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Abstract

EEG artefact removal methods compared using
semi-synthetic data for the analysis of ADHD EEG-data

W B du Toit
Department of Mechanical and Mechatronic Engineering,

University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Thesis: MEng (Mech)
December 2021

The electroencephalogram (EEG) is a measure of the biological electrical sig-
nals that reflect the brain’s functional state, allied to a person’s mental condi-
tion and nervous system activity. EEG is, however, an extremely weak signal,
thus easily contaminated by artefacts. Artefacts are activities that do not di-
rectly originate from the brain but are still present in the EEG data. Artefacts
significantly complicate, distort and obscure the analysis of the data originat-
ing exclusively from the brain.

This thesis aimed to identify, test, and automate robust methods for remov-
ing EEG artefacts. This aim was achieved by developing a simulated dataset,
based on real ‘clean’ EEG and artefacts, namely a semi-synthetic dataset with
significant variation in types, forms, intensity and combinations of physiolog-
ical artefacts. This dataset was used to test the effectiveness and efficiency
of three blind source separation (BSS) techniques, namely Extended Infomax,
second-order blind identification (SOBI), canonical correlation analysis (CCA)
and a developed auto threshold method. Additionally, the BSS methods were
fully automated, using a novel but simple approach, to prevent the preprocess-
ing of EEG data from becoming a bottleneck for data analysis.

The semi-synthetic dataset consisted of ‘clean’ EEG datasets, which was
contaminated separately and together by electrocardiography (ECG), elec-
trooculography (EOG) and electromyography (EMG) artefacts varied for each
EEG dataset. This thesis compared the time-series, topography, amplitude
spectra, and the signal-to-noise ratio (SNR) characteristics of real ‘clean’ EEG
and artefacts, found in the relevant literature, to the characteristics of the
semi-synthetic dataset developed, for the purpose of validation.
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ABSTRACT iii

BSS techniques were used because they were the most popular for artefact
removal. Furthermore, independent component analysis (ICA) was identified
as the most popular BSS subcategory. The two most popular ICA methods,
namely Extended Infomax and SOBI, were tested along with CCA. In addi-
tion, an auto threshold method, using the standard deviation of the data, was
created and tested on the data.

The effectiveness of the cleaning methods was determined and compared
using the SNR increase of the contaminated data. The efficiency was deter-
mined and compared using the average time each BSS method took to identify
the components and for the auto threshold method took identify all the arte-
fact ranges. The SNR and time results were further analysed using boxplots
and t-tests.

With the removal of EOG artefacts, CCA was the most effective. Extended
Infomax was the most effective with the removal of EMG artefacts. With the
removal of ECG artefacts, SOBI outperformed the other methods in terms
of effectiveness. Furthermore, when combining all three artefacts, the effec-
tiveness of the BSS methods was less distinguishable, having closer P values,
with Extended Infomax being the most effective. The auto threshold method
showed comparable effectiveness results to the BSS methods, but in terms of
efficiency, it was about 10, 20 and 100 times faster than CCA, Extended Info-
max and SOBI, respectively. Concerning the automation of the BSS methods,
the fully automated and semi-automatic Extended Infomax methods showed
no significant difference, based on a t-test, in the effectiveness of EOG removal.
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Uittreksel

Metodes vir die verwydering van EEG-artefakte vergelyk
met behulp van semi-sintetiese data vir die ontleding van

ADHD EEG-data

W B du Toit
Departement Meganiese en Megatroniese Ingenieurswese,

Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MIng (Meg)
Desember 2021

Die elektroencefalogram (EEG) is ’n maatstaf van die biologiese elektriese
seine wat die brein se funksionele toestand weerspieël, wat verband hou met ’n
persoon se geestestoestand en aktiwiteit van die senuweestelsel. EEG is egter
’n uiters swak sein, wat dus maklik deur artefakte gekontamineer kan word.
Artefakte is aktiwiteite wat nie direk uit die brein afkomstig is nie, maar
steeds in die EEG-data voorkom. Artefakte bemoeilik, verdraai en verduister
die analise van die data wat uitsluitlik uit die brein afkomstig is.

Hierdie tesis het ten doel gehad om robuust metodes vir die verwydering
van EEG-artefakte te identifiseer, te toets en te outomatiseer. Hierdie doel is
bereik deur ’n gesimuleerde datastel te ontwikkel, gebaseer op werklike ‘skoon’
EEG en artefakte, naamlik ’n semi-sintetiese datastel met ’n beduidende vari-
asie in tipes, vorms, intensiteit en kombinasies van fisiologiese artefakte. Hier-
die datastel is gebruik om die doeltreffendheid en tyddoeltreffendheid van drie
Blinde bron skeiding (BBS) tegnieke te toets, naamlik Uitgebreide Infomax,
tweede-orde blinde identifikasie (TOBI), kanonieke korrelasie-analise (KKA)
en ’n ontwikkelde outomatiese drumpel metode. Die BBS-metodes is volledig
geoutomatiseer, met ’n nuwe maar eenvoudige benadering, om te voorkom dat
die voorafverwerking van EEG-data ’n ‘bottleneck’ word vir data-analise.

Die semi-sintetiese datastel bestaan uit ‘skoon’ EEG-datastelle, wat afson-
derlik en saam gekontamineer is deur elektrokardiografie (EKG), elektrookulo-
grafie (EOG) en elektromyografie (EMG) artefakte wat vir elke EEG-datastel
gevarieer is. Hierdie tesis vergelyk die tydreekse, topografie, amplitude-spektra
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UITTREKSEL v

en die sein-tot-geraas-verhouding (SGV) kenmerk van die ‘skoon’ EEG en ar-
tefakte in die relevante literatuur met die kenmerke van die semi-sintetiese
datastel wat ontwikkel is vir validasie doeleindes.

BBS-tegnieke is gebruik omdat dit die gewildste is vir die verwydering van
artefakte. Verder is onafhanklike komponent analise (OKA) geïdentifiseer as
die gewildste BBS-subkategorie. Die twee gewildste OKA-metodes, naamlik
Extended Infomax en TOBI, is saam met KKA getoets. Boonop is ’n outoma-
tiese drumpel metode, met behulp van die standaardafwyking van die data,
geskep en getoets op die data.

Die doeltreffendheid van die skoonmaakmetodes is bepaal en vergelyk met
behulp van SGV-toename van die gekontamineerde data. Die doeltreffend-
heid is bepaal en vergelyk deur gebruik te maak van die gemiddelde tyd wat
elke BBS-metode geneem het om die komponente te identifiseer, en vir die
outomatiese drumpelmetode al die artefakreekse te identifiseer. Die SGV- en
tydresultate is verder geanaliseer met behulp van boksplotte en t-toetse.

Met die verwydering van EOG-artefakte was KKA die doeltreffendste.
Uitgebreide Infomax was die doeltreffendste met die verwydering van EMG-
artefakte. Met die verwydering van EKG-artefakte het TOBI beter gevaar as
die ander metodes wat doeltreffendheid betref. Boonop was die doeltreffend-
heid van die BBS-metodes by die kombinasie van al drie artefakte minder on-
derskeibaar, met nader P-waardes, met Extended Infomax die doeltreffendste.
Die outomatiese drumpel metode het vergelykbare doeltreffendheid resultate
getoon met die BBS-metodes, maar wat tyddoeltreffendheid betref, is dit on-
geveer 10, 20 en 100 keer vinniger as onderskeidelik KKA, Extended Infomax
en TOBI. Met die BBS-metodes outomatiser, het die volledig outomatiese en
semi-outomatiese uitgebreide Infomax-metodes geen beduidende verskil getoon
op grond van ’n t-toets in die doeltreffendheid van EOG verwydering nie.
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Chapter 1

Introduction

1.1 Problem statement
The electroencephalogram (EEG) is a measure of the biological electrical sig-
nals that reflect the brain’s functional state. These measurements can be allied
to a person’s mental condition and nervous system activity. EEG research is
mainly used to evaluate and study neurological disorders and functions of
the brain. The research is traditionally conducted in clinical and laboratory
environments. EEG is an essential signal in aiding researchers and medical
practitioners to extract vital information for diagnosis and monitoring a pa-
tient’s health relating to different brain conditions [1–5]. It has been repeatedly
demonstrated that EEG signals are closely related to cerebral diseases, such
as cerebrovascular diseases, migraines, and epilepsy [5]. A systematic review
by McVoy et al. [6] shows that most research involving EEG is used as a diag-
nostic tool rather than a treatment tool and that almost half of the diagnostic
tool research is dedicated to the diagnosis of attention-deficit hyperactivity
disorder (ADHD).

EEG plays an essential role in identifying brain activity and behaviour. It
is, however, a weak signal, thus easily contaminated by electrical artefacts. In
this context, artefacts are activities that do not directly from the brain but
are still present in the measured EEG data [5]. Some artefacts can imitate
cognitive or pathological activity and become a significant problem, resulting
in misleading visual interpretations and diagnosis of diseases such as sleep
disorders, Alzheimer’s disease, etc. [2, 3].

Artefacts complicate, distort and obscure the analysis of the data origi-
nating exclusively from the brain [3, 7, 8]. Artefacts originate from various
sources and significantly and detrimentally affect EEG due to large variations
in temporal and spectral contamination [9–12]. There are numerous types of
artefacts, each with its own characteristics, each of which must be addressed in-
dependently. Physiological artefacts such as electrocardiography (ECG), elec-
trooculography (EOG) and electromyography (EMG) have a significant effect

1
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CHAPTER 1. INTRODUCTION 2

on EEG and cause severe problems for EEG analysis [10–12]. Furthermore,
due to the weakness of EEG signals, contamination from extraneous sources
such as electrical, magnetic, sound, optical and electromagnetic waves etc. are
limitless [2, 9, 13].

The extent of artefact contamination depends on the acquisition devices,
the setup and participant compliance to preventative guidelines [3, 14]. Partic-
ipants that are non-compliant to artefact preventive guidelines, such as those
with ADHD, increase the likelihood of physiological artefacts contaminating
the EEG data [3, 10, 15].

Traditionally, EEG research and medical applications involve the use of
expensive and medical-grade EEG equipment and procedures that emphasise
preventative measures to reduce artefacts [1, 16]. Furthermore, traditional
EEG research requires complex equipment, assembly, and extensive applica-
tion time that inadvertently inflicts discomfort and distress on the participants
[16]. These characteristics and the high cost of medical-grade EEG equipment
decrease participation attractiveness and use in research [16]. In response to
this, researchers are shifting to varying forms of consumer-grade EEG equip-
ment, enabled by the development of more affordable advanced EEG related
hardware [1]. These EEG devices are advertised as portable, affordable, effort-
less, and marketed for personal and everyday applications at home and school
despite technical limitations [1, 16, 17].

The transition from expensive and medical-grade to consumer-grade EEG
devices for research has led to decreased preventative measures, increased data
collection, and an increased likelihood of artefact contamination [1, 14, 16, 17].
Therefore, effective and practical cleaning methods are essential for current
EEG research and applications. It is also essential to automate these effective
methods so that the preprocessing of the EEG does not become a bottleneck
before applying quality analysis.

1.2 Aim and objectives
With the need for robust cleaning methods being established, this project aims
to identify, automate and evaluate adequate methods for removing artefacts
from EEG data. To achieve this aim, the researcher must accomplish the
following objectives:

1. Identify the most relevant artefacts to remove from EEG for non-compliant
participants

2. Identify and deploy the most effective methods for cleaning EEG in the
research context

3. Identify and deploy a metric for evaluating the performance of these
methods
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4. Develop a semi-synthetic dataset to test the performance of the employed
methods

5. Automate the employed methods for dealing with greater EEG data
demands

1.3 Thesis overview
From this thesis, the reader will gain insight into the effectiveness of the most
popular blind source separation (BSS) methods in cleaning electrocardiogra-
phy (ECG), electrooculography (EOG) and electromyography (EMG) and a
combination of these artefacts. The fully automated BSS methods will be
presented and will show comparable results with cleaning all 50 datasets for
each type of artefact in about three minutes, compared to the semi-automatic
methods, which require a few hours due to the manual input. Based on the
standard deviation of data, the auto threshold method showed comparable
results and could clean all 50 datasets for each type of artefact in about 2.5
seconds.

The thesis is structured in three main chapters: firstly, the Literature Re-
view, secondly, Materials and Methods and thirdly, the Results and Discus-
sion. In the Literature Review chapter, the reader will find a discussion of
EEG, artefacts such as EOG, ECG and EMG and popular cleaning methods
such as Extended Infomax, second-order blind identification (SOBI), canon-
ical correlation analysis (CCA). In the Materials and Methods chapter, the
methodology followed and materials used to create the semi-synthetic dataset
for testing the cleaning methods, and the methodology for the cleaning meth-
ods will be discussed. In the Results and Discussion chapter, the reader will
find a thorough validation of the semi-synthetic contaminated data and the
results of cleaning the contaminated data using the BSS methods, the fully
automated BSS methods and the auto threshold method. These results will
be communicated using signal-to-noise ratio (SNR) and cleaning time as per-
formance measures for effectiveness and efficiency.

A thoroughly validated semi-synthetic dataset will support the claims made
about the different cleaning methods. Furthermore, the maximum variation
within realistic limits will be imposed for all the different contaminations to
ensure that the artefact removal methods are thoroughly tested. Finally, the
claims made about the effectiveness of the methods tested will be based on a
statistical analysis of quantitative results. It is hypothesised that using syn-
thetically augmented measured EEG data rather than either purely synthetic
or purely measured EEG data provides a simple yet more justifiable datum for
comparison of various cleaning methods.
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Chapter 2

Literature Review

2.1 Electroencephalography

2.1.1 The nervous system

The human nervous system is categorised into two different systems, the central
nervous system (CNS) and the peripheral nervous system (PNS). The CNS
contains the brain and spinal cord. The PNS consists mainly of nerves, which
are long fibres that connect the central nervous system to every other part
of the body. The spinal cord is connected to the brain via the brainstem
and conducts all the electrical signals between the brain and the PNS. The
brain can be grouped into three main parts, the cerebrum, cerebellum and
brainstem, as shown in Figure 2.1 [18–23].

As the largest part of the brain, the cerebrum consists of a left and right
hemisphere connected by the corpus callosum. The cerebrum’s outer layer,
the cerebral cortex, consists of 2 to 4 mm of grey matter and underlying white
matter and is made up of numerous folds (gyri) and grooves (sulci), referred
to as convolutions. A high density of neurons (estimated 1010 neurons) and its
close proximity to the electrodes make the cerebral cortex the most significant
region in EEG studies [19, 23, 24].

Figures 2.1 show four of the five lobes in each cerebral hemisphere, sep-
arated by the central, lateral, and parieto-occipital sulcus. The four lobes
visible from the surface are the frontal, parietal, temporal and occipital lobes,
covering the insular lobe [19, 23–25].

Figure 2.1 shows the frontal lobe as the anterior portion of each cere-
bral hemisphere. Voluntary motor control of skeletal muscles is the primary
function of the frontal lobes. Additionally, frontal lobes are associated with
higher levels of intellectual functioning such as planning, decision making,
and verbal communication. Disorders such as depression, anxiety, poor ex-
ecutive planning, lack of motivation, migraines, personality disorders, ADHD
and obsessive-compulsive disorder (OCD) are associated with the frontal lobe
[19, 23, 26–29].

4
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As shown in Figure 2.1, the parietal lobe is separated from the frontal
lobe by a deep fissure called the central sulcus. A primary function of the
parietal lobe is somaesthetic interpretation, for example, of skin and muscu-
lar sensations. The parietal lobe is further associated with formulating words,
understanding speech and expressing thoughts and emotions. Disorders associ-
ated with the parietal lobes include learning disorders, poor spatial awareness,
anxiety, depression and poor abstract comprehension [18, 19, 23, 29].

As shown in Figure 2.1, the temporal lobes are located below both the
frontal and parietal lobes of the cerebral hemispheres. The temporal lobes
are close to the hippocampus and are very important for memory creation,
especially long-term memory and further associated with the interpretation
of auditory and visual information. Disorders related to the temporal lobes
are poor emotional control, rage, anger, learning disorders, poor memory and
amusia [19, 23, 26, 27].

The occipital lobes can be found at the anterior regions of each cerebral
hemisphere, as seen in Figure 2.1. The primary function of this lobe is to
process vision, coordinate eye movements and the conscious perception of sight.
The disorders associated with the occipital lobes are visual agnosia (inability
to perceive and draw complete objects), simultaneous agnosia (inability to
see multiple things simultaneously), and learning disorders related to visual
processing [19, 23, 26, 27].

The central nervous system

Figure 2.1: The brain adapted from [23].
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A crucial area to consider is the sensorimotor (sensory and motor) cortex,
which is the hatched region overlapping the frontal and parietal lobes, as seen
in Figure 2.1. Disorders associated with the sensorimotor cortex are paralysis,
stroke, seizure, poor handwriting, ADHD, depression, and anxiety [19, 23, 26–
28, 30].

2.1.2 Electroencephalography generation

EEG is the measurement of synchronous or asynchronous communication through
the electrical activity of large groups of neurons measured mainly from the
cerebral cortex [17, 19, 31]. The term used for groups of organised cells in
the nervous system is nervous tissue. Nervous tissue consists of neurons and
glial cells. The neurons are the basic units of the nervous system and form
an intricate system responsible for the generation and conduction of electrical
events. The glial cells support the nervous system and are mainly found in the
brain and spinal cord (CNS) [19, 23, 32, 33].

Figure 2.2 shows that each neuron consists of three parts: the dendrites, a
cell body, and an axon. The dendrites are considerably branched cytoplasmic
extensions of the cell body and receive inputs from other neurons or receptor
cells. The cell body contains the nucleus, which is the metabolic centre of the
cell. The axon is a single cytoplasmic extension of the cell body that conducts
the nerve impulses from the cell body to other neuron or effector (muscle or
gland) cells. An axon’s length can range from millimetres to a meter [19, 23].

Glial cells do not conduct impulses. Instead, they bind neurons together,
modify the extracellular environment of the nervous system, and influence the
nourishment, restoration and electrical activity of neurons. When a person
learns new things, the learning process is accompanied by structural changes
directed and reinforced by glial cells. Three of the most important types of glial
cells are the oligodendrocytes, astrocytes, and microglia glial cells. The oligo-
dendrocytes glial cells are used to increases the myelin sheath layers, where the
increase of myelin sheath layers corresponds to learning. The astrocytes glial
cells repair and provide nutrients to brain cells and maintain the equilibrium
of neuronal functions. The microglia glial cells are used to remove waste and
also respond to injury and infection [19, 23].

The functional point of connection between two neurons, enabling commu-
nication, is called the synapse. The axons of a neuron are always either close
to or in contact with the cell of another neuron. An action potential from the
cell body of a neuron travels through the axon to the axon terminal bundle
and through the synapse to either directly or indirectly stimulate or inhibit
the cell of another neuron. With some exceptions, the action potential of the
neuron ends at the axon terminal, where it stimulates the release of a chemical
neurotransmitter that affects the cell of the next neuron [19, 23].

With time, connections between neurons strengthen due to the increasing
thickness of the myelin sheaths covering the axons, as shown in Figure 2.2. The
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myelin growth process first starts when a human is born. Therefore babies have
a low posterior dominant rhythm (PDR) between 1 and 4Hz. At the age of
about 14, when extra layers of myelin have been added, the PDR converges
to the higher alpha frequency. Lower frequency PDRs can be recognised with
young ADHD adults due to reduced or delayed development of these myelin
layers [19, 33–35].

EEG data represent the electrochemical events that originate from the
synaptic electrochemical action potentials. These chemical synapses can be
categorised into slow and fast synapses. Fast synapses involve glutamate and
gamma-aminobutyric acid, while slow synapses involve dopamine, serotonin,
acetylcholine, and norepinephrine. These synaptic potentials give rise to local
field potentials, which influence the firing of action potentials of the pyramidal
neurons. The EEG data is acquired by measuring the electrochemical reactions
from the pyramidal neurons by placing electrodes on the participant’s scalp
[19, 36].

The neural network

Figure 2.2: The neural network adapted from [19].

2.2 Electroencephalography in practice

2.2.1 Standard Electroencephalography electrode
placements and associations

The International Federation of Clinical Neurophysiology proposed the Inter-
national 10-20 system for Electroencephalography and Clinical Neurophysiol-
ogy in 1958 [37]. Since it has sufficient electrodes and high resolution for most
clinical applications, the International 10-20 system is most commonly used in
these contexts. The system is often used as a standard for various transcra-
nial mapping methods [38], is efficient and has a good balance between time,
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effort, cost, and accuracy. It is adequate unless disorders such as epilepsy are
considered due to localisation becoming too critical [19, 26, 27, 37].

International 10-20 system

Figure 2.3: (a) Left view of 10-20 system. (b) Top view of 10-20 system adapted
from [22].

The International 10-20 system determines electrode positions based on
fractions (10% or 20%) of the distance between the nasion-inion position and
the pre-auricular positions, as shown in Figure 2.3. The labelling of the elec-
trodes is based on an anatomical convention used to locate the various brain
regions [39]. The letters ‘F’, ‘T’, ‘P’, ‘O’ or ‘A’ correspond with the electrodes
positioned over the frontal, temporal, parietal, occipital or auricular regions
respectively. The letter ‘C’ corresponds to the central electrodes. The sub-
scripts of the labels are either odd or even numbers, corresponding to the left
or right hemisphere. The z subscripts correspond to electrodes located on the
midline of the brain [19, 26, 27, 37, 39].

2.2.2 Standard Electroencephalography frequency
bands and associations

The amplitude spectra of EEG data have been categorised into different fre-
quency bands or ranges to analyse brain function more effectively for diagnoses
and treatment. Abnormally high or low amplitudes at these frequencies have
various associations and may lead to certain diagnoses. There are five stan-
dard frequency bands, namely the delta (δ), theta (θ), alpha (α), beta (β),
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and gamma (γ) bands. Gamma bands include the fastest waves in terms of
frequency and delta the slowest. The exact ranges of these frequency bands dif-
fer slightly depending on the research or clinical context. Due to this research
being focused on physiological artefacts, the bands are consistent with those
used with participants who show non-compliant behaviour, such as ADHD
participants [19, 26, 40, 41].

The frequency of the delta band is under 4Hz. The delta band is the
slowest frequency and is also associated with hyperactivity and impulsivity.
The frequency of the theta band is in the region of 4 to 7Hz and is considered
one of the lower frequencies associated with hyperactivity and impulsivity. The
alpha band with a frequency of 8 to 12Hz is the PDR in neurotypical adults
and is associated with relaxed wakefulness and increased attention. The beta
band frequency is in the region of 12 to 30Hz. Increased beta band activity can
be associated with an increased attention state. The gamma band frequency is
between 30 to 100Hz and is the highest considered band in EEG studies. High
gamma-band activity correlates to blood oxygenation and is associated with a
high functional cortical state during sensory stimulation and high performance
of cognitive tasks [19, 26, 40–42].

2.3 Artefacts

2.3.1 Overview of artefacts

EEG signals are extremely weak, and their analysis can be influenced due
to contamination from artefacts. These artefacts are activities that do not
directly originate from the brain but are still present in the EEG data [5].

