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ABSTRACT 
 

 
The importance of introducing algebra concepts and skills in the early years of 

mathematics education, has become increasingly acknowledged as imperative for 

algebra success in the secondary grades of mathematics teaching and learning. 

Research has shown that learners at a young age are able to reason algebraically. 

Generalisation is described as one of the core aspects of early algebra and should be 

embedded throughout the mathematics curriculum to form a deep understanding of 

the underlying structure of mathematics.  In South Africa, the field of early algebra 

remains largely unexplored in the mathematics education research context. The 

content area, ‘Patterns, functions and algebra’ which aims to provide guidelines for 

the teaching of early algebra in South African early years classrooms, seems to be 

inadequate for the implementation of early algebra in early years classrooms. A lack 

of a relational approach in the sequencing of curriculum documents and learning and 

teaching materials, are provided for the teaching of patterns, functions, and algebra in 

the foundation phase. The purpose of this study was to determine how the 

generalisation concept can be implemented in early years classrooms to develop early 

algebra skills and concepts. A systematic literature review was conducted with the aim 

of extending on current research by designing a higher-order construct from existing 

literature. A thematic analysis of the literature led to the synthesis of an instructional 

sequence for the implementation of generalisation in early years classrooms. The 

instructional sequence was based on the principles of Realistic Mathematics 

Education from the Netherlands which included guided reinvention and emergent 

modelling as foundational principles. A historical overview of the development of 

algebra through the ages indicated three historical stages: the rhetorical stage, the 

syncopated stage, and the symbolic stage, as well as four conceptual stages: the 

geometric stage, the static-equation stage, the dynamic function stage, and the 

abstract stage. The emergence of the main components and big ideas of algebra from 

these stages provided a valuable insight as to how algebraic thinking developed 

naturally and informed an instructional sequence for the implementation of 

generalisation. An in-depth systematic review of the concepts which emerged from 

history was further conducted to understand the current state of algebra in schools, 
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how algebraic thinking develops, the levels of algebraic thinking and what the main 

components of early algebra are, with a specific focus on generalisation. The study 

further explored an appropriate learning approach, namely the problem-centred 

approach, which ensures that mathematics is learned for understanding. The historical 

overview and the systematic review of early algebra, generalisation, and structure 

were used to construct the instructional sequence for the implementation of 

generalisation in early years classrooms.  
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OPSOMMING 
 

Dit word algemeen aanvaar dat daar ‘n behoefte bestaan om algebra op ‘n vroeër fase 

deel te maak van die wiskunde kurrikulum. Vroeë algebra word beskou as noodsaaklik 

om die sukses van die verstaan van formele algebra in later grade te verseker. 

Navorsing dui aan dat leerders daartoe in staat is om van ‘n vroeë ouderdom 

algebraïes te redeneer. Veralgemening word beskryf as een van die kern aspekte van 

vroeë algebra. Veralgemening moet dwarsdeur die wiskunde kurrikulum integreer 

word sodat leerders die struktuur van wiskunde gouer en beter kan  verstaan. In Suid-

Afrika, is die veld van vroeë algebra meestal onontgin in die konteks van vroeë 

wiskundeonderwys. Die inhoud area ‘Patrone, funksies en algebra’ het die doel om 

riglyne voor te skryf vir die onderrig en leer van algebra in Suid-Afrikaanse 

grondslagfase klaskamers, maar blyk onvoldoende te wees vir die effektiewe onderrig 

en leer van vroeë algebra. ‘n Gebrek aan ‘n verhouding en samehang in die  volgorde 

van kurrikulumdokumente, en onderrig en leer materiaal kan waargeneem word. Die 

oogmerk van hierdie studie was om te bepaal hoe die veralgemeningskonsep in 

grondslagfase klaskamers geïmplementeer kan word met die doel om vroeë algebra 

vaardighede en konsepte in jong leerders te ontwikkel. ‘n Sistematiese literatuurstudie 

was uitgevoer met die hoop om op huidige literatuur uit te brei deur ‘n hoër-orde 

konstruksie te ontwerp op grond van bestaande literatuur. ‘n Tematiese analise van 

die literatuur het gelei tot die sintese van ‘n geordende onderrig patroon of leer-

teoretiese model wat die implementering van veralgemening in die grondslagfase klas 

verduidelik. Die model is gebaseer op die beginsels van die Realistiese 

Wiskundeonderwysbenadering van Nederland (‘Realistic  Mathematics Education’) 

wat onder andere insluit, gerigte herontdekking (‘guided reinvetion’) en ontluikende 

modellering (‘emergent modelling’). ‘n Historiese oorsig van die ontwikkeling van 

algebra deur die eeue het drie ontwikkelingsfases blootgelê: die retoriese fase, die 

sinkopering fase, en die simboliese fase. Ook is daar vier konseptuele fases aangedui: 

die geometriese fase, die fase van die oplos van statiese vergelykings, die dinamiese 

funksie fase, en die abstrakte fase. Die opkoms van die sleutelkonsepte en groot idees 

van vroeë algebra vanuit hierdie fases, het waardevolle insigte gelewer ten opsigte 

van die natuurlike ontwikkeling van algebra. Hierdie insigte is gebruik in die ontwerp 

van die onderrig-volgorde van die implementering van veralgemening. ‘n Verdere in-
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diepte sistematiese studie van die konsepte wat uit die geskiedenis verskyn het, was 

uitgevoer om vas te stel wat die huidige situasie van vroeë algebra in skole is, hoe 

algebraïese denke ontwikkel word, hoe die vlakke van algebraïese denke ontwikkel 

en wat die kernaspekte van algebra is, met ‘n sterk fokus op veralgemening.  Die 

studie het ook die probleem-gesentreerde benadering gekies as ‘n leerbenadering wat 

die doel het om die leer van wiskunde-met-begrip te verseker. Die oorsig van die 

geskiedenis van die ontwikkeling van algebra, sowel as die sistematiese analise van 

vroeë algebra gefokus op veralgemening en struktuur, het ‘n onderrig-volgorde of leer- 

teoretiese model vir die implementering van veralgemening in die grondslagfase 

gelewer.  
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CHAPTER 1: INTRODUCTION TO THE STUDY 

1.1. INTRODUCTION 
 

Chapter 1 has the objective of describing the context in which the study took place by 

explaining the motivation, the statement of the problem and the aims and objectives 

of the study. Furthermore, the research methodology, trustworthiness and delimitation 

of the study will be explained and justified.  

1.2. MOTIVATION 
 

From the earliest days of mathematics, algebra can be regarded as the science of 

solving equations (Kieran, 2004). Research conducted in the 70s’ and 80’s pointed to 

difficulties learners experience in this subject and shone light on the need for reform 

in the views of algebra. At the moment, one of the most important questions in 

mathematical reform is: “Does early algebra matter?” (Blanton et al., 2019). It is 

believed that to make algebra more accessible to a larger group of learners, algebra 

should be introduced in the early grades (Kieran, 2004). Even so, it is necessary to 

acknowledge that many subareas of algebra are not appropriate for young learners. 

Instead of questioning whether young learners are prepared for algebra, the question 

should rather be which algebraic ideas, concepts and methods are within the reach of 

young learners (Kaput et al., 2008).  

 

Roberts (2012) describes algebra as the study of general properties of numbers, and 

generalisations, whereas early algebra  is seen as the teaching of arithmetic in the 

early mathematics education with a specific focus on generalising arithmetic, 

generalising towards the idea of a function, and using modelling as a language of 

mathematics (Roberts, 2012). To understand which concepts are within the reach of 

young learners, it is imperative to understand what the literature says about early 

algebra. 

 

Various characterisations of what early algebra is, can be found in the literature. Five 

core aspects of algebra has been identified by Kaput (1995): generalisation and 

formalisation; syntactically guided manipulations; the study of structure; the study of 
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functions, relations and joint variation; and a modelling language. Kieran (1996) 

developed a model to explain early algebra activity by focusing on the activities 

typically worked with by learners: generalisation activities, transformational activities 

and global-meta level activities. These models attempt to clearly map out the focus 

and components of early algebra and will be discussed in more depth in the literature 

review. Early algebra differs from algebra that is taught in High School in the sense 

that it does not focus on the transformational aspects of algebra which involves 

procedures for solving equations or simplifying equations. Broadly stated, the core of 

early algebra is in generalising mathematical ideas, representing and justifying 

generalisations in multiple ways, and arguing with generalisations (Blanton et al., 

2015). 

 

Early algebra has the purpose of deepening learners’ understanding of the structural 

form and generality of mathematics, rather than only providing isolated mathematical 

experiences. This has been proved to ensure better mathematical achievement of 

learners in later grades (Blanton & Kaput, 2011).  

 

Kaput et al. (2008) provided a framework for in view of the main elements of early 

algebra with reference to two core aspects which falls within three strands: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1:  Kaput’s framework of the main elements of early algebra (Roberts, 2012) 

Core Aspect A: 
Using symbols to 
generalise 

Core Aspect B: 
Acting on symbols 
following rules 

Strand 1: 
Generalising from 
arithmetic and 
quantitative reasoning. 

Strand 2: 
Generalising towards 
the idea of function. 

Strand 3: 
Modelling as a 
language. 
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Kaput et al. (2008) characterise algebraic reasoning as symbolising activities that 

serve purposeful generalisation, and simultaneously as reasoning with symbolised 

generalisations. This is evident in his two core aspects of early algebra. The first two 

strands of his framework for early algebra involve the two types of generalising that 

are at the centre point of algebraic reasoning, namely generalising arithmetic and 

generalising towards the idea of function. The third strand, modelling as a language, 

involves the  modelling of real-life situations using algebraic reasoning and language 

(Roberts, 2012). As can be seen in the framework above, generalisation forms an 

integrated part of early algebra and will serve as the focus of this systematic literature 

review.  

 

It is critically important to establish firm foundations of algebra in early years education 

to ensure success in the understanding of complex algebra in the later years. With the 

aim of teaching algebra for understanding, a problem-centred approach, which 

focuses on the mathematical process rather than computational skills, may be most 

effective (Human and Olivier, 1999). In a problem-centred approach, learners are 

introduced to mathematical concepts by means of engaging problems. A problem-

centred approach builds on on learners’ existing intuitive and informal knowledge by 

creating opportunities for them to tackle problems using their common sense (Human 

& Olivier, 1999, p.3). The problem-centred approach is based on a socio-constructivist 

learning theory which believes that learning is a social process and the learner is an 

active participant who constructs his or her own knowledge. Learners learn from each 

other through talking to each other and the exchangingof ideas.  

 

The National Council of Teachers of Mathematics (NCTM) emphasises the importance 

of teaching early algebra concepts in the early years and describes algebra as a way 

of thinking with a set of concepts and skills which aids learners to generalise, model 

and analyse mathematical situations (Lee, Collins, & Melton, 2016, p. 306). This 

orientation enables the learner to get a positive feeling about mathematics and what 

mathematics is.  

 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

4 

In the South African CAPS for the Foundation phase mathematics document, 

“Patterns, Functions and Algebra” is described as one of the five content areas of 

foundation phase mathematics (Department of Education, 2011). The prescribed 

activities of this content area focus on the completion of number sequences and the 

copying and extending of geometrical patterns (Department of Education, 2011, 

p.506). An absence can be noted of a relational approach to sequencing in the 

curriculum documents and the order of learning materials provided for teaching  (Du 

Plessis, 2018, p.1). This results in a curriculum which focuses on procedures and is 

based on memory and recall (Du Plessis, 2018). This approach to patterns, functions 

and algebra is carried through in all government textbooks and educational materials 

and thus contributes to a limited exposure to algebra in the early years. 

 

Research shows that the traditional “arithmetic-then-algebra” approach, where an 

arithmetic curriculum in the early years is followed by formal algebra education in the 

later years, leads to school failure for many learners (Kaput, 1998, 1999, 2008; Moses 

& Cobb, 2001; Schoenfeld, 1995) in (Knuth et al., 2014).  When algebra is only 

introduced in the later grades, there is not enough time and space for teachers to 

develop depth in learners’ algebraic thinking with algebra. This results in limited career 

opportunities, particularly in STEM-related fields. It is therefore clear that a longitudinal 

approach to teaching algebra is imperative. This involves including algebra education 

from pre-school up to Grade 12. Learners should have ample opportunities to 

experience algebra starting in the early grades. These experiences should build on 

learners’ natural and informal intuitions of patterns and relationships to develop formal 

ways of mathematical thinking (NCTM, 2000; NCTM, 2006).  

 

The transition from arithmetic to algebra can be challenging for learners, as many 

adjustments need to be made. Learners who are proficient at early years arithmetic 

and who are exposed to arithmetic for extended periods of time, may struggle with the 

transition to algebra as they are answer-orientated and struggle to focus on the 

representation of relations (Kieran, 2004). Considerable adjustment is required to 

develop algebraic thinking, which includes but is not restricted to: 

• A focus on relationships and not merely on the calculation of numerical 
answers; 
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• A focus on operations as well as their inverses, and on the related idea of 
doing/undoing; 

• A focus on both representing and solving a problem instead of just solving it to 
find the answer; 

• A focus on both numbers and letters rather than just numbers alone. This can 
include: 
v Working with letters which may be variables or unknowns 
v Accepting unclosed literal expressions and responses 
v Comparing expressions for equivalence based on properties rather than on 

numerical evaluation 
• A refocus of the meaning of the equation sign (Kieran, 2004). 

 

Algebraic thinking can be understood as a way to approach to quantitative situations 

that emphasises the general relational features with tools that are not automatically 

letter-symbolic, but which can be used as cognitive support for introducing and for 

suporting the traditional dialogue of school algebra (Kieran, 1996, p.275). 

It has been documented that learners at a young age are able to think algebraically in 

the following ways: 

• Form a relational understanding of the equal sign (Carpenter et al., 2003, 
2005; Falkner et al., 1999). 

• Generalise mathematical structure by noticing regularity in arithmetic 
situations (Schifter, 1999; Bastable and Schifter, 2008; Schifter et al., 2008). 

• Use sophisticated tools to explore, symbolise and generalise functional 
relationships (Blanton et al., 2015; Carraher et al., 2006; Cooper & Warren, 
2011; Moss et al., 2008). 

• Develop mathematical arguments that reflect more generalised forms than 
the empirical, case-based reasoning (Carpenter et al., 2003; Schifter, 2009). 

• Reason about abstract quantities (volume, length, mass) to represent 
algebraic relationships (Dougherty, 2003; B. J. Dougherty, 2008). 

 

These ways in which learners are able to think algebraically, informs the types of 

activities or learning situations which will develop learners’ ability to generalise. It is, 

therefore, imperative that these ways of thinking is implemented in the design of the 

instructional sequence in Chapter 5.  

 

Mason, Burton and Stacey (2010) suggests a conceptual framework for the 

mathematical process which takes place when a learner approaches any problem as 

seen in the figure below. The framework shows that the mathematical processes 

involved with tackling a problem is specialising and generalising. A learner must 
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first be able to specialise, which refers to understanding and to make a plan to solve 

a problem. Specialization will lead to the learner being able to solve the problem by 

carrying out the plan and checking if the solution is appropriate. Here the learner is 

busy with generalisation.  

 

 

 

 

 

 

 

 

 

  

 

Figure 1.2. Conceptual framework of the mathematical process (Mason, Burton and 

Stacey, 2010) 

 

Algebraic reasoning is an activity which consists of the generalisation of mathematical 

ideas, using symbolic representations, which represent functional relationships 

(Blanton & Kaput, 2011). The publication Algebra in the Early Grades (Kaput et al., 

2008, p. 77) takes on the perspective that the core of algebraic reasoning is 

constructed by complex symbolisation processes that underpins purposeful 

generalisations and reasoning with generalisations. Algebra’s broad, rich and natural 

relationship with naturally occurring human cognitive processes and reasoning is 

stressed (Kaput et al., 2008).  

Certain challenges impair the development of algebraic thinking in the early years. 

Patterns are often used as the main tool to develop algebraic thinking in the early 

years, but patterns are only one of the possible avenues to master algebraic thinking. 

Even so, teachers have limited pedagogical content knowledge in relation to the types, 

levels and complexity of patterns. Teachers may limit children’s development of 

patterning when only approaching patterns as repeating patterns (Papic & Mulligan, 

2007, p. 592).  

Processes Phases Rubric 

SPECIALISING 

GENERALISING 

ENTRY 

ATTACK 

REVIEW 

I KNOW 

I WANT

 

INTRODUCE 

CHECK 

REFLECT 

EXTEND 

STUCK AHA
! 
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When teachers have a narrow perspective of algebraic activities, the relation between 

algebra and early mathematical thinking is obscured (Kaput et al., 2008). The 

difficulties learners experience further orginate due to an absence of an relevant 

foundation in arithmetic (Warren, 2004, p.417). The assumption has been that 

everyday use of the four operations (+, -, x, ÷) (Back to basic movement that feeds the 

traditional teaching approach) will develop a fundamental understanding of the 

structure of mathematics but research is showing that it is not. Learners should be 

exposed to  and encouraged to engage in patterns that lead to generalised thinking 

throughout their education (Warren, 2004).  

 

Early algebra has the purpose of deepening learners’ understanding of the structural 

form and generality of mathematics. It aims to produce more than only isolated 

mathematical experiences. This has been proved to ensure better mathematical 

achievement of learners in later grades (Cai and Knuth, 2011). “Pattern generalisation 

is considered one of the prominent routes for introducing students to algebra” 

(Radford, 2010, p. 1). Developing a feeling for numbers and operations, and the 

patterns within them, builds a foundation for the development of children’s algebraic 

thinking.  

 

Functions within patterns are rich and may include a wide spectrum of kinds of change. 

Learners’ patterning knowledge shows to have a great influence on the progress of 

analogical thinking and their ability to generalise, identify and extend patterns through 

inductive reasoning.  The essence of mathematics is grounded in relations and 

transformations that lead to patterns and generalisations. In research literature, 

abstracting patterns in mathematical structures is the goal of mathematics and the 

basis of structural knowledge (Jones, 2018). The focus of mathematics should, thus, 

be on developing fundamental skills in generalising, expressing and systematically 

justifying generalisations (Warren and Cooper, 2008, p. 171). The focus of early 

algebra should be on a relational approach to learning mathematics, which refers to 

studying number from a structural perspective (National Research Council, 2001). 

Structure is  drawn out through examining number and space relationally, which 

sparks reasoning that not only focuses on the object but also on underlying associates 

the object possesses (Du Plessis, 2018). Learners should be able to see common 
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mathematical structures in representations when solving problems. The emphasis 

should fall on the structural relationships within problems. These relationships give 

hints for how problems might be solved. The development of proficient problem solvers 

involve learners forming mental representations of problems, detecting mathematical 

relationships and devising new solution methods (National Research Council, 2001). 

 

The levels of thought in the process of developing early algebraic thinking are 

significant and reveal a trend in the development of thought in algebra. Nixon (2009) 

explored a theory of the levels of the development of algebraic thinking based on 

Piaget and Garcia’s belief that there are three developmental levels in algebra. Nixon 

argues for three levels of learning to think algebraically: the perceptual level (precept 

level) where learners make use of counters or abacuses for counting. In this stage 

learners need to coordinate their senses and perceptions to form algebraic concepts. 

In the conceptual level (concept level) a shift from analysing objects to considering the 

relations of transformations between the objects can be noticed. Learners are able to 

find interrelationships between properties and start providing definitions and theorems 

for what they experience. In the abstract level learners use symbols with deep 

understanding to construct proofs and they can understand the importance of 

deductions, axioms, postulates and proofs. As learners pass through these levels, it 

is necessary for them to be guided. They should be motivated to generalise and draw 

comparisons (Nixon, 2009).  

 

In a study conducted by Carpenter and Levi (2000) learners were introduced to 

number sentences as a context to engage learners in a discussion about properties of 

number operations. On the perceptual level learners were introduced to a variety of 

true-false operations with zero, for example 58 + 0 = 58. Learners could readily say if 

it was true or false. A mental picture of these types of operations were formed. 

Learners moved to the conceptual level when they were then challenged with 78 – 49 

= 78. Learners had to justify why this could not be true and how it differs from working 

with a zero. After many examples, learners were challenged to state a rule which they 

could share with the rest of the class. The learners were able to verbalise that when 

you add or take away zero from a number, you are always left with the same number. 
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Learners were thus able to construct their own mathematical concept. When learners 

are able to ‘make a rule’ they are starting the process of generalisation.  

 

Algebraic thinking involves two core activities: (a) making generalisations and (b) 

making use of symbols to represent mathematical ideas and to represent and to solve 

problems. Generalisation and formalisation involve the articulation and representation 

of unifying ideas that make clear the mathematical and structural relationships 

(Carpenter & Levi, 2000). 

 

The focus of algebra teaching in mathematics should be on developing skills in 

generalising and expressing and justifying generalisations. It seems that some 

classrooms in the early years focus more on mathematical products than on 

mathematical processes (Warren & Cooper, 2008, p. 171). Mathematical processes 

involve communications, connections, mental mathematics and estimations, problem 

solving, reasoning, technology and visualisation (Seven Mathematical Processes in 

Action, 2018). Over-exposure to result pattern generalisation (regularity in results) can 

hinder learners’ ability to generalise regularities in the process of finding the pattern. 

It is, therefore, necessary to explore various avenues for the development of algebraic 

thinking.  

 

Many believe young children are capable of thinking functionally (algebraically). The 

difficulties that occur may stem from a lack of experiences (with generalisations) in the 

early years (Warren & Cooper, 2008, p. 172). Algebra in the early years demands a 

clear comprehension of the mathematical structure of arithmetic expressed by 

language and gestures making use of concrete materials and representations. The 

generalisation concept is not integrated into early years mathematics in schools in 

South Africa.  

 

When examining the emergence of algebra throughout the history of mathematics, 

important lessons can be learned. The stages through which algebra emerged in 

history, can be used to inform the sequence of teaching and learning of algebra at a 

early education of mathematics level. Piaget (1989) claims that advances made in the 

history of scientific thought from one period to next, do not follow each other in a 
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random manner, but can be organised into sequential stages. Literature (Derbyshire, 

2006; Kvasz, 2006; Tabak, 2011; Ferrara and Sinclair, 2016) agrees that the history 

of algebra occurred over three stages: the rhetorical stage, the syncopated stage and 

the symbolic stage. When examining these stages in history, it is noticed that the 

components of early algebra, including the concept of generalisation, emerge in a 

sequential manner. These stages in the history of algebra and the emergence of early 

algebra concepts will be used to inform an instructional design sequence. 

 

This systematic literature review study will aim to provide an instructional design 

sequence for the teaching of the generalisation concept to effectively foster early 

algebra concepts in young learners.  

1.3. STATEMENT OF THE PROBLEM 
 

Generalising can be seen as a mental activity by which one squash multiple instances 

into a single unitary form (Blanton et al., 2019). The problem is that the generalisation 

concept is not taught effectively to foster early algebra concepts in young learners.  

Mitchelmore (2002) groups generalisation into three categories: Generalisation is 

often used as a synonym for abstraction (G1) where it is defined as “finding and 

singling out properties in a whole class of similar objects” (Mitchelmore, 2002). 

Generalisation as an extention (G2) is formed by at least three aspects: Empirical 

extension, which applies when one finds other contexts to which a known concept 

applies; mathematical extention, when one class of mathematical objects is emerged 

in a larger class based on a different similarity; mathematical invention, when a 

mathematician deliberately omits a defining property to form a more general concept. 

Generalisation can also refer to a relationship that holds between all members of a set 

of objects (G3) (for the purpose of this study, G3 would be most applicable) 

(Mitchelmore, 2002). For the purpose of this study, generalisation will be seen as 

learners’ ability to generalise mathematical structure by noticing regularity in arithmetic 

situations, use sophisticated instruments to explore, generalise, and symbolise 

functional relationships, construct mathematical arguments that are more generalised 

forms than the empirical, case-based reasoning often used, and reason about abstract 

quantities to represent algebraic relationships Knuth et al. (2014). 
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Teaching mathematics that promote understanding is seen as in important facet of 

this systematic literature review. School mathematics should be seen as a human 

acitvity which reflects the work of mathematicians. This involves finding out why certain 

techniques work, thinking of new techniques and justifying and reasoning about these 

techniques (Carpenter and Lehrer, 1999). Learning with understanding is measured 

in terms of the outcomes of the process. Learners learn with understanding if they can 

apply this new knowledge to novel topics to solve unfamiliar topics. For the purpose 

of this study, the focus will fall on teaching for understanding. Three axes of 

characterisation for instruction for understanding include: tasks, tools and normative 

practices. Teaching for understanding encourages and integration of problem solving 

with the learning of basic skills and concepts. Classrooms that promote 

understanding should look like discourse communities where learners are engaged 

in discussing various techniques to solving problems. Mathematics should become a 

language for thought rather than a collection of ways to get an answer (Carpenter and 

Lehrer, 1999). The teaching for robust understanding (TRU) framework described five 

essential elements for classroom practice: (1) the content; (2) cognitive demand; (3) 

equitable access; (4) Agency, ownership and identity; and (5) Formative assessment 

(Schoenfeld, 2019). Teaching for understanding will be discussed in more detail in 

chapter 3 of the study.  

 

Knuth et al. (2014) identified five big ideas around which much of early algebra’s 

research has matured. These big ideas offer opportunities for the development of deep 

algebraic reasoning, which includes the practices of generalising, representing, 

justifying and reasoning with mathematical relationships: 

(a) equivalence, expressions, equations and inequalities 
(b) generalised arithmetic 
(c) functional thinking 
(d) variables 
(e) proportional reasoning (Knuth et al., 2014) 

 
 

Kaput et al. (2008) describes algebraic reasoning as symbolising activities that serve 

purposeful generalisation and at the same time as reasoning with symbolised 

generalisations. The first two strands of his framework for early algebra involve the 

two types of generalising that are the focus of algebraic reasoning, namely 
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generalising arithmetic and generalising towards the idea of function. The third strand, 

modelling as a language, involves the  modelling of real-life situations using algebraic 

reasoning and language (Roberts, 2012). Generalisation forms an integrated part of 

early algebra and will serve as the focus of this literature review study.  

 

For the purpose of this study, young learners can be taken as Foundation Phase 

learners in the South African context. This implies that teaching and learning from 

Grade R, where learners are 5 or 6 years old, to Grade 3, where learners are 8, 9 or 

10 years old, will be included in the study.  

 

The purpose of this systematic literature study is to investigate the role of 
generalisation in the development of early algebra concepts and skills. 

 

To achieve the above stated objective, the following research questions are raised: 

 

RQ 1:  What is the role of generalisation in the understanding of early algebra concepts 

and skills in young children? 

 

RQ 2: How can the historical development of algebra and scholarly trajectories of 

algebra learning be synthesised to construct an instructional design sequence which 

focuses on generalisation for early algebra? 

 

From here, the aims and the objectives of the study will be explained. 

1.4. AIMS AND OBJECTIVES 
 

To answer the research question stated above, there are some sub-research 

questions which can be viewed as the aims and objectives for this systematic literature 

review. These aims and objectives puts the study in focus as it clearly describes the 

elements and themes which will be researched in the study.  

 

1. What can we learn from the history of the development of algebra for the 
learning of algebra? 
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Towards this aim, the researcher will examine the development of algebra from 

Mesopotamian times to algebra as we know it in schools today. This is an important 

aspect to investigate as it may provide valuable information and clues for 

understanding parallels between the development of algebraic thinking in history and 

the development of learners’ algebraic thinking in schools. 

2. What is early algebra? 

In Chapter 2 and Chapter 3, the researcher will investigate the nature of early algebra 

by reviewing the literature on the main elements or components that form early 

algebra. The study will aim to provide a clear perspective on early algebra and the 

main components thereof, and look at the structure and form of mathematics which is 

developed through early algebra.   

3. What is the role of algebraic thinking and generalisation in the understanding 
of early algebra? 

This study will explore teaching for understanding as a route to the development of 

algebraic thinking and generalisation of early algebra. The researcher takes on the 

perspective that a problem-centred approach is necessary in a classroom which 

promotes understanding. For this objective, ideas for implementing generalisation in 

a classroom which promotes the understanding of generalisation in early algebra 

through a problem-centred approach, will be investigated. 

4. How is the problem-centred approach implemented in the teaching and learning 
of early algebra in the search for teaching for understanding? 

Here the researcher aims to look deeper into the characteristics of a problem-centred 

classroom with a specific emphasis on the teaching and learning of early algebra. This 

will include an investigation of the classroom culture, the types of questions which 

should be asked and theoretical perspectives on the teaching of mathematics for the 

role of the teacher.  

5. How can the emergence of early algebra concepts from history be used in the 
construction of an instructional design sequence which shows a possible 
blueprint for the teaching and learning of generalisation for early algebra? 

The aim of this systematic literature review is to extend on existing knowledge in the 

literature by critically constructing higher-order knowledge to provide a didactical 

framework for the teaching of generalisation which promotes the understanding of 

early algebra concepts for young learners. In Chapter 5, an instructional design 
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sequence will be constructed based on the emergence of early algebra concepts from 

history.  

1.5. RESEARCH METHODOLGY 
 

1.5.1 Research approach: This study followed a qualitative research approach, and 

consists largely of a thematic analysis of data which was generated using a systematic 

literature review. Dixon-Woods (2016, p. 969) defines the systematic literature review 

as “a scientific process governed by a set of explicit and demanding rules oriented 

towards demonstrating comprehensiveness, immunity from bias, and transparency 

and accountability of technique and execution.” Literature review is an essential part 

of academic research as knowledge advancement must be built on prior research. As 

existing work is reviewed, we understand the breadth and depth of the existing body 

of work and can identify gaps in the literature (Xiao and Watson, 2019).  

 

The literature review for the purpose of research, can be categorised in four categories 

based on the purpose of the review: describe, test, extend and critique. The purpose 

of this study is to extend on existing knowledge with regards to how the development 

of the generalisation concept improve early algebra skills and concepts in young 

learners.  

 

An extending review aims to go beyond the summary of data but rather focuses on 

building on the literature to create new, higher-order constructs. For qualitative 

research, these techniques include extracting concepts and second-order constructs 

from the literature and transforming them into third-order constructs (Xiao and Watson, 

2019). The study will be elevated by extending on existing literature to designing an 

instructional design sequence in Chapter 5.  

 

The method of research will be a thematic analysis. Themes were extracted from the 

literature, clustered, and eventually synthesised into analytical themes. Thomas and 

Harden (2008, p. 9) in Xiao & Watson (2019) explain that “analytical themes are more 

appropriate when a specific review question is being addressed (as often occurs when 

informing policy and practice), and third order constructs should be used when a body 
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of literature is being explored in and of itself, with broader, or emergent, review 

questions.” 

 

1.5.2. Research paradigm: This systematic literature study was conducted within the 

interpretivism research paradigm. Non-empirical studies often fall in the interpretivism 

paradigm, taking a philosophical approach to the exploration of the social world with 

the aim of developing a clear understanding of a specific phenomenon (Gray, 2014, 

p. 24).  

 

1.5.3. Research design: This study followed the systematic literature review approach 

as explained by Dixon-Woods (2016) and Xiao & Watson (2019),  and is comprised of 

three major stages:  

1. Planning stage: The researcher identifies a need for the review, sets the 
research questions and develop a review protocol.  

2. Conducting the review: The researcher identifies and selects primary studies, 
extracts, analyses and synthesises data.  

3. Reporting the review: The researcher writes a report to disseminate findings 
from the literature review (Dixon-Woods, 2016; Xiao and Watson, 2019).  

 

Even though procedures in various types of reviews differ, eight steps can be 

followed when conducting a systematic review. The steps are shown as they follow 

the three major stages, in the diagram below. 

 

 

 

 

 

 

 

 

 

 

 

Diagram 3.1. Process of the systematic literature review (Xiao and Watson, 2019) 
 

Planning the 
review 

Conducting 
the review 

Reporting the 
review 

1. Formulate the problem 

2. Develop and validate the review protocol 

3. Search the literature 

4. Screen for inclusion 

5. Assess quality 

6. Extract data 

7. Analyse and synthesise data 

8. Report findings 
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1.6. TRUSTWORTHINESS 
 

The key principles of good qualitative research is found in the notion of trustworthiness 

which refers to the neutrality of its findings or decisions (Babbie and Mouton, 2011).  

A research approach can be trustworthy if the methodology can be copied by a 

different researcher to reach the same results and findings. The systematic literature 

review framework has been used by many researchers in various qualitative studies.  

 

The methodology used in this study was documented meticulously to ensure its 

replicability. An audit trail was built by carefully documenting online platforms and 

search terms used to find studies.  

 

Literature was studied thoroughly to ensure that the authors’ arguments are correctly 

and effectively interpreted. Furthermore, emphasis was placed on the accurate citing 

of all authors and their work to avoid plagiarism. The researcher aimed to interpret all 

literature in an objective manner. 

 

Validity was achieved through triangulation, i.e., by using multiple sources of data and 

repeatedly cross-checking data (Merriam, 2009). Data was  collected from academic 

journals, books, websites and various databases. Data from over a long period of time 

will be included to ensure a valid overview and analysis of the data.  This ensures that 

a full perspective on early algebra and its emergence from history can be formed and 

analysed. 

 

Triangulation was promoted by involving more than one investigator in the study. Even 

though this study was conducted by one investigator, work was continuously assessed 

by the study leader to ensure validity.  

Finally, discrepant case analysis was used as a means of triangulation. This involves 

looking for data which support alternative explanations. This ensures that the 

researcher is aware of possible bias and take into account contrary explanations and 

perspectives.  
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Peer review formed an important part of ensuring validity in this study. Using peer-

reviewed data (articles/books/websites) enabled the researcher to include data which 

were valid and of a high quality. 

 

An audit trail, consisting of a clear methodology and account of how the study was 

conducted, was kept to ensure the reliability and replicability of the study. The audit 

trail was continuously monitored by the study leader.  

 

All data extracted in this study is already available in the mathematics education field 

and no previously unpublished personal information was used. Data used are 

reviewed by scholars who are experts in the field. 

 

Before the research was conducted, ethical clearance was applied for, and was  and 

granted by Stellenbosch University’s human research ethics department (Humanoria).  

 

No external funding was provided for this study, and so no conflicts of interest are 

introduced through funding relationships.  

 

Since no research participants are involved in this study, the ethical risk of this study 

can be considered very low. 

1.7. DELIMITATION OF THE STUDY 
 

An historical overview of the development of thought in Algebra was included in the 

study, as it provides a valuable perspective on how algebraic thinking has developed. 

This developmental trajectory was drawn into relation with how algebraic thinking 

develops in learners at a school level.  

 

This study only investigated algebraic thinking in young learners. The focus fell on 

learners between the ages of 6 years and 10 years old. Algebraic thinking in these 

ages can be referred to as early algebraic thinking. 
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The Malati project (Linchevski, Kutscher and Olivier, 1999) explained 2 strands of 

algebra, which includes making generalisations and using symbols to represent 

mathematical ideas. In this study, the focus fell on generalisations.  

 

Lastly, the findings from this study will not be able to be generalised to the 

development of other areas of mathematics. It is not necessarily sure to have the same 

results or findings as this study is solely based on early algebraic concepts. 

 

1.8. CHAPTERING 
 

This thesis consist of six chapters as explained below: 

 

Chapter 1: Introduction. States the purpose of, and motivation for, the study, and 

provides a study outline. 

 

Chapter 2: The historical review of the development of algebra and the emergence of 

the big ideas of algebra in history. This chapter aims to explain the core ideas of 

early algebra and how they emerged in the history of algebra. This chapter greatly 

informed the instructional design described in Chapter 5.  

 

Chapter 3: Early algebra, generalising and structure. This chapter aims to analyse 

early algebra, the development of early algebraic thinking, the fundamental 

components of early algebra and the role generalisation plays in the early years 

mathematics classroom. This analytical chapter greatly informed the instructional 

design which is described in Chapter 5. 

 

Chapter 4: The methodology. This chapter aims to explain, justify and evaluate  

all the methodological choices made in the study.  

 

Chapter 5: Model for implementing the instructional sequence. This chapter uses the 

findings formed from chapters 2 and 3 to provide a higher order construct in the form 

of an instructional design sequence for a possible implementation of generalisation in 

the mathematics classrooms for young learners.  
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Chapter 6: Conclusion. In this chapter an overview of the findings will be given to 

conclude the report. Ideas for further research in this field will also be included. 

1.9. CONCLUSION 
 

This study aims to explore and construct an instructional sequence to implement early 

algebra in the classroom with the aim of making algebra in the later grades accessible 

to more learners. The purpose of chapter 1 is to provide an introductory motivation for 

why the study is needed. The chapter starts by sketching the background for literature 

review. It follows by stating the problem which is taken out of the literature. From there 

a research question and sub-research questions with aims and objectives are 

explained. The methodology of the systematic literature review is briefly discussed. A 

detailed explanation and evaluation of the methodology can be seen in Chapter 4. 

Lastly, the chaptering for the study is set out.  
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CHAPTER 2: A HISTORICAL REVIEW OF THE DEVELOPMENT OF 

ALGEBRA AND THE EMERGENCE OF THE BIG IDEAS OF 

ALGEBRA IN HISTORY 

2.1. INTRODUCTION 
 
The history of algebra is a history of the gradual reification of activities and 

transformation of operations into objects (Kvasz, 2006, p. 291). By examining the 

development of algebra through history, one can construct an idea of the development 

of algebraic thought and reasoning through the ages. This trajectory of thought may 

provide valuable clues as to how algebraic thinking and the generalisation concept 

should be taught at a school level. Many lessons can be learned from how people from 

the earliest times have learned algebra. 

 

Spencer (1861) in his work on moral, intellectual and physical education, stated: 

If there be an order in which the human race has mastered its various kinds of 
knowledge, there will arise in every child an aptitude to acquire these kinds of 
knowledge in the same order…. Education is a repetition of civilization in little 
(p.76) 

 

Piaget (1989), who was an outspoken constructivist, agreed: 

The advances made in the course of history of scientific thought from one 
period to the next, do not, except in rare instances, follow each other in random 
fashion, but can be seriated, as in psychogenesis, in the form of sequential 
“stages” (p.28). 

 

Sfard (1995) concurs that it is valid to expect that similarities will be observed when 

analysing and interpreting phylogeny and ontogeny of mathematical concepts. Due to 

the fundamental characteristics of knowledge, and to the essence of the relationship 

between its various levels, similar cyclical phenomena can be traced throughout the 

historical development of knowledge (Sfard, 1995).  

 

For these reasons, the stages of the development of algebraic thinking in history 

should be explored and analysed to inform how algebraic thinking is taught today. For 

this study, these stages will inform the instructional design sequence in Chapter 5.  
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These “stages” can be drawn into relation with the levels of algebraic thought we see 

when learners are developing algebraic thinking. It is therefore necessary for this study 

to take an overview on how algebraic thinking developed in history with the aim of 

providing a possible instructional trajectory (Stephan, Underwood-Gregg and Yackel, 

2016; Gravemeijer, 2020) which teachers should keep in mind in the classroom when 

teaching and learning of early algebra concepts, especially generalisation, take place. 

Freudenthal (1973) believes that instructional trajectories should be informed by the 

conceptual development of mathematical ideas in history. This study aims to use the 

Real Mathematics Education (RME) design principles and the heuristics of guided 

reinvention and emerging modelling to construct an instructional framework for the 

implementation of generalisation in the early algebra classroom (Stephan, 

Underwood-Gregg and Yackel, 2016; Gravemeijer, 2020). The development of 

algebra throughout history and its relationship with the fundamental components of 

algebra which emerge from a systematic literature review, are used as the basis for 

the design of an instructional sequence and ideas for the classroom setting.  

 

By making reference to the history of algebra, teachers can increase learners’ 

understanding of the material. Very few rectified, current textbooks use a formal, 

operational instructional design theory specific to mathematics to inform the design of 

textbooks (Stephan, Underwood-Gregg and Yackel, 2016). Textbooks often follows a 

logical learning trajectory which is very sterile. The textbooks rarely provide context 

and reasoning for why the subject matter at hand is important, why people in history 

were interested in the topic, and why the topic remains interesting today (Katz and 

Parshall, 2014). RME instructional design and guided reinvention are important in the 

reform of textbooks and instructional resources (Stephan, Underwood-Gregg and 

Yackel, 2016). Learners do not understand the usefulness of the subject by simply 

practicing incoherent examples which follow set out rules. History provides clear 

reasons for the importance of the subject matter. Knowing these reasons can aid 

learners in developing the perspective that algebra is a useful tool to solve real life 

problems. Learners thereby become more involved in the material and form a deep 

understanding thereof. Based on the ideas of Freudenthal  (1973), it is proposed that 

knowledge of the stages of the historical development of algebra can help a teacher 

and learner see and understand how the need for generalising and making 
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formalisations emerged as people through the ages engaged in mathematical 

problems and why we still implement it in all areas of mathematics. 

 

When considering the history of the emergence of algebra, it is important to note the 

various definitions of algebra. Different understandings of what constitutes algebra 

result in different accounts of the origins of algebra. Some believe that early signs of 

algebraic thinking are indicated when an attempt is made to approach computational 

process in some or other general manner. The search for general solutions of 

equations was one of the central themes of algebra in history (Sfard, 1995). Others 

believe that it is necessary to implement algebraic methods to solve problems for the 

emergence of algebra to be noted. Operational symbolisation is claimed as one of the 

main features of algebraic thinking. Patterning and the recognition of pattern 

throughout mathematics, is the core of the development of mathematical reasoning 

(Papic and Mulligan, 2007; Cooper and Warren, 2008; Mulligan and Mitchelmore, 

2009). One of the core goals of mathematics is to find the patterns and structure which 

emerge from relations and transformations. Abstracting patterns in the total of 

mathematics is fundamental to the development of structural knowledge and the goal 

of mathematics (Warren and Miller, 2010). From the literature it can be noticed that 

generalisation should be the aim of mathematics teaching in the early years and 

should run through all content areas. It should become a habit of mind of the teacher 

as well as the learners as they engage in various problems. 

 

The evolution of algebra can be presented as a continuous attempt at transforming 

computational procedures into mathematical objects (Sfard, 1995). Therefore, algebra 

evolved as a constant attempt at generalising and making formalisations (see 3.3.1) 

(Kaput, 1999). An overview of the history of algebra will hopefully provide insights into 

the nature of developing algebraic thought and generalising mathematics.  

 

In many accounts of the history of algebra, it is stated that algebra went through three 

predominant stages as it developed through the ages. These stages are the rhetorical, 

syncopated, and symbolic stages. The rhetorical stage refers to the stage where all 

statements and arguments were given in words. In the syncopated stage, some 

arguments are made by abbreviations when treating algebraic expressions. In the final 
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stage, the symbolic stage, there is total symbolisation – all numbers, operations, 

relationships, and manipulations of symbols transpire under a governed set of well-

understood procedures (Katz and Barton, 2007).Sfard (1995) also attempts to provide 

a brief overview of this history by classifying the development of algebra into three 

stages, however these differ from those in other literature. Sfard’s first stage of the 

development of algebra is described as the antiquity to renaissance stage. In this 

stage the focus falls on the science of generalised numerical computations. Stage 2 

focuses on Viète’s invention where algebra is considered a science of universal 

computations. In Stage 3, the works from Galois to Bourbaki is studied. Here algebra 

becomes a science of abstract structures. In all of these stages, generalisation seems 

to be the underlying factor and goal of mathematics. 

 

Katz and Barton (2007) argue that alongside the development of algebra through 

these stages of history, four conceptual stages of algebra emerges. These stages are 

the geometric, static equation solving, dynamic function and abstract stages. None of 

these stages described can stand independently. They are constantly overlapping with 

one another. The geometric stage refers to the stage where the bulk of algebra is 

geometric. The static-equation solving stage aims to find numbers fulfilling certain 

relationships. Motion is the main idea of the dynamic function stage. Finally, the 

abstract stage has structure as the main goal (Mathematics for Teaching, n.d.).  

 

 

 

 

 

 

 

 

 

 

   

 

Figure 2.1. Stages in the history of algebra (Katz and Barton, 2007) 

STAGE 1: RHETORICAL STAGE 

STAGE 2: SYNCOPATED STAGE 

STAGE 3: SYMBOLIC STAGE 
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In this chapter, the focus will fall on a discussion of the three main stages of algebra 

through the history and how they are supported by and related to the four conceptual 

stages. The account of the development of algebra by Sfard (1995) will be considered 

and integrated into the main three stages of the emergence of algebra through the 

ages. In this overview of the emergence of algebraic thinking and generalisation, some 

of the main scholars in its history are explored and discussed. There are many more 

important scholars who influenced the emergence of algebra and algebraic thinking. 

Even so, the purpose of this chapter is to sketch an overview of the trajectory by 

focusing on the main events in the development of algebra to provide a clear view of 

the stages of development of algebraic thinking and therefore the ability to generalise. 

These stages of development and their relation to the fundamental components of 

early algebra will be used to inform the instructional design for the development of 

generalisation in young learners in Chapter 3. 

2.2. EARLY ALGEBRA 
 

2.2.1. Fundamental components of early algebra 

 

In this section of Chapter 2, early algebra as a mathematical domain will be analysed 

and discussed with reference to its various fundamental components. This is important 

to the understanding of how these components of early algebra emerged from history. 

This emergence of the fundamental components of early algebra will inform the 

instructional design in Chapter 3.   

 

2.2.1.1. Introduction 

 

Algebra emphasises relationships between quantities and how these quantities 

change in relation to one another. Algebraic thinking involves grasping patterns, 

relations, and functions; representing and analysing mathematical situations and 

structures using algebraic symbols; and using mathematical models to represent and 

understand relationships (Friel, Rachlin and Doyle, 2001). Kaput, Carraher and 

Blanton (2008) further make a distinction between “algebra” and “algebraic reasoning”. 

They refer to “Algebra” as an independent body of knowledge, while “algebraic 

reasoning” is described as a human activity. This is an important distinction to take 
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note of when inquiring how algebraic reasoning is developed. Even so, when 

compared to the statement by Freundenthal which states that mathematics is a human 

activity where learners are provided with a chance to learn in mathematical activities 

and can extract mathematical ideas or create models of learners’ thinking 

(Gravemeijer and Terwel, 2000), “Algebra” can also be taken as a human activity in 

itself. Algebraic reasoning is an activity which consists of the generalisation of 

mathematical ideas, using symbolic representations of functional relationships 

(Blanton & Kaput, 2011). So, algebraic reasoning involves the generalisation of the 

whole of mathematics and communicating these generalities by means of symbolic 

representations in the form of models. 

 

The publication Algebra in the Early Grades (Kaput et al., 2008, p. 77) takes the 

perspective that the core of algebraic reasoning is constructed by complex 

symbolisation processes that serve meaningful generalisations and reasoning with 

generalisations. Algebra’s broad, rich and natural relationship with naturally occurring 

human cognitive processes and reasoning is stressed (Kaput, Carraher and Blanton, 

2008). In other words, algebra serves the purpose of finding generalities in situations, 

specifically mathematical situations. Kieran (1996) categorised algebra in relation to 

the activities in which learners engage: generational activities, transformational 

activities and global meta-level activities. Generational activities of algebra involve the 

making of expressions or equations that are objects of algebra. This involves activities 

where geometrical and numerical patterns are generalised in expressions (Kieran, 

1996). Friel et al. (2001) elaborates on the fundamental components of algebraic 

thinking: 

 
2.2.1.2. Understanding patterns, relations, and functions 

 

Understanding algebra starts with understanding patterns and symbols at pre-school 

level (Lee, Collins and Melton, 2016). Roberts (2012) describes patterns as “regular 

structure of shapes or numbers which are created by repeating a rule. Young children 

begin to explore patterns in the world around them through experiences with things 

such as colour, size, shape, design, words, rhythms, movements and physical 

objects”(Roberts, 2012b, 2012c).  They observe, describe, repeat, extend, compare 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

26 

and create patterns. They can predict what comes next and identify missing 

components of patterns. They learn to distinguish between different types of patterns 

(Friel, Rachlin and Doyle, 2001). Du Plessis (2018) agrees that this first experience of 

patterns through rhythm and rhyme relies on the repeated nature of pattern. This is 

because of the cyclical structure of patterns. The recognition of rhythm at a young age 

enables learners to identify and create their own patterns. Rhythm regularity is 

therefore clarified through learners’ implementation of this regularity to express the 

generality in the sequence of events, far past the perceptual and long before algebraic 

relationships and structure is formed (Du Plessis, 2018, p. 2). In higher elementary 

grades, learners develop the representation of patterns numerically, graphically, 

verbally or symbolically. They learn to look for relationships between numerical and 

geometrical patterns and analyse how they change or grow. Learners can be 

encouraged to make generalisations through the use of tables, charts, physical objects 

and symbols (Friel, Rachlin and Doyle, 2001). As learners move through the grades, 

it is expected that these processes of generalisation become more and more 

sophisticated until their understanding expands to include functions of more than one 

variable, and they learn to do transformations such as composing and inverting 

commonly used functions (Friel, Rachlin and Doyle, 2001). When extracting patterns 

from situations, we are not only referring to numerical and geometrical patterns, which 

form the focus of the CAPS curriculum content strand, “Patterns, functions and 

algebra’ (Department of Basic Education, 2011). Learners must be prompted to see 

the patterns and structure which underly all mathematical activities (Mulligan and 

Mitchelmore, 2009).  Generalised arithmetic is a content strand which enjoys focus in 

Kaput’s framework for early algebra (see 2.2.4). Generalising arithmetic involves 

generalising about the properties of numbers and operations and generalising about 

particular number properties and relationships (Roberts, 2012). When learners are 

able to generalise arithmetic, they can see patterns and structure within numbers, 

operations and their relationships. 

 

2.2.1.3. Representing and analysing mathematical situations and structure using 

algebraic symbols 

Young learners can represent mathematical ideas with objects or specific numbers. 

They use objects, pictures, words or symbols (rather than letters) to represent 
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mathematical relationships or properties(Ontario Ministry of Education and Training, 

2007, p. 31). One of the reasons for this is that children are in the learning stages of 

reading and perceive letters as sounds rather than symbols (Ontario Ministry of 

Education and Training, 2007, p. 31).  When young learners are prompted to describe 

and represent quantities in various manners, they learn to recognise equivalent 

representations and improve their ability to use symbols to communicate their ideas 

(Friel, Rachlin and Doyle, 2001). A variable is a symbol or a letter which represents 

an unknown value or quantity, or a generalised number property (Ontario Ministry of 

Education and Training, 2007, p 31).  

Carpenter, Franke and Levi (2003)  suggest that early algebra involves the 

generalisation of properties using every day or symbolic language systems. The 

symbolising develops as an effective linguistic form of expressions through 

interactions with mathematical situations. In Chinese elementary school, 

representation variables represent various numbers simultaneously, they have no 

number value, and are selected randomly. Variables are used in three distinct ways in 

Chinese elementary schools. Firstly, variables are implemented as place holders for 

unknowns, which can be a question mark or box. Secondly, they are used as pattern 

generalisers. In these cases, words are used rather than letters. The third use is that 

of representing relationships (Blanton & Kaput, 2011, p. 28). 

The use of the variable in early grades can become explicit when children describe 

steps as “a number plus a number plus 1”. When students are able to do this when 

describing geometrical patterns, Radford (2012) explains that the learners are then 

able to overcome the spatial meaning of the unknown.  

