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Abstract

HIV/AIDS and disease response to antiretroviral (ARV ) drugs are of major importance

to the developing world, and the disease remains a burden on society, as viral replication

still needs to be controlled continually in persons infected with HIV. The ever-increasing

prevalence of drug-resistant viral strains and the latent reservoir which harbours dor-

mant virus also remain barriers to a cure. To overcome these barriers, novel ways of

treating the disease and new tools for effective and efficient drug development are re-

quired. The use of mathematical models of disease and drug treatment continues to grow

and remains an essential tool in drug development and the search for a cure.

In this study, combined HIV disease-PKPD models are created and tested for their abil-

ity to simulate real world patient data. First, independent mathematical models of HIV

disease dynamics and ARV pharmacology are reproduced from literature. The effect of

patient variability on simulation results is tested using Monte Carlo simulations, in which

parameters are varied within biologically relevant ranges. The HIV disease models are

then linked to PK and PD models of the currently prescribed ARVs. Monte Carlo sim-

ulations are used to examine the effect that heterogeneity, model structure, and model

assumptions have in the newly linked models. The viral load and CD4+ T-cell count

predictions made by the combined models are compared to clinical patient data from the

Western Cape, South Africa. Analysis of the combined models show that model struc-

ture has to include latently infected cells and drug-resistant viral strains to be able to

accurately predict the disease progression of HIV.

Models need to incorporate the mechanisms that affect disease outcome. In the context of

HIV, this may include drug-resistant strains and the effect of long-lived latently infected

cells. Model predictions can be improved by including these mechanisms which have

an impact on disease outcome and by considering longitudinal patient datasets. Such

continual improvements will aid in making models powerful diagnostic tools.
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Samevatting

MIV/VIGS en siekterespons op antiretroviale medikasie is van uiterste belang vir die

ontwikkelende wêreld; die virussiekte plaas druk op die samelewing aangesien virale

replisering in ’n MIV-positiewe persoon deurlopend beheer moet word. Die immertoen-

emende algemeenheid van medikasiebestande virale stamme, sowel as die latente reser-

voir wat dormante virus huisves, bly steeds ’n hindernis vir genesing. Nuwe maniere

om die virussiekte te behandel en nuwe instrumente vir die ontwikkeling van effektiewe

en doeltreffende medikasie is broodnodig ten einde hierdie hindernisse te oorkom. Die

gebruik van wiskundige modelle van siekteverloop en behandeling groei toenemend en

bly ’n onontbeerlike instrument in die ontwikkeling van medikasie en soeke na ’n ge-

neesmiddel.

Vir die doeleinde van hierdie studie is saamgestelde MIV PKPD-siektemodelle geskep

en getoets vir hul vermoë om werklike pasiëntedata te simuleer. Eerstens is onafhank-

like wiskundige modelle van MIV-siektedinamika en ARV-farmakologie uit vaklektuur

geskep. Die invloed van pasiëntveranderlikheid op simulasies, waarin parameters binne

biologiestoepaslike reikwydtes wissel, word deur Monte Carlo-simulering getoets. Die

MIV-siektemodelle word dan aan PK- en PD-modelle van tansvoorgeskrewe ARVs gekop-

pel. Monte Carlo-simulering word gebruik om die invloed van heterogeniteit, model-

struktuur en modelaannames in die gekoppelde modelle te toets. Die gekombineerde

modelle se virale lading- en CD4+ T-seltelling-voorspellings word dan met kliniese pasiënte-

data in die Wes-Kaap van Suid-Afrika vergelyk. Ontleding van die saamgestelde modelle

toon dat modelstruktuur, latent-geïnfekteerde selle en medikasiebestande virusstamme

moet insluit ten einde die siekteverloop van MIV presies te voorspel.

Modelle moet die meganismes wat siekte-uitkoms beïnvloed, bevat. In die geval van

MIV kan dit medikasiebestande virusstamme en die invloed van langlewende latent-

geïnfekteerde selle insluit. Modelvoorspellings kan verbeter word deur dié meganismes -

wat ’n invloed op siekte-uitkoms het - sowel as longitudinale pasiëntdatastelle, in te sluit.

Sulke deurlopende verbeteringe sal daartoe bydra om van modelle kragtige diagnostieke

instrumente te maak.
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Chapter 1

General Introduction

Human Immunodeficiency Virus (HIV) was discovered more than 30 years ago and since

then our ability to treat the disease has largely resulted in the effective suppression of

viral replication [8]. HIV is no longer the death sentence it used to be. Current antiretro-

viral (ARV) drugs can maintain the viral load below detectable limits in patients if they

follow the prescribed regimen [9]. Indeed, the 2019 UNAIDS report shows that the an-

nual global number of new HIV infections continues to decline gradually [10]. The data

shows that great progress has been made in Africa, where the reduction in new HIV in-

fections in the eastern and southern regions between 2010 and 2018 was the strongest.

However, new infections continue to take place and there are still 20.6 million people in

eastern and southern Africa living with HIV who require continued ARV treatment. UN-

AIDS states that it is paramount that the drug treatment which persons living with HIV

receive, is highly effective at suppressing viral replication and blocking the formation of

new drug-resistant strains as part of the goal to end AIDS as a global public health threat.

Studying and understanding the dynamics of HIV infection is necessary for the creation

of effective drugs that control viral replication in infected individuals and the spread

of infection in populations. Mathematical models have helped researchers produce the

highly effective ARVs that are being prescribed today. Mathematical models have been

proven to be effective for the study of HIV and have increasingly been used to aid deci-

sion making in clinical medicine and public health [11, 12]. Models have been developed

to describe various aspects of the disease, such as within-host infection and its epidemi-

ology, as well as the effects of antiretroviral agents used for treatment. Modelling has

been a valuable tool for fulfilling the demand for effective and efficient clinical trials by

providing a system for integrating information gathered on new therapeutic agents [13].

Model simulations provide evidence that inform critical decision making regarding the

1
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public health response to the HIV epidemic, optimise drug development, and enable

clinicians to construct drug regimens which ensure maximum and durable suppression

of HIV replication [14].

Nevertheless, several issues remain to be addressed. Firstly, the increasing emergence of

drug resistance will lead to the current generation of ARVs becoming ineffective in con-

trolling the spread of the virus. Secondly, finding a functional cure where a patient gains

post-treatment control of the virus will lessen the burden on the public health system

and also help further curb the spread of the virus. Lastly, the long-lived latently infected

cells which harbour reservoirs of the virus remains a compelling possible target for a

sterilising cure and eradicating the virus completely. Taking all of this into account, it is

indisputable that there remains a clear need for continued research into HIV treatment

and patient response.

Given the strengths and benefits of mathematical modelling and the existence of models

that address various aspects of the disease in isolation, this study aims to answer the

following research question: Can combinations of existing HIV disease and ARV PKPD

models give realistic predictions of drug response and treatment outcomes?

The aim and objectives are as follows:

Aim: Construct combined PKPD-HIV models using independent models from liter-

ature and test their predictive ability against clinical data In this study, information

from a variety of sources will be used to construct the models, including pharmacoki-

netic, clinical and biological studies.

Objectives:

1. Perform literature search for HIV, PK and PD models.

2. Code HIV, PK and PD models in Wolfram Mathematica [15].

3. Validate models against results in original publications.

4. Perform Monte Carlo simulations to quantify the effects of heterogeneity in indi-

vidual models.

5. Combine models by linking HIV disease to PKPD models.

2
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6. Perform Monte Carlo simulations on combined models to gauge the effect of het-

erogeneity on treatment response and outcomes.

7. Simulate clinical data using newly constructed combined models and compare.

A schematic summary of the research workflow is shown in Figure 1.1.

Knowledge gathering

• Validate models from
literature;

• Research ARV regimens;

• List assumptions;

• Obtain clinical data

Model construction

• Describe disease
progression;

• Build drug-dose-response
models;
• Construct models with
patient heterogeneity

Outcome simulation

• Optimise model design;

• Monte Carlo simulation;

• Test sensitivity to parameter
variation;

• Comparison with clinical
data

Modelling Simulation

Figure 1.1: Research work flow. This figure provides a summary of the work flow during the
research process. It can be divided into three simpler steps: knowledge gathering, model con-
struction, and simulation of outcomes. Adapted from [16].

3
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Chapter 2

Literature Review

This chapter provides information on the main research topics covered in this thesis,

starting with the immune response to HIV infection and the establishment of the latent

reservoir. The treatment and mathematical modelling of HIV infection is based on the

basic building blocks of biology, and the understanding of that leads to greater insight of

the pathogenesis of HIV. Subsequently the pharmacology of ARVs is discussed, covering

how they interact with the body and how they are used to treat HIV infection. Rele-

vant aspects of infectious disease modelling are then presented with specific focus on

the mechanistic models used to simulate the viral dynamics of HIV disease progression.

Lastly, pharmacological models of the drugs used to treat HIV infection are discussed,

including how pharmacokinetic-pharmacodynamic models of ARVs are linked to HIV

disease models to simulate drug therapy in silico.

2.1 HIV infection

The pathogenesis of disease caused by HIV is a complex problem of which all the stages

are not yet fully understood [17]. The progression to acquired immunodeficiency syn-

drome (AIDS) happens as a result of the body’s inability to control the viral replication

cycle and subsequent destruction of the immune system’s effector cells [18]. There are

two viruses which are known to cause AIDS: HIV-1 and HIV-2 [19]. These two viruses

have many shared characteristics, including the resulting clinical consequences of infec-

tion, but they are considered to originate from separate simian to human transmissions

[20]. HIV-1 infections extend worldwide whereas HIV-2 remains largely confined to West

Africa. Therefore, the research conducted here will pertain mainly to HIV-1.

The primary infection of cells take place at the site of infection in the blood and the mu-

4
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2.1. HIV infection

cosal barrier. Within hours of HIV penetrating and infecting the mucosa, local ampli-

fication of initial founder viruses take place in a single focus of CD4+ T cells [18]. It

remains unclear why control of the virus eventually breaks down [21]. From the initial

site of infection the virus is able to spread throughout the body to all lymphoid tissues

[18]. A week later amplification in the draining lymph nodes is taking place and the in-

fection is established in all lymphoid tissues, this includes the establishment of the HIV

reservoir. The infection has now spread throughout the body and the viral load reaches

its peak. Two to four weeks after the initial infection the host enters the acute primary

infection phase indicated in Figure 2.1 as their immune system temporarily tries to con-

trol the acute infection but cannot prevent the establishment of chronic infection of cells

in lymphoid tissues [18]. The innate antiviral host defence mechanism pathway against

acute viral infections is exploited by the virus for its own dissemination. This signalling-

mediated pathway is hijacked by the virus, which is then able to suppress global protein

biosynthesis of the host cells and rather support its own replication [22]. Roughly nine

weeks later, the host enters the clinical latency phase. There is a lowered production rate

of virus but a continued progressive loss of CD4+ T cells in lymphoid tissues, resulting

in the destruction of the architecture of the lymphoid tissues [18]. Eventually when the

CD4+ T cell count falls below 200 cells per mm3, patients are diagnosed as having AIDS.

At this point the host is susceptible to opportunistic infections which can be lethal due

to an impaired immune response. The perpetual viral replication taking place within

the host’s cells therefore depletes the body of T-cells and leads to the destruction and

exhaustion of the immune system as a whole.

5
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2.1. HIV infection

Figure 2.1: Phases of HIV infection without treatment intervention. During the primary infection
phase, the T-cell count (black) decreases whilst there is a sharp increase in the viral load (white).
If left untreated, during the latency phase the viral load steadily increases over a long period of
time but eventually the virus overwhelms the immune system and the patient is diagnosed with
AIDS. There is a gradual decline in T-cells during this time, leading to a compromised immune
response and opportunistic diseases infecting the patient. Reproduced with permission from [23],
Copyright Massachusetts Medical Society.

Viral load measurements are the standard for diagnosing and monitoring HIV diagno-

sis, as set out in the guidelines of the HIV Drug Resistance Report by the World Health

Organisation [24]. Nucleic acid tests are the gold standard for viral load measurements,

however these assays are not ideal for large-scale use due to their complexity, cost and

duration to complete (8-10 h) [25]. Rather, RT-PCR (reverse transcriptase polymerase

chain reaction) technologies have fulfilled the need for the increasing demand in viral

load measurements. These technologies have proven to be robust, easier to use and many

systems are fully automated. In South Africa, two often used systems include the Abbott

m2000rt Real-Time HIV-1 assay (Abbott Molecular Inc., Germany) and GeneXpert®HIV-

1 Quant Assay (Cepheid Innovations Pvt. Ltd., USA). Both have high sensitivity over the

range of 50 to 10,000,000 copies/ml [25].

6
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2.1. HIV infection

2.1.1 The viral replication cycle

The viral replication cycle of HIV can be divided into the following four sequential phases:

(1) infection of cells; (2) production of viral DNA and its integration into the host genome;

(3) expression of viral genes; and (4) production of viral particles [18] (see Figure 2.2).

(1) The first phase begins with the adhesion of virus to the host cell. The fusion and

infection of a T-cell is dependent on an intricate series of protein-protein interactions that

ultimately result in the delivery of the viral RNA. As detailed by Wilen et al. [26], the

glycoprotein HIV Env attaches to the host cells, binding the CD4 cell receptor. HIV Env

is comprised of the gp120 and gp41 subunits. The CD4 cell receptor normally functions

to enhance T-cell receptor mediated signalling to other immune cells. The binding of Env

and CD4 is absolutely required for virus entry into the host cell. The binding of Env

causes a conformational change in the protein which allows for subsequent coreceptor

binding. HIV strains can be broadly classified based on this coreceptor usage. The strains

that use CXCR4 are classified as X4 HIV and those that use the CCR5 coreceptor are

classified as R5 HIV [26]. After binding of the HIV envelope and host membrane, a fusion

pore is formed and the virus is delivered into the host cell cytoplasm. Here the virus is

uncoated by viral protease and its RNA is released along with the reverse transcriptase

and integrase enzymes.

(2) This is followed by a process characteristic of all retroviruses: a viral enzyme called

reverse transcriptase (RT) synthesises a DNA copy of the viral RNA [18]. The newly

synthesised DNA can then move into the nucleus of the host cell, where another viral

enzyme named integrase, integrates the viral DNA into the host cell’s genomic DNA.

The integrated viral DNA is now called a provirus.

(3) If an infected immune cell containing provirus is activated it responds by turning on

the transcription of its own genes and subsequently it may also express the viral genes.

Activation of the provirus results in the production of viral RNA and then biosynthesis

of the viral proteins.

(4) From these proteins the assembly of the virion core structure can take place. The core

structure migrates to the cell membrane where it acquires a lipid envelope from the host.

Expression of the gp120 and gp41 glycoproteins take place on the cell surface from which

mature viral particles can bud off, ready to infect another cell [18]. This viral replication

7
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2.1. HIV infection

cycle results in the death of the infected cell when it bursts open, producing many virions,

each capable of infecting nearby cells.

Figure 2.2: The HIV life cycle is divided up in sequential phases. Moving clockwise from the top
left (1) Infection of cells: During this phase the virus infects the host cell by the binding of HIV
Env to a CD4 receptor on the surface of the cell. This leads to the fusion of HIV to the cell and a
pore is formed through which the virus is delivered into the cytoplasm. (2) Production of viral
DNA and its integration into the host genome: RT synthesises a DNA copy of the viral RNA
and integrase inserts this DNA into the nucleus. (3) Expression of viral genes: The activation
and expression of these genes lead to the production of viral RNA and proteins required for
assembly. (4) Production of viral particles: Viral particles are assembled and bud off from the
cell membrane, ready to infect nearby cells. Image from [27] with copyright permission.

2.1.2 The mechanisms of CD4+ T cell depletion

CD4+ T-cell decline does not solely take place due to the death of infected cells. HIV-

induced, bystander, CD4+ T-cell killing is also recognised as central to immunodeficiency.

Both infected and uninfected CD4+ T-cells die during HIV infection by different cell-

death pathways [28]. Some CD4+ T-cell loss is due to direct destruction by the virus

itself. The budding off of mature virions from the cell surface leads to disruption of the

cell membrane. Furthermore, part of the innate immune response to viral infection is the

killing of freshly infected cells through apoptosis [18]. However, a mechanism also exists

in which apoptosis is resisted so that CD4+ T-cells do not die directly after infection. This

resistance of apoptosis promotes survival for long enough to ensure a productive infec-

8

Stellenbosch University  https://scholar.sun.ac.za



2.1. HIV infection

tion and for the HIV reservoir to be established [28]. Further HIV-induced cytopatho-

logical effects result from the intracellular accumulation of viral RNA and unintegrated

DNA [29]. This build up of viral DNA and RNA triggers cellular toxicity.

The depletion of CD4+ T-cells also results in a defective immune response from cytotoxic

T lymphocytes (CTL), even though HIV does not infect CD8+ T-cells. This is likely be-

cause the CD4+ helper T-cells are required for full CD8+ CTL responses against many

viral antigens [21]. Opportunistic infections thus often come from intracellular microbes,

due to the impaired response from CTLs. The problem of the loss of control of viral repli-

cation remains complex. Wikramaratna et al. [21] further argue that the progressive loss

of quality of CD8+ T-cell responses is not the only cause of the breakdown of viral con-

trol. By taking into account the different lifespans of antibodies and CD8+ T-cells, they

created a framework for the infection dynamics of HIV which identify the cause as a loss

of antibody induction [21]. This also comes as a consequence of the depletion of CD4+

T-cells, due to the impaired helper T-cell dependent antibody responses to antigens.

