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General summary

Insect diversity is declining globally, threatening ecosystem collapse and human well-being. Accurate

information on biodiversity dynamics is needed to guide landscape management. This is important within 

actively managed production landscapes (especially forestry and agriculture), where land use change and 

habitat degradation impacts biodiversity, which in turn influences ecological resilience.

Satellite remote sensing allows for collection of data over time, which enables a greater 

understanding of species distributions and drivers of change. Combining satellite-derived variables with 

advanced integrative modelling approaches, such as time series analysis, habitat suitability modelling, 

functional connectivity analysis and deep learning image fusion, allows for better understanding of 

biodiversity dynamics to guide landscape management.

In this dissertation, I focus on grasshoppers, indicators of high-quality grasslands, and study their 

diversity within grassland corridors between plantation forests, to gain a greater understanding of how 

plantation landscapes can be managed (e.g. prescribed burning, invasive plant management, tree harvesting) 

to ensure ecological resilience.

Satellite time series showed that changes in grassland structure can have a lasting positive impact on 

grasshoppers for up to three years. Prescribed burning, measured using historic Normalised Burn Ratio 

index, helps maintain high-quality grasshopper habitat, while also influencing functional connectivity of 

grassland corridors. Normalised Difference Vegetation Index (NDVI) was a useful tool to monitor grassland 

corridor condition and to assist with planning of prescribed burning. Large corridors with an elevation 

gradient support diverse assemblages and should be prioritised for conservation.

Deep learning image fusion classified American bramble (Rubus cuneifolius), an aggressive invasive 

species in South African grasslands, with high accuracy compared to conventional satellite imagery. Bramble

had negative impact on plant species richness, larger-sized grasshopper species, as well as species of 

conservation concern. Bramble invaded riparian areas more frequently, threatening Ensifera grasshopper 

species habitat. Harvesting timber compartments and prescribed burning increased bramble cover within the 

landscape. Active management of plantation tree saplings after harvesting can lead to enhanced functional 

landscape connectivity and reduced bramble cover.
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Grassland corridors have high vegetation heterogeneity caused by prescribed burning, which 

contribute to high species turnover. Corridors should be burned every 2-3 years. Using NDVI will help 

foresters to identify where and when to burn corridors, thereby maintaining high-quality grasshopper habitat 

and functional connectivity.

Rotational harvesting of timber compartments is recommended, as logging only some compartments 

will have positive impact on functional connectivity as well as helping prevent bramble invasion through the 

landscape. I recommend combining prescribed burning with grazing by domestic cattle to control bramble 

invasion. Special attention is needed to control bramble two years after harvesting, as this is when bramble 

cover is highest.

This dissertation demonstrated that grassland corridors maintain biodiversity within actively 

managed production landscapes when management incorporates biodiversity response to disturbance. This 

motivates for the maintenance and protection of grassland corridors in other parts of the world to conserve 

biodiversity and help address insect decline. Lastly, the techniques used here provide valuable insights into 

biodiversity response to actively manage landscapes, and can therefore be applied to other vegetation types 

for protecting biodiversity.
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Algemene opsomming

Insekdiversiteit verminder wêreldwyd wat ekosisteem ineenstorting en menslike welstand bedreig. 

Ons benodig akkurate inligting op biodiversiteitsdinamika om landskapbestuur te lei. Dit is belangrik in 

produksielandskappe wat aktief bestuur word (veral bosbou en landbou), omdat verandering in grondgebruik

en habitatdegradasie biodiversiteit impak, wat dan ekologiese veerkragtigheid beïnvloed.

Satelliet-afstandwaarneming versamel data oor tyd, wat vir ons ‘n beter begrip van 

spesieverspreidings en hul drywers verskaf. Die gebruik van satelliet-afgeleide veranderlikes en 

geïntegreerde modelleringsbenaderings, soos tydreeksanalise, habitatgeskiktheids-modellering, funksionele 

konnektiwiteitsanalise en diep-leer beeldsamesmelting, laat toe vir beter begrip van biodiversiteitsdinamika 

om landskapbestuur te lei.

In hierdie tesis, fokus ek op sprinkaane, aanwysers van hoë kwaliteit grasvelde, en bestudeer hul 

diversiteit binne grasveldgange tussen plantasiewoude, om ‘n beter begrip te kry van hoe 

plantasielandskappe bestuur kan word (bv. Voorgeskrewe veldbrande, indringerplantbestuur, boomoes) om 

ekologiese veerkragtigheid te verseker.

Satelliettydreekse wys dat veranderinge in grasveldstruktuur ‘n blywende positiewe impak op 

sprinkane het tot en met drie jaar. Voorgeskrewe veldbrande, gemeet deur die historiese “Normalised Burn 

Ratio” indeks, help om hoë-gehalte sprinkaanhabitat te handhaaf, terwyl dit ook funksionele konnektiwiteit 

van grasveldgange beïnvloed. “Normalised Difference Vegetation Index” (NDVI) is 'n nuttige hulpmiddel 

om grasveldgang toestand te monitor en om te help met beplanning van voorgeskrewe brande. Groot 

grasveldgange met ‘n hoogtegradiënt ondersteun diverse springkaan gemeenskappe en moet geprioritiseer 

word vir bewaring.

Diep-leer beeldsamesmelting het Amerikaanse braambos (Rubus cuneifolius), 'n aggressiewe 

indringerspesie in Suid-Afrikaanse grasvelde, met hoë akkuraatheid geklassifiseer in vergelyking met 

konvensionele satellietbeelde. Braambos het 'n negatiewe impak gehad op plantegroei, groter 

sprinkaanspesies sowel as sprinkane van belange vir bewaring. Braambos het oewergebiede gereeld 

binnegeval, wat Ensifera sprinkaanspesies se habitat bedreig. Die oes van houtkompartemente en 

voorgeskrewe brande het braambedekking in die landskap verhoog. Aktiewe bestuur van plantasie 
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boomsaailinge na die oes van bome kan 'n positiewe impak hê op funksionele landskapkonnektiwiteit sowel 

as om braambedekking te velaag.

Grasveldgange het hoë plantegroei-heterogeniteit wat veroorsaak is deur voorgeskrewe brande, wat 

bydra tot hoë spesie-omset. Grasvelde moet elke 2-3 jaar gebrand word. Die gebruik van NDVI sal 

bosbouers help met tydsberekening en bepaling van brande in grasveldgange, wat dan help om hoë kwaliteit 

sprinkaanhabitat en funksionele konnektiwiteit te handhaaf.

Rotasie-oes van houtkompartemente word aanbeveel, aangesien die afkap van sommige 

houtkompartemente 'n positiewe impak op funksionele landskapkonnektiwiteit sal hê, as ook om braambos 

verspreading deur die landskap te voorkom. Ek beveel aan dat voorgeskrewe brande en beweiding deur mak 

beeste gebruik word om braambos te beheer. Spesiale aandag is nodig om braambos te beheer twee jaar na 

die oes van houtkompartemente, omdat braambos bedekking dan hoog is.

Hierdie tesis demonstreer dat grasveldgange biodiversiteit binne produksielandskappe bewaar 

wanneer bestuur biodiversiteitreaksie op versteuring inkorporeer. Dit motiveer die instandhouding en 

beskerming van grasveldgange in ander dele van die wêreld om biodiversiteit te bewaar, wat help om 

insekafname te voorkom. Hierdie tegnieke bied waardevolle insigte op biodiversiteitsreaksie binne 

produksielandskappe, en kan dus toegepas word op ander plantegroei tipes vir die beskerming van 

biodiversiteit.
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Chapter 1: General introduction

1.1. Importance of insects

Insects are among the most speciose lifeforms on Earth, with an estimated 7 million insect species, 

forming the bulk of multi-cellular life on our planet (Stork 2018). They have a long evolutionary history, 

being associated with the earliest land plants some 303 million years ago (Labandeira 2006). Over this time, 

insects have evolved and diversified with a remarkable array of anatomical traits allowing them to 

successfully dominate most of the planet (Scudder 2017). This remarkable diversity has made them 

fundamental to the functioning of ecosystems, as they provide numerous ecosystem services. Insects are 

responsible the creation of soil, regulation of water quality, dispersal of seeds, prevention of erosion, 

decomposition, dung removal, and much more (Noriega et al. 2018). Humans rely on services provided by 

insects, specifically within agroecosystems, where insects provide services such as pollination, nutrient and 

energy cycling, and pest suppression (Schowalter et al. 2018). Furthermore, insects contribute to ecosystem 

function regionally, as insects utilise air currents to disperse over great distances, connecting far-off 

fragmented habitats and influencing biogeochemistry (Hu et al. 2016).

The great importance of insects to humanity is, unfortunately, still largely unknown to science, 

considering that most insects are still undiscovered (Stork 2015), with only around 1 million described 

species (Foottit and Adler 2017). However, this undiscovered potential is being lost, as insects are going 

extinct at alarming rates, caused principally by rapid anthropogenic developments (Cardoso et al. 2020). The 

loss of insect diversity impacts human well-being, and the need for humanity to conserve insect diversity and

maintain ecological integrity has never been more important (Samways 2020).

1.2. Drivers and consequences of insect decline

The rate of declining insect abundance and species richness, accompanied by the cascading 

disruptions in ecosystem services, has received substantial attention in recent years, not only within the 

scientific literature, but also among the public and media outlets (Montgomery et al. 2020), causing insect 

conservation to rapidly gain global attention (Samways 2020). Although the rate of insect decline and 

extinction is not the same across the globe (Saunders et al. 2020), with complex patterns of species decline 

existing within local regions (Wagner et al. 2021a), there is a general consensus that insect diversity is 
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declining, especially specialist species (Wagner et al. 2021b). Anthropogenic drivers causing habitat loss and 

fragmentation, pollution, spread of alien invasive species, and climate change, has been identified as among 

the main drivers causing insect population decline and extinction globally (Cardoso et al. 2020). 

Furthermore, these drivers are escalating, which threatens the historic functioning of ecosystems (Dirzo et al.

2014).

Climate change, a major challenge facing humanity, has a disproportionately large negative impact 

on montane adapted species, as these species cannot move to higher elevations to escape warming climates 

(Halsch et al. 2021). Furthermore, agricultural expansion and intensification is another challenge, having 

devastating effects on insect biodiversity. In response to this challenge, we need to find sustainable ways to 

balance food production while conserving biodiversity (Raven and Wagner 2021). Even though these 

individual stressors have major negative impacts on insect abundance and diversity, there is still uncertainty 

with respects to their potential interactions, with recent studies demonstrating a cumulative effect between 

multiple stressors best explaining insect decline (Wagner et al. 2021b).

Conveying the consequences of insect biodiversity loss to the public and to increase conservation 

awareness is a daunting challenge. Most services provided by insects have indirect impact on our daily lives, 

yet insects are not often regarded as important conservation targets. To address these challenges, researchers 

attempted to place monetary values on insect services. To date, the most comprehensive economic 

assessment of insect services was done by Losey and Vaughan (2006), who calculated a total amount of $57 

billion for pollination, dung burial, pest control and wildlife nutrition services in the United States alone. 

More recently, pollinators in the commercial apple orchards of South Africa, were shown to have a 

substantial influence on fruit yield and quality, with a gross return of R941 million (c. $50 million) across the

region (Ratto et al. 2021).

Unfortunately, ecologists and entomologists have to date not fully conveyed the great importance of 

insects to the public, as globally the general perception towards insects are overwhelmingly negative 

(Fukano and Soga 2021). Without insects, a multitude of animals, specifically birds, bats, reptiles, 

amphibians, small mammals, and fish, would disappear, causing the collapse of terrestrial and freshwater 

food webs (Goulson 2019). Furthermore, about 75% of edible crops require pollination by insects, and it 

would therefore not be possible to feed the global human population without them (Noriega et al. 2018). 
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There is an urgent need to incorporate the importance of insects in education systems to change human 

perception towards insects to help protect them (Boileau and Russell 2018). Additionally, innovative 

solutions are needed to increase the amount of habitat being protected for conserving insect biodiversity.

1.3. Conservation in production landscapes

Protected areas are the cornerstone of biodiversity conservation (Coetzee et al. 2014). However, most

of Earth’s protected areas are poorly connected, preventing effective gene flow, restricting genetic diversity, 

and hampering eco-evolutionary dynamics (Saura et al. 2018). Models also predict a 50% reduction of intact 

vegetation within protected areas by 2050, if current agricultural and climate pressures continue unchanged 

(Habel et al. 2019). Protected areas alone can therefore not conserve all biodiversity, especially as large 

amounts of biodiversity occur outside protected areas (Gray et al. 2016). This has sparked a long-standing 

debate about effectiveness of conserving biodiversity within actively managed production landscapes (i.e. 

agricultural land), which is known as the land sharing-land sparing spectrum (Sidemo-Holm et al. 2021). 

Land sharing involves environmentally friendly practices within production landscapes to conserve 

biodiversity, as opposed to land sparing, which involves preserving intact natural vegetation patches 

alongside actively managed land for biodiversity conservation (Sidemo-Holm et al. 2021).

The sparing of natural vegetation within production landscapes has great potential for biodiversity 

conservation, compared to land sharing (Balmford et al. 2018), and the formal protection of these areas are 

critically important for safeguarding biodiversity (Dudley et al. 2018). Incorporating key areas into the 

protected area network will greatly improve landscape connectivity to sustain biological functioning 

(Kullberg et al. 2019). This is achievable, as 37% of the worlds eco-regions have sufficiently large amounts 

of intact natural habitat outside of protected areas (Dinerstein et al. 2017). For example, throughout the 

timber plantation mosaic of South Africa, large-scale grassland corridors are maintained for biodiversity 

conservation and support a variety of arthropod taxa (Samways and Pryke 2016). These corridors are crucial 

for insect diversity conservation under global change (Samways et al. 2020), and when managed correctly, 

they support arthropod diversity at a similar level as in neighbouring protected areas (Pryke and Samways 

2012).
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The dynamic nature of production landscapes impacts biodiversity in several ways (Vasseur et al. 

2013), and we need to improve our understanding of how management, and timing of management, impacts 

biodiversity, allowing us to optimise conservation programmes within production landscapes (Jung et al. 

2019). The grassland corridors in KwaZulu-Natal, for example, are subject to invasion by alien plants, 

especially American bramble (Rubus cuneifolius) impacting pollination networks (Hansen et al. 2018), as 

well as uncontrolled cattle grazing, where heavy grazing impacts grasshopper assemblages (Joubert-van der 

Merwe and Pryke 2018). Furthermore, because these grassland corridors occur between commercial forestry 

plantations, active fire management is needed, not only for biodiversity, but for the protection of the timber 

compartments. Fortunately, prescribed burning within the grassland corridors has beneficial outcomes for 

plants, grasshoppers, and butterflies (Joubert et al. 2014, 2016; Gaigher et al. 2019). However, the efficacy of

grassland corridors for protecting biodiversity into the future has been raised previously (Samways and 

Pryke 2016), and empirical evidence is now needed to quantify the longevity of grassland corridors for 

arthropod conservation. Furthermore, robust methods for monitoring the status of grassland corridors are 

needed.

1.4. Technology for monitoring and understanding insects

Monitoring of biodiversity has been recognised as vital for informed management decisions by 

multiple monitoring and reporting frameworks, such as the United Nations' Sustainable Development Goals, 

as well as the Aichi biodiversity targets and the Post-2020 Global Biodiversity Framework of the Convention

on Biological Diversity (Pettorelli et al. 2016; Vihervaara et al. 2017). Management decisions derived from 

monitoring programmes need to be based on high-quality data that provide information on the state of, and 

pressures on, biological diversity across space and time. As conventional field-based observations are limited

to small spatial scales, satellite remote sensing (SRS) has become an important tool for monitoring 

biodiversity over large spatial scales and over time (Rocchini et al. 2016). Advances in integrated cloud 

computing platforms, such as Google Earth Engine, allows more users to access SRS data, thereby 

increasing our understanding of the changing planet (Gorelick et al. 2017). Furthermore, SRS is increasingly 

being used to guide management decisions for promoting conservation (Randin et al. 2020), arising from 

increasingly open access of satellite data (Zhu et al. 2019).
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Satellite sensors record electromagnetic radiation reflected from objects on the Earth’s surface. This 

reflected radiation provides important information about those objects. Spectral data derived from satellite 

imagery are then used to study relationships between local biodiversity and the property being measured by 

the satellite. For example, the Normalised Difference Vegetation Index (NDVI) is a measure of plant 

greenness, calculated using red and near infrared spectral bands, and constitutes an informative proxy for 

photosynthesis, and has been used to study patterns in arthropod diversity (Lafage et al. 2014; Sweet et al. 

2015; Miller et al. 2017).

Remote sensing scientists rely on the environmental data recorded by satellites, such as plant 

productivity or microclimate, and how this relates to arthropods, to design effective monitoring programmes 

(Rhodes et al. 2021). Furthermore, alongside using SRS to study patterns in arthropod diversity, recent 

advances in non-parametric classification algorithms combined with SRS has allowed us to map alien 

invasive plant species with high accuracies (Royimani et al. 2019; Rebelo et al. 2021), which is of 

fundamental importance for designing conservation programmes for protecting biodiversity (Pyšek et al. 

2020).

Alternative to satellites as a remote sensing platform, unmanned aerial vehicle (UAV) technology has

grown considerably over the last few years (Horning 2018; Singh and Frazier 2018), allowing us to capture 

imagery at very high resolution (cm), which can be used for plant species classification or deriving 

environmental data at a relevant scale for insects. Unfortunately, local legislation around operating UAV is a 

significant challenge in many regions, which substantially hampers the adoption of UAV (Dash et al. 2019). 

However, recent developments in deep learning have provided new opportunities for creating imagery with 

high resolution through image fusion (Palsson et al. 2018; Latte and Lejeune 2020). Image fusion using deep 

learning involves the joining of imagery with different properties (spectral and spatial) to create a new data 

product with the desired resolution. This technique is also known as image super-resolution, where a neural 

network learns to enhance the resolution of imagery by identifying relationships between low- and high-

resolution pixels (Dong et al. 2016). Deep learning image fusion provides exciting opportunities for studying

biodiversity patterns using SRS.

Effective management of biodiversity within production landscapes also entails a thorough 

understanding of species distributions and factors which might influence their distribution. Species 
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distribution modelling (SDM) is critical for this, as it can help us study a species potential distribution as 

well as identifying the drivers. This is done by correlating environmental variables with species occurrence 

data and making predictions based on the strength of these correlations. Species distribution modelling has 

been used to study the potential distribution of endemic grasshoppers within the wine growing region of the 

Western Cape, South Africa (Adu-Acheampong et al. 2017), as well as to predict the risk of establishment 

and spread of non-native pest species (Lantschner et al. 2019). It is also increasingly being used to study 

insect habitat (Koch 2021).

Predictions made by SDM can be greatly improved through using SRS data, especially time series 

data, allowing us to study how dynamic production landscapes impacts species distribution over time (Leitão

and Santos 2019; Randin et al. 2020). This is especially important, as historic events have a stronger 

influence than current events on shaping local species assemblages (Jung et al. 2019), which highlights the 

importance of timing management practices to benefit future biodiversity.

Analogous to SDM, landscape connectivity modelling has become an invaluable tool for mapping 

how animals move within a landscape and allowing areas to be identified where connectivity needs to be 

improved (McRae et al. 2008). How the landscape impacts the ability of animals to move through it is 

known as functional connectivity (Tischendorf and Fahrig 2000), which works on the premise that different 

landscape features provide varying challenges for species, either allowing them to move freely, restricting 

movement by filtering species/traits, or by completely preventing movement. Recent integration of electrical 

circuit-theory into conservation and landscape connectivity research has provided new opportunities for 

studying functional connectivity (Dickson et al. 2019), through the development of Circuitscape software 

(McRae et al. 2008). Circuitscape has been used to estimate the value of restoring grassland patches for 

improving the flow of important insect predators that contribute to biological control in the Midwest United 

States (Koh et al. 2013), as well as for identifying areas for habitat restoration to improve habitat 

connectivity for various endemic arthropods of Azores (Aparício et al. 2018). Furthermore, the number of 

articles where Circuitscape is used to study connectivity for arthropods are increasing, compared to other 

taxa like birds (Dickson et al. 2019).

Unfortunately, most studies that utilise SDM and functional connectivity analysis for conservation 

management tend to focus on a single species (Ahmadi et al. 2017; Duflot et al. 2018), leaving other 
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dimensions of biodiversity, such as beta diversity, overlooked. Beta diversity is a measure of diversity that 

represents compositional differences between local species assemblages. It is central to our understanding of 

how species diversity is maintained or impacted throughout the landscape (Socolar et al. 2016). High beta 

diversity, or species turn-over, thus indicates large changes in species assemblages between locations. 

Modelling beta diversity is therefore valuable for conservation assessments (Ferrier et al. 2007), as it 

provides information on the uniqueness of local biodiversity patterns. For example, Deacon et al. (2020) 

used species turn-over calculations to identify drivers of dragonfly diversity patterns across South Africa, 

whereas van Schalkwyk et al. (2020) used species turn-over calculations to determine arthropod spillover 

within orchards in the Kogelberg Biosphere Reserve, South Africa. Through combining SRS with SDM, 

functional connectivity, and species turn-over calculations, we can get an improved understanding of how 

natural vegetation contributes to biodiversity conservation within production landscapes.

1.5. Satellite remote sensing of insects

There are considerable challenges and limitations when trying to study insects remotely. Most 

noticeable is the importance of satellite image resolution, both spatially and temporally, for insect remote 

sensing (Rhodes et al. 2021). Insects are much smaller than the spatial resolution of remotely sensed data 

products, barring the use of drone technology, making direct observation currently extremely difficult. Also, 

the short life cycles of insects mean that most remote sensing data with low temporal resolution will miss 

key phenomena important for direct monitoring of insects. This means that the use of SRS for insects relies 

on indirect relationships between easily measurable properties of the landscape, such as vegetation 

productivity (NDVI), vegetation type, land cover type, and topography, to name a few, and how these 

landscape properties relate to insect diversity. For example, grassland productivity measured through NDVI 

has been used as a proxy for food availability and correlates strongly with arthropod biomass in spring, 

allowing the inference of arthropod biomass in relation to NDVI in remote areas (Fernández-Tizón et al. 

2020). The establishment of such indirect relationships are extremely important for insect remote sensing and

mostly achieved through fieldwork.
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Satellite remote sensing has a long history within entomological research, particularly with pest 

detection in forestry and agriculture. However, considerable potential remains in relation to using SRS for 

studying insect ecology and conservation (Rhodes et al. 2021).

1.6. Insect bioindicators

Insects are sensitive to changes in their immediate physical and chemical surroundings (Webster and 

Cardé 2017), as such they are often used to indicate the state or quality of the local environment (Gerlach et 

al. 2013). The presence, or absence, of a specific insect indicator species can serve as an early warning sign 

of environmental change or indicate the level of taxonomic diversity at a site (Gerlach et al. 2013). Insect 

indicators thereby help determine the stress levels in an ecosystem, or the rate of recovery after the specific 

stressor has been mitigated, which is particularly useful in monitoring the impact of change/disturbance on 

biodiversity within production landscapes (Samways et al. 2020).

For this dissertation, grasshoppers were specifically selected as study organisms to validate patterns 

derived from SRS, as they are effective indicators of high quality grassland habitat (Bazelet and Samways 

2011; Fartmann et al. 2012), constitute a significant proportion of invertebrate diversity in grassland (Little et

al. 2013), and are sensitive to changes in local environment (Löffler and Fartmann 2017).

1.7. Research gaps

Previous studies has shown that sparing of natural vegetation within production landscapes has great 

potential for biodiversity conservation (Pryke and Samways 2012, Samways and Pryke 2016). However, 

there is little support for their longevity and the ability to support long-term biodiversity. There is also no 

clear guidelines for using remote sensing tools for monitoring grasslands habitat to guide management. 

Within the grassland corridors in KwaZulu-Natal, research has mostly focused on the structural nature of the 

corridors, and overlooked if these corridors also promote functional connectivity. There is also a lack of clear

guidelines for land managers to use when prioritising restoration efforts for conservation. Furthermore, there 

are no adequate methods to monitor the spread of invasive shrubs, like bramble, and we have little 

understanding of bramble invasion dynamics, which are needed to help control the spread and conserve 

biodiversity.
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1.8. Overall aims

This dissertation aims to contribute to our growing understanding of how grassland corridors 

conserve arthropod diversity under global change using SRS and other modelling procedures to improve 

conservation management of production landscapes. Grassland corridors within South Africa are ideal study 

areas, as these grassland ecosystems are highly threatened yet support high levels of biodiversity (Samways 

and Pryke 2016). I specifically aim to 1) provide insight into grassland corridor longevity by performing time

series analysis, 2) link satellite-derived NDVI with grasshopper diversity for remote monitoring, 3) identify 

drivers of grasshopper distribution using stacked species distribution modelling and species turnover 

calculations, 4) assess whether corridors promote functional connectivity using Circuit-theory, 5) use super-

resolution imagery derived from machine learning to map the distribution of bramble, and 6) to gain valuable

insight into bramble invasion dynamics by performing landscape analysis.

This dissertation will be presented as a series of connected and overlapping articles, investigating 

various aspects of grassland corridors for grasshopper conservation. This research will also contribute to the 

global literature on grassland conservation and management.

1.9. Dissertation outline and chapter aims

In chapter 2, I investigated the longevity of grassland corridors for conserving biodiversity by 

studying how past management impacts current patterns in grasshopper diversity. This is important as 

biodiversity is directly linked to appropriate management of these corridors, with accumulating evidence 

showing that past grassland management has a lasting impact on biodiversity (Perring et al. 2018; Löffler et 

al. 2020; Poniatowski et al. 2020). Furthermore, recent change (past five years) is also important (Jung et al. 

2019), as it directly affects species fitness and progeny (O’Connor et al. 2014). To gain insight into this, I 

examined how historic grassland photosynthetic activity (25-year NDVI time series) shaped current 

grasshopper diversity and assemblage structure. Vegetation characteristics measured in the field was used to 

understand the potential mechanisms driving grasshopper response. Lastly, I explored the efficacy of SRS for

monitoring grasshopper habitat. By doing this, I aimed to answer the following questions: 1) How does 

variation in grassland photosynthetic activity through time affect grasshopper diversity? 2) Which local 
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patch-level variables influence grasshopper diversity? 3) What is the relationship between grassland 

photosynthetic activity and grasshopper diversity? From this work I aimed to gain a better understanding of 

how current management within grassland corridors will impact future biodiversity, which will help optimise

planning of management activities for conserving biodiversity.

Understanding the relationship between grassland photosynthetic activity and grasshopper diversity 

can provide new insights into how the landscape functions to support species. To take this further, chapter 3 

examined how grassland corridors maintain ecological resilience by studying the distribution of high-quality 

grasshopper habitat. However, effectively protecting high-quality grasshopper habitat can only be achieved 

by understanding how the landscape facilitates ecological processes, such as species movement, as well as 

what impacts the ability of a species to move through the landscape (Wurtzebach and Schultz 2016). 