Blanton and Kaput (2011, p. 71) argue that according to Vygotsky’s learning theory, 

the child operates with a concept, to refine conceptual thinking, before he is clearly 

aware of the characteristics of these operations”. This suggests that learning to reason 

mathematically or algebraically includes the successful understanding of notations 

which are within the zone of proximal development (ZPD) of the child. This involves a 

transition of a vague use of symbols to a deliberate use.  
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2.2.1.4. Using mathematical models to represent and understand quantitative 

relationships 

According to NCTM’s (2000, p158) algebra standards, “instructional programs from 

pre-K through grade 12 should enable all students to use mathematical models to 

present and understand quantitative relationships”. In the early algebra years, 

concrete activities are recommended to develop this aspect of learners’ algebraic 

thinking and reasoning from an early age (Lee, Collins and Melton, 2016). Young 

learners initially learn to use objects and pictures to represent stories or model 

situations. They are later able to informally use symbols. As learners move through 

the elementary grades, they realise that mathematics can be implemented to model 

numerical and geometrical patterns, scientific experiments, and other physical 

situations. Learners discover that mathematical models have the power to predict as 

well as describe situations. Contextualised problems can be modelled and solved 

using various representations, such as graphs, tables, and equations (Friel, Rachlin 

and Doyle, 2001).  Ultimately, in high school, learners can use symbolic expressions 

to represent relationships in various contexts. By using models, learners can make 

inferences about relationships, formulate and test hypotheses, and draw conclusions 

about the situations being modelled (Friel, Rachlin and Doyle, 2001). Emergent 

modelling is a heuristic which will inform the design of the instructional trajectory in 

Chapter 3. It involves designing instructional activities which prompt learners engaged 

with models of informal mathematical activity to transition to models of more formal 

mathematical activity. As learners transition from informal to more formal, the 

instructional design aids learners’ modelling by introducing new tools to communicate 

learners’ reasoning (Stephan, Underwood-Gregg and Yackel, 2016). 

 

2.2.1.5. Analysing change in various contexts 

From an early age, learners recognise change in their environments and describe 

change in qualitative terms. Words such as taller, colder, darker or heavier are used 

to describe change. When learners are exposed to measuring and comparing 

quantities, they learn to also describe change quantitatively. During these processes, 

learners learn that some changes can be predicted, while others cannot. They learn 

that change can often be represented and described mathematically (Friel, Rachlin 
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and Doyle, 2001). Throughout the early years, learners deepen their understanding of 

patterns and relationships by investigating patterns and the relationships between 

numbers and their properties; and how they change or stay the same. As a result of 

experiences of a variety of patterns using various materials, learners are able to 

identify, describe and extend progressively complex relationships. The complexity of 

patterns is based on the number of attributes that are changed in a pattern. This can 

include the colour, size or shape (Ontario Ministry of Education and Training, 2007, p. 

10). By analysing the change in patterns, learners can generalise pattern rules and 

make predictions. Kaput’s (Kaput, Carraher and Blanton, 2008) second content strand 

in his framework for early algebra involves generalising towards the idea of a function 

(see 2.2.4). This includes observing regularity in elementary patterns, ideas of change 

which include linearity, and the representation thereof in graphs, tables and function 

machines. It includes the investigation of the relationship between two variables which 

might be fixed or varying (Roberts, 2012).  

 

2.2.1.6. Developing an algebra curriculum 

Algebra reform is the focus of mathematical curriculum reform. The potential of early 

mathematics education teachers to develop algebraic reasoning might be the most 

important aspect of algebra reform and the reform of the mathematical curriculum in 

general ( Carpenter et al., 2003). An algebra curriculum that effectively develops 

algebraic thinking must be coherent, focused and well-articulated. It cannot be a series 

of randomly selected lesson or activities but instead, should be well thought-out and 

connected. The aim of the trajectory of lessons should be developmental (Friel, 

Rachlin and Doyle, 2001). In South Africa, the potential of the use of patterns to 

develop an algebraic habit of mind remains largely unexplored. This can be ascribed 

to the absence of a relational approach to sequencing  of patterning-type activities in 

the curriculum documents (Du Plessis, 2018, p.1). Mathematical ideas introduced in 

the early years must deepen and expand. The following instructions should build on 

that foundation. As learners move through a curriculum, they must continually be 

challenged to learn and apply progressively more sophisticated algebraic thinking to 

solve problems in a variety of contexts (Friel et al., 2001, p. 5). Comprehensive algebra 

instruction is necessary to develop deep algebraic reasoning. This refers to an 

approach that purposefully integrates early algebraic practices into the early years 
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school curriculum across the different conceptual domains that are seen as important 

points of entry for algebra (Eric Knuth et al., 2014). The methods and concepts of 

algebra are a vital component of mathematical literacy in modern life, and the algebra 

strand of the curriculum is the core of the vision of mathematics education (Friel, 

Rachlin and Doyle, 2001).  

 

2.2.2. The problem-centred approach for learning algebra 

 

In this part of Chapter 2, I will focus on the learning of early algebra when following 

the problem-centred approach (PCA). The discussion will focus on the following 

aspects of the PCA: the theoretical basis, the role of the teacher, the classroom 

culture, the role of the learner and their reasoning, the kind of problems given and the 

mathematical structure of problems, and lastly, informing the larger community. 

 

2.2.2.1. Theoretical basis for the Problem-Centred Approach 

 

The problem-centred approach takes on the constructivist perspective that 

mathematics learning is a process in which learners reorganise their activity to resolve 

situations that they find problematic (Cobb et al., 2014). A problem-centred approach 

to learning mathematics accepts the stance that learners are responsible for 

constructing their own knowledge. The classroom should provide opportunities where 

learners create individual and social procedures to monitor and improve their own 

constructions of knowledge (Murray, Olivier and Human, 1998). Social interaction 

forms a vital part of the PCA classroom. It creates chances for learners to talk about 

their own thinking and prompts them to reflect. The constructivist perspective on 

learning emphasises the importance of reflection and verbalising what one is doing. 

Through classroom social interactions, the teacher and learners construct a 

consensual domain where mathematical knowledge is to be shared (Murray, Olivier 

and Human, 1998).  

 

PCA is based on the belief that subjective knowledge should be experienced by the 

learners as personal constructions and not re-constructed objective knowledge  

(Murray, Olivier and Human, 1998). In other words, the learner is not seen by the 
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teacher as an empty vessel which should be filled with information and knowledge. 

Learners must internalise their own understanding and knowledge base.  

 

Problem-solving can be described as a process where one would start with problems 

or tasks and after working on these problems, learners would be left with a residue of 

mathematical ideas and concepts  (Murray, Olivier and Human, 1998). This process 

would result in learners having a firm understanding of the mathematical concept at 

hand.  

 

Hiebert et al.,(1996, p.14) based their problem-centred approach on Dewey’s 

principles of reflective inquiry. Dewey states that reflective inquiry is imperative to 

move past the distinction between knowing and doing, and provides a novel way of 

perceiving human behaviour. The fundamental principles of reflective inquiry include: 

(1) problems are identified, (2) problems are studies through active engagement, (3) 

conclusions are reached as problems are resolved.  When learners solve problems, 

they should be given chances to corroborate existing knowledge and intuitions, make 

inventions, make sense, and assign meanings, and interact mathematically. These 

constructs together embody what it means to solve problems with flexibility and 

understanding (Biccard and Wessels, 2012). 

 

I take on the perspective that the PCA, which is learning mathematics through problem 

solving, is an effective way to develop the generalisation concept in young learners. 

The implementation of this approach to learning early algebra or facilitating early 

algebraic thinking and generalisation, is used to inform the instructional design based 

on RME design principles of guided reinvention and emergent modelling (Stephan, 

Underwood-Gregg and Yackel, 2016).  

 

2.2.2.2. The role of the teacher 

 

The role of the teacher is to facilitate the problem-solving process in which learners 

are engaged, while not interfering with the learners’ thought processes  (Murray, 

Olivier and Human, 1998). Teachers should provide the learners with the necessary 

context and information regarding the problem they are engaging with. Teachers need 
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to facilitate classroom discussion and prompt interaction among learners. Teachers 

should also introduce learners to, and facilitate the process of, communicating 

mathematical thinking and ideas on paper in a generally acceptable manner. This is 

done, for example, by introducing various uses of the equal sign as the need arises 

when solving problems. Teachers should also model the use of measuring 

instruments, calculators, and other mathematical instruments (Murray, Olivier and 

Human, 1998).  

 

The primary tool for guiding learners’ mathematical development is based on the 

meticulous design of a sequence of instructional activities. The teacher plays a 

foundational role in the guidance of learners’ reinvention. Emphasis on social and 

socio-mathematical norms which characterise guided reinvention teaching, forms a 

big portion of the decision making of the teacher in terms of classroom interactions. 

The instructional design of the sequence of the activities serves the purpose of 

orchestrating whole-class discussions where certain mathematical practices have 

been pre-established (Stephan, Underwood-Gregg and Yackel, 2016).   

 

When learners are engaged in focused building of logico-mathematical knowledge, 

teachers should not interfere and should provide learners with the chance to construct 

their own knowledge (Murray, Olivier and Human, 1998). The role of the teacher as 

facilitator is to initiate and guide mathematical negotiations, which is a highly complex 

activity. Teachers should highlight the conflicts between alternative interpretations and 

solutions, help learners to develop productive social collaborations, and facilitate 

mathematical dialogue between learners. Furthermore, teachers should be able to 

notice certain aspects of contributions in the light of their potential for further 

mathematical constructions. They should be able to redescribe learners’ explanations 

in more sophisticated terms to guide the development of their understanding  (Cobb 

et al., 2014). From this it is concluded that the learner becomes the active participant 

in the learning process and his or her thinking develops as he or she engages in 

mathematical negotiations, interpretations and solutions, and mathematical dialogue 

between learners. The role of the teacher is to highlight and shed light on important 

concepts and possible misconceptions.  
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The role of the teacher in literature about PCA is completely different from that of a 

teacher in a traditional classroom setting. Instead of focusing on demonstrating, 

checking, and prescribing, the teacher focuses on setting appropriate problems, 

organising interaction between learners, and negotiating a style of learning and 

classroom culture with the learners.  

 
2.2.2.3. The Classroom Culture 

 

The classroom culture and quality of learners’ interactions with each other will have a 

great influence on the mathematical learning that takes place in a classroom. The 

classroom culture in the PCA should enforce a safe space for consensual social 

interactions where knowledge between learners and the teacher can be shared 

(Murray, Olivier and Human, 1998). 

 

Cobb and Yackel (1996) developed three constructs which explain the social 

dynamics in a mathematics classroom: social norms, socio-mathematical norms and 

classroom mathematical practices. Social norms indicate the expectations and 

obligations that the teacher and learners have towards one another during 

mathematical discussions (Cobb et al., 2014). Four social norms which sustain the 

classroom culture include (1) explaining and justifying solutions and methods, (2) 

attempting to make sense of others’ explanations, (3) indicating agreement or 

disagreement, and (4) asking clarifying questions when the need arises. Socio-

mathematical norms are normative aspects of mathematical discussions which 

depend on the mathematical activity. It includes what is perceived as the criteria for 

an acceptable mathematical explanation. In guided reinvention classrooms, the focus 

of explanations and justifications should be on descriptions of actions on mathematical 

objects that are experientially realistic instead of procedural computations. Classroom 

mathematical practices are the “taken-as-shared” ways of reasoning and arguing 

mathematically that are content specific. Classroom mathematical processes evolve 

as discussions of problems, situations, representation and solutions become 

increasingly sophisticated (Cobb and Yackel, 1996). 
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The classroom should develop social norms which are imperative for the 

implementation of an inquiry-based mathematics classroom. One such social norm is 

for learners to be able to productively engage in small group work without having the 

teacher constantly monitoring, to ensure a successful collaborative learning 

environment. Learners should believe in themselves and persist to solve challenging 

problems, explain personal solutions to their partners, and listen to and make sense 

of the explanations of other group members. Social norms for whole classroom 

discussion involve explaining and justifying solutions, making sense of explanations 

of others, agreeing or disagreeing, and questioning other options in situations where 

a conflict between interpretations or solutions is clear (Cobb et al., 2014).  

 

A problem-centred classroom differs greatly from a traditional classroom set-up. 

Instead of a fixed organisation where the teacher is seen as the authoritative source 

of knowledge, learners work in an individual and co-operative manner to take 

responsibility for the construction of their own knowledge. The teacher acts as the 

facilitator or manager to guarantee learners are given sufficient opportunities to learn. 

The emphasis is placed on empowering learners to make sense of mathematics and 

deeply understand it, instead of imitating prescribed methods and solutions (Human 

and Olivier, 1999). 

 

Opportunities to construct mathematical knowledge emerge when learners attempt to 

resolve conflicts, attempt to reconstruct and verbalise a mathematical idea or solution, 

and from attempts to create a consensual domain in which one can coordinate their 

mathematical thinking with that of others (Cobb et al., 2014).   

 

Mathematics classroom cultures should transform to focus on inquiry mathematics. 

The norms of inquiry mathematics are built on self-evident truths about a taken-to-be-

shared mathematical reality by the teacher and students during their classroom 

interactions (Cobb et al., 2014). A productive classroom culture is characterised by 

the teacher taking the perspective that the learner’s mathematical actions and 

explanations are reasonable from his or her point of view even if it is not immediately 

apparent to the teacher what the learner wants to say (Cobb et al., 2014). The teacher 

should have the perspective that there are learning opportunities in the mathematical 
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reasoning of learners, even if only to make the class aware of certain misconceptions 

which might emerge from a specific learner’s explanation of his or her reasoning.  

 

When creating an effective classroom culture for the development of mathematical 

ideas, it is important that the teacher does not simply provide learners with a list of 

rules or social norms which they should follow. Teachers and learners should discuss 

what is expected from each of them, what their respective roles are, and what it means 

to do mathematics. By engaging in this process, learners start to view mathematics as 

an activity where they are expected to solve problematic situations by constructing 

personally meaningful and justifiable solutions as they contribute to an interactive 

constitution of an inquiry-based classroom (Cobb et al., 2014). 

 

2.2.2.4. The role of the learner 

 

Learners’ learning and thinking is greatly subjective to their beliefs about what 

mathematics is, about how mathematics is learned, about how mathematics is taught, 

and by beliefs about what they are capable of (Human and Olivier, 1999). The learner 

is an active roleplayer in the learning process as the construction of new conceptual 

knowledge is based on the interaction between new conceptual knowledge and the 

existing knowledge and ideas which a learner already possesses  (Human and Olivier, 

1999). So, learners’ thinking about new ideas and concepts, and their interpretation 

thereof, are based on the learners’ current knowledge.  

 

Learners share the responsibility for creating a classroom which operates as a 

community of learners in which they participate. There are two important aspects to 

take note of when exploring the role of the learner in a PCA classroom. Firstly, learners 

must take responsibility for sharing the results of their inquiries and for explaining and 

justifying their thinking and solutions. They provide opportunity for an open culture 

which is necessary to improve methods and to become a full participant of the 

classroom community. Secondly, learners need to recognise that learning occurs best 

when learning occurs from others. Learners should take advantage of the ideas of 

other learners around them. This asks of learners to listen because of a genuine 

interest in what a classmate has to say (Hiebert et al., 1996). 
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Many discussions in mathematics education led to the opportunity of ‘shared 

authority’, a type of authority that is non-localised with no definite separation between 

“the subject and agent of authority” (Solomon, Hough and Gough, 2021). Revised 

authority highlights the role of whole class discussions, where learners are active role 

players in shaping the public domain and their personal reflections and deliberations 

are important in building and developing a community of mathematical thinkers 

(Solomon, Hough and Gough, 2021). 

 

Working in smaller groups in mathematics classrooms, especially in the early years of 

mathematics, is beneficial. Learners can easily interact socially with the learners 

around them, and the teacher can form a good idea of the understanding of 

mathematical concepts of all learners.  

 

The way in which learners are grouped is often a highly contentious topic. It is 

important to group learners in various ways and that they are given chances to work 

with a wide variety of learners. However, there are some instances when it is beneficial 

to learners to be grouped in ability-matched groups. When the task is focused mainly 

on the construction of logico-mathematical knowledge, it would be best for learners to 

be grouped according to ability. When logico-mathematical knowledge is constructed, 

the learners’ thinking should not be interfered with by more advanced ideas for which 

they are not yet ready. When physical and social knowledge is constructed, it is 

effective to co-operate with a variety of learners  (Murray, Olivier and Human, 1998).  

 

2.2.2.5. Problems and task design 

 

All instructional activities, including arithmetical and numerical computations, should 

be designed to be potentially problematic to learners at a variety of conceptual levels 

(Cobb et al., 2014). Problems provided to learners should include scenarios where the 

development of basic skills is addressed head-on by turning them into problematic 

situations. Learners should master the basic mathematical skills by seeing patterns 

and structure within the problems and their solutions  (Murray, Olivier and Human, 
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1998). Conceptual and procedural development should be integrated as learners work 

through the problems (Cobb et al., 2014). 

 

The mathematical structure of the provided problems have an important part to play. 

The decision of which problems to use, should be based on comprehensive content 

analysis and a thorough understanding of how learners develop concepts and 

misconceptions. Some problems are posed for the purpose of creating the initial 

classroom culture, whereas other problems might be posed to introduce learners to a 

certain problem domain, in which case the reflection on the problem and its structure 

would be more important than the solution itself. Problems should actualise existing, 

but inexplicit knowledge and intuitions to create new inventions and to mathematical 

action  (Murray, Olivier and Human, 1998). Therefore, teacher should focus on 

gradually introducing more sophisticated terminology and reasoning as learners 

become increasingly able to give meanings to these.  

 

It is important to note that ‘easier’ problems should not be introduced first to develop 

concepts and skills more easily. This leads to limited constructions which contribute to 

the types of misconceptions which emerge when learners have limited exposure to a 

certain concept or experience it only through one type of problem. Problem types 

should be mixed and not blocked  (Murray, Olivier and Human, 1998). 

 

Time plays an necessary part in the development of early algebraic concepts. As a 

teacher, it is important to remember that at various time learners are at different stages 

of conceptual development and should not be pushed to operate on levels of 

abstraction which they are not capable of. Learners should be given enough time to 

reason with mathematical ideas effectively (Murray, Olivier and Human, 1998).   

 

Access to appropriate notational systems is imperative for the effective development 

of early algebraic thinking. Appropriate notations should capture the methods learners 

use to solve problems. The ability to capture one’s thoughts on paper is imperative for 

individual reflection and analysis. In the early years, learners are expected to record 

their thinking logically and clearly such that others would be able to follow their thinking  

(Murray, Olivier and Human, 1998). This can be facilitated by implementing the writing 
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of notation and symbols which can be used to represent learners’ thinking. The teacher 

can, for example, model the writing of “I added the 3 to the 6 and then I added another 

3 to that answer” as 3 + 6 → 9 + 3. The arrow is a useful symbol to note whenever a 

learner uses the words “and then”.  

 

The PCA does not force formal methods on learners but legitimises and builds on the 

intuitive and prior knowledge learners possess. Learners are challenged to work with 

with realistic problems by using their common sense, and compare answers to reach 

an agreement (Human and Olivier, 1999). 

To effectively implement an instructional design trajectory to develop early algebra 

through generalisation, a problem-centred approach needs to be followed and should 

inform the design of the sequence of activities as well as the classroom practices, 

which include the role of the teacher and learner.  

 

2.2.3. Kaput’s framework for early algebra 

 

Kaput and Blanton (1999) refer to ‘algebrafying’ primary mathematics’ where algebra 

is seen to encompass the whole of mathematics in the form of generalised arithmetic. 

Early algebraic thinking develops when arithmetic are saturated with algebraic 

meaning, with the aim of the algebraic character coming to the forefront (Knuth et al., 

2014).  

 

Kaput (2008) argues that algebra is made up of  specific thought practices and content 

strands. He proposes that algebraic thinking involves (a) “making and expressing 

generalisations in increasingly formal symbol systems” and (b) “reasoning with 

symbolic forms”. These practices take place over three content strands (Kaput, 2008, 

p.11): 

• Algebra as the study of structures and systems abstracted from computations 
and relations, including those arising in arithmetic and quantitative reasoning 
(Kaput, 2008, p.11). 

• Algebra as the study of functions, relations and joint variation (Kaput, 2008, 
p.11). 

• Algebra as the application of a cluster of modelling languages both inside and 
outside of mathematics (Kaput, 2008, p.11). 
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Figure 2.2. Kaput’s core aspects and strands of algebra (Roberts, 2012, p.304) 

 

The two core aspects which are important in algebraic thinking are symbolisation 

activities which serve purposeful generalisation and at the same time reason with 

symbolised generalisations. The first two strands in this framework for early algebra 

takes into account the two types of generalising that are central to algebraic thinking: 

generalising arithmetic and quantitative reasoning; and generalising towards the idea 

of a function (Kaput, 2008).  The third strand focuses on modelling as a process where 

situations are interpretated using algebraic notation as a language. Kaput (2008) 

identifies ‘algebrafying the arithmetic problem’ as an aspect of the modelling strand, 

where constraints of a particular problem are liberated to explore its more general form 

(Roberts, 2012). These components of early algebra can be noticed as they emerge 

in the development of algebra throughout the history of mathematics. This emergence 

will inform the instructional design which will be constructed in Chapter 3, where a 

more in-depth discussion of Kaput’s framework for early algebra is discussed.  

 

Core Aspect A: 
Using symbols to 
generalise. 

Core Aspect B: 
Reason with symbolized 
generalisation and acting 
on symbols following rules.   

Strand 1: 
Generalising from 
arithmetic and 
quantitative reasoning. 

Strand 2: 
Generalising towards the 
idea of function. 

Strand 3: 
Modelling as a language 
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2.2.4. The big ideas of early algebra 

 

The central theory of early algebra education is that it will improve learners’ 

“understanding of algebraic concepts” that will support their conceptual development 

in largely arithmetic based classrooms in the early mathematics education (Knuth et 

al., 2014). It will also increase their likelihood of success in later grades when engaging 

in more complex mathematics (Knuth et al., 2014). 

 

Knuth et al. (2014) identified five big ideas out of Kaput’s (2008) framework for early 

algebra on which much of the research on early algebra has developed. These big 

ideas offer possibilities for the development of deep algebraic reasoning, and the 

practices of “generalising, representing, justifying and reasoning with mathematical 

relationships”, and include (Knuth et al., 2014, p.43): 

 

1) Equivalence, expressions, equations and inequalities 

This big idea involves building a “relational understanding of the equal sign, 
representing and reasoning with expressions and equations in their symbolic form 
and describing relationships between generalised quantities”. Activities in the early 
years can include: 
• Interpreting equations written in different formats (e.g., other than a + b = c) and 

evaluating as true or false 
• Solving open number sentences (e.g., 8 + 5 = ___ + 4), including by reasoning 

from the structural relationship in the equation 
• Using variable expressions to model linear problem situations  
• Identifying the meaning of a variable used to represent an unknown quantity 
• Interpreting an algebraic expression in the context of a problem 
• Modelling problem situations to produce linear equations of the form x + a = b 
• Analysing an equation to determine the value of a variable (Knuth et al., 2014, 

p.43). 
 

2) Generalised arithmetic 

This idea involves generalising “arithmetic relationships, including the fundamental 
properties of number and operation”, and thinking about the structure of arithmetic 
expressions instead of  their computational value. Activities in the early years can 
include: 
• Analysing information to conjecture an arithmetic relationship 
• Expressing the conjecture in words and/or variables  
• Identifying values or domains of values for which a conjectured generalisation 

is true 
• Describing the meaning of a repeated variable or different variables in the same 

equation 
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• Identifying a generalisation in use (e.g., in computational work)  
• Justifying an arithmetic generalisation using either empirical arguments or 

representation-based arguments  
• Examining limitations of empirical arguments(Knuth et al., 2014, p.43). 

 

3) Functional thinking 

This idea involves generalising “relationships between covarying quantities and 
representing and reasoning with those relationships through natural language, 
algebraic notation, tables and graphs”. Activities in the early years can include: 
• Generating linear data and organising data in a function table 
• Identifying the meaning of a variable used to represent a varying quantity 
• Identifying a recursive pattern and describing it in words; using the pattern to 

predict near data 
• Identifying a covariational relationship and describing it in words  
• Identifying a function rule and describing it in words and variables 
• Using a function rule to predict far function values  
• Given a value of the dependent variable, determining the value of the 

independent variable (reversibility) 
• Constructing a coordinate graph (Knuth et al., 2014, p.43). 
 

4) Variables 

Variables refer to symbolic notation as a language for representing mathematical 
ideas in concise ways to include the different roles variables play in mathematical 
contexts. Activities in the early years may include: 
• Using variables to represent arithmetic generalisations  
• Examining the meaning of a repeated variable or different variables in an 

equation or rule 
• Using variables to represent an unknown quantity (fixed or varying) 
• Understanding that a variable represents the measure or amount of an object 

rather than the object itself 
• Interpreting the meaning of a variable within a problem context 
• Using variables to represent linear problem situations  
• Describing a function rule using variables (Knuth et al., 2014, p.43). 
 

5) Proportional reasoning 

Proportional reasoning is “opportunities to reason algebraically about two 
generalised quantities that are related in such a way that the ratio of one quantity 
to the other is invariant” (Knuth et al., 2014, p.43).  

 

These five big ideas should not be viewed as a mutually exclusive road to algebraic 

thinking. They should be made available to learners in an integrated and connected 

manner. These five big ideas can be seen as imperative to understanding algebra as 

they give rich context within which algebraic thinking can take place (Knuth et al., 

2014). 
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As an analysis of the stages of algebra development in history is undertaken, it can 

be noticed how these fundamental components and big ideas of early algebra emerge. 

This provides a valuable basis for the design of an instructional sequence based on 

the levels of algebraic thinking which emerge from the stages of algebra development 

in history.  

 

2.3 The stages in the history of algebra 
 

2.3.1. The rhetorical stage 

2.3.1.1. The Egyptians and Mesopotamians 

 

Different opinions about the origin of algebra are presented in the literature. Some 

believe that algebra originates from Greek mathematics and others state that the 

origins lies as far back as the Mesopotamians (Tabak, 2011). The Mesopotamians 

and Egyptians (2 000 BC) solved various mathematical problems and kept their 

solutions well-documented. The beginnings of algebra are apparent in the solutions of 

problems that can be seen in preserved texts of these ancient civilisations (Katz and 

Parshall, 2014). The challenge in knowing whether they understood algebra lies in the 

fact that they solved problems in a much different way than it would be done today.  

 

Mathematics in Egypt developed in two major contexts: architecture and government 

(Katz and Parshall, 2014). In architecture, scale models were drawn by builders to 

indicate that mathematical techniques and strategies, specifically proportionality, were 

used in design and construction. In government this included “the collection and 

distribution of goods, the calculation of the calendar, the levying of taxes and the 

payment of wages. Evidence for this appears in various papyrus documents” from the 

period (Katz and Parshall, 2014).  

 

Two important mathematical concepts can be noted from the ancient texts and 

mathematical papyri dating from Mesopotamian times. This includes the display of 

arithmetic techniques as well as proportionality (Katz and Parshall, 2014). 

Proportionality and proportional reasoning play vital roles in the development of 
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algebraic thinking and generalisation. Proportionality refers to the mathematical 

structure that models the relationship within situation where two quantities, " and 

#,	change together in such a manner that the rate between the quantities remains 

constant (Breit-Goodwin, 2015). This idea also underlies the problems introduced in 

early years classrooms where learners are expected to find the unknown quantity.  

Therefore, the fact that proportionality can be seen in these early Mesopotamian 

problems, the simplest and earliest algebra in history is noted (see 2.2.5) (Katz and 

Parshall, 2014).  

 

Let’s explore an example of the proportionality type problems which were solved by 

the Mesopotamians (Katz and Parshall, 2014). Below is Problem 75 from the Rhind 

Papyrus named after the Scotsman Alexander H. Rhind (1833-1863) who purchased 

the Rhind at Luxor in 1858. 

 

“What is the number of loaves of pesu 30 that can be made from the same 
amount of flour as 155 loaves of pesu 20?” 

                (Katz and Parshall, 2014) 

 

Pesu is an Egyptian measure which can be communicated as the ratio of the number 

of loaves to the number of hekats of grain, where hekat is a dry measure approximately 

equal to  !" of a bushel. The problem is solved by the proportion " ∶ 30 = 155 ∶ 20. The 

scribe solved the problem by first dividing 155 by 20 and then multiplying the result by 

30 to get 232!#. This problem is an example of the practical use of proportionality to 

solve problems, but many problems in papyri were more abstract. Even though signs 

of thinking algebraically emerged in the proportional thinking displayed by Egyptians, 

little claims of generalisation can be noticed (see 2.2.5).   

  

The Mesopotamian and Egyptian civilisations are roughly the same age and can 

therefore be grouped together. Mesopotamians showed little interest in 

generalisations. Their methods of problem solution indicate very little understanding 

of general theory or equations. Along with that, no algebraic language can be detected 

in their solutions. The Mesopotamian’s development in mathematics seems to stem 

from the study of individual problems (Tabak, 2011, p. 3). Mesopotamian mathematics 
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is often named proto-algebra, arithmetic algebra, or numeric algebra. Their work was 

an important initial step towards the evolution of algebra as we know it today (Tabak, 

2011).  

 

The Mesopotamians started with simple arithmetic and advanced to more complex 

problems (Tabak, 2011). In the same way, young learners start their mathematics 

journey by working with numbers and engaging in arithmetic. To develop a 

generalisation habit of mind, a constant seeking for generalisations in arithmetic is 

imperative in the early years classroom. Learners should be engaged with 

experiences where they generalise about properties of numbers and operations, and 

generalise about particular number properties and relationships (see 2.2.4 and 2.2.5) 

(Roberts, 2012).  

 

Mesopotamian mathematics has two roots, namely accountancy problems and “cut-

and-paste” geometry (Katz and Barton, 2007). The accountancy problems were an 

necessary part of the governmental system of the earliest Mesopotamian dynasties. 

The “cut-and-paste” geometry was likely used by surveyors as a way to figure out how 

to understand the division of land. To compare areas of fields, for example, surveyors 

evidently thought of them as divided into squares and rectangles that they could 

mentally rearrange. Out of this practice emerged a form of geometrical algebra. This 

geometrical algebra was a strategy for manipulating areas (cut-and-paste) to 

determine unknown lengths and widths (Katz and Parshall, 2014). Babylonian algebra 

developed out of the “cut-and-paste” geometry theories. Old-Babylonian clay tablets 

show lists of quadratic problems. The aim of these lists was to discover geometric 

quantities such as the length and width of a rectangle (Katz and Barton, 2007).  

 

The development of geometrical algebra started with the manipulation two-

dimensional areas. The methods involve the solving of quadratic problems. 

Mesopotamian scribes could also deal with linear equations. Like the Egyptians, these 

problems were solved using proportionality (Katz and Parshall, 2014).  

 

The Mesopotamians did not use modern formulas of geometry, but rather words which 

described a procedure or algorithm. These algorithms did not contain equal signs or 
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any other conventional notations. They consisted of sentences and some numbers 

(Derbyshire, 2006). That This lack of formal notation contributed to their difficulty in 

solving these problems(Tabak, 2011). The lack of generality in their solutions to 

problems further increased the challenge. The need for some form of generalisation 

and algebraic thinking becomes clear when considering the work of the 

Mesopotamians (see 2.2.4 and 2.2.5). Some literature shows that Mesopotamian 

algebra consisted of more than just a series of blind, trial and error computations to 

solve problems. The Mesopotamians had to memorise a small quantity of identities, 

and solving mathematical problems consisted of changing each problem into a 

standard form and calculating the solution (Sesiano, 2009).  

 

The solving of these geometrical problems was the beginning of algebra, in that it was 

the first time  numerical problems were solved by manipulating original data using set 

rules (Katz and Barton, 2007). The work of the Egyptians and Mesopotamians can be 

seen as the beginning of the development of algebraic thinking even though little 

generalisation was applied. The challenges they evidently experienced in solving 

discrete problems without the use of symbols or formalisations clearly highlights the 

value of generalisation. 

 

2.3.1.2. Chinese algebra  

 
The first records of Chinese mathematics can be found during the period of the Han 

Dynasty, which existed approximately 2000 years later than the Mesopotamian and 

the Egyptian civilisations. An important record of Chinese mathematics is one of the 

earliest Chinese mathematical texts called Nine Chapters on the Mathematical Art 

(100 B.C.E – 50 C.E.) (Tabak, 2011, p. 12). The text consists of various problems on 

taxation, surveying, engineering, and geometry and also solutions and methods. The 

tone of the text can be described as conversational, which is consistent with the 

rhetorical stage of the development of algebra (Tabak, 2011). Again, mathematics is 

approached as a tool for solving various important, real-life problems. 

 

The problem, solution, and the algorithm employed to solve the problem, are 

communicated only in words and numbers: no use of symbolization can be found in 
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these texts. A clear need for algebraic notation emerges when reading problems such 

as these found in the Nine Chapters. Extensive writing and vocabulary are needed to 

explain simple problems if algebraic notation and symbolisation are not used (Tabak, 

2011).  

 

Many similarities can be drawn between the works of the Mesopotamian and Chinese 

mathematicians. It is clear that the aim of these works was not to find general theories 

or prove that their algorithms worked, but rather was limited to solving various 

problems (Tabak, 2011). The generality of mathematics was lacking, and therefore, 

mathematics was perceived to be extremely challenging. Greek mathematics was 

fundamentally different to that of the Mesopotamians or the Chinese. Greek 

mathematicians were interested in the nature of number and form (Tabak, 2011). 

Greek mathematicians started to explore patterns and structure within mathematics 

and were able to start making generalisations. In the same way, learners’ reasoning 

develops as they move from viewing mathematics as discrete objects and concepts to 

a more general perspective. And so, the syncopated stage emerged.  

 

2.3.1.3. Critical remark for the teaching of algebra 

 

The rhetorical stage refers to the stage in history where the focus was on solving 

individual problems with no attempt to generalise. Problems were not grouped or 

categorized but rather seen in isolation (Katz and Barton, 2007; Tabak, 2011; Katz 

and Parshall, 2014). Solutions to problems were presented mainly in words where little 

to no generality can be noted. When problems are presented individually, we notice 

that little generalisation takes place. In this stage, the reasoning was still answer-

orientated, and mathematicians could not relate various mathematical problems and 

concepts to each other.  

 

This stage is often reflected in school textbooks and classrooms when it comes to 

teaching algebra. The first step to approaching early algebra type activities, for 

example, describing patterns, is to express the observed pattern or relationship in 

words. From learners’ observations, certain key aspects can be highlighted to show 

the mathematical structures observed. This will make it easier for learners to try and 
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represent patterns and relations in various diagrams (the syncopated stage) and then 

later using symbols (the symbolic stage). Even so, in the traditional first stage of 

algebraic development, learners do not make generalisations. The focus often 

remains on copying or extending patterns with little focus on conjecturing rules (du 

Plessis, 2018). In other areas of mathematics, the reasoning in this stage is answer-

orientated and concepts are perceived discretely instead of in a related manner 

(Blanton and Kaput, 2011). Generalisation in the rhetorical stage can be achieved by 

teachers prompting learners to express generalities which they notice in working with 

mathematics and communicating it informally in their own words. 

 

There are of course learners whose thinking may differ, and who can or want to 

immediately represent what they observe in a diagram or using symbols. The role of 

the teacher should be to facilitate a deep understanding of the mathematical 

processes with which the learner is involved by asking relevant questions. For most 

learners the rhetorical stage is a necessary one in their development of algebraic 

thinking. Before learners can be introduced to symbols or abstract mathematics, it is 

important for the educator to make sure that they have a firm and deep understanding 

of the mathematics they are engaging with (History of algebra as framework for 

teaching it?, n.d.).  

 

Communication is seen as one of the important mathematical processes. Many 

learners struggle to communicate their thinking effectively (Ontario Ministry of 

Education and Training, 2007). When engaged in the rhetorical stage, learners are 

encouraged to speak about their own thinking in their own language. This is not only 

important when developing algebraic thinking but in all mathematical thinking. Before 

learners can be expected to write number sentences using the symbols for the 

operations, learners will say what they are doing, for example: “I put the three and the 

five together. I know I will then have eight in total.” The aim of teaching algebra should 

be to get learners to start making formalisations and generalisations (Kaput, 1995) 

and in the rhetorical stage they will express these in their own words. Learners can, 

for example, say: “If I put two numbers together, I know my answer will be bigger than 

the numbers I started with.” From there learners can be encouraged to present their 

ideas in pictures or diagrams (syncopated stage) and much later learners should be 
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expected to be able to write the number sentence, 3 + 5 = 8 (symbolic stage). 

Generalising arithmetic (numerical patterns, properties and so forth) begins within a 

mathematical system, which includes integers and “their properties and operations, 

where the understanding of the mathematical structures plays the core constraining 

role” (Kaput, 1995). Another important aspect of generalising is quantitative reasoning 

which is based in mathematising situations, and this offers a different foundation for 

generalising and formalising (Kaput, 1995).  

 

2.3.2. The syncopated stage 

 
2.3.2.1. Greek mathematics 

 
The mathematics that began to develop in Ancient Greece around 600 B.C.E. was 

quite different from the mathematics explored by the Egyptians and Mesopotamians. 

The Greeks developed a basic political organisation of city-states with governmental 

units that governed societies of a few thousand individuals. These governments were 

all controlled by law and adopted a culture of argument and debate (Katz and Parshall, 

2014). This context is important to take note of when exploring the history of Greek 

mathematics. It is probably from this culture of argument and debate that the ethos 

and necessity of proving reasoning in mathematics stemmed. This need to prove 

mathematical reasoning led to a need for generalising. Justifying and explaining 

mathematical reasoning is an important classroom practice in the guided reinvention 

and problem-centred approach (see 2.2 and 2.3) (Cobb and Yackel, 1996). 

 

When looking at Greek mathematics, one is struck by the emphasis on the large 

algebraic parts as well as other parts where algebra hides under a geometric cover. 

From the reports on integrals which were calculated by Archimedes and reports from 

the numerical astronomy. Greeks must have been in possession of powerful algebraic 

tools (Freudenthal, 1977). Two different sides of algebra can be seen in the 

mathematics of Ancient Greece (Sesiano, 2009): archaic algebra which is mostly used 

in schools now and resembles that seen in Mesopotamian times, and Diophantine 

algebra, which will be examined in more detail later in the chapter. Even though the 

problems in archaic Greek algebra are more advanced than those found in 

 

 

 

49 

Mesopotamian times, the fundamental form remains the same, being that one finds 

sequences of unjustified calculations, and only the correctness of the answer suggests 

an underlying method (Sesiano, 2009). The emphasis is on the answer rather than the 

solution and little generalisation can be noticed. This corresponds with the historically 

accepted approach to algebra teaching in schools where the focus is on solving 

equations rather generalising the structure of mathematics (Smith and Thomson, 

2008). This traditional approach has proven to be unsuccessful.  

 

Diophantine algebra is traditionally intended for higher mathematical education. In this 

algebra the focus shifts to a designated unknown, symbolism, and an explanation and 

motivation for the given solution method (Sesiano, 2009). The focus here becomes 

the general structure of mathematics. The belief is that a generalising perspective on 

the underlying structure of mathematics should be embedded throughout mathematics 

by requiring that learners provide generalisable explanations and motivations for their 

thinking from the start of schooling (Roberts, 2012). 

 

Diophantine Greek mathematicians were not interested in mathematics for the sake 

of solving problems, but in and of itself. They showed interest in questions about 

number and form. Greek mathematicians started to explore the structure of 

mathematics. The potential for generalisation emerged as the focus fell on the 

structure within computations rather than the answer (Kaput, 1999). Ideas were 

expressed in terms of numbers, points, curves, planes and geometric solids (Tabak, 

2011). The Greeks were also the first to make a distinction between exact and 

approximate results. The Greeks’ fascination with precision influenced the manner in 

which they investigated mathematics as well as the content they investigated. It was 

this focus on precision which lead to the discovery of the Pythagorean theorem 

(Tabak, 2011, p. 20).  

 

In Greek mathematics, geometry can be seen as the focus and aim of mathematical 

reasoning. Greek mathematicians wished to combine the two main components 

(algebra and geometry) of ancient mathematics. Geometric algebra involved analysing 

and understanding quantities expressed with letters as lengths of line segments. It 

also consisted of operations performed on these quantities. The reason for this 
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unification of the two mathematical components, is said to be due to geometry’s 

mathematical rigor and consistency (Sfard, 1995).  The Greek mathematicians had 

difficulty solving many geometrical problems. This may be due to the lack of the 

science of algebra and a generational approach to solving problems (Sfard, 1995). A 

central figure in the climate of rational debate was Aristotle (384-322 B.C.E.). He 

codified the principles of logical argument and firmly believed that the development of 

any domain of knowledge must begin with the definition of terms and with the 

statement of axioms (Sfard, 1995). His requirement that arguments be proven 

indicates the need for making generalisations and formalisations. We will now look at 

other prominent figures who influenced the development of algebra in Ancient Greece. 

 

2.3.2.2. The work of Pythagoras 

 
Pythagoras (572-497 B.C.E.) was an influential Greek mathematician even though no 

specific discoveries can be attributed to him (Tabak, 2011). Pythagoras made strides 

in the development of mathematics and greatly influenced the work of Diophantus 

(Sfard, 1995).  

 

Pythagoras constructed a community in Cortona where he lived with his disciples. 

Pythagorean exchanged ideas freely and did not take individual credit for any of their 

work. At the core of the Pythagorean philosophy was the saying: “All is number.” The 

meaning of this saying is exemplified in the Pythagorean’s understanding of music. 

The Pythagoreans used an instrument called a monochord to investigate the tones in 

music , and found that musical tones made by strings can be represented by whole 

number ratios, which could be used to describe music (Tabak, 2011). 

 

The Pythagoreans were fascinated by numbers. They believed that certain numbers 

were infused with special, specific properties. For example, 4 was believed to be the 

number of justice and retribution. Number 1 was the number of reason (Tabak, 2011). 

It is necessary to note that the Pythagoreans only worked with positive, whole 

numbers. They did not recognise the number 0, negatives or any fractions as a number 

(Tabak, 2011). 
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This Pythagorean reasoning that “all is number” greatly influenced Greek 

mathematics. to the point where most of the work done before Diophantus, was 

geometrical. The school of Pythagoras founded their understanding of all 

mathematics, as well as astronomy and music, on numbers. When irrational numbers 

were discovered, the Pythagoreans were so disturbed that they turned away from 

arithmetic. Arithmetic contained numbers which could not be written and geometry 

with the representation of line segments (Derbyshire, 2006). 

 

The discovery that the idea, “All is number”, was wrong, was one of the most influential 

discoveries in the history of mathematics. The idea of incommensurability was 

discovered (Tabak, 2011, p.23). The term incommensurability means ‘to have no 

common measure’ (Oberheim and Hoyningen-Huene, 2018). 

 

The Greeks easily accepted the proof of incommensurability which shows the early 

levels of abstract thinking of the Greek mathematicians. They were prepared to accept 

a mathematical idea which deconstructed their worldviews, if it was a logical result of 

other, previously accepted mathematical ideas (Tabak, 2011).  

 

Even though the Pythagoreans’ work does not speak of great algebraic discoveries, 

the way in which they thought about numbers in terms of generalised properties laid 

the foundation for generalised arithmetic, which focuses on the generalisation of 

properties of numbers (Mitchelmore, 2002). Furthermore, the Greeks were open to 

reconstructing their mathematical knowledge based on logical reasoning of previously 

established mathematical ideas. They, therefore, saw the necessity of having to prove 

your arguments and reasoning. 

 

2.3.2.3. Geometrical algebra in Euclid’s elements and data 

 
The main source of Greek mathematical ideas can be found in a set of books titled 

The Elements by Euclid of Alexandria (300 B.C.E) (Tabak, 2011). Euclid received his 

mathematical training in Athens before he settled in Egypt (Derbyshire, 2006). He 

worked in Alexandria which was the capital of Egypt under the dynasty of the 

Ptolemies (Katz and Parshall, 2014).  
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The work Euclid did in the set of books, The Elements, was largely based on the 

principles of Aristotle. His text was a prototype for how mathematics should be 

expressed and represented. This model included definitions, axioms and logical proofs 

and still stands today (Katz and Parshall, 2014).   

 

The Elements was written in 13 short books (Tabak, 2011). It contains the elementary 

consequences of plane geometry which is still part of the secondary mathematics 

curriculum globally today. It also contains material on elementary number theory and 

solid geometry. If algebra can be noted in the books is a widely contested subject. The 

debate centres around the meaning and goal of Book II.  

 

Book II deals with various relationships between rectangles and squares and has no 

apparent goal. Its propositions are seldomly used elsewhere in The Elements. Some 

explanations state that ‘geometrical algebra’ can be noted in some propositions from 

Book I and Book IV. Some representations of algebraic concepts through geometrical 

figures can be noted (Katz and Parshall, 2014). This includes representing the 

relationships between the sides of a rectangle as an equation. In doing work that 

focuses on the relationships between the side of geometrical objects, Euclid must have 

been engaged in some sort of quantitative reasoning. It can be argued that dealing 

directly with quantities (the length of the side of a rectangle) and the relationships 

within them, helps learners to construct an initial comprehension of the concepts of 

function and functional thinking (Ellis, 2011). This type of quantitative reasoning lies at 

the core of the growth of algebraic thinking and generalisation (Smith and Thomson, 

2008). 

 

Book II lays out the foundation for geometric algebra where geometric thinking was 

prominent in all Greek mathematics including algebra. The common perception of 

unknowns like ", #	 and - are that these variables represent numbers. Euclid had a 

different approach. Euclid represented unknowns as line segments (Tabak, 2011). In 

Book II established the rules that permit you to manipulate line segments in the same 

way that you would manipulate numbers. What we today would represent as 

equations, Euclid represented using drawings of rectangles, squares, and other 
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geometric forms (Tabak, 2011). He made geometric algebra visible. Even though 

Euclid did not represent the relationships using formal algebra notation as we know it 

today, he showed the quantitative relationships between geometrical objects through 

drawings. Quantitative reasoning has the aim of supporting reasoning that is supple 

and general in character but which does not only count on symbolic expressions 

(Smith and Thomson, 2008) Carraher and Schlieman (2014) note that quantitative 

reasoning, along with various manners of representation, can enhance the emergence 

of algebraic thinking in young learners. When learners in the classroom start to reason 

quantitatively, they will often start to represent their thinking using informal geometrical 

drawings as representations. From there, learners will be able to start representing 

relationships using formal notation. This same trajectory emerges in the historical 

development of mathematics.  

 

In the work of Euclid and Apollonius, algebraic notions is seen. Numerous propositions 

show how to directly manipulate rectangles and squares. Some propositions involve 

Euclid solving algebraic problems for geometric results. Euclid solves these problems 

by manipulating geometric figures. Development is seen when the manipulations are 

based on clearly stated axioms (Katz and Barton, 2007).  

 

One of the first algebraic concepts introduced to learners in the classroom is that 
“multiplication distributes over addition”. This idea is called the distributive law: 
"(# + -) = "# + "-	 (Tabak, 2011, p.29). The very first proposition that Euclid proves 
in Book II of The Elements is exactly this statement. 
 

Proposition: “If there be two straight lines, and one of them be cut in any 
number of segments whatever, the rectangle contained by the two straight lines 
is equal to the rectangles contained by the uncut straight line and each of the 
segments.”  

(Tabak, 2011, p.29) 
 

The majority of literature claims that in Book II, Euclid merely aimed to show a fairly 

logical framework of geometric knowledge that could be applied to other proofs of 

geometric theorems. Euclid was without a doubt thinking geometrically. This is clear 

in his initial definition: “Any rectangle is said to be contained by two straight lines 

forming the right angle.” (Katz and Parshall, 2014, p. 35). Consider for example the 

following: 
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Figure 2.3. Solution to Euclid’s proposition (Katz and Parshall, 2014, p. 36) 

 

For Euclid, geometrical results were demonstrated by drawing and comparing the 

relevant squares and numbers. In Book II, Euclid proves a result concerning “invisible” 

figures, which are figures indicated in the theorem with respect to an initial line and its 

segments, by using “visible” figures, which are the actual squares and rectangles 

which are drawn.  By giving lengths a and b to the two segments of line, the results 

can be translated into a binomial: (1 + 2)# = 1# +	2# + 212	 (Katz and Parshall, 2014). 

This can be taken as an algebraic result. 

 

Euclid only dealt with geometric figures and never really composed rules for them. His 

formulations of problems, with regards to finding two lengths and satisfying specific 

conditions, were almost identical to Mesopotamian formulations. He was, however, 

able to generalise the Mesopotamian problems from rectangles to parallelograms 

(Katz and Parshall, 2014). Euclid’s work greatly influence Islamic mathematics, 

especially the work of Al-Khwarizmi (Sesiano, 2009), which will be explored in more 

detail later in this chapter.  

 

2.3.2.4. Diophantus 

 
Diophantus (A.D. 250) was a Greek mathematician who can be described as the father 

of algebra, as his main focus was the study of algebra separately from the study of 

geometry (Tabak, 2011). Diophantus is well-known for his work in number theory and 

algebraic geometry (Sesiano, 2009). In light of Diophantus’ work and particularly his 

knowledge of solving quadratic equations, it is clear that here the development of 
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algebra begins moving towards the equation solving stage (Katz and Barton, 2007). 

The work of Diophantus started to include some symbols in the form of Greek letters 

and thus represented syncopated algebra (Sfard, 1995).  

 

The work of Diophantus mainly consisted of two important works: Arithmetica (the 

more famous of the two) and On Polygonal numbers. The work Arithmetica is quite 

similar to the Chinese Nine Chapters. The main difference is that at the beginning of 

the work, Diophantus attempts to provide a foundation for algebra. This is a critical 

moment in the historical development of algebra, as it is the first time that this was 

attempted (Tabak, 2011).  

 

The remaining part of Arithmetica comprises 189 problems in which the goal is to find 

numbers and families of numbers which satisfy specific circumstances. The focus on 

generalised arithmetic (see 2.2.4 and 2.2.5) once again emerges from the work of 

Diophantus and emphasises that the development of algebraic thinking does not start 

with simplifying equations but rather with a focus on the generality that is evident 

throughout all areas of mathematics (Roberts, 2012). At the beginning of the work, 

Diophantus outlines his use of symbolism and methods. From a modern perspective 

the symbolism may seem simple and primitive, but it was advanced for the time 

(Derbyshire, 2006). Diophantus used the Greek alphabetic system for writing 

numbers. Using symbols, even if simple and primitive, show that using variables to 

model situations in algebraic language emerged here (see 2.2.4 and 2.2.5). This can 

be seen as a significant point in history in terms of the development of the use of 

symbols in algebra. 

 

The 27 symbols Diophantus used in his system of writing numbers consisted of the 24 

letters of the Greek alphabet, plus three obsolete letters. The first 9 symbols 

represented the numbers 1-9, the next 9 symbols represented 10-90, and the last 9 

symbols represent 100-900. As with other systems of the time, there was  no symbol 

for zero  (Derbyshire, 2006).  

 

The following is an example of the work of Diophantus named “Arithmetica” (Sfard, 

1995, p.19): 
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To find two numbers such their sum and product are given numbers: 

“Given sum 20, given product 96. 2" the difference of the required. Therefore, 

the numbers are 10 + ", 10 – ". Hence, 100 - "# is 96. Therefore, " is 2 and 

the required numbers are 12, 8. 

(Sfard, 1995, p.19)  

 

Note that "	as a symbol has been used in the example for the sake of clarity. 

Diophantus used Greek letters as symbols. 

 

It is clear from this example from “Arithmetica”, that Diophantus aimed to generalise 

about specific number properties and relationships. This is the second element of 

generalisation in early mathematics as explained by Roberts (2010, p. 169).  

 

Two types of analysis and synthesis have evolved in the solving of problems (Katz 

and Parshall, 2014). One type is characterised in the work of Euclid’s Elements and 

the second type can be seen when exploring Diophantus’ Arithmetica. The 

characteristic of solving geometric problems is seen in Euclid’s work and involves the 

demonstration of a proposition by first, in the analysis stage, assuming true what is to 

be proved and reducing that to an identity or other know proposition. In the synthesis 

stage, the process in reversed. In Arithmetica analysis and synthesis provides the 

problem first in the analysis phase and, supposing the problem to be solved, 

establishes some relations between the known and unknown quantities. This is then 

reduced to some relation in terms of the smallest number of unknowns possible. In the 

synthesis phase, the solution found is checked (Katz and Parshall, 2014).   

 

Diophantus presented conditions for solving problems in the beginning of the work 

Arithmetica. The organisation of each problem is as follows:  

 

1) First, one finds the statement, specifying which are the give quantities and 
which are to be determined.  