2.1.3 The latent reservoir

A known remarkably stable major reservoir of latently infected cells is made up of resting-

memory CD4+ T-cells in which the proviral DNA is present but not actively expressed

[30]. Latency occurs when a virus infects a CD4+ T-cell but it does not progress beyond

chromosomal integration of provirus [30]. Despite the efficacy of current cART in sup-

pressing the viral replication of HIV, treatment must be continued for the lifetime of the

patient. Furthermore, a timely diagnosis and initiation of cART before CD4+ cell counts

drop below 350 cells/µL is also crucial for achieving a normal level of CD4+ T-cells [31].

If there is incomplete CD4+ T-cell recovery the risk of both AIDS and non-AIDS related

morbidity/mortality increases. In the vast majority of individuals if treatment is inter-

rupted, it leads to the reestablishment of viremia and HIV disease progression [32]. Many

studies have shown that this is due to the presence of a latent reservoir which remains

during ARV therapy [30, 33–36].

There are indications that different tissue compartments contribute to this persistent

viremia in patients receiving cART [37]. This led to the hypothesis that reseeding of

viruses occurs from a reservoir which is established during the primary infection phase.

A recent study [38] used ecological methods and existing data to show that the majority
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of infected cells are members of clonal populations. By studying the genetic signatures of

HIV persistence during cART, the study showed that identical HIV sequences in identical

integration sites are carried by clonal populations of proliferating latently infected cells.

This is in contrast to newly infected cells which are marked by novel HIV integration

sites. Thus, the study by Reeves et al. [38] concludes that >99% of observed sequences

originate from clonal cell populations. The survival mechanisms of the latent reservoir

are thus ideal therapeutic targets for finding a functional or sterilising cure (see Figure

2.3).

Figure 2.3: The latent HIV reservoir and barriers to cure. Combination ART (top red and blue
bars) acts to effectively suppress viral replication over many years (solid red) to undetectable
limits. However as seen at the bottom of the schematic, the latent HIV reservoir remains in place
and if drug treatment is stopped the viral load rebounds (solid red). Only if a novel therapeutic,
which targets this reservoir, is applied (yellow bar) could there be the possibility of cure scenarios
(red dotted lines). A functional cure would mean that the patient’s immune system becomes
equipped to control infection without drug therapy. Image from [9] with copyright permission.

2.2 The pharmacology of ARVs

Understanding how ARVs work, what their mechanisms of action are and how they

can be used to control viral replication is built on studying the basic HIV life cycle. Re-

searchers have targeted key HIV enzymes and steps in this cycle to produce the highly

effective medications used in HIV therapy. There are currently more than 30 antiretrovi-

ral medications available for the treatment of HIV [14], which interrupt the life cycle of

HIV. These medications can target multiple specific points in this cycle [39]. There are dif-

ferent classes of medications used to treat HIV infection: fusion inhibitors, also referred to
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as entry inhibitors; reverse transcriptase inhibitors; integrase strand transfer inhibitors;

and protease inhibitors. Figure 2.4 shows where these classes of medication target the

HIV life cycle. The emergence of drug resistance and ARV failure remains a major issue

worldwide and continued research is necessary to develop new classes with different

mechanisms of action to overcome these issues [40]. Current treatment guidelines by the

Republic of South Africa’s National Department of Health strongly recommend the use

of triple-drug regimens comprising a combination of two reverse transcriptase inhibitors

with either a protease inhibitor or an integrase strand transfer inhibitor [41]. This triple-

drug regimen, also known as highly active antiretroviral therapy (HAART), is able to

suppress the viral load to below 50 copies HIV-RNA/mL of blood. At this stage the pa-

tient is said to be undetectable as this is the detection limit using real-time RT-PCR [42].

The different classes and mechanisms of action will now be discussed.

Figure 2.4: ARV mechanisms of action. Key enzymatic steps in the viral life cycle are targets for
the inhibition of replication. The drug classes are shown in red boxes: fusion inhibitors; reverse
transcriptase inhibitors; integrase inhibitors and protease inhibitors. Image from [43] with copy-
right permission (CC BY-ND 2.0).
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HIV entry inhibitors HIV entry inhibitor drug molecules prevent the entry of HIV into

the host’s cells. This class of drugs is comprised of three subclasses, all of which have

multiple mechanisms of action depending on the stage of the entry process at which they

act [44]. These subclasses are: (1) CD4 attachment inhibitor, (2) CCR5 coreceptor an-

tagonists, and (3) fusion inhibitors. Attachment inhibitor: This subclass is made up of

compounds which prevent the entry of HIV by binding to the gp120 envelope protein

of HIV. Upon binding to the protein on the surface of HIV, a conformational change of

the protein is induced and stabilised which is not recognised by the CD4 receptor and

therefore prevents the binding of the virus to the CD4 cell [40]. CCR5 coreceptor antago-

nists: CCR5 antagonists bind to the CCR5 coreceptor on the cell surface that are used by

the virus to gain access to the cell. When CCR5 antagonists bind to the coreceptor, they

cause a conformational change that prevents the normal interaction of HIV gp120 with

the coreceptor and thus prevents HIV entry and fusion [45]. Fusion inhibitor: Follow-

ing coreceptor binding, the HIV gp41 fusion peptide is inserted into the host membrane.

HIV gp41 contains two heptad repeat regions named HR1 and HR2 which fold back on

each other in the normal fusion process. A fusion pore is created when the host and viral

membranes are brought into close proximity due to the interaction of the HR1 and HR2

domains of the gp41 fusion peptide [44]. The fusion inhibitor is a synthetic peptide with

a sequence identical to part of the HR2 region. This inhibitor binds to the HR1 region,

preventing the normal interaction of the fusion process.

Reverse transcriptase inhibitors The reverse transcriptase inhibitors function by inter-

rupting the normal function of the RT enzyme which is responsible for the critical con-

version of viral RNA to DNA. RT inhibitors can be further divided into two classes of

medications: the nucleoside RT inhibitors (NRTIs) and the non-nucleoside RT inhibitors

(NNRTIs) [46]. NRTIs and NNRTIs have two different mechanisms of action. The NR-

TIs act as host nucleotide decoys which cause termination of the elongating HIV DNA

chain. They compete with human nucleotides for a spot in the elongating DNA chain but

because they do not have a 3’-hydroxyl group, additional nucleotides cannot be linked

and the chain is terminated. On the other hand, NNRTIs directly impede the function of

the RT enzyme by binding in the active site of the enzyme. Upon binding in this pocket

region, the molecule alters the active site by causing a conformational change in the en-

zyme and in doing so, blocks the process of the DNA polymerisation [46].
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Integrase strand transfer inhibitors (INSTIs) Retroviruses must integrate their DNA,

which was formed by the RT enzyme, into the host’s DNA for them to be successfully

replicated. The HIV enzyme integrase is responsible for performing two of the key cat-

alytic reactions. This includes 3’ processing of the HIV DNA and strand transfer of the

HIV DNA into the host DNA [47]. There are many potential steps in the integration

process which can be targeted by medications. Currently available medications utilise

multiple mechanisms to interrupt the integrase strand transfer step. INSTI medications

function by blocking the virus from integrating its DNA into the host cells’ genomes.

The drug molecules inhibit this step by binding in the active site of HIV integrase after

the enzyme has attached to the viral DNA. This displaces the DNA and interrupts the

integration process [47].

Protease inhibitors (PIs) HIV protein processing is also targeted by ARV medications.

HIV protease plays a key role in the post-transcriptional processing of some viral polypro-

teins by acting as molecular scissors. A sequential sequence of polyprotein cleavage

events results in the release of mature infectious particles [48]. It was this fundamen-

tal role of the protease enzyme in the release of infectious particles which made it an

ideal target for therapeutic intervention. PIs are molecules that bind in the active site

and inhibit the enzymatic function of HIV protease. This causes the arrest of the normal

maturation process by inhibiting post-transcriptional processing [48].

Currently at least 3 ARVs must typically be provided to promote treatment effective-

ness and help prevent the development of drug resistance. In the South African market

currently available as the first-line of treatment includes two NRTIs, emtricitabine and

tenofovir, with one integrase inhibitor, dolutegravir or efavirenz. If therapy fails a patient

may be switched to the second-line regimen which includes the two NRTIs, emtricitabine

and tenofovir, with one protease inhibitor, lopinavir or atazanavir. Switching to the PI-

based regimen includes testing for drug resistance before a final decision can be made on

switching. These are according to the ART clinical guidelines published by the Republic

of South Africa National Department of Health for the management of HIV [41].

2.2.1 The mechanisms of the currently prescribed ARVs

Tenofovir Tenofovir disoproxil fumerate (TDF) is an antiretroviral drug, belonging to

the class of nucleoside reverse transcriptase inhibitors (NRTIs) used for the treatment of
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HIV-1 and hepatitis B [4]. After first pass of TDF through the liver, tenofovir (TFV), an

analogue of the endogenous deoxyadenosine monophosphate (dAMP) is formed. Upon

enzymatic uptake into HIV target cells, TFV becomes sequentially phosphorylated by a

phosphodiesterase to form tenofovir diphosphate (TFV-DP). The active form, TFV-DP,

is an analog of endogenous deoxyadenosine triphosphate (dATP) [49]. TFV-DP subse-

quently competes with endogenous dATP in the cell for incorporation into nascent viral

DNA during reverse transcription. It prevents further DNA polymerisation during re-

verse transcription, once it becomes incorporated. TFV-DP thus prevents the production

of proviral DNA, which is required for stable host cell infection and viral replication.

Emtricitabine Emtricitabine is also a drug in the class of NRTIs used for the treatment

of HIV-1. Emtricitabine is phosphorylated by intracellular kinases to its active metabolite,

emtricitabine 5’-triphosphate, which inhibits the activity of HIV reverse transcriptase by

competing with the endogenous substrate for incorporation into the HIV DNA chain

[50]. Emtricitabine 5’-triphosphate lacks a hydroxyl group in the 3’ position of the sugar

moiety and its incorporation into the HIV DNA chain results in chain termination.

Dolutegravir For replications, retroviruses must integrate the linear, double-stranded

HIV DNA formed by reverse transcription into the host DNA. This integration event is

a multistep process and the HIV enzyme integrase performs the key catalytic reactions

[47]. Dolutegravir inhibits this HIV DNA integration process by blocking the integrase

strand transfer step and thus forms part of the INSTI class of ARVs [5]. DTG inhibits the

integrase enzyme through the binding of oxygen atoms on the drug molecule to divalent

metal ions in the active site of the enzyme which results in no formation of integrated

proviral DNA [51].

Lopinavir/ritonavir Lopinavir is a PI which was originally developed from, and is

structurally related to, ritonavir [52]. The two drugs have the same mechanism of action

for inhibiting the HIV protease enzyme. Within the highly potent molecule, a hydrox-

yethylene bond makes the drug a nonhydrolysable substrate for HIV protease. This stops

the production of mature, infectious viral particles by inhibiting the post-translational

processing of viral polyprotein products into functional core proteins and viral enzymes

[52]. Lopinavir has an approximately tenfold higher in vitro activity against HIV pro-

teases than ritonavir, however, its in vivo activity is greatly attenuated by a high first-
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pass hepatic metabolism. The low-dose ritonavir coadministered with lopinavir inhibits

metabolic inactivation of lopinavir and acts only as an enhancer [6].

2.2.2 The metabolism of ARVs

Pharmacokinetics (PK) is the study of the time course of the absorption, distribution,

metabolism and excretion (ADME) of a drug after its administration to the body [53].

PK describes the movement of a compound within the body after their administration,

whereas the pharmacodynamics (PD) is the study of the relationship between the con-

centration of a compound at its site of action and the magnitude of the response [53].

Without the knowledge of a drug’s PK properties, its in vivo properties cannot be fully

described. Shortcomings in the understanding of a compound’s PK properties can lead

to confusion in data interpretation and result in experimental outcomes that are invalid.

As Hodgson has noted [54] – “A chemical cannot be a drug, no matter how active nor

how specific its action, unless it is also taken appropriately into the body (absorption),

distributed to the right parts of the body, metabolised in a way that does not instantly

remove its activity, and eliminated in a suitable manner – a compound must get in, move

about, hang around, and then get out.”

The ADME of a compound are the four fundamental processes which influence its in vivo

PK properties. They are distinct but also interrelated processes which occur between the

administration and elimination of a compound from the body [53]. Firstly, a drug can be

absorbed across the intestinal lumen in the gastrointestinal tract following the oral ad-

ministration of a drug. Otherwise, a drug can also be injected intravenously where arte-

rial circulation will distribute the compound to the various tissues and organs. Secondly,

the extent of the distribution of a compound in the body due to systemic circulation will

have an effect on the concentration of the drug in the blood or plasma. Distribution is

often defined in terms of the volume of distribution and is influenced by factors such

as blood flow, solubility, the size of the compound and its extent of plasma protein and

tissue binding. Thirdly, the drug is metabolised, mainly by the liver but other extrahep-

atic tissues may also play a significant role. Metabolic reactions may first have to convert

the inactive drug into its active form before it can then illicit its effect. Lastly, the com-

pound is eliminated from the body through two major excretory routes: renal and biliary

excretion [53].
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2.3 The modelling of infectious diseases

Mathematical models of infectious diseases have been shown to be effective and useful

tools in understanding the mechanisms governing host-pathogen interaction [55]. Math-

ematical models are often used to integrate information gathered on new therapeutic

agents with information from models of disease progression [13]. Model results can then

be used to inform clinical and public health decision making. Disease progression mod-

els, together with biological data, can also provide researchers with valuable information

regarding the dynamics of the immune response to a disease. This ranges from chronic

infections, with pathogens such as HIV [1, 2, 56], hepatitis B [57], hepatitis C [57, 58] and

tuberculosis [59]; to acute infections such as influenza [60], dengue [61] and malaria [62].

Important biological parameters, such as the in-host basic reproduction number (R0), can

easily be quantified with the numerical investigation and data fitting of in-host models

[55]. R0 is the number of secondary infections which one infection would produce in a

completely susceptible population [63]. In the case of HIV within-host/disease models,

it specifically measures how many cells a single infected cell will infect when there is

no target cell limitation [64]. Many other important biological parameters such as the

pathogen and infected cell half-lives and the daily pathogen production values can be

uncovered [55]. These parameters are usually estimated indirectly by fitting mathemat-

ical models to viral load data since they can rarely be determined directly [65]. Disease

outcome predictions can also be made since the strength of the immune response and the

efficacy of different drug therapies can be estimated. Due to the fact that model param-

eters are often estimates obtained from viral load data, certain assumptions may have

to be made in modelling the virus life cycle. Therefore, it is important that one remains

aware of the limitations of what can be learnt by fitting mathematical models to infec-

tious disease data and statistical techniques must be employed to express the uncertainty

in the estimates obtained using any particular model.

Models are published with population mean parameter values. These wild-type models,

which are unaltered from their published form, can therefore simulate one parameter

set equating to one average individual in the population. To more accurately represent

the natural variation present in populations, parameters can be varied within certain

biologically relevant ranges. The variation in these parameters are implemented though

16

Stellenbosch University  https://scholar.sun.ac.za



2.3. The modelling of infectious diseases

the use of built-in functions in Wolfram Mathematica [15]. Firstly, the parameter values

are modelled by using a distribution function which represents a statistical distribution

between a given minimum and maximum value. For simulations, parameter values are

sampled from their associated statistical distributions of which the ranges were obtained

from the original publications. This is done for all the varied parameters, allowing for

numerous sets of parameters to be generated.

All infectious diseases models start off with including certain characteristics that are ‘ba-

sic’ to that specific disease’s dynamics in the host. Firstly, for example, the population

of infectious particles within the host’s body. Secondly, the host cells that the pathogen

infects. Thirdly, the time-scale of the infection of the host. Some pathogens have a short-

lived, acute infection while others result in a long-lived, persistent (chronic) infection.

Lastly, for this example of a basic model, it may include the mechanisms and dynamics

of the life cycle of the pathogen. This would define how the pathogen is able to produce

progeny. Interestingly, this type of ‘basic’ model can be applicable to many different types

of pathogens and may only vary in a few respects. This basic model format remains sim-

ilar for many pathogen types such as viruses, bacteria and parasites [55].

2.3.1 Viral dynamics models of HIV

One of the earliest HIV disease models was published by Perelson et al. [66]. Initial

models describing viral dynamics within the host attempted to explain viral load mea-

surements in patients chronically infected with HIV. Their pioneering work showed that

a mathematical model could be used to simply explain quantitative features of HIV in-

fection. Their simple model of chronic viral infection is a one-stage viral infection model

as it includes a single stage of infected-cells in their scheme and describes the interaction

of HIV with CD4+ T-cells. It considers the following three populations: uninfected T-

cells, actively infected T-cells and free virus, all of which are represented by the ordinary

differential equations (ODE) below and shown in Figure 2.5. Uninfected T-cells (TU) are

produced by the body at rate λTU and die at rate δTU . The TU target cells are infected

by free viruses (V) with a reaction rate constant of β resulting in an infected T-cell popu-

lation (T∗). These productively infected T-cells can then release new viruses with a rate

constant N, which are either cleared with a rate constant CL or re-infect the uninfected

target cells. The infected T-cells die at a constant rate, specified by δT∗. The model is
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mathematically specified by the following system of coupled ODEs:

d

dt
TU = λTU · TU(t)− δTU · TU(t)− β · V (t) · TU(t) (2.3.1)

d

dt
T ∗ = β · V (t) · TU(t)− δT ∗ · T ∗(t) (2.3.2)

d

dt
V = N · T ∗(t)− CL · V (t)− β · V (t) · TU(t) (2.3.3)

VT*
β·V·TU

δT*

N·T* CL
TU

 

λTU 

δTU

Figure 2.5: Structure of a basic HIV model. A schematic representation of the HIV model by
Perelson et al. The three compartment model includes uninfected T-cells (TU), infected T-cells
(T∗) and virus (V). Uninfected T-cells are born at rate λTU and become infected at rate β. Infected
T-cells die at rate δT∗ and produce more virus with burst size N. Virus die at rate CL

Many within-host viral dynamic models consider a single infection stage during infec-

tion, i.e., the productively infected stage of cells that can produce virions. However, in

reality the HIV life cycle consists of a number of processes and antiretroviral drugs have

been developed to act at specific stages. Two-stage viral dynamics models revealed more

details on how the nature of the different stages of the viral life cycle are inhibited due

to the distinct mechanisms of action of different classes of ARV drugs [67]. This was

prompted after puzzling discrepancies were noted between the in silico outcome of dis-

ease treatment in early one-stage models and the actual measured in vivo efficacy of drugs

as assessed by viral load measurements [68]. Thus, two-stage models represent the in-

fected target cells with two populations of T-cells: pre-RT infected T-cells and post-RT

infected T-cells [3]. Additionally, over the two decades of progress made in the mod-

elling of infectious diseases, more pools of target cells were added to HIV disease mod-

els. This includes the latent reservoir of infection, attributed to resting CD4+ memory

T-cells which explains further phases of viral decay [56]. Other populations of target cells

often added to HIV disease models are those of macrophages and CTLs, which when
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included can give further insight into the interaction between the virus and immune sys-

tem. These cells are long-lived since they are less susceptible to viral cytopathic effects

than are CD4+ T-cells and may have an influence on the viral production rate [69].