Therefore, to better understand how the managed landscape is affecting biodiversity, and which management 

practices provide opportunities for biodiversity conservation, I combined stacked-species distribution 

modelling, functional landscape connectivity analysis, and species turn-over calculations. In doing this, I 

aimed to answer the following questions: 1) What is driving the distribution of high-quality grasshopper 

habitat? 2) How connected are high-quality habitats, and where should connectivity be restored? 3) What are 

the drivers causing changes in grasshopper species richness and beta diversity throughout the landscape? 4) 

How similar are these patterns among species with different conservation priorities? Answering these 

questions allowed a better understanding of the variables important for maintaining high-quality habitat for 

grasshopper conservation, variables important for increasing beta diversity, identifying crucial corridors for 

maintaining functional connectivity, how the landscape can be managed to improve functional connectivity, 

and where to prioritise restoration within the landscape to improve functional connectivity for biodiversity 

conservation.

Another challenge for conserving biodiversity within production landscapes is the control of alien 

invasive plant species, which is one of the main drivers of global biodiversity loss (Pyšek et al. 2020). 

However, our ability to effectively monitor alien invasive plant species, especially shrubs, are limited, and 

monitoring tools are needed to improve control programmes. In chapter 4, I explored recent advances in deep

learning and super-resolution image reconstruction (Latte and Lejeune 2020) for mapping an alien invasive 

shrub. Specifically, I aimed to map American bramble (Rubus cuneifolius) within grassland corridors, which 
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threatens plant species richness and endemic grassland birds (Reynolds and Symes 2013), dragonflies 

(Kietzka et al. 2015), pollinating insects (Hansen et al. 2018), soil arthropods and soil recovery (Eckert et al. 

2019). Through using super-resolution satellite imagery, I aimed to improve our understanding of bramble 

invasion dynamics by answering the following questions: 1) How widespread is bramble, and what is 

causing higher bramble cover? 2) What is the local impact of bramble on other plants and on grasshoppers? 

3) How will uncontrolled bramble invasion impact the landscape? By answering these questions, I aimed to 

improve our understanding of the influence of image resolution for mapping alien invasive shrubs, 

elucidating the mechanisms driving bramble invasion within production landscapes, and determining the 

impact of bramble on landscape and local biodiversity, as well as providing management recommendations 

for controlling the spread of bramble.
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Chapter 2: Identifying managerial legacies within grassland corridors using remote sensing and 

grasshoppers as bioindicators

*Published in Ecological Applications. https://doi.org/10.1002/eap.2496

2.1. Abstract

Biodiversity conservation under global change requires effective management of key biodiversity 

areas, even areas not under formal protection. Natural grassland corridors between plantation forests are such

areas, as they improve landscape connectivity, mitigate the impact of landscape fragmentation, and conserve 

biodiversity. However, empirical evidence is required to identify the extent to which past management 

actions promote effectiveness of grassland corridors into the future. I address this issue using grasshoppers, 

which are well-established indicators of habitat quality. In particular, I assess grasshopper response within 

corridors to historic grassland photosynthetic activity using a 25 year Normalised Difference Vegetation 

Index (NDVI) time series. I then use vegetation characteristics measured in the field to understand the 

potential mechanisms driving grasshopper response. Furthermore, I explore the efficacy of satellite remote 

sensing for monitoring grasshopper habitat using additive models. I found that grasshopper evenness 

responded positively to deviation in NDVI within a three-year period, whereas assemblage composition 

responded positively over a shorter time of two years. Grasshopper richness and evenness responded strongly

to the local vegetation height and bare ground, whereas grasshopper assemblage composition also responded 

to plant species richness. I found a major negative impact of the invasive alien bramble (Rubus cuneifolius) 

on large-sized grasshoppers and species of conservation concern. Overall, the results illustrate the 

importance of maintaining primary high-quality habitat for conserving grasshopper diversity, alongside 

removal of invasive bramble. I recommend prescribed burning to maintain high-quality habitat 

heterogeneity, with sites burned within three years. Furthermore, high-resolution satellite imagery is effective

for monitoring grasshopper richness and assemblage composition response to changes in vegetation within 

the corridors. Grassland corridors do conserve biodiversity, although effective management and monitoring 

needs to be in place to ensure biodiversity resembles that of neighbouring protected areas.

Keywords: fire; lag effect; monitoring; NDVI; Orthoptera; time series
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2.2. Introduction

Protected areas alone cannot conserve all biodiversity, as large amounts of biodiversity occur outside 

these areas (Gray et al. 2016). Conserving unprotected areas is therefore critically important for safeguarding

biodiversity (Dudley et al. 2018), especially as insect extinctions are increasing globally at alarming rates 

(Cardoso et al. 2020). Most of Earth’s protected areas are poorly connected, preventing effective gene flow, 

restricting genetic diversity, and hampering eco-evolutionary dynamics (Saura et al. 2018). This means that 

effective biodiversity conservation under global change requires improved connectivity between areas of 

irreplaceable biodiversity. This can be achieved by extending the protected area network to include 

unprotected key biodiversity areas (Kullberg et al. 2019). Fortunately, this is possible, as 37% of the world’s 

eco-regions have sufficiently large amounts of intact natural habitat outside of protected areas that should be 

protected (Dinerstein et al. 2017). Protecting these key biodiversity areas, and increasing connectivity 

between them, is crucial for insect diversity conservation under global change (Samways et al. 2020).

Within South Africa, the commercial timber production landscape has converted large parts of the 

natural environment to plantation forests (mostly Pinus and Eucalyptus species), predominately within 

KwaZulu-Natal and Mpumalanga provinces. These plantations cover approximately 2.1 million ha, making 

up 1.6% of land in South Africa (Thompson 2019). Between the plantation blocks large amount of mostly 

intact remnant habitat still resides, forming structurally connected grassland corridors, which are set aside for

biodiversity conservation (Samways and Pryke 2016). These grassland corridors are recognised as playing a 

critical role in protecting biodiversity under global change, as this land falls outside formally protected areas 

(Samways et al. 2020). Corridors also extend the reaches of neighbouring protected areas by improving 

connectivity of the timber plantation landscape (Pryke and Samways 2012a), which helps to mitigate the 

adverse effects of landscape fragmentation on biodiversity (Samways and Pryke 2016).

Correct management of the timber plantation landscape is needed for maintaining biodiversity within

grassland corridors. For example, prescribed burning used to reduce grassland fuel load for protecting timber

compartments against wildfires, helps maintain stable grassland plant populations within this fire adapted 

ecosystem (Joubert et al. 2014) and promote grasshopper and butterfly diversity (Joubert et al. 2016; Gaigher

et al. 2019). However, invasion of the alien invasive plant Rubus cuneifolius (American bramble) into 

grasslands, has severe negative impacts on grassland bird diversity (Reynolds and Symes 2013), flower 
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visiting insects (Hansen et al. 2018), as well as on the restoration success of grasslands (Eckert et al. 2019). 

Furthermore, domestic cattle roam throughout these corridors, causing some excessive grazing of the 

landscape, as manifested by changes in grasshopper assemblage composition (Joubert-van der Merwe and 

Pryke 2018).

When corridors are managed correctly, they are able to conserve endemic and threatened grassland 

plants (Joubert et al. 2014), a variety of arthropod taxa (Pryke and Samways 2015), as well as grassland 

specialists birds (Lipsey and Hockey 2010). This is possible because of how resources, important for 

survival, are distributed throughout the corridors, which helps improve landscape functional connectivity 

(Tischendorf and Fahrig 2000).

The efficacy of corridors to conserve biodiversity into the future has been raised previously 

(Samways and Pryke 2016), but more empirical evidence is needed to quantify the long-term effectiveness of

corridors for biodiversity conservation. Developing resilience should be a key priority when developing 

management recommendations for protecting biodiversity within grassland corridors. This is especially 

important as biodiversity is directly linked to appropriate management of these corridors, with accumulating 

evidence showing that past management has a lasting impact on biodiversity (Perring et al. 2018; Löffler et 

al. 2020; Poniatowski et al. 2020a). Furthermore, recent change (past five years) is also important (Jung et al.

2019a), as it directly affects species fitness and progeny (O’Connor et al. 2014a). Understanding how 

management decisions can continue to impact and shape biological patterns into the near future will provide 

important information to help mitigate any negative biological consequences, thereby ensuring effective 

protection for biodiversity within production landscapes.

To investigate potential management legacies, it is imperative to monitor biodiversity over time. 

Monitoring of biodiversity is recognised as vital for informed management decisions by multiple monitoring 

and reporting frameworks (Pettorelli et al. 2016). As conventional field-based observations are limited to 

small spatial scales, satellite remote sensing (SRS) has become an important tool for creating predictions of 

biodiversity over large spatial scales and through time (Rocchini et al. 2016). SRS can guide management 

decisions for promoting conservation (Randin et al. 2020), especially through more ready open access of 

satellite data (Zhu et al. 2019) and cloud computing (Gorelick et al. 2017).
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Satellite sensors record electromagnetic radiation reflected from objects on the Earth’s surface. This 

reflected radiation provides us with important information about those objects. Indices derived from satellite 

data have been used to predict mountain plant richness and rarity (Levin et al. 2007), as surrogates for 

ground beetle richness and abundance (Lassau and Hochuli 2008; Lafage et al. 2014), predict arthropod 

biomass (Sweet et al. 2015), model patterns of pollinator species richness and diversity (Hofmann et al. 

2017), as well as forecast presence of the desert locust (Piou et al. 2018). These functional links between 

plant structure and health to their primary consumers (Miller et al. 2017), are utilised for studying arthropod 

diversity with SRS.

Here I investigate the overall value of SRS for improved forest practices within corridors to conserve

biodiversity under global change. I aim to address 1) how management decisions in the past affect current 

biodiversity, 2) the mechanisms of change, and 3) how to monitor the change. Grasshoppers were selected as

study organisms as they are easily captured, and they constitute a significant proportion of invertebrate 

biomass in South African grasslands (Little et al. 2013). They are also an important food source for many 

other organisms, are effective indicators of high quality grassland habitat in corridors (Bazelet and Samways 

2011) and in general (Fartmann et al. 2012), and are sensitive to changes in local environment (Löffler and 

Fartmann 2017). Using grasshopper bioindicators to validate patterns derived from SRS, I specifically aim to

address the following: 1) How does variation in grassland photosynthetic activity through time affect 

grasshopper diversity? 2) Which local patch-level variables influence grasshopper diversity? 3) What is the 

relationship between grassland photosynthetic activity and grasshopper diversity?

To answer these questions, the effect of historic grassland photosynthetic activity on grasshoppers is 

determined using a time series analysis. This time series will provide insight into how long it takes for 

changes in grassland photosynthetic activity to manifest in current grasshopper diversity. This is important as

changes in photosynthetic activity over time can lead to changes in species assemblages (Jung et al. 2019a, 

2019b). Furthermore, the influence of the local environment, measured through vegetation characteristics, 

will provide information on the potential mechanisms of change, and how grasshoppers respond to this 

change. Finally, the effectiveness of SRS for monitoring grasshopper habitat are explored using additive 

models, at various scales, to provide recommendations for better landscape management. These results can 

then guide current management towards consideration of how past practices shape future diversity patterns.
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2.3. Methods

2.3.1. Study area and design

This study took place in four commercial timber estates within the KwaZulu-Natal Midlands of 

South Africa (Fig. 2.1). These estates cover about 21 400 ha of highly threatened grasslands of the 

Maputaland-Pondoland-Albany Hotspot (Dinerstein et al. 2017). About 60% of these estates comprise alien 

tree plantations, and the remaining 40% of land is set aside for conservation. This temperate region has 

austral summer rainfall (September-April), and a mean annual temperature of 15°C and mean annual 

precipitation of 900 mm (Mucina and Rutherford 2011). The topography is complex, from steep mountain 

valleys to rolling grassland hills, ranging in elevation from 800 m to 1750 m above sea level.
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Figure 2.1: Map of site layout in the four commercial timber estates within the KwaZulu-Natal 

Midlands of South Africa. Photo on the right illustrates the structural nature of the grassland 

corridors throughout the study region.
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Sampling took place within the grassland corridors across the four timber estates. Elevation of the 

sampling locations were similar within estates, but differed between estates. Sites were selected to cover the 

extent of the corridors, capturing the heterogeneity caused by divergent fire management (Gaigher et al. 

2019). Sites were separated by > 1 km within the estates to ensure independence of sampling, except within 

estate no. 4, where the minimum distance between sites was 400 m due to smaller grassland fragments. A 

total of 51 sites were sampled.

2.3.2. Grasshopper sampling

Grasshoppers were sampled using a sweep net with a diameter of 0.5 m and depth of 0.7 m. Per site a

total of three 100 m transects were placed in parallel separated by 5 m. At every 1 m along the transect, 

vegetation was swept with a sweep net, using a 180-degree arc movement. A total of 100 sweeps were 

performed per transect, with an overall total of 300 sweeps per site.

In addition to sweep netting, active searching was employed to capture mobile and elusive species. 

Two observers simultaneously searched within the sampling area by flushing out and chasing after large-

sized grasshoppers. Active searching was performed after sweep netting, and lasted 20 min. A total of 40 min

of active searching per site (20 min per observer) took place. Previous research has demonstrated the efficacy

of these methods in sampling grasshopper diversity within South African grassland corridors (Bazelet and 

Samways 2011; Crous et al. 2013; Joubert et al. 2016).

To capture mostly adult grasshoppers, sampling occurred in March 2020, the peak season for adult 

grasshopper activity in this area (Kinvig 2006). As grasshopper species richness and abundance can remain 

relatively stable between years (Gebeyehu and Samways 2006), and that I focused on the effect of historic 

change in grassland photosynthetic activity on current grasshopper richness and diversity, I base my results 

on biological data from one year only. Sampling was undertaken between 08h30-16h00 on sunny cloudless 

days with little to no wind, and took place at the centre of fragments, or > 50 m away from edges (Pryke and 

Samways 2012b). All sampled grasshoppers were transferred to re-sealable bags. They were later placed in a 

freezer prior to sorting. Immatures were not included owing to identification difficulties, and all adults 

collected were pooled per site for analysis. Adult grasshoppers were identified using a museum reference 

collection, as well as guidelines from Cigliano et al. (2009).
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2.3.3. Response variables

Species richness and exponent Shannon diversity index were used as response variables and 

calculated using caeliferan grasshoppers (i.e. excluding tettigoniids) so as to focus on dry grassland species. 

Exponent Shannon diversity index was calculated using the diversity function within the vegan package 

(Oksanen et al. 2019). Species accumulation curves were calculated to assess sampling effort and 

completeness of sampled grasshoppers, using the specaccum function within vegan. Spatial autocorrelation 

was investigated at the univariate and multivariate levels using the ade4 package (Dray and Dufour 2007) by 

calculating the Moran’s I and Monte-Carlo tests, respectively.

2.3.4. Vegetation surveys

To obtain information on the local environment, vegetation data were collected after grasshopper 

sampling using 1 m2 quadrats. At each site, a total of 24 quadrats were randomly placed within the sampling 

area to obtain an average representation of the vegetation at each site. Plant richness, abundance, mean 

height, and percentage cover was recorded per plant growth form (tree, shrub, succulent, fern, sedges, forb, 

bulb, grass, and creeper). The invasive alien American bramble (Rubus cuneifolius) commonly occurs 

throughout the sampling area, and so its abundance and percentage cover were determined. Lastly, 

percentage cover of rockiness and bare ground was also recorded per quadrat, as these are significant for 

grasshoppers in the region (Crous et al. 2013). Averages were calculated per site for plant richness, growth 

form richness, vegetation height, bramble cover and abundance, rockiness, and ground cover. These variables

were used in statistical modelling to determine grasshopper response at the local patch scale.

2.3.5. Time series analysis

To determine how historic grassland photosynthetic activity affects current grasshopper diversity, a 

Normalised Difference Vegetation Index (NDVI) time series was extracted from the Landsat surface 

reflectance imagery archive. NDVI is a widely used index, calculated using the red and near infrared part of 

the electromagnetic spectrum, which shows high reflectivity over green healthy vegetation. NDVI was 

selected over other vegetation indices, as previous research demonstrated its importance in predicting grass 
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biomass within the study region (Shoko et al. 2018). Surface reflectance imagery is preferred for time series 

over top-of-atmosphere imagery, as surface reflectance imagery is corrected to remove scattering and 

absorbing effect of atmospheric gases and aerosols, allowing accurate comparison of pixel values over time 

(Vermote et al. 2016). Furthermore, as I focused on grassland photosynthetic activity, the spatial resolution of

the Landsat archive (30 m pixels) allowed me to restrict the time series to within grasslands only, and not the 

surrounding plantation forests. This was particularly important for smaller grassland fragments.

I used 25 years of images from Landsat 5, 7 and 8 between 1995/01/01 and 2020/03/31. The satellite 

sensors in the Landsat archive differ slightly. To make accurate comparisons of NDVI values over time, I 

fitted a spectral transformation function so that the spectral bands of Landsat 5 and 7 more closely resembled

that of Landsat 8, using coefficients presented in Roy et al. (2016). A NDVI time series was calculated within

a 50 m buffer surrounding each sampling location on all pre-processed imagery using Google Earth Engine 

(Gorelick et al. 2017). This buffer size was used to capture neighbouring pixels in NDVI calculations for 

statistical analysis, which helped address the potential mismatch between scale of sampling and sensor 

footprint.

A total of 1 304 images over the sampling region was used for building the time series, with an 

average of three images per month. To remove extreme outliers from the NDVI time series, I followed a 

similar procedure implemented by Jung et al. (2019a). This method was preferred to the native quality 

assessment data product derived from the CFMask algorithm, to remove outlier pixel values caused by 

clouds, shadows, or sensor failure, as it allowed me to maintain the greatest number of observations possible 

over the cloudy sampling region (709 observations with CFMask; 1010 observations without CFMask). 

Extreme outliers were identified by calculating the absolute difference of all values from the median relative 

to the total median absolute deviation (MAD) of all values (Leys et al. 2013). Values that deviated by more 

than two units from the MAD, and was > 99% of all values, were removed from the time series.

Missing values in time series data were imputed using Kalman smoothing, based on an auto 

regressive integrated moving average model, which considers preceding data when estimating missing 

values. The na_kalman function from the imputeTS package was used for imputing missing values (Moritz 

and Bartz-Beielstein 2017). Kalman smoothing improves Landsat temporal resolution over cloudy areas with

high quality (Zhou and Zhong 2020). To remove further noise from time series data while maintaining 
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natural fluctuation and small abrupt changes, a Savitzky-Golay filter was applied, which relies on adjacent 

data points to identify noise, and it applies a linear least square model to smooth values. This filter works 

well for removing noise within NDVI time series data (Chen et al. 2004). The sgolayfilt function within the 

Signal package (Signal developers 2014) was used to apply a Savitzky-Golay filter. NDVI time series data 

were processed in R version 3.6.1 (R Core Team 2019). From these processed NDVI time series data, the 

standard deviation was calculated for different cumulative years between 1995-2020 (e.g. for one year 

2020/03 – 2019/03, four years 2020/03 – 2016/03), and used in statistical analyses to investigate how 

variance in grassland photosynthetic activity over longer time frames impact current grasshopper diversity.

To model the effect of variation in NDVI over time on grasshopper diversity (Lag models) I used 

linear mixed-effect models from the lme4 package (Bates et al. 2015) and included timber estate as a random

effect to account for spatial autocorrelation. A total of 25 separate single variable Lag models were created to

compare the variation over the different years. I used the Akaike information criterion (AIC) to rank model 

importance and compare between them.

2.3.6. Influence of local environmental variables

To identify which local patch variables collected in the field influenced grasshopper diversity, model 

averaging was performed within the MuMIn package (Bartoń 2020) using linear mixed-effect models (Local 

models). Based on a correlation matrix, vegetation growth-form richness and bramble cover were excluded 

from model building. Variable inflation factor scores, calculated using the vif function (Fox and Weisberg 

2019), were all below 1.22 indicating low multicollinearity, when performed on a global model containing 

vegetation height, vegetation richness, bramble abundance, ground cover and rockiness. Model selection was

performed on the global model using the dredge function, followed by model averaging on the top-

performing models (delta < 2) based on AIC corrected for smaller datasets (AICc) using the model.avg 

function. All data were standardised before modelling in R, using the standardize function within robustHD 

package (Alfons 2019).
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2.3.7. Monitoring grasshoppers

To investigate the effectiveness of NDVI in monitoring grasshopper habitat, I calculated NDVI from 

PlanetScope (3 m), Sentinel (10 m) and Landsat (30 m) imagery at three different dates (May 2019, January 

2020, and March 2020. Appendix S2: Table S2.1). These dates were selected to determine whether grassland 

photosynthetic activity had an influence on grasshopper diversity during different stages of their 

development (egg laying during May, developing juveniles in January, and fully-grown adults in March). 

Additionally, understanding the impact of spatial resolution will help guide managers to select appropriate 

imagery.

Sentinel and Landsat NDVI values were calculated from surface reflectance imagery and 

downloaded using Google Earth Engine, whereas PlanetScope surface reflectance imagery was obtained 

from Planet Labs (Planet Team 2017) and NDVI calculated using R. NDVI values with respect to all imagery

were averaged for 50 m buffers surrounding the sampling locations and used for statistical analyses.

To investigate the relationship between NDVI and grasshopper diversity (Spectral models), 

generalised additive mixed-effect models were used from the gamm4 package (Wood and Scheipl 2020). 

Timber estate was added as a random effect to account for spatial autocorrelation. Additive models were 

selected over linear models as the relationship between NDVI and grasshopper diversity was likely non-

linear. Multiple single variable Spectral models were created to avoid multicollinearity, and AIC was used to 

rank model importance. Additive models were fitted with a tensor product smooth applied to NDVI, using a 

cyclic cubic regression spline with four knots.

2.3.8. Grasshopper assemblage composition

To assess grasshopper assemblage composition response to the various variables explained above, I 

used the manyglm function within the mvabund package (Wang et al. 2012). This procedure fits multiple 

generalised linear models with negative binomial distribution to multivariate abundance data. Test statistics 

were calculated based on residual permutation resampling with 999 permutations on standardised 

explanatory variables. Fourth corner analysis was used to visualise observed patters using the traitglm 

function in mvabund. The fourth corner models were fitted with subfamily data, instead of trait data, to 

determine how subfamilies responded to specific explanatory variables, as well as direction of response. All 
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fourth corner models had a LASSO penalty added to reduce small coefficients to zero. The Lag, Local, and 

Spectral models were used for manyglm and traitglm analysis. Timber estate was included as a variable in all

models to account for the spatial layout of sampling.

2.4. Results

2.4.1. Sampled grasshoppers

A total of 2 503 adult Caelifera grasshopper individuals from 58 species, 46 genera, 18 subfamilies 

and 6 families, were collected (Appendix S2: Table S2.2). Species accumulation curves reach near 

asymptotes (Appendix S2: Figure S2.1). The most diverse and abundant subfamilies where the 

Gomphocerinae (9 species, 533 individuals), Oedipodinae (9 species, 137 individuals), followed by 

Acridinae (8 species, 546 individuals). Eyprepocnemis calceata, Anablepia pilosa, Pseudoarcyptera 

cephalica, and Dirshia abbreviata, found in this study are strongly associated with protected areas (Joubert 

et al. 2016). Furthermore, Faureia milanjica, found at three sites, is an indicator of high-quality habitat 

(Bazelet and Samways 2011). These results compare to previous studies within South African grassland 

corridors (Bazelet and Samways 2011; Crous et al. 2014; Joubert et al. 2016).

2.4.2. Lag models

Species richness was positively affected by the deviation in NDVI between 2019-2020, whereas 

exponent Shannon diversity was positively affected by deviation in NDVI between 2019-2020 and 2017-

2020 (Fig. 2.2, Table 2.1). This effect was strongest with best fit (AIC) for richness and deviation in NDVI 

between 2019-2020 (Fig. 2.2, Table 2.1).

When looking at the assemblage composition, variation in NDVI between 2019-2020 and 2018-2020

had a significant influence, where NDVI data between 2018-2020 had the strongest effect and best fit (Table 

2.4).

Grasshopper subfamilies showed consistent response between the different cumulative years, with 

the 2018-2020 NDVI data showing the strongest response (Fig. 2.4). Larger-sized grasshoppers 

(Pyrgomorphinae and Porthetinae) seem to benefit more than smaller ground hoppers (Tetriginae) (Fig. 2.4).

31

Stellenbosch University https://scholar.sun.ac.za



Table 2.1: Results from linear mixed-effect models (Lag models) investigating effect of deviation in NDVI between 

different years on grasshopper richness and exponent of Shannon diversity. Results only show significant effects.

Response Explanatory beta se 5% 95% t-value AIC

Richness NDVI 2019-2020 0.455 0.143 0.156 0.771 3.181 138.938

exShannon NDVI 2019-2020 0.378 0.140 0.134 0.649 2.700 147.677

exShannon NDVI 2017-2020 0.295 0.148 0.075 0.602 1.996 149.769

2.4.3. Local models

At the local scale, vegetation height had a negative effect on species richness, whereas ground cover 

had a positive effect on exponent Shannon diversity (Fig. 2.2, Table 2.2).
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Figure 2.2: Significant results from linear mixed-effect models (Lag and Local models) investigating effect of deviation 

in NDVI between different years, as well as patch variables, on grasshopper richness and exponent Shannon diversity.
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Furthermore, vegetation height and richness, bramble abundance, and ground cover, all had an 

influence on grasshopper assemblage composition (Table 2.4). Rockiness only had a marginal effect on the 

assemblage composition (Table 2.4).

Vegetation height showed a consistent positive influence on multiple subfamilies, whereas 

subfamilies responded differently to plant species richness (Fig. 2.4). Bramble abundance showed a strong 

negative influence on larger-sized grasshoppers (Pyrgomorphinae) as well as species of conservation concern

(Thericleinae) (Fig. 2.4). Rockiness showed an overall positive influence on multiple subfamilies, but with a 

negative influence on flightless species (Lentulinae) (Fig. 2.4). Ground cover showed a similar patter 

compared to rockiness (Fig. 2.4).

Table 2.2: Model-averaged estimates (conditional average) of local patch variables (Local models) predicting 

grasshopper richness and exponent Shannon diversity. Significant variables in bold. RI = relative importance, #models 

= number of containing models.

Response Explanatory beta se 5% 95% RI #models AICc

Richness Mean Veg Height -0.269 0.128 -0.526 -0.012 0.37 1 140.708

Mean Ground Cover 0.222 0.124 -0.029 0.472 0.20 1 141.981

exShannon Mean Ground Cover 0.360 0.131 0.097 0.623 1.00 2 146.131

Mean Veg Height -0.232 0.133 -0.500 0.035 0.30 1 147.780

2.4.4. Spectral models

NDVI calculated from PlanetScope in May 2019 and January 2020, as well as from Sentinel in May 

2019, January 2020, and March 2020, had a significant relationship with species richness (Fig. 2.3, Table 

2.3). NDVI calculated from Landsat in March 2020 had only a significant relationship with exponent 

Shannon diversity (Fig. 2.3, Table 2.3). NDVI calculated during January 2020 showed the strongest 

relationships, whereas Sentinel data had the best fit (Fig. 2.3, Table 2.3). Per image, the species richness or 

exponent Shannon diversity was highest at NDVI values in the third quartile range (Fig. 2.3).
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Table 2.3: Results from generalised additive mixed-effect models (Spectral models) investigating the relationship 

between NDVI calculated from PlanetScope (3 m), Sentinel (10 m) and Landsat (30 m) in three different influential 

times, on grasshopper richness and exponent Shannon diversity. Results only show significant effects.