Artefacts deliver a significant detrimental effect on EEG due to large vari-
ations in temporal and spectral contamination. Some artefacts may contam-
inate several neighbouring channels, while others contaminate only a single
channel. In addition, some artefacts appear as regular periodic events, such as
pulse artefacts, while some artefacts are extremely irregular [9].

One can categorise artefacts into non-physiological and physiological arte-
facts. The three primary physiological artefacts discussed in the literature that
most typically occur are ECG, EOG and EMG. ECG artefacts originate from
the heart and are present in the form of a pulse or heartbeat when an elec-
trode is placed on or near a blood vessel. EOG artefacts mainly originate from
eye movements and blinks. EMG originates from any muscles movements,
including muscle groups from the neck and the face such as the cheeks, fore-
head, jaws, tongue etc. Other less intrusive physiological artefacts include the
movement of the head, limbs or other movements and tremors [2, 9, 13, 14].

Non-physiologic artefacts can be categorised into instrumental and interfer-
ence artefacts. Typical interference includes line noise, powerful signals from
nearby alternating current power lines occurring between 50 and 60Hz, and
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interference from nearby electrical equipment. Other less intrusive interference
artefacts include magnetic, sound, optical and electromagnetic waves, white
noise and pink noise. Instrumental artefacts include dysfunctional electrodes,
electrodes movement, electrodes pop, dysfunctional cables, cable movement,
impedance mismatch and poor electrical ground [2, 9, 13].

2.3.2 Artefacts focused on in this research

This thesis focuses on participants that are non-compliant with artefact pre-
ventive guidelines, such as those who use commercial EEG devices in un-
controlled environments and those with ADHD, increasing the likelihood of
physiological artefacts contaminating the EEG data [3, 10, 15]. Therefore,
the scope of artefacts was reduced to only physiological artefacts. EOG arte-
facts have been shown to deliver the largest detrimental effect on EEG [11].
EMG artefacts are generally acknowledged to be more difficult to eliminate
than other types of artefacts [12]. Furthermore, the contamination of EEG by
ECG artefacts constitutes a serious problem for the automatic interpretation
and analysis of EEG recordings during sleep [10]. Therefore, EOG, EMG and
ECG artefacts were chosen as the three most critical physiological artefacts
for testing the cleaning methods.

2.3.3 Electrooculography

EOG artefacts originate from eye blinks, eye movements (referred to as sac-
cades when not related to blinks) and, less frequently, eye flutter and rapid eye
movement (REM) sleep, which can propagate over the scalp and contaminate
the EEG data [3, 9, 43].

Eye blink artefacts originate from the potential generated through the eye-
lid sliding down over the positively charged cornea. These generated potentials
propagate across the entire scalp with amplitudes often significantly higher
than those of EEG. Although eye blinks originate from the anterior region,
their effects are considerable over the entire scalp, decreasing in intensity from
anterior to posterior regions. Eye blinks have a large intersubject variabil-
ity, with natural occurring eye blinks having smaller amplitudes and shorter
duration than forced blinks [14, 44–46].

Saccade artefacts originate from changes in orientation of the retina and
cornea dipole [9, 15]. Saccades and eye blinks both encapsulate particular
frequency characteristics but differs from each other significantly [47]. Saccades
usually display a lower average voltage and lower range in voltage than eye
blinks [43]. Furthermore, saccades show a similar average frequency but a
higher frequency range than eye blinks [43]. Vertical saccades influence midline
electrodes more, while lateral saccades influence lateral electrodes more [47].

EOG is a combination of mostly eye blinks and saccades [44]. EOG arte-
facts are often removed using a reference channel and regression methods. A
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limitation of these methods is that the EOG reference data can also be cross-
contaminated by the EEG data, causing a possible removal of brain informa-
tion from the data by these methods [3]. EOG signals, similar to EEG signals,
are considered non-stationary signals, meaning that the frequency spectrum
changes with time [48]. The amplitude of EOG signals is generally significantly
higher than that of the EEG, occurring mainly within the amplitude ranges of
10 to 100 µV in comparison to EEG commonly occurring between the ranges
of -50 to 50 µV [2, 3, 48]. Eye blinks have a strong energy presence in the
delta and theta bands, sometimes showing energy traces in the higher alpha
and beta bands [44]. In contrast, EEG occurs throughout, from the delta to
the gamma band, with a peak at the alpha band (8 to 12Hz) [3, 48]. EOG
signals last only a few seconds, as they arise from eye movements and blinks
[14, 48, 49].

2.3.4 Electromyography

Contamination of EEG data by muscle activity is a well-recognised complex
problem arising from different muscle groups [50, 51]. Any muscle contraction
or stretch near an electrode recording site can result in EMG artefacts affecting
the ‘clean’ EEG signal [15]. The degree of muscle contraction and stretch
affects the amplitude and waveform of EMG artefacts. Regression methods
cannot be applied to EMG as with EOG because they originate from multiple
sources [3]. EMG sources include the movement of many muscles, including
muscle groups from the neck and face, such as the cheeks, forehead, jaws and
tongue, from head movement, chewing, swallowing, clenching, talking, sniffing,
and facial contractions [2, 9, 13, 14].

EMG presents a wide spectral distribution contaminating all the standard
frequency bands. It is, however, most significant in the higher frequency bands,
with most literature assuming that the EMG artefacts only affect the higher
frequencies, starting at 15 to 20Hz and upwards [15, 50, 52–54]. The EMG
activities often have a temporal amplitude significantly higher than the EEG
data, such as EOG [31, 55, 56]. The amplitude of EMG data has a peak in
the 20 to 30Hz range in the frontalis location [50]. The time series of EMG
follows a spontaneous bursting behaviour with a temporal and spectral distri-
bution similar to Gaussian noise [56–58]. Additionally, EMG contamination
and EEG have substantial statistical independence both temporally and spa-
tially. This implies that the independent component analysis (ICA) methods
could effectively identify and remove EMG artefacts [9].

2.3.5 Electrocardiography

ECG artefacts originate from the heart and occur in the EEG data as a pulse
or heartbeat when an electrode is placed on or near a pulsating blood vessel
such as a scalp artery [13]. ECG signals display a simple, characteristic and
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periodic time-frequency characterization pattern [15, 59, 60]. The amplitude
of the ECG artefacts is relatively low compared to the amplitudes of EOG
and EMG artefacts. However, the amplitude of the ECG artefacts also greatly
depends on the relative position of the electrode to the blood vessel and the
anatomy of the participant [15, 61]. A major problem with the repetitive and
regular patterns of ECG artefacts is that it may sometimes be mistaken for
epileptiform activity when the ECG has low amplitudes relative to the EEG
[15].

2.4 Cleaning methods

2.4.1 Overview of methods

The difficulty of removing artefacts is a significant obstacle in EEG signal
preprocessing and a prerequisite for reliable signal analysis [2, 9, 13–15]. The
time efficiency of cleaning methods is also a significant obstacle for develop-
ing real-time EEG applications, such as brain-computer interface (BCI) and
neurofeedback (NFB) applications [14].

A review of the most popular and relevant methods identified in EEG
artefact removal was conducted. The review included the methodology, ad-
vantages and limitations of linear regression, source decomposition, adaptive
filtering and BSS techniques and can be found in Appendix A. Linear regres-
sion and source decomposition techniques were not further considered in this
research due to the limitations identified [62–66].

Methods for removing artefacts are primarily developed and tested for re-
moving only one type of artefact at a time [10, 13–15, 67, 68]. Artefacts are
diverse and contaminate EEG data with a large variety of intensities, types, lo-
cations, combinations, and durations. Participant variability, e.g. statistically
different EEG data for various participants, is another factor to consider when
removing artefacts [9]. Therefore, artefact removal methods must be able to
handle a large variance in artefacts and EEG characteristics [9].

Current cleaning methods can be categorised into three different groups of
techniques. The first is artefact avoidance, which includes strict guidelines for
participants to avoid moving or blinking during the experiment and gazing at
a central fixation point. This may become challenging when the participant
is non-compliant or has severe ADHD. The second technique is artefact re-
jection, which removes contaminated data trials completely, identified either
through visual inspection or by automatic identification methods. The third
technique is preprocessing the EEG to separate the artefacts from the ‘clean’
EEG data [69]. With ADHD research and consumer-grade EEG equipment,
the first technique is not always feasible, requiring an increase in the develop-
ment of artefact identification and removal methods used in the second and
third techniques [2, 3, 11, 15, 69].
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The techniques discussed in Appendix A.1, A.2 and A.3 are preprocessing-
based techniques, with adaptive filtering discussed in Appendix A.4 an artefact
rejection technique.

2.4.2 Methods for the combination of artefacts

The majority of research on artefacts and the artefact removal methods focus
on the effects of one or a few artefacts and seldom on the combination of these
artefacts [10, 13–15, 67]. EEG processing that generalises to multiple types of
artefacts remains a significant challenge [11, 32, 69–71]. Furthermore, the com-
bination of artefacts significantly increases when data collection moves from
the clinical environment to more relaxed settings associated with commercial
products [11].

The most popular methods used for research are component-based meth-
ods [3, 15, 72, 73]. A significant disadvantage of these methods is that they
can only identify as many components as channels used. Therefore, with an
increase of independent artefacts, the likelihood of effectively identifying all
the components decreases [15, 32, 74].

Currently, no one method is the most effective and efficient for removing
a wide range of artefacts [3, 11]. Therefore, artefact removal algorithms for
numerous types of artefacts in multiple scenarios still need to be identified
[3, 11, 69].

2.4.3 Methods used in this research

The research scope has been reduced to identifying and removing artefacts
from the recordings of non-compliant participants, and therefore to BSS tech-
niques, specialising in biomedical signals and removing physiological artefacts
[15, 75]. Currently, BSS methods are also the most popular category for arte-
fact removal in EEG research [3, 15, 72, 73]. Under the BSS methods category,
CCA and ICA are popular methods, as seen in Figure 2.4. The two most pop-
ular ICA based methods used in research are Extended Infomax and SOBI, as
seen in Figure 2.4. CCA is a classic BSS method and the third BSS method
to be used. It is frequently used in BCI research, which is associated with
commercial products and, therefore, with a less controlled participant, having
more artefact inducing behaviours. BCI application requires time efficiency
and superior performance in EMG removal, which are characteristics associ-
ated with CCA [12, 15, 76].

2.4.4 Blind source separation

BSS methods are called blind since neither the sources nor the mixing process
is known in advance [14]. These methods decompose the signal into several
estimated sources, in which the sources identified as artefacts are rejected and
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the signal reconstructed. By employing BSS techniques, it is possible to sep-
arate signals from multiple sources into several components, which become
more effective when the number of measured signals increase [64]. The effec-
tiveness of the BSS technique depends on a specific set of assumptions that
must first be made; for example, the sources are uncorrelated, independent,
non-Gaussian, instantaneously propagated or linear [15]. BSS methods are
ultimately limited because artefacts containing components may also include
neural activity besides the pure artefact itself [77]. BSS techniques may not
be effective on EEG recordings that contain highly non-stationary artefacts
such as EOG [15]. When there are limited electrodes used for EEG recording,
the information related to brain activity may be lost by excluding sources con-
taining brain activity. There is also the risk of human error in BSS methods
when components are mislabeled as artefacts but contain neural activity [64].
Although BSS algorithms have not proven to be the most effective approach,
they are most often used with EEG data that is prepossessed [15, 78, 79]. It
has been demonstrated that BSS variants can remove EOG artefacts equivalent
to the ‘gold standard’ regression methods that use an EOG reference signal
[15, 78, 79]. One of the significant disadvantages of BSS methods is that the
automated classification of artefact components is not straightforward [15, 73].
Other disadvantages are that they inaccurately assume the stationarity of the
sources and are computationally expensive [15, 73].

Cleaning methods used in literature

Figure 2.4: The popularity of methods in literature based on data from [15].
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2.4.4.1 Independent component analysis

ICA methods comprise several methods that aim to estimate the unmix-
ing matrix, W = [wi(j)]n×n, which is used to separate the measured data,
X = [xi(j)]n×N into its estimated sources S = [xi(j)]n×N through imposing
statistical independence of the sources. In the equations mentioned above, N
represents the number of samples and n, the number of channels [15]. ICA
methods are based on three main assumptions: the ICA component projections
are linearly summed at the scalp electrodes, the sources of the measured EEG
are independent, and that the source activities characterise a non-Gaussian dis-
tribution. With the assumption of independence, even if artefacts are caused
by brain activity and therefore not independent, e.g. if EMG is triggered
by motor cortex activity, the timing between the resulting artefacts and the
triggering brain events will still vary across trials, allowing them to represent
independence. Further discussion on the mathematical implementation and
statistical assumptions of ICA methods can be found in the Materials and
Methods chapter [5, 45, 75].

ICA algorithms can be branched into those based on exploiting higher-order
statistics (HOS) of the signals, such as Extended Infomax, and those based on
using second-order statistics (SOS), such as SOBI [80]. HOS-ICA approaches
find a linear transformation for the estimated sources to be as independent
as possible, from which the approaches can identify the artefact components.
SOS-ICA methods are based on decorrelating the data in the time domain [15].
ICA methods are typically the preferred methods when it comes to removing
EOG and ECG artefacts [81].

Extended Infomax can adapt to and find both sub- and super-Gaussian
sources [82, 83]. Frølich and Dowding [82] compared three of the most widely
used ICA methods and two other linear decomposition methods and found that
Extended Infomax performed the best in terms of the dipolarity score proposed
and the event-related desynchronisation (ERD) peak score. A polarity score is
a simplified but useful measure of the physiological plausibility of the identified
ICA sources [82]. ERD is calculated as the change in signal power relative to
a reference period in a given frequency band [82]. Extended Infomax has
also been the most thoroughly justified for removing EOG artefacts in other
literature [83]. A more in-depth statistical and mathematical discussion of
Extended Infomax can be found in the Materials and Methods chapter.

It has also been stated that SOBI stands out as the best method for remov-
ing EOG artefacts [8, 84]. Literature differs in conclusions on whether SOBI
or Extended Infomax performs the best in removing EOG artefacts [8, 83, 84].
SOBI has also been reported to generally perform better than other methods
in removing ECG artefacts and has been demonstrated to be consistent across
a wide range of participants [85, 86]. This makes SOBI a feasible method
for routine EEG analysis and interpretation, in addition to removing artefacts
[85].
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2.4.4.2 Canonical correlation analysis

Along with ICA, CCA is a classic method. The effectiveness of BSS meth-
ods depends largely on the different statistical assumptions of the estimated
sources [87]. CCA solves the problem by utilising SOS information such as
SOBI and forcing the sources to be mutually uncorrelated and maximally cor-
related with a predefined function [87]. Thus, CCA finds two bases in which
the correlation matrix between the variables is diagonal, and the correlations
on the diagonal are maximised [87]. Therefore, the CCA method produces the
source signals that are uncorrelated with each other, maximally autocorrelated
and ordered by decreasing autocorrelation [87]. Since EMG artefacts have a
broad frequency spectrum, their autocorrelation is low, while the autocorrela-
tion of EEG rhythms is relatively high [57].

CCA is often proposed as a more reliable method for the removal of muscle
artefacts in the scalp in comparison to ICA methods due to the exploitation of
the autocorrelation of muscle activity being weaker than that of brain activity
[12, 15, 88]. CCA has also been shown to clearly identify EOG artefacts for
removal compared to those of popular ICA methods [89]. Further discussion
on the statistical and mathematical implementation of the CCA method can
be found in the Materials and Methods chapter.

2.4.5 Automated methods overview

The transition from expensive and medical-grade to consumer-grade EEG
equipment for research has led to decreased preventative measures, increased
data collection, and the increased likelihood of artefact contamination [1, 14,
16, 17]. Therefore, to ensure that the preprocessing of the EEG does not be-
come a bottleneck before applying quality analysis, the automation of the BSS
methods is essential. Automated methods are also preferable because they
eliminate the subjectivity associated with the non-automated methods [8].
The BSS methods mentioned above require the use of manual input to iden-
tify the artefact containing components. If the artefact identification process
can be automated, then the BSS methods would be fully automatic. Further-
more, adaptive thresholding techniques also exist, which are simple, efficient
and fully automatic.

2.4.5.1 Automation of blind source separation methods

As mentioned above, to automate the semi-automatic BSS methods, the iden-
tification of the artefact components has to be automated. Unfortunately, One
of the significant disadvantages of BSS methods is that the automated classi-
fication of artefact components is not straightforward [15, 73]. The developed
methods found in the literature were each successful in certain applications
but also had significant limitations. These limitations were due to the com-
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plexity of these approaches, including the use of machine learning algorithms,
additional reference channels, and additional computationally inefficient algo-
rithms [8, 90–95]. The problem of using machine learning algorithms is that it
requires manual input from experts to effectively label the training data into
clean EEG and artefacts, respectively [90, 91, 94]. Additional information on
the methodology, results and limitations can be found in Appendix C.

2.4.5.2 Thresholding methods

In addition to their simplicity, thresholding methods can be effective since arte-
facts such as EMG, EOG and ECG often have greater amplitudes, therefore,
making them distinguishable from EEG [10, 15, 44, 50].

Due to its simplicity and efficiency, threshold-based methods are often con-
sidered an alternative for automated real-time applications [15]. However, ap-
plying the same threshold value can result in significant detection errors in
some participants’ EEG data due to large individual variance in the shapes
and amplitudes of, for instance, the eye blink artefacts in EOG. Therefore, the
threshold values need to be adapted for each participant’s EEG [96]. Mognon
et al. [97] adjusted the threshold value of their method using the expectation-
maximisation algorithm. Their method, however, was not fit for real-time
application and processing due to the time-consuming nature of the maximi-
sation procedure [97]. Geetha and Geethalakshmi [98] utilised the thresholding
technique initially proposed by Otsu [99] and Breuer et al. [100] for image bi-
narisation and used the 80th percentile of the individual data distribution as
the threshold value. However, both methods were still based on empirical pa-
rameterisation and, as a result, time-consuming [96]. Despite the relatively
good performance of these adaptive thresholding methods, it was found that
individually customised thresholding led to greater accuracy in detecting EOG
artefacts due to the high variation between the EOG of participants [96].

2.5 Evaluating cleaning methods
Despite the number of techniques developed for removing artefacts, a method
that combines high accuracy and algorithmic efficiency is still lacking [3]. An-
other limitation is the practical testing and comparison of the developed clean-
ing methods. The greatest challenge for evaluating the performance of artefact
removal methods is that the noiseless signal is not known a priori [11, 15].
Therefore, it is necessary to develop tools that allow objective measurement
and comparison of the performance of new and current algorithms to select
the optimal one for a specific scenario.

Multiple validation procedures for real-life EEG signals have been proposed
in recent years. Researchers, however, do not agree on a single mechanism
for evaluating and comparing the performance of artefact removal methods.
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Numerous evaluation methods based on the use of real data were discussed
in Appendix B, but were not considered in this thesis due to the limitations
identified [66, 84, 97, 101–104].

The evaluation methods discussed in Appendix B was based on using real
contaminated data, but each method was not straightforward due to the lack
of knowledge of the clean EEG signal. Fortunately, to some extent, it is pos-
sible to determine the clean EEG through realistic simulations, either from
computer-generated EEG signals or from controlled ‘clean’ EEG recordings.
A primary advantage of simulated EEG is that the quality of the signal can
be evaluated before and after artefact removal using standard evaluation mea-
surements, such as the SNR, thus enabling comparison with other studies.
Therefore, the following section will focus on simulated data [105].

2.6 Simulation methods

2.6.1 Overview

Simulations have historically played a significant role in the development of
cleaning methods and can be generated using techniques ranging from very
simple to more complex [4, 15]. Simulated contaminated EEG enables the use
of SNR, which compares the energy of the frequency domain of the ‘clean’
EEG signal to that of the artefacts [15].

Semi-synthetic techniques can range from using actual ‘clean’ EEG contam-
inated with simulated artefacts to using separately measured artefacts with
simulated EEG [45, 67]. Simulating techniques also include simulating the
EEG and artefacts to using actual ‘clean’ EEG contaminated with separately
measured artefacts [67, 77, 106].

It is possible to simulate some characteristics of a recorded EEG relatively
accurately. However, characteristics such as synchronisation between channels,
contamination by different artefacts and the effect of artefacts on physiologi-
cal sources are more challenging to simulate. Simulations are still considered
a preliminary evaluation, and actual contaminated EEG data must be used
as the ultimate test for evaluating the true performance, reliability and repro-
ducibility of any artefact removal method. Two main methods of simulating
EEG data have been identified: the linear mixture model and the forward
model [15, 77, 107]. Due to the limitations identified with the forward model,
it was not further considered in this thesis, and the discussion and mathemat-
ical implementation can be found in Appendix D [107–109].

2.6.2 Linear mixture model

The linear mixture model is the simplest simulation technique. The method
is based on linearly adding simulated EEG and different simulated artefacts.
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The accuracy and simplicity of this type of simulation depend on how close the
characteristics of the simulated EEG and artefact signals are to actual EEG
and artefacts. The mathematical representation from the standard assumption
that the contaminated data, X(c) = [x

(c)
i,j ]n×N , is a linear mixture of the original

clean EEG, X(s) = [x
(s)
i,j ]n×N , and artefacts, X(a) = [x

(a)
i,j ]n×N , such as described

by equation 2.1 where N is the number of sample points and n the number of
channels [15, 105]:

X(c) = X(s) +X(a) (2.1)
The semi-simulated techniques can range from using actual ‘clean’ EEG,

contaminated with simulated artefacts, to using real separately measured arte-
facts with simulated EEG [45, 67]. Techniques also range from simulating the
EEG and artefacts to using actual ‘clean’ EEG contaminated with real sepa-
rately measured artefacts [77, 106, 110].

The accuracy of these methods is limited as a result of the lack of incorpo-
ration of the influence of artefact generation on the physiological sources. An
example is the alpha band’s amplitude decreasing due to mental effort exerted
when participants contract their temporal or frontalis muscles [15, 50].

2.6.3 Signal to noise ratio for performance evaluation

One advantage of using simulated EEG data is that one can assess the qual-
ity of the signal before and after the artefact removal through standard per-
formance measures. The metric most commonly employed to represent the
signal’s energy, compared to the artefacts’ energy, is the SNR. More specifi-
cally, the signal to noise ratio can be defined as the ratio of the power spectral
density (PSD) of the clean EEG to the PSD of the artefacts [15, 105].

The SNR is based on the linear mixture model stating that the contami-
nated data, X(c) from equation 2.1, is a linear mixture of the clean EEG, X(s),
and artefacts, X(a) [15, 105]. Equation 2.2 describes the SNR for one channel,
i, where x represents the sample point at a certain channel for the PSD of the
EEG data. For the simulation of the data, the artefact data, X(a) is known,
and therefore it is simple to quantify the amount of contamination using the
SNR as shown in equation 2.2, with the variables described in Section 2.6.2
[15, 105].

