

These are non-woody vegetation types found in wetlands, and include several sub-categories namely, 

geophytes, grasses, herbs/forbs, sedges, rushes, reeds, restios and palmiet. Refer to APPENDIX A for 

a detailed description of each herbaceous vegetation types as described in Ollis et al. (2013, p.60). 

 

Shrubs/thicket vegetation 

According to the SAWCS, these are self-supporting, multi-stemmed woody plants that are less than 

five metres in height and include young trees and trees that are small and stunted due to environmental 

conditions, and true shrubs. Furthermore, it is noted that dense stands of shrubs is called thicket (Ollis 

et al. 2013).  

 

Forest wetlands 

For forest inland wetlands, the SAWCS notes that these systems are characterised by woody 

vegetation, dominantly trees with a canopy cover of >75%. Forest wetlands may be further subdivided 

into riparian forests i.e. “a community of trees (i.e. a forest) occurring in the riparian zone of a river”, 

and forested wetland (or swamp forest) which is “a community of trees (i.e. a forest) occurring in 

soils that are permanently saturated or seasonally inundated with non-saline water” (Ollis et al. 2013, 

p.62).  

 

The National Wetland Vegetation Database (NWVD) (2014) assigns eight main clusters of wetland 

vegetation which aligns with the Mucina & Rutherford (2006) South African Vegetation Map: 

• Main Cluster 1: Sclerophyllous Wetland Vegetation  

• Main Cluster 2: Swamp Forest 

• Main Cluster 3: Subtropical Wetland 

• Main Cluster 4: Estuarine, Brackish, and Saline Wetland Vegetation  

• Main Cluster 5: Montane Grassy Wetland Vegetation 

• Main Cluster 6: Temperate Grassy Wetland Vegetation  

• Main Cluster 7: Short Lawn Grassy Wetland Vegetation 

• Main Cluster 8: Hydrophytic Vegetation 

 

For this study, a detailed list of species for Sclerophyllous Wetland Vegetation as described in the 

NWVD (Sieben, Mtshali & Janks 2014, pp.32–38) is attached as APPENDIX B. This list was used 

in field data collection, as a means of reference for identifying plants found within the Du Toits River 

wetland. 
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Sclerophyllous Wetland Vegetation 

This vegetation type is the first main cluster and the most clearly defined of the eight main clusters 

in the NWVD (Sieben, Mtshali & Janks 2014). The NWVD report these plants as species 

communities that occur or grow exclusively on nutrient-poor substrates and Table Mountain Group 

Sandstone dominantly in the Western Cape (Sieben, Mtshali & Janks 2014). This environment is 

characteristic of the Cape Floristic Region (CFR) and Fynbos biome (Rebelo et al. 2006) conditions, 

and encompass a mixture of vegetation dominantly shrubs, restios and tough, hardy mostly needle-

leaved sclerophyllous grasses and sedges (Sieben et al. 2017; Sieben, Mtshali & Janks 2014). Sieben, 

and colleagues (2014) additionally note that some sclerophyllous vegetation communities may also 

be found in parts of the Eastern Cape and Limpopo provinces, where nutrient-poor Sandstones are 

also present. Although included in the NWVD representing 321 plots and 700 species resulting from 

data analysis (Sieben, Mtshali & Janks 2014), sclerophyllous vegetated wetlands have historically 

been under sampled, most likely due to upland vegetation in the fynbos biome drawing more attention 

(Sieben et al. 2017). 

 

A more recent study by Sieben, Kotze, Job & Muasya (2017) present an overview and classification 

of wetland vegetation found within sandstone fynbos or related vegetation types that occur on 

extremely nutrient-poor substrates. As mentioned above, this is sclerophyllous vegetation (Main 

Cluster 1 of the NWVD), and should not be referred to as Fynbos vegetation as “it is not restricted to 

the temperate Fynbos biome, but it is mostly dominated by sclerophyllous shrubs and graminoids as 

an adaptation to the unique environmental conditions in these wetlands” (Sieben et al. 2017, p.55).   

From this study, it was noted that wetlands in the Fynbos biome are unique and quite unusual in the 

context of wetland vegetation in general which in most cases in South Africa, have “distinct 

vegetation dominated by graminoids, mostly from the family Cyperaceae, that stands out from the 

vegetation in the uplands, independent of the biome they are located in (Sieben, Mtshali & Janks 

2014). It is highlighted that many of the plants in these wetlands are closely related to the upland 

fynbos plants surrounding these wetlands, and belonging to the same families such as Restionacae, 

Ericaceae, Proteaceae, Asteraceae and Rosaceae (Mucina & Rutherford 2006; Sieben et al. 2017; 

Sieben, Mtshali & Janks 2014). 

 

Furthermore, Sieben, Mtshali & Janks (2014) mention that when researching this vegetation type, 

taxonomical issues may arise in distinguishing between sclerophyllous vegetation and upland fynbos 

especially among Restionacae and Ericaceae species. However, they further note that on a plot basis, 

this vegetation type is not species-rich when compared to upland fynbos. Consequently, this means 

that it may be difficult to distinguish between sclerophyllous vegetation and upland fynbos vegetation 
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for this study, and careful analysis must be considered with the Remote Sensing classification results. 

Soil conditions will be included from field observations to determine or solve any potential confusion 

between vegetation types.  

 

Note that the purpose of this project is to test and explore whether Remote Sensing can efficiently 

detect ecotones within a fynbos embedded wetland system. Therefore, although vegetation cannot be 

used as a primary and single indicator of wetland presence, it will be the main feature used to derive 

patterns of plant composition and changes from Remote Sensing imagery and techniques, to 

potentially identify fine-scale ecotones. Additional indices such as the Modified Normalized 

Difference Water Index (MNDWI) to determine the surface water level during the wet and dry season 

will also be used for supplementary analysis.  

 

 Wetland soils 

From the previous sections it can be inferred that wetlands are commonly characterised by three 

determining factors that have a knock-on effect on one another i.e. the hydrological regime (how 

water moves in and out of the wetland as well as the frequency and duration of inundation and 

saturation), may affect the soil morphology and chemistry (hydromorphic soils) in the wetland, and 

this in turn may affect the vegetation that will inhabit the wetland (Ollis et al. 2013). This argument 

is supported in Job (2014) who also notes that the “presence and retention of water in a landscape is 

a key defining feature of a wetland, where water is held long enough to saturate soils to sufficient 

depth to influence the plants that grow there, and for characteristics indicative of flooded soil to 

develop” (Job 2014, p.9). Because environmental conditions differ across the world, wetland soils in 

the southern African context will be discussed and therefore relevant literature covering information 

on wetland soils in South Africa will be consulted.  

 

Wetlands encompass a tremendously wide range of hydrological regimes from temporarily (or 

seasonal) to permanently saturated, which is typically reflected in the morphology of mineral wetland 

soils (Job 2014). The term ‘hydromorphic soil’ is associated with wetlands and is characterised by 

prolonged and repeated periods of saturation which develop anaerobic (oxygen-devoid) soil 

conditions (Department of Water Affairs and Forestry 2005). Furthermore, it is noted that prolonged 

anaerobic conditions may result in a change in the chemical characteristics of the soil (Department of 

Water Affairs and Forestry 2005). Hydromorphic soils display unique characteristics (in both colour 

and texture) resulting from these intermittent periods of saturation, and soil components such as iron 

and manganese which are insoluble under aerobic conditions become soluble under anaerobic soil 
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conditions (as in wetlands) and can be percolated from a soil profile. Iron is said to be the most 

abundant element in soil and results in the general red and brown colour of many soils. Under 

anaerobic conditions, once most of the iron has been dissolved out of soil due to prolonged anaerobic 

conditions, the soil profile consists of a greyish, greenish or bluish colour, and is said to be “gleyed” 

(Department of Water Affairs and Forestry 2005). Common in seasonally or temporarily saturated 

wetlands, is a fluctuating water table, which results in alternations between aerobic and anaerobic 

conditions. This in turn can cause dissolved iron to become insoluble again, resulting in the formation 

of mottles (Department of Water Affairs and Forestry 2005). Richards (2001) notes that condensed 

levels of iron in mineral soil material under aerobic soil conditions, may result in the development of 

yellow, orange, red or black mottles.  

 

Additionally, the SAWCS (Ollis et al. 2013) refer to ‘substratum type’ which is one of the descriptors 

(level 6 of the classification system) of classifying Inland Systems. The guide further reinforces that 

for wetlands, when classifying the substratum type, it is important to consider the soil profile and not 

just the surface substratum. This is because “soil profile has a significant influence on the formation 

and functioning of a wetland ecosystem, including the way in which water enters and flows through 

a wetland” (Ollis et al. 2013, p.51). The substratum types for Inland Systems include the following 

categories:  

1. Rocky substrata: bedrock, boulders, cobbles, and pebbles/gravel.  

2. Mineral soil (>10% organic carbon): sandy soil, silt (mud), clayey soil, and loamy soil. 

3. Organic soil (>10% organic carbon): Peat (>30% organic carbon), and <30% organic carbon. 

4. Salt crust is another unique type of substratum included in the Classification System but not 

applicable to this study.  

 

Organic soil vs mineral soils 

According to Ollis et al. (2013) organic carbon is one of the abundant components in any soil, 

however, with varying amounts in different soil types. The soil classification system in South Africa 

contends that “topsoil with an average organic carbon content of at least 10% throughout a vertical 

distance of 200 mm is defined to be an organic soil” (Soil Classification Working Group 1991). 

Organic soils are mostly made up of accumulated organic material that consists of varying stages of 

decayed plant and animal remains and “tend to occur in environments where the rate of decay of 

organic matter is substantially slower than the rate of production. Such conditions occur in areas that 

are saturated with water for long periods in most years (i.e. in wetlands that are permanently or near-

permanently saturated)”(Ollis et al. 2013). Occasionally some organic soils can be classified as peat 

but not always. Fundamentally, peat can be defined as “a sedentarily (in-situ) accumulated material 
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comprising of at least 30% (dry mass) of dead organic matter” (Joosten & Clark 2002). Whereas 

mineral soils are all other non-organic soils and can be described based on their texture. These include 

sand-, silt, and/or clay-sized rock and mineral fragments” (Ollis et al. 2013).  

 

Ultimately:  

“Wetland vegetation and mottling of the soil are generally absent from the terrestrial zone, while the 

intermittently saturated zone generally has some wetland vegetation and sparse mottling of the soil. 

The seasonally saturated zone generally supports significant wetland vegetation (mostly grasses and 

sedges), and the soil is often greyish in colour with many mottles. Mostly wetland vegetation (sedges, 

rushes, and reeds) occurs in the permanently saturated zone, where the soils are generally grey in 

colour with few or no mottles, and seasonal to permanent inundation is common. Due to the above-

mentioned relationships between the hydrology, soils, and vegetation of a wetland, in the absence of 

long-term hydrological records (which is usually the case), soil morphology and/or vegetation can be 

used as indicators of the hydrological regime of a wetland by those with adequate experience. Soil 

morphology characteristics are the result of long-term hydrological conditions, while the vegetation 

within a wetland is an indicator of recent conditions” (Ollis et al. 2013, p.41). This is key in analysing 

the soil and vegetation in my study area as soil and vegetation will speak to the ecotone characteristics.  

 

  
        Source: Ollis et al. (2013) 

 
Figure 2.2 Schematic of a cross-section through a hypothetical wetland displaying the various zones of saturation and 

inundation that could occur in a wetland. The diagram also shows how vegetation and soils in the upper ground surface 

(50cm) layer typically responds to the hydroperiod (in Ollis et al. (2013), modified from Kotze 1996) 
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 Mapping and Monitoring wetlands 

The need for increased capacity and prioritization of wetland research has increased over the years as 

scientists have shown that these valuable ecosystems are increasingly under threat (Van Deventer et 

al. 2019; Van Deventer et al. 2018; Ramsar Convention on Wetlands 2018). One important aspect to 

wetland conservation and management is the availability of national wetland inventories with 

accompanying maps of the location of wetlands. These provide information on a countries wetland 

resources which may lead to better monitoring, management and restoration efforts (Tiner 2016).  

The universal term for identifying where wetlands are and how they are located within the landscape 

is wetland delineation. Wetland delineation refers to the “determination and marking of the boundary 

of a wetland marking the outer edge of the temporary zone of wetness” in either a field-based or 

desktop application (Department of Water Affairs and Forestry 2005, p.28). There are four factors to 

consider as indicators in delineating a wetland (Department of Water Affairs and Forestry 2005, pp.5–

6) namely:  

1. The terrain unit indicator which helps in identifying where and in what parts of the landscape 

a wetland is most likely to occur. 

2.  The soil form indicator as identified by the Soil Classification Working Group (1991) which 

are soils that show signs of prolonged and frequent saturation. 

3. The soil wetness indicator which identifies characteristics or ‘morphological signatures’ that 

develop in the soil as a result of various periods of frequent and prolonged saturation. 

4. Lastly, the vegetation indicator which identifies hydrophytic vegetation that are adapted to 

saturated soil conditions. 

These indicators are important in determining wetland presence and once identified, may also be used 

as a baseline for mapping the location and extent of wetlands which can be added to national wetland 

inventory datasets or repositories.  

  

The National Wetland Inventory (NWI) for South Africa is housed within the South African National 

Biodiversity Institute (SANBI) who holds the current repository of national spatial data and 

information for wetlands. Moreover, the National Wetland Inventory (NWI) is the originator for the 

National Wetland Map (NWM) which was the principal wetland input in national planning projects 

such as the National Freshwater Ecosystem Priority Areas (NFEPA) (Nel et al. 2011) and National 

Biodiversity Assessment (Van Deventer et al. 2018; Driver et al. 2012; Job et al. 2018). Job et al. 

(2018) notes that the NWI receives and integrates wetland data and information from numerous and 

a wide range of sources typically with “different mapping scales, coverage and accuracies”(Job et al. 

2018, p.2). It is impossible to approach wetland conservation and management in a holistic or 
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systematic manner whether at national, provincial, local or catchment scale without having good 

baseline information that are provided by wetland inventories (Job et al. 2018). It is further argued 

that this does not imply waiting for the perfect data to create a good inventory, but rather involves 

“investing in ongoing improvements while making use of the best available data to develop policy 

and guidance that is appropriate to regional conditions and wetland characteristics” (Job et al. 2018, 

p.2). Since its first inception, the National Wetland Map, henceforth referred to as the NWM, has 

encountered a number of improvements over the years, with the latest being the NWM5 (version 5) 

which was published in 2020. Job et al. (2018) noted that wetland inventories at any scale (national, 

provincial, local etc) must continuously be updated and improved and not regarded as absolute. This 

is showcased in the NWM 5 which aims to enhance and improve the existing and previous NWMs. 

The South African NWM5 (2020) provides information on the “location, spatial extent and ecosystem 

types of two of the three broad aquatic ecosystems, namely, estuarine and inland aquatic (freshwater) 

ecosystems”(van Deventer et al. 2020, p.66). This version of the NWM comes with the following 

improvements: 

(i) “the extent of wetlands mapped in NWM5, compared to previous versions of the NWMs;  

(ii) the improved extent of inland wetlands mapped in focus areas in NWM5 relative to 

NWM4; 

(iii) the type of cover associated with the wetlands (inundated, vegetated or arid);  

(iv) the ecotone between rivers and estuaries; and  

(v) level of confidence for the inland wetlands in terms of how well the extent and 

hydrogeomorphic units were captured for each sub-quaternary catchment of South Africa” 

(van Deventer et al. 2020, p.66) 

 

van Deventer and colleagues (2020) also note that the intention of the NWM5 is to inform users of 

both the improvements and the “shortcomings of the NWM5 so that it is appropriately used in 

planning and decision making, whilst enabling better planning for the wetland inventory of South 

Africa” (van Deventer et al. 2020, p.68). An important issue to take note of is that the NWM5 does 

not represent fine-scale ecotones which this study aims to, but rather focuses on river-estuary 

ecotones. This is understandable as the scale at which ecotones are mapped in this study, may be too 

small for a large extent of spatial data such as a national wetland layer. Fine-scale ecotones may thus 

rather be included in catchment-based layers. van Deventer et al. (2020) recommend that future 

improvements of the NWM should focus on catchment-based improvements, mainly in strategic 

water-source areas, areas that experience high development pressures, and areas with low confidence 

designation.  
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It is noted in literature that the mapping of wetlands is not always an easy task as the boundaries of 

most wetlands are not always clearly defined by abrupt changes from wetland to terrestrial habitat. 

However, there is usually a gradual transition in soil and vegetation characteristics that is linked to 

the “declining frequency and duration of saturation of the soil, as one moves away from the centre of 

the wetland” (Job et al. 2018, p.3). This must be considered when attempting to map the transition 

i.e. ecotones within the Du Toit River wetland where it may be challenging to clearly define and 

distinguish visible changes between upland fynbos and wetland habitat. Job et al. (2018) note that 

finding a point along the moisture gradient at which to draw the wetland boundary can especially be 

a daunting task if the mapping is solely relying on detection from remote sensing imagery. 

Researchers have also scripted the challenges of mapping wetlands which include the fact that 

wetlands are not unified by one single or common landcover-type or vegetation form such as a forest 

that is populated by trees, grasslands by grass, and shrublands by shrub (Gallant 2015). Instead, 

wetlands in their dynamic capability can support varying vegetation types as detailed above in 2.3.2. 

These wetland vegetation communities can either be monodominated by a few single species or a 

heterogenous mosaic of multiple species (e.g. sclerophyllous) in different life forms (Gallant 2015). 

The common presence of water in wetlands whether permanent, seasonal, or temporary, also has its 

challenges when mapping wetlands. Gallant (2015) states that the presence of water can signify that 

it is at the Earth’s surface, or below the surface in the rooting zone of plant, and where the varying 

water levels “impose strong controls in wetlands, and the magnitude of change in water levels 

influences the relative abundance of species and rate of vegetation succession” (Gallant 2015, 

p.10939).  

 

Gallant (2015) continues to suggest another factor that makes wetlands hard to map remotely is that 

“they are highly dynamic in ways that substantially alter their reflectance and energy backscatter 

properties”, and “ individual species can exhibit significant variation in energy responses (spectrally 

and in terms of backscatter geometry) within a growing season at different stages of their 

development” (2015, p.10939). The third factor Gallant (2015) alludes to is that the often steep 

environmental gradients in and around the edges of wetlands may create narrow ecotones “that are 

often below the spatial resolving capacity of remote sensors. Sharp contrasts in characteristics of 

energy response at the land-water interface can be exploited to aid mapping in some wetland settings” 

(Gallant 2015, p.10940). Lastly, it is emphasized that these interchanging conditions illustrate 

wetlands as a moving-target in a Remote Sensing perspective as wetlands present “more of a moisture 

regime than a cover type” (Gallant 2015, p.10940). 
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 PRINCIPLES OF REMOTE SENSING  

Remote Sensing (RS) is said to be the art and science of acquiring information about an object, area, 

or phenomenon on the Earth’s surface (land and ocean) without being in direct physical contact with 

it (Bakker et al. 2001; Wegman et al. 2016), and forms a part of the broader theme of Earth 

Observation (EO). RS can provide consistent long-term EO data at both local and global scales 

without being labour-intensive and time-consuming, as opposed to in-field observations and data 

collection (Wang et al. 2010; Wegman et al. 2016). RS has increased in popularity since its first 

application and publication in Africa by Wicht (1945) who saw the value of it to provide important 

back drop information about infrastructure and natural processes (de Klerk & Buchanan 2016). 

Furthermore, it can be said that RS methods are based on the concept that information is derived from 

image data acquired by sensors such as aerial cameras, scanners or radar, which create a 

representation of real world phenomena (Bakker et al. 2001). RS encompasses acquiring information 

about the Earth’s surface at one point in time using systems such as “sensors onboard airborne 

(aircraft, balloons) or space-borne (satellites, space shuttles) platforms” (Kumar & Singh 2013, 

p.406). These sensors record data in different parts of the Electromagnetic spectrum (EMS) as RS 

relies on measurement of electromagnetic energy (Bakker et al. 2001). There are three key aspects to 

the resolution of RS systems namely spatial, spectral, and temporal, and all sensors need to trade-off 

these three properties due to storage, processing, and bandwidth properties (Longley et al. 2015). 

Spatial resolution refers to the size of an object that can be resolved and is mostly measured in pixel 

size (often measured in metres); spectral resolution (bands) refer to the parts of the electromagnetic 

spectrum that are measured as different objects reflect and emit different types and amount of 

radiation in the EMS (Longley et al. 2015; Wegman et al. 2016). Lastly, temporal resolution (number 

of days) or repeat cycle refers to the frequency that images are collected for the same area (Longley 

et al. 2015). 

 The Electromagnetic Spectrum 

Electromagnetic energy and radiation are described as a spectrum of continuous wavelengths that are 

measured in nanometres (nm) (Wegman et al. 2016). The Electromagnetic spectrum (EMS) 

comprises various radiations such as the visible spectrum which is a range perceivable by the human 

eye (approximately 400-700 nm), ranging from blue to red. However, Wegman et al. (2016) note that 

“the visible spectrum is just a small part of radiation used in remote sensing” and that radiation in the 

near and mid-infrared (NIR and MIR), and thermal infrared (TIR) carries a lot more useful 

information about the earth’s surface (2016, p.48).  Simply stated, the sun, which is the primary source 

of illumination on the Earth, emits radiation which is absorbed, transmitted and reflected by different 
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surfaces in a distinguishing manner (spectral response), which is then transmitted back to space and 

recorded by sensors on satellites or planes (Wegman et al. 2016).  

 Spectral Reflectance Signatures 

As noted above, different surfaces on Earth absorb, reflect, and transmit different amounts of 

radiation, which can be referred to as spectral resolution or spectral reflectance/response/signature. It 

is also noted that RS systems may capture “data in one part of the spectrum (referred to as a single 

band) or simultaneously from several parts (multiband or multispectral) (Longley et al. 2015, p.177). 

The spectral resolution of a dataset is defined by the number of bands across the entire spectrum and 

which allows for the differentiation of surface properties (Wegman et al. 2016). Furthermore, 

Wegman et al. (2016) notes that based on these different reflectance properties, RS data analysis 

intends to differentiate surface or land cover types such as water, vegetation, soil, and urban 

structures. Vegetation is said to absorb mostly blue and red light for photosynthesis which is why it 

appears green to the human eye while reflecting NIR radiation and depending on the state of 

vegetation (Wegman et al. 2016). Figure 2.3 below displays the spectral signatures of water, green 

vegetation, and dry bare soil as an example of the spectral responses in the EMS of three surfaces on 

Earth (Longley et al. 2015).  

 

 

                                                                                                                              Source: Longley et al. (2015) 

                 

Figure 2.3 Spectral signatures of water, vegetation, and dry bare soil 

 

 Active and Passive Sensors 

As mentioned above, Remote Sensing uses sensor devices to record and measure electromagnetic 

energy (Bakker et al. 2001). There are two types of sensors namely active and passive sensors 
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(Wegman et al. 2016). Passive sensors are those that sense natural radiation which are either reflected 

or emitted from the earth’s surface and include optical sensors, where sensors detect “radiation in the 

visible, near-, middle- and thermal-infrared wavelength regions, reflected/scattered or emitted from 

the earth, forming images resembling photographs taken by a camera/ sensor located high up in space” 

(Kumar & Singh 2013, p.406). Whilst active sensors are those which produce their own 

electromagnetic radiation such as LiDAR (Kumar & Singh 2013). Additionally, Wegman et al. (2016) 

suggest that active sensors illuminate the Earth artificially by “actively emitting and receiving 

radiation in the form of radio waves (Radar; wavelengths ranging from 3 to 24 cm) or laser pulses 

(Light Detection and Ranging (LiDAR); typically in the NIR wavelengths)” (2016, p.49). 

 Remote Sensing Sensors  

High spatial resolution data and/or fine scale spatial resolution is often less than 10 m, and ranges 

from 0.5-10 m with IKONOS, QuickBird, OrbView-3 and SPOT-5 (Satellite Pour l’Observation  de 

la Terre-5) being commonly used systems (Wang et al. 2010, p.9649). Moreover, one of the great 

advantages of fine scale spatial resolution data is that “it greatly increases the accuracy of 

identification and characterization of small objects at spatial scales which were previously only 

available from airborne platforms” (Wang et al. 2010, p.9649). However, as data such as QuickBird 

and GeoEye are expensive and difficult to obtain repeat temporal coverage, freely available medium 

resolution optical sensors such as MODIS, Sentinel and Landsat, are more feasible and relevant to 

this study. These datasets are easily accessible, time and cost-efficient that can be used and stored in 

open-source software such as Quantum GIS (QGIS), and cloud-computing platforms such as Google 

Earth Engine (GEE). Google Earth Engine is a cloud-based computing platform that publicly avails 

ready to use geospatial datasets such as a variety of “satellite and aerial imaging systems in both 

optical and non-optical wavelengths, environmental variables, weather and climate forecasts and 

hindcasts, land cover, topographic and socio-economic datasets”(Gorelick et al. 2017, p.18). 

 

Landsat 8 data will be used in this study with a spatial resolution of 30 m which is a useful scale for 

identifying landscape patterns (Wegman et al. 2016) such as ecotones as done by de Klerk, Burgess 

& Visser (2018). Additionally, Sentinel-2 MSI: MultiSpectral Instrument, Level-2A data will be used 

as well since the bands of Sentinel-2 (European Space Agency 2015) have a finer resolution (10 m 

and 20 m) than Landsat 8 and may be useful for understanding vegetation distribution at a small 

landscape scale. Note that there are inconsistencies in the literature whereby some researchers refer 

to Landsat and Sentinel imagery as high spatial resolution data (Chen et al. 2016; Lück-Vogel et al. 

2016). However, in this study, Landsat 8 and Sentinel-2 data are referred to as medium resolution as 

their spatial resolutions are within the ranges of 10 m-60 m (Sentinel-2: MSI, Level 2-A), and 30 m-
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100 m (Landsat 8) (Guo et al. 2017; de Klerk et al. 2016; Wang et al. 2010; Zhang et al. 2017) which 

is not as fine scale as QuickBird, GeoEye or SPOT etc. 

 

Landsat 8 Surface Reflectance Tier 1 

Since the early 1970s, the Landsat satellites have provided multispectral imagery of the Earth’s 

surface which has improved the understanding of  the Earth’s land processes, change detection and 

the impact humans have on the environment (U.S. Geological Survey 2016). The first Landsat 

satellite was launched in 1972 followed by Landsat 2 and 3 which were launched in 1975 and 1978 

respectively, with similar configurations as Landsat 1 (U.S. Geological Survey 2016, p.3). In 1984 

Landsat 4 was launched with an additional instrument called the Thematic Mapper (TM) and an 

improved ground resolution of 30 m and three new channels/bands. Landsat 5, a duplicate of Landsat 

4, was also launched in 1984 whilst Landsat 6 failed to achieve orbit in 1993 but was equipped with 

an additional 15 m-panchromatic (PAN) band. By 1993 Landsat 7 was launched and “performed 

nominally until the Enhanced Thematic Mapper Plus (ETM+) sensor’s Scan Line Corrector (SLC) 

failed in May 2003. Since that time, L7 has continued to acquire useful image data in the “SLC-off” 

mode” (U.S. Geological Survey 2016, p.3). Importantly, Landsat 8 (L8) is the latest freely available 

series of imagery in the Landsat mission (launched in 2013) and is said to provide robust, high 

performing, cloud-free and extremely high quality data of all the landmass and near-coastal areas on 

Earth (U.S. Geological Survey 2016). The L8 has a 16-day repeat cycle averaging a collection of 22-

23 images of a location per year (Zhu 2017). The Landsat 8 Surface Reflectance Tier 1 (SR T1) 

dataset is atmospherically corrected surface reflectance from the Landsat 8 OLI/TIRS satellites. 

Images in this dataset contains five visible and Near-Infrared (NIR) bands, and two Shortwave-

Infrared (SWIR) bands processed to orthorectified surface reflectance (U.S. Geological Survey 2016; 

USGS 2017). Table 2.3 details the characteristics of L8 OLI bands. It has been noted on NASA’s 

website that Landsat 9 was launched in September 2021 (https://landsat.gsfc.nasa.gov/landsat-

9/landsat-9-overview) with improved capabilities and orbiting time for increased temporal coverage 

of observations of the Earth’s surface. 
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Table 2.3 Band characteristics of Landsat 8 OLI and TIRS Bands (µm) 

 
 

Band number 
 

Band description 
 

Wavelength (µm) 
Resolution 

1 Coastal/Aerosol 0.435 - 0.451 30m 

2 Blue 0.452 - 0.512 30m 

3 Green 0.533 - 0.590 30m 

4 Red 0.636 - 0.673 30m 

5 NIR 0.851 - 0.879 30m 

6 SWIR-1 1.566 – 1.651 30m 

10 TIR-1 10.60 – 11.19 100m 

11 TIR-2 11.50 – 12.51 100m 

7 SWIR-2 2.107 – 2.294 30m 

8 Pan 0.503 – 0.676 15m 

9 Cirrus 1.363 – 1.384 30m 

    

                                                                         Source: Google Earth Engine (2021) 
 

Literature also notes that Landsat data is most useful in large-scale vegetation studies and change 

detection (Chen, Michishita & Xu 2014; Fang et al. 2018; Matsushita et al. 2007; Zhu 2017). Often, 

Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) have been fused together to 

create datasets of high temporal frequency and high spatial resolution observations (Zhang et al. 

2017). 

 

Sentinel-2 MSI: MultiSpectral Instrument, Level-2A  

The Sentinel collections are a constellation of satellites developed by the European Space Agency to 

“operationalize the Copernicus program, which include all-weather radar images from Sentinel-1A 

and 1B, high-resolution optical images from Sentinel-2A and 2B, ocean and land data suitable for 

environmental and climate monitoring from Sentinel-3, as well as air quality data from Sentinel-5P” 

(Google Developers 2021). This study used the Sentinel-2 (S2): MultiSpectral Instrument, Level 2-

A (Surface Reflectance) data which is a wide-swath (290 km), high quality and multispectral imaging 

mission. The temporal frequency of S2 imagery is a global five-day revisit frequency with 13 spectral 

bands i.e. “four bands at 10 m, six bands at 20 m and three bands at 60 m spatial resolution” (European 

Space Agency 2015, p.9) which provides data that is suitable for assessing the state and change of 

vegetation, soil and water cover (European Space Agency 2015; Google Developers 2021). Table 2.4 

below provide the band characteristics of the multispectral bands of the Sentel-2 MSI, Level 2-A 

imagery: 
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Table 2.4 Band characteristics of Sentinel-2 MSI: MultiSpectral Instrument, Level-2A 

 

 
Band 

number 

 
Band description 

 
Wavelength (µm) 

Resolution 

1 Aerosols 443.9 (S2A) - 442.3 (S2B) 60m 

2 Blue 496.6 (S2A) - 492.1 (S2B) 10m 

3 Green 560 (S2A) - 559 (S2B) 10m 

4 Red 664.5 (S2A) - 665 (S2B) 10m 

5 Red Edge 1 703.9 (S2A) -703.8 (S2B) 20m 

6 Red Edge 2 740.2 (S2A) -739.1 (S2B) 20m 

7 Red Edge 3 782.5 (S2A) -779.7 (S2B) 20m 

8 NIR 835.1 (S2A) - 833 (S2B) 10m 

8A Red Edge 4 864.8 (S2A) - 864 (S2B) 20m 

9 Water vapor 945 (S2B) - 943.2 (S2B) 60m 
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                                                                     Source: Google Earth Engine (2021) 

 

  Processing Remote Sensing data 

As the above section has highlighted various sensors and datasets available in RS, focusing on 

Landsat 8 and Sentinel-2 data, it is important to also mention that remotely sensed imagery needs to 

undergo digital image processing or pre-processing to be useful in applications (Walz 2002). This is 

because RS data are affected by various “electronic, geometric, mechanical and radiometric 

distortions” and if left uncorrected would reduce the accuracy of the information extracted and 

thereby also reduce the usefulness of the data (Bernstein 1976, p.41). In order to correct RS sensor 

data, internal and external errors have to be determined which need to be both measurable and 

predictable (1976). Walz (2002) notes that satellite data needs to be entered into a “standardized 

system of coordinates so that it can be combined with other spatial information” and thus sensor errors 
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can then be detected and corrected where necessary (Walz 2002, p.288). Pre-processing of RS data 

typically includes fundamental correction steps for sensor geometry and terrain-induced geometric 

distortions which is often referred to as orthorectification (Wegman et al. 2016). Pre-processing of 

imagery includes a variety of steps such as radiometric correction (Bakker et al. 2001; Wegman et al. 

2016) atmospheric correction, image correction, enhancement, transformation, and classification 

(Kumar & Singh 2013; Zhu 2017). These processes are briefly described below and followed by a 

detailed discussion of image classifications which is the main theme of Chapter 3. 

 

Image correction -According to Kumar & Singh (2013) the data that is recorded by sensors often 

encompass errors that are related to geometry and brightness value of the pixels and thus are corrected 

by using “suitable mathematical models, which are either definite or statistical models” (Kumar & 

Singh 2013). Furthermore, other image correction approaches have been used in the mapping of 

change detection and these include atmospheric correction, cloud and cloud shadow detection as well 

as image compositing, fusions and metrics (Zhu 2017).  

 

Image enhancement -The principle of image enhancement is to modify the image by changing the 

pixel brightness values so that the visual impact of the image is more suitable or improved (Kumar & 

Singh 2013). These image enhancement techniques are accomplished by deriving new brightness 

values of pixels from either existing values, or “from the brightness values of a set of surrounding 

pixels” (Kumar & Singh 2013, p.407). An example of a classical band combination for the 

enhancement of vegetation in imagery are band 4-band 3-band 2, which highlights the differences 

between vegetation and no vegetation in an image, and the vegetation ultimately appears red using 

this combination (Wegman et al. 2016).  

 

Image transformation- In terms of image transformation, Kumar & Singh (2013) note that the 

multispectral character of an image allows it to be transformed spectrally to a new set of image 

components or bands with a specific purpose in order to extract information that is more evident to 

the content of an image. It is noted that the pixel values of the new components of an image is still 

similar or related to the original spectral bands via a linear operation (Kumar & Singh 2013). 

 

Image classification- The overall objective of image classification is to assign classes or themes to 

all pixels in an image with different classes of land use or land cover. To label or classify land cover 

and land use, two methods of image classification are adopted in RS namely supervised and 

unsupervised classification. 
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 IMAGE CLASSIFICATION 

Image classification which can also be referred to as land cover classification, is the process of 

converting multiple input layers into groups of pixels with similar characteristics where the resulting 

pixel values may be used to identify land cover classes that are “either defined a priori (supervised 

classification) or a clustering algorithm (unsupervised classification) (Wegman et al. 2016, p.245). 

Earlier research has suggested that the principle of image classification, is that pixels are assigned to 

a class based on “its feature vector, by comparing it to predefined clusters in the feature space” which 

result in a classified image (Bakker et al. 2001). Furthermore, Bakker et al. (2001) emphasize that the 

“crux of image classification is in comparing it to predefined clusters, which requires definition of 

the clusters and methods for comparison” (Bakker et al. 2001, p.196).  

