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Abstract

Investigation of low-cost infrared thermal sensors for
monitoring water stress in grapevines

J. Luus

Department of Mechanical and Mechatronic Engineering,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MEng (Mech)

December 2021

Infrared (IR) measurement of canopy temperature is an effective method of de-
termining plant water stress. The crop water stress index (CWSI) is a normalised
plant water stress value that can be calculated from vineyard IR measurements.
Normalising reference temperature measurements, uncertainty of IR sensor re-
quirements and unstandardised physical measurement parameters are, however,
a hindrance to the adoption of IR temperature measurement for plant water stress
detection in vineyards.

To improve the CWSI reference temperatures, physical measurements in a
commercial Cabernet Sauvignon vineyard were used to develop a heat transfer
(HT) model and simple empirical (EMP) model for determining these temper-
atures by using optimisation. The HT model is derived from fundamental heat
transfer principles and uses data from a commercial weather station, while the
EMP model requires only ambient temperature and humidity data. The HT and
EMP models could calculate reference temperatures to within 1.0 K and 1.5 K of
physical measurements, respectively.

Low-cost IR array and single-area sensor canopy temperature measurements
were compared to image analysed commercial IR camera measurements. The
investigated low-cost IR array sensor was found to be unsuitable for CWSI mea-
surements, while single-area sensors could measure temperatures similar to those
of the IR camera. All low-cost sensors were, however, unable to accurately mea-
sure CWSI reference temperatures. It was determined that a sensors’ spectral
ranges have a significant effect on the measured canopy temperature, especially
when measuring sunlit canopies.

Finally, the best physical conditions for measuring CWSI using different sen-
sor types were investigated. It was found that low-cost single-area sensors could
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ABSTRACT iii

measure CWSI accurately, as long as the sensor’s field of view was taken into ac-
count. Furthermore, it was found that the shaded side of the canopy, measured
one hour after solar noon, provided the best midday plant temperature measure-
ments for all investigated sensors as it is more photosynthetically active from the
morning sun. Using a single-area IR sensor for canopy temperature measure-
ments along with the EMP method to determine the reference temperatures was
found to be an effective low-cost and low-effort method of measuring CWSI in
vineyards.
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Uittreksel

Ondersoek in lae koste infrarooi termiese sensors vir die
monitering van waterspanning in wingerde

(“Investigation of low-cost infrared thermal sensors for monitoring water stress in
grapevines”)

J. Luus

Departement Meganiese en Megatroniese Ingenieurswese,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MIng (Meg)

Desember 2021

Infrarooi (IR) meting van wingerd lower temperatuur is ’n effektiewe manier om
plant waterspanning te bepaal. Die gewas waterspanningsindeks (GWSI), is ’n
genormaliseerde waterspanning waarde wat vanuit IR metings van wingerd tem-
peratuur bepaal kan word. Normaliserende verwysingstemperature, onseker-
heid oor IR sensor vereistes en ongestandaardiseerde meting prosedures is be-
lemmerend tot die aanneming van IR temperatuur meting vir die bepaling van
plant waterspanning in wingerde.

Om die GWSI verwysing temperature te verbeter, is fisiese metings in ’n kom-
mersiële Cabernet Sauvignon wingerd gebruik om, deur middel van optimering,
’n hitte oordrag (HO) en empiriese (EMP) model te ontwikkel wat hierdie tempe-
rature kan bepaal. Die HO model is afgelei vanaf fundamentele hitte oordrag
beginsels en gebruik weerstasie data, terwyl die EMP model slegs omgewings
temperatuur en humiditeit data benodig. Die HO en EMP modelle kon die ver-
wysingstemperature tot onderskeidelik 1.0 K en 1.5 K van die fisies gemete tem-
perature bepaal.

Lower temperature gemeet deur lae koste veelvuldige- en enkel-area IR sen-
sors is vergelyk met metings van ’n kommersiële IR kamera op veskillende af-
stande. Die lae koste veelvuldige- area sensor wat ondersoek is, kon nie akkurate
waardes vir die GWSI bepaal nie. Die enkel-area sensors kon wel temperature
vergelykbaar met die van die kommersiële IR kamera meet. Nie een van die goed-
koop sensors kon die GWSI verwysings temperature akkuraat genoeg meet nie.
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Dit is bepaal dat die spektrale gebied wat ’n IR sensor meet ’n merkwaardige effek
het op die gemete lower temperture, veral as die wingerd in direkte sonlig is.

Laastens is die beste fisiese toestande vir die meting van GWSI met IR sen-
sors ondersoek. Daar is gevind enkel-area lae koste sensors die GWSI akkuraat
kon bepaal solank die besigtigingsarea van die sensors in ag geneem word. Daar
is verder bepaal dat die skadukant van die lower, een uur na sonmiddag, die beste
geleentheid bied vir die meting van lower temperature vir die GWSI. Hierdie kant
van die lower werk goed omdat dit vir die heel oggend aktief gefotosinteer het.
Daar is gevind dat ’n enkel-area sensor gepaard met die EMP metode om verwy-
sings temperature te bepaal ’n effektiewe, goedkoop en maklike metode is om
GWSI in wingerde te bepaal.
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A Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ m2 ]

B Calibration coefficient . . . . . . . . . . . . . . . . . . . . . . . . . [ ]

c Spesific heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . [ kJ/kgK ]

D Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ ]
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F View factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ ]

f Fitness value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ ]

f Fraction of radiation . . . . . . . . . . . . . . . . . . . . . . . . . . [ ]

G Incident radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ W/m2 ]

h Heat transfer coefficient . . . . . . . . . . . . . . . . . . . . . . . . [ m2/s ]

h Enthalpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ J/kg ]

I Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ ]

J Radiosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ W/m2 ]

k Thermal conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . [ W/mK ]

L Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ s/m ]

ṁ Mass flow rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ kg/ms ]

N Sample size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ ]

p Damping factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ ]

P Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ Pa ]

Pr Prandtl Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ ]

Q̇ Heat transfer rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ J/s ]

R Radiation heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . [ W/m2 ]

Re Reynolds number . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ ]

r Resistance to water vapour transfer . . . . . . . . . . . . . . . . [ s/m ]

S Signal relating to measured infrared radiation . . . . . . . . . [ ]

s Standard error of the fit . . . . . . . . . . . . . . . . . . . . . . . . [ ]

Sc Schmidt number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ ]

Sh Sherwood relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ ]

T Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ K ]

T ′ Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ ◦C ]

V Wind speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ m/s ]

z Altitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ m ]

α Solar absorptivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ ]

γ Psychrometeric constant . . . . . . . . . . . . . . . . . . . . . . . [ W/m2 ]

δ Empirical correlation coefficient . . . . . . . . . . . . . . . . . . [ ]

ε Emissivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ ]

θ Angle of incidence error . . . . . . . . . . . . . . . . . . . . . . . . [ ◦ ]

λ Latent heat of vaporization of water . . . . . . . . . . . . . . . . [ J/kg ]

ρ Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ kg/m3 ]

σ Standard deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . [ ]

υ Kinematic viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . [ m2/s ]
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φ Relative humidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ % ]

ϕ Radiative heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ W/m2 ]