SNRi = 10 log10

(∑N
j=1 x

(s)
i,j∑N

j=1 x
(a)
i,j

)
(2.2)

When testing the effectiveness of the cleaning methods, we do not directly
know the amount of artefacts, X(a), that are still present when the simulated
contaminated data is cleaned. X(a∗) can however be calculated as shown in
equation 2.3, where X(k) = [x

(k)
i,j ]n×N is the cleaned data. Therefore, to calcu-

late the SNR of the cleaned data and the amount of artefact data removed, one
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can use equation 2.4, where the ideal situation would be for the denominator
to be zero, meaning the SNR would be infinity, and the cleaned data matches
the clean data [15, 105].

X(a∗) = X(k) −X(s) (2.3)

SNRi = 10 log10

( ∑N
j=1 x

(s)
i,j∑N

j=1(x
(k)
i,j − x

(s)
i,j )

)
(2.4)

2.7 Main findings in literature

2.7.1 Literature summary

Due to the high density of neurons, the cerebral cortex is considered the most
significant region in EEG studies. The 10-20 standard is the most common
electrode placement system and has enough electrodes and resolution to ac-
commodate most clinical applications. The 10-20 standard is efficient and
balances time, effort, cost, and accuracy. There are five standard frequency
bands, namely the delta, theta, alpha, beta, and gamma bands, each hav-
ing established associations and being widely used in the research and clinical
context. The literature found that the most significant physiological artefacts
with the greatest detrimental effect on EEG are EOG, EMG, and ECG arte-
facts. BSS methods are often used to preprocess EEG data despite not found
to be the most effective methods. BSS methods, such as Extended Infomax,
outperform most methods and have similar performance to the ‘gold standard’
regression methods in removing EOG artefacts without requiring a reference
channel. Researchers do not yet agree on a single mechanism for evaluat-
ing and comparing the performance of artefact removal methods. Simulations
have historically played a significant role in the development and comparison
of cleaning methods. A primary advantage of simulated EEG is that the qual-
ity of the signal can be evaluated before and after the artefact removal, using
standard evaluation measurements, such as the SNR, enabling comparative
analysis with other studies.

2.7.2 Main limitations identified

Although BSS methods are the most commonly used preprocessing methods,
they still require manual input to identify the artefact containing components,
posing the risk of subjective error and requiring an impractical amount of
time and effort on the part of the researcher or practitioner. BSS methods are
computationally expensive and therefore not suited for real-time applications.
There is no clear answer to which ICA methods perform the best between
SOBI and Extended Infomax, with artefacts such as EMG, CCA also shows
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similar results to the ICA methods. With the automation of the BSS methods,
it was found that the solutions were often impractical due to them being overly
complex or requiring manual input to label the training data of the machine
learning algorithms. Simulations are still considered a preliminary evaluation,
and real contaminated EEG data must be used as the ultimate test for eval-
uating the true performance, reliability and reproducibility of any artefact
removal method. The attempt to develop a more realistic simulation using the
forward model has much more room for error than the more straightforward
approach of the linear mixture model.

2.7.3 Assumptions and decisions made

EOG, EMG and ECG are the most detrimental physiological contamination
in EEG data and were, therefore, the main focus of this thesis. The use of the
standard EEG bands and the 10-20 standard allowed this thesis to be validated
using other literature.

BSS methods were chosen due to their well-earned popularity amongst re-
searchers and medical practitioners. Extended Infomax and SOBI were used
as these are the most popular BSS methods. CCA was also used as it is a
very popular method for potential commercial applications. The BSS meth-
ods are effective but impractical when cleaning large datasets because they
are computationally expensive and require manual input. Therefore, it was
decided to focus on fully automating the BSS methods to make them practical
for use with large EEG datasets. Furthermore, due to the existing automated
BSS methods being complex, it was decided to develop a simpler yet effec-
tive approach. Due to the BSS methods being computationally expensive, a
time-efficient adaptive thresholding method was also developed, based on the
standard deviations of the data of each participant.

The performance measures for real contaminated data are complex and not
yet well established. The linear mixture model can also be inaccurate if the
characteristics of the simulated data do not match those of the actual data.
Due to this limitation, it was decided to use the linear mixture model with
real ‘clean’ EEG data and measured artefact data. The artefact data duration
and combinations were further adjusted within reasonable and realistic limits.
These adjustments were made in order to maximise the variety of contami-
nation to more robustly test the cleaning methods. SNR was chosen as the
performance measure for the cleaning methods in this thesis as both the ‘clean’
EEG and artefacts were known. The use of SNR enabled the comparison of the
results to other research. The final performance measure used was the amount
of time the BSS and auto threshold methods took to identify the components
and artefacts.
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Chapter 3

Materials and Methods

3.1 Use of reference data
The semi-synthetic data was based on real data for it to be as realistic as
possible. The manually cleaned EEG data that was published by Klados and
Bamidis [111] in 2019 for research purposes and used as the ‘clean’ EEG data
in their research was also used in this thesis. To ensure that the ‘clean’ EEG
data had no significant contamination by external or physiological artefacts,
two experts in the field, namely Klados and Bamidis [111], performed a thor-
ough manual inspection and removed any artefacts found in the data. With
regard to the artefacts, actual EOG and ECG data from publicly available
data repositories from Klados and Bamidis [111] and Khamis et al. [112] were
used. In this thesis, the researcher simulated the EMG data to represent the
same spectral distribution of those represented by Goncharova et al. [50] for
frontalis and temporalis EMG contractions.

The choice of locations for the semi-synthetic dataset of the current re-
search in this thesis was based on the previous work of the same researcher.
The previous investigation was based on measuring the EEG signals of ADHD
children who were mostly non-compliant, generating excessive EOG and EMG
artefacts [3]. This relates to the current thesis, based on removing physiolog-
ical artefacts such as EOG, EMG and ECG from general non-compliant or
uncontrolled participants. The OpenBCI Ultracortex ‘Mark IV’ EEG head-
set was used to measure the EEG signals from ADHD children between the
age of 7 to 12. The headset was used with the combination of a Cyton and
Daisy amplifier, thus allowing only 16 EEG locations. Only the most relevant
locations for ADHD children were chosen with guidance from literature [19],
and in consultation with van der Westhuyzen [113], an occupational thera-
pist with international certification for biofeedback and neurofeedback. Due
to the current research focusing on physiological artefacts from non-compliant
participants and the previous research on ADHD children producing excessive
physiological artefacts, using the same locations was assumed to be adequate.

22
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The locations used were Fz, Cz, C3, C4, P7, P8, O1, O2, F3, F4, T7,
T8, P3, and P4, which are all shown in Figure 2.3. Even though ADHD is
often diagnosed as a disorder in the frontal lobes, Fp1 and Fp2 were excluded
because of the high risk of over contamination due to excessive blinking and
anxiety-induced movements commonly found in ADHD children [3, 19]. Pz
was also excluded because it is less important than Fz and Cz for ADHD and
less affected by artefacts such as EMG and EOG than other channels [19, 36].

In this thesis, the researcher preserved the EEG and EOG data at the
original sample frequencies of 200Hz, the ECG was downsampled from 500Hz
to 200Hz, and the EMG was simulated atn 200Hz. The sources of the data
used to create a semi-synthetic database can be found below:

EEG

• The ‘clean’ EEG was attained from manually cleaned EEG data, avail-
able for research purposes if referenced from Klados and Bamidis [111].

EOG

• The EOG was attained from recorded HEOG and VEOG data, available
for research purposes if referenced from Klados and Bamidis [111].

EMG

• The EMG was based on the amplitude spectra of the EEG during tem-
poralis and frontalis contractions from Goncharova et al. [50].

ECG

• The ECG was attained from recorded ECG data, available for research
purposes if referenced from Khamis et al. [112].

3.2 Electroencephalography description and
validation

3.2.1 Electroencephalography dataset description

The EEG data used as the base for the semi-synthetic data was obtained from
Klados and Bamidis [77]. The EEG data used consists of 50 datasets with
19 channels each and a mean time-span of 30.1, varying on average with 3.0
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seconds from the mean in both directions. The datasets were sampled from 27
healthy subjects, of which 14 were male with a mean age of 28.2 ± 7.5 years,
and 13 female with a mean of age: 27.1 ± 5.2. The EEG data was recorded
during an eyes-closed (EC) resting state for each subject [77]. For simplifying
the simulation, each dataset will refer to that of a simulated “participant”,
meaning that the semi-synthetic data consists of 50 “participants”.

The EEG was recorded at 19 locations and placed according to the 10-
20 standard, with odd indices referenced to the left and even indices to the
right mastoid, respectively. In contrast, the central electrodes (Fz, Cz, Pz)
were referenced to half the sum of the left and right mastoids. The signals
were sampled at 200Hz, bandpass filtered between 0.5 and 40Hz, and notch
filtered at 50Hz to remove the line noise. Experts manually inspected each
EEG dataset in the field to ensure that there was no significant biological
or external artefact contamination, as described in Section 3.1 [77]. The 16
locations used here were Fz, Cz, C3, C4, P7, P8, O1, O2, F3, F4, T7, T8, P3
and P4.

3.2.2 Electroencephalography dataset validation

When analyzing the frequency bands, the following ranges were used with
delta, < 4Hz, theta, 4-7Hz, alpha, 8-12Hz, beta, 12-30Hz, and gamma >
30Hz, based on the frequencies used for ADHD-EEG research [26, 40, 41].

Figure 3.1 provides a compact summary of the distribution of the different
frequency band powers using boxplots. Each subplot is positioned according
to the 10-20 standard. The y-axis of each subplot represents the power (µV2)
and the x-axis represents the frequency bands from delta to gamma.

Analysis of the distributions from Figure 3.1, produced from 50 datasets,
shows that the delta activity is more prominent in the frontal and midline
regions in the EC state, similar to results from Barry et al. [20], Barry and De
Blasio [114] and [115]. The theta activity appears to be more midline, central
and frontoparietal dominant similar to the results from Barry et al. [20], Barry
and De Blasio [114], Michels et al. [116]. In addition, EC alpha activity is
more prominent in the parietal and frontoparietal regions, comparable to that
found by Barry et al. [20], Barry and De Blasio [114], Matsuura et al. [115].
The alpha band of the datasets is by far the most dominant frequency band
similar to that of Chorlian et al. [117]. This dataset shows a slightly left-side
dominant distribution for alpha in the frontal, central and parietal regions,
similar to the data of Chorlian et al. [117].

Cave and Barry [118] found that females have greater overall amplitudes in
delta, alpha, and beta bands as well as enhanced midline activity in theta and
parietal and midline activity in the alpha and beta bands. This establishes
significant differences between male and female EEG activity, justifying the
use of similar numbers of males to females used for the EEG datasets [118].
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Distribution of band powers of EEG data

Figure 3.1: The subplots of the power µV2 on the y-axis and different standard
frequency bands, delta, alpha, beta, and gamma, (δ, θ, α, β, γ) on the x-axis. The
subplots are positioned according to the 10-20 standard, with the relevant titles
above them Klados and Bamidis [111].
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3.3 Electrooculography reference and use

3.3.1 Electrooculography reference dataset description

Eye movement-related artefacts have the largest detrimental effect on EEG
[11]. The simulated EOG signals are based on the combination of the vertical-
EOG (VEOG) signals which are equal to the upper minus the lower EOG
electrode recordings, and the horizontal-EOG (HEOG) signals which are equal
to the left minus the right EOG electrode recordings Klados and Bamidis
[77]. The VEOG and HEOG signals were independently propagated and then
combined using their corresponding propagation factors, which describe their
distribution in percentages to the relevant locations, acquired from Otavio
G. Lins [44].

Reference VEOG and HEOG data

Figure 3.2: (a) Time series of VEOG and HEOG for participant one. (b) The
topography from the propagation factors of the VEOG and HEOG with a scale
representing the propagation factor values directly. The average propagation values
are shown above the topographies. The maximum propagation factors are shown on
the left and the minimum on the right topographies Klados and Bamidis [111].

The VEOG and HEOG were obtained by Klados and Bamidis [77] and
measured from the same participants used for the EEG by Klados and Bamidis
[77] during an eyes-opened (EO) state, using four electrodes placed above and
below the left eye and another two on the outer canthi of each eye. The
signals were sampled at 200Hz and bandpass filtered between 0.5 and 5Hz
[77]. Figure 3.2(a), shows the VEOG and HEOG of one of the 50 participants.
As seen in Figure 3.2(a), the VEOG, which consists mostly of eye blinks, has a
much higher amplitude with a spiking characteristic, while the HEOG mostly
consists of horizontal eye movements and has a lower amplitude with smoother
characteristics.

The propagation factors are percentages used to determine the distribution
of the VEOG and HEOG to the relevant channels, which were acquired from
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Otavio G. Lins [44]. 23 Participants, 14 females and 9 males with ages ranging
from 13 to 47, with a mean of 32, were used to determine the propagation
factors. There were no significant differences between the male and female
ages, and all the participants were healthy and had no history of ophthalmo-
logic problems. Otavio G. Lins [44] used linear regression while simultaneously
measuring EEG, VEOG, and HEOG to determine the minimum and maximum
ranges of the propagation factors of the eye movements to the relevant chan-
nels. Figure 3.2(b) shows the lower and upper ranges for both the VEOG and
HEOG. The units on the left bar directly correlate to the propagation factors.
From Figure 3.2(b), it is clear that the VEOG has a more frontal distribution,
with the HEOG having a more front-temporal distribution.

3.3.2 Creating individual electrooculography and
EOG-EEG data

As mentioned in Section 3.2.1, each dataset is referred to as a ‘participant’.
There are 50 participants, with corresponding EEG datasets of 16 locations
each. For each participant, a unique EOG contaminated EEG dataset was
simulated.

Figure 3.3: Flow diagram of creating the semi-synthetic EOG data.

The flow diagram in Figure 3.3 describes the process followed to create the
EOG contaminated EEG data for each participant, as indicated by the ‘P’ on
the left and right side of Figure 3.3. The first step in the simulation was to
upload the EEG data of the relevant participant. Then, as seen in the first
block of Figure 3.3, the HEOG and VEOG corresponding to the participant
was uploaded. For the second block, 10 equally spaced propagation factors
were generated between the minimum and maximum propagation factors for
each location for VEOG and HEOG. Therefore, creating two, 10 by 16 ma-
trices, summarised as (propagation factors from minimum to maximum for
either HEOG or VEOG) by (locations). A random intensity value between
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0 and 9 for each participant was chosen, which the algorithm used to fetch
the corresponding propagation factors for distributing the VEOG and HEOG
across the scalp. The intensity value was randomly chosen using a symmetric
probability distribution. After choosing the propagation intensities, the cor-
responding propagation factor was used to propagate the VEOG and HEOG
data, meaning that a 1 by 16 matrix for both the VEOG and the HEOG data
was created by duplicating the VEOG, and HEOG signals 16 times each and
multiplying them by the corresponding location’s propagation factor. After
propagating the VEOG and HEOG, they were summed together per channel
to create the EOG data. The EOG data was then highpass filtered from 1Hz
to remove low-frequency shifts present in the data. Finally, following the linear
mixture model, the EEG and EOG data were summed together per location
to create the contaminated EOG-EEG data Urigüen and Garcia-Zapirain [15].

3.3.3 Creating 50 electrooculography and EOG-EEG
datasets

One of the main aims of this research is to test the robustness of the cleaning
methods. As one EOG contaminated EEG dataset is not enough to facilitate
decisive conclusions, 50 EOG contaminated EEG datasets were created and
varied as much as possible within realistic limits, validated by other literature
using the SNR. Due to the HEOG and VEOG of each participant already being
unique, the only independent control variable available to increase the vari-
ability of the semi-synthetic data was the intensity of the propagation factors.
The propagation factor for each location for the VEOG and HEOG ranged be-
tween a certain minimum and maximum value. The propagation intensity was,
therefore, randomly varied for each participant using a symmetric probability
distribution.

3.4 Electromyography reference and use

3.4.1 Electromyography reference data description

It is generally acknowledged that EMG contamination of EEG is more difficult
to eliminate than other types of artefacts [12]. The semi-synthetic EMG data
was based on the amplitude spectra of the EEG during temporalis and frontalis
at 15% contractions in combination with the amplitude spectra of the frontalis
and temporalis data combined at four different percentages from Goncharova
et al. [50]. Figure 3.4(a) shows the average amplitude spectra of the EEG data
at 15% contraction of the frontalis and temporalis muscles for one channel.
Figure 3.4(b) shows the average amplitude spectra of the EEG data at four
different EMG contractions respectively for one channel. The data from Figure
3.4(a) and 3.4(b) was available for each of the 32 and 64 locations, respectively,
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from which the 16 locations, Fz, Cz, C3, C4, P7, P8, O1, O2, F3, F4, T7, T8,
P3, and P4 were used for the semi-synthetic EMG data.

The data in Figure 3.4(a) was obtained and averaged by Goncharova et al.
[50] from 25 healthy adults, 13 female and 12 male, ranging between 16 and
53 years, with a mean age of 35 years. None had a history of any neurological
or psychiatric disorders or was on chronic medication [50].

EMG amplitude spectra reference data

Figure 3.4: (a) The reference data of the amplitude spectra at the F8 location for
the relaxed state and the 15% contraction of the temporalis and frontalis muscles.
(b) The reference data of the amplitude and frequency distribution at different per-
centages of EMG contraction measured at the left frontalis position [50].

The EEG signals from which the data on Figure 3.4(a) originate were
recorded from 64 standard locations referred to the right earlobe using an
electrode cap, along with four bipolar EEG signals (right and left frontalis and
anterior temporalis muscles) [50].

The EEG signals, as shown for location F8 in Figure 3.4(a), were recorded
at an EO relaxed state and at 15% isometric contraction of the frontalis mus-
cles (produced by raising eyebrows) or the temporalis muscles (produced by
jaw clenching). Visual feedback was provided in percentage so that each par-
ticipant could maintain the target level of muscle contraction. Furthermore,
the average time measured for each participant was 153.6 seconds for relax-
ation, 128.9 seconds for 15% frontalis contraction and 126.0 seconds for 15%
temporalis contraction. The signals were sampled at 256Hz, and bandpass
filtered between 0.1 and 100Hz.

The data of which Figure 3.4(b) represents one channel, was also obtained
and averaged by Goncharova et al. [50] from 10 participants, of which three
were female and seven male, selected from the same 27 adults for the data from
Figure 3.4(a). The data from which Figure 3.4(b) represents one channel, was
recorded using 32 locations and four bipolar EMG signals with the same cup
electrodes. The EEG and EMG were measured during frontalis or temporalis
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muscle contraction using visual feedback for controlling the required contrac-
tion levels of relaxation, 15% maximum, 30% maximum, 70% maximum, and
maximum voluntary contractions of the frontalis muscles (produced by raising
eyebrows) or the temporalis muscles (produced by jaw clenching) [50].

The averaged data from Figure 3.4(b) represents one channel with an aver-
age time span of 58.9 seconds for relaxation, 49.1 seconds for 15%, 52.4 seconds
for 30%, and 52.8 seconds for 70% contraction. The signals were sampled at
512Hz and bandpass filtered between 0.1 and 200Hz. The averaged amplitude
spectra of the signals were recorded from four facial locations and the frontal
half of the scalp during relaxation and during four levels of frontalis and tem-
poralis muscle contractions (15, 30, 70, and 100%). 32 Standard locations,
along with four bipolar EMG signals, were measured [50].

3.4.2 Creating individual electromyography and
EMG-EEG data

To describe the process of creating the semi-synthetic EMG contaminated
EEG dataset for each participant, it is useful to summarize the two references
used and the independent variables available. The first reference used was the
amplitude spectra of the EEG at each location during 15% muscle contractions
for each location. The second reference was the amplitude spectra of the EEG
for four different percentages of muscle contraction for each location.

The independent variables, which one can change to increase the variability
of the EMG contamination across all 50 participants, are the duration and the
percentage contraction of the frontalis and temporalis muscles. The researcher
in this thesis adjusted the duration by changing the number of points used to
represent the amplitude spectra of the frontalis and temporalis contractions.
The second independent variable is the percentage of contraction. This inde-
pendent variable was developed using the data for the different percentages of
contractions, as seen in Figure 3.4(b) for one channel.

The data of the contractions for each percentage was re-presented as seen
in Figure 3.5(a), where the y-axis is the amplitude in µV, and the x-axis is
the percentage contraction. For each frequency, where only 15, 25, 35, and
45Hz are shown in Figure 3.5(a), the algorithm fitted a linear line between
the four percentage points by minimizing the squared error. This enabled
the calculation of the gradient mf , relating the change in amplitude (∆Vf )
with the percentage change (∆Pf ) at each frequency (f), as represented in
equation 3.1. Figure 3.5(b) shows the results of the calculated gradients for
each frequency. The gradient, mf , from Figure 3.5(b), derived from Figure
3.5(a) for each frequency was then used in conjunction with the data from the
frontalis and temporalis contractions at 15%, which is V15f in equation 3.2. To
calculate the new amplitude at a certain percentage and frequency Vxf , where x
represents the new percentage of contraction, equation 3.2 was used. Equation
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Calculating the change in voltage per percentage per frequency

Figure 3.5: (a) Four random frequency segments from Figure 3.4(b), with the
percentage as the x-axis and the amplitude on the y-axis, showing the linear line
fitted through the points from each frequency to enable the estimation of the gradient
for the change in voltage to the change in percentage for each frequency point. (b)
The result from Figure 3.5(a) represents the gradient, which is the change in voltage
per the change in percentage per frequency [50].

3.2 combined the information of the change in amplitude per percentage per
frequency from Figure 3.5(b) and the amplitude of the frontalis and temporalis
contraction at 15% from Figure 3.4(a) to calculate the amplitude Vxf at a new
chosen percentage and frequency.

mf =
∆Vf

∆Pf

(3.1)

Vxf = mf (x− 15) + V15f (3.2)

With the above processes understood, the EMG contaminated EEG data sim-
ulation can be effectively explained. From the flow diagram in Figure 3.6, the
first step for each participant was to upload the amplitude spectra for the rest-
ing state EEG and the frontalis and temporalis contractions EEG at 15% for
each location. The next step was to subtract the resting state EEG from the
frontalis and temporalis data so that the remaining data represented the pure
EMG artefacts and could be added later to the separate ‘clean’ EEG used in
this thesis. The EMG was then highpass filtered at 15Hz for two reasons. The
first is that numerous literary works assume that EMG artefacts only affect
high frequencies from 15 to 20Hz and upwards [15, 50, 52–54]. The second
reason is that Goncharova et al. [50], from which the researchers obtained the
data, stated that due to the experimental setup, when measuring the frontalis
and temporalis contractions, the alpha peak, between 8 and 12Hz, was lower,
but not due to EMG contamination. Rather, it was due to the active mental
effort required to maintain the contractions at a certain percentage [50]. Due
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to the goal of only acquiring pure EMG contamination with the subtraction of
the resting state EEG, the researcher in this thesis also avoided the frequencies
closer to the alpha band.

The third and fourth step was to upload the data of the amplitude spectra
of the EEG at the four different frequencies for each location. From this
data, as explained above, the relationship between the amplitude in µV and
percentage contractions per frequency was calculated to make the percentage
contraction an independent variable.

The fifth and sixth steps were to randomly choose a contraction percentage
and time span between the set ranges, using a symmetric probability distri-
bution. The researcher in this thesis then used the contraction percentage
and time span to adjust the points and amplitudes at each frequency of the
frontalis and temporalis reference data to simulate the separate artefacts in
the time domain.