 The Process Of Image Classification 

Researchers (Bakker et al. 2001; Lu & Weng 2007; Perumal & Bhaskaran 2010) have highlighted a 

number of procedures for the general workflow of image classification i.e. selecting and preparing 

suitable sensor data; determining clusters in a suitable feature space (supervised or unsupervised); 

defining and selecting training samples, extracting signatures, selecting a suitable classification 

algorithm, running the classification; and post-classification or validation (accuracy assessments) 

(Bakker et al. 2001; Lu & Weng 2007; Perumal & Bhaskaran 2010). Image classification serves a 

specific goal which is to convert image data into thematic data (Bakker et al. 2001), and is useful to 

quantify landscape features for modelling and various other landscape or ecological analysis 

(Wegman et al. 2016). In turn, Wegman et al. (2016) infers that image classification is a fairly 

subjective process and involves balancing options in almost every step of the workflow. Their take 

on the classification workflow highlights 10 detailed steps to follow (Wegman et al. 2016):  

1. Defining why one wants a classified image and how one will use it. 

2. Defining the study area. 

3. Define classes by selecting or developing a classification scheme. 

4. Selecting the imagery (resolution, sensor, and date). 

5. Prepare the imagery for classification (image corrections). 

6. Collect and generate ancillary data (such as spectral indices or texture). 

7. Choose a classification approach (feature space: supervised or unsupervised). 

8. Collect training and validation data (in field data where possible). 

9. Creating and modelling a classified map. 

10. Assess the classification accuracy, and revisit previous steps for refinement if necessary (e.g., 

collecting additional or better training and ancillary data). 
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 Supervised and Unsupervised Classification 

In terms of classification approaches namely unsupervised and supervised, unsupervised 

classification involves the identification of “natural groups, or structures, multi-spectral data” (Kumar 

& Singh 2013, p.407). Additionally, in an unsupervised classification approach, there is minimum 

user interaction -it is statistically and computer-led- and it requires interpretation after the 

classification as “the division of classes is carried out automatically by a classification algorithm” or 

a decision rule (Walz 2002, p.290). In contrast, supervised classification refers to a classification 

process of sampling classes of “known identity (ground truth sites) to classify pixels of unknown 

identity” (Kumar & Singh 2013, p.410). Supervised classification is user or analyst dependent as the 

analyst trains the computer to distinguish distinct land cover classes thereby developing spectral 

signatures for each land cover class (Walz 2002). In essence, this means that a supervised 

classification will develop spectral signatures for all the pixels in an image, search the entire scene 

for similar signatures, and group this as a land cover class. There are a number of supervised 

classification methods such as Maximum Likelihood (ML), Support Vector Machines (SVM), 

Artificial Neural Networks (ANN), Neural Networks (NN) and the decision-tree classifier Random 

Forest (RF) (Myburgh & van Niekerk 2014; Perumal & Bhaskaran 2010; Wegman et al. 2016). 

Maximum likelihood classification is the most stable and most commonly used  supervised classifier 

and assumes that “the populations from which the training samples are drawn are multivariate-normal 

in their distribution” (Kumar & Singh 2013, p.407). However, other classifiers such as Random Forest 

(Breiman 2001) has increased in popularity over the years (Bargiel & Herrmann 2011; Fu et al. 2017; 

Poona et al. 2016). 

The classification of images into a thematic map remains a challenge due to various factors such as 

landscape heterogeneity and complexity of a study area, and therefore, the selected RS data as well 

as image processing and classification approaches chosen may affect the success of a classification 

(Lu & Weng 2007). Lu & Weng (2007) note that because both airborne and space-borne data vary in 

spatial, radiometric, temporal and spectral resolutions, it is essential that one understands the strengths 

and weakness of each data type before selecting it for classification. One can thus summarize image 

classification into three main objectives; to group similar features, to separate dissimilar ones, and to 

assign class labels to match spectral classes with information classes. This is so that one can obtain 

insight into the data with regards to ground cover and surface characteristics using various RS 

approaches and algorithms. Image classification using Landsat 8 Surface Reflectance Tier 1 and 

Sentinel-2: MSI, Level-2A data to create a thematic map of the vegetation cover and distribution of 

a fynbos embedded alluvial fan wetland, will be explored in Chapter 3 using the Random Forest 

classifier (research objective 4).  
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 Per-Pixel Based Mapping And Fuzzy Classification Approaches  

Traditionally, hard classifiers such as “agglomerative, divisive/partitioning, moving window, and rate 

of change approaches”(de Klerk, Burgess & Visser 2018) produce classified images with binary 

outputs where the general rule is ‘one pixel-one class’, which essentially means that a pixel either 

must be a full member of a class, or not (Melgani 2000). This method of processing however is not 

very useful in producing maps for data that is naturally mixed or non-binary, especially in 

heterogenous ecological systems where a pixel may cover more than one vegetation type within. This 

scenario may especially be true when using data such as Landsat with a resolution of 30 m, in a 

relatively small wetland such as the Du toits River wetland, where more than one vegetation type may 

most likely occur within and across the boundaries of a 30 m pixel. In this case, it may result in the 

classified image having a number of mixed pixels, which hard classifiers consider an unresolved pixel 

or a misclassification (Ozesmi & Bauer 2002). 

 

There are two approaches in RS which can extract information from remotely sensed data namely 

using a per-pixel based approach, where an image pixel is the fundamental unit under analysis; and 

object-based, where image objects are first created and then subjected to further analysis (Devi & 

Jinji 2015). Zhang (2014) contends that using per-pixel based mapping may result in a “salt-and-

pepper” effect in heterogenous landscapes but these issues can be overcome by using Object-Based 

Image Analysis (OBIA) techniques “which first decompose an image scene into relatively 

homogeneous areas and then classify these areas instead of pixels” (Zhang 2014, p.10). However, by 

using a per-pixel approach, mixed pixels can be used as the main representative of fuzzy boundaries, 

or ecotones. The classical Bayes classifier is an example of one classifier that supports the fuzzy logic 

whereby a classified image can consist of mixed pixels that will store probability values for more 

than one class and rules out the idea that one pixel can only belong to one definite class. In essence, 

the Naïve Bayes classification is a simple probabilistic classifier based on the Bayes’ Theorem which 

assumes that there is independence between features, and determines the probability of a feature with 

prior knowledge (prior probability) and current evidence i.e. it depends on conditional probability 

(Zhang 2016). This study will adopt a per-pixel approach using the Bayesian-based class probability 

classification and fuzzy graphs to map ecotones or vegetation change/turnover in the wetland 

(research objective 5).  
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 LITERATURE EVALUATION AND CONCLUSION 

The bibliometric analysis showed that limited research has been conducted on wetland ecotones 

especially in southern Africa. The literature reviewed in this chapter pertaining to the ecotone debate 

of whether one must use the words ecotone, ecological boundary, or patch, highlighted that although 

termed differently and used differently in various scientific approaches, all three these terms may be 

used interchangeably in the context of this study. Ultimately, ecotones were defined for this study as 

distinct zones of change or transition between adjacent ecological ecosystems and having unique 

characteristics that are defined by space and time scales. This chapter also delved into a theoretical 

framework of wetlands in a South African context, highlighting the wetland classification system 

used in the country, the HGM units or wetland types, vegetation types found as well as the soils 

typically found in wetlands in the country. The review covered the debates around wetland 

classification and the need for wetlands to be seen as integrated parts of a landscape and not as single 

units in a landscape. The review further touched on whether wetlands are seen as ecotones in a 

landscape and whether internal biological ecotones may exist within wetlands. Ultimately, internal 

wetland ecotones were of interest and not so much wetlands as a whole being an ecotone in a 

landscape. Furthermore, the literature review highlighted some discrepancies in the spelling of some 

wetland vegetation species in vegetation databases for example, Epischoenis gracilis (Fischer et al. 

2019) vs Epischoenus gracilis (Sieben, Mtshali & Janks 2014); and Isolepis prolifera (Fischer et al. 

2019) vs Isolepis prolifer (Sieben, Mtshali & Janks 2014). A review of wetland delineation and 

mapping in South Africa was provided with reference to the latest updated National Wetland 

Inventory, and how this inventory maps and describes ecotones. The chapter also provided a brief 

background on remote sensing, how it works, the types of remote sensing data, and the approaches to 

land use/landcover classification. 
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CHAPTER 3:  REMOTE SENSING OF SPATIAL HETEROGENOUS 

LANDSCAPES- LANDCOVER CLASSIFICATION OF A FYNBOS 

EMBEDDED WETLAND 

“In cartography, as in medicine, art and science are inseparable. The perfect map blends art and 

science into an effective tool of visual communication.” 

                                                                                                                         -Dr Keith Harries, 1999 

 

 ABSTRACT 

Multispectral supervised classification is a commonly used and popular approach to land use and 

landcover mapping whereby training data is used to train a classification algorithm the identity of 

different features in a landscape. Wetlands are typically challenging to map due to their diverse and 

often fluctuating conditions influenced by varying hydroperiods and are especially heterogenous in 

the case of being embedded within a fynbos system, as they are subject to the same environmental 

conditions as Fynbos vegetation. This chapter aimed to map the different vegetation cover in the Du 

Toits River wetland using Landsat 8 Surface Reflectance Tier 1, and Sentinel-2 MSI: MultiSpectral 

Instrument, Level-2A imagery during both the winter 2020 and summer 2020/2021 season by means 

of Random Forest, a supervised classification method which fits decision trees to changing subsets 

of training data. The results showed that Random Forest classifier in R provided robust results and 

great promise in spectrally discriminating and classifying two dominant palmiet wetland vegetation 

types, namely Prionium serratum and Psoralea pinnata, a sclerophyllous wetland vegetation class 

comprising wetland ferns, restios and grasses, and Fynbos (temporary wetland) vegetation within the 

system. The classification accuracy for Landsat 8 winter was 78% and summer 79% with kappa 

values of 0.74 and 0.75 respectively. Sentinel-2 generally performed better with overall accuracies of 

76% (winter) and 81% (summer), and kappa values of 0.72 and 0.78. Additional spectral indices such 

as the MNDWI to display seasonal hydroperiods and varying NDVI values for the different 

communities in the wetland were calculated and mapped. It is concluded that the wetland is a unique 

heterogenous system with a spatial mosaic of ecotones between wetland, sclerophyllous wetland, and 

temporary wetland fynbos vegetation. 

  INTRODUCTION 

Remote Sensing (RS) of the Earth’s surface has long been recognized in ecology as a time-saving, 

non-labour-intensive and consistent long-term means of monitoring ecosystems and their surrounding 

environment at different scales-both local and global (Pettorelli et al. 2017; Wang et al. 2010). 

Landscape ecology which deals with studying the “reciprocal effects of spatial pattern on ecological 

processes” (Pickett & Cadenasso 1995), is a topic of interest in RS where the primary objective is to 
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understand Earth processes from a spatial perspective while using technology to map and monitor 

trends and patterns. More specifically, image classification and/or land cover classification is a 

commonly used RS technique whereby satellite imagery goes through the process of converting 

multiple input layers into groups of pixels with similar characteristics; which are ultimately used to 

identify land cover classes on the Earth’s surface by means of two methods i.e. supervised or 

unsupervised classification (Wegman et al. 2016, p.245). This study which deals with mapping 

vegetation cover and distribution within a fynbos embedded wetland is the first step to mapping and 

understanding wetland ecotones. In landscape ecology ecotones have been noted in the literature to 

be important sites within a landscape where transitions between neighbouring ecological systems are 

“characterized by unique properties which are defined by space and time scales, and by the strength 

of interactions between the adjacent ecological systems”(Holland 1988). Although diverse and 

dynamic across the globe, wetland inventory and mapping has seen substantial growth over the years 

with various studies attempting to efficiently and accurately detect, delineate and map wetlands at 

various scales in the landscape (Gallant 2015; Job et al. 2018; Rebelo, Finlayson & Nagabhatla 2009; 

Richards 2001; Sieben, Mtshali & Janks 2014). Limited research has been done on mapping wetland 

ecotones (save for a chapter by Holland, Whigham & Gopal (1990) which accounts for characterizing 

aquatic-terrestrial or wetland ecotones), and thus this research aimed to be a steppingstone in bridging 

that gap. This chapter forms part of a two-part process to mapping wetland ecotones where the main 

objective was to identify and utilize robust and efficient supervised classification methods to map 

distinct vegetation cover within a fynbos embedded wetland system that is subject to high spatial 

heterogeneity. Spectral signatures which are measurements of the spectral response of different 

features at the different bands of a satellite sensor (Ozesmi & Bauer 2002), is a useful way of 

discriminating spectral differentiation of classes, especially in wetlands where there may be 

overlapping spectral signatures and fluctuating hydroperiods due to their diversity (Gallant 2015; 

Ozesmi & Bauer 2002). Spectral signatures as well as spectral indices were explored in addition to 

landcover classification for this study. 

 STUDY AREA 

With wetlands excelling towards a growing decline in the Western Cape- approximately 87% 

threatened and in a moderate to heavily modified or degraded condition (Helme & Rebelo 2016)- it 

is important that the location, extent, and ecological state of wetlands be identified so that sound 

conservation and management decisions can be put into effect to protect these important ecosystems. 

Generally, wetlands provide numerous ecosystem services such as carbon storage, flood attenuation, 

sediment trapping, stream flow regulation, phosphate and nitrate removal, habitats for unique fauna 
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and flora, and other aesthetic services such as education and research, tourism and cultural 

significance (Van Deventer et al. 2019; Fischer et al. 2019; Ramsar Convention on Wetlands 2018).  

The Du Toits River Wetland is an alluvial fan wetland (Grenfell et al. 2019) where features within 

the wetland are upstream channelled proximal alluvial fan, and distal portions have the distributary 

channels which are diffuse and move over time. It starts off upstream (at the bridge) as a channelled 

valley-bottom wetland with a channelled river of the Du Toits River (Fischer et al. 2019). In the 

middle section it becomes weakly channelled and sometimes unchannelled. In the lower reaches (toe) 

it becomes a major alluvial fan with multiple channels and tributaries that feed the fan with very fine 

sediment that would have had channel reforming. For this study, the Ollis et al. (2013) classification 

system does not work for this study area – it is one of the examples of why the classification system 

does not work- although similar in many respects to a valley-bottom wetland as described by Ollis et 

al. (2013).  

 

Situated north-west of the Theewaterskloof Dam in the Western Cape of South Africa (Figure 3.1), 

this wetland is one of three key wetlands in the area that contribute largely to the enhancement of 

water quality entering the Theewaterskloof Dam which is a crucial water supply for human use, 

“primarily for domestic and industrial water supply to Cape Town metro as well as for irrigation more 

locally” (Fischer et al. 2019, p.23). The wetland is situated in a high rainfall and high rainfall intensity 

catchment with a total rainfall of 1241 mm/year and rainfall intensity of 86 mm-the maximum for 

South Africa is 140 mm (Snaddon et al. 2018, p.34). 

 

Figure 3.1 Study area where the area of interest is demarcated by a solid black line surrounding the alluvial fan with the 

Theewaterskloof Dam situated further south. Black dot in map insert shows the wetland location within the 

Theewaterskloof catchment (red outline) in the Western Cape province of South Africa 
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In addition, Fischer et al. (2019, p.13) note that the Du Toits River wetland has three varying 

underlying geomorphological features from upstream to further down at the toe of the wetland. Table 

3.1 below highlights the key geomorphology and hydrological features of the Du Toits River wetland: 

 

Table 3.1 Key hydrogeomorphic units (HGM) i.e. wetland type and hydrological features of the Du Toits River 

wetland.  

 

HGM units listed from upstream 

to downstream of the wetland: 

 

1. Channelled valley-bottom 

2. Weakly channelled/unchannelled valley-bottom 

3. Channelled valley-bottom with multiple channels on a 

major alluvial fan and from tributaries feeding the fan. 

 

Hydro-geological type setting: 

 

 

Table Mountain Group sandstone, with HGM 2 having possible 

links with groundwater. 

 

Predominant hydrological 

zones: 

 

Predominantly permanent zone in HGM 2 and good 

representation of temporary, seasonal, and permanent zones in 

HGM 1 and 3. 

 

Sediment type: 

 

 

Predominantly sandy sediments with organic soil deposits 

especially in HGM 2. 

 

Source: Adopted from Fischer et al. (2019, p.13) 

 

Grenfell et al. (2019, p.13) note that  alluvial fans typically form at “locations of loss of confinement 

as a stream discharges onto a receiving basin of very low gradient” which is evident in the Du Toits 

wetland. Valley-bottom wetlands are commonly known in arid environments to be void of 

hydrophytic vegetation (Grenfell et al. 2019). In South Africa, although generally small units in the 

landscape, wetlands have distinct vegetation types distinguishing them from their surrounding 

terrestrial habitats (Sieben et al. 2017). According to Sieben, Mtshali & Janks (2014), the most 

common wetland plants are largely grasses but sedges are often dominant in the wettest part of the 

wetland.  

 

Wetlands in the Cape Floristic Region 

Mucina and Rutherford (2006) highlight two wetland types that occur and are restricted to the Cape 

Floristic Region (CFR) (within which the Du Toits River wetland falls) namely Cape Lowland 

Freshwater wetlands which occur on nutrient-poor sandstone substrates, and Cape Vernol Pools 

(Sieben et al. 2017, p.55). Wetlands that occur on nutrient-poor substrates are typically found within 

but not restricted to the Fynbos Biome in the Western Cape (Sieben, Mtshali & Janks 2014). Fynbos 

is an evergreen, fire-prone shrubland, naturally dominated by the influence of “hot summer fires at 
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intervals of 10-30 (or more extremely 5-50 years), which are fuelled by the fine-leaved shrubs and 

especially by the Restionacae” present in this biome (Rebelo et al. 2006). Fynbos is endemic to the 

Cape Floral Kingdom which is the smallest floral Kingdom in the world that grows on the nutrient-

poor substrates of sandstone and quartzites of the Table Mountain Group sandstones of the Western 

Cape, and parts of the Southern to Eastern Cape. Importantly, Sieben et al. (2017) note that wetlands 

that occur within fynbos systems are “subject to these same stresses and disturbances, and, in addition, 

they need to cope with anoxic soils” (Sieben et al. 2017, p.54).  

 

The nutrient-poor environment of wetlands in the Table Mountain Group sandstone account for the 

creation of conditions where “organic matter breaks down slowly and in some cases, peat layers 

develop over the acidic sandy substrate” (Sieben et al. 2017). These wetlands are also often 

characterized by the similar plants found in upland fynbos, namely “sclerophyllous (hardy, mostly 

needle-leaved) shrubs and graminoids from the family Restionacae, but the more typical graminoids 

of families like Poaceae and Cyperaceae also occur” (Sieben et al. 2017, p.55).  

 

Table 3.2 Common plant species found in the Du Toits River wetland 

Plant group: Species: 

Sedges/rushes Carpha glomerata  

Cyperus thunbergii  

cf Epischoenis gracilis  

Isolepis prolifera  

Prionium serratum-Ollis et al. (2013) classify this 

as a robust shrub (palmiet). 

Grasses Merxmuellera cincta 

Restios Elegia capensis  

Restio paniculatus, 

Bulbous plants Wachendorfia thyrsiflora 

Herbs Laurembergia repens 

Shrubs Cliffortia strobilifera 

Rubus fructicosus (alien species) 

Fern Pteridium aquilinum 

cf Thelypteris confluens 

Trees Acacia mearnsii (alien species) 

Psoralea aphylla 

Psoralea pinnata 

Brabejum stellatifolium 

Searsia augustifolia 

             Source: Adopted from Fischer et al. (2019).  

 

Although similar in composition, sclerophyllous wetland vegetation is not referred to as fynbos 

vegetation because it is not restricted to the Fynbos biome, but it is dominated by “sclerophyllous 

shrubs and graminoids as an adaptation to the unique environmental conditions in these wetlands” 

(Sieben et al. 2017, p.55). Majority of the Du Toits River wetland is managed and protected by Cape 

Nature i.e. the Hottentots-Holland Nature Reserve Complex (HHNRC) (CapeNature 2017), and is 

situated almost entirely in the Theewaterskloof World Heritage site (Fischer et al. 2019; Snaddon et 
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al. 2018). The wetland is said to be justifiably in a pristine condition as there are relatively low impacts 

due to the limited occurrence of alien species e.g. Acacia mearnsii, but the presence of indigenous 

species such as Isolepis prolifera, and Pteridium aquilinum, that are tolerant of or favoured by high 

levels of human disturbance (Fischer et al. 2019).  In the case of the Du Toits River wetland, a mixture 

of palmiet wetland and sclerophyllous wetland vegetation is found (Sieben, Mtshali & Janks 2014) 

embedded within three vegetation units of the Sandstone Fynbos group namely Elgin Shale, 

Hawequas Sandstone, and Kogelberg Sandstone (Rebelo et al. 2006). 

 

 

Figure 3.2 Three Fynbos Biome vegetation types that occur within in the study area namely Hawequas Sandstone Fynbos, 

Kogelberg Sandstone Fynbos and Elgin Shale Fynbos. This Fynbos Vegetation Unit Classification is based on the Rebelo 

et al. (2006) National Vegetation Map for South Africa, Lesotho and Swaziland. The data is provided as a shapefile 

available on the SANBI BGIS website and is the 2018 final version of the latest updated National Vegetation Map 

 

Note that hereafter Fynbos is referred to as temporary wetland fynbos and not terrestrial or upland 

fynbos as in this case although field observations indicated the presence of Fynbos species belonging 

to the Cape Floristic Region (see APPENDIX H), the fynbos is exposed to periods (seasonal or 

temporary) of inundation at some point throughout the year. These were supported by soil observation 

made in field.  

 

Table 3.3 below describe the vegetation types as decided on after field data collection. Initial field 

work indicated that Prionium serratum and Psoralea pinnata can be distinguished from each other 

and represent different categories within the palmiet class. 
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Table 3.3 Seven distinct landcover classes for Random Forest classification 

 
Landcover class Description: 

 

Prionium serratum 

 

Commonly known as palmiet, and are considered ecosystem engineers in 

wetlands, creating deep peat conditions (Job 2014; Rebelo et al. 2019; Rebelo, 

Somers, et al. 2018; Sieben, Mtshali & Janks 2014). 

 

Psoralea pinnata 

 

An erect shrub, or small tree, commonly known as fountain bush, that can 

reach an estimated height of 4 m and typically grows along streams and 

saturated environments (Palmer & Pitman 1973).  

 

Sclerophyllous Wetland 
Vegetation 

 

This cluster comprises a grouping of Pteridium aquilinum (Bracken fern), Restio 

paniculatus, Elegia capensis and wetland grasses such as Merxmuellera cincta 

(Sieben, Mtshali & Janks 2014). These three vegetation communities were 

grouped as one class in the classification as they often co-occurred in the 

wetland. 

 

Temporary Wetland 
Fynbos 

 

 

Fynbos species belonging to the CFR such as Protea neriifolia, Berzelia 

abrotanoides, Leucadendron conicum, Leucadendron coniferum and Metalasia 

muricata (Rebelo et al. 2006). 

 

Bare soil/sandstone 

 

All visible sandy deposits around active, exposed channels and eroded 

channels, or exposed and degraded areas of land. 

 

Degraded 

 

This class is vegetation that is not ground-truthed or sampled but visually 

appears as degraded vegetation (possibly burnt) from previous farming 

practices and water extraction. 

 

 

Water  

 

 

All openly visible water and channels/tributaries. 

 

According to Sieben, Mtshali & Janks (2014) there have been numerous studies that verify that it is 

viable to distinguish individual species from their spectral signature, “but it is often complicated by 

the fact that part of the signature is determined by the physical environment, mixtures of species or 

the health of plant populations” (Sieben, Mtshali & Janks 2014, p.5). The purpose of this chapter was 

thus to explore imagery classification techniques that efficiently differentiate the various vegetation 

types that belong to wetland (palmiet), sclerophyllous wetland vegetation and temporary wetland 

fynbos vegetation within the Du Toits River wetland.  

 METHODS 

To achieve the aims of creating a thematic landcover map of the study area, quantitative methods 

were adopted. Each step of the classification process (Wegman et al. 2016) is detailed below. 

 

Palmiet 

Wetland 

Vegetation 

(Wetland 

subtype-1) 

Sclerophyllous 

Wetland 

Vegetation- 

condensed with 

the occasional 

occurrence of 

intermittent 

terrestrial and 

fynbos vegetation 

(Wetland subtype-

2) 
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 Field data collection  

The first set of field data collection took place between 21-23 October 2020 (spring) and the second 

took place between 7-9 June 2021 (winter). It is argued that it is ideal to collect field data (for training 

or verification) that corresponds with or is close to the date and time of imagery being used in a 

classification (Wegman et al. 2016). This is to ensure that the conditions on the ground have not 

changed significantly (Wegman et al. 2016) in comparison to what is being represented in the 

imagery, but this is not always possible or realistic. Factors such as time and money constraints need 

to be considered as well as the nature of the study area as some areas may be remote, inaccessible, or 

situated in difficult terrain.  

 

 

Figure 3.3 Random Sampling points created in ArcMap represented as red dots. The total samples collected in field 

during October 2020 and June 2021 are presented as black dots 

 

A transect line approach was planned but not used due to accessibility constraints where deep, hidden 

channels made it impossible to traverse the transects. Therefore, a simple random sampling approach 

(Wegman et al. 2016) was adopted with quadrats being placed randomly across the wetland to cover 

the full extent of the wetland as defined in this study, and ultimately to sample all vegetation types 

within the wetland. A random sampling map was created in ArcGIS 10.7.1, however, due to limited 

accessibility (private property and waterlogging), samples were collected as close as possible to the 

accessible random points as generated in ArcMap. A sum of 40 samples were collected across both 

collection periods. A handheld Garmin GPS (eTrex 10) was used to collect geographic coordinates 
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and the elevation of all samples recorded. At these sites, 1x1 metre quadrats were placed 

approximately 10-20 m apart to ensure at least two quadrats were sampled per pixel (for Sentinel-2 

imagery), due to the heterogenous vegetation in the wetland with a mixture of wetland, fynbos and 

terrestrial (or non-wetland) species. Within each quadrat, the species were recorded along with their 

estimated frequency of occurrence (% cover). These data suggested the following three overall 

vegetation groups were present: palmiet wetland vegetation, sclerophyllous wetland vegetation or 

Fynbos (referred to as temporary wetland fynbos) vegetation. From this data, each quadrat was 

assigned to a vegetation class belonging to one of the three vegetation groups. Where an individual 

species covered a percentage higher than 50%, that specific species was then used as an indicator 

species to determine whether a quadrat was palmiet wetland, sclerophyllous wetland, or temporary 

wetland fynbos habitat. See APPENDIX H for the full data collection collated sheets. 

 

Additionally, soil conditions were observed and recorded using a Munsell Colour Chart to visually 

identify soils that were indicative of wetland conditions vs non-wetland conditions. Soil samples were 

taken at 50 cm, and then 100 cm from the surface. Relevant literature guides such as the South African 

Wetland Classification System (Ollis et al. 2013) and the National Wetland Vegetation Database 

(Sieben, Mtshali & Janks 2014) were consulted to assist in grouping plants into the different classes 

of vegetation. Where plant identifications were not found in books or literature, photographs were 

taken in field and searched online using both Google search (websites such as SANBI’s PlantZAfrica 

http://pza.sanbi.org/ ), and a plant identifier mobile application called PlantSnap. 

 

Figure 3.4 are photos taken in field of soil auger samples collected within quadrats, demarcated at 50 

cm and 100 cm from the surface. Soil colour patterns can provide an indication of the water regime; 

where soils are well drained (typically mineral soils), there is enough oxygen to oxidize irons in the 

soil resulting in brown, red or yellow soil (Richards 2001). Where soils are saturated and anaerobic 

(devoid of oxygen), iron is leached from the soil and soils become grey, sometimes gleyed depending 

on the period of saturation (Richards 2001). Lastly, where soils are wetter (especially for longer 

periods of time), the presence of water reduces the rate of decomposition of organic matter resulting 

in darker, blacker, and higher organic matter (Job 2014; Richards 2001). If anaerobic soils in wetlands 

dry up or are drained, one often finds the presence of mottles which are iron oxides that form red or 

orange spots in the soil. Mottles are useful indicators of drained wetlands after long periods of 

saturation, and also evidence of wetland loss in an area (Job 2014; Richards 2001). Field observations 

have shown that where palmiet wetland vegetation i.e. Prionium serratum, Psoralea pinnata 

(fountain bush) and also Zantedeschia aethiopica (arum lily) were dominantly present; soils were 

deeper, wetter (permanently saturated) and darker in colour with higher organic matter -sometimes 
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clay (photos a and b)-as commonly found in peatlands (Job 2014; Sieben 2012). This class is thus 

referred to as wetland vegetation subtype-1 in this study which is considered to be ‘pure’ wetland 

habitat and/or peatland conditions. Where soils were damp to dry; sandy to sandy loam; brown, red, 

and grey in colour (photos c and d), species such as Pteridium aquilinum (i.e. Bracken fern), 

Merxmuellera cincta (grass) were found. This class was thus considered the sclerophyllous (SWV) 

group i.e. subtype-2 of the overall wetland vegetation in this study as it was characterized by 

properties belonging partly to wetland and/or drier fynbos habitat conditions. The dominant 

Temporary Wetland Fynbos (photos e and f) areas although sometimes saturated, generally showed 

much drier, sandier, and coarser soils than in the wetland, and sclerophyllous wetland vegetation 

communities. There were no signs of mottling in any of the soil samples taken in field. 
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Figure 3.4 Soil auger profile photos taken in field at quadrats with dominant presence of a) Prionium serratum (Palmiet) 

& Zantedeschia aethiopica (Arum lily); b) Psoralea pinnata (fountain bush); c) Pteridium aquilinum (i.e. Bracken 

fern), d) Merxmuellera cincta (grass); Fynbos species such as e) Berzelia abrotanoides & Metalasia muricata and f) 

Leucadendron coniferum with very small fragments of dry palmiet wetland vegetation  

 

 

 

a) b) 

c) d) 

e) f) 
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 Multispectral Imagery Classification   

Since the early advent of RS and GIS in the 1960s, extensive literature has been written on the efficacy 

of satellite imagery for land use and land cover classification (Ahmad & Quegan 2012; Foody et al. 

1992; Lu & Weng 2007; Melgani 2000; Perumal & Bhaskaran 2010; Shih & Chen 1994; Sun et al. 

2013) using a variety of methods and algorithms, with improvements in approaches to date (Pettorelli 

et al. 2017; Wegman et al. 2016). RS poses imperative coverage for mapping and quantifying 

landcover features or landscape patterns (Wegman et al. 2016), which is often useful in data and 

knowledge creation to assist ecologists, conservation managers and decision makers (Buchanan et al. 

2009; de Klerk & Buchanan 2016; Wegman et al. 2016). The aim of this chapter was to create a 

thematic map of vegetation cover in the Du Toits River wetland that comprises of a mosaic of palmiet 

wetland vegetation, sclerophyllous wetland vegetation and sandstone fynbos as described above, 

using the Random Forest classifier. The result classified maps were then used to test RS approaches 

to map internal biological ecotones (i.e. between or among community) within a fynbos embedded 

wetland. In essence, this would be mapping and characterizing ecotones among palmiet wetland 

vegetation (i.e. Prionium serratum and Psoralea pinnata), and sclerophyllous wetland vegetation (i.e. 

wetland grasses and restios), along with Temporary Wetland Fynbos vegetation. To limit non-target 

classes that were not of interest surrounding the wetland, the study area was clipped to the wetland 

boundary and non-target landcover classes that remained within the wetland boundary, namely, water, 

bare soil/sandstone, and degraded landcovers were identified. This resulted in seven distinct 

landcover classes developed as set out in Table 3.3.  

3.4.2.1 Imagery acquisition and pre-processing  

Various RS imagery has been used to map ecotones such as the coarse scale MODIS (Fox, 

Vandewalle & Alexander 2017), LiDAR (Jenkins & Frazier 2010; Moradkhani, Baird & Wherry 

2010; H.O. Ørka et al. 2012), medium resolution sensors such as Landsat (Bharti, Adhikari & Rawat 

2012; Galgamuwa, Wang & Barden 2020; Xu et al. 2018; Yang et al. 2015), through to finer spatial 

(high spatial resolution) scale data such as QuickBird and GeoEye (Beck et al. 2015). Note that this 

study follows Guo et al. (2017), Zhang et al. (2017) and Wang et al. (2010) who refer to Landsat 8 

and Sentinel-2 imagery as medium resolution. Landsat 8 OLI Surface Reflectance Tier 1 imagery was 

sourced through Google Earth Engine (GEE), as the spatial resolution of this imagery is 30 m which 

is a relatively coarse, medium spatial resolution optical sensor. These datasets are typically cloud free 

and pan-sharpened upon acquisition (U.S. Geological Survey 2016). Additionally, finer resolution 

imagery namely Sentinel-2 MSI: MultiSpectral Instrument, Level-2A data was sourced as it has a 

spatial resolution of 10 m which is ideally suited for monitoring fine scale vegetation, soil, and inland 
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water as prevalent in this study area. Temporal resolution of satellite imagery acquisition is important 

for landcover classifications and further enhancements such as spectral indices (e.g. Vegetation 

Indices) as one typically wants the vegetation in the selected study area to be at its optimum 

‘greenness’ to be captured efficiently (Wegman et al. 2016). More so, the temporal resolution of 

imagery used in a hydrological index such as the Modified Normalized Difference Water Index 

(MNDWI) (Xu 2006) will be to select imagery during and after the high rainfall season of an area of 

interest to capture waterlogged or inundated areas efficiently. The study area is located within the 

Cape Floristic Region (CFR) consequently experiencing Mediterranean-type climate, with wet 

winters and moderately intense drought-prone summers (Midgley et al. 2003; Rebelo et al. 2017; Van 

Wilgen 1984). For this study, to define which months satellite images will have reflectance that 

correspond to winter and summer situations of a wetland within a fynbos system, fire danger index 

(Rebelo et al. 2006; Van Wilgen 1984) months for this area were selected as this index considers 

parameters such as temperature, humidity, and rainfall, which is expected to influence how the 

vegetation absorbs and reflects incoming solar radiation. Sieben et al. (2017) also note that wetlands 

in fynbos environments, are likely subjected to the same fire regime as the surrounding landscape as 

they are frequently “located in open landscapes where fires can travel uninhibited” (Sieben et al. 

2017, p.60). The date of satellite imagery spans the months June 2020, July 2020, and August 2020 

for high rainfall months i.e. the winter period, and December 2020, January 2021, and February 2021 

for the dry, hot summer months i.e. fire season (CapeNature 2017; Van Wilgen 1984). In South 

Africa, December initiates the start of summer season, ending in February the following year. The 

justification for this temporal selection is based on the rainfall and fire regime characteristics for the 

study area as described below in Table 3.4: 

 

Table 3.4 Climatic conditions for the Du Toits River wetland within the Hottentots-Holland Nature Reserve Complex 

(HHNRC) 

 

Rainfall for Du Toits River wetland: 
 

Average Temperatures (HHNRC): 

Total rainfall: 1241 mm/year 
 

 
 

Winter 

 
Maximum 

 
Minimum 

 
June: 16℃ 

             July: 17℃ 
August: 15℃ 

 

 
June: 4℃ 
July: 3℃ 

August: 2℃ Rainfall intensity: 86 mm 

 
 

Summer 

 
 

December: 27℃ 
January: 33℃ 
February: 33℃ 

 
 

December: 10℃ 
January: 11℃ 
February: 11℃ 

Rainfall seasonality: Winter  

 

                                                           Source: Snaddon et al. (2018, p.34); CapeNature (2017, p.16) 
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3.4.2.2 Spectral Indices 

 

Literature notes that spectral indices have several advantages over the initial use of original 

reflectance for three main reasons: 1) they can dramatically enhance the identification of landcover 

types in both a visual or automated image interpretation; 2) many of the indices involve 

“mathematical division of bands, which has a normalizing effect on illumination variability within a 

single scene and also between scenes”; and 3) they are useful in describing the actual physical 

measures of land surface (e.g. the degree of vegetation cover, vegetation stress or water stress in 

vegetation) (Pettorelli 2013; Wegman et al. 2016). Spectral indices namely the Modified Normalized 

Difference Water Index (MNDWI) and Normalized Difference Vegetation Index (NDVI) are both 

explored in this chapter in order to substantiate the results of the landcover classification.  