2.3.2 Modelling drug action within disease models

As ARVs suppress the viral replication process by inhibiting the formation of new viral

particles, similarly drug action is implemented in disease models. Continuing from the

example HIV model described above, discussed below is how drug action effects are

incorporated in this model through the introduction of drug effect parameters:

A protease inhibitor drug, which could block viral protease activity by 100% would

result in no new viruses produced. In the model mentioned above, that would imply N

= 0. However, drugs are not 100% effective in reality, in which case N would be altered

by a factor (1 - ηPI ) and 0.0 ≤ ηPI ≤ 1.0, where ηPI is the PI drug efficacy. The equation

representing the change in viral load over time would now be written as:

d

dt
V = (1− ηPI) ·N · T ∗(t)− CL · V (t)− β · V (t) · TU(t) (2.3.4)

Reverse transcriptase inhibitors block the enzymatic function of RT and prevents the

synthesis of viral DNA from HIV RNA. Thus, RTIs can be assumed to reduce the viral

infection rate β by a factor of (1 - ηRTI ) and 0.0 ≤ ηRTI ≤ 1.0, where ηRTI is the drug

efficacy. Here, for example, the change of the infected and uninfected T-cell population

over time would now be written as:

d

dt
TU = λTU · TU(t)− δTU · TU(t)− (1− ηRTI) · β · V (t) · TU(t) (2.3.5)

d

dt
T ∗ = (1− ηRTI) · β · V (t) · TU(t)− δT ∗ · T ∗(t) (2.3.6)

Integrase strand transfer inhibitors block integrase, the enzyme HIV uses to integrate

the viral DNA produced by RT into the host cell. Two-stage HIV models have an ad-

ditional parameter on which the reduction in viral reproductivity by an INSTI can be

modelled [3]. The rate k1 is the transition rate of infected cells from pre-RT (T1) to post-

RT (T2) cells. In post-RT cells the viral DNA has been integrated into the host genome.

Thus, we assume that the transition rate k1 is reduced by a factor (1 - ηINI ) in the pres-

ence of an INSTI due to the non-completion of the DNA integration step and the model
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equations can be adapted as follows:

d

dt
T1 = β · V (t) · TU(t)− δT1 · T1(t)− (1− ηINI) · k1 · T1(t) (2.3.7)

d

dt
T2 = (1− ηINI) · k1 · T1(t)− δT2 · T2(t) (2.3.8)

T ∗ = T1 + T2 (2.3.9)

Clearly, viral decay dynamics during antiretroviral drug therapy depend on the inhibited

stages of the viral replication cycle [3]. Therefore, when researching the HIV disease

models to be used in this study, models were chosen which allow for the meaningful

implementation of each individual drug’s effect on different stages of the viral life cycle.

2.4 Pharmacological modelling

The drug development process has been revolutionised through the use of mathemat-

ical modelling that construct, validate, and utilise disease models, drug dose-response

models, and pharmacometric models to facilitate drug development [16]. Mathemati-

cal models provide a system for integrating all information gathered on new therapeutic

agents [13]. Data from mathematical models provide evidence to enable critical decision

making and to optimise drug development. In the context of HIV, for example, model-

based drug development enables clinicians to produce drugs and drug regimens which

enable maximum and lasting suppression of HIV replication [14], essential to controlling

the spread of the disease, improving patients’ lives and minimising drug side-effects.

The modelling of the PK of a drug alone does not provide a complete picture of drug

action. The PK assessment of a drug is relevant only to the extent that drug concentration

or exposure can be related to the drug actions of interest. Likewise, PD analysis of a

drug has limited utility unless it can be related to the concentration over time and total

exposure profile of the drug in the recipient [70]. As shown in Figure 2.6, a PD model can

be linked to a PK model using drug concentration (C). Pharmacodynamics thus describes

the relationship between the compound concentration at the site of action and the effect

produced by the compound, including its time course and the intensity of therapeutic

and adverse effects [70]. The incorporation of a PD model of a drug allows us to predict

a measure of drug effect [13] and can be used study the effect of drug therapy on disease

progression.
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PD[C]PKDose Effect

Figure 2.6: Schematic representation of a basic linked PKPD model. The dose-effect relationship
can be illustrated using this representation of a linked pharmacokinetic (PK) and pharmacody-
namic (PD) model. C = drug concentration.

A major goal of model-based drug development is the quantitative prediction of drug

effects and the field of pharmacokinetic-pharmacodynamic (PKPD) modelling has made

many advances in this regard [71]. The basic concept of the dose-response relationship

has now been extended to complex mechanistic-based models. By combining the com-

mon feature which PK and PD models share, the drug concentration, it allows us to

describe the overall dose-effect relationship. This provides a basis for understanding

the time-course of drug exposure and the response after the administration of different

doses or formulations [13]. In the context of HIV, linking the PKPD models of antiretrovi-

ral drugs to models of HIV disease progression allows us to then study the effect of drug

therapy on variables such as the viral load and CD4+ T cell counts.

2.4.1 Pharmacokinetic models

In clinical trials, the assessment of PK parameters happen through the use of PK models,

which describe the relationship between drug concentration and time [13]. PK models

make use of compartments that represent a group of tissues with similar rates of drug

distribution, in which the drug is well mixed and kinetically homogenous. Compart-

mental models are fundamentally based on the four basic phases of drug pharmacoki-

netics as discussed above: absorption, distribution, metabolism and excretion. Complex

physiological systems can be easily described with simple models using compartments,

allowing for the ADME processes to be combined in a logical and straightforward man-

ner [72]. Compartmental analyses are also useful for the characterisation of drug effect at

the effect site in relation to the drug concentration. Non-compartmental analyses (NCA)

are model-independent and do not rely upon assumptions about body compartments

but rather relies almost exclusively on algebraic equations to estimate PK parameters,

making them less complex, faster to use and more cost-efficient [72]. Deciding between

NCA and compartmental analyses depends upon the purpose of the analysis as both pro-

vide different insights. Whereas NCAs are useful for analysing PK within a single study,
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2.4. Pharmacological modelling

here we prefer to make use of more complex compartmental analyses as it allows for

characterising PK across multiple studies and for exploring PK variability due to patient

heterogeneity.

A major goal of pharmacokinetic modelling is gaining understanding of and resolving

the factors determining drug access to target sites, known as biophase distribution [73].

When a drug is administered orally as an extravascular dose, it undergoes an absorptive

phase prior to being taken into the plasma. Once in plasma, the drug is distributed to

various organs and tissues and is then metabolised by an organ such as the liver or kid-

ney. Finally, the drug is excreted in urine or faeces. Compartmental models assume that

the body is made up of “compartments” through which the drug passes prior to being

excreted. Each compartment forms part of a system of differential equations which are

derived based on the law of conservation of mass [74]. By the law of conservation of

mass, the change in the amount of drug versus time is equal to the sum of the contribut-

ing mass flow rates for each compartment. For example, a pharmacokinetic model with

two compartments plus an oral dosing compartment is schematically shown in Figure

2.7:

A2A1

k10

k12 
 

k21

D
ka

Figure 2.7: The structure of a two-compartment pharmacokinetic model. This example PK model
makes use of two main compartments: A1 could represent the amount of drug present in the
central plasma compartment and A2 represents the peripheral tissue compartment. D is the oral
dosing compartment with ka the absorption rate constant. Drug flows between the plasma and
peripheral compartments with rate constants k12 and k21. The drug is excreted from the blood
plasma compartment at rate k10
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2.4. Pharmacological modelling

The model is represented by the following differential equations:

d

dt
D = −ka ·A1(t) (2.4.1)

d

dt
A1 = ka ·A1(t) + k21 ·A2(t)− k12 ·A2(t)− k10 ·A2(t) (2.4.2)

d

dt
A2 = k12 ·A2(t)− k21 ·A2(t) (2.4.3)

where D represents the amount of drug present in the dosing compartment and ka the

absorption rate constant. A1 represents the amount of drug present in the central plasma

compartment and A2 represents the poorly diffused peripheral tissue compartment. Here,

drug flows between the plasma and peripheral compartments with rate constants k12 and

k21. The drug is excreted from the plasma compartment at rate k10. The rate constants

are defined according to the following parameters:

k12 =
(Q/F )

(V c/F )
(2.4.4)

k21 =
(Q/F )

(V p/F )
(2.4.5)

k10 =
(CL/F )

(V c/F )
(2.4.6)

with bioavailability-adjusted intercompartmental clearance (Q/F), central volume of dis-

tribution (Vc/F) and peripheral volume of distribution (Vp/F) and apparent elimination

clearance (CL/F) all adjusted for bioavailability. Bioavailability is defined as the frac-

tion of the active form of a drug that reaches systemic circulation unaltered. However,

bioavailability is difficult to measure in vivo. PK equations are formulated so that it re-

mains accounted for without the need to specifically calculate it. Under normal circum-

stances the bioavailability factor remains constant and does not change with dose [72].

Here the same assumption is made for all ARV models.

The parameters of a PK model are determined experimentally during clinical trails fol-

lowing well-defined protocols. The plasma drug concentrations are determined at vari-

ous times after the dose has been administered to a group of individuals taking part in

the clinical trail [72]. Several blood samples are drawn from each individual during this

time, especially around the peak, to ensure that the drug-concentration profile is charac-

terised adequately. The PK parameters are then determined for each individual through
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2.4. Pharmacological modelling

analysis of the data generated during the trial. Each parameter can be averaged across

the group to calculate the mean and standard deviation or be represented using a suitable

probability distribution.

2.4.2 Pharmacodynamic models

In most pharmacodynamic scenarios, biophase distribution is extremely rapid and drug

effects can be directly related to drug concentrations in plasma. For the modelling of

drug pharmacodynamics, the variable of interest is the concentration of drug in the blood

plasma compartment or the concentration of drug in the intracellular compartment. The

direct action of a drug on the body is usually modelled using the Emax or sigmoidal Emax

model and the concentration that produces 50% maximum response would be defined as

EC50 [72]. For ARVs, of which the effect is the inhibition of viral replication, the effect is

differentiated and categorised as inhibition (I) and thus we make use of the Imax model

with IC50 being the concentration that results in 50% inhibition of viral replication. With

a decrease in the value of IC50, the potency of the drug increases [72]. The direct drug

effect can be modelled over the whole range of concentrations using the Imax equation:

ϵD(t) =
Dm

t

ICm
50 +Dm

t

(2.4.7)

where ϵD(t) is the inhibition effect 0.0 ≤ ϵD ≤ 1.0 and D(t) is the target site concentration

of the drug at time t. The term IC50 denotes the drug concentration at which the targeted

process is inhibited by 50% and m denotes a Hill coefficient [75]. In the context of the viral

dynamics model, the drug effect will be used to model how it inhibits the reproduction of

viral particles. This can be achieved by linking its inhibition effect to certain parameters

in the disease model such as the clearance of viral particles and the viral infection rate,

as described in the subsection above for the viral dynamics of HIV models. To simulate

combination therapy with two drugs from a single class, as in the case for HIV therapy, a

pharmacodynamic model can be used which determines the net drug efficacy. The Bliss

independence model [76] quantifies this net drug efficacy:

ϵD(a+b)(t) = 1− (1− ϵDa(t)) · (1− ϵDb(t)) (2.4.8)

where ϵD(a+b)(t) is the new net drug efficacy with ϵDa(t) and ϵDb(t) being the efficacies of

drug A and drug B respectively. The parameters of a PD model are determined through

in vitro studies or the fitting of disease-PKPD models to patient data. With in vitro stud-

ies, whole cell lines are used and a range of concentrations of drug is applied [77]. This
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2.4. Pharmacological modelling

generates a curve from which the inhibitory constant can be calculated. Determining

the dose-response relationship of PD models are inherently more difficult due to the in-

ability of measuring the drug concentration directly at the site of action. The processes

associated with the PD phase of drug response are more varied and complex. They often

include processes that need to be taken into account such as receptor binding, sensitivity

and specificity of response and the efficacy of the response [72]. Figure 2.8 summarises

the parameters which characterise the compartments in the PK and PD models presented,

which is a progression from Figure 2.6 above.

PD 
 

IC50 
Imax 

ε

[C]

PK 
 

ka 
CL/F 
Vc/F 
Vp/F 

Dose Effect

Figure 2.8: Schematic representation of ARV PKPD model. The dose-effect relationship can be il-
lustrated using this representation of a linked pharmacokinetic (PK) and pharmacodynamic (PD)
model. C = drug concentration. The PK model of each ARV are parameterised by ka, CL/F, Vc/F
and Vp/F, whereas the PD models are parameterised by IC50, Imax and ϵ.

PK and PD models are usually published with population mean parameter values. These

wild-type models therefore simulate one parameter set equating to one average individ-

ual in the population. Biological variation is present in all populations which affect the

prognosis of infected individuals. Therefore it is necessary to consider this distribution

in the parameter values to more accurately determine the effects of the population’s bi-

ological variation. This variation is often referred to as patient heterogeneity and it is

important to account for this in model simulations. To this end, parameters can be var-

ied within relevant biologically ranges. by sampling their values from their associated

probability distributions. Interindividual variability (IIV) is often characterised using

a log-normal distribution and the mean and %CV (coefficient of variation) is reported

where [4]

%CV = 100
√
eσ2 − 1 (2.4.9)

with σ2 the variance of the associated normal distribution.

25

Stellenbosch University  https://scholar.sun.ac.za



2.5. Previous studies using combined PKPD-HIV models

2.5 Previous studies using combined PKPD-HIV models

In a study by Jacqmin et al. [78], a combined model was used to demonstrate the deriva-

tion of a Reproduction Minimum Inhibitory Concentration (RMIC) of an antiretroviral

compound. They used an Emax model to decrease the infection rate and to described

the effect of antiretroviral compounds. This could also be used in a model in which two

different classes of ARVs are administered which act on different stages of the viral life

cycle, each having its own independent drug efficacy parameter [79].

The study by Wu et al. [80] parametrised a combined model using viral load data from

a clinical trial of ARVs in HIV-infected individuals who had previously failed protease

inhibitor–containing ARV therapies. They concluded that viral rebound may occur be-

cause of drug resistance, non-adherence and other factors. By combining PKPD and HIV

models, a drug efficacy threshold can be calculated for each patient to assess whether an

ARV regimen is potent enough to suppress HIV viruses in the individual. The combined

models provide a framework to be able to inform decision-making on the individual level

and to predict response to treatment for each patient.

Rosario et al. [81] employed a combined pharmacokinetic-pharmacodynamic disease

model to predict the in vivo antiviral activity of a CCR5 receptor antagonist. The same

author extended the work by including receptor theory in the combined PKPD-disease

model to determine whether quantifying receptor occupancy by the antiviral compound

could help to better predict the in vivo efficacy of the drug [82].

The review by Hill et al. [9] shows that basic viral dynamic models can be adapted and

combined with a drug dose-response model to assess the effect treatment has on viral

infection. It is demonstrated how an inhibitory model can be used to calculate a drug

efficacy factor of the drug concentration relative to the IC50 value. The inhibitory sig-

moidal Emax model is widely used, effective and simple to implement in an HIV disease

model as will also be shown in the present study.

In the following chapter each model will be described, along with the variation in cer-

tain parameters. Models of HIV disease progression will be discussed as well as PKPD

models of ARVs. The chapter will also show how the combined PKPD-HIV models are

constructed by linking PKPD models to the HIV disease models. In contrast to previous
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2.5. Previous studies using combined PKPD-HIV models

work where models are often singular PK/PD/HIV models or limited combinations, and

are parametrised on singular cohorts in well controlled clinical trials, we start by consid-

ering models from independent studies focusing on disease or pharmacology. We then

create linked PKPD-disease models from all combinations that are relevant for the South

African context. We also do not refit parameters but evaluate the models’ predictive abil-

ities by varying the previously determined parameters within their known ranges.
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Chapter 3

Constructing the combined HIV-

pharmacokinetic-pharmacodynamic

models

The mathematical models that were reproduced are described in this chapter. Models

were reproduced using Wolfram Mathematica v 12 [15]. The models will first be de-

scribed as originally published, whereafter it will be discussed how each model was

adapted for linking to PKPD models of the ARVs. First to be described will be Kam-

boj1, then Wang1 and lastly the most complex model which includes the evolution of

drug resistance, Rong1. These three models with differing levels of complexity in terms

of the variable types they include, were chosen based on their specific characteristics to

cover important aspects of infection: Kamboj1 provides a basic overview of infection;

Wang1 goes one step further and provides insight into the effect that latency has on dis-

ease outcome; lastly, Rong1 adds the effect that drug-resistance has on treatment efficacy.