Based on the adjusted references, the seventh and eighth steps were to
simulate the time domain frontalis and temporalis data, based on the Inverse
Fourier transform, for each location. The temporalis and frontalis data were
then separately and randomly added to the first half and the second half
of the ‘clean’ EEG data respectively, to create the EMG contamination. The
randomness for the EMG contamination was based on a symmetric probability
distribution.

3.4.3 Creating 50 electromyography and EMG-EEG
datasets

The 50 EMG contaminated EEG datasets were simulated for the SNR to have
a large variety within a reasonable range, validated by literature. The fixed
reference data consisted of the frontalis and temporalis amplitude spectra at

Figure 3.6: Flow diagram of creating the semi-synthetic EMG data.
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15% contraction and the amplitude spectra at four different contractions for
each location. The second reference data was measured from fewer participants
and therefore not used as the basis data, but rather as a basis for a function to
adjust the amplitude according to a certain percentage of the 15% contraction
data.

The cleaning methods had to be tested on numerous data with a high
variation to enable conclusions on their robustness. Therefore, the two inde-
pendent variables, the time span and percentage contraction had to be varied
as much as possible. The results of the SNR for all the channels when vary-
ing the contraction percentage and keeping the minimum and maximum time
constant were analyzed and compared to literature to ensure that valid ranges
were chosen that did not exceed realistic limits. The same was done by vary-
ing the time and keeping the minimum and maximum contraction percentage
constant.

3.5 Electrocardiographyy reference and use

3.5.1 Electrocardiographyy reference dataset
description

The contamination of EEG by ECG artefacts constitutes a serious problem
for the automatic interpretation and analysis of EEG recordings during sleep
due to its low frequencies [10]. The ECG varies significantly between par-
ticipants, such as in large inter-individual voltage variations [10]. The ECG
signals simulated for the semi-synthetic data are the most closely related to
real data compared to the simulation of the EOG and EMG. The ECG data
used was sampled from 300 single lead-I pulse recordings obtained by Khamis
et al. [112] in a telehealth environment. The signals were sampled at 500Hz
using electrodes that the participants held in each hand. A reference plate
was also positioned under the pad of the right hand. The collected raw data
was not bandpass filtered previously. From the 300 recordings, the researcher
in this thesis chose 10 random ECG recordings. The criteria for the chosen
ECG data were minimal contamination and shifts by visual inspection. Other
important criteria were that the 10 datasets had to vary from each other in
shape, frequency, noise, shift and amplitude as for maximal variance as seen in
Figure 3.7. The small number of 10 samples used was justified for the purpose
of high variance due to the additional variation in the ECG temporal ampli-
tude, the ECG sample chosen per participant and the channel at which the
ECG data was added for each participant.
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ECG reference data

Figure 3.7: (a,b,c) Each Figure represents one of the 10 raw ECG datasets used as
the reference data for ECG contamination, with time in seconds in the x-axis and
mV on the y-axis [112].

3.5.2 Creating individual electrocardiographyy and
ECG-EEG data

To effectively describe the process of creating the semi-synthetic ECG contam-
inated EEG data, it is helpful to understand what cannot be changed, what
can, and why. The 10 obtained ECG datasets are from actual measured data
and can only be adjusted to an extent. What can be changed is the range
to bandpass the data and the amplitude and channels to which the ECG is
added.

The average beats per minute were used as a guide to choose the bandpass
filter frequency. The average heart rate of a healthy adult is generally con-
sidered to range between 60 and 100 beats per minute [60]. The ECG pulse
has a QRS complex, representing depolarization of the ventricles. The QRS
complexes are three closely related waves that can be observed on the ECG,
namely the Q, R and S waves. To maintain the information of these QRS
peaks and reduce the baseline shifts and high-frequency noise present in the
obtained raw data, the ECG data was bandpass filtered between 3 and 4Hz
[59, 60, 119].

The amplitude reduction and channels to which the ECG was added, were
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Figure 3.8: Flow diagram of creating the semi-synthetic ECG data.

based on the origin of the ECG. ECG artefacts occur when an electrode is
placed over pulsating vessels, such as a scalp artery [15, 120]. Pulse artefacts
usually affect only one electrode as they are caused by pulsating scalp arter-
ies lying directly under the electrode and they can be minimized to zero by
placing the electrodes correctly [15, 120]. Due to the unlikeliness of more than
one electrode lying directly over a scalp artery, but to still contaminate each
dataset, one random ECG sample contaminated one channel for each partici-
pant [15, 120]. The original amplitude of the ECG would also be reduced by
a randomly chosen percentage to increase variation and compensate for the
relative position of the electrode to the artery. All the random generations
were based on a symmetric probability distribution.

Understanding the more complex parts of the ECG simulation will allow a
higher level explanation based on the flow diagram to be better understood.
The first step in the flow diagram in Figure 3.8, was to upload the 10 chosen
ECG data sets. The second step was to bandpass filter all the ECG data
between 3 and 5Hz to ensure that the activity present is from the source of
a pulse and not other sources or artefacts such as EMG. The third part was
to clip parts of the ECG signals that showed unusual patterns possibly due
to non-physiological artefacts such as a disruption in the signal. Then, given
that the clipped parts of the ECG were shorter than the ‘clean’ EEG data,
and the ECG usually occurs throughout the entire time duration because the
electrodes remain stationary, and the ECG has a repetitive pattern, the ECG
data was concatenated until it represented the same length as the participant’s
EEG data. A random ECG sample out of the ten samples and the reduction
percentage to reduce the amplitude were then chosen. The randomness was
based on a symmetric probability distribution. To be compatible with the
‘clean’ EEG data before finally adding the ECG to the chosen EEG channel,
the ECG data was downsampled from its original 500Hz to 200Hz.

3.5.3 Creating 50 electrocardiographyy and ECG-EEG
datasets

The 50 ECG contaminated EEG datasets were created to have an SNR with
distribution as wide as possible within a reasonable and comparable range to
other literature, therefore supporting one of the main aims of testing the ro-
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bustness of cleaning methods. The fixed data was the 10 ECG sample datasets.
The cleaning methods had to be tested on numerous data, with a high

variation, to enable conclusions on their robustness. To account for this, the
two independent variables, the choice of samples and percentage reductions,
were identified to be varied within limits set by literature. The random EEG
channel to which the algorithm added the ECG was not considered a variable
because each channel for all 50 participants was contaminated roughly equally
in amount. All 10 ECG samples were used for the ECG contamination in
order to increase variation. Therefore, the percentage reduction was the only
remaining independent variable. The results of the SNR for all the channels
when varying the percentage reduction while keeping the minimum and max-
imum ECG sample (determined by amplitude) constant were analysed and
compared to literature. This was done to ensure that valid ranges were chosen
that did not exceed realistic limits.

3.6 Combined reference and use

3.6.1 Combined dataset description and methodology

The problem of removing different kinds of artefacts simultaneously is of great
significance [68]. The simulation of the EEG dataset contaminated by a com-
bination of EOG, ECG and EMG is only dependant on the simulations of the
pure EOG, ECG and EMG artefacts. Due to the effort put into increasing the
variability of the EOG, ECG and EMG as much as is reasonable, the results
of the combined contamination had a high variation.

Therefore, following the linear mixture model assumption, the contami-
nated EEG results from ‘clean’ EEG summed with the artefacts. The as-
sumption was further extended to the three physiological artefacts being in-
dependent and therefore summed together. The results of the final simulation
methodology can be described by equation 3.3 and 3.4, where the combined
artefacts is CMDij and the EEG combined with artefacts is CMD_EEGij

[15]. In equation 3.3 the different artefacts, before they were added to the
‘clean’ EEG data, were summed together to create a combination of artefacts.
Finally, in equation 3.4, the combination of the artefacts was added to the
clean EEG per participant, i, and for each separate channel j.

CMDij = EOGij + ECGij + EMGij (3.3)

CMD_EEGij = CMDij + EEGij (3.4)

The purpose of the semi-synthetic data is to test, develop, and quantify the
effectiveness and efficiency of the cleaning methods. With the methodology of
the semi-synthetic data established, the methodology of the different cleaning
methods used can effectively be discussed.
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3.7 Blind source separation methods

3.7.1 Blind source separation methods overview

In Figure 3.9, one can see the process used by the BSS methods to clean the
contaminated EEG data, for either EOG, EMG, ECG or a combination of
these artefacts for each individual participant.

The first step was to upload the contaminated data for a participant. The
second step, as indicated in Figure 3.9, was to identify all the components
which can be seen as the estimated sources of the measured data, using the
statistical restrictions of each method, which were tested separately, be it either
Extended Infomax, SOBI or CCA. After the components were estimated by
the algorithms, the artefact components were manually identified and marked
using the methods described in Section 3.7.3. These artefact components were
then manually removed from the mixing and component matrices before cal-
culating the cleaned data, as shown in the last block of the flow diagram and
further explained in Section E.1.

Figure 3.9: BSS process flow diagram.

3.7.2 Blind source separation mathematical methods

The method described below was implemented with Extended Infomax, SOBI
and CCA. The only difference is the statistics used to calculate the unmix-
ing matrix W . The components from which the researcher in this thesis can
identify the artefact components were calculated as shown in equation 3.5,
where S = [xi(j)]n×N is the estimated components, with N being the total
samples, n the number of channels and M the number of components. BSS
methods can only identify as many components as the channels used. There-
fore this equation always holds M ≤ n, and in this case, the BSS algorithms
calculated the maximum number of components for each case; therefore, it can
be stated that M = n. Furthermore, the unmixing matrix, W = [wi(j)]n×n

is used to separate the measured data into its estimated sources S. Where
X = [xi(j)]n×N is the data measured from each channel n [13, 15, 121].

S = WX (3.5)
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Once the components, S, have been identified using the unmixing matrix,
W , the components containing contamination can be identified by closely in-
specting the characteristics of the time, frequency and other characteristics.
When the contaminated components have been identified, the chosen clean
components indexes to keep, M̂ , are determined, which is used to calculate
the cleaned data. The cleaned data is estimated by first computing the mixing
matrix, A = [ai(j)]n×n, which is the inverse of W , as shown in equation 3.6.
Then, as shown in equation 3.7, the cleaned data, X̂ = [x̂i(j)]n×N , is calcu-
lated by multiplying only the selected clean indexes, M̂ , of the mixing matrix,
Â = [âi(j)]n×M̂ and components Ŝ = [ŝi(j)]M̂×N [13, 15, 121].

A = W−1 (3.6)

X̂ = ÂŜ (3.7)

The mathematical and statistical derivations of the BSS methods can be
found in Appendix E. Furthermore, the mathematical and statistical deriva-
tions for ICA and CCA can be found in Appendix E.1 and E.2 respectively.
Additionally, the mathematical and statistical derivations of Extended Info-
max and SOBI, derived from ICA can be found in Appendix E.1.1 and E.1.2
respectively.

3.7.3 Identifying contaminated components

To determine whether a component produced by one of the BSS methods rep-
resented an artefact or ‘clean’ EEG, the researcher in this thesis first analysed
five sub-plots, each shown in Figure 3.10 for the four different types of com-
ponents identified during the cleaning and testing of the methods. Referring
to Figure 3.10(a), for EEG, the top subplot represents the time series data
of the component, providing valuable information on the amplitude, duration
and pattern of the component. EEG components represented the full duration,
with a varying pattern throughout the time series, with artefacts being less
consistent in duration. The second important subplot is the topography of the
identified component, with red indicating a higher amplitude and blue a lower
amplitude. An artefact would have a high concentrated amplitude relative to
the location from which it originates. The third subplot, the spectrum subplot,
shows the frequency distribution of the component, with EEG usually having
a peek at alpha and artefacts being much higher at either lower or higher fre-
quencies. The segment image and event-related potential over event-related
field (ERP/ERF) subplot consist of two additional subplots. The subplot at
the bottom is the component’s two-second segments’ time series. The top sub-
plot is the amplitude at each separate segment, corresponding at the x-axis
with the time series below it. In this case, there are 14 segments, with red in-
dicating high amplitudes and blue low amplitudes at the different time points
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Identifying artefact containing components manually

Figure 3.10: There are four parts for each artefact, with five subplots each. The
time-series subplot provides information on the amplitude and duration. The to-
pography subplot shows higher amplitude in red and lower in blue. The spectrum
subplot shows the frequency distribution. The event-related potential over event-
related field (ERP/ERF) subplot has a time series of 2-second segments from the
component at the bottom. The top of the ERP subplot represents the amplitude
at each separate segment, corresponding at the x-axis of the time of the data below
it. The y-axis represents each segment, with the red and blue corresponding to the
high and low time series amplitudes respectively. The variance subplot shows the
variance for each segment [50, 111, 112].
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for that segment, with segments indicated on the y-axis. Artefacts usually
show activity at only some segments, while EEG shows continuous activity.
The final subplot is the dropped segments subplot, showing the variance for
each segment and provides much of the same information as the ERP/ERF
subplot, with EEG components varying steadily throughout and artefacts com-
ponents having less frequent but more significant variance. These five subplots
were used in combination with what we know of EEG, EOG, EMG and ECG
to identify whether the components were in fact from actual EEG or arte-
facts; these decisions were based on literature from Sweeney et al. [11], Daly
et al. [13], Urigüen and Garcia-Zapirain [15], Barry et al. [20], Otavio G. Lins
[44], Goncharova et al. [50], Uhlig et al. [54], Sakai and Wei [59], Jose and
Collison [60], Barry and De Blasio [114], Matsuura et al. [115], Chorlian et al.
[117].

On identifying pure EEG components, referring to Figure 3.10(a) with the
time series, a consistent and wide variance in frequency throughout, with high
amplitude alpha activities at times, suggested that the component represented
EEG. The topography of the pure EEG showed more widespread activity in
comparison with the artefacts. The ERP/ERF segment subplots for the EEG
showed activity in all the segments, with more variance in amplitudes for each
segment when compared to some artefacts. The spectrum subplot for EEG
components represented a pattern following the trend of 1

f
, where f represents

the frequency, with a peak at the alpha frequency range. With the variance
subplot, the EEG variance resembled a symmetric probability distribution
[20, 114, 115, 117].

To identify the EOG components, Figure 3.10(b) shows all the information
used to confirm whether a component represented an EOG artefact. With the
time series, the EOG components showed high amplitude and low-frequency
bursts, resembling the familiar pattern of EOG time series data. The topog-
raphy of the EOG components showed high amplitude at the anterior regions
of the head, as does the topography for the EOG in Figure 3.10(b). For the
EOG ERP/ERF segment plot, some segments showed high activity, while oth-
ers showed very little activity. The reason for this is the inconsistent activity
of the EOG. On the ERP/ERF subplot, the bars are also wider because the
frequency for the EOG is lower. In the spectrum plots for EOG data, lower
frequencies showed higher amplitudes. Just like the ERP segment subplot, the
EOG only showed variance at some segments and no variance at others with
the dropped segments subplot [11, 15, 44].

Figure 3.10(c) shows all the information used to determine whether the
component represented an EMG artefact. With the time series of the EMG
components, the EMG only occurred at certain time segments, with no activ-
ity at other time segments. The EMG components also had high amplitudes
and frequencies. The topography of the EMG originated and was more con-
centrated at the temporalis or frontalis areas than other artefacts. The EMG
component shown in Figure 3.10(c) is contamination from the temporalis area,
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originating from jaw clenching and mouth movement. The segment plots for
the EMG showed high-frequency activity in only some of the segments, with
almost nothing at other segments. The spectrum subplot for EMG showed
a high amplitude at higher frequencies, as seen in Figure 3.10(c). The EMG
variance showed the same type of distribution as the segment subplot, with
the only variance at a few segments [15, 50, 54].

Referring to Figure 3.10(d) on identifying ECG components, the time series
of the ECG represented repetitive constant and low-frequency patterns similar
to a heart rate. The topography of the ECG components has a high amplitude
at one concentrated random location, corresponding to the electrode affected.
The segment plots for the ECG showed a repetitive pattern for each segment,
with the red and blue bars almost aligning vertically. The bars are also wider
because the frequency is lower for the ECG component than the EEG com-
ponents, as shown on the ERP subplot. The spectrum subplot for ECG data
showed a high amplitude at lower frequencies similar to EOG artefacts. With
the variance subplot, the ECG, like the ERP segment subplot, showed vari-
ance at most segments, closer to the distribution of the EEG but with a higher
variance [13, 15, 59, 60].

3.7.4 Identifying contaminated components
automatically

For the automation of the semi-automatic BSS methods, the identification of
the artefact components had to be automated, being the only part in the BSS
methods that relied on manual input. As found in literature, the approaches for
automating the BSS methods were often complex, including machine learning
algorithms which added significant computational and required manual input
from experts to effectively label the training data into clean EEG and artefacts
respectively [90–94].

The automation method described below is a novel method developed by
the researcher of this thesis. The method developed was a simple but effec-
tive method that emphasised the distinguishing amplitude spectra character-
istics of the EEG and artefact components for separation using predetermined
thresholds. The automation of the artefact components was based on the as-
sumption that the amplitude spectra of the ‘clean’ EEG components had an
alpha peak in the range of 8 to 11Hz. In comparison, the ECG and EOG
artefact components peaked at lower frequencies of 2 to 4Hz, and the EMG
artefacts peaked at higher frequencies in the range of 15 to 49Hz. The algo-
rithm further emphasised these assumptions by looking at the fourth power
of the amplitude spectra, therefore emphasising the peaks and lowering less
significant frequency amplitudes. The fourth power was chosen after testing
different powers and heuristically identifying it as the most effective power for
the algorithm. Figure 3.11 shows the logic of the process with a flow chart,
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and Figure 3.12 further explains some of the processes discussed in the flow
chart.

Figure 3.11: Identifying artefact containing components automatically flow dia-
gram.

Identifying artefact containing components automatically

Figure 3.12: The left subfigures represent the amplitude spectra in µV4 of each
frequency band, for each component, for each contamination type. The right sub-
figures represent the ratios of the highest over the lowest frequency bands of the
chosen components, used alongside a threshold to determine whether the suggested
components are actual components.
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As shown in the flow diagram of Figure 3.11, the first step in the auto-
matic identification of the components was to find the amplitude spectra of
each component identified by the BSS methods. The second and third steps,
shown in the second and third block Figure 3.11, and as explained previously,
were to calculate the average bands of the amplitude spectra to the power of
four. In the fourth block, the relationships between the amplitudes of the cal-
culated bands for each component were visualised. Assuming that the ‘clean’
EEG components have the highest peak, where this was not the case, the
components were chosen as suggested artefact components.

Figure 3.12(a) further illustrates this process, showing the fourth power of
each bands’ amplitude spectra for the EOG component. As seen in Figure
3.12(a), only components zero, one, two and five did not have the modified al-
pha band as the highest band and were therefore selected for the second stage
as possible artefacts components. As described by the last block of the flow
chart in Figure 3.11, a threshold was imposed as seen in Figure 3.12(b). Using
the ratio of the highest band over the lowest band was based on the hypothesis
that it quantified the extent of the component’s artefact characteristics. The
method, therefore, aimed to emphasise and quantify artefact characteristics
with the use of a threshold to determine whether the suggested artefact com-
ponents were indeed actual artefact components. Referring to Figure 3.12(e)
and 3.12(f), one can see that the algorithm selected components three, five and
ten as possible artefact components. As shown by Figure 3.12(f), the compo-
nent that actually represented the ECG component, using the highest band
to lowest band ratio, was much higher than the other components. As a re-
sult, the component was above the chosen threshold and selected as a definite
artefact component to be removed from the data.

3.8 The auto threshold method
The auto threshold method described below, based on the standard deviation
of the data of each channel, is a novel method developed by the researcher of
this thesis. The auto threshold method is a simple method that was imple-
mented and tested alongside the BSS methods. The justification of the method
was the fact that artefacts such as EMG, EOG and ECG often have signifi-
cantly larger amplitudes than the EEG itself, making a threshold method a
possible cleaning alternative [10, 15, 44, 50]. Using a threshold that is not
adaptive causes problems since each channel has a different amplitude de-
pending on the region and the quality of electrode contact. Additionally, each
channel has different types or combinations of artefacts. In this case, it was
decided to make the thresholds individually dependent on the standard devia-
tion of each channel and set the thresholds to be based on a preset number of
standard deviations. It was assumed that the data would have a mean of zero
microvolts, so the thresholds were equal in magnitude but set above and below
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the zero points of the data. By fitting a five-degree polynomial through the
data, any form of a shift in the baseline of the data was found and removed
by subtraction, further confirming the centre of the distributions to be at zero
voltage. The degree of the polynomial was increased until the fifth degree,
where it could be heuristically and visually deduced that the slow baseline
shifts were the most effectively captured. The number of standard deviations
and intersections was then determined from this centred data. As a result, any
shift in the baseline of the data did not affect the calculation of the number of
standard deviations for finding intersection points of the artefacts. With the
deeper calculations in the auto threshold method, the rest of the process can
be effectively explained using the flow diagram in Figure 3.13.

Figure 3.13: Flow diagram of cleaning data with an auto threshold method.

As seen in the first block in Figure 3.13, the initial step in the automated
method was to set the parameters for the number of standard deviations and
ranges. Highly contaminated data may perform better with a larger number
of standard deviations due to the data having larger amplitudes and relatively
clean data may perform better with fewer standard deviations. The ranges
determined how much data was removed when an intersection was identified.
After the values for the number of standard deviations and ranges were set, the
data was centred as described above. Each time point that intersected with
the thresholds determined for each channel, was marked. Then, as described
in the third block of the flow diagram, ranges were determined based on preset
range lengths and centred at the intersecting points. The algorithm merged
overlapping ranges into one larger range. As shown in the fourth block, the
next step was to remove the data between the identified ranges. The fifth step
was to restore the continuous state of the data by splicing the points where the
algorithm removed the ranges. After this process, it could be expected that the
algorithm had removed most of the significant artefacts. The separate removal
of the contaminated ranges causes the time series of the channels not to line up.
However, due to the Fourier transform providing a summed spectral analysis
across the entire signal, the information that would have been gathered by
synchronising the time series of the channels is disregarded. Therefore, the
synchronising of the channels in the time domain is not necessary in this case.
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Due to the large artefacts affecting the standard deviation of the data, the
thresholds determined with the first standard deviation may have missed more
subtle artefacts. As shown with the decision block in Figure 3.13, the whole
process was repeated once again, this time with a smaller number of standard
deviations and usually a smaller range.

3.9 Technical implementation
All four methods, namely Extended Infomax, SOBI, CCA and the auto thresh-
old method, were tested and compared to each other and to findings reported
in the literature. In this thesis, the researcher tested their performance regard-
ing the increase of the SNR of the contaminated data and the average time it
took to identify the components per method.