2) Next, where needed, the condition that the given quantities must satisfy for 
the solution to be rational.  

3) The given quantities are then set in accordance with the conditions stated. 
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4) The solution then follows by expressing the quantities to be determined in 
terms of the unknown, after which the problem is solved (Sesiano, 2009, p. 33). 

 

Diophantus had fairly sophisticated algebraic notation at his disposal (Derbyshire, 

2006). It is believed that Diophantus was the first to initiate symbols for “unknown 

quantities, abbreviations for powers of numbers, relationships and operations as used 

in the syncopated stage” (Nethravati, 2020). Even so, the system he used did not 

assign specific symbols to operations (Sesiano, 2009). 

 

In pursuit of generality, the computational methods were explained through tangible 

numerical examples instead of by universal prescriptions. Although the problems were 

stated using general terms, physical numbers were chosen to explain the solution 

(Sfard, 1995). Other problems of a similar sort could be solved by means of analogy; 

in other words, by substituting new numbers instead of using those specific examples. 

Furthermore, it is necessary to take note that after Diophantus, algebraic symbolism 

disappeared until the 15th century. Medieval texts, like Latin and Arabic texts, are 

mostly verbal (Sesiano, 2009).  

 

The decline in Greek mathematics, as well as the decline in the city of Alexandria, 

which was seen as an academic centre, occurred at the same time as Hypatia’s brutal 

death in 415 C.E. Hypatia was an influential teacher who taught ethics, astronomy, 

ontology, and mathematics to a number of men who later became leaders in 

Alexandria. With her death, the city of Alexandria also started to regress and in 645 

C.E. was conquered by the Arabs. This marked a cultural and intellectual transition in 

the medieval world(Katz and Parshall, 2014).. A shift  away from the West and toward 

the East could be noted. A growing demand in the Middle East to rediscover “lost” 

knowledge occurred (Katz and Parshall, 2014). 

 

2.3.2.5. Al-Khwarizmi 

 
Al-Khwarizmi (A.D. 780) and his colleagues, the Banu Musa, were students at the 

House of Wisdom in Baghdad. They participated in the translation of Greek scientific 

manuscripts as well as the study of algebra, geometry and astronomy (O’ Connor and 

Robertson, 1999). Al-Khwarizmi stated that algebra was a discipline of dealing with 
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equations (see 2.2.4). Traditionally, this is one of the focus points of teaching algebra 

in the secondary years of mathematics education. It has become increasingly clear 

that the development of algebraic thinking cannot rely solely on the simplification of 

equations in later grades. Algebraic thinking is a skill that focuses on the relations 

between numbers and the generalisation of arithmetic. It gives light to reasoning 

related to the development of mathematical models and frameworks, which includes 

mental and formal models. These models help to solve algebraic problems, formulate 

and visualise patterns and construct algebraic language (Ratith Ayu Apsari et al., 

2020). This skill should be integrated from the beginning of schooling and mathematics 

education (Bastable and Schifter, 2008; Schifter et al., 2008; Warren and Cooper, 

2008; Warren and Miller, 2010). 

 

The oldest remaining true algebra texts are the works “Al-Jabr and Al-Muqabala by Al-

Khwarizmi”, written in Baghdad around 825 (Katz and Barton, 2007). The meaning of 

jabr, as used in mathematical works, is plussing equal terms to both sides of the 

equation to eliminate negative numbers. Or, alternatively, multiplying both sides of an 

equation by the same number to eliminate fractions. The meaning of muqabala is to 

reduce “positive terms by subtracting equal amounts from both sides of an equation” 

(Waerden, 1985). The word ‘equate’ can be used here (Waerden, 1985). The 

combination of the two words Al-Jabr Al-Muqabala refers to the science of algebra or 

performing algebraic operations. Al-Jabr is the name from which the word algebra is 

derived.  

 

The initial part of the text is an instruction book for solving linear and quadratic 

equations. Al-Khwarizmi classified equations into six types (Waerden, 1985; Katz and 

Parshall, 2014). For each type he provided an algorithm for the solution. The six types 

of equations can be reduced as following, where 1, 2 and 3 are given as positive 

numbers: 

1"# = 2" 
1"# = 2 
1" = 2 

1"# + 2" = 3 
1"# + 3 = 2" 
1"# = 2" + 3 

(Waerden, 1985) 
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As in Babylonian times, his algorithms were entirely verbal and no use was made of 

symbols. For example, to solve a quadratic equation he writes: 

 

“…take half the number of “things”, square it, subtract the constant, find the 
square root, and then add it to or subtract it from the half roots already found.” 

(Katz and Barton, 2007, p.190-191) 
 

Functional thinking involves the generalising of relationships between covarying 

quantities, representing the specific relationships in words, tables, graphs or symbols, 

and thinking and arguing with the various representations to analyse function 

behaviour (Blanton et al., 2015). In his work with linear and quadratic equations, Al-

Khwarizmi engaged in the earliest stages of functional thinking. He was able to group 

various equations which represented relationships between various quantities. Even 

though these equations were represented by means of words, the functions were 

represented in a general manner.  

 

As in the work of Al-Khwarizmi,  the focus start to shift from only finding generalisations 

in arithmetic or geometrical objects to algebraic thinking which starts to include the 

focus on relationships between quantities which result in functions. In the same way, 

learners in the early mathetics classrooms should be exposed to problems based on 

the relationships between covarying quantities. The aim of functional thinking is to 

focus on relationships (Smith, 2008). 

 

Al-Khwarizmi’s aim was to solve equations. Here the development of algebra moves 

decisively to the static-equation solving conceptual stage.  

 

2.3.2.6. Critical remark for education 

 
In Katz and Barton's (2007) conceptual stages in the history of algebra, the geometric 

stage can be seen as the first stage. The syncopated stage retains this geometric 

thinking. In the Ancient Greek civilisation, most mathematical thinking was 

geometrical, and the influence of this thinking on the subsequent development of 

algebra is clear. 
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This geometric thinking involves representing mathematical thinking by means of 

geometric figures and forms (Katz and Barton, 2007). This is relevant in the classroom 

as many learners need to represent the content of algebraic problems by means of 

diagrams and drawings, these often being geometric. When learners start 

representing ideas by means of diagrams or drawings, they are starting to make 

models and mental pictures of the mathematical concepts and real life situations they 

are working with (Cooper and Warren, 2008). Making models and representing ideas 

in this way, is an important step towards generalising (see 2.2.4) (Roberts, 2012; 

Kaput, 2008).  

 

The crucial role played by problem solving in the evolution of algebra and its teaching 

over the centuries cannot be ignored. Problem solving is an essential component of 

algebraic thinking which can be seen throughout the whole history if algebra (Bednarz, 

Kieran and Lee, 1996). It is from the need to solve complex, real-life problems, that 

algebra developed and emerged through the centuries. The need for generalisations 

emerged as mathematicians in history realised that problems can be grouped together 

and can be brought in relation to each other. Doing that can make mathematics more 

sensible and meaningful. Using problems as a means for conceptual development 

aligns with the PCA (see 2.2.3). 

 

Examining mathematics in history leads to questions about the idea of problems and 

the part problems have played within mathematical theories and the building of new 

theories. The historical works of great mathematicians like Diophantus, Al-Khwarizmi, 

Cardano and Viète place problem solving in a broader context by illuminating the 

extent of what is implied by a problem and the progress of the contexts in which these 

problems have surfaced (Bednarz, Kieran and Lee, 1996).  

 

The variety of words used to represent problems and their use within theory show 

fundamental conceptions. These conceptions vary from basic application of rules to a 

particular solutions asking for certain skills, and from a particular solutions to a more 

general solution for which the set of rules used and the problems solved are extended 

(Bednarz, Kieran and Lee, 1996). Here we notice how generalisation as algebraic 

 

 

 

61 

reasoning becomes more prominent and fundamental in the emergence of algebra in 

history, as thinking in a general manner is central to algebraic thinking (see 2.2.4 and 

2.2.5).  

 

The rhetorical and syncopated stages are characterised by the operational outlook of 

mathematicians in these times. These stages are defined by characteristics which are 

prolix, and are tediously sequential, which imposes an operational outlook (Sfard, 

1995).  

 

The thinking operationally puts a tremendous load on working memory and is much 

less effective than structural thinking (Sfard, 1995). Structural thinking, which happens 

when one can generalise mathematics (Cooper and Warren, 2008), is developed and 

shown by the use of modern notation. Aryabhata (476-550) was an Indian 

mathematician who wrote ‘Aryabhatia’. Aryabhata led the way for the development of 

variables in algebra. The example below shows his algebraic reasoning (Sfard, 1995, 

p. 19): 

 

“Multiply the sum of the progression by eight times the common difference, add 
the square of the difference between twice the first term, and the common 
difference, take the square root of this, subtract twice the first term, divide by 
the common difference, add one, divide by two.” 

 

This still forms part of the rhetorical and syncopated stages as the focus is on a verbal 

description of the problem, but the author here speaks to both the given and the 

missing numbers by using general terms. The expression of the unknown as a 

variable (even if verbally), is an important advance in the development of algebra. In 

the classroom, learners should be engaged in expressing their mathematical thoughts 

in general terms by looking for the underlying structures which can be noticed in 

mathematics (see 2.2.4 and 2.2.5).  

 

Therefore, until the 16th century, developments in algebra were not marked by 

changes in the general character of the methods used, as these stayed more or less 

the same for more than 2 millennia. The changes can be noted in the progressive 

increase in complexity of the investigated computational processes (Sfard, 1995, p. 

20). 
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When comparing how the knowledge of operational versus structural thinking 

influences algebra on a school level, some research has shown that learners, even 

those with some experience in algebraic symbols, fare better when employing verbal 

rather than symbolic methods (Sfard, 1995).  

 

The precedence of operational over structural thinking in the development of algebra 

in history is relevant when considering the development of algebra in individual 

learning. The aim of teaching mathematics in the early years should be to foster 

structural thinking which leads to generalising (Roberts, 2012).  

 

2.3.3. The symbolic stage 

2.3.3.1. Viète’s invention – variable as a given 

 
The way Francois Viète (1540-1603) employed symbols in mathematics paved the 

way for modern symbolism in algebra. Viète was a French lawyer and, in his free time, 

a geometer who was looking for better techniques for astronomical calculations. Viète 

developed a ‘new algebra’ which was first explainedin the work In Artem Analyticem 

Isagoge (1591). This ‘new algebra’ was completely different from contemporary 

sixteenth century algebra (Oaks, 2018).  

 

Up to this stage, letters had been implemented in algebra to represent missing 

numbers (Sfard, 1995). For earlier algebraists, knowns and unknowns in algebra were 

numbers. They reasoned with positive numbers which could be derived from the unit 

through addition, subtraction, multiplication, division, and root extraction (Sfard, 1995). 

Negative and complex numbers were not yet part of the basic presentation of algebra 

(Oaks, 2018).  

Viète understood that the unknown values in equations could represent types of 

objects. He had a much broader view of equations than simply solving for an answer. 

He stated that if the unknown could represent a type of object, then  algebra would be 

the study of the relationship between these types (Tabak, 2011). This higher level of 

abstract thought led to a breakthrough in the conventional notation of algebra. 
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Focusing on the relationship between quantities indicates Viète’s ability to reason 

quantitatively as well as in a functional manner (see 3.4.3).   

 

Viète implemented the denotation of symbols for the unknown with vowels. And the 

given numbers or data were marked with consonants. Because of this convention 

designed by Viète, entire groups of problems could be solved by using concise 

algorithms (Sfard, 1995). Viète used two separate series of terms to describe 

unknowns. He called unknowns “magnitudes”, and the rules were presented without 

the usual connection with arithmetic. Furthermore, his expressions and equations look 

nothing like those in earlier books, because he used letters for unknowns (Oaks, 

2018). 

 

Viète made important strides in the use of variables. Variables are described as one 

of the five big Ideas of algebraic thinking (see 2.2.4.). Viète initiated the use of symbols 

as variables in a way that closely relates to modern methods. His use of variables 

enabled him to think algebraically and to generalise in a way that was not possible 

before. 

 

It is important to note that also using letters to represent givens precluded finding 

specific numerical answers. This allowed Viète to see broader patterns in the 

mathematics. The letters helped him to identify relationships between symbols and 

the types and classes they represent. This is an important developmental step which 

emerges from history. A total shift towards generalisation is seen as Viète moved away 

from a focus on specific numbers. His perspective became process-orientated rather 

than answer-orientated. This allowed him to see the underlying structures and patterns 

within mathematics (Tabak, 2011). 

 

Viète’s conventions played a significant role in algebra’s development from 

Diophantus’s plans and methods for solving various problems, into a genuine science 

of general computations. According to Viète, arithmetic was the science of concrete 

numbers, whereas algebra was a science of ‘species’ or types of things rather than 

the things themselves (Sfard, 1995, p. 24). These ‘species’ possess dimensions and 

cannot be identified with numbers (Oaks, 2018). Viète was able to make the shift from 
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simply computing with numbers in arithmetic, to viewing arithmetic in a general manner 

and implementing generalised arithmetic. Generalised arithmetic also forms one of the 

Five Big Ideas, and includes being able to analyse information, conjecture an 

arithmetic relationship, and identify values or groups of values for which a conjectured 

generalisation is true and justify an arithmetic generalisation employing either 

empirical arguments or representation-based arguments  (Knuth et al., 2014). 

 

Viète’s innovation of using letters as known numbers, along with using symbolism for 

operations, abstracted and reified the total algebraic knowledge in a way that made it 

much more accessible. Algebra could be used as a user-friendly basis for a completely 

novel facet of mathematics (Sfard, 1995).  

 

With the emergence of the use of symbols, a new kind of natural science developed. 

Mathematics could be used to deal with changing amounts and not just constant 

quantities. Natural scientists employed this invention to represent a variety of natural 

processes. The concept of function, along with the concept of variable (see 2.2.3. and 

2.2.4.), began to emerge (Sfard, 1995). The use of conventional symbolism in 

mathematics was also seen in geometry. 

 

2.3.3.2. Fermat and Descartes  

 
Geometry is an ancient branch of mathematics. For much of its history it was mainly 

structural, as it had easily visualisable concrete objects to work with. A transition into 

operational thinking at a higher level was necessary (Sfard, 1995). In the 17th century, 

mathematicians initiated the expression of geometric problems and relationships in an 

algebraic manner (Tabak, 2011). To achieve more generality, the discipline of 

geometry had to be separated ifrom concrete shapes and instead the focus had to fall 

on the constructions and transformations by which these shapes are ruled. This would 

become possible through the employment of algebra to solve geometric problems 

(Sfard, 1995).  

 

As learners’ algebraic thinking develops and becomes more sophisticated, mirroring 

the historical development of algebra, teachers should guide learners to gradually 
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detach from the use of drawings and concrete objects and start to focus on the 

constructions and transformations by representing these in a more formal and general 

symbolic manner. Learners in the early mathematics classroom can use variables to 

represent functional and quantitative relationships  (Knuth et al., 2014). When young 

learners are prompted to describe and represent quantities and relationships between 

them in various ways, they learn to recognise equivalent representations and broaden 

their capability to employ symbols to express their ideas (Friel, Rachlin and Doyle, 

2001). 

 

Fermat and Descartes employed symbolism in geometry for the first time. They can 

be seen as the fathers of analytic geometry. Descartes’ main goal was to employ 

algebra as a problem-solving tool with regards to geometry. Fermat focused on 

representing curves through algebra (Katz and Barton, 2007). Geometrical figures and 

transformations were represented by their computational processes (Sfard, 1995). 

Algebraic descriptions of geometric problems are more concise and easier to 

manipulate than visual representations. Mathematicians were looking for a way to 

connect geometric ideas like “curves, lines, and surfaces” with algebraic expressions 

(Tabak, 2011). This new method was named analytic geometry because the method 

was based on manipulating algebraic symbols (Sfard, 1995). This has a deep impact 

on the history of mathematics and science in general.  Analytic geometry provided 

mathematicians with a mechanism for representing motion or movement. Newton 

used this mechanism as he was developing calculus (Katz and Barton, 2007). 

 

Fermat (1601-1665) took Arithmetica, the work of Diophantus, as the starting point for 

his studies in number theory (Sesiano, 2009). Fermat never formally published his 

number theory. His results and very limited methods was acknowledged through his 

comments in the margins of Bachet’s translation of Arithmetica, as well as through his 

correspondences with leading scientists of the time (Carcavi, Frenicle, Mersenne) 

(Kleiner, 2005).  

 

Fermat’s most famous work was his Last Theorem. Fermat wrote a note next to 

problem II.8 in Bachet’s translation of Arithmetica. The note read: 
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It is impossible for a cube to be written as a sum of two cubes or a fourth power 
to be written as the sum of two fourth powers or, in general, for any number 
which is greater than the second to be written as the sum of two like powers. I 
have a truly marvellous demonstration of this proposition, which this margin is 
too narrow to contain.  

(Kleiner, 2005, p. 8) 
 

Symbolically, this theorem can be expressed as follows: -$ =	"$ +	#$ has no positive 

integer solutions if n>2. Fermat never published his ‘marvellous demonstration’. This 

theorem was proved 357 years later by Andrew Wiles (Derbyshire, 2006). Even though 

Fermat’s thinking led to the development of representing geometry with algebraic 

symbols, little of his work has been preserved. 

 

Descartes (1596 – 1650) used the theory of proportions to achieve unification between 

geometry, arithmetic, and algebra. The relationship between geometry and algebra in 

Descartes’ work can be challenging to comprehend as he almost contradicts himself. 

On the one hand Descartes attempts to unify geometry and algebra by trying to prove 

a method of representing a curve via an equation. However, he maintained the logical 

and epistemological priority of geometry over algebra. This tension can be noted in 

his constructions of equations for solving geometrical problems (Crippa, 2017).  

 

In Discours de la méthode (Discourse on method), and especially in an appendix 

which discusses his work in geometry, Descartes made the connections between 

geometry and algebra which led to a novel area of mathematics: Cartesian geometry 

(Tabak, 2011). 

 

The Cartesian coordinate system is a method for establishing a correspondence 

between points and numbers. A two-dimensional Cartesian system is formed by 

identifying a special point, which is called the origin, and a line passing through the 

origin (x-axis) (Tabak, 2011). A second point on the x-axis is used to establish a 

direction and distance. The distance from the origin to this second point is taken as 

one unit (Tabak, 2011). The direction that is travelled from the origin to the second 

point identifies the directions of increasing ".		The line that passes through the origin 

and is perpendicular to the x-axis is the y-axis (Tabak, 2011). 
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In his most influential work, La Geométrie Descartes introduced the system of 

algebraic symbolisation used in modern algebra. He also explored the relation 

between geometry and algebra. His version of analytic geometry was almost the same 

as that of Fermat. However, Fermat inclined to start with an algebraic equation and 

interpret it geometrically in terms of a specific curve. Descartes began with a 

geometrical problem and aimed to solve it and represent it algebraically (Katz and 

Parshall, 2014).   

 

Descartes also introduced a novel perspective on multiplication. The Greeks formed  

a relationship amongst the line segments and real numbers by using quantitative 

reasoning (Smith and Thomson, 2008). A number of magnitude ", can be represented 

by a line segment with length ". The product of two numbers " and # are represented 

by a rectangle with line segment with length "	forming the one side, and line segment 

with length # forming the other side (Tabak, 2011, p.88). This works well until you want 

to represent the product of more than two segments. Descartes’ innovation was to use 

triangles rather than rectangles to represent multiplication. He imagined all products 

as line segments of the appropriate length as seen in the diagram below (Tabak, 2011, 

p.88): 

 

 

 

 

 

 

 

Figure 2.4. Descartes’ geometric interpretation of the operation multiplication (Tabak, 

2011, p. 88) 

 

With this diagram Descartes provided a more effective and usable representation of 

the operation of multiplication and therefore, used geometry to represent arithmetic. 

The use of representations is useful to develop algebraic ideas.  
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Descartes also examined the relationship between geometric descriptions of conic 

sections and algebraic equations. Conic sections are curves like hyperbolas, 

parabolas and the ellipse. He examined the relation between geometry and the 

equation: ## = 1# − 2"# + 3" − 6"# + 7. In this equation " and # are the variables and 

1, 2, 3, 6	and 7 are the coefficients (Tabak, 2011). 

 

Descartes went far in exploring the connections between geometry and algebra and 

the use of symbols to represent mathematical ideas became more powerful and useful 

through his discoveries and work. Descartes had founded a method for producing 

infinite new curves: Write one equation in two variables and the result would be a new 

curve. The principles of analytic geometry were made clear by Descartes which lead 

to an enrichment of mathematical vocabulary (Tabak, 2011).  

 

At the core of algebraic reasoning and generalisation in the early years lies a 

fundamental understanding of the mathematical structure of arithmetic communicated 

through  language and gestures using tangible materials and representations (Warren 

and Cooper, 2008). Even so, as claimed earlier, learners need to gradually move away 

from concrete materials and representations and start to represent relationships in 

more formal manners by using variables (Friel, Rachlin and Doyle, 2001). 

 

2.3.3.3. Peacock and the de-arithmetisation of, and arbitrariness in, algebra 

 
Some mathematicians and prominent thinkers stated their doubts in Viète’s invention 

of the use of symbolism in algebra. Newton claimed that “algebra is the analysis of 

bunglers in mathematics” (Sfard, 1995, p.27). Many scientists and mathematicians 

rooted their doubts in the argument that this new discipline of employing letters to 

symbols, lacked logical reasoning (Sfard, 1995).  

 

The abstract notion of variable was the underlying problem. The notion of variables, 

which cannot easily be explained by a simple definition, may be one of the most 

problematic in the whole of mathematics. Doubt in variable still exists in recent 

professional literature (Sfard, 1995). Bell (1951, p. 101) stated that: 
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“… to state fully what a variable is would take a book. And the outcome might 
be a feeling of discouragement, for our attempts to understand variables would 
lead us into a morass of doubt concerning the meanings of the fundamental 
concepts of mathematics” (Bell, 1951, p. 101).  

 

 A variable can be seen as something which changes. This aspect of operational 

change was unacceptable to many 20th century mathematicians. Algebra was viewed 

as generalised arithmetic with the sole aim of expressing the goals which govern 

numerical operations in a general manner. The British mathematicians wanted to 

provide algebra with a solid logical basis, which would eliminate any doubt around the 

subject (Sfard, 1995). 

 

Peacock (1791-1858) was one of the mathematicians working on the emancipation of 

algebra. He is seen as one of the earliest and most prominent minds in the 

development of symbolic algebra. Even so, there is no book of works which can be 

studied to form a thorough understanding of his work. It is proposed that his work with 

algebraic symbols stemmed from the aim to resolve problems with imaginary and 

negative numbers (Pycior, 1981).  

 

Peacock introduced the concept of arbitrariness into algebra. Mathematicians could 

develop and invent new mathematical ideas without the fear of judgement from others. 

The laws of logic were the only thing governing their thoughts (Sfard, 1995). Peacock 

believed that while quantity is the ultimate subject matter of algebra, he adopted a 

basic symbolic approach to algebra. He viewed it as a science of “arbitrary” or 

undefined symbols and signs governed by specific laws (Pycior, 1981). After this 

ontological breakthrough, the introduction of novel mathematical ideas through 

axiomatic systems developed to be increasingly common. Algebra’s connection with 

numbers and numerical computations was released more and it progressively 

transformed into a science of abstract structures (Sfard, 1995). 

 

His expression “principle of permanence” stated: “Whatever form is algebraically 

equivalent to another form expressed in general symbols, must continue to be 

equivalent whatever the symbols denote” (Novy, 1973, p. 191). Peacock concluded 

that a variable should no longer be seen as generalised number but must be treated 
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as an object itself, stripped of external sense. From here Peacock arrived at the de-

arithmetisation of algebra. The meaning of symbols should not be expected to come 

from their non-existent value, but must be pursued in a way that formulas are 

transformed and combined with each other (Sfard, 1995). Peacock was motivated by 

a concern with the applicability of symbolic algebra and chose to adopt the laws of 

arithmetic as the laws for symbolic algebra (Pycior, 1981). He did not show the 

freedom of thought seen in the later algebraists like Hamilton.  

 

2.3.3.4. Hamilton 

 
The freedom, which was created by mathematical thought leaders like Peacock, 

opened the door for mathematicians like Hamilton to think and reason freely about 

mathematics. This led to Hamilton’s creation of quaternions in the 1850’s (Katz and 

Parshall, 2014). 

 

Hamilton was captivated by the connection between geometry and complex numbers. 

Complex numbers can be seen as real numbers which are used to deal with everyday 

life (Shúilleabháin, 2016). Complex numbers could be easily manipulated in two-

dimensional geometry. In his earlier works Hamilton presented complex numbers 

simply as pairs of real numbers governed by formally defined operations  (Sfard, 

1995). Hamilton wanted to expand the use to three-dimensions but it proved to be 

impossible (Shúilleabháin, 2016). He began to realise that he only needed consistent 

axiomatic system to legitimise that existence of an abstract object. His thinking was 

quite futuristic for the time (Sfard, 1995). This can be noted in the following statement 

Hamilton made to a friend, John Graves: 

 

“I have not yet any clear view as to the extent to which we are at liberty to create 
imaginaries, and to endow them with supernatural properties.” 
           (Kleiner, 1987, p.233) 

 

He took advantage of this freedom of thought and understood that if he skipped a 

dimension and operated with numbers in four dimensions instead of three, he would 

be able to solve the problems. From here the new idea of quaternions developed 

(Shúilleabháin, 2016). In spite of his freer, axiom-based approach, Hamilton felt it 
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necessary to prove his idea of quaternions by physical application. Mathematicians 

who came after him freed themselves from this perspective (Sfard, 1995). The 

freedom that was seen in the work of Hamilton created new opportunities for 

mathematicians to think creatively about mathematics, and to explore and push the 

boundaries of what was known at the time.  

 

Creativity is a necessary aspect of the mathematical process and should be 

incorporated in mathematics classrooms. Learners should be given ample 

opportunities to think creatively about mathematics, and to come up with their own 

original ideas. This supports learners’ understanding of the mathematical concepts 

they are working with.  

 

The historical stages discussed in this section correspond to the stages learners pass 

through as they develop algebraic thinking. When studying the development of 

algebraic thinking in young learners, it is therefore imperative to understand how 

algebraic thinking, and especially generalisation, came about in history, and how this 

trajectory can be mirrored in the teaching of generalisation in the early mathematics 

classroom.  

 

2.3.3.5. Critical remarks for education 

 
In the symbolic stage, total symbolisation can be noted. This can be seen as the stage 

where all numbers, operations and relationships are communicated through the use 

of a set of simply recognised symbols, and manipulations of the symbols, in 

accordance with the rules which are well-comprehended (Mathematics for Teaching, 

n.d.).  

 

As stated earlier in this chapter, the stages in the development of the history of algebra 

can be drawn into relation with the development of algebraic thinking in the classroom. 

The progression of the stages is also often clear in the ways in which textbooks 

introduce algebra and algebraic problems. Initially learners are expected to express 

ideas, patterns, and relationships in words, which resemble the rhetorical stage. From 

there learners are encouraged to represent ideas using only key words, diagrams, or 
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informal symbols, which reflects the syncopated stage. And lastly the formal use of 

symbols to represent numbers, operations, and relationships are initiated and 

introduced to learners. This is the final stage, the symbolic stage (Mathematics for 

Teaching, n.d.).  

 

As seen in the progression of these stages it is mostly necessary to take learners 

through all the stages of thinking to ensure that they develop a deep understanding of 

algebra and how it is used. Nixon (2009) argues for three levels of learning to think 

algebraically: the perceptual level, the conceptual level and the abstract level. These 

three levels of the development of algebraic thinking relate closely to the stages in the 

development of algebra throughout history. This progression can be seen as a 

possible trajectory for the development of algebraic thinking and generalisation. An in-

depth discussion of these levels will follow in Chapter 3. An important aspect of these 

levels to note, is that as learners are guided through these levels, teachers should 

facilitate situations for them to make generalisations and draw comparisons (Nixon, 

2009).  

 

Often, if learners are simply introduced to the formal use of symbols given with a set 

of complicated rules, learners are expected to memorise mathematics. This is the 

traditional approach to teaching algebra. This leads to many challenges, as learners 

do not really understand why they are performing certain actions and do not see the 

clear need for the use of symbols. Algebraic concepts should be integrated throughout 

all content areas to ensure that their teaching develops a deep understanding 

(Schoenfeld, 2019). As an educator, it is important to ensure that learners can clearly 

explain and communicate their thinking to show they have deep understanding. 

Learners should realise that mathematics is not answer driven but that all 

mathematical processes, including communication, are important aspects (Ontario 

Ministry of Education and Training, 2007).  When examining history, an important 

lesson is learned in terms of visualisation. Greeks found it valuable to use geometric 

representations to interpret numerical computations. This points to the effectiveness 

of graphical representations in an abstract subject, such as, algebra (Sfard, 1995). 

Geometrical objects like squares, triangles and circles can be used as symbols or 

‘placeholders’ in the early years of school mathematics. Even so, when using 
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geometry to assist computations, the necessary precautions should be taken to avoid 

a literal approach where models might hinder algebraic thinking  (Sfard, 1995). 

 

When considering the development of algebra throughout history, one of the first and 

most obvious challenges and barriers to the progression of algebra was the lack of 

symbolisation. A convenient symbolism for expressing new ideas and solutions to 

problems was needed. In this regard, some ideas and concepts were spreading 

throughout Europe, but not in a conventional and consistent manner. Mathematicians 

in different geographical and linguistic regions introduced various ways of using 

symbols (Tabak, 2011). It took time for the symbolisation and notation to become 

standardised. Much of the algebra in the 16th century resembled the Islamic 

mathematics of centuries earlier: the focus was still on finding the roots of equations. 

The equation was seen as a concrete object in the form of a question. At the time, 

algebra was a set of problem-solving techniques. One of the first mathematicians who 

understood algebra as more than a problem-solving technique was the French 

mathematician Francois Viète (Tabak, 2011). 

 

2.3.4. Conceptual stages 

 

 

Katz and Barton (2007) described four conceptual stages in the development of 

algebra, which run concurrently with the three historical stages. The four conceptual 

stages are the geometric, static-equation, dynamic function, and abstract stages. 

These stages are not separate from each other but overlap. The following systematic 

analysis of the conceptual stages in the development of algebraic thinking will inform 

the instructional sequence for developing algebraic thinking presented in Chapter 3. 

 

2.3.4.1. Geometric stage 

 
The geometric stage reflects, for the purpose of this discussion, the beginning of 

algebra. It first emerged in 4000 years ago in Mesopotamia, as discussed previously 

(see 2.2.1). Mesopotamians developed the cut and paste geometry used by land 

surveyors, and solved accounting problems. The Babylonian mathematics (2 000 – 
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1 700 BCE) can also be included when discussing the geometric stage. The old-

Babylonians had clay tablets with extensive lists of solutions to quadratic equations as 

we know them today. Their goal in developing these lists was to facilitate finding 

geometric quantities, such as the length and width of a given rectangle. The underlying 

aim for Babylonian equation solving was to solve geometric problems, but they 

developed algorithms to solve equations (Katz and Barton, 2007). Some efforts 

towards generality are evident in the labelling of the sides of geometric object in a 

manner that resembles modern algebraic symbol systems. However, procedures and 

algorithms were described in words.  

 

These systems were applied across many similar problems (Katz and Barton, 2007). 

This can be viewed as the beginning of algebraic thinking and generalisation as it was 

the first time in recorded history that numerical problems were solved by manipulating 

original data according to a set of fixed rules with the aim of finding some sort of 

generality (Tabak, 2011). Similarly, as learners work with numbers and number 

properties in arithmetic, as well as, solving problems and communicating their ideas 

and thinking, the generality which learners notice throughout mathematics, are 

expressed in their own words using informal terminology. As learners become more 

sophisticated in their ability to express generality, they become able to do so by means 

of variables (Blanton et al., 2015).  

 

Greek mathematics was mainly based on geometry, but algebraic notions can be 

observed in many of the works that represent the mathematicians of the time. Euclid’s 

Elements, for example, presents methods for manipulating rectangles and squares. In 

Book II of The Elements, there are propositions where Euclid solves problems which 

seem to be algebraic with geometric results, such as the position of a particular point 

on a line (Katz and Barton, 2007). His solutions were based on clearly stated axioms 

and proofs (Katz and Barton, 2007).  In the geometric stage, mathematicians 

developed the sophistication of their algebraic thinking by engaging with algebraic 

problems through geometric reasoning and representing. The geometric stage is a 

crucial stage of thinking for learners as they work through algebraic problems and 

patterning activities in the pre-algebra classroom  (Apsari et al., 2020). 
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Geometric representations make it possible for learners engaged in patterning 

activities and arithmetic to forge connections between problems, mathematical 

models, and problem solving strategies, and to become aware of the structure of 

mathematics (Dekker and Dolk, 2011). 

 

The geometric stage can be compared to the perceptual level of algebraic thinking as 

described by Nixon (2009) in Chapter 1 and 3 (see 1.1 and 3.4.3.1.) . This level of 

algebraic thinking involves the coordination of physical senses and perceptions to form 

algebraic concepts. Learners reason with physical and concrete “objects” like 

geometric figures, and from there are able to construct informal algebraic concepts. 

An example of this in the geometric stage would be Euclid’s demonstrations of how to 

manipulate rectangles and squares based on axioms.  

 

Geometric thinking and representation plays a valuable role in students’ algebraic 

thinking. Apsari et al. (2020,p.52-53) distinguish various key roles of geometric 

representation in the pre-algebra classroom:  

 

1) Context 

Geometric thinking and representation aids learners in setting the context of the 
algebraic problem or pattern they are engaged in. Formal algebraic expressions 
are too sophisticated and abstract for learners at the beginning of their algebraic 
thinking development. Apsari et al. (2020) found that in a prototype lesson where 
a problem is presented and analysed merely in words, learners could not find a 
general relation between numbers and worked fruitlessly to solve the problem. In 
comparison, when learners investigated patterning activities with geometrical 
representations, they could see the structure of the pattern in a more realistic way. 
Geometric representations set the foundation for discovering which aspects of 
patterns remain the same and which aspects change. Learners can then use 
geometrical visualisation to elaborate on the changing of mathematical objects and 
express generalities. (Rivera, 2011) also found that visualisation is imperative to 
constructing personal inferences when engaging in patterning activities.  
 

2) Model of and model for situation 

Models help learners to shift their focus from reality to mathematical objects. 
Mathematical models aim to provide a visualisation of the actual condition or 
situation. The Realistic Mathematics Education (RME) approach distinguishes 
between two types of models: (1) model of situation and (2) model for situation. 
The model of situation is used to transfer the context or situation to a mathematical 
object. The model for is used to work with mathematical ideas and concepts. 
Geometric representation is a bridge used to translate the context of situations and 
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mathematical ideas (Apsari et al., 2020). (Kusumaningsih et al., 2018) also 
highlighted the need to use numerous representations to develop algebraic 
thinking and generalisation.  
 

3) Scaffolding 

The teacher can use geometric representation as a means of enhancing learners’ 
ability to reason critically. By prompting learners to represent their thinking by 
means of geometrical objects  the teacher can provide support without directly 
giving learners the answer  (Apsari et al., 2020).  
 

4) Learners’ mathematical reasoning and proof 

Geometry representations are used by learners to show their mathematical 
reasoning. Illustrations are used to support arguments and help teachers to notice 
where learners have formed misconceptions in their reasoning  (Apsari et al., 
2020).  

 

When algorithms start to replace geometry and geometric representations, the 

conceptual stages start to move from the geometric stage to the static-equation solving 

stage (Katz and Barton, 2007).  

 

2.3.4.2. Static-Equation solving stage 

 
This stage is characterised by a general concern with numerical problems which 

involves squares, and can be viewed as algebraic. Algorithms to solve problems 

(expressed as an equations) are proposed and used to arrive at an answer. The 

transition from the geometric to the static-equation solving stage becomes evident in 

the work of Diophantus. Diophantus was able to solve quadratic equations using an 

algorithm based only on numbers (Katz and Barton, 2007). The first Big Idea of algebra 

in the early years is working with equivalence, expressions, equations and inequalities  

(see 2.2.5) (Knuth et al., 2014). Diophantus was able to solve quadratic equations by 

reasoning from the structural form of the equation. Reasoning with equations is an 

important skill which should be introduced in the pre-algebra classroom (Knuth et al., 

2014). Diophantus studied algebra as a separate field from geometry, even though he 

also studied geometric algebra. He introduced the use of Greek symbols in equations. 

His main goal was to provide a foundation for algebra (Tabak, 2011). He used the 

number system and the fixed rules which govern it, to describe various number 

properties and the relations between them. For example, rational numbers are 
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numbers than can be shown as fractions with whole numbers in the numerator and 

the denominator – and negative numbers  (Tabak, 2011). In this way he engaged in 

the process of generalising arithmetic by providing rules for thinking and finding 

solutions (Knuth et al., 2014).  

 

As discussed previously, the first authentic algebra text was published by Al-

Khwarizmi and was called Al-Jabr and Al-Muabala. The first section of the book is 

written as a manual to solve linear and quadratic equations. Al-Khwarizmi was able to 

classify equations into six types and for each type of equation, an algorithm was 

presented as a solution. Al-Khwarizmi was able to engage in the first Big Idea of pre-

algebra by solving various equations (Knuth et al., 2014). The fact that Al-Khwarizmi 

aimed to organise equations into categories, shows that he was seeking generality. 

The solutions here was still entirely verbal. Al-Khwarizmi presented abstract problems 

as examples for his algorithms. He could interpret the context of a problem by 

expressing it algebraically, even if it was merely in words (Knuth et al., 2014). He did 

not stick solely to using geometric objects like width and length (Katz and Barton, 

2007). The goal in this era of Islamic mathematics was solving equations. Al-

Khwarizmi’s approach to and perspective on algebra informed the traditional teaching 

of algebra in high school. This traditional approach mainly focused on the simplification 

of equations rather than a relational approach where algebra and generalisation 

encompasses the whole of mathematics (Ratith Ayu Apsari et al., 2020).  

 

The static-equation solving stage was also introduced to Europe in the twelfth and 

thirteenth centuries. Even in the sixteenth century the aim of algebra remained the 

solving of equations (Katz and Barton, 2007). Equations were used to model problem 

situations and determine the numerical value of unknowns (see 2.2.3.) (Knuth et al., 

2014). 

 

Learners involved in the static-equation solving stage are starting to enter the 

conceptual level of algebraic thinking as described by Nixon (Nixon, 2009) (see 

3.4.3.1). In the conceptual level, a shift occurs which moves the focus from analysing 

objects to the transformations of objects and relations between objects. Learners start 

to find interrelationships between properties and develop definitions and theorems to 
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describe and explain these relationships. In the static-equation solving stage, 

mathematicians started to move away from primarily analysing geometric objects, and 

started to represent relationship as equations, which were solved by developing 

algorithms and proofs. Equivalence, expressions, equations, and inequalities are part 

of the first Big Idea involved in developing algebraic thinking in the foundational years 

of mathematics education. The ability to express problem situations and the unknown 

by means of variables in equations is an important step towards developing algebraic 

thinking and generalisation (Knuth et al., 2014). In the static-equation solving stage, 

equations emerge as the next developmental level of thought for learners to engage 

in (see 3.4.3.1).  

 

2.3.4.3. Dynamic function stage 

 
The dynamic function stage introduced the concepts of motion and movement to 

mathematics (Katz and Barton, 2007).  

Early in their development, algebra and algebraic thinking were seen as difficult and 

tedious due to the lack of standardised symbols (Tabak, 2011). In the seventeenth 

century, new notation was introduced by mathematicians like Viète and Descartes 

(Katz and Barton, 2007). This  was quite similar to the algebraic notation we use today 

(Sfard, 1995). It involved the use of variables (one of the Bid Ideas of pre-algebra) to 

represent unknown quantities, which could be fixed or varying (see 2.2.5) (Knuth et 

al., 2014). Viète understood that algebra was more than the developing of techniques 

to solve various equations. He understood that unknowns in equations represented 

species of objects, and algebra was about the relationship between these species. 

Viète’s employment of notation in the form of alphabet letters to represent unknowns 

in equations (Tabak, 2011) showed his understanding of variables and the importance 

of using variables when working with algebraic problems and equations (Knuth et al., 

2014). Viète’s introduction of notation and use of symbols made it possible for 

mathematicians to see broader patterns in mathematics, and to identify relationships 

between symbols and the classes of objects they represent (Tabak, 2011). Kaput 

(2018) emphasises that, in the pre-algebra classroom, learners should be able to 

suspend their conception of what the symbols symbolise, and instead look at the 

symbols itself. In this way learners are freed to operate on relationships which are 
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more complicated (Kaput, 1999). A syntactic action involves the manipulation of 

symbols only by looking at the syntax of the symbol system rather than by looking at 

a reference field for those symbols. A syntactic action is an action on the notational 

system and not on the representational system. A syntactic manipulation looks at 

expressions or equations as manipulable object strings which are subject to certain 

constraints and governed by certain rules (Kaput, 2018).  

 

A change in perspectives on algebra, and the implementation thereof, was also taking 

place. Mathematicians started to move away from the focus on finding solutions to 

expressing problems as equations. A growing interest in astronomy and physics 

further motivated mathematicians to advance their understanding of algebra (Katz and 

Barton, 2007).  

 

Johan Kepler was fascinated with the paths of planets and Galileo Galilei was 

interested in the paths of a projectiles. In both these cases the aim was not to find a 

number, but a curve. Kepler and Galilei drew on the work of Apollonius, whose work 

was mainly static, to develop the representation of motion. Still, neither of these 

mathematicians had an effective way to represent motion. They were still using Greek 

models and not algebra. In 1637, suitable tools for representing motion were 

developed by Fermat and Descartes. Fermat and Descartes (as discussed in 2.3.3.3) 

had the goal of representing curves. Descartes wanted to use algebra to solve 

geometric problems and Fermat was concerned with representing curves using 

algebra. Both of these mathematicians developed methods for representing curves 

verbally by using algebra (Katz and Barton, 2007).   

 

Isaac Newton was initially hesitant to use algebra in his work, but when this new 

algebra (dynamic function) arose, Newton started using it more freely. One of the key 

goals of the eighteenth century was to transcribe Newton’s ideas into algebraic 

language and prove them using the new calculus. The mathematicians involved were 

no longer looking for answers expressed as numbers, but as curves. The objective 

was to see how objects move (Katz and Barton, 2007). As the eighteenth century drew 

on, algebra developed in such a way that it became easier to represent a curve as the 

path of motion. The idea of finding curves which solve problems became the central 
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goal of mathematics (Katz and Barton, 2007). From the work on curves in the 

eighteenth century, the ideas of functional thinking, relations and joint variation 

emerged (see 2.2.4 and 3.5.4.). Mathematicians and scientists focused on 

representing change and the motion of objects by means of curves.  

 

In the dynamic function stage, the goal is to represent motion using algebra. Motion 

can also be viewed as change.  This stage still falls in the conceptual level of thinking 

algebraically as described by Nixon (2009) (see 3.4.3.1.). The conceptual stage 

focuses on the relations between and transformation of objects. Thus, the aim is to 

find and represent the interrelationships of properties between objects, for example, 

the motion of projectile and the curve which it would follow. Learners should be able 

to represent changes and motion in objects using algebra, even if it is verbally. Here, 

learners are expected to generalise the relationship between properties. This involves 

functional thinking, as learners reason about covariational relationships and are 

expected to represent these in words or by means of various representational tools 

(Knuth et al., 2014). Functional thinking is perceived as a powerful mathematical idea 

which should form part of the pre-algebra classroom as it provides opportunity for 

learners to reason quantitatively about real-world problems and situations and allows 

learners to study the relationship and change which can be noticed in algebraic 

problems  (Ng, 2018). 

 

 

2.3.4.4. Abstract stage  

 
In the abstract stage, understanding the structure of mathematics itself becomes the 

overarching goal (Katz and Barton, 2007). Generalising and abstraction based on 

computations, where the focus falls on the structure within the computations rather 

than the process or answer, lead to the emergence of abstract structures (Kaput, 

1999). In the nineteenth century, another question started to gain prominence: How 

could one be certain that the algebraic manipulations made, are correct? A general 

consensus was reached among mathematicians that if axioms or proofs were in place, 

it could be assumed that calculations based on them would give the correct results. 

From there,  axioms were formulated for arithmetic and were used to solve equations 
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using algebraic manipulations (Katz and Barton, 2007). Structural knowledge is the 

skill of recognising all equivalent forms of an expression. It is necessary skill that 

learners should also be able to justify the structural equivalence which is identified 

(Liebenberg et al., 1998). In the abstract stage of the development of algebraic thinking 

in history, this need for justification and proof for argument, emerged (Katz and Barton, 

2007).  

 

With the discovery of quaternions by Thomas Hamilton, mathematicians realised that 

there could be more sets of axioms that provide interesting results. Lagrange 

conducted a study to determine whether Cardano’s algebraic solutions of polynomials 

of degrees three and four could be extended to polynomials of a higher degree. He 

could not find any conclusive results, but he introduced the idea of permutations. 

Permutations is a mathematical strategy that governs the amount of possible 

arrangements in a set when the order of the arrangements matter. Galois constructed 

methods involving what is now called group theory to determine under which 

conditions polynomial equations are solvable (Katz and Barton, 2007). In all of these 

events in the history, the aim is shifting from solving equations, but is progression 

towards finding structure in mathematics.  

 

Group theory continued to develop throughout the nineteenth century, and 

mathematicians realised that many different mathematical situations had similar or 

common properties. By the twentieth century algebra became to a lesser extent 

concerned with finding solutions to equations and more about finding structures in 

various mathematical objects, with the objects defined by sets of axioms or rules (Katz 

and Barton, 2007). The study of structure is an important and foundational concept of 

algebraic thinking (see 2.2.5 and 3.5.3) (Kaput, 1999). The focus of early algebra 

should be on a relational approach to learning mathematics, which refers to studying 

number from a structural perspective (Du Plessis, 2018). Structure is obtained when 

number and space are explored relationally, and this initiates reasoning which focuses 

not only on the object but also on its fundamental properties (Du Plessis, 2018). 

Learners should be able to see common mathematical structures in representations 

when solving problems and working with arithmetic. The emphasis should fall on the 

structural relationships within problems and numbers and their properties. These 
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relationships provide clues for how problems might be solved (National Research 

Council, 2001). 

 

In the abstract stage the main goal is to find structure in mathematics, and to use 

symbols to represent and construct proofs. This aligns with Nixon’s abstract level of 

algebraic thinking. In the abstract level of thought, learners start to use symbols with 

deep understanding to construct proofs, and they can understand the importance of 

deductions, axioms, postulates and proofs (Nixon, 2009) (see 3.4.3.1).  The abstract 

stage is the goal of algebra. Here learners generalise mathematics and represent 

mathematics using symbols, which can be considered the main two aspects of 

algebra. As learners’ algebraic thinking develops, they may move through the levels 

of algebraic thinking in a sequence which resembles the development of algebraic 

thought throughout in history. For this reason, having knowledge about and exploring 

the development of algebra throughout history provides teachers with valuable 

information about the development of algebraic thinking. 

 

To summarise what can be taken from the conceptual stages in the history of algebra, 

a swift review of the development of algebraic thinking as seen through the stages, is 

provided. Learners start out in the (1) geometric stage (Katz and Barton, 2007) or the 

perceptual level (Nixon, 2009) of algebraic thinking. Here their thoughts about, and 

work with, mathematical objects are mainly concrete. They are expected to use spatial 

reasoning to manipulate simple geometric objects (Ratith Ayu Apsari et al., 2020). An 

example of appropriate learner activities for this stage would be to copy and extend a 

visual pattern, and use geometric representations to show their understanding of the 

pattern. As learners progress to the (2) static-equation solving stage (Katz and Barton, 

2007), they begin to think conceptually (Nixon, 2009). They start being able to 

represent their mathematical ideas when analysing the relationship between 

mathematical objects. These learners, especially in the earky years, will represent 

their ideas verbally or by means of equations (Knuth et al., 2014). In the example of a 

geometric pattern, learners at this stage are able to express the rules of the pattern 

verbally or by means of a verbal equation. In the (3) dynamic function stage, the focus 

shifts to the motion of objects (Katz and Barton, 2007).  Learners understand and can 

provide proofs for the interrelationships between properties of objects. Learners start 
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to think and reason with functions by noticing covarying relationships between 

properties (Knuth et al., 2014) (Kaput, 1999). Learners in this stage are still operating 

at the conceptual thinking level (Nixon, 2009). When analysing a geometric pattern, 

these learners are be able to start expressing the changes they see happening in the 

pattern and explain the relationships between the properties of the pattern. In the last 

stage, (4) the abstract stage (Katz and Barton, 2007)(Nixon, 2009), learners start to 

see the structure in the relationships between, and properties of, mathematical objects 

(Du Plessis, 2018). Learners can use symbols to represent these relationships, and 

can use mathematical proofs, axioms, and deductions to explain their thinking 

(Liebenberg et al., 1998). Learners at this stage are able to represent the geometric 

pattern using mathematical language. They can furthermore prove that their reasoning 

about the pattern is true, for example by using a table or flow diagram. Learners can 

also start to express patterns in terms of the terms (8) of the pattern. 

 

Several questions and lessons relevant to pedagogy arise from an examination of the 

history of algebra. The first question to consider is whether the teaching of algebra 

should commence with geometry (Department of Basic Education, 2018). Most 

learners first start to reason algebraically in a concrete manner (Katz and Barton, 

2007), and need to manipulate concrete objects. The initial focus of algebraic 

manipulation would therefore be on simple geometric objects like squares, which are 

more concrete than ". Products of numbers can be presented as rectangles. It is not 

necessary that a lesson with a deep focus on geometry precedes algebraic thinking, 

but such a lesson may be valuable in providing a context for the rules of algebra and 

improving learners’ deep understanding thereof (Katz and Barton, 2007). One should 

further consider whether all the focus should fall on solving problems using equations 

(Nixon, 2009). In school algebra, courses are often spread widely with no clear central 

focus or aim. Even when algebra courses have defined aims, these are often not clear 

to learners. When the aim of a course is the solving of real-world problems with 

equations, and all manipulations are introduced in this context, it is much easier for 

learners to see the value of algebra. This would improve their understanding.  

 

The concept of function is seen as a more abstract concept than solving equations 

(Katz and Barton, 2007), as is  evident from the history of algebra. It is therefore, 
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imperative that learners have many experiences with curves in geometry before the 

abstract concept of function is introduced. Lastly, before the teaching of abstract 

concepts like rings, group theory, fields, etc., learners need to understand why it useful 

to generalise and why certain sets of axioms were chosen. They should therefore be 

exposed to a variety of relevant examples. Abstract concepts should only be 

introduced much later in the curriculum  (Katz and Barton, 2007).  

 

Now that we have a clear understanding of how algebraic thinking and generalisation 

emerged in history, we are going to zoom in on the history of algebra in schools 

specifically and what key aspects of algebra in schools arises when reviewing the 

history. In this way an overview of the history of school algebra can contextualise the 

current state of school algebra.  

2.4. PURPOSES FOR SCHOOL ALGEBRA EMERGING FROM 
HISTORY 
 

2.4.1. School algebra in the beginning 

 
Algebra as a school subject was introduced much later than arithmetic and Euclidean 

geometry. Algebra only appeared in the secondary school curriculum in 1673 in 

London (Ellerton and Clements, 2017). The curriculum was based on a Latin book on 

algebra written by the swede Johannis Alexandri. This algebra was only taught to boys 

between the ages of 14 to and years. Before these boys could start studying algebra, 

they had to study Latin for four and a half years. In addition to the language barrier, 

the algebra itself was extremely challenging. This was accepted, as it was believed 

that the study of algebra should be reserved for highly intelligent boys. This remained 

the prevalent perspective on mathematics education in Europe and North America 

throughout the seventeenth century. In the eighteenth-century, algebra was 

introduced into most secondary schools. Teaching was based on textbooks written by 

highly acclaimed mathematicians, and algebra was mostly presented as generalised 

arithmetic (Katz and Barton, 2007). John Hodgson (1723), who was teaching algebra 

at Christ Hospital in London, maintained that the purpose of algebra should be the 

solution of practical problems. He was an exception at the time (Ellerton and Clements, 

2017).  
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2.4.2. School algebra in the eighteenth and nineteenth centuries 

 
While Hodgson was teaching at Christ’s Hospital in London (1709-1755), the Royal 

Mathematical School (RMS), which was for the most capable boys, became the leader 

of school mathematics in Europe (Ellerton, Kanbir and Clements, 2017). This led to 

many other schools introducing algebra into the curriculum. Still, a top-down method 

was used, and most textbooks were written by professional mathematicians rather 

than by experienced pedagogues. Teachers were seen as the source of all knowledge 

and introduced learners to big, abstract ideas from which smaller concepts were 

derived and explored.  

