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Abstract
Many researchers and scientists are devoting their time to scrutinize nanofluids nature and
characteristics for heat transfer enhancement. The scrutiny of nanoliquids is important in the
large scale thermal management systems via evaporators, advanced cooling systems, heat
exchangers, micro/nano-electromechanical devices and industrial chilling applications.
Nanoliquids are very momentous even in the natural process via different fields like chemistry,
chemical engineering, physics and biology. Nanoliquids can be utilized in various fields of
engineering such as different chemical procedures, cooling of electronic equipment and heat
exchangers. The main aim of current article is to scrutinize electromagnetohydrodynamic flow of
micropolar-Casson-Carreau nanoliquids over thin needle with Robinson’s conditions and
Arrhenius pre-exponential factor law. Double stratification effects are also taken into account.
The reverent partial differential equations are reformulated into the system of ordinary
differential expressions by implementing appropriate transformations. Such obtained equations
subject to boundary constraints are computed numerically by considering Runge–Kutta-Fehlberg
method. Behaviour of numerous interesting parameters on flow fields is deliberated. The
outcomes of flow fields are delineated through graphs and tabular data.

Keywords: electromagnetohydrodynamic flow, double stratification, non-Newtonian nanofluids,
Robinson’s conditions, Arrhenius pre-exponential factor law, Thin needle

(Some figures may appear in colour only in the online journal)

1. Introduction

Nanofluids include nanomaterials of less than 100 nm of
suspension diameter that are utilized for improvement of
thermal conductivity. Applications of the nanofluids are
used for electric heating water, increased storage, refrig-
erator, condenser heat transfer performance and efficient
solar power absorption. The novel characteristics of nano-
liquids include impressive heat transport and thermal con-
ductivity enhancements. Recent survey depicts a significant

increase in the applications of nanoliquids in the several
kinds of micro-systems such as microchannels, micro heat
pipes and micro-reactors. There is further significant
potential in utilizing the nanoliquids in the medical sciences
like bio-separation systems, enzyme biosensors, biomimetic
microsystems and drug delivery systems. Nanofluids are
used in the cooling of industrial machines, nuclear plants,
transformer oils and nanoelectronic.

Choi and Eastman [1] initiated nanofluid flow. Buongiorno
[2] established the model of nanofluid flow together with
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Brownian motion and thermophoretic aspects. Ali et al [3]
studied the development structure of cylinder for cross-liquid
movement of nanoparticles in an electromagnetic environment.
Shah et al [4] scrutinized Maxwell nanofluid movement
between vertical sheets with heat flux and convection effects.
Ahmed et al [5] examined the mixed convection effect in
Maxwell nanoliquids 3D flow by vertical stretching cylinder.
Hayat et al [6] addressed the stagnation point movement of

non-Newtonian liquid (Carreau liquid) by numerical simulation
with Cattaneo-Christov thermal gradient. Tlili et al [7] dis-
cussed the 3D magnetohydrodynamic (MHD) Maxwell
nanofluid flow with heat diffusion/generative impacts. Khan
et al [8] explored boundary-layer movement of Maxwell
nanoliquids through an extendable revolving cylinder subject to
transverse magnetosphere. Riaz et al [9] investigated the MHD
Maxwell liquid flow processing concerning local and non-local

Figure 1. Flow representation of the problem.

Figure 2. Outcomes of f′ versus (a) We, K (b) E1, n.
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differentiated operators. Vahid et al [10] scrutinized boundary-
layer nanoliquid flow and heat and mass transport over the
surface. Hayat et al [11] addressed Carreau liquid peristaltic
MHD flow in a medium of different waveforms. Ellahi et al
[12] discussed the function of slipping in a two-phase move-
ment of the Newtonian liquids. Shafee et al [13] investigated
the simulation model for turbulent flow in a pipe via a hybrid
swirling movement system that assumes nanofluid energy
deficiency. Iftikhar et al [14] investigated the effect of ferro-
magnetic dipole on the flow of a nanofluid through a stretching
cylinder. Raza [15] examined the cumulative impact of thermal
radiation and velocity slip along with the convective heated

stretching sheet. Many researcher works on the nanofluids
which are carried out via studies [16–33].

2. Mathematical formulation

Steady, incompressible electromagnetic micropolar-Casson-
Carreau nanofluids flow over thin needle is discussed. Flow
model and related coordinate systems are analyzed. A sche-
matic diagram associated with the concerned problem is
shown in figure 1.

In current paper, we have following restrictions:

Figure 3. Outcomes of f′ versus (a) β, M (b) Gr, ε.

Figure 4. Outcomes of g(η) versus (a) We, K (b) δ, n.
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(i) Thickness of needle is comparable/smaller than that of
thermal and momentum boundary-layers over it.

