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Abstract 

 

Posttraumatic stress disorder (PTSD) is a complex psychiatric disorder characterised by symptoms of intrusive thoughts, 

avoidance behaviours, hyper-arousal and negative alterations to cognition and mood. PTSD is unique among psychiatric 

disorders in that it is a consequence of trauma exposure. Yet, studies previously conducted in the USA have shown that 

although 50-85% of individuals will encounter a traumatic event in their lifetime, the prevailing prevalence of PTSD lies 

approximately between 1.3 and 12.2%. This discrepancy serves to highlight the existence of factors granting individuals 

contingent resistance or vulnerability to the development of PTSD. While the molecular mechanisms elemental to PTSD 

remain largely unknown, prior heritability estimates and epigenome-wide association studies have suggested that the 

disorder presents both genetic and epigenetic components that mediate risk and resilience to PTSD. This study aimed to 

integrate genomic and epigenetic data to identify methylation quantitative trait loci (mQTLs) associated with PTSD. 

Variants of interest were identified through a polygenic risk score (PRS) model constructed to predict PTSD case-control 

status through the translation of European-derived PRS to a local South African population. The PRS model was 

subsequently assessed to determine whether DNA methylation variation in our sample was associated with an elevated 

polygenic risk burden for PTSD. Positional and dosage analysis was then conducted to investigate how any risk-conferring 

alleles identified were associated with specific methylated regions. PRS were constructed using data pertaining to the 

Psychiatric Genomic Consortium’s largest multi-ethnic genome-wide association study, but were not able to predict case-

control status in a cohort of PTSD cases (n = 164) and trauma-exposed controls (n = 163) (p = 0.064). However, upon 

extracting the most predictive variants, the study was able to identify 44,614 mQTLs acting across 250 variants and 

26,344 CpG probes. Moreover, the study identified evidence of substantial interconnectivity between the discovered 

mQTLs, wherein CpG sites were found to interact with a median of 2 different variants (IQR = 1 – 2) and each variant 

was found to interact with a median of 3 CpG probes (IQR = 1 – 10.5). Our results further support the hypothesis that the 

development of PTSD is dependent on an interconnected network of molecular interactions and highlight the need for 

future studies dedicated towards optimising PRS construction in multi-ethnic populations. 
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Opsomming 

 

Posttraumatiese stresversteuring (PTSV) is ‘n komplekse psigiatriese versteuring wat gekenmerk word deur simptome 

van indringende gedagtes, vermydingsgedrag, hiper-opwinding en negatiewe veranderinge aan kognisie en 

gemoedstoestand. PTSV is uniek onder psigiatriese versteurings omdat dit die gevolg is van blootstelling aan trauma. Tog 

het studies wat voorheen in die VSA gedoen is, getoon dat alhoewel 50-85% van alle individue gedurende hul leeftyd ‘n 

traumatiese gebeurtenis sal ervaar, die heersende voorkoms van PTSV ongeveer tussen 1.3 en 12.2% is. Hierdie 

teenstrydigheid beklemtoon die bestaan van faktore wat individue voorwaardelike weerstand of kwesbaarheid vir die 

ontwikkeling van PTSV bied. Alhoewel die molekulêre meganismes van PTSV grotendeels onbekend is, het vorige 

oorerflikheidsramings en epigenoom-wye assosiasie studies voorgestel dat die versteuring beide genetiese en epigenetiese 

komponente bevat wat die risiko en elastisiteit vir PTSV beinvloed. Hierdie studie het ten doel gehad om genomiese en 

epigenetiese data te integreer om die kwantitatiewe eienskap loci van metilering (mQTLs) geassosieer met PTSV te 

identifiseer. Variante van belang is geïdentifiseer deur middel van ‘n poligeniese risikotelling (PRT) model wat geskep 

is om die PTSV geval-kontrole status te voorspel deur die toepassing van Europese-afgeleide PRT na ‘n plaaslike Suid-

Afrikaanse bevolking. Die PRT-model was vervolgens ondersoek om te bepaal of DNA-metilerings variasie in ons 

monster geassosieer is met ‘n verhoogde poligeniese risikolas vir PTSV. Posisionele- en doseringsanalises is daarna 

gedoen om te ondersoek hoe enige geïdentifiseerde risiko-allele geassosieer word met spesifieke gemetileerde streke. 

PRT is geskep met behulp van data wat verband hou met die grootste multi-etniese genome-wye assosiasie studie van die 

Psigiatriese Genomiese Konsortium, maar kon nie die geval-kontrole status in ‘n groep PTSV-gevalle (n = 164) en 

trauma-blootgestelde kontroles (n = 163) voorspel nie (p = 0.064). Na die onttrekking van die mees voorspellende variante 

kon die studie egter 44,614 mQTLs identifiseer wat interaksie toon met 250 variante en 26,344 CpG-posisies. 

Daarbenewens het die studie bewyse van aansienlike interkonnektiwiteit tussen die geïdentifiseerde mQTLs waargeneem, 

waarin gevind is dat CpG-posisies interaksie het met ‘n mediaan van 2 verskillende variante (IKV = 1 - 2), as ook dat 

elke variant interaksie het met ‘n mediaan van 3 CpG-posisies (IKV = 1 – 10.5). Ons resultate ondersteun verder die 

hipotese dat die ontwikkeling van PTSV afhanklik is van ‘n onderling gekoppelde netwerk van molekulêre interaksies en 

beklemtoon die behoefte aan toekomstige studies wat daarop gemik is om PRT-konstruksie in multi-etniese bevolkings 

te optimaliseer.  
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Introduction 

 

In 2009, the South African Stress and Health Survey (SASHS) revealed that up to 73.8% of South Africans had 

experienced at least one traumatic event across their lifespan (1). Comparable studies conducted in Europe and Japan 

reported that the nation’s counterparts from the northern hemisphere encountered similar events at a prevalence of 54-

64% (1). The degree to which individuals are exposed to traumatic circumstances is often reflective of the historical, 

cultural, and political nuances specific to the geographical region wherein they reside. Tragically, South Africa presents 

a prolonged history of oppression and political violence – the seeds of a federally sanctioned system of discrimination 

that was ousted as recently as 1994 by a lengthy liberation movement (1,2). 

The progressive migration of individuals towards economic hubs and rampant inequality of both the past and present has 

allowed for many urban areas to be plagued by a clime of violence (2,3). Yet, any one individual is not equally likely to 

have experienced a traumatic event. Risk of trauma exposure is often intertwined with sociodemographic factors such as 

lower socioeconomic status, unemployment and impaired community support systems (4). As such, disadvantaged 

communities tend to be disproportionately at risk for physical, sexual, and emotional abuse – both as primary victims and 

as witnesses to the actions of a perpetrator within the community. Nowhere is this more clearly depicted than in the 

SASHS’s report that the average South African citizen encounters approximately 4.3 notable traumatic incidents in their 

lifetime (2). 

This increased rate of trauma exposure puts South Africans at risk for the development of posttraumatic stress disorder 

(PTSD), a complex psychiatric disorder unique in that its development is a consequence of exposure to a traumatic 

incident (4,5). Characterised by symptoms of intrusive thoughts, avoidance behaviours, hyper-arousal and negative 

alterations to cognition and mood, PTSD represents a substantially intrusive impairment of an individual’s ability to 

function on a daily basis (4). Studies have shown that, although the severity of symptoms presented is in itself highly 

dependent on the nature of the initial traumatic stimulus, PTSD-associated symptoms persist, on average, for 42.3 months 

after the index trauma (3). Furthermore, of particular concern is the widely replicated finding that PTSD is often found to 

be comorbid with a plethora of other psychiatric and physical health conditions as well as suicidal thoughts and behaviours 

(5). 

From a strictly theoretical perspective, PTSD is one of the few psychiatric disorders readily suited for the implementation 

of early detection and intervention measures. Both pharmacological- and behavioural-based preventative methods have 

shown a marked ability to reduce the likelihood of developing PTSD and at-risk individuals should ideally encounter 

emergency settings or personnel in the proximate aftermath of the stimulating event (6). However, existing treatment 

strategies fail to account for individual vulnerabilities and are often too resource-intensive to be applied in a uniform 

manner (7,8). As such, there is a pressing need for the development of mechanisms capable of allocating resources in a 

manner designed to protect those in society most vulnerable to the development of PTSD.  

Yet, such efforts are complicated by the observed discrepancy between the proportion of individuals who undergo a 

traumatic event and those who subsequently develop PTSD. Generalizing epidemiological findings across population 

groups indicates that approximately 50-85% of individuals are expected to encounter at least one traumatic event in their 

lifetime (9).  Despite this, the prevailing prevalence of PTSD is estimated to lie between 1.3 and 12.2% globally (10). 

Some degree of this variability may be attributed to mitigating factors, such as the individual’s perception of the traumatic 

event (6). Existing literature suggests that heterogeneity in the development of PTSD, as well as the duration and severity 
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of its associated symptoms, may be a product of trauma load – a loosely defined term referring to the collective impact 

of the type, severity and frequency of trauma experienced combined with the age at which exposure occurred (11). 

However, previous attempts to control for the type of trauma encountered have alluded to the existence of an underlying 

mechanism capable of mediating risk and resilience to PTSD (12). Prior twin and epidemiological studies indicate that 

the disorder presents an estimated heritability of 40-50%, which suggests that there is at least some partial genetic 

component functioning in tandem with environmental influences to contribute to the risk of development (9). 

Subsequent efforts to expand upon the potential genetic architecture of PTSD have been met with limited success. While 

several genome-wide association studies (GWAS) have reported significant risk loci, these findings have been almost 

universally hindered by difficulties surpassing multiple testing correction and failure to replicate across independent 

cohorts (13). Such complications can largely be credited to the highly polygenic nature underlying most psychiatric 

disorders. As opposed to a limited collection of high-impact variants, the vast majority of variation associated with PTSD 

is primarily due to the cumulative effects of common variants spread throughout the genome (14). Previous GWAS 

conducted on more thoroughly researched psychiatric disorders, such as major depressive disorder, bipolar disorder and 

schizophrenia, have suggested that incredibly large sample sizes would be needed to generate sufficient statistical power 

for the accurate detection of variants presenting such miniscule effect sizes (13). 

Consequentially, there exists a growing trend within the greater field of psychiatric genetics to promote the formation of 

international consortia, of which the Psychiatric Genomics Consortium (PGC) is the most notable, dedicated towards the 

collective pooling of resources to maximise statistical power. Yet, while such developments are encouraging for future 

endeavours, PTSD has historically been understudied relative to its psychiatric counterparts (9). Wherein the comparative 

dearth of genomic data has thus far provided limited insight as to the genetic contributions underlying suspected risk. 

However, within the studies that have thus far been conducted there has emerged a series of trends alluding to the 

biological mechanisms through which PTSD may develop (Table 1). While relatively few of the genetic risk loci 

identified have been functionally characterised within the context of PTSD, several have previously been associated with 

neuroprotection and neurogenesis, neurotransmitter pathways, immune-related activity as well as both transcriptional and 

post-transcriptional gene regulation.  
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Table 1: Previous genome-wide association studies conducted on PTSD  

 

Study 

 

Discovery Sample 

 

Discovery 

Case-Control 

Breakdown 

Replication 

Sample 

 

Replication 

Case-Control 

Breakdown 

Association(s) 

 

Implicated 

Pathway(s) 

 

Logue et al., (2012) 

(15) 
• European (n = 491)1 

• Case = 295 

• Control = 196 

• African American  

(n = 84)1 

• African American  

(n = 521)2 

• Case = 143 

• Control = 462 
RORA Neuroprotection 

Xie et al., (2013) 

(16) 

• European (n = 1,578)2  

• African American (n = 2,766)2 

• Case = 744 

• Control = 3,600 

• European  

(n = 1,899)2 

• African American 

(n = 744)2 

• Case = 296 

• Control = 2,347 
TLL1 Neurogenesis 

Guffanti et al., 

(2013) 

(17) 

• European (n = 45)2 

• African American (n = 342)2 

• Other Ethnicities (n = 26)2 

• Case = 94 

• Control = 319 

• European 

(n = 2,541)2 

• Case = 578 

• Control = 1,963 
AC068718.1 

Long non-coding 

RNA  

Wolf et al., (2014) 

(18) 
• European (n = 484)1,2 

• Case = 292 

• Control = 192 
- - - - 

Nievergelt et al., 

(2014) 

(19) 

• European (n = 2,179)1 

• African American (n = 205)1 

• Hispanic and Native/Latino 

American (n = 640)1 

• East Asian/Other (n = 470)1 

• Case = 940 

• Control = 2,554 

• European 

(n = 491)1 

• Case = 313 

• Control = 178 
PRTFTC1 Tumour suppression 

Almli et al., (2015) 

(20) 

• European (n = 45)1 

• African Unspecified (n = 35)1 

• Hispanic and Latino American 

(n = 57)1 

• Asian Unspecified (n = 6)1 

• Other Ethnicities (n = 4)1 

• Case = 63 

• Control = 84 

• African American  

(n = 2,868)2 
- 

rs717947 

(chr4:33652135) 
- 

Ashley-Koch et al., 

(2015) 

(21) 

• European (n = 759)1 

• African American (n = 949)1 

• Case = 710 

• Control = 998 
- - - - 

* 1 Military-based population; 2 Civilian-based population. 

 

Stellenbosch University  https://scholar.sun.ac.za



12 

 

 

 

Table 1: Previous genome-wide association studies conducted on PTSD  

 

Study 

 

Discovery Sample 

 

Discovery 

Case-Control 

Breakdown 

Replication 

Sample 

 

Replication 

Case-Control 

Breakdown 

Association(s) 

 

Implicated 

Pathway(s) 

 

Stein et al., (2016) 

(22) 

• European (n = 5,049)1 

• African American (n = 1,312)1 

• Hispanic and Latino American  

(n = 1,413)1 

• Case = 3,167 

• Control = 4,607 

• European  

(n = 4,007)1 

• African American 

(n = 667)1 

• Hispanic and 

Latino American 

(n = 1,242)1 

• Case = 947 

• Control = 4,969 

ANKRD55 

Autoimmune and 

inflammatory 

disorders 

ZNF626 
RNA transcription 

regulation 

Duncan et al., 

(2017) 

(23) 

• European (n = 9,954)1,2 

• African American  

(n = 9,691)1,2 

• Hispanic and Latino American 

(n = 698)1,2 

• South African (n = 387)1,2 

• Case = 5,239 

• Control = 15,491 - - - - 

van der Merwe et 

al., (2018) 

(24) 

• European (n = 9,537)1,2 
• Case = 2,424 

• Control = 7,113 
- - - - 

Wilker et al., (2018) 

(11) 

• Sub-Saharan African  

(n = 925)2 

• Case = 195 

• Control = 730 

• Sub-Saharan 

African 

(n = 371)2 

• Case = 158 

• Control = 213 
- - 

* 1 Military-based population; 2 Civilian-based population. 
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Table 1: Previous genome-wide association studies conducted on PTSD  

 

Study 

 

Discovery Sample 

 

Discovery 

Case-Control 

Breakdown 

Replication 

Sample 

 

Replication 

Case-Control 

Breakdown 

Association(s) 

 

Implicated 

Pathway(s) 

 

Nievergelt et al., 

(2019) 

(6) 

• European (n = 174,659)1,2 

• African American and African 

Unspecified (n = 15,339)1,2 

• Hispanic and Native/Latino 

American (n = 5,703)1,2 

• Case = 29,556 

• Control = 166,145 
- - 

HLA-B 

Immune and 

inflammatory 

response 

KAZN Cellular processes 

PARK2 
Dopaminergic 

pathway 

PODXL 
Neuro- and 

synaptogenesis 

SH3RF3 Neurocognition 

ZDHHC14 
Adrenergic receptor 

regulation 

LINC02335 
Long non-coding 

RNA 
LINC02571 

TUC338 

MIR5007 MicroRNA 

Shen et al., (2020) 

(25) 
• Latino American (n = 3,414)2 

• Case = 1,698 

• Control = 1,716 
- - - - 

* 1 Military-based population; 2 Civilian-based population. 
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Logue et al., (2012) reported one of the first PTSD-associated loci in the form of the nuclear hormone receptor RAR 

related orphan receptor A (RORA) (15). RORA is widely expressed in neuronal tissue and is thought to play a 

neuroprotective role in hindering the harmful effects of oxidative stress and proinflammatory cytokines (15). This finding 

is particularly pertinent to the development of PTSD as it aligns with previous thoughts as to the mechanism through 

which trauma exposure is suspected of influencing the brain – wherein growing consensus indicates that trauma-mediated 

increases in both oxidative stress and proinflammatory cytokines are capable of introducing functional and structural 

alterations to neural tissue (26). Interestingly, RORA perfectly highlights how genetic susceptibility can contribute to the 

risk of developing PTSD, in that a pre-existing vulnerability to certain biological processes is further compromised by 

the aberrant conditions stimulated upon exposure to a traumatic event. Furthermore, RORA provided some of the first 

evidence that PTSD possessed similar genetic underpinnings to that shared by several other psychiatric disorders, 

including attention deficit hyperactivity disorder, bipolar disorder, autism and major depressive disorder (15). 

Findings by Xie et al., (2013) and Nievergelt et al., (2019) further implicated neurocentric mechanisms  through tolloid 

like 1 (TLL1) and podocalyxin like (PODXL), respectively (6,16). While the respective variants have yet to be functionally 

verified in humans, mice- and cell culture-based models have previously alluded that the genes play a role in neuro-and 

synaptogenesis. Tamura et al., (2005) first demonstrated that mice presenting increased levels of TLL1 expression 

displayed greater neurogenesis (27). Once paired with subsequent reports that glucocorticoids, integral components of 

the greater stress response, are capable of reducing in vitro TLL1 expression, TLL1 serves as a similar example to RORA 

in how pre-existing vulnerabilities may hinder one’s ability to respond to a traumatic event (27). Additionally, previous 

studies by Vitureria et al., (2010) have shown that PODXL aids neural adhesion proteins in promoting neuronal growth 

and plasticity, noting that simulating decreased PODXL expression in vitro resulted in a lower degree of synapse 

formation across central nervous system derived neural samples (28). 