 

Modified Normalized Difference Water Index (MNDWI) 

 

Wetlands are known to be influenced by hydrological regimes which determine whether a wetland is 

temporarily or permanently flooded, contains flowing or still standing water, has channelled or diffuse 

flow, inundated or saturated soils; and where various types of sediments are deposited in the wetland 

(Grenfell et al. 2019; Sieben, Mtshali & Janks 2014). The wet and damp conditions in wetlands 

consequently influence the vegetation composition and state, as vegetation typically respond to the 

hydrology and topography of a landscape and thus form zones of either dominant plant species, or an 

intricate mosaic of different plants (Richards 2001). The MNDWI was computed as this index extracts 

waterlogged areas and displays inundation efficiently while blocking out noise such as soil, built-up 

areas and vegetation (Xu 2006). 

 

In computing an MNDWI, three results may be produced; water will have greater positive values as 

it is absorbs more MIR light, built-up areas will have negative values, and soil and vegetation will 

also have negative values as both reflect more MIR light (Jensen 2005; Xu 2006). Hence, this index 

is useful to infer where waterlogged areas are in both wet and dry season, giving an idea of inundation 

from a surface reflectance aspect, as well as the hydrology of the wetland. This in turn may speak to 

the species composition of the different vegetation communities within the wetland. The MNDWI 

(Xu 2006) algorithm is as follows:  
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Note that the SWIR1 band is referred to as MIR (middle-infrared) in the original Xu (2006) 

publication. 

 

  𝑀𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛−𝑆𝑊𝐼𝑅1

𝐺𝑟𝑒𝑒𝑛+𝑆𝑊𝐼𝑅1
                                                                                                                           Equation 3-1                                                                                                                                                                                                              

 

where: 

Green is reflectance of the green band i.e. Band 3 in L8 data; 

 SWIR1 is the middle short-wave infrared i.e. Band 6 in L8 data 

 

 
 

The MNDWI algorithm was performed in ArcGIS 10.7.1 on L8 imagery for the wet season i.e. June 

2020-August 2020 (winter composite) when most rainfall is recorded in the area (CapeNature 2017, 

p.16), and the months December 2020-February 2021(summer composite) i.e. the dry season (Van 

Wilgen 1984). The Spatial Analysis tool, Map Algebra and Raster Calculator was used to calculate 

the MNDWI algorithm. This process was repeated on Sentinel-2: MSI, Level-2A data where: 

 

Green 
is reflectance of the green band i.e. Band 3 in Sentinel-2: MSI, Level-

2A imagery; 

 SWIR1 
is the middle short-wave infrared i.e. Band 11 in Sentinel-2: MSI, 

Level-2A imagery  

 

Note that because the imagery used are composites that span across three months for each season, 

when extracting the necessary bands for the MNDWI algorithm (i.e. Band 3 and Band 6 for L8 data 

and Band 3 and Band 11 for Sentinel-2 data), these were reduced to the median of each band for every 

month stacked in the composite. See APPENDIX C for the code generated to obtain raw L8 and 

Sentinel-2: MSI, L2A imagery from GEE. 

 

Normalized Difference Vegetation Index (NDVI) 

 

Vegetation Indices (VIs) that are derived from airborne, field or satellite data are contended to be 

useful in displaying significant empirical and theoretical evidence that they are related to various 

vegetation parameters, and are thus used to test and measure different vegetation properties 

(Mašková, Zemek & Květ 2008). Healthy vegetation typically displays very low reflectance in the 

red region of the spectrum due to “photosynthetic absorption of light and very high reflectance in the 

NIR due to scattering processes at the leaf level. With decreasing photosynthetic activity, the 

difference between red and NIR will decrease, and the red to NIR ratio flattens” (Wegmann 2016, 

p.222). This contrasting characterization is called the ‘red edge’ and is ultimately what most VIs are 
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based on (Wegmann 2016). The NDVI (Kriegler et al. 1969; Rouse, J.W. et al. 1974) is the most 

common and widely used VI which has proven to be highly correlated with vegetation cover, biomass, 

“net primary production, leaf area index (LAI), fraction of absorbed photosynthetically active 

radiation, carbon assimilation and evapotranspiration” (Pettorelli et al. 2011, p.16; Wegmann 2016).  

The NDVI (Rouse, J.W. et al. 1974) algorithm is as follows:  

  

  𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
                                                                                                                                        Equation 3-2                                                                                                               

 

where:  

NIR 
is reflectance of the green band i.e. Band 8 for Sentinel-2: MSI, Level-2A 

imagery; 

    RED is reflectance of the red Band 4 for Sentinel-2: MSI, Level-2A imagery. 

 

NDVI maps were generated in R using Sentinel-2: MSI, Level-2A composite images for the wet 

season (i.e. June 2020-August 2020) and the dry season (December 2020, January 2021-February 

2021). See APPENDIX D for the NDVI code generated in R. In computing an NDVI, green leaves 

or vegetation with high chlorophyll content will have high visible light absorption and high NIR 

reflectance, resulting in positive NDVI values. Noise such as bare soil, clouds and concrete will have 

values close to zero, while water will have negative values (Pettorelli et al. 2011). This VI analysis 

can assist in discriminating between classes and vegetation types.  

3.4.2.3 Supervised Classification  

Supervised classification is one of two image classification methods in RS. It is the process whereby 

a user will train an algorithm using a subset of known training data to assign identity and classify 

unknown pixels in an image (Bakker et al. 2001; Perumal & Bhaskaran 2010; Wegman et al. 2016). 

Apart from selecting a suitable classifier, the key to successful classification with high accuracy, is 

the quality, thematic depth and number of training data (Myburgh & van Niekerk 2014; Wegman et 

al. 2016). The supervised classification approach was chosen because the study area was accessible 

to collect in situ data and there was sufficient literature to substantiate known vegetation cover for 

the area, (Fischer et al. 2019; Rebelo et al. 2017; Rebelo et al. 2019; Rebelo, Emsens, et al. 2018; 

Sieben, Mtshali & Janks 2014) making a priori class decision more applicable and relevant. There are 

a number of supervised classifiers, for instance maximum likelihood (ML), nearest neighbour (NN), 

artificial neural networks (ANN), support vector machines (SVM) and decision trees such as Random 

Forest (RF) (Myburgh & van Niekerk 2014; Perumal & Bhaskaran 2010; Wegman et al. 2016). The 

classifier algorithm selected for this study is Random Forest (RF) because it is the most frequently 
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used as a standard approach in a number of image classification studies with high classification 

accuracies (Bargiel & Herrmann 2011; Fu et al. 2017; Mellor et al. 2013; Poona et al. 2016; Xie, Sha 

& Yu 2008). Although not the most recent image classification algorithm, Maximum Likelihood 

(ML) is still commonly used and is often shown to be very stable (de Klerk et al. 2016; Neware & 

Khan 2018; Perumal & Bhaskaran 2010; Xie, Sha & Yu 2008). Therefore, a ML classification was 

initially tested as a means of getting an idea of the possible classification outcomes of vegetation 

distribution based on what was observed in field. 

3.4.2.4 Random Forest Classifier 

A supervised classification method which fits decision trees to changing subsets of training data, and 

once a large number of trees is generated, the most popular class is identified and classified, is called 

Random Forest (Breiman 2001; Wegman et al. 2016). Breiman (2001) provides a definition for 

random forest as a “classifier consisting of a collection of tree-structured classifiers {h (x, Θk), k = 

1,...} where the {Θk} are independent identically distributed random vectors and each tree casts a unit 

vote for the most popular class at input x” (Breiman 2001, p.6). Random Forest (RF) classification 

was generated and run in R on cloud-masked, Landsat 8 SR Tier 1 filtered winter 2020 and summer 

2020/2021 composites, and on finer scale Sentinel-2: MSI, Level-2A imagery for the same date 

ranges.  

 

The model used 200 trees and 4 randomly selected predictors per split and an 80/20 split, where 80% 

was used as training data and 20% as testing data (see APPENDIX E for the full code). Training data 

points were collected in the field (see 3.4.1) and then combined with points created within GEE as 

feature collection, point geometries. These training data points were converted to a CSV file in GEE, 

exported and converted to a shapefile for use in R, ensuring that the Projected Coordinate Reference 

System (PCRS) remained consistent i.e. WGS 84 / UTM zone 34S (EPSG: 32734).  

 

For Landsat 8 data, bands 2 (Blue), 3 (Green), 4 (Red), 5 (Near-Infrared i.e. NIR), 6 (Shortwave-

Infrared i.e. SWIR-1) and 7 (SWIR-2) were specified in the prediction. The SWIR-1 (1.566 – 1.651 

µm) and SWIR-2 (2.107 – 2.294 µm) bands were included for Landsat 8 classification as vegetation 

also has fairly high reflectance values in these parts of the spectrum (Longley et al. 2015). For 

Sentinel-2 data, bands 2 (Blue), 3 (Green), 4 (Red) and 8 (NIR) were specified in the classifier 

prediction. Bands 2 (Blue), 3 (Green) and 4 (Red) are the bands in which vegetation has the highest 

absorption in the electromagnetic spectrum, and highest reflectance in the NIR band (Longley et al. 

2015). 
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Landcover classes included Prionium serratum and Psoralea pinnata within Wetland Vegetation (i.e. 

palmiet wetland subtype-1), Pteridium aquilinum, Restio paniculatus and Merxmuellera cincta were 

grouped as a condensed class within Sclerophyllous Wetland Vegetation (i.e. wetland subtype-2), 

Temporary Wetland Fynbos, Bare soil/sandstone, Water and Degraded (see Table 3.3). Palmiet 

Wetland Vegetation and Sclerophyllous Wetland Vegetation (SWV) are split as belonging to two 

subtypes of overall wetland vegetation based on the National Wetland Vegetation Database (Sieben, 

Mtshali & Janks 2014). Moreover, field observations have shown that soils in the SWV quadrats were 

sandier and drier, rather than the deeper, organic (peat conditions) found within Palmiet Wetland 

Vegetation quadrats. The bare soil, degraded vegetation, and water landcover classes were 

additionally added in order to reduce misclassification of unassigned pixels.  

 

Ultimately, these distinct groups of vegetation along with bare soil and water are the final landcover 

classes as they are significantly visible and occur as dense clusters that can be spectrally identified by 

a satellite, and because “phenology has been shown to be valuable in discriminating wetland species” 

(Rebelo, Somers, et al. 2018). Spectral reflectance values from imagery were coded in R and exported 

to CSV (for graph generation) to see how each landcover class reflects in the selected band 

wavelengths, and how they can be spectrally discriminated. This is similar to a study by Rebelo, 

Somers, et al. (2018) which looked at the plant functional trait data and spectral reflectance (in field 

measurements) of 22 palmiet wetland species, which include many of the key species found in the 

Du Toits River wetland (Table 3.2).  

3.4.2.5 Accuracy Assessments 

Uncertainty and error are almost always present and inevitable in GIS and RS as it “arises from the 

way that GI users conceive of the world, how they measure and represent it, and how they analyze 

their representations of it” (Longley et al. 2015, p.99). Moreover, classified maps are never a perfect 

representation of reality, and evaluating the accuracy of these are essential to inform users of the 

limitations of  produced maps (Wegman et al. 2016). Errors and uncertainty in classified maps may 

occur due to various reasons such as spectral confusion, incorrect locations of objects in a map, or 

pixels and/or objects being assigned incorrect labels (Wegman et al. 2016).  

 

The standard method of measuring and calculating errors in classifications is to produce a contingency 

table or confusion matrix which evaluates the performance of a classification (Chen et al. 2016; 

Longley et al. 2015; Pande-Chhetri et al. 2017; Wegmann 2016). The layout of a confusion matrix is 

not standardized, but commonly consists of rows and columns that summarize and compare the actual 

target values or validation data, with those classified and predicted by the classifier or machine 
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learning model (Longley et al. 2015; Wegman et al. 2016). The quantifying of accuracy metrics 

involves using statistics to measure which classes performed well and which need improvement. 

These metrics include overall accuracy, producers’ accuracy, consumer’s accuracy, and kappa 

coefficient. Overall accuracy refers to the total amount of correctly classified pixels or samples; 

producer’s accuracy is the accuracy from the map producer’s perspective and is calculated as the 

proportion of correctly classified pixels per class (omission error); while consumer’s accuracy looks 

at the accuracy from the perspective of a user of the map and is calculated as “the number of correct 

predictions relative to the total number of times a class was predicted”, i.e. (commission error) 

(Wegman et al. 2016, p.272). The kappa coefficient is the summary of the confusion matrix but 

“subtracts agreement that could have occurred by chance alone” (Wegman et al. 2016, p.272), or 

estimates agreements between reference (validation) data and predicted data that occur by chance 

(Longley et al. 2015). Other researchers have counterargued the efficacy of using a kappa value as a 

measure of accuracy and note that it should be completely disregarded and replaced with two simpler 

parameters: quantity disagreement and allocation disagreement (Pontius & Millones 2011). Accuracy 

assessments for the RF classifications were produced where traditional metrics such as overall 

accuracy, kappa, consumer’s accuracy (percentage commission) and producers’ accuracy (percentage 

omission) were considered and analyzed, along with sensitivity and specificity statistics for each 

class.  

 RESULTS AND DISCUSSION 

 Modified Normalized Difference Water Index 

Below are results for a Modified Normalized Difference Water Index (MNDWI) (Xu 2006) 

performed in ArcMap. These maps display the extraction of waterlogged areas. MNDWI values range 

between a maximum value of 1 to a minimum value of -1 (Xu 2006). High values i.e. > 0 to +1 is 

water (water absorbs more light in the MIR/SWIR wavelength of the spectrum) and low values i.e. < 

1 are in this case ‘noise’ such as soil, sediment deposits and vegetation (these reflect more light in the 

MIR/SWIR wavelength of the spectrum).  

 

From the outputs in Figure 3.5 and Figure 3.6 it is evident that the main water channel-although weak- 

is located at the head of the wetland with smaller discontinuous alluvial tributaries flowing 

downstream towards the dam. Richards (2001) notes that in wetlands, the water table lies close to or 

above the soil surface and is influenced by climatic and seasonal changes resulting in varying periods 

of saturation throughout the year i.e. permanently saturated (all year); seasonally saturated (flooded 

for 5-11 months) or temporarily saturated (flooded 1-4 months). During the winter period, most 
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rainfall is recorded (CapeNature 2017), and thus the wetland groundwater table recharges resulting 

in the water table being at its highest after the wet season. This is most likely why MNDWI values 

are higher in the summer MNDWI outputs. Rebelo et al. (2017) substantiate this observation by 

noting that after the rainy winter season, wetlands are at their highest water levels and thus easier to 

detect in the landscape.  

 

  

 

Figure 3.5 MNDWI created in ArcMap using Landsat 8 SR T1 for a) winter composite; b) summer composite 

 

The MNDWI using Landsat 8 data performed well in displaying surface water as dominantly 

inundated through the main channel and centre of the wetland during both the wet and dry season. 

This indicates that centre of the wetland is a permanent channel with diffuse flows downstream 

towards the dam, while the outer areas towards the wetland boundary are seasonally saturated. 

Sentinel-2: MSI, Level-2A data with 10 m (Figure 3.6) resolution provided defined visualization of 

permanent narrow streams and channels. It is also evident that the southern and south-eastern areas 

of the lower wetland are seasonally saturated towards the wetland boundary. This is substantiated by 

the damp sandy loam and often gleyed soils in this area found from the 100 cm mark soil profile as 

observed in field. According to Richards (2001) gleying is a process that occurs “when prolonged 

saturation reduces the level of mineral soils. The colours grey, and to a lesser extent blue and green, 

dominate in gleyed soil material” (2001, p.22). Soil profile photos were taken in field (displayed in 

Figure 3.4) showing the various soils at different zones of saturation and vegetation types in the 

wetland.  

b) a) 
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The far south-western areas show incredibly low MNDWI values which indicate that the vegetation 

may be degraded from previous farming and water extraction practices, or this is upland fynbos 

habitat where very little to no wetland subtype vegetation and wetland soils are present. 

 

  

 
Figure 3.6 MNDWI created in ArcMap using Sentinel-2: MSI, Level-2A imagery for a) winter composite; b) summer 

composite 

 

According to Job (2014) the “presence and retention of water in the landscape is a key defining feature 

of a wetland, where water is held long enough to saturate soils to sufficient depth to influence the 

plants that grow there, and for characteristics indicative of flooded soil to develop” (2014, p.9). 

Although the MNDWI gives an estimation of the hydrology and flooding regime of the wetland from 

a surface water aspect, it is a substantial way to analyze the Du Toits wetland hydrology, while 

additional soils observations can aid in showing how this correlates with the classification and 

identification of vegetation within in the wetland.  

 Normalized Difference Vegetation Index 

The result output maps of NDVI values for both the wet and dry season of 2020 and 2021 are shown 

below in Figure 3.7. NDVI values typically range between -1 and +1 and are shown in the legends 

on the right-hand side of each map. High NDVI values indicate higher differences in the red edge 

wavelengths, and are good indicators of vegetation health, high vegetation activity and greenness 

(Wegman et al. 2016). Values that are 0 and below, are typically non-vegetated, while negative values 

indicate the presence of water (Wegman et al. 2016). 

a) b) 
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It is evident that the different vegetation types have varying NDVI values, some moderately low in 

shades of dark green to light green and some fairly high in shades of yellow to bright red approaching 

+1 values. The vegetation located to the centre and head of the wetland which are the dominant 

palmiet wetland vegetation species (i.e. Prionium serratum and Psoralea pinnata) as well as other 

obligate wetland species, show fairly high NDVI values. These differences in the NDVI values are a 

good way of discriminating between different species in a heterogenous landscape. Moreover, the 

NDVI values do show slight, but not significant variations between the wet and dry season which 

also may speak to wetland vegetation vs fynbos vegetation health and stress in the wet and dry season.  

 

  

 

Figure 3.7 NDVI values for a) wet season i.e. June, July and August 2020 composite and b) dry season i.e. December 

2020, January 2021, and February 2021 composite for Sentinel-2: MSI, Level-2A imagery 

 

The slightly higher NDVI values in winter indicate that wetland species in this area are healthy during 

the wet season as precipitation increases and consequently the water table increases after the heavy 

winter rains, giving life to peatland and hydrophytic vegetation (Rebelo et al. 2017). This is validated 

by rainfall values described by Snaddon et al. (2018) who note that the annual total rainfall is 1241 

mm/year, rainfall intensity 86 mm and the rainfall seasonality is winter i.e. the growing season for 

wetland vegetation. The average NDVI value for winter (i.e. June 2020-August 2020) is 0.62 and the 

standard deviation is 0.12. The average decreases in summer (i.e. December 2020-February 2021) at 

0.55 and the standard deviation 0.16.  

 

b) a) 
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Sieben, Mtshali & Janks (2014) note that water quantity and quality are the of the most important 

aspects that influence plant communities in wetland environments. Wetland vegetation are typically 

adapted to growing in substrates that are anaerobic (i.e. devoid of oxygen) for at least some parts of 

the year, and are affected by altered soil chemistry influenced by prolonged periods of saturation and 

inundation (Department of Water Affairs and Forestry 2005; Richards 2001; Sieben, Mtshali & Janks 

2014). Tiner (2016) additionally argues that vegetation itself has a substantial effect on the hydrology 

of a site. Prionium serratum especially has an effect on the fluvial processes, sediment deposition and 

filtering of water in wetlands. Job (2014, p.15) note that the “dense growth of robust palmiet stems 

and its very dense root mass, provide formidable frictional resistance to flood flows, dissipating their 

energy and trapping any sediment”. The plant is thus considered an ecosystem engineer where “the 

occurrence and proliferation of palmiet in foothill streams eventually plugs the river, turning the river 

into a wide valley-bottom wetland” (Sieben 2012, p.8) as evident in the Du Toits River wetland. In 

terms of the relationship between the presence and retention of water in a wetland and vegetation that 

occur, Rebelo et al. (2006) note that fynbos belonging to the Cape Reed family such as Restionacae 

(i.e. Restio paniculatus, Elegia capensis and Elegia filacae which are present in the Du Toits wetland) 

and Asteraceae species, are adapted to well-leached nutrient-poor soils and high annual rainfall as 

prevalent in the Western Cape and specifically in this catchment where annual rainfall is 1241 

mm/year (Snaddon et al. 2018). This could be why Fynbos species are found on the outer areas of the 

wetland, away from the main wetland channel.  

 Image Classification 

Random Forest classifier was performed on multispectral Landsat 8 SR T1 and Sentinel-2: MSI, 

Level-2A data. Although the resolution of multispectral data is coarse, it is useful in looking at region 

scale vegetation studies. In order to assess and validate the performance of the RF classifier, confusion 

matrices for each of the output maps are shown in Table 3.5 to Table 3.8. In each confusion matrix, 

columns represent the reference (or validation) data and rows are the classified pixels as predicted by 

the classifier. The diagonals represent the number of correctly classified pixels, and these cells are 

shaded in green. The percentage error of commission (over-mapping) and consumer’s accuracy of 

each class runs across the last bottom rows of the table. Whereas the percentage errors of omission 

(under-mapping) and producer’s accuracy of each class runs down the last two columns of the table, 

with additional metrics such as sensitivity and specificity percentages for each class.  

3.5.3.1 Random Forest results 

Before running a classification, it is important to check and analyse the training data to see reflectance 

values of each class in the various bands (wavelengths) selected for the prediction. As different 
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objects and surfaces emit and reflect various types and amounts of radiation, selecting which part of 

the electromagnetic spectrum to measure is critical in RS (Longley et al. 2015). In this case it is 

imperative to identify which bands are most useful in discriminating the different vegetation types 

within the wetland. Literature notes that vegetation phenology has long been known to be useful in 

discriminating species for vegetation mapping as single species spectra may vary “throughout the 

growing season due to variations in the amount and ratios of plant pigments, leaf water content, plant 

height, canopy effects, leaf angle distribution and other structural characteristics” (Gilmore et al. 

2008). Spectral signature and/or response curves are thus useful in displaying valuable information 

at each wavelength of the Electromagnetic Spectrum (EMS); for instance, Bands 2-4 i.e. Blue, Green 

and Red bands of most satellite imagery encompass the visible wavelengths of the EMS where 

chlorophyll and leaf pigments are absorbed (Wegman et al. 2016). The NIR wavelength tells us about 

leaf and canopy structure, and the SWIR wavelengths are where water content are absorbed (Wegman 

et al. 2016). The graphs below provide useful information as to how the different landcover classes 

in the classification respond at different wavelengths of the EMS in L8 SR T1 and Sentinel-2: MSI, 

L2A imagery: 

 

 

 
 
Figure 3.8 Spectral signature curve for the Distinct Landcover classification using Landsat 8 SR T1 winter imagery 
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As displayed in Figure 3.8, the spectral response of all seven landcover classes show variations at the 

different wavelengths (i.e. bands). In bands 2-4 all the classes have similar reflectance with palmiet 

wetland vegetation (Prionium serratum and Psoralea pinnata) having slightly lower reflectance than 

the other classes. Throughout the EMS in winter imagery, Palmiet Wetland Vegetation, SWV, 

Degraded vegetation and Water have very close spectral reflectance. Thus, it would be expected that 

these classes are not suitable to map using coarse scale data such as Landsat 8 with 30 m resolution, 

especially during the winter season as seen in Figure 3.8. 

 

 
 

 

Figure 3.9 Spectral signature curve for the Distinct Landcover classification using Landsat 8 SR T1 summer imagery 
 

 

In summer L8 imagery, the landcover classes have slightly different spectral responses. In bands 2-4 

i.e. the visible wavelengths of the EMS where chlorophyll and leaf pigments are most absorbed 

(Wegman et al. 2016), Temporary Wetland Fynbos has fractionally higher reflectance values than all 

the other landcover classes. Figure 3.9 also shows that Palmiet Wetland Vegetation i.e. Prionium 

serratum has the highest spectral reflectance in bands 2-6 and significantly drops in bands 6-9 (i.e. 

the NIR wavelengths which speak to leaf and canopy structure). There is visible intertwining of the 

spectral responses for Psoralea pinnata, SWV, Temporary Wetland Fynbos and Degraded vegetation 

at band 4-5. This may speak to the phenology of these communities in summer.  
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Figure 3.10 Outputs of the Random Forest classifier for a) winter 2020 composite and b) summer 2020/2021 composite 

with seven distinct landcover classes using Landsat 8 SR T1 imagery 

 

Figure 3.10 demonstrate that the RF classifier using L8 imagery with 30 m resolution performed well 

and visually discriminated the landcover classes, even though the spectral responses show high 

similarities for each class in the spectral response graphs. By analysing the confusion matrices as in 

Table 3.5 and Table 3.6, it is evident that when using L8 data, Palmiet Wetland Vegetation performs 

well with low errors of omission (EO) for Prionium serratum (19.6% in winter; 23.2% in summer) 

and high producer’s accuracy (80.4% winter; 76.8% summer). Psoralea pinnata similarly has low 

percentages of omission (27.4% in winter; 24.2% in summer) and moderately high producer’s 

accuracy i.e. 72.6% in winter and 75.8% in summer (see Table 3.9). These two vegetation types are 

only confused with other vegetation such as SWV in 5 pixels and confused in a total of 3 pixels with 

Temporary Wetland Fynbos, Bare soil, and Degraded vegetation. The palmiet class similarly has low 

over-mapping errors (i.e. errors of commission, or EC) where Prionium serratum has 23.7% EC in 

winter, and 27.1% EC in summer with high consumer’s accuracies i.e. 76.3% in winter and 72.9% in 

summer. Contrastingly, Psoralea pinnata has a slightly decreased error of commission in summer 

(25% in winter; 16.1% in summer) and very high consumer’s accuracy (75% winter; 83.3% in 

summer, see Table 3.9). 

 

The SWV group (primarily wetland ferns, grasses and restios, see Table 3.3) also have moderately 

low omission errors at 26% in L8 winter imagery and slightly decreased 21.1% in L8 summer 

imagery. When looking at the visual outputs as well, it is evident that this group is mapped as spread 

across the outer-most soil gradients towards the road, while Palmiet Wetland Vegetation occurs 

a) b) 
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dominantly through the middle channel of the wetland. In L8 data the SWV class has a high error of 

commission in winter (35.1%) compared to summer (21.1%).  

 
Table 3.5 Confusion matrix with accuracy metrics for the seven distinct landcover classes, Random Forest classification 

using Landsat 8 SR T1 winter imagery (Figure 3.10, a) 

 

  Classified data 

  

Prionium 
serratum 

Psoralea 
pinnata SWV 

Temporary 
Wetland 
Fynbos 

Bare 
soil/sands

tone Degraded Water 
Row 

Totals EO % PA % 

R
e
fe

re
n

c
e
 d

a
ta

 

Prionium 
serratum 45 9 1 0 0 0 1 56 19.6 80.4 

Psoralea 
pinnata 11 45 4 1 1 0 0 62 27.4 72.6 

SWV 1 4 37 3 3 2 0 50 26 74 

Temporary 
Wetland Fynbos 0 0 6 41 1 0 0 48 14.6 14.6 

Bare 
soil/sandstone 0 1 2 1 26 0 1 31 16.1 83.87 

Degraded 1 0 6 1 2 46 0 56 17.9 82.14 

Water 1 1 1 0 13 0 47 63 25.4 74.6 

Column Totals 59 60 57 47 46 48 49 366 (TP)   

 

Sensitivity % 76.3 75 64.9 87.2 57 96 95.9    

 Specificity % 96.4 94.4 95.8 97 98 97 94.9    

 EC % 23.7 25 35.1 12.8 43.5 4.2 4.1    

 CA % 76.3 75 64.9 87.2 56.5 95.8 95.9    

 

Overall 
Accuracy % 

78 
         

 Kappa: 0.74          

 
EO= Errors of omission; PA= Producer’s accuracy; EC= Errors of commission; CA= Consumer’s accuracy; TP=Total 
pixels 

 

 
Table 3.6 Confusion matrix with accuracy metrics for the seven distinct landcover classes, Random Forest classification 

using Landsat 8 SR T1 summer imagery (Figure 3.10, b) 

 

  Classified data 

  

Prionium 
serratum 

Psoralea 
pinnata SWV 

Temporary 
Wetland 
Fynbos 

Bare 
soil/sand

stone Degraded Water 
Row 

Totals EO % PA % 

R
e
fe

re
n

c
e
 d

a
ta

 

Prionium serratum 

43 7 1 1 3 0 1 56 23.2 76.8 

Psoralea pinnata 13 50 1 1 0 0 1 66 24.2 75.8 

SWV 1 2 45 5 2 2 0 57 21.1 78.9 

Temporary Wetland 
Fynbos 

0 0 3 37 1 3 0 44 15.9 15.9 

Bare soil/sandstone 0 0 2 1 27 2 1 33 18.2 81.82 

Degraded 0 0 3 3 2 41 0 49 16.3 83.67 

Water 2 1 2 0 11 0 47 63 25.4 74.6 

Column Totals 59 60 57 48 46 48 50 366 (TP)   

 Sensitivity % 72.8 83.3 78.9 78.7 59 85 95.9    

 Specificity % 96 95.1 96.1 97.8 98 97 94.9    

 EC % 27.1 16.7 21.1 22.9 41.3 14.6 6    

 CA % 72.9 83.3 78.9 77.1 58.7 85.4 94    

 Overall Accuracy % 79          

 Kappa: 0.75          

 

EO= Errors of omission; PA= Producer’s accuracy; EC= Errors of commission; CA= Consumer’s accuracy; TP=Total pixels 
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Temporary Wetland Fynbos vegetation has low errors of omission and commission in both winter 

and summer. Table 3.5 and Table 3.6 show 14.6% (winter) and 15.9% (summer) EO, while the errors 

of commission (EC) are 12.8% (winter) and an increased 22.9% (summer). Bare soil/sandstone 

generally has low errors of omission i.e. 16.1% in winter imagery and 18.2% in summer. This class 

is however largely over-mapped with 43.5% in winter and 41.3% in summer. The tables show that 

bare soil is commonly confused with water, i.e. it is confused in 14 pixels, and in summer it is 

confused with water in 12 pixels. Degraded vegetation similarly has low classification errors i.e. 

17.9% EO in winter and 16.3% EO in summer. This vegetation class also has a very low error of 

commission in winter i.e. 4.2% and 14.6% in summer and very high consumer’s accuracies i.e. 95.8% 

in winter and 85.4% in summer. Water has low and acceptable classification errors in both L8 winter 

and summer imagery; in winter the EO is 25.4% and the error of commission is 4.1%. While in 

summer, water also has 25.4% EO and 6% EC.  

 

The overall accuracy of the Landsat 8 classifications is 78% with a kappa value of 0.74 for winter 

imagery, while L8 summer imagery classification performed slightly better with 79% overall 

accuracy and a kappa of 0.75. This suggests that coarse scale data such as Landsat 8 with 30 m 

resolution performs well in spectrally discriminating and classifying distinct vegetation groups in a 

heterogenous system, especially during the summer period.  

 

The spectral signature responses for the seven landcover classes using Sentinel-2: MSI, Level-2A 

imagery are displayed below to highlight how each class responds in the different wavelengths of 

Bands 2-12 in Sentinel-2: MSI, L2A imagery. Note that in Sentinel-2: MSI, Level-2A data there is 

no Band 10. 

 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

72 

  

 

Figure 3.11 Spectral signature profiles for the seven distinct classes in Sentinel-2: MSI, Level-2A winter 2020 imagery 

 

 

In analysing the spectral responses in Figure 3.11 and Figure 3.12, it is apparent that the dominant 

palmiet wetland vegetation namely Prionium serratum and Psoralea pinnata and water have similar 

reflectance through bands 2-4 but differs in the Red Edge (B5,6 & 7) and NIR (B8) bands. Literature 

notes that these types of trends makes mapping wetlands very challenging as they are “highly dynamic 

in ways that substantially alter their reflectance and energy backscatter properties”, and “ individual 

species can exhibit significant variation in energy responses (spectrally and in terms of backscatter 

geometry) within a growing season at different stages of their development” (Gallant 2015, p.10939).  
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Figure 3.12 Spectral signature profiles for the seven distinct classes in Sentinel-2: MSI, Level-2A summer 2020_2021 

imagery 

 

Additionally, wetlands are seen as moving targets in RS due to their interchanging conditions, i.e. 

heterogeneity in vegetation cover and fluctuating hydroperiods which present wetlands as a moisture 

regime rather than cover type (Gallant 2015). Given that the Du Toits River wetland is a fynbos 

embedded wetland, these spectral response curves additionally assist in highlighting that Palmiet 

Wetland Vegetation have different spectral responses to dryer Temporary Wetland Fynbos 

vegetation. The response curves show that Sclerophyllous Wetland Vegetation and Degraded 

vegetation have similar spectra, which could mean that the degraded areas may be dry, degraded and 

burnt ferns or grass (i.e. Pteridium aquilinum, Restio paniculatus or Merxmuellera cincta). In bands 

2-4 Temporary Wetland Fynbos has higher distinct spectra from the other three vegetation types, but 

quite similar reflectance to degraded vegetation and may be signs of vegetation stress in Temporary 

Wetland Fynbos. This trend changes in the three Red Edge bands i.e. B5, B6 and B7 as well as B8, 

the NIR band where wetland Fynbos has lower reflectance than the three vegetation types (Prionium 

serratum, Psoralea pinnata and Sclerophyllous) but similar reflectance to bare soil. All classes show 

a decline in reflectance in the SWIR bands i.e. B11 and B12. It is important to note that fluctuating 

water level as evident in the Du Toits River wetland (Figure 3.5 and Figure 3.6) may also influence 

or change the spectral reflectance of vegetation (Ozesmi & Bauer 2002). 
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Figure 3.13 are the resultant output maps of RF classifier run on a winter composite (Figure 3.13 a) 

and a summer composite (Figure 3.13 b). The RF classifier was run on each season imagery in order 

to get an idea of vegetation occurrence and changes between wet (growing) season and dry 

(flowering) seasons. Table 3.7 and Table 3.8 below indicate that the Palmiet Wetland Vegetation 

class had generally acceptable classification errors i.e. Prionium serratum had a 20.7% omission and 

22% commission, while Psoralea pinnata had a low 16.9% omission and 18.3% commission in the 

winter season. These percentages are confidently low which illustrate that RF spectrally discriminates 

these two palmiet wetland vegetation subtypes quite well on Sentinel-2: MSI, L2A imagery using the 

seven-class approach. Although Psoralea pinnata is a common wetland tree typically occurring in 

Hawequas Sandstone Fynbos systems (Rebelo et al. 2006; Sieben et al. 2017), it has been argued by 

Rebelo, Emsens, et al. (2018) that Psoralea pinnata (and Pteridium aquilinum) are some of the key 

species characterizing degraded fragments of what should be pristine wetland (dominated by 

Prionium serratum) in the Du Toits River wetland. 