In the eighteenth and nineteenth centuries, colonialization was at the forefront. 

Mathematics textbooks introduced in colonies, were written and exported from their 

respective “home” nations (Hans, 1951). These textbooks were written in the language 

of the home nation by authors based in the home nation. These textbooks were mostly 

culture-free and therefore, mathematics was viewed as something which is culture-

free. In practice, these textbooks proved to be unsuited for the needs of indigenous 

children both in terms of language and assumed prior learning.  

 

Early in the nineteenth century, the content of school algebra began to be informed by 

what was expected of learners in tertiary institutions. From the second half of the 

nineteenth century, the idea emerged that school algebra should be suitable for 

modelling and solving real-life problems (Ellerton, Kanbir and Clements, 2017). When 

learners solve real-life problems in context, they start to see the value of mathematics 

and can from there develop a deeper understanding of the subject and the concepts. 

At the same time, a movement arose which advocated that school algebra should be 

help learners to recognise the structure of the real number-system. Lastly, in the 

twentieth century the concept of variables rose to prominence in algebra classrooms, 

with a focus on the power of variables to summarise major mathematical ideas and 

model real-life situations.  

 

2.4.3. Six purposes of algebra 
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Six purposes for algebra emerge from literature and historical data, as outlined by 

Ellerton, Kanbir and Clements (2017). 

 
Purpose 1: Knowledge essential for higher mathematics and science 

 

This purpose is evident in mathematics education starting from 1693, particularly in 

the work of key writers like Descartes, Ditton, Newton, Leibniz and Lacroix. 

Mathematicians were motivated by the importance of school algebra in enabling 

learners to understand more challenging concepts and principles in higher education, 

including conic sections, trigonometry, calculus and mechanics (Ellerton, Kanbir and 

Clements, 2017). In the traditional curriculum, algebra has been misunderstood and 

misrepresented as an abstract and challenging subject, which is thought to be taught 

only to secondary learners with the aim of preparing them for the challenging algebra 

they will encounter at university. But in recent research (Carraher, Schliemann and 

Schwartz, 2008; Schifter et al., 2008; Warren and Cooper, 2008; Schifter, 2009; 

Warren and Miller, 2010; T. Cooper and Warren, 2011; Fonger, Nicole et al., 2015; M. 

L. Blanton et al., 2015; Kaput, 2018; Blanton, Isler-Baykal, et al., 2019), algebra and 

algebraic thinking have been found to be fundamental to the basic mathematical 

education of all learners, beginning in the foundational years (Friel, Rachlin and Doyle, 

2001).  

 

In South Africa, algebra is a main subject area in the high school mathematics 

curriculum and is a pre-requisite subject for post-secondary mathematics, science, 

and engineering courses. It is therefore seen a gatekeeper course (van Laren and 

Moore-Russo, 2014).  The gatekeeper effect of algebra leads to the marginalisation of 

some learners, by limiting their opportunities to progress into certain career fields. This 

disproportionately affects groups which are already underrepresented in STEM 

(Science, Technology, Engineering and Mathematics) related fields (Blanton, Isler-

Baykal, et al., 2019) (Blanton, Stroud, et al., 2019). This effect underlines the need to 

introduce algebra in a way which learners can understand. Introducing early algebra 

in the foundational years of education gives learners ample occasions to develop a 

deeper understanding of the subject. This is discussed further in chapter 3. 

 

 

 

 

87 

 

 

 

Purpose 2:  Generalised arithmetic 

 

This purpose is evident in the period starting from 1700. Key writers include Bourdon, 

Bézout, Euler, Pike and Todhunter. Work motivated by this purpose emphasises the 

syntax and semantics of early algebra. Solving an equation is the same as finding the 

unknown value. From this purpose, the idea emerged that secondary-school algebra 

should not necessarily over-emphasise operating with algebraic symbols and other 

representations of varying quantities (Ellerton, Kanbir and Clements, 2017). It is 

known that a “cognitive gap” exists between the traditional arithmetic approach in 

primary school and transitioning to the learning of formal algebra in the secondary 

school. The traditional way of teaching arithmetic does not support algebraic thinking 

in later grades (Roberts, 2012). In early years education, pre-algebra or early algebra 

is often solely viewed as the manipulation of number and geometric patterns where 

learners are simply expected to extend, copy, or repeat patterns (Du Plessis, 2018). 

Very rarely are learners expected to notice patterns in arithmetic. Early algebra should 

be approached as arithmetic which focuses on the underlying structure and patterns 

in mathematics (Roberts, 2012). The fundamental purpose of mathematics can be 

seen as the finding of patterns in numbers and operations. Therefore, generalised 

arithmetic should become a focus of early years algebra to support learners in seeing 

the patterns and rules when doing basic operations. Learners should understand why 

operations have certain results and should be able to communicate the 

generalisations they notice. Generalised arithmetic involves being deliberate about 

when something happens and exploring when something happens, as well as  when 

it always happens (Roberts, 2012). In other words, the learners are engaged in finding 

generalities in mathematical situations. When engaged in generalised arithmetic, 

learners should be prompted to observe patterns in groups of number sentences and 

sequences of sums (Roberts, 2012). Learners’ ability to generalise should be 

developed through discussions about how special numbers like zero behave, and 

which relationships can be noticed between properties. As learners’ algebraic thinking 

become more sophisticated, they should be able to describe what generalities they 
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notice, and to provide justifications for why some things will always be true (Roberts, 

2012).  Lastly, learners must be able to talk and reason about equivalence.  

 

Purpose 3: A pre-requisite for entry to higher studies 

 

This purpose is evident in the period starting from 1800 . The key role players in 

shaping this purpose were university prerequisite developers. In the nineteenth 

century, algebra as a subject was a prerequisite for many higher education institutions, 

especially prestigious universities. This has changed over the last 50 years (Ellerton, 

Kanbir and Clements, 2017). However, a solid background in algebra is generally 

needed to enter STEM-related fields, and most learners are currently unable to meet 

this standard. This leads to limited opportunities to study and work in STEM-related 

fields (Blanton, Isler-Baykal, et al., 2019) (Blanton, Stroud, et al., 2019). Furthermore, 

being able to think algebraically contributes to success in every avenue of the job 

market, as being able to see patterns, generalise, and communicate your thoughts 

clearly are beneficial skills regardless of career path. This purpose further emphasises 

the need for excellent early years algebra in schools Schoenfeld (1995, p. 11-12). 

 

Purpose 4: A language for modelling real-life problems 

 

In 1870, a new purpose for algebra emerged: using it as a language to model real-life 

problems. This remains one of the main purposes of school algebra. Key contributors 

in the literature with regard to this purpose are Hodgson, Lacroix, Perry, Klein and 

Moore. When doing algebra, learners need to be able to think in a functional manner. 

This purpose of algebra is to enable learners to solve real-life problems using algebraic 

objects like tables of value, plotting and interpreting on Cartesian values, and 

describing sequences recursively and explicitly (Ellerton, Kanbir and Clements, 2017). 

Modelling situations can be seen as one of the main aims of algebra (Kaput, 1999). 

Kaput describes algebraic modelling as “algebraifying” an arithmetic problem so that 

the constraints which govern its context are relaxed,  reasoning is liberated, and 

learners are able to explore the problem in a more general form (Roberts, 2012). 

Algebraic modelling as a language should be used to appreciate the value of algebra 

as a means to solve problems (Vermeulen, 2007). It is important that learners realise 
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the value of algebra and algebraic objects in solving real-life problems. Algebra should 

not be presented as an abstract concept where equations are merely solved without 

context, as this prevents learners from seeing the value of the subject (Kaput, 1995b).  

 

Purpose 5: An aid for describing basic structural properties 

 

In 1870, algebra started being used as a tool to desribe the fundamental structural 

properties of mathematics. This is represented in the literature by writers like Klein, 

Bourbaki, Gattegno and Dienes. Klein employed function concepts, structural ideas, 

and associated symbolisms from algebra to geometry. This purpose started 

influencing  school curriculums in the 1950’s and 1960’s. Gattegno and Dienes argued 

that young learners could learn algebra before arithmetic and that the structural 

properties in mathematics should be emphasised (Ellerton, Kanbir and Clements, 

2017), calling into question the traditional approach of arithmetic preceding algebra in 

early education. It is imperative for learners to be made conscious of the structure 

underlying everyday mathematics at a young age. Learners can do algebra in the early 

years, but exactly what this entails should be considered carefully (Roberts, 2012). At 

the heart of algebraic reasoning in the early years lies a fundamental understanding 

of the mathematical structure of arithmetic expressed by language and gestures using 

concrete materials and representations (Warren and Cooper, 2008). Roberts (2012) 

concurs, arguing that early algebraic teaching should be based around the teaching 

and learning of arithmetic which focuses on the underlying structures and patterns 

which emerge from arithmetic. A further consideration of early algebra and the 

importance of structure will be done in chapter 3.  

 

Purpose 6: A study of variables 

 

In the 1960s, the idea that variables should be introduced to school algebra emerged. 

This idea was introduced by the School Mathematics Study Group (SMSG) as well as 

Davis and Chazan. Solving equations was taken to be the finding the value of a 

variable which would make a given open sentence true or false. Tables of values and 

Cartesian graphs were seen as representing relationships between variables. 

Structural properties, like the distributive or commutative properties expressed in 
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algebraic language, were seen to be statements using variables (Ellerton, Kanbir and 

Clements, 2017).  Variables are versatile tools to describe mathematical ideas in 

concise ways. A variable represents the measure or amount of an object, and not the 

object itself. Variables can represent discrete or continuous quantities (Blanton et al., 

2015). Kaput describes two core aspects of the development of algebraic thinking 

which run throughout his three strands in the content area: using symbols to 

generalise, and acting on symbols to follow rules (Kaput, Carraher and Blanton, 2008). 

In this paradigm, learners solve arithmetic problems where symbols represent 

variables which themselves represent unknown values. Situations can be modelled by 

means of variables which express a class of functions. When using modelling as an 

algebraic language, variables provide parameters to explore effects in pure arithmetic 

word problems with the aim of “algebrafying” the problem and representing it in 

multiple ways  (Roberts, 2012).  

 

These purposes which emerge from history provides a clear view of what some of the 

aims of school algebra should be, and closely align with the main components and Big 

Ideas of early algebra which informs early algebra teaching and learning. It is important 

that educators and learners are made aware of these aims before they start studying 

algebra. These purposes for school algebra provide valuable insights  which, 

combined with Kaput’s core aspects and strands of early algebra (Roberts, 2012),  and 

the five Big Ideas of early algebra (Blanton et al., 2015), can inform a framework for 

the teaching and learning of early algebra in the classroom. Such a framework is 

described in Chapter 5.  

2.5. THE KEY ELEMENTS OF THE DEVELOPMENT OF ALGEBRAIC 
REASONING FROM AN OVERVIEW OF THE LITERATURE 
 

In a similar manner to the six purposes for algebra arising from the literature about the 

history of school algebra by (Ellerton, Kanbir and Clements, 2017), Mason and 

Sutherland (2002) attempted to summarise the key aspects of algebra. To this end, 

they grouped historical algebraic literature in assemblages according to their time 

period and location of origin. These five assemblages include (1) a sample of older 

sources, (2) the work of Bednarz, Kieran and Lee (1996), (3) an Australian 

assemblage, (4) an American analysis, and (5) an Italian assemblage. 
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A1:  A sample of older sources: J. A. Wright (1906), Sir Percy Nunn (1919), Hans 

Freudenthal (1973 – 1991) 

 

When examining these works, many of the issues raised in regards to algebra are still 

relevant today. Wright raised the issue of algebra’s roots in arithmetic (Mason and 

Sutherland, 2002). He suggested four functions for algebra, which are still considered 

relevant today: 

- To carefully establish and extend the theoretical processes of arithmetic. 
- To strengthen learners’ ability to compute by practicing and by developing 

useful computational devices. 
- To develop an equation which can be applied towards the solution of a 

problem. 
- To learn as much about the subject area as is needed for the later study of 

mathematics or physics.  
(Mason and Sutherland, 2002, p.11) 
 

When engaged in generational thinking in the course of doing arithmetic, learners 

analyse information to conjecture arithmetic relationships between numbers and their 

properties. These conjectures can be expressed in words or variables as symbols 

(Knuth et al., 2014). Learners should not have trouble moving from symbols to the 

values they represent. They should understand that variables represent a number 

value associated with an object, rather than object itself (Knuth et al., 2014). Learners 

should continuously replace symbols with the numbers they symbolise. that the value 

of symbols lies in their being used to express generality. Even so, learners should be 

made aware that symbols represent something and are not simply abstract concepts 

entirely separate from context (Mason and Sutherland, 2002).  

 

Wright further identifies the challenge that algebra’s innate rule-based nature makes 

it difficult for teachers to teach in a relational rather than an instrumental manner.  

Often drill work is used a teaching tool when it comes to teaching algebra. On the 

contrary, an important aim of algebra should be to achieve generality. Wright argues 

that generality in algebra occurs when problems are classed into groups of similar 

problems (Mason and Sutherland, 2002). Learners must be led to see the commonality 

between problems and how to express these generalities.  
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Nunn makes a clear distinction between arithmetic and algebra. Arithmetic, according 

to him, is focused on  calculations performed to reach an answer, whereas algebra is 

focused on the process of calculating (Wright, 1906). The aim of teaching and 

learning of arithmetic must be to elucidate the structures and patterns which emerge 

from mathematical situations (Roberts, 2012). He further makes an important 

distinction between analysis and generalising. Analysis is the abduction of structure in 

mathematics, while generalisation is recognising pattern inductively (Mason and 

Sutherland, 2002). When patterns are analysed for internal structure, 8 is used to 

describe the structure of the pattern (Mason and Sutherland, 2002). In many 

mathematics classrooms, learners are expected to generalise based on an example 

of a pattern (Du Plessis, 2018), but the structure is rarely analysed. Nunn states that 

learners cannot see the structure in mathematics by merely looking at one example. 

Many examples should be examined, and learners should be made aware of the 

relations between these examples (Mason and Sutherland, 2002).  

 

Nunn (1919) agrees with many authors in mathematics that algebra should be 

regarded as generalised arithmetic. The traditional practice of teaching specific 

arithmetic before formal, symbolic algebra, is also questioned by Nunn. Generalised 

arithmetic is the simplest type of symbolic algebra and should be the steppingstone 

between arithmetic and formal algebra (Mason and Sutherland, 2002).  

 

Freudenthal (1983, p.467) emphasises the importance of basing instruction on a 

child’s prior experiences. He states that if knowledge called upon in mathematics 

already exists within the child, learning can be focused on strategies and solution 

processes. In Freudenthal’s China Lectures (Freudenthal, 1991, p.62), he proposes 

that the question should be raised if negative numbers form part of to arithmetic or 

algebra. In Mathematics As An Educational Task (Freudenthal, 1991, p.224) he 

continues by claiming that fractions are composed to allow unhindered division, but 

they emerged from extending the number system to admit solutions to multiplication 

problems, for example “what times 3 will give 5?” In the same way, negative numbers 

arose to meet the need to count backwards and answer questions like “what added to 

4 gives 2?” Freudenthal calls this the algebraic principle.  
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For Freudenthal, general number does not exist. There are indeterminates 

(represented by letters) and unknowns (represented by symbols). When treating 

algebra as a translation process between languages, certain challenges arise. 

Freudenthal advocates for distillation of axioms of a field, which is also known as 

generalised arithmetic (a fundamental component of early algebra (Kaput, Carraher 

and Blanton, 2008)). The properties of arithmetic emerge from, and are expressed by, 

the use of symbols to produce rules for manipulating numbers (Mason and Sutherland, 

2002). Roberts (2010, p.169) explains that generalising arithmetic is the exploration of 

the properties of numbers and operations and generalising about particular number 

properties and relationships which are fundamental for the development of algebraic 

thinking in the early years. This perspective on the role of generalisation will inform 

the construction of the framework for implementing Early Algebra in the classroom.  

 

Regarding the difficulty learners experience when working with algebra as a formal 

school subject, Freudenthal states that ‘when calculating starts, the thinking finishes’ 

(Freudenthal, 1973). He blames this difficulty on the didactic method, where learners 

initially learn by insight and then permanently move on to automatisms (Mason and 

Sutherland, 2002). The traditional algebra curriculum has over-emphasised the 

semantics of algebra. When acting on formalisms semantically, one’s actions are 

directed by what one believes the symbols should stand for (Kaput, 1995a). A 

semantic justification focuses on the numbers in an expression. This results in many 

learners being unable to see the meaning and value of mathematics. The power of 

using the form of mathematics as a basis for reasoning is lost when learners are 

engaged with endless practicing of rules for symbol manipulation (Kaput, 1999). 

Freudenthal advocates for solving problems in a way which will improve learners’ 

understanding (Mason and Sutherland, 2002). Syntactically guided manipulations on 

formalisms are the core of algebra but to ensure the effective learning and 

development of actions on formalisms, a semantic starting perspective should be 

taken. Formalisms should initially be viewed as representing something which the 

learner has experienced (Kaput, 1995a). Most  actions and manipulations of symbols 

involve a combination of syntactical and semantic actions (Kaput, 2018). Mathematical 

activity is the interactions between notational systems and their reference fields. When 

a new problem is encountered, learners will often reach for something familiar to help 
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them make sense of the situation. This includes concrete objects like blocks, counters, 

mental pictures, or symbols in the form of numerals or letters. As seen in the geometric 

stage (Katz and Barton, 2007) of algebraic development, geometry representations 

are important to provide context for, and mental pictures of, mathematical situations 

(Ratith Ayu Apsari et al., 2020). Manipulation leads to leaners getting a sense of the 

problem and how to approach it. Learners can then articulate their thoughts on 

increasingly sophisticated levels to produce a solution. Understanding algebra means 

being able to show connections between knowledge of procedures with knowledge of 

concepts (Kaput, 1999). 

 

In his work Weeding and Sowing (1978), Freudenthal challenges the notion that 

learners learn through the repetition of many examples. It is not certain that when 

learners are able to see generalisations across a variety of problems, that their ability 

to generalise stemmed from seeing many cases where generalisation was reached. 

Freudenthal consistently emphasises the importance of studying structure in 

mathematics. In his China Lectures (Freudenthal, 1991), he furthermore argues for 

the value of word problems as opportunities to generalise.  

 

When looking at the works from these three authors, many important aspects of 

algebra in education comes to the fore. Many of these issues raised are still issues 

today and sheds light on the challenge that educators face in the algebra classroom. 

A need for reform in the teaching of algebra is imperative. This study will aim to show 

that the introduction of the teaching of early algebra with the appropriate teaching 

approach may be one of the possible routes to the improvement of algebra instruction 

in schools.  

 

A2:  Bednarz, Kieran and Lee (1996) 

 

Approaches to Algebra: Perspectives for Research and Teaching (Freudenthal, 1991)  

provides an overview of four instructional practices in the teaching of algebra. These 

four practices are generalisation, problem-solving, modelling and function, and are 

connected with historical perspectives on the teaching of algebra  (Freudenthal, 1991).  
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1. Algebra through generalisation 

From the beginning of mathematics, one of its aims was to solve not only 

problems, but whole classes of problems. Al-Khwarizmi in the syncopated 

stage aimed to classify the solutions to classes of problems by categorising six 

types of equations to solve algebraic problems (Katz and Barton, 2007). Often 

rules to find solutions would be provided. Such rules are expressions of 

generalities which are expected to be applicable to a whole class of problems 

(Mason and Sutherland, 2002). Mathematics at school arose through the 

search for techniques and rules to solve groups of problems. These strategies 

are isolated and then taught to learners, who are expected to memorise the 

techniques. Making learners aware of the nature of mathematical 

generalisation should be at the heart of mathematics. When generalisation 

underlies all of mathematics the subject area will become less challenging for 

learners (Bednarz, Kieran and Lee, 1996).  

 

The expression of generality is present from the earliest days in a child’s life. 

Learners can generalise when they come to school, but it is the responsibility 

of the educator to draw on this and develop the sophistication thereof. 

Generalisation is an ongoing process of growing sophistication. Below are 

some of the main aspects of expressing generalisations (Mason and 

Sutherland, 2002, p. 22-23): 

- Awareness of generalisation is present from children’s earliest encounters 
with numbers. 

- Noticing generality in specific things, and specific things in generalities, are 
capabilities which learners bring to school, and should be draw upon. 

- Expressing generality should not be seen as a skill which is acquired and 
then used, but rather one whose sophistication is developed continuously. 

- Manipulations of expressions are possible because we recognise that 
different looking expressions can represent the same result, and that 
imposing constraints on generality delivers equations and inequalities for 
which techniques can be developed. 

- Generality is present in all mathematics, not only in problem solving. 
- For generalising to be taught successfully, it should be emphasised in all 

content areas of mathematics, not only in patterns or problem solving. 
- Learners’ capabilities should be drawn upon, rather than teachers doing the 

work of generalisation for them.  
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2. Algebra through word problems 

When developing algebraic by engaging with problems, learners are expected 

to by think, imagine, draw on prior experiences, and articulate relationships. 

From the constructivist perspective, learners interpret what they learn and give 

it their own meaning based on their existing, but not yet explicit, knowledge 

(Cobb et al., 2014). Word problems have been present from the beginning of 

mathematics, and examples can be found in Egyptian, Babylonian, and 

Chinese mathematics (see 2.2.1). When solving word problems, it is not the 

problem which is arithmetical or algebraic, but the way in which it is 

approached. They give rise to structure and symbolic manipulations. Problem-

solving is seen as the underlying drive for generalisation and the functional 

approach (Mason and Sutherland, 2002), and plays a role in number and 

geometrical or spatial domains. Traditional problems stem from changing an 

unknown number to get an outcome which is specific. Solving the problem is 

the process of undoing the transformation (Mason and Sutherland, 2002). 

Below are some of the main features of word problems in algebra (Mason and 

Sutherland, 2002, p.27): 

- Word problems are often misused at the end of chapters in textbooks to 
challenge learners. This leads to demotivation and learners who do not have 
deep understanding of mathematical concepts. 

- Problems should be used as the core of mathematics teaching, because 
they motivate explorations and development in mathematics. Various 
mathematical techniques should emerge from the problems solved. 

- When solving problems, learners use a variety of strategies and methods. 
These methods are typically arithmetical, unless learners are familiar with 
expressing generality and confident in using symbols.  

 

3. Algebra through modelling 

Mathematical modelling can be described as the construction of mathematical 

narratives for real-life situations (Mason and Sutherland, 2002). Mathematical 

models are used to illustrate or explain a mathematical situation or the process 

of problem solving. Models can be concrete objects, representations of objects, 

or  ideas expressed in words (Roberts, 2012). Learners should use 

sophisticated mathematical thinking, involving both the particular and the 

general, when trying to make sense of what they are working with (Mason and 

Sutherland, 2002). Algebraic modelling provides the opportunity to investigate 
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any word problem context which is “algebrafied” by liberating the problem from 

its constraints and allowing for exploration of the patterns which emerge 

(Roberts, 2012). Below are the main aspects of modelling (Mason and 

Sutherland, 2002, p. 28):  

- Mathematics should be used to solve practical problems concerned with the 
material world. 

- Modelling calls upon the use of many capabilities: mental imagery to move 
from a specific situation to an abstract imagined world, and then to the world 
of manipulable mathematical symbols, before going back to the original 
setting or context.  

 

4. Algebra through functions 

Functions are often seen as the most fundamental mathematical objects. 

Functions can be thought of in various ways: a table of values; a graph showing 

relationship; a rule expressed using algebraic symbols; and all three manifested 

in spreadsheets, calculators, and specially designed computer software. A 

special relationship between symbols " and # is present in most of these 

functions (Bednarz, Kieran and Lee, 1996). Functional thinking is one of the 

fundamental components of early algebra (Kaput, Carraher and Blanton, 2008). 

In the current South African CAPS (Curriculum and Assessment Policy 

Statement) one content area is patterns, functions and algebra, where 

functional thinking is emphasised. Functional thinking involves recognising a 

regularity in elementary patterns, ideas of change including linearity, and 

representation through tables, graphs and function machines (Roberts, 2012). 

Below are the main aspects of functions emerging from the work of Bednarz, 

Kieran and Lee (Mason and Sutherland, 2002, p.30): 

- There are multiple representations of functions. 
- A functional approach manipulates dynamic imagery possibilities of digital 

technology. 
- A functional approach provides the chance to emphasise the representation 

and interpretation of relationships, leaving computation to computer 
software. 

- It develops awareness and capability with function, which is a powerful idea 
in modern mathematics.  
 

A3: Work from the Australian Mathematics Education Community 
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Research into the teaching of algebra commenced in Australia in the early nineties. 

The focus of the research was learners’ interpretation of letters, understanding of 

variables, problem solving abilities, and the cognitive and linguistic demands of 

learning algebra. The research was mainly conducted by means of interviews, 

questionnaires and classroom observations (Mason and Sutherland, 2002). 

 

Research specifically on learners’ understanding of symbols was based on earlier 

studies by Collis (Mason and Sutherland, 2002), Küchemann (1981) and Booth 

(1984). More recent Australian research focused on the teaching approaches used to 

introduce learners to mathematics. Learners’ first introduction to the use of letters for 

unknown or general numbers is in writing formulas for number patterns where two 

variables are related by a rule (Mason and Sutherland, 2002). The idea of using 

variables to represent unknowns, linear problem situations, and function rules is one 

of the Big Ideas of early algebra (Knuth et al., 2014).  

 

MacGregor and Stacey (1997) conducted a test where 2 000 learners aged 7-10 

engaged with algebraic problems. They classified learners’ interpretation of letters into 

the following categories of misconceptions: 

- The letter is read as an abbreviated word. 
- The letter is assigned a numerical value that would be reasonable in context. 
- The letter is assigned a numerical value related to its position in the 

alphabet. 
- The letter has the value 1 unless otherwise specified. 
- The same letter can represent various quantities (MacGregor and Stacey, 

1997).  
 

Following up on their research, MacGregor and Stacey (1997) observed classrooms 

to find reasons for the common misconceptions learners have when working with 

algebra. Some of the reasons include: 

1) Instinctive assumptions and sensible, logical reasoning about an unfamiliar 
notation system.  

2) Analogies with symbol systems used in everyday life or in other content areas 
of mathematics or school subjects.  

3) Interference from new concepts taught in mathematics. 
4) Poorly designed and misleading teaching materials (MacGregor and Stacey, 

1997). 
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MacGregor and Stacey (1997) infer that when the “correct” teaching approach is 

followed, these misconceptions and misunderstandings can be avoided. Mason and 

Sutherland (2002) disagree and suggest that all teaching will inevitably lead to 

constructions of understanding which will be correct in some circumstances and 

incorrect in other circumstances. This suggests that symbolic algebra can never be 

taught as a discrete or separate part of the mathematics curriculum. In many curricula, 

learners are simply introduced to the use of symbolic notation in an isolated module. 

It is never made relevant to other content areas in mathematics (MacGregor and 

Stacey, 1997).  

 

Furthermore, the Australian curriculum promotes the development of early algebraic 

thinking from primary grades. Algebra and algebraic notation are introduced by means 

of a “pattern-based” approach where algebraic notation is used as a language to 

indicate the relationship between two variables. The pattern-based approach deals 

with generality first, which leads to learners’ understanding of functional relationships 

and their algebraic descriptions (MacGregor and Stacey, 1997).  

 

A4: Kilpatrick, Swafford and Findell (2001) 

 

The book Adding It Up: Helping Children Learn Mathematics (Mason and Sutherland, 

2002) provides an overview of North American and international research.  

 

Algebra in the USA is presented as a separate course from mathematics and is often 

prerequisite for college or university admissions. Textbooks are predominantly 

focused on teaching guided transformation of symbols, rather than taking a more 

balanced approach which focuses both on transforming symbols and expressing 

generality and abstraction, and includes algebra as generalised arithmetic (Kilpatrick, 

Swafford and Findell, 2001).  

 

Most courses start by introducing linear functions and then move on to quadratic 

functions, but it may be beneficial to introduce these levels of functional thinking 

simultaneously. There is a crucial relationship between functional thinking and the 

early algebraic thinking practices of generalising, justifying, representing and 
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reasoning with mathematical relationships (Blanton et al., 2015). This relationship 

could eradicate the misconception that linear and quadratic functions are the only 

functions which are relevant. In the USA, there is also a disproportionate focus on 

product over process: arithmetic is predominantly answer orientated and does not 

focus on the mathematical processes involved. Arithmetic should be approached with 

attention to the generalities that are present in the methods of calculation, to instil and 

develop algebraic thinking in learners (Roberts, 2012). This could make algebra less 

challenging in later grades (Mason and Sutherland, 2002).  

 

Simply introducing algebra as “arithmetic with symbols” has been highly unsuccessful 

in the history of school algebra (Kilpatrick, Swafford and Findell, 2001). Teachers and 

researchers have been had difficulty developing a school algebra where learners see 

the need for using algebraic notation to represent mathematical ideas and solve 

mathematical problems. Learners struggle greatly to express generality. These 

challenges may be attributed to the fact that learners are introduced to generality too 

late in their schooling careers. The concept of generality should be embedded into all 

aspects of mathematics teaching (Sutherland, 1991).  

 

A5: Work from the Italian Mathematics Education Community 

 

Italian research in mathematics is typified by an analysis of complex problems in small-

scale studies, which is followed-up by empirical work in realistic learning situations. 

The algebra curriculum in Italy highlights rigour, relation between hypotheses 

expressed and experimental work, and  accurate language (Mason and Sutherland, 

2002). 

 

Boero (Mason and Sutherland, 2002) focuses on the importance of transformation and 

anticipation as key processes in algebraic problem solving. He suggests that when 

transformation happens before formal algebra has been introduced, learners often 

transform the problem situation by means of arithmetic or geometric or physical 

manipulations of variables. These transformations can be called pre-algebraic. When 

transformations occur after the formalisation of algebra, transformations are based on 

algebraic notations and leads to more possibilities of transformations.  
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Dettori, Garutti and Lemut (2001) also explores the nature of the patterns and the 

strategies which learners use to solve problems. They suggest that an arithmetical 

approach to solving problems makes use of a step-by-step method, whereas an 

algebraic approach takes a global-synthetic perspective on the problem.  

 

Italian researchers have found that different types of word problems do not necessarily 

provoke distinct problem-solving approaches. Therefore, presenting a specific type of 

problem would not necessarily evoke algebraic thinking. The teacher plays a key role 

in facilitating learners’ thinking and guiding their understanding of mathematical 

concepts (Mason and Sutherland, 2002).  

 

From Assemblage 1, the importance of the relationship between arithmetic and 

algebra comes to the fore. Arithmetic should be approached in a general manner 

where learners predict relationships between numbers and their properties (Mason 

and Sutherland, 2002, p.11, Knuth et al., 2014).  This idea reinforces the need for a 

constant emphasis on generalisation, especially when engaging learners in arithmetic. 

This assemblage underpins the generalised arithmetic activities in the instructional 

design sequence in Chapter 5. Assemblage 2 explores four instructional practices of 

algebraic reasoning, namely, algebra through generalisation; word problems; algebra 

through modelling; and algebra through functions  (Freudenthal, 1991). These 

instructional approached were used when designing examples of early algebra 

activities in the instructional design sequence. In Assemblage 3, it becomes clear that 

symbolic algebra is an important facet of early algebra teaching and should be made 

relevant to all other areas of mathematics (MacGregor and Stacey, 1997). 

Assemblage 4 focusses on research done in North America and specifically mentions 

the challenges experienced in the teaching of algebra due to a lack of generality in the 

pedagogical approach (Kilpatrick, Swafford and Findell, 2001, Mason and Sutherland, 

2002, Sutherland, 1991). Once again, the idea that generality should be embedded 

throughout mathematics education comes to the fore and this reinforces the 

importance of an instructional design sequence which attempts to employ 

generalisation throughout a variety of mathematical activities. Assemblage 5 is based 

on research done in Italy and sees transformation and anticipation as the main 
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processes involved in algebraic reasoning. Furthermore, patterns and strategies for 

problem solving is researched. The role of the teacher as a key role player in the 

development of algebraic reasoning emerges (Mason and Sutherland, 2002). From 

this assemblage it is known to be important to accompany the instructional design 

sequence with a ‘blueprint’ of the role of the teacher and the classroom setting of an 

‘ideal’ mathematics classroom, which is provided in detail in Chapter 5. The five 

assemblages provide valuable underpinnings for the construction of the instructional 

design sequence in Chapter 5.  

 

2.6. CURRENT SITUATION OF EARLY ALGEBRA IN SOUTH AFRICA 
 

The CAPS document in South Africa for Grades 1 to 3 focuses on the teaching of early 

algebra in the content area “patterns, functions and algebra” (Department of Basic 

Education, 2011). In this content area, algebra is described as the language for 

investigating and communicating most of mathematics, and as capable of being 

extended to the study of functions and relationships between variables. A central focus 

of this content area in the early years mathematics education is the development of 

learners’ ability to achieve effective manipulative skills in the use of algebra. Other 

focuses include: the descriptions of patterns and relationships through the use of 

symbolic expressions, graphs and tables, the identification and analysis of regularities 

and change in patterns, and relationships that make it possible for learners to make 

predictions and solve problems  (Department of Basic Education, 2011, p.9). 

 

There is an overemphasis on number and geometric pattern-based activities as the 

primary means of developing algebraic thinking. The CAPS document mentions the 

following skills which learners should employ when working with patterns (Department 

of Basic Education, 2011, p.9): 

1) Using physical objects, drawings, and symbolic forms to copy, extend, 
describe, and create patterns. 

2) Copying a pattern helps learners to notice the logic of how it is formed. 
3) Extending a pattern helps learners to check that they understand the logic of 

the pattern. 
4) Describing patterns develops learners’ language skills. 
5) Focusing on the logic of patterns lays the foundation for developing algebraic 

thinking. 
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6) Working with number patterns supports the development of number concept, 
while working with geometric patterns supports the development of spatial 
awareness and shapes.  

 

The first content area of the CAPS document, ‘Numbers, operations and relationships’, 

provides ample opportunity for developing learners’ knowledge and understanding of 

algebra (Roberts, 2010). Although early algebra is not explicitly mentioned, attention 

is paid to noticing relationships between different kinds of numbers and representing 

numbers in different ways. This content area also allows for the exploration of 

equivalence and the equal sign (Department of Basic Education, 2011). This appears 

to be consistent with the aim and fundamental components of early algebra, which 

include generalised arithmetic and seeing the relationships between numbers and 

their properties (Kaput, 1995; Roberts, 2012).  

 

Learners should work structurally with patterns in the early years of mathematics 

education and should be able to notice the underlying structure of patterns which 

emerges from arithmetic. Almost all of mathematics is based on patterns and structure. 

A mathematical pattern is any predictable regularity and usually involves number or 

space. Mathematical structure refers to the way in which a pattern is organised 

(Mulligan et al., 2008). The CAPS document emphasises the importance of noticing 

logic in patterns (Department of Basic Education, 2011, p.9), but the approach has 

been neglected in the implementation of early algebra in classrooms, textbooks and 

teacher support guides (du Plessis, 2018). The potential of patterns to develop 

algebraic habits of minds by encouraging learners to focus on the underlying 

structures which emerge from patterns remain unexplored and under emphasised in 

the South African mathematics education context  (du Plessis, 2018). Even though the 

CAPS document (Department of Basic Education, 2011, p.9) emphasises the 

importance of logic in patterns, a relational approach to analysing and understanding 

patterns is missing.  

 

A major challenge in South African mathematics education is the fact that many 

teachers were themselves not taught the content area of ‘Patterns, functions and 

algebra’ in primary school or their teaching training. This results in confusion about the 
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inclusion of this content area and its effective implementation in the classroom 

(Roberts, 2012).  

 

Research (Mulligan, Mitchelmore and Prescott, 2005; Warren and Miller, 2010; Papic, 

Mulligan and Mitchelmore, 2011; T. Cooper and Warren, 2011) calls for an early 

algebra approach where the interconnectedness of pattern, structure and algebraic 

reasoning, and their power to promote basic numeracy in young learners, are 

prioritised in classrooms. A lack of coherence is present throughout pedagogic 

communication and activities (du Plessis, 2018). The random selection and 

sequencing of activities at a primary level is an obstacle to the development of early 

algebraic thinking and the ability to generalise. This lack of coherence points to a lack 

of consciousness in pedagogical practice. In order to effectively develop early algebra, 

teachers need to reflect and revise their teaching strategies to create a carefully 

planned sequence of learning activities. This sequence should scaffold the 

introduction of a structural approach to the mastery of sequencing (du Plessis, 2018) 

and generalisation throughout the whole of mathematics  (Roberts, 2012).  

2.7. CONCLUSION 
 

By looking at the history of algebra through the ages, valuable lessons can be learned 

which should inform the teaching of algebra in classrooms today. From history it 

becomes clear that there exists a definite need for algebra, algebraic thinking, 

generalisation and the use of symbolic notation to solve problems we encounter in 

everyday life. The importance of mathematics education as a whole emerges from the 

need for problem solving tools. The stages of algebra’s emergence through history, 

closely resembles the levels of thinking that occur as algebraic thinking is developed 

in schools (Nixon, 2009). Progression in algebraic thinking takes place when the need 

for algebraic representation and the need to see relationships are present. Learners 

need to be made aware of the algebraic tools they have access to and the 

opportunities which algebraic thinking creates for solving various types of problems. 

The role of the teacher and their perspective on the teaching of algebra becomes very 

important.  Young learners, even with limited exposure to arithmetical thinking, can 

start to think algebraically and make generalisations. With suitable instructional 
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support and encouragement of the habit of mind of finding generalisations, learners 

can understand algebraic concepts at a young age  (Radford, 2011). 

 

The way in which algebra is currently taught in schools is failing learners. Many 

experience algebra as a challenging and unattainable content strain of mathematics. 

They do not see the need for it or its relevance to the material world. This results in 

many learners either not progressing to university, or opting to study in other than 

STEM-related fields (Blanton, Isler-Baykal, et al., 2019) (Blanton, Stroud, et al., 2019).  

 

Algebra education in its current form over-emphasises the traditional arithmetic-then-

algebra approach (Radford, 2015). Learners are over-exposed to answer-orientated 

arithmetic and only progress to a more abstract algebra when they are proficient at 

working with numbers. The focus of algebra in the later grades is then to manipulate 

symbols and simplify equations. Algebra is taught in an isolated manner which 

furthermore alienates learners from the possibilities and opportunities it presents. 

Research has shown that this approach is not working. There is a need for reform in 

algebra education.  

 

This study aims to explore and construct an instructional sequence to provide ideas 

for implementing early algebra in the classroom with the aim of making algebra in the 

later grades accessible to more learners.  Learners are able to think algebraically from 

a very young age. Generality is noticed by very young learners in the world around 

them. From primary grades the noticing and expression of generality and structure 

should be embedded in all content areas of mathematics. It cannot be taught as a 

discrete subject  (Blanton, Stroud, et al., 2019). In Chapter 3 early algebra, generality 

and structure will be explored to provide an instructional design sequence to develop 

algebraic thinking and generalisation with the aim of closing the gap between 

arithmetic and formal algebra which occurs in the traditional approach to teaching 

algebra.  

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

106 

  

 

 

 

107 

CHAPTER 3: INSTRUCTIONAL SEQUENCES FOR EARLY 

ALGEBRA, GENERALISATION AND STRUCTURE 

3.1. INTRODUCTION 
 

In chapter 2, the history of algebra was explored to see how the fundamental 

components of algebra emerged. Algebra emerged as a tool to solve problems in 

everyday life. Solving the problems involve algebraic thinking, generalising and the 

use of symbolic notation. The stages of the development of algebra throughout history 

closely relates to the development of level of thought as explained by Nixon (2009). 

Algebraic thinking develops and progresses when a need for the use of algebraic 

expressions and seeing regularities emerges. Learners need to be aware of their 

capabilities in terms of the algebraic tools they have in their possession. Radford 

(2011) claims that learners are able to think algebraically from a young age. With 

suitable instructional support habit of mind of finding generalisations, learners are able 

to understand algebraic concepts.  Development of algebraic thinking takes place 

when a need for algebraic representation and the need to see relationships arises 

from real-life problem situations. Learners need to be aware of the algebraic tools they 

can use to model mathematical situations, and the opportunities which algebraic 

thinking creates for solving various types of problems (Kaput, 2008). The role of the 

teacher (who will be referred to as he as the general gender in this study) and his 

perspective on the teaching of algebra is very important. By looking at the history of 

algebra through the ages, valuable lessons can be learned which should inform the 

teaching of algebra in classrooms today. From history it becomes clear that there 

exists a definite need for algebra, algebraic thinking, generalisation and the use of 

symbolic notation to solve problems we encounter in real life and mathematics (Sfard, 

1995; Katz and Barton, 2007; Tabak, 2011).  

 

In this chapter, guided reinvention and emergent modelling as design heuristics based 

on the principles of Real Mathematics Education (RME) (Gravemeijer, 2007, 2020) 

will be used as a framework to design an instructional sequence of generalisation 

activities. The main components of early algebra which emerge from the stages of the 

historical development of algebra will inform the instructional sequence. A systematic 
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literature review of early algebra, the development of algebraic thinking, and the main 

components of early algebra will provide the basis for the instructional sequence.  

3.2. SETTING THE SCENE FOR EARLY ALGEBRA 

 
In this section of Chapter 3, he emergence of early algebra, the current situation in 

classrooms, and the importance and scope of early algebra, will be systematically 

reviewed to inform the construction of the instructional design.  

 

3.2.1. From formal to early algebra 

 

Through the ages, algebra has been a central focus of mathematics. Algebra 

continues to be an essential component of modern mathematics. Yet, in the school 

curriculum, algebra has been misunderstood and misrepresented as an abstract and 

challenging subject, to be taught only to secondary learners. In truth, algebra and 

algebraic thinking are fundamental to the basic education of all learners, beginning in 

the foundational years (Friel, Rachlin and Doyle, 2001). 

 

In the book Algebra in the Early Grades Kaput (2008) mentions that ‘the algebra 

problem’ has become a trend in the 21st century mathematics teaching domain. 

Traditionally, algebra has been taught only after learners have mastered arithmetic 

and reasoning with numbers. Arithmetic thinking was seen to be a pre-requisite for 

moving on to algebraic thinking (Radford, 2015). The curriculum over-emphasised 

computational work in the early and middle grades followed by a superficial treatment 

of algebra in the secondary grades (Blanton, Stroud, et al., 2019). In this way, algebra 

was taught as a discrete and isolated subject area, where learners were expected to 

merely simplify equations. This approach led to widespread failure in school 

mathematics and unmotivated learners. Learners did not see the value of working with 

symbolic mathematics, as it was not made relevant to their everyday lives and no 

context was provided for algebraic problems. Learners are first exposed to a world of 

numbers and numerical procedures when working through arithmetic. They are then 

later introduced to a world of symbols and symbolic procedures in algebra. The 

connection between arithmetic and algebra, and problems or situations where we 
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would use them, is missing (Smith and Thomson, 2008). It has become a central 

theme of early algebra that generalising in all aspects of mathematics is central to 

developing algebraic thinking (Roberts, 2012).  

 

Furthermore, the teaching and learning of functions was historically confined to the 

secondary grades, as it was believed that learners needed a type of abstract thinking 

which was only attainable at a certain age. However, functional thinking has recently 

been argued to be a critical route into the teaching and learning of early algebra 

(Blanton et al., 2015). Functional thinking is claimed to be a fundamental component 

of early algebra (Kaput, 2008) (see 3.5.4). There is an important relationship between 

functional thinking and the early algebraic thinking practices of generalising, justifying, 

representing, and reasoning with mathematical relationships (Blanton et al., 2015). 

The approach of teaching computational arithmetic for six to eight years, followed by 

an isolated and superficial teaching of algebra in the later years, has led to high learner 

failure. Learner drop outs were especially high among economically and socially 

disadvantaged groups (Kaput, 2008).  

 

In South Africa, algebra is a key course in the secondary mathematics curriculum. It 

is a prerequisite subject for post-secondary mathematics, science, and engineering 

courses. It is therefore considered a gatekeeper course (van Laren and Moore-Russo, 

2014).  Algebra’s gatekeeper effect has led to the marginalisation of learners in 

algebra education, by depriving learners of opportunities in certain career fields, 

disproportionately affecting underrepresented groups. This, in turn, has led to 

underrepresentation of these groups in STEM-related fields especially (Blanton, Isler-

Baykal, et al., 2019) (Blanton,  et al., 2019). Mathematics results in South Africa, both 

at primary and secondary levels, continue to indicate failure of the system, teachers, 

and learners. Evidence suggests that the low levels of mathematics achievement in 

South African schools can be attributed to the low quality of teaching in primary 

schools (McAuliffe and Lubben, 2013). Many teachers in the South African context 

were not taught the content area of ‘Patterns, functions and algebra’ when they were 

in school, and thus do not understand why or how to teach this content area (Roberts, 

2012). This contributes to the need for teacher development and education, and 
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support for teachers in effectively implementing generalisation and algebraic thinking 

in the classroom.  

 

It is critically important to establish firm foundations for algebra in the early years, by 

effectively developing the generalisation concept to ensure success in understanding 

complex algebra in the later years. The aim should be to teach early algebra through 

the generalisation concept for understanding. The aim of this chapter is to explore the 

importance of early algebra, generalising, and the structure of mathematics, to provide 

an instructional design based on the RME principles, guided reinvention and emergent 

modelling. The aim of the design is to provide a route for implementing the 

generalisation concept to develop early algebra in the classroom through a problem-

based approach.  

 

3.2.2. The current situation in classrooms 

 

Algebra’s status as the gateway to academic and economic success has called for 

reform in the teaching and learning thereof (Blanton, Stroud, et al., 2019). Current 

research has identified algebra as a central concern in mathematics education and 

has emphasised the importance of a longitudinal approach to the teaching of algebra 

(Blanton et al., 2015). A longitudinal approach involves the teaching of algebraic 

concepts from the beginning of the schooling years. Problems are evident in the 

transition from primary to secondary school, where a ‘cognitive gap’ emerges as 

learners transition from arithmetic to algebra. There is increasing evidence that the 

way in which arithmetic is taught in the primary grades is not conducive to the 

development of algebraic thinking the later grades, when mathematics and algebra 

become more complex (Roberts, 2012). 

 

In light of the challenges learners experience with algebra in the later grades, it has 

been widely accepted that a progressive introduction to algebra in the early grades 

may aid their  subsequent understanding of more advanced algebraic concepts,  

algebraic notation in particular (Radford, 2015). In theory, this approach would allow 

learners’ algebraic thinking to develop more organically by enhancing their natural 
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instincts about structure and relationships from the start of their formal education 

(Blanton, Stroud, et al., 2019).  

 

The Common Core State Standards in the USA also emphasised the importance of 

teaching algebra across all grades, with the aim of improving for the likelihood of 

success in mathematics in the secondary grades (Blanton, Isler-Baykal, et al., 2019). 

This reform in algebra education represents an important paradigm shift in 

mathematics education. Even so, there are still questions about the impact that this 

approach would have on learners’ success in school mathematics. Many researchers 

ask the question: are (young) learners able to successfully engage in a longitudinal, 

comprehensive approach to algebra that might prepare them for the formal study of 

algebra in high school? (Blanton, Isler-Baykal, et al., 2019). Transforming the whole 

of mathematics education is a massive task which will demand financial and 

intellectual resources. It involves the restructuring of curriculums and changing of 

classroom practice, as well as assessment of, and changes in, teacher education 

(Kaput, Carraher and Blanton, 2008).  

 

The focus on generalisation and structure within patterns (and mathematics as a 

whole) remains largely unexplored in early years mathematics in South Africa. This is 

because of the lack of a relational approach to the sequencing of curriculum 

documents and materials which are provided for the teaching of patterns, functions 

and algebra in the foundation phase (Du Plessis, 2018). It has been proposed that 

algebraic thinking should be introduced earlier in the schooling of learners, and this 

has been widely accepted. The South African Curriculum and Assessment Policy 

(CAPS) (Department of Basic Education, 2011) agrees that learners should 

understand the logic of patterns, and that this should lay the foundation for algebraic 

thinking. Even so, in classroom practice little emphasis is placed on the structure which 

exists in mathematics and patterns. Learners are mostly expected to copy or extend 

patterns. Learners are not given sufficient opportunities to justify and express 

generalisations which are noticed within patterns (see 2.6) (Du Plessis, 2018).  

 

Textbooks are perceived as a valuable instructional tool in classrooms (Garner, 1992). 

According to RME principles, guided reinvention and emergent modelling of the 
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teacher’s guidance to learners’ development of conceptual knowledge, depends 

greatly on the instructional tools they use and the sequence in which mathematical 

activities are organised (Gravemeijer, 2007, 2020; Stephan, Underwood-Gregg and 

Yackel, 2016). Most textbooks, however, lack coherence and the sequence of 

activities in a relational approach to make connections between concepts explicit 

(Velverde & Schmidt, 1998). Sood and Jitendra, (2007) found that traditional textbooks 

can be criticised for being repetitive, unfocused, and undemanding. They suggest four 

components for effective textbooks: (1) a clear and meaningful development of 

mathematics which promotes conceptual understanding through real world 

experiences, (2) tasks in textbooks that include multiple models, with explicit 

connections between these models, (3) opportunities in mathematics textbooks for 

learners to reflect on their performance, and (4) enough opportunities in textbooks for 

learners to apply new skills by means of scaffolding (Afonso, 2019).  

 

Vermeulen (2016) analysed the development of algebraic thinking in three Grade 4 

mathematics textbooks, and found that authors do seem to understand the 

expectations of the curriculum. Two textbooks offered some opportunity for algebraic 

thinking to develop, however the third did not develop algebraic thinking. Furthermore, 

he found the sequencing of activities in all three textbooks to be problematic.  

 

According to Kaput (2008, p.6) ‘the algebra problem’ needs to be solved to serve four 

major goals: 

• To add a sense of coherence, purpose, depth, and power to the mathematics 
curriculum from pre-school to high school. 

• To amend the late, abrupt, and isolated nature of the teaching of complex 
algebra in later grades. 

• To democratise access and opportunity to powerful ideas by transforming 
algebra from an exclusive and inequal subject area to a powerful tool for all. 

• To build conceptual and institutional capacity and open curricular space for the 
new 21st century mathematics needed at a high school level.  

 

Even though there is consensus that algebra should be introduced into formal 

schooling from the start, the implementation of this approach is still questioned and 

should be further researched. The aim of this chapter is to provide a possible 

framework for the teaching of early algebra via the generalisation concept in the early 
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years of mathematics education, based on a systematic review of the research which 

has already been done.  

 

3.2.3. The importance of early algebra 

 

Young learners, even with limited exposure to arithmetical thinking, have the ability to 

start thinking algebraically. With suitable instructional support, learners can 

understand some algebraic concepts, for example pattern generalisation (Radford, 

2011). The National Council of Teachers of Mathematics (NCTM) describes algebra 

as a way of thinking with a set of concepts and skills which aids learners to generalise, 

model and analyse mathematical situations (Lee et al., 2016, p. 306). Early algebra 

has the purpose of deepening children’s understanding of the structural form and 

generality of mathematics, rather than only providing isolated mathematical 

experiences. Algebra has the aim of providing learners with tools to simplify complex, 

real-life problems and situations (Smith and Thomson, 2008). This has been proved 

to ensure better mathematical achievement in later grades (Blanton & Kaput, 2011).  