Response Explanatory edf f-value p-value AIC

Richness PlanetScope NDVI May 2019 1.409 3.681 0.032 140.153

Richness PlanetScope NDVI January 2020 1.532 4.879 0.022 138.709

Richness Sentinel NDVI May 2019 1.459 4.378 0.036 138.981

Richness Sentinel NDVI January 2020 1.533 5.564 0.020 138.385

Richness Sentinel NDVI March 2020 1.381 3.200 0.048 139.879

exShannon Landsat NDVI March 2020 1.426 3.181 0.035 148.324
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Figure 2.3: Significant results from generalised additive mixed-effect models (Spectral models) investigating the 

relationship between NDVI calculated from PlanetScope (3 m), Sentinel (10 m) and Landsat (30 m) in three different 

influential times, on grasshopper richness and exponent Shannon diversity.
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At the assemblage level, NDVI calculated from PlanetScope in May 2019 and from Landsat in May 

2019, had an significant influence, whereas NDVI calculated from Landsat in May 2019 showed the 

strongest influence (Table 2.4). However, NDVI calculated from PlanetScope in May 2019 showed the best 

fit (Table 2.4).

Grasshopper subfamilies responded differently to spatial resolution, where a more prominent effect 

was detected with NDVI calculated from PlanetScope imagery (Fig. 2.4).
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Figure 2.4: Fourth corner analysis showing variable-subfamily coefficients for all models (Lag, Spectral and 

Local models). Coefficients where calculated using different models but visualised together.
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Table 2.4: Aggregated results from all the manyglm analysis. Results for the Lag and Spectral models has been reduced 

to only show significant effects. Score = Score-Test statistic from the manyglm model.

Model Variable Score p-value AIC

Lag NDVI 2019-2020 70.186 0.045 4863.254

NDVI 2018-2020 74.787 0.025 4825.943

Spectral PlanetScope NDVI May 2019 71.761 0.050 4828.464

Landsat NDVI May 2019 84.178 0.011 4869.580

Local Mean Veg Height 115.55 0.001 4751.916

Mean Veg Richness 104.30 0.002

Mean Bramble Abundance 64.70 0.021

Mean Rock Cover 56.22 0.084

Mean Ground Cover 85.59 0.002

2.5. Discussion

2.5.1. Management legacies

My results show that recent changes in vegetation condition within grassland corridors have a 

beneficial effect on current grasshopper evenness over a three-year period, while assemblages only 

responded to change within a two-year period. These results are similar to a long-term study focusing on 

grassland disturbance regimes on grasshoppers (Chambers and Samways 1998). This also corresponds with 

other research demonstrating how ecological integrity links to past management (Perring et al. 2018; Jung et 

al. 2019a, 2019b; Löffler et al. 2020; Poniatowski et al. 2020a), highlighting the effect of past management 

practices on the next generation of biodiversity. Changes in vegetation condition, through alterations in 

vegetation health or structure, have an immediate effect on species assemblages directly, leading to their 

change. Depending on a species’ life history, developmental stage and physiological state, the effect can be 

either positive or negative, resulting in species or populations getting a head start the following season or 

falling behind (O’Connor et al. 2014a).

With disturbance being a dominant process in human-managed landscapes, it can be a significant 

factor in maintaining high levels of certain insect populations (Schowalter 2012), especially as organisms 
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often depend on disturbance to maintain their habitat (Roxburgh et al. 2004). Grasshoppers tend to thrive 

under moderate disturbance, and when these disturbances are excluded, or when high-quality habitat is not 

maintained, grasshopper diversity deceases and assemblage structure changes (Chambers and Samways 

1998; Fartmann et al. 2012). Changes in grasshopper assemblages over time can lead to changes within the 

ecosystem, affecting grassland functioning over many years (Belovsky and Slade 2018). Furthermore, when, 

where, and how change occurs within a production landscape will greatly influence how organisms interact 

with their local environment through changing access to needed resources (Sitters and Di Stefano 2020). 

This change, in turn, affects local population persistence by altering colonisation and extinction dynamics 

(Jackson and Sax 2010). Landscape planning should therefore incorporate the temporal aspect of biological 

response to changes in the landscape, which will ultimately improve the conservation success of grassland 

corridors.

2.5.2. Drivers of change

Previous research aimed at understanding the drivers of variation in grassland photosynthetic activity

illustrated the importance of grassland plant species richness and functional trait composition in explaining 

variation in photosynthetic activity (van 't Veen et al. 2020). Thus, any driver that can cause changes in local 

vegetation structure and assemblage composition can therefore lead to variation in photosynthetic activity 

over time. For example, invasion by alien plants can greatly alter local plant structure and diversity through 

biotic homogenization (Olden et al. 2004, Vilá et al. 2011). Overgrazing by domestic cattle has a severe 

negative impact on local plant species richness and assemblage composition, which leads to simplified grass 

species composition (Fedrigo et al. 2018). Fire, through prescribed burning, helps to maintain native plant 

species diversity within a fire-adapted landscape (Joubert et al. 2014). Lastly, climate change can reduce 

resilience of native vegetation assemblages, allowing opportunities for alien invaders to colonise (Leishman 

and Gallagher 2015).

Grasshoppers within grassland corridors respond strongly to the local vegetation structure and 

available bare ground (Bazelet and Samways 2011; Joubert-van der Merwe and Pryke 2018). My results also

support this by showing that local plant species richness, vegetation structure and bare ground has a 

significant influence on grasshopper assemblage composition. However, grassland structure is closely linked 
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to the management of disturbance regimes. Little et al. (2015) showed that annual burning and heavy grazing

leads to a distinct plant community dominated by disturbance specialists, thereby impacting local vegetation 

structure and plant diversity in grasslands of Mpumalanga, South Africa. These findings are also supported 

by research in Kansas, USA, where fire and grazing are the main drivers of vegetation structure and 

assemblage composition and within tallgrass prairies (Collins and Calabrese 2012). These findings show that

prescribed burning and controlled grazing are the main drivers contributing to changes in vegetation 

structure and composition, leading to variation in photosynthetic activity within grasslands.

Fire, through prescribed burning, is used annually in some of parts of the corridors to reduce the 

grassland fuel load as protection for the plantation trees against large intense wildfires. Fortunately, 

prescribed burning of corridors has beneficial outcomes for plants, grasshoppers and butterflies (Joubert et 

al. 2014, 2016; Gaigher et al. 2019). Fire is a fundamental natural disturbance within grasslands, where many

plants and animals require fire for their survival (Kelly and Brotons 2017). Fire has such a prominent impact 

on the landscape, that in most cases, it overrides the effect of grazing in maintaining birds and arthropods 

within grasslands (Little et al. 2013). Thus, the exclusion of fire, or the inappropriate use of prescribed 

burning, has large cascading impacts on grassland ecosystems, by allowing alien weeds and woody shrubs to

encroach (O’Connor et al. 2014b).

The American bramble (Rubus cuneifolius) is one of the most problematic invasive plant species in 

grasslands of South Africa (Henderson 2007). Where bramble invades, the local plant communities become 

more characteristic of woodlands, thereby threatening specialists grassland taxa (Henderson 2007). 

Furthermore, bramble within the corridors has severe negative impacts on biodiversity, with previous 

research indicating negative impacts on birds (Reynolds and Symes 2013), dragonflies (Kietzka et al. 2015), 

flower visiting insects (Hansen et al. 2018), as well as topsoil and leaf litter arthropods (Eckert et al. 2019). I 

add to this by showing that bramble negatively impacts larger-sized grasshopper species (especially 

Pyrgomorphinae), as well as species of conservation concern (mainly Thericleinae). Fortunately, the removal

of bramble can enhance bird diversity (Reynolds and Symes 2013), positively influence pollination networks

(Hansen et al. 2018) and promote grassland restoration success (Eckert et al. 2019).

However, under global change, how biodiversity responds to their local environment will vary. In the

case of tallgrass prairie in North East Kansas, USA, climate warming affects grasshopper host-plant 
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populations, which indirectly changes grasshopper diversity (Welti et al. 2018). Additionally, drought in one 

year can cause a significant change in grasshopper assemblage composition the following year (Bruckerhoff 

et al. 2020). Under climate warming, substantial range expansions are expected for the large marsh 

grasshopper in Germany (Leins et al. 2021). Furthermore, in Germany, Orthoptera are resilient to climate 

warming in primary grasslands of high quality (Löffler et al. 2019; Fumy et al. 2020), although climate 

change can affect the distribution of grasshopper assemblages, especially in previously transformed 

landscapes (Löffler et al. 2019; Fumy et al. 2020; Poniatowski et al. 2020a). Understanding the complexities 

of ecosystem response to global change is critically important (Bruckerhoff et al. 2020), and more research is

needed to understand the impact of climate change, especially on stable climatic refugia, such as the 

grassland corridors within the Maputaland-Pondoland-Albany Hotspot of South Africa (Harrison and Noss 

2017).

2.5.3. Monitoring tools

Monitoring of insects has never been more important than in current times (Cardoso et al. 2020; 

Samways et al. 2020), and SRS has become an invaluable tool for monitoring biodiversity (Rocchini et al. 

2016). Spectral information derived from satellite imagery is usually based on attributes of the local 

environment, which is directly or indirectly linked to either a species, population, or an ecosystem service, 

which is then used to guide management recommendations (Vihervaara et al. 2017). The spatial resolution of

satellite imagery will impact the ability of spectral information to explain patterns of local biodiversity. Finer

pixel sizes tend to outperform coarser ones in explaining this relationship (Wang et al. 2017). High resolution

imagery is able to capture more complexity of the local environment, and is a good predictor of local 

biodiversity. My results confirm this by showing that high resolution PlanetScope satellite imagery 

performed best, compared to coarser resolution imagery, in predicting patterns in grasshopper diversity. 

Other research also supports this by demonstrating that high resolution imagery outperformed medium 

resolution imagery in modelling grassland bird communities in southwestern France (Sheeren et al. 2014), as

well as plant communities in Tasmania, Australia (Melville et al. 2018).

Furthermore, I demonstrate the relationship between the satellite derived vegetation index NDVI, and

grasshopper richness and assemblage composition. Grasshopper richness was highest at moderately high 
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NDVI values, which reflects their preference towards structurally simplistic grasslands with available bare 

ground. However, the strength of these relationships was rather weak, and more research is needed to 

establish stronger links between SRS and local grasshopper diversity. Nevertheless, Klein et al. (2020) 

demonstrated a similar NDVI and grasshopper relationship in Europe, and used this to predict grassland 

habitat with high grasshopper richness, illustrating the effectiveness of NDVI as a widely-applicable 

monitoring tool for grasshoppers. I also show that there is a three-month lag in this relationship, which 

corresponds with juvenile activity in January. This three-month lag also occurs in butterflies (Valtonen et al. 

2013). Using NDVI at the appropriate time to monitor grasshopper diversity can provide valuable insight 

into when and where to burn grassland corridors for biodiversity conservation.

Alongside monitoring plant condition for grasshopper conservation, other local factors such as 

rockiness can influence the quality of habitat needed to sustain grasshopper populations (Crous et al. 2013). 

Rockiness within grassland corridors is a surrogate for predicting plant, butterfly and grasshopper diversity 

(Crous et al. 2013). However, here, rockiness had an overall weak positive influence on multiple grasshopper

subfamilies. Crous et al. (2014) suggested that grasshoppers are not necessarily correlated directly with 

rockiness, but rather the underlying environmental correlates of rockiness, such as plant richness. Here, 

multiple grasshopper subfamilies responded positively to plant species richness.

2.5.4. Management recommendations

Primary high-quality areas with surface rockiness, diverse grass assemblages, and no bramble, should

be the focal habitat for grasshopper conservation. The active removal of bramble is strongly encouraged, 

especially as this landscape is a global priority for ecosystem restoration (Strassburg et al. 2020), and that it 

can take hundreds to thousands of years for plant diversity to resemble primary state (Nerlekar and Veldman 

2020). Bramble must be removed from all sites, focusing on secondary habitat where landscape functional 

connectivity can be restored to benefit biodiversity (Poniatowski et al. 2018, 2020b). Research from 

Germany showed that restoring calcareous grasslands benefits biodiversity (Poniatowski et al. 2020b), 

inhibits future species extinctions (Löffler et al. 2020), and safeguards them against climate warming (Fumy 

et al. 2020).
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More research is needed to identify exact drivers causing variation in grassland photosynthetic 

activity important for maintaining grasshoppers within grassland corridors. Because fire is actively used 

within these corridors, I consider it a major source of the variation in grassland photosynthetic activity that 

manifests a beneficial impact on grasshoppers. Research shows that prescribed burning maintains high-

quality habitat and creates heterogeneity, thereby conserving habitat specialists (Poniatowski et al. 2018). As 

variation in grassland photosynthetic activity had an influence on grasshoppers for up to three years, I 

recommend that these grassland corridors should not be left unburned for more than three years, especially as

habitat specialists benefit most from early grassland successional stages (Fartmann et al. 2012). This 

recommendation is similar to that from previous research, which aims to prevent woody plant encroachment 

into grasslands (Gaigher et al. 2019). Furthermore, as fire overrides the impact of grazing on birds and 

arthropods (Little et al. 2013), it should be prioritised as a management action over grazing. Prescribed 

burning should be used consistently, as excluding fire from an area for more than three years has negative 

consequences for biodiversity (McLauchlan et al. 2020). How fire impacts functional connectivity within the

landscape should also be critically considered when identifying sites to burn (Sitters and Di Stefano 2020), as

this will ultimately impact meta-population dynamics and influence viability of future generations (Jackson 

and Sax 2010).

Lastly, high resolution PlanetScope data are recommended for monitoring grasshopper richness and 

assemblage composition response to changes in vegetation within the corridors. These grassland corridors 

have the potential to conserve biodiversity, however, management and monitoring needs to be in place to 

ensure biodiversity resembles neighbouring protected areas (Pryke and Samways 2012a).
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Chapter 3: Assessing grassland corridors between plantation forests for biodiversity conservation 

through measuring species distribution, turnover and functional connectivity

*Under review in Landscape Ecology.

3.1. Abstract

Context  Grassland corridors are set aside for biodiversity conservation within the commercial timber

plantation landscape of South Africa. However, the impact of the production landscape on functional 

connectivity within these corridors has not been investigated.

Objectives  I combine stacked species distribution modelling, functional connectivity analysis, and 

species turnover calculations, to improve our understanding of how grassland corridors contribute to 

functional connectivity and biodiversity conservation within plantation landscapes.

Methods  Grasshoppers, which are reliable indicators of grassland quality, were used as model 

organisms and sampled within grassland corridors. Remote sensing and machine learning was used to gain 

insight into the conservation potential of grassland corridors.

Results  Grassland corridors maintain much high-quality grasshopper habitat, characterised by 

vegetation structure and topoclimate. Large corridors with an elevation gradient supported diverse 

assemblages, with generalists occurring in edge habitat, while specialists preferred grassland interiors. Less 

frequent fires within corridors helped maintain high-quality habitat and functional connectivity. Grasslands 

were critical for increasing functional connectivity and can be monitored using NDVI to assist with 

prescribed burning. Shrublands establishing after tree harvesting also contributed to functional connectivity, 

but only in the short term.

Conclusions  Prescribed burning should be used to maintain vegetation structural heterogeneity and 

functional connectivity. I recommend less frequent fires, burning every 2-3 years, guided by NDVI. Large 

corridors at high elevation are priority. Management of plantation tree saplings should be incorporated into 

conservation plans, as it can enhance functional connectivity. Focusing on maintaining functional 

connectivity within corridors helps improve long-term biodiversity.

Keywords: Grassland mosaics; Grassland management; Plantation management; Land sparing; 

Grasshoppers; South Africa
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3.2. Introduction

Remnant habitat within production landscapes is important for biodiversity conservation under 

changing climate and disturbance regimes (Dudley et al. 2018), requiring critical evaluation for ensuring 

long-term effectiveness for biodiversity conservation (Wurtzebach and Schultz 2016). This is especially 

important for insect diversity and abundance, as insects are declining at alarming rates (Wagner et al. 2021). 

Insect assemblages depend on natural disturbance regimes, such as fire and grazing within the landscape for 

maintaining healthy populations (Schowalter et al. 2012). However, disturbances within production 

landscapes, such as commercial timber plantation forests, can be more frequent than natural systems (Betts et

al. 2021), which can have a lasting impact on long-term insect diversity (Jung et al. 2019; Theron et al. 

2021). One way to ensure that the management of remnant habitat within dynamic landscapes conserves 

biodiversity, is to model the complexities of biodiversity through use of predictive models (Pollock et al. 

2020). Specifically, use of species distribution modelling (SDM) and functional connectivity analysis are 

being used to monitor biodiversity within remnant habitat to prioritise conservation management (Villero et 

al. 2017; Dickson et al. 2019).

Species distribution modelling is a valuable tool for conservation, as it combines observations of 

species occurrence with environmental estimates of the local environment to predict suitable habitat within a 

larger geographic region to gain insight into the drivers of species distribution (Elith and Leathwick 2009). 

Understanding how the environment shapes species distributions is critical for conservation management, 

and recent developments in SDM has grown considerably due to advances in machine learning (Gobeyn et 

al. 2019), which has made these tools more accessible to researchers (Villero et al. 2017). A common use of 

SDM in conservation is the delineation of protected areas (Domisch et al. 2019; Velazco et al. 2020). 

However, incorrect selection of environmental variables reduces the effectiveness of SDM (Domisch et al. 

2019; Velazco et al. 2020), which can lead to undesired conservation outcomes. This has particular 

importance for commercial timber plantation forests where prescribed burning is a common management 

practice (Betts et al. 2021).

Identifying and protecting habitat with valuable biodiversity alone is not enough to maintain 

ecological resilience (i.e., the ability of an ecosystem to resist disturbance and recover quickly) within 

production landscapes. Understanding how the landscape facilitates ecological processes, such as species 
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dispersal, is essential for ensuring resilient ecosystems (Wurtzebach and Schultz 2016), as reductions in 

functional connectivity can affect meta-population dynamics (Sitters and Di Stefano 2020). Recent 

integration of electrical circuit-theory into conservation and landscape connectivity research provides such 

insights (Dickson et al. 2019). Electrical circuit-theory applied to ecology gives a deeper understanding of 

how the landscape affects animal movement (McRae et al. 2008), relying on the concept of functional 

connectivity, which links the behavioural response of animals to the landscape (Tischendorf and Fahrig 

2000). For example, fire creates heterogeneity in resource availability, and functional connectivity analysis 

can be used to monitor the response of biodiversity to prescribed burning (Sitters and Di Stefano 2020), 

which is very important for conservation within production landscapes (Doherty and Driscoll 2017).

Production landscapes are dynamic systems, arising from various management activities, such as 

prescribed burning and tree harvesting, which affect biodiversity in many ways. Combined use of SDM and 

functional connectivity analysis provides better understanding of how the managed landscape is affecting 

biodiversity, and which management practices provide opportunities for biodiversity conservation. 

Furthermore, restoration activities can be prioritised by using SDM and functional connectivity analysis to 

identify remnant habitat important for maintaining functional connectivity, as well as assessing the 

contribution made by different land cover types to sustain functional connectivity (Duflot et al. 2018). This 

provides much needed evidence on the importance of conserving remnant habitat within production 

landscapes (Sidemo-Holm et al. 2021).

Most studies that utilise SDM and functional connectivity analysis for conservation management 

tend to focus on a single species (Ahmadi et al. 2017; Duflot et al. 2018). A single species approach to 

conservation can help protect other species or communities as well, but only if protecting the target species 

habitat has been shown to protect other species habitats (Breckheimer et al. 2014). However, for insects a 

single species approach is not always insightful for insect assemblages as a whole, due to their high diversity 

and greatly varying specific habitat requirements among the different species (Gerlach et al. 2013). 

Furthermore, focusing on a single species ignores other important aspects of biodiversity, specifically, 

species diversity, which relates to functioning of ecosystems (Thompson et al. 2017).

Modelling species distributions and the degree of functional connectivity between remnant patches 

will not provide a full picture of how remnant habitat sustains ecological functioning into the future. 
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Managing a landscape for improved functional connectivity might negatively impact some species over 

others, leading to changes in species diversity and functioning of ecosystems (Pliscoff et al. 2020). 

Researchers in the past have relied on modelling beta diversity, or more specifically species turnover, to gain 

deeper insight into how the landscape is contributing to changes in species assemblages, which is of 

immense value for conservation assessments (Ferrier et al. 2007). Understanding what affects species 

distribution and how this impacts species diversity and functional connectivity is needed to ensure that 

remnant habitat is managed for ecological resilience.

Throughout the endangered grasslands of KwaZulu-Natal and Mpumalanga provinces, South Africa, 

a great deal of natural forest and grassland has been converted into commercial timber plantation forests, 

consisting mostly of Pinus and Eucalyptus species. However, much mostly intact remnant grassland habitat 

remains between plantation forests and are set aside for biodiversity conservation in the form of large-scale 

grassland conservation corridors (Samways and Pryke 2016). Yet to date, the degree to which these corridors 

facilitate functional connectivity has not been formally investigated. To assess the conservation value these 

grassland corridors, I explore the usefulness of SDM, functional connectivity analysis, and species turnover 

calculations. I specifically focus on grasshoppers, which are indicators of high-quality grassland habitat 

(Fartmann et al. 2012; Löffler and Fartmann 2017) to answer the following questions: 1) What is driving the 

distribution of high-quality grasshopper habitat? 2) How connected are high-quality habitats, and where 

should connectivity be restored? 3) What drives grasshopper species richness and beta diversity throughout 

the landscape? 4) How similar are these patterns among species with different conservation priorities?

Answering these questions will allow a better understanding of the variables important for 

maintaining high-quality habitat for grasshopper conservation and how this impacts species turnover. 

Furthermore, through identifying corridors important for maintaining functional connectivity and how the 

landscape can be managed to improve functional connectivity, I can identify priority restoration sites within 

the landscape to improve functional connectivity for biodiversity conservation.
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3.3. Methods

3.3.1. Study area and design

This study took place in four commercial timber estates within the KwaZulu-Natal Midlands of 

South Africa (Fig. 3.1). These estates cover about 21 400 ha of highly threatened grasslands of the 

Maputaland-Pondoland-Albany Hotspot (Dinerstein et al. 2017), where about 60% of land is used for 

plantation forests, and the remaining land is set aside for conservation. Dominant vegetation types include 

the Mooi River Highland Grassland, Midlands Mistbelt Grassland, Southern KwaZulu-Natal Moist 

Grassland, as well as Southern Mistbelt Forests. This temperate region, with a summer-dominant rainfall 

between December to March, has a complex topography with steep mountain valleys to rolling grassland 

hills, ranging in elevation from 800 m to 1750 m above sea level.
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Figure 3.1: Map of the study area. Left hand side shows the four timber plantation estates located 

within KwaZulu-Natal, South Africa. Right hand side shows the sampling sites within each estate, 

located throughout grassland corridors/remnants of varying shapes and sizes.
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Grassland corridors occur throughout the plantation estates and of different sized remnant corridors 

and nodes affecting the degree of structural connectivity (Fig. 3.1). Sampling sites were selected within 

grassland corridors based on a scoring and prioritisation methodology (Appendix S3.1). Land cover types 

were scored based on grasshopper preference, and all land cover types were then summed within larger grids 

to identify high and lower value habitat. Sites were selected with high and low habitat value scores, and to 

cover the geographic extent of the four estates, capturing much heterogeneity caused by divergent fire 

management (Gaigher et al. 2019). Sites were separated by > 1 km within the estates to ensure independence 

of sampling, except within estate no. 4, where the minimum distance between sites was 400 m due to smaller

remnant areas. A total of 51 sites were sampled.

3.3.2. Grasshopper sampling

Grasshoppers were sampled using a sweep net, with a diameter of 0.5 m and depth of 0.7 m. Each 

site had a total of three 100 m transects, placed in parallel separated by 5 m. At every 1 m along the transect, 

vegetation was swept with a sweep net, using a 180-degree arc movement. A total of 100 sweeps were 

performed per transect, with an overall total of 300 sweeps per site.

In addition to sweep netting, active searching was employed to capture mobile and elusive species. 

Two observers simultaneously searched throughout the sampling area by flushing out and chasing after large-

sized grasshoppers, lasting 20 min. A total of 40 min of active searching per site (20 min per observer) was 

undertaken.

To capture mostly adult grasshoppers, sampling was in March 2020, peak season for adult 

grasshopper activity in this area (Kinvig 2006). Sampling was undertaken between 08h30-16h00 on sunny 

cloudless days with little to no wind and took place at the centre of the corridors, or > 50 m away from edges

(Pryke and Samways 2012a). All sampled grasshoppers were transferred to re-sealable bags. They were later 

placed in a freezer prior to sorting. Immatures were not included owing to identification difficulties, and all 

adults collected were pooled per site for analysis.
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3.3.3. Response variables

Species accumulation curves were plotted to assess sampling effort and completeness of sampled 

grasshoppers using the specaccum function within the vegan R package (Oksanen et al. 2020). Species 

richness and exponent Shannon diversity index was used as response variables for all univariate analyses, 

calculated using caeliferan grasshoppers (i.e., excluding tettigoniids) to focus on dry grassland species. 

Previous research indicates low grasshopper diversity within other land cover types (Pryke and Samways 

2012a), which further motivates my focus on caeliferan grasshoppers, which show preference towards dry 

grassland habitat. Furthermore, exponent Shannon diversity index was specifically used here as it accounts 

for rarity and commonness of species at each site (Roswell et al. 2021).

Grasshoppers were also scored as low (score of 3 and 4), intermediate (5 and 6) and high (7 and 8) 

conservation priority following guidelines of Matenaar et al. (2015). These scores were based on three 

parameters, specifically, species rarity, endemism, and mobility. This was done to investigate differences in 

response between species groupings with different adaptations. Each parameter had different classes, and the 

sum of all classes was used to classify grasshoppers (Appendix S3.2: Table S3.2.1). A species with a high 

conservation priority is one that is a local endemic, only occurred at ≤ five sites, and flightless. In contrast, a 

low conservation-priority species is one that has a wide geographic distribution and occurs outside South 

Africa, occurred at > 10 sites, and is fully capable of flight. Species used in this study did not show wing-

dimorphism, and mobility was characterised based on wing characteristics seen in the field and in the lab.