 

In summer these values fluctuate where Prionium serratum decreased to 14% omission and 16.9% 

commission- relatively lower than in winter imagery. Psoralea pinnata has a decreased omission 

value of 14.8% and 13.3% commission in summer. Psoralea pinnata bloom from October to 

December (Palmer & Pitman 1973), hence the change in reflectance from winter compared to summer 

as seen in the above map outputs. The seasonal differences in the classification speak to the phenology 

of the vegetation and how it absorbs and radiates energy to receiving satellites at various life stages 

and growing seasons, suggesting that fynbos embedded wetlands may provide better mapping 

accuracies in the dryer, flowering season (i.e. spring to summer). The classification results also 

correspond with the differences in NDVI values as shown in Figure 3.7. Where NDVI values are high 

i.e. ranging between 0.77-0.94 (winter) and 0.69-0.92 (summer), the RF classified images indicate 

that these are areas of dense Prionium serratum and Psoralea pinnata occurrence. Spectral signature 

graphs in Figure 3.11 and Figure 3.12 show that these two vegetation have very similar reflectance 

in the spectrum and may be difficult to distinguish as separate classes of vegetation. However, the 

efficacy of RF classifier successfully distinguishes these two unique peatland vegetation.  
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Figure 3.13 Map outputs of the Random Forest classifier for a) winter 2020 composite and b) summer 2020/2021 

composite with seven distinct landcover classes using Sentinel-2: MSI, Level-2A imagery 

 

It is evident from the matrices that the sclerophyllous (SWV) group are slightly over-generalized at a 

31.6% commission for Sclerophyllous Wetland Vegetation and 27.7% commission for Temporary 

Wetland Fynbos in the winter season. In summer these two vegetation communities have 17.5% and 

29.8% commission errors. Furthermore, these two classes are moderately under-mapped in some 

areas of the wetland i.e. SWV at 36.1% in winter, and 30.9% omission in summer; while Fynbos is 

at 29.2% in omission winter; and a significantly decreased 8.3% omission in summer. Figure 3.11 

and Figure 3.12 show that SWV and Fynbos have similar spectra to the Degraded and Bare soil 

classes. Although this is a fynbos embedded wetland, spectral signatures of Temporary Wetland 

Fynbos show a clear distinction from wetland vegetation. This could be due to Temporary Wetland 

Fynbos having varied structural composition that are determined by factors such as floristic maturity, 

“fire (intensity, season, frequency, veld age, past fire history, lottery recruitment from seed banks 

following fire), and thus the same community may vary in species composition and abundance 

between fires” (Rebelo et al. 2006). These areas also show lower NDVI values in the dry season i.e. 

shaded light green (values 0.46-056 in winter and 0.06-0.41 in summer) in Figure 3.7, adequately 

spectrally discriminating Fynbos from the surrounding wetland shrubs and trees that have higher 

NDVI values. Similar to the observation of wetland vegetation, it is suggested that Temporary 

Wetland Fynbos vegetation maps more accurately in summer imagery. 

 

a)  b)  
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Table 3.7 Confusion matrix with accuracy metrics for the seven distinct landcover classes, Random Forest classification 

using Sentinel-2: MSI, Level-2A winter 2020 imagery (Figure 3.13 a) 

 

 

  Classified data 

  

Prionium 
serratum 

Psoralea 
pinnata SWV 

Temporary 
Wetland 
Fynbos 

Bare 
soil/sand

stone Degraded Water 
Row 

Totals EO % PA % 

R
e
fe

re
n

c
e
 d

a
ta

 

Prionium serratum 46 7 2 0 0 2 1 58 20.7 79.3 

Psoralea pinnata 7 49 3 0 0 0 0 59 16.9 83.1 

SWV 3 4 39 5 0 8 2 61 36.1 63.9 

Temporary Wetland 
Fynbos 0 0 5 34 5 2 2 48 29.2 29.2 

Bare soil/sandstone 0 0 1 4 37 0 4 46 19.6 80.4 

Degraded 2 0 7 2 1 36 2 50 28 72 

Water 1 0 0 2 3 0 38 44 13.6 86.4 

Column Totals 59 60 57 47 46 48 49 366 (TP)   

 Sensitivity % 78 82 68 72 80 75 78    

 Specificity % 96 97 93 96 97 96 98    

 EC % 22 18.3 31.6 27.7 19.6 25 22.4    

 CA % 78 81.7 68.4 72.3 80.4 75 77.6    

 Overall Accuracy % 76          

 Kappa: 0.72          

 

EO= Errors of omission; PA= Producer’s accuracy; EC= Errors of commission; CA= Consumer’s accuracy; TP=Total pixels 

 

 

Table 3.8 Confusion matrix with accuracy metrics for the seven distinct landcover classes, Random Forest classification 

using Sentinel-2: MSI, Level-2A summer 2020/2021 imagery (Figure 3.13 b) 

 

 

  Classified data 

  

Prionium 
serratum 

Psoralea 
pinnata SWV 

Temporary 
Wetland 
Fynbos 

Bare 
soil/sand

stone Degraded Water 
Row 

Totals EO % PA % 

 R
e
fe

re
n

c
e
 d

a
ta

 

Prionium serratum 49 6 2 0 0 0 0 57 14 86 

Psoralea pinnata 5 52 2 0 0 0 2 61 14.8 85.2 

SWV 5 0 47 6 1 6 3 68 30.9 69.1 

Temporary Wetland 
Fynbos 0 0 2 33 1 0 0 36 8.3 91.7 

Bare soil/sandstone 0 1 1 3 37 1 6 49 24.5 75.5 

Degraded 0 0 2 4 1 41 1 49 16.3 83.7 

Water 0 1 1 1 6 0 37 46 19.6 80.4 

Column Totals 59 60 57 47 46 48 49 366 (TP)   

 Sensitivity % 83 87 82 70 80 85 76    

 Specificity % 97 97 93 99 96 97 97    

 EC % 16.9 13.3 17.5 29.8 19.6 14.6 24.5    

 CA % 83.1 86.7 82.5 70.2 80.4 85.4 75.5    

 Overall Accuracy % 81          

 Kappa: 0.78          

 

EO= Errors of omission; PA= Producer’s accuracy; EC= Errors of commission; CA= Consumer’s accuracy; TP=Total pixels 
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Bare soil/sandstone has an omission error of 19.6% (winter) and 24.5% (summer), while commission 

errors for this class remain 19.6% during winter and summer. Limited information is known about 

the Degraded landcover class as these areas were not sampled due to inaccessibility, waterlogging 

and safety reasons. Therefore, visual observations were made from Google Earth which appear to be 

degraded or dead vegetation that may belong to the SWV group i.e. Pteridium aquilinum, Restio 

paniculatus or Merxmuellera cincta and/or Temporary Wetland Fynbos. The Degraded vegetation 

class has low errors of omission i.e. 28% (winter) and 16.3% (summer). This class similarly has 

moderately low errors of commission (25% winter; 14.6% summer) and high consumers accuracy 

(75% in winter and 85.4 in summer, see Table 3.9). The omission errors for water are fairly low i.e. 

13.6% EO in winter (Table 3.7) and 19.6% in summer (Table 3.8). The confusion matrices show that 

water has low commission percentages i.e. 22.4% in winter (Table 3.7) and 24.5% in summer (Table 

3.8). The classification of this class performed quite well, distinctly displaying some parts of the 

channelled river and its tributaries. The presence of water in the classified images corroborate the 

presence of waterlogged areas in the Sentinel-2: MSI, L2A MNDWI outputs in Figure 3.6. The kappa 

value for both seasons imagery is at 0.72 and 0.78 while the overall accuracy of both Sentinel-2: MSI, 

L2A Random Forest classified images stands at 76% (winter classification) and a high 81% (summer 

classification) which is a good level of accuracy.  

 

 

Table 3.9 below provide a summary of the overall statistics for each landcover class for both Landsat 

8 and Sentinel-2 sensors. From this table it is evident that generally the classification performed best 

using the Sentinel-2: MSI, Level-2A imagery with the highest overall accuracy i.e. 81%, kappa 

statistic i.e. 0.78 and frequently high consumer’s and producer’s accuracies for all classes. High 

accuracies are shaded green cells. 
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Table 3.9 Overall summary statistics of how each landcover class performed in both Landsat 8 SR T1 and Sentinel-2: MSI, Level-2A imagery using the Random Forest classifier  

 

 

   Consumers Accuracy: Producers Accuracy: 

  OA: KS: 
P. 

serratum 
P. 

pinnata SWV 
TW 

Fynbos Bare soil Degraded Water 
P. 

serratum 
P.  

pinnata SWV 
TW 

Fynbos Bare soil Degraded Water 

Sensor and Season:                                 

L8 Winter 0.78 0.74 76.3 75 64.9 87.2 56.5 95.8 95.9 80.4 72.6 74 14.6 83.87 82.14 74.6 

L8 Summer 0.79 0.75 72.9 83.3 78.9 77.1 58.7 85.4 94 76.8 75.8 78.9 15.9 81.82 83.67 74.6 

Sentinel-2: MSI, L2A 
Winter 0.76 0.72 78 81.7 68.4 72.3 80.4 75 77.6 79.3 83.1 63.9 29.2 80.43 72 86.36 

Sentinel-2: MSI, L2A 
Summer 0.81 0.78 83.1 86.7 82.5 70.2 80.4 85.4 75.5 86 85.2 69.1 91.7 75.5 83.7 80.4 

 

OA= Overall Accuracy; KS= Kappa Statistic; P. serratum= Prionium serratum; P. pinnata= Psoralea pinnata; SWV= Sclerophyllous Wetland Vegetation; TW Fynbos= Temporary Wetland 

Fynbos 
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 CONCLUSION 

In assessing the accuracy and classification errors of the Random Forest results, it is apparent that the 

classifier performed well in displaying the spread of different vegetation and other landcover such as 

bare soil and water in the Du Toits River wetland. Consistently across both datasets i.e. Landsat 8 

and Sentinel-2: MSI, Level-2A, the classifier displayed the spread of the Palmiet Wetland Vegetation 

i.e. Prionium serratum and Psoralea pinnata distinctly at the centre of the wetland. Other wetland 

vegetation such as sclerophyllous group of grasses, ferns and restios, along with Fynbos vegetation 

are spread predominantly on the outer boundary of the wetland, and with patches intertwined towards 

the centre of the wetland. Although confusion between classes was quite low, it can be improved by 

adding more training data that is based on alternative ground- truth methods, especially in the western 

areas of the wetland that were not sampled in situ. The MNDWI and NDVI results, and analyses 

substantiate the classification of the different landcovers within the wetland. Evidently, where there 

are higher MNDWI values and higher soil wetness, palmiet wetland vegetation is dominant. Where 

MNDWI values are lower, with lower soil wetness, temporary wetland fynbos and sclerophyllous 

vegetation are found. The NDVI outputs correspondingly show that the distribution of wetland 

vegetation (palmiet etc) at the centre of the wetland have higher NDVI values while the wetland 

grasses, ferns, restios spread to the outer boundary and which belong to the SWV group, and Fynbos 

have moderate to lower maximum NDVI values. 

 

Based on the then working definition of an ecotone by Holland (1988) which described ecotones as 

transition zones between neighbouring ecological systems that are characterized by unique properties 

which are defined by space and time scales, and by the strength of interactions between the adjacent 

ecological systems; this study therefore contends that ecotones will exist where there are vegetation 

shifts with distinct properties in vegetation and soil composition. For example, the ecotone can exist 

where there are distinct vegetation changes from the center of the wetland where Prionium serratum 

and Psoralea pinnata dominantly and densely occur, to the outer edges of the wetland moving 

towards the mountainous gradient where grasses, ferns and Fynbos occur. This change is supported 

by soil observations which indicate that where there are deeper, wet, and organic soils with peatland 

species such as Prionium serratum, Zantedeschia aethiopica and Psoralea pinnata. A transition 

occurs to soil conditions that are sandy to sandy loam, not always wet where sclerophyllous vegetation 

is classified and found, and Fynbos is dominantly found in drier areas. Internal biological ecotones 

may exist among the different vegetation communities as well. It is thus acknowledged that the whole 

wetland is a complex mosaic ecotone with patches of internal ecotones within. It can be concluded 

from this chapter that ecotones within the wetland are not linear but may be spatially disjunct. 
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CHAPTER 4:  REMOTE SENSING OF WETLAND ECOTONES 

“Impossible to map the world–we select and make graphics so that we can understand it.”  

 

-Roger Tomlinson, 1981 

 

 ABSTRACT 

Remote Sensing (RS) data and techniques have become increasingly popular to use for observational 

studies and monitoring in ecology due to its ability to obtain large amounts of data over greater spatial 

and temporal scales than is possible through field-based methods. Remote sensing is an especially 

effective means of detecting and monitoring spatiotemporal aspects of ecotones where one vegetation 

type (or ecosystem) transitions into another. The frequent revisit times of satellites enable monitoring 

of the dynamics typical of some ecotones. Probabilistic, supervised classification of Sentinel-2 MSI: 

MultiSpectral Instrument, Level-2A, imagery was used to identify, map, and characterize wetland 

ecotones. The resultant output probability map, along with fuzzy probability graphs developed for six 

transects placed across the wetland, were able to map complex and dynamic wetland ecotones 

between two distinct types of palmiet wetland vegetation, sclerophyllous wetland vegetation, and 

Fynbos species belonging to the Cape Floristic Region. Results showed 1) abrupt (under 10 m), sharp 

ecotones within palmiet (peat) wetland vegetation groups, 2) sharp, narrow ecotones (under 10 m) 

between palmiet wetland, sclerophyllous wetland, and fynbos (temporary wetland) communities, and 

3) distinct and complex ecotones within the sclerophyllous wetland vegetation and temporary wetland  

fynbos dominated areas of the wetland. Probabilistic classification methods are deemed useful in 

mapping fine-scale, abrupt ecotones, especially for wetlands that are dynamic entities in a landscape. 

This study highlights the efficacy of using probability, per-pixel RS approaches to map ecotones that 

are complex units in reality, rather than using binary classifications or vector line mapping 

approaches. The findings of this study suggest that there is great potential and need for wetland 

ecotone mapping as core areas in understanding wetland ecosystem processes, and perhaps 

understanding embedded, alluvial fan wetland formation and functioning. 

 INTRODUCTION 

Ecological boundary, gradient, edge, edge boundary, ecocline and ecotone are terms that have been 

crucial in landscape ecology studies, all being used interchangeably due to the lack of shared and 

unified definitions of each (Cadenasso, Pickett, Weathers, Bell, et al. 2003). Hufkens, Scheunders & 

Ceulemans (2009) provide a review of the various terms and definitions of ecotone research in 

vegetation ecology and summarize the trends, techniques and discrepancies between definitions and 
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their scientific applications. Hufkens and colleagues’ (2009) review provided a good basis to refine 

and select a working definition for this study which aimed to identify and map internal biological (i.e. 

between individuals in the same ecosystem/community) ecotones within a spatially heterogenous 

fynbos embedded wetland, using a supervised probabilistic classification. In this study ecotones are 

defined by Holland (1988) as zones of “transition between adjacent ecological systems, having a set 

of characteristics uniquely defined by space and time scales and by the strength of the interactions 

between adjacent ecological systems”(Holland 1988; Holland, Whigham & Gopal 1990). For this 

research, ecotones are considered zones of vegetation change and ‘chaos’ i.e. harbouring vegetation 

species from both adjacent ecosystems at varying probabilities. Researchers have noted that while 

substantial research in landscape ecology has focused on discrete ecological regions, communities 

and systems, ecotones or zones of transition have received less attention (Kark 2005) although they 

have long been a topic of interest to scientists (Clements 1905; Livingston 1903; Odum & Barrett 

1971) due to their effects on landscape diversity and patterns (Whittaker 1960). Described as unique 

units in a landscape, ecotones are responsible for various landscape functions which include; 

movement of animals and seeds across the transition, high biological diversity, speciation, high rate 

of primary and secondary production, and refuge areas for species under changing conditions 

(climatic and human induced), highlighting that ecotones contribute to ecosystem integrity (Kark 

2005; Kark 2007; Walker et al. 2003; Williams 1996). Alternatively, researchers have also noted that 

ecotones sometimes show less or lack species diversity than in adjacent habitats (Hou & Walz 2014; 

Senft 2009; Walker et al. 2003). Hence, although understudied, ecotones provide a good ground for 

studying natural communities.  

 

Ecotones often occur along ecological gradients that are created by spatial shifts in elevation, soil, 

climate and various other environmental parameters (Kark 2005) and in the case of wetlands, may 

occur at various points of hydrogeomorphic units (HGM) (Ollis et al. 2013). These HGM units are 

determined and influenced by landform, hydrological characteristics and hydrodynamics (Ollis et al. 

2013), which in turn determine the geomorphologic and alluvial processes that occur within a 

wetland. Soils may thus be key components in analysing wetland ecotones as wetlands sustain 

hydromorphic soils which are distinctly different to soil conditions in terrestrial habitats, and are 

influenced by varying periods of flooding (Ollis et al. 2013; Richards 2001). This mean that when 

studying wetland ecotones, vegetation composition along with soil and hydrological aspects need to 

be considered. Holland, Whigham and Gopal (1990) note that wetlands like all other ecosystems have 

internal and external boundaries that separate distinct vegetation patches, with various ecological 

processes and transfers occurring at these boundaries or ecotones. It can also be argued that wetlands 

as a component in the landscape may be regional-scale ecotones based on the wetland definition 
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(Republic of South Africa 1998) which recognize these ecosystems as land-water transitions: “land 

which is transitional between terrestrial and aquatic systems where the water table is usually at or 

near the surface, or the land is periodically covered with shallow water, and which land in normal 

circumstances supports or would support vegetation typically adapted to life in saturated soil”. One 

type of South African peatland, called palmiet wetlands are one of the most significant, yet highly 

threatened wetlands due to channel erosion, alien vegetation invasion, draining for agricultural land, 

and pollution from agricultural runoff (Rebelo, Emsens, et al. 2018). Palmiet wetlands are dominated 

by Prionium serratum (or P. serratum), an endemic and red list South African sedge-like shrub with 

deep, extensive root systems-that can go up to three meters deep in permanently inundated wetlands 

(Sieben, Mtshali & Janks 2014)- and which are argued to have stabilized river valleys within the Cape 

Floristic Region (CFR). Consequently, palmiet typically form unchannelled valley-bottom wetlands 

where peat beds accumulate (Job 2014). Valley-bottom wetlands, generally occur along a valley floor 

and are often linked to upstream or adjoining river channels (Ollis et al. 2013), are discontinuous and 

may have reaches that are both channelled and unchannelled (Grenfell et al. 2019). 

 

For this study, internal (i.e. among community) wetland ecotones are of interest in an alluvial fan 

wetland dominated by dense Prionium serratum stands, and being embedded within a Fynbos system 

with alluvial channels that deposit and retain varying amounts of sediment, water, and organic 

material (Fischer et al. 2019; Snaddon et al. 2018). This study identifies four vegetation types in the 

wetland system namely Prionium serratum and Psoralea pinnata both of which fall within the 

palmiet (peat) wetland vegetation group; sclerophyllous wetland vegetation (i.e. wetland ferns, 

grasses and restios which frequently co-occur including, Pteridium aquilinum, Merxmuellera cincta 

and Restio paniculatus, henceforth termed SWV); and Temporary Wetland Fynbos (species 

belonging to the endemic Cape Floristic Fynbos biome). Literature has noted that these fynbos 

embedded wetlands are often subject to the same environmental conditions as Fynbos vegetation that 

are prone to thriving in nutrient poor, well leached soils, and adapted to Mediterranean climate of the 

Western Cape with high rainfall winters and hot, dry summers (Rebelo et al. 2006; Sieben et al. 2017; 

Van Wilgen 1984). This chapter aimed to use probabilistic fuzzy classification to identify, map and 

characterize fine-scale, internal wetland ecotones in an alluvial fan fynbos embedded wetland.  

  STUDY AREA 

The Du Toits River wetland is a dynamic alluvial fan wetland embedded between two Fynbos covered 

mountain slopes with a weakly channelled river (Fischer et al. 2019; Snaddon et al. 2018) that feeds 

and filters into the Theewaterskloof Dam. The Theewaterskloof Dam, located near the town of 

Villiersdorp in the Western Cape province of South Africa, has a capacity of 480 million m³ and 
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surface area of 48 km² making it the seventh largest dam in South Africa (Musungu & Jacobs 2015). 

Locally, the dam is the largest in the Western Cape and is one of the main sources of water to the City 

of Cape Town (Fischer et al. 2019). Surrounding the dam, are three key wetlands namely the Du Toits 

River wetland, the Elandskloof wetland and the Vyeboom wetland where rain falling on the 

surrounding mountain catchment areas filters through these wetlands and then enters the dam, 

contributing to improving the water quality and regulating flow into the dam (Fischer et al. 2019). 

The Du Toits River wetland is driven by unique wetland-fynbos conditions induced by the underlying 

Table Mountain Group sandstone substrates, resulting in a heterogenous mosaic of palmiet wetland, 

sclerophyllous wetland, and Fynbos vegetation groups (Rebelo et al. 2017; Rebelo et al. 2015; Sieben 

et al. 2017). The Du Toits River wetland provides important regulating ecosystem services including 

sediment trapping (also referred to as erosion control), carbon storage, flood attenuation, phosphate 

and nitrate removal (Fischer et al. 2019; Rebelo et al. 2019; Snaddon et al. 2018) and water supply. 

Figure 4.1 below shows the four dominant vegetation types that are of interest for this chapter to map 

internal wetland ecotones. 

 

  

 

Figure 4.1 Classified image of the main landcover within the Du Toits River wetland. The four distinct vegetation zones 

established for vegetation analysis: Prionium serratum, Psoralea pinnata (i.e. palmiet wetland vegetation), Pteridium 

aquilinum, Restio paniculatus, Merxmuellera cincta (grouped as SWV) and Temporary Wetland Fynbos. The red dot in 

the insert map represents the location of the wetland within the Western Cape. Placement of transects are labelled 1, 2, 

3,4, 5 and 6 
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 METHODS 

A supervised image classification approach, namely the class probability classifier was applied to a 

cloud-free Sentinel-2: MSI, Level-2A -with 10 metre spatial resolution-sourced from Google Earth 

Engine (GEE)- summer composite spanning the months December 2020, January 2021, and February 

2021. This imagery deemed the best for identifying and classifying vegetation types within the Du 

Toits wetland as this period is after the growing season for wetland vegetation, and flowering season 

of some Fynbos species. Training data polygons were created in ArcMap using the training samples 

tool. 

 Class Probability Classification 

In order to identify a suitable classifier to map ecotones within the wetland, relevant literature 

identified in the bibliometric search was reviewed as possible approaches for example, Ørka et al. 

(2012) used a binomial logistic regression approach to produce a probability map that was suitable 

for monitoring changes in the extent and location of a subalpine zone i.e. the transition between forest 

and alpine vegetation communities; Fedrigo et al. (2018) used a Random Forest (RF) model to 

produce high accuracy maps of stand type probability, which included areas of transition i.e. the 

ecotone between rainforest and eucalypt forest in south-east Australia . Additionally, Humphreys et 

al. (2017) used a “hierarchical modelling and Bayesian inference to predict the probability of wetland 

presence as a continuous gradient with the explicit consideration of spatial structure” thus identifying 

wetland extent, ecotones, and hydrological connections. Similarly, de Klerk, Burgess and Visser 

(2018) use a soft classifier Bayesian-based probability map to provide probability distribution over a 

set of classes where pixels are “assigned a strength of membership value for each class being mapped” 

(de Klerk, Burgess & Visser 2018, p.128). 

 

This study followed de Klerk, Burgess & Visser (2018) in using a naïve Bayesian-based probability 

map to identify mixed pixels with varying probabilities as ecotones or ecotone pixels. The Naïve 

Bayes classification is a simple probabilistic classifier based on the Bayes’ Theorem which assumes 

that there is independence between features, and determines the probability of a feature with prior 

knowledge and current evidence i.e. it depends on conditional probability (Zhang 2016). The 

Bayesian-based Class Probability algorithm was performed in ArcMap 10.7.1 where classification 

training and verification data polygons were generated for four distinct vegetation types i.e. Prionium 

serratum and Psoralea pinnata within Palmiet Wetland Vegetation (subtype-1), Sclerophyllous 

Wetland Vegetation hereafter termed SWV (subtype-2), and Temporary Wetland Fynbos. These 

vegetation types have been grouped distinctly based on vegetation and soils prevalent within these 
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communities (Sieben 2012; Sieben et al. 2017) and field observations that took place during June 

2021. Prionium serratum and Psoralea pinnata were grouped as wetland vegetation subtype-1, as 

soils were generally very wet with organic filled peat and sometimes clay. The SWV cluster 

comprised a grouping of Pteridium aquilinum (commonly known as Bracken fern), Restio 

paniculatus, and wetland grasses such as Merxmuellera cincta (Sieben, Mtshali & Janks 2014). These 

areas consisted of sandy, to sandy loam, damp but sometimes dry soil conditions and considered 

sclerophyllous wetland vegetation subtype-2. The Temporary Wetland Fynbos class comprised of all 

species belonging to the CFR Fynbos biome such as Protea neriifolia, Berzelia abrotanoides, 

Leucadendron conicum, Leucadendron coniferum and Metalasia muricata (Rebelo et al. 2006) where 

soils were generally dryer, harder and much more coarse.  

 Training Data, Accuracy Assessment and Transects  

Training data polygons were captured and based on the points collected in field and GEE (Chapter 3 

3.4.1.5). A total of 120 polygons were digitized and split using an 80/20 split where 80% was used 

as training data and 20% as testing data to yield training (96) and verification (24) polygons 

distributed randomly for each of the four vegetation classes. Standard accuracy metrics were 

performed for the Probability classified image in R (version 4.1.1) using the caret package (Kuhn 

2008) where overall accuracy, kappa, producer’s accuracy, and consumer’s accuracy were considered 

in the form of a confusion matrix. Note that within the accuracy script, the code takes the highest 

probability of a cell belonging to one of the four vegetation types and uses a function to turn this 

probability layer into a binary layer. The confusion matrix was thus run on a binary classification 

output raster of the four vegetation layers based on the initial class probability classified raster 

produced in ArcMap (see APPENDIX F for the accuracy assessment code generated in R). 

 

In order to illustrate the nature of internal wetland ecotones, six transects were digitized and placed 

subjectively in such a way that it covered parts of each of the four distinct vegetation types at a 

particular known gradient. As the wetland is quite small and narrow- especially at the head of the 

wetland, transect sizes were set to 1.6 km in length and 200 m width, as it was expected that species 

composition changed across a few (less than 10) meters. The transect size was further justified by the 

spatial resolution of imagery which is 10 m (Sentinel-2: MSI, Level-2A), where fine-scale ecotones 

across a few meters may be mapped and analysed. Transects were created with specific measurements 

to create graphs of how the vegetation class probabilities changed over space. Vegetation class 

probabilities were binned over the 200 m width every 50 m along the 1.6 km length (which gave 32 

‘readings’ along a transect for the graphs). Transects 1 and 2 were placed in the lower eastern parts 

of the wetland where Sclerophyllous Wetland Vegetation and Temporary Wetland Fynbos conditions 
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were dominant. Here, soils were dryer, coarser and had less organic matter present as observed in 

field. Transects 3 and 4 were focused on identifying ecotones between Prionium serratum, Psoralea 

pinnata (palmiet wetland vegetation) and SWV which may speak to the transition from ‘pure’ palmiet 

wetland to the dryer sclerophyllous wetland conditions. Transects generally run from east to west, 

except for Transect 5 and Transect 6 that were placed running north-south due to the narrow size of 

the head of the wetland, and east-west transects would cover areas not within the delineated study 

area. These two transects were focused on looking at the ecotones within the wetland vegetation 

(palmiet) group i.e. running through densely vegetated areas of Prionium serratum and Psoralea 

pinnata where deeper, wetter, and more peat organic soils were present.  

 RESULTS AND DISCUSSION 

 Probabilistic Classification 

The class probability map (Figure 4.2) of the four vegetation types showed that Prionium serratum 

and Psoralea pinnata had high and dense probabilities of occurrence at the head of the wetland, where 

the main channel flows with inundated soils that are rich in organic material/sediment (sensu field 

observations). These two vegetation types also spread sporadically southward down the middle 

wetland channel with smaller plants such as Zantedeschia aethiopica underneath their dense canopies. 

Prionium serratum was also classified as occurring in patches further south-west and south-east of 

the wetland, which are likely where narrow tributary channels occur. The class SWV was classified 

as having high probabilities toward the middle sections abutting/surrounding the Prionium serratum 

and Psoralea pinnata (east and west edges), and also occurred towards the nearest edge (toe) of the 

wetland approaching the open dam water. Additionally, SWV was found abutting the outer 

Temporary Wetland Fynbos edges as the soils dry out in the transition from palmiet wetland to upland 

Temporary Wetland Fynbos vegetation. At a local scale within the wetland, the SWV group may be 

regarded as the transitional area from pure (peat) wetland conditions to the dryer, sandier Fynbos 

conditions. These areas have a mixture of damp or sometimes dry, and sandy to sandy loam soil 

conditions which are very different than in the pure palmiet wetland areas where Prionium serratum 

and Psoralea pinnata are found (deeper, wetter, peat accumulated soils). Temporary Wetland Fynbos 

vegetation were classified as having high probabilities towards the outer edges of the wetland 

boundary with distinct soil conditions (dryer, coarser, and sandier soils) than in the ‘pure’ palmiet 

wetland and sclerophyllous areas. In terms of colour representation on the map (Figure 4.2)  where 

pixels are bright red there are high probabilities of Prionium serratum; bright greens are high 

probabilities of Psoralea pinnata; blues are high probabilities of SWV; and the medium sand colour 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

87 

represents high probabilities of Fynbos vegetation. Where there is mixed colouration, or very dark 

hues (sometimes black) of these colours, the ecotone pixel is presented as a mixed pixel.
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Figure 4.2 Class Probability value map (RGB) for the four distinct vegetation types in the Du Toits River Wetland i.e. 

Prionium serratum (red), Psoralea pinnata (green), SWV (blue) and Temporary Wetland Fynbos (medium sand) with 

transects outlined by black solid lines 
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When analysed closely, it is apparent in the probability map (Figure 4.2) that there are ‘mixels’ (mixed 

pixels) present which appear in hues that vary between the designated class colours. In remote sensing 

literature, mixed pixels are generally used in the context of being a problem of using coarser 

resolution data, and therefore being less sensitive to spatial complexity or heterogeneity (Rocchini 

2007). However, in this study, mixed pixels are suggested to be a mixture of classes with varying 

probability values of at least two vegetation types (or more), leading to an ecotone pixel where there 

is a transition from one vegetation type to another over the space of a pixel width (10 m). This is 

concurrent with observations in the field. For example, if one checks the pixel values in the multi-

layered raster with four band layers where each layer represents the probability of one of the four 

vegetation types being present, a pixel may have a 55% probability value for the red band (i.e. 

Prionium serratum) and a 44% probability value for the green band (i.e. Psoralea pinnata). This 

could mean that the specified pixel represents an ecotone that has high probabilities of both palmiet 

species present, with transitions occurring sharply and abruptly from Prionium serratum to Psoralea 

pinnata within the 10 m of Sentinel-2 pixel. Traditionally, in a binary classifier this would be regarded 

as an unresolved pixel, or that the spectral resolution is too coarse to provide a binary output of either 

vegetation types classified, thus the classifier might be struggling to distinguish between the two. 

Literature also notes that generally if the there is a decrease in spatial resolution, spectral 

heterogeneity is affected as these mixed pixels with varying probabilities threaten the capability of 

matching field heterogeneity with spectral heterogeneity (Rocchini 2007). However, this research 

suggests that the probabilistic approach supports what was seen in field, which is that species can co-

occur within the frame of coarse spatial resolution data and can also change rapidly within the same 

geographical space as a rapid turnover, over a very fine spatial scale i.e. an ecotone pixel. Another 

example that demonstrates this argument is a pixel that included probability values for all four 

classified bands i.e., SWV (Blue) = 4%, Psoralea pinnata (Green) = 43%, Prionium serratum (Red) 

= 50% and Temporary Wetland Fynbos (Medium sand) = 2%. This example indicates high 

probabilities of palmiet wetland conditions, indicating rapid turnover between these two distinct 

palmiet wetland vegetation types. The probability classified map also indicates that the ecotones are 

two-dimensional, covering the extent of a pixel (10 m), defined by medium grain size (Strayer et al. 

2003), and occurring as spatially disjunct patches between the four classified vegetation types. 

Ecotones in this alluvial fan, fynbos embedded wetland are patchy, narrow, generally sharp and abrupt 

which leads to nonlinear behaviour, emphasizing that these transitions are ecotones in the strict sense 

(di Castri, Hansen & Naiman 1988). 
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 Accuracy Assessment 

Standard accuracy measurements of the classification output were conducted in R (using the caret 

package) in order to verify the classified map with what was observed in field. Table 4.1 below 

provides a confusion matrix of the classified map which shows that the classifier had an 82.7% overall 

accuracy and a kappa of 0.77, which is a very good accuracy (Monserud & Leemans 1992). High 

producer’s and consumer’s accuracy (94-98%) together with low errors of omission and commission 

for Prionium serratum and Psoralea pinnata (2-5.8%), show that these two palmiet wetland 

vegetation classes are well separated in the probability classification. However there is some spectral 

confusion between the sclerophyllous wetland and Fynbos classes with around 50% of fynbos 

reference data being misclassified as sclerophyllous wetland. This might be due to species such as 

Pteridium aquilinum and Restio paniculatus having similar structural composition and growth forms 

as upland fynbos vegetation (Sieben 2014), resulting in the spectral reflectance and backscatter of 

these communities to a satellite being similar. 

 
Table 4.1 Confusion matrix with accuracy metrics for the four vegetation classes, Class Probability classifier using 

Sentinel-2 MSI: MultiSpectral Instrument, Level-2A summer 2020/2021 imagery (Figure 4.2) 

 

 

  Classified data 

  

Prionium 
serratum 

Psoralea 
pinnata SWV 

Temporary 
Wetland Fynbos 

Row 
Totals EO % PA % 

R
e
fe

re
n

c
e
 d

a
ta

 Prionium serratum 98 2 4 0 104 5.8 94.2 

Psoralea pinnata 2 98 0 2 102 3.9 96.1 

SWV 0 0 44 7 51 13.7 86.3 

Temporary Wetland 
Fynbos 0 0 52 91 143 36.4 63.6 

 Column Totals 100 100 100 100 400 (TP)     

 EC % 2 2 56 9    

 CA % 98 98 44 91    

 Overall Accuracy %: 82.75       

  Kappa: 0.77        
 

EO= Errors of omission; PA= Producer’s accuracy; EC= Errors of commission; CA= Consumer’s accuracy; TP=Total pixels 

 

 Probabilistic Ecotone Mapping 

 

If one looks at the corresponding probability fuzzy graphs (Figure 4.3, see APPENDIX G for the code 

developed to generate the graphs), one can see how the lines of probability for the different vegetation 

type ‘switch’ dominance over the length of the transect for each of the transects identified. 
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Transect 1 (Figure 4.3 a) which was placed in the far south-eastern corner of the wetland to focus on 

the sclerophyllous vegetation and Temporary Wetland Fynbos dominated areas, showed high 

probability values for fynbos vegetation as expected. At the western-most point of the transect, the 

graph shows little to no values probability values for P. serratum and P. pinnata, which then abruptly 

transitions into a few hundred meters of high probabilities of palmiet wetland occurrence at 

approximately 500-800 m of the transect. One must thus consider that this may be an area with hidden 

channels and tributaries resulting in spatial shifts, different elevations, water levels and peat soils 

present (Kark 2005). Field observations support this argument as it was evident that there were some 

narrow, hidden channels within the wetland. While walking in Fynbos dominated areas, one would 

easily step from dry Temporary Wetland Fynbos mini-slopes into sudden deep inundated channels 

filled with tall grasses and restios. Occasionally, single patches of randomly dispersed Prionium 

serratum was present. This reinforces and validates what the graphs present which is that species 

turnover occurs rapidly, and within a few metres’ dominant vegetation zones transition/change 

rapidly and abruptly, speaking to spatial heterogeneity.  