Regarding the consistency of testing the effectiveness of each method in
increasing the SNR of the contaminated data, the researcher in this thesis sep-
arately used each method to clean the semi-synthetic EOG, EMG, ECG and
combined contaminated data for each of the 50 participants. The results were
separately stored for each method, participant and type of semi-synthetic con-
tamination. Using the methods described in Section 3.7.3, the contaminated
components were identified and removed, as shown in equation 3.7. Regarding
the time that each method took to clean the data, the following can be noted:
for the BSS method, only the time before and after the calculation of the com-
ponents was recorded and saved for each algorithm. For the auto threshold
method, only the time it took for the algorithm to identify the ranges of the
artefacts were measured. During this process, all other programmes and un-
necessary background processes on the computer were closed, except for the
ones used to implement the algorithms.

The methods were written on Python 3.8.5, with further information pro-
vided in Appendix G.1, while using Jupyter Notebook as the integrated devel-
opment environment (IDE). The cleaning methods were either written from
scratch or partially, using relevant libraries. No toolboxes were used for the im-
plementation of the cleaning methods. Extended Infomax was partially coded,
with the use of the MNE-Python 0.23.0 [122] library, combined with NumPy
1.20.1 [123] and Matplotlib 3.3.3 [124] for additional necessary matrix calcula-
tions and components visualisations. SOBI was written mainly from scratch,
using NumPy 1.20.1 [123] for all the matrix calculations and Matplotlib 3.3.3
[124] for the visualisation of components, topographies, amplitude spectra etc.
The CCA algorithm was also implemented from scratch, using mostly the
scikit-learn 0.24.2 [125] library, with NumPy 1.20.1 [123] and Matplotlib 3.3.3
[124] for additional matrix calculations and visualisations.

The simulations and cleaning methods were implemented and tested on a
HP laptop with a 7,88 GB usable ram and an Intel(R) Core(TM) i7-8550U
processor. Therefore the system has a processor base frequency of 1.80 GHz.
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The laptop runs on a 64-bit operating system. The operating system used was
Windows 10, version 21H1.

3.10 Statistical analysis methods used
The semi-synthetic data and cleaning methods were analysed using boxplots,
t-tests and a description of these methods can be found in Appendix F.

The researcher in this thesis analysed the semi-synthetic data by compar-
ing their characteristics to other actual artefacts discussed in the literature.
Among the characteristics, the SNR was also used as a performance evaluator
to compare the intensity of the different artefact contaminations to each other
and the findings in the relevant literature. The SNR for the semi-synthetic data
was represented in the form of boxplots. The SNR values for the 16 channels of
all 50 participants were grouped. Therefore, the boxplots represented 800 data
points per artefact (except for ECG containing 50 data points). The SNR for
the semi-synthetic data was also further compared to each other and relevant
literature by only grouping certain regions together, for example, only repre-
senting the data of the temporal location (T3, T4, T5, and T6). Therefore,
four channels for 50 participants, meaning 200 SNR data points, were used for
further in-depth comparisons between simulations and literature.

The performances of the cleaning methods were evaluated and compared
to each other and to literature. The analysis of the SNR of the cleaned data
as well as the difference between the SNR of the cleaned data and the contam-
inated data was done using boxplots and the t-test. A p-value greater than
0.05 was used as an indicator that there was no significant difference between
two datasets. The cleaning methods were also compared to each other and
literature using the average SNR of each channel of the cleaned data. The
average time that each BSS method took to identify the components was com-
pared to each other and literature using boxplots and the t-test. For the auto
threshold method, the average time it took to identify the artefact ranges was
used.
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Results and Discussion

4.1 Electrooculography results

4.1.1 Results and discussion of semi-synthetic
electrooculography time-series

Figure 4.1(a) shows the results of the temporal propagation and summation
of the HEOG and VEOG signals, creating the pure EOG signal at the Cz
position. The EOG data oscillates between an amplitude under 100 µV with
bursts lasting about one to three seconds. Figure 4.1(b), represents the results
of the ‘clean’ EEG in blue and the contaminated EEG in black, which is the
summation of the EOG and EEG signal at location Cz. Figure 4.1(c) is a
close-up view of Figure 4.1(b), showing the contaminated data in black and
clean data in blue between the zero- and four-second range.

The simulated EOG in Figure 4.1(a) shows similar slow frequency, high
amplitude, and brief patterns as the EOG simulated by Zeng et al. [45]. The
EOG observed is non-stationary, therefore varying in characteristics such as
frequency and amplitude with time. The frequency of a non-stationary wave
changes constantly during the process, as observed from real EOG signals by
Sanjeeva Reddy et al. [48]. The amplitude of the EOG signal as observed in
Figure 4.1(a) also occurs within the amplitude and frequency of 10 to 100 µV
and 0 to 10Hz as observed of EOG signals by Sanjeeva Reddy et al. [48]. The
duration of the EOG signals only lasts for a few seconds as observed in EOG
by Sanjeeva Reddy et al. [48] and Venkataramanan et al. [49].

As shown in Figure 4.1(b), the ‘clean’ EEG, having an amplitude typically
under 50 µV, was increased through contamination to amplitudes exceeding
100 µV Gratton [47]. Figure 4.1(b) displays how the contaminated EEG shows
drastically different patterns and higher amplitudes at certain time segments,
completely distorting the parts of the ‘clean’ EEG time series data when ob-
served from a distance when the EOG signal is present.

When further investigating the contaminated EEG, for instance, between

47
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Simulated EOG artefacts time series

Figure 4.1: (a) Pure EOG data at location Cz after propagating and combining the
HEOG and VEOG data. (b) The contaminated and ‘clean’ EEG. (c) An expanded
view of Figure 4.1(b) [111].

zero and four seconds as shown in Figure 4.1(c), one can see that for the most
part, the contaminated EEG follows the same frequency patterns as the ‘clean’
EEG, undergoing mostly a shift rather than a complete change in the pattern.
At the peaks of the EOG contamination, such as between 1.8 and 2.0 seconds,
the ‘clean’ EEG patterns are completely obscured.

4.1.2 Results of varying electrooculography and
EOG-EEG datasets

Figure 4.2(a) shows the results of the SNR of the semi-synthetic EOG con-
taminated EEG for all 16 locations when varying the intensity of the VEOG
and HEOG propagation values from minimum to maximum. On the x-axis
of Figure 4.2(a), the propagation intensity is equally spaced from 10 to 100.
The boxplot at each intensity value represents the SNR results of all 50 semi-
synthetic EOG contaminated EEG datasets when the corresponding propaga-
tion values were kept constant for the simulation. Figure 4.2(b) represents the
same results as Figure 4.2(a), with a small difference in representation. In this
case, each boxplot only represents one channel for all 50 participants, showing
the results of the most affected channel, F8, and the least affected channel,
O2, when keeping the propagation intensities constant during the simulation.
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Results of varying propagation intensity for EOG

Figure 4.2: (a) The boxplots of the SNR of 50 participants when the intensity of
the EOG varied between the minimum and maximum intensities for the whole head.
Therefore, each boxplot represents 800 points. (b) The same data representation as
Figure 4.3(a), but only for two separate channels. The channels chosen were F8 and
O2, representing only 50 data points for each boxplot [111].

To further validate the semi-synthetic EOG contamination, the SNR was
compared to the ranges used in related research. The SNR values found in
the literature were summarised in Table H.1, Appendix H. The research con-
ducted by Bai et al. [126], Sadasivan and Dutt [127], Merino et al. [128], Naga
et al. [129] and Puthusserypady and Ratnarajah [130] involved the contamina-
tion of one channel numerous times while varying the SNR from minimum to
maximum values, whereas Cheng et al. [131] and Paulson and Alfahad [132]
contaminated numerous different channels, but with the same level of SNR,
also varied from minimum to maximum for each channel.

From the SNR of the semi-synthetic EOG contaminated EEG, in Figure
4.2(b), F8 has a minimum SNR of about −18 dB, and O2 has a maximum SNR
of about 24 dB, making these the minimum to the maximum range of the SNR
of the simulated data. Referring to Table H.1, the ranges are comparable to
that of Puthusserypady and Ratnarajah [130], at −20 dB, and Naga et al. [129],
at 23 dB, and well within the limits of those of Paulson and Alfahad [132], at
−40 dB, and Merino et al. [128], at 60 dB. Therefore, it is justified to use the
whole range of propagation intensities as it produced SNR values comparable
and within limits to those from other studies, maximizing the variation of the
semi-synthetic EOG contaminated EEG.

4.1.3 Results electrooculography and EOG-EEG
topography

Figure 4.3 shows the results of the average topography of the 50 semi-synthetic
simulated EOG contaminations, using a random symmetric distribution to
determine the propagation intensity for each participant in combination with
the unique VEOG and HEOG data that was recorded for each participant.
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The columns represent the different EEG and artefact scenarios in Figure
4.3, and the rows represent the frequency bands. The data represented is
the topography of the ‘clean’ EEG, the EOG contaminated EEG, the pure
EOG, and the VEOG and HEOG. The scale used to compare the topography’s
distribution to itself and the other topographies is a log scale, calculated as
10 log(µV 2), representing the band powers in dB. The average band powers
in µV2 are shown at the top of each topography map. In Figure 4.3, only the
delta and theta bands are shown, as the alpha, beta and gamma bands were
not significantly affected by the semi-synthetic EOG data.

Average propagation of simulated EOG data

Figure 4.3: The columns represent the different contamination scenarios, and the
rows represent the frequency bands. The data represented is the topography of
the ‘clean’ EEG, the EOG contaminated EEG, the pure EOG, and the VEOG and
HEOG. The scale used to compare the topography’s distribution to itself and the
other topographies is a log scale, thus calculating a 10 log(µV 2), representing the
band powers in dB. The average band powers in µV2 are shown at the top of each
topography map [111].

From the topography, one can conclude that the distributions in the lower
frequency bands are completely obscured, with the average voltage for the delta
band and theta band increased by about 35 and 3.6 times from their original
average voltage by the EOG contamination. Therefore, the theta band is
the most affected by the EOG data, obscuring any possible EEG topography
analysis. Delving into the source of the high voltage, it could be as a result of
the VEOG being a stronger contributor to the theta band contamination, with
an average voltage of 7.97 µV2 in comparison to the HEOG with an average
voltage of 1.84 µV2. The HEOG mostly consists of horizontal eye movements.
The VEOG also captures most of the activity originating from the vertical eye
movements and the eye blinks, which generate potentials through the eyelids
sliding down over the positively charged corneas [14, 44–46].

Analysing the HEOG and VEOG from Figure 4.3, it can be seen that the
delta band has a higher average power than the theta band and propagates
further towards the back of the scalp, causing a larger spatial distortion. The
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semi-synthetic EOG can be further validated by comparing the topography of
the HEOG and VEOG to other studies, for instance, that from Klados et al.
[46], where the HEOG propagation shows the similar frontotemporal concen-
trated distribution and the VEOG similarly shows a mostly frontal concen-
trated distribution [46].

4.2 Electromyography

4.2.1 Results and discussion of semi-synthetic
electromyography time-series

Figure 4.4 shows the results of the simulation of the temporalis and frontalis
time series data, simulated for five seconds, using the temporalis and frontalis
frequency from Goncharova et al. [50] as reference. Figure 4.4(a) and 4.4(b),
describes the temporalis data simulation and Figure 4.4(c) and 4.4(d) the
frontalis. The dashed blue line in Figure 4.4(a) represents temporalis fre-
quency reference data. The solid blue line represents the Fourier Transform of
the time-series simulated data which was simulated based on an Inverse Fourier
Transform of the reference data. The reference data, namely the dashed lines
on Figure 4.4(a) and 4.4(c), were first adjusted according to the chosen percent-
age at the relevant frequencies by the appropriate amplitude using equation
3.2, as previously discussed.

From Figure 4.4(a) and 4.4(b), one can see that the amplitude spectra
of the simulated time-series data follow the amplitude spectra of the reference
data, but with a high variance. The limitation of this simulation is the number
of data points available in the short time-series simulation. As a result, it is
difficult to accurately capture the 0 to 40Hz range of frequency data when one
second only contains two hundred data points. For the best estimation of the
reference frequency data, more points are preferable, resulting in simulated
EMG with longer durations for more accurate frequency representations.

Figure 4.5 shows the result of simulating the EMG for one channel. Figure
4.5(a) shows the simulated temporalis data in the first half and the simulated
frontalis data in the second half of the time series simulation. Figure 4.5(b)
shows the ‘clean’ EEG in blue, and the EMG contaminated EEG in black,
therefore the summation of the EMG and the EEG in the time-series domain.
Figure 4.5(c) is an expanded view between zero and more or less three seconds,
showing more clearly the effect of the EMG contamination on the time-series
data.

As seen in Figure 4.5(b), the EMG activities can display a magnitude much
higher than the EEG signals, as observed by other studies such as Teng et al.
[55], Mucarquer et al. [56] and Lugaresi et al. [31]. When referring to the
4.5(c), one can see that the original rhythm of the ‘clean’ EEG is completely
obscured by the EMG artefacts, making the analysis and interpretation of the
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Simulated EMG data based on reference amplitude spectra

Figure 4.4: (a,c) The solid line represents the amplitude spectra of simulated
time-series temporalis and frontalis contamination and the dashed line represents
the amplitude spectra from the reference temporalis and frontalis data, adjusted
according to the chosen percentage. (b,d) The simulated time-series data of the
temporalis and frontalis contamination [50].

EEG signals difficult, as observed by researchers such as Teng et al. [55] and
Lugaresi et al. [31]. The EMG follows a spontaneous bursting behaviour of
Gaussian noise, also observed of EMG by Mucarquer et al. [56], Liu et al.
[57] and Chavez et al. [58]. The distinguishing characteristics that define the
time-series of the observed simulated EMG signals remained constant for all
the channels and participants, with only the amplitude, frequency distribution
and length changing within the valid ranges. This justifies the analysis and
validation of the time-series data using only one of the signals.

4.2.2 Results of varying electromyography and
EMG-EEG datasets

Figure 4.6 represents the SNR of all 50 participants, with Figure 4.6(a) and
4.6(b) representing the data of all the channels and Figure 4.6(c) and 4.6(d) the
channels that were least affected (O2) and most affected (F8). Variations in
intensity were carried out between a minimum (10%) and a maximum (100%)
while keeping a constant time of a minimum of one second and a maximum
of 10 seconds as shown in Figure 4.6(a) and 4.6(c). Figure 4.6(b) and 4.6(d)
are the results of varying the time between a minimum and maximum of 1 to
10 seconds while keeping the intensity constant at a minimum of 10% and a
maximum of 100%.

To validate and determine the ranges used to simulate the semi-synthetic
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Simulated EMG artefacts time series

Figure 4.5: (a) Pure EMG data at location F8 after combining temporalis and
frontalis data (b) The contaminated and ‘clean’ EEG. (c) An expanded view of
Figure 4.5(b) [50].

EMG contamination, the SNR trends shown in Figure 4.6, were compared to
the ranges used in related research. The difference between the simulation of
the EMG in comparison to that of the simulated EOG is that the EOG had one
independent variable, the propagation factors, and EMG has two independent
variables, the contraction percentage and the duration of the EMG contami-
nation. We know that Goncharova et al. [50] measured the original reference
data for the EMG at 15% contraction from 27 participants. In contrast, the
data used to calculate the function that determines the change in amplitude
per percentage per frequency was based on data from 10 participants. This
means that the larger the range and further the intensity is from 15%, the less
accurate the estimation of the EMG simulation becomes. The researcher has
also discussed in Section 4.2.1, that the longer the duration of the simulated
EMG, the more points are available to represent the frequency reference data,
therefore increasing the simulated accuracy. Therefore, using a larger range of
time and a smaller range of percentage contraction is a priority.

An observation of interest in Figure 4.6(c) is that the minimum and max-
imum affected channels only differ significantly in SNR between the ranges of
about 15% to 40%. Thereafter, with the intensity increase, the distribution of
the minimum and maximum channels became very similar. This differs from
the results of EOG, where the SNR of the most affected and least affected
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channels were highly distinguishable from each other. The reason for the sim-
ilarity in SNR may be due to the source of EMG signals differing from eye
blinks originating closer to the surface of the skin. In contrast, EMG origi-
nates from under the surface, therefore affecting the propagation, where EMG
clearly shows a wider constant propagation than EOG in this case.

Results of varying intensity and time for simulated EMG

Figure 4.6: (a,c) The boxplots represent the SNR of 50 participants, with Fig-
ure 4.6(a) representing the data of all the channels and Figure 4.6(c) the channels
least affected (O2) and most affected (F8), while the intensity was varied between
a minimum of 10% and a maximum of 100% while keeping the time constant at a
minimum of one second and a maximum of 10 seconds. (b,d) The boxplots represent
the same as Figure 4.6(a) and 4.6(c), but the time was varied between the minimum
and maximum seconds of one and ten seconds while keeping the intensity constant
at a minimum of 10% and a maximum of 100% [50].

The SNR found was compared to the ranges used in related research to val-
idate the semi-synthetic EMG contamination further. The SNR values found
in the literature were summarised in Table H.2, Appendix H. The research
conducted by Chen et al. [12], Liu et al. [57], De Clercq et al. [104], Chen et al.
[133], Choudhry et al. [134] and Li et al. [135] involved the contamination of
one channel numerous times while varying the SNR from minimum to maxi-
mum values. In contrast, Teng et al. [55], Clercq et al. [136] and Magno et al.
[137] contaminated numerous different channels, but with the same level of
SNR, also varied from minimum to maximum for each channel.
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From the SNR of the semi-synthetic EMG contaminated EEG, in Figure
4.6(c), the lowest SNR value of F8 was at −40 dB when the duration and the
contraction percentage were set at the maximum values. O2 was found to
have the highest SNR at about 23 dB when the duration and the contraction
percentage were set at the minimum values. Therefore, −40 dB and 23 dB
were the lowest and highest SNR values of the simulated data. Based on
the fact that simulations with a longer duration increased the accuracy of
the simulation, while simulations further from 15% decreased it, the following
decision was made while considering the ranges from Table H.2: the total time
range of 1 to 10 seconds and a contraction percentage range of 15% to 35%
was chosen, resulting in a total estimated range of −30 dB to 15 dB for the
simulated EMG.

Referring to Table H.2, the lowest SNR of −30 dB used was comparable
to that of Magno et al. [137], at −30 dB, and within the limits of those of
Choudhry et al. [134], at −36.05 dB. The highest SNR of 15 dB used was higher
than the SNR data reflected in most of the literature in Table H.2, although
those studies involved contaminating one channel. In contrast, this thesis
involved contaminating data over the entire scalp, resulting in less affected
channels. This was as a result of the locations far from the frontalis and
temporalis EMG sources increasing the overall SNR. The highest SNR used
for the EMG was also well within the limits of the SNR used by that of Magno
et al. [137], at 30 dB. Therefore, using the total time range and a contraction
percentage range of 15% to 35% was justified, with an estimated SNR range
of −30 dB to 15 dB for the simulated EMG.

4.2.3 Results of EMG and EMG-EEG topography

The columns represent the different contamination scenarios in Figure 4.7, and
the rows represent the delta and theta, frequency bands. The data represented
is the topography of the EMG contaminated EEG, the pure EMG, and the
temporalis and frontalis activity. Unlike the topography maps of the EOG in
Figure 4.3, the EEG topography maps were excluded because they were not
comparable on the same log scale. However, it is important to note that the
original average voltage of the delta and theta bands for the ‘clean’ EEG is 0.07
and 0.03 µV2 respectively. Only the beta and gamma frequency topographies
were analysed for the EMG, as only these bands were significantly affected
and justified by the assumption from the literature that EMG only occurs at
frequencies from 15 to 20Hz and upwards [52–54].

Investigating the propagation of the EMG in Figure 4.7, it is of value to
first analyse its sources, which are the frontalis and temporalis EMG. As their
names suggest, both the frontalis and temporalis EMG are more prominent at
the frontalis and temporalis areas at the beta and gamma frequency bands.
With the increase in voltage and frequency, the frontalis and temporalis dis-
tribute further to the posterior and central regions, respectively. This may
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Average simulated EMG propagation

Figure 4.7: The columns represent the different contamination scenarios, and the
rows represent the frequency bands. The data represented is the topography of the
EMG contaminated EEG, the pure EMG, and the temporalis and frontalis activity.
The scale used to compare the distribution of the topography to itself and the other
topographies is a log scale, thus calculating a 10 log(µV 2), representing the band
powers in dB. The average band powers in µV2 are shown at the top of each topog-
raphy map [50].

be as a result of the higher voltage increasing the distribution capability of
the EMG artefact. When combining the frontalis and temporalis EMG, the
distribution characteristics are also combined because the frontalis and tempo-
ralis EMG have comparable average voltages. Therefore, at the beta frequency
band, the EMG has a frontotemporal concentrated distribution. However, at
the gamma frequency band, possibly due to the high voltage, the EMG sig-
nificantly contaminates the entire head. The EMG completely distorts the
capability of investigating the topography of the ‘clean’ EEG, increasing the
average voltage at the beta and gamma bands by 65 and 343 times, respec-
tively. The high-frequency activity of the EMG and the propagation of the
frontalis and temporalis EMG is similar to the results found from Goncharova
et al. [50] and Zeng et al. [45], further validating the simulated EMG.
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4.3 Electrooculography results

4.3.1 Results and discussion of semi-synthetic
electrooculography time-series

Simulated ECG artefacts time series

Figure 4.8: (a) The ECG after it has been bandpass filtered. (b) The ECG after
possible artefacts has been clipped. (c) The concatenated ECG data to represent a
longer time span. (d) The ECG contaminated EEG and EEG after the ECG has
been added to a random channel and its amplitude decreased by a random amount.
(e) An expanded view of Figure 4.8(d) [112].
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Figure 4.8 represents the process of creating the semi-synthetic ECG contami-
nated EEG. Figure 4.8(a) represents the result of bandpass filtering the ninth
raw ECG sample between 3 and 5Hz. Figure 4.8(b) shows the result of the
ECG after possible contaminated sections have been clipped away. Figure
4.8(c) shows the concatenated clipped ECG data to represent a longer time
span. Figure 4.8(d) represents the ECG contaminated EEG after the ECG
has been added to a random location, in this case, F8, and its amplitude de-
creased by a random amount. Figure 4.8(e) shows an expanded view of the
ECG contamination of Figure 4.8(d) between 0.0 and 2.2 seconds.

Referring to Figure 4.8(b), it is clear that the ECG signal shows a sim-
ple, characteristic and periodic pattern, such as also observed by Urigüen and
Garcia-Zapirain [15], Sakai and Wei [59], Jose and Collison [60] of ECG time-
series data. The amplitude of the ECG in Figure 4.8(b) is relatively low.
However, this amplitude greatly depends on the electrode positions and dif-
fers for certain participants, such as described by Urigüen and Garcia-Zapirain
[15], Dora and Biswal [61]. Referring to Figure 4.8(d), where the blue repre-
sents the ‘clean’ EEG, and the black ECG contaminated EEG, it seems as
if the original ‘clean’ EEG is completely distorted. However, Figure 4.8(e),
shows just as was seen with the EOG, that due to the slow rhythms, it con-
taminates the EEG similar to that of a slow baseline shift. Therefore, the
original rhythms of the ‘clean’ EEG signal are not highly distorted, as noted
by [138] ECG contamination.

As further validation of the time-series pattern, Figure I.1, found in Ap-
pendix I, shows that the semi-synthetic ECG corresponds to the standard QRS
ECG waveforms. As shown in Figure I.1(a), the shape of the actual bandpass
filtered data is comparable to the standard QRS shape in Figure I.1(b), further
validating the acquired ECG [59, 119].