 

In Does Early Algebra Matter? The Effectiveness of an Early Algebra Intervention in 

Grades 3 to 5 (Blanton et al., 2019) algebraic thinking is described as a critical way of 

thinking relevant to virtually any avenue of the job market and every part of schooling. 

It can, therefore, be seen as one of the most important aspects of mathematics 

teaching in the early years. Linder, Powers-Costello and Stegelin (2011) argue that 

the foundation for constructing an understanding of mathematical concepts, such as 

algebra, starts in the early grades. Meeting the expectation of transitioning from 

arithmetic to algebra is challenging for learners (see 3.3.2) and many research studies 

have found that students need earlier opportunities for engaging in activities that 

encourage algebraic reasoning (Jacobs et al., 2007, p. 259). Fox (2005) agrees that 

the years prior to formal schooling are a period of profound developmental changes, 

where many mathematical concepts are formed. Blanton and Kaput (2011, p. 6) 

explain that algebraic reasoning “is a common thread in the fabric of ideas that 

constitute mathematical thinking at elementary grades” because algebraic reasoning 

involves looking for generalities in all of mathematics. The increasingly complex 

mathematics of the 21st century requires of children to have elementary school 
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experiences which enable a deeper understanding of the underlying structure of 

mathematics. A recent study by Cai, Ng and Moyer (2011), found that students 

perform much better when they are able to use abstract strategies. In other words, 

students will perform better in mathematics when they are able to reason algebraically 

based on the patterns and structure in mathematics which emerge when looking for 

generalities. 

 

Algebra can be seen as the crux of mathematics because of its foundational role in all 

areas of the subject. Algebra provides the mathematical tools to represent and analyse 

quantitative relationships, to model situations, and to solve problems in every 

mathematical domain. Algebra, as stated earlier, is a gatekeeper to future educational 

and employment opportunities (Knuth et al., 2016). Schoenfeld (1995, p. 11-12) said: 

 

Algebra has become an academic passport for passage into virtually every 
avenue of the job market and every street of schooling. With too few exceptions, 
students who do not study algebra are therefore relegated to menial jobs and 
are unable often to even undertake training programs for jobs in which they 
might be interested. They are sorted out of the opportunities to become 
productive citizens in our society. 

 

Traditional learning systems divorce mathematics, and especially algebra, from 

STEM-related (Science, Technology, Engineering and Mathematics) concepts and 

their applications in real life (Renganathan et al., 2017). Algebraic thinking is important 

because it allows one to solve much more complicated problems by acknowledging 

the unknown and approaching problems in a general manner (Mason, 2008). 

Problems are thus liberated from the constraints that govern them and can be viewed 

in a general manner (Roberts, 2012). Early algebra is necessary to bridge the gap 

between arithmetical thinking in the early years and isolated algebraic thinking in the 

later years, as early algebra should encompass arithmetic and all areas of 

mathematics.  

 

3.2.4. The scope of early algebra 

 

Early algebra differs from the algebra which is taught at a high school level; it is not 

the earlier implementation of a curriculum which is meant for high school learners. 
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Early algebra is built on the backgrounds and contexts of problems. It only gradually 

introduces formal notation and is integrated with the other content areas of the 

mathematics curriculum (Carraher, Schliemann and Schwartz, 2008):  

 

3.2.4.1. Early algebra builds on the backgrounds and contexts of problems. 

 

One could ask why it is necessary to expose learners to deeply nuanced problems if 

the goal of algebra is to get them to think more abstractly be able to use symbolic 

notation to represent a problem. The reason for using context rich problems lies in the 

way in which young learners learn: young learners use a variety of intuition, beliefs, 

and presumed facts along with principled reasoning and argument (Carraher, 

Schliemann and Schwartz, 2008). This idea aligns with socio-constructive learning, 

where the learner is an active participant in the learning process and their thinking and 

interpretation of new ideas and concepts are based on existing knowledge  (Human 

and Olivier, 1999). It is hoped that by starting from rich contexts and realistic situations, 

learners will eventually become able to derive conclusions directly from a written 

system of equations (Carraher, Schliemann and Schwartz, 2008). Conceptual 

development through real, context based problems is an important principle of RME, 

and will inform the instructional design sequence for developing generalisation 

(Stephan, Underwood-Gregg and Yackel, 2016). The role of the teacher becomes very 

important in facilitating this development of thought in learners. This aspect of early 

algebra also aligns with the problem-based approach, which is based on the premise 

that learners should encounter and explore new mathematical concepts by engaging 

in effective and realistic problems (Human and Olivier, 1999). This ensures that 

learners understand the value of mathematics, and leads to a deeper understanding 

of the concepts at hand (Carraher, Schliemann and Schwartz, 2008).  

 

3.2.4.2. In early algebra formal notation is introduced gradually. 

 

Without a certain amount of guidance, it is unlikely that young learners will be able to 

start with written notation for variables by means of formal symbolism on their own. 

Variables and the use of symbols are fundamental components of early algebra (see 

2.2.4 and 2.2.5) and, even though it might be challenging, learners are able to use 
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variables to represent unknowns in a general manner (Kaput, 2008; Knuth et al., 

2014). The use of symbols and notation to represent mathematical situations in a 

general manner first emerged in the syncopated stage of algebra, where Diophantus 

started to employ symbols in the form of Greek letters to generalise mathematical 

situations. His use of symbols was primitive, but was complex and advanced for the 

time (see 2.3.2.5) (Derbyshire, 2006). In the symbolic stage, Viète employed a use of 

symbols which closely resembles the algebraic notation we use today (see 2.3.3.2). 

As algebra developed, a need for representing situations in a more general manner 

emerged. In response, mathematicians like Diophantus and Viète introduced the use 

of symbols which enabled them to solve more complex problems (Sfard, 1995).  

 

Algebraic expression as a concept needs to be introduced to learners in a careful 

manner. Teachers need to introduce unfamiliar terms, representations, and 

techniques even though learners might not initially understand them as intended. 

Continuous classroom discussions about algebraic expression would be beneficial to 

teachers and learners, especially if teachers listen to learners’ interpretations and 

provide them with opportunities to expand and adjust their understanding (Carraher, 

Schliemann and Schwartz, 2008). This is consistent with the problem-based 

approach, which treats learning as a social process. Well-planned classroom 

discussions between learners, with the teacher in a facilitative role, are necessary to 

ensure the effective development of learners’ deep understanding of algebraic 

expressions (Human and Olivier, 1999). In this way, the teacher guides learners 

through the reinvention of their conceptual understanding, and learners start to 

transition from an informal use of models to a more formal use for models (see 

3.2.)(Stephan, Underwood-Gregg and Yackel, 2016). 

 

3.2.4.3. Early algebra should be integrated with other content areas in the 

mathematics curriculum. 

 

Algebraic concepts, and especially generalisation, are embedded in all content areas 

of the early mathematics curriculum. It is the role of the teacher to facilitate the 

emergence of learners’ algebraic thinking when working with word problems, ration, 

proportion, measurement, graphs, number lines, tables, and arithmetical notation as 
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he guides them through the reinvention of concepts based on a carefully designed 

sequence of activities (Stephan, Underwood-Gregg and Yackel, 2016). Teachers 

should help to bring the algebraic character of early mathematics to light (Carraher, 

Schliemann and Schwartz, 2008). Early algebraic thinking involves learners’ capability 

to understand patterns in culturally evolved co-variational ways and use them to 

engage with questions of remote and unspecified terms. Learners must make use of 

a coordination of spatial and numeric structures. Their awareness of these structures 

and coordination involves a complex relationship between inner and outer speech, 

forms of visualisation and imagination, gesture, and activity on signs (Radford, 2011, 

p. 23).  

 

3.2.4.4. The role of representation  

 

Mathematical ideas can be represented internally through mental models and 

cognitive representations of the mathematical ideas which underlie external 

representations. External representations include concrete materials, diagrams, 

drawings, spoken words and symbols (T. Cooper and Warren, 2011). Models and 

representations are related to each other: models are ways of thinking about abstract 

concepts, while representations refer to the various forms of the models. Mathematical 

understanding matures when connections form between a learner’s internal network 

of models and representations. Learner proceeds through four states in terms of 

representation (Cooper and Warren, 2011, p.191): (1) using one representation, (2) 

using more than one representation in parallel, (3) making links between parallel 

representations, and lastly (4) integrating representations and moving effortlessly 

between them.  

 

Aspects of representational forms should be understood and communicated to allow 

learners to notice commonalities (generalities) across or between representations. 

Including a variety of forms of representation in instructional sequences, develops 

learners’ ability to switch between forms of representations (Cooper and Warren, 

2008b). 
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Apsari et al. (2020) propose the use of geometric objects as representations to help 

learners see the structure of mathematics and make generalisations. From their 

research, they concluded that geometric representation supports the development of 

algebraic thinking. Geometric representation plays the following roles (Apsari et al., 

2020) (see 2.3.4.1): 

• Geometric representation is used as the context of the problem 
• Geometric representation is used as the model of, and model for, situations 

(see 3.2) (Treffers, 1987) 
• The teacher can use geometric representation as a tool for scaffolding critical 

thinking 
• Learners use geometric representations to communicate and represent their 

mathematical ideas. 

RME proposes a guided reinvention process which enables learners to construct their 

own understanding of mathematical concepts  (Apsari et al., 2020). According to 

Treffers (1987) models are the bridge which helps leaners transition from reality to 

mathematical ideas or objects. A Mathematical model should give a sense of 

visualisation to the actual condition in phenomena. 

 

The use of representations can, therefore, be seen as integral to modelling 

mathematical situations and helping learners to represent and communicate their 

mathematical thinking. 

3.3. THE DEVELOPMENT OF EARLY ALGEBRAIC THINKING  
 

In this section, the development of algebraic thinking will be explored. The levels of 

algebraic thinking and the challenges in developing algebraic thinking will be 

addressed. This will be followed by an in-depth discussion of the main components of 

early algebra, which involve: (1) Generalisations and formalization, (2) Syntactically 

guided manipulation, (3) Study of structure, (4) Functions, relations, and joint variation, 

and lastly, (5) Modelling as a language (Kaput, Carraher and Blanton, 2008; Roberts, 

2012a).  

 
3.3.1. Introduction  
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The traditional “arithmetic-then-algebra” approach, where an arithmetic curriculum in 

the early grades is followed by formal algebra in secondary grades, has not proven to 

be successful, as it does not allow enough time and opportunity for the deep 

development of algebraic reasoning (see 3.3.1) (Knuth et al., 2014). It is proposed that 

the artificial separation of arithmetic-then-algebra deprives learners of powerful 

schemes for thinking mathematically in the foundational years, and makes it harder 

for them to learn algebra in later years. Understanding takes a long time to develop 

and should start in the early years of education. The goal of early algebra teaching 

should not be the skilled use of algebraic procedures, but rather the ability to think 

algebraically (Carpenter & Levi, 2000). It is, therefore, imperative that algebraic 

thinking should be developed from an early age and be introduced and integrated 

through all areas of early mathematics teaching. 

 

In the early grades, algebraic reasoning is developed through the comparison of 

quantities, observing and making patterns, navigating through different kinds of 

spaces, and solving problems in playful interactions with objects and peers in the 

classroom (Linder, Powers-Costello and Stegelin, 2011). Lee et al. (2016, p. 306)  

further explain that by providing concrete experiences with algebraic concepts in the 

early years, the foundation is laid for the comprehension of abstract forms of algebra 

in the later years. It is important that algebraic concepts and skills are introduced in 

the early grades and embedded through all school years (Lee et al., 2016, p. 306). 

The Ontario Ministry of Education and Training guide states that algebraic reasoning 

is developed through investigations and discussions of number properties 

(generalised arithmetic (see 2.2.4 and 3.5.1)) , which aid learners to make 

generalisations and construct concepts which create the stepping stones for a more 

formal way of algebraic thinking (Ontario Ministry of Education and Training, 2007, p. 

8).  

 

Carpenter and Levi (2000) argue for two central themes at the core of developing 

algebraic thinking: (1) making generalisations and (2) using symbols to represent 

mathematical ideas and to represent and solve problems. Learners are encouraged 

to construct and represent powerful ideas. Examples of generalisations in the primary 

grade are: “when you add zero to a number, the sum is always that number” or “when 
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you add up three numbers, it does not matter which you add first” (Carpenter & Levi, 

2000, p. 2). To develop mastery of generalisation and symbolisation in early algebra, 

teachers must create a carefully planned order of learning activities that supports the 

introduction of a structural approach to the learning of sequencing at a foundation 

phase level (Du Plessis, 2018). RME principles propose implementing guided 

reinvention and emergent modelling to design an instructional sequence of 

mathematical activities which guides learners and teachers in the development of 

conceptual understanding (Gravemeijer, 2007, 2020; Stephan, Underwood-Gregg 

and Yackel, 2016). 

 

Algebraic thinking is promoted by placing emphasis on ways to represent and analyse 

underlying structures of numbers, operations, and relationships (Billings, 2017, p. 

483). Algebraic thinking incorporates manners of thinking that are in line with the 

Common Core Standards for Mathematical Practice (CCSMP) (Billings, 2017, p. 483). 

This framework provides an important overview of the type of robust thinking and 

reasoning children should be able to engage with. Within and Within  (2014) agree 

with Billings (2017) that the following ways of thinking should be integrated when 

teaching early algebra:  

 

• Make sense of problems and persist in solving them (SMP 1),  
• reason abstractly and quantitatively (SMP 2),  
• construct viable arguments and critique the reasoning of others (SMP 3),  
• use appropriate tools strategically (SMP 5),  
• look for and make sense of structure and patterns (SMP 7), and  
• identify and express regularity in repeated reasoning (SMP 8). 

 

Blanton and Kaput (2011) describe these standards as the goals of early algebra 

teaching.  

 

The CCSMP aim to provide clear and consistent learning goals to help learners 

prepare for tertiary education and their careers. The following activities to support the 

development of algebraic thinking in the foundational years are included in the CCSPM 

(Common Core States Standards Initiative, 2021): 

• Acting out situations, verbal explanations, expressions or equations. 
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• Representing the solutions of problems using objects or drawings, and 
equations with a symbol for the unknown number to represent the problem. 

• Understanding and applying properties of operations and the relationships 
between them. 

• Determining unknown numbers in equations. 
• Identifying and explaining patterns in arithmetic. 

 

Radford (2012) explains that structural understanding (see 2.2.4 and 3.5.3) forms a 

crucial part of the emergence of algebraic reasoning in the early grades (Ferrara & 

Sinclair, 2016, p. 3). When introducing algebra in the early years, it is important to 

move away from the current emphasis on learning the rules of symbol manipulation 

and instead focus on creating deep algebraic reasoning (Jacobs et al., 2007, p. 259).  

Du Plessis (2018) emphasises that working structurally in the foundation phase 

classroom is not only possible, but necessary. At this stage in their development, 

learners are receptive to an approach that develops habits of mind when dealing with 

repeating patterns on a relational level. The focus of early algebra is on a relational 

approach to mathematics.  

 

Kaput (2008) describes a framework for early algebra which includes the following 

content strands (see 2.2.4 and 3.5) (Roberts, 2012):  

• Algebra as the study of structures and systems abstracted from computations 
and relations, including those arising in arithmetic and quantitative reasoning. 

• Algebra as the study of functions, relations and joint variation. 
• Algebra as a cluster of modelling languages both inside and outside of 

mathematics. 

These thinking practices and content strands should be integrated intentionally across 

different conceptual domains which are recognised as important entry points for 

algebraic thinking, so that mathematical connections become accessible to learners 

at all levels of thinking (Knuth et al., 2014). Mathematical connections can be made 

when learners are able to represent their mathematical thinking in various ways (see 

3.3.5.4). CAPS (DBE, 2011) provides guidance to teachers on investigative work 

involving problem contexts which can be explored and representing functional 

relationships that arise, by means of number sentences, input and output tables, and 

function machines. Graphs can also be used to represent functional relationships 

(Roberts, 2012). Modelling concepts and encouraging learners to model their 

understanding and problem-solving processes engages them in mathematical thinking 
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and reasoning. Learners must be aware of different models which can be used to 

represent problems and contexts (Roberts, 2012).  

  

Patterns can be used as an important tool to develop algebraic thinking. Experiences 

in describing and extending patterns help learners make generalisations about the 

composition of different patterns. Learners are motivated to communicate these 

generalisations as pattern rules, that is, concise descriptions of how a pattern changes 

or repeats. In the foundational years, learners express these generalisations informally 

(Ontario Ministry of Education and Training, 2007). Taylor-Cox (2003) agrees that 

patterns serve as the cornerstone for algebraic thinking. Patterns are visible in 

everyday life around us. Learners watch the sun set and come up every day, sing 

songs with rhyme and rhythm, and see how bricks are laid in patterns. Recognising, 

describing, extending, and translating patterns encourages learners to think in terms 

of algebraic problem solving. Working with patterns motivates learners to identify 

relationships and form generalisations. Young learners are able to come up with 

algebraic formulas to describe patterning activities. According to Radford (2015), this 

requires a coordination of words, written signs, drawn figures, gestures, perception, 

and rhythm. Learners engage in interesting gestures of rhythm while trying to make 

sense of mathematical structure which underlies patterns and sequences. 

 

There is little research systemically comparing children exposed to early algebra and 

those who experienced a more traditional arithmetic-first approach in terms of  the 

development of their algebraic thinking and their understanding of important algebraic 

concepts. Even so, a fundamental assumption of early algebra education is that it will 

increase children’s understanding of algebraic concepts which will aid them in later 

grades (Knuth et al., 2014). 

 

There is a general agreement amongst researchers that early algebra comprises of 

two core features: (1) generalising, which includes identifying, expressing and 

justifying mathematical regularities, structures, relationships and properties, and (2) 

reasoning and actions based on the forms of generalisation (Du Plessis, 2018). In the 

following section of Chapter 3, a systematic analysis will be given of the views of 

Radford, Mason and Kaput on the development of algebraic thinking.  
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3.3.2 Different views of Radford, Mason and Kaput 

 

3.3.2.1. Radford’s view on the development of algebraic thinking 

 

Algebraic thinking is a theoretical form which has emerged, evolved and been refined 

in the course of cultural history (Radford, 2015). Radford (2011) bases his research 

on the development of early algebraic thinking on the Vygotskian theory of knowledge 

objectification. According to this theory ‘thinking’ does not happen only in the head, 

but includes other material and idea-based components including inner and outer 

speech, objectified forms of sensuous imagination, gestures, tactility, and actions with 

cultural artifacts. Radford describes thinking as a dynamic unity of material and ideal 

components. This is a sociable, tangible process in the human body. He describes the 

development of early algebraic thinking as the appearance of new structuring 

relationships between the material-ideational components of thinking, and the manner 

in which these relationships are organised and re-organised. This development does 

not follow a pre-established path, but is cultural-dependant. Radford (2014) writes 

about the importance of thinking analytically in algebra. Thinking analytically involves 

treating indeterminate quantities as though they were known or specific numbers. This 

way of thinking analytically, where unknown numbers are treated on par with known 

numbers, distinguishes algebra from arithmetic. Viète characterised algebra as an 

analytical art (see 2.3.3.2). 

 

Radford proposes three conditions which characterise algebraic thinking (Radford, 

2014, p. 260): 

1) Indeterminacy: the problem involves unknown numbers in the form of 
variables. 

2) Denotation: The indeterminate numbers in problems need to be named or 
symbolised. Symbolisation can be achieved in various ways, including natural 
language, gestures, unconventional signs, or alphanumeric symbols. 

3) Analyticity: The indeterminate or unknown quantities should be treated as 
known numbers. One starts with indeterminate numbers and operates on 
them. Trial-and-error methods fail the condition of analyticity and therefore 
cannot be considered algebraic.  
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3.3.2.2.  Mason’s view on the development of algebraic thinking 

 

Mason (2008) believes that by the time children start to attend school, they have 

developed great ‘powers’ to make sense of the world they live in. The main aim of 

teaching should be to make use of those ‘powers’ and to develop them. Algebraic 

thinking is developed when these ‘powers’ are used in the context of numbers and 

relationships. Teachers often underestimate learners and do too much of the work for 

them. This leads to learner dependency. Mason argues that learners already have the 

‘powers’ necessary to think algebraically in the womb. He argues that one should not 

see arithmetic as a pre-requisite for algebra, and that algebra and arithmetic can 

emerge simultaneously from the use of the same powers. Algebraic thinking is needed 

to make sense of arithmetic. Mason (2008) argues that learner have the following 

‘powers’ which are relevant to the development of early algebraic thinking: 

• Imagining and Expressing 
• Focusing and De-focusing 
• Specialising and Generalising 
• Conjecturing and Convincing 
• Classifying and Characterising 

 

Even though learners possess these powers innately, it does not mean that they 

automatically think mathematically. These powers need to be exercised and brought 

forward through intentional facilitation by the teacher (Mason, 2008).  

 

One of the powers used to induce algebraic thinking is the awareness of and the 

expression of generality (Mason, 2008). The role of the teacher is to provide ample 

opportunities for learners to recognise and express the generality that arises in 

particular mathematical instances. Whenever a teacher notices that learners are able 

to make generalisations, the opportunity arises to prompt them to specialise by 

constructing a particular own example. Geometric pattern sequences are one of the 

possible avenues to get learners to start to generalise and specialise. Learners can 

be prompted to specify a method for drawing the next term in the pattern. Learners 

can further be asked to generate their own simpler or more complicated sequences. 

The mental processes involved when working with patterns are well-described by 

(Watson, 2000). “Going with the grain” involves making a useful contrast with the 

obvious. “Going across the grain” means to pause to address what is different and 
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what is the same in each of the statements or terms being explored. When learners 

are going with the grain, they complete a sequence. The important part of a task takes 

place when learners go against the grain. It is then when they interpret a 

generalisation. The basic structural properties in arithmetic can also be generalised. 

The simple but powerful awareness that adding something to one number and 

subtracting it from another number leaves the sum invariant is only one example of 

many possibilities. Learners need to specialise so that they can make sense of 

generality by reconstructing it to discern what changes and what stays the same. As 

learners become used to being expected to express generality and justify their 

thoughts by testing their conjectures with specific cases, they will start to internalise 

the process and start doing it naturally. Learners will become more efficient and 

effective at learning mathematics as they take responsibility for their own learning and 

use their own innate powers (Mason, 2008).   

 

When learners work with problems, Mason (2008) suggests that they should engage 

their thinking about as-yet-unknown values. After learners have solved a problem, it is 

valuable for the teacher to turn the question around and ask them to provide problems 

of the same type which would give the same answer. For example, it is known that 10 

+ 10 = 20. The teacher can ask learners what other pairs will result in the same sum. 

When learners engage in such tasks, they are trying particular cases by attending to 

the structure of the mathematics and finding generalisation. Arithmetic tasks can also 

be transformed by changing a doing calculation into an undoing calculation. This 

encourages learners to think and act creatively. It provides them with opportunities to 

work with the as-yet-unknown instead of focussing on calculating the arithmetical 

answer.  

 

The notion of a variable emerges in both these contexts for producing algebraic 

thinking. Variables are present in the world of learners from a very young age and are 

united by perceiving cases in terms of freedom and constraints. For example, “I am 

thinking of a number” (freedom emerges here in the concept of number), “the number 

is between 5 and 7” (here a constraint is provided). Also, a traditional arithmetic sum, 

like 6 + 3 =? can be reversed to ask 9 =? + ?. Changing the range of permissible 

change for numbers provides access to a varying degrees of freedom. Most textbook 
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problems can be seen as problems where you start with great freedom and then 

impose constraints by the choices you make in approaching the problem. Tasks like 

this provide learners with opportunities to work with the as-yet-unknown as an 

expression of generality with constraints (Mason, 2008). 

 

Getting learners to express generalities to satisfy certain constraints, leads to multiple 

possible expressions of the generality (Mason, 2008). Each expression states the 

same thing but looks different. Learning to see situations through the structure of 

expressions improves learners’ sense of there being a variety of ways to express 

similar things. This further improves their understanding of symbolic expressions and 

leads to the need to manipulate expressions. The need to manipulate algebraic 

expressions can emerge naturally when learners use their powers. Simultaneously, 

learners can improve their understanding of equivalence of symbolic expressions. 

 

Guessing and Testing is described as a good mathematical process for developing 

early algebraic thinking (Mason, 2008). Over time it can develop into more 

sophisticated processes, such as trying and improving, where the guess is modified 

according to a specific principle rather than being random. Learners can also spot and 

check where an answer is tried and found to be correct. Learners should use structure 

by using the values which have been tried, to build on the structural features of the 

problem. Getting learners to use their “powers” is to get them to start thinking 

mathematically, and therefore, algebraically. By treating algebraic thinking as a natural 

consequence of the using of learners’ powers, algebra’s gatekeeper effect fades and 

it becomes accessible to all.  

 

Across the world, marginalised learners underperform in mathematics, especially with 

regards to algebra. This leads to limited career opportunities, especially in STEM-

related fields. Hunter and Miller (2020) propose using a culturally responsive approach 

to the development of early algebraic thinking to overcome this worldwide challenge. 

Mathematics as a subject has long been believed to be value and culture free, but in 

recent research this position has been refuted. The teaching and learning of 

mathematics cannot be decontextualised from the learner. Hunter and Miller (2020) 
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emphasises the importance of developing culturally responsive classrooms which set 

mathematical tasks within the known and lived, social and cultural reality of learners.  

 

3.3.2.3. Kaput’s view on developing algebraic thinking 

 

Kaput (2008) takes on the perspective that the heart of algebraic reasoning is 

comprised of complex symbolisation processes that serve purposeful generalisation 

and reasoning with generalisations. Kaput (2008) claims that to describe algebra can 

be challenging, as it is not a static body of knowledge. It evolves as a cultural artifact, 

as described in Chapter 2, in terms of the symbol systems it embodies. It also evolves 

as a human activity as learners learn to reason algebraically.  

 

Kaput (2008) describes two core aspects (see 2.2.4) of algebraic reasoning. Firstly, 

generalisation and the expression of generalisations in increasingly systematic, 

conventional symbol systems, and, secondly, syntactically guided action on symbols 

within organised systems of symbols. These core aspect of algebraic reasoning 

appear across all three strands of algebra, which include algebra as the study of 

structures and systems abstracted from computations and relations, algebra as the 

study of functions, relations, and joint variation, and algebra as the application of 

clusters of modelling languages both inside and outside of mathematics (Kaput, 2008).  

 

These fundamental components as explained by Kaput (2008) will be discussed in 

more depth in 3.5 of Chapter 3.  

 

3.3.3. The levels of algebraic thinking  

 

Freudenthal's (1973) believes that learners should experience mathematics as a 

human activity and reinvent it as they are guided by teachers and tasks. His ideas 

were based on the assertion that the history of mathematics should be the main 

informant for designing a route along which learners might reinvent mathematics 

(Gravemeijer, 2020). In this section of Chapter 3, various perspectives on the levels 

of algebraic thinking will be systematically reviewed and analysed in relation to the 

stages of the development of algebra in Chapter 2.  
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3.3.3.1. Nixon’s theory on the levels of development of algebraic thinking 

 

The levels of thought that learners pass through in the process of developing early 

algebraic thinking are significant and reveal a trend in the development of thought in 

algebra. Nixon (2009) developed a theory of the development of algebraic thinking 

based on Piaget and Garcia’s identification of three developmental levels in algebra. 

Nixon argues for three levels of learning to think algebraically: the perceptual level, 

the conceptual level and the abstract level.  

 

Perceptual level: In the initial stages of algebraic learning, learners make use of 

counters or abacuses for counting. In this stage, learners need to coordinate their 

senses and perceptions to form algebraic concepts. As learners advance in their use 

of numbers, they can use symbolisations to represent ideas or events. The perceptual 

level is regarded as significant as it enables learners to form mental pictures of 

concepts. This level is crucial for the advancement and development of further 

algebraic thinking (Nixon, 2009). The perceptual level is consistent with the rhetorical 

and syncopated historical stages of algebra. In the rhetorical stage (see 2.3.1) of the 

historical development of algebra, algebraic concepts emerged as mathematicians 

aimed to solve isolated problems by modelling the problem situations in natural 

language. Generalisation and algebraic thinking are achieved in the rhetorical stage 

when learners notice generalities in the solutions of problems, and the generalisation 

is communicated in words. The aim of teaching should be to get learners to start 

making formalisations and generalisations (Kaput, 1995) and, in the rhetorical stage, 

learners will be expressing this in their own words. Learners can, for example, say: “If 

I put two numbers together, I know my answer will be bigger than the numbers I started 

with.” The syncopated stage is characterised by geometric thinking (see 2.3.2). This 

involves representing mathematical thinking by means of geometric figures and forms 

(Katz and Barton, 2007).  When learners start to represent ideas by means of 

diagrams or drawings, they are starting to make models and mental pictures of the 

mathematical concepts an real life situations they are working with (Cooper and 

Warren, 2008). Making models and representing ideas in this way is an important step 

towards generalising (see 2.2.4) (Roberts, 2012; Kaput, 2008).  
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Alongside the rhetorical stage and syncopated stages, runs the geometric conceptual 

stage (see 2.3.4.1.), which marks the beginning of algebra in history. In this stage, 

geometric problems are solved by employing geometric procedures, but an orientation 

towards generality can be noticed. Through reasoning and engaging in algebraic 

problems by means of geometric representation, mathematicians developed the 

sophistication of algebraic thinking they were involved in. The geometric stage is 

crucial for learners as they work through algebraic problems and patterning activities 

in the pre-algebra classroom  (Apsari et al., 2020). Geometric representations make it 

possible for learners to make connections between problems, mathematical models, 

and problem solving strategies, and to notice the structure of mathematics as they 

engage in patterning activities and arithmetic (Dekker and Dolk, 2011). This is 

comparable to the perceptual level of algebraic thinking in that it involves the 

coordination of physical senses and perceptions to form algebraic concepts: learners 

reason with physical and concrete “objects” in the shape of geometric figures, then 

construct informal algebraic concepts by representing and modelling the situations in 

natural language. Modelling as an algebraic language emerges (see 3.5.5). An 

example of this in the geometric stage would be Euclid’s demonstrations of how to 

manipulate rectangles and squares. 

  

Conceptual level: At this level, a shift from analysing objects to considering the 

relations of transformations between the objects becomes apparent. A reconstruction 

of the previous level takes place. When learners at this level learners are able to find 

interrelationships between properties, and start providing definitions and theorems for 

what they experience,  they are ready to advance to the next level (Nixon, 2009). In 

the syncopated stage, the focus is on designated unknowns, symbolism, and 

motivating for the suitability of solution methods (Sesiano, 2009). In Nixon’s (2009) 

conceptual level of thinking, the actions of justifying and proving theorems become 

central. The focus is on  the general structure of mathematics. The belief is that a 

generalising perspective on the underlying structure of mathematics should be 

embedded throughout mathematics by expecting of learners to provide explanations 

and motivations for their thinking in a general manner from the start of schooling 

(Roberts, 2012). In the conceptual stage, analysis of objects gives way  to analysis of 

the transformations and relations between objects. The aim is for learners to find 
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interrelationships between properties and start to justify what they experience. In the 

static-equation solving stage, mathematicians started to move away from analysing 

mainly geometric objects and started to represent relationships as equations. 

Algorithms and proofs were developed to find the answers to these equations. 

Equivalence, expressions, equations, and inequalities are part of the first Big Idea to 

develop in algebraic thinking in the foundational years of mathematics education (see 

2.2.4). The ability to express problem situations and the unknown by means of 

variables in equations is an important step towards developing algebraic thinking and 

generalisation (Knuth et al., 2014). Using symbols to represent variables and 

functional thinking as the idea of motion as change, emerge in the work of Viète, 

Descartes, Kepler and Newton history (symbolic stage (see 2.3.3) which indicates the 

move into the dynamic function stage of development (see 2.3.4.3.). In the conceptual 

stage, the aim is to find and represent the interrelationships of properties between 

objects, for example, the motion of a projectile and the curve which it would follow.  

 

Abstract level: As learners reach the abstract level, they are organising results 

acquired at the perceptual level. These learners are able to use symbols, with deep 

understanding, to construct proofs. They can understand the importance of 

deductions, axioms, postulates and proofs (Nixon, 2009). Learners are thus be able 

to deduct a rules from patterns, and can understand how symbols can be used to 

represent these rules. In the abstract stage (2.3.4.4), learning is focused on the 

underlying structure or mathematics. Structural knowledge is the recognition of all 

equivalent forms of an expression. It is important that learners can justify the structural 

equivalence which they identify (Liebenberg et al., 1998). In the abstract stage of the 

historical development of algebraic thinking, a need for justification and proof for your 

arguments emerges (Katz and Barton, 2007). The aligns with Nixon’s abstract level of 

algebraic thinking. At the abstract level of thought, learners start to use symbols with 

deep understanding to construct proofs, and they can understand the importance of 

deductions, axioms, postulates and proofs (Nixon, 2009). 

 

As learners pass through these levels, it is necessary for them to be guided. They 

should be motivated to generalise and draw comparisons (Nixon, 2009). These levels 
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of algebraic thinking or learning should be taken into account when designing teaching 

materials.   

 

3.3.3.2. Mason, Burton and Stacey’s conceptual framework for mathematical thinking 

 

Mason, Burton, & Stacey's (2010) conceptual framework for mathematical thinking in  

a problem-centred classroom (see Fig 3.1 below) , identifies the mathematical 

processes involved in solving problems as specialising and generalising. A learner 

must first be able to specialise, meaning to understand, and make a plan to solve, a 

problem. Specialization enables the learner to solve problems by carrying out plans 

and checking whether their solutions areis appropriate. This is a generalising activity. 

The phases of thinking are not crisply distinct. This is due to them being defined by 

qualities of experiences rather than mechanical activity. Work in one phase may easily 

lead back to a previous phase or the final phase, without going through all the phases. 

The RUBRIC words are generally indicative of the phase in which thinking is 

happening. By specialising, one find out what one knows, what one wants, and what 

one might introduce. By specializing, one uncovers patterns which lead to 

generalisation. By generalising, one comes up with conjectures which can be checked 

by further specialising, and one can extend the knowledge to wider questions (Mason, 

Burton and Stacey, 2010). This framework provides valuable sub-levels of the thinking 

processes learners should engage with as well as a rubric to determine on what level 

the learner is working. Learners’ actions and thinking can be analysed according to 

this conceptual framework to see if they are able to reach the generalisation level 

throughout the interventions.  This model will be used in the analysis of the meaning 

of generalisation, and will furthermore provide the main structure for developing an 

instructional design sequence for the teaching and learning of EA. 
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Diagram 3.1: Mathematical processes involved in solving a problem (Mason, Burton 

and Stacey, 2010) 
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3.3.3.4. Challenges in developing algebraic thinking 

 

Du Plessis (2018) notes that one of the major barriers to an effective algebra education 

for learners in South Africa, is the lack of coherence and relational sequencing in the 

South African CAPS curriculum. Furthermore, a lack in coherence across pedagogic 

communication and activities is evident. A random selection and sequencing of 

acitivities is observed in the primary years. This absence of coherence suggests a lack 

of conciousness in pedagogical practice. A well thought-out sequence of activities is 

necesarry to create habits of mind through exploration of structure in the early years 

of mathematics teaching. The further lack of a specific, focused, and research-based 

teaching and learning approach is apparent in South African foundation phase 

classrooms. An appropriate and coherent approach, like the problem-centred 

approach, is necessary to ensure that classrooms promote mathematics which 

learners can understand. 

 

Any approach to teaching may be affected by obstacles which hinder the efficacy of 

the teaching and learning program. Most obstacles to the teaching of algebra result 

from failure to situate generality at the core of the learning experience (Mason, 2008).  

 

Stacey and MacGregor (2000) question the efficacy of basing the teaching of algebraic 

thinking on the generalisation of picture patterns and tables of consecutive values of 

function for three reasons: 

• There was no research to prove that this approach is more effective than using 
letters to stand for as-yet-unknown numbers. 

• Research on learners’ enagement with pattern formulating tasks show low 
facility. 

• Picture patterns emphasise relationships between terms and cause a recursive 
or inductive specification of rules instead of functional relationships.  
 

Finding research evidence to support ‘generality’ as an approach, is challenging, as it 

is not a single or isolated strategy to be used, but rather an holistic perspective on how 

to approach mathematics. Emphasising the expression of generality is aimed at 

developing an overall awareness, not just training learners to produce certain 

behaviours. It should be implemented consistently over time and not merely in isolated 

lessons (Mason, 2008). This task poses a substantial challenge.  
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The International Comission on Mathematical Instruction (ICMI) Study Conference on 

The Future of Teaching and Learning of Algebra has identified the lack of data in 

relations to professional development as one of the key limitations of research on 

algebraic reasoning (Jacobs et al., 2007, p. 259). Professional development and the 

role of the teacher as a facilitator can be described as one of the core factors in the 

effective development of algebraic reasoning in the classroom. The teacher has an 

essential role in facilitating children’s mathematical patterning activities. It is essential 

that teachers have sufficient knowledge of mathematical patterning and are able to 

capatilise on children’s interests (Fox, 2005, p. 319).  

 

There is evidence that teachers have limited pedagogical content knowledge in 

relation to the types, levels and complexity of patterns. A teacher may limit children’s 

development of patterning when only approaching patterns as repeating patterns 

(Papic & Mulligan, 2007, p. 592). When teachers have a narrow perspective on 

algebraic activity, the relation between algebra and early mathematical thinking is 

obscured (Kaput, Carraher and Blanton, 2008). Blanton and Kaput (2011, p. 27) note 

that most elementary school teachers do not have the experience with algebraic 

thinking that needs to become the norm in schools.  

 

3.3.4. Quantitative views of early algebra 

 

Algebra can be viewed as the expression, manipulation, and formalisation of 

mathematical concepts and structures, governed by explicit rule-based notational 

systems. It is based on the ideas of coherence, representation, generalisation, and 

abstraction (Smith and Thomson, 2008). Reasoning directly with quantities and 

relationships within them is a powerful way to help learners build initial understanding 

of the concepts of functions and functional thinking (Ellis, 2011). Smith and Thomson 

(2008) proposes that quantitative reasoning lies at the core of algebraic thinking. 

Algebraic thinking is characterised by its generality and the use of symbols to 

represent these generalities. These expressions can then be manipulated and 

compared, and can facilitate numerical evaluations. Quantities can be seen as 

attributes of objects which can be measured. Whether it is measured or not, these 
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attributes are referred to as quantities. A quantity is a person’s perspective of a quality 

of an object and the process of assigning a numerical value to this quality. Measurable 

attributes like length, volume, mass, and area are all quantities. Quantitative reasoning 

occurs when learners engage with quantities and the relationships between them. 

Quantitative operations are conceptual operations where one conceives of a new 

quantity in relation to one or more already conceived quantities (Ellis, 2011). 

 

Research has shown that an awareness of mathematical patterns and structure is 

imperative for the development of generalisation and abstraction in early mathematics. 

Mulligan and Mitchelmore (2009) have proposed a framework, Awareness of 

Mathematical Pattern and Structure (AMPS) which generalises throughout all 

mathematics content areas, can be effectively measured, and is aligned with the 

development of structural features of mathematics. The aim of this construct is to 

provide reliable methods for describing the development of learners’ mathematical 

structures and relationships, and using learners’ ideas to develop quantitative 

reasoning (Mulligan, 2010). 

 

In Kaput’s (2008) explanation of algebra in relation to the thinking practices involved 

and the content strands of these practices (as mentioned in Chapter 1 of this study), 

the first content strand is stated as: 

 

Algebra as the study of structures and systems abstracted from computations 
and relations, including those arising in arithmetic and quantitative reasoning.  

(Kaput, 2008, p. 11) 

 

Quantitative reasoning is an integral aspect to consider when exploring the 

development of algebraic thinking. The role of quantitative reasoning in problem 

solving is to provide the content for the algebraic expression so that the power of 

notation can be exploited. Furthermore, quantitative reasoning has the aim of 

supporting reasoning that is flexible and general in character but which does not only 

rely on symbolic expressions (Smith and Thomson, 2008). 

 

In Developing an Essential Understanding of Algebraic Thinking for Teaching 

Mathematics Grades 3-5, Blanton et al (2015) describe 5 big ideas which are essential 
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to the development of algebraic thinking. Big idea 4 emphasises the importance of 

quantitative reasoning. Quantitative reasoning extends the relationship between 

quantities with the aim of expressing generalities among these quantities. Two 

quantities can relate to each other in the following ways: (1) they can be equal, (2) one 

can be bigger than the other, and (3) one can be smaller than the other. Known 

relationships between quantities can be used as a basis for describing relationships 

with other quantities.  

 

There are various approaches to the teaching of early algebra. One popular approach 

focuses on reasoning with quantities to develop early algebraic thinking. In this 

approach, learners are prompted to use letter notation to compare the quantities of 

measurable objects. It is known that quantitative reasoning along with various forms 

of representation can support the emergence of algebraic thinking in young learners 

(Carraher and Schliemann, 2014).  

 

Research conducted by Davydov and fellow mathematicians (1975) stemmed from a 

need to improve learner achievements in mathematics. Learners needed more 

support to be able to successfully engage in more complex mathematics when they 

entered secondary grades. It was agreed by this group of researchers that reform was 

necessary in the early grades of mathematics. They found that what learners do 

naturally and instinctively at a young age is to learner compare things. They combined 

this notion with the works of Piaget and Vygotsky on teaching and learning. The aim 

of the Russian team was for learners to develop a structural understanding of 

mathematical systems. They believed that if learners were able to understand 

structure, they would be able to apply properties and underlying concepts to any other 

number system (B. Dougherty, 2008). 

 

Vygotsky (1978) identified two ways in which learners learn: by generating 

spontaneous concepts, or scientific concepts. Spontaneous concepts are developed 

when learners can abstract properties or concepts from specific situations. This is how 

traditional mathematics education is set out. Topics are taught in a very specific 

sequence and are not connected across the different number systems. Scientific 

concepts develop from experiences that focus on conceptual foundations that then 

 

 

 

137 

lead to identifying, applying, and analysing the generalised concepts in specific cases. 

Learners are here prompted to see the mathematical structures across all number 

systems. Davydov (1975) believed that a general to specific approach (scientific) was 

more effective in developing deep understanding than the spontaneous approach to 

developing mathematical concepts.  

 

The Measure Up (MU) approach as explained by Dougherty (2008) assumes that 

learners enter the first grade with a view of quantities that centres around comparison. 

First grades are often concerned with who has the most or the least of a certain object. 

These young learners have a natural and spontaneous approach to measurement 

which forms the basis for mathematical development. It emphasises young learners 

building, recognising, and using properties of real numbers before they deal with whole 

or natural numbers. This is called the pre-numeric stage. Learners in this stage work 

with unspecified quantities of length, area, volume, and mass rather than discrete 

numbers. The measuring of these attributes is developed in an informal manner where 

learners engage with working definitions which are comprehensible at their 

developmental stage. As learners work through problems with the comparison of 

quantities, the teacher needs to facilitate the need to communicate the result of their 

comparison orally or in writing. Learners find this challenging as they do not have the 

necessary linguistic capabilities. This creates the need for naming quantities, and the 

teacher should guide learners towards doing so using letter symbols. This is a 

precursor to the use of letter symbols to represent variables. When learners can name 

quantities with letter symbols, the fundamental properties of equality, which are 

reflexive, symmetric, and transitive, are easily explored. Because learners model 

these properties with physical quantities, they can develop a clear mental image of 

how these properties work. The role of the teacher is to guide learners to write the 

statements as the young learners express them. For example, using the equal sign to 

express that fact that two quantities are the same amount. The use of the equal sign 

in these situations helps learners to not perceive the equal sign as an operator.   

 

From the equality properties and comparison experiences, various numbers and 

operation concepts arise.  Quantitative modelling aids learners in seeing different 

meanings of subtraction, for example, the action of taking away and the action of 
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comparing to find the difference. The comparison model helps learners to see that if 

two quantities are unequal, the amount by which they are unequal is the difference. 

Furthermore, learners explore the effects of changing two equal quantities with the 

constraint that they must contain an equal relationship by adding or subtracting. By 

modelling the actions of adding and subtracting with physical quantities, learners can 

make the generalisation that two quantities can be kept equal if you add or subtract 

the same amount from both. Learners can further engage with keeping an unequal 

relationship between those two quantities. Lastly, numbers emerge when situations 

require the quantification of differences in comparisons. Without a unit, it is not 

possible to quantify the differences or to make definite comparisons. A significant step 

in learners’ development is made when they move from the generalised approach to 

specific quantities and the counting of units (B. Dougherty, 2008).  

 

The consistent use of letters to label physical quantities provides learners with the 

confidence to begin manipulating letters in ways characteristic of more sophisticated 

mathematics learners (B. Dougherty, 2008). When thinking about and exploring 

different ways in which quantities can be parted, learners start to describe these ways 

with multiple symbolic representations. Diagrams can also be used to represent 

relationships. Building on their work with units and relationships within generalised and 

increasingly specific quantifications, learners begin to use variables to represent 

unknown quantities. Learners’ experiences with part-whole relationships and units 

enable them to deal with known and unknown quantities. Equations are written to 

express relationships.  

 

MU promotes the development of properties which are often neglected until later 

grades, as it introduces all number operations simultaneously. Complex properties are 

made accessible to learners through generalised arithmetic and the noticing of 

patterns and structure within mathematics. The multiple presentations used in MU 

provide structure for solving computational word problems. An approach that focuses 

on generalised and non-specified quantities is often thought to be too complicated and 

abstract for early mathematics. Research (Davydov, 1975; B. Dougherty, 2008), 

however shows that understanding the structure and properties of mathematics opens 

a way for learners to construct deep understanding of the fundamental concepts of 
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mathematics. This enables them to reason relationally even in unfamiliar problems or 

situations.  

 

3.3.5. Summary 

 

Defining algebraic levels historically, by blending a cultural artifact and action 

perspective as described by Kaput (2008) (see 3.4.2.3), focuses on the progress made 

in equations and the use of equations to model and analyse problem situations in an 

algebraic manner (see chapter 2). The origins of equations stem from problem 

situations or assertions about numbers or measurement quantities. Th earliest 

versions of equation solving appear almost 4 000 years ago in the Rhind Papyrus (see 

2.3.1.2). Equations were solved using natural language rather than sophisticated 

symbolism (rhetorical stage (see 2.3.1). The focus of algebra then turns to the solving 

of equations in the 16th and 17th centuries, distinguished from their status of models, 

but merely as mathematical objects of intrinsic intellectual interest. In the 18th century 

and later, a modern perspective emerges where definitions of algebra include the 

literal use of symbols as a core feature of algebraic activity (Kaput, 2008). Section 3.4 

provided a systematic thematic analysis of the development of algebraic thinking, the 

views of prominent figures in the domain, the levels of algebraic thinking and how it 

relates to stages of algebra development in history and lastly a quantitative view on 

developing algebra. This systematic analysis will be used to inform the instructional 

sequence based on the principles of RME (Gravemeijer, 2007, 2020). The 

instructional sequences will especially be grounded in the stages of algebra emerging 

from history (see Chapter 2), the levels of algebraic thinking as described by Nixon 

(2009), and the processes of mathematical thinking which learners engage with in a 

PCA classroom ((Mason, Burton and Stacey, 2010). Kaput (2008) explains his view of 

algebraic thinking based on a symbolisation perspective which takes into 

consideration the use of letters and a variety of symbol systems that extend on the 

traditional systems of the use of symbols.  
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3.2. GUIDED REINVENTION AND EMERGENT MODELLING AS AN 
INSTRUCTIONAL DESIGN APPROACH 

 
The aim of this chapter is to systematically review literature on how the generalisation 

concept can be used to develop early algebra in the early years mathematics 

classroom. The history of algebra and its relationship to the development of early 

algebra, will be used as the foundation and basis for the design of a heuristic-based 

theoretical construct which relies on the pedagogy of guided reinvention and the 

principles of RME.  

 

There is an internationally documented disparity between the innovative pedagogy 

advocated by mathematics education researchers, and classroom practice. Shifting 

the focus from instruction for procedural fluency to the development of learner agency 

and argumentation requires pedagogic change as well as change in values and beliefs 

(Solomon, Hough and Gough, 2021). “The goal is to learn more about the complexity 

of successfully implementing meaningful instructional methods equitably [and] identify 

ways in which … practices might be problematic for some students … and also the 

adaptations that successful teachers make to address such problems” (Lubienski, 

2002, p.121). This goal can be attained by taking the RME approach to instructional 

design  (Solomon, Hough and Gough, 2021). 

 

RME was constructed as a descriptive theory, whose  aim was mainly to distinguish 

the realistic approach from the structuralist, empirical, and mechanistic approaches 

(Treffers, 1987)(Gravemeijer, 2020). RME emphasised the role of emergent 

mathematics, where learners move from models of their informal activity in 

recognisable contexts to more formal mathematics by engaging in a process of 

progressive mathematisation of models (Solomon, Hough and Gough, 2021). RME 

has been characterised by three instructional design heuristics: guided reinvention, 

didactical phenomenology and emergent modelling (Gravemeijer, 2020). The RME 

framework was the result of restructuring theories which inform instructional 

sequences. 
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Guided reinvention is based on Freudenthal's (1973) ideas that learners should 

experience mathematics as a human activity and reinvent mathematics as they are 

guided by teachers and tasks. His ideas were based on the view that the history of 

mathematics should be the main informant for designing a route along which learners 

might reinvent mathematics (Gravemeijer, 2020). Guided reinvention requires 

particular pedagogic practices from the teacher and corresponding modes of 

participation from the learner  (Solomon, Hough and Gough, 2021).  

 

Didactical phenomenology as a heuristic approach was also based on Freudenthal’s 

(1983) work on the didactical phenomenology of mathematical structures. His 

perspective was that one of the main characteristics of mathematics and mathematical 

activity is organising. Organising here refers to organising subject matter from reality 

or organising mathematical matter on a higher level. This heuristic requires one to 

analyse which phenomena are organised and how they are organised  by the 

mathematical concepts, rules or procedures which is the aim (Gravemeijer, 2020). 

 

The emergent modelling design heuristic aims to establish an incremental process 

where models and mathematical conceptions co-evolve. The core of emergent 

modelling is the use of a series of sub-models which support an overarching model. 

The overarching model develops the model of informal mathematical activity to a 

model for more formal mathematical activity (Gravemeijer, 2020).  

 

Stephan, Underwood-Gregg and Yackel (2016) incorporated three heuristics which 

are used to design mathematical instruction based on the RME design theory. 

 

Heuristic 1: Guided Reinvention 

 

Instructional resources should be designed to encourage learners’ reinvention of key 

mathematical concepts (Freudenthal, 1973). To initiate the development of an 

instructional sequence, the designer should visualise a learning route the class and 

learners might invent themselves. Basic mathematical concepts which are relevant 

today, took centuries to develop, and learners are expected to develop comprehensive 

conceptual understandings in a matter of weeks. RME instructional resources help 
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learners to reinvent these concepts and ideas using carefully sequenced problems, 

tools, and guidance from the teacher. The learning route is designed such that 

concepts emerge as learners engage in the instructional sequence (Stephan, 

Underwood-Gregg and Yackel, 2016). 

 

Heuristic 2: Sequences should be experientially real for learners 

 

In an RME approach, the starting point of instructional sequences should be 

experientially real, to allow learners to engage in personally meaningful activity. 

Instructional tasks should draw on realistic situations as a semantic foundation for 

learners’ mathematisation. Activities are sequenced so that learners can organise their 

activity within a realistic context to reinvent important mathematics. Learners start to 

reason with abstract symbols  as their reinventions become more and more 

sophisticated (Stephan, Underwood-Gregg and Yackel, 2016).  

 

Heuristic 3: Emergent models 

 

This heuristic involves designing instructional activities that motivate learners to 

engage with models of their informal mathematical activity as they transition to models 

for more formal mathematical activity. During the transition from informal to formal, the 

designer supports learners’ modelling by introducing new tools or using learner-

created tools, including physical devices, inscriptions, and symbols, to explain their 

mathematical reasoning  (Stephan, Underwood-Gregg and Yackel, 2016).  