 

In the same geographical space i.e. Transect 2 (Figure 4.3 b), the transitions between Sclerophyllous 

Wetland Vegetation and Temporary Wetland Fynbos are much more complex and convoluted with 

varying probability values highlighting that these two types of vegetation transition far into the other. 

This may be due to these vegetation types having similar structural properties (Sieben, Mtshali & 

Janks 2014). Similar to Transect 1, the fuzzy graph for Transect 2 also shows a moderate coverage of 

Prionium serratum from the western side of the transect mixed with high, and then lower probabilities 

of sclerophyllous wetland, and higher occurrence of Fynbos vegetation again in the east. This suggests 

the idea that there may be hidden channels and tributaries which support wetland vegetation, which 

have changed the drier, coarser soils of the Fynbos to the wetter sandy, to sandy loam soils of the 

sclerophyllous vegetation. This indicates ecosystem processes of sediment shifting that will lead to a 

change in vegetation types.  
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Figure 4.3 Probabilistic graphs (right) and associated map transects (left) of probability values for Prionium serratum 

(red), Psoralea pinnata (green), SWV (blue) and Temporary Wetland Fynbos (medium sand). For the graphs, class 

colours coincide with colours of the probability map in Figure 4.2. Values are binned at 50 m intervals over the 1600 m 

transect length. Ecotone pixels or ‘mixed pixels’ are displayed as varying saturated pixels within transects 

d) 

e) 

f) 
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Transect 3 (Figure 4.3 c) and Transect 4 (Figure 4.3 d) were placed in areas covering all four 

vegetation types but dominated by large patches of SWV (noted from field observations). In Transect 

3, the graph supports this observation with high probability values for SWV and Temporary Wetland 

Fynbos in the western point of the transect. Additionally, transitions in this transect show different 

patterns along the transect length where there is a slow transition from high Prionium serratum values 

into low values for SWV, with a sudden abrupt and sharp transition into Psoralea pinnata, gradually 

then moving back into high probabilities of SWV. The graph displays an almost rippling effect where 

there is an intricate range of sharp changes between Prionium serratum, SWV and Temporary 

Wetland Fynbos between 0-300 m of the transect length. There are moderate occurrences of 

Temporary Wetland Fynbos around 20-400 m, and no occurrence approaching the eastern most point. 

Transect 4 on the other hand shows very low probability values for Temporary Wetland Fynbos with 

a sudden increased occurrence at approximately 1500 m of the transect. There are higher occurrences 

of palmiet wetland vegetation within this transect, transitioning abruptly into SWV for another couple 

of hundred meters where it then transitions abruptly back into high Fynbos areas with patches of 

Psoralea pinnata in between. This might be due to ‘sediment islands’ occurring between meandering 

alluvial channels.  

 

The classified map and associated fuzzy graphs suggest that the transitions between and within 

wetland vegetation i.e. Prionium serratum and Psoralea pinnata, are abrupt with high probability 

values for either of the two vegetation types. This is most prominent in the main wetland channel 

(northern area of the wetland in (Figure 4.2) where ecotone pixels occur over a number of pixels (the 

mixed green and red pixels in Transect 5 and Transect 6). Transect 5 (Figure 4.3 e) shows an abrupt 

line of transition from high probabilities of Prionium serratum to higher probabilities of Psoralea 

pinnata across the length of the transect. At approximately 1500 m this changes rapidly from high 

Psoralea pinnata occurrence into abrupt high occurrence of Prionium serratum. Where another 

vegetation type such as the sclerophyllous class intersects (at approximately 100-200 m), a sudden 

island of sclerophyllous conditions is present followed by very high probabilities of Psoralea pinnata. 

This may be an indication that wetland species such as P. serratum and P. pinnata are clustering 

wetland vegetation types that often cause monodomination in a system (Gallant 2015) and spatially 

compete with smaller, finer wetland vegetation species. Soils in the palmiet wetland areas are 

distinctly different with a layer of damp, accumulated peat generally forming due to decaying animal 

and plant matter (Job 2014) which may account for the low probability value of Temporary Wetland 

Fynbos vegetation within this transect (Fynbos in general may likely not survive in these permanently 

wet and peat conditions). Transect 6 (Figure 4.3 f), occurring in the same geographical space as 

Transect 5 where palmiet wetland vegetation is dominant, show similar ecotonal conditions for the 
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wetland group. Here the graph shows relatively high probabilities for both palmiet wetland vegetation 

types interchanging across the transect with low occurrences of sclerophyllous wetland vegetation. 

These interchanging inferences may be related to the main channel being deepest in Transect 5, 

possibly resulting in higher erosion control, sediment trapping and increased accumulation of peat 

than in adjacent areas. 

 

Wetlands, like any other ecosystems have ecological boundaries (internal and external) that distinctly 

separate vegetation patches which in some cases can be clearly delineated, while for others it can be 

difficult to distinguish where one patch ends and the other begins (Holland, Whigham & Gopal 1990). 

This is partly true for the Du Toits River wetland where internal ecotones are quite complex but can 

be delineated, as the mixed pixels have shown. Prionium serratum and Psoralea pinnata have quite 

distinct spectral properties that distinguish them from other vegetation and thus making a clear 

distinction between Palmiet Wetland Vegetation, Sclerophyllous Wetland Vegetation and Temporary 

Wetland Fynbos communities. Holland, Whigham and Gopal (1990) refer to these types of transitions 

as wetland-wetland ecotones where there could be surficial or diffuse flow transfers across vegetation 

zones with each zone dominated by a specific species. This study therefore suggests that ecotonal 

areas in the wetland may have distinct hydrological and sedimentary properties due to their varying 

probabilities of comprising at least two vegetation types, which may be different to the conditions in 

areas with low species diversity and is dominated by one vegetation community. This in turn may 

affect the ecosystem services that this palmiet wetland system provides such as water flow regulation 

(i.e. storage and flood attenuation), climate regulation (i.e. carbon storage, energy exchange), and 

water quality regulation (i.e. retention/removal of excess nutrients or pollutants, and biogeochemical 

transformations) (Rebelo et al. 2019). For instance, flood attenuation and sediment trapping (and peat 

accumulation) properties may be entirely different in the palmiet wetland vegetated areas due to the 

extensive root systems of Prionium serratum, than in the sclerophyllous and fynbos areas where 

smaller and finer plants belonging to these communities may not be able to efficiently attenuate flows 

or trap sediment. 

As hydrology is considered the primary driving force in wetlands, hydrologic conditions and changes 

affect the biotic and abiotic characteristics in a wetland such as salinity, nutrient availability, and soil 

anaerobiosis as well as the vegetation type found (Holland, Whigham & Gopal 1990; Tiner 1999). 

Wetland conditions in this palmiet dominated alluvial fan wetland may be affected by a number of 

factors including the velocity of flow in the channel and smaller streams, the direction of flow, and 

the zones of vegetation and their associated ecotones through which it flows. In the case of a high 

flooding period, water may move across the ecotones between palmiet wetland and sclerophyllous 

wetland or temporary wetland fynbos potentially causing changes in the regulating ecosystem 
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services such as water flow regulation, erosion control or sediment trapping as it would be affected 

by the properties these wetland ecotones encompass. To understand these distinct properties, 

appropriate in situ water flow and quality, sedimentary, and nutrient measurements or observations 

must be done to corroborate this presumption. Wetland ecotones may also act as important buffering 

capacities in a landscape by regulating and reducing water flows through the wetland by slowing 

down overland runoff, soaking and storing rainwater to replenish the groundwater table, help bind 

soil together and reduce soil erosion, and helping with intercepting and trapping sediment and silt 

from land runoff thus filtering and purifying water flowing through the wetland (Richards 2001). 

 CONCLUSION 

It has been established by this research that probabilistic per-pixel approaches to mapping complex 

wetland ecotones can advance the understanding of the structure and functioning of wetlands. 

Transect graphs highlight the efficacy of probability maps and per-pixel approaches to map and 

understand fine-scale ecotones in a heterogenous landscape where there are abrupt changes in 

dominance of vegetation. Mapping ecotones, with associated fuzzy (probability) graphs, as fuzzy 

mixed pixels provide opportunity for recognizing sharp, abrupt, and narrow ecotones at sub-pixel 

scale, where single lines and vector maps may disregard rapid species turnovers. Distinct, spatially 

disjunct, ecotones are represented by the saturated pixels in the probability map and where graphs 

show high probabilities of one vegetation type intersecting and changing rapidly into another. The 

probability maps and graphs effectively highlight the complexity of the transitions from one dominant 

vegetation type to another. In this study, palmiet wetland vegetation, namely Prionium serratum and 

Psoralea pinnata, although embedded within a fynbos system, have proven to be a dominating 

vegetation within the wetland, that often completely take over a wetland system leading to 

monodomination. This monodomination may increase regulating ecosystem services through 

sediment trapping, carbon storage and flood attenuation.   

 

The methodology used in this paper to map ecotones in wetlands facilitate the understanding of the 

interaction between vegetation, hydrology, and soil. The flow of materials across the ecotones may 

be affected by these three components. This relates back to the definition of an ecotone by Holland 

(1988) who emphasizes that ecotones are characterized by space and time scales and by the strength 

of the interactions between adjacent ecological systems- adjacent systems being the two wetland 

vegetation subtypes and fynbos conditions. This probability, per-pixel approach may be useful in 

wetland conservation and management plans where time and funds are limited for the comprehensive 

field mapping of different wetland vegetation types and their ecotones, all of which are necessary to 

understand wetland functioning, spatial layout and how these factors affect prioritisation and 
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management strategies of wetlands. The method of this research can provide additional metadata in 

wetland inventories offering valuable information relating to wetland formation, processes, and 

ecosystem services. Moreover, results provided insight into spatial heterogeneity and landscape 

mosaics where wetlands in the Cape Floristic Region are typically diverse and dynamic in species 

composition. Ultimately, the method demonstrated that variations in ecotones are due to varying 

density and diversity in palmiet wetland, sclerophyllous wetland, and fynbos vegetation communities 

occurring at different gradients and hydrogeomorphic units in the wetland. 
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CHAPTER 5:  DISCUSSION AND CONCLUSION 

This chapter presents a summary and critical review of all the findings of this study, especially 

pertaining to the experiments performed in Chapter 3 and Chapter 4. The aims and objectives are 

revisited and discussed in the context of the real-world problem being addressed and how this study 

contributes to existing knowledge of wetland ecotones and mapping. Limitations of the study and 

future research recommendations are provided, and conclusions are drawn.  

 REFLECTION OF RESEARCH AIMS AND OBJECTIVES 

The overall aim of this study was to identify and use Remote Sensing (RS) approaches to efficiently 

map and characterize ecotones in an alluvial fan Fynbos embedded wetland. In order to achieve the 

overall aim of the study, five objectives were set. The first objective was to review literature to 

develop a definition of wetland ecotones and in this, identify literature that provide suggestions on 

potential remote sensing methods to map wetland ecotones. In essence, this first objective made up 

Chapter 2 of the study, namely the literature review. A bibliometric search and analysis conducted 

through Scopus, highlighted that limited research has been conducted on mapping wetland ecotones 

with most literature focusing on the aspect of change or transition (i.e. ecotones) between various 

types of biomes. The review however provided useful and comprehensive literature -local and global- 

that covered wetland mapping, whether it be mapping wetland extent and delineation, or the mapping 

of wetland vegetation. Therefore, a detailed account of wetland classification, vegetation and soils in 

South Africa, and the mapping thereof was reviewed and discussed in Chapter 2. The bibliometric 

search also aimed to identify literature that use probability mapping techniques to map ecotones, and 

to see whether these methods can be useful for all ecosystem types, including wetlands (aquatic-

terrestrial systems) which resulted in a limited number of studies being identified (Fedrigo et al. 2018; 

Humphreys et al. 2017; de Klerk, Burgess & Visser 2018; Hans Ole Ørka et al. 2012; Vitali et al. 

2019). The overall literature review provides a discussion of the principles of remote sensing and the 

various theories and methods behind image classification and per-pixel mapping approaches 

commonly used to detect and map ecotones or transitions in a landscape.  

The second objective of the study, which was to report on the ecology, geomorphology, and to provide 

an overview of study area, ultimately formed a part of Chapter 3 where the study area was defined. 

This objective was necessary to get a deeper understanding of what type of wetland the Du Toits 

River wetland is, and to report on (based on literature) the vegetation, soil and hydrology of the 

wetland which ultimately guided the landcover classification conducted later in the chapter. Similarly, 

as part of the methods of Chapter 3, the third objective was to develop a sampling scheme and collect 

field data to identify indicators of palmiet wetland vegetation, sclerophyllous wetland vegetation and 
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temporary wetland fynbos species. Again, this contributed to deeper understanding and verification 

information to supplement the landcover classification results produced later in the chapter. The 

fourth objective was to apply a Machine Learning (ML) approach to map vegetation cover in the 

wetland by means of supervised classification methods. The classifiers identified and attempted were 

Maximum Likelihood (as a robust technique, even though it is not a ML algorithm) and Random 

Forest, where the Random Forest generated in R provided robust results with high classification 

accuracies and effectively mapped distinct vegetation in the wetland. The Maximum Likelihood 

classification was not used in the final version of the research as it only provided a basis and feel for 

what the outcome of results potentially would be. These results highlighted the importance of the 

distinction between Prionium serratum and Psoralea pinnata vegetation classes within the palmiet 

wetland vegetation type. It is not often recognised that palmiet wetlands may consist of two distinct, 

closely co-occurring, and dominant vegetation types. Palmiet wetlands in South Africa are usually 

recognized by the presence of the renowned palmiet vegetation i.e. Prionium serratum, where this 

research has shown that Psoralea pinnata may also play an important role in peatland wetlands. 

The fifth and final objective of this study was to test a per-pixel approach using a soft, probabilistic 

(fuzzy) classification to identify, map, and characterize wetland ecotones in the Du Toits River 

wetland. This was the main method adopted for Chapter 4. This objective was guided by the findings 

of Chapter 3 where the classification and in situ data offered comprehensive details on vegetation 

cover and what ecotones may be presented as in the wetland. The mapping of levels of saturation in 

colour representing the degree of probability of each of the four main vegetation types, together with 

the probability graphs for these vegetation types over six transects, demonstrated the ability to map 

and explain ecotones within the palmiet wetland, as well as between the palmiet wetland, 

sclerophyllous wetland vegetation and fynbos. The novelty in this study- specifically objective 5- is 

that although existing remote sensing techniques were used, this study showcased the efficacy of both 

binary and non-binary classification methods use in image classification of a heterogenous landscape. 

That is, that both these approaches were able to distinctly identify and map ecotones and patches in a 

wetland embedded within a Fynbos system, ultimately highlighting the efficacy of using RS to map 

and monitor heterogenous landscapes.  

 FINDINGS OF EFFICIENT RS TECHNIQUES TO MAP WETLAND ECOTONES 

The two main experiments that were conducted for this study are comprised of Chapter 3 and Chapter 

4. This section highlights the key findings for each chapter and an evaluation thereof. Chapter 3 titled 

“Remote Sensing of Spatial Heterogenous Landscapes- Landcover Classification of a Fynbos 

embedded wetland” showed that multispectral supervised classification methods namely Random 

Forest provided robust results and presented great promise in spectrally discriminating distinct 
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vegetation within the Du Toits River wetland. Landsat 8 (30 m resolution) data and Sentinel-2 MSI: 

MultiSpectral Instrument, Level-2A (10 m resolution) was initially used. Four distinct vegetation 

groups were classified with high accuracies i.e., Prionium serratum, Psoralea pinnata, wetland ferns, 

grasses and restios (i.e., Pteridium aquilinum, Restio paniculatus and Merxmuellera cincta-grouped 

as Sclerophyllous Wetland Vegetation), and Temporary Wetland Fynbos along with three additional 

landcover classes namely Bare soil/sandstone, Degraded vegetation, and Water. This classification 

ultimately served as the first step in identifying internal wetland ecotones in a heterogeneous 

ecosystem (for chapter 4). Additional spectral indices such as the Modified Normalized Difference 

Water Index (MNDWI) and Normalized Difference Vegetation Index (NDVI) were included to 

corroborate the classification results and to set the context of the hydrology and vegetation 

composition in the wetland. Spectral signature graphs were additionally used to analyze and 

understand the spectral reflectance of classes at various wavelengths (bands) of the electromagnetic 

spectrum. This close analysis and continuous observation of imagery and how different vegetation 

types appear on imagery also provided the researcher with an accustomed eye for identifying palmiet 

wetland vegetation in a landscape. The methods of this chapter may also add valuable knowledge 

contribution for the teams who are involved in mapping and updating the National Wetland Inventory 

of South Africa (as highlighted in Chapter 2).  

 

Chapter 4 titled “Remote Sensing of Wetland Ecotones” highlighted that a probabilistic classification 

(per-pixel) approach was able to map complex wetland ecotones between palmiet wetland vegetation, 

sclerophyllous wetland vegetation, and temporary wetland fynbos. Ecotones identified were generally 

sharp, narrow, and abrupt, and were represented as 'mixed pixels'. Traditionally, binary classifiers can 

only support or deal with binary outputs and see mixed pixels (or ‘mixels’) as an unresolved pixel. 

However, this probabilistic approach supported what was observed in field, which was that species 

turnover or 'change' can occur rapidly and be mapped within the medium resolution (10 m) of 

Sentinel-2 MSI: MultiSpectral Instrument, Level 2-A imagery. Therefore, mixels were not used in a 

traditional Remote Sensing meaning, but rather that mixels were areas of rapid species turnover. 

Ultimately, wetland ecotones were identified as patchy, narrow, abrupt, and spatially 

disjunct. Additionally, these ecotones were highlighted as useful in wetland mapping such as national 

or regional wetland inventories by providing valuable additional insight or metadata in relation to 

understanding wetland formation, processes, and ecosystem services. The methods and software’s 

used throughout this study were mainly free, open-source such Google Earth Engine, R, Quantum 

GIS (QGIS), and ArcMap (which is not open-source) and can easily be adopted or replicated. This 

reiterates the efficacy of using Remote Sensing as time, cost, and labour efficient means of mapping 

and monitoring heterogenous wetlands.  
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 LIMITATIONS AND FUTURE RESEARCH RECOMMENDATIONS 

One of the main limitations experienced in this research was the conditions or terrain of the study 

area where sampling was a challenge in deeply vegetated areas at the head of the wetland. The clusters 

of dense Prionium serratum and Psoralea pinnata stands were difficult to get through and not always 

safe as one could not see the depth of inundation. Therefore the first recommendation for future 

research would be to acquire a drone and use this to take photographs in the non-accessible areas as 

a means of quadrat sampling. Another limitation to sampling and ground-truthing in the western areas 

of the wetland was restricted by means of a locked gate at the head of the wetland. The gate limits 

access to the public by CapeNature, and in future the area manager of the Hottentots-Holland Reserve 

could be contacted or asked for assistance with accessing that area of the wetland. As highlighted in 

the results of both Chapter 3 and Chapter 4, Sentinel-2 imagery with a 10 m spectral resolution was 

able to map rapid species turnover with 10 m pixels as the study area was relatively small so the 

imagery suited the purpose. However, higher resolution imagery with even finer spatial resolution 

than 10 m may be considered for larger wetland areas. Chapter 4 has highlighted that wetland 

ecotones may be sites where unique wetland processes and ecosystem services may occur. Hence, 

although the main purpose of this study was to identify and map wetland ecotones, the results of this 

study can be used in further research to identify where these ecotones or mixed pixels are located, 

and ultimately can be sampled to physically understand what is happening in the field in these areas. 

Accuracy assessments in Chapter 3 and 4 analyzed accuracy metrics such as errors of commission 

and omission, overall accuracy, producer, and consumer’s accuracy, and kappa. In future, the 

approaches of Pontius & Millones (2011) who suggest the use of quantity disagreement and allocation 

disagreement may be considered instead. 

 CONCLUSION 

Remote Sensing has over the years proven to be a valuable means of monitoring the Earth in all its 

chaos and glory. This study added a valuable piece of information in the knowledge generation and 

community of Remote Sensing, as well as the wetland community. Emphasis was placed on 

identifying efficient methods for mapping landcover in a heterogenous wetland, and its associated 

ecotones. From the experiments explored in this thesis, a real-world problem, namely, to efficiently 

map wetland ecotones which is an understudied research niche was addressed.  

 

Random Forest performed well using medium resolution data such as Landsat-8 and Sentinel-2, 

consistently displaying the spread of palmiet wetland vegetation distinctly across both datasets. 

Ecotones within the wetland are complex and essentially speak to spatial heterogeneity and its effect 

on landscape processes. Identifying and mapping ecotones is the first step to understanding ecological 
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boundaries and patch metrics. Moreover, wetlands-and their associated ecotones-which are seen as 

moving entities in a landscape due to their varying hydroperiod conditions were efficiently mapped 

and overall, this wetland appears to be an interesting area to study natural communities in landscape 

ecology. Looking back on the three guiding principles when defining wetland ecotones, especially in 

the context of this thesis as noted in Chapter 2 namely, 

1. At which point is there a change from terrestrial or upland fynbos habitat to wetland habitat? 

2. Which factors will determine this change: is it hydrology, soil, vegetation or all three 

combined?  

3. Based on its definition, is a wetland therefore itself simply the ecotone between land and 

water? Or can ecotones exist within a wetland and how? 

It can be concluded that this study highlighted that ecotones or the point of change occurred where 

there was a rapid turnover from one vegetation type to another within the four wetland vegetation 

types identified and classified. The study also suggests that the wetland itself could be a complex 

ecotone or zone of transition between two fynbos mountain slopes, and with spatially disjunct internal 

(i.e. among community) ecotones within the wetland. Ultimately, results provided a good basis for 

further research on understanding wetland ecotones properties and the mapping thereof. 

 

 

 

37 041 words  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

103 

REFERENCES 

Ahmad A & Quegan S 2012. Analysis of maximum likelihood classification on multispectral data. 

Applied Mathematical Sciences. 

Arshad M, Eid EM & Hasan M 2020. Mangrove health along the hyper-arid southern Red Sea coast 

of Saudi Arabia. Environmental Monitoring and Assessment. 

Bakker WH, Janssen LLF, Reeves C V, Gorte BGH, Pohl C, Weir MJC, Horn JA, Prakash A & 

Woldai T 2001. Principles of Remote Remote Sensing - An introductory text book. 

Bargiel D & Herrmann S 2011. Multi-temporal land-cover classification of agricultural areas in two 

European regions with high resolution spotlight TerraSAR-X data. Remote Sensing 3, 5: 859–

877. 

Beck I, Ludwig R, Bernier M, Lévesque E & Boike J 2015. Assessing Permafrost Degradation and 

Land Cover Changes (1986-2009) using Remote Sensing Data over Umiujaq, Sub-Arctic 

Québec. Permafrost and Periglacial Processes. 

Bernstein R 1976. DIGITAL IMAGE PROCESSING OF EARTH OBSERVATION SENSOR 

DATA. IBM Journal of Research and Development. 

Bharti RR, Adhikari BS & Rawat GS 2012. Assessing vegetation changes in timberline ecotone of 

Nanda Devi National Park, Uttarakhand. International Journal of Applied Earth Observation 

and Geoinformation. 

Brand RF, Rostal MK, Kemp A, Anyamba A, Zwiegers H, Van Huyssteen CW, Karesh WB & 

Paweska JT 2018. A phytosociological analysis and description of wetland vegetation and 

ecological factors associated with locations of high mortality for the 2010-11 Rift Valley fever 

outbreak in South Africa. PLoS ONE 13, 2: 1–26. [online]. Available from: 

http://dx.doi.org/10.1371/journal.pone.0191585 

Breiman L 2001. Random forests. Machine Learning. 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

104 

Brownstein G, Döbert T, Dobbie L, Hashim N & Bastow Wilson J 2013. Functional traits shed new 

light on the nature of ecotones: A study across a bog-to-forest sequence. Community Ecology. 

Buchanan GM, Nelson A, Mayaux P, Hartley A & Donald PF 2009. Delivering a global, terrestrial, 

biodiversity observation system through remote sensing. Conservation Biology 23, 2: 499–502. 

Cadenasso ML, Pickett STA, Weathers KC, Bell SS, Benning TL, Carreiro MM & DAWSON TE 

2003. An Interdisciplinary and Synthetic Approach to Ecological Boundaries. BioScience 53, 

8: 717. 

Cadenasso ML, Pickett STA, Weathers KC & Jones CG 2003. A Framework for a Theory of 

Ecological Boundaries. BioScience 53, 8: 750. 

Campbell A & Wang Y 2019. High spatial resolution remote sensing for salt marsh mapping and 

change analysis at fire Island national seashore. Remote Sensing. 

Cantonati M, Stevens LE, Segadelli S, Springer AE, Goldscheider N, Celico F, Filippini M, Ogata 

K & Gargini A 2020. Ecohydrogeology: The interdisciplinary convergence needed to improve 

the study and stewardship of springs and other groundwater-dependent habitats, biota, and 

ecosystems. Ecological Indicators 110. 

CapeNature 2017. Hottentots-Holland Nature Reserve Complex: Protected Area Managemnt Plan 

2017-2021. 

di Castri F, Hansen AJ & Naiman RJ 1988. A new look at Ecotones: Emerging International 

Projects on Landscape Boundaries. Biology International , 17: 167. 

Chang CH, Lee H, Kim D, Hwang E, Hossain F, Chishtie F, Jayasinghe S & Basnayake S 2020. 

Hindcast and forecast of daily inundation extents using satellite SAR and altimetry data with 

rotated empirical orthogonal function analysis: Case study in Tonle Sap Lake Floodplain. 

Remote Sensing of Environment. 

Chang Y, Bu R cang, Hu Y man, Xu C gang & Wang Q li 2003. Detecting forest landscape 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

105 

boundary between Mountain Birch and evergreen coniferous forest in the northern slope of 

Changbai Mountain. Journal of Environmental Sciences. 

Chen L, Michishita R & Xu B 2014. Abrupt spatiotemporal land and water changes and their 

potential drivers in Poyang Lake, 2000-2012. ISPRS Journal of Photogrammetry and Remote 

Sensing 98: 85–93. [online]. Available from: http://dx.doi.org/10.1016/j.isprsjprs.2014.09.014 

Chen Y, Wang Q, Wang Y, Duan SB, Xu M & Li ZL 2016. A spectral signature shape-based 

algorithm for landsat image classification. ISPRS International Journal of Geo-Information. 

Choesin D & Boerner REJ 2002. Vegetation boundary detection: A comparison of two approaches 

applied to field data. Plant Ecology. 

Clements FE 1905. Clements 1905.pdf. 

Cronk JK & Fennessy MS 2001. Wetland Plants: Biology and Ecology. Lewis Publishers. 

Department of Water Affairs and Forestry 2005. A practical field procedure for identification and 

delineation of wetlands and riparian areas. [online]. Available from: 

http://biodiversityadvisor.sanbi.org/wp-content/uploads/2016/07/DWS-wetland-delineation-

manual.pdf 

Van Deventer H, Nel J, Maherry A & Mbona N 2016. Using the landform tool to calculate 

landforms for hydrogeomorphic wetland classification at a country-wide scale. South African 

Geographical Journal 98, 1: 138–153. 

Van Deventer H, Smith-Adao L, Collins NB, Grenfell M, Grundling A, Grundling P-L, Impson D, 

Job N, Lötter M, Ollis D, Petersen C, Scherman P, Sieben E, Snaddon, K., Tererai F&, Col V 

der & Ff D 2019. National Biodiversity Assessment 2018 Volume 2b: Inland Aquatic 

(Freshwater) Realm. 

Van Deventer H, Smith-Adao L, Mbona N, Petersen C, Skowno A, Collins NB, Grenfell M, Job N, 

Lötter M, Ollis D, Scherman P, Sieben E & Snaddon K 2018. South African National 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

106 

Biodiversity Assessment 2018 Volume 2a: South African Inventory Inland Aquatic 

Ecosystems (SAIIAE). : 1–190. [online]. Available from: 

http://bgis.sanbi.org/Projects/Detail/221 

van Deventer H, van Niekerk L, Adams J, Dinala MK, Gangat R, Lamberth SJ, Lötter M, Mbona N, 

Mackay F, Nel JL, Ramjukadh CL, Skowno A & Weerts SP 2020. National wetland map 5: An 

improved spatial extent and representation of inland aquatic and estuarine ecosystems in South 

Africa. Water SA 46, 1: 66–79. 

Deventer H Van, Smith-Adao L, Petersen C, Mbona N, Skowno A & Nel JL 2018. Review of 

available data for a south african inventory of inland aquatic ecosystems (Saiiae). Water SA 44, 

2: 184–199. 

Devi RN & Jinji GW 2015. Change Detection Techniques - A Survey. International Journal on 

Computational Science & Applications 5, 2: 45–57. 

Driver A, Sink J, Nel J, Holness S, Van Niekerk L, Daniels F, Jonas Z, Majiedt PA, Harris L & 

Maze K 2012. National biodiversity sssessment 2011: an assessment of South Africa’s 

biodiversity and ecosystems. 

Edvardsson J, Baužienė I, Lamentowicz M, Šimanauskienė R, Tamkevičiūtė M, Taminskas J, 

Linkevičienė R, Skuratovič Ž, Corona C & Stoffel M 2019. A multi-proxy reconstruction of 

moisture dynamics in a peatland ecosystem: A case study from Čepkeliai, Lithuania. 

Ecological Indicators. 

Elliott M & Whitfield AK 2011. Challenging paradigms in estuarine ecology and management. 

Estuarine, Coastal and Shelf Science 94, 4: 306–314. 

Erdos L, Bátori Z, Tölgyesi CS & Körmöczi L 2014. The moving split window (MSW) analysis in 

vegetation science - An overview. Applied Ecology and Environmental Research. 

Erdôs L, Zalatnai M, Morschhauser T, Bátori Z & Körmöczi L 2011. On the terms related to spatial 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

107 

ecological gradients and boundaries. Acta Biologica Szegediensis. 

European Space Agency 2015. SENTINEL-2 User Handbook. Sentinel-2 User Handbook. 

Fang X, Zhu Q, Ren L, Chen H, Wang K & Peng C 2018. Large-scale detection of vegetation 

dynamics and their potential drivers using MODIS images and BFAST: A case study in 

Quebec, Canada. Remote Sensing of Environment 206, March 2016: 391–402. [online]. 

Available from: https://doi.org/10.1016/j.rse.2017.11.017 

Fedrigo M, Newnham GJ, Coops NC, Culvenor DS, Bolton DK & Nitschke CR 2018. Predicting 

temperate forest stand types using only structural profiles from discrete return airborne lidar. 

ISPRS Journal of Photogrammetry and Remote Sensing. 

Finlayson CM & van der Valk AG 1995. Wetland classification and inventory: A summary. 

Vegetatio. 

Fischer T, Kotze D, Marais D, Haasbroek B & Govender M 2019. ECONOMIC VALUATION OF 

SELECTED WETLANDS IN THE BREEDE CATCHMENT Final Report. 

Fitoka E, Tompoulidou M, Hatziiordanou L, Apostolakis A, Höfer R, Weise K & Ververis C 2020. 

Water-related ecosystems’ mapping and assessment based on remote sensing techniques and 

geospatial analysis: The SWOS national service case of the Greek Ramsar sites and their 

catchments. Remote Sensing of Environment. 

Foody GM, Campbell NA, Trodd NM & Wood TF 1992. Derivation and applications of 

probabilistic measures of class membership from the maximum-likelihood classification. 

Photogrammetric Engineering & Remote Sensing. 

Fox JT, Vandewalle ME & Alexander KA 2017. Land cover change in Northern Botswana: The 

influence of climate, fire, and elephants on Semi-Arid Savanna Woodlands. Land. 

Fu B, Wang Y, Campbell A, Li Y, Zhang B, Yin S, Xing Z & Jin X 2017. Comparison of object-

based and pixel-based Random Forest algorithm for wetland vegetation mapping using high 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

108 

spatial resolution GF-1 and SAR data. Ecological Indicators. 

Galgamuwa GAP, Wang J & Barden CJ 2020. Expansion of eastern redcedar (Juniperus virginiana 

L.) into the deciduous woodlands within the forest-prairie ecotone of Kansas. Forests. 

Gallant AL 2015. The challenges of remote monitoring of wetlands. Remote Sensing 7, 8: 10938–

10950. 

Gilmore MS, Wilson EH, Barrett N, Civco DL, Prisloe S, Hurd JD & Chadwick C 2008. Integrating 

multi-temporal spectral and structural information to map wetland vegetation in a lower 

Connecticut River tidal marsh. Remote Sensing of Environment 112, 11: 4048–4060. 

Google Developers 2021. Google Earth Engine [online]. Available from: 

https://earthengine.google.com/ 

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D & Moore R 2017. Google Earth 

Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202: 

18–27. [online]. Available from: https://doi.org/10.1016/j.rse.2017.06.031 

Grenfell S, Grenfell M, Ellery W, Job N & Walters D 2019. A Genetic Geomorphic Classification 

System for Southern African Palustrine Wetlands: Global Implications for the Management of 

Wetlands in Drylands. Frontiers in Environmental Science 7, November. 

Guo M, Li J, Sheng C, Xu J & Wu L 2017. A review of wetland remote sensing. Sensors 

(Switzerland) 17, 4: 1–36. 

Hakdaoui S, Emran A, Pradhan B, Lee CW & Fils SCN 2019. A collaborative change detection 

approach on multi-sensor spatial imagery for desertwetland monitoring after a flash flood in 

Southern Morocco. Remote Sensing. 

Hamandawana H, Atyosi Y & Bornman TG 2020. Multi-temporal reconstruction of long-term 

changes in land cover in and around the Swartkops River Estuary, Eastern Cape, South Africa. 

Environmental Monitoring and Assessment. 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

109 

Hanberry BB 2020. Defining the Historical Northeastern Forested Boundary of the Great Plains 

Grasslands in the United States. Professional Geographer. 

Helme N & Rebelo T 2016. Ecosystem Guidelines, Renosterveld Ecosystems: Incorporating Coast 

and Inland Renosterveld. [online]. Available from: www.inkdesign.co.za 

Hennenberg KJ, Goetze D, Kouamé L, Orthmann B & Porembski S 2005. Border and ecotone 

detection by vegetation composition along forest-savanna transects in Ivory Coast. Journal of 

Vegetation Science. 

Holland MM 1988. SCOPE/MAB technical consultations on landscape boundaries: a report of a 

SCOPE/MAB workshop on ecotones. Biology International , Special issue 17: 47–106. 

Holland MM, Whigham DF & Gopal B 1990. The Characteristics of Wetland Ecotones. The 

ecology and management of aquatic-terrestrial ecotones: 171–198. 

Hou W & Walz U 2014. Extraction of small biotopes and ecotones from multi-temporal RapidEye 

data and a high-resolution normalized digital surface model. International Journal of Remote 

Sensing 35, 20: 7245–7262. [online]. Available from: 

http://dx.doi.org/10.1080/01431161.2014.967890 

Hufkens K, Scheunders P & Ceulemans R 2009. Ecotones in vegetation ecology: Methodologies 

and definitions revisited. Ecological Research 24, 5: 977–986. 

Humphreys JM, Elsner JB, Jagger TH & Mahjoor AS 2017. Disaggregating the Patchwork:: 

Probabilistic models as tools to predict wetland presence as a continuous gradient. Wetlands. 