Subscripts

a Ambient

bc back canopy

c Canopy

c Characteristic

conv Convection

dry Dry reference

d Diffuse

D Direct

db Dry-bulb

EMP Empirical

evap Evaporation

f Measurement value

fg Fluid to gas

H2O Water

i Counter

j Counter

l Leaf

lb Lower baseline

M Model under consideration

N Natural method

net Net radiation

ni Isothermal net radiation

o Reference value

oc Opposite canopy

r Stomatal resistance

rad Radiation

sol Solar

sky Sky

s Soil

St Stomatal

s Surface

ub Upper baseline

v Vapour
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wb Wet-bulb

∞ Far from a surface

Superscripts

∗ Saturation
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Chapter 1

Introduction

1.1 Overview

Globally, agriculture requires a vast supply of water, requiring 71.7% of global
fresh water supply (FOA, 2017), and therefore, water management is critical for
agriculture sustainability. In this context, wine-producing countries are frequently
affected by drought conditions (Chaves et al., 2010; Webb et al., 2007). Increased
temperatures put growers at risk of smaller yield, but also to changes in grapevine
phenology (Choné et al., 2001). It is a fact that viticulture will become more re-
liant on irrigation to compensate for the effects of climate change (Fraga et al.,
2018) with global surface temperatures 1.09 °C warmer in the 2011-2020 period
compared to the 1850-1900 period (IPCC, 2021). Medrano et al. (2014) indicates
that the 300 mm to 700 mm annual vineyard water consumptions is generally
higher than the annual precipitation in many viticultural areas. Deficit irrigation
strategies such as regulated-deficit irrigation and partial root zone drying, which
reduce water consumption, can be used to improve fruit quality at the cost of a
reduction in potential yield (Chaves et al., 2007; Medrano et al., 2014). Neverthe-
less, the implementation of irrigation strategies requires knowledge of the water
status of the grapevines and narrower thresholds of physiological indices.

Stem water potential (SWP), a measurement of the pressure required to force
a drop of water out of a leaf stem, is one of the standard methods of measur-
ing plant water stress (Choné et al., 2001). This method has been used suc-
cessfully for many years. However, the use of SWP for irrigation scheduling in a
commercial vineyard has some limitations in practice. SWP is destructive, time-
consuming (Grant et al., 2006) and local, so it requires many measurements to
characterise an entire field (Jackson, 1982). For these reasons, direct methods of
irrigation scheduling must be improved, and new methods investigated.

In this sense, canopy temperature (Tc) can be a viable alternative for irriga-
tion scheduling (Poblete-Echeverria et al., 2017; Stoll and Jones, 2007; Zhou et al.,
2021). It is well known that leaf temperature increases with increasing plant wa-
ter stress. When no water is available in the root zone, transpiration will decrease

1
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from the maximum potential, and plant temperature will increase (Idso et al.,
1981). Canopy and leaf temperature can be measured with non-contact infrared
(IR) sensors and cameras which are non-destructive, instantaneous and can be
applied at different scales. Satellites can provide temperature data of large ar-
eas at low resolution, while aerial vehicles such as drones can gather data of en-
tire vineyards at a higher resolution. Handheld thermal cameras can be used to
measure Tc at vine level with a sufficient resolution by simply changing mea-
surement distance (Zhou et al., 2021). This proximal method is cost effective and
logistically simple to implement in the field. Some sensors (on all measurement
scales) combine temperature data with normal images.

Although the use of various scales of IR measurements to determine plant
water stress accurately has been widely studied, there are still some limitations
and uncertainties, especially in regions with significant variability in the climate
(Jones, 1999). The canopy temperature is not only affected by plant water stress,
but also by several climatic and physiological conditions such as solar radia-
tion, wind speed, ambient temperature, and humidity (Idso et al., 1981; Petrie
et al., 2019; Poirier-Pocovi et al., 2020). For this reason, thermal stress indexes are
needed to compensate for the multiple effects by normalising the measurements
to a particular temperature range. The thermal indexes allow the comparison be-
tween measurements taken on different days with different ambient conditions.

The investigation into accurate stress detection in vineyards using IR ther-
mography is an important advancement, not only for precision viticulture, but
for agriculture in general. An established canopy temperature measurement pro-
tocol will accelerate the implementation of this technology. The advances made
in the technological field must be bridged to traditional agricultural practices.
Results from this research can be applied to orchards planted in similar styles as
vineyards, such as super high density olive orchards.

1.2 Motivation

Full knowledge and understanding of plant stress in vineyards can make a signifi-
cant impact on water usage in viticulture. Irrigation is used to control water stress
in vineyards, which must be finely managed, as it can produce desirable features
in the wine that is ultimately produced. Fruit quality can be improved by a water
deficit (Van Leeuwen et al., 2009), but severe water deficit can reduce fruit quan-
tity and quality and negatively influence the longevity of the grapevines (Pelle-
grino et al., 2014). Farmers can use plant stress levels as an indicator of when to
irrigate plants, as not to waste water. This is especially important in the drought-
prone region of the Cape Winelands in South Africa, where the vines have to be
irrigated in the hot, dry summer months.

Thermal imaging can replace the current destructive methods in practice.
Measuring plant water stress is traditionally done per block and not repeated
within a block, due to the limitations of the SWP measurements. The variability
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within a block is difficult to determine with limited measurement points. With
immediate canopy temperature measurements, IR sensors open the door to plant
or region-based irrigation.

Improvements to irrigation scheduling can only be made with the simulta-
neous improvement of plant water status measurements. Plant water stress is a
key factor in the field of precision agriculture, and specifically in precision viti-
culture. A robust, low-cost and easy-to-use measurement of plant water stress
will advance irrigation scheduling in the field of precision viticulture, which will
in turn increase yield and limit the environmental impact of vineyards.

Progress made in the field of thermal measurement in viticulture can easily
be bridged to other agricultural fields. Apple and olive orchards, for example, are
planted in a similar row structures to grapevines. The insight gained through this
study will accelerate the adoption of IR plant water stress measurements in other
agricultural fields.

1.3 Project statement and objectives

1.3.1 Problem statement

The general aim of this study is to improve the grapevine CWSI measurement
techniques. To accomplish this, alternatives to manual measurements of CWSI
reference temperatures must be investigated and physical canopy temperature
measurement parameters must be established. This is required to ultimately
compare low-cost sensors to commercial IR cameras for CWSI determination.

1.3.2 Objectives

This study has three main objectives with its respective goals:

Objective 1: Improve CWSI reference temperature measurement (Chapter 4)

(a) Select a baseline reference temperature measurement protocol.

(b) Compare and select automatic reference temperature methods.

(c) Compare measurements of the low-cost sensors to those of an IR camera.

Objective 2: Investigate hardware and physical requirements of canopy tem-
perature measurements (Chapters 3 and 5)

(a) Calibrate the sensors that will be compared in the study.

(b) Investigate automatic analysis techniques of thermal images.

(c) Compare low-cost sensor canopy measurements to commercial IR camera
measurements.
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Chapter 1. Introduction 4

Objective 3: Determine the best conditions for CWSI measurements (Chap-
ter 6)

(a) Determine the best measurement parameters for accurate CWSI measure-
ment.

(b) Investigate whether the low-cost sensors can be used along with automatic
reference temperature methods to determine CWSI.
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Chapter 2

Literature Review

2.1 Introduction

CWSI is a relevant method of plant water stress measurement that is used in
many crops. Mwinuka et al. (2021) used the CWSI to calculate plant water stress
in eggplant and used it to predict the yield under deficit irrigation. Chandel et al.
(2021) used multiple linear regression of CWSI and near infrared stress indexes to
predict alfalfa yield (R2 = 0.64). Gonzalez-Dugo et al. (2020) indicates that CWSI
measurement taken at noon is an good indicator of the water status of almond
trees. The authors determined a good correlation (r 2 = 0.91 ) between CWSI and
midday transpiration measurements.