 

The three heuristics explained above are used to create an instructional sequence 

while simultaneously envisioning a path that the class might follow as they engage in 

the tasks. This path of development can be named a hypothetical learning trajectory 

(HLT). The designer aims to conjecture about the route the mathematical class or 

community will travel, including the learning goals and tools, as they engage in the 

instructional tasks. The HLT also analyses the role of the teacher in supporting 

learners along the developmental route  (Stephan, Underwood-Gregg and Yackel, 

2016).  
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RME instructional design and guided reinvention can be seen as crucially important in 

the development of domain specific mathematical concepts to guide teachers’ 

instructions  (Stephan, Underwood-Gregg and Yackel, 2016). RME instructional 

design principles and the three heuristics described by Stephan, Underwood-Gregg 

and Yackel (2016)  will guide the design of an instructional sequence for the 

implementation of the generalisation concept in the early years mathematics 

classroom. The instructional design will aim to provide an analysis of classroom culture 

by looking at the role of the teacher and learner, as well as proposing an instructional 

sequence to develop early algebra through generalisation. The early algebra concepts 

and developmental levels which emerge from the history of algebra, as well as recent 

literature on the domain of early algebra, will be used to design the sequence. 

 

3.5.  MAIN COMPONENTS OF EARLY ALGBRA BASED ON KAPUT’ 
FRAMEWORK  
 

In this section, the main components of early algebra will be reviewed systematically 

with the aim of informing the types of generalisation activities which should be included 

in the instructional design (see Chapter 5). 

 

Kaput (2008) proposes a framework outlining the various elements involved in algebra 

and algebraic thinking (see 2.2.4 and 3.4.2) (Kaput, Carraher and Blanton, 2008). In 

this section, an in-depth discussion of Kaput’s framework is presented to show how 

these fundamental components emerged from history. These fundamental 

components, as well as the historical developmental stages of algebra and Nixon’s 

levels of algebraic thinking, are used to construct an instructional sequence based on 

the principles of guided reinvention and emergent modelling. The fundamental 

components are organised into two core aspects which are integrated throughout the 

three content strands. The figure below shows the framework. 
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Figure 3.1. Kaput’s core aspects and strands of algebra (Roberts, 2012) 

 

The two core aspects are relevant to algebraic reasoning and are (1) symbolisation 

activities that serve purposeful generalisations and (2) reasoning with symbolised 

generalisations. In each of the core aspects, generalisation is a focus point of algebraic 

reasoning. The first two content strands, as explained by Kaput, are relevant to the 

development of early algebraic thinking. They are concerned with the types of 

generalisations which are at the core of early algebraic reasoning: generalising 

arithmetic and generalising towards the idea of a function. The third strand focuses on 

modelling as a language to represent and interpret algebraic thinking. Roberts (2010) 

explains that from this framework, early algebra can be perceived as generalising in 

the early grades of primary school. The instructional sequence of activities in 3.7 

suggest generalisation activities for each developmental stage based on the 

fundamental components of algebra (Kaput, 2008). These generalisation activities are 

based on the three elements of generalisation as described by Roberts (2010, p.169). 

These three elements include: 

• Generalising arithmetic as the exploration of the properties of numbers and 
operations. 

Core Aspect A: 
Using symbols to 
generalise 

Core Aspect B: 
Acting on symbols 
following rules.  

Strand 1: 
Generalising from 
arithmetic and 
quantitative reasoning. 

Strand 2: 
Generalising towards the 
idea of function. 

Strand 3: 
Modelling as a language 
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• Generalising about particular number properties and relationships. 
• Generalising towards the idea of a function, which includes recognising 

regularity in elementary patterns, ideas of change including linearity, and 
representation through tables, graphs and function machines.  
 

3.5.1. Generalisations and formalisation 

 

The evolution of algebra (see Chapter 2) can be presented as a constant attempt at 

turning computational procedures into mathematical objects (Sfard, 1995). Therefore, 

algebra evolved as a constant attempt at generalising and making formalisations 

(Kaput, 1999). The aim of early algebra is generalisation. When learners are able to 

find generalisations in mathematics, it creates a deep understanding of the structure 

of mathematics. Learners are able to translate this understanding to all domains of 

learning. The power of mathematics lies in relations and transformations that lead to 

patterns and generalisations. The focus of mathematics teaching should be on 

developing fundamental skills in generalising, expressing and systematically justifying 

generalisations (Warren and Cooper, 2008). Fundamental skills in generalising can 

only be developed when a deep understanding of the structure of mathematics is 

developed. This should be done through a problem-centred approach where learners 

encounter non-routine patterning problems which lead to generalisations. When 

learners are able to make generalisations, they construct their structural knowledge of 

mathematics and, therefore, develop early algebraic thinking (Roberts, 2012).  

 

Generalising is described as a mental activity by which one compresses multiple 

instances into a single unitary form (Blanton et al., 2019). Mitchelmore (2002) groups 

generalisation into three categories: 

G1:  As a synonym for abstraction 
G2:  As an extention of an existing concept: 

   Empirical extention 
   Mathematical extention 
   Mathematical invention 

G3: A theorem realting existing concepts 
 

Generalisation is often used as a synonym for abstraction (G1) where it is defined as 

“finding and singling out properties in a whole class of similar objects”. Generalisation 

as an extention (G2) is formed by at least three aspects: Empirical extension, which 
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applies when one finds other contexts to which a known concept applies; mathematical 

extention, when on class of mathematical objects is embedded in a larger class based 

on a different similarity; and mathematical invention, when a mathematician 

deliberately omits a defining property to form a more general concept. Generalisation 

can also refer to a relationship that holds between all members of a set of objects (G3) 

(Mitchelmore, 2002). For the purpose of this study, G3 would be most applicable.  

Radford  (2006) classified two components of generalisation: phenomenological and 

semiotic. The phenomenological component involves understanding the generality 

through observing the local commonality of all terms, whereas the semiotic component 

involves expressing generality through gestures, language and algebraic symbols 

(see 3.3.4.5 on representation and 3.4.2. on Radford’s view of developing algebraic 

thinking). 

  

Roberts (2010) explains that generalisation has two manifestations: generalising from 

arithmetic and quantitative reasoning; and generalising towards the idea of a function. 

This is based on the work of Kaput (2008) (see 3.5). In the early years mathematics 

curriculum, generalising should include the following three elements (Roberts, 2010, 

p. 169): 

• Generalising arithmetic as the exploration of the properties of numbers and 
operations. 

• Generalising about particular number properties and relationships. 
• Generalising towards the idea of a function, which includes recognising 

regularity in elementary patterns, ideas of change including linearity, and 
representation through tables, graphs and function machines.   

 

These generalisation activities will inform the guided reinvention and emergent 

modelling instructional sequence (see 3.7). The first two elements differ in the sense 

that element one looks for properties of numbers and generalisations in general, while 

element two, relates to properties of and relationships of specific numbers. Arithmetic 

approaches which encourage “partitioning” or “breaking down” and “building up” 

numbers draw on these properties of particular numbers and operations (Roberts, 

2010).  

 

Algebraic generalisation is developed through identifying a regular pattern based on 

terms which are known. This is called abduction. Deduction occurs when the observed 
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regularity is used to produce an expression which is true for any term in the sequence. 

It is during the deduction stage, that learners develop the type of reasoning which lies 

at the heart of algebra (Demonty, Vlassis and Fagnant, 2018). Rivera (2013) argues 

that a continuous interplay between thinking about pattern and analysis of pattern, 

which is known as abduction and induction, is the essence of algebraic generalisation.  

 

The practices of justifying and reasoning with mathematical structure are forms of 

generalisation. Justifying entails that one argues about the validity of a generalisation 

within a certain representational system. When reasoning with a generalisation, one 

acts on generalisations as mathematical objects in new situations. These practices 

are socially mediated practices that refine the scope of the generalisation and drive 

the symbolisation process (Blanton et al., 2019). 

 

Knuth et al. (2014) refer to algebraic activites in which generalisation can be seen as 

prominent. Research has documented learners’ ability to generalise mathematical 

structure by noticing regularity in arithmetic situations, using sophisticated instruments 

to explore, generalise, and symbolise functional relationships, building mathematical 

arguments that reflect more generalised forms than the empirical, case-based 

reasoning often used, and reasoning about abstract quantities to represent algebraic 

relationships. 

 

Many elements of constructivist teaching promote generalisation. Elements such as 

existing knowledge, small-group cooperative learning, the admission of contrasting 

methods and the reconciliation of conflicting solutions lead to the recognition of 

commonalities and, therefore, generalisation (Mitchelmore, 2002).  

 

It is necessary to determine certain levels of generalisation which learners are able to 

achieve to determine wether a specific intervention is effective in developing algebraic 

thinking and, therefore, the ability to generalise. One should expect that, as learners 

move through the intervention, they would become able to generalise more and more 

sophisticatedly.  
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Warren (2004) described six broad categories in which learners’ ability to be 

generalised can be divided. The categories are presented in descending order in terms 

of their sophistication: 

 

Category 1 – Detailed description is given of the relationship which can be 
noticed in the activity, with all aspects taken into account and described. 
Category 2 – Detailed description of the relationship is given, but some aspects 
are left unmentioned.  
Category 3 – Less detailed description of the relationship is given. Not all 
aspects are mentioned.  
Category 4 – Broad relationship is observed. Learner cannot fully communicate 
idea. 
Category 5 – Partial response. Learner can mention one aspect but does not 
see a relationship. 
Category 6 – No response. 

 

As learners work on a series of problem-based non-routine patterning activities, one 

would expect them to progress through the categories, and at the end be able to 

achieve category one.   

 

The RME movement from the Netherlands is a constructionist curriculum which aims 

to teach for abstraction and generalisation. Their approach to teaching consists of 

three stages: 

• Develop rules of operation in several specific, familiar, everyday contexts  
• Demonstrate that the same structure is present in several such contexts  
• Formulate, symbolise and study the common structure. 

    (Mitchelmore, 2002) 

 

When designing an early algebra intervention, it is important to keep these stages in 

mind for each lesson, with the aim of developing learners’ ability to generalise. The 

instructional sequence (see 3.7) will be based on the principles of RME. 

 

Number is an abstract concept and represents a quantity that may or may not be clear. 

Generally, learners begin developing their sense of numbers by counting isolated 

objects. As they move through different number systems, routines and algorithms, 

learners struggle to develop a consistent conceptual base that can deal with all 

numbers as a connected whole (Warren, 2004). Davydov (1975) claimed that learners 
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should start their mathematics program without number. Rather, they should start by 

exploring physical attributes that can be compared. He hypothesised that this allows 

learners to focus more effectively on the underlying concepts of mathematics without 

the interferences of numbers. For that reason, if learners are able to and motivated to 

reason quantitatively, their understanding of number systems, routines, and 

algorithms might be deeper at a later stage.  

 

The traditional approach to teaching patterns, where learners are mainly asked to 

identify, copy and extend patterns (Department of Education, 2011)  is not sufficient 

to develop early algebraic thinking through generalisations. Studies show that even 

though patterning activities are present in the classroom, teachers (and the 

curriculum) fail to fully appreciate their algebraic aspect (Demonty, Vlassis and 

Fagnant, 2018). Even so, it is not necessary for classroom patterning activities to 

change completely. The problems used traditionally in arithmetic and algebra can build 

rich educational environments, but the way in which these activities are understood, 

should be changed (Demonty et al., 2018, p. 2). Classroom patternings should be 

adjusted to include early algebraic concepts like generalisation and symbolisations 

instead of the inappropriate over-emphasis on copying and extending patterns.   

 

Aiding students in generalising is not a simple task. There is a variety of activities 

which can be used to reach the goal of generalisation. Studies agree that aids such 

as verbal, figural and numerical representation of patterns, and highlighting the 

connections between these representations, may help students to generalise 

(Demonty et al., 2018, p. 5). Warren, Trigueros, & Ursini (2016) consider two 

approaches that are especially effective for making such connections: looking at 

invariant relations between pictorial clues provided by visual arrangements, and 

inviting students to express and also justify their generalisations. Rivera (2013) 

advocates for motivating learners to think multiplicatively. This can help them to 

generalise linear patterns, because learners are able to move from arithmetical 

generalisations to algebraic generalisation, by allowing the iteration of a constant 

increase between two terms to be generalised.  
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An activity commonly used  to develop generalisation in the Australian context is the 

exploration of simple repeating patterns using shapes, colours, movement, touch and 

sound. Students are asked to establish relationships between patterns and their 

positions, and use this generalisation to form steps in the patterns for other positions. 

One can distinguish between result pattern generalisation and process pattern 

generalisation. Result pattern generalisation refers to regularity in the results, whereas 

process pattern generalisation emphasises the regularity in the process. It is believed 

that young learners have the ability to think functionally (process pattern 

generalisation) (Warren & Cooper, 2008, p. 172) and learners should be exposed to 

patterning problems which lead them to functional thinking. In her research, Warren 

(2004) proposed that one should ask three types of questions in lessons to elicit 

learners’ ability to reason algebraically (generalise): those which require predicting, 

justifying and generalising. Learners were asked to record the generalisation they 

discussed as a class, in their own words. These responses were categorised in terms 

of sophistication to determine the level of the learner’s ability to generalise. Research 

has shown that the problem-centred approach, elicited by patterning activities 

involving visual aids, provides a solid foundation for the understanding of algebraic 

expressions and techniques related to their transformations (Demonty et al., 2018, 

p.6). Mitchelmore (2002)  agrees, and further emphasises that generalisations are part 

of all aspects of education and thinking. He identifies three methods of teaching 

generalisation, not all of which are necessarily effective: 

 

The ABC method – Abstract before concrete – generalisations are taught as 
abstract relations which have to be learned before they can be used in concrete 
situations. In practice, the ABC-method leads to abstract-apart knowledge, 
which learners cannot apply to any situation or problem. 
 
The exploratory method – tproceeds from the concrete to the abstract. Learners 
are able to make empirical generalisations. In this method, learners perceive 
mathematics as more relatable, but the results are still not crystal clear and 
there is a risk of making false inductions. 
Problem solving – essentialy consists of theoretical generalisations. This 
method leads to a deep understanding of concepts. This substantively involves 
using empirical generalisations to make conjectures or even form axioms.  

 

Patterning activities are useful for encouring algebraic thinking if they are focused in a 

particular direction, such as generalisation and relational thinking (Demonty, Vlassis 
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and Fagnant, 2018). Patterns give learners the chance to transition from arithmetic to 

algebra by making verbal and symbolic generalisations. A close relationship exists 

among patterns, algebra and generalisation. Generalisation is the core of algebra and 

the search for pattern is an essential step towards constructing generalisations (Imre 

and Akkoc, 2012). Radford (2008) describes the architecture of algebraic pattern 

generalisation:  

• As the first stage of the model, abduction is described as grasping a 
commonality amongst particulars.  

• The next stage is called transforming the abduction, which is defined as 
extending the generality to all subsequent terms.  

• The last stage is deducing Pn which requires using the generality to represent 
an expression of any term in the sequence.  

 

 

 

 

 
 

Figure 3.2. The architecture of algebraic pattern generalisation (Radford, 2008) 

 

Generalising and representing are symbiotic processes which are the core aspects of 

algebraic thinking (Blanton et al., 2019). Generalising occurs when multiple instances 

are condensed into a single generalisation or rule, which is communicated through 

representation (symbolisation), and from the resulting unitary form expressed in 

appropriate notation which can include natural language, variable notation, graphs, 

tables and pictures (Blanton et al., 2019). The action of representing a generalisation 

is socially mediated: one’s thinking about symbol and referent is constantly refined, 

leading to a mediation of the generalisation itself (Blanton et al., 2019). Even though 

there are different ways of representing generalisations, variable notation remains the 

most recognisable artifact of cultural algebra. Cultural algebra refers to the social 

context in which algebra is understood.  In the early years, when learners are first 

introduced to the variable, it should be as a fixed unkown quantity associated with 

missing value problems (Knuth et al., 2014). Many learners struggle to express their 

generalisations in their own words, even about simple concepts. This may be due to 
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a lack of mathematical vocabulary and, further, their lack of familiarity with the types 

of conversations that demand generalisation (Warren, 2004).  

 

Research suggests that many learners struggle to extract the underlying structure of 

generalisation because they have difficulty with language, number and basic 

mathematics concepts (Warren, 2004). Furthermore, many learners still view 

mathematics as a series of disconnected objects to be memorised (Mitchelmore, 

2002). Generalising patterns is a challenging task for learners. Learners’ difficulties 

with patterns are closely linked to their understanding of patterns and pattern 

generalisations. The first challenge arises when learners think about variables. 

Learners does not understand what it means to write the nth term. Secondly, learners 

experience difficulty expressing relationship algebraically. Learners are able to easily 

extend patterns, but this approach keeps them from seeing the general structure of 

the elements and being able to express it algebraically. Lastly, learners’ use of 

representations to make generalisation presents further cause for concern, as they 

struggle to move from verbal representations to more formal representations (Imre 

and Akkoc, 2012).  

 

3.5.2. Syntactically guided manipulation  

 

The human mind trades in symbols which represent abstract arithmetic, algebraic and 

logical propositions. These symbols can be manipulated according to internally 

represented mathematical and logical rules (Landy, Allen and Zednik, 2014).  

Formalisms are behind the tremendous development we have seen in modern science 

and technology. When working with formalisms, either traditional algebraic ones or 

more exotic ones, the focus falls on symbols and the syntactical rules for manipulating 

symbols in expressions. Manipulation refers to changing of the form of the expression 

(Kaput, 1995a). The learner should refocus their attention from what the symbols 

represent to the symbols themselves. In this way, they are liberated from operating on 

relationships which are more complicated than what would be possible if the focus 

was on what the symbols represent (Kaput, 1999). 

 

 

 

 

153 

A change in the perspective of algebra and the implementation thereof occurred as 

algebraic thinking transitions to the dynamic function stage (see 2.3.4.3.). 

Mathematicians started to ask more questions, and the focus shifted from merely 

finding solutions to problems expressed as equations. In the seventeenth century, new 

notation of algebraic ideas was introduced by mathematicians like Viète and 

Descartes in the symbolic stage (see 2.3.3) (Katz and Barton, 2007). This new notation 

is similar to the algebraic notation we use today (Sfard, 1995). Variables are used to 

represent unknown quantities, which may be fixed or varying (see 2.2.5) (Knuth et al., 

2014). Viète understood that algebra was more than the developing techniques to 

solve various equations. He used unknowns in equations to represent species of 

objects and algebra was about the relationship between the species. Viète’s 

employment of notation in the form of alphabet letters to represent unknowns in 

equations (Tabak, 2011) showed his understanding of variables and the importance 

of using variables when working with algebraic problems and equations (Knuth et al., 

2014). Viète’s introduction of notation and use of symbols made it possible for 

mathematicians to see broader patterns in mathematics and identify relationships 

between symbols and the classes of objects they represent (Tabak, 2011). As in the 

pre-algebra classroom, Kaput (2018) emphasises that learners should be able to 

suspend their attention on what the symbols stand for, and instead look at the symbols 

themselves. In this way learners are freed to operate on relationships which are more 

complicated (Kaput, 1999). To ensure that this process runs smoothly, a well-planned 

teaching and learning approach and plan is necessary. This study aims to provide 

such an approach in Chapter 5, by designing an instructional sequence for the 

implementation of the generalisation concept in the early mathematics classroom.  

 

Actions or manipulations on representations occur in two broad classes (Kaput, 2018): 

A syntactic action involves the manipulation of symbols only by looking at the syntax 

of the symbol system rather than by looking at a reference field for those symbols. A 

syntactic action is an action on the notational system and not on the representational 

system. A syntactic manipulation treats expressions or equations as manipulable 

object strings which are subject to certain constraints.  

A semantic action is guided by the referents of the symbols. The elaboration is led by 

the characteristics of a referent field for the symbol system rather than its syntax. A 
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semantic action acts on an equation as a comparison of two statements about 

numbers. It is imperative to note that a specific equation can give rise to various 

semantically guided actions. This will depend on the different reference fields and how 

they are linked.  

 

Bruner (1973) explains that syntactic actions are viewed as “opaque” uses of symbols, 

whereas semantic actions are “transparent” uses of symbols. It is possible that a 

natural transition from semantic to syntactic actions occur as the symbols and actions 

associated with them reify into entities that can serve as referents for new symbol 

systems.  

 

When working with algebraic structure, learners need to eventually work on a purely 

syntactical level. Liebenberg et al. (1998) believe that in order to develop learners’ 

understanding of structure in numerical and algebraic contexts, they should be 

encouraged to engage in syntactical and semantic discussions for the justification of 

the equivalence of expressions. When acting on formalisms semantically, one’s 

actions are guided by what one believes the symbols should stand for (Kaput, 1995a). 

A semantic justification focuses on the numbers in an expression. A syntactic 

justification, in contrast, only focuses on the relevant rules (Liebenberg et al., 1998). 

The syntactically guided approach treats symbols as objective entities and the 

conceptual system of rules applies to the system of symbols, not what they might stand 

for. The rules can be thought of as applying to the symbols as physical objects (Kaput, 

1995a).  

 

Syntactically guided manipulations on formalisms can be viewed as the core of 

algebra,. However, to ensure the effective learning and development of actions on 

formalisms, a semantic starting point should be taken. Formalisms should initially be 

taken to represent something which the learner has experienced (Kaput, 1995a). 

Importantly, most actions and manipulations on symbols involve a combination of 

syntactical and semantic actions (Kaput, 2018). Mathematical activity can be seen as 

the interactions between the notational systems and its reference field.  
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The traditional algebra curriculum has over-emphasised the semantics of algebra, 

which has resulted in many learners being unable to see the meaning and value of 

mathematics. The power of using the form of mathematics as a basis for reasoning is 

lost when learners are engaged with endless practicing of rules for symbol 

manipulation. They lose the connection to the quantitative relationships that the 

symbols might stand for. This leads to learning without understanding. Learners 

experience algebra as a challenging subject if they are not provided with opportunities 

to construct their own knowledge and reflect on what they have learned. For many 

learners, understanding is remembering which rules to apply in certain situations. This 

is not a deep understanding of the underlying concepts. Understanding algebra means 

being able to connect knowledge of procedures with knowledge of concepts (Kaput, 

1999). 

 

Young learners are able to perform syntactically guided actions on opaque symbols. 

We will now consider, as an example, a task for fifth grade learners from “Patterns and 

Symbols” (Roodhardt et al., 1997). In this example, learners are expected to perform 

transformations on sequences with letters 9 and :. These letters represent blocks lying 

on their sides	(9) or standing up (:).  
 

 
Figure 3.3. Block array presented by letter sequences (LSLLSSLSLSS) (Roodhardt 

et al., 1997) 

 

Learners must work on various transformation rules to act on these arrays, interpreting 

their results in terms of string and vice-versa. The learners must make up their own 

rules and apply them to their own designs. Learners should gradually progress toward 

more abstract substitution rules which they can apply to new strings or situations. The 

work on formalisms is necessary throughout mathematics (Kaput, 1999).  

 

Syntactically guided manipulations are an important focus area in algebra instruction, 

as we want learners to form a deep understanding of the representations they use. 
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Teachers should encourage learners to reflect intentionally and explicitly on the use 

of representations and communicate about their mathematical ideas to solve problems 

(Carpenter and Lehrer, 1999). 

 

3.5.3. Study of structure 

 

Almost all of mathematics is based on patterns and structure. A mathematical pattern 

is any predictable regularity, usually involving number or space. Mathematical 

structure refers to the way in which a pattern is organised. This may be in a numerical 

or spatial manner (Mulligan et al., 2008). Generalising and abstraction, which are 

focused on the structure within computations rather than the process or answer, lead 

to the emergence of abstract structures which are associated with traditional algebra 

(Kaput, 1999). At the heart of algebraic reasoning in the early years lies a deep 

understanding of the mathematical structure of arithmetic, expressed by language and 

gestures using conrete materials and representations (Warren and Cooper, 2008). 

Structural knowledge can be described as the ability to recognise all equivalent forms 

of an expression. But learners should also be able to justify the structural equivalences 

they identify (Liebenberg et al., 1998).  

 

In Sfard’s (1995) account of the historical development of algebra, she describes the 

third stage (the works from Galois to Bourbaki) as being concerned with the science 

of abstract structures. In accordance with the work of Sfard (1995), Katz and Barton 

(2007) describe the conceptual stages of the development of algebra where the 

abstract stage involves the emergence of the underlying structure of mathematics (see 

2.3.4.4).  Generalising and abstraction, which emerge from generalised arithmetic, 

and where the emphasis is placed on the structure within the computational 

procedures rather than the process or answer, lead to the emergence of abstract 

structures (Kaput, 1999). In the 19th century, mathematicians decided that axioms and 

proofs were needed to justify computations (Katz and Barton, 2007). To develop 

structural knowledge, learners should learn to recognise equivalent forms of an 

expression and justify the structural equivalence they’ve identified (Liebenberg et al., 

1998). In the abstract stage, the main goal is to find structure in mathematics and to 

use symbols to represent and construct proofs. Here learners generalise mathematics 
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and represent mathematics using symbols, which can be taken as the main two 

aspects of algebra and structural thinking. 

 

Generalising patterns are also thought to be especially critical because the structure 

of mathematics can be revealed through the search for patterns and relationships 

(Imre and Akkoc, 2012). In structural-abstract algebra which is taught for 

understanding, structure emerges from learners’ experiences with mathematical 

ideas, for example, representations of motions on the plane, symmertries of geometric 

figures, modular arithmetic, and manipulations of letters in words. The aims of 

abstracting structures in mathematical thinking include (Kaput, 1999, p. 142): 

• Articulation of structure in preformal, natural language, 
• Enrichment of learners’ understanding of the systems from which they are 

abstracted, 
• Providing learners with intrinsically useful structures to compute freely from the 

particulars and constraints those structures were once tied to, and; 
• Giving learners a basis for even more complicated levels of abstraction and 

formalisation. 
 

Mulligan, Mitchelmore, & Prescott (2005) found that early school achievement in 

mathematics is closely related to the learner’s development and perception of 

mathematical structure. There is a clear relationship between learners’ difficulties in 

algebra and their lack of understanding of the structural notions of arithmetic 

(Liebenberg et al., 1998).  Learners use various structural strategies to solve 

nonroutine problems on measures of algebraic knowledge (Blanton et al., 2019, p. 

1934). Learners are motivated to justify and reason about the underlying structures of 

mathematics by reaching generalisations. Learners’ structural strategies involve 

recognising and acting on underlying mathematical relationships which occur when 

representing a relationship between two quanities using variables, when making a 

general argument that does not rely on specific values, or when reasoning about 

equations (Blanton et al., 2019). The aim of an early algebraic intervention would be 

to help learners develop the skill of extracting the underlying structure of a 

generalisation (Warren, 2004). Varied algebraic generalisations can be symbolised in 

different ways, thereby opening the way to comparisons of numerical or algebraic 

expressions, and subsequently  the development of structural understanding of 

expressions and of equality (Demonty, et al, 2018). Viewing an expression structurally 
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depends on what the chosen emphasis in the structure is. The focus might fall on the 

numbers in certain instances, in others  on only the operations, and sometimes the 

focus can fall on both. Viewing an expression structurally also means having the ability 

to see the “surface” structure as well as the “hidden” structure. The ability to see 

“hidden” structures in complex algebraic expressions and to relate the structure to a 

simpler equivalent form, is very challenging for most learners. By helping learners to 

reason with expressions in a syntactical and semantical manner at the same time, this 

obstacle can be overcome (Liebenberg et al., 1998). At the beginning of algebra, the 

focus falls on the structural properties of expressions. Liebenberg et al. (1998) follows 

a pedagogical approach which emphasises numerical expressions whose structures 

have a possible input on the needed and relevant algebraic expressions which 

learners deal with initially in algebra. The teaching of algebra and generalisation by 

finding structure in numbers, are motivated for the following reasons:  

1) The structure of the algebraic system is based on the properties of the number 
system,  

2) The numerical context is a familiar context for most learners,  
3) It is a meaningful context through situations for the construction of schema, and  
4) It provides opportunity for meaningful reflection and verification procedures 

through calculations (Liebenberg et al., 1998. p. 2).  
 

Mulligan et al. (2005, p. 1) identified four broad stages of structural development which 

are present in learners’ representations as they engage in tasks across a range of 

mathematical content domains, such as counting, partitioning, patterning, 

measurement, and space: 

• Pre-structural stage: representations lack any evidence of mathematical or 
spatial structure. 

• Emergent (inventive-semiotic) stage: representations show some elements of 
structure such as use of units. Characerters are first given meaning in relation 
to previously constructed representations. 

• Partial structural stage: some aspects of mathematical notation or symbolism 
and/or spatial features are present. 

• Stage of structural development: representations clearly integrated 
mathematical and spatial features.  

Learners should have a firm understanding of numbers and operations on them before 

being expected to deal with numerical expressions structurally. As learners engage 

with numerical expressions, the emphasis should fall on the structure, with calculation 

used as a way of verifying the equivalence of expressions. If more emphasis is placed 

on the structural features of numerical expressions, learners may be able to calculate 
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better and have a better understanding of simple algebraic expressions (Liebenberg 

et al., 1998). 

 

Mulligan et al. (2005) have found that the more structurally developed a learner’s 

internal representational system is, the more well-organised, coherent and stable in 

all structural aspects their external representations will be, and the more 

mathematically competent the child will be. This indicates the enormity of the 

importance of developing a learner’s deep understanding of underlying mathematical 

structure. In their empirical work, it was further seen that when a learner is able to 

recognise the spatial structures and features of an object, they are  able to make 

generalisations about the relationship between the features and spatial structure 

(Mulligan et al., 2005, p. 5). Spatial structure is a critical element in developing 

structure, because it entails the process of constructing an organisation or form 

(Mulligan et al., 2005).  

 

Learners’ transition from thinking arithmetically to algebraically is influenced by their 

ability to see structure in patterns. To support learners’ development of algebraic 

thinking, the teacher should choose a helpful context and appropriate visualisation 

(Apsari et al., 2020). A basic example of extracting structure from patterns can be seen 

in the grid represented in the figure below (Figure 3.5).  

 

 

 

 

 

 

 

 

Figure 3.4. Square grid represented by 4 x 4 squares  (Apsari et al., 2020) 

 

The figure shows a square which is formed by horizontally and vertically aligning 

equal-sized squares in 4 rows of 4. Understanding such a grid pattern  can lead to the 

connected understanding of various mathematical ideas. Some examples include the 
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area of a square, counting (which leads to skip counting), multiplication, and division. 

This understanding enables learners to make various generalisations by finding such 

properties. This leads to pre-algebraic thinking as learners become able to see 

structures instead of specific numbers (Mulligan et al., 2008).  

 

Mulligan, Mitchelmore, Marston and Highfield (2008) extensively explored the use of 

pattern and structure in the development of early algebraic thinking in the Pattern and 

Structure Assessment (PASA) and the related Pattern and Structure Mathematics 

Awareness Program (PASMAP). They found that the use of patterns and structural 

features indicate common characteristics in their mathematical understanding. Their 

researched showed that young learners can be taught to recognise mathematical 

pattern and structure. This research shows that having learners recognise similarities 

and differences in mathematical representations develops their ability to recognise 

pattern and structure in mathematics. Mulligan et al. (2008) conclude their study by 

emphasising the importance of the development of pattern and structure to the 

learning of multiplicative concepts, the base ten system, and unitising and portioning 

in early mathematics teaching and learning. Pattern and structure are at the core of 

mathematical thinking and should be embedded throughout mathematics teaching. 

 

3.5.4. Functions, relations, and joint variation 

 

Function is the study of relationships (Ng, 2018). The idea of function has for the last 

100 years been perceived as a powerful mathematical idea which should fill a central 

role in the mathematics curriculum (Blanton and Kaput, 2011). It is perceived as one 

of most important topics because it provides means for thinking quantitatively about 

real-world problems and situations, and allows learners to study the relationships and 

change they notice in problems (Ng, 2018). Functional thinking as a content strand 

should be included in early years algebra teaching to introduce the idea of generality. 

Functional thinking means to incorporate building and generalising patterns and 

relationships using diverse linguistic and representational tools. It also involves 

treating generalised relationships or functions as mathematical objects which are 

useful in their own right (Blanton and Kaput, 2011). Functional thinking can also be 

viewed as representational thinking that emphasises the relationship between two or 
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more varying quantities. Specifically, the kinds of thinking which stem from specific 

relationships in specific instances with the aim of generalising that relationship across 

a variety of situations. Algebraic reasoning takes place when the learner constructs 

representational systems to represent a generalisation of a relationship between 

varying quantities (Smith, 2008).  

 

Functional thinking, as a fundamental component of algebra, emerges throughout the 

stages of the historical development of algebra (see Chapter 2). Early examples of 

functional thinking emerged from Al-Khwarizmi’s (see 2.3.2.6) work with linear and 

quadratic equations. He was able to group various equations which represented 

relationships between various quantities. Even though these equations were 

represented by means of words, the functions were represented in a general manner 

(Katz and Barton, 2007).  Al-Khwarizmi’s algebraic thinking introduced the focus on 

relationships between quantities which result in functions. Learners in the early years 

work problematic situations which require them to identify relationships between 

covarying quantities. The foundation of functional thinking is the focus on relationship 

(Smith, 2008). The dynamic function stage (2.3.4.3) developed the concept of motion 

and movement in mathematics (Katz and Barton, 2007).  Functional thinking is also 

noticed in the work of Viète (see 2.3.3.2.) as he had the ability to reason quantitatively 

as well as in a functional manner with variables as unknowns. In Viète’s work, the 

concept of function as well as variable emerged (Sfard, 1995). Viète’s introduction of 

notation and use of symbols made it possible for mathematicians to see broader 

patterns in mathematics and identify relationships between symbols and the classes 

of objects they represent (Tabak, 2011). As the eighteenth century grew on, algebra 

developed in such a way that it became easier to represent a curve as the path of 

motion. The idea of finding curves which solve problems became the central goal of 

mathematics (Katz and Barton, 2007). From the work on curves in the eighteenth 

century, the idea of functional thinking, relations and joint variation emerge (see 2.4.5). 

 

Early Algebra is often described as having five “Big Ideas” (see 2.2.4) which described 

functional thinking (Knuth et al., 2014). Functional thinking involves generalising of 

relationships between covarying quantities, expressing those relationships in words, 

tables, graphs or symbols, and reasoning with the various representations to analyse 
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function behaviour (Blanton et al., 2015). Blanton proposed six essential 

understandings which should be instilled in order to develop functional thinking in the 

early years classrooms (Blanton et al., 2015, p.13-14): 

• A function is a special mathematical relationship between two sets where each 
element from one set, named a domain, is related uniquely to an element of the 
second set, which can be called the co-domain. 

• Functions should be viewed as tools for expressing covariation between 
quantities. 

• In a functional relationship between quantities, variables can be either 
dependent or independent, and can represent a discrete or continuous quantity.  

• When engaging with functions, various important types of patterns or 
relationships can be observed between quantities that differ in relation to each 
other.  

• Functions can be represented in multiple ways. 
• Various types of functions behave in fundamentally different ways and 

analysing change in function behaviour is a way to capture the difference.  

 

Smith (2008, p. 143-144) proposes six activities which can be perceived as the 

constructions of functional thinking, divided across three related themes: 

 

Engaging in a Problematic Within a Functional System 
• Engaging in some type of physical or conceptual activity. 
• Identifying two or more quantities that differ during the activities and emphasise 

the relationship between the variables. 

 
Creating a Record 

• Making a record of corresponding values of these quantities, often in the form 
of a table or graph. 

 
Seeking Patterns and Mathematical Certainty 

• Identifying patterns in these records. 
• Coordinating the identified patterns with the actions involved in carrying out the 

activity. 
• Using this coordination to construct a representation of the pattern in the 

relationship.  

 

It is not certain that learners will always engage with the activities in this order.  

These proposed activities correspond with the activities proposed by CCSMP (2021) 

to develop algebraic thinking in the early years (see 3.4.1) 
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Blanton and Kaput (2011) use three modes of analysing patterns and relationships as 

a framework for discussing the learners’ functional thinking in classrooms. These 

modes are adapted from the work of Smith (2008). The three modes are (Blanton and 

Kaput, 2011, p. 8): 

• Recursive patterning, which involves finding variation within a sequence of 
values. 

• Covariational thinking, which is based on analysing how two quantities vary 
simultaneously and keeping that change as an explicit, dynamic part of the 
function’s description. 

• Correspondence relationship, which is based on identifying a correlation 
between variables.  

 

Recursive strategies are often used by young learners to generalise functional 

relationships by, for example, describing iterations of adding on to each term in a 

growing pattern. Recursive strategies help learners to predict the next element in a 

pattern, but they do not identify the structural relationship between the pattern and the 

position or support learners in identifying a rule. A covariational strategy involves 

learners describing a dynamic relationship between quantities in words. For example, 

the learner can describe the relationship between the pattern and the pattern position. 

This requires the learner to identify and analyse the underlying structure of the pattern. 

Lastly, learners need to construct a functioning rule in words or symbols to articulate 

the underlying structure and identify the relationship between two variables. As 

learners make increasingly sophisticated generalisations, they move through various 

levels of thinking (Hunter and Miller, 2020).  

 

Traditionally, the teaching of function only takes place in later grades of the schooling 

career. However, to ensure success in algebraic thinking, functions should be taught 

using a longitudinal approach and made accessible to all learners from a young age. 

Recursive patterning is one aspect of functional thinking which can be found in most 

early mathematics classrooms, but covariational thinking and correspondence 

relationship are often omitted. Research has found that learners can use 

representational tools to reason about functions. They are able to describe recursive, 

covarying and correspondence relationships in words and symbols, and can use 

symbolic language to model and solve equations with unknown quantities (Blanton 

and Kaput, 2011).  
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Blanton and Kaput (2004) have founded that the types of representations learners 

use, the progressions of mathematical language in their descriptions of functional 

relationships, the ways they track and organise data, the mathematical operations they 

use to interpret functional relationships, and how they express covariation and 

correspondence between quantities, can be introduced from the earliest grades of 

formal schooling.  

 

To initiate functional thinking, a teacher should create opportunities for learners to 

engage with problematic situations that centre around the relationship between 

varying quantities. Functional thinking emerges when a learner engages in an activity, 

chooses to pay attention to two or more varying quantities, and then start to focus on 

the relationship between those quantities. The crux of functional thinking is the focus 

on relationship (Smith, 2008). When functions are introduced in the lower grades, the 

focus often falls on covariation between inputs and outputs, and the rules which govern 

them (Ng, 2018).  

 

When learners engage in solving problems related to functions, the most common 

starting point is the introduction of a representation, for example, a table  (Smith, 

2008). It is the role of the teacher to introduce the use of graphs, tables, pictures, 

words, and symbols in a scaffolded manner to ensure that learners become 

increasingly more sophisticated in the ways they make sense of data and interpret 

functional relationships. The use of a T-chart or function table can provide invaluable 

structure in learners’ mathematical reasoning. Blanton and Kaput (2011) advocated 

for the introduction of the function table even before Grade 1. In the earlier grades it 

provides learners with the space to re-represent marks made (when counting for 

example) as numerals, as they learn to understand the correspondence between 

quantity and number. The introduction of the function table as a tool for organising 

covarying data, initiates its transformation an opaque to a transparent object in 

learners’ functional thinking as an object which one can “look through”. This can further 

help spread the cognitive load across grades, which would allow learners in the 

second and third grades to focus on more difficult tasks such as symbolising 

correspondence and covariational relationships. However, as learners progress from 
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creating a record to reflecting on that record as a representation of a relationship, it is 

important that they are prompted to use multiple representational tools (Smith, 2008). 

Confrey (1992, p. 11) claims legitimacy of knowledge in mathematics evolves in 

relation to the multiple forms in which the idea might be displayed. He takes the 

position that it is through the interweaving of actions and representations that 

mathematical meaning is constructed. 

 

If the focus were to fall only on the correspondence between two members of a set, 

then the criterion for a record, like a table, would be enough to create a function. That 

would involve placing two values in the same row to indicate that those two values are 

corresponding members of the two sets. However, functional thinking emphasises the 

construction of relationships between variables that goes further than merely 

correspondence. An important part of the process is constructing a certainty in that 

relationship. Two concepts form the core of this process. Firstly, a distinction should 

be made between a covariational and correspondence approach to functions. In the 

covariational approach the emphasis falls on corresponding changes in an individual 

variable. In the correspondence approach, the focus on the relation between 

corresponding pairs of variables. This can be seen as the conventional approach, 

where algebraic expressions are the primary representation, which prevalent is most 

mathematics classrooms (Smith, 2008).  

 

Smith (2008) proposes that there is an opportunity to provide learners with situations 

to create linear functions at a very young age based on their construction of conceptual 

units. Conceptual units emerge from situations involving repeated addition, which 

develop from cognitive structures related to counting. Linear functions in the 

elementary years can be seen as an extension of counting. To ensure that functional 

thinking as a route to early algebra is integrated into classrooms, Blanton and Kaput 

(2011, p. 16-17) suggest three connected dimensions of change which focus on the 

role of the teacher in developing learners’ functional thinking. These dimensions 

include (1) transforming teachers’ instructional resource base, (2) using learners’ 

thinking to leverage teacher learning, and lastly (3) creating classroom cultures and 

practices which support algebraic thinking.  
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3.5.4.1. Transforming teachers’ instructional resource base 

 
Very few classroom tasks and materials are currently structured in a manner designed 

to develop functional thinking. Elementary teachers should focus on transforming their 

existing tasks to provide opportunities for engagement with covariational and 

correspondence relationships. Single-numerical-answer arithmetic problems can be 

transformed to include opportunities for pattern building, conjecturing, generalising, 

and justifying. Functional thinking can be introduced by varying the parameters of the 

problems, or by prompting learners to draw diagrams or set up function tables. Varying 

a problem parameter helps learners to come up with a set of data which has a 

mathematical relationship. Using increasingly larger quantities for the parameter leads 

to an algebraic use of number. When teachers engage in the process of transforming 

their resource base so that arithmetic tasks include mathematical generalisation to 

become more algebraic, teachers become more confident to overcome the challenges 

that exist in a school culture where limited resources and pedagogical knowledge is 

prevalent. Teachers can then start to see algebraic thinking as a fluid domain which 

encompasses all areas of mathematics. Algebraic thinking becomes a habit of mind 

(Blanton and Kaput, 2011). 

 

3.5.4.2. Using learners’ thinking to leverage teacher learning 

 
Merely transforming instructional tasks to include mathematical generality is not 

enough to ensure that functional thinking is developed in the early years of formal 

schooling. Teachers need an ‘algebra sense’ to constantly be aware of opportunities 

to extend classroom discussions about arithmetical problems to find mathematical 

generality. Teachers need to have the necessary skills and internalised understanding 

of algebraic thinking to interpret what learners are writing and saying. Carpenter and 

Fennema's (1999) work on Cognitive-Guided Instruction provides valuable knowledge 

as to how learners’ thinking can be brought forward. Focusing on learners’ algebraic 

thinking in professional development builds teachers’ ability to identify classroom 

opportunities for generalisation and to understand and interpret the representational, 

linguistic and symbolic tools which learners use to reason algebraically (Blanton and 

Kaput, 2011). 
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3.5.4.3. Creating classroom culture and practice to support algebraic thinking 

 
Creating the appropriate classroom culture to support functional thinking and 

ultimately algebraic thinking, is extremely important. to the teacher must construct a 

culture of conjecturing, arguing, and generalising with purpose. Learners should take 

arguments seriously to build on their existing knowledge. Robust functional thinking 

requires that learners engage in complex mathematical ideas, negotiate new 

notational systems, and use and understand representational tools as objects for 

mathematical reasoning. These processes should become standard practice on a 

daily basis in each classroom (Blanton and Kaput, 2011). 

 

3.5.5. Modelling as a language 

 
Quantitative reasoning involves modelling, and it is argued that learning to model 

situations is the primary aim of studying algebra. Quantitative reasoning involves 

building mathematical systems through several cycles of improvement and 

interpretation with the goal of describing phenomena and aiding reasoning about them 

(Kaput, 1999). The generalised quantitative reasoning aspect can be seen as part of 

a larger modelling aspect that extends to a wide variety of notational systems used to 

represent and visualise various phenomena (Kaput, 1995).  

 

Modelling as a language emerged in Greek mathematics, which was part of the 

syncopated stage of the development of algebra (see 2.3.2). This stage is 

characterised by geometric thinking and using geometry objects to represent 

mathematical objects and ideas. The Greeks started to represent various situations 

using modelling as a language where a wide variety of notational systems (numbers, 

points, curves, plains and geometric solids) were used to visualise various phenomena 

(Kaput, 2008). Algebra as a language to model real-life situations emerged in the 19th 

century as a concept of school algebra (Ellerton, Kanbir and Clements, 2017). 

Algebraic modelling as a language demonstrates the value of algebra as a means to 

solve problems ((Vermeulen, 2007). Introducing modelling into school mathematics 

seems to make the learning of school mathematics more effective. Modelling should 
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be integrated into the curriculum because it enhances learners’ involvement in 

classroom activities, including mathematisation, doing problems, criticising 

arguments, finding proofs, recognising concepts, and gaining the ability to abstract 

these from realistic situations (Wessels, 2009). 

 

When modelling, one starts with a specific situation and tries to mathematise it. With 

the introduction of ever more advanced technology, it is important to think about how 

we, as teachers, can assist learners to understand the mathematical concepts which 

represent specific situations or phenomena. Mathematics is used to simulate 

situations and track data with computers. Computer programming languages are very 

similar to algebraic languages which can be used to create, extend, and explore 

mathematical environments (Kaput, 1999). Computer languages amount to algebraic 

formalisms within which one can construct explorable and extendible mathematical 

environments  (Kaput, 1995). These technological environments change the ways in 

which we relate to the particular or the general and how we state mathematical 

conjectures. They even change how we teach and learn mathematics (Kaput, 1999).   

 

Learners initially solve problems by modelling the problem situations with the use of 

physical objects or drawings. By reflecting on the modelling strategies, learners are 

able to abstract these strategies so that they no longer need physical materials to 

solve problems (Carpenter and Levi, 2000b). Young learners are able to model, as the 

modelling of equations is present when they start representing internal quantitative 

relationships in word problems and solving word problems with several operations 

(Hemmi, Bråting and Lepik, 2021). 

 

Models can take on various forms. They can be pictorial-based, coordinate-based, or 

character-based. Computer can support operations on all notational systems. In 

traditional modelling, the aim is to mathematise existing phenomena, but computers 

make it possible to reverse the situation. Computers are able to simulate phenomena 

before they happen, and make predictions (Kaput, 1995).  

 

Mathematical ideas can be represented externally as well as internally. External 

representations involve pictures, words, symbols, diagrams, and graphs, while internal 
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representations involve mental models and cognitive representations of the 

mathematical ideas underlying the external representations. Models are ways of 

thinking about mathematical concepts, and representations are the ways in which 

models are represented. The use of models and their representations is endowed by 

two fundamental concepts, namely the ability to translate and generalise abstraction 

(Cooper and Warren, 2011).  

 

RME describes emergent modelling as a design heuristic for constructing an 

instructional sequence (Gravemeijer, 2007, 2020). Emergent modelling supports an 

incremental process in which mathematical models and mathematical conceptions co-

evolve. As learners engage in an instructional sequence, they should transition from 

models of informal mathematical activity towards models for more formal 

mathematical activity. This principle of emergent modelling will inform the design of an 

instructional sequence in 3.7.  

3.6. THE TEACHING AND LEARNING OF EARLY ALGEBRA 
THROUGH THE PROBLEM-CENTRED APPROACH  

 
Mathematics classrooms should transition away from traditional teaching and learning 

approaches based on rote learning of decontextualised rules and procedures. These 

traditional teaching approaches have proven unsuitable for the development of higher 

order thinking (Biccard and Wessels, 2012). 

 

Murray, Olivier and Human (1998) believe that learning takes place when learners 

grapple with problems for which they do not have routine problem-solving strategies. 

The introduction of problems should precede the introduction of solution methods. The 

teacher should not interfere with the learners as they try to solve problems. From the 

perspective of learning as a social process, learners should be encouraged to discuss 

and compare their solutions with each other. Rather than focusing on the mastery and 

application of prescribed skills, learners should be engaged in solving problems 

(Hiebert et al., 1996). 

 

Schroeder and Lester (1989) describe three main approaches to problem solving. In 

the traditional sense, problem solving refers to the solving of word problems as an 
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extension of routine computational tasks. One can describe this approach as teaching 

for problem solving. It can be taken further to be teaching about problem solving. In 

this more progressive approach to problem solving, learners are taught to employ 

various methods or strategies when challenged with a problematic situation. Lastly, 

learners can be taught through or via problem solving, in which case problems are 

used as a vehicle to teach learners certain mathematical concepts.   

3.7. CONCLUSION 
 

Learners are able to reason algebraically from a very young age (Radford, 2008), and 

a need exists for the implementation of early algebra concepts and skills in early years 

mathematics classrooms. In this chapter,  a systematic review of the literature on early 

algebra was presented. This review informed the construction of an instructional 

design sequence based on the principles of RME (Chapter 5). The purpose of the 

design sequence is to provide a framework for the implementation of the 

generalisation concept in early mathematics classrooms. Chapter 3 started by 

exploring the principles of RME education which include guided reinvention and 

emergent modelling. From there an in-depth literature study of early algebra, the 

development of algebraic thinking and the main components of early algebra was 

undertaken, while constantly keeping the concept of generalisation as the focus. 

Lastly, the characteristics of problem-centred classroom was explained to ensure that 

the instructional sequence is based on principles of teaching for understanding. These 

analytical themes explored in Chapter 3, as well as, the stages of the emergence of 

the big ideas of early algebra in Chapter 2, was used to construct a higher-order 

formulation in the format of an instructional design sequence. The sequence and the 

use thereof is set out in Chapter 5. In the following chapter, the explanation, 

justification and evaluation of the methodological choices made in this study will be 

explained.  
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CHAPTER 4: METHODOLOGY 

4.1. INTRODUCTION 
 

The generalisation concept is often not taught effectively in early years education, 

which deprives learners of its utility in fostering the early algebra skills and early 

algebraic thinking necessary for successfully engaging in formal algebra in the later 

grades. The purpose of this systematic literature review is to investigate how the 

development of the generalisation concept through an instructional sequence 

designed based on the principles of Realistic Mathematics Education (RME) 

(Gravemeijer, 2020, 2007), can be used to develop early algebra concepts and skills 

in early mathematics classrooms. In this chapter, the methodology used, which 

includes the research approach, research paradigm, research design and research 

process, is discussed in order to explain, evaluate and justify all methodological 

choices made in the study.  

4.2. QUALITATIVE RESEARCH 
 

Qualitative research means any kind of research that produces findings which does 

not originate from statistical data which can be quantified. It uses a naturalistic 

approach which aims to understand phenomena in context-specific settings, such as 

real-world settings, for example a real classroom (Golafshani, 2003). Qualitative 

research asks open-ended, exploratory questions which has unlimited, emergent 

descriptive options. The success of a qualitative study, lies in discovering something 

new, rather than proving a hypothesis (Elliott and Timulak, 2005). Methods such as 

interviews and observations are dominant in qualitative research as it leads to results 

which provide illumination, understanding and extrapolation. In qualitative research, 

the involvement of the researcher is motivated as the real world is subject to change. 

A qualitative researcher should be present during the changes to record the events 

that take place before and after the changes (Golafshani, 2003, p.600). Thematic 

analysis is a way of analysing primary qualitative research literature. A systematic 

literature review is useful to synthesise and integrate findings from various qualitative 

studies (Thomas and Harden, 2008).  
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4.3. RESEARCH PARADIGM 
 

Ontology is a domain of philosophy involving the assumptions we make in order to 

believe that something is real and makes sense (Scotland, 2012). Ontology is 

essential to a paradigm because it helps provide an understanding of the things that 

constitute the world (Kivunja and Kuyini, 2017). The ontological position of 

interpretivism is that research is anti-fundamentalist.  This assumption rejects the idea 

that there can only be one truth or that one universal knowledge exists (Guba & 

Lincoln, 1994). Interpretivist researchers believe in multiple realities and the truth or 

reality is constructed rather that discovered (Grix, 2004). 