4.3.2 Results of varying electrooculography and
ECG-EEG datasets

Due to the contamination of the ECG only being added to one location per par-
ticipant, the ranges of the independent variables were determined differently
to that of the EMG and EOG simulation. The two independent variables, as
discussed before, for ECG, are the percentage reduction of the original sig-
nal, relating to the variability in the electrode’s position relative to a blood
vessel, and the samples, relating to pulse characteristics differences between
individuals. When no contamination is added to a signal, the SNR is infinite,
making it impossible to calculate the average SNR of the participant if only
one channel was affected. Therefore, to decide the percentage reduction and
sample ranges, the same ECG contamination was added to each channel for
each participant and visualised in Figure 4.9. To reiterate for clarity, in de-
ciding the maximum and minimum SNR ranges for the ECG, all the channels
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were contaminated for each participant, including the inter-participant EEG
variations in the decision making process. After the ranges of the independent
variables, which produced valid SNR values were chosen, only one channel per
participant was contaminated by ECG artefacts for the actual semi-synthetic
dataset.

Results of varying intensity and samples for ECG

Figure 4.9: (a) The boxplots for the SNR of all 50 participants for all the channels
contaminated by the same maximum and minimum sample, three and nine, while
changing the percentage reduction from 10% to 100%. (b) The boxplots for the SNR
of all 50 participants for all the channels while the maximum percentage reduction
of 100% and a minimum of 10% was kept constant while varying from sample 1 to
10 [112].

Figure 4.9(a) shows the results of varying the percentage reduction and
Figure 4.9(b) the results of varying the samples. Figure 4.9(a) shows the
boxplots for the SNR of all 50 participants for all the channels contaminated
by the same maximum and minimum sample, three and nine respectively while
changing the percentage reduction from 10% to 100%. To create Figure 4.9(b),
the maximum percentage reduction of 100% and a minimum of 10% was kept
constant while varying from sample 1 to 10.

Referring to Figure 4.9(b), it can be seen that there is indeed a significant
variation between some of the ECG samples relative to others, as for samples
three and nine. Some samples do not significantly differ in their SNR values,
such as samples one and two. With that stated, combining the different sam-
ples, adding them to different locations and changing the reduction percentage,
produced a good amount of variation in the SNR of the ECG artefacts.

To further validate the semi-synthetic ECG contamination, the SNR was
compared to the ranges used in related research. The SNR values found in the
literature was summarised in Table H.3, Appendix H. Sakai and Wei [59], Dora
and Biswal [61, 139], Cho et al. [140], Suja Priyadharsini and Edward Rajan
[141] and Navarro et al. [142] focused on contaminating a single EEG channel
while varying the SNR between a minimum and maximum value. Navarro
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et al. [143] and Hou et al. [144] additionally only used one set value for the
SNR for one channel.

As can be deduced from the literature and Table H.3, ECG artefacts are
not as highly distorting as EMG and EOG and usually have a much higher
SNR value. To maximize the variance of inter-individual ECG differences, the
researcher in this thesis decided to use all 10 of the raw ECG samples. There-
fore, the only independent variable left was that of the percentage reduction.
To create viable ECG contamination comparable to that of other literature,
the percentage reduction was chosen to range between 10% and 19%, creating
a semi-synthetic ECG contaminated EEG dataset with an estimated contami-
nation range between 15 dB and −7 dB SNR. The maximum estimated SNR of
15 dB, is comparable to the 15 dB used by Dora and Biswal [61, 139], Navarro
et al. [143] and the minimum estimated SNR of −7 dB is only slightly higher
than the −6 dB of Cho et al. [140] and −5 dB of Navarro et al. [143], Hou
et al. [144]. Therefore, with the characteristics validated by other literature,
the intensity of the contamination is further validated by occurring within and
close to the ranges of established literature.

4.4 Combination results

4.4.1 Results and discussion of semi-synthetic combined
time-series

Figure 4.10(a) shows the ‘clean’ EEG results simultaneously at location C3
contaminated by ECG, EMG, and EOG artefacts. In Figure 4.10(a), the
original ‘clean’ EEG is blue and the contaminated EEG is black. Figure 4.10(b)
shows an expanded view of between 0.6 and 6 seconds.

Combination of EOG, EMG and ECG time series

Figure 4.10: (a) Results of combining the ECG, EMG and EOG to the EEG (b)
Expanded view of Figure 4.10(a) [50, 111, 112].
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The need for robust cleaning methods, and therefore datasets that can test
robustness, has been previously concluded from the literature review [9, 15, 68].
In Figure 4.10(b), it is quite clear that the distortion in baseline shift and
rhythms of the original signal is high. Also, due to the increase in the number of
artefacts, the limitations of the BSS methods capturing the maximum amount
of components equal to channels used may decrease the effectiveness of the
methods. With the use of the auto threshold method to clean high-intensity
combinations of artefacts, not much EEG data will be left if all the estimated
artefact ranges are removed.

4.5 Discussion of semi-synthetic contaminated
data

Figure 4.11 shows the final SNR results of the simulated data for each con-
tamination for all 50 participants. On the x-axis, the relevant contamination
is indicated, and on the y-axis, the SNR value. The boxplots only represent
the results of the contaminated channels; therefore, for ECG, the boxplots in-
cluded only the SNR of the one contaminated channel per participant in the
data and for the EMG, EOG and combination of all the artefacts, the boxplots
included all the channels in the SNR boxplots.

In Figure 4.11, we can clearly see whether we have succeeded in creating
contaminations comparable to each other and those found in the literature.
As seen with the literature and Tables H.1,H.2,H.3, as depicted in Figure 4.11,
the order of lowest contamination SNR ranges start from EMG to EOG and
finally ECG, with the combination of the artefacts logically resulting in the
lowest overall SNR.

The EMG contamination ranges between the lowest and highest SNR values
of −30 dB and 15 dB. This range is validated with its lowest SNR of −30 dB
being equal to that used by Magno et al. [137] of −30 dB and within limits and
comparable to the lowest SNR used by Choudhry et al. [134] of −36 dB. The
highest SNR of 15 dB for the EMG falls between the 30 dB used by Magno
et al. [137] and the lower SNR values used by the other studies. Therefore, the
semi-synthetic EMG contaminated data is maximally distributed in terms of
its SNR and comparable and within the limits of relevant literature.

The EOG SNR has a lowest and highest SNR of −18 dB and 15 dB. The
lowest of −18 dB is comparable to the −20 dB used by Puthusserypady and
Ratnarajah [130], and well within limits of the −40 dBused by Paulson and
Alfahad [132]. The highest SNR of 15 dB is between the highest of 23 dBby
Naga et al. [129] and the 10 dB of Paulson and Alfahad [132] and also well
within the limits of the 60 dB used by Merino et al. [128]. Therefore the
SNR of the simulated EOG is comparable to that of other studies and highly
distributed while remaining within the limits of the SNR used by other studies.
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The ECG contamination ranges between a lowest and highest of −7 dB and
15 dB. The lowest SNR of the ECG is comparable and just a bit lower than
the −5 dB used by Navarro et al. [142], Hou et al. [144] and the −6 dB used by
Cho et al. [140]. The highest SNR of 15 dB of the simulated ECG is the same
as the highest values used by Dora and Biswal [139], Navarro et al. [143] and
Dora and Biswal [61]. Therefore, the simulated ECG has an SNR range which
is highly comparable to the highest and lowest ranges used by other literature.

SNR of contamination over whole head

Figure 4.11: The figure shows the final SNR results of the simulated data for each
contamination for all 50 participants. On the x-axis, the relevant contamination is
indicated, and on the y-axis, the amount of SNR. The boxplots only represent the
results of the contaminated channels; therefore, for ECG, the figure includes only
the SNR of the one channel per participant in the data. For the EMG, EOG and
combined, the boxplots include all the channels in the SNR boxplots [50, 111, 112].

With the ranges of the simulated data validated by comparing the results
of the SNR of the simulated artefact contaminations of Figure 4.11 to the
literature from the tables H.1,H.2,H.3, we can now start to delve deeper into
the validation of the distributions of the SNR. Figure 4.12 consists of two
subfigures; Figure 4.12(a) is the SNR distribution of the different regions for
the different types of contamination, with Figure 4.12(b) being the legend for
Figure 4.12(a), depicting the positions of the Internationally recognised 10-
20 standard, with the colours of different locations marked, referring to the
locations used to calculate the SNR on the left sub-figure.

Regarding the EMG SNR distribution in Figure 4.12, one can see that the
temporal regions have the largest SNR values, followed by the frontal/temporal
region, and then the central and finally the occipital/parietal region. This dis-
tribution makes sense, primarily because of how close the distributions of the
four boxplots are compared to those of the EOG. Furthermore, the boxplots
show similar trends to the topography results of the EMG from Figure 4.7. Re-
ferring again to Figure 4.7, the researcher in this thesis found that the average
temporalis contraction voltages were higher than the average of the frontalis
contractions. The boxplots follow the trend that the contaminations are nor-
mally distributed, with the temporalis SNR being lower than the frontalis
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Comparison of SNR at the different regions for each simulated artefact

Figure 4.12: (a) The SNR distribution of the different regions for the different
types of contamination. (b) The legend depicting the potions of the Internationally
recognised 10-20 standard, with the colours of different locations marked, referring
to the locations used to calculate the SNR on the left sub-figure [50, 111, 112].

SNR. It makes sense that the central SNR is higher than the occipital/parietal
region because it is closer to the frontal/temporal and temporal region, where
the EMG originated. Therefore the SNR distribution of the EMG makes sense
and is further validated by the topographies from Figure 4.7.

Analysing the EOG SNR distribution in Figure 4.12, it becomes clear that
the results are comparable to that of the topography of Figure 4.3, where the
SNR of each region differs significantly relative to each other, in comparison to
the results of the EMG. The frontal/temporal SNR is also much lower as this is
the region most affected by the VEOG, which has the largest voltage, as seen
in Figure 4.3. The second most affected region is the temporal area, mostly
affected by the HEOG activity. However, the SNR distribution of the central
region is close to the SNR of the temporal region, possibly due to the central
area being affected by a combination of mostly VEOG activity and some of
the HEOG activity, as seen in Figure 4.3. Therefore, the SNR distribution of
the EOG follows the trends of the topographies from Figure 4.7 and is further
validated.

The ECG data in Figure 4.12 shows similar SNR distributions for each
region compared to each other. Ideally, the SNR for each region would have
been normally distributed. The randomly chosen ECG samples, reduction
percentages, and channels contributed to a symmetric probability distribution.
The skewed distribution is due to the limitation of only one channel being
contaminated per participant, reducing the total amount of contaminated data.

Finally, analysing the SNR of the combined data in Figure 4.12, one can
see that it has the lowest overall SNR. Having the same trend as the EMG, the
temporal region of the combined data has the lowest SNR, increasing in the
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order of the frontal/temporal, the central, and finally the occipital/parietal
regions. Due to the SNR trends of the EOG and EMG being close to each
other in order of regions, the ECG trends being the same for all the regions,
and the EMG SNR being the lowest and thus having the largest effect on
the total SNR, it makes sense that the combination of the three forms of
artefacts follows the same trend as the EMG. Interestingly, the lowest values
of the SNR for the combination of the artefacts did not change from those
observed in the EMG data. The only thing that changed was the highest SNR
being significantly reduced. This may be due to the lowest SNR contaminated
regions being saturated by contamination and the less contaminated regions
being open for contamination by the combinations.

4.6 Cleaning methods results

4.6.1 Threshold method results

Figure 4.13 consists of three sub-figures, showing the process employed by the
auto threshold method as described in Section 3.8. EMG and EOG contami-
nate the ‘clean’ EEG in Figure 4.13(a). In Figure 4.13(a), the standard devi-
ation is largely due to the EMG contamination raising the average amplitude.
Therefore, the standard deviations dependent threshold was set to just above
100 µV, creating a range depending on the amount of threshold intersects at
those locations, as shown in Figure 4.13(a). The data within those ranges
were removed, resulting in the complete removal of EMG contamination, as
seen in Figure 4.13(b). The second threshold was lower and around 60 µV due
to the lower overall amplitude. All the data in these ranges determined by
the threshold was again removed to create the data in Figure 4.13(c). Figure
4.13(c) shows the cleaned EEG with much less EMG and EOG contamination.

As contamination increases, more data ranges are completely removed,
resulting in a significant reduction in the data duration and the loss of brain-
related data. With the BSS methods, some real EEG is also removed, but not
as completely as with the auto threshold method. In Figure 4.13, the data
duration was decreased from about 28 seconds to 14 seconds, resulting in a
significant reduction in data points. The question is which loss in data is worse;
the loss in complete ranges from the auto threshold method or the continuous
real EEG caught and removed in the estimated artefact components from the
BSS method.

4.6.2 Results of semi-automatic BSS and auto threshold
cleaning

Figure 4.14 shows the results of the average SNR at each location for each
artefact. Each sub-figure represents different contamination, with the lines

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. RESULTS AND DISCUSSION 65

Time series results of auto threshold method

Figure 4.13: This figure shows how the EEG is cleaned in multiple stages using a
threshold based on the standard deviation of the data. (a) EMG and EOG contam-
ination time-series. (b) Result from the previous stage where the identified ranges
were removed, and only EOG contamination remains. (c) The result after the EOG
ranges were removed, and only ‘clean’ EEG remains [50, 111, 112].

representing the SNR of the cleaned data for each method. The black line
represents the average SNR of the original contaminated data.

Figure 4.15 shows the distribution of the difference in SNR between the
cleaned data and the original contaminated data for the entire head for all 50
participants. This means that each boxplot shows the SNR difference for 16
locations for each of the 50 participants, therefore representing 800 data points.
The x-axis represents the different artefacts used to contaminate the data, and
the colours of the boxplots correspond with the methods used, namely the auto
threshold method, SOBI, Extended Infomax and CCA.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. RESULTS AND DISCUSSION 66

Average SNR at the different locations for each artefact and method

Figure 4.14: The average SNR at the different locations for each artefact type is
represented. Each sub-figure shows the new SNR of the cleaned data, cleaned by four
different methods, with the black line representing the average SNR of the original
contaminated data. (a) EOG (b) COMBINED (c) ECG (d) EMG.

Comparison of the increase in SNR of four different methods

Figure 4.15: The boxplots show the distribution of the difference in SNR between
the cleaned data and the contaminated data for the whole head for all 50 participants.
The results of the four methods for each type of contamination are shown.
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4.6.2.1 Results of removing electromyography artefacts

Both Figures 4.14(d) and 4.15 will first be used to discuss the results of the
cleaning methods for EMG contaminated data. Regarding what has been
found in literature, CCA is often proposed as a more reliable method for
the removal of muscle artefacts in the scalp in comparison to ICA methods,
due to the exploitation of the fact that the autocorrelation of muscle activity
is weaker than that of brain activity [12, 15, 88]. CCA is better at cleaning
largely negative SNR because CCA tends to exaggerate the contribution of the
EMG source to the scalp EEG activity. This exaggeration is a possible reason
for the impairment of the performance of the CCA method due to the EMG
contamination occurring at SNR values as high as 15 dB [76]. ICA methods
such as Extended Infomax and SOBI have also been extensively explored with
EMG artefact removal. Results from literature show that SOBI and Extended
Infomax are as good as CCA at removing EMG from EEG [15, 76]. With some
studies claiming that CCA performs better with EMG removal than the ICA
methods and others claiming that their performance is the same, it is evident
that a dataset with a large variation is necessary to find a clear answer to which
method performs better overall in increasing the SNR of EMG contaminated
data [12, 15, 57, 76, 88].

The SNR of the original simulated EMG contaminated data ranges between
−30 dB and 15 dB, therefore providing a large variation in contamination in-
tensity. Figure 4.15 provides clear overall results for each method. The auto
threshold method ranges from the best to the worst performance, increasing
the SNR by 35 dB in some cases but decreasing the SNR by 15 dB in other
cases, reducing the overall impression of its performance. Therefore, still refer-
ring to Figure 4.15, Extended Infomax has performed the best overall with the
removal of the EMG artefacts. The t-test was performed on the results of SOBI
and CCA in removing the EMG artefacts, with a very close but still significant
P = 0.06 > 0.05. Thus, we cannot conclude that a significant difference be-
tween the performances of the two methods exists. Thus, SOBI and CCA were
both second in performance, followed by the auto threshold method. Figure
4.14(d) gives us a better idea of the performance of the methods based on how
low the SNR of the EMG is, due to it being varied for each location. Again,
we can see how closely the performances for SOBI and CCA were. CCA only
performed slightly better at location T3 than SOBI, due to the EMG being
at its lowest SNR and relating to the conclusion that SOBI performed bet-
ter with very low SNR values [15, 76]. It becomes quite clear that in all the
locations, the average performance of the Extended Infomax method was the
best, with significant differences compared to SOBI and CCA, only when the
EMG contamination was at its average lowest values. Finally, it is of inter-
est to note that the auto threshold method has almost the same performance
for each channel, whether the EMG contamination was higher or lower. This
makes sense due to the simplicity of the auto threshold method, causing it to
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remove spikes when it is not EMG, but completely removing EMG when it
is pronounced and has a very low SNR. It even outperforms SOBI and CCA
at F7, F8, T3, and T4, where the EMG SNR was at its lowest, meaning that
when the SNR is so high, it could be better simply to cut the data out, rather
than trying to statistically separate it.

4.6.2.2 Results of removing electrooculography artefacts

Both Figures 4.14(a) and 4.15 will also be used to discuss the results of the
cleaning methods for EOG contaminated data. From the literature review,
it was found that ICA methods such as SOBI and Extended Infomax have
become the default choice for removing EOG artefacts from EEG data [15].
Extended Infomax has been the most thoroughly justified for removing EOG
artefacts in other literature [15, 83]. It has also been stated in the literature
that SOBI stands out as the best artefact removal method for EOG [8, 84].
However, it has also been found that CCA clearly identifies EOG artefacts
for removal alongside these popular ICA methods [89]. Clearly, literature
produces differences in conclusions on whether SOBI, Extended Infomax and
CCA perform the best in removing EOG artefacts. These differences could be
due to the subjectivity of these methods, namely the manual identification of
the artefact components, with the expertise between researchers not being the
same [89].

Referring first to Figure 4.15, one can see that the CCA method performed
the best, as it produced the highest SNR increases. At the same time, CCA also
has the lowest SNR values, ranging to −10 dB, meaning that in some cases,
the CCA method actually worsened the SNR of the already contaminated
data. Still referring to Figure 4.15, the best performance, measured by an
increase in SNR and having comparable robustness to Extended Infomax and
SOBI, is CCA. A t-test comparing the SNR increased distribution of SOBI
and Extended Infomax produced a P = 0.17 > 0.05. From this, we cannot
conclude that their performance is significantly different. Therefore SOBI
and Extended Infomax performed second best with the removal of the EOG
artefacts. The auto threshold method performed reasonably well but further
decreased the SNR of the data in many cases; this may be due to EOG having
been present continuously throughout the dataset, meaning that too much
data would have been removed by the threshold method to account for all the
EOG artefacts. Referring to Figure 4.14(a), it can again be seen how close
the performances of the two ICA methods are, with CCA performing slightly
better at each location. Even though Figure 4.14(a) shows that CCA has the
average best performance, the lack of robustness that it showed in Figure 4.15
is still somewhat concerning. The results of the auto threshold method in
Figure 4.14(a) showed that the SNR of the average results of the cleaned data
remained reasonably consistent across all the channels, independently of how
low or high the SNR of each channel was. These results show that the auto
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threshold method is effective with really low SNR but limited when the SNR is
high because the algorithm removes unnecessary data, as observed at channels
O1 and O2 in Figure 4.14(a).

4.6.2.3 Results of removing electrooculography artefacts

ECG contamination is periodic and usually has a high SNR. The simulated
ECG ranges between −17 dB and 15 dB. Thus, the success of the method also
depends on identifying and extracting subtle patterns that sometimes cannot
be visually identified in the time series data. The researcher in this thesis noted
that with the semi-automatic cleaning of the ECG, the CCA method always
identified the artefact components in the same order, unlike the ICA methods,
based on stochastic learning methods [12]. ICA methods are typically the
preferred methods when it comes to removing ECG artefacts [15, 81], with
SOBI reported to generally perform better than other methods in removing
ECG artefacts [15, 86].

To get an overall idea of which method performed the best, we again re-
fer to Figure 4.15. We can see that SOBI outperforms the other methods,
followed by CCA, Extended Infomax and the auto threshold method. SOBI
possibly outperforms the other methods because it is based on second-order
statistics, causing a more successful identification of the periodic ECG pat-
terns. The conclusions derived from Figure 4.15, are also clearly repeated in
Figure 4.14(c), with SOBI outperforming the other methods, followed by CCA,
Extended Infomax and finally, the auto threshold method. Figure 4.14(c) pro-
vides valuable information on the effect that the cleaning of the one ECG
channel has on the other channels, where the other channels had an original
SNR of infinity. When one contaminated channel is cleaned, actual EEG data
is also removed from the other channels. Therefore, the higher the data, the
more precise the method identifies only the ECG component. An ideal method
would leave all the other channels at an infinite SNR. A low SNR in 4.18(c)
means that by only removing a contaminated component from one channel,
the method reduced the SNR of the whole dataset from infinity to a very low
value.

4.6.2.4 Results of removing the combination of artefacts

A major disadvantage of the ICA methods is that they can only identify as
many components as channels used; therefore, the likelihood of effectively iden-
tifying all the components decreases with an increase of independent artefacts
[15, 32, 74]. As a result of this, it can be expected that the superiority of the
ICA methods in performance may not be consistent with the combination of
contamination. Most research involving cleaning methods usually focuses on
only one type of artefact. As observed in the literature, Extended Infomax
methods are primarily applied to EOG artefact removal [15, 83], SOBI meth-
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ods to removing EOG and ECG [15, 86] and CCA methods to removing EMG
[12, 15, 88]. Testing the methods on the combination of these artefacts is rela-
tively unexplored, and therefore the results are considered more valuable. The
results will depend heavily on the number of channels affecting the ability of
each method to identify the components due to an increase in contaminated
components. Finally, the results will also depend on which method has the
best balance between effectiveness with each artefact. This balance is slightly
skewed due to the combination of the artefacts not being equally contami-
nated, but contaminated from an overall lower SNR to an overall higher SNR
from EMG, EOG and ECG.

As discussed above, the combined datasets consist of lower SNR EMG,
then slightly higher SNR EOG and finally the highest SNR ECG. Referring
to Figure 4.15, the three BSS methods show very similar results. Evaluat-
ing the methods based on the robustness and the overall increase in SNR of
the contaminated data, resulted in Extended Infomax performing best for the
combination of artefacts. CCA and SOBI are tied at second place, with a
t-test showing that it cannot be concluded that there is a significant differ-
ence between them, having a P = 0.57 > 0.05. It is also noteworthy that the
Extended Infomax results are similar to that of CCA and SOBI, with corre-
sponding P values of 0.01 and 0.02 for the t-test when comparing Extended
Infomax to these methods. It is also important to note that the auto threshold
method is comparable to the other three methods, which may be due to its
good performance when removing EMG contamination.