Nievergelt et al., (2019) also identified two genes, parkin RBR E3 ubiquitin protein ligase (PARK2) and zinc finger 

DHHC-type palmitoyltransferase 14 (ZDHHC14), which potentially implicate aberrant neurotransmitter regulation in the 

development of PTSD (6). PARK2 is closely interlinked with the molecular machinery responsible for regulating 

dopamine transport across cellular membranes (29). Previous studies have shown that fear extinction is primarily driven 

by an overriding stimulus from the dopaminergic system, wherein activation of the reward pathway serves to indicate that 

the fear-inducing stimulus has been nullified (30). Therefore, impairment in the degree to which dopamine is successfully 

transported can alter synaptic dopamine concentration and may prevent adequate fear extinction, thus simulating a critical 

component of the PTSD phenotype. Moreover, ZDHHC14 has been associated with the functioning of beta-adrenergic 

receptors – neurotransmitter pathways which are suspected of directly contributing to both the intrusive thoughts and 

hyper-arousal symptom clusters under PTSD (31,32). 

In addition to uncovering innate neurocentric mechanisms, previous PTSD GWAS have also highlighted the potential 

role played by disparate immune functioning. While its function has yet to be identified, ankyrin repeat domain 55 

(ANKRD55), as implicated by Stein et al., (2016), has previously been found to be associated with a number of 

autoimmune and inflammation-based disorders (e.g. rheumatoid arthritis and type 2 diabetes) (22). Interestingly, this 

finding aligns with previous epidemiological reports that both PTSD and schizophrenia are independently comorbid for 

a similar range of immune disorders – a fact which hints at the existence of a shared immunological pathophysiology 

underlying distinct psychiatric disorders (22). Additionally, the involvement of major histocompatibility complex B class 

1 (HLA-B), as reported by Nievergelt et al., (2019), further supports previous findings that PTSD presents increased levels 

of proinflammatory cytokines accompanied by widespread immune dysregulation (33,34). 
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Functional implications of the various microRNA (MIR5007) and long non-coding RNA (AC068718.1, LINC02335, 

LINC02571 & TUC338) identified are substantially less evident. Barring subsequent functional analysis, current thoughts 

are limited to the theoretical capabilities of each molecular class – wherein microRNAs and long non-coding RNAs are 

widely thought to influence both transcriptional and post-transcriptional gene regulation (35,36). Moreover, this 

regulatory ability appears to be further advanced by Stein et al., (2016)’s suggested involvement of zinc finger protein 

626 (ZNF626), which encodes a small protein structure notable for its ability to regulate transcriptional activity (22).  

Yet, despite their findings, the existing PTSD GWAS have been accompanied by a number of notable caveats. The vast 

majority of studies have primarily been conducted utilising military-based individuals sourced from European and African 

American ancestry groups. Such limited sampling raises questions as to the portability of these findings both to civilian 

populations, where trauma load differs drastically from the unique conditions of active combat, and to ancestrally diverse 

populations from other geographical locations. These concerns are further exacerbated by the manner in which several 

studies used a combination of singular- and trans-ethnic cohort groupings in an attempt to replicate any findings across 

all recruited individuals. Specifically, significant associations tended to be found in one particular ancestry subset, with 

minimal, or often no, indications of replication present across the other ethnic groupings. This would appear to suggest 

that PTSD may present ancestry-mediated differences in causal variants, a fact which further emphasises the need for 

greater participant diversity in future attempts to unravel the genetic mechanisms underlying the disorder.  

Nevertheless, the potential benefits of a consortia-based approach are clearly evident when comparing the findings of 

Nievergelt et al., (2019) against that of the field. The PGC was able to assemble a combined sample orders of magnitude 

larger than that typically possible for a single academic institution or group. Moreover, increasing statistical power 

allowed the study to identify several significant associations – wherein each of the previously implicated pathways all 

featured in a single analytical run. As such, striving towards the assembly of ever-greater sample sizes may be critical to 

uncovering the broader spectrum of genetic contributions mediating risk and resilience to PTSD. 

However, increasing interest in the idea that one’s risk of developing PTSD is the product of interactions between intrinsic 

and environmental factors has drawn attention to the potential role played by epigenetic modifications. Briefly, epigenetic 

changes refer to the introduction of heritable structural alterations capable of influencing gene expression without 

physically changing the basal genetic code (37). One such adjustment, DNA methylation, has been found to be particularly 

susceptible to external forces – wherein a range of toxins, stressors and physical health conditions have been shown to 

replicate the methyl alterations typically reserved for innate biological and developmental mechanisms (38,39). 

When considered within the context of previous evidence demonstrating how trauma exposure is associated with the 

presentation of differential DNA methylation patterns, the mediatory effects that environmental influences hold over 

DNA methylation are framed as the most likely method through which external stimuli are translated to tangible effects 

on the development of PTSD (40,41). Subsequent epigenome-wide association studies (EWAS) have further supported 

such discourse with reports linking PTSD status to differential DNA methylation among several pathways previously 

implicated in PTSD GWAS (Table 2). Specifically, pathways pertaining to neuronal development as well as the respective 

immune- and stress-responses appear to present the greatest degree of concordance with existing genomic findings.  
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Table 2: Previous epigenome-wide association studies conducted on PTSD 

 

Study Discovery Sample 
Discovery Case-Control  

Breakdown 
Association(s) Implicated Pathway(s) 

Smith et al., (2011) 

(42) 
• African American (n = 110)2 

• Case = 50 

• Control = 60 

TPR Stress response 

ANXA2 

Immune and inflammatory response 
APC5 

CLEC9A 

TLR8 

Rutten et al., (2017) 

(43) 
• European (n = 191)1 

• Case = 67 

• Control = 124 

COL1A2 Collagen formation 

DUSP22 
Neurogenesis 

NINJ2 

HIST1H2APS2 Histone structure 

HOOK2 Mitosis-related processes 

MYT1L Neurocognition 

PAX8 

Neurogenesis 

& 

Endocrine regulation 

SDK1 Immune response 

Kuan et al., (2017) 

(44) 
• European (n = 304)2 

• Other Ethnicities (n = 69)2 

• Case = 171 

• Control = 202 
- - 

Mehta et al., (2017) 

(45) 
• European (n = 96)1 

• Case = 48 

• Control = 48 

BRSK1 Neurotransmitter release 

DOCK2 Inflammatory response 

LCN8 Epididymis-specific expression 

NGF Neuro- and synaptogenesis 

* 1 Military-based population; 2 Civilian-based population. 

 

Stellenbosch University  https://scholar.sun.ac.za



17 

 

 

 

 

Table 2: Previous epigenome-wide association studies conducted on PTSD 

 

Study Discovery Sample 
Discovery Case-Control 

Breakdown 
Association(s) Implicated Pathway(s) 

Uddin et al., (2018) 

(46) 

• European (n = 164)2 

• African American (n = 343)2 

• Other Ethnicities (n = 38)2 

• Case = 196 

• Control = 349 

HGS Immune and inflammatory response 

NRG1 

Neuro- and synaptogenesis 

& 

Stress response 

Mehta et al., (2019) 

(47) 
• European (n = 38)1 

• Case = 16 

• Control = 22 
CCDC88C Spinal-related disorders 

Snijders et al., (2020) 

(48) 

• European (n = 211)1 

• African American (n = 10)1 

• Other Ethnicities (n = 45)1 

• Case = 123 

• Control = 143 

HEXDC Autoimmune and inflammatory disorders 

MAD1C1 Mitosis-related processes 

SPRY4 Stress response 

Logue et al., (2020) 

(49) 
• Ancestry not Reported (n = 513)1 

• Case = 378 

• Control = 135 
G0S2 Cellular signalling 

Smith et al., (2020) 

(12) 
• Ancestry not Reported (n = 1,896)1,2 

• Case = 758 

• Control = 1,138 
AHRR Smoking-related 

Katrinli et al., (2021) 

(50) 

• African American (n = 521)2 

• Other Ethnicities (n = 33)2 

• Case = 187 

• Control = 367 
- - 

* 1 Military-based population; 2 Civilian-based population. 
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Rutten et al., (2017) (43), Mehta et al., (2017) (45) and Uddin et al., (2018) (46) all identified epigenome-wide significant 

associations across multiple genes that had previously been shown to be capable of regulating neurogenesis: dual 

specificity phosphatase 22 (DUSP22) (51), ninjurin 2 (NINJ2) (52), paired box 8 (PAX8) (53), nerve growth factor (NGF) 

(54) and neuregulin 1 (NRG1). Moreover, NGF, PAX8 and NRG1 were linked to supplementary neurocentric mechanisms 

in the form of aided synaptogenesis, the ability to regulate endocrine functioning, and altered hypothalamus-pituitary-

adrenal axis activity, respectively (46,53,54). The potential effects that PAX8 may hold over the disparate production of 

thyroid hormones is a particularly intriguing concept, as the aberrant sleeping patterns often observed under 

hyperthyroidism are also replicated in a lesser fashion under PTSD (55). 

Furthermore, existing EWAS indicate that the abnormal immune- and inflammation-based processes thought to underlie 

PTSD may in fact be the product of a both widespread and multifaceted dysregulation in immune response. Indeed, 

significant epigenetic changes are routinely observed as affecting several distinct components of traditional immunity. 

Annexin A2 (ANXA2) and hepatocyte growth factor-regulated tyrosine kinase substrate (HGS), as implicated by Smith et 

al., (2011) and Uddin et al., (2018), have previously been linked with an increased proinflammatory response specifically 

within peripheral systems (42,46,56). However, Smith et al., (2011) also observed anaphase promoting complex subunit 

5 (APC5) and c-type lectin domain containing 9A (CLEC9a) – two genes which, in like manner to Mehta et al., (2017)’s 

finding of dedicator of cytokinesis 2 (DOCK2), were reported as being exclusively associated with neuroinflammation 

(42,45,57). Moreover, both toll like receptor 8 (TLR8) and sidekick cell adhesion molecule 1 (SDK1), as implicated by 

Smith et al., (2011) and Rutten et al., (2017), have previously been documented as playing a role in innate pathogen 

detection (42,43,58,59). Lastly, Snijders et al., (2020) observed  hexosaminidase D (HEXDC) – a gene which, while it’s 

functional mechanisms have yet to be ascertained, is linked with the presentation of the inflammatory disorder rheumatoid 

arthritis (48). 

In addition to the findings reflective of altered neurocentric and immune-based mechanisms, previous PTSD EWAS have 

also provided nominal evidence of epigenetic-mediated dysregulation in the stress response. Specifically, aberrations in 

translocated promoter region, nuclear basket protein (TPR) and sprouty RTK signalling antagonist 4 (SPRY4), which 

pertain to glucocorticoid receptor assembly and cellular signalling within the  stress response pathway, respectively 

(42,48). 

Suggestive associations notwithstanding, epigenetic studies are often plagued by similar issues to their genetic 

counterparts, where existing limitations in sample sizes have greatly hampered attempts to replicate findings across 

differing cohorts (5). As such, the molecular mechanisms elemental to PTSD remain largely unknown (60). This has 

greatly hindered subsequent efforts to facilitate improvement in existing prevention and mitigation strategies as well as 

the identification of biologically relevant pharmacological targets (6,11). Furthermore, the disproportionate degree to 

which studies have been conducted in both European and military-derived populations has amplified an extant lack of 

understanding as to how current findings translate to ancestrally diverse populations and within general society (13). 

However, within the limitations imposed by restricted resources there exists an opportunity to further expand upon current 

research outside of large-scale consortiums. While studies have historically committed to investigating the various 

biological domains as independent entities, there is mounting consensus that PTSD may in fact be the product of an 

extensively integrated network of molecular interactions (61). Such arguments for a systems biology, or multi-omics, 

approach are largely corroborated by the observation that, while relatively few findings consistently replicate across 

independent studies, several routinely implicate similar pathways or associated functions (13). 
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Two particularly enlightening examples thereof pertain to reports regarding the genes G0/G1 switch 2 (G0S2) and histone 

deacetylase 4 (HDAC4). G0S2, which encodes a protein associated with regulating lipid metabolism, was initially 

identified by Logue et al., (2020) as an epigenome-wide significant association within a cohort of 513 military veterans 

(49,62). Interestingly, the same association had previously been reported in two distinct mediums – firstly, Daskalakis et 

al., (2014) observed a reduced expression of G0S2 transcripts in amygdala- and hippocampus- derived brain tissue 

obtained during a predator-scent-stress PTSD model in female rats (63). Thereafter, Bam et al., (2016) discovered a 

similar reduction in gene expression in whole blood samples originally sourced from a small cohort of 10 military veterans 

(64). 

Moreover, while investigating how circulating estrogen levels affected the development of PTSD in a subset of women 

recruited under the Grady Trauma Project, Maddox et al., (2018) noted an epigenome-wide significant finding associated 

with increased methylation at HDAC4 (65). Serving as one of the antitheses of the histone acetyltransferase enzymes, 

HDAC4 functions as an histone deacetylase in regulating gene expression through the physical condensing of chromatin 

(66). In addition to the CpG site of interest, the authors also reported a proximally located single-nucleotide polymorphism 

(SNP) (rs7570903) that was consistently associated with similar changes in DNA methylation as well as the reduced 

expression of transcripts encoding HDAC4. While the SNP itself was found not to be associated with PTSD status, 

subsequent analysis determined that the corresponding genotype was significantly linked to increased fear-related 

reactivity on the fear-potentiated startle task (65). 

Considering the suggested benefits of such a multi-omics approach, this study aims to further elucidate the molecular 

mechanisms underlying PTSD by creating a unified bioinformatics pipeline that will integrate genetic and epigenetic data 

to identify methylation quantitative trait loci (mQTLs) associated with PTSD. Briefly, mQTLs are genomic loci where 

specific genetic variants are capable of directly influencing DNA methylation patterns (67). In attempting to identify 

mQTLs, one would be examining the interconnected relationship between genetic and epigenetic data within the context 

of PTSD. Traditionally, mQTL mapping would be carried out through dosage-analysis models designed to create matrices 

comparing large GWAS and EWAS datasets at the individual SNP and CpG-site levels. However, this poses a problem 

in that the available sample is too small to identify novel genetic variants associated with PTSD in a GWAS. One solution 

to this would be to instead implement polygenic risk score (PRS) analysis to predict PTSD case-control status within our 

sample, and subsequently isolate SNPs associated with elevated polygenic risk.  

Briefly, PRS are statistical models that provide probabilistic estimates indicative of an individual’s genetic predisposition 

to a particular trait or disorder (68). The technique relies on the inherent polygenicity of complex disorders, wherein 

increasingly larger GWAS have suggested that the genetic architecture underlying traditionally complex traits is not 

predicated on the powerful effects of singular variants, but rather stems from the cumulative contributions of hundreds to 

thousands of variants spread throughout the genome (69). Considering this, one could theoretically quantify genetic risk 

by calculating the sum of an individual’s genotypes across predetermined loci weighted by the effect size for risk as 

determined by how strongly said variant had previously been associated with the outcome under consideration (70). PRS 

have become a particularly enticing premise for small-scale genomic studies, as their two-dataset system – in which 

models are first trained in publicly available GWAS before being applied in smaller host samples – allows one to generate 

an analytical proxy capable of detecting finer effects than if association testing were conducted on the smaller dataset 

alone (70). 

PRS analysis is a rapidly growing field, and while its predictive ability still needs to improve to qualify for routine use in 

clinical settings, the associated data produced remains highly biologically relevant in its ability to shed light on the 
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underlying nature of complex diseases. However, much in the same way that PTSD remains relatively understudied as 

compared to its psychiatric counterparts, there has yet to be substantial research assessing the feasibility of PRS-mediated 

risk prediction within the disorder. Moreover, the existing literature is further limited in that extant differences in both 

the analytical approach utilised and the manner in which results are reported renders it difficult to compare inter-study 

predictive performance.  

As such, we have collated a brief summary of previous PTSD-PRS in Table 3 – wherein reported findings were largely 

restricted to the component of PTSD assessed and whether the generated model was capable of significantly 

differentiating between the conditions tested.  
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Table 3: Previous attempts to construct polygenic risk scores for PTSD 

 

Study Discovery Sample 
Discovery Case-Control 

 Breakdown 
Reference Dataset Component Assessed Predictive Success 

Nievergelt et al., (2019) 

(6) 
• European (n = 174,659)1,2 

• Case = 23,212 

• Control = 151,447 

PGC-PTSD GWAS 

(European) 
PTSD Status Significant 

Misganaw et al., (2019) 

(14) 

• European (n = 77)1 

• African American (n = 64)1 

• Hispanic and Latino American (n = 85)1 

• Asian (n = 12)1 

• Other Ethnicities (n = 6)1 

• Case = 128 

• Control = 116 

PGC-PTSD GWAS 

(European) 

PTSD Status Significant 

PTSD Symptom Severity Significant 

Schur et al., (2019) 

(71) 
• European (n = 516)1 - 

PGC-PTSD GWAS 

(European) 

& 

Independent GWAS** 

(European) 

PTSD Symptom Development Non-Significant 

Waszczuk et al., (2020) 

(72) 
• European (n = 1,490)2 

• Case = 355 

• Control = 1,135 

PGC-PTSD GWAS 

(European) 
PTSD Status Non-Significant 

Shen et al., (2020) 

(25) 
• Latino American (n = 3,414)2 

• Case = 1,698 

• Control = 1,716 

PGC-PTSD GWAS 

(Multi-ethnic) 
PTSD Status Non-Significant 

* 1 Military-based population; 2 Civilian-based population. 

** Study generated a combined reference using summary statistics derived from the PGC and the Army Study to Assess Risk and Resilience in Servicemembers (STARRS) (22). 
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From a performance perspective, extant PTSD-PRS have fared variably – with only two of the five studies identified 

presenting PRS models capable of significantly predicting the PTSD component under study. Moreover, upon further 

disassembling the PTSD phenotype into a series of interdependent components, neither Schur et al., (2012) (71) nor  

Waszczuk et al., (2020) (72) were able to attain significant prediction. Schur et al., (2019) conducted their study in a 

longitudinal manner, wherein a cohort of military veterans were repeatedly assessed for PTSD symptom development at 

a series of interviews over five years. The primary benefit of such a strategy lies in that it allows one to better characterise 

overall risk by identifying subthreshold individuals who may not have been detected had the cohort been assessed at a 

singular moment. However, Schur et al., (2019) reported that no PRS model achieved predictive significance at any of 

the timepoints tested (71). Moreover, upon conducting their initial assessment Waszczuk et al., (2020) took the 

opportunity to reinterview their recruited participants so as to further characterise each individual with respect to specific 

PTSD symptoms – wherein PRS were subsequently recalculated to assess predictive performance against re-experiencing, 

avoidance, numbing and hyper-arousal symptoms (72). Yet, despite narrowing the manner in which outcomes were 

defined, PTSD-PRS were still not able to significantly predict the trait tested (72).  