 

In research, epistemology refers to how we to come to know something or how we 

know the truth or reality. Epistemology is what counts as knowledge in the world. 

(Kivunja and Kuyini, 2017). The interpretivist epistemology is subjective and external 

realities are not directly accessible to observers without being influenced by these 

observers’ prior knowledge, ideologies and perspectives (Guba and Lincoln, 1994, 

p.104).The researcher can be viewed as part of the social reality which is being 

studied. Single and discrete interpretations should not be viewed as ‘correct’ but a 

variety of well-proven interpretations should be included to analyse a certain concept 

or idea (Grix, 2004). The researcher’s interaction with various texts and literature 

sources is used to describe certain phenomena based on various interpretations with 

the aim on constructing a new reality.  

 

A paradigm is a collection of understandings on the part of an individual or a group of 

individuals about the types of things that are done when conducting research in a 

specific field. It includes the types of questions that one ask , the type of answers that 

are expected and methods employed to find these answers (Asiala et al., 1996). This 

systematic literature review will be conducted within an interpretive research 

paradigm. Non-empirical studies often fall in the interpretivism paradigm as a 

philosophical perspective on exploring the social world to develop a clear 

understanding of a specific phenomenon (Gray, 2014, p. 24). A non-empirical study 

uses research methods to analyse and describe existing data or literature in the 

domain. It is different from empirical studies because it does not rely on the collection 

of new data but solely on existing data (Du-Plooy-Cilliers, Davis and Bezuidenhout, 
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2014, p.68). Layers of understanding are developed as the phenomenon is well-

described, instead of reducing events to simplistic interpretations (Scotland, 2012). In 

the interpretivist paradigm, researchers use hermeneutic and phenomenology, where 

hermeneutic is the study and analysis of literature and phenomenology refers to the 

focus on people’s subjective interpretations and perceptions on the world around us 

or a certain phenomenon (Ernest, 1994, p.25). This study aimed to explore a certain 

phenomenon, which is the emergence of early algebra concepts from the history of 

mathematics and how it can be used to inform an instructional sequence of 

generalisation activities. The phenomenon is described based on existing literature in 

the domain which is interpreted and analysed with the aim of constructing an 

instructional sequence. 

 

The aim of interpretivist research is not to provide context-free universal knowledge, 

but rather to analyse and explore various interpretations of certain phenomena to 

understand the interpretations and interactions of people with the specific phenomena 

(Creswell, 2007). 

4.4. RESEARCH APPROACH  
 

This study followed a qualitative research approach in the interpretivist paradigm. Data 

was generated by using a systematic literature review. This study followed a qualitative 

research approach with the aim of enabling deep understand of how early algebraic 

thinking can be developed through generalisation. The resultant findings were used to 

design an instructional sequence which may lead to early algebraic thinking through a 

series of well-planned and pre-determined generalisation activities (Elliott and 

Timulak, 2005). The primary sources of data which were peer-reviewed articles, books 

and websites were obtained through a thorough and systematic literature review. Xiao 

and Watson (2019) explain that literature reviews can be categorised according to 

their purpose based on the research question. These categories include: describe, 

test, extend and critique. The purpose of this study was to extend on current literature 

by designing an instructional sequence for the implementation of generalisation in the 

early years classroom with the purpose of developing algebraic thinking based on 

existing literature and concepts in the domain. An extending review aims to go beyond 

providing a summary for existing literature but aim to construct new, higher order 
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ideas. This type of review lends itself to theory building. For qualitative research 

studies, this involves extracting concepts and second-order concepts from the 

literature with the aim of transforming these concepts into third-order (new) concepts 

(Xiao and Watson, 2019).  

4.5. RESEARCH METHODOLOGY AND DESIGN 
4.5.1. Research methodology 

 
In this study, a systematic literature review was chosen as the appropriate 

methodology to generate data to construct an instructional sequence of generalisation 

activities to develop early algebra in the early years classroom.  

 

4.5.2. Research design 

 
This study was designed as a systematic literature review. The question of which types 

of generalisation activities can be used to develop early algebraic thinking in the early 

years classroom was addressed by systematically reviewing the literature with a focus 

on certain themes which are specified in more detail in this chapter.  The findings were 

applied by synthesising an instructional sequence for the development of 

generalisation in early years mathematics. 

 

For the purpose of this study, an integration of various conceptualisations of the 

process of a systematic literature review was implemented.  

4.6. SYSTEMATIC LITERATURE REVIEW PROCESS  
 

Building research on existing knowledge and relating this existing knowledge is the 

core of academic research. An effective and well-conducted review as a research 

method, constructs a solid basis for the advancement of knowledge and can facilitate 

theory development. By analysing and integrating findings from various empirical 

studies,  a literature review can address research questions with a power that no single 

study has. A literature review is an effective way to show evidence on a meta-level 

and shed light on areas which need more research, which is a critical component of 

constructing theoretical frameworks and building conceptual models. Even so, 

traditional methods of literature review may lack thoroughness as they are not 
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undertaken in a systematic manner (Snyder, 2019). In this study, conceptualisations 

are not formed in a traditional (empirical) sense but are formed through the adaption 

and merging of findings from previous research (Jaakkola, 2020).  For that reason, it 

is proposed that this study is conducted as a systematic literature review which extend 

theories and concepts which arise in literature based on, mostly, empirical research  

(Jaakkola, 2020).  

 

A stand-alone systematic literature review aims to make sense of a body of existing 

literature through aggregation, interpretation, explanation, or integration of existing 

research. Dixon-Woods explains the characteristics of a systematic review (2016, p. 

891): 

• Uses an explicit study protocol 
• Addresses a formal, pre-specified, highly focused question 
• Defines the eligibility criteria for studies to be included in the research in 

advance 
• Is explicit about the methods used for searching studies 
• Screens publications for inclusion in the review against pre-specified criteria 
• Conducts formalised appraisals to assess scientific quality and otherwise limit 

the risk of bias 
• Use explicit methods to combine findings of studies  

 

Such method of research commonly involves suggest new relationships between 

existing constructs. The aim is to construct logical arguments and reasons to support 

these relationships, instead of testing them empirically(Jaakkola, 2020).  

 

Even though procedures in various types of reviews differ, eight steps were followed 

in conducting a systematic literature review, as illustrated in diagram 4.1. 
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review 

1. Formulate the problem 

  2.  Develop and validate the review protocol 

3. Search the literature 

4. Screen for inclusion 

5. Assess quality 

6. Extract data 
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Diagram 4.4. Process of the systematic literature review (Xiao and Watson, 2019) 

 

4.6.1. Planning stage 

 
Step 1: Formulate the problem 

When planning to conduct a systematic literature review, it is important that the 

researcher considers why there is a need for the review and what the possible gap in 

the literature could be . A clear purpose for the review needs to be stated (Snyder, 

2019). The research problem for study was the lack of a framework for the effective 

teaching of the generalisation concept to foster early algebra capacities in young 

learners. An initial literature review was conducted to review the state of early algebra 

and the teaching of generalisation in early years classrooms. From the literature, arose 

the need to further explore how the generalisation concept can be used to teach early 

algebra in early years classrooms.  

 

From there a purpose for the study was constructed: 

The purpose of this systematic literature study is to investigate the role of 
generalisation in the development of early algebra concepts and skills. 

 

The analysis of concepts should start by isolating the questions of the emphasised 

concepts from other concepts (Wilson, 1963). In other words, the research question 

should narrow the scope of the study and make clear which concepts will be analysed.  

 

The main research question this study aims to answer is as follows: What is the role 

of generalisation in the understanding of early algebra concepts and skills in young 

children?  

 

Another research question is further raised: How can the historical development of 

algebra and scholarly trajectories of algebra learning be synthesised to construct an 

instructional design sequence which focuses on generalisation for early algebra? 

8. Report findings 
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From the main research question, the following sub questions were derived: 

• What implications can we derive from the historical development of algebra for 
early years learning of algebra? 

• What is early algebra? 
• What is the role of algebraic thinking and generalisation in the understanding 

of early algebra? 
• How can the problem-centred approach be implemented in the teaching and 

learning of early algebra to foster understanding? 

These research questions formed the basis of all decisions and approaches chosen 

when planning his study. This approach enabled the researcher to answer all the 

research questions and synthesise the data abstracted in such a way to develop a 

new, higher-order construct to answer the main research question (Xiao and Watson, 

2019).  

 

Step 2: Develop and validate the review protocol 

 

A search strategy was developed to ensure that relevant data sources were found and 

included. Appropriate search terms,  databases, and  inclusion and exclusion criteria 

were selected based on their relevance to the main research question and sub 

questions.  (Snyder, 2019). The review protocol should describe all the elements of 

the review including the purpose of the study, research questions, inclusion criteria, 

search strategies, quality assessment criteria, screening procedures, strategies for 

data extraction, synthesis and reporting (Xiao and Watson, 2019).  

 

Identifying search terms 

 

Search terms are words or phrases used to identify appropriate articles, books and 

reports. These terms should be related directly to the research question (Snyder, 

2019). A keyword search as approach was implemented to find appropriate data 

sources in this systematic literature review. The following key words (in bold) and 

phrases, derived from the problem statement and research questions, were used to 

search for sources: 

• Generalisation in algebra and early algebra 
• History of the development of algebra 
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• Teaching for understanding and the problem-centred approach 
 

Employing these key words and phrases and derived concepts, ensured that the 

search was focused, and that the articles, textbooks and reports found were relevant 

to, and important to include in, the study. The table below shows relevant terms which 

were searched for under the main key words as described above. 

Main key words and search terms 

Generalisation in algebra 
and early algebra 

History of the 
development of algebra 

Teaching for 
understanding and the 
problem-centred approach 

Development of algebra 

Development of early 
algebra 

Early algebraic thinking 

Fundamental components of 
early algebra 

Big Ideas of early algebra 

Rhetorical stage  

Syncopated stage 

Symbolic stage 

History of school algebra 

RME approach 

Emergent modelling 

Guided reinvention 

 

Table 4.1. Main key words and search terms 

Only English search terms were used and therefore only English data sources were 

analysed for the purpose of this study. This choice was based on the study being 

conducted in English, and the prevalence of sources available in English.  

Electronic databases, search engines and other sources 

Material for review was found by submitting the selected search terms and key words 

into electronic databases, search engines and other sources. Only sources published 

in English were included in this study.  

The following electronic databases were employed during the search process: 

• Google Scholar 
• SAGE Journal Online 
• EBSCOhost 
• ERIC 
• IEEE 
• JSTOR 
• ScienceDirect 
• Taylor & Francis Journals 
• ResearchGate 
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Other sources included in the search process were: 

• Bibliographies of reviewed articles – These were scanned to identify further 
materials for review.  

• Conference proceedings – These were reviewed to ensure that recent and 
relevant themes and studies were included.  
 

Inclusion and exclusion criteria 

Initial literature searches yielded many articles and publications, necessitating the 

application of inclusion and exclusion criteria informed by the research question 

(Snyder, 2019). The table below explains the inclusion and exclusion criteria used in 

the systematic literature review. 

 Criteria 

Literature Included 

• All publications relevant up to the year 2021 – because the 
purpose of the review was to explore the impact of the history 
of algebra on how algebra is taught today, older sources and 
newer sources had to be integrated. 

• Peer reviewed publications – to ensure the quality of 
publications used. 

• Literature in English – the study was conducted in English and 
the researcher understands English. 

• Full length publications are available – to ensure that 
misconceptions did not arise from only having part of a 
publication available 

• Literature focused on algebra and early algebra 
• Literature focused on the history of algebra 
• Literature focused on teaching mathematics for 

understanding 
• Literature focussed on the problem-centred approach 

Literature Excluded 

• Literature only focused on secondary or tertiary education of 
algebra 

• Literature which focuses on other content areas of 
mathematics than algebra 

• Literature in other languages than English 
• Literature which does not have full publications available 

Table 4.2. Inclusion and exclusion criteria 

4.6.2. Conducting the review 

 

Step 3: Search the literature 
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Literature gathered for review in accordance with the review protocol discussed in 

4.6.1 was saved to Mendeley for data management purposes. The Boolean operators 

(AND, OR, NOT) were used when searching search engines to ensure optimal results 

(Xiao and Watson, 2019). The terms “early algebra” AND “generalisation” is an 

example of how the search terms were employed.  

Backward searches were conducted to ensure that all relevant literature about the 

theme could be identified. These backwards searches involve using the list of 

references at the end of an article to find more relevant articles (Xiao and Watson, 

2019). 

By consulting experts in the field, including the supervisor of the study, the 

completeness of the search was continuously monitored and checked. Once 

candidate materials were identified, this literature was screened for inclusion or 

exclusion. 

Step 4: Screen for inclusion 

The researcher had to screen all sources found from submitting search terms to the 

electronic databases and search engines for inclusion in the study. A two-stage 

procedure was employed, which involved a coarse sieving process (screening the 

abstracts of the articles), followed by a refined quality assessment based on a full-text 

review (Xiao and Watson, 2019).  

The researcher started by excluding studies which were duplicates of other sources. 

After that, the researcher read the abstract of each study to decide whether it was 

relevant to the research question. In the case of textbooks, the table of contents of 

each source  was studied to determine its relevance. Finally, all sources were read 

briefly to categorise them according to their relevance to each theme arising from the 

research questions. These themes included: the development of early algebra, 

generalisation, history of algebra, teaching for understanding and the problem-centred 

approach. Mendeley was used to organise and read all the references: once all the 

references were organised, each was fully read to decide whether it should be 

included or excluded.  

Step 5: Assess quality 
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 For the purpose of this systematic literature review, only peer reviewed studies were 

included to ensure a high quality of sources used.  

 

Step 6: Extract data 

 

After conducting the literature review and deciding on the final sample, the researcher 

considered how all the sources would be used to conduct an appropriate analysis. 

Data was extracted according to the identified themes. All sources were read on 

Mendeley (data management application), where themes were extracted from each 

article, textbook or report, and carefully marked and organised according to the related 

theme. From there, data could easily be analysed and synthesised. Diagram 4.2 

shows the process of extracting data which was employed: 

 

 

 

 

 

 

 

 

 

 

 

 

Diagram 4.2. The process of extracting data 

 

 

 

 

Step 7: Analysing and synthesising data 

 

For the purpose of this study, to construct a higher-order instructional sequence for 

the teaching of generalisation in the early years classroom, a thematic analysis of data 

Identify source 

Save source to Mendeley

 

Read source on Mendeley

 

Highlight and note relevant themes 
in different colours 

Categorize source into the correct 
folder 

Reopen folder and notes when 
ready for analysis and synthesis  
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was undertaken. Once the data was extracted, the researcher could organise the data 

in a systematic manner. The researcher generated analytical themes, similar to third-

order interpretations, with the aim of answering a specific research question rather 

than being explanatory (Xiao and Watson, 2019, p.97). In this case, the researcher 

aimed to answer the question: “What can we learn about the role of generalisation in 

the understanding of early algebra concepts and skills in young children, from the 

history of algebra?” To answer the research question, the following analytical themes 

and sub-themes were generated: 

• History of algebra 
- The rhetorical stage 
- The syncopated stage 
- The symbolic stage 
- Conceptual stages 
- Purposes for school algebra emerging from history 
- Algebra situation in South Africa 

• Role of generalisation 
- Generalisation and formalisation 
- Generalisation activities 
- Generalising arithmetic 
- Generalising a rule or function 

• Teaching for understanding 
- The problem-centred approach to learning algebra 
- Role of the teacher 
- Classroom Culture 
- Role of the learner 
- Problems and task design 
- Real Mathematics Education 
- Emergent modelling 
- Guided Reinvention 

• Teaching of early algebra 
- The early algebra curriculum 
- Fundamental components of early algebra 
- The use of mathematical models 
- Kaput’s framework for early algebra 
- The Big Ideas of early algebra 
- Developing algebraic thinking 

 

4.6.3. Reporting the review 

 
When reporting the review, the researcher started by explaining clearly the need and 

the purpose of the study. Review studies can be reported in various ways, but should 

follow some generalised guidelines. It is necessary to describe transparently how the 
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research process transpired. By clearly explaining the research design, the method 

for collecting data, how literature was identified, analysed and synthesised, the reader 

can assess the quality and trustworthiness of the data (Snyder, 2019).  

 

Step 8: Report findings 

The report on the findings of this systematic literature review was organised according 

to the key analytical themes generated during Step 7 of the review process. The 

chapters of the report were organised in the following manner: 

 

Chapter 1: Introduction of the study, which aims to provide the purpose and  
                             motivation for the study, as well as outlining the study. 

Chapter 2: The historical review of the development of algebra and the  
emergence of the big ideas of algebra in history. This chapter aims 
to explain the core ideas of early algebra and how they emerged in 
the history of algebra. This chapter greatly informed the instructional 
design based on the principles of RME in Chapter 5.  

Chapter 3: Early algebra, generalising and structure. This chapter aims to  
       analyse early algebra, the development of early algebraic thinking,      
       the fundamental components of early algebra and the role   
       generalisation plays in the early mathematics classroom. This  
       analytical chapter greatly informed the instructional design which is  
       explained in Chapter 5. 

Chapter 4: The methodology. This chapter aims to explain, justify and evaluate  
                   all the methodological choices made in the study.  
Chapter 5: Model for implementation of the instructional sequence. This   

        chapter applies the findings of chapters 2 and 3 by providing  
                   a higher order construct in the form of an instructional design  
                   sequence for implementing generalisation in the early mathematics  
                   classroom.  
Chapter 6: Conclusion. In this chapter an overview of the findings will be given  
                   to conclude the report. 

4.7. TRUSTWORTHINESS OF THE DATA 
 

For the purpose of this study, a systematic literature review was conducted. To 

achieve trustworthiness, the study methodology was carefully documented, explained 

and justified in such a manner that it could be duplicated by another researcher to 

achieve the same results, and an audit trail was built by carefully documenting all 

online platforms and search terms which were used to find sources and data.  
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Hirschheim (2008) explains a framework of ensuring the trustworthiness of arguments 

based on three necessary components. Firstly, (1) claims mention the obvious 

statements or thesis which the reader of the work needs to understand as true. In this 

study claims were made based on the overview of the history of algebra and the 

emergence of early algebra concepts from history. Secondly, (2) grounds are the 

proofs which underpin the reasoning and aim to reinforce the claims to convince the 

reader. Evidence is constructed from previous works existent in the literature. Lastly, 

(3) warrants are the underlying beliefs and assumptions which are taken to be true in 

a specific research domain. This study is trustworthy because all claims are 

substantiated by abundant grounds and can therefore make a noteworthy contribution 

to knowledge (Hirschheim, 2008). 

 

All sources were read in their entirety to ensure that a complete analysis of the source 

could be done, and to avoid bias from only reading parts of a source (Snyder, 2019). 

It was important that authors’ arguments were correctly interpreted. The researcher 

aimed to interpret all literature in an objective manner. To ensure that authors received 

the necessary credit, all sources were meticulously cited to avoid plagiarism. 

 

Findings and conclusions of literature should be true and valid to readers, practitioners 

and other researchers. When research is conducted in a rigorous manner, research 

can effect practice and theory (Merriam, 2009). The validity and reliability of a study 

depends on the construction of an effective design by clearly stating and justifying the 

way in which data was collected, analysed, interpreted and the way in which findings 

are reported. For this study, validity and reliability were achieve by, in this chapter, 

clearly explaining and justifying all methodological choices. Furthermore, triangulation 

was achieved by using multiple sources of data and by repeatedly cross-checking data 

(Merriam, 2009). Data was collected from academic journals, textbooks, articles from 

various databases and websites. Data from over a long period of time was included to 

provide a valid overview and analysis of the data. Even though this study was 

conducted by one researcher, the research was constantly checked by the study 

leader to further ensure validity through triangulation.  
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Peer reviewed articles, journals and books were used as the primary sources of data/ 

When mainly using peer reviewed sources, the validity of the study is enhanced and 

the study will be of a higher quality (Merriam, 2009). 

4.8. ETHICAL CONSIDERATIONS 
 

The systematic literature review makes use of existing data sources which are 

available on online platforms or in libraries. All data used in the review, is already 

available in the public domain. No information, which is not yet published, including 

the personal information of authors, was used in this study. 

Ethical clearance was obtained by the Department of Ethics Committee at 

Stellenbosch University. This study was deemed to be a low risk study as it does not 

involve research participants to obtain data.  

4.9. CONCLUSION 
 

The purpose of this chapter was to explain, justify and evaluate all the methodological 

choices made in the design of this systematic literature review. The purpose of this 

systematic review was to see how the concept of generalisation could be implemented 

in the early mathematics classroom to foster early algebraic concepts and skills. An 

instructional design sequence was constructed based on the principles of RME and 

learning trajectories in history, to inform learning sequences for implementation in 

classrooms. This chapter explained the research approach, the research paradigm, 

the methodology and design. The systematic review process was explained in detail. 

This was done to ensure that the study is trustworthy and can be duplicated by other 

researchers to achieve the same results and findings. Lastly, the ethical 

considerations and trustworthiness of the study was explained.  In chapter 5, the 

model for implementing generalisation in the early years classroom is set out.  

 

 

 

CHAPTER 5: TAKING ALGEBRA TO THE CLASSROOM – IDEAS 

FOR IMPLEMENTING AN INSTRUCTIONAL SEQUENCE 
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5.1. INTRODUCTION 
 

The aim of this systematic literature review of early algebra, its emergence from 

history, and the components which develop algebraic thinking, is to inform the design 

of an instructional sequence for the development of algebra thinking through 

generalisation activities.  This is expected to be an important contribution to the 

literature, as the traditional approach to algebra, functions and patterns which is 

currently taught as one the five content strains in the South African CAPS document, 

is not taught effectively to cultivate learners’ deep understanding of early algebraic 

concepts (du Plessis, 2018). Even though the South African CAPS curriculum 

mentions and explains the role of early algebra well, the implementation thereof in 

classrooms is lacking (see 3.2). 

 

The instructional design is constructed by considering the main aspects of the teaching 

and learning of early algebra which emerged from the systematic review of the 

literature in terms of the historical development of algebra and the emergence of early 

algebra concepts from history. The following aspects stood out as underpinnings for a 

successful instructional design: 

1. The stages of the development of algebra throughout history, as well as the 
conceptual stages (Sfard, 1995; Katz and Barton, 2007; Tabak, 2011; Katz 
and Parshall, 2014). 

2. Levels in the development of algebraic thinking (Nixon, 2009). 
3. Thought processes (generalising and specialising) involved in engaging with 

algebraic problems (Mason, Burton and Stacey, 2010). 
4. Key aspects of generalisation (Roberts, 2012c, 2012b). 
5. Generalisation activities in a specific sequence. 

 
From there, a diagram was drawn up to indicate how these core aspects of early 

algebraic thinking are related and can be used to construct an instructional design.  
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Diagram 5.1. The relationship between aspects involved in the instructional design 

for generalisation 

The instructional design will aim to provide teachers with a roadmap for the 

implementation and integration of generalising throughout the mathematics curriculum 

with an emphasis on the patterns and structure which can be noticed in the whole of 

mathematics. The framework will consist of the following aspects: the theoretical basis 

of the approach, the role of patterns and structure in the development of 

generalisation, a possible sequence of activities, the role of the teacher, the role of the 

learner, and assessing the development of generalisation.  

5.2. THEORETICAL PERSPECTIVE ON LEARNING  
 

The design of an instructional sequence based on the principles of emergent modelling 

and guided reinvention takes on the perspective of the socio-constructivist framework, 

which holds that the problem-centred approach to learning should be used to develop 

generalisation in early years classrooms.  

 

Social constructivism is informed by the work of Vygotsky, who argued that learning is 

a process which occurs within social interactions. Social constructivist theory is 

grounded in the proposition that children’s social and material interactions with their 

environments are the means through which they learn (Fox, 2005). Human and Olivier 

agree (1999) that the socio-constructivist learning theory treats learning as a social 
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process whereby learners learn from each other and their teachers. Learning takes 

places as learners engage in meaningful classroom discussions, where ideas are 

shared and communicated. In the process of learning, learners should be encouraged 

to compare and interpret others’ ideas, reflect on their own thinking, and try to 

negotiate a mutual understanding of the concept at hand (Human and Olivier, 1999).  

 

In the socio-constructivist theory, learners are seen as active participants in the 

learning process. They are responsible for their own construction of knowledge and 

make meaning of what is being learned. New knowledge is constructed based on 

learners’ prior experiences and natural intuitions.  In the constructivist view of learning, 

learners must interpret what they learn and must give it their own meaning based on 

their existing, but not yet explicit, knowledge (Cobb et al., 2014).  

 

The constructivist view of how learners learn mathematics with understanding, and 

construct, interpret, think about, and make sense of mathematical ideas, is determined 

by the elements and organisations of the relevent mental structures that they use to 

process their mathematical worlds. To construct new knowledge and make sense of 

new experiences, learners build on and reflect on their current mental structures 

through the processes of action, reflection and abstraction (Battista, 2004). For 

numerous mathematical topics, it is known that learners’ development of 

conceptualisations and reasoning can characterised in terms of levels of sophistication 

(Battista, 2004). Therefore, development takes place in a progression of levels in a 

learning trajectory or sequence of activities. 

 

The problem-centred approach (see 2.2.2) is implemented as a vehicle for early 

algebra which involves engagement with meaningful algebraic problems with the 

purpose of learning mathematics for understanding. The PCA believes that learners 

learn through problems rather than implementing and applying discrete skills which 

wer taught to them to solve problems according to prescribed methods  (Biccard and 

Wessels, 2012).   

5.3. REALISTIC MATHEMATICS EDUCATION (RME) 
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As described in 3.2, the aim of the systematic literature review is to design an 

instructional sequence based on the principles of RME which include guided 

reinvention and emergent modelling. RME is based on Freudenthal’s (1991) view on 

mathematics: being that it should be meaningful to learners and should be seen as a 

human activity. This means that learning takes place as learners engage with 

problems that are meaningful to them. Treffers (1987) describes five features of RME, 

which can be summarised as follows (Turmudi and Al Jupri, 2009, p.1): 

 

• Phenomenological exploration or the use of meaningful contexts. 
• Using models and symbols for progressive mathematisation. 
• Self-reliance, where learners use their own constructions and strategies. 
• Interactivity, where learning is part of interactive instruction and classroom 

discussions. 
• Intertwinement, where the importance of an instructional sequence and its 

relation to other topics emerges. 

Gravemeijer (2020) (see 3.2) casts RME as a design theory in terms of three 

instructional design heuristics: 

 

2) Guided reinvention which reflects Freudenthal’s (1973) idea that 
learners should experience mathematics as a human activity and reinvent 
mathematical ideas and concepts as they are guided by the teacher. The 
history of mathematics should inform the design of a trajectory for learner 
reinvention of mathematical concepts. In this study, the history of algebra 
is used to inform an instructional sequence of generalisation activities to 
develop early algebra. 
 

3) Didactical phenomenology originates from Freudenthal’s (1983) view 
that mathematical activity is based on organising. This heuristic involves 
analysing what phenomenon is organised and how it is organised by the 
mathematical concept. Stephan, Underwood-Gregg and Yackel (2016) 
propose a different view of the second design heuristic in RME; arguing 
that sequences should be experientially real for learners. Instructional 
tasks should draw on realistic situations as semantic grounding for 
learners' mathematisations, and activities should be sequenced so that 
learners will organise their activity within the realistic context to reinvent 
important mathematics. For the purpose of this study, the perspective on 
design heuristics of Stephan, et. al. (2016) is accepted and implemented 
in the instructional sequence.  
 

4) Emergent modelling is a dynamic process of symbolising and 
modelling, within which the process of symbolising and the development 
of meaning and understanding are reflexively related. In this model the 
belief is that learners should start by modeling their own informal 
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mathematical activity, and that this model of informal mathematical activity 
should progressively develop into a model for more formal reasoning. The 
newly formed formal model should be deeply rooted in learners’ prior 
knowledge and natural instincts (Gravemeijer, 2007). Central to the 
emergent modelling design heuristic is the use of a series of sub-models, 
which together constitute the overarching model (Gravemeijer, 2020). 
During the transitions from informal to formal, the teacher supports 
learners' modelling by introducing new tools or using learner-created tools 
to communicate mathematical reasoning (Stephan, Underwood-Gregg 
and Yackel, 2016). 

 

Gravemeijer (2007, p.3) suggests four levels of mathematical reasoning which should 

be implemented in an emergent-modelling design: 

• Activity in the task setting, in which interpretations and solutions depend on 
understanding of how to act in the setting  

• Referential activity, in which models-of refer to activity in the setting described 
in instructional activities 

• General activity, in which models-for derive their meaning from a framework of 
mathematical relations 

• formal mathematical reasoning, which is no longer dependent on the support 
of models-for mathematical activity.  

These levels of mathematical reasoning will inform the sequence of possible activities 

chosen to develop generalisation in the early mathematics classroom. Within each 

proposed activity, the activities themselves build on the levels of mathematical 

reasoning.  

5.4. TEACHING PRACTICE OF A GUIDED REINVENTION TEACHER  
 

Stephan, et. al. (2016) propose five teaching practices for implementing the design 

principle of guided reinvention in an RME based instructional sequence. These 

practices are suitable for implementing the instructional sequence in 5.1.6. 

 

5.4.1. Initiating and sustaining social norms 

 

The teacher plays an important role in establishing and sustaining classroom social 

norms which are conducive to learners’ reinvention (Stephan, Underwood-Gregg and 

Yackel, 2016). The role of the teacher is to implement and create a classroom culture 

based on inquiry mathematics. Social norms of communication, idea sharing, listening, 

and own construction of knowledge should be implemented by the teacher (Murray, 
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Olivier and Human, 1998). The teacher serves a foundational role in the guidance of 

learners’ reinvention. Attention to social and socio-mathematical norms which 

characterise guided reinvention teaching, forms a big portion of the decision making 

of the teacher regarding classroom interactions. The instructional design of the 

sequence of the activities serves the purpose of orchestrating whole-class discussions 

in which certain mathematical practices have been pre-established (Stephan, 

Underwood-Gregg and Yackel, 2016).   

 

5.4.2. Supporting the development of socio-mathematical norms 

 

The teacher should establish socio-mathematical norms in guided reinvention 

classrooms whereby, learners’ explanations of solutions and strategies are acceptable 

if they meet the criterion that describe the learners’ actions on mathematical objects 

which are experientially real to them (Stephan, Underwood-Gregg and Yackel, 2016).  

Listing procedural steps as an explanation for a solution cannot be deemed acceptable 

unless accompanied by reasons for the calculations. The question: “How do you 

know?” is instrumental in developing conceptual discourse rather than procedural 

discourse in the classroom (Cobb and Yackel, 1996).  

 

5.4.3. Capitalising on learners’ imagery to create inscriptions and 

notations 

 

This practice revolves around the teacher’s motivation of learners’ imagery through 

notation and tools (Stephan, Underwood-Gregg and Yackel, 2016). Modelling as a 

language for algebra, which is one of Kaput’s (2008) (see 3.5.5) components of 

algebra, must be incorporated. The teacher can do this by capitalising on the tool 

development which is part of RME instructional design, and the rich imagery that this 

design can generate (Stephan, Underwood-Gregg and Yackel, 2016). Encouraging 

learners to model their understanding and problem-solving processes engages them 

in mathematical thinking and reasoning. The teacher, as well as the learners, should 

be aware of the different ways of modelling: talking, showing, drawing, writing number 

sentences, writing sentences in words, using concrete equipment, using a number 

line, using a hundred square, fraction walls, tables, graphs, function machines, even 
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acting out or role play (Roberts, 2012). The teacher should model the way in which he 

or she wants learners to think and speak. It is also the role of the teacher to introduce 

and model the use of novel mathematical instruments, like measuring instruments. 

 

5.4.4. Developing small groups as communities of learners 

 

The practice involves the teacher establishing productive small groups in the 

classroom. Teachers should help learners realise the value of working with peers 

(Stephan, Underwood-Gregg and Yackel, 2016). Working in smaller groups in the 

mathematics classroom, especially in the early years of mathematics, is beneficial, as 

learners can easily interact socially with the learners around them and the teacher can 

form a good idea of the each learner’s understanding of mathematical concepts 

(Murray, Olivier and Human, 1998). How learners should be grouped is often a highly 

contentious topic. It has been argued that it is important to group learners in various 

ways, giving them opportunities to work with a variety of peers. (Murray, Olivier and 

Human, 1998) (see 2.2.2.2). The teacher should establish social norms which are 

conducive to guided reinvention when working in small groups. These social norms 

should include (Stephan, Underwood-Gregg and Yackel, 2016, p. 44): 

• developing personally meaningful solutions 
• explaining one’s reasoning to one’s partners 
• listening to and attempting to understand the explanations of other group 

members 
• persisting with challenging problems 
• collaborating to complete activities, including indicating agreement or 

disagreement with partners 
• asking your partner for help before you ask your teacher. 

 

 

5.4.5. Facilitating genuine mathematical discourse 

 

Genuine mathematical discourse can be facilitated by: (1) introducing mathematical 

vocabulary and tools to record learners’ inventions, (2) asking questions which elicit 

learners’ strategies and scaffold critical thinking, (3) restating learners’ solutions in 

clear or more advanced terms, and (4) using learners’ strategies during exploration 

time to orchestrate meaningful classroom discussions (Stephan, Underwood-Gregg 
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and Yackel, 2016. Teachers should use the framework of genuine discourse to guide 

learners’ thoughts in developing generalisation. Three actions and types of questions 

are integral to all mathematics lessons which aim to develop early algebraic thinking 

and generalisation (Warren and Cooper, 2003, p.13): 

• Predicting: What do you think will happen?  
• Justifying: Why do you think that happened? How do you know? 
• Generalising: What is the rule that you notice? Can you represent the rule in 

words/a diagram/symbols? 
 

The teacher should constantly be sensitive to opportunities to extend learners’ 

mathematical knowledge and thinking when interpreting their explanations of 

solutions. In this way, the teacher can prevent or correct misconceptions, or prompt 

further insights.  

5.5. PLANNING PRACTICE OF A GUIDED REINVENTION TEACHER  
 

5.5.1. Preparation 

 

When planning the implementation of an instructional sequence, the teacher must 

consider the goals of the entire unit of study. The teacher must become comfortable 

with the outline of the instructional sequence, and should understand the mathematical 

concepts envisioned by the sequence and the preconceptions which learners might 

have. The teacher should work through the activities to form a hypothetical image of 

the pathways that can emerge as a result of learners’ diverse reasoning (Stephan, 

Underwood-Gregg and Yackel, 2016).  

 

5.5.2. Anticipation 

 

Before each lesson, the teacher should envision the best ways to introduce tasks, 

work out problems, and anticipate possible learner reasoning and how it fits with 

current mathematical practices. The teacher should use predicted learner reasoning 

to prepare for potential discussion topics. The teacher should uses the anticipate the 

lesson flow to conjecture which strategies learners will develop, and which are 

important for progress toward reinventing mathematics ideas (Stephan, Underwood-

Gregg and Yackel, 2016). 
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5.5.3. Reflection 

 

After a lesson has concluded, the teacher should reflect on the learners’ discourse 

and reinvention to determine the status of classroom mathematical practices, including 

the modelling of learners’ thinking via various representations. The teacher should 

further reflect on the mathematical learning that emerged, and lastly on the status of 

classroom social and socio-mathematical norms. The reflective analysis is used to 

make decisions and predictions about subsequent lessons (Stephan, Underwood-

Gregg and Yackel, 2016).  

 

5.5.4. Assessment 

 

The guided reinvention teacher creates and implements daily formative assessments 

to form a picture of the learners’ growth individually and as a class (Stephan, 

Underwood-Gregg and Yackel, 2016).  There are three types of formative assessment 

which can be implemented in an educational framework. These include assessment 

as learning, assessment of learning, and lastly, assessment for learning. Assessment 

should be conducted for learning. Assessment for learning requires that teachers 

observe the knowledge, skills, experience, and interests which learners demonstrate. 

Teachers then use these observations to tailor instruction to ensure that learners’ 

needs are met. They can also provide valuable direct feedback to students to help 

improve their learning (‘Patterning and Algebra Grades 4 to 6’, 2008). 

 

Assessment for learning is different from assessments conducted to serve the purpose 

of accountability, ranking, or certifying competence (Black & Harrison, 2006). When 

teachers assess for learning, assessments aim to provide evidence of learners’ 

understanding of the concepts taught. Once a teacher has formed a clear idea of 

learners’ understanding, future learning programs can be accurately modified and 

adapted to ensure that learners’ learning is moving forward (Lee, 2006) (Stephan, 

Underwood-Gregg and Yackel, 2016). 

 

To ensure that high quality assessment for learning is conducted (Lee, 2006, p. 43): 

 

 

 

195 

• Learners must engage in activities or answer questions that fully explore their 
understanding. 

• Learners should have time to think through what they know, understand and 
can do, and to fully communicate their thoughts. 

• Learners must use mathematical language effectively to communicate their 
understanding and skills in mathematics.  

 

According to Lee (2006, p.44), assessment for learning in mathematics is effective 

when: 

• Learners explore a problem, find they can easily use a mathematical concept 
to solve the problem, and move on to more complex problems to further explore 
their understanding. 

• Learners mark tests together in groups, and use the results to set out the work 
that they will have to complete in the following lesson to continue to improve 
their understanding. 

• Teachers asks searching questions and give learners sufficient opportunity to 
work through them. Teachers should use their knowledge to plan for the next 
module of work.  

• Teachers should observe learners when they are engaged in activites to 
determine which learners fully comprehend concepts, and which ones need 
more support. 

 

An assessment can provide opportunity for learning if it provides useful feedback to 

teachers and learners. This feedback should be used to adapt and modify future 

learning experiences. Knowledge about learning needs, obtained from assessments, 

should inform lesson plans (Hodgen and William, 2006). 

 

In the South African CAPS curriculum, there are no assessment standards which 

guide teachers in the assessment of early algebra (Roberts, 2010). Even so, the CAPS 

document does provide valuable information on assessment of mathematics. The 

CAPS document (DBE, 2011a) describes assessment as a continuous planned 

process of identifying, gathering and interpreting information regarding the 

performance of learners. It motivates the use of various forms of assessments to 

ensure assessment for learning. The CAPS documents states that assessing involves 

four steps: 

• Generating and collecting information about achievement; 
• Evaluating this evidence; 
• Recording the findings; and 
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• Using information to understand and thereby support the learner’s development 
so that teaching and learning can be improved. 

 

Regular feedback based on assessments is crucial to effective learning. Summative 

assessments can be used to document learners’ cumulative learning (Stephan, 

Underwood-Gregg and Yackel, 2016).  

 

5.5.5. Revision 

 

Revision happens on two levels: daily revision based on formative assessments, and 

at the end of an instructional sequence. The latter should identify modifications to be 

made to the materials, tools, or questions asked (Stephan, Underwood-Gregg and 

Yackel, 2016. 

5.6. GENERALISATION ACTIVITIES AS THE GOAL FOR 
DEVELOPING EARLY ALGEBRA  
 

Roberts (2010, p.169) describes three generalisation activities which encompass 

generalisation in mathematics (see 3.5.1).  

 

Roberts (2012) further provides guidelines for primary school teachers to implement 

early algebra in the classroom via generalisation. Her guidelines are based on the 

framework for the components of early algebra by Kaput (2008) (see 2.2.3 and 3.5). 

 

5.6.1. Guidelines for generalising arithmetic 

 

Generalisation of arithmetic is located in the ‘Numbers, operations and relationships’ 

content area of the CAPS document (DBE, 2011). It can also be applied when working 

with data handling, shapes and measurement, as patterns underlie all these content 

areas (Roberts, 2012). Guidelines for generalising arithmetic include (Roberts, 2012, 

p.308-309): 

1. Be deliberate about and explore when something happens, and when it always 
happens, in mathematics. 

2. Look for patterns in groups of number sentences. 
3. Look for patterns in sequences of sums. 
4. Ask about (observe, describe, talk about) how special numbers behave. 
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5. Expect and ask for descriptions of what is observed. 
6. Ask for explanations to show if something is always true. 
7. Explore and talk about equivalence and what the equal sign means. 

 

5.6.2. Guidelines for generalising a rule or function 

 

Generalisation of rules and functions forms the focus of the content area ‘Patterns, 

functions and algebra’ in the CAPS document (DBE, 2011). Problem contexts can be 

explored, along with representations of functions,  including families of number 

sentences, input and output tables, and function machines. Guidelines for generalising 

a rule or functions include (Roberts, 2012, p.312-315): 

1. Expect learners to describe a number pattern in detail. 
2. Look at and talk about the operations or functions, not just the numbers. 
3. Ask about how operations behave. 
4. Set a problem context which requires investigation of a certain function, and 

then use different representations of the function. 
5. Connect work done in ‘Patterns, functions and algebra’ to work in other content 

areas. 

 

5.6.3. Guidelines for modelling as a language of mathematics 

 

Modelling concepts, and motivating learners to model their understanding and 

reasoning, prompts learners’ mathematical thinking. Guidelines for generalising a rule 

or functions include (Roberts, 2012, p.315-317): 

1. Model mathematical concepts, problem solving strategies, and calculation 
techniques. Encourage learners to model their understanding and thinking. 

2. Know and make explicit the basic models for the basic operations. 
3. Provide opportunities for learners to use concrete objects, draw or imagine 

objects or processes, and move between representations. 
4. ‘Algebraify’ word problems, and turn them into investigations, to model the 

process of solving the problem, when one or more of the parameters is relaxed.  

 

These guidelines provide an insight to the types of activities which should be included 

in the instructional sequence to develop early algebraic thinking in the early 

mathematics classroom.  

5.7. THE INSTRUCTIONAL SEQUENCE TO IMPLEMENT 
GENERALISATION FOR THE DEVELOPMENT OF EARLY ALGEBRA  
 

Stellenbosch University https://scholar.sun.ac.za



 

 

 

198 

The instructional sequence below shows how a variety of generalisation activities can 

be introduced as an instructional sequence for learners to effectively develop the 

generalisation concept which ultimately leads to early algebraic reasoning. The design 

of this instructional sequence is informed by existing research, especially pertaining to 

the levels of algebraic thinking in which learners are engaged when being challenged 

with problems. For this design, the historical stages as described in Chapter 2 were 

used as the developmental stages which learners will work through as they engage in 

increasingly sophisticated thinking by being introduced to a variety of problems. These 

stages include the rhetorical, syncopated, and symbolic stages. Alongside these 

stages run four conceptual stages which are the geometric, static equation solving, 

dynamic function and abstract stages (see 2.3.4). Furthermore, Nixon’s (Nixon, 2009) 

(see 3.4.3.1.) levels of algebraic thinking were used to inform the sequence in which 

algebraic problems are introduced. Nixon’s levels of algebraic thinking align well with 

the developmental stages of algebraic thinking, and can be integrated a possible 

approach for implementing generalisation in early education mathematics.  

 

Three generalisation activities are suggested for each developmental stage. These 

generalisation activities were based on the three elements of generalisation as 

described by Roberts (2010, p.169). These three elements include: 

• Generalising arithmetic as the exploration of the properties of numbers and 
operations. 

• Generalising about particular number properties and relationships. 
• Generalising towards the idea of a function, which includes recognising 

regularity in elementary patterns, ideas of change including linearity, and 
representation through tables, graphs and function machines.  

It is important to note that these activities can be adapted and adjusted to be more 

appropriate for each grade in early mathematics education. The sequence of the 

activities should be taken as the basic structure for the sequence of instruction. It is 

also important to keep in mind that generalisation should be a habit of mind which the 

teacher instils in learners. In that sense it should be integrated in all content areas of 

mathematics. 

Lastly, the framework will aim to describe the anticipated thought processed which 

learners engage in as they work through the problems provided to them. These 

thought processes are taken from Mason, Burton and Stacey's (2010) framework for 

how mathematical thinking takes place.
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The Instructional sequence to implement generalisation for the development of early algebra 

Historical stages 
Levels of algebraic 

reasoning 
Possible activities according to generalisation elements 

Specialising or Generalising 

(Thought processes) 

Rhetorical stage: 

• Problems solved 
by looking at 
individual 
problems. 

• Aimed at solving 
specific problem. 

• Problems are not 
categorised. 

• Solutions to 
problems are 
mainly given in 
words. 

• Little to no 
generality can be 
noticed.  

 

g
e

o
m

e
tr

ic
 →

 s
ta

tic
-e

q
u

a
tio

n
 →

 d
y

n
a

m
ic

 fu
n

c
tio

n
 →

 a
b

s
tr

a
c

t  

Perceptual: 

• Learners need to 
coordinate their 
senses and 
perceptions. 

• Learners 
advance in their 
use of numbers. 

• Learners form 
mental pictures of 
concepts. 

Generalising arithmetic as the exploration of properties and number operations 

Repeated addition as multiplication 

Introduction 
 

- Look at the following pictures of children with eyes. 
 
 
 
 
- How many children are there? 
- How many eyes do they have in total? 
- How many eyes will two children have? 
- How many eyes will four children have? 
- How many eyes will eight children have? 
- What pattern do you notice? 

Lesson 
1. Look at the picture of hands 

 
 
 
 
 

2. How many hands do you see? 
3. How many fingers does one hand have? 
4. How many fingers do two hands have? 
5. How many fingers do five hands have? 
6. How many fingers do 10 hands have? 
7. Do you notice a pattern? 
8. Can you describe the pattern in your own words? 
9. Write the number of fingers on five hands as an addition sum. 
10. Write the number of fingers on five hands as a multiplication sum. 

 
Review and discussion 

- How can you quickly find the answer of a large amount of objects by not counting 
each object? 

- What is the relation between addition and multiplication in the sums we did today? 
- Which one is faster? 
- How do you know? 

Specialising: 
 
I know:   -  Learner knows what is asked to  
                  do 

- Specialise to find out how to 
count in multiples, and the 
relation to addition and 
multiplication. 

- What is relevant and important 
when repeatedly adding? 

 
I want:    -  Classify and sort the information 

- Specialise to discover what the 
real question is 

- Specialises what is the pattern 
when counting objects in 
groups/repeatedly adding 

 
Introduce: - Use numbers to show an  
                   addition and multiplication sum  
                   for repeated addition. 
 
Generalising: 
 

 Check:     -   Arguments to check that what  
                     has been done so far, is  
                     correct. 

- Whether the rule stands for all 
amounts of children/hands 

- Consequences of conclusion to 
see if they are reasonable 

 
Reflect:      -   On key ideas and moments 

- On implications of conjectures 
or arguments 

- On the resolution: Can it be 
made clearer? 

 
Extend:      -   Use a given rule to write 
addition  
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- Can you always use multiplication in the place of addition? 
- When can you use multiplication instead of addition? 

                     and multiplication sums 
- Try the result to a wider 

concept by generalising.  
- Make a conjecture which is 

always true.  
Generalising about particular number properties and relationships 

Introduction 
- What must be added to 3 to get to 10? 
- What must be added to 13 to get to 20? 
- What must be added to 23 to get to 30? 
- What must be added to 3 to get to 20? 
- What must be added to 103 to get to 120? Explain. 
- What must be added to 213 to get to 230? Explain. 
- What do you notice? 
- How do you know? 
- Will this always be true? 

Lesson 
1. Complete the following train sums: 

 
 

 

 

 

 

 

 

 

 

 

 

2. What do you notice about all the numbers at the beginning of the train sums? 
3. What do you notice about all the numbers that you added first? 
4. What do you notice about the first answer that you got every time? 
5. What is the relationship between 3 and 7? 
6. Can you provide a rule in words for the relationship between 3 and 7? 
7. Can you think of other number pairs which follow the same rule? 

 
Review and discuss? 

- What did you notice when adding 3 and 7 together every time? 

- Why is this important to notice? 
- Does it always work? 
- Are there other numbers for which this is also true? 

Specialising: 
 
I know:   -  Learner knows what is asked to  
                  do 

- Specialise to find out what must 
be added to 3 to get an answer 
which is a multiple of ten. 

- What is relevant and important 
when adding to 3 every time? 

 
I want:    -  Classify and sort the information 

- Specialise to discover what the 
real question is 

- Specialises what is the 
relationship between 3 and 7 and 
how it can be used to complete 
the ten. 

 
Introduce: - Use diagrams as train sums to  
                    show how completing the ten  
                    makes addition easier. 
 
Generalising: 
 

 Check:     -   Arguments to check that what  
                     has been done so far, is  
                     correct. 

- Whether the rule stands for all 
additions of 3 and 7. 

- Consequences of conclusion to 
see if they are reasonable 

 
Reflect:      -  On key ideas and moments 

- On implications of conjectures 
or arguments 

- On the resolution: Can it be 
made clearer? 

 
Extend:      -   Use a given rule to try with 
other  
                     pairs of numbers. 

- Try the result to a wider 
concept by generalising.  

93 100 120 + + 

13 30 45 + + 

53 60 100 + + 

23 30 35 + + 

223 240 255 + + 
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- Make a conjecture which is 
always true.  

Generalising towards the idea of a function 

Introduction 
 
 
 
 

- Initial group discussion about pattern 
- Identify elements (colour, shape)  
- Which elements are changing, and which stays the same? 
- Copy and extend the pattern 
- Describe in own words the rule of the pattern 

 
Learners investigate a variety of repeating patterns such as:  
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Copy and extend pattern 
2. Find elements of the pattern (colour, shape) 
3. Name the elements of the patterns in words to find form of the pattern 
4. Which elements are changing, and which stay the same? 
5. Identify core of the pattern 
6. Use core of the pattern to create own pattern that is the same 
7. Conjecture a rule of each pattern informally in own words 

 
Review and discuss  

- What is the main thing that happens in a repeating pattern? 
- What is a pattern made up of? 
- What is the core of the pattern? 
- Why is it important to know what the core of the pattern is? 
- What can one do with the core of the pattern? 
- Discuss interesting situations that came to life during the small-group 

investigation 
 

Specialising: 
 
I know:    - Learner knows what is asked to  
                  do 

- Specialise to find the elements 
involved 

- What is relevant and important in 
the pattern? 

 
I want:    - Classify and sort the information 

- Specialise to discover what the 
real question is 

- Specialises how elements 
change in the pattern 

 
Introduce:- images, diagrams, symbols 

- Representation, notation, 
organisation 

- Learner uses alphabet symbols 
to classify elements of pattern to 
make clear the form of the 
pattern 

 
Generalising: 
 

 Check:      - Arguments to check that what  
                     has been done so far, is    
                     correct. 

- Identify core of the pattern 
- Consequences of conclusion to 

see if they are reasonable 
- The core fits the pattern and 

the question that has been 
asked 

- Informally produce rule for the 
pattern w.r.t core 

 
Reflect:      - On key ideas and moments 

- On implications of conjectures 
or arguments 

- On the resolution: can it be 
made clearer? 
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Extend:      - Learner creates own pattern   
                     with the same core, that follows    
                     the same rule 

- Learner informally describes 
rule in own words 

- Try the result to a wider 
concept by generalising 

Syncopated stage: 

• Characterised by 
geometric 
thinking. 

• Geometric 
thinking involves 
representing 
mathematical 
thinking by 
means of 
geometric figure 
and forms. 

• Learners need to 
represent the 
context of 
algebraic 
problems by 
means of 
diagrams, which 
involves 
geometric 
thinking.  

Conceptual: 

• A shift from 
analysing objects to 
the consideration of 
relations of 
transformations 
between objects. 

• Learners find 
interrelationships 
between properties. 

• They start providing 
definitions and 
theorems for what 
they experience.  

 

Generalising arithmetic as the exploration of properties and number operations 

Doubling and halving as inverse relationships 

 
Introduction 

- What does it mean to double a number? 
- What does it mean to half a number? 
- Look at the following picture. First half it and then double it.  

 
 
 
 
 
 
 
 

- How many blocks do you see? What is half of that amount?  
- What happens if you double the answer, you got above? 