Relevant background information with regard to infrared (IR) sensors is pre-
sented. Plant water stress physiology is discussed before the benefits and limita-
tions of the crop water stress index (CWSI) are presented. State-of-the-art ther-
mal plant water stress detection methods are discussed, and a summary of some
of the most relevant research regarding the CWSI in grapevines is presented.

2.2 Infrared thermal imaging

2.2.1 Infrared energy

Energy is transferred from one surface to another through IR radiation. Radia-
tion is emitted by every object above 0 K and has a wavelength between 0.75µm
and 100µm. Small wavelength (high-frequency) radiation has more energy and
is easily detectable by IR sensors. As IR transmission through the atmosphere de-
pends strongly on radiation wavelength, bands of maximum transmission must
be selected for the IR sensors (Minkina and Dudzik, 2009). IR wavelengths in the
1µm to 5µm and 8µm to 14µm spectrum have good atmospheric transmission
at ground level (Kaplan, 2007), but the latter has the best transmission (Minkina
and Dudzik, 2009), as presented in Figure 2.1. At long measurement distances
(>10 m), the atmospheric transmission window starts slightly higher at about

5
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Figure 2.1. IR atmospheric transmissivity at different distances and wavelengths, digi-
tised from Minkina and Dudzik (2009)

8.4µm. In the 5µm to 8µm waveband, water vapour absorbs IR radiation, re-
sulting in reduced IR transmissivity. Measurements taken in this band would be
affected by humidity and measurement distance. In the 8µm to 14µm band, the
atmospheric transmission is very good, especially at short distances. Loss of IR
energy is negligible at short distances but the presence of water vapour in the air
increases energy losses (Minkina and Dudzik, 2009).

2.2.2 Infrared sensors

A basic IR sensor schematic is presented in Figure 2.2. Lenses are required to
focus the IR radiation from the sensor’s field of view (FOV) to the detector. Glass
is opaque to IR radiation at 10µm and is not suitable for a lens as in a normal
camera. Materials such as zinc selenide, sapphire and fused quartz have more
uniform IR transmission properties and are suitable materials for IR lenses. A
filter is placed in front of the detector to limit the electromagnetic waves to a
specific IR band. The detector generates a voltage that is proportional to the
objects in the FOV of the sensor.

Two main types of IR detectors exist. Photodetectors have limited spectral
responses, fast response times and high sensitivities, but must be cooled for op-
timal performance. Thermal detectors which are typically used in commercial
IR sensors and cameras can operate at room temperature, have uniform spec-
tral responses but have lower response times and sensitivities. The electronics
of thermal detectors compensate for the ambient temperature and factor in the
emissivity of the target surface.

Thermography is a process by which an image of an object is created by dis-
playing the object’s temperature instead of its actual colour. Kaplan (2007) ex-
plains that IR plane focal array cameras employ a sensor array instead of a single
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Target
surface

FOV Lens Spectral
filter

Detector Electronics Output

Figure 2.2. Components of thermal camera, adapted from Kaplan (2007)

sensor to generate a two-dimensional temperature grid of the FOV. The lens di-
rects a region of IR radiation to an IR detector, similar to a pixel in a normal reg
green blue (RGB) camera.

Commercial IR cameras record a RGB colour image as well as a matrix of tem-
perature values. The display is often a pseudocolour temperature heat map with
a superimposed layer of the edges detected from the RGB image. This allows the
user to identify objects by shape, while visualising the associated temperature in
colour.

A very wide range of IR sensors exists. It ranges from high-resolution IR cam-
eras in satellites and drones to simple low-cost array or single-area sensors. These
low-cost IR sensors have been successfully used in research (Noguera et al., 2020;
Drechsler et al., 2019; Van Asbroeck, 2018), and may provide a feasible alternative
to expensive IR thermal imagery.

Carrasco-Benavides et al. (2020) studied the influence of thermal infrared
(TIR) resolution on CSWI performance in cherry trees. The authors found that
the lower-resolution camera (60× 80 pixels compared to 260× 195 pixels) per-
formed just as well as the high resolution camera. They recommend that the
low-resolution camera be used as a cost effective and practical tool for assessing
water stress in cherry trees.

2.2.3 Thermal infrared sensor calibration

To ensure accurate IR temperature measurement, the IR sensor must be cali-
brated to a known reference in the entire expected measurement range (Bower
et al., 2009). An accurate reference surface is a thermal cavity which approxi-
mates a blackbody surface (Bower et al., 2009). Cetas (1978) constructed a ther-
mal cavity with emissivity greater than 0.999 by drilling a cylindrical hole with
a conical tip into an aluminium block and painting the inside velvet black (ε =
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0.975). Thermistors on the inside surface of the cavity reported the blackbody
temperature. The blackbody temperature was controlled by heating or cooling
the entire aluminium block.

Bower et al. (2009) identified the need for an accurate, cost-effective alterna-
tive blackbody calibration source and identified water as a suitable substance.
Horwitz (1999) indicated that water is an ideal calibration source as its vapour
phase does not absorb significant radiation at short path lengths, it is opaque in
the liquid state and it has a high emissivity of 0.98.

Bower et al. (2009) used a water bath with recirculating water as a blackbody
calibration source for IR sensors. By placing a thermistor probe directly under
the water surface, the blackbody temperature was accurately measured. The au-
thors indicated that heat transfer does occur as the water moves radially out-
ward and evaporates from the measurement beaker. The authors corrected for
this with heat transfer calculations, but found the error to be 0.19 °C at 30 °C and
2.02 °C at 66 °C. The authors concluded that the cost effective method provides
accurate results in the temperature range of liquid water.

Minkina and Dudzik (2009) state that commercial IR sensor calibration is
done by using a calibration curve in the form of

Si = B1

exp B2
Ti

−B3

(2.1)

where B1, B2 and B3 are determined by best fit. Si is the signal measured by
the IR detector at target temperature Ti. The calibrated temperatures are then
calculated as

Ti = B2

ln( B1
Si
+B3)

(2.2)

from the detector signal.

2.3 Plant physiology

2.3.1 Transpiration

A plant can regulate its temperature by evaporation of water through stomata in
the leaves. Stomata are minute openings in leaves that control gas exchange.
Stomatal conductance (gs) is a measure of leaf transpiration. Water stress in
plant is a result of insufficient moisture available in the root zone of the plant
(Idso et al., 1981). An increase in plant temperature due to a lack of water is a
response to plant water stress, rather than an indicator of plant water stress. The
water deficit leads to a closure in leaf stomata. As a result the plant’s transpiration
rate declines and the leaf temperature increases (Poblete-Echeverria et al., 2017).
Other variables such as humidity, atmospheric temperature, wind speed, and ir-
radiance from the sun further influence the plant canopy temperature (Poblete-
Echeverria et al., 2017; Jones, 2018).
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Thermal imaging can thus be used to estimate the level of plant water stress
by measuring canopy temperature (Jones, 2002; Idso et al., 1981). As thermal
imaging operates outside of the visual spectrum, plant water stress can be de-
tected before damage is visible and irreversible (Chaerle and Van Der Straeten,
2001).