Additionally, there is a distinct lack of PTSD-PRS studies centred around both non-European and multi-ethnic 

populations. The majority of studies conducted thus far have utilised European summary statistics to predict PTSD status 

in individuals of European ancestry. Subsequent attempts to rectify this have been met with little success. Upon repeating 

their initial analysis, Misganaw et al., (2019) failed to generate successful PRS when applying both European and African 

summary statistics to the African American subset of their study cohort (14). Furthermore, the Peruvian cohort employed 

by Shen et al., (2020) represents the first instance of PTSD-PRS being applied in a multi-ethnic population (25). However, 

despite utilising multi-ethnic summary statistics, the study found that PTSD-PRS was not capable of distinguishing 

between PTSD status in its sample population. Most importantly to this thesis, there has thus far been no studies assessing 

the feasibility of PTSD-PRS in African populations. 

Clearly, there exists a strong need for both increased efforts in assessing the overall validity of PTSD-PRS as well as 

increased contributions to studies implementing PTSD-PRS in non-European populations. As such, this thesis has two 

broad aims which it intends to accomplish: (i) the utilization of PRS modelling to construct a variable capable of predicting 

PTSD case-control status within a South African population; and (ii) the integration of PRS variants and DNA methylation 

data to identify mQTLs associated with PTSD.   
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Methods 

 

1. Participants 

 

Our sample consisted of 327 individuals (164 PTSD cases & 163 trauma-exposed controls (TEC)) recruited as part of a 

larger project investigating the potential commonality of genomic, neural, cellular and environmental features observed 

across neuropsychiatric disorders and cardiovascular disease risk (Understanding the SHARED ROOTS of 

Neuropsychiatric Disorders and Modifiable Risk Factors for Cardiovascular Disease). Participants were enrolled via 

subjective sampling measures applied to one of three potential recruitment avenues: (i) hospitals and community clinics 

located in the greater area surrounding Tygerberg Hospital in the Western Cape; (ii) print, radio and web-based 

advertisements; and (iii) referrals from the Mental Health Information Centre at Stellenbosch University’s Department of 

Psychiatry (Faculty of Medicine and Health Sciences, Tygerberg, South Africa). According to Shared Roots inclusion 

criteria, all participants were at least 18 years of age and self-identified as members of the South African Mixed Ancestry 

(South African Coloured) ethnic group, hereafter referred to as “SAC”. Recruitment efforts were restricted to a single 

ethnic group so as to limit undue confounding effects due to population structure. Furthermore, inclusion required that 

participants could proficiently read and write in either English or Afrikaans and were committed to attending subsequent 

follow-up meetings. All recruited subjects were matched for age, gender, education and socioeconomic status. Ethics 

approval for the parent study was granted by the Stellenbosch University Health Research Ethics Committee institutional 

review board (Ethics Approval Number: N13/08/115). The recruited sample lacked sufficient statistical power for the 

detection of PTSD-associated variants through GWAS. Preliminary analysis using notable variants identified in an 

international meta-analysis of PTSD GWAS indicated that the study presented approximately 42% power for the detection 

of an appropriate candidate SNP under a genome-wide significance threshold of 5e-8 (minor allele frequency = 34%; 

odds ratio = 1.12) (6). 

 

2. Demographic and clinical assessments  

 

All participants underwent assessments in the form of diagnostic interviews and a series of clinical questionnaires 

administered by qualified medical personnel in the Department of Psychiatry, Stellenbosch University. PTSD was 

diagnosed using the Clinician Administered Posttraumatic Stress Disorder Scale for DSM-5 (CAPS-5) (73). A CAPS-5 

total severity score of 23 or higher was used to separate participants into the PTSD cohort. Childhood trauma exposure 

was evaluated through the Childhood Trauma Questionnaire (CTQ) (74). Extant literature has suggested that CTQ scores 

can be divided into a series of representative intervals, wherein the proposed cut-offs are reflective of none to minimal 

trauma exposure (25 – 36), low to moderate trauma exposure (41 – 51), moderate to severe trauma exposure (56 – 68) 

and severe to extreme trauma exposure (73 – 125) (75,76). For this study, a score of 41 or higher on the CTQ was used 

as a screening cut-off value to categorically identify participants that met the basal requirement for having had experienced 

low childhood trauma. Current major depressive disorder (MDD) was identified using the Mini-International 

Neuropsychiatric Interview (M.I.N.I v6.0) (77). While phenotypically varied, increasing evidence suggests that common 

psychiatric disorders share overlapping genetic architecture (78). Thus, to avoid potential confounding, any study 

participant presenting evidence of any other major psychiatric disorder (e.g. schizophrenia or bipolar disorder) as per the 

M.I.N.I v6.0 was excluded from the current study. 
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Demographic information pertaining to individual age, gender and medical history was also obtained from each 

participant. Both smoking status and alcohol use were assessed according to individual responses given to the study-

specific medical questionnaire – wherein any lifetime intake of nicotine or alcohol was regarded as presenting a history 

of smoking or alcohol use. Participants were also screened for Metabolic Syndrome (MetS) according to internationally 

agreed-upon practices established by the efforts of Alberti et al., (2009) as the joint interim statement of the International 

Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American 

Heart Association; World Heart Federation; International Atherosclerosis Society and International Association for the 

Study of Obesity (79). 

MetS was thus defined as any participant who possessed three or more of the following five criteria: (i) fasting glucose 

greater than 100 mg/dl or receiving treatment for elevated glucose levels; (ii) systolic blood pressure greater than 130 mm 

Hg, diastolic blood pressure greater than 85 mm Hg or receiving treatment for chronic hypertension; (iii) high density 

lipoprotein (HDL-C) levels less than 40 mg/dl in males and 50 mg/dl in females, or receiving treatment for low HDL-C; 

(iv) triglyceride levels greater than 150 mg/dL or receiving treatment for elevated triglyceride levels; and (v) a waist 

circumference greater than the population-specific threshold. A waist circumference cut-off of 90 cm was employed in 

both males and females, as per the recommendations of Matsha et al., (2013) for the SAC population (80). The appropriate 

physical measurements were obtained in accordance with criteria established by the World Health Organisation STEPwise 

Approach to Surveillance (STEPS) instrument (81). 

 

3. Biological measures 

 

Blood samples were drawn by a qualified nurse and DNA extraction was performed through traditional phenol-chloroform 

techniques. Blood samples were obtained immediately upon participant recruitment and stored for no longer than two 

days at 4° C before performing DNA extraction. Extraction was conducted in such a manner that the resulting genomic 

product aligned with the standard concentration of ~ 200 ng/µl. Spectrophotometric analysis was subsequently conducted 

using the NanoDrop 2000c Spectrophotometer (Thermo Fisher Scientific, Waltham, MA) as a method of quantification 

and quality assessment. After preparation, DNA samples were stored at -20° C for long-term storage. Genotyping data 

was obtained using the Multi-Ethnic Genotyping Array (Illumina) in collaboration with the PGC. Array selection 

prioritised accurately capturing the diverse ancestry of our sample population, where the Multi-Ethnic Genotyping array 

tailors to exploratory mapping across multiple ethnicities (82).  Moreover, epigenome-wide methylation data was attained 

using the EPIC 850K Array (Illumina) due to the array’s improved coverage of regulatory regions and historical technical 

replicability (83). Genotyping array and DNA methylation data was available for 327 (164 PTSD cases & 163 TEC) and 

120 (61 PTSD cases & 59 TEC) participants, respectively. 

 

4. Quality control of genotyping data  

 

Genotyping data was processed using PLINK v1.9 through an iterative quality control procedure previously described by 

Anderson et al., (2010) (84), Coleman et al., (2016) (85) and Schurz et al., (2019) (86). The quality control process can 

be differentiated into two broad actions: filtering at the individual SNP level followed by the filtering of participants. 

These two phases are traditionally separated so as to minimize the potential loss of any genetic data – wherein studies 
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would rather remove singular SNPs than whole individuals from downstream analysis (84). In the following paragraphs 

we will provide a brief description of the various steps, as well as their accompanying exclusion thresholds, constituting 

the quality control pipeline for genotyping data. A graphical representation of this protocol has been provided in Figure 

1, below.  
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Figure 1: Quality control of genotyping data. A visual depiction of the quality control pipeline used to prepare genomic 

data for analysis. The overall cleaning procedure consists of three broad stages, two of which utilise iterative elimination 

as progression barriers. Stages one and two, defined as the initial filtering of SNPs and individuals followed by testing 

for differential SNP missingness, are repeated until no further elements are removed. Once all iterative requirements are 

met, the cleaning process is finalised with a test to verify reported sex. The specific thresholds used to identify objects 

qualifying for exclusion are indicated by the dashed line to the right of each subtest.  

 

Single nucleotide polymorphisms were removed if found to present more than 3% missingness, a minor allele frequency 

(MAF) below 1% or if found to be in violation of the standard Hardy-Weinberg equilibrium threshold (p ≤ 1 x 10-6). 

Missingness refers to the proportional degree to which SNPs are absent across individual genotypes (87). For example, if 
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a SNP was only observed in 95% of a cohort, that particular SNP would present a missingness of 5%.  MAF measures 

reflect the variation found within SNPs present in a sample population. Specifically, MAF examines the prevalence at 

which the least common, or minor, allele for a given SNP occurs in the population under consideration (85,87). 

Traditionally, a MAF below 1% has been used to distinguish rarer mutations from more established SNPs (85,88). Lastly, 

Hardy-Weinberg equilibrium is a biological law that places theoretical limits on the extent to which the genetic 

architecture of a non-evolving population, as encapsulated by allele and genotype frequencies, can change across 

generations (84,87,88). Ensuring Hardy Weinberg conformity, which is tested for by using population allele frequencies 

to compare the expected and observed occurrence of individual genotypes, is essential for the identification of genotyping 

errors within a genomic dataset (87,88).  

Quality control was conducted at the individual level by removing participants displaying more than 1% missingness or 

heterozygosity to an excessive degree of deviancy. In contrast to SNP missingness, individual missingness serves as a 

proxy for the strength of genotyping; or rather, as a measure of how accurately individual genotypes were captured (87). 

In like manner, heterozygosity, which refers to the natural state in which a SNP exists as two different alleles at the same 

locus, addresses a different facet of overall data quality (85,87). Abnormal heterozygosity, as identified by individuals 

falling further than three standard deviations away from the mean heterozygosity observed in the cohort, may suggest that 

the DNA sample used for initial genotyping was of poor quality (85,87). A graphical representation depicting the 

relationship between individual missingness and observed heterozygosity has been provided as a proxy for overall sample 

quality in Supplementary Figure 1. 

Together, the steps outlined in the preceding paragraphs represent a singular phase of filtering; the completion of which 

was accompanied by a test for differential SNP missingness between cases and controls, wherein any offending SNPs (p 

≤ 0.05) were noted for subsequent removal. Differential SNP missingness functions as a modified extension of classic 

SNP missingness in that instead of assessing whether a SNP is equally prevalent across all individuals, the test examines 

how SNPs are distributed between cases and controls (84). Paired in tandem, these measures were conducted in an 

iterative manner until no further SNPs or individuals qualified for exclusion.  

Lastly, any individual found to present discordant sex information was removed from all ensuing analysis (Supplementary 

Figure 2). Sex was confirmed by comparing reported identity labels to the occurrence of heterogeneity within X-

chromosome associated SNPs. As males only possess a single X-chromosome, they should not present as heterozygous 

for any X-chromosome associated SNPs. By calculating homozygosity (i.e. the presence of two identical alleles at the 

same locus) for each individual X-chromosome marker and comparing the observed mean homozygosity rate to that 

which would be expected in males (~ 1.00) and females (x < 0.2); one could identify study participants presenting sex 

information that conflicts with that recorded during the initial interview process (84,85,87,88).  

While not traditionally considered integral to the quality control process – it should be noted that all ensuing analysis was 

limited to autosomal chromosomes as sex-linked testing did not fall within the scope of this study. 

 

5. Principal component analysis 

 

Before proceeding with subsequent analysis, it was deemed necessary to address the potential effects that population 

stratification may have on the association testing conducted at a later point in this study. At a fundamental level, 

association tests are simply statistical methods designed to identify relationships between variants and a particular trait or 
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characteristic of interest. However, maintaining the statistical integrity of said methods requires that the tests adhere to 

several predefined assumptions, the most important of which is the assumption that all variants observed are 

independently distributed across the sample population (89).  

Violations to this assumption primarily arise when participants are derived from more than one ancestral population. This 

is encapsulated in the term ‘population stratification’, which refers to the occurrence wherein, due to a myriad of historical, 

geographical and cultural contributions, different populations may present varying allele frequencies for the same genetic 

loci (90). As such, failing to account for innate differences in allele frequencies across ancestry groups may increase the 

degree to which false positives are detected – where the ancestrally-driven prevalence of certain variants is mistakenly 

identified as being indicative of a causal relationship with the trait under study.  

One of the more common approaches to address such concerns is to conduct a principal component analysis (PCA) 

spatially contextualising the sample against a range of population references. Briefly, PCA is a statistical method designed 

to condense high-density data into its fewest number of non-correlated components; effectively allowing one to quantify 

isolated sources of variation within a dataset (91). With respect to genomics studies, the non-correlated components 

identified theoretically reflect the genetic diversity observed across sampled individuals - where the clustering of 

individuals within a component indicates a similar degree of SNP variation when compared to the mean. Consequently, 

plotting multiple versions of said non-correlated components (termed principal components) against each other would 

allow one to visually assess how the genetic diversity observed in a study cohort relates to that of known population 

references. 

With regards to selecting the appropriate reference for accurate contextualisation, the sample population utilised here 

poses a unique challenge – in that the SAC community traces its roots to five original source populations: African San, 

African non-San, European, South Asian and East Asian (92). To best assure adequate representation, we elected to 

combine data provided by two existing references: (i) Phase 3 of the 1000 Genomes project (which contains information 

pertaining to individuals of African, European, South Asian, East Asian and Admixed American descent) (93); and (ii) 

that of a recent study by Uren et al., (2016) which provided genomic data specific to individuals of KhoeSan heritage 

(94). 

In order to implement PCA with the intentions described above, the existing study data were merged with that of the 

population references to create a temporary dataset for further analysis. Importantly, sample homogeneity was maintained 

throughout the merging process by restricting imported SNPs to those already present within our initial cohort. Once 

successfully merged, each individual was tagged with a new identifier indicative of their representative population group 

(African, Admixed American, East Asian, European, KhoeSan, SAC or South Asian) and PCA was conducted using 

PLINK v1.9 and R v4.0.2. A graphical aid depicting the results of said testing, has been provided in Figure 2 below. 
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Figure 2: Principal component analysis depicting relationship between study cohort and population references. A 

visual aid illustrating the genetic diversity of our sample population. Obtained by plotting the first two principal 

components, which represent the two biggest sources of variation identified, against one another - the above graph depicts 

the relationship between our sample population and that of the references in the form of shared genetic variation when 

compared to the dataset mean. Each population group was assigned a unique visual identifier; wherein AFR = African, 

AMR = Admixed American, EAS = East Asian, EUR = European, KHOI = KhoeSan, SAC = South African Coloured, 

SAS = South Asian; and spatial proximity was indicative of similar genetic diversity. 

 

Subsequent visual assessment of the spatial relationship between our sample and that of the population references 

confirmed that a substantial degree of genetic diversity was contributed by multiple source populations, and thus 

highlighted the need to account for the effects of population stratification in ensuing association tests. To ensure 

methodological consistency between the techniques described here and that of the studies used as guiding references, we 

elected to utilise methods proposed by Coleman et al., (2016) - wherein the appropriate covariates were identified by 

conducting PCA on the initial study data (Supplementary Figure 3) and subsequently using linear regression models to 

determine which principal components were most closely associated with the outcome under consideration (85) 

(Supplementary Table 1). After regressing the first twenty principal components against PTSD status – where twenty 

serves as the standard output for PLINK v1.9’s inbuilt PCA function – it was determined that the components 

corresponding to the second (p = 0.078) and eighteenth (p = 0.077) largest sources of variation were noticeably 

distinguishable from that of the field and consequently, should both be employed as genomic covariates in ensuing 

analyses.  
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6. Imputation of genotyping data  

 

Once subjected to quality control, the genotyping data was submitted to the Sanger Imputation Service (SIS) for 

imputation (95). While recent years have seen remarkable advancements in the development of genotyping arrays; when 

employed alone, such methods present inherent limitations in the statistical power they lend to association studies. 

Genotyping arrays are not designed with blanket coverage of the human genome in mind. Rather, they scan for a select 

number of common and rare genetic variants to generate a profile curated to maximize downstream imputation accuracy 

(86). Broadly speaking, imputation refers to the process through which missing genotypes are statistically inferred by 

comparing genotyped data to a population-specific reference panel (96). This is primarily done through the use of linkage 

disequilibrium patterns: the phenomenon where particular groups of alleles are more frequently observed together than 

traditionally expected should the laws of mendelian inheritance be in effect (97). In light of this occurrence, one could 

infer the state of SNPs falling outside the detection scope of genotyping arrays by comparing successfully genotyped loci 

to a suitable reference panel reflective of the linkage disequilibrium patterns most prevalent in your sample population 

(86). Therefore, by increasing the number of genotyped loci available for subsequent analysis, imputation serves to 

dramatically improve one’s ability to detect statistically meaningful findings through association testing.  