(ii) Influence of curvature in transverse-direction has been
prominent.

(iii) Pressure-gradient along thin needle is ignored i.e.
=¶

¶
0.p

x
(iv) Ohmic heating and viscous dissipation impacts are

considered.
(v) Arrhenius pre-exponential factor law is introduced.
(vi) Robinson’s conditions are implemented.
(vii) Catteneo Christov double diffusion theory is applied.
(viii) Micropolar fluid model is applied.
(ix) Casson and Carreau fluid models are implemented.
(x) Buongiorno model is implemented.
(xi) Electromagneto hydrodynamic flow model is included.

Under the above assumptions, the resulting equations of
non-Newtonian nanofluids flow over thin needle are
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Here, u and v are the axial and radial components of velo-
city, ( )x r, cylindrical coordinates, ρf density of fluid, μf

fluid dynamic viscosity, k vortex viscosity of micro-polar
fluid, β Casson fluid parameter, n power law index, Γ

time constant, σf Stefan Boltzmann constant, k* mean
absorption coefficient, Ω1 and Ω2 thermal and solutal
relaxation times correspondingly, ( )T C, temperature and
concentration of nanoparticles respectively and ( )¥ ¥T C,

Figure 5. Outcomes of g(η) versus (a) β, M (b) m, ε.
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ambient temperature and concentration of nanoparticles
respectively. We assume that the spin gradient viscosity ( )g
is addressed by
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shows material parameter, αf thermal dif-

fusivity, g gravitational acceleration, βT thermal expansion
coefficient, DB coefficient of mass diffusion, E0 electric field
strength and B0 magnetic field strength.

In concentration expression (5), the expression =K*
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here h1 and h2 stand for heat and mass transfer coefficients,
= + = +T cx T C dx C,s s0 0 for surface temperature-con-

centration and = + = +¥ ¥T c x T C d x C,1 0 1 0 for ambient
temperature-concentration respectively.
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In which K stands for material parameter, We for Weissen-
berg parameter, Gr for thermal Grashof of number, Rex for
Reynolds number, M for Hartman number, E1 for electric
parameter, Pr for Prandtl number, L for non-dimensional
parameter, Nt for thermophoresis parameter, Nb for
Brownian movement parameter, Br for Brinkman number,
B for micro-inertia density parameter, Sc for Schmidt
number, G1 and G2 for Deborah numbers in terms of
relaxation and retardation times respectively, d for temper-
ature difference parameter, E for dimensionless activation
energy, b1 and b2 for thermal and solutal Biot numbers
correspondingly and St and Sc for thermal and solutal
stratified parameters correspondingly.

The dimensionless local skin friction and wall couple
stresses are defined by

( ) [ { ( )} ] ( )

( )

⎛
⎝⎜

⎞
⎠⎟b

= + + +  
-

C K A We f A f ARe 4 1 1
1

1

16

x fx
n1

2
1
2 2 1

2

[ ( ) ( )] ( )⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟b

= + + + hC
K

A g A A g ARe 1
2

1
1

2 17x gx

1
2

1
2

3
2

in which the local Reynolds number is defined by =
u

Re .x
Ux

Figure 8. Outcomes of θ(η) versus (a) St, Γ1 (b) β1, Pr (c) Nt, Nb.

Figure 9. Outcomes of f(η) versus (a) We, K (b) E1, n.
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3. Numerical outcomes and discussion

Figures 2(a), (b) shows the consequences of Weissenberg
number We, material parameter K and electric parameter E1

on velocity profile f′. From the figure 2(a), it is seen that
velocity profile is diminishing by the variations of Weissen-
berg number and material parameter. From the figure 2(b), it
is also seen that velocity field is decayed for varying electric
parameter for both ( )=n 0.5 & 1.5 . Figures 3(a), (b) illus-
trates the behavior of Casson fluid number β, thermal Grashof
number Gr and Hartman number M on velocity profile f′. It is

cleared that the velocity field f′ is reduced for growing values
of β and M. Figures 4(a), (b) designates the influence of
Weissenberg number We, material parameter K and temper-
ature difference parameter δ against velocity profile. It is
viewed that velocity is decayed for Weissenberg number We
while it shows reverse behavior for material parameter K and
temperature difference parameter δ for both ( )=n 0.5 & 1.5 .
Figures 5(a), (b) is displayed the characteristics of velocity
field for Casson fluid number β, Hartman number M, ε and
( )=m 0 & 2 . It is noted that velocity field reduces for M and
ε. The effects of Weissenberg number We, material parameter

Figure 10. Outcomes of f(η) versus (a) Sc, β (b) ε, Gr.

Figure 11. Outcomes of f(η) versus (a) Sc, Γ2 (b) λ, E.