4.6.3 Time results of semi-automatic blind source
separation and auto threshold cleaning

The time each method takes to identify the components is an important charac-
teristic in online applications, such as BCI applications and commercial EEG
products. Apart from the manual identification of the components, in the
algorithm, component identification is the most time-consuming part of the
cleaning process.

SOBI was the slowest to identify each component, as shown by Figure
4.16. More specifically, SOBI was the slowest with ECG components and
the fastest with all the artefacts combined, thus an un-equivalent relationship
was established between the intensity, the number of artefact components and
the time necessary to identify the components. Extended Infomax was the
second slowest method and showed the same artefact number and intensity
to time relationship as SOBI. The expanded view of CCA and auto threshold
distribution of time can be found in Figure J.1. Finally, CCA, known for its
time efficiency and viability for online use [12, 15, 76], ranges between 0.5 and
2 seconds, as seen in Figure J.1(b), making it the fastest BSS method tested.
The CCA algorithm also followed the same relationship between the amount
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Time distribution per method per contamination

Figure 4.16: The boxplots of the average time in seconds to identify all the com-
ponents for one participant for all 50 participants. The boxplots are shown for each
method and each contamination.

and intensity of artefacts and the time to identify them as Extended Infomax
and SOBI. The most significant result is the time taken to identify the possible
artefacts of the auto threshold method. As seen from Figure 4.16 and more in-
depth with Figure J.1(a), it is clear that the auto threshold method performed
about 10, 20 and 100 times faster than CCA, Extended Infomax and SOBI,
respectively. Additionally, the auto threshold method achieved comparable
results to the BSS methods in cleaning the EMG and combining all three
artefacts. Therefore, considering comparable performance results of the auto
threshold method and its vast improvement in time, it may be considered the
most viable cleaning solution in some contexts.

Thus, with very low SNR EMG contamination, the auto threshold method
may be applicable in real-time. Furthermore, it is the only method discussed
that can currently be applied in real-time applications as a result of its time
efficiency. Due to the thresholds being based on the standard deviation of
the data, it requires a few seconds of clean data to start working effectively.
With high SNR data, the method is also ineffective. Further developments of
this method could be highly effective if there is an additional restriction that
the automatic threshold only applies to sudden deviations of the standard
deviation, such as bursting artefacts related to EMG.

As another proposed approach, the auto threshold can be used for prepro-
cessing the BSS methods to detect and remove high-intensity EMG artefacts
first, since it is superior to BSS at removing EMG contamination with low
SNR. This solution would still require that time ranges be removed across all
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channels whenever they are removed so that the channels remain time-locked
and the BSS remains applicable.

Therefore, it is believed that the auto threshold methodology can be suc-
cessfully applied to some BCI applications if, as further development is made,
it is only applied when there are sudden large changes in the standard devia-
tion. Auto threshold methods would be applicable to BCI applications where
participants display excessive muscle movements, such as sport or gaming-
related BCI applications or sport-related EEG research requiring immediate
analysis.

4.6.4 Results of the fully automated cleaning

Figure 4.17 consists of four sub-figures. The sub-figures compare the results
of the BSS methods when the researcher in this thesis chose the components
manually and used them automatically. The last sub-figure in Figure 4.17
compared CCA with the auto threshold method. Each sub-figure shows, in
the form of boxplots, the increase in SNR from the original contaminated
data, for all the participants and all the channels, for each contamination for
the automated and semi-automatic methods.

Comparison between automated and semi-automatic identification of
components

Figure 4.17: The boxplots show the distribution of the difference in SNR between
the cleaned data and the contaminated data for the whole head for all 50 participants.
The results of four methods for each type of contamination are shown.
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Average SNR of the automated and semi-automatic components methods

Figure 4.18: The average SNR at the different locations for each artefact type
is represented. Each sub-figure shows the new SNR of the cleaned data using four
different methods, with the black line representing the average SNR of the original
contaminated data (a) EOG (b) COMBINED (c) ECG (d) EMG.

Referring to Figure 4.17, it is clear that the automated and semi-automatic
BSS methods produced similar results in most cases. The closest results
were for cleaning the EOG when referring to the Figure 4.17(a), 4.17(b) and
4.17(c). More specifically, the automated Extended Infomax, as shown in Fig-
ure 4.17(a), was the method that performed the best in removing the EOG
artefacts automatically. A t-test comparing the semi-automatic and fully au-
tomated Extended Infomax on removing EOG artefacts produced a P = 0.12
> 0.05; therefore, we cannot conclude that there is a significant difference be-
tween the semi-automatic and automatic results. With the CCA method for
cleaning EOG shown in Figure 4.17(c), the results appear to be very similar.
However, the two datasets have a P = 0.03 < 0.05, therefore we cannot state
that there are no significant differences between the two datasets. Overall,
one can see that the automated artefact component identification method per-
formed the best with Extended Infomax, producing the closest results across
all types of artefacts and the combination thereof. This correlation between
Extended Infomax performing the best overall in comparison with the other
methods and the components being chosen automatically makes sense because
the artefact components identified by the Extended Infomax method contain
minimal traces of ‘clean’ EEG, therefore allowing the automated method to
identify the artefact components and to remove them effectively. Another in-
teresting similarity is found in Figure 4.17(d), where the automated threshold
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method shows results comparable to that of the semi-automatic CCA method.
This could be due to the effectiveness of the BSS methods declining more
with an increase in artefact components than the auto threshold method. The
greatest differences can be seen with the automatic identification of EMG and
ECG artefacts. With the identification of the combination of artefacts, the
fully automatic and semi automatic CCA produced similar results with the
combination of artefacts, reducing in similarity with EMG and ECG artefacts.

Figure 4.18 shows the SNR of the cleaned data concerning the original con-
taminated data for the semi-automatic and fully automated methods. Each
sub-figure represents a type of contamination. As shown in Figure 4.17, the
semi-automatic and automated methods display the closest results for cleaning
EOG and the combination of all the artefacts. Regarding Figure 4.18(d), with
the cleaning of EMG, CCA and SOBI show big differences between the au-
tomated and semi-automatic methods. Still, Extended Infomax has a smaller
difference compared to CCA and SOBI. An interesting occurrence is with Fig-
ure 4.18(c). It is important to note that the ECG of the cleaned data also
represents the average SNR of the channels that had an original SNR of in-
finity but reduced to a real number as the component removing operation
affects those channels. The black line represents the average SNR at those
locations, neglecting the data where the channels were not contaminated and
therefore having an SNR of infinity. The automated CCA and SOBI both
removed more data from the ‘clean’ EEG than would have been removed with
the semi-automatic process. The fact that the automated Extended InfoMax
method has a higher average SNR does not mean that the Extended Infomax
removed the ECG artefacts more effectively. Rather, the automated Extended
InfoMax method, on average, removed much more subtle artefacts that were
not ECG artefacts but slight shifts at the start of the signal, therefore not
affecting the other channels as much as removing the actual ECG would have.

4.7 Comparison of results to literature
This section compares the findings in this thesis to those found in the literature.
As the semi-synthetic datasets have already been developed partially from
literature as well as validated and compared with literature, their results are
not further compared to the literature in this section.

Regarding the removal of EOG artefacts: Based on the literature, Extended
Infomax has been most thoroughly justified in the removal of EOG artefacts
[83]. Additionally, other sources have indicated that SOBI is the best method
for removing EOG artefacts [8, 84]. Compared to popular ICA methods, CCA
has also been shown to identify EOG artefacts for removal clearly [89]. Adap-
tive thresholding methods have been found to perform accurately due to their
effective adaptation to the large variation in EEG and EOG among partici-
pants [96]. With the removal of EOG artefacts, no clear method stood out.
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Different conclusions were drawn regarding which BSS methods were best for
the removal of EOG artefacts. According to the results of this thesis, CCA
performed the best, but only slightly better than SOBI and Extended Info-
max, which were on par. Despite its adaptive qualities, the auto threshold
method performed significantly worse than the other methods in removing
EOG artefacts.

Referring to the results of the cleaning methods to remove EMG artefacts:
Compared to ICA, CCA is often proposed as a more reliable method for remov-
ing muscle artefacts [12, 15, 57, 88]. CCA performs better at cleaning EMG
with negative SNR because it is prone to exaggerate EMG contamination in-
fluence over scalp EEG activity [76]. The exaggeration may be detrimental to
performance when contamination is subtle [76]. Some studies that compared
the performance of Extended Infomax, SOBI and CCA in removing EMG
artefacts showed similar results [15, 76]. Furthermore, Extended Infomax has
been claimed to be the most effective in removing EMG artefacts compared to
SOBI [82]. When it came to the performance results of this thesis, Extended
Infomax was the best, then SOBI and CCA, followed by the auto threshold
method. Although CCA with EMG has gained popularity, the method has not
demonstrated robustness to subtler EMG contamination, reducing its overall
performance. As expected from the literature, Extended Infomax performed
better than SOBI with removing EMG artefacts.

In terms of removing ECG artefacts, SOBI generally outperformed other
methods [86]. The results did indeed support this, with ECG outperforming all
the other methods in removing ECG artefacts. The second best method was
CCA, followed by Extended Infomax and finally the auto threshold method.

There has been limited research comparing these methods for cleaning a
combination of all the artefacts, making the results from this thesis more
necessary. All the methods performed very similarly with the combination
of artefacts, even though they each had their own preferences when used with
specific artefacts. In terms of performance, Extended Infomax came in first,
followed by SOBI and CCA in second place and auto threshold not so far
behind.

Regarding time efficiency: A threshold method is sometimes considered
due to its simplicity and time efficiency [15]. In contrast, research has shown
that BSS methods are inefficient due to their high computational costs [73].
While BSS methods are computationally arduous, CCA is still a popular choice
in BCI research and commercial products, partly because it is time-efficient
compared to other BSS methods [12, 76]. As anticipated, the auto threshold
method proved to be the most time-efficient, followed by CCA, as expected
when compared to the other two BSS methods. The average computation
times for Extended Infomax and SOBI were respectively about two and four
times longer than CCA.

As mentioned before, the auto threshold method in this thesis was signif-
icantly more time-efficient than the other BSS methods. The standard de-
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viation of the data determined the thresholds of the method developed. In
contrast, Mognon et al. [97] adjusted the threshold values using an expectation-
maximisation algorithm which was not fit for real-time application and pro-
cessing due to the time-consuming nature of the maximisation procedure [97].
Geetha and Geethalakshmi [98] based the thresholding on empirical parame-
terisation, which was also too time-consuming [96]. The auto threshold method
developed performed the best with EMG and the combination of artefacts and
was unsuccessful with EOG and ECG. These results differ from Chang et al.
[96] who found that individually customised thresholding led to greater accu-
racy in detecting EOG artefacts due to the high variation between the EOG
of participants.

The ability to automate BSS methods are limited since it is not straight-
forward to classify artefact components automatically [15, 73]. In contrast to
those methods found in the literature, the automated approach in this thesis
did not require any additional manual input like the labelling of training data,
added any significant computational costs by using an additional complex al-
gorithm or require any reference channels [8, 90–95]. Instead, the approach
focused on simplicity and was based on the knowledge and emphasis of the
amplitude spectra of the artefacts and ‘clean’ EEG. In this thesis, the semi-
automatic and automated BSS methods produced similar results despite the
simplicity. In general, the results from the automated EOG component iden-
tifications were similar to those obtained from semi-automatic identification,
followed by the combination of artefacts and then ECG, with the EMG results
being the worst. The researcher in this thesis obtained statistically equivalent
results for the semi-automatic and automated identification of the EOG com-
ponents for Extended Infomax, comparable to the results from Burger and Van
Den Heever [90], who used a machine-learning algorithm to automate Infomax.
The automation of the ECG identification produced similar but less robust re-
sults than the semi-automatic methods. These results were similar to what
was found by Hamaneh et al. [92], who automated ICA using a pre-computed
template, which was found to not be robust with very low or high SNR ratios.
The results of the automated EMG identification in this thesis were found to
be the least successful. These results were similar to that from Echtioui et al.
[93], who attempted to automate SOBI with the combination of the ADJUST
algorithm, but was not successful with EMG artefacts. With the automated
identification of the combination of artefacts, the automated Extended Info-
max and SOBI were successful for high SNR but performed worse with low
SNR values. These results were similar to that found by Daly et al. [91], who
combined ICA with a clustering algorithm, which performed best with high
SNR but not well with low SNR values with the combination.
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Conclusion

5.1 Review of the project aim
This project aims to identify, automate, and evaluate the robustness of artefact
removal methods. This aim was achieved through the accomplishment of the
following five objectives:

From a literature review, the most relevant physiological artefacts were
identified as EMG, EOG, and ECG artefacts, therefore achieving the first
objective. Additionally to the first objective, it was found that literature
on the combination of these artefacts was scarce. Therefore, this thesis also
provides useful information on how the different artefacts influence each other
and the performance of relevant cleaning methods.

An extensive literature review was conducted on EEG cleaning methods
related to physiological artefacts such as those mentioned above. As a result, it
was determined that only three of the most appropriate and popular methods,
namely Extended Infomax, SOBI and CCA, were to be tested. Due to fewer
cleaning methods tested, the results of these methods could be analysed more
extensively. Therefore, the second objective was accomplished by identifying
the most popular and effective methods from the literature. Additionally to
the second objective, an auto threshold method was developed, which was
time-efficient and comparable in effectiveness to the BSS methods.

The literature found that the SNR was often used as a performance metric
for contaminated EEG. Furthermore, the SNR results were often analysed with
the use of boxplots and t-tests. Thus, the third objective of identifying the
evaluation methods was accomplished.

Simulated data is the most widely used approach for evaluating cleaning
methods, but it is still not considered accurate enough for final decisions on
the performances of cleaning methods. Due to the popularity but inaccuracy
of simulated data, the semi-synthetic dataset was developed to maintain real
data accuracy while utilizing the advantages of the SNR metric. Thus, real
‘clean’ EEG data was contaminated by real EOG and ECG data, with the
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simulated EMG data based on real EMG amplitude spectra. Additionally, a
combination of these artefacts was simulated. The identified cleaning methods
were tested on the developed semi-synthetic dataset. Therefore, the fourth
objective was accomplished by developing an accurate semi-synthetic dataset
with high variability in measured characteristics for the effective testing of the
cleaning methods.

With the semi-synthetic dataset developed, the researcher in this thesis
could use the SNR metric to compare and test multiple fully automated ap-
proaches to the results of the previous methods and finally develop a successful
approach. The semi-synthetic dataset thus enabled the effective development
of a fully automated BSS method. The fully automated BSS methods prepro-
cess large contaminated datasets efficiently with comparable effectiveness to
the semi-automatic methods, enabling the accomplishment of the fifth objec-
tive.

With the development of effective testing procedures, including an accu-
rate and diverse semi-synthetic dataset and simple and standard performance
metrics, the researcher could achieve the aim of identifying, automating, and
testing the robustness of relevant artefact removal methods.

5.2 Main findings
The effectiveness of each cleaning method was evaluated and compared based
on the amount of SNR increase caused by the cleaning method. CCA was the
most effective in removing EOG artefacts, with a P << 0.05 when compared
to the other methods. SOBI and Extended InfoMax were less effective but
demonstrated similar results to each other with the EOG artefacts with a P
= 0.17 > 0.05. When it came to removing the EMG artefacts, Extended
Infomax was the most effective in increasing the SNR of the contaminated
data, with a P << 0.05 compared to the other methods. SOBI and CCA were
less effective than Extended Infomax but did not show a significant difference
in removing EMG artefacts when compared to each other, resulting in a P =
0.06 > 0.05. All the methods showed distinguishable results with the ECG
artefacts, with SOBI outperforming the other methods with a P << 0.05 when
compared to each of the other methods. With the removal of the combination
of artefacts, Extended Infomax was the most effective in increasing the SNR
of the contaminated data, but not as distinguishable as with its performance
for EMG artefacts, having a P = 0.01 and 0.02 when compared to CCA and
SOBI, respectively. SOBI and CCA demonstrated very similar results with
the combination of artefacts, with a P = 0.57 > 0.05

It was evident that a particular method worked best with each artefact.
However, the BSS and auto threshold methods performed similarly when com-
bining the artefacts. In real-life applications, physiological artefacts often
combine. Therefore, even though Extended Infomax was statistically bet-
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ter, the BSS methods still showed similar results, indicating that an entirely
new approach to cleaning methods is likely essential for further improvements.
Moreover, the auto threshold method achieved comparable results to the BSS
method in cleaning the EMG and the combination of all three artefacts. The
auto threshold method identified the artefacts about 10, 20 and 100 times
faster than CCA, Extended Infomax and SOBI, respectively.

In this thesis, the researcher observed similar results when using a simple
approach to identify components automatically. Statistically equivalent results
were found for both the semi-automatic and automated identification of the
EOG components for Extended Infomax with a P = 0.12 > 0.05 when compar-
ing the increase of SNR for both approaches. Generally, the automated EOG
component identification results were similar to those obtained from semi-
automatic identification, followed by the identification from the combination
of artefacts and then ECG artefacts. In comparison with semi-automatic iden-
tification, the results of the automated EMG identification performance were
the least comparable.

In light of the comparable performance of the auto threshold method with
the BSS methods and a significant improvement in time, it may be considered
a viable cleaning solution in some situations. Therefore, it is believed that the
auto threshold methodology can be successfully applied to BCI applications
with further development. A few examples of these applications include sport
or gaming-related BCIs, or sport-related EEG research requiring immediate
analysis.

Since EEG data varies greatly between individuals, the EEG data of nu-
merous participants are required before valid and valuable conclusions may
be drawn. A fully automated Extended Infomax, as effective as as the Ex-
tended Infomax that required manual intervention for EOG, was developed.
Additionally, the automated versions of the BSS methods for each of the arte-
facts, except for the EMG, provided similar results to the semi-automatic BSS
methods. Further development of these methods should enable the effective
and efficient preprocessing of large EEG datasets using BSS methods. This
method would be especially beneficial for any scenario requiring manual inter-
vention based on BSS methods where it would be impractical or too subjective
when a large group of people is involved. By automating BSS methods, raw
data from commercial EEG devices, which would normally have been cleaned
online for BCI or NFB applications, can be gathered and automatically pre-
processed using a slightly less efficient but more effective approach.

The semi-synthetic dataset developed is a simple but useful tool and can
be used for testing and comparing the robustness of different cleaning meth-
ods in future studies. More development is necessary to automate the BSS
methods for EMG, ECG and the combination of artefacts. Still, the fully
automated Extended Infomax for EOG can be an effective and efficient tool
for the partial preprocessing of large contaminated EEG datasets. The auto
threshold method demonstrated comparable results and was up to 100 times
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faster than some of the BSS methods. Therefore, in the correct context, de-
spite its simplicity, the auto threshold method is significantly more viable for
real-time applications than the BSS methods without compromising too much
on effectiveness.

This thesis demonstrates that an accurate and diverse semi-synthetic dataset
is an effective tool for comparing conventional and alternative artefact removal
techniques, providing a stable datum for comparing the relative performance
of each method regarding the most common sources of contamination. Sim-
ulations, however, yield preliminary results that can be used as a guide for
evaluating and comparing cleaning methods. For future research, one must
use recorded EEG data, as a final testbed, to determine whether an artefact
removal approach is reliable, reproducible, and performs properly. This thesis
further demonstrates that it is possible to automate effective methods, and
with further development, the automation could become more robust. With
the increase in EEG data acquisition, due to an increase in research interest
and commercialisation, fully automatic and effective artefact removal methods
are essential. By effectively and practically preprocessing large commercially
collected EEG data, we could make accurate analyses and gain new insight
into the variations and workings of the human brain.
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Appendix A

Cleaning methods overview

A.1 Linear regression
Linear regression is one of the first developed preprocessing techniques and is
seen as the ‘gold standard’ [84, 106]. The linear regression method requires
a reference channel with which it calculates the proportion of one or various
EOG, ECG or EMG references that are present in each EEG channel in the
time domain. The artefacts are then separated and removed by subtracting the
regression portions [11, 145, 146]. This method is based on the superposition
principle and assumption that the signals of each EEG channel are composed of
the sum of the clean EEG signal (originating from the brain) and a portion of
one or several artefact signals. With regression methods, these artefact signals
are measured at their source by reference channels. Thus, regression methods
aim to estimate the optimal factor that defines the portion of the artefact
signal within each EEG channel. Linear regression has been widely used in
removing EOG artefacts due to the locations of the source of the artefact being
well defined for the reference channels [69]. Regression methods are currently
being replaced by more sophisticated methods due to the disruption of an
additional reference channel and their limited effectiveness with artefacts from
lesser known or widespread origins, such as ECG and EMG [62, 63].

A.2 Source decomposition
Source decomposition is a method that decomposes every single EEG signal
into basic waveforms [69]. It can mainly be categorised into wavelet decom-
position, empirical mode decomposition (EMD) and nonlinear mode decom-
position (NMD). Wavelet decomposition is an ideal method for biomedical
applications because of its versatility [147]. Artefacts are removed by wavelet
decomposition in three steps. First, the measured signals are decomposed into
levels, then the detail coefficients are filtered, and the signal is reconstructed
from the detail coefficients [67, 147]. EMD is a one-dimensional method that
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decomposes the measured signal into its basic functions [76, 146]. The key to
the success of EMD is that one or more basic functions can represent the sig-
nal and the artefacts [76]. EMD has been proven a successful artefact removal
method, on its own and in combination with BSS methods [76, 146]. EMD
is superior to other signal decomposition methods, such as Fourier or wavelet
transformations, since the basis for decomposition is derived adaptively from
the data. The ability of EMD to process non-stationary signals is based on the
local characteristic time scale of the data [64, 65]. Although EMD adaptively
derives the components of decomposition from the data dynamics, it has been
suggested that by directly analysing the raw EEG recordings, it may not be
able to correct the artefacts [64, 65]. Additionally, the EMD method cannot
deal with multidimensional signals and therefore cannot incorporate informa-
tion from other channels [64, 65]. Applying EMD to the already separated
artefact containing components is better than directly to the raw recording.
This is one of the main limitations of EMD [64, 65]. NMD breaks down a
signal into its nonlinear modes, fully oscillating components and harmonics.
NMD consists of four steps: The adaptive extraction of the first harmonic
from the synchrosqueezed wavelet transform (SWT), then the determination
of possible harmonics, followed by identifying the true harmonics and, finally,
the reconstruction of the nonlinear modes [148].

A.3 Blind source separation
Blind source separation (BSS) methods are the most popular artefact removal
methods in the research context [15]. BSS methods are component-based
methods consisting mainly of principal component analysis (PCA) and inde-
pendent component analysis (ICA). PCA uses an orthogonal transformation to
convert the observations of possibly correlated variables into values of linearly
uncorrelated variables called principal components. The objective of the trans-
formation is to produce principal components that have the largest possible
variances while being orthogonal to each other [78, 83]. ICA methods unmix
linearly mixed signals by imposing the assumption of statistical independence
of the sources [83, 149].