Imputation was performed using a combination of in-house scripts prepared by Dr. Stephanie Pitts, a previous PhD 

candidate of Stellenbosch University’s Division of Molecular Biology and Human Genetics, and protocols formerly 

detailed by Coleman et al., (2016) (85) and Schurz et al., (2019) (86). The process through which genotyping data is 

imputed occurs across three distinct phases: preliminary data preparation, submission to the SIS and post-imputation 

quality control. In the following paragraphs we will provide a succinct summary further characterizing the role played by 

each of these phases within the greater imputation pipeline. A graphical representation of this protocol has been provided 

in Figure 3, below.  
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Figure 3: Imputation of genotyping data. A graphical aid illustrating the three stages through which genomic data is 

imputed: preliminary data preparation, imputation and post-imputation quality control. The legend on the top right 

provides the colour coded index distinguishing each phase and highlights which genomic reference panels were required 

to conduct certain subtests within the pipeline (as indicated by corresponding numerical superscripts). Dashed lines were 

used to incorporate additional information by further elaborating upon the parameters used to run imputation through the 

Sanger Imputation Service (SIS) and the variables delineating exclusionary thresholds under the imputation and post-

imputation quality control phases respectively.  
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Prior to submitting a dataset for imputation, the SIS requests that all entries conform to a series of established formatting 

conditions. Namely: (i) that the submitted file be in variant calling format (VCF); (ii) that all alleles be designated in their 

forward strand state; (iii) that the submitted file utilise a genomic coordinate strategy aligning with that of the Genome 

Reference Consortium Human genome build 37 (GRCh37); (iv) that the appropriate reference alleles within the submitted 

file match those used in the GRCh37; (v) that the dataset be submitted as a single VCF file as opposed to one VCF per 

chromosome; (vi) that the submitted file be correctly sorted by genomic position; and (vii) that the submitted file utilise 

the chromosome naming convention described by the SIS reference index (where 1,2 and 3 correspond to chromosome 

1, chromosome 2 and chromosome 3 respectively etc.). The necessary steps required to align existing genotyping data 

with these recommendations can be implemented using PLINK v1.9 and BCFtools v1.10.2. 

Firstly, the existing dataset was converted from the PLINK binary format in which quality control is traditionally 

conducted to a compressed VCF through a two-step conversion process wherein the data was transformed through PLINK 

before undergoing BCFtools compression. Typically, a given genotyping dataset exists as three separate files when in 

PLINK binary format. These files, as identified by the extensions, “.bed”, “.bim” and “.fam”, correspond to raw 

genotyping data, a summary of the detected variants and anonymised sample information respectively. VCF files 

condense this information into a single element – wherein particular emphasis is granted to what variants were predicted 

and the confidence that those initial predictions were correct.  

Once converted, strand orientation was assessed to ensure that all variants called were correctly reported in their forward 

strand state. Briefly, strand orientation serves as a directional reference frame through which to discern the sense and 

antisense states in which variants occur (98). The forward, or sense, strand is the polynucleotide chain which is not 

transcribed and thus most closely approximates any mRNA produced. Strand orientation was determined by attempting 

to align the dataset against the GRCh37 reference; wherein alignment efficacy was evaluated through the reported number 

of allelic mismatches and non-biallelic sites identified. Within the context described above, the term allelic mismatches 

does not possess a strict biological definition – but rather serves as the appropriate nomenclature for when the variant 

detected at a given loci differs from that registered at its corresponding genomic position in the reference. Alternatively, 

the frequency at which non-biallelic sites are observed is indicative of the degree to which multiallelic loci are present in 

a dataset. Multiallelic loci are genetic sites where more than one variable allele exists alongside the predominant wild 

type (99). While recognised as a naturally occurring genomic state, multiallelic loci tend to be excluded from analysis 

pipelines – as historical uncertainty regarding their prevalence and distribution throughout the genome has rendered it 

difficult to accurately account for their presence (100). 

Allelic mismatches identified while attempting to verify strand orientation were corrected by fixing the dataset against 

the concatenated 1000 Genomes Phase 3 reference assembly – an internationally generated dataset serving as the premier 

catalogue of human genetic variation (93). Corrective alignment was conducted in an iterative manner, where strand 

orientation assessment and assembly adjustment were cyclically repeated until no further mismatches could be rectified. 

Once automated mismatch reduction had plateaued, the remaining allelic mismatches and non-biallelic sites were 

manually removed before ultimately authenticating that strand orientation aligned with that established by the GRCh37 

reference. Final preparatory modifications prior to submitting the dataset to the SIS primarily consisted of formatting 

alterations: (i) ensuring that all chromosomes had been named in accordance with Ensembl conventions (as defined by 

the European Bioinformatics Institute) (101); and (ii) numerically sorting the integrated dataset by genomic position. 

Upon submission to the SIS, an imputation job was created requesting that the dataset be processed through the 

SHAPEIT2 & PBWT pre-phasing and imputation pipeline using the African Genome Resource reference panel (86). 
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When employed alone, the size of the reference panel against which one’s dataset is compared renders imputation highly 

computationally intensive. Therefore, pre-phasing tools, such as SHAPEIT2, are commonly utilised for initial haplotype 

estimation – in which statistical models are used to generate preliminary genotype probabilities so as to alleviate later 

computational burden (102,103). Once the dataset was adequately prepared, imputation was performed using a modified 

version of the Positional Burrows-Wheeler Transform, or PBWT, algorithm. While a detailed explanation as to the 

functioning of this algorithm falls outside the scope of this thesis, Durbin et al., (2014) has provided a comprehensive 

analysis describing how the method can be applied to haplotype matching in their paper Efficient haplotype matching and 

storage using the positional Burrows-Wheeler transform (PBWT) (104). In order to ensure that the reference panel 

implemented was ancestrally representative of our sample population, we elected to utilise the African Genome Resource 

– which serves as a conglomerate template consisting of the 1000 Genomes Phase 3 reference release supplemented with 

samples sourced from Uganda, Ethiopia, Egypt, Namibia and South Africa (86,95). However, it should be noted that the 

South African contributions were strictly limited to individuals of Zulu (African Non-San) ancestry. 

Once the imputation job was successfully completed, the SIS returned the dataset in the form of a series of compressed 

VCF files indicative of each imputed chromosome. Prior to conducting post-imputation quality control, the imputed 

chromosomes were concatenated into a singular file and assessed to verify whether all submitted chromosomes were 

present and had been adequately imputed. Quality control was initiated by first examining the condition to which 

imputation was implemented across all presented variants. Upon processing an imputation request, the pipeline employed 

provides a software-specific variable representative of the confidence that each variant was correctly imputed. Within the 

context of our analysis, the SHAPEIT2 & PBWT pipeline supplied an INFO score as an emblematic measure of 

performance. INFO scores are not traditionally restricted to a recommended threshold but are rather limited depending 

on the frequency at which they occur across individual datasets. To further elaborate, existing standards advocate that one 

generates a frequency distribution of INFO scores across all chromosomes and then subsequently select an exclusionary 

threshold at the point of inflection (85). A graphical example illustrating how this was done has been provided in 

Supplementary Figure 4. For the purpose of this analysis, we elected to utilise an INFO score threshold of 0.8 to delineate 

poorly imputed variants. 

After filtering according to INFO score, the dataset was restored to PLINK binary format through a two-step conversion 

process – during which, variants were further restricted to those presenting less than 30% missingness while in an 

intermediary PLINK format (“.ped” & “.map”) before being returned to binary format for the application of additional 

quality control measures (86). Firstly, the indemnification applied by the SIS during imputation was rectified by 

reincorporating the appropriate identity and phenotype variables at the individual level. At which point SNPs were 

removed if found to present a MAF below 1%, an excessive degree of SNP missingness or if found to exist in a 

monomorphic state. In contrast to previous steps attempting to correct for SNP missingness, the iteration implemented 

here does not rely on a predetermined threshold, but rather uses the same frequency distribution-based method applied 

for the selection of an INFO score threshold outlined in the paragraph above. When assessing the degree to which SNP 

missingness occurred across all remaining variants, it was determined that the inflection point, and thus the appropriate 

exclusionary threshold, fell at SNPs presenting a missingness greater than 3% (Supplementary Figure 5). Contrarily, the 

steps followed to address MAF and monomorphism are theoretically indistinguishable – wherein both could be done 

simultaneously through the application of the aforementioned 1% MAF threshold. Monomorphic variants serve as the 

antithesis of multiallelic loci in that they are predominately found to occur in a single phase across all individuals in a 

population (105). As such, they are commonly omitted from analysis considering genetic variation due to the lack of 

informativeness derived from their homogenous state (85,88). Distinguishing between variants removed due to 
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monomorphism and notable MAF, as determined by applying MAF thresholds of 0% and 1% respectively, remains solely 

for academic purposes – in that the findings do not meaningfully contribute to subsequent analysis but rather serve to 

further characterise the dataset under study.  

 

7. Genome-wide association analysis 

 

Once the genotyping data had successfully undergone standard quality control and subsequent imputation, the expanded 

dataset could be prepared for genome-wide association testing. First, the imputed dataset was revaluated, and any 

individual found to present a PI_HAT value greater than 0.1875 was removed from all subsequent analysis. PI_HAT, 

which represents the proportion of identity by descent, is the statistic produced by PLINK’s inbuilt test for duplicated 

samples and relatedness (106). If so prompted, PLINK is capable of detecting hidden familial relationships by creating 

pairwise identity by descent matrices across all individuals in one’s sample. Simply, the matrices serve as a method of 

identifying every manner in which a unique pair of individuals can be grouped and subsequently examining how similar 

the two are as compared to that which would be expected by random chance. PI_HAT effectively encapsulates this 

observed similarity or dissimilarity in the form of a numeric ratio indicative of suspected degrees of relatedness; where a 

PI_HAT value of one typically represents duplicated samples, or monozygotic twins, and genetic distinctiveness increases 

as the statistic approaches zero (84). A PI_HAT value of 0.1875 corresponds to approximately half-way that which one 

would expect to observe between second and third degree relatives (0.25 and 0.125 respectively) and is commonly 

regarded as being sufficiently stringent so as to address the overrepresentation of familial variants when assessing 

vulnerabilities to the trait under study (70,85). It should be noted, that relatedness is traditionally accounted for during the 

final stages of quality control (often as an accompaniment to testing for discordant sex information); however, we elected 

to initially refrain from implementing said measures so as to maximise the amount of genetic data available for imputation 

(86). 

The existing dataset was further refined by restricting our analysis to SNPs that had been assigned unique identifiers, or 

rsIDs. rsIDs are a product of the National Centre for Biotechnology Information’s Single Nucleotide Polymorphism 

Database (dbSNP) – wherein their allocation highlights SNPs that have been thoroughly mapped and annotated to the 

degree that they are deemed to be reasonably stable references for investigative and reporting purposes (107).  

Potential covariates were identified by using a series of statistical tests to investigate whether information obtained 

through the neuropsychological assessments and demographic questionnaire differed according to PTSD case-control 

status. Specifically, recorded variables pertaining to participant age and gender were deemed most likely to serve as 

genetic confounders. Statistical tests were carried out in a manner appropriate to the nature of each variable, with 

assumptions appertaining to normality and variance guiding which analytical methods were implemented. Neither 

participant age (t = -0.651; p = 0.515) nor participant sex (X2 = 0.013; p = 0.908) were found to significantly diverge 

between PTSD cases and TEC. As such, genomic covariates were limited to the two principal components (PC2 & PC18) 

previously included to account for the effects of population stratification. 

A GWAS was performed by running the cleaned imputed dataset through PLINK v1.9’s inbuilt association function while 

using principal components 2 and 18 as covariates. Subsequent results were visually assessed through a R v4.0.2. 

generated Manhattan plot and a p-value threshold of 5e-8 was used to delineate genome-wide significance. To ensure 

adequate elaboration upon any variants which may trend towards suggestive associations, corresponding summary 

statistics were submitted to the online tool FUMA (Functional Mapping and Annotation for Genome-Wide Association 
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Studies) (108) for subsequent annotation of the resulting findings. All FUMA analysis were conducted with the standard 

recommended settings.  

 

8. Polygenic risk score analysis 

 

PRS analysis was primarily performed using PRSice (69), a specialized command line tool tailored to automate the 

necessary adjustments and calculations required to generate PRS for each individual in one’s sample. The software 

package is designed in such a manner that all relevant parameters are concatenated into a single command with minimal 

user requirements. Despite the automated nature of the aforementioned process, there was one particular facet unto which 

additional considerations were granted: the selection of an appropriate reference dataset. 

Inarguably, the most critical component relating to the accurate calculation of PRS is the selection of a reference dataset 

indicative of variants previously associated with one’s phenotype of interest. The reference, or base, dataset provides the 

summary statistics from which the estimated effect sizes for individual variants are garnered; effectively rendering it the 

sole arbiter of the weighting system used to calculate risk. Current norms dictate that the ideal reference is simply the 

largest publicly available GWAS assessing the trait under study (68,70). For the purpose of our analysis, we elected to 

utilise the PGC PTSD Work Group’s most recent data release (PTSD Freeze 2) – which contains data pertaining to 

206,655 multi-ethnic individuals sourced from sixty independent GWAS (6). 

The greater PGC PTSD Freeze 2 data release can be broadly differentiated into three distinct subgroupings: individuals 

of European ancestry (89.25%), individuals of Latino/Native American ancestry (2.91%) and individuals of African 

American ancestry (7.84%). Moreover, it should be noted that there was no participant overlap between the sample 

population utilised here and that of the PGC PTSD Freeze 2 data release.  To determine which combination of population 

references would maximise predictive performance, we elected to conduct two preliminary runs comparing the African 

American data and the collective overall dataset as our respective templates. Predictive performance was assessed across 

a predetermined range of p-value thresholds, wherein PRSice applied p-value cut-offs of 0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 

0.5 and 1 to the references so as to identify which combination of PTSD-associated variants could best distinguish between 

cases and controls in our sample. Goodness-of-fit was then subsequently evaluated through a two-metric system, in which 

the overall performance of each run was judged by the proportion of variation explained (as represented by Nagelkerke’s 

pseudo R2 value) and the corresponding significance level of the most predictive model. Multiple testing adjustments 

were enforced through Bonferroni correction, wherein the threshold for significance was set as the standard significance 

threshold divided by the number of p-value cut-offs tested (p = 0.05 / 8 cut-offs tested = 6.25e-3). 

PRS constructed using a combination of all three population subgroupings were found to consistently outperform those 

employing solely the African American data – with the most predictive combined PRS explaining approximately 4.41% 

of the variation observed in PTSD outcome (R2 = 4.41e-2; p = 0.064). The overall validity of this model was further 

confirmed by recreating PRSice’s Nagelkerke’s pseudo R2 calculation in R v4.0.2. Where an identical value was produced 

when using the PRS scores assigned to each individual to simulate the logistic regression model through which the metric 

was inferred.  

Ultimately, PRSice determined that PTSD status could best be predicted by assessing the degree to which each individual 

presented combinations of a select 1,444 variants identified by applying a p-value cut-off of 0.001 to the combined PGC 

PTSD Freeze 2 reference dataset. 
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9. Quality control & functional normalisation of DNA methylation data 

 

The DNA methylation data made available for 120 of the genotyped individuals (61 PTSD cases & 59 TEC) was prepared 

for subsequent analysis through a host of packages run through R v4.0.2. Quality control and functional normalization 

were performed using meffil (109) equipped with parameters previously described by Dr. Sylvanus Toikumo, a previous 

PhD candidate of Stellenbosch University’s Division of Molecular Biology and Human Genetics (110). Developed by 

Min et al., (2018) (109), meffil is tailored to maximise computational efficiency and ensuing repeatability for the 

processing of DNA methylation data derived from Illumina Methylation BeadChip microarrays. The overarching package 

consists of several self-contained modules, in which each component can independently generate a report documenting 

how the algorithm addressed one particular facet of the analysis. In the following paragraphs, we will provide a brief 

explanation as to the underlying mechanisms behind two such components, those considering quality control & functional 

normalization, and the manner in which they were applied to the dataset in question.  

Before moving forward, a quick introduction may be needed as to the technical aspects through which BeadChip 

microarrays detect DNA methylation. Illumina products utilizing BeadChip-based detection methods rely on 

preassembled libraries of silica microbeads – where individual beads have been laced with unique oligonucleotides 

corresponding to predetermined loci throughout the genome (111). The beads are purposefully deployed with redundancy 

in mind, in that multiple beads bear the same oligonucleotide sequence should adequate binding, and therefore detection, 

not occur at any one instance (112). However, this surplus of beads provides additional benefits alongside its primary 

function as a technical failsafe – wherein the performance of beads within and across samples plays an integral role in the 

quality control process.  

Briefly, to initiate the quality control process, meffil requires that one modify the base algorithm by adjusting the included 

parameters to best suit one’s analytical needs. For the purpose of this project, we elected to employ the following 

conditional values: (i) [detection.threshold = 0.01] – a p-value threshold of 0.01 should be used to distinguish between 

detected and undetected probes; (ii) [detectionp.samples.threshold = 0.1] – any sample for which more than 10% of 

presented probes fail to be detected should be excluded from all subsequent analysis; (iii) [beadnum.samples.threshold = 

0.1] – any sample for which more than 10% of presented probes fail to be observed across at least three beads (henceforth 

referred to as the minimum bead threshold) should be excluded from all subsequent analysis; (iv) 

[detectionp.cpgs.threshold = 0.1] – any probe for which the given probe fails to be detected across more than 10% of 

samples should be excluded from all subsequent analysis; (v) [beadnum.cpg.threshold = 0.1] – any probe for which the 

given probe fails to meet the minimum bead threshold across more than 10% of samples should be excluded from all 

subsequent analysis; (vi) [sex.outlier.sd = 5] – any sample presenting a median X or Y chromosome intensity not within 

five standard deviations of the dataset median should be removed from all subsequent analysis; (vii) 

[snp.concordance.threshold = 0.95] – a concordance threshold of 0.95 should be used to select control SNP probes for 

concordance analysis; and (viii) [sample.genotype.concordance.threshold = 0.95] – any sample which fails to achieve 

95% concordance when comparing genotyped loci to control SNP probes should be removed from all subsequent analysis. 

To further elaborate upon two of the hitherto undiscussed commands, the manner in which meffil addresses discordant 

sex information does not differ drastically from the approach first introduced under the processing of genomic data in the 

chapters above. Simply, median probe intensities are calculated across all X & Y chromosome loci so as to generate a 

representative distribution indicative of the intensity patterns associated with each reported sex. Thus, should a particular 

sample present median intensity values falling further than five standard deviations away from those historically observed 
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for their reported sex; said sample would be earmarked for removal due to sexual incongruency (Supplementary Figure 

6). Furthermore, it is common practice for microarrays of this sort to incorporate a sample verification system in the form 

of SNP control probes; a collection of high-frequency loci for which all genotypes have been correlated to specific 

methylation intensities (113). When viewed in their entirety, the control probes produce an identity pattern unique to the 

individual from which the relevant genetic material was derived. Wherein the technical parameters described in points 

(vii) and (viii) establish the qualifying framework determining which loci are shared between sample & microarray and 

subsequently assessing concordance between the two.  