2.3.2 Grapevine seasonal development

Grapevines are deciduous plants (losing their leaves every winter). The devel-
opment of the vines undergoes several classifiable stages throughout each sea-
son. These stages are cultivar- and climate-dependent. EL scoring, developed
by Eichhorn and Lorenz (1977) and refined by Coombe (1995), is an established
method of identifying 47 stages of grapevine development.

The major stages are: (i) bud burst (4), where the first leaf tips become visible;
(ii) 0.1 m Shoot length (12); (iii) Start of flowering (19); (iv) Flowering (17), where
50% caps are off; (v) Setting (27), where young berries enlarge >2 mm; (vi) Pea–
sized berries (31) where berries are>17 mm diameter; (vii) Veraison (35)- berries
begin to colour and enlarge; (viii) Harvest (38), where the berries are ripe.

Some authors such as Olivo et al. (2008) and Fernandes de Oliveira et al.
(2021) use simpler major stages when dealing with water stress measurements.
These are stage I, which is from the winter bud to fruit-set, stage II from fruit-set
to veraison, and stage III, veraison to harvest. This simpler method will be used
for the remainder of this document.

Shortly before or during the onset of berry ripening (or veraison), the shoots
harden and turn from green to reddish or yellowish brown (Keller, 2015). Abun-
dant nutrient and water supply may delay this process. The leaf canopy reaches
its final size around this stage, after which it is trimmed to a height of around 2 m.
Shoots are manually moved to be within the trellis.

2.3.3 Stress indexes

Canopy temperature Tc alone is not an accurate indicator of plant water stress,
as the ambient temperature, which changes day by day, has a significant impact
on Tc. This establishes the need for a parameter or index that normalises Tc to
the climatic conditions at the time of measurement.

Idso et al. (1981) defines the CWSI as the normalised ratio between a non-
stressed baseline temperature and a fully stressed baseline temperature. The use
of normalised stress indexes allows for the comparison of plant stress values in
different environmental conditions (Jones, 1999).

CW SI = Tc −Twet

Tdry −Twet
(2.3)

The canopy temperature is defined as the mean of the leaf temperature distri-
bution (Fuchs, 1990). Twet and Tdry are reference temperature values that repre-
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sent the maximum and minimum possible temperatures reachable by the plant.
These wet and dry temperatures are not to be confused with wet-bulb and dry-
bulb temperatures. The maximum temperature is reached when no transpira-
tion occurs, while the minimum temperature is achieved when the plants tran-
spire at their maximum potential, as explained in Section 2.3.5.

Some authors such as Sepúlveda-Reyes et al. (2016), Alchanatis et al. (2009)
and Moller et al. (2007) have attempted to use theoretical leaf energy balances for
the calculation of the maximum and minimum leaf temperatures, but Poirier-
Pocovi et al. (2020) indicate that one needs knowledge of complex parameters
such as leaf resistance to convective heat transfer, slope of the saturation vapour
pressure curve and the net radiation on the leaves. The authors further indicate
that in practical applications it is difficult to provide these parameters without
specialised expertise and costly apparatus. Alghory and Yazar (2018) suggest that
it is infeasible to use theoretical values for the calculation of CWSI. Bellvert et al.
(2014) and Cohen et al. (2005) modelled values for Twet and Tdry based on an
empirical value added to the ambient temperature (Poirier-Pocovi et al., 2020).

The CWSI is non-linearly related to the rate of evaporation or stomatal con-
ductance (Jones, 2018). Indexes that relate Tc to stomatal conductance index
and air temperature have been investigated, but CWSI remains the most popular
(Ihuoma and Madramootoo, 2017).

2.3.4 Sunlit and shaded side of canopy

Pou et al. (2014) suggested that there is no agreement on which side of the canopy
measurements must be taken. Further research into this question has not pro-
vided consistent results.

Jones (2002) investigated which side of a grapevine provides the best correla-
tion between Tc and stomatal conductance. He found that the temperature vari-
ation on the sunlit side is greater than on the shaded side. The different angles
of incidence for radiance from the sun on the leaves, and the visibility of shaded
leaves from the sunlit side is responsible for the large variation in temperatures.
The large temperature variation complicates the process of calculating a repre-
sentative canopy temperature. Jones (2018) explains that the sunlit side of the
canopy, due to the higher temperature, has a greater response in stomatal con-
ductance. The shaded side of a single canopy has less temperature variation as
leaf orientations have a much smaller effect on the leaf energy balance.

Petrie et al. (2019) found that the shaded side of the grapevine provided a
good correlation (r 2 = 0.61) between CWSI and stem water potential (SWP), which
is an accurate measurement of plant water stress, discussed in Section 2.5.3. Sim-
ilarly, Gutiérrez et al. (2021) found that the shaded side performed better than
the sunlit side. The use of the shaded side of the canopy mitigated the effects
of clouds passing and affecting the leaf energy balance as a result of the chang-
ing radiation. The authors further found that the relationship between SWP and
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CWSI were best described with a curvilinear fit, as other authors such as Ru et al.
(2020) have also found.

Pou et al. (2014) conducted a comprehensive study on the correlation be-
tween canopy temperature and stomatal conductance in grapevines. The au-
thors found that midday, shaded measurements represent the best correlation
between canopy temperature and stomatal conductance.

Poirier-Pocovi et al. (2020) explain that in shaded canopies, the canopy tem-
perature and CWSI reference temperatures are dominated by air temperature.
Poirier-Pocovi et al. (2020) recommend that sunny conditions are necessary to
capture the effects of plant water stress as canopy temperature is more sensitive
to stomatal conductance under these conditions.

2.3.5 Reference temperatures

The required CWSI reference temperatures for equation 2.3 are an obstacle to the
adoption of the method. Petrie et al. (2019) stated that the requirements for the
use of reference surfaces makes it unlikely that the technology will be appealing
to growers.

Jones (1999) found that a leaf wetted on both sides with soapy water is a good
reference surface for the non-stressed temperature Twet. The authors further
found that a leaf covered on both sides with a thin coating of petroleum jelly
(Vaseline) is an accurate reference for Tdry, as it prevents transpiration. It is sug-
gested that the average of reference measurements before and after each target
plant must be taken into account for changes in weather conditions. Jones (2002)
indicates that about one minute must pass before measuring the reference leaves
for the new steady state temperature to be reached. This method is the standard
for measuring the reference temperatures, but it is notoriously tedious and in-
convenient to use. This method is referred to throughout this document as the
’Natural method’ (N) . Jones (2002) and Jones (1999) found that real leaves pro-
vide the best reference surface as they possess similar aerodynamic and radio-
metric properties to the canopy being studied, assuming that the orientations
relative to the sun are similar. Artificial reference surfaces were tested by Jones
(1999), but real leaves were found to have a time constant similar to that of the
canopy.

Poirier-Pocovi et al. (2020) claim that it is impractical to measure reference
temperatures and emphasises the need for better reference surfaces. One such
example is the use of the standard deviation in the temperature of the thermal
image. Noguera et al. (2020) uses adaptable temperature thresholds as

Twet = Tc −2σ (2.4a)

Tdry = Tc +2σ (2.4b)

where σ is the standard deviation determined from the histogram of the entire
set of thermal images for a measurement day. He explains that this approach
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relies on the need for a diverse range of stress values in the set, which might
not be available if all plants measured are under water stress. His technique
does, however, allow for automation of data analysis without the need for time-
consuming reference measurements. Sepúlveda-Reyes et al. (2016) used a sim-
ilar technique, and determined the amount of standard deviations by using the
standard method developed by Jones (1999) as a reference.