Jenkins RB & Frazier PS 2010. High-resolution remote sensing of upland swamp boundaries and 

vegetation for baseline mapping and monitoring. Wetlands. 

Jensen JR 2005. Introductory Digital Image Processing: A Remote Sensing Perspective, Fourth 

Edition. 

Jiao L, Sun W, Yang G, Ren G & Liu Y 2019. A hierarchical classification framework of satellite 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

110 

multispectral/hyperspectral images for mapping coastal wetlands. Remote Sensing. 

Job N (Rhode. U 2014. Geomorphic origin and dynamics of deep, peat-filled, valley bottom 

wetlands dominated by palmiet (Prionium serratum) – a case study based on the Goukou 

Wetland, Western Cape. Masters thesis (Rhodes University). 

Job N, Mbona N, Dayaram A & Kotze D 2018. Guidelines for mapping wetlands in South 

Africa.SANBI Biodiversity Series 28 

Johnston CA & Bonde J 1989. Quantitative analysis of ecotones using a Geographic Information 

System. Photogrammetric Engineering & Remote Sensing. 

Kamel M 2003. Ecotone Classification According to its Origin. Pakistan Journal of Biological 

Sciences 6, 17: 1553–1563. 

Kark S 2005. Ecotones and Ecological Gradients. In Meyers RA (ed) Systems, Ecological, 272–273. 

Kark S 2007. Effects of Ecotones on Biodiversity. Encyclopedia of Biodiversity , September: 1–10. 

Kark S & van Rensburg BJ 2006. Ecotones: Marginal or central areas of transition? Israel Journal 

of Ecology and Evolution 52, 1: 29–53. 

de Klerk HM, Burgess ND & Visser V 2018. Probabilistic description of vegetation ecotones using 

remote sensing. Ecological Informatics 46, February: 125–132. [online]. Available from: 

https://doi.org/10.1016/j.ecoinf.2018.06.001 

de Klerk HM, Gilbertson J, Lück-Vogel M, Kemp J & Munch Z 2016. Using remote sensing in 

support of environmental management: A framework for selecting products, algorithms and 

methods. Journal of Environmental Management. 

de Klerk HM & Buchanan G 2016. Remote sensing training in African conservation. Remote 

Sensing in Ecology and Conservation 3, 1: 7–20. 

Kriegler FJ, Malila WA, Nalepka RF & Richardson W 1969. Preprocessing transformations and 

their effects on multispectral recognition. Proceedings of the 6th international symposium on 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

111 

remote sensing of environment. 

Kumar M & Singh RK 2013. Digital Image Processing of Remotely Sensed Satellite Images for 

Information Extraction. In Conference on Advances in Communication and Control Systems 

(CAC2S 2013). 

Lefebvre G, Davranche A, Willm L, Campagna J, Redmond L, Merle C, Guelmami A & Poulin B 

2019. Introducing WIW for detecting the presence of water in wetlands with landsat and 

sentinel satellites. Remote Sensing. 

Livingston BE 1903. THE DISTRIBUTION OF THE UPLAND PLANT. International Journal of 

Plant Sciences 35, 1: 36–55. 

Longley PA, Goodchild MF, Maguire DJ & Rhind DW 2015. Geographic information science & 

systems. Fourth edi. Hoboken, NJ: Wiley. 

Lu D & Weng Q 2007. A survey of image classification methods and techniques for improving 

classification performance. International Journal of Remote Sensing. 

Lück-Vogel M, Mbolambi C, Rautenbach K, Adams J & van Niekerk L 2016. Vegetation mapping 

in the St Lucia estuary using very high-resolution multispectral imagery and LiDAR. South 

African Journal of Botany 107: 188–199. [online]. Available from: 

http://dx.doi.org/10.1016/j.sajb.2016.04.010 

van der Maarel E 1976. On the establishment of plant community boundaries. Berichte der 

Deutschen Botanischen Gesellschaft. 

MacGregor-Fors I 2010. How to measure the urban-wildland ecotone: Redefining ‘peri-urban’ 

areas. Ecological Research. 

Mahdianpari M, Salehi B, Mohammadimanesh F, Brisco B, Homayouni S, Gill E, DeLancey ER & 

Bourgeau-Chavez L 2020. Big Data for a Big Country: The First Generation of Canadian 

Wetland Inventory Map at a Spatial Resolution of 10-m Using Sentinel-1 and Sentinel-2 Data 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

112 

on the Google Earth Engine Cloud Computing Platform. Canadian Journal of Remote Sensing. 

Masina M, Lambertini A, Daprà I, Mandanici E & Lamberti A 2020. Remote sensing analysis of 

surface temperature from heterogeneous data in a maize field and related water stress. Remote 

Sensing. 

Mašková Z, Zemek F & Květ J 2008. Normalized difference vegetation index (NDVI) in the 

management of mountain meadows. Boreal Environment Research 13, 5: 417–432. 

Matsushita B, Yang W, Chen J, Onda Y & Qiu G 2007. Sensitivity of the Enhanced Vegetation 

Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A 

Case Study in High-density Cypress Forest. Sensors 7, 11: 2636–2651. [online]. Available 

from: http://www.mdpi.com/1424-8220/7/11/2636 

Melgani F 2000. An explicit fuzzy supervised classification method for multispectral remote 

sensing images. IEEE Transactions on Geoscience and Remote Sensing. 

Mellor A, Haywood A, Stone C & Jones S 2013. The performance of random forests in an 

operational setting for large area sclerophyll forest classification. Remote Sensing. 

Midgley GF, Hannah L, Millar D, Thuiller W & Booth A 2003. Developing regional and species-

level assessments of climate change impacts on biodiversity in the Cape Floristic Region. 

Biological Conservation 112, 1–2: 87–97. [online]. Available from: 

www.elsevier.com/locate/biocon [Accessed 22 May 2021]. 

Mitsch WJ & Gosselink JG 2000. Wetlands. Third edit. New York, USA: Van Nostrand Rienhold. 

Monserud RA & Leemans R 1992. Comparing global vegetation maps with the Kappa statistic. 

Ecological Modelling. 

Moradkhani H, Baird RG & Wherry SA 2010. Assessment of climate change impact on floodplain 

and hydrologic ecotones. Journal of Hydrology. 

Mucina L & Rutherford MC 2006. The vegetation of South Africa, Lesotho and Swaziland. Pretoria: 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

113 

Strelitzia. 

Musungu K & Jacobs D 2015. A participatory web map service: the case of Theewaterskloof Dam. 

South African Journal of Geomatics 4, 3: 198. [online]. Available from: 

http://www.ajol.info/index.php/sajg/article/view/120879 

Myburgh G & van Niekerk A 2014. Impact of Training Set Size on Object-Based Land Cover 

Classification. International Journal of Applied Geospatial Research 5, 3: 49–67. [online]. 

Available from: http://services.igi-

global.com/resolvedoi/resolve.aspx?doi=10.4018/ijagr.2014070104 

Nel J, Driver A, Strydom WF, Maherry A, Petersen C, Hill L, Roux DJ, Nienaber S, van Deventer 

H, Swartz E & Smith-Adao LB 2011. Atlas of freshwater ecosystem priority areas in South 

Africa. 

Neware R & Khan A 2018. Survey on Classification Techniques Used in Remote Sensing for 

Satellite Images. Proceedings of the 2nd International Conference on Electronics, 

Communication and Aerospace Technology, ICECA 2018. 

Nhamo L, Magidi J & Dickens C 2017. Determining wetland spatial extent and seasonal variations 

of the inundated area using multispectral remote sensing. Water SA 43, 4: 543–552. 

Odum EP & Barrett GW 1971. Fundamentals of Ecology. Volume 3. Thomson, Brooks/Cole. 

Ollis D, Snaddon K, Job N & Mbona N 2013. Classification System for Wetlands and Other 

Aquaticc Ecosystems In South Africa. User Maunual: Inland Systems. 

Olmanson LG, Page BP, Finlay JC, Brezonik PL, Bauer ME, Griffin CG & Hozalski RM 2020. 

Regional measurements and spatial/temporal analysis of CDOM in 10,000+ optically variable 

Minnesota lakes using Landsat 8 imagery. Science of the Total Environment. 

Olokeogun OS & Kumar M 2020. An indicator based approach for assessing the vulnerability of 

riparian ecosystem under the influence of urbanization in the Indian Himalayan city, 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

114 

Dehradun. Ecological Indicators. 

Ørka H.O., Wulder MA, Gobakken T & Næsset E 2012. Subalpine zone delineation using LiDAR 

and Landsat imagery. Remote Sensing of Environment 119: 11–20. 

Ørka Hans Ole, Wulder MA, Gobakken T & Næsset E 2012. Subalpine zone delineation using 

LiDAR and Landsat imagery. Remote Sensing of Environment. 

Ozesmi SL & Bauer ME 2002. Satellite remote sensing of wetlands. Wetlands Ecology and 

Management 10, 5: 381–402. 

Palmer E & Pitman N 1973. Trees of Southern Africa. Taxon. 

Pande-Chhetri R, Abd-Elrahman A, Liu T, Morton J & Wilhelm VL 2017. Object-based 

classification of wetland vegetation using very high-resolution unmanned air system imagery. 

European Journal of Remote Sensing 50, 1: 564–576. [online]. Available from: 

https://doi.org/10.1080/22797254.2017.1373602 

Pena-Regueiro J, Sebastiá-Frasquet MT, Estornell J & Aguilar-Maldonado JA 2020. Sentinel-2 

application to the surface characterization of small water bodies in Wetlands. Water 

(Switzerland). 

Perumal K & Bhaskaran R 2010. SUPERVISED CLASSIFICATION PERFORMANCE OF 

MULTISPECTRAL IMAGES. 2 

Pettorelli N 2013. The Normalized Difference Vegetation Index. Oxford University Press. [online]. 

Available from: 

https://oxford.universitypressscholarship.com/view/10.1093/acprof:osobl/9780199693160.001.

0001/acprof-9780199693160 

Pettorelli N, Nagendra H, Rocchini D, Rowcliffe M, Williams R, Ahumada J, De Angelo C, 

Atzberger C, Boyd D, Buchanan G, Chauvenet A, Disney M, Duncan C, Fatoyinbo T, 

Fernandez N, Haklay M, He K, Horning N, Kelly N, de Klerk H, Liu X, Merchant N, Paruelo 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

115 

J, Roy H, Roy S, Ryan S, Sollmann R, Swenson J & Wegmann M 2017. Remote Sensing in 

Ecology and Conservation: three years on. Remote Sensing in Ecology and Conservation 3, 2: 

53–56. 

Pettorelli N, Nagendra H, Williams R, Rocchini D & Fleishman E 2015. A new platform to support 

research at the interface of remote sensing, ecology and conservation. Remote Sensing in 

Ecology and Conservation 1, 1: 1–3. 

Pettorelli N, Ryan S, Mueller T, Bunnefeld N, Jedrzejewska B, Lima M & Kausrud K 2011. The 

Normalized Difference Vegetation Index (NDVI): Unforeseen successes in animal ecology. 

Climate Research 46, 1: 15–27. 

Pickett STA & Cadenasso ML 1995. Landscape Ecology: Spatial Heterogeneity in Ecological 

Systems. Science 269, 5222: 331–334. [online]. Available from: 

https://www.sciencemag.org/lookup/doi/10.1126/science.269.5222.331 

Pilant A, Endres K, Rosenbaum D & Gundersen G 2020. US EPA EnviroAtlas Meter-Scale Urban 

Land Cover (MULC): 1-m Pixel Land Cover Class Definitions and Guidance. Remote Sensing 

12, 12: 1909. [online]. Available from: https://www.mdpi.com/2072-4292/12/12/1909 

Pontius RG & Millones M 2011. Death to Kappa: Birth of quantity disagreement and allocation 

disagreement for accuracy assessment. International Journal of Remote Sensing. 

Poona NK, van Niekerk A, Nadel RL & Ismail R 2016. Random Forest (RF) Wrappers for 

Waveband Selection and Classification of Hyperspectral Data. Applied Spectroscopy 70, 2: 

322–333. [online]. Available from: 

http://journals.sagepub.com/doi/10.1177/0003702815620545 

Ramsar Convention on Wetlands 2018. Global Wetland Outlook: State of the World’s Wetlands 

and their Services to People. Ramsar Convention on Wetlands. (2018).: 88. [online]. Available 

from: 

https://static1.squarespace.com/static/5b256c78e17ba335ea89fe1f/t/5b9ffd2e0e2e7277f629eb8

Stellenbosch University https://scholar.sun.ac.za



 

 

 

116 

f/1537211739585/RAMSAR+GWO_ENGLISH_WEB.pdf 

Ranson KJ, Montesano PM & Nelson R 2011. Object-based mapping of the circumpolar taiga-

tundra ecotone with MODIS tree cover. Remote Sensing of Environment 115, 12: 3670–3680. 

Rapinel S, Fabre E, Dufour S, Arvor D, Mony C & Hubert-Moy L 2019. Mapping potential, 

existing and efficient wetlands using free remote sensing data. Journal of Environmental 

Management. 

Rebelo AG, Boucher C, Helme N, Mucina L & Rutherford MC 2006. Biomes and bioregions of 

southern Africa: The vegetation of South Africa, Lesotho and Swaziland. In Strelitzia, 53–219. 

Rebelo AJ, Emsens WJ, Meire P & Esler KJ 2018. The impact of anthropogenically induced 

degradation on the vegetation and biochemistry of South African palmiet wetlands. Wetlands 

Ecology and Management. 

Rebelo AJ, Le Maitre DC, Esler KJ & Cowling RM 2015. Hydrological responses of a valley-

bottom wetland to land-use/land-cover change in a South African catchment: Making a case 

for wetland restoration. Restoration Ecology 23, 6: 829–841. 

Rebelo AJ, Morris C, Meire P & Esler KJ 2019. Ecosystem services provided by South African 

palmiet wetlands: A case for investment in strategic water source areas. Ecological Indicators 

101: 71–80. [online]. Available from: 

https://linkinghub.elsevier.com/retrieve/pii/S1470160X18309762 

Rebelo AJ, Scheunders P, Esler KJ & Meire P 2017. Detecting, mapping and classifying wetland 

fragments at a landscape scale. Remote Sensing Applications: Society and Environment. 

Rebelo AJ, Somers B, Esler KJ & Meire P 2018. Plant functional trait data and reflectance spectra 

for 22 palmiet wetland species. Data in Brief. 

Rebelo LM, Finlayson CM & Nagabhatla N 2009. Remote sensing and GIS for wetland inventory, 

mapping and change analysis. Journal of Environmental Management. 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

117 

Reed P. 1988. National list of plant species that occur in wetlands: National Summary. 

Republic of South Africa 1998. National Water Act. 

Richards LT 2001. A guide to wetland identification, delineation and wetland functions. , January. 

[online]. Available from: https://ujdigispace.uj.ac.za/handle/10210/1999 

Rocchini D 2007. Effects of spatial and spectral resolution in estimating ecosystem α-diversity by 

satellite imagery. Remote Sensing of Environment 111, 4: 423–434. [online]. Available from: 

https://linkinghub.elsevier.com/retrieve/pii/S0034425707001526 

Rouse, J.W. J, Haas RH, Schell JA & Deering DW 1974. Monitoring Vegetation Systems in the 

Great Plains with Erts, NASA Special Publication. Proceedings of the Third Earth Resources 

Technology Satellite- 1 Symposium: 309–317. 

Rupasinghe PA & Chow-Fraser P 2019. Identification of most spectrally distinguishable 

phenological stage of invasive Phramites australis in Lake Erie wetlands (Canada) for accurate 

mapping using multispectral satellite imagery. Wetlands Ecology and Management. 

San-José J, Montes R, Mazorra MA & Matute N 2010. Heterogeneity of the inland water-land palm 

ecotones (morichals) in the Orinoco lowlands, South America. Plant Ecology. 

Schultz CB, Franco AMA & Crone EE 2012. Response of butterflies to structural and resource 

boundaries. Journal of Animal Ecology. 

Senft AR 2009. Species Diversity Patterns At Ecotones. Ecological Research: 1–55. 

Shih FY & Chen GP 1994. Classification of landsat remote sensing images by a fuzzy unsupervised 

clustering algorithm. Information Sciences - Applications 1, 2: 97–116. 

Sieben EJJ, Kotze DC, Job NM & Muasya AM 2017. The sclerophyllous wetlands on quartzite 

substrates in South Africa: Floristic description, classification and explanatory environmental 

factors. South African Journal of Botany. 

Sieben EJJ, Mtshali H & Janks M 2014. National Wetland Vegetation Database: Classification and 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

118 

Analysis of the Wetland Vegetation Types for Conservation Planning and Monitoring. 

Sieben EJJ 2012. Plant functional composition and ecosystem properties: the case of peatlands in 

South Africa. Plant Ecology 213, 5: 809–820. [online]. Available from: 

http://link.springer.com/10.1007/s11258-012-0043-3 

Snaddon K, Dietrich J, Forsythe K & Turpie J 2018. Prioritisation of wetlands for water security in 

priority dam catchments in the Western Cape Water Supply System. , October: 74. 

Soil Classification Working Group 1991. Soil classification: A Taxonomic System for South Africa. 

Strayer DL, Power ME, Fagan WF, Pickett STA & Belnap J 2003. A Classification of Ecological 

Boundaries. BioScience 53, 8: 723. 

Sun J, Yang J, Zhang C, Yun W & Qu J 2013. Automatic remotely sensed image classification in a 

grid environment based on the maximum likelihood method. Mathematical and Computer 

Modelling. 

Tiner R 2016. Wetland Indicators: A Guide to Wetland Formation, Identification, Delineation, 

Classification, and Mapping, Second Edition. Second Edi. Boca Raton: CRC Press Taylor & 

Francis Group. 

Tiner R 1999. Wetland indicators: a guide to wetland indentification, delineation, classification, 

and mapping. Fistr edit. Taylor & Francis. 

U.S. Geological Survey 2016. Landsat 8 Data Users Handbook. Nasa 8, June: 97. [online]. 

Available from: https://landsat.usgs.gov/documents/Landsat8DataUsersHandbook.pdf 

USGS 2017. Land Remote Sensing Image Collections 

Valderrama-Landeros L, Blanco y Correa M, Flores-Verdugo F, Álvarez-Sánchez LF & Flores-de-

Santiago F 2020. Spatiotemporal shoreline dynamics of Marismas Nacionales, Pacific coast of 

Mexico, based on a remote sensing and GIS mapping approach. Environmental Monitoring 

and Assessment 192, 2: 123. [online]. Available from: 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

119 

http://link.springer.com/10.1007/s10661-020-8094-8 

Vieira C, Hespanhol H, Garcia C, Sim-Sim M & Sérgio C 2016. Fluvial niche reconnaissance of 

noteworthy bryophytes in Portugal. Cryptogamie, Bryologie. 

Vitali A, Garbarino M, Camarero JJ, Malandra F, Toromani E, Spalevic V, Čurović M & Urbinati C 

2019. Pine recolonization dynamics in Mediterranean human-disturbed treeline ecotones. 

Forest Ecology and Management. 

Walker S, Wilson JB, Steel JB, Rapson GL, Smith B, King WMG & Cottam YH 2003. Properties 

of ecotones: Evidence from five ecotones objectively determined from a coastal vegetation 

gradient. Journal of Vegetation Science 14, 4: 579–590. 

Walter M & Mondal P 2019. A rapidly assessedwetland stress index (RAWSI) using Landsat 8 and 

Sentinel-1 radar data. Remote Sensing. 

Walz U 2002. Remote sensing and digital image processing. In Development and perspectives of 

landscape ecology, 

Wang K, Franklin SE, Guo X & Cattet M 2010. Remote sensing of ecology, biodiversity and 

conservation: A review from the perspective of remote sensing specialists. Sensors 10, 11: 

9647–9667. 

Wegman B, Leutner S, Dech M & Wegmann 2016. Remote sensing and GIS for ecologists : using 

open source software. Wegman M Leutner B Dech S & Wegmann M (eds). Exeter, England: 

Pelagic Publishing. 

Wegmann M 2016. Remote Sensing Training in Ecology and Conservation – challenges and 

potential. Remote Sensing in Ecology and Conservation 3, 1: 5–6. 

Whittaker RH 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological 

Monographs 30: 279–338. 

Wicht CL 1945. Report of the Committee on the Preservation of the Vegetation of the South 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

120 

Western Cape. Special Publication of the Royal Society of South Africa. 

Van Wilgen BW 1984. Fire climates in the southern and western Cape Province and their potential 

use in fire control and management. South African Journal of Science. 

Williams PH 1996. Mapping variations in the strength and breadth of biogeographic transition 

zones using species turnover. Proceedings of the Royal Society B: Biological Sciences 263, 

1370: 579–588. 

Williams PH, De Klerk HM & Crowe TM 1999. Interpreting biogeographical boundaries among 

Afrotropical birds: Spatial patterns in richness gradients and species replacement. Journal of 

Biogeography 26, 3: 459–474. 

Xie Y, Sha Z & Yu M 2008. Remote sensing imagery in vegetation mapping: a review. Journal of 

Plant Ecology 1, 1: 9–23. 

Xu H 2006. Modification of normalised difference water index (NDWI) to enhance open water 

features in remotely sensed imagery. International Journal of Remote Sensing 27, 14: 3025–

3033. 

Xu Y, Yu L, Zhao FR, Cai X, Zhao J, Lu H & Gong P 2018. Tracking annual cropland changes 

from 1984 to 2016 using time-series Landsat images with a change-detection and post-

classification approach: Experiments from three sites in Africa. Remote Sensing of 

Environment. 

Yang Y, Zhang S, Wang D, Yang J & Xing X 2015. Spatiotemporal changes of farming-pastoral 

ecotone in Northern China, 1954-2005: A case study in Zhenlai County, Jilin Province. 

Sustainability (Switzerland). 

Yeo S, Lafon V, Alard D, Curti C, Dehouck A & Benot ML 2020. Classification and mapping of 

saltmarsh vegetation combining multispectral images with field data. Estuarine, Coastal and 

Shelf Science. 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

121 

Zhang C 2014. Combining hyperspectral and lidar data for vegetation mapping in the Florida 

everglades. Photogrammetric Engineering and Remote Sensing. 

Zhang C, Smith M, Lv J & Fang C 2017. Applying time series Landsat data for vegetation change 

analysis in the Florida Everglades Water Conservation Area 2A during 1996–2016. 

International Journal of Applied Earth Observation and Geoinformation 57: 214–223. 

[online]. Available from: http://dx.doi.org/10.1016/j.jag.2017.01.007 

Zhang X, Fichot CG, Baracco C, Guo R, Neugebauer S, Bengtsson Z, Ganju N & Fagherazzi S 

2020. Determining the drivers of suspended sediment dynamics in tidal marsh-influenced 

estuaries using high-resolution ocean color remote sensing. Remote Sensing of Environment. 

Zhang Z 2016. Naïve bayes classification in R. Annals of Translational Medicine. 

Zhu Z 2017. Change detection using landsat time series: A review of frequencies, preprocessing, 

algorithms, and applications. ISPRS Journal of Photogrammetry and Remote Sensing 130: 

370–384. [online]. Available from: http://dx.doi.org/10.1016/j.isprsjprs.2017.06.013 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

122 

APPENDIX A 

Herbaceous vegetation of South African wetlands as described by Ollis et al. (2013): 

 

 
Geophytes: “non-woody plants, generally less than 2 m tall, that propagate by underground storage organs (i.e. bulbs, tubers, 

corms, rhizomes, or stolon’s)”. 

Grasses: “tuft-forming or creeping non-woody plants without brightly coloured flowering parts and with leaves that consist of three 

parts: leaf blade, leaf sheath and ligule (membrane or ring of hairs found between leaf blade and leaf sheath)”. 

Herbs/Forbs: “non-woody flowering plants, generally less than 2 m tall, which are not sedges, rushes, reeds, restios, palmiet or 

geophytes”. 

 

Sedges: “stiff, grass-like plants of the family Cyperaceae, sometimes referred to as ‘nutgrasses’. Sedges are distinguished from 

grasses in that they generally do not have a leaf sheath (their leaves are attached directly to the culm or stem), or when 

they do, it is closed around the culm, whereas grasses have an open leaf sheath. The culms of many (but not all) 

sedges are triangular in cross section, while the culms of grasses are always cylindrical”. 

Rushes: “stiff, non-woody plants of the genus Juncus, which grow in tufts of cylindrical unbranched stems with flowering parts 

branching off to the side of the stem near the apex. The so-called bulrush, Typha capensis, is usually considered to be 

a reed, not a rush”. 

Reeds: “tall (up to 3 m), unbranched plants with stiff (semi-woody) stems or long, relatively stiff leaves, which generally grow 

at the water’s edge with their roots submerged in water or saturated soil. Phragmites australis (common reed) is an 

example of a typical reed, with the stiff-leaved bulrush or cattail (Typha capensis) also considered to be a reed”. 

Restios “plants of the family Restionaceae, which have very small leaves consisting only of scale-like sheathes that envelope 

the culms or stems; the sheaths are often brown, and the culms or stems green. Restios grow predominantly in the 

southwestern Cape, where they constitute one of the three main elements of Fynbos vegetation (the other two elements 

being proteas and ericas)”. 

Palmiet “leafy Prionium serratum plants, commonly associated with rivers and valley-bottom wetlands. Palmiet tends to 

dominate systems, forming dense stands. It is a robust shrub with semi-woody stems. It produces a large root mass 

and deep rooting system able to grow through recently deposited sandy sediments and stabilise them”. 

 

                                                                                                                           Source Ollis et al. (2013, p.60) 
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APPENDIX B 

The National Wetland Vegetation Database describing plants belonging to the Sclerophyllous 

Wetland Vegetation cluster group as described by Sieben, Mtshali & Janks (2014, pp.32–38): 

 

Main Cluster 1: Sclerophyllous wetland vegetation communities (Sieben, Mtshali & Janks 2014) 

Veg type 
no.  Community: Description: Indicator species: Location: 

1 Calopsis 
paniculata 

“commonly associated with riverine wetlands at the foothills 
of the Western Cape. It can occur both in monocultures as 
well as mixed with other species. It occurs on relatively fine- 
grained substrates. It mostly occurs in the Western Cape, 
but it has been recorded in the Southern Cape as well, 
where it is often also replaced by another restio, Platycaulos 
callistachyos in communities such as Community 1.5 
Cliffortia graminea Community”. 

Calopsis paniculata Western 
Cape, Eastern 
Cape 

2 Cliffortia strobilifera “associated with riverine wetlands of the Western Cape. This 
is a woody shrub that can become quite tall and can in that 
case also achieve mono-dominance. It is often co-occurring 
with Palmiet and Calopsis paniculate”. 

Cliffortia strobilifera Western 
Cape, 
Limpopo 

3 Cliffortia ferruginea 
– Merxmuellera 
cincta 

“restricted mainly to the Southern Cape, although the 
species Cliffortia ferruginea in some cases has also been 
found in the Agulhas plain and even on the Cape flats. This 
species can become quite weedy and starts dominating 
quite quickly and it even occurs together with some pioneer 
species in mown places next to roads in the Eastern Cape. 
This community might represent actually various 
communities and it is worth sampling in more detail”. 

Cliffortia ferruginea, 
Merxmuellera cincta 

Southern 
Cape 

4 Isolepis costata 

“one of the most widespread species of this cluster and is 
also known from the grassland biome”. 

Isolepis costata, 
Thelypteris confluens 

Southern 
Cape 

5 Cliffortia graminea “very restricted in its distribution but is very common in the 
wetlands of the Tsitsikamma region, where most wetlands 
are under pressure from plantation forestry that is often 
growing right at the edges of the wetlands. The community is 
rich in species but dominated by the shrubby Cliffortia 
graminea which superficially resembles a grass”. 

Cliffortia graminea Southern 
Cape 

6 Carpha glomerata “dominated by the tall sedge Carpha glomerata, which 
sometimes nearly occurs as a monodominant species. It is 
particularly common in the Southern Cape. It grows in 
seasonally or permanently wet valley bottom wetlands”. 

Carpha glomerata Southern 
Cape 

7 Cliffortia odorata “conspicuous round- leaved shrub that tends to occur in 
monocultures as it easily overgrows all other plant species in 
the community. It is typically associated with rivers, but it 
does also occur in valley bottom wetlands connected to a 
drainage network”. 

Cliffortia odorata Southern 
Cape 

8 Wachendorfia 
thyrsiflora 

“most attractive of all Sclerophyllous Wetland Vegetation 
communities as it is dominated by the large yellow flowers of 
Wachendorfia thyrsiflora. It occurs in permanently wet valley 
bottom wetlands and is particularly common on the 
Humansdorp plains”. 

Wachendorfia thyrsiflora, 
Senecio rigidus, Ursinia 
species, Panicum 
subalbidum 

Southern 
Cape 

9 Isolepis prolifer “first of the typical fynbos pioneer communities, that occur on 
open patches in between the fynbos or areas where 
streamflow prevents the establishment of larger plants. This 
community is dominated by Isolepis prolifer, a proliferous 
annual sedge that tends to grow in water of up to 20 cm 
deep”. 

Isolepis prolifer Western Cape 

10 Juncus capensis “second pioneer community in the Sclerophyllous Wetland 
Vegetation but it tends to occur more on drier ground, in 
places that are only seasonally wet. It is dominated by 
Juncus capensis, a very variable species that tends to occur 
in quite species-rich communities”. 

Juncus capensis Western 
Cape, Eastern 
Cape 

11 Laurembergia 
repens “community dominated by the species Laurembergia repens, 

which however has two different subspecies, with 
subspecies brachypoda occurring in the winter rainfall region 
as a creeping forb and 
subspecies repens in the 
summer rainfall region, which is more erect as a bush. So, 
even though the two subspecies have been lumped in this 
case, for the sake of oversight, they are structurally quite 

Isolepis inyangensis, 
Laurembergia repens, 
Fuirena species, 
Hypericum lalandii, 
Plectostachys serpyllifolia 

W Cape, E 
Cape, 
Limpopo 
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distinct from each other. This community represents a 
pioneer community on wet and unstable substrates”. 

12 Juncus 
lomatophyllus 

“also more widespread outside of the Fynbos Biome. This is 
due to the fact that Juncus lomatophyllus, is more 
widespread and can be found on nutrient-poor substrates 
anywhere in the country. It is generally found as a pioneer 
community on unstable substrates and in the Fynbos, it 
grows in open patches in between the taller fynbos 
vegetation. It is particularly common in Limpopo Province”. 

Juncus lomatophyllus W Cape, E 
Cape, 
Limpopo 

13 Epischoenus 
gracilis 

“dominated by the slender tuft-forming sedge Epischoenus 
gracilis, which is regularly found in Sclerophyllous Wetland 
Vegetation, but only rarely becomes dominant. In between 
the tufts this community is still quite rich in species with 
many fynbos shrubs found in the community”. 

Epischoenus gracilis, 
Oxalis eckloniana 

Western Cape 

14 Elegia capensis “community is a typical fynbos community; in that it is 
dominated by Restios and is typically found along riverine 
wetlands in the lower mountain reaches in the Cape Fold 
Mountains. In most cases, the community is very species-
poor, and it can reach monodominance, which is in stark 
contrast with the surrounding more drier parts of the 
landscape. The Restio Elegia capensis is a tall species and 
forms a very distinct growth form with the surrounding 
vegetation with its typical ‘horsetail’ shape”. 

Elegia capensis Western Cape 

15 Elegia thyrsifera- 
Elegia neesii 

“represents a diverse group of fynbos plots that have few 
characteristics in common, most notably that they occur on 
sandy soils, are structurally very similar to the surrounding 
dryland vegetation and have a high species richness, with 
several species of Restios and Ericas. If more sampling 
takes place, it may well appear that this actually represents 
several communities”. 

Ehrharta rupestis spp. 
tricostata,             Tetria 
fimbriolata 

Western Cape 

16 Psoralea 
verrucosa 

“very diverse and probably heterogeneous, as it mainly consists of very variable plots that 
were part of a survey of springs in the Kamanassie Mountains but includes various other 
montane vegetation plots that have been done during the last few years. It is best to first 
sample more intensively in the Western Cape Mountains before any conclusions are drawn 
about these communities”. 

Kamanassie, 
Western Cape 
Mountains 

17 Elegia filacae “another wetland community that is structurally not 
distinguishable from the surrounding upland vegetation and 
represents ‘typical fynbos’, with a high proportion of dwarf 
shrubs, various species of Restios and several smaller forbs 
in between. It is best represented in the Cape of Good Hope 
Nature Reserve, but it can be found on various other places 
with deep sands and temporary to seasonal inundation as 
well, even in the lower parts of the Cape Fold Mountains. It 
is best recognizable by the abundance of the tussock-
forming Elegia filacea”. 

Elegia filacae, Elegia 
cuspidate, Cliffortia 
subsetacea,   
Restio distichus,   Diastella 
divaricate,  Bobartia indica,        
Tetraria fasciata,             
Erica laeta,                          
Erica bruniades,                   
Oxalis depressa  

Western Cape 
Southern 
Cape 

18 Berzelia 
lanuginosa 

“very characteristic fynbos wetland community and it is 
dominated by tall shrubs (up to 2 meters) of the family 
Bruniaceae which is one of the endemic families of the 
Western Cape. It is restricted to the southwestern coastline 
of the Western Cape which is the part of the province 
receiving the highest rainfall. The community occurs on 
sandy soils in temporarily to seasonally wet areas”. 

Berzelia lanuginose     
Erica coloron,              
Ficinia capitella,          
Tetraria cuspidata 

Western Cape 
coast  

19 Merxmuellera 
stricta 

“dominated by the grass Merxmuellera stricta and does not 
look very much like typical fynbos, although there are many 
species of Ericaceae and Restionaceae that can occur 
within the matrix of grass. It is typically a northern element 
within the Sclerophyllous Wetland Vegetation and is 
commonly found in the Cedarberg all the way up to 
Namaqualand”. 

Merxmuellera stricta Western Cape 

20 Pteridium 
aquilinum 

“even though it is dominated by a cosmopolitan species that 
is widespread within South Africa, is nonetheless typically a 
fynbos wetland, as elsewhere in the country, bracken fern 
(Pteridium aquilinum) does not venture into wetlands, but 
forms large carpets that are invading montane grassland, for 
example in the Drakensberg. The species has a wide 
tolerance, especially for nutrient-poor conditions, and it 
produces allelopaths, which are chemicals released in the 
soil that are toxic to other plants. It seems that only in 
specific circumstances this problematic plant can grow in 
wetlands, and it only invades the temporary zones on the 

Pteridium aquilinum Western 
Cape, 
Limpopo 
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edges. It is quite possible that it has been stimulated by the 
forestry industry in the Tsitsikamma region as this species is 
quite common under plantation forestry worldwide”. 

21 Osmitopsis 
asteriscoides – 
Restio 
purpurascens 

“one of the most attractive fynbos wetland plant communities 
but it has a very limited distribution in the wettest and most 
pronounced winter rainfall sections of the Western Cape. 
The community is rich in species, particularly Erica’s, 
Restio’s and Brunia’s, but the most conspicuous element is 
the large woody daisy Osmitopsis asteriscoides which has 
white flowers. It is typically found in seepage zones with a 
peaty substrate on the lower slopes of the sandstone 
mountains”. 