In addition to the conditions outlined above, meffil allows one to specify a cellular composition reference to function as 

a theoretical representation of expected intensity measures, where considerable deviation in observed intensities may be 

indicative of an erroneous detection process or poor-quality sample. As all biological materials utilised throughout this 

thesis were originally sourced from blood, we elected to employ meffil’s “blood gse35069 complete” reference, which 

assumes the most prevalent cell populations are B-lymphocytes, CD4 T cells, CD8 T cells, eosinophils, monocytes, 

neutrophils and natural killer cells.  

Finally, supplementary to the parameters implemented by the user, meffil contains its own quality control mechanisms 

addressing the degree to which methylation was successfully measured across samples. After assessing the distribution 

of intra-sample methylated and unmethylated intensities, aberrant samples were identified as those presenting median 

methylated intensities that fell further than three standard deviations away from that of the overall dataset (Supplementary 

Figure 7). Furthermore, meffil evaluated the general performance of the detection process by examining whether a range 

of quality control probes included to address specific aspects of the experimental method behaved consistently across all 

samples (113). Notably, exclusionary thresholds related to these quality control probes are not subjected to manufacturing 

recommendations but are rather determined by the distribution of outliers deviant from the mean intensity observed for 

each probe (109).  

Once applied, the quality control process described above was conducted in a semi-iterative manner: where the erroneous 

probes and samples accompanying each run were either removed or, if possible, resolved until no further aberrations 

remained. 

Finally, functional normalization was performed so as to concatenate the intensity measures generated over separate 

microarrays and to correct for any abnormal variation resulting from batch specific variables. A thorough overview of the 

statistical methods underlying normalization falls, unfortunately, outside the scope of this thesis. However, the process 

can broadly be described as the act of adjusting values measured across different scales by considering the degree to 

which technical features contribute to variation (114). Briefly, variation was first quantified through PCA; wherein it was 

determined that the first four principal components were most representative of the variation present in the dataset. This 

was deduced by assessing the associated scree plot generated by meffil’s built-in PCA function and assigning our threshold 

to the estimated point of inflection (Supplementary Figure 8). Batch variables, identifying prominent sources of technical 

artifacts, were created – in which array, array column and array row were deemed pertinent for inclusion. Normalization 

was then conducted by examining how the selected principal components, specific to the performance of known control 

probes, were affected by the included batch variables and adjusting the individual intensity measurements accordingly. 

Relationship evaluations took the form of linear regression models, where meffil ran each principal component against 

every available variable before returning a large matrix of normalized intensity values.  

It should be noted that all statements in the above paragraphs that directly refer to the functioning of a meffil command 

or associated feature were sourced from the R documentation titled Meffil: Efficient Algorithms for DNA Methylation. 
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Should the reader wish to garner further information as to the functioning of the algorithms described here, the relevant 

package details can be found at (https://rdrr.io/github/perishky/meffil/). 

 

10. Epigenome-wide association analysis 

 

Once the DNA methylation data had successfully undergone quality control and functional normalization, an EWAS was 

performed using meffil’s inbuilt association function. Potential covariates were identified in a manner similar to that 

previously described in the preceding subheadings – where preliminary hypotheses were tested using a series of statistical 

measures appropriate to the conditions of normality and variance. With regards to the DNA methylation data, variables 

pertaining to whether the participant had a history of smoking, history of alcohol use, met the necessary requirements for 

suspected MetS, and had previously experienced childhood trauma, were deemed most likely to be potential confounders. 

The PCA covariate identification previously conducted to address population stratification was carried out solely in the 

context of the relevant genotyping data - as such, PC2 and PC18 were not included in any subsequent methylation analysis. 

All assumptions were supported by existing evidence that each variable is both independently associated with differential 

DNA methylation (115–118) and closely linked with the presentation of PTSD. MetS has been well documented as 

presenting a high degree of PTSD comorbidity at both physiological and epidemiological levels (119). Previous studies 

have indicated that both PTSD and MetS often present similar aberrations in neuroendocrine and inflammatory pathways 

(120). Additionally, each such mechanism is thought to directly contribute to the differential DNA methylation routinely 

observed under both PTSD and MetS (115). Thus, to ensure that any detected epigenetic effects are attributable to PTSD 

alone, it is advisable to account for the potentially confounding influences of MetS.  Furthermore, exposure to childhood 

trauma has been related to an increased risk for the development and subsequent severity of PTSD (121).  Moreover, 

PTSD has been shown to be associated with greater rates of cigarette smoking and alcohol use than that which would be 

expected in the general population (122,123). 

Upon subsequent analysis, neither smoking status (X2 = 1.091; p = 0.296), alcohol use (X2 = 0.855; p = 0.355) nor the 

suspected presence of MetS (X2 = 0.000; p = 1.000) were found to differ significantly between PTSD cases and TEC. As 

such, covariates were limited to previous experiences of childhood trauma (X2 = 7.561; p = 5.965e-3), supplemented by 

the cellular composition estimates previously generated by meffil. The inclusion of the latter is primarily due to the 

ingrained variability which commonly plagues methylomic profiles derived from whole blood samples. Whole blood is 

widely thought to be a highly heterogenous tissue – in that any one sample may present varying proportions of local cell 

lineages (124). Such a heterogenous composition becomes problematic when one considers that many cell types possess 

unique methylation patterns characteristic of their lineage (125). It is therefore commonly recommended that one utilise 

cellular composition estimates as a method of accounting for any potential confounding associated with varying cell type 

proportions across samples (109). 

With regards to accounting for data heterogeneity, meffil offers four distinct approaches to address the effects of potential 

confounders: (i) running regression models without accounting for covariates; (ii) running regression models while 

accounting for the provided covariates; (iii) running regression models with the provided covariates and surrogate variable 

analysis (SVA); and (iv) running regression models with the provided covariates and independent surrogate variable 

analysis (ISVA) (109). The inclusion of SVA and ISVA serve to identify and subsequently adjust for hidden, or undefined, 

sources of heterogeneity within the data – wherein the sole distinction between the two lies in whether hidden confounders 

are searched for as linearly uncorrelated or non-linearly uncorrelated variables (126,127). In keeping with the protocols 

Stellenbosch University  https://scholar.sun.ac.za



39 

 

previously developed by Dr. Sylvanus Toikumo, we elected to conduct EWAS using both the provided covariates and 

SVA to account for potential sources of confounding. 

As such, an EWAS was performed by running the normalized intensity measures through meffil’s inbuilt association 

function while using childhood trauma exposure, cellular composition estimates and SVA-determined surrogate variables 

as covariates. Subsequent results were visually assessed through meffil’s report-generated Manhattan plot and a p-value 

threshold of 5.95e-8 (as determined by p = 0.05 / 840,920 probes tested) was used to delineate epigenome-wide 

significance. To further elaborate upon any probes that may present suggestive associations, CpG sites were annotated 

through a combination of the R packages missMethyl (128) and limma (129). Furthermore, differentially methylated 

regions (DMR), genomic regions where multiple proximally associated probes present similar DNA methylation changes 

under the studied phenotype, were identified through dmrff (130). Annotations were generated using existing records 

sourced directly from the Illumina 450k array annotation package in R. 

 

11. Methylation quantitative trait loci 

 

Having successfully determined the appropriate genomic and DNA methylation variables, mQTLs were identified 

through an amalgamation of packages run through R v4.0.2 - wherein the critical analysis upon which a series of accessory 

tests depend was primarily derived from MatrixEQTL (131). Briefly, MatrixEQTL is a statistical package tailored for the 

computationally efficient discovery of expression quantitative trait loci (eQTLs) (131). The package was originally 

designed to conduct exhaustive pairwise testing through a dose-effect matrix-based approach, where linear additive or 

ANOVA models are used to quantify interactions between individual variants and gene expression transcripts. 

Theoretically, the basic principles underlying the detection of eQTLs hold true for mQTLs as well – in that exchanging 

the requested gene expression matrix for one which presents normalized DNA methylation intensity measures, should 

allow one to identify mQTLs by independently testing for associations between every possible combination of SNP and 

CpG site.  

Methylation quantitative trait loci were identified using a compilation of scripts first collated by Hannon et al., (2018) in 

accompaniment to their paper: Leveraging DNA-Methylation Quantitative-Trait Loci to Characterize the Relationship 

between Methylomic Variation, Gene Expression and Complex Traits (132). Upon publishing, the aforementioned scripts 

were made available in a publicly accessible GitHub repository (https://github.com/ejh243/UKHLS_mQTL) – which, 

when employed collectively, allow one to assemble an extensive analytical framework for the detection and subsequent 

characterisation of mQTLs. Notably, one particularly attractive facet of this approach is that the pipeline provided is not 

simply limited to the identification of mQTLs; but rather, includes several accessory measures tailored specifically 

towards helping one interpret and further contextualise any potential associations that may arise from the raw data. The 

process through which all ensuing analysis was conducted can be broadly separated into two distinct components: mQTL 

identification, and supplementary analysis. In the following paragraphs, we will provide a concise description as to the 

particulars underlying each of these steps as well as briefly allude to the role that they play in the greater analytical 

pipeline. 

Firstly, MatrixEQTL requires that all input adhere to a predefined template for individualised matrices – wherein the 

relevant genomic and DNA Methylation datasets should be formatted such that each appears as a matrix comparing 

sample identifiers to variant and CpG sites, respectively. In such manner, each point of convergence conveys an 
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individual’s status in relation to a specific SNP or CpG site; where the relationship in question is represented by either 

the genotype observed at a particular locus or the normalized intensity measure detected at a corresponding methylation 

probe. 

Data appropriate to the generation of the genomic matrix was obtained by using the most predictive PRS model to extract 

informative SNPs from the imputed dataset. Briefly, previous analysis had determined that the most predictive PRS was 

one that had been constructed to utilise summary statistics derived from all three population subgroupings available under 

the PGC PTSD Freeze 2 data release. Furthermore, PRSice determined that PTSD status could best be predicted through 

a combination of 1,444 variants identified by applying a p-value threshold of 0.001 to the PGC reference (R2 = 4.41e-2; 

p = 0.064). 

Using PLINK v1.9, the imputed dataset was filtered such that all remaining individuals were restricted to the 1,444 SNPs 

highlighted in the paragraph above. Critically, in order to enable the dosage-based calculations upon which the functioning 

of MatrixEQTL depends, the newly filtered dataset should be recoded so that individual genotypes are represented as a 

limited series of numerical values. Such a conversion was implemented through PLINK v1.9’s inbuilt recode function – 

which transforms one’s dataset by assigning values of 0, 1 or 2 to indicate whether a particular SNP is absent, present in 

a heterozygotic state or present in a homozygotic state under the individual in question. As meffil presents normalized 

intensity measures in a format similar to that requested by MatrixEQTL, subsequent preparation was limited to the 

identification of individuals for whom both genomic and DNA methylation data remained available (97 Individuals – 51 

PTSD cases & 46 TEC). 

Initial mQTL estimates were obtained by using MatrixEQTL to test for associations between all possible pairings of SNP 

and CpG sites, while employing childhood trauma exposure and cellular composition estimates as covariates. Testing was 

conducted using a linear additive model approach wherein each calculation attempted to determine whether the genotype 

observed at a particular locus predicted fluctuations in a corresponding normalized intensity value. Due to the sheer 

number of iterations required to implement exhaustive pairwise testing, all analysis was accompanied by multiple testing 

correction in the form of the Benjamini–Hochberg false discovery rate (FDR) procedure. Furthermore, a Bonferroni-

corrected p-value threshold was used for post-hoc interpretation – wherein the threshold for significance was set as the 

standard threshold for GWAS divided by the number of CpG sites tested (p = 5.00e-8 / 840,920 CpG probes = 5.95e-14) 

(132). 

In order to reduce computational intensity, the genomic matrix was first subset by physical position before testing for 

associations on a chromosome-by-chromosome basis. The subsequent results, which were produced in the form of 

individual text files, were then manually concatenated, and thereafter merged with data pertaining to the latest version of 

the Illumina Infinium MethylationEPIC Manifest File (v1.0 B5). The MethylationEPIC manifest effectively serves as a 

comprehensive reference through which to contextualise any notable CpG sites; the most important components of which 

are the physical and chromosomal positions at which each occurs. Upon combining the newly obtained CpG positional 

data with that previously generated for the included SNPs, potential mQTLs were classified according to the following 

criteria: (i) any instance where a SNP falls within 500kb (500,000 base pairs) of a CpG site was termed to be a cis-acting, 

or local, mQTL; and (ii) any SNP-CpG pairing in which either component falls greater than 500kb away or originates 

from a different chromosome was defined as a trans-acting, or distant, mQTL. (133). 

At this point, Hannon et al., (2018) (132) recommends that one utilise PLINK’s inbuilt clumping function to verify 

whether any associations detected are truly independent in nature. If employed with the provided parameters, such a 

measure would utilise linkage disequilibrium patterns to group correlated SNPs (250kb window; r2 = 0.1) in a manner 
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ranked by the degree to which they are associated with the phenotype under study. As such, instances where multiple 

SNPs are found to be associated with the same CpG site would be further refined by eliminating candidates simply 

identified due to their close proximity to a more significant SNP. While we elected to adhere to the recommended 

instructions for the sake of thoroughness – it should be noted that this step is rendered largely redundant due to PRSice 

performing the same LD-based clumping method during its initial calculations.  

Lastly, to further elaborate upon any detected findings, we elected to conduct Bayesian Colocalisation analysis to test 

whether multiple mQTLs could be refined down to a single genomic signal. Doing so parses through the raw findings and 

highlights notable mQTL interactions for subsequent exploratory analysis. Independently, the individual SNP-CpG 

interactions reported by MatrixEQTL provide relatively minimal molecular context. However, identifying variants that 

affect multiple different CpG sites would suggest that a much broader, and potentially more impactful, effect may be in 

play.  Briefly, the dataset was restricted to SNP-CpG pairs that occurred on the same chromosome and surpassed a relaxed 

p-value threshold of 1e-10 – thereafter, mQTL analysis was repeated in a series of windows were every possible paring 

of CpG sites within 250kb of one another were tested against all SNPs within 500kb (132,134). Dataset formatting was 

done through Hannon et al., (2018)’s provided scripts and colocalisation was performed through the coloc package (134). 

 

12. Statistical analysis 

 

All data analysis was conducted in R v4.0.2 at a significance level of α = 0.05. Differences in the demographic and clinical 

data were assessed against the dataset which they were suspected to have the greatest confounding effect. Participant age 

and sex were investigated as a function of PTSD status within all individuals for whom genotyping data were available 

and MetS, history of smoking, history of alcohol use and CTQ scores were evaluated as a function of PTSD status within 

all individuals for whom DNA methylation data were available. Current MDD was assessed as a function of PTSD status 

across all recruited individuals. Overall differences were assessed through the application of Wilcoxon rank sum tests, 

independent sample t-tests or Pearson’s Chi-squared tests where deemed appropriate by the Shapiro-Wilk test for 

normality.  
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Results 

 

1. Statistical analysis of demographic and clinical data 

 

Among the 295 individuals for whom genotyping data were available, the average age of PTSD cases and TEC did not 

differ significantly at 41 years (σ = 10.938) and 42 years (σ = 13.317), respectively (t = -0.651; p = 0.515) (Table 4). 

Furthermore, the reported proportion of participant sex was not significantly different across both outcomes – with 

females outnumbering males in a 3:1 ratio across both considered subgroupings (X2 = 0.013; p = 0.908). Moreover, PTSD 

status was shown to be associated with higher median scores on the CAPS-5 (p = 2.200e-16), with PTSD cases and TEC 

presenting median severity scores of 37 (interquartile range (IQR) = 30 – 44) and 4 (IQR = 0 – 11) respectively. Upon 

examination, it was determined that neither age nor reported sex warranted inclusion as a genomic covariate due to neither 

presenting any significant divergence between the phenotypes under study.  
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Table 4: Demographic and clinical variables pertaining to genotyping and DNA methylation data 

 

 

Genotyping Data: 

Total 

(n = 295) 

 

PTSD 

(n = 153) 

 

TEC 

(n = 142) 

 

W t X2 p 

Mean Age 

(σ) 

41.701 

(12.129) 

41.254 

(10.938) 

42.182 

(13.317) 
 -0.651  0.515 

Reported Sex (%) 

Male 

Female 

 

77 (26.102) 

218 (73.898) 

 

39 (25.490) 

114 (74.510) 

 

38 (26.760) 

104 (73.240) 

  0.013 0.908 

Median CAPS-5 Severity Score 

(IQR) 

27 

(6 - 38) 

37 

(30 - 44) 

4 

(0 - 11) 
17176   2.200e-16 

Metabolic Syndrome (%) 

Present 

Absent 

 

84 (28.475) 

211 (71.525) 

 

46 (30.065) 

107 (69.935) 

 

38 (26.761) 

104 (73.239) 

  0.249 0.618 

Smoked Previously (%) 

Yes 

No 

 

207 (70.169) 

88 (29.831) 

 

108 (70.588) 

45 (29.412) 

 

99 (69.718) 

43 (30.282) 

  

1.28e-3 0.971 

Previous Alcohol Use (%) 

Yes 

No 

 

262 (88.814) 

33 (11.186) 

 

135 (88.235) 

18 (11.765) 

 

127 (89.437) 

15 (10.563) 

  0.020 0.887 

Median CTQ Score 

(IQR) 

47 

(35 – 66.5) 

54 

(40 – 78) 

40 

(32 – 53.5) 
15544   1.582e-10 

Moderate to Extreme (CTQ ≥ 41) 

Childhood Trauma Present (%) 

Yes 

No 

 

 

182 (61.695) 

113 (38.305) 

 

 

114 (74.510) 

39 (25.490) 

 

 

68 (47.887) 

74 (52.113) 

  20.975 4.652e-6 

Major Depressive Disorder 

Present (%) 

Yes 

No 

 

 

63 (21.356) 

232 (78.644) 

 

 

55 (35.948) 

98 (64.052) 

 

 

8 (5.634) 

134 (94.366) 

  38.511 5.445e-10 

* W, t and X2 represent the test statistics for the Wilcoxon rank sum test with continuity correction, Welch’s two sample t-test and Pearson’s Chi-squared test with Yates continuity 

correction, respectively. 
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Table 4: Demographic and clinical variables pertaining to genotyping and DNA methylation data 