Grant et al. (2006) suggests using fully irrigated and non-irrigated plants as
reference temperatures, while Poirier-Pocovi et al. (2020) argue that it is rarely
possible to have access to both a non-transpiring and fully transpiring leaf under
similar environmental conditions.

Jones (2002) found that reference surfaces are affected by the water status of
the vine, more so for the dry reference than the wet. The author explained that
the plant water status has a measurable impact on the canopy microclimate. This
encourages the use of detached leaves as they are independent of the canopy and
can be used on the entire block, if maintained at a consistent angle to the sun. In
another study Jones (2002) found, by comparing thermocouple measurements to
IR measurements, that the application of substances to the leaf affects its emis-
sivity. He reported an emissivity error of approximately 0.008.

Petrie et al. (2019) investigated the use of artificial reference surfaces (terry-
cloth fabric coated similar to Twet and Tdry leaves) and found that the fabric
was 2 K warmer than the normal Tdry. An uncoated, separated leaf averaged
around 0.6 K warmer than the normal Tdry. These reference surfaces were tested
in shaded conditions. The wetted fabric proved to have a more stable tempera-
ture than the wetted leaf. The authors of the study make no recommendation of
which surface to use.

2.4 Leaf energy balance

2.4.1 CWSI in terms of VPD

Idso et al. (1981) found a negative linear correlation between the difference in
canopy and ambient temperature (Tc−Ta), and vapour pressure deficit (VPD), for
non-stressed or fully transpiring plants. As the VPD increases, a greater potential
exists for a plant to lower its temperature below the ambient temperature. This
linear trend is used as a non-stressed baseline for maximum possible plant tran-
spiration at a given VPD. As less water becomes available to the plant, or when
the plant cannot transpire at the maximum potential rate, (Tc −Ta) will be above
the baseline at that specific VPD.

The authors found that the baseline intercepts the zero VPD axis at a positive
value for (Tc −Ta), as shown in Figure 2.3. This implies that when no transpira-
tion occurs, Tc will be at a higher temperature than Ta. Solar radiation can raise
the canopy temperature above the ambient temperature. The stressed baseline
must therefore be above the point where the non-stressed baseline intercepts the
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y axis. To determine a good estimate of the stressed baseline, the authors suggest
the following:

Take the horizontal distance between the intercept of the non-stressed base-
line and the Tc−Ta = 0 line, labelled as a in Figure 2.3. Move the distance a to the
negative region of VPD from the zero point. The (Tc −Ta) value where this nega-
tive VPD value intersects the non-stressed baseline can be taken as the stressed
baseline.

CWSI is then calculated as

CW SI = (Tc −Ta)− (Tc −Ta)lb

(Tc −Ta)ub − (Tc −Ta)lb
(2.5)

with lb denoting the lower or non-stressed baseline and ub denoting the upper
or stressed baseline. These baseline values are indicated on Figure 2.3 for values
corresponding to the VPD measured at the time of measuring (Tc −Ta).

The CWSI of point X in Figure 2.3 can be visually estimated as the ratio of the
vertical distance between X and the non-stressed baseline below the point and
the vertical distance between the stressed baseline and the non-stressed baseline
below the X . In the example, CWSI = 0.4. The CWSI calculated here is the ratio
of evapotranspiration to maximum potential evapotranspiration.

VPD [Pa]

T c
-T

a 
[K

] Non-stressed Baseline

0

Stressed Baseline

aa
X

Figure 2.3. Plant-air temperature difference vs VPD

Jones (2018) explains that this approach does not perform well in humid cli-
mates, as variation in VPD is a driving force for the evaporation. Another draw-
back is the need to define the non-stressed baseline over a wide range of VPD. A
plant must therefore be maintained at a non-stressed level for an entire season
before the model can be used. This approach was developed for homogenous
crops such as lucerne. The method does not account for changes in wind speed
and irradiance.
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Table 2.1. Resistance terms in reference surface equations

Resistance Description Equation Reference
rHR Parallel resistance to heat and

radiative transfer
(rHrR)/(rH + rR) (Guilioni

et al., 2008)
rl,V Leaf resistance to water vapour

transfer that is mainly depen-
dent on stomatal resistance

0.92rb,H (Guilioni
et al., 2008)

rb,V Boundary layer resistance to
water vapour transport

0.92rb,H
Jones
(2014)

rH Leaf boundary layer resistance
to convective heat transfer

100
p

Lc/V
Jones
(2014)

rR Leaf resistance to radiative heat
transfer

(ρcp )/(8εσT 4
a ) (Guilioni

et al., 2008)
Note: Subscripts b and l refer to boundary layer and leaf respectively. Subscripts R and H refer to
radiative and convective heat transfer respectively. Subscript V refers to water vapour transfer.

2.4.2 Theoretical wet and dry reference temperatures

The standard equation for a leaf energy balance,

Tl −Ta =
rHR(rb,V + rl,V)γRN

ρcp (γ(rb,V + rl,V)+∆rHR)
− rHRδe

γ(rb,V + rl,V)+∆rHR
(2.6)

given by Jones (2014), can be rearranged to provide theoretical values for ref-
erence leaf temperatures. The resistance terms are calculated as explained in
Table 2.1 and Tl is leaf temperature. The resistance to heat and water vapour
transfer have units s/m which is the reciprocal of the conductance unit typically
used in plant physiology.

If all the terms related to evaporative cooling are omitted, the dry reference
surface will equal the net isothermal radiation Jones (1999). Tdry is subsequently
calculated as

Tdry = Ta + rHRRN

ρcp
(2.7)

By setting the leaf resistance to water vapour transfer (rl,V) equal to zero, the wet
surface temperature can be calculated as

Twet = Ta +
rHRrb,VγRN

ρcp (γrb,V +∆rHR)
− rHRδe

γrb,V +∆rHR
(2.8)

2.5 Plant water stress measurements

The importance of water stress measurements in vineyards have been empha-
sized. In order do evaluate IR thermal plant water stress measurements, a suit-
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able reference water stress measurement must be used. Plant water stress mea-
surements can be soil-, atmosphere- or plant based. A brief overview of the dif-
ferent methodologies is presented.

2.5.1 Soil-based

Soil-based methods directly measure the moisture in soil that is available to the
plants. These techniques can measure soil capillary tension, soil electrical con-
ductivity or absorption of radiation by moisture in the soil. Vineyards with di-
verse soil properties may require multiple sensors to capture the spacial vari-
ability. Varying depth of roots and inconsistent vertical soil water distribution
can lead to measurements that do not reflect the vines’ water status (Rienth and
Scholasch, 2019).

2.5.2 Atmosphere based

By determining vineyard evapotranspiration, plant water consumption can be
estimated. Evapotranspiration is calculated by performing a total energy balance
on the net radiation, sensible heat exchange to the surrounding air and radiation
heat exchange from the soil to the canopy. The latent heat flux density is then
calculated to determine the amount of water transpired by the plants. Rienth
and Scholasch (2019) indicate that atmosphere based methods are promising,
but that the measurement of the subsensible heat exchange is complicated.

2.5.3 Plant-based

Plant-based measurements of water stress can provide a direct indication of the
plant’s current condition. Direct methods are more involved and difficult to au-
tomate, but provide more accurate plant water stress measurements.