Species richness and exponent Shannon diversity index were calculated for the three different species

grouping (low, intermediate, and high) derived from the scoring system above and used as additional 

response variables alongside overall richness and diversity for univariate analysis. Furthermore, the overall 

assemblage and the species groupings were used for SDM, functional connectivity analysis, and predicting 

species turnover.

3.3.4. Raster processing

In preparation for SDM, functional connectivity analysis, and species turnover calculations, various 

raster data variables were generated. For details on variable source, processing, importance and how it was 

used in which analysis, see Appendix S3.1: Table S3.1.1.
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3.3.5. Species distribution modelling

To identify high-quality habitat for grasshoppers within grassland corridors, I used stacked species 

distribution modelling (S-SDM) from the SSDM package (Schmitt et al. 2017). This procedure models the 

distribution of multiple species together, allowing us to make inference on species assemblages. This is done 

by summing up the probabilities for all species occurring at a specific location (using individual SDM) to 

produce a species richness map. This richness map can be interpreted as areas of highest quality habitat to 

support diverse grasshopper assemblages.

Uncertainty in predictions made by different algorithms used for SDM can have great impact on land 

use planning, due to differences in model results (Gritti et al. 2013). To overcome this limitation, I used an 

ensemble approach, thereby exploring the range of projections across the Random Forest and Support Vector

Machines algorithms, by averaging the derived results from these algorithms and avoiding bias from relying 

on one model only (Gritti et al. 2013).

Furthermore, per species, each algorithm was repeated 10 times and only accurate models were 

retained for stacking. This filtering was done using the Area Under the Receiver Operating Characteristic 

Curve (AUC) accuracy statistic, which is a widely use accuracy metric in machine learning derived from a 

confusion matrix. Only models with an AUC score of 0.7 or higher were used. To evaluate the performance 

of the final stacked model, I split the grasshopper data into training (70%) and testing (30%) sets. The 

algorithms learned to make accurate prediction using the training data, and this learning was validated using 

the testing data (cross-validation). This is done by comparing modelled species assemblages with 

independent species inventories observed in the field, and then calculating multiple evaluation statistics. 

Specifically, S-SDM calculates 1) the species richness error, which is the difference between the predicted 

and observed species richness in the field, 2) assemblage specificity, which is the proportion of correctly 

predicting when a species is absent, 3) assemblage sensitivity, which is the proportion of correctly predicting 

when a species is present, and 4) the Jaccard index, which is a metric used to demonstrate community 

similarity. Lastly, S-SDM measures the relative contribution of environmental variables for predicting 

species distribution, which is done through evaluating the change in model accuracy between a full model 

and models where each environmental variables were omitted in turn (Schmitt et al. 2017). The test statistics,
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as well as the relative contribution of environmental variables, are averaged over the different modelling 

repeats (Schmitt et al. 2017).

Most SDM requires species presence and absence data. However, in the situations where absence 

data is not obtained, or is not reliable, pseudo-absence data can be generated. Pseudo-absence data are 

locations where a species is assumed to be absent, based on the combination of environmental data provided 

to the algorithm. For the S-SDM, I grouped species per site and generated pseudo-absence data using species

occurring at > 3 sites. This decision was made based on potential bias in my sampling design, as I only 

sampled grasslands (Phillips et al. 2009), the difficulty capturing elusive and mobile grasshopper species, the

relatively low amount of occurrence records for some species (Pearson et al. 2007), and the difficulty in 

obtaining true absence records (Mackenzie and Royle 2005). Following recommendations from Barbet-

Massin et al. (2012), pseudo-absence data were repeatedly generated per algorithm run to obtain best 

performing models.

To fit the stacked models, only environmentally relevant variables were used, based on previous 

research within the study region. Specifically, I included Normalised Difference Vegetation Index (NDVI), 

land cover, distance to corridor edge, maximum Normalised Burn Ratio (maxNBR), topographic aspect, and 

cold air drainage. NDVI, which shows high reflectivity over green healthy vegetation, influences 

grasshopper diversity in this region, and was calculated using Sentinel-2 image in January 2020 (Theron et 

al. 2021). Land cover type (Appendix S3.3) was included to help the algorithm generate accurate pseudo-

absence data, as I only sampled within grasslands, allowing me to accurately predict over the entire study 

area. Distance to corridor edge influences the strength of edge effects on arthropods (van Schalkwyk et al. 

2020). I therefore include it here to stand as a proxy for corridor size due to the different sized corridors 

sampled. Prescribed burning, which is highly significant for plant and grasshopper diversity within this 

region (Joubert et al. 2014, 2016), was included in the model and measured using the NBR index. This index 

is used to study fire severity and intensity (Keeley 2009), and ranges from -1 (high burn intensity, low 

vegetation cover) to +1 (low burn intensity, high vegetation cover). The maximum NBR index was 

calculated from Landsat imagery dating back three years from grasshopper sampling using Google Earth 

Engine (Gorelick et al. 2017). Selecting the maximum NBR pixel values over 3 years allows us to map the 

frequency of burns within the grassland corridors, where lower NBR values indicate areas of recent recurring
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burns, with higher NBR values indicating longer burn intervals or where it has not burned recently (within 

the last three years). Lastly, I included cold air drainage, which has a significant influence on grasshopper 

abundance, alongside aspect (Samways 1990). Cold air drainage was processed as a distance matrix. More 

information on S-SDM with preliminary results and variable selection is given in Appendix S3.4.

3.3.6. Functional connectivity

To model functional connectivity and to identify areas where connectivity should be re-established, I 

used the Circuitscape package in the Julia coding language (Anantharaman et al. 2020), as well as least-cost 

path models from the leastcostpath R package (Lewis 2021).

Circuitscape is based on electrical circuit-theory, where electrical current will flow through areas 

with high conductance or low resistance (McRae et al. 2008). This can translate to animal movement within 

a landscape, where animals struggle to move through a land cover with high resistance values (Dickson et al.

2019). The resulting map that Circuitscape produces shows the density of electrical current, which represents

the probability of use by a random walker (Doyle and Snell, 1984), and can be interpreted as functional 

connectivity (McRae et al. 2008).

On the other hand, least-cost path models identify the shortest possible path between two locations 

based on the extent to which the landscape hinders movement (Adriaensen et al. 2003). These models 

assume that the shortest distance between areas is the best solution for animals moving between high-quality 

habitats (McClure et al. 2016). Least-cost path models therefore highlight corridors important for 

maintaining functional connectivity and can be used to identify areas where connectivity needs to be 

restored.

Performing accurate functional connectivity analysis requires suitable resistance/conductance 

surfaces (Peterman 2018). As the type of surface can influence the resulting connectivity map, I produced 

connectivity maps using three different conductive surfaces. Details on the different conductance surfaces 

used for connectivity modelling can be found in Appendix S3.5. As functional connectivity analysis is 

computationally intensive, I rescaled the conductance surfaces to 20 m resolution before performing the 

Circuitscape analysis to save on processing time without compromising resulting connectivity maps (McRae 

et al. 2008).
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To run Circuitscape and least-cost path models, grasshopper source patches had to be determined. 

Source patches is defined here as the highest quality habitat for sustaining grasshopper populations, and 

areas from which species can disperse. Previous research demonstrated that suitable habitat derived from 

species distribution models is a cost-effective method to build functional connectivity models (Valerio et al. 

2019). Thus, source patches were delineated by selecting the top 5% of high-quality habitat from S-SDM. 

Source patches were filtered to only include areas ≥ 1ha, as this is the minimum size for supporting large 

grasshopper populations (Theuerkauf and Rouys 2006). However, for estate no. 4, which contains smaller 

remnants, source patches were filtered to include areas ≥ 0.5ha.

The Circuitscape analysis was performed using conductance surfaces in pairwise mode, which 

measures connectivity for every source node pair combination, and was run separately per estate, as well as 

per conductance surface. To gain insight into which land cover types are most important to maintain 

functional connectivity, I averaged the three resulting connectivity maps and selected the top 15% of current 

within the map, before overlying the selected current onto a land cover data product and identifying 

underlying land cover types. Similar threshold values have identified the most important areas for 

maintaining functional connectivity (Duflot et al. 2018).

To identify the least-cost path network that connects source patches, I used the create_lcp_density 

function within the leastcostpath R package (Lewis 2021), which calculates the number of times a corridor is

used by a random walker moving between source patches. As the conductance surfaces used in Circuitscape 

produced very similar connectivity maps (Appendix S3.5: Figure S3.5.3; Figure S3.5.4), only high-quality 

habitat from S-SDM was used as a conductance layer in least-cost path models. To gain insight into corridor 

characteristics of frequently and less frequently used corridors, I selected the top and bottom five most and 

least used corridors and investigated the underlying landscape features (NDVI, distance to edge, maximum 

NBR, topographic aspect, cold air drainage, and elevation). These features were averaged per corridor.

To identify sites where connectivity should be improved, I selected the least-cost path network in 

which the amount of current (Circuitscape connectivity map) was < the top 15% of current. This represents 

areas where functional connectivity is not high enough to maintain connectivity within the landscape, based 

on research by Duflot et al. (2018). This was done only within the most frequently used corridors per estate 

(used > 233 times) to prioritise restoration efforts. For this analysis I excluded all paths outside of the estates,
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as well as paths that crossed any plantations, so that subsequent recommendations would be focused on 

grassland corridors within the plantation estates.

3.3.7. Grasshopper beta diversity

To identify the drivers of species turnover I used generalised dissimilarity modelling from the gdm R 

package (Fitzpatrick et al. 2021). Species turnover is a measure of species replacement between locations 

and is based on dissimilarities in biological composition between pairs of sampled sites. Thus, generalised 

dissimilarity modelling relates environmental data to dissimilarities in species assemblages, which is 

calculated from a distance matrix, where greater distances indicate larger dissimilarities (Ferrier et al. 2007).

For fitting my models, I used the Jaccard dissimilarity index, which was selected because it can 

detect underlying ecological patterns well without relying on abundance data (Oksanen et al. 2020). I 

decided to use the same presence data in S-SDM for species turnover calculations, to allow better 

comparisons between methods. The effect of each variable was then evaluated based on range of the partial 

response plots. These plots show differences between the explanatory variables, and how each effect the 

response variable (community dissimilarity). The range of response for every variable indicates the strength 

of the variable in predicting species turnover, and the non-linear curve indicates which portions of that curve 

would have steeper species turnover.

Alongside the variables used in S-SDM, electrical current maps (Circuitscape) and elevation were 

included as additional variables. To account for the autocorrelation, I included geographic distance between 

sites as an additional variable in all models. Variable selection was performed to identify important variables 

affecting species turnover, following a backwards elimination procedure using 100 permutation (gdm.varImp

function within the gdm R package). Only significant variables were used in the final model.

3.3.8. Grasshopper species richness

To identify the drivers affecting local species richness and diversity, I used mixed-effect models. 

Linear mixed-effect models from the lme4 R package (Bates et al. 2015) were used for overall richness, 

exponent Shannon diversity, as well as for low and intermediate conservation-priority species richness and 

exponent Shannon diversity. Due to the large number of zeros in the high conservation-priority grasshopper 
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response variables, I decided to use zero-inflated generalised mixed-effect models from the glmmADMB R 

package (Fournier et al. 2012). Specifically, species richness was fitted using Poisson distribution, whereas 

exponent Shannon diversity, which contained decimal values, was fitted using gamma distribution. For 

consistency, only species occurring at > 3 sites were used.

To identify most influential variables for the response variables, I performed model selection and 

averaging using the MuMIn R package (Bartoń 2020). This methodology iteratively runs through all possible

variable combination (candidate models) and ranks model performance based on Akaike's information 

criterion (AICc), which accounts for small datasets. Variables used during dissimilarity modelling were also 

used for mixed-effect modelling, with estate name used as a random effect to account for autocorrelation. 

Land cover type was excluded from mixed-effect models, as grasshopper richness does not respond strongly 

to land cover in the surrounding landscape (Bazelet and Samways 2011a). Furthermore, highly correlated 

variables (± 0.6) were identified using Spearman rank coefficients and excluded from further modelling. 

Model selection was performed on a global model, containing distance to corridor edge, maxNBR, aspect, 

elevation, and cold air drainage (VIF < 2.2), using the dredge function (Bartoń 2020). Model averaging was 

then performed using the model.avg function (Bartoń 2020) on a subset of the best performing models (delta 

< 2), before deriving test statistics. Model averaging incorporates highly influential candidate models into the

derived test statistics, which better represents ecological patterns in the data compared to using a single 

model (Burnham and Anderson 2002).

3.4. Results

3.4.1. Sampled grasshoppers

A total of 2 503 adult Caelifera grasshopper individuals from 58 species, 46 genera, 18 subfamilies 

and 6 families, were collected, with species accumulation curves reaching near asymptotes (Appendix S2.1: 

Figure S2.1). On average, 11 species were collected per site (min = 3, max = 20), with a mean number of 

individuals of 49 (min = 6, max = 186). More information on species richness and abundance per site in 

Appendix S3.2: Table S3.2.2. Numerous species found in these grassland corridors are associated with 

protected areas, specifically, Eyprepocnemis calceata, Anablepia pilosa, Pseudoarcyptera cephalica, and 
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Dirshia abbreviata (Joubert et al. 2016), whereas Faureia milanjica, found at three sites, is an indicator of 

high-quality habitat (Bazelet and Samways 2011b).

A total of 21 grasshopper species with low conservation-priority were collected, with Oxya hyla, 

Vitticatantops humeralis and Pnorisa angulata being the most abundant species, while a total of 27 

grasshopper species with intermediate conservation-priority were collected, with Lentula obtusifrons, 

Duronia chloronota curta and Anablepia pilosa being the most abundant species. Only 10 grasshopper 

species with high conservation-priority were sampled, with Stenoscepa picticeps, Dirshia abbreviata and 

Pseudoarcyptera cephalica being the most abundant species. After removing species occurring at ≤ 3 sites, 

an overall total of 35 species remained, of which 3, 11 and 21 were high, intermediate, or low conservation-

priority species. See Appendix S2. Table S2.2 for full grasshopper species list.

3.4.2. Stacked species distribution modelling

Stacked species distributing modelling performed well in predicting species richness throughout the 

landscape (Table 3.1). However, for the overall and low conservation-priority species groupings there was 

relatively high richness prediction error, which decreases substantially with the intermediate and high 

conservation-priority species groupings, as the number of stacked species decreased (Table 3.1). The models 

all had high sensitivity, correctly predicting when a species was observed as present, whereas specificity, the 

ability to correctly predict when a species is observed to be absent, was somewhat lower (Table 3.1). Overall,

the models had the ability to correctly predict large proportions of grasshopper assemblage composition 

(Table 3.1). Additionally, there was high correlation between the two algorithms chosen for the ensemble (r =

0.77 – 0.88), indicating overall agreement in the predicted high-quality habitat produced by both algorithms 

(Appendix S3.4: Figure S3.4.1).

The most influential variables for predicting high-quality habitat for the overall grasshopper 

assemblage were maxNBR, NDVI, cold air drainage, and aspect, followed by distance to edge and land 

cover with lower importance (Table 3.2). For low and intermediate conservation-priority species the trend 

was generally the same (Table 3.2). For species of high conservation-priority, the most influential variables 

were cold air drainage, aspect, maxNBR, and distance to edge, followed by land cover and NDVI with lower

importance (Table 3.2).
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Table 3.1: Evaluation statistics for stacked species distribution modelling that were used to identify drivers of high-

quality grasshopper habitat for the overall assemblage as well as for the different conservation-priority species groups 

(Low - High). Spp rich error = species richness error (difference between predicted and observed species richness), 

Specificity = assemblage specificity (proportion of correctly predicting when a species is absent), Sensitivity = 

assemblage sensitivity (proportion of correctly predicting when a species is present), and Jaccard = Jaccard index 

(community similarity). Values represent the mean (±SD) of the 10 modelling repeats.

Model Spp rich error Specificity Sensitivity Jaccard

Overall 16.65 (±10.37) 0.26 (±0.28) 0.74 (±0.31) 0.29 (±0.14)

Low 9.08 (±6.15) 0.24 (±0.29) 0.73 (±0.27) 0.31 (±0.15)

Intermediate 5.63 (±3.57) 0.28 (±0.38) 0.96 (±0.17) 0.38 (±0.24)

High 1.46 (±0.78) 0.19 (±0.38) 1.00 (0) 0.50 (±0.25)

Table 3.2: Relative contribution of environmental variables used in stacked species distribution modelling to predict 

high-quality grasshopper habitat for the overall assemblage as well as for the different conservation-priority species 

groups (Low - High). Values represent the mean (±SD) of the 10 modelling repeats. NDVI = Normalised Difference 

Vegetation Index, Drain dist = distance to nearest cold air drainage line, Dist edge = Distance to grassland edge, 

maxNBR =  maximum Normalised Burn Ratio index.

Model NDVI Land cover Drain dist Aspect Dist edge maxNBR

Overall 20.12 (±9.64) 10.73 (±4.93) 17.88 (±5.52) 17.60 (±5.45) 12.23 (±8.02) 21.44 (±6.37)

Low 18.69 (±8.76) 9.83 (±3.60) 17.52 (±3.99) 17.69 (±3.87) 13.02 (±8.56) 23.25 (±6.02)

Intermediate 20.23 (±7.40) 13.44 (±4.50) 17.48 (±5.79) 16.44 (±3.77) 11.20 (±7.13) 21.22 (±6.87)

High 9.54 (±3.00) 9.59 (±5.51) 22.77 (±17.66) 22.29 (±16.21) 14.20 (±7.62) 21.61 (±11.84)

High-quality habitat for the overall assemblage was driven mostly by low conservation-priority 

species, where the model indicates a preference for grassland edges (Fig. 3.2). Intermediate conservation-

priority species also showed a preference for grassland edges, alongside a preference for grassland patch 

interiors (Fig. 3.2). High conservation-priority species did not prefer grassland edges, as habitat was most 

suitable in the grassland corridor interior, especially when large in size (Fig. 3.2).
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Figure 3.2: Stacked species distribution modelling within the four plantation estates, for overall caeliferan diversity, low, 

intermediate, and high conservation-priority species groups. Red indicates low-quality habitat with low richness values, 

whereas blue indicates high-quality habitat with high richness values. Differences between low, intermediate, and high 

conservation-priority species habitat are illustrated within 700 m buffers (black circle).
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The amount of high-quality habitat identified as source patches was generally the same between 

species groupings, where high conservation-priority species had the lowest amount of source patches 

available, compared to intermediate conservation-priority species with the largest amount (Fig. 3.3; 

Appendix S3.4: Table S3.4.3). Additionally, estate no. 4 had the lowest amount of source patches compared 

to all other estates, with estate no. 1 having the highest amount (Fig. 3.3; Appendix S3.4: Table S3.4.3).
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Figure 3.3: Functional landscape connectivity maps for all four estates produced using Circuitscape. a) Maps for overall 

grasshopper assemblage composition, b) low conservation-priority grasshopper species, c) intermediate conservation-priority 

grasshopper species, and d) high conservation-priority grasshopper species. Green areas indicate grasshopper source patches 

derived from stacked species distribution modelling.
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3.4.3. Functional connectivity

Estate no. 1 and 3 had higher functional connectivity compared to estates no. 2 and 4 (Fig. 3). These 

estates had large amounts of grasslands compared to timber compartments, and were adjacent to protected 

areas (Appendix S3.1: Table S3.1.2).
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Figure 3.4: Least-cost path networks over all four estates for a) overall grasshopper assemblage composition, b) low 

conservation-priority grasshopper species, c) intermediate conservation-priority grasshopper species, and d) high 

conservation-priority grasshopper species. Network path has a colour gradient, where red indicates important corridors 

frequently used to move between source patches and white shows less frequently used corridors. Blue areas indicate 

where functional landscape connectivity should be improved within frequently used corridors.
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Functional connectivity was generally the same between different species groupings, except for 

estate no. 4, where functional connectivity improved for intermediate and high conservation species (Fig. 

3.3). The most important land cover for maintaining functional connectivity were grassland, followed by 

shrubland and bare ground with lower importance (Appendix S3.5: Figure S3.5.1).

The least-cost path models identified several highly important corridors, specifically within estates 

no. 1 and 3 (Fig. 3.4). These important corridors were more often at higher elevation compared to less 

frequently used corridors (Appendix S3.5: Table S3.5.2). No other features played a major part in identifying

important corridors (Appendix S3.5: Table S3.5.2). Between species groupings the least-cost path networks 

changed, but the highly important corridors stayed constant (Fig. 3.4).

Within the very important corridors, many areas were identified for improving functional 

connectivity, specifically within estate no. 3 (Fig. 3.4). Corridors within estate no. 1 had fewer restoration 

sites identified, indicating more suitable functional connectivity (Fig. 3.4). Between species groupings, the 

number of restoration sites was different, with many sites identified for high conservation-priority species 

within estate no. 1, as well as for intermediate conservation-priority species within estate no. 3 (Fig. 3.4).

3.4.4. Grasshopper beta diversity

Predicted species turnover of the overall grasshopper assemblage increased steadily with greater 

distances from grassland edges as well as at higher elevation, whereas little turnover was detected at ≥30 km 

distances between sites (Fig. 3.5). There was a similar pattern for predicted species turnover of low 

conservation-priority species (Fig. 3.5). For intermediate conservation-priority species, predicted turnover 

rates increased up until 1 400 m above sea level, above which there was little turnover (Fig. 3.5). For high 

conservation-priority species, predicted turnover increased rapidly at higher elevations as well as on north-

west (warm and sunny) facing slopes (Fig. 3.5).

3.4.5. Grasshopper species richness

Distance to nearest grassland edge had a significant negative effect on local species richness and 

exponent Shannon diversity for overall grasshopper and low conservation-priority species (Table 3.3). 

Furthermore, maxNBR had a significant positive effect on exponent Shannon diversity for intermediate 
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conservation-priority species (Table 3.3). No significant effects were found for high conservation-priority 

species (Table 3.3).
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Figure 3.5: Variable importance in predicting species turnover for a) overall assemblage composition, b) low 

conservation-priority species, c) intermediate conservation-priority species, and d) high conservation-priority 

species.
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Table 3.3: Model-averaged estimates (conditional average) of environmental variables predicting overall grasshopper 

richness and exponent Shannon diversity as well as for the different conservation-priority species groups (Low - High). 

Significant variables in bold. RI = relative importance, #models = number of containing models.

Model Response Explanatory beta se 5% 95% RI #models

Overall Richness Edge dist -0.299 0.132 -0.564 -0.033 0.54 1

exShannon Edge dist -0.408 0.136 -0.679 -0.147 NA 1

Low Richness Edge dist -0.307 0.135 -0.579 -0.036 0.45 1

Aspect -0.234 0.125 -0.486 0.018 0.19 1

exShannon Edge dist -0.422 0.137 -0.686 -0.157 NA 1

Intermediate Richness Drain dist -0.249 0.134 -0.518 0.02 0.29 1

maxNBR 0.247 0.15 -0.055 0.548 0.2 1

exShannon maxNBR 0.297 0.136 0.023 0.571 0.33 1

Drain dist -0.235 0.136 -0.509 0.039 0.2 1

High Richness Elevation 0.001 0.0008 -0.0005 0.003 0.46 2

maxNBR 3.572 2.748 -1.96 9.103 0.19 1

Aspect 0.002 0.002 -0.003 0.006 0.17 1

exShannon Elevation 0.0001 0.0001 -0.0001 0.0003 0.312 1

3.5. Discussion

3.5.1. Grasshopper distribution and turnover

Grassland corridors maintain much high-quality grasshopper habitat, even for species of high 

conservation-priority, indicating that remnant habitat can support sensitive and range restricted species 

within production landscapes. This complements previous research, which demonstrated that these corridors,

when managed for biodiversity conservation, extend the reaches of neighbouring protected areas (Pryke and 

Samways 2012b). The distribution of high-quality habitat was driven primarily by vegetation heterogeneity 

(NDVI and NBR) and topoclimate (cold air drainage and aspect), which was a consistent pattern for low and 

intermediate conservation-priority species, whereas high-quality habitat for high conservation-priority 
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species were more influenced by topoclimate than vegetation heterogeneity. Previous work demonstrates that

grasshoppers within grassland corridors respond strongly to vegetation structure and bare ground (Bazelet 

and Samways 2011a), and more recently, that prescribed burning is a major driver modulating vegetation 

structure (Theron et al. 2021), which further complements my findings on grasshopper distribution patterns.

However, fire through prescribed burning impacts biodiversity in complex ways, due to differences 

in fire severity, intensity, frequency, and time since last fire. Joubert et al. (2016) studied grasshopper 

response within grassland corridors to fire frequency and time since last fire, and showed that fire frequency 

significantly effects grasshopper assemblages, indicating that there is considerable range in preferred habitat.

Furthermore, annual burning (high fire frequency) can lead to homogeneous plant communities (Joubert et 

al. 2014), which negatively impacts some grasshopper species (Poniatowski et al. 2018). This highlights the 

importance of fire frequency for maintaining high-quality grassland corridors, and my results add to this by 

demonstrating that fire through prescribed burning has a positive effect on intermediate priority 

grasshoppers, as well as shaping high-quality grasshopper habitat, but only when fire frequency is somewhat 

lower (at least once every three years). This corresponds to recent work demonstrating that variation in 

grassland photosynthetic activity over three years positively influences grasshopper diversity (Theron et al. 

2021).

Alongside vegetation structure, topoclimate has a particularly strong impact shaping high-quality 

grasshopper habitat, especially for more sensitive specialised species. Grassland corridors within the study 

area cover large areas of complex topography, with large variation in day and night temperatures. This 

creates opportunities for cold air to form and drain along natural topographic channels, which has major 

negative impact on grasshopper abundance (Samways 1990). This effect can be even stronger on slopes 

facing north, which cause grasshoppers to seek refuge on these austral hilltops (Samways 1990). My results 

add to this by demonstrating the importance of elevation and aspect in predicting grasshopper species 

turnover, especially for high priority species. Different grasshopper assemblages are supported along an 

elevation gradient and on different topographic aspects when cold air drainage channels are avoided.

Distance to nearest grassland edge had a clear impact on high-quality grasshopper habitat, where 

generalists preferred edge habitat, compared to specialists, which preferred the grassland interior. Previous 

research illustrates the importance of corridor width in determining the strength of edge effects on arthropods
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within grassland corridors, where wide corridors are favoured by grassland specialists that inhabit grassland 

interiors (van Schalkwyk et al. 2020). My results support this, showing that low conservation-priority species

(generalists) are more diverse close to grassland edges, and that different grasshopper assemblages occur at 

greater distances from edge habitat. However, within the study area, the dominant edge effects are created by

plantation trees, and more research is needed to assess importance of edge habitat between different 

contrasting land cover types.

Stacked species distribution modelling used here to study high-quality grasshopper habitat had high 

sensitivity, but lower specificity, which was a result of using pseudo-absences. This highlights the 

importance of using accurate absence data for S-SDM. Furthermore, S-SDM generally suffers from 

relatively high richness prediction error when stacking multiple species (Schmitt et al. 2017), as evident from

the overall model and low conservation species model. Other authors have suggested alternative ways of 

stacking species distribution models (Guisan and Rahbed 2011; Calabrese et al. 2014), but there is not 

consensus as to which method is best, as it differs for the species mapped, environmental data used, and 

algorithms selected (Hortal et al. 2012; Benito et al. 2013; D’Amen et al. 2015). Stacking species distribution

models has large conservation potential, but more research is needed to further develop this methodology.