 

 

DNA Methylation Data: 

 

 

Total 

(n = 118) 

 

 

PTSD 

(n = 61) 

 

 

TEC 

(n = 57) 

 

 

W 

 

 

t 

 

 

X2 

 

 

p 

 

Mean Age 

(σ) 

43.394 

(10.653) 

42.700 

(10.706) 

44.136 

(10.640) 
 -0.731  0.467 

Reported Sex (%) 

Male 

Female 

 

34 (28.814) 

84 (71.186) 

 

16 (26.230) 

45 (73.770) 

 

18 (31.579) 

39 (68.421) 

  0.192 0.662 

Median CAPS-5 Severity Score 

(IQR) 

26 

(6 – 36) 

36 

(30 – 42) 

4 

(1 – 13) 
3474.5   2.200e-16 

Metabolic Syndrome (%) 

Present 

Absent 

 

57 (48.305) 

61 (51.695) 

 

29 (47.541) 

32 (52.459)  

 

28 (49.123) 

29 (50.877) 

  

0.000 1.000 

Smoked Previously (%) 

Yes 

No 

 

75 (63.559) 

43 (36.441) 

 

42 (68.852) 

19 (31.148) 

 

33 (57.895) 

24 (42.105) 

  1.091 0.296 

Previous Alcohol Use (%) 

Yes 

No 

 

100 (84.746) 

18 (15.254) 

 

54 (88.525) 

7 (11.475) 

 

46 (80.702) 

11 (19.298) 

  

0.855 0.355 

Median CTQ Score 

(IQR) 

46.50 

(35 – 61.50) 

50.00 

(40 - 71) 

40.00 

(31 - 51) 
2423.5 

  
2.256e-4 

Moderate to Extreme (CTQ ≥ 41) 

Childhood Trauma Present (%) 

Yes 

No 

 

 

72 (61.017) 

46 (38.983) 

 

 

45 (73.770) 

16 (26.230) 

 

 

27 (47.368) 

30 (52.632) 

  

7.561 5.965e-3 

Major Depressive Disorder 

Present (%) 

Yes 

No 

 

 

20 (16.949) 

98 (83.051) 

 

 

16 (26.230) 

45 (73.770) 

 

 

4 (7.017) 

53 (92.983) 

  6.422 0.011 

* W, t and X2 represent the test statistics for the Wilcoxon rank sum test with continuity correction, Welch’s two sample t-test and Pearson’s Chi-squared test with Yates continuity 

correction, respectively.
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The 295 individuals for which genotyping data were available presented no significant divergence for the suspected 

presence of MetS, smoking status and previous alcohol use. However, PTSD status was observed as being associated with 

both higher scores on the CTQ and current MDD. Analysis determined that there was no significant difference in the 

frequency at which MetS was observed between PTSD cases and TEC (X2 = 0.249; p = 0.618). Moreover, PTSD cases 

did not differ from TEC in both smoking history (X2 = 1.28e-3; p = 0.971) and alcohol use (X2 = 0.020; p = 0.887). PTSD 

cases reported having previously smoked and used alcohol at a prevalence of 70.588% (n = 108) and 88.235% (n = 135), 

respectively. Similarly, 69.718% (n = 99) of TEC were identified as having a history of smoking and 89.437% (n = 127) 

had previously engaged in alcohol intake.  

Individuals falling under the PTSD subgrouping were deemed more likely to have previously experienced moderate to 

extreme childhood trauma (X2 = 20.975; p = 4.652e-6), with PTSD cases presenting an elevated median CTQ score of 54 

(IQR = 40 – 78) as compared to the median score of 40 (IQR = 32 – 53.5) documented amongst TEC (p = 1.582e-10). 

Furthermore, PTSD status was associated with an increased likelihood of having current MDD (X2 = 38.511; p = 5.445e-

10). According to initial M.I.N.I v6.0 assessment, 35.948% (n = 55) of PTSD cases and 5.634% (n = 8) of TEC were 

highlighted as exhibiting evidence of current MDD upon participant recruitment.  

Within the subset of individuals for whom DNA methylation data had passed quality assurance (n = 118; 61 PTSD cases 

& 57 TEC), neither the suspected presence of MetS, smoking status, nor history of alcohol use were found to significantly 

differ between cases and controls. However, a PTSD diagnosis was consistently shown to be associated with higher scores 

on the CTQ both when considering median CTQ score and when distinguishing between participants who had experienced 

at least a moderate degree of childhood trauma (CTQ ≥ 41). 

Analysis indicated that there was no significant difference in the frequency at which MetS occurred between the PTSD 

and TEC groups (X2 = 0.000; p = 1.000). Furthermore, 68.852% (n = 42) of PTSD cases had engaged in smoking at some 

point in their lifetime – an observation which holds true for only 57.895% (n = 33) of TEC (X2 = 1.091; p = 0.296). 

Moreover, similar analysis as to lifetime alcohol intake indicated that 88.525% (n = 54) of PTSD cases presented a history 

of alcohol use, where 80.702% (n = 46) of TEC fell under the same criteria (X2 = 0.855; p = 0.355). 

According to the clinical assessments, a PTSD diagnosis was associated with higher median scores on the CTQ (p = 

2.256e-4); wherein 73.770% (n = 45) of PTSD cases were determined to have experienced at least a moderate degree of 

childhood trauma (CTQ ≥ 41). Alternatively, only 47.368% (n = 27) of TEC were noted as having met the same screening 

threshold (X2 = 7.561; p = 5.965e-3). Considering the analysis conducted above, it was determined that methylomic 

covariates should be limited to previous experiences of moderate to extreme childhood trauma, supplemented by the 

cellular composition estimates previously generated by meffil.   

In addition to the potential confounding elements considered, the grouping of individuals for which DNA methylation 

data were available did not differ significantly in age nor sex. However, the PTSD subgrouping was found to be associated 

with elevated median severity scores on the CAPS-5 and the presentation of current MDD. The average age of PTSD 

cases and TEC was 42 (σ = 10.706) and 44 (σ = 10.640), respectively (t = -0.731; p = 0.467). Moreover, the reported 

proportion of participant sex was similar to that of the genotyping dataset, with females outnumbering males in the same 

3:1 ratio (X2 = 0.192; p = 0.662). 

PTSD status was observed as being associated with higher median severity scores on the CAPS-5, with PTSD cases and 

TEC presenting median scores of 36 (IQR = 30 – 42) and 4 (IQR = 1 – 13), respectively (p = 2.200e-16). Furthermore, 

individuals suspected of experiencing current MDD were revealed as being more likely to fall under the PTSD 
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subgrouping, with 26.230% (n = 16) of PTSD cases and 7.017% (n = 4) of TEC identified as potentially experiencing 

current MDD under M.I.N.I v6.0 criteria (X2 = 6.422; p = 0.011).  

 

2. Genotyping data 

 

GWAS data were initially available for 327 individuals (164 PTSD cases & 163 TEC). A priori analysis indicated that 

the raw dataset contained data on 1,713,748 SNPs, with a genotyping rate of 99.92%. After implementing quality control 

as per the methods described in the quality control of genotyping data section, the dataset was reduced to 319 individuals 

and 975,841 SNPs at a genotyping rate of 99.95% (Table 5). SNPs were initially removed if found to violate conditions 

for SNP missingness (11,797 SNPs omitted), minor allele frequency (697,101 SNPs omitted), Hardy Weinberg 

Equilibrium (4 SNPs omitted) or differential SNP missingness (309 SNPs omitted). Furthermore, an additional 28,696 

SNPs were removed when filtering out all sex-chromosome associated data. Individuals were subsequently removed if 

found to violate conditions for individual missingness (n = 0), present as excessively heterozygous (n = 6) or present 

discordant sex information (n = 2).  

 

Table 5: Components tested during quality control of genotyping data 

 

Component Assessed 

 

Exclusion Threshold 

 

Resulting Loss 

 

SNP-Level Filtering: 

SNP Missingness x > 3% 11,797 SNPs 

Minor Allele Frequency x < 1% 697,101 SNPs 

Hardy Weinberg Equilibrium p ≤ 1 x 10-6 4 SNPs 

Differential SNP Missingness p ≤ 5 x 10-2 309 SNPs 

Individual-Level Filtering: 

Individual Missingness x > 1% 0 Individuals 

Heterozygosity 

x < (x̄ – 3(σ)) 

or 

x > (x̄ + 3(σ)) 

6 Individuals 

Discordant Sex Information 

(X – Chromosome Homozygosity) 

Males: x ~ 1.00 

Females: x > 0.20 
2 Individuals 

* Post hoc removal of sex-chromosome associated data further excluded 28,696 SNPs. 

 

Performing imputation through the SHAPEIT2 & PBWT pre-phasing and imputation pipeline resulted in a preliminary 

net gain of 88,916,709 imputed variants. Applying the appropriate exclusionary thresholds reduced this to 11,331,335 

SNPs at a genotyping rate of 98.88% (Table 6). Prior to conducting imputation, SNPs were removed if found to present 

allelic mismatches when aligned against the 1000 Genomes Phase 3 reference assembly (54,462 SNPs omitted). Once 

imputed, subsequent filtering removed SNPs found to violate conditions for INFO score (28,663,434 SNPs omitted), 

monomorphic variants (40,731,074 SNPs omitted), minor allele frequency (7,840,533 SNPs omitted) or SNP missingness 

(1,271,712 SNPs omitted). After accounting for hidden familial relationships (PI_HAT > 0.1875; 24 individuals lost) and 

further restricting analysis to SNPs that possessed unique rsIDs (778,004 SNPs lost), the prepared dataset consisted of 

295 individuals (153 PTSD cases & 142 TEC) and 10,553,331 SNPs at a genotyping rate of 99.35%.  
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Table 6: Components tested during preparation & subsequent cleaning of imputed data 

 

Component Assessed 

 

Exclusion Threshold 

 

Resulting Loss 

 

Preliminary Data Preparation: 

Allelic Mismatches -* 54,462 SNPs 

Post-Imputation Quality Control: 

INFO Score x < 0.8 28,663,434 SNPs 

Monomorphic Variants 

(Minor Allele Frequency) 
x = 0 40,731,074 SNPs 

Minor Allele Frequency x < 1% 7,840,533 SNPs 

SNP Missingness x > 3% 1,271,712 SNPs¹ 

* Allelic mismatches were identified through iterative corrective alignment against the 1000 Genomes Phase 3 reference 

assembly (93). 

¹ It should be noted that no variants were removed upon applying an intermediary filter for SNP Missingness (x > 30%) 

during the VCF to PLINK binary file conversion. 

 

 

3. Genome-wide association testing 

 

GWAS was performed on the imputed dataset (n = 295; 153 PTSD cases & 142 TEC) using principal components 2 and 

18 as genomic covariates (Figure 4, Supplementary Figure 9). Upon initial assessment, it was determined that no single 

variant surpassed the necessary threshold for achieving genome-wide significance (p ≤ 5.00e-8). A summary documenting 

8 of the most notable associations identified has been provided in Supplementary Table 2. 
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Figure 4: Manhattan plot depicting the results of a genome-wide association test conducted on PTSD. The graph 

represents the degree to which individual SNPs are associated with PTSD in the cohort under study. The x-axis serves as 

a positional scale for the physical location at which each SNP occurs and the y-axis reflects the corresponding p-values 

in -log10 form. Critically, the unbroken red line is the commonly implemented threshold for delimiting genome-wide 

significance (p ≤ 5.00e-8).  

 

4. Polygenic risk scores 

 

PRS were initially calculated using two combinations of the PGC PTSD Freeze 2 population subgroupings as references: 

one using solely African American data and the other employing European, Latino/Native American and African 

American data (Figure 5). PRS constructed using a combination of European, Latino/Native American and African 

American data consistently outperformed those using solely African American data across all thresholds tested. PRSice 

determined that the most predictive PRS utilized 1,444 variants (p-value threshold = 0.001) derived from the combined 

reference to calculate weighted scores for each individual. At this threshold, the proportion of variance explained by the 

isolated PRS model versus that explained by the genomic covariates (principal components 2 & 18) was 1.54% 

(Nagelkerke’s pseudo R2 = 0.0154) and 2.87% (Nagelkerke’s pseudo R2 = 0.0287), respectively. As such, the combined 

total proportion of variance explained was 4.41% (Nagelkerke’s pseudo R2 = 0.0441). However, the model was not able 

to significantly distinguish between PTSD cases and TEC both before (p ≤ 0.05) and after (p ≤ 6.25e-3) adjusting for 

Bonferroni multiple testing correction (p = 0.064). 
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Figure 5: Comparison of the proportion of variance explained by two PGC PTSD Freeze 2 references. Model 

predictiveness was assessed by applying a predetermined range of p-value thresholds (0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 

and 1.00) to the African American and combined European, Latino/Native American & African American summary 

statistics to evaluate their ability to distinguish between PTSD cases and TEC within the imputed dataset. Reference 

performance was measured through the proportion of variance (in the form of Nagelkerke’s pseudo R2) explained across 

all tested thresholds. PRSice determined that PTSD status could best be predicted through a combination of 1,444 variants 

identified by applying a p-value threshold of 0.001 to the PGC-All summary statistics (Nagelkerke’s pseudo R2 = 0.0441; 

p = 0.064). 
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5. DNA methylation data 

 

Prior to performing quality control, it was determined that the unfiltered dataset presented data pertaining to 865,859 CpG 

probes. Upon applying the appropriate parameters in meffil (as described in the quality control and functional 

normalisation of DNA methylation data subheading), the dataset was reduced to 118 individuals (61 PTSD cases and 57 

TEC) and a corresponding 840,920 CpG probes (Table 7). CpG probes were removed due to failing conditions for probe 

p-values (1,078 probes omitted) and probe bead numbers (4,299 probes omitted), as well as due to being associated with 

sex-chromosome linked data (19,562 probes omitted). No individual samples were found to violate conditions for sample 

p-values or sample bead numbers,  nor present discordant sex information – however, two individuals were removed due 

to aberrant median methylated intensities. Moreover, both procedure- and identity-based control probes were found to 

perform in line with manufacturing recommendations and all methylation profiles fell within the theoretical boundaries 

established by the gse35069 complete whole blood reference.  

 

Table 7: Components tested during quality control of DNA methylation data using meffil  

 

Component Assessed 

 

Exclusion Threshold 

 

Resulting Loss 

 

Individual-Level Filtering: 

Sample P-Value 
More than 10% of sample probes fail 

to be detected 
0 Individuals 

Sample Bead Number 
More than 10% of sample probes fail 

to be detected across at least 3 beads 
0 Individuals 

Discordant Sex Information 

(Median X- and Y-Chromosome 

Intensities) 

x < (Dataset Median – 5(σ)) 

or 

x > (Dataset Median + 5(σ)) 

0 Individuals 

Median Methylated Intensities 

x < (Dataset Median – 3(σ)) 

or 

x > (Dataset Median + 3(σ)) 

2 Individuals 

Probe-Level Filtering: 

Probe P-Value 
Probes fail to be detected across 

more than 10% of samples 
1,078 Probes 

Probe Bead Number 

Probes fail to be detected across at 

least 3 beads for more than 10% of 

samples 

4,299 Probes 

* A p-value threshold of 0.01 was used to distinguish between detected & undetected probes. 

** Post hoc removal of sex-chromosome associated data further excluded 19,562 probes.  

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



51 

 

6. Epigenome-wide association testing 

 

EWAS was performed on the normalized intensity measures (n = 118; 61 PTSD cases & 57 TEC) using childhood trauma, 

cellular composition estimates and SVA-determined surrogate variables as covariates (Figure 6, Supplementary Figure 

10). 

 

Figure 6: Manhattan plot depicting the results of an epigenome-wide association test conducted on PTSD. The 

meffil – generated graph represents the degree to which individual CpG probes are associated with PTSD in the cohort 

under study. The x-axis serves as a positional scale for the physical location at which each CpG probe occurs and the y-

axis reflects the corresponding p-values in -log10 form. Upwards and downwards trajectories are reflective of hyper- 

(increased) and hypo- (decreased) methylation relative to TEC, respectively. The unbroken red lines represent the upper 

and lower bounds for achieving epigenome-wide significance (p ≤ 5.95e-8). 10 CpG probes surpassed the necessary 

threshold for achieving epigenome-wide significance. 

 

Upon initial assessment, it was determined that 10 CpG probes surpassed the necessary threshold for achieving 

epigenome-wide significance (p ≤ 5.95e-8) (Table 8). Furthermore, 3 of the significant probes could be annotated to 

proximally located genes: (i) cg13981804 was annotated to chromosome 4 open reading frame 36 (C4orf36) (p = 4.654e-

11); (ii) cg10245330 was annotated to SHH signalling and ciliogenesis regulator SDCCAG8 (SDCCAG8) and AKT 

serine/threonine kinase 3 (AKT3) (p = 4.781e-10); and (iii) cg11724557 was annotated to tublin epsilon and delta complex 

1 (TEDC1) (p = 8.105e-09). One DMR was detected at chr4: 53588360–53588374 (Supplementary Table 3) (p = 4.038e-

9) but shared no overlap with the 10 significant probes identified. 
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Table 8: Annotation of notable CpG probes identified through epigenome-wide association testing 

 

CpG Site 

 

Chromosome 

 

Position 

 

Coefficient 

 

Nearest Gene 

 

p 

 

cg13981804 4 87797509 -0.034 C4orf36 4.654e-11 

cg22155376 11 17591837 -0.070 - 2.559e-10 

cg10245330 1 243652681 -0.006 

SDCCAG8 

 &  

AKT3 

4.781e-10 

cg07172637 11 121427672 0.020 - 6.057e-10 

cg26847571 15 99664049 0.061 - 4.391e-9 

cg20919705 2 68446054 0.032 - 6.729e-9 

cg03696393 13 107027491 -0.005 - 7.387e-9 

cg11724557 14 105965005 -0.009 TEDC1 8.105e-9 

cg18579761 4 83323585 -0.021 - 2.347e-8 

cg00511884 2 8374459 0.022 - 3.644e-8 

* - or + coefficient values are indicative of hypo- and hyper-methylation relative to TEC, respectively. 

** Nearest gene determined through missMethyl & limma mediated annotation (Illumina 450k array annotation  

manifest). 