Stomatal conductance

Measurement of plant stomatal conductance (gs) is a suitable method of detect-
ing the level of water deficit in a plant (Rienth and Scholasch, 2019). Porometers
can be used to measure and H2O diffusion from a leaf, while IR gas analysers
can measure both H2O and CO2. The equipment is complex to use, expensive
and requires frequent calibration (Rienth and Scholasch, 2019). It is not suitable
for large scale measurements in a vineyard, but can provide accurate plant water
stress measurements.

Water potential

In plants, water moves from root to leaves through tubes called xylem. Water is
absorbed in the roots and transpiration occurs at the leaves. The transpiration
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Figure 2.4. Pressure chamber used to
measure SWP

Figure 2.5. Leaf in foil covered plastic
bag

creates negative pressure, forcing the water from the roots, through the stem and
shoots to the leaves. If more water is lost than is absorbed by the roots, the plant
is under water stress and it has a high water stress potential.

Water potential is measured using a pressure chamber with an inert gas such
as Nitrogen. A pressure chamber is presented in Figure 2.4 with a schematic in
Figure 2.6. A leaf is placed inside a pressure chamber with the petiole (leaf stem)
on the outside. A rubber seal ensures a tight seal around the petiole. The pressure
in the chamber is increased until water is seen to bubble out of the stem. The
pressure at this moment is recorded as the water potential. Water potential is
often reported as a negative value since it relates to the tension required to move
water from the roots to the leaves.

Rienth and Scholasch (2019) indicate that plant and soil come into equilib-
rium overnight, as maximum water potential is reached predawn (Améglio et al.,
2021; Klepper, 1968). Predawn water potential has been shown to correlate well
to grapevines in a mild stress condition (g s > 0.15 mol H2O m2/s) (Poblete-Echeverria
et al., 2019). At this time, plant water status and soil water content are in equi-
librium (Choné et al., 2001). Predawn water potential is measured just before
sunrise and is a good indication of soil water content.

At dawn, the leaves start transpiring and the water deficit recovers, with a
minimum water potential (maximum water stress) reached around noon. SWP
is measured on leaves to determine the level of water stress in the plant. Cover-
ing a leaf with a foil-covered plastic bag prevents transpiration and photosynthe-
sis. The covered leaf’s water potential is in equilibrium to that of the plant stem
(Choné et al., 2001). After the leaf has been enclosed in a foil-covered plastic bag,
as shown in Figure 2.5, for at least an hour, it is cut off with a sharp blade. Choné
et al. (2001) found that there is no significant difference between enclosing the
leaf 1 hour, 2 hours or 6 hours before taking the measurement. The authors fur-
ther found that the vertical position of the leaf in a mechanically pruned canopy
has a negligible effect on the SWP.

Leaf water potential (LWP) is an alternative to SWP that is preferred by some,
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Pressure chamber

Nitrogen supply and
vent

Pressure gauge

Foil lined bag

Leaf stem

Sealed lid

Figure 2.6. Pressure chamber schematic

Table 2.2. Ranges of SWP relating to grapevine water status (Leeuwen et al., 2009)

Water status SWP range (MPa)

No water deficit >-0.6
Weak water deficit -0.6 to -0.9
Weak to moderate water deficit -0.9 to -1.1
Moderate to severe water deficit -1.1 to -1.4
Severe water deficit <-1.4

such as Bellvert et al. (2014). The procedure and equipment used is similar to that
of SWP, but the leaves are not covered before measurement. Leaf water potential
gives the instantaneous stress value, on which the current transpiration has an
effect. Bellvert et al. (2014) successfully correlated LWP to CWSI.

SWP is the standard method of measuring plant water stress (Grant et al.,
2006). Midday SWP has been shown to be highly correlated to transpiration
rates in vineyards (Choné et al., 2001). Poblete-Echeverria et al. (2019) compared
predawn-, leaf- and stem water potential in calculating water stress classes de-
termined with gs measurements. The authors found that SWP is the best water
stress indicator for grapevines under severe water stress. SWP will thus be used
as the baseline water stress measurement in this study, as grapevines are often
maintained in a narrow window of high water stress for improved wine quality.
SWP ranges with the corresponding levels of plant water stress is presented in
Table 2.2.

It can be difficult to see the small drop of water forced out of the petiole and
it is recommended that a magnifying glass is used. This can lead to different
operators reporting different values for the SWP. The pressure chamber and gas
canister are heavy and difficult to move around. Petrie et al. (2019) argues that
operator safety and operator bias are limitations to the commercial application
of SWP. SWP is thus an impractical method of measuring water stress variability
in an entire vineyard as it is time-consuming and destructive.

Stellenbosch University https://scholar.sun.ac.za



Chapter 2. Literature Review 18

2.6 Thermal imaging in vineyards

Pineda et al. (2020) summarised issues relating to stress measurement with IR as
follows: (i) The number of plants measured at the same time is limited; (ii) At-
mospheric conditions such as clouds and wind can skew results and prohibit
measurements. An automatic irrigation system will need additional weather in-
formation, such as cloud cover, rain and wind speed, as CWSI methods are de-
veloped for clear, sunny days; (iii) Accuracy and sensitivity of IR sensors must be
taken into account when analysing results; (iv) There is a need for accurate com-
plementary measurements (ambient temperature, humidity and wind speed);
(v) The time of measurements or time between measurements can have an effect
on results; (vi) Biotic stressors such as pathogens may affect plant temperature.
The authors conclude that stress indexes, rather than canopy temperatures, are
a good indication for plant stress as they can counteract the ambient conditions
of the measurement.

In addition to all these drawbacks to the use of thermal imaging in vineyards,
Bellvert et al. (2014) recommends that the different phenological stage as well
as grape cultivar must be taken into account when using CWSI for irrigation
scheduling. Fernandes de Oliveira et al. (2021) explains that main shoot ligni-
fication increases as the phenological stages progresses, which has an effect on
the thermal response of the grapevines.

Measurement scale

Thermal imagery can be obtained by satellite, unmanned areal vehicle (UAV)
or ground-based systems. Thermal images acquired from satellite images and
UAVs allow for rapid data acquisition with the limitation of resolution, as sev-
eral square metres are often captured by a single satellite image pixel (Gutiér-
rez et al., 2018). Carrasco-Benavides et al. (2020) found that higher resolution
ground-based IR cameras did not provide a better estimation of CWSI in cherry
trees.

Research done on UAV or satellite-based thermal imaging is not directly ap-
plicable to the ground-based systems, as the top of the canopy is measured and
not the side. Grant et al. (2006) suggests that handheld proximal thermography
is suitable for grapevines as the vertical structure of the vines is suited for mea-
surement along the rows.

Jones (2002) indicates that automated image analysis and correction may be
more suitable for homogenous crops such as wheat than for row crops such as
grapevines. Prueger et al. (2018) indicates that there is a considerable need for a
suitable method to measure plant water stress on a large scale using IR measure-
ments.
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Standardisation

Pineda et al. (2020) indicate that there is a need for a system of standardisation
for the collection and sharing of data relating to IR measurements in crops. The
correlation values obtained by different studies vary as the capture and data pro-
cessing of thermal images are not standardised (Carrasco-Benavides et al., 2020).
The best measurement distance, time of day and canopy side are examples of
parameters which are not consistent in literature. The selection of the best mea-
surement parameters is one of the main aims of this study.