Osmitopsis asteriscoides, 
Erica fontana, Elegia 
fenestrata,       Berzelia 
abrotanoides, Cassytha 
ciliolata 

Western Cape 

22 Prionium serratum “another one of the typical sclerophyllous wetland types, 
dominated by the unique species palmiet (Prionium 
serratum). This species occupies the banks of mountain 
streams in the Western Cape but in certain circumstances in 
the foothills it chokes the river which starts to deposit its 
sediment which makes Palmiet thrive over a larger surface 
area. In this sense, Palmiet can be regarded as an 
ecosystem engineer (Sieben 2012) which is at the source of 
the creation of the wetland environment. It is together with 
Papyrus probably the only South African example of such a 
species. Palmiet is very common in rivers entering the 
foothills in the Southern Cape mountains and has created 
many wetlands there, which are however very fragile for 
erosion, and many have disappeared, most importantly the 
massive Duivenhoks River system. Palmiet represents a 
unique growth form, and it is very good in withstanding huge 
floods and plays an important role in flood attenuation and 
associated ecosystem services. This is mainly because of its 
extensive root system, very unusual for wetland plants, 
which can go up to three meters deep into a permanently 
inundated peatland. 
Palmiet is also found on the Msikaba group sandstones in 
Pondoland where it is often mixed with a larger group of 
species (in the Western Cape it can easily achieve 
monodominance) and often co-occurs with Scleria angusta - 
Abildgaardia hygrophila wetlands (3.33)”. 

Prionium serratum- palmiet Western 
Cape, 
Pondoland  

23 Pennisetum 
macrourum 

“one of the most common Fynbos wetland types, particularly in the western part of the 
Western Cape. Pennisetum macrourum, even though it is a grass and not a restio, 
represents a typical fynbos element in that it is stiff and sclerophyllous, and is one of the 
few species of Sclerophyllous Wetland Vegetation that is also found on sandstone 
substrates in the north of the country, often together with Cliffortia strobilifera. Pennisetum 
macrourum wetlands are poor in species and can often achieve monodominance”. 

W Cape, E 
Cape, 
Limpopo 

24 Cyperus thunbergii common variant to the previous community. Cyperus 
thunbergii regularly occurs mixed in with Pennisetum 
macrourum in wetlands but there are many occasions where 
it actually becomes dominant. The community is most 
common in valley bottom wetlands on sandy soils with a 
temporary to seasonal inundation.  

Cyperus thunbergii Western 
Cape, Eastern 
Cape 

25 Elegia intermedia “community stands out in the very rich fynbos as it forms a 
monoculture of a single species of restio, Elegia intermedia, 
which is a reasonably tall species. It has been sampled in a 
single area in the Hottentots-Holland Mountains and is 
probably not very widespread as the dominant species is not 
known to have a wide distribution range. The community 
grows on a very coarse peat layer”. 

Elegia intermedia, 
Campylopus stenopelma  

Hottentots 
Holland  

26 Anthochortus 
crinalis 

“community stands out by the abundance of the restio 
Anthochortus crinalis, which forms characteristic hummocks 
that give it the name ‘orgy grass’. In the hollows between 
these hummocks different species can grow, but in general, 
this community is quite poor in species. The existence of 
several other species of Anthochortus growing in the same 
type of habitats, suggests that there are also similar 
communities like this occurring elsewhere in the extreme 
Southwestern tip of South Africa. This habitat has been 
sampled only in a limited way because of the access to 
these areas and is presently known only from a single 
study”.  

Cliffortia tricuspidate, 
Ficinia argyropa, 
Anthochortus crinalis, 
Ehrharta setacea ssp. 
setacea,         
Ephischoenus villosus 

Hottentots 
Holland  
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27 Elegia mucronata  “community is typical for high altitude seepages in the Cape 
Fold Mountains but is so far restricted in its distribution 
range because of the limited sampling that was done in the 
high mountains of the Western Cape. However, the species 
Elegia mucronata, Erica intervallaris and Grubbia 
rosmarinifolia seem to be more widespread across the 
Western Cape, so it is very well possible that this community 
is more widespread. The community is structurally very 
diverse as the restio. Elegia mucronata forms a high stratum 
over an often short layer of small restios and dwarf shrubs”. 

Restio subtilis,     Elegia 
mucronate,       Chrysitrix 
junciformis ,        Erica 
intervallaris,                  
Tetraria capillacea 

Hottentots 
Holland  
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APPENDIX C 

Code developed for obtaining raw satellite imagery in Google Earth Engine: 

////Code developed by Daniëlle Seymour\\\\ 

 

Landsat 8 Surface Reflectance, Tier 1 raw imagery in Google Earth Engine: 

 

///Insert Landsat Image Collection and filter by area using an imported shapefile\\ 

var image = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR') 

.filterBounds(WetlandExtent2); 

 

///Function to cloud mask from the pixel qa band of Landsat 8 SR data. Bits 3 and 5 are cloud 

shadow and cloud, respectively.\\ 

function maskL8sr(image) { 

var cloudShadowBitMask = 1 << 3; 

var cloudsBitMask = 1 << 5; 

 

var qa = image.select('pixel_qa'); 

 

var mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0) 

 .and(qa.bitwiseAnd(cloudsBitMask).eq(0)); 

 

 return image.updateMask(mask).divide(10000) 

 .select("B[0-9]*") 

 .copyProperties(image, ["system:time_start"]); 

} 

///Filter imagery for Winter 2020 date ranges.\\\  

///Create joint filter and apply it to Image Collection.\\\ 

var Winter2020 = ee.Filter.date('2020-06-01','2020-08-30'); 

 

var WinterFilter = ee.Filter.or(Winter2020); 

 

var allsum = image.filter(WinterFilter); 

 

///Make a Composite: Apply the cloud mask function, use the median reducer, and clip the 

composite to our area of interest\\\ 

///create visualization parameters for composite\\\ 

var true_colour = { 

                  bands: ['B4', 'B3','B2'], 

                  min: 0, 

                  max: 0.3, 

                  gamma: [0.95, 1.1, 1]}; 

 

var composite = allsum 

              .map(maskL8sr) 

              .median() 

              .clip(WetlandExtent2); 

 

///Specify a projection\\\ 

var proj = ee.Projection('EPSG:32734'); 

print(proj); 
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///Display the Composite\\\ 

Map.addLayer(composite, true_colour,'Du Toits Wetland_Winter', 0); 

  

///Export the image, specifying scale and region.\\\ 

Export.image.toDrive({ 

image: composite, 

description: 'L8WinterComp_2020', 

folder: 'Raw/Imagery/Reprojected', 

scale: 30, 

region: WetlandExtent2, 

//crs: 'EPSG:32734', 

//fileFormat: 'GeoTIFF' 

 });  

 

///Filter imagery for Summer 2020_2021 date ranges\\\ 

///Create joint filter and apply it to Image Collection.\\\ 

var sum20_21 = ee.Filter.date('2020-12-01','2021-02-28'); 

var SumFilter = ee.Filter.or(sum20_21); 

var allsum = image.filter(SumFilter); 

 

///Make a Composite: Apply the cloud mask function, use the median reducer, and clip the 

composite to our area of interest\\\ 

///create visualization parameters for composite\\\ 

var true_colour = { 

                  bands: ['B4', 'B3','B2'], 

                  min: 0, 

                  max: 0.3, 

                  gamma: [0.95, 1.1, 1]}; 

 

var composite = allsum 

              .map(maskL8sr) 

              .median() 

              .clip(WetlandExtent2); 

 

///Specify a projection\\\ 

var proj = ee.Projection('EPSG:32734'); 

print(proj); 

 

///Display the Composite\\\ 

 Map.addLayer(composite, true_colour,'Du Toits Wetland_Summer', 0); 

  

///Export the image, specifying scale and region.\\ 

    Export.image.toDrive({ 

    image: composite, 

    description: 'L8SummerComp_2020_2021', 

    folder: 'Raw/Imagery/Reprojected', 

    scale: 30, 

    region: WetlandExtent2, 

  //crs: 'EPSG:32734', 

  //fileFormat: 'GeoTIFF' 

 }); 
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Sentinel-2 MultiSpectral Instrument: Level-2A raw imagery in Google Earth Engine: 

 

///Insert Sentinel 2-A Image Collection and filter by area using an imported shapefile\\\ 

    var image = ee.ImageCollection('COPERNICUS/S2_SR') 

    .filterBounds(WetlandExtent2); 

 

///Function to mask clouds S2\\\ 

   var mask = function(image) { 

   var QA60 = image.select(['QA60']); 

   var clouds = QA60.bitwiseAnd(1<<10).or(QA60.bitwiseAnd(1<<11)); // this gives us cloudy 

pixels 

  return image.updateMask(clouds.not()); // remove the clouds from image 

}; 

 

///Filter imagery for Summer 2020/21 date ranges \\\ 

///Create joint filter and apply it to Image Collection.\\\ 

   var Summer2020 = ee.Filter.date('2020-12-01','2021-02-28'); 

   var SummerFilter = ee.Filter.or(Summer2020); 

   var allsum = image.filter(SummerFilter); 

 

///Make a Composite: Apply the cloud mask function, use the median reducer, and clip the 

composite to area of interest\\\ 

///create visualization parameters for composite\\\ 

 var rgbVis = { 

                   bands: ['B4', 'B3','B2'], 

                  min: 0, 

                  max: 3000, 

                  gamma: [0.95, 1.1, 1]}; 

 

 var composite = allsum 

               .map(mask) 

               .median() 

              .clip(WetlandExtent2); 

 

///Specify a projection\\\ 

 var proj = ee.Projection('EPSG:32734'); 

 print(proj); 

 

///Display the Composite\\\ 

    Map.addLayer(composite, rgbVis,'Du Toits Wetland_Summer', 0); 

    Map.setCenter(19.162248, -33.974126, 13); 

 

///Export the image, specifying scale and region.\\\ 

   Export.image.toDrive({ 

   image: composite, 

   description: 'S2JanFebComp_2021', 

   folder: 'Raw/Imagery/Reprojected', 

   scale: 10, 

   region: WetlandExtent2 

   //fileFormat: 'GeoTIFF' 

 });  
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////Filter imagery for Winter 2020 date ranges\\\ 

///Create joint filter and apply it to Image Collection.\\\ 

     var Winter2020 = ee.Filter.date('2020-06-01','2020-08-30'); 

     var WinterFilter = ee.Filter.or(Winter2020); 

     var allsum = image.filter(WinterFilter); 

 

///Make a Composite: Apply the cloud mask function, use the median reducer, and clip the 

composite to our area of interest\\\ 

///create visualization parameters for composite\\\ 

     var true_colour = { 

                  bands: ['B4', 'B3','B2'], 

                  min: 0, 

                  max: 3000, 

                  gamma: [0.95, 1.1, 1]}; 

 

 var composite = allsum 

               .median() 

               .clip(WetlandExtent2); 

 

///Specify a projection\\\ 

  var proj = ee.Projection('EPSG:32734'); 

  print(proj); 

 

///Display the Composite\\\ 

   Map.addLayer(composite, true_colour,'Du Toits Wetland_Winter', 0); 

   Map.setCenter(19.162248, -33.974126, 13); 

 

///Export the image, specifying scale and region.\\\  

    Export.image.toDrive({ 

    image: composite, 

    description: 'S2WinterComp_2020', 

    folder: 'Raw/Imagery/Reprojected2', 

    scale: 10, 

    region: WetlandExtent2 

   //fileFormat: 'GeoTIFF' 

 }); 

 

//////////////////////////////////////////////////////////End of script\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

131 

APPENDIX D 

Code developed in R for computing the Normalized Difference Vegetation Index: 

###Code developed by Daniëlle Seymour#### 

 

Normalized Difference Vegetation Index in R: 

 

###Load packages#### 

library(rgdal) 

library(raster) 

library(rasterVis) 

library(caret) 

library(randomForest) 

library(e1071) 

 

Winter NDVI: 

 

rm(list=ls()) 

setwd("C:/Thesis_2021/Results_Mapwork/R/R_Random_Forest/RF_Winter/Imagery_Winter") 

 

#First import all files in a single folder as a list  

rastlist1 <- list.files(path = 

"C:/Thesis_2021/Results_Mapwork/R/R_Random_Forest/RF_Winter/Imagery_Winter", 

pattern='.tif', all.files=TRUE, full.names=FALSE) 

img<- 

brick("C:/Thesis_2021/Results_Mapwork/R/R_Random_Forest/RF_Winter/Imagery_Winter/S2Wi

nterCompRepro.tif") 

names(img) <- c('B1', 'B2', 'B3', 'B4', 'B5', 'B6','B7', 'B8','B8A','B9','B10','B11', 'B12','AOT','WVP', 

'SCL','TCI_R', 'TCI_G','TCI_B','MSK_CLDPRB','MSK SNWPRB', 'QA60', 'QA60 Bitmask') 

names(img) <- paste0("B", c(1:23)) 

 

###NDVI calculation### 

ndvi = ((img$B8-img$B4)/(img$B8+img$B4)) 

names(ndvi)= c('NDVI') 

img = addLayer(img, ndvi) 

plot(ndvi) 

setwd("C:/Thesis_2021/Results_Mapwork/R/NDVI_") 

writeRaster(ndvi, filename="Sentinel_NDVI_Winter.tif", format="GTiff", overwrite=TRUE) 

 

###########################End of script######################################## 

 

Summer NDVI:  

 

rm(list=ls()) 

setwd("C:/Thesis_2021/Results_Mapwork/R/R_Random_Forest/RF_Summer/Imagery_Summer") 

 

#First import all files in a single folder as a list ## 

rastlist1<list.files(path="C:/Thesis_2021/Results_Mapwork/R/R_Random_Forest/RF_Summer/Ima

gery_Summer", pattern='.tif', all.files=TRUE, full.names=FALSE) 

img<brick("C:/Thesis_2021/Results_Mapwork/R/R_Random_Forest/RF_Summer/Imagery_Summ

er/S2SummerCompRepro.tif") 
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names(img) <- c('B1', 'B2', 'B3', 'B4', 'B5', 'B6','B7', 'B8','B8A','B9','B10','B11', 'B12','AOT','WVP', 

'SCL','TCI_R', 'TCI_G','TCI_B','MSK_CLDPRB','MSK SNWPRB', 'QA60', 'QA60 Bitmask') 

names(img) <- paste0("B", c(1:23)) 

 

###Add NDVI to imagery### 

ndvi = ((img$B8-img$B4)/(img$B8+img$B4)) 

names(ndvi)= c('NDVI') 

img = addLayer(img, ndvi) 

plot(ndvi) 

setwd("C:/Thesis_2021/Results_Mapwork/R/NDVI_") 

writeRaster(ndvi, filename="Sentinel_NDVI_Summer.tif", format="GTiff", overwrite=TRUE) 

 

######################################End of script############################# 
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APPENDIX E 

Code developed in R for the Random Forest classifier: 

###Based on code developed by Blessing Khavu, provided by Blessing Khavu as part of postgrad 

research group peer learning### 

 

Winter RF: 

 

###Random Forest Classification- to spectrally discriminate various landcover/vegetation of Du 

Toits Wetland### 

###Spectral signature graph code developed by Daniëlle Seymour### 

###This script uses the 7 distinct vegetation classification scheme### 

###This is RF script for Winter 2020###Sentinel-2A, MSI Level-2A### 

###Raw imagery processed in GEE: composite spans '2020-06-01','2020-08-31'### 

 

###Load packages### 

library(rgdal) 

library(raster) 

library(rasterVis) 

library(caret) 

library(randomForest) 

library(e1071) 

 

############################Load Image, create list and brick raster################### 

###List band and then brick the raster: 

###Raster stack vs brick: how they store each band is different. The bands in a RasterStack are 

stored as links to raster data that is located somewhere on our computer.  

###A RasterBrick contains all of the objects stored within the actual R object. In most cases, we can 

work with a RasterBrick in the same way we might work with a RasterStack.  

###However a RasterBrick is often more efficient and faster to process - which is important when 

working with larger files. 

 

rm(list=ls()) 

setwd("C:/Thesis_2021/Results_Mapwork/R/R_Random_Forest/RF_Winter/Imagery_Winter") 

 

 

 

#First import all files in a single folder as a list  

rastlist1 <- list.files(path = 

"C:/Thesis_2021/Results_Mapwork/R/R_Random_Forest/RF_Winter/Imagery_Winter", 

pattern='.tif', all.files=TRUE, full.names=FALSE) 

img<- 

brick("C:/Thesis_2021/Results_Mapwork/R/R_Random_Forest/RF_Winter/Imagery_Winter/S2Wi

nterCompRepro.tif") 

names(img) <- c('B1', 'B2', 'B3', 'B4', 'B5', 'B6','B7', 'B8','B8A','B9','B10','B11', 'B12','AOT','WVP', 

'SCL','TCI_R', 'TCI_G','TCI_B','MSK_CLDPRB','MSK SNWPRB', 'QA60', 'QA60 Bitmask') 

names(img) <- paste0("B", c(1:23)) 

 

#########################Plotting RGB image################################## 

plotRGB(img * (img >= 0), r = 4, g = 3, b = 2, scale = 10000) 
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###########Load shapefile with class coordinates and class name i.e. Prionium serratum, Psoralea 

pinnata, Pteridium_Restio_Merx, Fynbos, Bare soil/sandstone, Water and 

Degraded####################  

#######You can add it along with values of each band or do it in R### 

trainData <-

shapefile("C:/Thesis_2021/Results_Mapwork/R/R_Random_Forest/TrainingData_shp5/DistinctTra

ining5.shp") 

head(trainData) 

 

###################Extract values to the shapefile that you just loaded########### 

#beginCluster() #to optimize all cores 

roi_data <- extract(img, trainData, df=TRUE) 

roi_data$Class <- as.factor(trainData$Class[roi_data$ID]) 

roi_data <- roi_data[roi_data$Class!="0",] 

head(roi_data) 

 

###Second option of extraction for signature plot### 

roi_data <- extract(img, trainData, df=TRUE) 

head(roi_data) 

summary(roi_data) 

 

###Create signature plot### 

specs <- aggregate(roi_data, list(trainData$Class), mean, na.rm=TRUE) 

specs 

#instead of the first column, use row names 

rownames(specs) <- specs[,1] 

specs <- specs[,-1] 

specs 

setwd("C:/Thesis_2021/Results_Mapwork/R/R_Random_Forest") 

write.csv(specs, "SpecsDistinct.csv") 

 

#Create a vector of colour for the land cover classes for use in plotting 

mycolor <- c('grey','red','yellow','dark green','light green','orange','blue') 

#transform ms from a data.frame to a matrix 

specs <- as.matrix(specs) 

# First create an empty plot 

plot(0, ylim=c(0,4000), xlim = c(1,12), type='n', xlab="Bands", ylab = "Reflectance") 

##add the different classes 

for (i in 1:nrow(specs)){ 

  lines(specs[i,], type = "l", lwd = 3, lty = 1, col = mycolor[i]) 

} 

# Title 

title(main="Spectral Profile of Distinct Classes-S2A", font.main = 2) 

# Legend 

legend("topleft", rownames(specs), 

       cex=0.8, col=mycolor, lty = 1, lwd =3, bty = "n") 

 

###########Set seed to make sure the same random sample is selected next time######## 

set.seed(200) 

###Note: seed---Random number seed to use. If a value is provided, it will be used to initialize R's 

random number generator before the model is fitted. ## 
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###If a value is not provided (the default), the random number generator will be initialized from the 

current time########################################## 

 

#################Split the data set into test and training data set################### 

splitIndex <- createDataPartition(roi_data$Class, 

                                  p = .80,  

                                  list = FALSE, 

                                  times = 1) 

trainDF <- roi_data[ splitIndex,] 

testDF  <- roi_data[-splitIndex,] 

trainDF <- na.omit(trainDF) 

 

#########################Load the Column names################ 

trainDF <- trainDF[, c('Class', "B1", "B2", "B3", "B4", "B5", "B6","B7", "B8","B9","B10","B11", 

"B12")] 

testDF <- testDF[, c('Class',"B1", "B2", "B3", "B4", "B5", "B6","B7", "B8","B9","B10","B11", 

"B12")] 

 

#########################Build the Random Forest Model with Training Data############ 

Fitcontrol <- trainControl("repeatedcv",  

                           number=10,  

                           repeats=1) 

rf <- train(as.factor(Class) ~., 

            data = trainDF,  

            method= "rf", 

            trControl = Fitcontrol, 

            preProcess = c("center", "scale"), 

            importance = TRUE) 

 

###Print the model summary from the Random Forest model### 

print(rf) 

 

###Check for the Variable importance#### 

plot(varImp(rf,scale=FALSE)) 

 

### Predict to a new Dataframe for a Map Output####### 

pred <- predict(rf , newdata = testDF,  type= "raw") 

confusionMatrix(pred, as.factor(testDF$Class)) 

img_pred <- predict(img, model=rf, na.rm=T) 

 

###Plot the image in R### 

levels(img_pred) 

levelplot(img_pred,col.regions = c("white","red","yellow","dark green","light 

green","orange","blue"),main = "Supervised Classification") 

 

###########################Write Output Grid of the classified image################# 

setwd("C:/Thesis_2021/Results_Mapwork/R/R_Random_Forest/RF_Winter/Outputs2") 

writeRaster(r3, filename="Distinct_RF_Winter2.tif", format="GTiff", overwrite=TRUE) 

 

##########################END OF SCRIPT########################### 
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Summer RF: 

###Random Forest Classification- to spectrally discriminate various landcover/vegetation of Du 

Toits Wetland### 

###Based on code developed by Blessing Khavu, provided by Blessing Khavu as part of postgrad 

research group peer learning#### 

###Spectral signature graph code developed by Daniëlle Seymour### 

###This script uses the 7 distinct veg classification scheme### 

###This is RF script for Summer 2020/2021###Sentinel-2A, MSI Level2-A### 

###Imagery processed in GEE: composite spans '2020-12-01','2021-02-28'### 

###Load packages### 

library(rgdal) 

library(raster) 

library(rasterVis) 

library(caret) 

library(randomForest) 

library(e1071) 

 

############################Load Image, create list and brick raster################### 

####List band and then brick the raster: ###Raster stack vs brick: how they store each band is 

different. The bands in a RasterStack are stored as links to raster data that is located somewhere on 

our computer. ###A RasterBrick contains all of the objects stored within the actual R object. In 

most cases, we can work with a RasterBrick in the same way we might work with a RasterStack. 

###However a RasterBrick is often more efficient and faster to process - which is important when 

working with larger files. 

 

rm(list=ls()) 

setwd("C:/Thesis_2021/Results_Mapwork/R/R_Random_Forest/RF_Summer/Imagery_Summer") 

#First import all files in a single folder as a list  

rastlist1 <- list.files(path = 

"C:/Thesis_2021/Results_Mapwork/R/R_Random_Forest/RF_Summer/Imagery_Summer", 

pattern='.tif', all.files=TRUE, full.names=FALSE) 

img<- 

brick("C:/Thesis_2021/Results_Mapwork/R/R_Random_Forest/RF_Summer/Imagery_Summer/S2

SummerCompRepro.tif") 

names(img) <- c('B1', 'B2', 'B3', 'B4', 'B5', 'B6','B7', 'B8','B8A','B9','B10','B11', 'B12','AOT','WVP', 

'SCL','TCI_R', 'TCI_G','TCI_B','MSK_CLDPRB','MSK SNWPRB', 'QA60', 'QA60 Bitmask') 

names(img) <- paste0("B", c(1:23)) 

 

 

#########################Plotting RGB image##################################### 

plotRGB(img * (img >= 0), r = 4, g = 3, b = 2, scale = 10000) 

 

#######################Load shapefile with class coordinates and class name i.e. WV, SWV, 

Bare soil/sandstone, Water and Unknown####################  

#######################You can add it along with values of each band or do it in R### 

trainData <- 

shapefile("C:/Thesis_2021/Results_Mapwork/R/R_Random_Forest/TrainingData_shp5/DistinctTra

ining5.shp") 

 

################Extract values to the shapefile that you just loaded########### 

#beginCluster() #to optimize all cores 

roi_data <- extract(img, trainData, df=TRUE) 
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roi_data$Class <- as.factor(trainData$Class[roi_data$ID]) 

roi_data <- roi_data[roi_data$Class!="0",] 

head(roi_data) 

 

###Second option of extraction for signature plot### 

roi_data <- extract(img, trainData, df=TRUE) 

head(roi_data) 

summary(roi_data) 

 

###Create signature plot### 

specs <- aggregate(roi_data, list(trainData$Class), mean, na.rm=TRUE) 

specs 

# instead of the first column, use row names 

rownames(specs) <- specs[,1] 

specs <- specs[,-1] 

specs 

setwd("C:/Thesis_2021/Results_Mapwork/R/R_Random_Forest") 

write.csv(specs, "SpecsDistinct2.csv") 

 

#Create a vector of color for the land cover classes for use in plotting 

mycolor <- c('grey','red','yellow','dark green','light green','orange','blue') 

#transform ms from a data.frame to a matrix 

specs <- as.matrix(specs) 

# First create an empty plot 

plot(0, ylim=c(0,4000), xlim = c(1,12), type='n', xlab="Bands", ylab = "Reflectance") 

##add the different classes 

for (i in 1:nrow(specs)){ 

  lines(specs[i,], type = "l", lwd = 3, lty = 1, col = mycolor[i]) 

} 

#Title 

title(main="Spectral Profile of Distinct Classes-S2A", font.main = 2) 

#Legend 

legend("topleft", rownames(specs), 

       cex=0.8, col=mycolor, lty = 1, lwd =3, bty = "n") 

 

###########Set seed to make sure the same random sample is selected next time######## 

set.seed(200) 

###Note: seed---Random number seed to use. If a value is provided, it will be used to initialize R's 

random number generator before the model is fitted. ###If a value is not provided (the default), the 

random number generator will be initialized from the current time. 

#################Split the data set into test and training data set################### 

splitIndex <- createDataPartition(roi_data$Class, 

                                  p = .80,  

                                  list = FALSE, 

                                  times = 1) 

trainDF <- roi_data[ splitIndex,] 

testDF  <- roi_data[-splitIndex,] 

trainDF <- na.omit(trainDF) 

 

#########################Load the Column names. Edit them if you wish################ 

trainDF <- trainDF[, c('Class', "B1", "B2", "B3", "B4", "B5", "B6","B7", "B8","B9","B10","B11", 

"B12")] 
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testDF <- testDF[, c('Class', "B1", "B2", "B3", "B4", "B5", "B6","B7", "B8","B9","B10","B11", 

"B12")] 

 

###############Build the Random Forest Model with Training Data############ 

Fitcontrol <- trainControl("repeatedcv",  

                           number=10,  

                           repeats=1) 

rf <- train(as.factor(Class) ~., 

            data = trainDF,  

            method= "rf", 

            trControl = Fitcontrol, 

            preProcess = c("center", "scale"), 

            importance = TRUE) 

predict(rf) 

 

########Print the model summary from the Random Forest model########## 

print(rf) 

#######Check for the Variable importance#################### 

plot(varImp(rf,scale=FALSE)) 

 

#########Predict to a new Dataframe for a Map Output################## 

pred <- predict(rf , newdata = testDF,  type= "raw") 

confusionMatrix(pred, as.factor(testDF$Class)) 

img_pred <- predict(img, model=rf, na.rm=T) 

 

####################Plot the image in R########################################### 

levels(img_pred) 

levelplot(img_pred,col.regions = c("white","red","yellow","dark green","light 

green","orange","blue"),main = "Supervised Classification") 

#3x3 mean filter 

r3 <- focal(img_pred, w=matrix(1/9,nrow=3,ncol=3), median) 

 

###########################Write Output Grid of the classified image################# 

setwd("C:/Thesis_2021/Results_Mapwork/R/R_Random_Forest/RF_Summer/Outputs4") 

writeRaster(r3, filename="Distinct_RF_Summer2.tif", format="GTiff", overwrite=TRUE) 

 

############################END OF SCRIPT###############################  
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APPENDIX F 

Code developed in R for the accuracy assessment of the probability classification: 

####Based on code developed by Vernon Visser-provided by Helen de Klerk#### 

 

####Accuracy assessment code for the class probability map generated in ArcMap with four 

vegetation layers### 

 

###Load packages: 

library(raster) 

library(RStoolbox) 

library(ggplot2) 

library(rfUtilities) 

library(sampling) 

library(caret) 

 

#Set working directory: 

setwd("C:/Thesis_2021/Results_Mapwork/R/EcotoneMapping") 

 

 

#ArcMap Bayesian classification raster: 

classProb = 

stack("C:/Thesis_2021/Results_Mapwork/R/EcotoneMapping/Class_Probability2/ClassProb_Outpu

t/ClassifiedImage/4ClassVeg.tif") #PCRS 

classProb[classProb>100] = NA #Change all values above 100 to NA 

 

#Function to create binary classification raster based on classProb raster (1= P.serratum ; 2= 

P.pinnata ; 3= Pteridium_Restio_Merx; 4= Fynbos) 

classProbPerc = function(perc){ 

  cpRast = classProb[[1]] 

  cpRast[] = NA 

  cpRast[ classProb[[1]]<=perc | classProb[[4]]<=perc ] = NA 

  cpRast[ classProb[[1]]>perc & classProb[[2]]<=perc ] = 1 

  cpRast[ classProb[[2]]>perc & classProb[[1]]<=perc ] = 2 

  cpRast[ classProb[[3]]>perc & classProb[[4]]<=perc ] = 3 

  cpRast[ classProb[[4]]>perc & classProb[[3]]<=perc ] = 4 

   

  return(cpRast) 

} 

 

#90% threshold 

classProb90 = classProbPerc(perc=90) 

#plot(classProb90) 

#Choose classified raster for accuracy testing: 

rastClass = classProb90 

 

 

#Read in testing data: 

accShp = 

shapefile("C:/Thesis_2021/Results_Mapwork/R/EcotoneMapping/Class_Probability2/TestSamples

2/Test2.shp") 
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head(accShp) 

plot(accShp) 

 

#Select random points: 

sampleCells = cellFromPolygon(rastClass, accShp) #Get all possible raster cells overlapped by test 

polyons 

sampleCellClasses = lapply(sampleCells, function(x) rastClass[x]) #Get class values from rastClass 

raster 

sampleCellClasses 

#Create list to store observed veg classes: 

sampleClasses = list() #Create empty list that will be of same dimensions as "sampleCells" to store 

veg classes 

for(l in 1:length(sampleCells)){ 

  sampleClasses[[l]] = rep(accShp@data$class[l], length(sampleCells[[l]])) #Assign sample classes 

to empty list 

} 

 

#Many of the cells have NA values, either because the classification is uncertain or the training 

polygons do not overlap the  

#classification raster. Below we remove these cells from our possible sampling cells: 

sampleCellClassesNA = lapply(sampleCellClasses, function(x) which(is.na(x))) #Find all NA value 

cells 

for(l in 1:length(sampleCells)){ 

  if(length(sampleCellClassesNA[[l]])>0){ 

    sampleCells[[l]] = sampleCells[[l]][-sampleCellClassesNA[[l]]] #Remove all NA value cells 

    sampleClasses[[l]] = sampleClasses[[l]][-sampleCellClassesNA[[l]]] #Remove all NA value cells 

  } 

} 

#whichRemove = which(unlist(lapply(sampleCells, function(x) length(x)))==0) 

#sampleCells = sampleCells[-whichRemove] #Remove from list empty elements 

#sampleClasses = sampleClasses[-whichRemove] #Remove from list empty elements 

 

#See how many cells available in each veg class: 

table(unlist(sampleClasses)) 

 

#Put sample data into a dataframe: 

sampleDat = data.frame(cellIDs=unlist(sampleCells), class=unlist(sampleClasses)) 

sampleDat 

 

sum(is.na(sampleDat$class)) 

 

#Sample 100 records from each veg class 

subSampleCells = strata(sampleDat, stratanames='class', size = c(100,100,100,100), 

method='srswor') 

subSampleCells = getdata(sampleDat,subSampleCells) 

 

 #Get predicted veg classes for sample cells (from rastClass raster): 

pred = rastClass[subSampleCells$cellIDs]  

pred[pred==1] = 'Prionium serratum' 

pred[pred==2] = 'Psoralea pinnata' 

pred[pred==3] = 'Pteridium_Restio_Merx' 

pred[pred==4] = 'Fynbos' 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

141 

 

#Get observed veg classes for sample cells: 

obs = subSampleCells$class 

 

#Confusion matrix: 

table(obs, pred) 

 

#Get accuracy: 

accuracy(pred, obs) 

 

##############################End of script##################################### 
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APPENDIX G 

Code developed in R for mapping ecotones and their associated fuzzy graphs: 

###Based on code developed by Vernon Visser-provided by Helen 

 de Klerk#### 

 

###Ecotone mapping in Du Toits River Wetland### 

###Class probability map is based on Random Forest classified images as done in Chapter 3### 

###Aim of this script: to map internal wetland ecotones i.e. changes/transition in vegetation 

composition from 'pure wetland'-Prionium serratum & Psoralea pinnata to sclerophyllous wetland, 

mixture of wetland grasses, ferns, restios and dryer Fynbos conditions### 

 

###Load packages### 

library(rgdal) 

library(raster) 

library(rasterVis) 

library(caret) 

library(e1071) 

 

#Set working directory: 

setwd("C:/Thesis_2021/Results_Mapwork/R/EcotoneMapping") 

 

#Read in Class Probability classified raster##Classified on 15 Sept 2021 based on RF classified 

outputs in Chap3, so no additional accuracy measures done## 

vegetation = 

stack("C:/Thesis_2021/Results_Mapwork/R/EcotoneMapping/Class_Probability2/ClassProb_Outpu

t/ClassifiedImage/4ClassVeg.tif") #PCRS 

names(vegetation) <- c(X4ClassVeg.1 = "Prionium_serratum", X4ClassVeg.2 = 

"Psoralea_pinnata",X4ClassVeg.3 = "Pteridium_Restio_Merx", X4ClassVeg.4 = "Fynbos") 

plot(vegetation) 

 

#Get individual layers: 

vegLayer1 =  vegetation[[1]] 

vegLayer2 =  vegetation[[2]] 

vegLayer3 =  vegetation[[3]] 

vegLayer4 =  vegetation[[4]] 

 

##Check each layer/class## 

#vegLayer1 

#vegLayer2 

#vegLayer3 

#vegLayer4 

 

#Get shapefile of transect coordinates: 

transShp = 

shapefile("C:/Thesis_2021/Results_Mapwork/R/EcotoneMapping/Class_Probability2/Large 

transects2/6_trans_1_6kmx200m.shp") 

transShp 

 

#Add ID column: 

transShp$TRANSECT= 1:nrow(transShp@data) 
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#Extract values  

trans1Dat = extract(vegLayer1, transShp) 

transShp$prob1 = trans1Dat #Add values to shapefile 

head(trans1Dat) 

 

trans2Dat = extract(vegLayer2, transShp) 

transShp$prob2 = trans2Dat 

head(trans2Dat) 

 

trans3Dat = extract(vegetation[[3]], transShp) 

transShp$prob3 = trans3Dat 

head(trans3Dat) 

 

trans4Dat = extract(vegetation[[4]], transShp) 

transShp$prob4 = trans4Dat 

head(trans4Dat) 

 

#View shapefile data: 

transShp@data 

 

#Get individual transects: 

for(t in 1:length(transShp$TRANSECT)){ 

  trans = transShp[transShp$TRANSECT==t,] 

  assign(paste0('trans',t), trans) 

  rm(trans) 

} 

plot(trans1) #Plot one of these transects 

plot(trans2) 

plot(trans3) 

plot(trans4) 

plot(trans5) 

plot(trans6) 

plot(transShp) 

 

#Function that will get mean probabilities for each layer (1 to 4) in 50 polygon bins (at 

approximately every 50 m across the transect) 

library(maptools) 

library(rgeos) 

library(geosphere) 

 getProbsBins = function(trans){ #trans = transect for which you want to get data, e.g. trans1 

  coords = trans@polygons[[1]]@Polygons[[1]]@coords #Get all polygon coordinates 

  #Eastern-most point: 

  minX = data.frame(matrix(coords[which(coords[,1]==min(coords[,1])),], ncol=2)) 

  minX = minX[1,] 