 

7. Methylation quantitative trait loci 

 

Methylation quantitative trait loci were initially identified for 97 individuals (51 PTSD cases & 46 TEC) by assessing 

potential relationships between 1,444 variants, comprising the PRS, and 840,920 CpG probes while using childhood 

trauma and cellular composition estimates as covariates. In total, we detected 44,614 mQTLs as a product of interactions 

between 250 SNPs and 26,349 CpG probes (p ≤ 5.95e-14) (Table 9). Each CpG probe was found to be associated with a 

median of 2 different variants (IQR = 1 – 2), whereas each SNP was found to be associated with a median of 3 CpG 

probes (IQR = 1 – 10.5). However, while the most interconnected CpG probe only interacted with 4 different variants, its 

SNP counterpart was associated with 7,519 mQTLs (rs144798302). Furthermore, the CpG probes associated with mQTLs 

spanned a wide variety of genomic regions, wherein: 0.144% occurred in genes, 0.108% occurred in non-gene regions, 

8.213% occurred in promoter regions, 0.238% occurred in cell-type specific genes, 0.004% occurred in non-gene regions 

attributed to cell-type, 0.543% occurred in cell-type specific promotor regions, and 90.750% were unclassified.  

 

Table 9: mQTLs detected 

 

 
mQTLs Detected 

 

Total SNPs Involved 

 

Total CpG Probes Involved 

 

Mean Effect 

(σ) 

 

Total 44,614 250 26,349 
0.230 

(0.136) 

Cis-Acting 95 62 91 
0.194 

(0.119) 

Trans-Acting 44,519 197 26,273 
0.230 

(0.136) 

* SNP-CpG parings that occurred within 500kb of each other were defined as cis-acting and pairings that occurred 

over a distance greater than 500kb or on separate chromosomes were defined as trans-acting. 
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Of the 44,614 mQTLs detected, 95 were defined as cis-acting mQTLs (encompassing interactions between 62 SNPs and 

91 CpG probes) and 44,519 were termed to be trans-acting mQTLs (interactions between 197 SNPs and 26,273 CpG 

probes). Mean effect sizes were calculated across the absolute value of the change in methylation intensity induced by 

the presence of the tested SNP so as to generate a proxy representative of the net effect associated with the various mQTL 

subtypes. SNPs were associated with a mean 0.194 (σ = 0.119) and 0.230 (σ = 0.136) change in methylation intensity at 

cis-acting and trans-acting mQTLs, respectively. The mean effect change detected across all registered mQTLs was 0.230 

(σ = 0.136). Furthermore, restricting trans-acting mQTLs to those with SNP-CpG parings which occurred on the same 

chromosome, indicated that mQTLs with interactive distances between 500kb - 1Mb (1,000,000 base pairs) and those 

occurring across greater than 1Mb presented mean effect sizes of 0.190 (σ = 0.114) and 0.219 (σ = 0.127), respectively 

(Figure 7). Upon attempting to implement Bayesian Colocalisation, no colocalising effects were detected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Comparing the mean effect sizes of cis- and trans-acting mQTLS. Mean effect sizes were calculated as the 

absolute value of the change in methylation intensity induced by the presence of the tested SNP.  
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Discussion 

 

In this thesis, we proposed that a multi-omics, or systems biology, based approach presented a promising avenue through 

which to assess the molecular mechanisms underpinning the development of PTSD. We briefly outlined evidence 

suggesting that the presentation of PTSD is predicated upon a network of molecular interactions – and drew particular 

attention to the potential concordance of aberrant genetic and epigenetic effects (13,49,65). Furthermore, we suggested 

that the identification of mQTLs, genomic loci where specific genetic variants are capable of directly influencing DNA 

methylation patterns, served as a method to detect such genetic-epigenetic interactions and advocated that PRS could be 

used to circumvent traditional issues posed by limited sample sizes.  

As such, the aim of this study was twofold: (i) to use PRS modelling for the construction of a variable capable of predicting 

PTSD case-control status within a South African population; and (ii) to integrate PRS and DNA methylation data for the 

identification of mQTLs associated with PTSD.  

Prior to implementing mQTL analysis, we elected to conduct independent association tests so as to further characterise 

how both the genomic and DNA methylation datasets were related to the phenotype under study. Applying a GWAS 

approach to the genotyping data revealed that no single variant surpassed the necessary threshold for achieving genome-

wide significance (p ≤ 5.00e-8) (Figure 4). Furthermore, assessing the 8 most notable SNPs highlighted by FUMA offered 

no link to any genes that had previously been found to be associated with PTSD (Supplementary Table 2). However, 

FUMA’s inbuilt MAGMA gene-set analysis indicted that the dataset was enriched for a negative regulation of 

neurotransmitter transport gene set derived from the Molecular Signatures Database v7.2 (Bonferroni-corrected p = 

0.011).  

This finding is important for two reasons: firstly, previous studies have shown that both PTSD, as well as a dysfunctional 

behavioural and physiological response to extreme stress, are associated with abnormal neurotransmitter profiles and 

reactivity (135). Specifically, fluctuations in the homeostatic state of neurotransmitters involved in the stress- and fear- 

response are believed to greatly affect both one’s initial risk of developing PTSD as well as the severity of subsequent 

symptoms experienced (136). Moreover, of particular importance is the observation that PTSD is not consistently 

attributed to deviations in a single neurotransmitter class – but rather, is thought to be the product of widespread 

dysregulation through an interconnected network of neurobiological interactions (137). As such, while one would not 

necessarily expect to observe highly significant loci in such a small sample, indirect evidence of a mechanism previously 

associated with PTSD is encouraging as to the possibility of uncovering additional molecular underpinnings with further 

analysis.  

Upon initially constructing PRS, we identified the PGC’s PTSD Freeze 2 data release as the large-scale GWAS best suited 

for the prediction of PTSD status within our sample population. Preliminary runs were conducted using the African 

American and a combination of all European, Latino/Native American, and African American population data as the 

reference datasets through which the PRSice algorithm selected PTSD-associated variants for score generation (Figure 

5). Models constructed using a combination of all population subgroupings were consistently found to explain a greater 

proportion of phenotypic variance than those only utilising African American references. The most predictive PRS could 

use weighted compositions of 1,444 variants derived from the combined European, Latino/Native American, and African 

American references to explain 4.41% (R2 = 0.0441) of the phenotypic variance observed. However, this model (p = 

0.064) did not survive Bonferroni multiple testing correction. 
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This raises a particularly pertinent issue with regards to the effectiveness of PRS constructed using reference datasets that 

were derived from population groups distinct from one’s own cohort. PRS are fundamentally dependent on the accurate 

estimation of variant effect sizes – a property which largely relies on the relationship between the population from which 

the reference draws and that in which the scores are calculated (138). Due to innate differences in allele frequencies and 

linkage disequilibrium patterns between populations, variant effect estimates tend to translate poorly across ancestry 

groups; often to the degree that one frequently observes a considerable loss in predictive performance when failing to 

ensure base-target portability (139). 

Superficially, the most apparent solution would simply be to select a reference dataset originating from the same ancestry 

group as one’s sample population. However, historical bias towards Euro-centric studies have generated an artificial 

dearth of large-scale non-European GWAS – wherein dramatically reduced sample sizes lend towards an inevitable loss 

of predictive accuracy (140). Given the severity of such complications, considerable efforts have been devoted to the 

development of statistical techniques tailored specifically to maximising the performance of PRS in underrepresented 

populations. In fact, two methods in particular, one advocating for the utilisation of multiple multi-ethnic reference 

datasets and the other for the incorporation of functional-annotation based weighting; have become increasingly well 

established in recent years (140–143). While we elected to limit all optimisation efforts to the boundaries established by 

the largest available reference dataset, it is encouraging to note the development of new methods which may help further 

refine our analyses moving forward. 

Conducting an EWAS on the DNA methylation data indicated that 10 CpG probes passed the necessary threshold for 

achieving epigenome-wide significance (p ≤ 5.95e-8) (Figure 6, Table 8). Of the significant methylation sites, missMethyl 

and limma annotated three to the genes chromosome 4 open reading frame 36 (C4orf36), SHH signalling and ciliogenesis 

regulator SDCCAG8 (SDCCAG8), AKT serine/threonine kinase 3 (AKT3) and tubulin epsilon and delta complex 1 

(TEDC1). Methylation site cg13981804 was found to be hypomethylated in association with C4orf36 (p = 4.654e-11); a 

protein coding gene whose function has yet to be determined (144). Furthermore, methylation site cg10245330, which 

occurs in a region overlapped by both of its affected genes, was found to be hypomethylated in association with both 

SDCCAG8 and AKT3 (p = 4.781e-10). SDCCAG8 encodes a centrosome-associated protein involved in the arrangement 

of cellular machinery during mitosis and directly contributes to the assembly of cellular cilia (145). Alternatively, AKT3 

encodes a protein kinase falling under the greater serine/threonine class and existing literature indicates that the resulting 

gene product plays a role in cellular signalling as well as being closely linked to regulation of the cell cycle, glycogen 

synthesis and glucose uptake (146). Lastly, methylation site cg11724557 was found to be hypomethylated in association 

with TEDC1 (p = 8.105e-9); which encodes a gene product involved in ciliary signalling as well as centriole and actin 

filament stability (147). However, the significant DMR identified at chr4:53588360–53588374 (p = 4.038e-9), did not 

correspond with any known gene or regulatory element. 

Of the significant probes and their respective annotations, all but the AKT3 annotation were found to have no previous 

association with PTSD. Furthermore, the mechanistic pathways underlying the regulation of centriole-based organelles, 

cilia functioning, and mitosis seem superficially unlikely to contribute directly to mediating risk and resilience to PTSD. 

However, AKT3 was previously identified by Xie et al., (2013) as a suggestive association (p = 5.11e-6) in a GWAS 

conducted on 1,578 European Americans (16). Due to their associated role in specific cellular signalling pathways, the 

AKT protein kinases have long been considered potential exploratory targets for PTSD (148). The extended signalling 

network associated with AKT glycogen synthesis currently serves as one of the major molecular targets for lithium- and 

antidepressant-based psychiatric pharmacological interventions (149). Moreover, previous studies have suggested that 
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both normal and aberrant neurotransmitter profiles regulate behavioural changes through this same pathway (150). 

Additionally, a shared genetic foundation may already have been established through recent observations associating 

altered AKT1 activity with an increased prevalence of schizophrenia and mood disorders (151).  

It should be noted, that previous EWAS have attributed AKT3 hypomethylation to the effects of smoking-related 

behaviours (152). As such, while our preliminary analysis indicated that smoking status did not differ significantly 

between cases and controls (X2 = 1.091; p = 0.296), any association detected herein may potentially be due to the 

unaccounted for effects of smoking. However, the nature of this finding indirectly mirrors that of a similar observation 

recently made by Smith et al., (2020) – wherein, in a large EWAS meta-analysis the authors noted several epigenome-

wide significant associations reflecting hypomethylation in aryl-hydrocarbon receptor repressor (AHRR), a gene which 

had previously been associated with smoking-related hypomethylation (12). While the findings initially lost significance 

upon introducing new controls for smoking status, subsequent assessment comparing the methylated state of known 

smoking loci and AHHR revealed that the detected hypomethylation associations were predominantly concentrated in 

non-smoking cases (12). As such, the authors highlighted a new approach through which to possibly untangle independent 

observations from mistaken associations to known confounding effects.  

mQTLs were investigated in 97 individuals (51 PTSD cased & 46 TEC) by assessing potential relationships between 

1,444 variants and 840,920 CpG probes. We identified 44,614 mQTLs, 95 of which were cis-acting and 44,519 of which 

were trans-acting, at a p-value of 5.95e-14 (Table 9). Preliminary analysis seemed to indicate that the genomic and 

epigenetic datasets presented a high degree of interconnectivity; wherein both the SNP and CpG portions of each SNP-

CpG paring were often found to interact with multiple other mQTLs in both a cis- and trans-acting manner. Each CpG 

probe was found to interact with a median of 2 different variants (IQR = 1 – 2) whereas the inverse indicated that each 

SNP was found to interact with a median of 3 different CpG probes (IQR = 1 – 10.5). However, the genomic dataset was 

skewed towards a much higher upper bound, with one variant (rs144798302) interacting with 7,519 unique mQTLs. The 

variant in question exists in an largely isolated state on chromosome 1 (chr1:35789171) and has yet to be assigned any 

functional or regulatory annotation (153). 

Nevertheless, the high degree of reciprocity between genetic and epigenetic sites appears to support our initial hypothesis 

that PTSD could best be represented as the product of an extensively integrated network of molecular interactions (13). 

This notion is further bolstered by the finding that the distribution of mQTL-associated CpGs is widely spread across a 

variety of genomic regions. While the vast majority of CpGs are, admittedly, unclassified – the second (8.213%) and third 

(0.543%) largest categories pertain to general promotor regions and cell-type specific promoter regions, respectively. This 

is particularly critical as they represent the two methods through which DNA methylation can arguably exert its greatest 

effects.  

The occurrence of differential DNA methylation in promoter regions has become one of the most widely documented 

methods through which epigenetic influences can affect gene expression (154). Specifically, methylation-induced 

alterations to either the general chromatin structure or transcription factor binding mechanisms is closely associated with 

reduced expression in a corresponding gene (155). Moreover, one of the other primary functions of DNA methylation 

pertains to the regulation of tissue- and cell-type specific differentiation. Maintaining cell-type specific differentiation is 

simply a prolonged and highly localised method of influencing gene expression – wherein the collective status of a series 

of cell-type specific promotors is critical to the development and overall functioning of a particular cell (156,157). The 

benefits of such an effect lies in its potential to further extend the molecular reach of an mQTL to affect additional 

biological domains. To this extent, it would theoretically be possible for a single mQTL-associated SNP to induce 
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differential DNA methylation and differential gene expression both locally and across considerable distances of the 

genome.  

Interestingly, none of the ten significant CpG sites, or, for that matter, any of the eight suggestive SNPs observed in this 

study, were found to take part in any significant mQTL associations. Furthermore, reducing the p-value threshold from 

5.95e-14 to the 1e-10 utilised for Bayesian Colocalisation analysis, still failed to result in the incorporation of any of the 

previously identified CpG sites or suggestive SNPs. Such a discrepancy may potentially be due to the data loss 

encountered upon trimming the genotyping and DNA methylation datasets down to an overlapping sample. However, 

given concerns as to whether the AKT3 finding should be attributed to genomic or environmental influences – this raises 

an interesting question as to whether mQTL analysis could be utilised to help distinguish between molecularly- and 

environmentally-induced differential methylation changes. 

One unexpected result was the frequency with which mQTLs were distributed, as well as the differences in accompanying 

mean effect sizes, across cis- and trans-acting mQTLs. Hannon et al., (2018) briefly summarised the existing literature in 

saying that mQTLs are: (i) expected to occur more frequently in cis-acting regions than in their trans-acting counterparts; 

and (ii) expected to grow in both effect size and significance as the distance between the SNP-CpG pairing decreases 

(132). However, we found the opposite to be true for both conditions. First, our integrated dataset was found to present a 

substantially larger proportion of trans-acting mQTLs which in turn were also associated with a larger mean effect size 

than their cis-acting counterparts. Furthermore, restricting trans-acting mQTLs to those with SNP-CpG parings which 

occurred on the same chromosome (Figure 7), indicated that while mean effect sizes increased as the genomic distance 

fell from above 500kb – a greater increase was observed once the interactive distance was greater than 1Mb.  

This considerable deviation from the established norm serves as a reminder that these results may not be truly 

representative of the molecular mechanisms underlying PTSD in our sample population. Importantly, the crux of the 

mQTL analysis depended on the PTSD-associated variants identified by our best-fit PRS model. As such, the study 

effectively made two allowances in exchange for a more statistically powerful association proxy: (i) Hannon et al., 

(2018)’s adjusted MatrixEQTL scripts only implemented clumping procedures after initially calculating mQTLs and their 

associated effect sizes – therefore, utilising a PRS-mediated approach forces the dataset to undergo premature clumping; 

and (ii) concerns amid the loss of predictive accuracy associated with using both an unoptimised reference dataset and 

non-significant PRS model.  

The premature clumping may explain some of the discrepancies observed in the expected cis-to-trans ratio simply due to 

methodological differences in the manner which clumping is conducted. PRSice implements clumping by using local 

linkage disequilibrium patterns to group every SNP which surpasses a predetermined correlation threshold in a set window 

of base pairs (69,70). However, while the mQTL clumping procedure is based on the same underlying principals, it differs 

in that clumping is only conducted on an assembled list of SNPs that were shown to present at least one mQTL association 

(132). Once the genomic dataset has been trimmed down to the 1,444 variants best suited for the prediction of PTSD 

case-control status, it is dramatically less likely that any of the remaining variants will occur in close proximity with one 

another. As such, the aberrant cis-to-trans ratio is most likely the product of chance amplified by a strict clumping 

procedure. 

By extension, this may also explain why we failed to detect any overarching causal variants when attempting to implement 

Bayesian Colocalisation analysis. Coloc’s functioning requires that it conduct pairwise mQTL tests for all possible CpG 

pairings within 250kb from one another against all SNPs within 500kb of the pairing (132,134). Therefore, the relative 
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depletion of closely grouped variants due to clumping may have drastically reduced the number of instances for which 

such a calculation is even possible.  

However, the concerns surrounding the predictive accuracy of the PRS model implemented are markedly more difficult 

to account for. When considering that the variants utilized for mQTL analysis were unable to significantly distinguish 

between cases and controls, one should be hesitant to regard these findings as much more than a proof-of-concept paving 

the way for future research.  

Yet, while this thesis did not achieve results with a high degree of certainty, it did highlight certain limitations that should 

be addressed by other studies moving forward. Firstly, regardless of the exact molecular mechanisms through which 

PTSD develops, aberrant effects are widely thought to originate within the central nervous system (13). Moreover, 

epigenetic modifications have shown a marked ability to present both tissue- and cell- specific differentiation patterns 

(12). As such, there is growing concern that existing sampling methods fail to accurately capture a representative image 

as to the inner workings of the brain (158). While the non-invasive nature of peripheral blood measurements render them 

ideal for biomarker-based studies, they are at most an indirect approximation of neuropathological features (49). While 

several online databases, such as the University of Essex Blood Brain DNA Methylation Comparison Tool (159) and 

iMethyl (160,161), have been developed to help assess how well peripheral findings translate to the brain, such methods 

are only a temporary solution in the face of greater a problem. Future efforts need to be dedicated towards developing an 

appropriate proxy for physical brain tissue that can be readily compared against a more accessible medium. 