Canopy background

In the context of thermal imaging in vineyards, all forms of IR imagery capture
non-leaf material such as soil, sky and vines in the neighbouring rows. When
measuring the canopy temperature, it is inevitable that background tempera-
tures are measured through gaps in the canopy. Giuliani and Flore (2000) placed
large black polyethylene sheets behind apple trees when measuring the canopy
temperature. The sheets would heat up to a considerable temperature above the
canopy temperature and so temperature thresholding was used to eliminate the
background temperatures.

Microclimate

The microclimate is the atmospheric conditions at plant level that directly affect
the plant. Wind speed negatively affects CWSI accuracy as rapid changes in the
leaves’ stomatal conductance influences the transpiration and in turn the leaf
temperature (Jones, 1999). Likewise, low VPD as a result of low ambient temper-
ature and high relative humidity, influences the accuracy of CWSI (Jones, 1999).

2.7 Modelling

2.7.1 CWSI sensitivity analysis

Poirier-Pocovi et al. (2020) developed a mathematical leaf temperature model,
based on the leaf energy balance equation, to investigate the effects of air tem-
perature, humidity, wind speed and radiation on stress indexes. The authors
used the surface energy balance model developed by Campbell and Norman
(1998), which takes radiation, convection and latent cooling fluxes into account.
By setting the latent term equal to zero, Tdry is calculated. For Twet, the stomatal
resistance was eliminated to simulate a wet leaf.

Poirier-Pocovi et al. (2020) investigated the sensitivity of many stress indexes
and CWSI in the 1-CWSI form. The goal of the analysis was to determine which
environmental conditions the CWSI is sensitive to in comparison with stomatal
conductance (which is plant water stress dependent). It was determined that
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CWSI, under sunny conditions, is most sensitive to wind speed and stomatal
conductance. This makes sense as the boundary layer conductance of a leaf is
dependent on gs and wind to control the water flux. Most importantly, CWSI was
found to perform poorly in shaded conditions, being more sensitive to environ-
mental conditions than to the stomatal conductance.

2.7.2 Modern Methods

Kumar et al. (2020) used artificial neural network modelling, specifically an un-
supervised Kohonen self organising map and a supervised Feed-Forward Back
Propagation, to predict CWSI of Indian mustard. The model only uses Tc, Ta

and relative humidity (φ) as input variables. The model achieved a correlation
of r 2 = 0.97 and r 2 = 0.96 to the baseline CWSI during training and evaluation
respectively. The model was trained on data from 2017 and evaluated with data
from the following year. The baseline CWSI was determined by measuring Tc

with a single-area IR sensor, and by estimating Twet and Tdry from well-watered
and water-deficit irrigated plants.

King and Shellie (2016) developed a neural network model to predict the tem-
perature of well-watered vineyards using weather station data (wind speed, air
temperature, relative humidity and solar radiation). The model produced a cor-
relation coefficient of r 2 = 0.93 between predicted and measured Syrah canopy
temperatures. Cultivar-specific CWSI reference values were also predicted with
neural network modelling. By using the neural network the authors could easily
determine the CWSI by doing only physical measurements of canopy tempera-
ture. The authors explain that neural networks are well suited to predict refer-
ence temperatures as their relationship with environmental conditions and vine
response is poorly understood and difficult to calculate mathematically.

A drawback of these neural network methods is that a lot of data is required
to train and validate the models. The models find numeric correlations between
the variable without taking the relevant physics into consideration. These mod-
els are, however, very accurate in determining CWSI directly from Tc and weather
station measurements, eliminating the need for reference temperature measure-
ments.

2.8 Studies done on CWSI and plant stress

Numerous studies have been done on the correlation between CWSI and plant
stress in vineyards. In these studies, different sensors and methods are used. A
summary is given in Table 2.3.
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2.9 Discussion

A substantial amount of research into IR measurement of canopy temperature
has been done in recent years, especially in precision viticulture. Nevertheless,
no standard practises with regards to measurement parameters are applied. For
example, measurement distance, time of day, side of canopy, canopy background
and sensor types vary considerably between studies, as seen in Table 2.3. Base-
line plant water stress measurements are also not kept consistent, the two major
methods being SWP and stomatal conductance. A need for a set of guidelines for
accurately and repeatedly measuring CWSI in vineyards is identified.

A major point of incoherence in literature is the implementation of the Twet

and Tdry measurements for CWSI. Methods include covering the leaves with sub-
stances, using alternative materials, calculating energy balances, and implement-
ing machine learning models to estimate the reference temperatures. Many of
these methods use empirical correlations and heat transfer analyses on the leaves
are not implemented. Researchers report that the need for reference tempera-
tures is an hindrance to the adoption of CWSI as a commercial plant water stress
measurement technique. There is a clear need for an automatic reference tem-
perature calculation.

Finally, the use of IR sensors is not standardised in literature. Sensors vary
from low-cost single-area sensors to expensive research grade thermal cameras
that provide RGB and thermal images. The level of accuracy required by the dif-
ferent sensors is unknown.

IR temperature measurements have the potential to improve plant water stress
measurements. Measurements are quick non-destructive. Research into the mea-
surement parameters, sensor requirements and reference temperatures will aid
in the commercial implementation of the technology.
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Chapter 3

Hardware

3.1 Introduction

Literature shows that various infrared (IR) thermal sensors have been used for the
study of vineyard canopy temperature. These sensors range from research-grade
thermal cameras to low-cost single-area sensors connected to a microcontroller.
Even though all these sensors calculate temperature by measuring IR radiation,
their utility and accuracy vary significantly. Array-type sensors (with or without
accompanying red-green-blue (RGB) cameras) allow the user to select regions of
interest in a thermal image, while single-area sensors provide a weighted average
temperature of an entire measurement area.

In this chapter, the sensors that were used in this study are introduced. The
different sensors’ fields of view (FOVs), accuracies and implementations are ex-
plained. Lastly, the sensor calibration procedure, used to ensure that the sensors
measure similar temperatures in the expected measurement range, is provided.

3.2 Infrared sensors

Three main IR sensor types were considered for this study: (i) Commercial IR
sensor arrays with integrated cameras; (ii) Low-cost, low-resolution IR array sen-
sors; (iii) Low-cost, single-area sensors. The array type sensors are used for ther-
mography, as it produces image-like data, while the single point sensors are used
for thermometry. A summary of the different IR sensors used in this study is pre-
sented in Table 3.1. The relative costs are in relation to the Flir C3 which costs
R10 700 (about $720). The indicated costs of the MLX90614 and AMG8833 sen-
sors do not include the required microcontroller and screen, which have a com-
bined relative price of 0.11. The Apogee sensor’s relative cost does not include
the data logger with a relative cost of 3.1.