These models were chosen as they help to understand the two barriers to a cure stated in

Chapter 1: the latent reservoir and drug-resistance. Further motivation will be given for

why each model was chosen as they are discussed below.

3.1 Models of HIV infection and treatment

3.1.1 Multidrug therapy for HIV infection: Dynamics of immune system

model by Kamboj, D. & Sharma, M.D. [2]

This model [2] allows for the studying of the effect of inhibition on specific steps in the

viral life cycle, which plays an important role in the study of HIV. This two-stage model
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3.1. Models of HIV infection and treatment

describes the in vivo efficacy of RTI and PI treatment assessed by viral load measure-

ments. The model and parameter values are well substantiated and drawn from authors

whose work in the field are often referenced, such as Perelson et al. [83]. However this

model also improves on the work done by Perelson et al. by including a compartment

for the effect of CTLs. T-cells are identified as uninfected CD4+ (T), pre-RT infected (T1)

and post-RT infected (T2) cells. The viral load is represented by V and the response of the

immune cell population of CTLs is represented by E. The logistic expression rT(1- T
Tmax

)

accounts for those T-cells in the process of growth of the T-cell population that are main-

tained as T-cells in the presence of infection. ARV drug efficacy is modelled with ϵRT

and ϵPI representing the ARV efficacy of reverse transcriptase inhibitors and protease

inhibitors respectively. These two parameters inhibit the viral replication capacity with

a factor ranging from 0-1. The reverting rate of infected to uninfected cell due to non-

completion of reverse transcription is defined by bT1. The mathematical model is defined

by the following system of five ODEs:

d

dt
T = s− µT (t) + rT (t)(1− T (t)

Tmax
)− kV (t)T (t) + bT1(t) + ϵRTαT1 (3.1.1)

d

dt
T1 = kV (t)T (t)− µ1T1(t)− αT1(t)− bT1(t) (3.1.2)

d

dt
T2 = (1− ϵRT )αT1(t)− δT2(t)− dxE(t)T2(t) (3.1.3)

d

dt
V = (1− ϵPI)δNT2(t)− µvV (t) (3.1.4)

d

dt
E = pT2(t)− dEE(t) (3.1.5)
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T2 V
δNT2

T

E

δT2
μv

T1

dxET2

dEE

αT1

μT

kVT

μ1T

s

pT2

Figure 3.1: Schematic diagram of Kamboj HIV model. T = uninfected T-cells; T1 = pre-RT infected
T-cells; T2 = post-RT infected T-cells; V = virus; E = CTLs.

Figure 3.1 above shows a schema representing the model compartments and model pa-

rameters are defined in Table 3.1. At the onset of infection, all the infected cells will form

part of the pre-RT class (T1). A fraction (α T1) of these cells leaves the pre-RT class to join

the productively infected post-RT class (T2). The presence of a RT inhibitor is assumed

to revert a fraction of the pre-RT cells (ϵRTαT1) back to the uninfected class, where 0.0 ≤

ϵRT ≤ 1.0 and ϵRT is the drug efficacy. The remaining cells in the pre-RT class (1 - ϵRT )αT1

become productively infected and proceeds on to become T2 cells. Furthermore, combi-

nation therapy with a protease inhibitor results in a decreased number of viral particles

being produced (1- ϵPI ) N, where 0.0 ≤ ϵPI ≤ 1.0 and ϵPI is the drug efficacy. The im-

mune response of CTLs present in the body is incorporated in the model by including its

attack on post-RT cells. Due to the nature of the immune system, pre-RT cells which do

not express HIV cannot illicit a response by CTLs, therefore, the intensity of the response

only depends on the concentration of T2 cells. The full list of fixed and varied parameters

for the kamboj1 model can be found in Table 3.1.
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Table 3.1: Parameter values for HIV disease model by Kamboj et al.

Parameter Definition Value Unit Parameter variation Distribution Reference

s Rate at which new T-cells are created 10 mm−3day−1 4.2-13.8 Uniform [83]

k Rate constant for CD4+ cells becoming infected 0.000024 mm3day−1 1.2x10−5-3.6x10−5 Uniform [83]

Nv Average number of viral particles produced by an infected cell 1000 - 400-1200 Uniform [83]

Tmax Maximum CD4+ cell population level 1500 mm−3 - - [83]

β Reverting rate of infected cells to uninfected class due to the non-completion of reverse
transcription

0.05 day−1 - - [2]

α Transition rate from pre-RT class to post-RT infected class 0.4 day−1 - - [2]

δ Death rate of productively infected cells (T2) 0.24 day−1 - - [83]

r Rate of growth for the CD4+ cell population 0.03 day−1 - - [83]

µ Death rate of uninfected cells 0.01 day−1 0.005-0.016 Triangular [2]

µ1 Death rate of infected cells 0.015 day−1 - - [2]

µv Clearance rate of virus 2.4 day−1 0.91-3.6 Triangular [83]

p Proliferation rate of CTLs 1.02 day−1 0.05-3.0 Uniform [2]

dx Rate of clearance of infected cells (T2) by CTLs 0.01 mm3 day−1 0.005-0.1 Uniform [2]

dE Death rate of CTLs 0.1 day−1 - - [2]

ϵRT Efficacy of RT inhibitor 0 - 1 - - - See text

ϵPI Efficacy of protease inhibitor 0 - 1 - - - See text
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3.1. Models of HIV infection and treatment

3.1.2 Modelling the slow CD4+ T-cell decline in HIV-infected individuals by

Wang et al. [56]

The authors of this paper state that they developed the model to study the time scale of

long term CD4+ T-cell decline during HIV infection. This model expands on previous

models such as Perelson et al. [83] by including latently infected cells and CD8+ T-cells.

It also includes the effect that cytokines have on inflammation and disease progression.

The one compartment model also includes the CD8+ T-cell response to the decline in

CD4+ T-cells, as this response plays a major role in the immune dynamics of HIV infec-

tion [56]. Uninfected CD4+ T-cells are represented by the variable (T ) and are generated

at the rate λ. Inflammatory cytokines (C) enhance the infection rate adding to the pop-

ulation of productively infected T-cells (T∗). T-cells can also be abortively infected (M∗),

however virus (V ) is only produced by productively infected T-cells (T∗). In the orig-

inal publication, by including the effect of drug treatment the viral infection rate (k) is

reduced by a factor (1 − ϵ) where ϵ is the overall drug efficacy of the treatment. CD8+

T-cells (E) are modelled to kill infected T-cells at a rate αET∗. Latently infected T-cells

(L) are produced with a fraction (µ) during HIV-1 infection. The adaptive immune re-

sponse by CD8+ T-cells depends on the level of infected cells and CD4+ T-cells play an

important role in the activation the adaptive immune response. This influence by CD4+

and CD8+ T-cells is accounted for using the saturation function pE(
T ∗

T ∗+θ )(
T

T+η ). Latently

infected cells can also be maintained by proliferation which is assumed to rely on the

cytokine level (1+ϕC). The carrying capacity of latently infected cells is maintained with

(1 − L
Lmax

). Certain parameters remain fixed during simulations and others are varied

to represent the natural biological variation present in populations. The varied and con-

stant parameters are defined in Table 3.2, Figure 3.2 is a schematic representation and the
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model is defined by the following system of ODEs:

d

dt
T = λ− (1− ϵ)k(1 + γiC(t))V (t)T (t)− d1T (t) (3.1.6)

d

dt
T ∗ = (1− f)(1− µ)(1− ϵ)k(1 + γiC(t))V (t)T (t)

− αE(t)T ∗(t)− d2T
∗(t)

(3.1.7)

d

dt
M∗ = f(1− ϵ)k(1 + γiC(t))V (t)T (t)− d3M

∗(t) (3.1.8)

d

dt
V = pvT

∗(t)− d4V (t) (3.1.9)

d

dt
C = Ncd3M

∗(t)− d5C(t) (3.1.10)

d

dt
E = pE(

T ∗(t)

T ∗(t) + θ
)(

T (t)

T (t) + η
)− dEE(t) (3.1.11)

d

dt
L = µ(1− f)(1− ϵ)k(1 + γiC(t))V (t)T (t)

+ pL(1 + ϕC(t))L(t)(1− L(t)

Lmax
)− dLL(t)

(3.1.12)

T* V
pv

T

C

dE

d4

M*

yiC


d3

(1-f)kVT

d1

d5

Ncd3

fkVT

λ

L E

dL

pE
μ

d2

Figure 3.2: Schematic diagram of Wang HIV model. T = uninfected T-cells; T* = infected T-cells;
V = virus; M* = abortively infected T-cells; C = inflammatory cytokines; E = CD8+ T-cells; L =
latently infected T-cells.
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Table 3.2: Parameter values for the one-compartment HIV model by Wang et al.

Parameter Definition Value Unit Parameter variation Distribution Reference

λ CD4+ T-cell generation rate 104 ml−1 day−1 6000-14000 Uniform [3]

k Infection rate of target cells 2.4x10−8 ml day−1 1.44x10−8-3.36x10−8 Uniform [3]

d1 Death rate of uninfected CD4+ T-cells 0.01 day−1 - - [3]

d2 Death rate of infected CD4+ T-cells 1 day−1 - - [3]

d3 Death rate of abortively infected cells 0.001 day−1 0.0006-0.0014 Uniform [3]

d4 Viral clearance rate 23 day−1 - - [3]

d5 Death rate of cytokines 6.6 day−1 3.96-9.24 Uniform [3]

yi Effectiveness of cytokines on infection 2x10−4 ml molecule−1 1.2x10−4-2.8x10−4 Uniform [3]

f Fraction of abortive infection 0.95 - 0.931-0.969 Uniform [3]

pv Viral production rate 2.5x104 virions cell−1 day−1 15 000-35 000 Uniform [3]

Nc Burst size of cytokines 15 molecule 9-21 Uniform [3]

ρ Hill coefficient in exponential function 2x10−4 ml molecule−1 - - [3]

α Killing rate of CD8+ T-cells 0.01 ml cell−1 day−1 - - [3]

pE Max activation rate of CD8+ T-cells 100 cells ml−1 day−1 - - [3]

η Effect of CD4+ T-cells on CD8+ activation 500 cells ul−1 - - [3]

dE Death rate of CD8+ T-cells 0.06 day−1 - - [3]

µ Fraction of latent infection 0.001 - - - [3]

pL Proliferation rate of latently infected T-cells 0.001 day−1 - - [3]

ϕ Effect of cytokines on latent proliferation 10−2 ml molecule−1 0.006-0.014 Uniform [3]

Lmax Carrying capacity of latently infected cells 100 cells ml−1 - - [3]

dL Death rate of latently infected T-cells 0.001 day−1 - - [3]

ϵ Efficacy of combined drug therapy 0-1 - - - See text
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3.1.3 Emergence of HIV-1 drug resistance during antiretroviral treatment

model by Rong et al. [1]

This model includes infection with two viral strains: wild-type and drug-resistant. It

allows for a strain to mutate and become drug-resistant during the process of reverse

transcription. The mutation rate (µ) from drug sensitive to resistant strain is based on

the frequency of single point mutations. This then results in a level of resistance (α) that

the drug resistant strain has toward the ARV efficacy ranging from 0-1. ARV drug effi-

cacy is modelled with ϵRT and ϵPI representing the ARV efficacy of reverse transcriptase

inhibitors and protease inhibitors respectively. These two parameters inhibit the viral

replication capacity with a factor ranging from 0-1. In the model there are five variables

defined in concentration: uninfected T-cells (T); productively infected by drug sensitive

virus (Tsen); productively infected by drug resistant virus (Tres); Vsen and Vres represent

the concentrations of drug sensitive and drug resistant virus respectively. The parame-

ters are defined in Table 3.3, a schematic representation of the model is shown in Figure

3.3 and the model is described by the following system of ODEs:

d

dt
T = λ− dT (t)− (1− ϵRT )ksVsen(t)T (t)− (1− αϵRT )krVres(t)T (t) (3.1.13)

d

dt
Tsen = (1− ϵRT )(1− u)ksVsen(t)T (t)− δTsen(t) (3.1.14)

d

dt
Vsen = (1− ϵPI)NsδTsen(t)− cVsen(t) (3.1.15)

d

dt
Tres = (1− ϵRT )uksVsen(t)T (t) + (1− αϵRT )krVres(t)T (t)− δTres(t) (3.1.16)

d

dt
Vres = (1− αϵPI)NrδTres(t)− cVres(t) (3.1.17)
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Figure 3.3: Schematic diagram of Rong HIV model. T = uninfected T-cells; Tsen = drug sensitive
infected T-cells; Tres = drug resistant infected T-cells; Vsen = drug sensitive virus and Vres = drug
resistant virus.

The model by Rong et al. [1] describes infection with two viral strains: wild-type and

drug-resistant. During the process of reverse transcription, the model allows for the viral

strain to mutate and become drug-resistant. It is this implementation of the evolution

of drug resistance which sets this model apart from others, since it includes some com-

plexity which may lead to more realistic model simulations and outcomes. A parameter

that remains constant in the model is the mutation rate (u) as it is based on the frequency

of single point mutations. The recruitment rate of uninfected T-cells (λ) also remains

constant. However, the parameters with known variation include: the death rate of un-

infected cells (d); infection rate of target cells by wild-type (ks) and drug-resistant (kr)

strains; death rate of infected cells (δ); burst size of drug-sensitive (Ns) and drug-resistant

(Nr) strains; and the clearance rate of free virus (c).
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Table 3.3: Parameter values for HIV disease model by Rong et al.

Parameter Definition Value Unit Parameter variation Distribution Reference

λ Recruitment rate of uninfected cells 104 ml−1 day−1 - - [1]

d Death rate of uninfected cells 0.01 day−1 0.005-0.016 Triangular [1]

ks Infection rate of target cells by wild-type virus 2.4x10−8 ml day−1 1.2x10−8-3.6x10−8 Uniform [83]

kr Infection rate of target cells by drug-resistant virus 2.0x10−8 ml day−1 0.8x10−8-3.2x10−8 Uniform [1]

µ Mutation rate from sensitive strain to resistant strain 3x10−5 - - - [1]

δ Death rate of infected cells 1 day−1 0.5-1.4 Uniform [1]

Ns Burst size of drug-sensitive strain 3000 - 2000-4000 Uniform [1]

Nr Burst size of drug-resistant strain 2000 - 1000-3000 Uniform [1]

c Clearance rate of free virus 23 day−1 9.1-36 Triangular [1]

α Resistance level of mutant strain 0-1 - - - [1]

ϵRT Efficacy of RT inhibitor 0-1 - - - See text

ϵPI Efficacy of protease inhibitor 0-1 - - - See text

Stellenbosch University  https://scholar.sun.ac.za



3.2. Pharmacokinetic models

3.2 Pharmacokinetic models

Drug pharmacokinetics are important for ARV drug development and clinical therapy.

Pharmacokinetics refers to the relationship between drug input (dose, dosing interval,

dosage form, etc.) and the concentration attained in the body over time. In the context of

HIV therapy, viral suppression is impacted by time-dependent changes in drug concen-

tration. The research of the PK models presented here can be broadly divided into two

stages. The first stage focuses on the selection of an appropriate structural model (e.g.,

two-compartment model with blood plasma and cellular compartments), which includes

the implementation of a dose regimen. The second stage involves characterising the PK

parameters of interest and their relationship to the subsequent modelling of drug efficacy

in pharmacodynamics. The mathematical framework are presented for the models that

enabled us to implement key PK characteristics related to the present-day drugs used

for HIV treatment as defined by the 2019 ART clinical guidelines [41], published by the

Republic of South Africa’s National Department of Health and in the 2019 HIV treatment

policy published by the World Health Organisation [24]. The current state of first-line

ART has been revised to include a formulation of the daily fixed dose combination of

two reverse transcriptase inhibitors (tenofovir disoproxil fumerate (TDF) + emtricitabine

(FTC)) and one integrase inhibitor (dolutegravir (DTG)). However, when a patient receiv-

ing first-line regimen treatment experiences virological failure, they may be switched to

second-line treatment. Virological failure can happen if the virus with which the patient

is infected develops resistance during first-line treatment. Second-line treatment includes

a combination of two RTIs (tenofovir disoproxil fumerate (TDF) + emtricitabine (FTC))

and one protease inhibitor which is a co-fomulation of lopinavir/ritonavir (LPV/r) twice

daily.

3.2.1 Dolutegravir

A study by Duwal et al. [5] employed a two-compartment model with an oral dosing

compartment. Their pharmacokinetic model is mathematically specified by a system of

coupled ODEs and constitutes three compartments: CD(t) denotes the amount of drug

in the dosing compartment, Cp(t) is the concentration of DTG in the peripheral compart-

ment and Cc(t) is the concentration in our compartment of interest, the central blood

plasma compartment, shown in Figure 3.4. Notably, DTG is active in its administered
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3.2. Pharmacokinetic models

form (does not require biotransformation) and has physicochemical attributes that allow

the unbound drug to rapidly cross the cellular membrane [5]. Parameter values are de-

fined in Table 3.4 and the model is described by the following system of coupled ODEs:

d

dt
CD = −ka · CD(t) (3.2.1)

d

dt
Cc =

ka
Vc

· CD(t)−
CL

Vc
· Cc(t)−

Q

Vc
· Cc(t) +

Q

Vp
· Cp(t) (3.2.2)

d

dt
Cp =

Q

Vc
· Cc(t)−

Q

Vp
· Cp(t) (3.2.3)

CpCc

CL/Vc

CD
Q/Vc

Q/Vp

ka

Figure 3.4: Schematic diagram of Dolutegravir pharmacokinetic model. CD = dosing compart-
ment; Cc = central blood plasma compartment; Cp = peripheral tissue compartment. Adapted
from [5].