3.5.2. Functional connectivity

Grassland corridors between plantation forests greatly contribute to functional connectivity 

throughout the landscape. The ratio of grassland to plantation compartments had a large influence on 

functional connectivity, with estate no. 1 and 3 showing the highest amount of functional connectivity due to 

larger amounts of grassland. These estates also neighbour protected areas, which suggests that these estates 

will more easily allow biodiversity to spillover (Pryke and Samways 2012b), indicating that high-quality 

habitat surrounding plantation estates play a key part in sustaining functional connectivity throughout the 

landscape.

Grassland was the most important land cover for maintaining functional connectivity. However, not 

all grasslands are the same. Older grasslands have climax grass species with long broad leaves, which are not

preferred by most grasshopper species (Bazelet and Samways 2011a). Here, my results provide new insights 

into how NDVI can be used as a monitoring method for assessing functional connectivity within the wet 
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summer months, and to help assist spatial planning for prescribed burning. NDVI has previously been used 

to predict grasshopper diversity, with vegetation structure being the underlying driver explaining this 

relationship (Theron et al. 2021).

Interestingly, shrubland helped maintain functional connectivity, specifically within timber 

compartments after trees have been harvested. After the removal of trees, the land is cleared and left fallow, 

allowing alien vegetation to colonise. After several months, this vegetative layer is removed prior to 

plantation tree saplings being planted. Vegetation, mostly alien, are once again allowed to colonise, but will 

eventually die out when tree canopies start to close. Thus, functional connectivity is enhanced during the 

initial establishment of plantation tree saplings. This suggests that where mature trees are harvested, they 

have high temporal impact on functional connectivity within the landscape (Pliscoff et al. 2020). Recent 

research also supports this by showing that rotational harvesting, as opposed to harvesting entire landscapes, 

can increase vegetation structural diversity, promoting arthropod spillover within the landscape (van 

Schalkwyk et al. 2021). However, bush encroachment and alien invasion are major threats to grassland 

ecosystems globally (Stanton et al. 2018, Wang et al. 2019), and can reduce functional connectivity within 

grasslands (Deák et al. 2020). Thus, alien vegetation should be contained within the timber compartments 

and prevented from spilling over into grassland corridors.

Within the grassland corridors of the study region, multiple highly important corridors were 

identified, with only elevation playing an important role in characterising frequently used corridors, even for 

high priority species. Corridors at higher elevation are key refuges under warming climates (Samways and 

Pryke 2016), and it is relatively inaccessible to humans and experience less frequent anthropogenic 

disturbances such as prescribed burning (Gaigher et al. 2019). Thus, corridors at higher elevations should be 

retained and managed optimally to ensure resilience, especially focussing on larger corridors. Additionally, 

elevation can help guide the identification of additional high value corridors in other study systems, and to 

prioritise restoration activities.

In general, I did not find any direct effect of functional connectivity on grasshoppers, supported by 

other research (Keller et al. 2013; Poniatowski et al. 2016; Löffler and Fartmann 2017). However, functional 

connectivity for grasshoppers is dependent upon vegetation structure, as shown by my results. This suggests 

that functional connectivity has an indirect effect on grasshoppers within grassland corridors.
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3.5.3. Management recommendations

Here I show that by using S-SDM, functional connectivity analysis, and species turnover 

calculations, an in-depth understanding of how remnant habitat as the corridors here within production 

landscapes conserves biodiversity. I recommend use of fire through prescribed burning to maintain high-

quality grasshopper habitat and functional connectivity within grassland corridors. Fire frequency should be 

critically considered, and I recommend burn cycles of 2-3 years, spaced out spatially to enhance 

heterogeneity in vegetation successional stages. Large corridors with an elevation gradient and north-west 

facing slope in this austral landscape should be prioritised for grasshopper conservation. In turn, NDVI can 

be used to assess grasshopper habitat to guide planning for prescribed burning.

Within estates with narrow grassland corridors and low functional connectivity, I recommend that 

extensive management of some timber compartments be adopted, so that these compartments resemble 

natural habitat more closely and improve functional connectivity (Betts et al. 2021). Extensive management 

tries to mimic natural disturbance regimes and vegetation structure that emulates this by retaining some trees 

and downed wood during harvesting (Betts et al. 2021). Lastly, when timber trees are harvested, and how the

land is managed before timber trees mature, should be incorporated into conservation planning. This 

approach can enhance functional connectivity, even if only in the short-term.

Grassland corridors can conserve biodiversity and maintain ecological resilience within a plantation 

forest landscape, so long as management ensures functional connectivity and high-quality habitat so that 

there is long-term conservation of biodiversity in these production landscapes.
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Chapter 4: Mapping an alien invasive shrub within grassland corridors using super-resolution satellite

imagery

*Under review in Journal of Environmental Management.

4.1. Abstract

Alien invasive plant species are one of the main drivers of global biodiversity loss. Methods for 

monitoring the spread of alien invasive plants are needed to improve management and mitigate impact on 

local biodiversity. Recent advances in deep learning and super-resolution image reconstruction holds great 

potential for mapping and managing alien invasive plants. Within the commercial timber production 

landscape of KwaZulu-Natal, endangered grassland corridors are threatened by American bramble invasion, 

impacting plants, birds, arthropods, and soil restoration. Here I aim to improve our understanding of bramble

invasion dynamics through using super-resolution satellite mosaics. Super-resolution satellite mosaic 

classified bramble with very high accuracies (86%) compared to other conventional satellite imagery with 

different spectral and spatial resolutions. Using landscape analyses, I identified plantation tree harvesting and

prescribed burning to be major drivers increasing bramble cover within the landscape. Bramble cover was 

highest two years after plantation trees have been harvested, whereas continuous prescribed burning 

positively influenced bramble. Bramble cover was also high close to streams, and under future invasion 

projections, bramble will severely impact Ensifera species alongside high priority grasshopper species 

habitat. Results also indicate that bramble has a significant negative impact on intermediate priority 

grasshoppers and plant species richness. For controlling bramble invasion within the commercial timber 

production landscape, I recommend the adoption of rotational harvesting, as harvesting entire plantation 

blocks throughout the landscape will dramatically increase invasion potential of bramble. Current bramble 

removal programmes should prioritise riparian areas and use high priority grasshopper habitat to identify 

vulnerable terrestrial habitat. Special attention is needed to control bramble two years after harvesting, as this

is when bramble cover is highest. I show the benefits of using super-resolution mosaics to gain new insights 

into alien invasive species dynamics, while further development of this technique will aid in managing alien 

invasive plant species.

Keywords: Conservation corridors; Plantation forestry; Remote sensing; Deep learning; Rubus 

cuneifolius; Landscape management; Invasion dynamics
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4.2. Introduction

Alien invasive plant species are one of the main drivers of global biodiversity loss, which cause the 

reduction of ecosystem services and human well-being (Pyšek et al. 2020). Alien invasive plants can also 

have indirect impacts on local biodiversity, through changes in water quality (Le Maitre et al. 2014) and 

change in soil chemistry (Ruwanza and Shackelton 2016). Removal of alien invasive plants is crucial yet 

hindered by high costs associated with manual removal and lack of appropriate data on species distributions. 

There is thus an urgent need to develop methods for monitoring alien invasive plants to optimise removal 

programmes, and to improve our understanding of the mechanisms driving invasions and their impact on 

local biodiversity (van Wilgen et al. 2020).

Developing a robust understanding of alien invasive plant dynamics will provide important feedback 

for optimising management (van Wilgen et al. 2021). This is especially important within production 

landscapes, as human activity and land use change are important drivers of alien plant invasions (van 

Rensburg et al. 2018). Furthermore, production landscapes are some of the last frontiers for biodiversity 

conservation under global change (Samways et al. 2020), as large amounts of natural vegetation still reside 

within them (Dinerstein et al. 2017). Thus, understanding which operations within production landscapes 

facilitate the spread of alien invasive plants will provide much needed guidance to design effective 

conservation programmes within production landscapes (Samways and Pryke 2016).

The endangered grassland biome of South Africa, a biodiversity hotspot, is threatened by commercial

timber production, predominately within the KwaZulu-Natal and Mpumalanga provinces. The timber estates 

protect much remnant habitat of natural vegetation for biodiversity conservation (Samways and Pryke 2016),

while providing valuable economic opportunities for the country. However, some operations, such as poor 

weed control in nurseries, seed dispersal through field machinery, tree felling, logging, planting of plantation 

tree saplings, and creating new service roads, provide opportunities for alien invasive plants to establish and 

spread (Le Maitre et al. 2004). These actively managed landscapes have therefore become prime invasion 

sinks (van Wilgen et al. 2008), and responsibility to manage alien invasive plants has been put onto 

landowners (van Rensburg et al. 2018).
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In South Africa, a total of 559 taxa have been identified as serious alien invasive species that require 

compulsory control under the Alien and Invasive Species regulations of South Africa (van Wilgen et al. 

2020). American bramble (Rubus cuneifolius) is one of the most prominent and aggressive alien invasive 

plants in the grassland biome of South Africa (Henderson 2007). Bramble threatens plant species richness 

and endemic grassland birds (Reynolds and Symes 2013), dragonflies (Kietzka et al. 2015), pollinating 

insects (Hansen et al. 2018), soil arthropods and soil recovery (Eckert et al. 2019), as well as large bodied 

Caelifera grasshoppers (Theron et al. 2021a). Bramble also forms dense stands around newly established 

sapling plantations, complicating forestry operations (Roberts et al. 2021). Effective tools for monitoring 

bramble, which prioritises its removal and maximises gains in biodiversity conservation, are needed.

Recent advances in satellite remote sensing and available non-parametric classification algorithms 

provide much needed tools allowing mapping and predicting of suitable habitat for various alien invasive 

plants with high accuracy (Royimani et al. 2019). Developing accurate classification models are becoming 

more affordable, compared to conventional field assessments, especially in remote areas. To date, use of 

publicly available Sentinel-2 satellite imagery has been reliable in mapping alien invasive trees in the 

grassland and savanna biomes of South Africa (Rebelo et al. 2021). Furthermore, Rajah et al. (2018a) 

showed that Sentinel-2 imagery can be used to map bramble within the uKhahlamba Drakensberg Park with 

an accuracy of 77%.

Mapping alien vegetation requires the ability to effectively differentiate between alien and native 

vegetation (Royimani et al. 2019). Non-parametric algorithms learning from remote sensing data can 

accurately differentiate between different land cover classes by identifying differences in their spectral 

responses (Xie et al. 2008). However, to differentiate between species, and species with similar growth 

forms, high spectral and spatial resolution imagery is needed. Satellite image pixel size needs to be small 

enough to discern spatial objects like plant canopies, but also have high enough spectral resolution to help 

algorithms learn differences in plant species spectral responses. Commercial WorldView-2 satellite imagery 

with high spectral resolution (8 spectral bands) and high spatial resolution (2 m pixel size), has been used 

successfully to map Solanum mauritianum within a timber estate with accuracies of 91% (Peerbhay et al. 

2016). However, such high-quality data comes with a considerable cost and is therefore not widely 

accessible. Feature level image fusion has been proposed to improve mapping accuracy by combining optical
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remote sensing data (Sentinel-2) with active remote sensing data (Sentinel-1). However, this technique failed

to improve overall mapping accuracies compared to just using spectral data (Rajah et al. 2018b; Rebelo et al.

2021).

Developments in deep learning has provided new opportunities for image fusion (Palsson et al. 2018;

Latte and Lejeune 2020). Image fusion using deep learning involves the joining of imagery with different 

properties (spectral and spatial) to create a new data product with the desired resolution. This technique is 

also known as image super-resolution, where the neural network trains to sharpen the resolution of coarse 

pixels (Dong et al. 2016). Palsson et al. (2018) used this technique to improve all 13 Sentinel-2 bands from 

60 m to 10 m. Latte and Lejeune (2020) took this further by fusing the 10 bands of Sentinel-2 (10 and 20 m) 

with the 4 bands of PlanetScope (3 m) to generate a super-resolution mosaic (10 Sentinel-2 bands at 2.5 m).

Image fusion using deep learning holds great opportunities for monitoring alien invasive plant 

species at fine scales. Here, I aim to use super-resolution mosaics to map bramble within grassland corridors 

across a production landscape, to improve our understanding of what makes bramble a successful invader, 

and to determine the local and landscape impact of bramble. Grasshoppers and plants were specifically 

selected as study organisms to assess the impact of bramble, as they are effective indicators of high quality 

grassland habitat (Bazelet and Samways 2011; Joubert et al. 2017). I specifically ask 1) how widespread is 

bramble, and what is causing higher bramble cover? 2) What is the local impact of bramble on other plants 

and on grasshoppers? 3) How will uncontrolled bramble invasion impact the landscape? Through answering 

these questions, I aim to improve our understanding of the influence of image resolution on mapping alien 

invasive shrubs, mechanisms driving bramble invasion within production landscapes, and impact of bramble 

on landscape and local biodiversity, as well as provide management recommendations for controlling spread 

of bramble. I also include discussion on using super-resolution mosaics for mapping alien invasive plants.

4.3. Methods

4.3.1. Study area

The study was conducted within four commercial timber estates across the KwaZulu-Natal Midlands 

of South Africa (Fig. 4.1). Large grassland remnant patches, covering about 40% of these estates, are set 

aside for conservation. These remnants form structurally connected corridors which dissect the plantation 
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compartments and help maintain functional connectivity within the landscape (Theron et al. 2021b), as well 

as protect some of the last intact grasslands of the highly threatened Maputaland-Pondoland-Albany Hotspot 

(Dinerstein et al. 2017). Dominant vegetation types include the Mooi River Highland Grassland, Midlands 

Mistbelt Grassland and Southern KwaZulu-Natal Moist Grassland (Mucina and Rutherford 2011). This 

temperate region experiences frequent thunderstorms in summer with a mean annual precipitation of 900 mm

and mean annual temperature of 15°C (Mucina and Rutherford 2011). The topography is complex, from 

steep hills with exposed rocks to flat low-lying areas.
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Figure 4.1: Super-resolution mosaic of the study area. Sampling took place within the four timber estates 

outlined in red.
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4.3.2 Field campaigns

4.3.2.1. Bramble ground truthing

Bramble was recorded in the field using a Garmin etrex GPS device to assist with classification of 

satellite imagery. Waypoint averaging was enabled to improve GPS error to around 1 m. Only locations 

where bramble cover was ≥ 5m2 was recorded (Fig. 4.2). Locations were captured as close to the centre of 

bramble patches as possible.

4.3.2.2. Grasshopper sampling

To determine how bramble impacts grasshoppers, a sweep-net with a diameter of 0.5 m and depth of 

0.7 m was used to collect grasshoppers. At every site a total of three parallel 100 m transects were walked 

separated by 5 m. At every 1 m along the transect, vegetation was swept with a sweep-net, using a 180-

degree arc movement. A total of 100 sweeps were performed per transect, with an overall total of 300 sweeps

per site. After sweep netting, active searching was employed to capture mobile and elusive species. Two 
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Figure 4.2: Photo showing how dense American bramble (Rubus cuneifolius) grows within grasslands.
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observers simultaneously searched within the sampling area by flushing out and chasing after large-sized 

grasshoppers. A total of 40 min of active searching took place per site (20 min per observer). At sites where 

bramble was abundant, grasshoppers were swept alongside and between bramble bushes.

Sampling occurred in March 2020, the peak season for adult grasshopper activity in this area (Kinvig

2006). Sampling was undertaken between 08h30-16h00 on sunny cloudless days with little to no wind, and 

took place at the centre of fragments, or > 50 m away from edges (Pryke and Samways 2012). All sampled 

grasshoppers were transferred to re-sealable bags. They were later placed in a freezer prior to sorting. 

Immatures were not included owing to identification difficulties, and all adults collected were pooled per site

for analysis. See Appendix 4.1: Table S4.1.1 for a species list. A total of 51 sites were sampled within the 

grassland corridors across the four timber estates. Half of these sites had bramble present. Sites were 

separated by > 1 km within the estates to ensure independence of sampling, except within estate no. 4, where

the minimum distance between sites was 400 m due to smaller grassland fragments. Sites were selected to 

cover the extent of the corridors, thereby capturing the heterogeneity caused by prescribed burning (Gaigher 

et al. 2019).

4.3.2.3. Vegetation survey

Vegetation data were collected after grasshopper sampling using 1 m2 quadrats, to determine how 

bramble is impacting local plant species richness. Per site a total of 24 quadrats were randomly placed within

the sampling area. Plant richness was then recorded per plant growth form (tree, shrub, succulent, fern, 

sedges, forb, bulb, grass, and creeper). Additionally, bramble cover was also recorded per plot.

4.3.3. Image classification

4.3.3.1. Image selection and processing

To investigate the influence of image resolution (spectral and spatial) on performing accurate image 

classification for mapping bramble, I used three different mosaics. Specifically, I used a Sentinel-2 mosaic 

(10 spectral bands, 20 m pixel), PlanetScope mosaic (4 spectral bands, 3 m pixel), as well as a super-

resolution mosaic (10 spectral bands, 2.5 m, see below). Sentinel-2 imagery (ID 

T36JTN_20200104T074311) was accessed from Copernicus Open Access Hub 
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(https://scihub.copernicus.eu/dhus/) as an atmospherically corrected level-2A bottom of atmosphere 

reflectance image. Only the 20 m Sentinel-2 data product was used for classification. PlanetScope imagery 

was accessed from Planet Explorer (https://www.planet.com/explorer/) as atmospherically corrected level-3B

surface reflectance imagery (Planet Team 2017). All imagery were captured between 4-5 January 2020, 

contain little or no cloud cover and had an EPSG:32736 projection. Furthermore, these dates were selected to

coincide with bramble flowering (Rajah et al. 2018a), to improve class discrimination. Multiple PlanetScope 

imagery covering the plantation estates were mosaicked, whereas all 20 m Sentinel-2 imagery were stacked 

into a single mosaic covering the study region. Image processing was done using R version 3.6.3 (R Core 

Team 2020).

4.3.3.2. Super-resolution mosaic

Latte and Lejeune (2020) developed an image fusion technique using a residual convolutional neural 

network that combines the fine spatial resolution of PlanetScope imagery with the high spectral resolution of 

Sentinel-2 imagery into one super-resolution mosaic. The resulting product is a 2.5 m spatial resolution 

mosaic with the 10 spectral bands of Sentinel-2.

In preparation to train the network, additional PlanetScope imagery between 14 December 2019 and 

31 January 2020, were downloaded and mosaicked to cover the full Sentinel-2 image (captured on 4 January 

2020), before being co-registered with the Sentinel-2 image using a global linear transformation (Leutner et 

al. 2019), so all pixels from the different sensors align correctly. The additional imagery allowed the model 

to train on data outside the study region, to prevent model overfitting. Only high radiometric quality 

PlanetScope imagery were used. A Gaussian filter was then applied to the registered PlanetScope and 

Sentinel-2 imagery. This blurring was used to create additional training data and validate that the network 

can accurately downsample coarse to fine pixels (blurred imagery to normal imagery). Unusable data masks 

from both PlanetScope and Sentinel-2 were incorporated into the network architecture to mask clouds and 

aid in radiometric normalisation between the different sensors during training. For more details on this 

method, see Latte and Lejeune (2020).

Residual convolutional neural networks perform well with image fusion tasks, as this optimised 

network iteratively learns directly from input data, by extracting features at every (hidden) layer in the 
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network and using their importance (weights) to make predictions (Dhillon and Verma 2020). The learning 

occurs during backpropagation, a method where the network updates the importance of features to improve 

the prediction accuracy.

The neural network architecture used here was set up to enable the network to learn from the 10 m 

and 20 m Sentinel-2 imagery as well as PlanetScope imagery simultaneously, extracting many features to 

improve prediction accuracy. See Appendix S4.2: Figure S4.2.1 for network validation plots. The network 

was trained using a NVIDIA GeForce RTX 2080 graphics card, 2 terabyte solid state drive, 64 gigabyte of 

random access memory and 20 processor cores. Training took approximately 48 hours to complete and was 

implemented using the Keras R package (Kalinowski et al. 2019).

4.3.3.3. Training data and classification

To classify land cover types within the study area, I used the Random Forest algorithm. Random 

Forest is used regularity for classification problems and was implemented using the caret R package (Kuhn 

2020). Only spectral bands were used in classification, and maps were produced separately for Sentinel-2, 

PlanetScope and super-resolution mosaics. Models were trained to classify the most prominent land cover 

classes within the study area, specifically, grassland, bare ground, plantation forest, shrubland, thicket, water,

woodland, as well as bramble. Alongside the 82 bramble GPS points collected in the field, additional 

reference data were collected using a 25 cm RGB orthophoto. A total of 1 961 data points were created. To 

increase the amount of training data, I extracted spectral data within 2.5 m buffers around the data points for 

the super-resolution (2.5 m) and PlanetScope (3 m) mosaics only. Data were split using 70% for training and 

30% for testing. To obtain best performing model hyperparameters, I used a random selection of 10 different 

hyperparameters combinations. The best combination of hyperparameters was then selected based on the 

resulting Kappa statistic generated using a bootstrapping procedure. The best performing model, determined 

from a confusion matrix using testing data, was used to predict land cover classes for entire study region. See

Appendix S4.2 for more information on image classification.
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4.3.4. Statistical analyses

4.3.4.1. Response variables

To understand the drivers of bramble cover within the landscape, I used bramble from the super-

resolution mosaic classification to generate a response variable. First, I created 10 000 random points within 

the classified bramble pixels before pruning points to exclude those within 500 m of each other to avoid 

spatial autocorrelation. These points where then clipped into production and conservation areas. This clip 

was done as bramble might respond differently to the major disturbances within these areas (harvesting in 

production areas and prescribed burning within conservation areas). Additionally, it was not possible to 

effectively differentiate between harvesting and burning using remote sensing data products (see below). 

Bramble cover was then calculated per point using 50 m buffers and used as response variable to regress 

against other landscape and management variables to identify potential drivers.

Next, to determine how bramble impacts local plant species richness, I calculated plant species 

richness at the plot level, and used this as response variable to regress against bramble cover within the plots.

For determining grasshopper response to bramble, I calculated the average bramble cover across all plots per 

site. Grasshopper species richness was used as response variable, and was calculated for the overall 

assemblage, Caelifera species, as well as Ensifera species. I also scored grasshoppers as low, intermediate, 

and high conservation-priority following guidelines from Matenaar et al. (2015). These scores were based on

species rarity, endemism, and mobility. Each parameter had different classes, and the sum of all classes were 

used to classify grasshoppers (Appendix S3.2: Table S3.2.1). A flightless endemic species which is locally 

rare will have a high conservation priority, whereas a common widespread species capable of flight will have

a low conservation priority.

4.3.4.2. Drivers of bramble invasion

To model drivers of bramble invasion, I used mixed-effect modelling with a negative binomial 

distribution. Separate models were created for production and conservation areas, fitted with timber estate as 

random effect to account for spatial autocorrelation. Variables included in the conservation model were 

distance to stream, distance to woodlands, distance to plantation tree harvesting, Normalised Burn Ration 

(NBR) index as a proxy for burning, as well as the interaction between distance to streams and burning. 
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Variables in the production model included distance to stream, distance to woodlands, distance to plantation 

tree harvesting, as well as the interaction between distance to steam and harvesting.

Distance to streams and woodlands was included in the models as moist areas are highly suitable 

habitat for bramble (Ndlovu et al. 2018) and frugivorous birds play an important role in bramble seed 

germination and potential long distance dispersal (Molefe et al. 2020). For harvesting, I used the NBR index 

over the production area by calculating the minimum NBR index from Landsat 8 imagery per year for five 

different years (2020 – 2016) in Google Earth Engine (Gorelick et al. 2017). I wanted to determine whether 

the disturbance from harvesting can have a legacy effect on bramble by creating different models for every 

year (2020 model, 2019 model etc.). Lastly, minimum NBR was also extracted from Landsat 8 imagery for 

the five different years within the conservation areas to investigate burn severity and intensity on bramble 

cover.

I performed variable selection and model averaging to identify most influential variables impacting 

bramble cover using the MuMIn R package (Bartoń 2020). All explanatory variables were first standardised 

before deriving test statistics. This was repeated for the conservation and production areas separately, as well 

as per year. All global models used for variable selection and model averaging had variance inflation factor 

scores < 1.5.

4.3.4.3. Bramble impact on plants and grasshoppers

To model the response of plants and grasshoppers I also used mixed-effect modelling with timber 

estate as random effect to account for spatial autocorrelation in both the plant and grasshopper models, but 

with site identification as an additional random variable for the plant model to account for the nested nature 

of sampling (i.e., plot data). The plant model was fitted with a Poisson distribution and only contained 

bramble cover as a fixed effect. Grasshopper models were fitted with a Gaussian distribution, except for high

conservation-priority and Ensifera response variables, which were fitted with a Poisson distribution. Once 

again, the grasshopper models were fitted with bramble cover as the only fixed effect variable. Bramble 

cover was standardised before deriving test statistics. All mixed-effect models were constructed using the 

glmmTMB R package (Brooks et al. 2017).
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4.3.5. Stacked species distribution modelling

Stacked species distribution modelling (S-SDM) was used to map local biodiversity hotspots and 

identify areas, and groups of species, which will be most susceptible to uncontrolled bramble invasion within

the landscape. S-SDM were implemented using the SSDM R package (Schmitt et al. 2017). This procedure 

produces a species richness map using the summed probabilities of suitability maps from individual species 

distribution models. I used an ensemble approach, averaging the results from Random Forest and Support 

Vector Machines models. Per species, each algorithm was repeated 10 times and only ensembles with an 

AUC score of 0.7 or higher were retained for the final stacked model. Furthermore, the final stacked model 

was evaluated based on a cross-validation procedure using a 70/30 split for training and testing. S-SDM were

fitted using presence and pseudo-absence data. Furthermore, only species occurring at > 3 sites were retained

for running S-SDM. S-SDM was repeated for all grasshopper response variables.

Only environmentally relevant variables were used during S-SDM. Specifically, I included 

vegetation structure (Normalised Difference Vegetation Index: NDVI), land cover (super-resolution 

classification), distance to plantation edge, burning history (minimum NBR over three years), elevation and 

aspect derived from a digital elevation model, and distance to stream. These variables have previously been 

used to map local grasshopper hotspots within this region with high accuracy and are significant for 

predicting species turnover (Theron et al. 2021b). NDVI maps healthy vegetation and can serve as a proxy 

for vegetation structure, which influences grasshopper diversity in this region (Theron et al. 2021a). Corridor

width, or distance to plantation edge, influences the strength of edge effects on arthropods (van Schalkwyk et

al. 2020). The minimum NBR index, used as a proxy for burning history, was calculated from Landsat 8 

imagery dating back three years from grasshopper sampling, using Google Earth Engine. This index 

determined whether an area was burned within the last three years, as well as the severity and intensity of the

burn (Keeley 2009), which are highly significant for grasshopper diversity (Theron et al. 2021a, 2021b).