  #Western-most point: 

  maxX = data.frame(matrix(coords[which(coords[,1]==max(coords[,1])),], ncol=2)) 

  maxX = maxX[1,] 

  #Northern-most point: 

  maxY = data.frame(matrix(coords[which(coords[,2]==max(coords[,2])),], ncol=2)) 

  maxY = maxY[1,] 

  #Southern-most point: 
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  minY = data.frame(matrix(coords[which(coords[,2]==min(coords[,2])),], ncol=2)) 

  minY = minY[1,] #Added this in case we get two coordinates that are the max, so we select only 

one of them 

   

  #Assign corners of polygons based on angle from E to W: 

  if(minY[,1]<maxY[,1]){ 

    UL = minX 

    LL = minY 

    UR = maxY 

    LR = maxX 

  } else if(minY[,1]>maxY[,1]){ 

    UL = maxY 

    LL = minX 

    UR = maxX 

    LR = minY 

  } 

  #Get corner coordinates in UTM projection: 

  coordinates(UL) = ~X1+X2 #Transform to spatialPoints object 

  proj4string(UL) <- CRS("+proj=utm +south +zone=34 ellps=WGS84") #Assign projection 

  UL.latlon = spTransform(UL, CRS('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs')) 

#Reproject to UTM 

  coordinates(UR) = ~X1+X2 

  proj4string(UR) <- CRS("+proj=utm +south +zone=34 ellps=WGS84") 

  UR.latlon = spTransform(UR, CRS('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs')) 

  coordinates(LR) = ~X1+X2 

  proj4string(LR) <- CRS("+proj=utm +south +zone=34 ellps=WGS84") 

  LR.latlon = spTransform(LR, CRS('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs')) 

  coordinates(LL) = ~X1+X2 

  proj4string(LL) <- CRS("+proj=utm +south +zone=34 ellps=WGS84") 

  LL.latlon = spTransform(LL, CRS('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs')) 

   

  #Find coordinates of midpoint between UL and LL points: 

  bearingUL.LL = gzAzimuth(UL.latlon@coords, LL.latlon@coords) #Get bearing between UL and 

LL 

  distUL.LL = distGeo(UL.latlon, LL.latlon) #Get distance between UL and LL 

  midUL.LL.latlon = data.frame(destPoint(p=UL.latlon, b=bearingUL.LL, d=distUL.LL/2)) #Get 

coordinates of midpoint between UL and LL points 

  coordinates(midUL.LL.latlon) = ~lon+lat #Transform to spatialPoints object 

  proj4string(midUL.LL.latlon) <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 

+no_defs") #Assign projection 

  midUL.LL = spTransform(midUL.LL.latlon, CRS('+proj=utm +south +zone=34 ellps=WGS84')) 

#Reproject to UTM 

   

  #Find coordinates of midpoint between UR and LR points: 

  bearingUR.LR = gzAzimuth(UR.latlon@coords, LR.latlon@coords) 

  distUR.LR = distGeo(UR.latlon, LR.latlon) 

  midUR.LR.latlon = data.frame(destPoint(p=UR.latlon, b=bearingUR.LR, d=distUR.LR/2)) 

  coordinates(midUR.LR.latlon) = ~lon+lat 

  proj4string(midUR.LR.latlon) <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 

+no_defs") 

  midUR.LR = spTransform(midUR.LR.latlon, CRS('+proj=utm +south +zone=34 ellps=WGS84')) 
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  #Create 50 polygon bins across the length of transect (polygons are about 200 m wide and 1.6 km 

long) 

  distMidUL.LL.midUR.LR = pointDistance(midUL.LL.latlon, midUR.LR.latlon, longlat=T) 

#Distance between midpoints 

  distBreaks = distMidUL.LL.midUR.LR/50 #Get break distances (above distance divided by 50) 

  bearingMidPts = gzAzimuth(midUL.LL.latlon@coords, midUR.LR.latlon@coords) #Get bearing 

between midpoints 

  bPolyList = {} #Create empty list for storing polygon bins 

  for(b in 1:50){ #Loop through all bins while advancing the starting point by "break distance" along 

the line between the midpoints each time 

    if(b==1){ 

      bStart = midUL.LL.latlon@coords #For first break, use the midpoint between UL and LL 

corners 

    } 

    bEnd = data.frame(destPoint(p=bStart, b=bearingMidPts, d=distBreaks)) #Calculate coordinates 

"break distance" along the line between the midpoints 

    bUL = data.frame(destPoint(p=bStart, b=c(bearingMidPts-90), d=50)) #Calculate UL coordinates 

of polygon bin 

    bUR = data.frame(destPoint(p=bEnd, b=c(bearingMidPts-90), d=50)) #Calculate UR coordinates 

of polygon bin 

    bLL = data.frame(destPoint(p=bStart, b=c(bearingMidPts+90), d=50)) #Calculate LL coordinates 

of polygon bin 

    bLR = data.frame(destPoint(p=bEnd, b=c(bearingMidPts+90), d=50)) #Calculate LR coordinates 

of polygon bin 

    bPoly = Polygon(rbind(bUL, bUR, bLR, bLL, bUL)) #Create polygon from above coordinates 

    bPoly = Polygons(list(bPoly), ID=b) #Create polygon from above coordinates 

    bPolyList[[b]] = list(bPoly) #Add polygon to polygons list 

    bPolys = SpatialPolygons(unlist(bPolyList)) #Create multiple-polygon polygon 

    bStart = bEnd #Reset starting coordinate to be end of last bin 

  } 

  proj4string(bPolys) <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs") #Assign 

projection 

  bPolysUTM = spTransform(bPolys, CRS('+proj=utm +south +zone=34 ellps=WGS84')) 

#Reproject to UTM 

   

  #Crop the vegetation raster to the extent of the transect in question, and mask: 

  vegetationT = crop(vegetation, trans) 

  vegetationT = mask(vegetationT, trans) 

   

  #Get probability data: 

  breakTransVals = extract(vegetationT, bPolysUTM) #Extract probability data from each layer 

  breakTransMeans = lapply(breakTransVals, function(x) apply(x, MARGIN=2, mean, na.rm=T)) 

#Calculate mean value for each polygon bin 

  breakTransSE = lapply(breakTransVals, function(x) apply(x, MARGIN=2, function(x) sd(x, 

na.rm=T)/sqrt(length(x[!is.na(x)])))) #Calculate standard error value for each polygon bin 

  #Add data to a data.frame: 

  breakTransMeansGG = data.frame(brk=rep(c(1:50),4), 

                                 layer=rep(c(1:4),each=50), 

                                 prob = c(unlist(lapply(breakTransMeans, '[', 1)), 

                                          unlist(lapply(breakTransMeans, '[', 2)), 

                                          unlist(lapply(breakTransMeans, '[', 3)), 

                                          unlist(lapply(breakTransMeans, '[', 4))), 
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                                 se = c(unlist(lapply(breakTransSE, '[', 1)), 

                                        unlist(lapply(breakTransSE, '[', 2)), 

                                        unlist(lapply(breakTransSE, '[', 3)), 

                                        unlist(lapply(breakTransSE, '[', 4)))) 

  return(breakTransMeansGG) 

 } 

 

 transL = list(trans1, trans2, trans3, trans4, trans5, trans6) #Create list of all transect pointShape 

objects  

 breakTransMeansGG = lapply(transL, getProbsBins) #Apply the function above to all of these 

transect objects 

 ggDat = do.call(rbind, breakTransMeansGG) #Change format of the results above to get into one 

dataframe 

 #test breakTransMeansGG step worked: 

 breakTransMeansGG 

 ggDat 

  

 #Add a column for the transect number. This also puts the transects in the correct order now: 

 ggDat$transect = factor(rep(paste0('trans',c(1:length(transShp$TRANSECT))), each=200), 

                         levels=paste0('trans',c(1:length(transShp$TRANSECT)))) 

 ##check that the 'order is the same as the original ORIG_FID 

 head(ggDat$transect) 

  

 #Change percentage to probability: 

 ggDat$prob = ggDat$prob/100  

  

 #Get standard errors: 

 ggDat$SEupper = ggDat$prob + ggDat$se/100 

 ggDat$SElower = ggDat$prob - ggDat$se/100 

  

#Plot the results for all transects: 

library(ggplot2) 

labels = c(trans1 = "Transect 1", trans2 = "Transect 2", trans3 = "Transect 3", trans4 = "Transect 4", 

trans5 = "Transect 5",  

          trans6 = "Transect 6")  

 

#New titles for each transect 

ggTransects = ggplot(ggDat) + #Specifies the dataset to use (ggDat) and the variables (x=brk, 

y=prob) and the variables that determine the line colours 

  geom_line(aes(brk, prob, colour=factor(layer), group=factor(layer))) + #Specifies it must be a line 

plot 

  geom_line(aes(brk, SEupper, colour=factor(layer), group=factor(layer))) + #Specifies it must be a 

line plot 

  geom_line(aes(brk, SElower, colour=factor(layer), group=factor(layer))) + #Specifies it must be a 

line plot 

  labs(x='Distance along transect (m)', y="Probability") + #x- and y-axis labels 

  facet_wrap( ~ transect, ncol=1, labeller=labeller(transect = labels)) + #Creates the multiple plot 

layout, facetting by transect number. You can change the number of plots in each row and column 

here too. 

  scale_color_manual(values=c("#ff0000","#00FF00","#0000FF","#F28C28" ), name = "", labels = 

c("Prionium serratum", "Psoralea pinnata","Pter_Restio_Merx","Fynbos")) + #Specifies line 
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colours and used for legend editing. I sometimes use http://colorbrewer2.org to choose colours. 

Here (name = "") specifies there must be no legend header 

  scale_y_continuous(breaks=seq(0,1,0.2)) + #Change breaks along the y-axis 

  scale_x_continuous(breaks=seq(0,100,20), labels=seq(0,3000,600)) + #Change breaks along x-

axis and their labels 

  theme_bw() + #Changes overall plot colour to black and white theme 

  theme(strip.background =element_rect(fill=NA), #Change other elements of the 'theme'. This 

removes the facet label background colour 

        axis.text.x = element_text(angle = 90, hjust = 1)) #This makes the x-axis labels vertical aligned 

ggTransects 

 

jpeg('C:/Thesis_2021/Results_Mapwork/R/EcotoneMapping/R_Outputs/figures/Transects_graphs2

021_50m.jpg', width=19, units='cm', res=600, height=50) #By changing the width and height you 

can manipulate how the plot looks (e.g. if labels don't all fit, you can increase the size) 

ggTransects 

dev.off() 

 

pdf("C:/Thesis_2021/Results_Mapwork/R/EcotoneMapping/R_Outputs/figures/Transects_graphs20

21_50m.pdf", width=11.69, height=8.27) 

ggTransects 

dev.off() 

 

#Plot transect raster: 

plot(vegetation) 

 

####Plot individual transects together with their associated maps## 

#Loop through each transect and plot: 

for(t in 6:length(transShp$TRANSECT)){ 

  ggDatSub = ggDat[ggDat$transect==paste0('trans',t),] #Select only data for transect in question 

  #Read in map jpeg: 

  #library(jpeg) 

  #transImage = 

readJPEG(paste0('C:/Thesis_2021/Results_Mapwork/R/EcotoneMapping/R_Outputs/transectsmaps

2/Trans1.jpg',t,'.jpg')) 

   

  ##JPEG not working for me###gives unable to open error…used TIFF instead##Daniëlle 

  library(tiff) 

  transImage<- 

readTIFF("C:/Thesis_2021/Results_Mapwork/R/EcotoneMapping/R_Outputs/transectsmaps2/Trans

6.tif", native=TRUE) 

   

  #Transform jpeg to raster image for plotting purposes: 

  library(grid) 

  g = rasterGrob(transImage, interpolate=FALSE) 

   

#Get probability figure plot: 

    ggTransectSub = ggplot(ggDatSub) + 

    geom_line(aes(brk, prob, colour=factor(layer), group=factor(layer))) + #Mean probability line for 

each veg type 

    geom_ribbon(aes(brk, ymin=SElower, ymax=SEupper, group=factor(layer)), alpha=0.1) + 

#Standard error shading 

    labs(title=paste0('Transect ',t), x='Distance along transect (m)', y="Probability") + #Titles 
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    scale_color_manual(values=c("#ff0000","#00FF00","#0000FF","#F28C28"), name = "", labels = 

c("Prionium serratum", "Psoralea pinnata","Pter_Restio_Merx","Fynbos")) + #Manual colour 

selection 

    scale_y_continuous(breaks=seq(0,1,0.2)) + #Manual y-axis tick breaks 

    scale_x_continuous(breaks=seq(0,100,20), labels=seq(0,3000,600)) + #Manual x-axis tick breaks 

    theme_bw() + #Black and white plot 

    theme(strip.background =element_rect(fill=NA), #Remove background colour of plot title 

          axis.text.x = element_text(angle = 90, hjust = 1), #Change angle and position of x-axis labels 

          axis.text = element_text(size=5), #Change axis label font size 

          axis.title = element_text(size=5), #Change axis title font size 

          plot.title = element_text(size=6, face='bold', hjust = 0.5), #Change plot title font size 

          legend.position="none", #Remove legend 

          panel.grid.minor = element_blank(), #Don't show minor grid lines 

          panel.grid.major = element_line(size=0.1)) #Change width of major grid lines 

#Get map plot: 

  ggTransImage = qplot(1:10, 1:10, geom="blank") + 

    annotation_custom(g, xmin=-Inf, xmax=Inf, ymin=-Inf, ymax=Inf) + 

    theme(line = element_blank(), 

          text = element_blank(), 

          title = element_blank(), 

          panel.background = element_blank()) 

   

#Arrange the two plots side by side: 

library(gridExtra) 

  grid.arrange(ggTransectSub, ggTransImage, nrow=1)  

  #Create jpeg image with plots 

  

jpeg(paste0('C:/Thesis_2021/Results_Mapwork/R/EcotoneMapping/R_Outputs/figures2/Transects_

plot',t,'.jpg'), width=11.69, height=4, units='cm', res=600) 

  grid.arrange(ggTransectSub, ggTransImage, nrow=1, widths=c(1.8,1)) 

  dev.off() 

} 

####################################End of script############################ 
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APPENDIX H 

Field vegetation sampling, data collected in October 2020: 

*Note: Soil property measurements were recorded in the second round of data collection due to equipment delays. 
 

Time 
started: 

Date: Co-
ordinates 
X: 

Co-
ordinates 
Y: 

Elevation: Quadrat: Plant id: Common names Quadrat 
Percentage: 

Class Soil: 
50cm 

Soil: 
100cm 

Munsell Chart 
Reading 

Comments 

09h45 21/10/2020 19.189399 -34.004305 320.528229 Q1 Merxmuelera cincta 
 

10% swv 
    

  
19.189399 -34.004305 320.528229 Q1 Wachendorfia 

thyrsiflora 

 
1% terrestrial 

    

  
19.189399 -34.004305 320.528229 Q1 Merxmuelera cincta 

 
1% swv 

    

  
19.189399 -34.004305 320.528229 Q1 Chordifex fastigiatus 

 
8% wetland 

   
Australian 
wetland 
plant 

  
19.189399 -34.004305 320.528229 Q1 Eligia felicae    50% wetland sandy, 

loam 

  
Restio-
native, 
fynbos   

19.189399 -34.004305 320.528229 Q1 Restio paniculatus 
 

5% swv 
    

  
19.189399 -34.004305 320.528229 Q1 Helichrysum 

milfordiae 

 
15% terrestrial 

   
Indigenous  

  
19.189399 -34.004305 320.528229 Q1 Osteospermum Polygaloides 10% terrestrial 

    

                            

10h05 21/10/2020 19.1895 -34.004194 321.516785 Q2 Isolepis prolifera  
 

1% swv 
    

  
19.1895 -34.004194 321.516785 Q2 unidentified 

 
1% 

     

  
19.1895 -34.004194 321.516785 Q2 unidentified 

 
1% 

     

  
19.1895 -34.004194 321.516785 Q2 Cliffortia strobilifera 

 
6% swv 

    

  
19.1895 -34.004194 321.516785 Q2 Eligia felicae    60% wetland 

   
fynbos 
restio   

19.1895 -34.004194 321.516785 Q2 Epischoenis gracilis 
 

15% wetland 
   

sedge 
  

19.1895 -34.004194 321.516785 Q2 Psoralea pinnata fountainbush 8% wetland 
    

  
19.1895 -34.004194 321.516785 Q2 unidentified 

 
5% 

     

  
19.1895 -34.004194 321.516785 Q2 unidentified 

 
3% 
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10h35 21/10/2020 19.189428 -34.004275 318.754395 Q3 Leucadendron 
conicum 

  98% fynbos 
    

  
19.189428 -34.004275 318.754395 Q3 unidentified 

 
1% 

     

  
19.189428 -34.004275 318.754395 Q3 unidentified 

 
1% 

     

                            

11h10 21/10/2020 19.189327 -34.004341 318.820557 Q4 Elegia filicae   60% wetland 
   

Rocky, 
loose 
white soil 

  
19.189327 -34.004341 318.820557 Q4 Pteridium aquilinium bracken fern 10% wetland 

    

  
19.189327 -34.004341 318.820557 Q4 Drosera trinervia 

 
5% wetland  

   
damp, 
peaty 
exposed 
areas   

19.189327 -34.004341 318.820557 Q4 unidentified 
 

1% terrestrial 
    

  
19.189327 -34.004341 318.820557 Q4 Psoralea pinnata L. fountain bush 

(Eng.); fonteinbos, 
bloukeur, penwortel 
(Afr.); umHlonishwa 
(Zulu) 

5% wetland 
    

  
19.189327 -34.004341 318.820557 Q4 Leucadendron 

conicum 

 
10% wetland 

   
peat 

  
19.189327 -34.004341 318.820557 Q4 unidentified 

 
5% 

     

  
19.189327 -34.004341 318.820557 Q4 unidentified 

 
3% 

     

  
19.189327 -34.004341 318.820557 Q4 unidentified 

 
1% 

     

                            

11h55 21/10/2020 19.18921 -34.004425 317.355652 Q5 Laurembergia repens 
 

10% swv 
    

  
19.18921 -34.004425 317.355652 Q5 unidentified 

 
5% 

     

  
19.18921 -34.004425 317.355652 Q5 Cliffortia strobilifera 

 
15% swv 

    

  
19.18921 -34.004425 317.355652 Q5 unidentified 

 
3% 

     

  
19.18921 -34.004425 317.355652 Q5 unidentified 

 
10% 

     

  
19.18921 -34.004425 317.355652 Q5 unidentified 

 
5% 

     

  
19.18921 -34.004425 317.355652 Q5 Thelypteris confluens   40% swv 
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19.18921 -34.004425 317.355652 Q5 unidentified 

 
10% 

     

  
19.18921 -34.004425 317.355652 Q5 unidentified 

 
2% 

     

                            

12h30 21/10/2020 19.188946 -34.005041 311.366852 Q6 Thelypteris confluens   50% swv 
    

  
19.188946 -34.005041 311.366852 Q6 small swv plants 

 
50% swv 

    

                            

12h45 21/10/2020 19.188871 -34.005221 310.508057 Q7 Isolepis prolifera    40% swv 
    

  
19.188871 -34.005221 310.508057 Q7 Merxmuelera cincta 

 
5% swv 

    

  
19.188871 -34.005221 310.508057 Q7 Merxmuelera cincta 

 
5% swv 

    

  
19.188871 -34.005221 310.508057 Q7 Merxmuelera cincta   50% swv 

    

                            

13h12 21/10/2020 19.181979 -33.986955 332.724548 Q8 Brabejum 
stellatifolium 

  100% terrestrial loose dry white 
sand  

 

                            

13h30 21/10/2020 19.181713 -33.986891 332.4888 Q9 Searsia augustifolia 
 

10% terrestrial 
    

  
19.181713 -33.986891 332.4888 Q9 unidentified 

 
5% 

     

  
19.181713 -33.986891 332.4888 Q9 unidentified 

 
20% 

     

  
19.181713 -33.986891 332.4888 Q9 unidentified 

 
10% 

     

  
19.181713 -33.986891 332.4888 Q9 Dicerothamnus rhinocerotis 50% swv 

    

  
19.181713 -33.986891 332.4888 Q9 unidentified 

 
15% 

     

                            

14h12 21/10/2020 19.181349 -33.987252 330.188507 Q10 Thelypteris confluens   60% wetland 
    

  
19.181349 -33.987252 330.188507 Q10 Cliffortia strobilifera   20% swv 

    

  
19.181349 -33.987252 330.188507 Q10 Carpobrotus edulis 

 
5% terrestrial 

    

  
19.181349 -33.987252 330.188507 Q10 Epischoenis gracilis 

 
5% wetland 

    

  
19.181349 -33.987252 330.188507 Q10 Pteridium aquilinum 

 
5% wetland 

    

  
19.181349 -33.987252 330.188507 Q10 Cyperus thunbergii  

 
5% wetland 
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14h35 21/10/2020 19.181158 -33.98734 330.125275 Q11 Merxmuelera cincta   90% wetland  
   

grass 
  

19.181158 -33.98734 330.125275 Q11 Elegia filicae 
 

5% wetland  
   

  
19.181158 -33.98734 330.125275 Q11 Elegia capensis  

 
5% fynbos 

   
Fynbos 

                            

14h50 21/10/2020 19.178657 -33.982652 332.728149 Q12 Merxmuelera cincta   80% wetland  
   

grass 
  

19.178657 -33.982652 332.728149 Q12 Elegia filicae 
 

10% wetland  
   

 
  

19.178657 -33.982652 332.728149 Q12 Juncus spp. 
 

10% wetland  
    

                            

08h45 22/10/2020 19.173443 -33.958172 348.007935 Q13 Prionium serratum   30% wetland 
    

  
19.173541 -33.958126 348.007935 Q13 Pteridium aquilinum   30% swv 

    

  
19.17337 -33.958029 337.292877 Q13 Psoralea pinnata L.   20% wetland 

    

  
19.173289 -33.958003 336.508545 Q13 Psoralea pinnata L.   20% wetland 

    

                            

09h20 22/10/2020 19.17197 -33.951853 346.822266 Q14 Pteridium aquilinum   80% swv 
    

  
19.17197 -33.951853 346.822266 Q14 Carpha glomerata  

 
10% wetland 

    

  
19.17197 -33.951853 346.822266 Q14 Psoralea pinnata L. 

 
5% wetland 

    

  
19.17197 -33.951853 346.822266 Q14 Restio paniculatus 

 
5% swv 
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Field vegetation sampling, data collected in June 2021: 

 
 

Time 
started: 

Date: Co-
ordinates 
X: 

Co-
ordinates 
Y: 

Elevation: Quadrat: Plant id: Common names Quadrat 
Percentage: 

Soil: 
50cm 

Soil: 
100cm 

Munsell 
Chart 
Reading 

Comments 

11h45am 7/06/2021 19.18631 -34.0042 311.0545 Q15 Prionium serratum Palmiet 30% Sandy 
loam 

Sandy 
loam 

Hue: 
5YR, 
Value: 
2.5, 
Chroma: 
1 

A lot of organic matter in 
50cm, very coarse, very 
wet. At 100cm completely 
saturated  

  
19.18631 -34.0042 311.0545 Q15 Laurembergia 

repens 
Water Milfoil 20% damp very very wet Patches of agglomerated 

palmiet close to smaal 
tributries   

19.18631 -34.0042 311.0545 Q15 Shrubs 
 

20% 
    

  
19.18631 -34.0042 311.0545 Q15 Restio paniculatus 

Rottb. 
calopsis (English); 
besemgoed 
(Afrikaans) 

20% 
    

  
19.18631 -34.0042 311.0545 Q15 Berzelia 

abrotanoides 
redlegs (Eng.); 
rooibeentjies, 
vleiknoppiesbos, 
kolkol, fonteinbos 
(Afr.) 

10% 
    

                          
 

7/6/2021 19.18631 -34.0044 310.2428 Q16 Pteridium 
aquilinum 

bracken fern  80% Sandy 
loam 

Sandy 
loam 

Hue: 
5YR, 
Value: 
2.5, 
Chroma: 
1 

Very little organic matter, 
could be seasonally wet 
zone 

 
7/06/2021 19.18631 -34.0044 310.2428 Q16 Pink shrub/Herb 

 
20% low 

wetness, 
fairly dry  

slightly damp Light grey 

                          
 

7/06/2021 19.18593 -34.0046 311.2105 Q17 Merxmuellera 
cincta 

  90% Sandy 
loam 

Sandy 
loam 

Hue: 
5YR, 
Value: 
2.5, 
Chroma: 
1 

Higher & finer organic 
material, sandy granules 
closer together and finer 

  
19.18593 -34.0046 311.2105 Q17 Herbs 

 
5% very wet very 

wet 

  

  
19.18593 -34.0046 311.2105 Q17 Moss layer on 

topsoil 

 
5% 
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7/06/2021 19.18371 -34.0035 310.9797 Q18 Brabejum 
stellatifolium 

bitteramandel, 
wild almond, 
wilde-amandel, 
ghoeboontjie, 
ghoekoffie 

90% Sand Sand Hue: 
5YR, 
Value: 
2.5, 
Chroma: 
1 

Not fine granules but gritty, 
dry and not very course 

  
19.18371 -34.0035 310.9797 Q18 Pteridium 

aquilinum 
bracken fern  10% nutrient 

poor 
damp 

  

                          
 

7/06/2021 19.18407 -34.0035 311.996 Q19 Leucadendron 
coniferum 

Dune Conebush 90% Sandy 
loam 

Sandy 
loam 

Hue: 
5YR, 
Value: 
2.5, 
Chroma: 
1 

Gritty, fine granules 

  
19.18407 -34.0035 311.996 Q19 Metalasia 

muricata/Metalasia 
densa 

 coast metalasia, 
white bristle bush 
(Eng.); blombos, 
witsteekbossie, 
steekbos (Afr.) 

10% very wet leached 
  

                          

14h38 
pm 

7/06/2021 19.17846 -33.9918 319.4586 Q20 Pteridium 
aquilinum 

Bracken fern  100% Sand Sand Hue: 
10YR, 
Value 4, 
Chroma: 
4 

More sand than loam failry 
organic <30% organic 
carbon 

                          
 

7/06/2021 19.17867 -33.9919 321.138 Q21 Restio paniculatus 
Rottb. 

calopsis (English); 
besemgoed 
(Afrikaans) 

100% Sandy 
loam 

Sandy 
loam 

Hue: 
10YR, 
Value 4, 
Chroma: 
4 

Fine, reddish sand, little 
organic matter 

                          
 

7/06/2021 19.17787 -33.9914 320.4131 Q22 Merxmuellera 
cincta 

  99% Loam Loam Hue: 
7.5YR, 
Value: 
3, 
Chroma: 
3 

Fine, brown sand, not very 
wet & compact 

  
19.17787 -33.9914 320.4131 Q22 Thelypteris 

confluens 
Marsh fern 1% 

    

                          
 

7/06/2021 19.17917 -33.9904 327.0022 Q23 Leucadendron 
coniferum 

Dune Conebush 90% Sandy 
loam 

Sandy 
loam 

Hue: 
7.5YR, 

Very low wetness 
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Value: 
3, 
Chroma: 
3   

19.17917 -33.9904 327.0022 Q23 Metalasia 
muricata/Metalasia 
densa 

 coast metalasia, 
white bristle bush 
(Eng.); blombos, 
witsteekbossie, 
steekbos (Afr.) 

10% 
    

                          

10H21 8/06/2021 19.17845 -33.9827 334.1852 Q24 Berzelia 
abrotanoides 

redlegs (Eng.); 
rooibeentjies, 
vleiknoppiesbos, 
kolkol, fonteinbos 
(Afr.) 

80% Loamy 
sand  

Clay Hue: 2.5 
, Value: 
3, 
Chroma: 
1 

Course, and gritty chalk 
white colour at about 70cm 

  
19.17845 -33.9827 334.1852 Q24 Restio paniculatus 

Rottb. 
calopsis (English); 
besemgoed 
(Afrikaans) 

10% 
    

  
19.17845 -33.9827 334.1852 Q24 Metalasia 

muricata/Metalasia 
densa 

 coast metalasia, 
white bristle bush 
(Eng.); blombos, 
witsteekbossie, 
steekbos (Afr.) 

10% 
    

                          
 

8/06/2021 19.17819 -33.9828 330.3489 Q25 Metalasia muricata/Metalasia densa 80% Sand Sand N7 
Value: 
6, 
Gleyed 
soil, 
sand 

Little organic matter 

  
19.17819 -33.9828 330.3489 Q25 Diospyros glabra Blue-berry Bush, 

Bloubessie 
10% 

    

  
19.17819 -33.9828 330.3489 Q25 unidentified 

 
10% 

    

                          
 

8/06/2021 19.178 -33.9831 332.025 Q26 Brabejum 
stellatifolium 

bitteramandel, 
wild almond, 
wilde-amandel, 
ghoeboontjie, 
ghoekoffie 

100% Loamy 
sand 

Loamy 
sand 

Hue: 
10YR, 
Value: 
6, 
Chroma: 
2 

High organic matter, very 
dark, fine sand that’s 
almost silty 

                          
 

8/06/2021 19.17791 -33.9834 332.1571 Q27 Protea nerifolia oleander-leaf 
protea, narrow-
leaf protea (Eng.), 
baardsuikerbos, 
baardsuikerkan, 

100% Loamy 
sand 

Loamy 
sand 

Hue: 
2.5Y, 
Value: 
4, 

Damp, slightly wet and at 
100 cm it gets slightly light 
brown 
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blousuikerkan 
(Afr.) 

Chroma: 
2 

                          
 

8/06/2021 19.17733 -33.9835 329.3565 Q28 Merxmuellera 
cincta 

  50% Sandy 
loam 

Sandy 
loam 

Hue: N 
2.5, 
Value: 
2.5 

Surface water visible, 
gleyed 

  
19.17733 -33.9835 329.3565 Q28 Elegia capensis  horsetail restio 

(Eng.); besemriet, 
fonteinriet, 
katstert, kanet 
(Afr.) 

50% very 
saturated 

  
Very saturated 

                          
 

8/06/2021 19.16606 -33.9688 321.7184 Q29 Psoralea pinnata L. fountain bush 
(Eng.); fonteinbos, 
bloukeur, 
penwortel (Afr.); 
umHlonishwa 
(Zulu) 

100% Sandy 
loam 

Sandy 
loam, 
clay 

Hue: 
10YR, 
Value: 
6, 
Chroma: 
2 

Thick organic top 50cm 
layer, can dominantly 
mixed with dense clogs of 
palmiet, ferns and restios 
as understory 

                          

12H35 8/06/2021 19.1664 -33.9689 324.8384 Q30 Pteridium 
aquilinum 

bracken fern  90% Loamy 
sand 

Loamy 
sand 

Hue: 
2.5Y, 
Value: 
3, 
Chroma: 
2 

Grey & gleyec towards 
100cm mark with high 
organic matter 

  
19.1664 -33.9689 324.8384 Q30 Merxmuellera 

cincta 

 
10% 

    

                          
 

8/06/2021 19.16666 -33.9689 324.2585 Q31 Restio paniculatus 
Rottb. 

calopsis (English); 
besemgoed 
(Afrikaans) 

80% Sand Sand Hue: 
10YR, 
Value: 
6, 
Chroma: 
2 

First 15cm is sand, then 
becomes reddish, then at 
50cm its much darker and 
black 

  
19.16666 -33.9689 324.2585 Q31 Merxmuellera 

cincta 

 
20% reddish darker brown to black 

                          
 

8/06/2021 19.17082 -33.9635 335.7029 Q32 Psoralea pinnata L. fountain bush 
(Eng.); fonteinbos, 
bloukeur, 
penwortel (Afr.); 
umHlonishwa 
(Zulu) 

80% Clay Clay Hue: 
10YR, 
Value: 
6, 
Chroma: 
2 

Black, then becomes 
greyish sand further down 
into 100cm 

  
19.17082 -33.9635 335.7029 Q32 Pteridium 

aquilinum 
bracken fern  10% 
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19.17082 -33.9635 335.7029 Q32 unidentified 

 
10% 

    

                          

10h24 9/06/2021 19.17063 -33.9634 343 Q33 Restio paniculatus 
Rottb. 

calopsis (English); 
besemgoed 
(Afrikaans) 

45% Loamy 
clay 

Loamy 
clay 

Gleyed 
N 2.5 

Smooth velvety, very dark, 
very dense , organic clay 

  
19.17063 -33.9634 343 Q33 Psoralea pinnata L. fountain bush 

(Eng.); fonteinbos, 
bloukeur, 
penwortel (Afr.); 
umHlonishwa 
(Zulu) 

45%   
   

  
19.17063 -33.9634 343 Q33 Zantedeshichia 

aethiopica 
arum lily 10% 

    

                          
 

9/06/2021 19.17052 -33.9633 334 Q34 Prionium serratum Palmiet 100% Clayey 
silt 

Sandy 
loam 

Gleyed 
N 2.5 

Smooth velvety, very dark, 
very dense , organic clay 

                          
 

9/06/2021 19.1736 -33.9571 344 Q35 Restio paniculatus 
Rottb. 

calopsis (English); 
besemgoed 
(Afrikaans) 

80% Sandy 
loam 

Loamy, 
sandy, 
clay 

Gleyed 
5 G 5.1 

Very wet, surface water 

  
19.1736 -33.9571 344 Q35 Deep long leaved green plant 10% 

    

  
19.1736 -33.9571 344 Q35 Grass 

 
10% 

    

                          
 

9/06/2021 19.17374 -33.9571 343 Q36 Berzelia 
abrotanoides 

redlegs (Eng.); 
rooibeentjies, 
vleiknoppiesbos, 
kolkol, fonteinbos 
(Afr.) 

20% Sand Loamy sand Light brown, then darker to 
the core 

  
19.17374 -33.9571 343 Q36 Elegia capensis   20% 

    

  
19.17374 -33.9571 343 Q36 Restio paniculatus 

Rottb. 
calopsis (English); 
besemgoed 
(Afrikaans) 

20% 
    

  
19.17374 -33.9571 343 Q36 Leucadendron   20% 

    

  
19.17374 -33.9571 343 Q36 Pteridium 

aquilinum 
bracken fern  10% 

    

                          
 

9/06/2021 19.17395 -33.9569 343 Q37 Berzelia 
abrotanoides 

redlegs (Eng.); 
rooibeentjies, 
vleiknoppiesbos, 
kolkol, fonteinbos 
(Afr.) 

80% Sand Sand Gleyed 
sand 

fine, lighter, gritty sand 

  
19.17395 -33.9569 343 Q37 Leucadendron 

 
10% 
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19.17395 -33.9569 343 Q37 Restio paniculatus 

Rottb. 
calopsis (English); 
besemgoed 
(Afrikaans) 

10% 
    

                          
 

9/06/2021 19.17345 -33.9546 343 Q38 Psoralea pinnata L. fountain bush 
(Eng.); fonteinbos, 
bloukeur, 
penwortel (Afr.); 
umHlonishwa 
(Zulu) 

100% Loamy, 
fine sand 

Sand 
 

high organic matter, fine 

                          
 

9/06/2021 19.17399 -33.9555 347 Q39 Pteridium 
aquilinum 

bracken fern  100% hard rock hard 
rock 

  

                          
 

9/06/2021 19.17301 -33.9555 347 Q40 Prionium serratum Palmiet 100% 
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