Table 3.4: Final pharmacokinetic parameter estimates of model for dolutegravir (DTG). Note that
due to the fractions in the model equations above (also indicated in Figure 3.4) the unknown
bioavailibility F disappears.

Parameter Definition Value Unit CV
[%]

Distribution Reference

ka Absorption rate constant 2.24 h−1 - - [5]

CL/F Apparent total clearance of the drug 0.85 liter·h−1 16.9 Log normal [5]

Vc/F Apparent volume of central compartment 17.7 liter 16.4 Log normal [5]

Vp/F Apparent volume of peripheral compart-
ment

0.73 liter - - [5]

Q/F Intercompartmental clearance 0.0082 liter·h−1 - - [5]

3.2.2 Emtricitabine

The study by Valade et al. [7] aimed to describe blood plasma and seminal plasma phar-

macokinetics of emtricitabine resulted in the development of a three-compartment model

(plus a dosing compartment). Their final model also included an additional compartment

which described the FTC concentration in the seminal plasma. However, for the purpose
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of this study we were primarily interested in the central blood plasma compartment. The

final pharmacokinetic model is mathematically specified by a system of coupled ODEs

and thus constitutes four compartments: A1 is the quantity of drug in the dosing com-

partment. A2 is the quantity of drug in the central compartment, A3 is the quantity of

drug in the peripheral compartment and A4 is the concentration of drug in the seminal

compartment. The concentration of the drug can be calculated by dividing by the vol-

ume of the compartment e.g. A4 is divided by Vc in this model. Parameter values are

defined in Table 3.5, Figure 3.5 a schematic representation and the model is described by

the following system of coupled ODEs:

d

dt
A1 = −ka ·A1(t) (3.2.4)

d

dt
A2 = ka ·A1(t) + k21 ·A3(t)− k12 ·A2(t)− k10 ·A2(t) (3.2.5)

d

dt
A3 = k12 ·A2(t)− k21 ·A3(t) (3.2.6)

d

dt
A4 = k1e ·

A2(t)

Vc
− ke1 ·A4(t) (3.2.7)

A4

A3

A2

k10

k1e 
 

ke1

A1

k12k21

ka

Figure 3.5: Schematic diagram of Emtricitabine pharmacokinetic model. A1 = dosing compart-
ment; A2 = central blood plasma compartment; A3 = peripheral tissue compartment; A4 = seminal
compartment. The drug concentration in each compartment can be calculated by dividing by the
volume of each compartment. Adapted from [7].
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Table 3.5: Final pharmacokinetic parameter estimates of model for Emtricitabine (FTC)

Parameter Definition Value Unit ω IVV
estimate

Distribution Reference

ka Absorption rate constant 0.53 hour−1 - - [7]

CL/F Apparent total clearance of the drug 14.8 liter·h−1 0.255 Log normal [7]

Vc/F Apparent volume of central compartment 51.6 liter - - [7]

Vp/F Apparent volume of peripheral compartment 106 liter - - [7]

Q/F Intercompartmental clearance 8.19 liter·h−1 - - [7]

k1e Blood plasma to seminal plasma transfer rate
constant

0.341 hour−1 0.533 Log normal [7]

ke1 Seminal plasma elimination rate constant 0.113 hour−1 - - [7]

k12
Q/F
V c/F

- - - - [7]

k21
Q/F
V p/F

- - - - [7]

k10
CL/F
V c/F

- - - - [7]

3.2.3 Tenofovir disoproxil fumerate

The model developed by Duwal et al. [4] is employed to simulate the pharmacokinetic

profile of TDF. The researchers found that TDF plasma pharmacokinetics are best de-

scribed by a two-compartment model (plus a dosing compartment). They extended this

model to also include an intracellular compartment which models the PK of TFV-DP, the

active form of the drug. The final pharmacokinetic model is mathematically specified

by a system of ODEs and thus constitutes four compartments: CT represents the mass

of tenofovir in the dosing reservoir. C1 is the central compartment, which represents

the plasma concentration of TFV. The second compartment C2 represents the poorly per-

fused (peripheral) tissues and the cellular compartment Ccell resembles the concentra-

tions of TFV-DP in the biophase. Parameter values are defined in Table 3.6, Figure 3.6 a

schematic representation and the model is described by the following system of coupled

ODEs:

d

dt
CT = −ka · CT (t) (3.2.8)

d

dt
C1 =

Fbio · ka · CT (t)

V1
− C1(t) · ke − k12 · C1(t) + k21 · C2(t) (3.2.9)

d

dt
C2 = k12 · C1(t)− k21 · C2(t) (3.2.10)

d

dt
Ccell =

Vmax · C1(t)

Km + C1(t)
− Ccell(t) · kout (3.2.11)
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Ccell

C2

C1

ke

Vmax 
Km

kout
CT

k12k21

ka

Figure 3.6: Schematic diagram of Tenofovir pharmacokinetic model. CT = dosing compartment;
C1 = central blood plasma compartment; C2 = peripheral tissue compartment; Ccell = cellular
compartment. Adapted from [4].

Table 3.6: Final pharmacokinetic parameter estimates of model for Tenofovir (TDF)

Parameter Definition Value Unit Parameter
range

Distribution Reference

ka Absorption rate constant 1 h−1 - - [4]

ke Elimination rate constant 0.12 h−1 - - [4]

k12 Influx rate constant to peripheral com-
partment

0.2926 h−1 - - [4]

k21 Outflux rate constant from peripheral
compartment

0.1537 h−1 - - [4]

Km Michaelis–Menten constant giving half
Vmax

29.3 µg L−1 - - [4]

V1 Apparent volume of compartment 1 244 L - - [4]

kout Rate of elimination of TFV-DP 0.006 h−1 0.01-0.06324 Log Normal [4]

Fbio Bioavailability constant 0.32 - - - [4]

Vmax Max rate of TFV-uptake and conversion
to TFV-DP

1.44 µg L−1 h−1 6.845-24 Log Normal [4]

3.2.4 Lopinavir/ritonavir

A lopinavir (LPV) population pharmacokinetic model was developed by Wang et al.

[6] to investigate the impact of alpha-1-acid glycoprotein (AAG) drug-binding on to-

tal (LPVt) and free (LPVf ) lopinavir concentrations. Protease inhibitors bind with high

affinity primarily to AAG which has an influence on the free plasma concentrations of

the drugs. As ritonavir (RTV) is a co-formulation with lopinavir, the pharmacokinetic
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model consists of four compartments with an independent analysis relating AAG and

LPVt with LPVf . The initially separate models for LPVt and RTV were linked through

the effect that the concentration of RTV has on LPVt and LPVt clearance (CLLPV t) and

the final linked model simultaneously represents the relationship between RTV concen-

trations and CLLPV t. Parameter values are defined in Table 3.7 and Figure 3.7 a schematic

representation of the model. The following four equations represent the joint model for

both drugs, including an exponential term for the effect of RTV concentration on LPVt

clearance:

d

dt
B1 = −CLLPV t · e[−c1·(CRTV −299)]

Vt
·B1(t) + kaLPV t ·B2(t) (3.2.12)

d

dt
B2 = −kaLPV t ·B2(t) (3.2.13)

d

dt
B3 = −CLRTV

VRTV
·B3(t) + kaRTV ·B4(t) (3.2.14)

d

dt
B4 = −kaRTV ·B4(t) (3.2.15)

CLPVf

B3

B1

CLRTV

B2
ka LPV

B4
ka RTV

CLLPV

AAG

+

Figure 3.7: Schematic diagram of Lopinavir/ritonavir pharmacokinetic model. B1 = LPV central
blood plasma compartment; B2 = LPV dosing absorption compartment; B3 = RTV central blood
plasma compartment; B4 = RTV dosing absorption compartment; CLPV f = free LPV in relation to
AAG. Adapted from [6].
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B1 and B2 are the amount of LPVt in the measured blood plasma (central) and absorp-

tion compartments, respectively. B3 and B4 represent the amounts of RTV in the mea-

sured and absorption compartments, respectively. The impact of alpha-1-acid glycopro-

tein (AAG) drug-binding on LPVt and LPVf lopinavir concentrations were quantified

using an enzyme-linked immunosorbent assay (ELISA). The data from these assays were

pooled and a model of AAG binding was selected by the authors of this publication to

calculate LPVf . The concentration of LPVf in relation to AAG can be determined accord-

ing to:

CLPV f = [fu0 − p1 · (AAG− 91.8)] ·B1(t) (3.2.16)

Table 3.7: Final pharmacokinetic parameter estimates of model for co-formulated Lopinavir Ri-
tonavir (LPV/RTV)

Parameter Definition Value Unit CV [%] Distribution Reference

CLLPV t Total clearance of LPV 4.73 L·h−1 - - [6]

c1 Coefficient of the RTV effect 6.24 x 10−4 - 28.3 Log normal [6]

VLPV t Total volume of distribution for LPVt 55.7 L 55.2 Log normal [6]

kaLPV t Absorption rate constant for LPVt 0.325 L·h−1 - - [6]

CLRTV Clearance rate of RTV 22.0 L·h−1 50.5 Log normal [6]

p1 Slope for AAG 1.13 x 10−5 - 103.0 Log normal [6]

fµ0 Fraction of unbound drug with median AAG 0.0093 L·h−1 23.4 Log normal [6]

VRTV Total volume of distribution for RTV 117.0 L 61.7 Log normal [6]

kaRTV Absorption rate constant for RTV 0.740 L·h−1 107 Log normal [6]

IC50(LPV ) Concentration of the drug producing 50% inhi-
bition

5.84 ng·mL−1 53.1 Log normal [6]

γLPV Hill coefficient of LPV 1.88 - 19.2 Log normal [6]

τLPV Mean transit time of LPV 3.22 h 41.6 Log normal [6]

AAG Unbound concentration of LPV at the median
AAG

91.8 mg·dL−1 - - [6]

3.3 Pharmacodynamic models

Determining the appropriate metric for assessing the adequacy of a patient’s response

to therapy is an important part of producing accurate models with meaningful results.

Studying the biological effect of each drug requires linking of the dose-concentration

profile described by its PK properties to the drug’s pharmacodynamic model. Due to

extremely rapid receptor binding and biophase distribution, most drug effects can be
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related with reasonable accuracy directly to the drug concentration in the effect compart-

ment [73]. The Imax equation for the inhibition of viral replication as described in the pre-

vious chapter was used to implement the concentration-effect relationship for each drug.

The drug efficacy term (ϵ) described below for each of the ARVs can be implemented in

the HIV disease models as inhibiting the viral reproductive capacity by a factor ranging

between 0 - 1.

ϵ = 1− ICh
50

ICh
50 + Ch

(3.3.1)

where ϵ is the drug efficacy with 0.0 ≤ ϵ≤ 1.0, IC50 is the concentration of the drug which

inhibits infection by 50%, h the Hill coefficient and C is the drug concentration.

Dolutegravir The Imax model [72] for the dose-effect relationship of dolutegravir was

implemented as:

ϵDTG = 1−
ICh

50·DTG

ICh
50·DTG + Cc(t)h

(3.3.2)

Where IC50·DTG (Table 3.8) denotes the drug concentration which inhibits cell infection by

50%, Cc(t) the drug concentration in the effect compartment and h is the slope parameter

(Hill coefficient) [5]. ϵDTG is the efficacy of the drug treatment and 0.0 ≤ ϵDTG ≤ 1.0, IC50.

Emtricitabine The Imax model [72] for the dose-effect relationship of emtricitabine was

implemented as:

ϵFTC = 1− IC50·FTC

IC50·FTC +A2(t)
(3.3.3)

Where IC50·FTC (Table 3.8) denotes the drug concentration which inhibits cell infection by

50% and A2(t) the drug concentration in the effect compartment [7]. ϵFTC is the efficacy

of the drug treatment and 0.0 ≤ ϵFTC ≤ 1.0.

Tenofovir disoproxil fumerate The Imax model [72] for the dose-effect relationship of

tenofovir was implemented as:

ϵTDF = 1− IC50·TDF

IC50·TDF + Ccell(t)
(3.3.4)

Where IC50·TDF (Table 3.8) denotes the drug concentration which inhibits cell infection

by 50% and Ccell(t) the drug concentration in the effect compartment [4]. ϵTDF is the

efficacy of the drug treatment and 0.0 ≤ ϵTDF ≤ 1.0.
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Lopinavir/ritonavir The Imax model [72] for the dose-effect relationship of lopinavir

was implemented according to the following, where several transit delay compartments

were used to account for the delay between the initiation of therapy and the observed

decrease in viral load:

d

dt
D1 =

1

τLPV
·

[
Imax · Ch

LPV f

ICh
50·LPV + Ch

LPV f

−D1(t)

]
(3.3.5)

d

dt
D2 =

1

τLPV
· [D1(t)−D2(t)] (3.3.6)

d

dt
ϵLPV =

1

τLPV
· [D2(t)− ηLPV (t)] (3.3.7)

Where IC50·LPV (Table 3.8) denotes the drug concentration which inhibits cell infection

by 50%, CLPVf
is the free drug concentration in the effect compartment and Imax is the

maximum inhibition effect of LPVf (fixed at 1 assuming no escaping virus routes) [6].

ϵLPV (t) is the efficacy of the drug treatment and 0.0 ≤ ϵLPV ≤ 1.0.

Table 3.8: Pharmacodynamic parameters of the relevant ARVs.

ARV IC50 Unit Hill coefficient Reference

Dolutegravir (DTG) 0.089 nM 1.3 [5]

Emtricitabine (FTC) 0.012 mg·L−1 - [7]

Tenofovir disoproxil fumerate
(TDF)

0.076 mg·L−1 - [4]

Lopinavir/ritonavir (LPVr) 5.84 ng·mL−1 - [6]

Combination drug therapy pharmacodynamics Simulating ARV combination therapy

with multiple drugs required modelling the net efficacy of jointly acting drugs from a

single class. Two classes of ARVs are prescribed in a single drug regimen at a time,

with first-line treatment including one INSTI and two RTIs and second-line treatment

including one PI and the two RTIs. In both cases, due to the different mechanisms of

action of the two classes of drugs involved, each class can be implemented separately in

the viral dynamics model. The Bliss independence model enables us to jointly simulate

the two RTI drugs which inhibit the same biological process [76]:

ϵRTI = 1− [(1− ϵFTC) · (1− ϵTDF )] (3.3.8)

where ϵFTC and ϵTDF are the drug efficacies of emtricitabine and tenofovir, respectively.

ϵRTI becomes the new pharmacodynamic drug efficacy of the two drugs to be imple-

mented in the viral dynamics models and 0.0 ≤ ϵRTI ≤ 1.0.

46

Stellenbosch University  https://scholar.sun.ac.za



3.4. Model simulation and implementation

3.4 Model simulation and implementation

3.4.1 HIV models

During model simulation, certain parameters are varied to represent the biological vari-

ation present in populations, also known as patient heterogeneity. Patient heterogeneity

results in differing responses to infection due to biological variation and thus has an

impact on disease outcome. The variation in HIV model parameters are implemented

though the use of built-in functions in Wolfram Mathematica [15]. Parameter values are

sampled from probability distributions (specified or determined by the authors of the

original models) as shown in Tables 3.1, 3.2 and 3.3. This is done for all the varied pa-

rameters, allowing for numerous sets of parameters to be generated, each representing a

unique individual in the population.

3.4.2 PKPD models

After each PKPD model was reproduced, the prescribed drug regimens were imple-

mented using daily or bi-daily dosing events. Dosing events are modelled as impulse

inputs, with

dCD,t = dCD,t + dosek (3.4.1)

whenever the current simulation time t coincided with a dosing event τk. CD is the

amount of the drug in the dosing compartment and dosek is the dosing input.

Similarly to the HIV disease models, certain parameters are varied to represent the nat-

ural biological variation present in populations. The variable pharmacology of patients

has an impact on the amount of drug available at the target site and thus will have an

impact on the efficacy of the administered dose. Parameter values are sampled from

probability distributions (specified or determined by the authors of the original models)

as shown in in Table 3.4, 3.5, 3.6 and 3.7. Just as certain parameters are varied within a

population, so can certain treatment scenarios exist which vary from patient to patient,

e.g. the specific combination of drugs which the patient is currently receiving, how ad-

herent a patient is to taking their medication daily, and for how long the individual was

infected before receiving treatment. Each of scenarios can have an effect on the effective-

ness of the treatment and thus the prognosis of each patient. Simulations can be used to

model each of these scenarios and were implemented accordingly.
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3.5 Summary

In this chapter, the different types models were introduced which include existing phar-

macokinetic and pharmacodynamic models of ARVs and disease progression models of

HIV. The methods of simulation and implementation as described above were used to

generate the results in Chapter 4, including Monte Carlo simulations to study the impact

of heterogeneity in populations. In addition, irregular treatment adherence and varia-

tion in treatment initiation time after infection were simulated and compared to clinical

patient data.

The clinical data was obtained from the Cape Winelands HAART to HEART study (Worces-

ter Community Day Centre, Cape Town, South Africa) [84]. This study complies with the

Declaration of Helsinki, and ethical approval was obtained from the Human Research

Ethics Committee of Stellenbosch University (reference number: N12/12/086) and the

Department of Health of the Western Cape Government of South Africa (reference num-

ber: RP090/2013). Before the study, all participants were informed about procedures and

consent forms were signed by all.
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Chapter 4

Results and discussion

The first section of this chapter shows initial validations and reproductions from litera-

ture. The subsequent sections examine the analyses of these models in more detail, first

using the individual models and then the combined PKPD-disease models. Throughout,

Monte Carlo simulations are used to examine the impact of population heterogeneity.