Suitable habitat for all grasshopper communities were then filtered to select the top 5% of habitat to 

calculate the percentage overlap with bramble distribution from the super-resolution classification. A 10 m 

buffer was then created around bramble pixels to simulate bramble vegetative growth over 10 years when left

unchecked, and again percentage overlap with grasshopper suitable habitat was calculated. I estimate that 1 

m vegetative spread per year is a conservative rate, as a new daughter plant can form within one season 
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(Erasmus 1984). All raster variables used in S-SDM were rescaled to 10 m resolution to reduce processing 

time.

4.4. Results

4.4.1. Image classification

Super-resolution mosaic produced the most accurate land cover classification (Accuracy = 0.95; 

Kappa = 0.94), followed by Sentinel-2 image (Accuracy = 0.89; Kappa = 0.87) and PlanetScope image 

(Accuracy = 0.87; Kappa = 0.85). However, Sentinel-2 and PlanetScope imagery failed to accurately classify

bramble with 0.56 and 0.65 class accuracies respectively, compared to the super-resolution mosaic with a 

bramble class accuracy of 0.86 (Table 4.1). All other classes were classified with very high accuracies (Table 

4.1; Fig. 4.3).
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Figure 4.3: Random Forest classification of timber estates for a) Super-resolution mosaic, b) PlanetScope image, and c) 

Sentinel-2 image.
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Table 4.1: Subset of statistics derived from a confusion matrix using the Random Forest algorithm for all imagery 

classified. SR = super-resolution. PS = PlanetScope. S2 = Sentinel-2. Sensitivity refers to percentage of true positives, 

whereas Specificity is percentage of true negatives. Accuracy refers to the balanced accuracy of the class.

Image Statistic Bramble Grassland Ground Plantation Shrubland Thicket Water Woodland

SR

Sensitivity 0.716 0.983 1 0.991 0.864 0.928 1 0.924

Specificity 0.997 0.988 1 0.994 0.988 0.982 1 0.993

Accuracy 0.856 0.985 1 0.993 0.926 0.955 1 0.958

PS

Sensitivity 0.296 0.919 0.99 0.94 0.797 0.898 0.986 0.73

Specificity 0.995 0.981 0.999 0.97 0.979 0.953 0.998 0.978

Accuracy 0.646 0.95 0.994 0.955 0.888 0.926 0.992 0.854

S2

Sensitivity 0.125 0.948 0.954 0.991 0.761 0.874 0.952 0.904

Specificity 0.995 0.961 0.992 0.992 0.981 0.962 1 0.986

Accuracy 0.56 0.954 0.973 0.991 0.871 0.918 0.976 0.945

4.4.2. Drivers and impact of bramble invasion

Within the conservation areas, burning had a consistent significant negative impact on bramble cover,

where more intense burns (large negative NBR values) resulted in higher bramble cover (Table 4.2). Bramble

cover response to burning was most prominent in 2018 (Table 4.2). Furthermore, distance to stream also had 

a significant negative impact on bramble cover, where bramble cover was highest close to streams (Table 

4.2).

In production areas, distance to plantation tree harvesting had a significant negative impact on 

bramble cover up until 2018, where bramble cover was highest close to areas where trees had been harvested

(Table 4.3). Furthermore, distance to woodlands had a consistent significant positive impact on bramble 

cover, where bramble cover was higher farther away from naturally wooded areas (Table 4.3).

Bramble cover had a significant negative impact on plant species richness as well as intermediate 

priority grasshopper species richness, where species richness was lower in areas with higher bramble cover 

(Table 4.4).
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Table 4.2: Model-averaged estimates (conditional average) of environmental variables predicting bramble cover within 

the conservation areas. Significant variables in bold. RI = relative importance, #models = number of containing models.

Colon indicates interaction between two variables. Dist = distance to.

Sub model Variable beta se 5% 95% RI #models

Bramble 2020

Burning 2020 -0.200 0.049 -0.292 -0.097 1 4

Dist Stream -0.108 0.049 -0.199 -0.006 0.83 3

Burning 2020:Dist Stream -0.052 0.048 -0.143 0.046 0.24 1

Dist Harvesting 2020 0.029 0.044 -0.061 0.112 0.17 1

Bramble 2019

Burning 2019 -0.144 0.049 -0.241 -0.046 1 3

Dist Stream -0.080 0.048 -0.174 0.014 0.67 2

Burning 2019:Dist Stream 0.021 0.043 -0.063 0.105 0.19 1

Bramble 2018

Burning 2018 -0.277 0.050 -0.376 -0.178 1 3

Dist Stream -0.129 0.049 -0.225 -0.032 1 3

Dist Harvesting 2018 0.077 0.046 -0.014 0.167 0.67 2

Dist Woodland -0.048 0.053 -0.151 0.056 0.23 1

Bramble 2017

Burning 2017 -0.155 0.050 -0.252 -0.057 1 5

Dist Stream -0.102 0.051 -0.202 -0.001 0.86 4

Dist Harvesting 2017 0.085 0.046 -0.006 0.176 0.67 3

Burning 2017:Dist Stream 0.029 0.053 -0.074 0.133 0.15 1

Dist Woodland -0.022 0.057 -0.135 0.091 0.14 1

Bramble 2016

Burning 2016 -0.234 0.050 -0.332 -0.136 1 3

Dist Stream -0.128 0.052 -0.231 -0.025 1 3

Dist Harvesting 2016 0.085 0.046 -0.006 0.177 0.74 2

Dist Woodland -0.034 0.055 -0.143 0.075 0.22 1
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Table 4.3: Model-averaged estimates (conditional average) of environmental variables predicting bramble cover within 

the production areas. Significant variables in bold. RI = relative importance, #models = number of containing models. 

Colon indicates interaction between two variables. Dist = distance to.

Sub model Variable beta se 5% 95% RI #models

Bramble 2020

Dist Harvesting 2020 -0.332 0.061 -0.451 -0.212 1 2

Dist Woodland 0.209 0.071 0.069 0.349 1 2

Dist Stream 0.053 0.059 -0.063 0.169 0.34 1

Bramble 2019

Dist Harvesting 2019 -0.390 0.049 -0.487 -0.293 1 3

Dist Woodland 0.210 0.066 0.080 0.341 1 3

Dist Rivers 0.033 0.056 -0.078 0.144 0.47 2

Dist Harvesting 2019:Dist Stream -0.083 0.051 -0.182 0.017 0.26 1

Bramble 2018

Dist Harvesting 2018 -0.302 0.053 -0.406 -0.198 1 2

Dist Woodland 0.283 0.068 0.148 0.417 1 2

Dist Stream 0.020 0.059 -0.095 0.136 0.27 1

Bramble 2017

Dist Woodland 0.316 0.074 0.170 0.463 1 3

Dist Harvesting 2017 -0.107 0.059 -0.223 0.008 0.72 2

Dist Stream 0.056 0.062 -0.065 0.177 0.25 1

Bramble 2016

Dist Woodland 0.327 0.074 0.181 0.473 1 3

Dist Stream 0.050 0.062 -0.072 0.172 0.25 1

Dist Harvesting 2016 0.046 0.063 -0.077 0.170 0.24 1

100

Stellenbosch University https://scholar.sun.ac.za



Table 4.4: Results from mixed-effect models investigating effect of bramble cover on plant and grasshopper species 

richness. R2 refers to pseudo R2.

Model Variable beta se R2 5% 95%

Vegetation Richness Bramble Cover -0.072 0.023 0.375 -0.117 -0.027

Overall Grasshopper Richness Bramble Cover -0.458 0.57 0.221 -1.574 0.658

Low Priority Grasshoppers Bramble Cover 0.145 0.395 0.261 -0.63 0.919

Intermediate Priority Grasshoppers Bramble Cover -0.59 0.247 0.118 -1.073 -0.106

High Priority Grasshoppers Bramble Cover -0.052 0.17 0.061 -0.385 0.281

Caelifera Grasshoppers Bramble Cover -0.1 0.492 0.282 -1.064 0.864

Ensifera Grasshoppers Bramble Cover -0.16 0.114 0.173 -0.383 0.064

Table 4.5: The percentage bramble overlaps with highly suitable habitat for various grasshopper groupings, under 

current and projected scenarios. Future projection is based on a 10 m buffer around bramble, simulating 10 years of 

vegetative spread.

Groups Current % Future % Difference

Overall 5.30 23.81 18.51

Low 6.88 26.57 19.69

Intermediate 4.26 21.22 16.96

High 2.88 23.38 20.50

Caelifera 6.40 25.87 19.48

Ensifera 6.99 29.06 22.07

4.4.3. Stacked species distribution modelling

All models performed well in predicting species richness throughout the landscape and identifying 

suitable habitat (Appendix S4.3). Richness prediction error was higher for overall and Caelifera 

grasshoppers, compared to other species groupings containing fewer species (Appendix S4.3 Table S4.3.2). 
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Distance to stream, elevation, and distance to plantation edge, were highly influential variables in predicting 

suitable habitat, followed by burning history and vegetation structure (Appendix S4.3 Table S4.3.3).

Bramble overlapped most with Ensifera, low conservation priority, and Caelifera grasshopper 

suitable habitat, followed by overall, intermediate, and high conservation-priority grasshopper suitable 

habitat (Table 4.5). Under future bramble vegetative expansion, the Ensifera and high conservation-priority 

species habitat are most at risk, showing the largest percent increase in bramble overlap (Table 4.5).

All but one estate, show large amounts of vulnerable grasshopper habitat alongside streams and dams

as well as at higher elevations, with slight differences between grasshopper groupings (Fig. 4.4).

4.5. Discussion

4.5.1. Mapping bramble in grassland corridors

Here I demonstrate that using deep learning image fusion for mapping alien invasive shrubs is 

competitive with commercial fine resolution satellite imagery (Peerbhay et al. 2016; Alvarez-Taboada et al. 

2017). Super-resolution mosaic was able to effectively discriminate between bramble and other land cover 

classes (86%), compared to Sentinel-2 (56%) and PlanetScope (65%) imagery, with very high accuracies, 

highlighting the importance of spatial and spectral resolution in mapping shrubs. Previous research focused 

on mapping bramble within KwaZulu-Natal, using Sentinel-2 imagery, was only able to achieve up to 77% 

accuracy for the overall classification (Rajah et al. 2018a). Even conventional image fusion using synthetic 

aperture radar also fails to improve bramble classification, only obtaining 76% accuracy (Rajah et al. 2018b).

Most research on mapping alien invasive vegetation tend to focus on tree species, as they are more 

easily identified using remote sensing data (Vaz et al. 2018). Masemola et al. (2020) used Sentinel-2 time 

series to map Acacia species within KwaZulu-Natal with an accuracy of 80%. Furthermore, Rebelo et al. 

(2021) managed to get over 90% accuracy for discriminating alien vegetation (mostly trees) from other land 

cover classes within KwaZulu-Natal, using Sentinel-2 imagery. However, as I show here, alien invasive 

shrubs cannot be accurately mapped at these spatial resolutions (20 m pixels), most likely due to the spectral 

quality being influenced by the mixing of vegetation captured in larger pixel sizes (Shao and Wu 2008), 

which limits the use of such imagery for local scale assessments within grassland corridors.
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Figure 4.4: Grasshopper suitability maps indicating areas vulnerable to future bramble invasion. The colour gradient 

(red to light blue) indicates suitability for grasshoppers within grassland corridors, where red is low value habitat and 

light blue is high value habitat.
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Super-resolution image reconstructions have rapidly developed in recent years, improving the ability 

of convolutional neural networks to learn relationships between low- and high-resolution imagery (Kawulok 

et al. 2020). Use of this technique shows great potential for earth observations using remote sensing 

(Kawulok et al. 2020). The further development of this technique will greatly enhance our ability to map 

alien invasive plant species with great precision and accuracy within grassland corridors, especially when 

combining this technique with the spectral characteristics of hyperspectral remote sensing data (He et al. 

2011). One limitation of this technique is still access to high resolution training data. However, new 

developments in earth observing satellite constellations (Planet Team 2017), and the push for open access 

data in biodiversity conservation (Turner et al. 2015), has allowed greater access to high quality data.

4.5.2. Drivers of bramble invasions

Plants only become invasive when they can survive and spread at new locations (Blackburn et al. 

2011). Bramble does this remarkably well within the grasslands of South Africa (Henderson 2007), 

especially at lower elevations on eastern slopes where the air is warm and moist (Ndlovu et al. 2018). 

However, very little research has focused on the mechanisms and drivers of bramble invasion (Erasmus 

1984; Denny 2005). Recently, Molefe et al. (2020) demonstrated the role that frugivorous birds play in 

bramble seed germination and potential long-distance dispersal. However, I found little evidence to support 

long distance dispersal, as bramble occurred in higher abundance closer to plantations forests. Fuentes-Lillo 

et al. (2021) found that anthropogenic disturbances are more important than local biotic and abiotic variables.

My results support this by showing the strong relationship between disturbance (harvesting and prescribed 

burning) and bramble cover.

Prescribed burning has been used successfully to control alien invasive plant species, but in the 

absence of follow-up treatments, most alien invasive plants (especially larger shrubs) recover after two or 

three years (Ditomaso et al. 2006). My results support this by demonstrating that continuous prescribed 

burning significant increased bramble cover. This could be due to the grassland fires not being hot enough to 

kill bramble, but rather temporally reducing bramble density (Ditomaso et al. 2006).

On the other hand, harvesting of plantation trees is another large-scale disturbance that greatly alters 

the landscape. Removal of trees creates new opportunities for plants to establish, which temporarily 
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improves functional connectivity (Theron et al. 2021b), and supports arthropod diversity (van Schalkwyk et 

al. 2021). However, this effect is only beneficial when trees are harvested in smaller areas through rotational 

harvesting (van Schalkwyk et al. 2021). My results show that harvesting an entire plantation as one event 

leads to increasing bramble cover. This effect is then compounded when trees are harvested across the 

landscape, which increases the risk of bramble invasion into grassland corridors (Fristoe et al. 2021).

4.5.3. Impact of bramble

Bramble has severe negative impacts on local plant species richness, vegetation structure, endemic 

birds, and a variety of arthropods (Reynolds and Symes 2013; Kietzka et al. 2015; Hansen et al. 2018; Eckert

et al. 2019; Theron et al. 2021a). My results support this by demonstrating the direct impact of bramble on 

plant species richness. However, I found little support for direct impacts on grasshoppers, as only 

intermediate priority grasshoppers responded to bramble cover. However, impacts on plant species richness 

have indirect impacts on grasshoppers by threatening suitable habitat, especially for Ensifera and high 

conservation-priority species. Furthermore, as bramble cover was greater close to streams, the indirect 

impact on Ensifera species is expected to be most severe when bramble invasion is not controlled. These 

indirect effects are also apparent when considering insect flower visitation networks (Hansen et al. 2018) as 

well as grassland birds searching for nesting sites (Reynolds and Symes 2013).

4.5.4. Control of bramble

Control of bramble within the South African commercial plantations is achieved primarily through 

using a glyphosate-based product, which comes with a considerable cost (Roberts et al. 2021). Future work 

investigating alternative control methods is required. The control of invasive plants through prescribed 

burning could be a potential alternative to using herbicide, especially within grassland corridors, as fire 

benefits local plant diversity while reducing alien invasive plant cover (Morris et al. 2021; Gordijn and 

O’Connor 2021). However, follow-up treatments are needed to prevent alien invasive plants from re-

establishing in the following years. van Uytvanck and Hoffmann (2009) examined the impact of domestic 

cattle grazing on bramble cover in Flanders, Belgium, and found that grazing at moderate intensities is 

successful at reducing bramble cover without negatively impacting local plant diversity. Furthermore, 
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Masson et al. (2015) also found that herbivory can be used to control bramble invasion in the Mediterranean 

dry grasslands of La Crau, France. However, more research is needed to investigate the combined effect of 

prescribed burning and grazing by domestic cattle within grassland corridors as a means of controlling 

bramble.

4.6. Conclusions

Here I show the benefits of using super-resolution satellite mosaics in mapping an alien invasive 

shrub, motivating the use of this technique for monitoring alien invasive plants. Through using super-

resolution mosaics, I gained new insights into the drivers of bramble invasion, which will help improve our 

understanding of bramble invasion dynamics. I recommend future work investigate the combined effect of 

prescribed burning and grazing for controlling bramble. Current control programmes should focus on 

removing bramble from riparian habitat, alongside using high priority grasshopper habitat to identify 

vulnerable terrestrial sites. Furthermore, special attention is needed to control bramble two years after a 

plantation block has been harvested, as this is when bramble cover is highest. Lastly, the implementation of 

rotational harvesting (as opposed to whole plantation harvesting) can greatly reduce bramble cover within 

the landscape, and its adoption is highly encouraged.
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Chapter 5: General discussion

Insects are threatened by human action globally (Goulson 2019; Cardoso et al. 2020; Wagner et al. 

2021). In this time of rapid anthropogenic change and disruption (Dirzo et al. 2014), satellite remote sensing,

in conjunction with integrative modelling, has proven to be a major asset. Satellite data in advanced models 

improves our understanding of the changing planet, and provides important information to guide 

conservation management (Pettorelli et al. 2016; Rocchini et al. 2016; Gorelick et al. 2017; Randin et al. 

2020). Unfortunately, implementation of satellite remote sensing into biodiversity conservation has been 

hampered through limited technical knowledge of working with, and extracting information from, satellite 

data (Turner et al. 2015). However, increased accessibility to open access remote sensing data, provides 

greater opportunities to address conservation issues (Rose et al. 2015; Zhu et al. 2019). This formed the basis

of my dissertation, with the overarching aim of using satellite remote sensing and integrative modelling to 

perform biodiversity assessments within a dynamic production landscape. I also aimed to provide valuable 

information to help maintain ecological integrity of natural vegetation between actively managed areas to 

support biodiversity.

Production landscapes are valuable for biodiversity conservation, as much biodiversity occurs 

outside formally protected areas (Gray et al. 2016; Dinerstein et al. 2017; Dudley et al. 2018). Within South 

Africa, remnant natural vegetation within the deciduous fruit growing regions of the Western and Eastern 

Cape, supports high arthropod and plant diversity (Theron et al. 2020; van Schalkwyk et al. 2020; Galloway 

et al. 2021), whereas large scale grassland corridors between commercial forestry plantations of KwaZulu-

Natal, conserves much biodiversity (Samways and Pryke 2016; Gaigher et al. 2019; van Schalkwyk et al. 

2021). Due to the dynamic nature of production landscapes, methods such as satellite remote sensing and 

integrative modelling are critical for assessing the status of biodiversity, allowing conservation management 

to adapt under changing conditions. Commercial forestry operations frequently rely on remote sensing data 

to help with pest outbreak and monitoring tree health to optimise harvesting operations (Xulu et al. 2019; 

McEwan et al. 2020). However, remote sensing for insect biodiversity conservation is still in its infancy 

(Rhodes et al. 2021). This dissertation aims to shed light on the value of satellite remote sensing and 

integrative modelling for better understanding biodiversity response to grassland corridors between 

commercial forestry plantations, and to guide management for insect biodiversity conservation.
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5.1. Synthesis of findings

Overall, I demonstrate how satellite data and integrative modelling can be used to gain deeper 

insights into biodiversity dynamics within production landscapes (chapter 2, 3 and 4). A major emergent 

finding from different chapters was the importance of fire within the grassland corridors (chapter 2, 3 and 4).

Fire through prescribed burning, is an important natural disturbance and critical for maintaining high-quality 

grasshopper habitat within grassland corridors (chapter 2 and 3). Grassland plant diversity has evolved in 

response to fire leading to a wide range of plant adaptations to thrive in fire prone ecosystems, such as 

resprouting from underground bulbs or the importance of smoke in stimulating seed germination (Mucina 

and Rutherford 2011). Grassland biodiversity is therefore reliant on fire for completing life cycles and 

maintaining grassland ecosystem functioning (Yang et al. 2020). Previous work within grassland corridors 

has demonstrated that prescribed burning is critical for maintaining high plant diversity (Joubert et al. 2014), 

which promotes grasshopper and butterfly diversity (Joubert et al. 2016; Gaigher et al. 2019). Furthermore, 

these results are also supported by research from USA, where prescribed burning maintains the host plants 

for rare grassland butterflies (Adamidis et al. 2019). However, the frequency of fire should be considered 

carefully.

Prescribed burning seems to have a lasting impact that can continue to affect grasshoppers for up to 

three years (chapter 2). This corresponds to re-setting of grassland succession as well as grasshopper 

preference towards more simplistic grassland structure. Frequent burning prevents grasslands from 

transitioning into thickets (characterised by dominate woody vegetation) (Cadman et al. 2013), which 

benefits habitat specialist (Fartmann et al. 2012). Fire therefore modulates grassland structure, while also 

having a significant impact on grasshopper diversity (Bazelet and Samways 2011; Joubert-van der Merwe 

and Pryke 2018). However, creating optimal prescribed burning regimes that protect timber compartments 

while maintaining and promoting biodiversity conservation is challenging (Kelly et al. 2015). My results 

show that the Normalized Difference Vegetation Index (NDVI), derived from satellite imagery, can stand as a

proxy for vegetation structure, and can be used to monitor grasshopper habitat and help inform foresters and 

land managers when and where to burn for maintaining high-quality grasshopper habitat (chapter 2 and 3). 
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This relationship has also been demonstrated by Klein et al. (2020), further illustrating the effectiveness of 

NDVI as a widely-applicable monitoring tool for grassland grasshoppers.

The impact of fire on vegetation structure also has implications for functional connectivity within 

grassland corridors (chapter 3). Fire creates spatio-temporal heterogeneity in vegetation structure, which 

impacts species in a variety of ways (Koltz et al. 2018; Sitters and Stefano 2020). Most notably, changes in 

vegetation structure provide varying degrees of resistance to movement, impacting species dispersal and 

their access to resources (Sitters and Stefano 2020). This change, in turn, affects local population persistence 

by altering colonisation and extinction dynamics (Jackson and Sax 2010). Furthermore, heterogeneity caused

by frequent disturbances such as fire and/or climate warming, can change assemblage composition towards 

habitat and dietary generalists, and favour species with high dispersal abilities (Koltz et al. 2018). However, 

my results show that grassland corridors are critical for maintaining functional landscape connectivity, and 

that heterogeneity throughout these corridors increases grasshopper species turnover, contributing to high 

landscape diversity and illustrates greater conservation value of grassland corridors (chapter 3), supported by

previous work (Pryke and Samways 2015). Additionally, modelling functional connectivity within grassland 

corridors provides important information on how prescribed burning impacts access to resources (chapter 3), 

which can help in the management of corridors for biodiversity conservation, so that these corridors extend 

the effective reaches of neighbouring protected areas (Pryke and Samways 2012a).

Another prominent finding from different chapters is the impact of harvesting timber compartments 

on biodiversity (chapter 3 and 4). Harvesting of trees and planting of plantation tree saplings, creates 

opportunities for alien weed species to establish, which temporarily improves functional connectivity 

(chapter 3). Thus, through selectively harvesting specific timber compartments, changes to functional 

connectivity can be made to support biodiversity and improve dispersal (Pliscoff et al. 2020). This is also 

supported by previous research within grassland corridors demonstrating that rotational harvesting can 

increase vegetation structural diversity, promoting arthropod spillover within the landscape (van Schalkwyk 

et al. 2021). These findings have implications on how the timber compartments are managed after mature 

trees have been harvested, which is especially important as timber compartments provide little resources for 

biodiversity (Pryke and Samways 2012b; Eckert et al. 2019). However, alien vegetation establishing after 

harvesting poses serious threats to grassland biodiversity (Stanton et al. 2018, Wang et al. 2019) by reducing 
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functional connectivity within and between grasslands (Deák et al. 2020). There is thus an urgent need to 

revisit harvesting tools and methodology to help conserve biodiversity and reduce alien species 

establishment (Betts et al. 2021).

Even though harvesting timber compartments temporarily improves functional connectivity, alien 

vegetation establishing after removal of trees should be contained within the timber compartments and be 

prevented from spilling over into grassland corridors. Unfortunately, harvesting has a significant positive 

effect on American bramble (Rubus cuneifolius) cover within the landscape, where bramble cover is highest 

two years after harvesting (chapter 4). This result is supported by a recent study, which showed that 

anthropogenic disturbances are more important than local biotic and abiotic variables in predicting plant 

invasions (Fuentes-Lillo et al. 2021). Harvesting of timber compartments throughout the landscape can 

therefore have a compound effect on the invasion potential of bramble (Fristoe et al. 2021). In response, 

adoption of rotational harvesting is highly encouraged to prevent bramble invasion throughout the landscape.

Prescribed burning is frequently used to control the spread of alien invasive plant species while 

maintaining stable native plant populations (Gordijn and Ward 2014; Gordijn and O’Connor 2021; Morris et 

al. 2021). However, in the absence of follow-up treatments, most alien invasive plants (especially larger 

shrubs) recover after two or three years (Ditomaso et al. 2006). My results support this by demonstrating that

continuous prescribed burning significantly increases bramble cover (chapter 4). This could be due to the 

grassland fires not being hot enough to kill bramble, but rather temporally reducing bramble density 

(Ditomaso et al. 2006). Therefore, for fire to be used effectively in controlling bramble cover, it needs to be 

combined with additional follow-up treatments. Research has demonstrated the potential of grazing by 

domestic cattle in controlling bramble cover (van Uytvanck and Hoffmann 2009; Masson et al. 2015). 

However, more research is needed to investigate the combined effect of prescribed burning and grazing by 

domestic cattle within grassland corridors as a means of controlling bramble.

Another common finding throughout the dissertation was the negative impact of bramble on 

biodiversity (chapter 2 and 4). Bramble is an aggressive invader within grasslands of South Africa 

(Henderson 2007) and has severe negative impacts on local plant species richness, vegetation structure, 

endemic birds, and a variety of arthropods (Reynolds and Symes 2013; Kietzka et al. 2015; Hansen et al. 

2018; Eckert et al. 2019). My results contribute to this by demonstrating that bramble has severe negative 
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impact on plant species richness, larger-sized grasshopper species (especially Pyrgomorphinae), as well as 

grasshopper species of conservation concern (mainly Thericleinae) (chapter 2 and 4). Furthermore, my 

results show that bramble has a large impact on high-quality habitat for high conservation-priority 

grasshopper species as well as Ensifera grasshoppers (chapter 4). Ensifera grasshoppers are particularly 

vulnerable, especially if the spread of bramble is not controlled, as bramble occurs in greater cover close to 

streams (chapter 4), which corresponds with previous work (Ndlovu et al. 2018).

All the results presented in this dissertation provides compelling evidence to motivate the adoption of

satellite remote sensing to study patterns in biodiversity within production landscapes. Establishing casual 

links between local biodiversity and satellite remote sensing will allow us to scale up our local monitoring 

efforts to better understand global biodiversity response.