 
Lesson 
 

1. Complete the following doubling and halving machines. 
 

Doubling 
machine 

IN 13 21 25 32 36 41 47 50 
OUT 26        

Halving 
machine 

IN 100 94 82 72 64 50 42 26 
OUT 50        

 
 

2. What did you have to do every time to complete the doubling machine? 
3. What did you have to do every time to complete the halving machine? 
4. Can you use the doubling machine to complete the halving machine? 
5. Why and how does it work? 
6. What is the relationship you notice between halving and doubling? 
7. Describe the relationship between doubling and halving in words. 
8. Can you represent the relationship in your own flow diagram? 

 
 
Review and discussion 

- How did you go about completing the halving and doubling machines? 
- What does it mean to double and half? 

   

   

   

   

Specialising: 
 
I know:   -  Learner knows what is asked to  
                  do 

- Specialise to find out what does 
doubling and halving mean 

- What is relevant and important 
when doubling and halving 
diagrams or numbers? 

 
I want:    -  Classify and sort the information 

- Specialise to discover what the 
real question is 

- Specialises what is the 
relationship between doubling an 
halving 

 
Introduce: - Uses symbols and notation to  
                    represent the relationship. 
                 - Uses the relationship to 
complete  
                   doubling and halving machines. 
 
Generalising: 
 

 Check:     - Arguments to check that what  
                    has been done so far, is correct. 

- Whether the rule stands for all 
filled in numbers. 

- Consequences of conclusions 
to see if they are reasonable 

 
Reflect:      - On key ideas and moments 

- On implications of conjectures 
or arguments 

- On the resolution: Can it be 
made clearer? 

 
Extend:      -   Use relationship to create a 
flow  
                     diagram for doubling and  
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- Is there a relationship between doubling and halving? 
- How do you know? 
- Is this always true? 

                     halving. 
- Try the result to a wider 

concept by generalising 
- Make a conjecture that is 

always true.  
Generalising about particular number properties and relationships  
 
 
 
 
 
 
 
 
Introduction 
 
 

- Learners complete basic pyramid with rule: add the two numbers that are next 
to each other to get the number on top. 

- Learners discuss verbally what the rule is for the pyramid. 
- Learners create own pyramid with the same rule. 

 
Lesson  

1. Learners receive pyramids with different rules (add two numbers next to each 
and double the answer to find the number on top) in order to solve the pyramid. 

2. Learners must use the numbers available to work out a rule that is valid for the 
whole pyramid 

3. Learners must complete pyramid according to rule. 
4. Learners will then receive blank pyramid and a rule: add numbers next to each 

other and minus 3 to get answer on top. 
5. Learners must design own pyramid with given rule. 

 
Review and discussion  

- How did you know what the rule of each pyramid is? 
- How can one work it out? 
- Where did you start when you had to create your own pyramid? 
- Is there one rule that one must always use for a pyramid? 
- Discuss interesting situations that came to life during the small-group 

investigation. 
 

Specialising: 
 
I know:   -  Learner knows what is asked to  
                  do 

- Specialise to find out how does a 
pyramid work 

- What is relevant and important 
when completing the pyramid? 

 
I want:    -  Classify and sort the information 

- Specialise to discover what the 
real question is 

- Specialises what is the rule for 
completing the pyramid 

 
Introduce: - Uses symbols and notation to  
                    represent the number patterns. 
                 - Use numbers to complete the  
                   pyramid according to the rule. 
 
Generalising: 
 

 Check:     - Arguments to check that what  
                   has been done so far, is correct. 

- Whether the rule stands for all 
filled in numbers 

- Consequences of conclusion to 
see if they are reasonable 

 
Reflect:      - On key ideas and moments 

- On implications of conjectures 
or arguments 

- On the resolution: can it be 
made clearer? 

 
Extend:      -   Use a given rule to fill in the    
                      blank pyramid. 

- Try the result to a wider 
concept by generalising 

- Make a conjecture that is 
always true.  
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Generalising towards the idea of a function 

Introduction 
  
 
 
 
 
 

- Initial group discussion about pattern. 
- Identify elements in the pattern. 
- What is the constant change in the pattern? 
- Copy, extend and describe pattern. 
-  

Lesson  
 
 
 
 
 
 
 

1. Identify elements of the pattern in relation to the terms. 
2. Copy, extend and describe pattern. 
3. Recognise and discuss the constant change. 
4. Find a different way to represent the constant change: make a number 

sequence out of the pattern. 
5. Represent pattern in a table form. 
6. Find a general rule for the pattern with regards to the relation between the term 

and the number of circles. 
 

Review and discuss 
- What is the main thing that happens in a growing pattern? 
- What is this pattern made up of? 
- What is the core of the pattern? 
- Why is it important to know what the constant change is? 
- What can one do with the constant change? 
- Why is it important to know what the relation between the term and the circles 

is? 
- Discuss interesting situations that came to life during the small-group 

investigation. 

Specialising: 
 
I know:   -  Learner knows what is asked to  
                  do 

- Specialise to find the elements 
involved 

- What is relevant and important in 
the pattern? 

 
I want:    -  Classify and sort the information 

- Specialise to discover what the 
real question is 

- Specialises how elements 
change in the pattern 

- Identify the constant change in 
the pattern 

 
Introduce: - images, diagrams, symbols 

- Representation, notation, 
organisation 

- Represent pattern in number 
pattern and in table 

 
Generalising: 
 

 Check:     -  arguments to check that what  
                     has been done so far, is  
                     correct. 

- Identify constant change of the 
pattern 

- Consequences of conclusion to 
see if they are reasonable 

- The constant change fits the 
pattern and the question that 
has been asked 

- Extend and describe the 
pattern 

- Informally produce rule for the 
pattern w.r.t constant change 

- Find a relation between the 
term and the pattern (functional 
relationship) 

 
Reflect:      -  On key ideas and moments 

- On implications of conjectures 
or arguments 

- On the resolution: can it be 
made clearer? 
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Extend:      - Learner creates own action  
                     pattern with the same core, that  
                     follows the same rule 

- Learner informally describes 
rule in own words 

- Try the result to a wider 
concept by generalising 

Symbolic stage: 

• Total 
symbolisation can 
be noted. 

• All numbers, 
operations and 
relationships are 
expressed using 
symbols. 

• Manipulations on 
the symbols are 
done according to 
governing rules. 

 

Abstract: 

• Learners use 
symbols with deep 
understanding to 
construct proofs. 

• They understand 
the importance of 
deductions, axioms, 
postulates, and 
proofs. 

• Learners can 
deduct a rule for 
patterns. 

• Understand how 
symbols can be 
used to represent 
the rule. 

Generalising arithmetic as the exploration of properties and number operations 

This lesson aims to investigate repeated addition to form a number pattern to see if two 
patterns can arrive at the same number. 
 
Introduction 

- Number pattern warming up activities 
- Completing a few basic number patterns: 

5: 10: 15 …….. 
4; 8; 12 …….. 
2; 4; 6 ……. 

- Which of these number patterns start with even numbers and which start with 
uneven numbers? How does that influence the numbers in the rest of the pattern. 

- Provide a rule for each number pattern informally in words. 
 

Lesson  
1. Learners must investigate two number patterns with regards to their elements 

and position to see if they both end up at the same number 
2. Learners must use the 2’s and 3’s pattern 
3. Start with 2 and repeatedly add 2: 2 + 2 → 4 + 2	 → 6 + 2 = 8 + 2	 → 10… 
4. Start with 3 and repeatedly add 3: 3	+	3 → 6 + 3	 → 9 + 3 = 12 + 3	 → 15… 
5. Will they both arrive at 26? 
6. Which one will arrive there first? 
7. How can you determine if they will both arrive at 26? 
8. Are there number for which 2 and 3 will arrive at the same number? Why/ why 

not? 
9. Provide a rule for your findings using pictures or symbols. 

 
Review and discussion 
 

- What did we try and find out in this investigation? 
- Could both number sequences end up at the same number? 
- Why not? 
- Is this always true? 
- How do you know? 

 

Specialising: 
 
I know:   -  Learner knows what is asked to  
                  do 

- Specialise to find out how to 
complete number patterns 

- What is relevant and important 
when completing the number 
pattern? 

 
I want:    -  Classify and sort the information 

- Specialise to discover what the 
real question is 

- Specialises what is the constant 
change in the structure of the 
repeated addition 

- Recognise that the different 
repeated addition sums give 
different answer. 

 
Introduce: - Uses symbols and notation to  
                    represent the patterns and  
                  structure which can be noticed. 
                 -Create the 2’s and 3’s pattern 
                 -Find a way to describe the  
                  relation between adding even  
                  and uneven numbers. 
 
Generalising: 
 

 Check:      -  Arguments to check that what  
                     has been done so far, is     
                     correct. 

- Follow a rule to create number 
pattern on certain positions 

- Identify the rule that arises  
between the position and 
element of the pattern 

- Consequences of conclusion to 
see if they are reasonable 
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- Informally produce rule for the 
patterns arising 

- Determine whether the two 
patterns can ever arrive at the 
same number? 

 
Reflect:      - On key ideas and moments 

- On implications of conjectures 
or arguments 

- On the resolution: Can it be 
made clearer? 

 
Extend:     -  Try another two different   
                     numbers to add repeatedly to  
                     see if they can arrive at the  
                     same number 

 -   Learner describes  
     rule using pictures or symbols 
- Try the result to a wider 

concept by generalising 
                  -  Make a conjecture that is  
                      always true. 

Generalising about particular number properties and relationships 

 

Arithmetic compensation (If we increase one number by a certain amount, then we 

must decrease the other number by the same amount for the answer to stay the 

same.) (Warren and Cooper, 2003; Cooper and Warren, 2008b)  
 

Introduction 
 
 

- Look at the following two models of length. 
 
 
 
 
 
 
 

- Can you provide a name for each of these strips? 
- How would you describe the length of the white and grey strips in relation to the 

red strip? 
- What must I do with the grey strip to keep the total length the same, if I cut a piece 

of the white strip off? 
- What must I do with the white strip to keep the total length the same, if I cut a 

piece of the grey strip off? 
- How do you know that this will work? 

Specialising: 
 
I know:   -  Learner knows what is asked to  
                  do 

- Specialise to find out what the 
relationship between the strips of 
paper are. 

- What is relevant and important 
when comparing the lengths of 
the paper. 

 
I want:    -  Classify and sort the information 

- Specialise to discover what the 
real question is 

- Specialises what is the constant 
change in the structure of 
arithmetic compensation 

- Recognise that if one length 
increases, the other needs to 
decrease by the same amount to 
keep the total length constant. 

 
Introduce: - Uses symbols and notation to  
                    represent the patterns and  
                    structure which can be noticed. 
                 -  Follow the model to show the  
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*This introduction to the lesson can be repeated a few times with various length models to 
help consolidate the concept.  
 

- Can you write a rule for what we see happening in your own words? 
 

Lesson (The lesson moves away from quantities to the symbolic world) 
 

1. Look at the sum 7 + 5 = 12. 
2. What happens to 7 if we increase 5 by 2 and we want to keep the answer the 

same? Use your counters. 
3. What happens to 5 if we decrease 7 by 4 and we want to keep the answer the 

same? Use your counters.  
4. Examples like this can be repeated a few times. 
5. What do you notice? 
6. Can you explain a rule for this in words? 
7. How do you know that this rule will work? 
8. Show your reasoning and calculations in the table below. 

 
7 + 5 =12  7 5 

7 + 5 = 12 0 0 

 + 7 = 12  ↑2 

3 +  = 12 ↓4  

 +  = 12   

 +  = 12   

 +  = 12   
 
 

9. If we can say 7 is represented by A and 5 is represented by B, can you write a 
rule to represent the pattern you notice in the sums above? 

10. Apply your rule to the following sum: 
13 + 21 = 34 

 
Review and discussion 
 

- What did you find out in this investigation? 

- Will this always work? 

- How do you know? 
- Does it work the same for subtraction? 

 

                    relationship between two       
                    numbers which are added  
                    together.  
                 -  Find a way to describe the  
                    relation between increasing and  
                    decreasing numbers in one 
sum. 
 
Generalising: 
 

 Check:      -  Arguments to check that what  
                     has been done so far, is     
                     correct. 

- Follow a rule to complete more 
examples of increasing and 
decreasing and represent 
relationship in a table. 

- Consequences of conclusion to 
see if they are reasonable 

- Produce a rule using symbols 
and words. 

- Determine whether the rule can 
be transferred to higher 
numbers. 

 
Reflect:      - On key ideas and moments 

- On implications of conjectures 
or arguments 

- On the resolution: Can it be 
made clearer? 

 
Extend:     -  Determine whether the rule can  
                     be transferred to higher  
                     numbers. 

 -   Learner describes  
     rule using pictures or symbols 
- Try the result to a wider 

concept by generalising 
                  -  Make a conjecture that is  
                     always true. 

Generalising towards the idea of a function 

 

Number patterns in a flow chart 

 

Introduction 

Specialising: 
 
I know:   -  Learner knows what is asked to  
                  do 
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15	
39	
144	
88	
234	

+	6	 +	4	

25	
____	
____	
____	
____	

2	
4	
6	
8	
10	

×	5 

____	
____	
____	
____	
____	

6	
9	
12	
15	
18	

+	3	 ×	2	

____	
____	
____	
____	
____	

 
Complete the following flowchart: 
 
 
 
 
 
 
 
 
 
 

- What do you notice in the flow chart? 
- Are there any patterns? 

 
Lesson  
 

1. Complete the following flow chart 
2. What do you notice in the flow chart? 
3. What is the rule of the flow chart? Give your rule in words. 

 
 
  
 
 
 
 
 
 
 
 
 
 
Complete the following flow chart: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

- Specialise to find out how does a 
flow chart 

- What is relevant and important 
when completing a flow chart? 
 

I want:    -  Classify and sort the information 
- Specialise to discover what the 

real question is 
- Specialises what is the rule for 

completing the flow chart 
 
Introduce: - Uses symbols and notation to  
                    represent the number patterns. 
                 -  Uses numbers to complete flow   
                    chart according to the rule. 
 
Generalising: 
 

 Check:      -  Arguments to check that what  
                     has been done so far, is  
                     correct. 

- Identify a rule for the number 
pattern in the input numbers 

- Identify a rule for the number 
pattern in the output numbers 

- Consequences of conclusion to 
see if they are reasonable 

 
Reflect:      -  On key ideas and moments 

- On implications of conjectures 
or arguments 

- On the resolution: Can it be 
made clearer? 

 
Extend:     -   Provide the rule for a flow chart     
                     with input and output numbers  
                     by means of symbols. 

- Try the result to a wider 
concept by generalising. 

- Create own flow chart with own 
rules. 

- Make a conjecture that is 
always true.  
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1. What do you notice in the flow chart? 

2. Are there any patterns in the flow chart? 

3. What is the rule of the flow chart? 

4. What is the rule of the arising patterns? 

5. How can we write the rule using symbols? 

6. Organise your numbers in the table below: 
 

 

IN OUT 

  

  

  

  

  

 

1. What do you notice now? 

2. Can you write a rule using the data table? 

3. Try to write a rule using pictures. 

Table 5.1. The Instructional sequence to implement generalisation for the development of early algebra 
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5.8. CONCLUSION 
 

Freudenthal (1973) opines that the history of  the development of mathematics 

provides valuable inspirations for designing an instructional sequence of 

generalisation activities based on RME design theories (Gravemeijer, 2020, 2007). To 

this end, a systematic review of the literature on the historical development of algebra 

was conducted in Chapter 2. 

 

In Chapter 3, guided reinvention and emergent modelling as design heuristics were 

explored with the purpose of designing an instructional sequence for the development 

of early algebra in the foundation phase. A systematics literature review was 

conducted to set the scene for early algebra (see 3.3). Thematic analysis of the current 

situation of algebra in the mathematics education classroom was conducted, along 

with a look at what South African curriculum says about early algebra, the importance 

of early algebra and its scope.  

 

From there a systematic literature review was conducted to review the development  

of algebraic thinking (see 3.4) with a specific focus on the levels of algebraic thinking 

and how they relate to the emergence of algebra from history. Kaput’s (2008) main 

components of early algebra (see 3.5) and how they appear in the history of 

mathematics was reviewed.  

 

The systematic literature review which was conducted in Chapter 2 as well as Chapter 

3, was used to inform the design of an instructional sequence (3.7) to implement 

generalisation activities in the early years classroom as a possible route to develop 

early algebraic thinking. 
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CHAPTER 6: CONCLUSION OF THE STUDY 

6.1. INTRODUCTION 

Chapter 6 provides a summary, overview and report of the findings of the systematic 

literature review. The chapter will start by explaining the purpose of the study and how 

the chapters have been set out to achieve the purpose. From there the findings of the 

study will briefly be reviewed. Furthermore, this chapter will consider the limitations of 

the study and mention possible avenues for future research. The chapter will conclude 

with some recommendations and final remarks. 

6.2. PURPOSE AND OVERVIEW OF THE STUDY 
 

The purpose of this systematic literature review study was to investigate the role of 

generalisation in the development of early algebra concepts and skills. A thorough and 

systematic literature review of the emergence of early algebra concepts and skills from 

the historical development of algebra was conducted, and these concepts and skills 

were used as the basis for the design of an instructional sequence to implement the 

generalisation concept in the early years classroom.  

 

The main research question of the study was formulated as: What is the role of 

generalisation in the understanding of early algebra concepts and skills in young 

children? From there the following aims and objectives were constructed to achieve 

the purpose of the study: 

1. What can we learn from the history of the development of algebra for the 
learning of algebra? 

2. What is early algebra? 
3. What is the role of algebraic thinking and generalisation in the understanding 

of early algebra? 
4. How is the problem-centred approach implemented in the teaching and learning 

of early algebra in the search for teaching for understanding? 
 

Chapter 1 presented a motivation for the study, the problem statement with the 

research question and sub-research questions, and a brief overview of the study 

methodology. Chapter 2 is an analytical chapter, involving  the use of a systematic 
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literature review to analyse and synthesise the emergence of the main concepts and 

big ideas of early algebra from in history. The chapter went on to explain how the 

historical stages could be adopted as the developmental stages of early algebraic 

thinking. Purposes for school algebra, as they emerged in history, were extracted. A 

short overview of the history of algebra in South Africa was provided. In Chapter 3, the 

literature pertaining to early algebra, generalising, and the structure of mathematics 

was analysed. The study of these analytical themes, together with the concepts 

emerging from history (Chapter 2), were used to construct an instructional design 

sequence for the implementation of the generalisation concept in early years 

classrooms. Chapter 3 also focused on real mathematics education (RME) and the 

principles of guided reinvention and emergent modelling. Chapter 4 of the study was 

used to explain, justify, and evaluate the methodology employed. In this chapter the  

research approach, paradigm, methodology and design of the systematic review 

process were described. The trustworthiness and ethical dimensions of the study were 

considered. Chapter 5 applied the findings and synthesis of the analytical chapters to 

the design of an instructional design sequence based on the principles of RME. 

Chapter 5 also described the teaching approach and classroom practices and culture 

which should characterise a early mathematics education classroom.  

6.3. FINDINGS OF THE STUDY  
 
 
In this section of Chapter 6, the findings of the systematic literature review will be 

briefly summarised according to the analytical themes created for the purposes of the 

study and research questions.  

 

6.3.1. The emergence of early algebra concepts from history 
 
This analytical theme was mainly explored in Chapter 2. The stages of emergence of 

algebra in history closely relates to the levels of thought learners go through when 

learning algebra and developing algebraic thinking (Sfard, 1995; Katz and Barton, 

2007; Nixon, 2009). 

 
6.3.1.1. The rhetorical stage 
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The rhetorical stage is characterised by the need to solve problems, but problems 

were not yet categorised. Individual solutions for individual problems were described 

mainly in words. In this stage, reasoning was answer orientated and little generality 

could be noticed (Katz and Barton, 2007; Tabak, 2011; Katz and Parshall, 2014).  

 

This stage relates to the first step learners take when approaching early algebra type 

activities. Learners, for example, express patterns or relationships they notice in 

words. The role of the teacher is to emphasise key aspects in learners observation 

which will aid learners in alter being able to represent patterns in various 

representations (syncopated stage) and then later using symbols (the symbolic stage) 

(Blanton and Kaput, 2011). 

 

6.3.1.2. The syncopated stage 

 
The syncopated stage is characterised by geometric thinking. Geometric thinking 

involves the representation of mathematical thinking through various representations 

and especially in the shape of geometric figures and forms (Katz and Barton, 2007).  

 

The geometric thinking stage in the development of algebraic thinking is an important 

step. Here, learners start to make models and mental pictures of mathematical 

concepts and real life situations they are working with (Cooper and Warren, 2008). 

Making models and representing ideas by means of geometric figures, is an important 

step towards generalising (Roberts, 2012; Kaput, 2008). 

 

Furthermore, the need to solve complex, real-life problems further enhanced the 

development of algebra in this stage. Mathematicians realised that a need exists for 

problems to be grouped together and be brought in relation to each other (Bednarz, 

Kieran and Lee, 1996) Generalisation as algebraic thinking started to become more 

prominent and fundamental in the emergence of algebra in the syncopated stage.  

 
6.3.1.3. The symbolic stage 

 
The symbolic stage is characterised by total symbolisation. All numbers, operations 

and relationships are expressed through the use of a set of easily recognised symbols 
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(Mathematics for Teaching, n.d.).  The development of convenient symbolisms for 

expressing new ideas, emancipated mathematicians, and led to great discoveries in 

this stage.  

 

 
6.3.1.4. The conceptual stages 

 
Four conceptual stages accompanied the algebra’s historical developmental stages, 

and provide additional insights into the development of algebraic thinking. 

 
 
Katz and Barton (2007) in their work, refered to four conceptual stages in the 

development of algebra which runs simultaneously with the three main stages. These 

four conceptual stages include: the geometric, static-equation, dynamic function and 

abstract stages. These stages overlap and clearly show a relation to algebraic 

thinking.  

 

The geometric stage reflects the beginning of algebra where the goal was to find 

geometric quantities such as the legnth and width of a rectangle. The aim was to solve 

geometric problems and algorithms was developed to solve equations (Katz and 

Barton, 2007). In the same way, learners in the early mathematics classroom as 

learners work with numbers and number properties, as well as, solving problems and 

communicating their ideas, they should constantly be aiming to find generalities 

(Blanton et al., 2015). The geometric stage can be brought into relation with the 

perceptual level of thought explained by Nixon  (2009), where the coordination of 

physical senses and perceptions is used to develop algebraic concepts. Apsari et al. 

(2020,p.52-53) distinguish various major roles of geometric representation in the pre-

algebra classroom: 

• Context 
• Model of, and model for, situation 
• Scaffolding 
• Learners’ mathematical reasoning and proof 

 

When algorithms start to replace geometry and geometry representations, the 

geometric stage move to the static-equation solving stage (Katz and Barton, 2007).  
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The static-equation solving stage was characterised by having a general numeric 

problem which can be viewed as algebraic. An algorithm to solve the problem, 

expressed as an equation, is then proposed and used to solve the problem to get the 

answer. The aim of algebra in this stage was the solution of equations (Katz and 

Barton, 2007). Reasoning with equations is an important idea which should be 

introduced in the pre-algebra classroom (Knuth et al., 2014). When learners move to 

the static-equation solving stage, learners also enter the conceptual level of thought 

explained by Nixon (2009). The focus here shifts from analysing objects to the 

transformations and relations between objects.  

 

The dynamic function stage developed the concept of movement and motion. Algebra 

was perceived as a challenging subject due to the lack of standardised symbols 

(Tabak, 2011). In the 17th century, new notation was introduced by mathematicians 

like Viètes and Descartes (Katz and Barton, 2007). The introduction of notation and 

use of symbols made it possible for mathematicians to see broader patterns in 

mathematics and identify relationships between symbols and classes of objects they 

represent (Tabak, 2011). When looking at the pre-algebra classroom, Kaput (2018) 

indicates the importance of learners being able to suspend their attention on what 

symbols stand for, and rather look at symbols themselves. In so doing, they are 

liberated to operate on relationships which are more complicated. This stage still falls 

in the conceptual level of thought explained by Nixon (2009). 

 

The structure of mathematics becomes the underlying goal in the abstract stage (Katz 

and Barton, 2007). The focus of early algebra should be on a relational approach to 

learning mathematics, which refers to studying number from a structural perspective. 

Structure is extracted through exploring number and space relationally (Du Plessis, 

2018). This stage aligns with Nixon’s (2009) abstract level of algebraic thinking. In this 

level, learners start to use symbols with deep understanding and construction of 

proofs. Learners understand the importance of deductions, axioms, postulates, and 

proofs at this level.  
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The emergence of algebra throughout history, provides an instructional sequence for 

the development of algebraic thinking in the early years classroom. There are several 

purposes for school algebra which emerged from history which will be summarised 

next.  

 
6.3.1.5. Purpose for school algebra emerging from history 

 
Algebra as a school subject was introduced much later than arithmetic and geometry. 

Early in the 19th century, school algebra was linked to what was expected of learners 

at a tertiary level. In the second half of the 19th century, algebra was used to model 

and solve real-life problems in context which helped learners to form a deeper 

understanding of the subject and the concepts (Ellerton, Kanbir and Clements, 2017). 

Six purposes for algebra emerge when studying the literature about the history of 

algebra. These purposes were outlined by Ellerton, Kanbir and Clements (2017) as: 

1. Purpose 1: Knowledge essential for higher mathematics and science 
2. Purpose 2: Generalised arithmetic 
3. Purpose 3: A pre-requisite for entry to higher studies 
4. Purpose 4: A language for modelling real-life problems 
5. Purpose 5: An aid for describing basic structural properties 
6. Purpose 6: A study of variables 

 

These purposes which emerge from history provides a clear view of what some of the 

aims of school algebra should be and closely align with the main components of 

algebra and the Big Ideas of early algebra which inform algebra teaching and learning.  

 

6.3.1.6. The algebra situation in South Africa 

 
In the CAPS document  for foundation phase mathematics in South Africa, algebra is 

described as one of the main content areas (Department of Basic Education, 2011). 

Algebra is described as the language for investigating and communicating most of 

mathematics and can be extended to study functions and relationships between 

variables. The CAPS document mainly focuses on copying and extending patterns. It 

does not pay attention to the generalisation of mathematics as a whole, even though 

the first content area, “Numbers, operations and relationships’, provide opportunity to 

develop the generalisation concept(Roberts, 2010). Early algebra is not explicitly 

mentioned, but notice is made  of observing relationships between different kinds of 
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numbers, representation of numbers in different ways and allows for the exploration 

of equivalence and the equal sign (Department of Basic Education, 2011). This 

correlates with the aim of early algebra which includes generalised arithmetic and 

seeing the relationship between numbers and their properties (Kaput, 1995; Roberts, 

2012). 

 

Learners should notice the underlying structure of patterns which emerge from the 

whole of mathematics (Mulligan et al., 2008). The very relevant work by Du Plessis 

(2018) in this field showed that the CAPS document emphasises the importance of 

noticing logic in patterns, but this approach is not implemented in classrooms. Du 

Plessis (2018) noticed in his work that a lack of a relational approach to the teaching 

of early algebra concepts in the foundation phase exists. Another major challenge is 

the fact that many teachers have not been taught the content area of ‘Patterns, 

functions and algebra’. It remains an area of confusion regarding why and how to 

implement this content area of the curriculum effectively.  Literature (Mulligan, 

Mitchelmore and Prescott, 2005; Warren and Miller, 2010; Papic, Mulligan and 

Mitchelmore, 2011; T. Cooper and Warren, 2011) shows that a need for an early 

algebra approach where the relation between patterns, structure and algebraic 

reasoning, and their power to basic numeracy in young learners, is emphasised and 

implemented in foundation phase classrooms.  

 
 

6.3.2. The teaching of early algebra 
 

The main components of early algebra which emerged from history were further 

explored and analysed in Chapter 3, with the purpose of forming a thorough 

understanding of how early algebra should be implemented in early mathematics 

classrooms. 

 
6.3.2.1. The early algebra curriculum 

 
The traditional approach to teaching algebra involves an over-emphasis of 

computational work in arithmetic in the early and middle grades which is followed by 
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a superficial teaching of algebra in the secondary grades (Kaput, 2008) Radford, 

2015)(Blanton, Stroud, et al., 2019).  

 

In South Africa, algebra is a key course in the secondary mathematics curriculum and 

is a pre-requisite for post-secondary mathematics, science, and engineering courses. 

Algebra can, for that reason, be considered as a gatekeeper course which leads to 

the marginalisation of learners by sorting learners out of certain career paths, and this 

deeply affects underrepresented groups (van Laren and Moore-Russo, 2014).  

 

This study was grounded in the proposition that it is crucially important to establish 

firm foundations for algebra in the early years and that learners are able to think 

algebraically from a young age. With suitable instructional support, learners can 

understand some algebraic concepts (Radford, 2011). Early algebra has the purpose 

of enhancing learners’ understanding of the structural form and generality of 

mathematics and aims to not provide isolated mathematics experiences.  

 
6.3.2.2. Kaput’s framework for early algebra 

 
Kaput (2008) states that algebra consists of particular thinking practices and content 

strand. He proposes that algebraic thinking involves (a) making and expressing 

generalisations in increasingly formal symbol systems and (b) reasoning with symbolic 

forms. These practices take place over three content strands (Kaput, 2008, p.11): 

Algebra as the study of structures and systems abstracted from computations and 

relations, including those arising in arithmetic and quantitative reasoning. 

Algebra as the study of functions, relations and joint variation. 

Algebra as the application of a cluster of modelling languages both inside and outside 

of mathematics. 

 

 

 

 

 

 

 
 
 
 

219 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Kaput’s core aspects and strands of algebra (Roberts, 2012, p.304) 

 

In next section, a summary of these fundamental components will be provided.  

 
6.3.2.3. Fundamental components of early algebra based on Kaput’s framework 

 
Kaput’s (2008) framework to describe various aspects and strantds involved in algebra 

and algebraic thinking was used to construct the generalisation activities in the 

instructional sequence in Chapter 5. 

 

1) Generalisations and formalisation 

Algebra evolved as a constant attempt to make generalisations and 
formalisations (Kaput, 1999). The aim of early algebra is to find generalisations 
as it creates an understanding of the underlying structure of mathematics 
(Warren and Cooper, 2008) (Roberts, 2012).   
Generalisation as an analytical theme will be summarised in 6.3.3. 
 

2) Syntactically guided manipulation 

Symbols are used to represent abstract arithmetic, and algebraic and logical 
propositions. These symbols are manipulated according to internally 

Core Aspect A: 
Using symbols to 
generalise. 

Core Aspect B: 
Reason with symbolized 
generalisation and acting 
on symbols following rules.   

Strand 1: 
Generalising from 
arithmetic and 
quantitative reasoning. 

Strand 2: 
Generalising towards the 
idea of function. 

Strand 3: 
Modelling as a language 
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represented mathematical and logical rules (Landy, Allen and Zednik, 2014). 
Manipulation refers to the changing form of the expression. Learners suspend 
their attention on what the symbols stands for and focus on the symbols itself. 
The introduction of notation and symbols in the symbolic stage made it possible 
for mathematicians to see broader patterns and identify relations between 
symbols and the classes of objects they represent  (Tabak, 2011). When this 
happens in the classrooms, learners are freed to operate on more complicated 
relationships. To ensure this process runs effectively, well-planned out lessons 
in a pre-determined sequence needs to be implemented. Manipulations on 
representations happens in two broad classes (Kaput, 2018): syntactic and 
semantic. Syntactic action. involves the manipulation of symbols by only 
looking at the syntax of the symbol system. A semantic action is guided by the 
referents of the symbol. Syntactically guided manipulations on formalisms is 
viewed as the core of algebra, but to ensure effective development of actions 
on formalisms, a semantic starting point should be taken (Kaput, 1995a). 
Syntactically guided manipulations are an important goal of algebra instruction 
as learners need to form a deep understanding of representations used 
(Carpenter and Lehrer, 1999). 
 

3) The study of structure 
Generalising and abstraction, where the focus falls on the structure within 
computations rather than the process or answer, lead to the emergence of 
abstract structures which are associated with traditional algebra  (Kaput, 1999). 
At the core of early algebra lies a deep understanding of the mathematical 
structure of arithmetic (Warren and Cooper, 2008). Algebra at the abstract 
stage of its history is described as the science of structure (Sfard, 1995). Katz 
and Barton (2007) describe the conceptual stages of the development of 
algebra, with the abstract stage involving the emergence of the underlying 
structure of mathematics. To enhance structural knowledge, learners should be 
able to recognise equivalent forms of an expression and justify the structural 
equivalence which is identified.  
 
The more developed a learner’s internal representational system is structurally, 
the more well-organised, coherent and stable in all structural aspects their 
external representations will be, and the more mathematically competent the 
learner will be. This indicates the importance of developing a learner’s structural 
understanding of mathematics (Mulligan et al., 2005).  Patterns and structure 
are at the core of mathematical thinking and should be embedded throughout 
mathematics teaching (Mulligan et al. ,2008) 
 

4) Functions, relations and joint variation 
 
Traditionally, the teaching of function only takes place in the secondary grades. 
However, to ensure success in algebraic thinking, functions should be taught 
in a longitudinal approach and should be made accessible to all learners from 
a young age (Blanton and Kaput, 2011). Functional thinking emerges when a 
learner engages in an activity, chooses to pay attention to two or more varying 
quantities, and then start to focus on the relationship between those quantities. 
The crux of functional thinking is the focus on relationship (Smith, 2008).  
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5) Modelling as a language 
It is argued that modelling situations is the primary goal of studying algebra. 
Modelling involves starting with a specific situation and trying to mathematise it 
(Kaput, 1999). RME describes emergent modelling as a design heuristic when 
constructing an instructional sequence (Gravemeijer, 2007, 2020). Emergent 
modelling supports an incremental process in which mathematical models and 
mathematical conceptions co-evolve. 

 
 
6.3.2.4. The big ideas of early algebra 

 
Knuth et al. (2014) propose five big ideas (see 2.2.4) deduced from Kaput’s (2008) 

framework for early algebra. Much of early algebra research has matured around 

these five big ideas (Knuth et al., 2014, p.43). 

 
In this study, these five big ideas emerged from the systematic analysis of the historical 

overview of the development of algebra. This review provided valuable support for 

drawing parallels between this and other perspectives on the progression of levels of 

algebraic thinking. 

 

6.3.2.5. Developing algebraic thinking.  

 
The traditional “arithmetic-then-algebra” approach has proven to be unsuccessful, as 

it does not provide ample opportunity for the deep development of algebraic thinking 

(Knuth et al., 2014). The goal of early algebra should not be skilled use of algebraic 

procedures but rather algebraic thinking (Carpenter & Levi, 2000). Algebraic thinking 

should, therefore, be developed from an early age.  

 

In the early years, algebraic thinking is developed through the comparison of 

quantities, observations and making patterns, navigating through different types of 

spaces, and solving problems in playful interactions with objects and peers in the 

classrooms (Linder, Powers-Costello and Stegelin, 2011). Learners should be 

provided with concrete experiences with algebra concepts (Lee et al., 2016, p. 306). 

Algebraic thinking is further developed through investigations and discussions of 

number properties, which help learners to make generalisations and construct 

concepts to pave the way for formal algebraic thinking in secondary grades (Ontario 

Ministry of Education and Training, 2007, p. 8). Algebraic thinking can be promoted 
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when the emphasis is placed on finding ways to represent and analyse the underlying 

structures of numbers, operations and relationships (Billings, 2017, p. 483). This 

statement shows the importance of including algebra throughout all content areas of 

the early years curriculum.  

 

The RME principles proposes implementing guided reinvention and emergent 

modelling to construct an instructional sequence of mathematical activities which 

guides learners and teachers in the development of the conceptual understanding 

involved in algebraic thinking (Gravemeijer, 2007, 2020; Stephan, Underwood-Gregg 

and Yackel, 2016). In the case of this study, these principles were used to develop an 

instructional sequence of generalisation activities.  

 

6.3.2.6. The levels of algebraic thinking 

 

It is believed that learners should experience mathematics as a human activity and 

that they should reinvent mathematics as they are guided through mathematical tasks 

(Freudenthal, 1973).  In Chapter 3, various perspectives on the levels of algebraic 

thinking were systematically reviewed.  

 

Nixon’s theory on the levels of the development of algebraic thinking 

 

Nixon (2009) argues for three levels of algebraic thinking (see 3.4.3.1).: 
As learners pass through these levels, they need to be guided by a teacher who 

motivates them to generalise and draw comparisons (Nixon, 2009). These levels of 

thought were important in the design of the instructional sequence in Chapter 5. 

 

Mason, Burton, & Stacey's (2010)  conceptual framework for mathematical thinking 
see (6.3.2.5 and Figure 6.1) was also an important conceptualisation of algebraic 
thinking which influenced the instructional design.  
 
 
6.3.3. The role of generalisation in early algebra teaching 
 
6.3.3.1. Generalisation and formalisation 
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When learners are able to find generalisations, they develop a deep understanding of 

the structure of mathematics. The focus of mathematics teaching should be on 

developing fundamental skills in generalising, expressing, and systematically justifying 

generalisations (Warren and Cooper, 2008). It is during the deduction stage of 

generalisaiton, that learners develop the type of reasoning which lies at the heart of 

algebra (Demonty, Vlassis and Fagnant, 2018) 

 

The Realistic Mathematics Education (RME) movement from the Netherlands is a 

constructionist curriculum which aims to teach for abstraction and generalisation.  

    (Mitchelmore, 2002) 

 

6.3.3.2. Generalisation activities 

A number of generalisation activities are important for the development of the 

generalisation concept. 

 
Roberts (2010) explains that generalisation has two manifestioans: generlisation from 

arithmetics and quantitative reasoning; and generalising towards the idea of a 

function. He identified three elements which should constitute generalisation in the 

early years (see 3.5.1) (Roberts, 2010, p. 169). 

 
These activities were used to inform the instructional sequence in Chapter 5.  
 
Knuth et al. (2014) refer to algebraic activites in which generalisation is prominent 

These include the ability to generalise mathematical structure by noticing regularity in 

arithmetic situations, use sophisticated instruments to explore, generalise, and 

symbolise functional relationships, build mathematical arguments that reflect more 

generalised forms than the empirical, case-based reasoning often used, and reason 

about abstract quantities to represent algebraic relationships. 

Generalising arithmetic is an important facet of early algebra as it allows learners to 

form an understanding of the underlying structure of mathematics. This aspect of early 

algebra is located in the ‘Numbers, operations and relationship’ content area of the 

foundation phase curriculum (DBE, 2011). Guidelines for generalising arithmetic 

include (Roberts, 2012, p.308-309): 

1. Be deliberate about, and explore when something happens and when it always 
happens in mathematics. 
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2. Look for patterns in groups of number sentences. 
3. Look for patterns in sequences of sums. 
4. Ask about (observe, describe, talk about) how special numbers behave. 
5. Expect and ask for descriptions of what is observed. 
6. Ask for explanations to show if something is always true. 
7. Explore and talk about equivalence and what the equal sign means. 

 
Generalising a rule or function is an important aspect of early algebra where problem 

contexts are explored, as well as the representations of functions. These 

representations might include number sentences, input and output tables, and function 

machines. Guidelines for generalising a rule or functions include (Roberts, 2012, 

p.312-315): 

1. Expect learners to describe a number pattern in detail. 
2. Look at and talk about the operations or functions, not just the numbers. 
3. Ask about how operations behave. 
4. Set a problem context which requires investigation of a certain function, and 

then use different representations of the function. 
5. Connect work done in ‘Patterns, functions and algebra’ to work in other content 

areas. 

 

Modelling concepts and emphasising the importance of modelling understanding and 

reasoning, enhances learners’ mathematical thinking. Guidelines for generalising a 

rule or functions include (Roberts, 2012, p.315-317): 

1. Model mathematical concepts, problem solving strategies, and calculation 
techniques. Encourage learners to model their understanding and thinking. 

2. Know and make explicit the basic models for the basic operations. 
3. Provide opportunities for learners to use concrete objects, draw or imagine 

objects or processes, and move between the presentations. 
4. ‘Algebraify’ word problems and turn it into an investigation, to model the process 

of solving the problem, when one or more of the parameters is relaxed.  

 

These guidelines were used to decide the types of activities which was included in the 

instructional sequence to develop early algebraic thinking in the early mathematics 

classroom.  

 

From there, the importance of implementing generalisation by means of an effective 

teaching approach, namely the problem-centred approach was explored. The 

problem-centred approach should implemented to ensure teaching for understanding.  
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6.3.4. Teaching for understanding 
 

6.3.4.1. The problem-centred approach for learning algebra 

 
The problem-centred approach takes on the constructionist perspective that 

mathematics is learned as learners reorganise their activity to resolve solutions they 

find problematic (Cobb et al., 2014). This approach to learning is based on the belief 

that subjective knowledge should be experienced by the learner as personal 

constructions and no re-constructed objective knowledge (Murray, Olivier and Human, 

1998). So, the learner is not perceived as an empty vessel in which the teacher ‘pours’ 

knowledge. The learner is an active participant in the learning process and is 

responsible for his own learning. Problem-solving is the process where one starts with 

problems and after working on these problems, one would be left with a residue of 

mathematical concepts and ideas (Murray, Olivier and Human, 1998). In this study, 

PCA as a learning approach, is perceived as an effective way to develop the 

generalisation concept in young learners. The implementation this approach was used 

to inform the instructional design sequence in Chapter 5.   

 
6.3.4.2. The role of the teacher 

 
The role of the teacher in this approach is to facilitate the problem-solving process 

without interrupting learners’ mathematical thought processes (Murray, Olivier and 

Human, 1998). The role of the teacher in PCA-classroom differs from that of the 

traditional teacher role.  Instead of focussing on demonstrating, checking and 

prescribing, the teacher should focus on setting appropriate problems, organising 

interaction between learners and negotiating a style of learning and classroom culture 

with the learners (Cobb et al., 2014, Stephan, Underwood-Gregg and Yackel, 

2016,(Murray, Olivier and Human, 1998). 

 
6.3.4.3. Classroom culture 

 

The classroom culture is an important facet of the PCA and will have a great influence 

of the mathematical learning that takes place in the classroom (Murray, Olivier and 

Human, 1998).. There are four social norms which should be included when setting a 
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classroom culture: (1) explaining and justifying solutions and methods, (2) attempting 

to make sense of others’ explanations, (3) indicate agreement or disagreement, and 

(4) ask clarifying question when the need arises (Cobb and Yackel, 1996). Teachers 

and learners should discuss what is expected of each party in the classrooms, what 

their own role is, and what is means to do mathematics. By engaging in this process, 

learners start to perceive mathematics as an activity where they are expected to solve 

problematic situations by constructing personally meaningful and justifiable solutions 

as they contribute to an interactive, inquiry-based classroom (Cobb et al., 2014). 

 
6.3.4.4. The role of the learner 

 
The learner is viewed as an active participant in the learning process as the 

construction of new conceptual knowledge is based on the interaction between the 

prior knowledge and ideas which a learner already has, and the new conceptual 

knowledge (Human and Olivier, 1999). Learners share the responsibility to create a 

classroom which operates as a community of learners. Learners must, firstly, take 

responsibility for sharing results of their inquiries and for explaining their thinking and 

solutions. Learners, secondly, need to recognise that learning occurs best when 

learning from others. This asks of learners to listen because of a genuine interest of 

what a classmate has to say (Hiebert et al., 1996). The role of the learner is important 

to take into consideration when implement the instructional design sequence in early 

years classroom. The sequence is constructed in such a way that the learner is an 

active participant in his own learning process and the teacher acts as the facilitator.  

 
6.3.4.5. Real Mathematics Education 

 
The aim of the study was to design an instruction sequence based on the principles of 

RME which include guided reinvention and emergent modelling. Gravemeijer (2020) 

states that RME is a design theory which can be explained by means of three 

instructional design heuristics: guided reinvention, didactical phenomenology, and 

emergent modeling. For the purpose of this study, guided reinvention and emergent 

modelling was employed as the design principles for the instructional sequence.  
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Guided reinvention states that learners should experience mathematics as a human 

activity and that they should reinvent mathematical ideas and concepts as they are 

guided through tasks by a teacher. The history of mathematics should inform the 

design of the teaching and learning route (Gravemeijer, 2020).  This principle was 

employed in the design of the instructional sequence as history of algebra was used 

to inform the sequence of acitivites based on the levels of thought which emerged from 

history.  

 

Emergent modelling is a dynamic process of symbolising and modelling. The belief is 

that learners should start with modelling their own informal activity and from there the 

character of the model should change for the learners. The model of informal 

mathematical activity should increasingly develop into a model for more formal 

reasoning (Gravemeijer, 2007). In the instructional design, an increasingly formal use 

of models by learners can be noticed. 

 

Gravemeijer (2007, p.3) refers to four levels of reasoning levels of mathematical 

reasoning which should be implemented in an emergent-modelling design: 

• Activity in the task setting, in which interpretations and solutions depend on 
understanding of how to act in the setting  

• Referential activity, in which models-of refer to activity in the setting described 
in instructional activities 

• General activity, in which models-for derive their meaning from a framework of 
mathematical relations 

• formal mathematical reasoning, which is no longer dependent on the support 
of models-for mathematical activity.  

These levels of mathematical reasoning will inform the sequence of possible activities 

chosen to develop generalisation in the early mathematics classroom. 

 

The instructional sequence constructed in Chapter 5, shows how a variety of 

generalisation activities are introduced as an instructional sequence. The design of 

the instructional sequence was informed by existing research especially pertaining to 

the levels of algebraic thinking in which learners engage as they work through 

problems. For the design, the historical stages have been used at the developmental 

stages which learners work through as they inform the teaching by looking at how 
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algebraic thinking naturally developed through the ages. Nixon’s (2009) levels of 

algebraic thinking align well with the stage and are integrated in the approach.  

 

The outline below shows how the instructional sequence was designed: 
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Outline of the instructional sequence to implement generalisation for the development of early algebra 

Historical stages Levels of algebraic 
reasoning Possible activities according to generalisation elements Specialising or Generalising 

(Thought processes) 
Rhetorical stage: 
• Problems solved 

by looking at 
individual 
problems. 

• Aimed at solving 
specific problem. 

• Problems are not 
categorised. 

• Solutions to 
problems are 
mainly given in 
words. 

• Little to no 
generality can be 
noticed.  

 

geom
etric →

 static-equation →
 dynam

ic function →
 abstract 

Perceptual: 
• Learners need to 

coordinate their 
senses and 
perceptions. 

• Learners 
advance in their 
use of numbers. 

• Learners form 
mental pictures of 
concepts. 

Generalising arithmetic as the exploration of properties and number operations 
 

Specialising: 
I know  
I want 
Introduce 
 
Generalising: 
Check 
Reflect 
Extend 

Generalising about particular number properties and relationships 
 
 

Specialising: 
I know  
I want 
Introduce 
 
Generalising: 
Check 
Reflect 
Extend  

Generalising towards the idea of a function Specialising: 
I know  
I want 
Introduce 
 
Generalising: 
Check 
Reflect 
Extend 

Syncopated stage: 
• Characterised by 

geometric 
thinking. 

• Geometric 
thinking involves 
representing 
mathematical 

Conceptual: 
• A shift from 

analysing objects to 
the consideration of 
relations of 
transformations 
between objects. 

Generalising arithmetic as the exploration of properties and number operations 
 
 
 

Specialising: 
I know  
I want 
Introduce 
 
Generalising: 
Check 
Reflect 
Extend 
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thinking by 
means of 
geometric figure 
and forms. 

• Learners need to 
represent the 
context of 
algebraic 
problems by 
means of 
diagrams, which 
involves 
geometric 
thinking.  

• Learners find 
interrelationships 
between properties. 

• They start providing 
definitions and 
theorems for what 
they experience.  

 

Generalising about particular number properties and relationships  
 
 
 

Specialising: 
I know  
I want 
Introduce 
 
Generalising: 
Check 
Reflect 
Extend 

Generalising towards the idea of a function 
 

Specialising: 
I know  
I want 
Introduce 
 
Generalising: 
Check 
Reflect 
Extend 

Symbolic stage: 
• Total 

symbolisation can 
be noted. 

• All numbers, 
operations and 
relationships are 
expressed using 
symbols. 

• Manipulations on 
the symbols are 
done according to 
governing rules. 

 

Abstract: 
• Learners use 

symbols with deep 
understanding to 
construct proofs. 

• They understand 
the importance of 
deductions, axioms, 
postulates, and 
proofs. 

• Learners can 
deduct a rule for 
patterns. 

• Understand how 
symbols can be 
used to represent 
the rule. 

Generalising arithmetic as the exploration of properties and number operations 
 
 

Specialising: 
I know  
I want 
Introduce 
 
Generalising: 
Check 
Reflect 
Extend 

Generalising about particular number properties and relationships 
 
 

Specialising: 
I know  
I want 
Introduce 
 
Generalising: 
Check 
Reflect 
Extend 

Generalising towards the idea of a function 
 
 
 
 
 
 
 
 

Specialising: 
I know  
I want 
Introduce 
 
Generalising: 
Check 
Reflect 
Extend 

Table 6.1. Outline of the instructional sequence to implement generalisation for the development of early algebra
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6.4. LIMITATIONS OF THE STUDY AND AREAS FOR FUTURE 
STUDIES  

 
This study was limited to a systematic review of pre-existing literature, and did not 

include an empirical component. The proposed instructional sequence was not tested 

experimentally. Furthermore, it is important to note that a majority of sources used 

originates from the USA or other Western countries, including European countries and 

Australia. For that reason a critical question can be raised regarding the 

appropriateness of the findings of this study for implementation in South African 

foundation phase classrooms. The study can, for that reason, not claim that the 

implementation of the sequence in South African classrooms will be effective. Lastly, 

the research was conducted by one primary researcher over a limited period of time, 

which may have resulted in some valuable sources being excluded from the study. 

However, through continuous consultation with the study supervisor, the best attempt 

was made to ensure the completeness of the literature review.  

 

Future research prompted by this study could include: 

• An empirical study of the effectiveness of implementing the instructional 
sequence in South African foundation phase classrooms. 
 

• A deeper analysis of the emergence of the five big ideas in the historical stages 
of algebra.  

 
• Further study of modelling as a language of early algebra, with the aim of further 

informing  the implementation of early algebra in the foundation phase 
classroom. 

 
• Exploration of the use of symbolisation in early algebra in the foundation phase 

classroom.  
 

6.5. A FINAL WORD 
 
The purpose of this systematic literature review was to investigate the role of 

generalisation in the development of early algebra concepts and skills in the early 

years classroom. To achieve this purpose an historical overview of the stages of 

development of algebra was provided. The emergence of the early algebra concepts 

and skills throughout these stages of development was analysed and further 
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synthesised into analytical themes. The systematic review and thematic analysis led 

to construction of an instructional sequence based on the principles of RME, which 

include guided reinvention and emergent modelling.  

 

This study found overwhelming evidence in the literature that learners are able to 

reason algebraically from a young age, and that the generalisation concept can be 

used as route to developing algebraic thinking in early mathematics classrooms. Even 

so, a carefully planned teaching and learning approach is needed to ensure the 

effective development of algebraic thinking. The study proposed that the problem-

centred approach should be implemented alongside a well-thought-out and planned 

instructional sequence of generalisation activities based on the systematic literature 

review.  

 

This study delivers a valuable contribution to the literature of algebra learning as it 

provides a possible route for the development of algebraic thinking by means of 

generalisation. As seen in the literature, early algebra remains a largely unexplored 

domain in the South African early years education context. The findings of this study 

can be taken as a learning theory model which can be implemented in foundation 

phase classrooms, as it provides lessons in a pre-planned sequence.  

 

By implementing this instructional sequence in early mathematics classrooms, the 

hope is that young learners would be empowered to reason algebraically by making 

generalisations throughout mathematics, and to see the underlying structure of 

mathematics.  
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8. ADDENDUM 
 
8.1. LETTER OF EXEMPTION FROM ETHICAL CLEARANCE 
 

 

Stellenbosch University https://scholar.sun.ac.za