Finally, simulation results are compared to patient clinical data to study how well the

models selected here are able to predict the drug response and treatment outcomes.

4.1 Reproduced HIV disease model simulations

4.1.1 HIV model with two-stages of T-cell infection

The mathematical model developed by Kamboj et al. [2] is considered to illustrate the

dynamics of the immune system. This model was successfully coded in Wolfram Mathe-

matica [15] and reproduced the time-course dynamics in the original article seen in Fig-

ure 4.1. Transient oscillations can be seen in the time-course plots before steady state

is reached. This includes the CD4+ T-cell population and the viral load, both with and

without immune response. From the initial values of T(0)= 300 µL−1, T1(0) = T2(0) = V(0)

= 10 µL−1, E(0) = 1 µL−1, with an immune response, the T-cell count rebounds to a steady

state value of 640 µL−1 and the viral load increases to a value of 1000 µL−1. Whereas

without an immune response, the T-cell count reaches a steady state value of 116 µL−1

and the viral load increases to a steady state value of 4840 µL−1.
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Figure 4.1: Validation of the Kamboj1 model [2]. The Kamboj1 model was reproduced and simu-
lated for 500 days. The figure shows the steady state time courses of (A) uninfected CD4+ T-cells
and (B) the viral load. The simulations were performed with (blue) and without (orange) an
immune response.

4.1.2 HIV model with latently infected T-cells

The mathematical model created by Wang et al. [3] illustrates the long-term dynamics

of the immune system. This model was successfully coded in Wolfram Mathematica [15]

and reproduced the time-course dynamics in the original article. Transient oscillations

can be seen in the time-course plots before steady state is reached. Initial values were

implemented as V(0) = 10−3 RNA copies/mL, T(0) = 1000 µL−1, T⋆(0) = M(0) = C(0) =

0. The simulation results are consistent with the long term depletion of T cells during

HIV infection. With chronic inflammation, the T-cell count declines from the initial 1000

cells/µL to about 200 cells/µL after some years of infection as shown in Figure 4.2. The

viral load increases sharply during the first year of chronic infection before reaching a

steady state of ±400 000 RNA copies/mL.
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Figure 4.2: Validation of the Wang1 model [3]. The Wang1 model was reproduced and simulated
for 3500 days. The figure shows the steady state time courses of (A) CD4+ T-cells and (B) the viral
load.

4.1.3 HIV model with drug resistance

The HIV disease model developed by Rong et al. [1] was successfully coded in Wolfram

Mathematica [15] and reproduced the time-course dynamics in the original article seen in

Figure 4.3. Transient oscillations can be seen in the time-course plots before steady state

is reached. In Figure 4.3 A, the uninfected state, the density of CD4+ T-cells is in equi-

librium at 1000 uninfected cells/µL. In the pretreatment steady state, the uninfected cell

count drops to ±320 cells/µL and the total viral load amounts to 880,000 RNA copies/mL

from an initial value of 10−6 copies/mL. These lie within the normal expected biological

range values of a person who is infected with HIV and not receiving treatment [85].
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Figure 4.3: Validation of the Rong1 model [1]. The Rong1 model was reproduced, coded in Wol-
fram Mathematica and simulated for 500 days. The figure shows the untreated steady state time
courses of: (A) uninfected CD4+ T-cells, (B) drug-sensitive virus, (C) drug-resistant virus and (D)
total viral load.

4.1.4 Viral load range comparison

Following initial validation and reproduction, Monte Carlo (MC) simulations were used

to predict the impact of parameter variation on model performance. Firstly, the param-

eter values are modelled by using a distribution function which represents a statistical

distribution between a given minimum and maximum value. These values for the HIV

models can be found in Table 3.3, 3.1 and 3.2. For simulations, parameter values are

sampled from their associated statistical distributions of which the ranges were obtained

from the original publications. This was done for all the varied parameters, allowing for

numerous sets of parameters to be generated. In Figure 4.4 and 4.5, these parameter sets

(N=100 000) were used to examine the spread in the viral load and T-cell counts obtained

in the untreated steady state.
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Comparing the spread in the viral load for these three models, the results show that

Rong1 and Wang1 have a slightly higher median value than Kamboj1 in Figure 4.4. This

is accompanied by a lower T-cell count for Rong1 and Wang1 in Figure 4.5. This is to

be expected as Wang1 includes the infection of latently infected T-cells which act as a

reservoir for virus and Rong1 has drug resistant virus which are harder to treat with

drug therapy. Apart from parameter effects, steady state viral load and T-cell count val-

ues will thus be different for each of the models because factors like latency and drug

resistance have an impact on disease progression. However, these results compare well

between models and the viral load ranges largely overlap between models. The results

are also within the normal expected biological range values of a person who is infected

with HIV and not receiving treatment: low (<10 000 copies/mL), medium (10 000 - 99

999 copies/mL) and high (>100 000 copies/mL) for the viral load, and low (<200x106/L),

medium (200 - 349x106/L) and high (≥350x106/L) for the CD4+ T-cell count [85].
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Figure 4.4: Monte Carlo simulation viral load comparison of HIV models. Parameter values for
each model were varied by sampling from their associated statistical distributions. The simulation
generated a range of untreated viral loads for each model. Steady state values are used in the
box-and-whisker plot. The box includes 25%-75% of the simulated population viral loads with
the lines extending towards the min and max values plotted. Medians of the model predictions
are 226 588 copies/mL (kamboj1), 444 539 copies/mL (wang1) and 870 488 copies/mL (rong1)
and a Kruskal-Wallace test with Dunn’s multiple comparisons indicated these to be significantly
different with p<0.0001.
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Figure 4.5: Monte Carlo simulation CD4+ T-cell count comparison of HIV models. Parameter
values for each model were varied by sampling from their associated statistical distributions. The
simulation generated a range of untreated CD4+ T-cell counts for each model. Steady state values
are used in the box-and-whisker plot. The box includes 25%-75% of the simulated population T-
cells counts with the lines extending towards the min and max values plotted. Medians of the
model predictions are 1 103 283 cells/mL (kamboj1), 168 862 copies/mL (wang1) and 321 162
cells/mL (rong1) and a Kruskal-Wallace test with Dunn’s multiple comparisons indicated these
to be significantly different with p<0.0001.

4.1.5 Required drug efficacy

The following simulations were performed on all three HIV models. A drug efficacy scan

was performed with Monte Carlo simulations to determine the drug efficacy required

to bring the viral load count to below the detectable limit of 50 copies/mL of blood.

Each generated parameter set (N=100 000) is scanned starting from 0 up to 1 for the

drug efficacy parameter (ϵ). For these simulations ϵ was implemented as in the originally

published articles by the authors.

Wang1 In Figure 4.6 on the x-axis, the RTI drug efficacy parameter is a value ranging

from 0 - 1, where 0 means no inhibition and 1 means complete inhibition of viral repli-

cation. The simulation was performed for N=100 000 patients in the Wang1 HIV disease

model. There is a spread across the required efficacy with a tendency towards higher

drug efficacy requirements to bring the viral load to below the detectable limit, and a

mean value of approximately 0.55. This model predicts that in a population, all individ-

uals will have an undetectable viral load if the efficacy is high enough. For a substantial

part of the population, however, high efficacy might be over treating them raising con-

cerns about side effects.
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Figure 4.6: Required drug efficacy scan of Wang1. A model simulation was performed using the
Wang1 model by sampling values from parameter probability distributions (Table 3.2), generating
100,000 unique parameter sets. Treatment was then simulated with an increasing drug efficacy
value until the required value was found to bring the viral load to below detectable limit (<50
copies/mL) for each parameter set. On the x-axis, the drug efficacy ranges from 0-1 with the
mean value indicated by the dotted black line.

Rong1 The simulation was also performed for the Rong1 model and as indicated by

the black dotted line representing the mean, a relatively high drug efficacy is required

to suppress viral replication effectively. This high drug efficacy value is likely due to

the presence of a drug-resistant viral population in the model. This result adds to the

evidence that highly effective and continuous drug therapy is required to fully suppress

viral replication and to block the emergence of drug-resistant strains. In addition, for a

very small fraction, 100% efficacy is required which might not be feasible.
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Figure 4.7: Required drug efficacy scan of Rong1. A model simulation was performed using the
Rong1 model by sampling values from parameter probability distributions (Table 3.3), generating
100,000 unique parameter sets. Treatment was then simulated with an increasing drug efficacy
value until the required value was found to bring the viral load to below detectable limit (<50
copies/mL) for each parameter set. On the x-axis, the drug efficacy ranges from 0-1 with the
mean value indicated by the dotted black line.
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Kamboj1 is an HIV disease model which allows for multiple drug types to be modelled

independently as they act on different stages of the HIV life cycle. In this simulation drug

treatment is with RTIs and PI. The results are shown in Figure 4.8, where a parameter

scan was done (N = 100 000) for two types of ARVs acting at the same time, a protease in-

hibitor and two reverse transcriptase inhibitors. Different classes of ARVs have differing

mechanisms of action, with different stages of the viral life cycle being targeted. This can

be seen here in the result of the simulation. On the PI axis, which is a class of drug that is

more effective overall as it acts later in the life cycle. In comparison, RTIs seem to have a

slightly lower efficacy than PIs and thus more individuals require a higher drug efficacy

to bring the viral load to below detectable limits.

Figure 4.8: Required drug efficacy scan of Kamboj1. A model simulation was performed using
the Kamboj1 model by sampling values from parameter probability distributions (Table 3.1), gen-
erating 100,000 unique parameter sets. Treatment was then simulated with an increasing drug
efficacy value until the required value was found to bring the viral load to below detectable limit
(<50 copies/mL) for each parameter set. On the x-axis, the drug efficacy ranges from 0-1 for RTIs
and on the y-axis for PIs.
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4.2 Pharmacokinetic-pharmacodynamic models

The quantitative prediction of drug effect is a major goal of clinical pharmacology. Drug-

body interactions can be studied through the characterisation of a drug’s pharmacoki-

netic and pharmacodynamic properties. Pharmacokinetics is the study of the movement

of a compound within the body after its administration, whereas pharmacodynamics is

the study of the relationship between the concentration of a compound at its site of action

and the magnitude of the drug effect [53]. Firstly, pharmacokinetic models were used to

study the time course of the absorption, distribution, metabolism and excretion of the

currently prescribed antiretroviral drugs.

4.2.1 Dolutegravir

A model of the pharmacokinetics of Dolutegravir (DTG) was constructed by Duwal et

al. [4] and in the previous chapter. A two compartment model with oral absorption best

described the pharmacokinetics of the drug. Figure 3.4 shows a schematic representa-

tion of the model. This model was successfully reproduced in Wolfram Mathematica [15]

and the drug plasma concentration plots were visually similar to those published in the

article. Model simulations were performed to predict the change in DTG drug plasma

concentration. The simulated dosage administered once daily was 50 mg DTG. In Figure

4.9 the pharmacokinetic model is used to predict the plasma drug concentration for the

first four days after initiation of a once daily 50 mg oral regimen. The simulation result

shows the peak concentration reached ±2 hours after every dose and the daily fluctua-

tion in the drug plasma concentration. Fluctuations are expected because as soon as the

drug has been absorbed, the body starts working to distribute, metabolise and excrete it

(ADME). These four mechanisms all influence the drug levels and kinetics of drug expo-

sure.
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Figure 4.9: Validation of DTG pharmacokinetic model. The two compartment model used to
simulate drug therapy with dolutegravir is coded and validated. DTG is taken daily (50 mg).
Plotted is the simulated drug concentration in the blood plasma over time for the first four days
after initiation of treatment.

Heterogeneity in the population leads to biological variation and thus variation in how

each individual responds to drug therapy. In terms of pharmacokinetics, there will be dif-

ferences in how each individual absorbs, distributes, metabolises and excretes the drug.

This will result in the time-drug concentration profile being slightly different for each pa-

tient. Along with the population PK parameter estimates, the authors of the DTG model

reported data for interindividual variability on drug clearance (CL/Fbio) and the volume

of distribution (Vc/Fbio), which can be found in Table 3.4. This data can be used to sim-

ulate patient heterogeneity by sampling parameter values from their associated distribu-

tions. This allows for numerous sets of parameters to be generated, each representing a

unique individual in the population. 1000 parameter sets were generated (N=1000 virtual

patients) with a simulated dosage of daily 50 mg DTG of the first four days. The results

of the variation in the predicted plasma concentration time profiles are shown in Figure

4.10 below, where the white line depicts the median concentration, dark grey areas rep-

resent the interquartile range and light grey the remainder between min and max values.

This result compares well to the VPC the authors performed in the original publication.
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Figure 4.10: Monte Carlo simulation of DTG model. Model simulations were performed using
1000 parameter sets generated from Table 3.4. The variation in these parameter sets represent the
patient heterogeneity which result in a variation in the drug concentration profiles of different
individuals following drug administration. This is the change in drug concentration over time
for a single day (A) and four days (B), where the white line depicts the median concentration,
dark grey areas represent the interquartile range and light grey the remainder between min and
max values.

Pharmacokinetic models are not useful on their own when drug effect needs to be fully

described. Through the incorporation of pharmacodynamics, a measure of drug effect

on disease progression can be predicted. Drug effect can be related to the concentra-

tion over time and drug profile as described in its PK. Since biophase distribution is

extremely rapid, drug effects can often be directly related to drug concentrations in the

blood plasma. The effect of DTG was modelled with the Imax-equation where the drug

concentration efficacy is determined by using the IC50 value for DTG. This equation was

used to calculate the drug efficacy over time in Figure 4.11, where the Y-axis is the drug

efficacy ranging from 0 - 1. The efficacy fluctuates as the drug concentration fluctuates
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in between doses. However, the efficacy never falls below 0.98, indicating that it is un-

likely that drug-sensitive viral replication will be able take place at any time during the

day. The drug regimen of 50mg DTG daily is sufficient to suppress the viral life cycle and

the likelihood of resistant strains emerging if the patient remains 100% adherent to their

prescribed drug therapy.
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Figure 4.11: Drug efficacy of DTG. By using a pharmacodynamic model linked to the drug con-
centration profile of DTG, a prediction can be made in terms of the efficacy of the drug over time.
The PD model makes use of the IC50 value for the drug to calculate the drug efficacy at a given
drug concentration. Drug efficacy ranges from 0-1, where 0 means no inhibition and 1 means
complete inhibition of viral production. The graph indicates the efficacy of DTG for four days
following daily administration and fluctuates over time as the drug concentration does.

4.2.2 Lopinavir/Ritonavir

A model of Lopinavir co-formulated with Ritonavir (LPV/RTV) was created by Wang et

al. [6]. A four compartment model best described the pharmacokinetics of the drugs of

which a schematic representation is shown in the previous chapter in Figure 3.7. This

four compartment model consists of linked models, one for LPV and one for RTV. This

model was successfully reproduced in Wolfram Mathematica [15] and the drug plasma

concentration plots were similar to those published in the article. Model simulations

were performed to predict the change in total (LPVt) and free (LPVf ) drug plasma con-

centration over a 12 hour period during the second week of treatment. The simulated

dosage administered at t=192 (day 8) was 400/100 mg LPV/RTV. In Figure 4.12 the phar-

macokinetic model is used to predict the change in drug concentration after an oral dose

for 12 hours. Four hours after administration, the drug has been absorbed and reaches

peak concentration in the in the blood plasma. In Figure 4.13 this is extended for multiple

days with a twice daily oral administration of the drug. During the first 8 dosages there
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is a gradual accumulation of the free form LPVf whereafter it plateaus. The simulation

result shows the peak concentration is reached 4 hours after administration and the daily

fluctuation in the drug plasma concentration. Fluctuations are expected because as soon

as the drug has been absorbed, the body starts working to distribute, metabolise and ex-

crete it (ADME). These four mechanisms all influence the drug levels and kinetics of drug

exposure.
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Figure 4.12: Validation of the LPV/r pharmacokinetic model. The pharmacokinetic model for
LPV/r is coded and validated. Co-formulated bi-daily lopinavir/ritonavir is administered orally
with a dosage of 400/100mg. The plots are similar to those published in the original article and
show the first dose of week two (day 8). Shown here is (A) LPVfree and (B) LPVtotal.
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Figure 4.13: Multiple dose drug concentration profile of LPV. LPV/RTV is administered orally
bi-daily with a dosage of 400/100mg. The drug reaches peak concentration 4 hours after the dose
is given. Plotted above is LPVf , the free form of the drug, where during the first 8 dosages there
is a gradual accumulation of LPVf .

Along with the population PK parameter estimates, the authors of the LPV/RTV model

reported data for interindividual variability on a large number of parameters, which can

be found in Table 3.7. This data can be used to simulate patient heterogeneity by sam-

pling parameter values from their associated distributions. This allows for numerous sets

of parameters to be generated, each representing a unique individual in the population.

1000 parameter sets were generated (N=1000 virtual patients) with a simulated dosage

of 400/100 mg LPV/RTV. The results of the variation in the predicted plasma concen-

tration time profiles are shown in Figure 4.14 below, where the white line depicts the

median concentration, dark grey areas represent the interquartile range and light grey

the remainder between min and max values. In this result, drug concentration profiles

can vary dramatically in the population due to patient heterogeneity.
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Figure 4.14: Monte Carlo simulation of LPV/RTV model. Model simulations were performed us-
ing 1000 parameter sets generated from Table 3.7. The variation in these parameter sets represent
the patient heterogeneity which result in a variation in the drug concentration profiles of different
individuals following drug administration. This is the change in drug concentration over time for
a single day (A) and four days (B), where the white line depicts the median concentration, dark
grey areas represent the interquartile range and light grey the remainder between min and max
values.