A.4 Simple filtering
Simple filtering usually is not an option for removing artefacts from EEG
recordings, except for narrowband artefacts like environmental line noise. Thus,
the filtering methods adapt the filter parameters to minimise the mean square
error between the cleaned EEG and the desired original clean EEG. These fil-
tering methods mainly consist of adaptive, Wiener and Bayes filtering. Adap-
tive filtering assumes that the ‘clean’ EEG and artefacts are uncorrelated. The
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filter generates a signal correlated with the artefact using a reference signal, and
then this generated signal is subtracted from the acquired EEG [11]. There
are several adaptive filtering algorithms, but adaptive filtering by recursive
least squares has shown the best stability, efficiency and fast convergence [66].
It is effective with EOG artefact reduction; however, it has been shown that
adaptive filtering is subject to partial removal of neural signals [66]. Wiener
filtering is a parametric technique that reduces the mean square error using
a statistical approach between the cleaned signal and the desired signal [11].
Wiener filtering overcomes the problem of using additional sensors and extra
wiring as required by adaptive filtering [150]. Wiener filtering also shows a
significantly greater improvement in increasing the SNR of contaminated data
tha than adaptive filtering [150]. A disadvantage of this method is that it only
works offline because it needs the whole data set to be applied [150]. Bayesian
filtering determines the state of a dynamic system recursively by assuming it
is a Markov chain [151]. Bayesian filtering, however, has a high computational
complexity, making it an inefficient solution [7].
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Evaluation methods overview

Numerous methods to validate and assess cleaning methods exist, where the
more straightforward processes use simulated data and the more accurate but
complex processes use actual data.

Validation by regression methodologies has been suggested for cleaning
methods tested on actual data. Numerous artefact removal methods are evalu-
ated by comparing the correlation of the resulting cleaned data to the reference
channel. This method is inconvenient because of the requirement of a reference
channel. Furthermore, reference channels are limited with artefacts having less
known or widespread origins, such as ECG and EMG. Another method is the
standard deviation validation, which compares event-related potential (ERP)
consistency associated with eye movements with the EOG reference channels
[101].

An alternative approach developed from those proposed by Croft et al.
[101], uses regions of interest (ROIs) that are employed to evaluate the speci-
ficity and sensitivity of a removal process. Specificity refers to the preservation
of neurogenic signals, while sensitivity refers to the attenuation of artefacts.
Although this is a promising approach, it is not without challenges. Sensi-
tivity and specificity can only be established with data in which the presence
and absence of artefacts are definitive. This method may be deployed using
scripted data, such as participants blinking their eyes slowly (to create EOG)
or tensing and relaxing muscles in response to instructions (to create EMG).
Furthermore, defining ROIs according to myogenic and neurogenic activation
peaks is a subjective and challenging process [97, 102, 103].

Sweeney et al. [152] proposed a novel scenario where the researcher controls
the EEG recording completely. Their study presents a method for creating two
highly correlated signals. One is a reference devoid of artefacts, while the other
intentionally contains artefacts. As a result of this controlled scenario, it is
possible to apply artefact removal methods to the noisy EEG and compare the
resultant signal with the actual clean EEG [152].

Alternatively, some researchers use visual inspection to evaluate the effec-
tiveness of artefact removal methods. By comparing the time, frequency and
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spatial characteristics of the cleaned signal to the measured signal, it is pos-
sible to evaluate the performance of specific methods visually. Although it is
a subjective approach and relies on expert review, it can still reveal whether
an algorithm improved signal quality or distorted intervals or frequency bands
[66, 84, 104].
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Automation of blind source
separation methods

C.1 Literature approaches for the automation
of BSS methods

Joyce et al. [8] combined SOBI with two EOG reference channels to identify the
EOG components automatically. The technique had a high degree of accuracy
but was limited due to the reference channels being disruptive and having
limited effectiveness with artefacts from lesser-known or widespread origins,
such as ECG and EMG [8, 62, 63].

Burger and Van Den Heever [90] combined Infomax and wavelet neural
networking (WNN) to identify EOG components automatically. The method
was also successful but required a manually labelled training set, consisting
of clean EEG and artefacts and used a computationally expensive machine
learning algorithm [90].

Hamaneh et al. [92] combined ICA with a pre-computed template and
continuous wavelet transformation to identify ECG components automatically.
Their method was not very robust with very low or high SNR ratios and
required a pre-computed template to be successful [92].

Echtioui et al. [93] combined SOBI with the developed ADJUST [97] tech-
nique to identify EOG, ECG and EMG artefacts automatically. The ADJUST
method could not detect EMG artefacts and was mainly successful with EOG
artefacts [93].

Winkler and Stefan Haufe and Michael Tangermann [94] combined tem-
poral decorrelation source separation (TDSEP) with a linear programming
machine (LPM) model to identify EOG and EMG artefacts automatically.
The machine learning model had to be trained on 640 components manually
labelled by experts. Their method performed similar to the semi-automatic
TDSEP but required an inefficient amount of labelled data before application
[94].
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Daly et al. [91] combined an ICA method, namely TDSEP with lagged auto-
mutual information clustering (LAMICA) to identify ECG, EMG and EOG
artefact components automatically. LAMIC used the auto mutual information
(AMI) for each component to estimate which were artefact components. The
technique performed best with high SNR in comparison to other automated
methods such as wavelet transformation and multivariate singular spectrum
analysis, but not well with low SNRs [91].

Frølich et al. [95] combined Extended Infomax and a developed multinomial
regression classifier to automatically identify EOG, ECG and EMG artefacts.
This method was thoroughly validated and showed a high classification per-
formance. However, their approach had poor generalisability [95].
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Appendix D

Forward model

Researchers have developed 3D models of the brain, skull and scalp to develop
more realistic EEG simulations. The brain stimulation is related to source
modelling, which is a model of the physiological sources. As part of the sim-
ulation of the scalp, the volume conduction of sources throughout the head
and skull is modelled. The scalp is the final step in the simulation process,
during which the observed electrochemical events that the electrodes record
are modelled. These three steps combined are known as the forward model of
the brain [107, 108].

The attempts to better quality simulation include developing 3D models of
the brain, skull and scalp. Measured EEG is generated by considering dipolar
sources and solving the electromagnetic forward problem [15]. Forward models
can provide realistic head models and can be readily generated for the analysis
of EEG. Equation D.1 describes the mathematical expression of the forward
model [107]:

x(t) = Lj(t) + ϵ (D.1)

In equation D.1, x(t) represents the observed signals from the scalp. Fur-
thermore, the time-dependent 3R-dimensional vector j(t) represents the phys-
iological sources at R distinct locations on the cortical surface. The M ×
3R lead field matrix L describes the relationship between the physiological
source and the observable scalp signals at M sensors, therefore the mixing and
conduction of the sources. Finally, ϵ is a M -dimensional noise vector [107].

For the successful simulation of realistic models, the models must use a
high-resolution average anatomy template. In addition, a realistic volume
conductor model must be used. The interacting sources must exert a time-
delayed impact on each other. Communication between sources must only
occur within a specific frequency range. A realistic source location should have
electrical currents that propagate perpendicular to the scalp surface and should
be constrained to the cortical manifold. A detailed model must also include a
wide variety of locations, spatial extents and depths of sources. Independent
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background brain processes, pink noise spectrums, white sensor noises and
realistic SNR ranges must also be present [107–109].

Although the forward model attempts to be the most accurate, there are
limitations to the EEG-based estimation of functional or effective brain con-
nectivity. Limitations include the disregard of, or insufficient modelling of
the source mixing caused by head tissue conductivity, disregard of correlated
noise sources and generally an overestimation of the signal-to-noise ratio (SNR)
[107–109].
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Blind source separation cleaning
methods

E.1 Independent component analysis
mathematical and statistical methods

The ICA method explanation in this section is based on the explanation from
Hyvärinen and Oja [153]. ICA is used to estimate the unmixing matrix W for
the calculation sources S, based on two main assumptions: that the sources
are statistically independent and non-Gaussian. Therefore, the unknown W
and S are calculated by maximising these two assumed attributes.

To simplify the explanation of the ICA method, it has been assumed that
each mixture xj as well as each independent component sj are random vari-
ables, instead of proper time signals. Equation E.1 shows the relationship
between the measured data, x, and the sources, s, along with the mixing
coefficients, a, where n represents the total number of components, and j rep-
resents the individual component. In this application, the total number of
components, n, is equal to the total number of sources or channels. As can be
seen in equation E.1, ICA is a generative model, meaning that it describes how
the observed data xj is generated by the process of mixing the components sj.

xj = aj1s1 + aj2s2 + ...+ ajnsn, for all j (E.1)

By assuming that each mixture xj as well as each independent component
sj are random variables, we are effectively now working with x and s as vec-
tors, with A remaining a n by n matrix as seen in equation E.2. Then after
estimating the matrix A, the inverse of A, being W, can be used to obtain
the independent and non-Gaussian sources, s as shown in equation E.3

x = As (E.2)
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s = Wx (E.3)

The first important principle utilised in the ICA method is that of vari-
ables being statistically independent. Statistically independence means that
if you have two random scalar variables, y1 and y2, they do not provide any
information of one another.

To define the technical definition of these variables’ statistical indepen-
dence, we must first define p(y1, y2) as the joint probability density function
(pdf), and the marginal pdf, p1(y1), when considered alone as seen in equation
E.4:

p1(y1) =

∫
p(y1, y2)dy2 (E.4)

With the marginal and joint probability density functions defined, we can
finally state mathematically that y1 and y2 are statistically independent if the
joint pdf can be factorised as shown in equation E.5:

p(y1, y2) = p1(y1)p2(y2) (E.5)

The definition is then used to derive the most important property of in-
dependent random variables, to be used to quantify non-Gaussian later on.
Given two functions h1 and h2, the statistical independence also means that
the relationship in equation E.6 holds:

E{h1(y1), h2(y2)} = E{h1(y1)}E{h2(y2)} (E.6)

Where the definition of E can be seen in equation E.7:

E{h1(y1)} =

∫
h1(y1)p1(y1)dy1 (E.7)

The real key to the ICA method’s success is the non-Gaussian nature of
the sources. Due to the assumption that the sources are independent, the
central limit theorem (CLT) can be deployed in the process of estimating the
mixing matrix, W. The CLT states that the distribution of the sum of random
independent variables tends towards a more Gaussian distribution. Therefore,
if we can quantify the Gaussianity, we can use it in combination with the fact
that the sum of the independent variables must be more Gaussian than the
original variables to estimate the mixing matrix W. To effectively apply the
CLT, some rearrangements must first be made to the variables. To estimate
one of the independent components, we first consider a linear combination of
the xi, denoted by y in equation E.8. We further define z in equation E.9, and
show the relationship between these variables in equation E.10:

y = wTx (E.8)

Stellenbosch University https://scholar.sun.ac.za



APPENDIX E. BLIND SOURCE SEPARATION CLEANING METHODS 93

z = ATw (E.9)

y = wTx = wTAs = zTs (E.10)

With equation E.10, y can be seen as a linear combination of si with weights
given by zi. The w vectors can then be estimated using a chosen measurement
of Gaussianity and equation E.10. With the CLT, it is known that the sum of
independent variables is more Gaussian than the original individual variables.
Therefore, zTs is more Gaussian than any of the si sources. Furthermore, zTs
is therefore the least Gaussian when zTs = si, meaning that only one of the zi
elements are non-zero. Thus, the goal is to maximize the non-Gaussian nature
of the sources, with the first component already being known as y = wTx =
zTs where only one of the zi elements are non-zero.

Maximizing the non-Gaussianity of wTx consists of an n-dimensional land-
scape of vectors w, with 2n local maxima, two maxima’s per component, cor-
responding to si and −si. Therefore to find the components, we need to find
the locations of the local maxima’s. To create this landscape of w vectors, we
need a quantitative measurement of Gaussianity.

The solving of the ICA problem is based on minimizing or maximizing
certain contrast functions, thus transforming the ICA problem into a numerical
optimization problem. Due to its computational and theoretical simplicity, the
classical contrast function and measure of Gaussianity for ICA is kurtosis. For
a normalised version of y, the formula for kurtosis can be seen in equation E.11,
with the important properties of the kurtosis equation shown in equation E.12
and E.13 with α being a constant:

kurt(y) = E{y4} − 3 (E.11)

kurt(y1 + y2) = kurt(y1) + kurt(y2) (E.12)

kurt(αy1) = α4kurt(y1) (E.13)

To understand how the landscape for kurtosis would look like, we will
consider a two dimensional model of x = As, where we assume that s1 and s2
has kurt(s1) and kurt(s2) values. As previously stated, for the maximization
of non-Gaussianity, we already know that one of the components is y = wTx,
where only one of the zi values are non-zero. Furthermore, the estimation of the
W vectors becomes an optimization problem with the goal of maximization
the contrast function |kurt(y)|, which is described in equation E.15 for two
dimensions, developed using equation E.9, E.14 and the kurtosis properties
shown in equation E.12 and E.13.

y = wTx = wTAs = zTs = z1s1 + z2s2 (E.14)
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kurt(y) = kurt(z1s1) + kurt(z2s2) = z41kurt(s1) + z42kurt(s2) (E.15)

In practice, a random w vector is initialised, and then the direction of which
|kurt(y)|, the contrast function, is growing and decreasing the most strongly,
is determined based on the available observed data x(1), ....,x(n). Then a
gradient method is deployed to find the final values of the w vectors to find
the final unmixing matrix W.

E.1.1 Extended Infomax mathematical and statistical
methods

Other methods based on the ICA assumptions of non-Gaussianity and inde-
pendence of sources have been developed, such as InfoMax. Infomax is a
related contrast function derived from a neural network viewpoint [153]. In-
fomax is based on maximizing the output entropy or information flow of a
neural network with non-linear outputs and is thus named InfoMax [153]. In-
fomax has since been further developed so that the function used to estimate
w adjusts according to the Gaussian nature of the unmixing sources. This
method is called Extended Infomax [154]. Extended Infomax consists of three
simple steps. The first step is to initialize a random unmixing matrix W; the
second step is to repeat the calculations of equation E.16 until it converges;
the third step is included in the second step, which is to determine whether
the sources are super or sub-Gaussian, determined by a kurtosis, upon which
the function f(fS) is changed to its relevant form, shown in equation E.17 and
E.18 [155, 156]:

W(t+ 1) = W(t+ 1) + η(t)(I− f(S)ST)W(t) (E.16)

f(S) = tanh(S) (super Gaussian) (E.17)

f(S) = S− tanh(S) (sub Gaussian) (E.18)

In equation E.16, η(t) is the learning rate function, which specifies the steps
for the unmixing matrix updates, and is usually either an exponential function
or a constant. I is an identity matrix of dimensions n by n. The sources can
then be found with S = WX [155, 156].

E.1.2 Second order blind identification mathematical
and statistical methods

Another method based on ICA assumptions is the second order blind identi-
fication (SOBI) method. This method consists of five steps as described by
Belouchrani et al. [157]. The first step of this method is to estimate the initial
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sample covariance, R̂(0) from the total samples M . With λ1, ..., λn being the
n largest eigenvalues with h1, ..., hn being the corresponding eigenvectors of
R̂(0). n is denoted as the the smaller dimension and m the larger dimension
of the matrices. The sample covariance matrix is calculated as described by
equation E.19, where τ ∈ {τj|j = 1, ..., K} for a fixed set of time lags K, and
H denotes the complex conjugate transpose:

R̂τ (x) =
1

M − τ

M−τ∑
t=1

xtx
H
t−τ (E.19)

The second step is to estimate the noise variance, σ̂2, which is under the
white noise assumption, assumed to be the average of the k smallest eigenvalues
of R̂(0), where k = m− n. The whitened signals z(t) in equation E.20 is then
calculated through the calculation of each zi(t), where 1 ≤ i ≤ n, showed in
equation E.21, to ultimately form the whitening matrix in equation E.22:

z(t) = [z1(t), ..., zn(t)]
M (E.20)

zi(t) = (λi − σ̂2)−1/2h∗
ix(t) (E.21)

W = [(λ1 − σ̂2)−1/2h1, ...(λn − σ̂2)−1/2hn]
H (E.22)

In equation E.21, ∗ denotes the conjugate transpose of a vector. The third
step is to form sample estimates, R̂(τ) by calculating z(t) for a fixed set of
time lags K. The fourth step is then to obtain a unitary matrix Û as a joint
diagonalizer of the set {R̂(τj)|j = 1, ..., K}. The final step is then to estimate
the source signals ŝ(t), where the method differs slightly from the original BSS
method as in equation E.23 from which the mixing matrix A can be estimated
such as in equation E.24, where the # is Moore Penrose pseudoinverse.

ŝ(t) = ÛHWx(t) (E.23)

A = W#Û (E.24)

E.2 Canonical correlation analysis
mathematical and statistical methods

Canonical correlation analysis (CCA) solves the BSS problem by forcing the
sources to be maximally autocorrelated and mutually uncorrelated [121]. Au-
tocorrelation is the degree of similarity between a given time series and a
lagged version of itself over successive time intervals. When two variables are
uncorrelated, it means that the correlation coefficients concerning each other
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are close or equal to zero. The CCA method described below is based on the
explanation of the CCA method on the application of EEG signals from Lin
et al. [121] and Zhuang et al. [158].

In the CCA method, Y(t) is the fractionally delayed version of the mea-
sured EEG signals X(t). Therefore, Y(t) = X(t) − 1, where the number 1
represents a sample shift; therefore, in this research, Y(t) is delayed by a
200th of a second due to the sampling rate being 200Hz. Additionally, the
mean of each row of the X(t) and Y(t) matrices are removed to derive to sets
of basis vectors for X and Y.

Suppose we have two canonical variables, U and V , that comprises of the
linear combinations of X and Y respectively, as seen in equation E.25 and
E.26:

U(t) = wT
xX(t) (E.25)

V (t) = wT
yY(t) (E.26)

CCA is then used to find the matrices wx = [wx1 , ..., wxn ] and wy =
[wy1 , ..., wyn ] that maximizes the correlation ρ between U and V . In order
to maximize the correlation between U and V , the objective function E.27
must be solved, where Cxx and Cyy are the autocovariance matrices of X and
X, and Cxy = CT

yx are the cross-covariance matrices of X and Y.

max
WX ,WY

ρ(U, V ) =
wT

xCxywy√
(wT

xCxxwx)(wT
yCyywy)

(E.27)

The canonical coefficients wx and wy can be found by setting the partial
derivative of the objective function E.27 with respect wx and wy to zero, re-
spectively, leading to equation E.28:

Cxywy = ρCxxwx and Cyxwx = ρCyywy (E.28)

Equation E.28 can be further reduced to a classical eigenvalue problem, if
Cxx and Cyy is invertible and ρ2 ∈ [0 1] is the eigenvalue, into equations E.29
and E.30:

C−1
xxCxyC

−1
yyCyxwx = ρ2wx (E.29)

C−1
yyCyxC

−1
xxCxywy = ρ2wy (E.30)

ui(t) and vi(t) represents the ith pair of canonical variates, with the corre-
lation between these variable represented by ρi. Finally, U(t) is related to the
estimated components S(t) as shown in equation E.31:

S(t) = WX(t) = U(t) = wT
xX(t) (E.31)

Stellenbosch University https://scholar.sun.ac.za



APPENDIX E. BLIND SOURCE SEPARATION CLEANING METHODS 97

The unknown mixing matrix A can be then be calculated from the inverse
of the unmixing matrix W, where W = wx
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Appendix F

Boxplots and t-tests

F.1 Statistical analysis used for simulations
and methods

Boxplots are simple and standardized ways to visualize and compare the distri-
bution and other statistical information of the datasets. With a boxplot, one
can easily determine whether the data is symmetrical, if it is tightly grouped
data, and whether or not the data is skewed. The data points of the boxplot
consist of the minimum data point, the lower quartile (Q1), the median, the
upper quartile (Q3), the maximum data point and the outliers. The median is
the midpoint in data and is usually represented by a line dividing the boxplot
box into two halves. Therefore, half of the data is greater and half is smaller
than the median. 25% of the total data falls below Q1, and 75% falls below
Q3. The interquartile range (IQR) ranges between Q1 and Q3 and represents
50% of the data. A whisker connects the minimum and maximum data points
to the IQR. Minimum data points are equal to Q1− 1.5(IQR) and maximum
data points are equal to Q3+1.5(IQR). We consider values that fall below or
above the minimum and maximum scores as numerical outliers.

As one of several statistical tests used to test hypotheses, the t-test is
widely used in statistics. The t-test is an inferential statistical method that
tests the reliable difference in means between two datasets. Thus, the t-test
indicates how reliable it is when considering whether two datasets differ. A
t-test measures the variance between two datasets and the variance within
each dataset and compares these variances. There is a corresponding p-value
for each t-value. A p-value is a measure of the probability that an observed
difference occurred y only chance. When the p-value is greater than 0.05, we
can be more than 95% confident that the two datasets are the same. A higher
p-value indicates that the two datasets are more likely to be the same. A p-
value greater than 0.05 indicates that no significant difference exists between
the two datasets.

98

Stellenbosch University https://scholar.sun.ac.za



Appendix G

Python and libraries information

G.1 Python reference
Python is developed under an OSI-approved open source license, making it
freely usable and distributable, even for commercial use. Developed by the
Python Software Foundation. The Python Language Reference is version 3.8.5.
Available at https://www.python.org/downloads/release/python-385/
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Appendix H

Signal to noise tables

H.1 Electrooculography signal to noise Table

Table H.1: Highest and lowest EOG SNR values from literature.

Study [126,
127]

[131] [128] [129] [132] [130]

Highest (dB) 5 2 60 23 10 0
Lowest (dB) -5 -4 1 2 -40 -20

The results from the SNR values in Table H.1 show that the lowest and highest
values used for EOG were -40 and 60 dB, which vary highly compared to the
values used by other literature.

H.2 Electromyography signal to noise Table

Table H.2: Highest and lowest EMG SNR values from literature.

Study [104,
133]

[12,
57]

[134] [55] [56] [135] [136] [137]

Highest (dB) 4.8 4.5 -19.4 0 1 4 3 30
Lowest (dB) -6 0.5 -36.1 -15 -10 -4 -6.8 -30

The results from the SNR values in Table H.2show that the lowest and highest
values used for EMG were -36.1 and 30 dB, which vary highly compared to the
values used by other literature.
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H.3 Electroencephalography signal to noise
Table

Table H.3: Highest and lowest ECG SNR values from literature.

Study [143] [139] [61] [140] [59] [141] [142] [144]
Highest (dB) 15 15 15 10 5 1 10 -5
Lowest (dB) 15 8 5 -6 2 0 -5 -5

The results from the SNR values in Table H.3 show that the lowest and highest
values used for ECG were -6 to 15 dB, similar to that found in other literature.
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Appendix I

Electroencephalography temporal
validation

I.1 Comparison of semi-synthetic
electroencephalography to standard QRS
waves

ECG data comparison

Figure I.1: Expanded view of the shape of actual ECG data used on the left and
an image of a standard shape of ECG beat.
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Appendix J

Cleaning Time

J.1 Expanded view of time distribution

Expanded view of auto threshold and CCA time distribution

Figure J.1: (a) auto threshold method time per method per contamination. (b)
CCA method time per method per contamination.
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