8

Phys. Scr. 95 (2020) 115219 F Mabood et al



K and electric parameter E1 on temperature profile θ are
explored in figures 6(a), (b). It is apparent that temperature
profile is enlarged for Weissenberg number and material
parameter for both ( )=n 0.5 & 1.5 . Figures 7(a), (b) signifies
the behavior of the thermal Grashof number Gr, Hartman
number M, Casson fluid parameter β and ε on temperature
profile θ. It is evaluated that temperature of fluid θ is
enhanced for Hartman number and thermal Grashof number.
Figures 8(a)–(c) delineates the impacts of Deborah number
G ,1 thermal Biot number b ,1 thermal stratification parameter
S ,t thermophoresis parameter Nt, Prandtl number Pr and

Brownian motion parameter Nb on temperature profile θ.
It is visualized that for the intensifying values of thermal
stratification parameter and thermal Biot number b ,1 the
temperature field enhances. Figures 9(a), (b) discloses the
characteristics of Weissenberg number We, material para-
meter K and electric parameter E1 against the concentration of
nanoparticles f. It is perceived that concentration of nano-
particles f is augmented with Weissenberg number We and
material parameter K for ( )=n 0.5 & 1.5 . The features of the
Schmidt number Sc, Grashof number Gr, Casson fluid para-
meter β and ε against the concentration of nanoparticles f are

Figure 12. Outcomes of f(η) versus (a) Nt, Nb (b) M, Br.

Figure 13. Outcomes of skin friction (x-direction) (a) We, K, and M (b) Gr, n, and β.
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captured in figures 10(a), (b). It has been scrutinized that the
concentration profile of nanoparticles is decayed for distinct
values of Schmidt number. Figures 11(a), (b) depicts the
nature of solutal stratification parameter Sc, Deborah number
G ,2 l and activation energy E against the concentration of
nanoparticles f. It is deliberated from these drawn lines
that the concentration of nanoparticles f is upgraded for
solutal stratification parameter. The consequences of Hartman
number M, thermophoresis parameter Nt, Brownian motion
parameter Nb and Brinkman number Br against the con-
centration profile f are displayed in figures 12(a), (b). It is
watched from the curves that the growing values of Hartman
number and thermophoresis parameter produces enhancement
in concentration profile of nanoparticles. Figures 13(a), (b)

explains the outcomes of Hartman number M, Casson fluid
parameter β, Weissenberg number We, material parameter K

and Grashof number Gr on skin friction CRe .x fx

1
2 The skin

friction CRex fx

1
2 increases by expanding values of Weissen-

berg number and material parameter while reverse situation is
watched for Casson fluid parameter for both ( )=n 0.5 & 1.5 .
Figures 14(a), (b) elucidates the results of Hartman number
M, Weissenberg number We, Casson fluid parameter β,
material parameter K and Grashof number Gr on skin friction

CRe .x fy

1
2 The skin friction CRex fy

1
2 upsurges by escalating

values of material parameter. In addition, the skin friction

CRex gx

1
2 is decayed for Casson fluid parameter for both

( )=n 0.5 & 1.5 . Numerical outcomes of skin frictions against
different values of prominent parameters like K, We, β,M and
n are shown in table 1. Here the skin frictions are reduced for
various values of M while upsurges for larger estimations
of K.

4. Conclusions

Electromagnetohydrodynamic (EMHD) flow of non-New-
tonian nanoliquids over thin needle with Robinson’s condi-
tions and Arrhenius pre-exponential factor law is studied. The
relevant partial differential equations are reformulated into the
system of ordinary differential expressions by implementing
appropriate transformations. Such obtained equations subject
to boundary constraints are computed numerically by con-
sidering Runge–Kutta-Fehlberg method. With an enhance-
ment in Hartman number, both velocities decay. The velocity
field is upgraded for electric parameter. Temperature field
enhances for larger thermal Biot number. The volumetric

Figure 14. Outcomes of skin friction (y-direction) (a) We, K, and M (b) Gr, n, and β.

Table 1. Numerical values of skin friction for various values of
physical parameters.

K We β M n
/ CRex fx

1 2 / CRex fy
1 2

1 0.5 2 1 1.5 4.98998 0.075358
2 7.751786 0.158443
3 10.54131 0.244488
5 0.0 10.55898 0.333666

0.8 18.32921 0.438883
1.4 21.32474 0.449830
0.5 1 21.75952 0.565547

5 12.79731 0.332377
10 11.68048 0.303307
3 0.0 15.12571 0.390802

0.4 14.77392 0.382630
0.8 14.44473 0.374891
1.0 0.5 0.751600 0.033344

1.0 5.282363 0.188525
1.5 14.63049 0.360251
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concentration of nanoparticles is decayed with Schmidt
number. The concentration field upsurges with growing
values of thermophoresis parameter while fall down with
Brownian movement parameter.
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