5.2. Future research

New methods are urgently needed to rapidly collect data on insect diversity as well as environmental 

data at a scale relevant to insects. This is crucial for linking local biodiversity with remote sensing data, and 

then extrapolating this relationship globally. Data on microclimate is particularity important for creating 

accurate predictive models (Lembrechts et al. 2019), because insects experience climate in their immediate 

surroundings, which can vary considerably due to changes in vegetation structure and solar radiation 

(Milling et al. 2018). However, our ability to develop strong and highly accurate predictive models that 

explain the relationships between remote sensing data (e.g., microclimate) and local biodiversity, is 

ultimately dependant on the quantify and resolution of available data. Obtaining such data can be 

challenging, but the rapid development of unmanned aerial vehicles (UAV) over the last several years, has 

allowed us to monitor biodiversity at fine spatial and temporal resolutions unattainable by satellites (Horning

2018). Structural data can also be obtained by UAV, which is comparable to Light Detection and Ranging 

(LiDAR) technology (Forsmoo et al. 2018) and can be used to model microclimate. Combining spectral and 

structural data at very high resolutions (cm) provides opportunities to better study relationship between the 

local environment and biodiversity response. Unfortunately, local legislation around operating UAV is a 

significant challenge in many regions, including South Africa, which substantially hampers the adoption of 

UAV as a remote sensing platform (Dash et al. 2019).

118

Stellenbosch University https://scholar.sun.ac.za



New exciting motion triggered insect camera traps (https://www.spaia.earth/) can provide alternative 

ground truthing platform for collecting data needed to create accurate global predictive models. Leveraging 

the capabilities of deep learning algorithms and computer vision holds enormous potential to create 

automated systems for monitoring biodiversity (Christin et al. 2019), especially for insects (Høye et al. 

2021). This is important as fieldwork to collect insect samples needed to provide ground truthing for remote 

sensing data, is extremely time consuming and expensive. Computer vision and deep learning has already 

been used to create an automated light trap to monitor moths (Bjerge et al. 2021), as well as identify 

mosquitoes responsible for spreading disease (Pataki et al. 2021).

However, insect camera traps still require substantial taxonomic expertise for identifying insects to 

create labelled training data. One method to overcome this limitation is through the use of environmental 

DNA (eDNA) and metabarcoding, which can rapidly and noninvasively collecting large amounts of data on 

species and community assembly (Thomsen and Willerslev 2015; Seymour 2019; Deiner et al. 2021). 

Recently, eDNA has been used to study arthropod response to different management regimes in German 

vineyards (Rasmussen et al. 2021), as well as to monitor flower visiting arthropods in grasslands (Thomsen 

and Sigsgaard 2019).

Deploying technology that captures data on insect diversity (eDNA) and activity (camera trapping), 

along with data on the local environment (microclimate), will rapidly enhance our monitoring efforts and 

their further development is crucial.

5.3. Concluding remarks

Satellite remote sensing and integrative modelling provides greater insight into how biodiversity 

responds within production landscape, which helps steer management towards considering biodiversity 

conservation. Here my results illustrate that prescribed burning can have lasting impact on biodiversity, and 

therefore careful consideration is needed when deciding where, when and how often to burn. To help guide 

this decision, land managers and foresters can use NDVI to monitor grassland corridor condition, which will 

also provide insight into how functional connectivity will vary between years. Rotational harvesting is highly

recommended, as it will have major benefits on functional connectivity, as well help prevent bramble 

invasions within the landscape. Special attention is needed to control bramble two years after harvesting, as 
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this is when bramble cover is highest. This should be done to prevent bramble spillover into grassland 

corridors, which will impact biodiversity. Current bramble removal programmes should prioritize riparian 

areas and use high priority grasshopper habitat to identify vulnerable terrestrial habitat.

5.4. Data availability statement

Code and supporting data for chapter 2 are available on Zenodo 

(https://doi.org/10.5281/zenodo.5118404). Land cover classification training data along with grasshopper 

data and accompanying code for chapter 3 are stored on Github 

(https://github.com/kjtheron/Functional_Connectivity). Grasshopper and vegetation data with accompanying 

code for chapter 4 can be found on Github (https://github.com/kjtheron/Invasion_Dynamics). PlanetScope 

imagery can be ordered from Planet Labs (https://www.planet.com). Sentinel 2 image can be downloaded 

from Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus). The 5 m resolution DEM can be 

ordered from GeoSmart space (https://geosmart.space/).
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Appendices

Appendix S2

Table S2.1 Dates for imagery used in Spectral models.

Sensor Area Date Image ID

PlanetScope Estate 1 2019/05/02 20190502_075144_64_105f_3B

2020/01/24 20200124_080656_10_1057_3B

2020/03/23 20200323_091450_19_106a_3B

2020/03/23 20200323_091452_29_106a_3B

Estate 2 2019/05/02 20190502_075142_57_105f_3B

2020/01/29 20200129_091654_99_1065_3B

2020/03/19 20200319_091226_84_106a_3B

Estate 3 2019/05/03 20190503_093059_13_106a_3B

2020/01/17 20200117_080646_31_1064_3B

2020/03/18 20200318_091212_19_106e_3B

Estate 4 2019/05/10 20190510_075040_15_105a_3B

2019/05/10 20190510_075042_22_105a_3B

2020/02/15 20200215_080802_12_1057_3B

2020/03/20 20200320_075746_13_105c_3B

Sentinel Estate 1-4 2019/05/24 20190524T073619_20190524T080638_T36JTN

2020/01/04 20200104T074311_20200104T080039_T36JTN

2020/03/04 20200304T073801_20200304T080109_T36JTN

Landsat Estate 1-4 2019/05/24 LC08_168080_20190524

2020/01/03 LC08_168080_20200103

2020/03/07 LC08_168080_20200307
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Table S2.2 List of grasshopper species sampled during the chapter 2 and 3. GCI = Grasshopper Conservation Index calculated by using scores for species rarity, 

mobility and endemism.

Family Subfamily Species Abundance GCI

Acrididae Acridinae Acrida acuminata (Stål, 1873) 105 3

Acrida bicolor (Thunberg, 1815) 17 3

Acrida propinqua (Burr, 1902) 2 6

Duronia chloronota chloronota (Stål, 1876) 155 3

Gymnobothrus carinatus (Uvarov, 1941) 47 4

Machaeridia conspersa (I. Bolívar, 1889) 54 3

Duronia chloronota curta (Uvarov, 1953) 140 5

Rhabdoplea munda (Karsch, 1893) 26 5

Catantopinae Anthermus granosus (Stål, 1878) 30 3

Vitticatantops humeralis (Thunberg, 1815) 195 3

Coptacrinae Eucoptacra turneri (Miller, 1932) 11 5

Cyrtacanthacridinae Cyrtacanthacris aeruginosa aeruginosa (Stoll, 1813) 3 5

Ornithacris cyanea cyanea (Stoll, 1813) 3 5

Eyprepocnemidinae Eyprepocnemis calceata (Serville, 1838) 29 5

Heteracris drakensbergensis (Grunshaw, 1991) 6 7

Rhachitopis melanopus (Burmeister, 1838) 72 4

Gomphocerinae Anablepia pilosa (Uvarov, 1953) 87 5

Crucinotacris cruciata (Bolívar, 1912) 60 3

Diablepia viridis (Kirby, 1902) 3 7
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Faureia milanjica (Karsch, 1896) 4 5

Mesopsis abbreviata (Palisot de Beauvois, 1806) 65 4

Pnorisa angulata (Karny, 1910) 163 3

Pnorisa squalus (Stål, 1861) 122 3

Pseudoarcyptera cephalica (Bolívar, 1914) 8 7

Rhaphotittha levis (Karsch, 1896) 21 4

Hemiacridinae Acanthoxia gladiator (Westwood, 1842) 1 5

Oedipodinae Aiolopus meruensis (Sjöstedt, 1909) 37 4

Gastrimargus africanus africanus (Saussure, 1888) 30 3

Gastrimargus determinatus determinatus (Walker, 1871) 3 6

Gastrimargus drakensbergensis (Ritchie, 1982) 20 5

Morphacris fasciata (Thunberg, 1815) 10 4

Paracinema tricolor tricolor (Thunberg, 1815) 22 4

Scintharista magnifica (Uvarov, 1922) 9 6

Scintharista rosacea (Kirby, 1902) 5 7

Scintharista saucia (Stål, 1873) 1 6

Oxyinae Oxya glabra (Ramme, 1929) 81 6

Oxya hyla (Serville, 1831) 400 3

Dirshia abbreviata (Brown, 1962) 14 7

Spathosterninae Spathosternum nigrotaeniatum (Stål, 1876) 58 3

Tropidopolinae Petamella prosternalis (Karny, 1907) 1 5

Lentulidae Lentulinae Betiscoides parva (Key, 1937) 2 7

Lentula obtusifrons (Stål, 1878) 156 6
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Pamphagidae Porthetinae Pagopedilum sordidum (Walker, 1870) 1 6

Pagopedilum subcruciatum (Karsch, 1896) 1 8

Pyrgomorphidae Pyrgomorphinae Chrotogonus hemipterus (Schaum, 1853) 1 6

Dictyophorus spumans pulchra (Bolívar, 1904) 1 5

Phymateus leprosus leprosus (Fabricius, 1793) 1 7

Phymateus viridipes viridipes (Stål, 1873) 3 5

Stenoscepa picticeps (Bolívar, 1904) 27 8

Zonocerus elegans elegans (Thunberg, 1815) 4 5

Tetrigidae Batrachideinae Phloeonotus humilis (Gerstaecker, 1869) 78 4

Cladonotinae Trachytettix scaberrimus scaberrimus (Stål, 1876) 1 6

Tetriginae Dasyleurotettix infaustus (Walker, 1871) 4 6

Paratettix scaber (Thunberg, 1815) 26 3

Paratettix subpustulata (Walker, 1871) 12 5

Tettiella odiosa (Walker, 1871) 57 5

Thericleidae Thericleinae Lophothericles marginatus (Descamps, 1977) 1 8

Thericles miserabilis (Descamps, 1977) 7 6
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Figure S2.1 Species accumulation curves for a) all sites together, b) grouped per timber estate, and c) for 

every sampling site separate.
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Appendix S3.1

Sampling sites across the timber plantation estates were selected based on a scoring and prioritisation

methodology. First, multiple raster variables were selected and used to perform a land cover classification 

using 5m resolution Rapid Eye satellite imagery. This classification was done in 2019, one year prior to 

sampling grasshoppers. Using this classification, I scored land cover types based on grasshopper preference 

(guided by relevant references (e.g. Pryke and Samways 2012)), and summed the scores of the land covers 

within a larger grid to identify “grasshopper hotspots”. Sampling sites were then selected to cover the extent 

of the estates (separated by 1 km, except in estate 4 with a minimum distance between sites of 400 m), but to 

also have high and low habitat value scores to capture a variety of site conditions (almost half low value sites

and half high value sites). Figure S3.1.1 provides an illustration of this scoring and prioritisation work-flow.

Furthermore, in preparation to perform stacked species distribution modelling (S-SDM), functional 

landscape connectivity (FLC) analysis, as well as species turnover calculation, various raster variables were 

created. Multiple raster data products were sources, and served as the base for deriving further data products 

(e.g. DEM used to calculate cold air drainage). All raster variables were projected to EPSG:32736, rescaled 

to 10 m resolution, and clipped to the study extent. Roughly 500 m surrounding the plantation estates were 

added to the study extent (manually digitised), as high quality grassland habitat surrounds some of these 

estates, allowing for a better representation of functional connectivity throughout the plantation estates. 

Processing occurred within QGIS (QGIS Development Team 2019) as well as R (R Core Team 2020). See 

Table S3.1.1 for specific details pertaining to raster variables.

References

GeoSmart Space (2019) 5m Stellenbosch University digital elevation model (SUDEM). Available from 

https://geosmart.space/products/sudem.html [accessed 2019/04/09]

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google Earth Engine: 

Planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18-27. 

https://doi.org/10.1016/j.rse.2017.06.031

Hijmans RJ (2020) raster: Geographic data analysis and modelling. R package version 3.4-5. 

https://CRAN.R-project.org/package=raster

135

Stellenbosch University https://scholar.sun.ac.za

https://CRAN.R-project.org/package=raster
https://doi.org/10.1016/j.rse.2017.06.031
https://geosmart.space/products/sudem.html


Keeley JE (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int J 

Wildland Fire 18:116-126. https://doi.org/10.1071/WF07049

Khalyani AH, Falkowski MJ, Mayer AL (2012) Classification of Landsat images based on spectral and 

topographic variables for land-cover change detection in Zagros forests. Int J Remote Sens 33:6956-

6974. https://doi.org/10.1080/01431161.2012.695095

Moeslund JE, Arge L, Bøcher PK, Dalgaard T, Ejrnæs R, Odgaard MV, Svenning J-C (2013) 

Topographically controlled soil moisture drives plant diversity patterns within grasslands. Biodivers 

Conserv 22:2151-2166. https://doi.org/10.1007/s10531-013-0442-3

Pryke JS, Samways MJ (2012) Conservation management of complex natural forest and plantation edge 

effects. Landsc Ecol 27:73-85. https://doi.org/10.1007/s10980-011-9668-1

QGIS Development Team (2019) QGIS geographic information system. Open source geospatial foundation 

project. Available from http://qgis.osgeo.org [accessed 2021/01/15]

R Core Team (2020) R: A language and environment for statistical computing. R foundation for statistical 

computing, Vienna, Austria.

Samways MJ (1990) Land forms and winter habitat refugia in the conservation of montane grasshoppers in 

Southern Africa. Conserv Biol 4:375-382. https://www.jstor.org/stable/2385930

Theron KJ, Pryke JS, Samways MJ (2021) Identifying managerial legacies within conservation corridors 

using remote sensing and grasshoppers as bioindicators. Ecol Appl 32:e02496. 

https://doi.org/10.1002/eap.2496

van Schalkwyk J, Pryke JS, Samways MJ, Gaigher R (2020) Corridor width determines strength of edge 

influence on arthropods in conservation corridors. Landsc Ecol 35:1175-1185. 

https://doi.org/10.1007/s10980-020-01008-6

136

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1007/s10980-020-01008-6
https://doi.org/10.1002/eap.2496
https://www.jstor.org/stable/2385930
http://qgis.osgeo.org/
https://doi.org/10.1007/s10980-011-9668-1
https://doi.org/10.1007/s10531-013-0442-3
https://doi.org/10.1080/01431161.2012.695095
https://doi.org/10.1071/WF07049


Figure S3.1.1 Variables used for land cover classification. Classified land classes were scored and summed per grid to derive grasshopper hotspots. In the localised 

biodiversity hotspot figure on the right, dark red indicates high value habitat, whereas lighter colours indicate habitat of lower value. A variety of spectral variables 

where used (Blue – Red edge), some processed spectral data such as PCA and textural variables (Contrast – Mean), as well as some topographic variables (elevation 

and slope).
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Table S3.1.1 Table illustrating different raster variables used during formal analyses, their source, how they were processed, for what they were used, and the 

justification of their use. DEM = Digital Elevation Model, Drainage = refers to the water/air drainage channels on a topographic surface such as a DEM, SA_NLC = 

South African National Land Cover data product, Max_NBR = the maximum pixel value of the Normalised Burn Ration index over 3 years, NDVI = Normalised 

Difference Vegetation Index, Dist_Drain = distance to water/air drainage channels, Dist_Edge = distance to nearest grassland edge, NIR = near infrared light, SWIR 

= short-wave infrared light, S-SDM = stacked species distribution modelling, FLC = functional landscape connectivity.

Variable Source Processing Used for Justification

Sentinel-2 Copernicus Open Access Hub 

(https://scihub.copernicus.eu/dhus).

Image ID 20200129T074049.

Bands were clipped to study 

extent. Only the Red, Green, 

Blue and NIR bands were used.

Calculating NDVI. Sentinel-2 bands with its moderate resolution (10 m) is 

well suited for land cover classification, S-SDM and 

FLC. Please see Online Resource 5.

DEM Stellenbosch University Digital 

Elevation Model obtained through 

GeoSmart Space 

(https://geosmart.space/) 

(GeoSmart Space 2019).

Projected (EPSG:32736), re-

sampled to 10 m, and clipped to

study extent.

Calculating aspect, slope, and 

drainage. Also used in species 

turnover calculations.

This DEM had a resolution of 5 m and contained more 

accurate information about the topography compared to 

NASA’s SRTM data product.

Drainage DEM Produced using the Fill and 

Stream QGIS functions on the 

processed DEM.

Calculating distance to water/air

drainage channels.

The GRASS extension to QGIS contains valuable 

hydrological functions. The stream network (water/air 

drainage channels) was calculated to include smaller 
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channels to simulate cold air drainage along complex 

topography.

SA_NLC The Department of Environmental 

Affairs, Republic of South Africa 

(https://egis.environment.gov.za/).

Projected (EPSG:32736), re-

sampled to 10 m, and clipped to

study extent.

Refining land cover type within 

study extent, by classifying 

Sentinel-2 data.

This land cover data product produced in 2018 was used

to improve the accuracy of the new land cover 

classification for the current time of the study.

Max_NBR Landsat imagery on Google Earth 

Engine (Gorelick et al. 2017).

NBR was calculated within 

Google Earth Engine using the 

NIR and SWIR bands from 

Landsat, selecting the maximum

pixel value over 3 years for the 

study extent. NBR was 

projected (EPSG:32736), re-

sampled to 10 m, and clipped to

study extent.

S-SDM, FLC, species turnover 

calculations.

Google Earth Engine allows users to perform arithmetic 

per pixel through time and over large spatial scales. 

NBR is a index used to study fire severity and intensity 

(Keeley 2009), and ranges from -1 (high burn severity, 

no vegetation cover) to +1 (no burn, high vegetation 

cover). Thus, selecting the maximum NBR over 3 years 

allows me to map the burn history of grassland 

corridors, were lower NBR values indicate areas of 

constant burning, whereas higher areas indicate longer 

burn intervals.

NDVI Sentinel-2 Calculated in R using the red 

and NIR bands from the 

S-SDM, FLC, species turnover 

calculations.

NDVI is a popular remote sensing index that stands as a

proxy for vegetation greenness. Previous research 
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processed Sentinel-2 image 

captured on the 29th of January 

2020.

showed that grasshoppers within grassland corridors 

respond to NDVI, and that this relationship is relating to

the vegetation structure (Theron et al. 2021).

Slope DEM Calculated in R using the 

processed DEM.

Land cover classification. Topographic variables, such as slope, aids with land 

cover classification, as it improves the algorithms ability

to accurately discriminate between land cover classes, 

over just using spectral data (Khalyani et al. 2012).

Aspect DEM Calculated in R using the 

processed DEM.

S-SDM, FLC, species turnover 

calculations.

Topographic aspect has a significant influence on plant 

diversity due to varying solar radiation (Moeslund et al. 

2013). This in turn effects the microclimatic conditions 

across the landscape, which has a significant impact on 

grasshopper diversity (Samways 1990).

Dist_Drain Drainage Calculated in R using the 

Distance function within the 

Raster package (Hijmans 2020).

S-SDM, FLC, species turnover 

calculations.

Grasshopper within grassland corridors are impacted by 

cold air funnelling down topographic depressions, and 

therefore avoid these cold air drainage channels as it can

increase grasshopper morality (Samways 1990).

Land_Use Sentinel-2, SA_NLC, DEM Random Forest classification. S-SDM, FLC, species turnover Grasshoppers were only sampled in grasslands. Also, 
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Please see Online Resource 3. calculations. only grassland species were used. Thus, land cover was 

therefore included to help improve model performance.

Dist_Edge Land_Use Selected the grassland class 

from Land_Use and then 

calculated the distance to 

nearest non-grassland pixel 

using the Distance function in 

the R Raster package (Hijmans 

2020).

S-SDM, FLC, species turnover 

calculations.

The study region consists out of grassland corridors as 

well as grassland fragments/remnants, which are all of 

varying shapes and sizes (see study map in main text). 

Distance to edge was therefore an important variable to 

stand in as a proxy for grassland corridor/remnant size. 

Furthermore, arthropods within grassland corridors 

respond strongly to distance to edge (van Schalkwyk et 

al. 2020).

141

Stellenbosch University https://scholar.sun.ac.za



Table S3.1.2. Percentage breakdown of grasslands vs timber compartments within each estate.

Name Estate ha Grassland ha Plantation ha % Grassland

Estate 1 6003.567 2694.744 3308.823 44.886

Estate 2 3646.103 1694.497 1951.606 46.474

Estate 3 5514.944 2357.941 3157.003 42.755

Estate 4 6213.786 1662.678 4551.108 26.758
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Appendix S3.2

Table S3.2.1 Table illustrating different parameters with classes, used to calculate the grasshopper 

conservation index to classify grasshoppers as low, intermediate, and high conservation value.

Parameter Score Description

Endemism 1 Occurring in and outside South Africa

2 Endemic to South Africa

3 Local endemic

Dispersal 1 Fully capable of flight

2 Flight-less

Rarity 1 Common (at > 10 sites)

2 Intermediate (at ≤ 10 sites)

3 Rare (at ≤ 5 sites)
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Table S3.2.2 Table illustrating number of individuals and species per site within the different plantation 

estates.

Estate Site Individuals Species

Estate1 Site_10 32 15

Estate1 Site_11 59 13

Estate1 Site_19 50 20

Estate1 Site_20 43 11

Estate1 Site_21 164 17

Estate1 Site_22 66 15

Estate1 Site_23 50 16

Estate1 Site_24 39 9

Estate1 Site_25 95 18

Estate1 Site_26 60 12

Estate1 Site_27 52 10

Estate1 Site_28 186 19

Estate1 Site_29 133 17

Estate1 Site_30 59 14

Estate1 Site_31 34 9

Estate1 Site_32 36 9

Estate2 Site_08 17 10

Estate2 Site_09 50 16

Estate2 Site_33 71 14

Estate2 Site_34 68 14

Estate2 Site_35 67 16

Estate2 Site_36 55 13

Estate2 Site_37 66 10

Estate3 Site_38 6 3

Estate3 Site_39 13 9
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Estate3 Site_40 22 5

Estate3 Site_41 24 13

Estate3 Site_42 53 12

Estate3 Site_43 7 3

Estate3 Site_44 15 5

Estate3 Site_45 53 6

Estate3 Site_46 23 8

Estate3 Site_47 40 13

Estate3 Site_48 10 7

Estate3 Site_49 55 15

Estate3 Site_50 25 7

Estate4 Site_00 105 14

Estate4 Site_01 21 9

Estate4 Site_02 51 10

Estate4 Site_03 31 12

Estate4 Site_04 25 10

Estate4 Site_05 49 14

Estate4 Site_06 38 11

Estate4 Site_07 35 10

Estate4 Site_12 22 8

Estate4 Site_13 62 15

Estate4 Site_14 39 10

Estate4 Site_15 29 14

Estate4 Site_16 30 10

Estate4 Site_17 16 6

Estate4 Site_18 52 10
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Appendix S3.3

To classify land cover types within the study region, I compared the accuracy of three different 

algorithms. Specifically, I compared between Random Forest, k-Nearest Neighbours and Classification and 

Regression Tree. These algorithms are used regularity for classification problems and were implemented 

using the caret package (Kuhn 2020). Variables selected for classification included the red, green, blue 

(RGB) and infrared (IR) bands from a Sentinel 2 image, the Principal Component Analysis from these bands,

Normalised Difference Vegetation Index (NDVI), slope derived from a DEM, as well as a 2018 land cover 

data product of South Africa (Thompson 2019).

Models were trained to classify the most prominent land cover classes within the study region, 

specifically, agricultural land, grassland, bare ground, plantation forest, shrubland, water and woodland. 

Reference data was collected using a 25cm RGB orthophoto as well as 3m RGB and IR PlanetScope imagery

(Planet Team 2017). A total of 1 640 data points were created, and data was split using 70% for training and 

30% for testing. To obtain best performing model parameters for all algorithms during training, I used a 

random selection of 10 different parameter combinations. The best combination of parameters was selected 

based on the resulting Kappa statistic generated using a bootstrapping procedure. The best performing 

model, determined from a confusion matrix using testing data, was used to predict land cover classes for 

entire study region. This land cover data product was smoothed using a modal 3 by 3 moving window to 

reclassify any small incorrectly classified pixel regions, before being used during stacked species distribution

modelling.
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Figure S3.3.1 Reference data collected using 25cm orthophotos and 3m PlanetScope imagery and split, using

a 70/30 split, into a) training and b) testing data.
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Figure S3.3.2 Variable importance for the a) Classification and Regression Tree algorithm, using the rpart 

function, b) Random Forest algorithm, using the ranger function, and c) K-Nearest Neighbour algorithm, 

using kknn function.
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Table S3.3.1 Confusion matrix for Classification and Regression Tree with additional accuracy statistics.

Reference

Prediction Agriculture Grassland Ground Plantation Shrubland Water Woodland

Agriculture 13 0 0 0 2 0 0

Grassland 4 57 2 0 6 1 0

Ground 2 0 66 0 0 0 0

Plantation 0 0 2 109 5 0 5

Shrubland 2 6 0 3 63 2 10

Water 0 0 0 0 0 25 0

Woodland 0 1 0 2 6 0 96

Overall statistics:

Accuracy: 0.8755

95% CI: (0.843, 0.9034)

No Information Rate: 0.2327

P-Value: <2.2e-16

Kappa: 0.8485

Mcnemar's Test P-Value: NA

Statistics per land cover class:

Agriculture Grassland Ground Plantation Shrubland Water Woodland

Precision 0.86667 0.8143 0.9706 0.9008 0.7326 1 0.9143

Recall 0.61905 0.8906 0.9429 0.9561 0.7683 0.89286 0.8649

F1 0.72222 0.8507 0.9565 0.9277 0.75 0.9434 0.8889

Prevalence 0.04286 0.1306 0.1429 0.2327 0.1673 0.05714 0.2265

Detection Rate 0.02653 0.1163 0.1347 0.2224 0.1286 0.05102 0.1959

Detection Prevalence 0.03061 0.1429 0.1388 0.2469 0.1755 0.05102 0.2143

Balanced Accuracy 0.80739 0.9301 0.969 0.9621 0.856 0.94643 0.9206
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Table S3.3.2 Confusion matrix for Random Forest with additional accuracy statistics.