The effect of LPV/RTV was modelled with the Imax-equation where the drug concentra-

tion efficacy is determined by using the IC50 value for LPV. This equation was used to

calculate the drug efficacy over time as shown in Figure 4.15, where the Y-axis is the drug

efficacy ranging from 0 - 1. The increase in efficacy over the first few days can be seen as

there is a gradual accumulation of the drug in the body and the efficacy fluctuates slightly
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as the drug concentration fluctuates in between doses. However, the efficacy never falls

below 0.7, indicating that it is unlikely that viral replication will be able take place at any

time during the day.
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Figure 4.15: Drug efficacy of LPV/r. By using a pharmacodynamic model linked to the drug
concentration profile of LPV, a prediction can be made in terms of the efficacy of the drug over
time. The PD model makes use of the IC50 value for the drug to calculate the drug efficacy at
a given drug concentration. Drug efficacy ranges from 0-1, where 0 means no inhibition and 1
means complete inhibition of viral reproduction. The graph indicates the efficacy of LPV for four
days following bi-daily administration and fluctuates over time as the drug concentration does.

4.2.3 Tenofovir

A model of Tenofovir was developed by Duwal et al. [4], who found that a two compart-

ment model best described the TFV plasma pharmacokinetics and of which a schematic

can be seen in the previous chapter in Figure 3.6. This model was successfully repro-

duced in Wolfram Mathematica [15] and the drug plasma concentration plots were sim-

ilar to those published in the article. Model simulations were performed to predict the

change in TFV plasma concentration over a 24 hour period. The simulated dosages ad-

ministered at t=0 were 75, 150, 300 and 600 mg of TDF respectively. Figure 4.17 shows the

drug concentration profile for 24 hours after a single dose. Two hours after administra-

tion the drug reaches peak concentration in the in the blood plasma. Daily fluctuations

in the drug plasma concentration can also be noted in the simulation result in Figure

4.18. Fluctuations are expected because as soon as the drug has been absorbed, the body

starts working to distribute, metabolise and excrete it (ADME). These four mechanisms

all influence the drug levels and kinetics of drug exposure.
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Figure 4.16: Validation of TDF model

Figure 4.17: Validation of the TDF pharmacokinetic model. The model used to simulate drug
therapy with tenofovir is coded and validated. Plotted is the simulated drug concentration in
the blood plasma over time for a single dose after initiation of treatment. The simulated dosages
administered at t=0 were 75 (blue), 150 (yellow), 300 (green) and 600 (red) mg of TDF respectively.
Peak plasma drug concentration is reached two hours after administration.

This model includes a cellular compartment (Ccell) which represents the concentration of

TFV-DP in peripheral blood mononuclear cells (PBMCs). In Figure 4.18 the model predic-

tion shows that there is a gradual accumulation of the intracellular active form TFV-DP

in the cells whereafter it starts to approach a plateau. This plateau level is reached after

about approximately 21 dosing events on average.
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Figure 4.18: Accumulation of TFV-DP in PBMCs. The model used to simulate drug therapy with
tenofovir includes a cellular compartment, where the drug has entered peripheral blood mononu-
clear cells. In this compartment the drug accumulates over the first 21 days of treatment before
a plateau is reached. The daily simulated dosages administered were 75 (blue), 150 (yellow), 300
(green) and 600 (red) mg of TDF respectively.

The authors included variability estimates for two parameters: (Vmax) and (kout). These
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values along with the rest of the parameters can be found in Table 3.6. As described

above, this data can be used to simulate patient heterogeneity by generating parameter

sets, each representing a unique individual in the population. Parameter sets were gen-

erated (N=1000 virtual patients) and the results of the variation in the predicted plasma

concentration time profiles are shown in Figure 4.19 below, where the white line depicts

the median concentration, dark grey areas represent the interquartile range and light

grey the remainder between min and max values. Patient heterogeneity results in the

drug concentration profile showing dramatic variation and impacts the model’s predic-

tive capability.
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Figure 4.19: Monte Carlo simulation of TDF model (single dose). Model simulations were per-
formed using 1000 parameter sets generated from Table 3.6. The variation in these parameter sets
represent the patient heterogeneity which result in a variation in the drug concentration profiles
of different individuals following drug administration. This is the change in drug concentration
over time (24 hours) following a single dose, where the white line depicts the median concentra-
tion, dark grey areas represent the interquartile range and light grey the remainder between min
and max values.

The effect of TDF was modelled with the Imax-equation where the drug concentration

efficacy is determined by using the IC50 value for TDF. For this drug, the PD model pre-

diction of drug efficacy is based on the cellular drug concentration. This equation was

used to calculate the drug efficacy over time as shown in Figure 4.20, where the Y-axis is

the drug efficacy ranging from 0 - 1. The increase in efficacy over the first three weeks

can be seen as there is a gradual accumulation of the drug in the body. The efficacy
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starts to approach a plateau at approximately 0.7, indicating that it is unlikely that viral

replication will be able take place.
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Figure 4.20: Drug efficacy of TDF. By using a pharmacodynamic model linked to the drug concen-
tration profile of TDF, a prediction can be made in terms of the efficacy of the drug over time. The
PD model makes use of the IC50 value for the drug to calculate the drug efficacy at a given drug
concentration. Drug efficacy ranges from 0-1, where 0 means no inhibition and 1 means complete
inhibition of viral reproduction. The graph indicates the efficacy of TDF over three weeks follow-
ing daily administration.

4.2.4 Emtricitabine

A model of Emtricitabine (FTC) was created by Valade et al. [7], who found that a two

compartment model best described the FTC plasma pharmacokinetics as shown the pre-

vious chapter in Figure 3.5. This model was successfully reproduced in Wolfram Math-

ematica [15] and the drug plasma concentration plots were similar to those published

in the article. Model simulations were performed to predict the change in TFV plasma

concentration over a 24 hour period. The simulated dosage is 200 mg once daily and the

result of this simulation can be seen below in Figure 4.21. The drug in the central blood

plasma compartment reaches its peak concentration two hours after oral administration.

Two compartments are included in this model, the blood plasma compartment and a

seminal plasma compartment. Our compartment of interest remains the compartment

representing the blood plasma drug concentration.
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Figure 4.21: Validation of the FTC pharmacokinetic model. The model used to simulate drug
therapy with emtricitabine is coded and validated. Plotted is the simulated drug concentration in
the blood plasma over time for a single dose at day 10. The blue line indicates the drug concen-
tration in the blood plasma and the orange line indicates the change in drug concentration in the
seminal compartment.

The authors included interindividual variability estimates for the two parameters: ap-

parent elimination clearance (CL/F) and blood plasma to seminal plasma transfer rate

constant (k1e). These values along with the rest of the parameters can be found in Ta-

ble 3.5. As described above, this data can be used to simulate patient heterogeneity by

generating parameter sets, each representing a unique individual in the population. 1000

parameter sets were generated (N=1000 virtual patients) with a simulated dosage of 200

mg FTC daily for four days. The results of the variation in the predicted plasma con-

centration time profiles are shown in Figure 4.22 below, where the white line depicts the

median concentration, dark grey areas represent the interquartile range and light grey

the remainder between min and max values. Patient heterogeneity results in variation

in the drug concentration profile for different individuals, however this model performs

better than the previous TDF model to more realistically represent this even if the TDF

model had fewer varied parameters.
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Figure 4.22: Monte Carlo simulation of FTC model. Model simulations were performed using
1000 parameter sets generated from Table 3.5. The variation in these parameter sets represent the
patient heterogeneity which result in a variation in the drug concentration profiles of different
individuals following drug administration. This is the change in drug concentration over time
for a single day (A) and four days (B), where the white line depicts the median concentration,
dark grey areas represent the interquartile range and light grey the remainder between min and
max values.

The effect of FTC was modelled with the Imax-equation where the drug concentration ef-

ficacy is determined by using the IC50 value for FTC. This equation was used to calculate

the drug efficacy over time as shown in Figure 4.23, where the Y-axis is the drug efficacy

ranging from 0 - 1. The efficacy fluctuates slightly as the drug concentration fluctuates
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4.3. Combined PKPD-disease models

in between doses. However, the efficacy never decreases sharply, indicating that it is un-

likely that viral replication will be able take place at any time during the day. The drug

regimen of 200mg FTC daily is sufficient to suppress the viral life cycle and the likelihood

of resistant strains emerging.
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Figure 4.23: Drug efficacy of FTC. By using a pharmacodynamic model linked to the drug con-
centration profile of FTC, a prediction can be made in terms of the efficacy of the drug over time.
The PD model makes use of the IC50 value for the drug to calculate the drug efficacy at a given
drug concentration. Drug efficacy ranges from 0-1, where 0 means no inhibition and 1 means
complete inhibition of viral reproduction. The graph indicates the efficacy of FTC over four days
following daily drug administration.

4.3 Combined PKPD-disease models

Constructing the combined PKPD-disease models was accomplished by linking each of

the HIV models to the PKPD models of the ARVs. This was achieved through the use of

the drug efficacy parameters, which were implemented as reducing the viral replication

and/or infection of healthy cells by a factor ranging between 0 and 1. The HIV disease

models were originally published with a constant ϵ value, often 0.8 or 0.9. The combined

PKPD-disease models allow for the value of ϵ to vary over time as the drug concentration

varies over time, as shown for the ARV models in Figure 4.11, 4.15, 4.20 and 4.23. As

discussed in Chapter 3, a drug concentration profile is determined by the relevant PK

model. The drug concentration influencedsthe efficacy parameter as determined by the

relevant PD model. The constant drug efficacy parameters in the disease models are then

replaced by these time-varying efficacies.

As shown in the previous section, regular drug dosing leads to sustained efficacies that

are similar to the published constant values of the efficacies in the disease models and one
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4.3. Combined PKPD-disease models

can therefore expect the disease model to behave in a similar way under these conditions.

However, a disease model with a constant efficacy cannot be used to evaluate the effect

of incomplete adherence, time-dynamics related to dosing and the effect of heterogene-

ity on drug response and treatment outcome. The PKPD and HIV models all include

measures of heterogeneity as described for the models in the previous chapter. Values

for parameter distributions for the HIV models can be found in Table 3.3, 3.1, 3.2 and for

the ARV PKPD models in Table 3.4, 3.5, 3.6 and 3.7. Patient heterogeneity in the PKPD

models result in variation of ϵ and thus also in the efficacy of the drug blocking viral

replication. For simulations, parameter values were sampled from their associated dis-

tributions. This was done for all the varied parameters, from both HIV and PK models,

allowing for numerous sets of parameters to be generated (N=10 000). These simula-

tion results can provide a more complete picture, since they include patient variability in

terms of the response to drug and in terms of the natural biological variability.

4.3.1 The effect of combination antiretroviral therapy

CD4+ T-cells The effect of treatment was examined by switching on combination ART

when performing the simulations. After the uninfected steady state is reached, virus is

introduced before treatment was initiated. All models start with a T-cell count in the

normal healthy range between 1000-1500 cells/mm3. In Figure 4.24 there is an initial

drop in the T-cell count when virus is introduced. Treatment is initiated after 200 days

and there is an increase and recovery in the T-cell count. Kamboj1 is the model which

recovers the fastest back to the normal healthy level of T-cells. Wang1 has a slower rate

of recovery due to the presence of latently infected cells, which remain difficult to target

with drug therapy. Rong1 does not recover to normal levels due to the formation of drug

resistant strains which cannot be eradicated. For these models, both classes of ARVs and

combination treatment result in similar outcomes.

Viral load Continuing in Figure 4.24, as expected there is an initial spike in the viral

load when virus is introduced to healthy individuals. This is accompanied by the initial

drop seen in the CD4+ T-cell count. Viral load is suppressed to below detectable limits at

day 200 when treatment is switched on for the Kamboj1 and Wang1 models. However,

the Rong1 model continues to harbour low levels of viral replication. This is due to

the presence of drug resistant viral strains which are able to escape treatment due to
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4.3. Combined PKPD-disease models

mutation which has taken place. For these models, both classes of ARVs and combination

treatment result in similar outcomes. The simulation was also performed by selectively

switching on only PI or RTI to examine their effects independently and the results can be

found in the Appendix, sections A.1.1 and A.1.2 respectively.
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Figure 4.24: The effect of combination ART on CD4+ T-cells and viral load. Monte Carlo simu-
lations were performed on three HIV models to determine the effect of combination RTI and PI
treatment on disease progression for Kamboj1, Rong1 and Wang1. The simulation starts at the un-
infected equilibrium state. Virus is then introduced and allowed to approach a steady state with
a simulation time of 200 days. RTI and PI treatment is then switched on. Percentile results were
generated from 10 000 parameters sets sampled from the distributions for both the HIV disease
models and the PKPD models of the ARVs.
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4.4 Treatment initiation and comparison to clinical data

The combined PKPD-disease models were analysed to examine the effect of treatment

initiation time on patient recovery. During these simulations, treatment start day ranged

from 0 - 3000 days after infection had taken place. This was done to span the range of

days reported in the patient data [84, 86]. Results are compared to viral load and CD4+ T-

cell count data. CD4+ counts and viral load measurements were determined using fasted

venous blood samples as described in [84, 86].

During model simulations, it was assumed that patients are fully adherent and that the

same prescribed dosage is taken every day. Days since infection and day of treatment

initiation were obtained from the self-reported patient information.

4.4.1 CD4+ T-cell count simulation and comparison with clinical data

The effect of different classes of ARV were examined by selectively switching on RTI, PI or

combination ART when performing the simulation. Data points from the study were also

selected according to the drug regimen that each patient was following. In Figure 4.25

before virus is introduced, all three models have T-cell counts in healthy expected ranges.

In the plots the green surface represents the maximum values of all simulations, the blue

surface represents the median values and the orange surface represents the minimum

values. When virus is introduced, there is an immediate drop in the T-cell count. If

treatment is started shortly after infection, recovery is rapid and happens within the first

5 days of infection according to model prediction. If treatment is only started once steady

state of infection is reached, the rate of recovery will be independent of when treatment is

started. In all cases recovery is complete, the viral load becomes undetectable and T-cell

counts return to healthy levels.

The Kamboj1 model performs the worst in containing all the data points within its sim-

ulated ranges of T-cell counts in Figure 4.25. Only one of the data points falls near the

median, with the rest of the data points falling below the minimum. This result is because

of the structure of the Kamboj1 model as it does not include latency or drug-resistance.

This model is unable to explain this data, if we assume that strict adherence to the pre-

scribed regimens were followed, that there were no additional biological features present

in the patients (e.g. latency, resistance), and that patient parameters remained constant
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4.4. Treatment initiation and comparison to clinical data

for the duration of the simulation. Wang1 performs better than Kamboj1 and many of

the clinical data points fall closer to the minimum, whereas Rong1 performs the best in

simulating T-cell counts which are also reflected by the clinical data. This model includes

the effect that drug-resistance has on T-cell health and many of the data points fall close

to the median. The simulation was also performed by selectively switching on only PI or

RTI to examine their effects independently and the results can be found in the Appendix

in Figure A.3 and A.4.
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Kamboj1

Wang1

Rong1

Figure 4.25: The effect of combination ARV treatment on CD4+ T-cells with clinical data. A
Monte Carlo simulation was performed on the model to examine the effect of treatment start
day on recovery. From 1000 simulations, the surfaces represent the following: orange=minimum;
blue=median; green=maximum. The region between the orange and the green surface therefore
represent the whole range of model predictions given the parameter distributions. The simulation
starts at the uninfected equilibrium state. Virus is introduced with a treatment start day ranging
from 0-3000 days after infection. Results were generated from 1000 parameters sets sampled
from the distributions for both the HIV disease models and the PKPD models of the ARVs. The
simulation results are plotted with patient data (red dots) from [86].
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4.4.2 Viral load simulation and comparison with clinical data

There is an initial spike in the viral load when virus is introduced which is accompa-

nied by the initial drop seen in the CD4+ T-cell count. According to model prediction in

Figure 4.26 if treatment is started shortly after infection, the viral load is suppressed to

below detectable limits within the first 5 days of treatment. In the plots the green sur-

face represents the maximum values of all simulations, the blue surface represents the

median values and the orange surface represents the minimum values. Similarly to the

T-cells, the rate of recovery will be independent of when treatment is started. In all cases

recovery is complete and the viral load becomes undetectable. The simulation results

for Kamboj1 and Wang1 do not compare well to the clinical data. In both models the

simulated viral load falls to very low levels, when the patient data remains at the un-

treated level of the simulations. The assumption that patients are adhering to treatment

cannot be explained by modelling results. Rong1 performs better in being able to simu-

late realistic patient data. The majority of the patient data points lie within Rong1 model

predictions. Rong1 performs better due to the presence of low-level drug-resistant viral

replication taking place. The simulation was also performed by selectively switching on

only PI or RTI to examine their effects independently and the results can be found in the

Appendix in Figure A.5 and A.6.
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Kamboj1

Wang1

Rong1

Figure 4.26: The effect of combination ARV treatment on viral load with clinical data. A Monte
Carlo simulation was performed on the model to examine the effect of treatment start day
on recovery. From 1000 simulations, the surfaces represent the following: orange=minimum;
blue=median; green=maximum. The region between the orange and the green surface therefore
represent the whole range of model predictions given the parameter distributions. The simu-
lation starts at the uninfected equilibrium state. Virus is introduced with a treatment start day
ranging from 0-3000 days after infection. Results were generated from 1000 parameters sets sam-
pled from the distributions for both the HIV disease models and the PKPD models of the ARVs.
The simulation results are plotted with patient data (red dots) from [86].
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4.5 The effect of incomplete treatment adherence

The Wang1 combined PKPD-disease model simulation outcome was analysed to exam-

ine the effect of treatment adherence. MC simulations were performed to determine if

incomplete drug adherence results are more reflective of clinical patient data when com-

pared to the CD4+ T-cell counts and for viral load measurement. The effect was examined

by selectively switching on RTI, PI or combination ART when performing the simulation.