Secondly, PTSD’s inherent dependency on an initial traumatic event can greatly complicate efforts to assess the epigenetic 

mechanisms underlying the disorder. Very few individuals live in such conditions that researchers have accesses to 

extensive clinical and biological data prior to the triggering event occurring (12). As such, it may prove difficult to 

differentiate novel epigenetic changes from the effects of unknown confounders as well as from the initial traumatic or 

stressful event.  

Furthermore, experimental design poses several issues when current diagnostic criteria account for the duration at which 

symptoms are experienced and a substantial proportion of the developmental risk is dependent on individual perception 

of the traumatic event (11). The primary concern is maintaining strict phenotypic boundaries between PTSD cases and 

TEC; however, both the alleviation of past symptoms and delayed development of future symptoms can readily introduce 

confounding elements in form of past or subthreshold cases recruited to the control group. Moreover, the basic principles 

of experimental design dictate that one would ideally like to match recruited participants across demographic data and 

the outcome under study. However, quantifying the different types and severity of trauma as well as the individual 

experience thereof, may ultimately prove too challenging to maintain a homogenous sample.  

One potentially notable limitation lies in how we elected to utilise childhood trauma exposure and MDD as analytical 

covariates. Both PTSD and MDD are highly colocalising and childhood trauma has previously been found to be comorbid 

with a wide variety of psychopathological outcomes (162,163). Within the subset of individuals for which genotyping 

data were available (n =295; 153 PTSD cases and 142 TEC), PTSD diagnosis was significantly associated with previous 

experiences of moderate to extreme childhood trauma (X2 = 20.975; p = 4.652e-6) and current MDD (X2 = 38.511; p = 

5.445e-10). Although PTSD, MDD and childhood trauma exist as distinct entities, each shares a similar cluster of 

symptoms or resulting effects such that it is impractical for either MDD or childhood trauma to be used as exclusion 

criteria in the current study (164). However, these shared molecular underpinnings have raised concerns as to how best 

to account for the effects of MDD and childhood trauma without introducing additional confounding variables to PTSD-

associated analysis. 
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We elected to utilise an approach described by Contractor et al., (2018) as the causality explanation – where childhood 

trauma is incorporated as a covariate due to serving as a risk factor for PTSD development, whereas MDD is not controlled 

for as PTSD is subjectively deemed a more direct risk factor for the development of MDD than vice versa (165). 

Moreover, previous analysis done by Dr Patricia Swart within Stellenbosch University’s Neuropsychiatric Genetics 

Research Group used PCA to assess MDD aggregation within the genotyping cohort, wherein it was determined that 

current MDD presented no spatial relationship that was overtly indicative of hidden confounding. Nevertheless, how best 

to account for MDD and childhood trauma in PTSD studies remains poorly understood, and future studies may benefit 

from further refining of how each occurrence is defined at a molecular level.  

Moreover, post-hoc evaluation of the statistical power underlying the mQTL analysis highlights additional limiting 

factors. Current consensus indicates that one’s statistical power to detect both cis- and trans-acting mQTLs extends from 

a sufficiently powered variant discovery phase – wherein the detection of mQTLs, and indeed any additional 

characterisation efforts, essentially serve as exploratory rather than identificatory analyses (132). While constructing PRS 

effectively circumvented initial sample size concerns, such predictive approaches are also subject to similar statistical 

uncertainties. Using sufficiently large training datasets typically increases confidence in the predictive accuracy of PRS, 

with the caveat that the selected training dataset is appropriate for both the trait and population under study (166). As 

such, considering the aforementioned concerns regarding the suitability of the PTSD Freeze 2 data release as a training 

dataset for our sample population, as well as the statistical insignificance of the most predictive model, the mQTL analysis 

may by extension lack sufficient statistical power to accurately detect cis- and trans-acting effects.    

The potential of using a PRS-mediated proxy for the detection of mQTLs associated with PTSD remains a promising 

concept. To better characterise the molecular mechanisms underlying PTSD; future studies could expand upon our 

suggested multi-omics proposal by further incorporating additional biological domains to maximise the amount of 

available information. Specifically, supplementing existing research with neuroimaging-based approaches would help to 

begin circumventing the inaccessibility of brain tissue by generating proxy measures that could be correlated to peripheral 

findings (49). Moreover, there exists a dire need to further encourage the establishment and subsequent curation of brain-

based biobanks dedicated towards the recruitment of individuals who have experienced psychiatric disorders throughout 

their lifetime. Such efforts should ideally be accompanied by longitudinal assessments wherein some degree of basal 

clinical data is provided from the point of recruitment. In such manner, one would increase the available resources for 

verifying molecular findings post-mortem while having the necessary supplementary information to formulate 

observations appropriately.  

Furthermore, the vast majority of studies have thus far approached PTSD from a purely binary perspective, where PTSD 

cases are collectively pooled into a single representative phenotype. The primary disadvantage therein is that individual 

symptom clusters as well as sub- and intermediate-phenotypes remain relatively understudied (13). Such isolated 

components may allow for more refined analysis of the molecular mechanisms underlying PTSD by not masking weaker 

sources of phenotypic heterogeneity (6). Future studies could thus further explore a quantitative approach towards 

analysing PTSD, wherein participants are classified in a continuous manner according to symptom severity. Adopting 

such a probabilistic method may grant greater sensitivity and help better define PTSD’s biological underpinnings (167). 

Additionally, while PCA-based covariates are commonly used to address potential population stratification, incorporating 

increasingly complex techniques may allow future studies to more accurately adjust for any confounding effects related 

to genetic ancestry (168). Principal component analysis utilises an uninformed approach to identifying variation in a given 

dataset – where intricate genetic contributions are often missed in a broader search for large swaths of hidden variation 
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(169). Programs such as the ancestry estimation tool ADMIXTURE avoid such pitfalls by using population-specific 

references to estimate the degree to which historical source populations contribute to individual ancestry (170). Adopting 

such an approach would allow one to quantitatively assess population stratification at the individual-level, thus further 

increasing the accuracy of analysis conducted in ancestrally diverse populations (171). 

Lastly, on numerous occasions throughout this thesis, we noted the disproportionate degree to which genomic studies had 

been conducted in European populations - often highlighting the need for future contributions using multi-ethnic samples. 

Much of this conversation used the term "ancestry" to refer to broad geographical and historical differences between 

different population groups. While not incorrect, using such a descriptor greatly oversimplifies the role of diversity in 

molecular studies. Recent work by Peterson et al., (2019) describes how using ancestral divisions often overlooks the 

contributory effects of ethnic factors (172). The authors further mention that ethnicity may serve as a surrogate variable 

for several social, cultural and environmental considerations of interest to the study of disease aetiology (172). While 

there is a broader need for more analysis conducted in individuals of non-European ancestry, future studies may greatly 

benefit from maximising diversity on a smaller scale. Where ensuring adequate representation both across, as well as 

within, ancestral divisions may drastically improve our understanding of genetic variation under psychiatric disorders.  

 

Conclusion 

 

Thus far, there are no valid biomarkers capable of granting us insight into the functional manner in which PTSD develops 

in the brain (173). However, prior twin and epidemiological studies have indicated that the disorder presents a heritability 

of 40-50%, which would suggest that there is at least some partial genetic component associated with the risk of 

developing PTSD (60). Additionally, past studies investigating the epigenetic patterns underlying the disorder have shown 

that PTSD presents methylation alterations associated with disparate functioning in immune-, stress-, and 

neurotransmitter-pathways that mediate risk and resilience to PTSD (174). Attempts to quantify these findings on a 

molecular scale have thus far been met with limited success – wherein the highly polygenic nature of PTSD has rendered 

it difficult to obtain sample sizes large enough for findings to withstand multiple-testing correction and subsequent 

replication in independent cohorts (6,12). Furthermore, extant knowledge gaps have been further amplified by the 

disproportional degree to which previous research has focused on European and military-derived cohorts (49). As such, 

there exists a dire need for an increase in research attempting to unravel the molecular underpinnings of PTSD across 

ancestrally diverse populations and within general society.  

This study utilised a PRS-based approach to integrate genomic and epigenetic data for the identification of mQTLs 

associated with PTSD. PRS were constructed using combined European, Latino/Native American and African American 

summary statistics, derived from the PGC’s largest multi-ethnic GWAS, to predict PTSD case-control status in a local 

South African population. Although the PRS model was unable to significantly distinguish between PTSD cases and 

TEC, we isolated 1,444 variants from the most predictive p-value cut-off to serve as an analytical proxy for PTSD risk. 

Upon integrating the isolated variants and DNA methylation data, the study was able to identify 44,614 mQTLs acting 

across 250 SNPs and 26,344 CpG probes. Moreover, the study identified evidence of substantial interconnectivity 

between the discovered mQTLs, wherein CpG sites were found to interact with a median of 2 different variants (IQR = 1 

– 2) and each variant was found to interact with a median of 3 CpG probes (IQR = 1 – 10.5). Our results further support 

the hypothesis that the development of PTSD is dependent on an interconnected network of molecular interactions and 

highlight the need for future studies dedicated towards optimising PRS construction in multi-ethnic populations. 
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Moreover, the methods implemented here serve as an important proof-of-concept for genomic studies conducted in 

resource-limited settings. The increased utility of techniques that allow one to quantify genetic risk is of pivotal 

importance to populations historically limited by small sample sizes; not only due to the potential elaboration as to how 

genetic underpinnings contribute to suspected risk - but also due to the translational potential of a representative predictor 

variable. By addressing statistical power concerns, genetically supported predictor variables may greatly expand the 

analytical capabilities of similar genomic studies. Such predictor variables are a rapidly growing field, and while 

predictive accuracy may still need to improve to qualify for routine use in clinical settings, the associated data produced 

remains highly biologically relevant in its ability to shed light on the underlying nature of complex diseases. Further 

testing predictive risk estimates both within local and similarly understudied populations would allow one to greatly 

expand our current understanding of the genetic and molecular mechanisms underlying PTSD. Additionally, refining the 

implementation of said estimates may potentially lead to the discovery of novel genetic variation relating to PTSD 

susceptibility in South African populations. 
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Supplementary Tables & Figures 

 

Supplementary Table 1: Regressing the first twenty principal components against PTSD status 

 

Variable 

 

Estimate 

 

Std Error 

 

t 

 

p 

 

PC 1 0.094 0.502 0.186 0.852 

PC 2 0.888 0.502 1.768 0.078* 

PC 3 -0.536 0.502 -1.067 0.287 

PC 4 0.099 0.502 0.197 0.844 

PC 5 -0.826 0.502 -1.645 0.101 

PC 6 -0.375 0.502 -0.747 0.456 

PC 7 0.290 0.502 0.578 0.564 

PC 8 0.375 0.502 0.746 0.456 

PC 9 0.286 0.502 0.569 0.570 

PC 10 -0.402 0.502 -0.800 0.425 

PC 11 0.399 0.502 0.794 0.428 

PC 12 -0.417 0.502 -0.830 0.407 

PC 13 0.169 0.502 0.336 0.737 

PC 14 0.009 0.502 0.018 0.985 

PC 15 -0.544 0.502 -1.083 0.280 

PC 16 -0.165 0.502 -0.328 0.743 

PC 17 0.267 0.502 0.532 0.595 

PC 18 0.891 0.502 1.775 0.077* 

PC 19 0.738 0.502 1.470 0.143 

PC 20 0.194 0.502 0.387 0.699 

* Due to their noticeable separation against the field, the second and eighteenth principal components were employed 

as genomic covariates to account for the effects of population stratification.  

 

 

 

 

Supplementary Table 2: Annotation of notable SNPs identified through genome-wide association testing  

 

rsID 

 

Chromosome 

 

Position 

 

Nearest Gene 

 

p 

 

rs6534683 4 129382308 PRPF31 9.859e-6 

rs382260 5 112210344 SRP19 9.743e-6 

rs28493191 21 22094730 LINC00320 8.993e-6 

rs34997358 21 22088371 LINC00320 7.904e-6 

rs2826490 21 22098294 LINC00320 5.865e-6 

rs1871923 21 22098717 LINC00320 5.865e-6 

rs9980899 21 22099354 LINC00320 5.865e-6 

rs9984307 21 22095495 LINC00320 3.985e-6 

* Nearest gene determined through FUMA (Functional Mapping and Annotation for Genome-Wide Association Studies). 
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Supplementary Table 3: Detection of differentially methylated regions through dmrff 

 

Chromosome 

 

Start 

 

End 

 

Coefficient 

 

p 

 

4 53588360 53588374 -0.038 4.038e-9 

* p-value threshold for epigenome-wide significance = p ≤ 5.95e-8 

** - or + coefficient values are indicative of relative hypo- and hyper-methylation, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1: Distribution of individual missingness and observed heterozygosity across sample cohort. 

Observed heterozygosity was calculated for each individual according to the formula: O(Het) = [N(NM) – 

O(Hom)]/N(NM); where O(Het), O(Hom) & N(NM) correspond to observed heterozygosity, observed homozygosity and 

the number of non-missing genotypes, respectively. The mean observed heterozygosity was 0.229 (σ = 0.004) and the 

exclusionary boundaries (x̄ +/- 3σ) were defined as falling at 0.217 and 0.241 (as depicted by the red lines). Six individuals 

were removed due to presenting excessive heterozygosity while all other participants were found to fall within an 

acceptable range of individual missingness (x < 1%). 
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Supplementary Figure 2: Comparing reported sex against SNP-inferred sex. Participants presenting discordant sex 

information were identified by comparing reported identity labels to the mean homozygosity observed across X-

chromosome associated SNPs.  Analytical consensus suggests that one would typically expect males to display X-

chromosome homozygosity rates at approximately 1.00 and females at less than 0.20, respectively. The two individuals 

for whom reported sex did not agree with SNP-based estimates have been denoted in red, above.  
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Supplementary Figure 3: Principal component analysis depicting relationship between PTSD cases and trauma-

exposed controls. A visual aid illustrating the distribution of genetic variation within the sample cohort. Obtained by 

plotting the first two principal components against one another – the above graph depicts shared genetic variation 

compared to the dataset mean. Optically confirming that neither cases nor controls aggregate in an independent manner 

serves as a method of assessing whether underlying confounders may potentially be present.  
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Supplementary Figure 4: Frequency distribution of INFO scores for chromosome-1 associated SNPs. Upon 

completing imputation, the SHAPEIT2 & PBWT pipeline provided INFO scores (ranging from 0.00 – 1.00) as a 

representative measure for assessing the confidence that each variant was imputed correctly. Traditionally, one can select 

the most appropriate cut-off value by generating frequency distributions depicting the spread of INFO scores across each 

chromosome (such as that provided for chromosome 1, above) and visually identifying the point of inflection. In order to 

limit analysis to SNPs that were more likely to survive subsequent quality control, the aforementioned figures were 

restricted to variants with a minor allele frequency greater than 1%. For the purpose of this study, we elected to employ 

an exclusionary threshold that would remove all SNPs presenting an INFO score of less than 0.8 (as depicted by the red 

line). 
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Supplementary Figure 5: Frequency distribution depicting SNP missingness across all imputed variants. SNPs 

presenting an excessive degree of missingness were identified by generating a frequency distribution for SNP call rate 

across all imputed chromosomes and visually determining an estimated point of inflection. Establishing a call rate 

threshold of 0.97, as depicted by the red line, translates to the removal of all variants presenting a missingness greater 

than 3%.  
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Supplementary Figure 6: Identifying discordant sex information amongst the DNA methylation data. The above is 

a meffil generated graph demonstrating the software package’s inbuilt mechanism for identifying discordant sex 

information. While the Y-axis is simply for sample differentiation, spacing along the X-axis is indicative of the observed 

difference between median X- and Y-chromosome intensities across all samples. The occurrence of clustering on the left 

and right represents the spatial arrangement of female and male measurements within our dataset – wherein an 

exclusionary threshold of five standard deviations away from each cluster’s median (as depicted by the dashed lines) was 

used to identify participants for subsequent removal.  

 

 

 

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 7: Assessing sample quality through median methylated intensities. In addition to the user-

defined variables, meffil presents a series of ingrained methods tailored to independently verifying sample quality. One 

such method is to plot median methylated and unmethylated intensities against one another, before subsequently 

identifying outliers relative to the adjusted median methylated intensity expected by regression. The linear regression 

models describing the relationship between median methylated and unmethylated intensities have been depicted by the 

solid red line above – wherein the dashed counterparts are reflective of the default outlier threshold of three standard 

deviations away from the expected methylated signal. As is depicted in the figure above, meffil identified two individuals 

for whom the median methylated intensities differed from that expected by the dataset norm.  
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Supplementary Figure 8: Corresponding scree plot for DNA methylation principal component analysis. In 

attempting to quantify sources of variation against which to regress the selected technical variables, meffil generated the 

above scree plot denoting the mean squared residuals associated with each principal component. Briefly, the mean squared 

residuals effectively represent the degree to which each principal component contributes to the variation observed in the 

dataset. Upon assessing the distribution of mean squared residuals across both the methylated and unmethylated control 

probes (as depicted by the red and blue lines, respectively), it was determined that the appropriate point of inflection lay 

at approximately four principal components.  
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Supplementary Figure 9: Q-Q plot pertaining to the genome-wide association test conducted on PTSD. Q-Q plots 

are graphical aids which allow one to formulate a superficial estimate as to the confidence that a model’s results fall 

within the realms of reasonable plausibility. Briefly, each plot compares the distribution of observed p-values to that 

which would be expected should the greater dataset be derived from a normal distribution. Any deviation from the perfect 

norm (as depicted by the red line), can be addressed upon individual discretion. As can be seen in the figure above, the 

genome-wide association test conducted on PTSD generated p-values marginally lower than that dictated by the expected 

normal distribution.  
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Supplementary Figure 10: Q-Q plot pertaining to the epigenome-wide association test conducted on PTSD. Q-Q 

plots are graphical aids which allow one to formulate a superficial estimate as to the confidence that a model’s results fall 

within the realms of reasonable plausibility. Briefly, each plot compares the distribution of observed p-values to that 

which would be expected should the greater dataset be derived from a normal distribution. Any deviation from the perfect 

norm (as depicted by the black line), can be addressed upon individual discretion. As can be seen in the meffil – generated 

figure above, the epigenome-wide association test conducted on PTSD generated p-values higher than that dictated by 

the expected normal distribution. 
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