Reference

Prediction Agriculture Grassland Ground Plantation Shrubland Water Woodland

Agriculture 19 0 0 0 0 0 0

Grassland 0 57 2 0 6 0 0

Ground 2 1 66 0 0 0 0

Plantation 0 0 2 110 3 0 2

Shrubland 0 6 0 4 70 0 6

Water 0 0 0 0 0 28 0

Woodland 0 0 0 0 3 0 103

Overall statistics:

Accuracy: 0.9245

95% CI: (0.8974, 0.9463)

No Information Rate: 0.2327

P-Value: <2.2e-16

Kappa: 0.9083

Mcnemar's Test P-Value: NA

Statistics per land cover class:

Agriculture Grassland Ground Plantation Shrubland Water Woodland

Precision 1 0.8769 0.9565 0.9402 0.814 1 0.9717

Recall 0.90476 0.8906 0.9429 0.9649 0.8537 1 0.9279

F1 0.95 0.8837 0.9496 0.9524 0.8333 1 0.9493

Prevalence 0.04286 0.1306 0.1429 0.2327 0.1673 0.05714 0.2265

Detection Rate 0.03878 0.1163 0.1347 0.2245 0.1429 0.05714 0.2102

Detection Prevalence 0.03878 0.1327 0.1408 0.2388 0.1755 0.05714 0.2163

Balanced Accuracy 0.95238 0.9359 0.9679 0.9731 0.9072 1 0.96
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Table S3.3.3 Confusion matrix for K-Nearest Neighbour with additional accuracy statistics.

Reference

Prediction Agriculture Grassland Ground Plantation Shrubland Water Woodland

Agriculture 18 1 0 0 0 0 0

Grassland 1 54 2 0 5 0 0

Ground 1 0 66 0 0 0 0

Plantation 0 0 2 110 4 0 8

Shrubland 1 9 0 3 63 0 5

Water 0 0 0 0 0 28 0

Woodland 0 0 0 1 10 0 98

Overall statistics:

Accuracy: 0.8918

95% CI: (0.8609, 0.9179)

No Information Rate: 0.2327

P-Value: <2.2e-16

Kappa: 0.8684

Mcnemar's Test P-Value: NA

Statistics per land cover class:

Agriculture Grassland Ground Plantation Shrubland Water Woodland

Precision 0.94737 0.871 0.9851 0.8871 0.7778 1 0.8991

Recall 0.85714 0.8438 0.9429 0.9649 0.7683 1 0.8829

F1 0.9 0.8571 0.9635 0.9244 0.773 1 0.8909

Prevalence 0.04286 0.1306 0.1429 0.2327 0.1673 0.05714 0.2265

Detection Rate 0.03673 0.1102 0.1347 0.2245 0.1286 0.05714 0.2

Detection Prevalence 0.03878 0.1265 0.1367 0.2531 0.1653 0.05714 0.2224

Balanced Accuracy 0.92751 0.9125 0.9702 0.9638 0.8621 1 0.9269
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Figure S3.3.3 Land cover classification using a) Random Forest, b) K-Nearest Neighbour, and c) 

Classification and Regression Tree.
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Figure S3.3.4 Comparing model accuracies.
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Appendix S3.4

Before running stacked species distribution modelling (S-SDM), I performed preliminary analyses 

using different raster variables, at different scales (Table S3.4.1-S3.4.2). This was done to refine variable 

selection and to also identify resolution that best worked for the data and study area. Preliminary S-SDM was

performed using the recommended model parameters from the S-SDM R package (Schmitt et al. 2017). 

Based on these results I identified redundant variables (Slope, Elevation and Surface Temperature) as well as

identifying Sentinel-2 resolution (10 m) to be the most accurate compared to Landsat (30 m) and 

PlanetScope (3 m).

Using the new combination of variables, supported by previous research, I refined the models by 

tuning the parameters to produce the best models with the data (Figure S3.4.1 and Table S3.4.3). Final model

parameters can be found in the main text.
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Table S3.4.1 Preliminary testing and variables selection used in S-SDM using the overall grasshopper assemblage. Values represents the relative contribution of 

environmental variables used in stacked species distribution modelling to predict suitable habitat for grasshoppers. NDVI = Normalised Difference Vegetation Index,

Drain dist= distance to nearest cold air drainage line, Elv = elevation, NBR = Normalised Burn Ratio index, Surf Temp = land surface temperature. Mean (±SD).

Satellite Variables

NDVI Land cover Drain dist Slope Elv NBR Surf_Temp

Landsat 8.04 (±6.69) 33.95 (±14.63) 9.98 (±11.59) 10.67 (±9.44) 13.98 (±10.89) 16.49 (±8.23) 6.89 (±3.79)

NDVI Land cover Drain dist Aspect

PlanetScope_1 22.9 (±13.02) 25.07 (±14.51) 24.61 (±11.22) 27.42 (±18.36)

NDVI Land cover Drain dist Aspect Cor_Width

PlanetScope_2 20.68 (±11.4) 19.13 (±12.2) 19.37 (±12.02) 19.68 (±10.83) 21.14 (±8.37)

NDVI Land cover Drain dist Aspect Cor_Width NBR

PlanetScope_3 13.52 (±7.44) 10.82 (±10.98) 18.05 (±10.15) 15.47 (±9.92) 15.4 (±11.61) 26.74 (±14.05)

NDVI Land cover Drain dist Aspect Cor_Width

Sentinel_1 20.47 (±9.53) 20.67 (±13.33) 20.48 (±9.9) 15.26 (±7.7) 23.11 (±12.12)

NDVI Land cover Drain dist Aspect Cor_Width NBR

Sentinel_2 19.32 (±15.59) 8.39 (±5.52) 16.71 (±7.4) 17.22 (±7.96) 15.75 (±12.3) 22.6 (±11.14)
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Table S3.4.2 Preliminary testing and variables selection used in S-SDM using the overall grasshopper 

assemblage. Values represents the evaluation statistics for the stacked species distribution modelling that 

were used to identify drivers of suitable habitat for grasshoppers. Spp rich error = species richness error 

(difference between predicted and observed species richness), Specificity = assemblage specificity 

(proportion of true negatives), Sensitivity = assemblage sensitivity (proportion of true positives), and Jaccard

= Jaccard index (community similarity). Mean (±SD).

Satellite Evaluation

Spp rich error Specificity Sensitivity Jaccard

Landsat 23.41 (±8.53) 0.19 (±0.21) 0.85 (±0.28) 0.28 (±0.14)

PlanetScope_1 15.05 (±8.41) 0.4 (±0.24) 0.66 (±0.28) 0.24 (±0.12)

PlanetScope_2 12.53 (±7.84) 0.34 (±0.27) 0.68 (±0.28) 0.29 (±0.12)

PlanetScope_3 19.31 (±9.11) 0.26 (±0.24) 0.75 (±0.25) 0.26 (±0.12)

Sentinel_1 10.92 (±8.33) 0.38 (±0.29) 0.67 (±0.35) 0.28 (±0.17)

Sentinel_2 12.92 (±7.89) 0.29 (±0.24) 0.72 (±0.33) 0.27 (±0.14)
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Figure S3.4.1 Algorithm correlations for a) overall assemblage, b) low conservation value assemblage, c) 

intermediate conservation value assemblage, and d) high conservation value assemblage. RF = Random 

Forest algorithm, SVM = Support Vector Machines algorithm.
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Table S3.4.3 Number of source patches identified using the top 15% of suitable habitat between all 

plantation estates for all the overall grasshopper assemblage as well as the different conservation-priority 

species groups (Low - High).

Grouping Estate 1 Estate 2 Estate 3 Estate 4

Overall 133 43 115 6

Low 141 47 126 6

Intermediate 145 56 135 15

High 92 37 85 6
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Appendix S3.5

Performing accurate functional connectivity analysis requires suitable resistance/conductance 

surfaces (Peterman 2018). As the type of surface can influence the resulting connectivity map, I produced 

connectivity maps using three different conductive surfaces. Firstly, I used the suitability maps created by the

S-SDM. Secondly, I used NDVI as a conductance surface, as previous work demonstrated a relationship 

between intermediate NDVI values and high grasshopper diversity (Theron et al. 2021). In order to help 

optimise the the connectivity modelling using NDVI, I applied a reverse Ricker transformation to NDVI 

using the Resistance.tran function within the ResistanceGA R package (Peterman 2018) so the transformed 

values more closely match expected patters in grasshopper diversity (Figure S3.5.2). Lastly, I manually 

assigned user defined conductance values between 0-100 to every land cover class. These values were based 

on the vegetation structure and microclimate of land classes, with grasslands having the highest values 

(conducts current easily) and plantations having the lowest values (restricts current) (Table S3.5.1 ).
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Table S3.5.1 Conductivity values assigned to individual land cover classes for functional connectivity 

modelling.

Land cover Conductivity value (0-100)

Agriculture 40

Grassland 100

Ground 70

Plantation 10

Shrubland 30

Water 0

Woodland 20
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Figure S3.5.1 Land cover types important for maintaining functional connectivity. Area per land cover was 

calculated using the top 15% of current from the resulting Circuitscape maps.
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Figure S3.5.2 Distribution of transformed NDVI values using a reverse Ricker transformation.
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Figure S3.5.3 Conductance surfaces used for functional connectivity analysis in Circuitscape. a) Reverse 

Ricker transformation on NDVI, b) manually edited land cover data product, and c) suitable habitat from 

stacked species distribution modelling.
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Figure S3.5.4 Connectivity maps produced using a) reverse Ricker transformation on NDVI, b) manually 

edited land cover data product, and c) suitable habitat from stacked species distribution modelling.
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Table S3.5.2 Characteristics of high and low importance corridors for maintaining functional connectivity for

overall grasshopper assemblage as well as for different conservation-priority groups (Low - High). Corridor 

value = high value score corridors and low value score corridors, NDVI = Normalised Difference Vegetation 

Index, Max NBR = maximum Normalised Burn Ration index, Dist Edge = distance to corridor edge, Elv = 

elevation, Drain Dist = distance to cold air drainage channels.

Grasshopper Corridor value NDVI Max NBR Dist Edge Aspect Elv Drain Dist

Overall High 0.761 0.703 14.142 105.770 1358.635 22.361

Overall High 0.641 0.611 8.784 69.464 1357.944 27.978

Overall High 0.732 0.618 54.720 73.456 1363.573 66.302

Overall High 0.676 0.488 50.000 327.285 1439.992 22.361

Overall High 0.663 0.606 11.211 199.825 1387.813 43.381

Overall Low 0.561 0.713 12.873 195.442 935.601 47.292

Overall Low 0.600 0.630 12.536 165.088 808.128 35.938

Overall Low 0.650 0.630 11.374 155.197 1026.331 24.694

Overall Low 0.671 0.694 9.509 178.717 882.984 58.113

Overall Low 0.673 0.692 9.522 207.552 891.613 56.394

High High 0.678 0.628 66.376 118.035 1439.897 94.268

High High 0.749 0.483 58.310 268.104 1532.118 20.000

High High 0.773 0.666 80.000 109.580 1425.633 53.852

High High 0.678 0.492 90.554 117.876 1541.384 53.852

High High 0.646 0.601 63.749 107.255 1518.731 41.220

High Low 0.675 0.526 54.108 207.541 1642.927 52.048

High Low 0.689 0.634 12.718 185.767 916.094 47.761

High Low 0.709 0.724 5.294 251.813 929.958 73.976

High Low 0.653 0.675 9.296 186.043 869.308 51.299

High Low 0.620 0.688 9.565 199.906 902.299 61.101

Intermediate High 0.685 0.592 69.597 46.373 1368.732 56.081
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Intermediate High 0.776 0.711 12.071 108.624 1358.491 18.251

Intermediate High 0.664 0.611 9.260 66.527 1357.869 28.356

Intermediate High 0.734 0.627 48.874 87.077 1362.300 68.136

Intermediate High 0.726 0.597 61.018 45.966 1367.282 65.164

Intermediate Low 0.658 0.733 31.342 NA 1009.473 76.558

Intermediate Low 0.673 0.679 10.653 NA 891.246 50.365

Intermediate Low 0.707 0.729 26.269 NA 1060.095 43.842

Intermediate Low 0.706 0.686 11.307 165.440 890.006 79.975

Intermediate Low 0.714 0.734 25.892 NA 1011.359 51.980

Low High 0.761 0.703 14.142 105.770 1358.635 22.361

Low High 0.660 0.611 9.045 59.789 1357.891 28.194

Low High 0.733 0.618 55.190 73.752 1363.600 67.319

Low High 0.663 0.602 12.031 199.492 1388.629 42.892

Low High 0.664 0.592 16.251 56.910 1398.975 19.632

Low Low 0.635 0.625 29.010 198.739 1293.419 53.054

Low Low 0.603 0.633 11.986 162.366 805.616 35.797

Low Low 0.613 0.642 9.327 143.185 1026.734 27.520

Low Low 0.664 0.696 8.876 183.584 883.215 58.415

Low Low 0.681 0.690 8.091 193.538 888.693 56.876
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Appendix S4.1

Table S4.1.1 List of grasshopper species sampled during the study. GCI = Grasshopper Conservation Index 

calculated by using scores for species rarity, mobility and endemism.

Family Subfamily Species Abundance GCI

Acrididae Acrididae Acrida acuminata (Stål, 1873) 105 3

Acrida bicolor (Thunberg, 1815) 17 3

Acrida propinqua (Burr, 1902) 2 6

Duronia chloronota chloronota (Stål, 1876) 155 3

Duronia chloronota curta (Uvarov, 1953) 140 5

Gymnobothrus carinatus (Uvarov, 1941) 47 4

Machaeridia conspersa (I. Bolívar, 1889) 54 3

Rhabdoplea munda (Karsch, 1893) 26 5

Catantopinae Anthermus granosus (Stål, 1878) 30 3

Vitticatantops humeralis (Thunberg, 1815) 195 3

Coptacrinae Eucoptacra turneri (Miller, 1932) 11 5

Cyrtacanthacridinae Cyrtacanthacris aeruginosa aeruginosa (Stoll, 1813) 3 5

Ornithacris cyanea cyanea (Stoll, 1813) 3 5

Euryphyminae Rhachitopis melanopus (Burmeister, 1838) 72 4

Eyprepocnemidinae Eyprepocnemis calceata (Serville, 1838) 29 5

Heteracris drakensbergensis (Grunshaw, 1991) 6 7

Gomphocerinae Anablepia pilosa (Uvarov, 1953) 87 5

Crucinotacris cruciata (Bolívar, 1912) 60 3

Diablepia viridis (Kirby, 1902) 3 7

Faureia milanjica (Karsch, 1896) 4 5

Mesopsis abbreviata (Palisot de Beauvois, 1806) 65 4

Pnorisa angulata (Karny, 1910) 163 3

Pnorisa squalus (Stål, 1861) 122 3
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Pseudoarcyptera cephalica (Bolívar, 1914) 8 7

Rhaphotittha levis (Karsch, 1896) 21 4

Hemiacridinae Acanthoxia gladiator (Westwood, 1842) 1 5

Oedipodinae Aiolopus meruensis (Sjöstedt, 1909) 37 4

Gastrimargus africanus africanus (Saussure, 1888) 30 3

Gastrimargus determinatus determinatus (Walker, 1871) 3 6

Gastrimargus drakensbergensis (Ritchie, 1982) 20 5

Morphacris fasciata (Thunberg, 1815) 10 4

Paracinema tricolor tricolor (Thunberg, 1815) 22 4

Scintharista magnifica (Uvarov, 1922) 9 6

Scintharista rosacea (Kirby, 1902) 5 7

Scintharista saucia (Stål, 1873) 1 6

Oxyinae Dirshia abbreviata (Brown, 1962) 14 7

Oxya glabra (Ramme, 1929) 81 6

Oxya hyla (Serville, 1831) 400 3

Spathosterninae Spathosternum nigrotaeniatum (Stål, 1876) 58 3

Tropidopolinae Petamella prosternalis (Karny, 1907) 1 5

Gryllidae Gryllinae Acanthogryllus fortipes (Walker, 1869) 31 8

Lentulidae Lentulinae Betiscoides parva (Key, 1937) 2 7

Lentula obtusifrons (Stål, 1878) 156 6

Pamphagidae Porthetinae Pagopedilum sordidum (Walker, 1870) 1 6

Pagopedilum subcruciatum (Karsch, 1896) 1 8

Pyrgomorphidae Pyrgomorphinae Chrotogonus hemipterus (Schaum, 1853) 1 6

Dictyophorus spumans pulchra (Bolívar, 1904) 1 5

Phymateus leprosus leprosus (Fabricius, 1793) 1 7

Phymateus viridipes viridipes (Stål, 1873) 3 5

Stenoscepa picticeps (Bolívar, 1904) 27 8

168

Stellenbosch University https://scholar.sun.ac.za



Zonocerus elegans elegans (Thunberg, 1815) 4 5

Tetrigidae Batrachideinae Phloeonotus humilis (Gerstaecker, 1869) 78 4

Cladonotinae Trachytettix scaberrimus scaberrimus (Stål, 1876) 1 6

Tetriginae Dasyleurotettix infaustus (Walker, 1871) 4 6

Paratettix scaber (Thunberg, 1815) 26 3

Paratettix subpustulata (Walker, 1871) 12 5

Tettiella odiosa (Walker, 1871) 57 5

Tettigoniidae Conocephalinae Conocephalus caudalis (Walker, 1869) 155 6

Conocephalus conocephalus (Linnaeus, 1767) 217 3

Conocephalus longiceps (Péringuey, 1916) 31 6

Conocephalus vaginalis (Karny, 1907) 8 7

Ruspolia consobrina (Walker, 1869) 26 3

Phaneropterinae Phaneroptera sparsa (Stål, 1857) 2 5

Saginae Clonia wahlbergi wahlbergi (Stål, 1855) 1 5

Tettigoniinae Alfredectes semiaeneus (Serville, 1838) 9 6

Thericleidae Thericleinae Lophothericles marginatus (Descamps, 1977) 1 8

Thericles miserabilis (Descamps, 1977) 7 6

Tridactylidae Tridactylinae Trigonidium erythrocephalum (Walker, 1869) 16 6

Xya sp 1 (Latreille, 1809) 3 8

Xya sp 2 (Latreille, 1809) 3 8
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Appendix S4.2

a)

b)

Figure S4.2.1 Network validation plots for a) network training on 10 m data, and b) network training on 20 

m data. Loss refers to the amount of error in network predictions, where lower loss values mean more 

accurate predictions. The Mean Absolute Error (MAER) is another metric used to assess error in network 

predictions. Red dots show where the loss value is lower than the 5th percentile, indicating sufficient training.
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a)

b)

c)

Figure S4.2.2 Class frequencies collected in the field and using 25 cm orthophotos. a) S2 = Sentinel-2, b) PS 

= PlanetScope, c) SR S2 = super-resolution.
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a) b)

c)

Figure S4.2.3 Variable importance using Random Forest implemented through the ranger function in caret R

package. a) S2 = Sentinel-2, b) PS = PlanetScope, c) SR S2 = super-resolution.
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Table S4.2.1 Confusion matrix for Sentinel-2 image with additional accuracy statistics.

Reference

Prediction Bramble Grassland Ground Plantation Shrubland Thicket Water Woodland

Bramble 3 1 0 0 2 0 0 0

Grassland 12 73 4 0 4 0 0 0

Ground 1 2 83 0 0 0 1 0

Plantation 1 0 0 107 0 0 2 1

Shrubland 4 1 0 0 51 5 0 0

Thicket 3 0 0 0 10 76 0 6

Water 0 0 0 0 0 0 59 0

Woodland 0 0 0 1 0 6 0 66

Overall Statistics:

Accuracy: 0.8855
95% CI: (0.8568, 0.9101)
No Information Rate: 0.1846
P-Value: < 2.2e-16
Kappa: 0.8667
Mcnemar's Test P-Value: NA

Statistics per land cover class:

Bramble Grassland Ground Plantation Shrubland Thicket Water Woodland

Sensitivity 0.125 0.9481 0.954 0.9907 0.76119 0.8736 0.9516 0.9041

Specificity 0.994652 0.9606 0.992 0.9916 0.98069 0.9618 1 0.9863

Pos Pred Value 0.5 0.7849 0.954 0.964 0.83607 0.8 1 0.9041

Neg Pred Value 0.963731 0.9919 0.992 0.9979 0.96947 0.9776 0.9943 0.9863

Prevalence 0.041026 0.1316 0.1487 0.1846 0.11453 0.1487 0.106 0.1248

Detection Rate 0.005128 0.1248 0.1419 0.1829 0.08718 0.1299 0.1009 0.1128

Detection Prevalence 0.010256 0.159 0.1487 0.1897 0.10427 0.1624 0.1009 0.1248

Balanced Accuracy 0.559826 0.9543 0.973 0.9912 0.87094 0.9177 0.9758 0.9452
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Table S4.2.2 Confusion matrix for PlanetScope image with additional accuracy statistics.

Reference

Prediction Bramble Grassland Ground Plantation Shrubland Thicket Water Woodland

Bramble 16 3 0 0 1 2 0 0

Grassland 17 148 1 0 3 0 0 0

Ground 0 1 188 0 0 0 0 0

Plantation 0 0 0 218 0 3 2 26

Shrubland 13 8 0 0 114 3 0 0

Thicket 8 1 0 1 24 168 0 17

Water 0 0 1 1 0 0 136 0

Woodland 0 0 0 12 1 11 0 116

Overall Statistics:

Accuracy: 0.8734
95% CI: (0.8538, 0.8913)
No Information Rate: 0.1835
P-Value: < 2.2e-16
Kappa: 0.8528
Mcnemar's Test P-Value: NA

Statistics per land cover class:

Bramble Grassland Ground Plantation Shrubland Thicket Water Woodland

Sensitivity 0.2963 0.9193 0.9895 0.9397 0.7972 0.8984 0.9855 0.72956

Specificity 0.99504 0.981 0.9991 0.97 0.97859 0.9526 0.9982 0.97828

Pos Pred Value 0.72727 0.8757 0.9947 0.8755 0.82609 0.7671 0.9855 0.82857

Neg Pred Value 0.9694 0.9881 0.9981 0.9862 0.97425 0.9818 0.9982 0.96174

Prevalence 0.04272 0.1274 0.1503 0.1835 0.11313 1.48E-01 0.1092 0.12579

Detection Rate 0.01266 0.1171 0.1487 0.1725 0.09019 0.1329 0.1076 0.09177

Detection Prevalence 0.01741 0.1337 0.1495 0.197 0.10918 0.1733 0.1092 0.11076

Balanced Accuracy 0.64567 0.9501 0.9943 0.9548 0.8879 0.9255 0.9919 0.85392
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Table S4.2.3 Confusion matrix for Super-resolution image with additional accuracy statistics.

Reference

Prediction Bramble Grassland Ground Plantation Shrubland Thicket Water Woodland

Bramble 53 2 0 0 3 0 0 1

Grassland 9 236 0 0 11 0 0 0

Ground 0 0 271 0 0 0 0 0

Plantation 0 0 0 328 0 0 0 9

Shrubland 6 2 0 0 190 11 0 1

Thicket 6 0 0 0 16 256 0 7

Water 0 0 0 0 0 0 193 0

Woodland 0 0 0 3 0 9 0 218

Overall Statistics:

Accuracy: 0.9479
95% CI: (0.9367, 0.9576)
No Information Rate: 0.1798
P-Value: < 2.2e-16
Kappa: 0.9395 
Mcnemar's Test P-Value: NA

Statistics per land cover class:

Bramble Grassland Ground Plantation Shrubland Thicket Water Woodland

Sensitivity 0.71622 0.9833 1 0.9909 0.8636 0.9275 1 0.9237

Specificity 0.9966 0.9875 1 0.994 0.9877 0.9815 1 0.9925

Pos Pred Value 0.89831 0.9219 1 0.9733 0.9048 0.8982 1 0.9478

Neg Pred Value 0.98822 0.9975 1 9.98E-01 0.9816 0.9871 1 0.9888

Prevalence 0.0402 0.1304 0.1472 0.1798 0.1195 0.1499 0.1048 0.1282

Detection Rate 0.02879 0.1282 0.1472 0.1782 0.1032 0.1391 0.1048 0.1184

Detection Prevalence 0.03205 0.1391 0.1472 0.1831 0.1141 0.1548 0.1048 0.1249

Balanced Accuracy 0.85641 0.9854 1 0.9925 0.9256 0.9545 1 0.9581
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Appendix S4.3

Table S4.3.1 Table showing the strength of spearman rank correlation between the Random Forest (RF) and 

Support Vector Machines (SVM) algorithms used during stacked species distribution modelling for the 

overall, Caelifera, and Ensifera grasshopper assemblages, as well as for the different conservation-priority 

species groups (Low - High).

Model RF cor SVM

Overall 0.831

Low 0.831

Intermediate 0.829

High 0.796

Caelifera 0.815

Ensifera 0.801
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Table S4.3.2 Evaluation metrics for stacked species distribution modelling for the overall, Caelifera, and 

Ensifera grasshopper assemblages, as well as for the different conservation-priority species groups (Low - 

High). Spp rich error = species richness error (difference between predicted and observed species richness), 

Specificity = assemblage specificity (proportion of true negatives), Sensitivity = assemblage sensitivity 

(proportion of true positives), and Jaccard = Jaccard index (community similarity).

Model Spp rich error Specificity Sensitivity Jaccard

Overall 18.59 (±9.33) 0.32 (±0.20) 0.70 (±0.22) 0.29 (±0.11)

Low 8.78 (±5.78) 0.33 (±0.23) 0.77 (±0.21) 0.34 (±0.13)

Intermediate 5.36 (±3.58) 0.38 (±0.22) 0.73 (±0.25) 0.28 (±0.12)

High 2.29 (±1.49) 0.36 (±0.40) 1 (±0) 0.46 (±0.30)

Caelifera 15.53 (±7.91) 0.28 (±0.18) 0.73 (±0.25) 0.29 (±0.12)

Ensifera 4.31 (±1.83) 0.31 (±0.32) 0.92 (±0.18) 0.42 (±0.23)
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Table S4.3.3 Relative contribution of environmental variables used in stacked species distribution modelling to predict suitable habitat for the overall, Caelifera, and 

Ensifera grasshopper assemblage, as well as the different conservation-priority species groups (Low - High). NDVI = Normalised Difference Vegetation Index, Dist 

stream = distance to stream, Dist plan = distance to plantation edge, Fire hist = fire history.

Model NDVI Land cover Dist stream Aspect Dist plan Elevation Fire hist

Overall 13.15 (±4.84) 10.82 (±5.19) 18.42 (±7.12) 11.16 (±5.72) 14.62 (±4.99) 17.70 (±9.53) 14.13 (±6.33)

Low 12.43 (±5.18) 10.51 (±4.19) 18.50 (±7.09) 10.10 (±3.66) 15.80 (±5.73) 16.17 (±10.00) 16.48 (±6.73)

Intermediate 12.36 (±5.21) 10.91 (6.08) 18.09 (±7.81) 12.78 (±5.39) 14.91 (±7.96) 17.38 (±11.06) 13.57 (±4.69)

High 13.14 (±2.17) 10.75 (±2.84) 18.40 (±6.41) 16.05 (±5.97) 11.96 (±2.11) 18.55 (±5.09) 11.15 (±3.06)

Caelifera 12.85 (±4.40) 11.11 (±4.88) 18.04 (±8.25) 10.54 (±4.94) 14.93 (±5.57) 16.43 (±7.86) 16.09 (±7.23)

Ensifera 10.86 (±2.52) 10.09 (±5.23) 18.27 (±7.48) 10.72 (±4.34) 20.07 (±6.60) 18.48 (±6.58) 11.52 (±3.69)
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