Data points from the study were also selected according to the drug regimen that each

patient was following. Adherence was modelled as 10% i.e. there is a 10% chance every

day that the patient takes their medication.

4.5.1 CD4+ T-cells

Simulations start with a T-cell count in the healthy range between 1000 - 1500 cells/mm3.

There is an initial drop in the T-cell count when virus is introduced. The green surface

represents the maximum values, the blue surface represents the median values and the

orange surface represents the minimum values of the MC simulations where 1000 pa-

rameter sets were randomly selected from the parameter distributions in the plot shown

in Figure 4.27. Treatment start day ranges from 0 - 3000 days after infection takes place.

When treatment is initiated there is an increase and recovery in the median T-cell count

(blue surface) in some cases. However, in comparison to the previous Wang1 simulations

in Figure A.3, A.4 and 4.25, where model adherence was assumed to be 100%, 10% adher-

ence monotherapy with either RTI or PI results in many cases where the minimum (or-

ange surface) does not recover back to healthy levels. When compared to clinical patient

data, the weaker recovery of T-cells for RTI/PI monotherapy seem to be more reflective

of the data. Simulating combination therapy with 10% results in stronger T-cell count

recovery compared to monotherapy with the majority of the simulation outcomes being

higher than the patient data. Although it could be that the discrepancies between mod-

elling results and clinical patient data are exasperated by a lack of complete longitudinal

data, these results indicate that the self-reported patient data could, in fact, be incorrect

and that some patients were not 100% adherent to treatment.
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RTI

PI

Combination

Figure 4.27: The effect of irregular treatment adherence on CD4+ T-cells. Monte Carlo simulations
were performed to determine if irregular drug adherence results in Wang1 model simulation of
treatment outcomes and disease progression to be more reflective of clinical patient data. The
simulation starts at the uninfected equilibrium state. Virus is then introduced and RTI, PI or
combination treatment is switched on with a range of 0-3000 day after infection has taken place.
Percentile results were generated from 1000 parameters sets sampled from the distributions for
both the HIV disease models and the PKPD models of the ARVs. Irregular drug adherence was
modelled with a probability of 10%. Simulation results are plotted with patient data (red dots)
from [86]. These results are in comparison to the results for Wang1 in Figure A.3, A.4 and 4.25,
where adherence was assumed to be 100%. The scalloped appearance on plot surfaces are not
significant and are as a result of the scanning grid which is used to interpolate the plot surfaces.
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4.5.2 Viral load

In Figure 4.28, as expected, there is a spike in the viral load when virus is introduced

to healthy individuals. This is accompanied by the initial drop seen in the CD4+ T-cell

count when virus is introduced. The green surface represents the maximum values, the

blue surface represents the median values and the orange surface represents the mini-

mum values from the MC simulation results. Treatment start day ranges from 0 - 3000

days after infection takes place. When treatment is initiated there is a decrease in the

viral load, with the median falling to below detectable limits in for all treatment op-

tions. However, 10% adherence monotherapy with either RTI or PI results in many cases

where the load does not become undetectable (green surface). This is in comparison to

the previous Wang1 simulations in Figure A.5 and A.6, where 100% adherence resulted

in all cases becoming undetectable. When compared to clinical patient data (red dots),

the high viral load for RTI/PI monotherapy seem to be more reflective of clinical data,

where most data points fall between the maximum and the median. Combination ther-

apy with both classes of drug results in all simulation outcomes with undetectable viral

loads along with complete recovery of T-cells to healthy levels when adherence is 100%.

Simulating combination therapy with 10% results in viral loads below those of the pa-

tient data. Similarly to the CD4+ T-cell counts, the discrepancy between modelling result

and clinical patient data are likely due to a lack of complete longitudinal clinical patient

data or that the self-reported patient data were, in fact, not 100% adherent to treatment.

Combination ART provides the strongest protection and results in all cases falling to be-

low detectable limits for full and 10% adherence. However, the long term treatment of

HIV/AIDS requires at least 95% adherence as reported in [87]. If treatment adherence is

not 100%, regimen failure may happen because of the emergence of drug-resistant HIV

variants, which are not accounted for in this disease model.
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RTI
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Combination

Figure 4.28: The effect of irregular treatment adherence on viral load. Monte Carlo simulations
were performed to determine if irregular drug adherence results in Wang1 model simulation of
treatment outcomes and disease progression to be more reflective of clinical patient data. The
simulation starts at the uninfected equilibrium state. Virus is then introduced and RTI, PI or
combination treatment is switched on with a range of 0-3000 day after infection has taken place.
Percentile results were generated from 1000 parameters sets sampled from the distributions for
both the HIV disease models and the PKPD models of the ARVs. Irregular drug adherence was
modelled with a probability 10%. Simulation results are plotted with patient data (red dots) from
[86]. These results are in comparison to the results for Wang1 in Figure A.5, A.6 and 4.26, where
adherence was assumed to be 100%. The scalloped appearance on plot surfaces are not significant
and are as a result of the scanning grid which is used to interpolate the plot surfaces.
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Chapter 5

Conclusion

HIV infection has become a manageable disease thanks to the highly effective medica-

tions that are able to suppress viral replication. Great progress has been made by scien-

tists and researchers in the 30 years since HIV was discovered. The current generation

of ARV medications have fewer side effects than before and are able to exert prolonged

control over viral replication. However, the rise in drug resistance has underlined the

need for continued improvement of and research into new medications, firstly, to be able

to treat drug resistant viral strains effectively and, secondly, to target the latent reservoir,

which is seen as major barrier to a cure. Mathematical modelling is a valuable tool in

researching and developing these new medications necessary to treat HIV.

In this study, mathematical models of HIV disease progression and pharmacological

models of ARVs were selected from literature and reproduced. HIV models were cho-

sen based on the structure and characteristics of each model. The Rong1 model includes

the mutation of drug-resistant viral strains and with this the impact of drug-resistance

on ARV therapy could be studied. Latently infected cells are defined in Wang1 and the

model also shows more of the long-term dynamics of the immune system. Kamboj1 was

most the simple model but it does well to describe the dynamics of the immune response

to HIV and it also includes two stages of T-cell infection, pre-RT and post-RT. The PKPD

models of the ARVs were chosen based on the currently prescribed triple-drug regimen

for HIV treatment according to the South African Department of Health: two reverse

transcriptase inhibitors with either a protease inhibitor or an integrase strand transfer

inhibitor.

After models were reproduced, initial work included validating model simulations and

analysing model performance with Monte Carlo (MC) simulations. This included a vi-
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sual check of whether the reproduced model produces the same time-course plots as

those in the published article. Further, the models’ simulation results were compared

to data ranges known from clinical research, for example, whether the model simulated

T-cell counts and viral loads within expected biologically relevant ranges. PKPD model

performance was validated by comparison to the results published in the original article

and by comparing the predicted drug concentration for a realistic dosing regimen to the

known IC50 value for every drug. Lastly, MC simulations were used to test the effect of

patient heterogeneity in each model.

MC simulations showed that all three HIV disease models are able to encompass patient

heterogeneity well and that even with variation in the parameter values, each model

simulated the viral load within expected ranges. The result of the required drug efficacy

scan of the HIV models showed how model structure and characteristics influence the

prediction of the required drug effect for viral suppression in every model. Rong1 was

the model which required the highest overall drug efficacy to bring the viral load to below

detectable limits in a population, which was expected from a model that characterised

the mutation of viral drug-resistance. From the MC result of the Kamboj1 model, it is

apparent that the drug class also has an impact on model prediction. The Kamboj1 model,

which makes provision for treatment with two different classes of ARVs indicated that

a lower drug efficacy for the PI class is typically required than for the RTI class. The

PKPD models of the ARVs were also analysed using MC simulations. Some faired worse

at describing patient heterogeneity such as the MC simulation result of the TDF model.

It is not clear if this is due to actual drug differences or differences in model structure

and parameterisation. However, all PKPD models were still able to simulate a predicted

plasma drug concentration which could be used with the relevant IC50 values to calculate

the drug efficacy at different time points. Therefore, the construction of the combined

PKPD-HIV disease models for the remaining research objectives could proceed.

Combined models for all combinations of disease models and treatment options were

then constructed. Models of HIV disease progression were linked to the PKPD model

through the used of the drug efficacy parameter ϵ. Following this, Monte Carlo simula-

tions were performed to examine possible outcomes when taking patient heterogeneity

into account. Disease progression could then be examined in a population of hetero-

geneous patients on different drug treatments. Lastly, these results were compared to
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clinical patient data.

The combination of existing HIV disease and ARV PKPD models allowed for analyses to

be performed for all the required combinations of disease models and treatment options.

Whereas the initial simulations were based on the original drug effect already present

in the models as published, in the subsequent simulations of combined models the drug

effect parameter ϵ varied. The newly constructed combined PKPD-disease models allow

for the value of ϵ to vary over time as the drug concentration varies over time. When the

models of disease are linked to PKPD models of ARVs, it appears that the class of drug

has a smaller impact on simulation outcome than the structure of the HIV model has. In-

deed, when T-cell count and viral load time-courses for the same HIV model but different

drug treatments are compared, there is little difference. However, when disease models

are compared to each other, the results indicate the presence of latently infected cells

and drug-resistant viral strains have an impact on T-cell health and recovery. The Rong1

model showed that drug-resistant virus was never completely suppressed. Whereas the

presence of latently infected T-cells in the Wang1 model resulted in the T-cell count never

fully recovering. Comparing the results to clinical data exposed shortcomings from both

model simulations and a lack of complete longitudinal clinical patient data used for val-

idation. Kamboj1 and Wang1 were unable to simulate viral loads in the same ranges as

those from the patient data, whereas Rong1 simulated viral loads reflective of the data

due to the presence of low level drug-resistant viral production taking place. Rong1

simulated CD4+ T-cell counts containing most of the patient data points with Wang1

simulating T-cell counts higher than the majority of the patient data and Kamboj1 not

simulating any T-cell counts in the range of the patient data. The simplest model, Kam-

boj1, faired the worst in predicting realistic disease outcomes due to its simplicity and

lack of drug-resistance and latency. Following this, we examined whether altering the

simulated adherence in the Wang1 model could improve its predictions.

The adherence of patients in the study was initially assumed to be 100%, since this is not

accounted for in the self-reported dataset. Results show this may not be the case due

to the ranges of viral load and CD4+ T-cell counts that were reported and compared to

model results. Including a measure of non-adherence to drug therapy improved Wang1

model predictions and made them more reflective of patient data. When comparing the

results of 10% to 100% adherence in Wang1, both viral load and CD4+ T-cell count simu-
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lations improved and were closer to the patient data points. However, when considering

the differences between the treatment options of monotherapy or combination therapy,

a discrepancy between the simulation results and patient data points show that the self-

reported data set is lacking completeness in terms of the reported adherence. As is also

known from clinical data, if treatment adherence is not 100%, regimen failure may hap-

pen because of the emergence of drug-resistant HIV variants, which are not accounted

for in the Wang1 disease model. Overall, the results show that model structure and

assumptions that are made regarding, for example, disease dynamics and treatment

adherence, have a significant impact on whether a model is able to give a realistic pre-

diction of drug response and treatment outcomes.

The current findings rest on the following assumptions: parameters are independent of

one another and covariances are accounted for in model structure; self-reported patient

data was complete and accurate; patients were treatment-adherent; and biological pa-

rameters remained constant where not specified in terms of observed ranges. In terms of

the clinical patient data from the HAART to HEART study, the comparison results could

be improved by using a dataset which has more complete data for each patient. Longitu-

dinal data for patients over time would greatly improve the quality of the validation as

this would allow for a patient’s viral load and T-cell count to be tracked over time.

The mathematical modelling of disease and drug treatment is a valuable tool often used

in researching HIV and the treatment thereof. We used independent models of differing

complexity without prior assumptions about the population and evaluated the predic-

tive capability of the combined models without refitting the parameters. This is in com-

parison to well-controlled clinical trials where PKPD-HIV models are often constructed

based on a single cohort. We showed that the structure of the disease models could have

a significant impact on simulation results. It is important that the models used today are

complex enough to describe the phenomena which have an effect on disease outcome.

In terms of HIV, this includes the development of drug-resistant strains and the effect

of long-lived latently infected cells. Disease models are often fitted with PKPD models

to parameterise or determine drug effects. If model structures are not adequate (or data

inappropriate), this could lead to unrealistic parametrisations for both types of models.

The assumptions that are made when models are constructed and parameterised should

therefore be considered carefully as they could have a significant impact on the accuracy
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of the simulations. The structure of HIV models can be improved by accounting for more

of the mechanisms which affect disease outcome such as drug-resistance, the latently in-

fected reservoir of virus and how the different classes of drugs suppress different stages

in the viral life cycle. PKPD models can be improved by refining the structure of the

models to include compartments such as the cellular drug concentration; the process of

the binding of the drug to the receptor through which it enters the cell; and importing in

vivo IC50 measurements. Future work should also include improving model predictions

by basing parameter values on large longitudinal data sets.

Ultimately such combined models could be used as diagnostic tools where, based on

patient data, a model could suggest an optimal drug regimen according to each patient’s

unique characteristics. This may include suggestions of classes of drugs to use which take

into account past events of drug-resistance and therapy failure. Continually improving

models in this manner will result in them remaining powerful tools to be used in the era

of personalised medicine.
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A.1. Additional analysis results of combined PKPD-disease models.

A.1 Additional analysis results of combined PKPD-disease

models.

A.1.1 The effect of reverse transcriptase inhibitors
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Figure A.1: The effect of reverse transcriptase inhibitors on CD4+ T-cells and viral load. Monte
Carlo simulations were performed on three HIV models to determine the effect of RTI treatment
on disease progression for Kamboj1, Rong1 and Wang1. The simulation starts at the uninfected
equilibrium state. Virus is then introduced and allowed to approach a steady state with a simula-
tion time of 200 days. RTI treatment is then switched on. Percentile results were generated from
10 000 parameters sets sampled from the distributions for both the HIV disease models and the
PKPD models of the ARVs.
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A.1. Additional analysis results of combined PKPD-disease models.

A.1.2 The effect of protease inhibitors
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Figure A.2: The effect of protease inhibitors on CD4+ T-cells and viral load. Monte Carlo simu-
lations were performed on three HIV models to determine the effect of PI treatment on disease
progression for Kamboj1, Rong1 and Wang1. The simulation starts at the uninfected equilibrium
state. Virus is then introduced and allowed to approach a steady state with a simulation time of
200 days. PI treatment is then switched on. Percentile results were generated from 10 000 param-
eters sets sampled from the distributions for both the HIV disease models and the PKPD models
of the ARVs.
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A.1. Additional analysis results of combined PKPD-disease models.

A.1.3 Treament initiation of RTI or PI respectively and comparison to

clinical data for T-cells

Kamboj1

Wang1

Rong1

Figure A.3: The effect of RTI treatment on CD4+ T-cells with clinical data. A Monte Carlo sim-
ulation was performed on the model to examine the effect of treatment start day on recovery.
From 1000 simulations, the surfaces represent the following: orange=minimum; blue=median;
green=maximum. The region between the orange and the green surface therefore represent the
whole range of model predictions given the parameter distributions. The simulation starts at the
uninfected equilibrium state. Virus is introduced with a treatment start day ranging from 0-3000
days after infection. Results were generated from 1000 parameters sets sampled from the dis-
tributions for both the HIV disease models and the PKPD models of the ARVs. The simulation
results are plotted with patient data (red dots) from [86].
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A.1. Additional analysis results of combined PKPD-disease models.

Kamboj1

Wang1

Rong1

Figure A.4: The effect of PI treatment on CD4+ T-cells with clinical data. A Monte Carlo sim-
ulation was performed on the model to examine the effect of treatment start day on recovery.
From 1000 simulations, the surfaces represent the following: orange=minimum; blue=median;
green=maximum. The region between the orange and the green surface therefore represent the
whole range of model predictions given the parameter distributions. The simulation starts at the
uninfected equilibrium state. Virus is introduced with a treatment start day ranging from 0-3000
days after infection. Results were generated from 1000 parameters sets sampled from the dis-
tributions for both the HIV disease models and the PKPD models of the ARVs. The simulation
results are plotted with patient data (red dots) from [86].
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A.1. Additional analysis results of combined PKPD-disease models.

A.1.4 Treament initiation of RTI or PI respectively and comparison to

clinical data for viral load

Kamboj1

Wang1

Rong1

Figure A.5: The effect of RTI treatment on viral load with clinical data. A Monte Carlo sim-
ulation was performed on the model to examine the effect of treatment start day on recovery.
From 1000 simulations, the surfaces represent the following: orange=minimum; blue=median;
green=maximum. The region between the orange and the green surface therefore represent the
whole range of model predictions given the parameter distributions. The simulation starts at the
uninfected equilibrium state. Virus is introduced with a treatment start day ranging from 0-3000
days after infection. Results were generated from 1000 parameters sets sampled from the dis-
tributions for both the HIV disease models and the PKPD models of the ARVs. The simulation
results are plotted with patient data (red dots) from [86].
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A.1. Additional analysis results of combined PKPD-disease models.

Kamboj1

Wang1

Rong1

Figure A.6: The effect of PI treatment on viral load with clinical data. A Monte Carlo simu-
lation was performed on the model to examine the effect of treatment start day on recovery.
From 1000 simulations, the surfaces represent the following: orange=minimum; blue=median;
green=maximum. The region between the orange and the green surface therefore represent the
whole range of model predictions given the parameter distributions. The simulation starts at the
uninfected equilibrium state. Virus is introduced with a treatment start day ranging from 0-3000
days after infection. Results were generated from 1000 parameters sets sampled from the dis-
tributions for both the HIV disease models and the PKPD models of the ARVs. The simulation
results are plotted with patient data (red dots) from [86].
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