To accurately calculate temperature from an IR measurement, the sources of
the radiation must be taken into account. IR radiation detected by a sensor is the
sum of IR radiation emitted by the target surface, the atmosphere between the
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Table 3.1. IR sensors used in this study

Code Sensor Type Accuracy
[K]

Pixels FOV Relative
Price

C3 Flir* C3 IR array with
RGB camera

2 60×80 40°×31° 1

F1 Flir One Pro IR array with
RGB camera

3 160×120 50°×43° 0.6

IR12 Melexis†

MLX90614 DCH
Single-area 0.3 - 12° cone 0.05

IR35 Melexis
MLX90614 BCC

Single-area 0.5 - 35° cone 0.04

IR90 Melexis
MLX90614 BAA

Single-area 0.5 - 90° cone 0.02

IR_Arr Panasonic‡

AMG8833
IR Array 3 8×8 60°×60° 0.09

Apogee Apogee§

SI-1H1-SS
Single-area 0.2 - 64°×13° 1.2

*FLIR Systems, Wilsonville, OR, USA. † Melexis, Ypres, Belgium. ‡ Panasonic Corporation of North
America, Newark, NJ, USA. § Apogee instruments, Inc., Logan, Utah, USA. Relative costs are in
relation to the R10 700 cost of the Flir C3.

target object and the detector and the IR radiation reflected off the target sur-
face. The calculation procedure for accounting for these sources of IR radiation
is presented in Appendix A.2.

3.2.1 Commercial thermal imaging cameras

Two commercial IR cameras were considered for this study. The Flir C3 is a stand-
alone thermal camera and the Flir One Pro is attached to, and interfaces with, a
smartphone. The lower cost of the latter is achieved by using the smartphone’s
screen and processor. Both these IR cameras record RGB images which are used
to superimpose edge-detected lines on the thermal images for object recogni-
tion. An example of these edges is presented in Figure 3.4.

The Flir C3 and One Pro have RGB resolutions of 240×320 pixels and 480×640
pixels respectively and the respective spectral ranges are 7.5µm to 14µm and
8µm to 14µm (Flir, 2016, 2018). Both sensors have a thermal sensitivity of 0.1 K.

To obtain an accurate temperature measurement with the Flir cameras, the
ambient and reflected temperatures, emissivity, distance and relative humidity
must be taken into account. These parameters were used to calculate tempera-
ture from the radiometric data files created by these cameras. A modified version
of the R package Thermimage developed by Glenn (2017) was used. The Flir Tools
software only allows manual entry of these parameters, while Thermimage was
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Figure 3.1. Flir temperature calculation flow diagram

called from a Matlab program which automatically specifies the measurement
conditions (saved in a data structure) required for the temperature calculation.

Reflected temperature can be determined by measuring the temperature of
a crumpled piece of aluminium foil placed in the same orientation as the target
object with an emissivity set to 1 (Jones, 2002). As aluminium has a very high
reflectivity, its apparent temperature measured by an IR sensor is predominantly
determined by the reflected IR radiation of the surroundings. At the experimental
site, ambient temperature and humidity are collected by a weather station. Bulk
RGB image extraction from the Flir files was done with the standard Flir Tools
software. A data flow pipeline for the calculation of a representative temperature
from a Flir measurement is presented in Figure 3.1. The pipeline contains an
image-masking step, where the user selects a region of interest (ROI) on the RGB
image, from which the average temperature is calculated.

3.2.2 Low-cost sensor measurement rig

The IR35 and IR90 Melexis single-area sensors have a spectral range of 5.5µm to
14µm (Melexis, 2019). The spectral range of the IR_Arr sensor is 5µm to 13µm.
The IR12 sensor has an uncoated silicone lens with a spectral range of 2µm to
14µm (Melexis, 2019).

The IR12, IR35, IR90 and IR_Arr sensors were connected to the same Teensy
3.6 microcontroller for data capture. The microcontroller was powered with a
20000 mAh power bank. Schematics for the controller can be found in Appendix
C. The battery and electronics are housed in an ABS plastic enclosure, with view-
ing ports for the various sensors as seen in Figure 3.3. This measurement rig
(MR), houses the various sensors and simultaneously measures all the sensor
temperatures. Initially, a DHT22 temperature and humidity sensor was con-
nected to the MR, but the sensor proved unreliable and it was decided to gather
this data from a local weather station instead.

The single-area sensors capture the entire area in their FOV and report a
weighted average temperature as shown in Figure 3.2. These sensors weigh the
central part of the canopy higher than the outer edges. The weighing is not de-
termined computationally, but is due to the IR lens geometry.
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Figure 3.2. Weighting of low-cost sensor field of view, rotated around the central axis.
The values for the figures were obtained by graphically digitising the different figures
from the sensor data sheets.

Figure 3.3. Measurement Rig hous-
ing sensors and screen

Figure 3.4. Flir C3 thermal image of a
coffee mug

A 128×160 pixel LCD screen was used to display the output of the array sensor
at 2 Hz. As all the sensors were aligned, the array sensor output was used to aim
all of the sensors at the target surfaces. A 2.8 inch Nextion touch screen display
was used to input the measurement numbers or measurement configuration that
serves as a measurement ID. A simple user interface was created to allow a user
to view all the sensor temperatures, turn the sensors on and off and to create
logging files. A save button on the screen saves the sensor and measurement
time data to an SD card inserted in the microcontroller. The user interface is
provided in Appendix C.
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3.3 Sensor calibration

3.3.1 Introduction

As different sensors’ temperatures are compared in this study, it is important to
ensure that these sensors report the same temperatures. The purpose of the ex-
periment is to calibrate a variety of IR sensors for use in vineyard canopy tem-
perature measurements. The calibration range must exceed the entire expected
measurement range in the vineyard. The results from Chapter 5 indicate that
canopy temperatures are in the 20 °C to 40 °C range. This experiment will cover
the range of 10 °C to 50 °C.

This calibration procedure is based on Bower et al. (2009) which avoids the
use of expensive equipment while ensuring accuracy. Bower et al. (2009) uses a
thermistor under the surface of the water as a reference temperature and corrects
for evaporative cooling with heat transfer calculations. The approach used in this
study uses an accurate, calibrated IR sensor as reference temperature.

As the raw detector signals are not available with some commercial sensors,
and the measurement range is narrow, a simple linear calibration curve is used
in this study.

3.3.2 Experimental setup

The Apogee sensor is laboratory calibrated to 0.127 K uncertainty (95% confi-
dence) in the −30 °C to 65 °C range and was used as a reference temperature mea-
surement. The Apogee IR sensor was connected to a computer via a Campbell
Scientific data logger. The emissivity was set to 0.98 for the Apogee and all the
sensors.

A schematic of the setup is presented in Figure 3.5. A 5 l glass beaker was
placed within a temperature-controlled water bath. The water bath circulated
the water in the bottom compartment. Water was pumped by means of an aquar-
ium pump, from the water bath to the glass beaker where it passed through a
diffuser before flowing to the top surface. The beaker was levelled so that wa-
ter overflowed around the top surface. This ensured that the water temperature
along the entire top surface was nearly uniform. This double-bath method pro-
vided a smooth water surface at the top of the glass beaker that was measured
with the different IR sensors. To ensure that the water surface filled the entire
FOV of all the sensors, they were fixed to tripods close to the water surface.

The setup had to accommodate various sensor FOVs, ranging from a 12° con-
ical to a square 60°×60° FOV. Only a portion of the IR cameras’ FOVs needed to
capture the water surface, as the representative region could be selected from the
data based on the RGB image.

Starting with refrigerated water at about 8 °C, the water temperature was mea-
sured by all of the sensors before increasing the temperature of the water bath by
5 °C. The next measurement was taken after the temperature had stabilised at
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the desired temperature. A real-time graph of the Apogee sensor was used to
determine when the temperature of the water had stabilised. This process was
repeated until the water reached 50 °C. This calibration procedure was repeated
on another day to ensure that the results were consistent.

3.3.3 Results and discussion

The results of the experiment are presented in Figure 3.6. From these results,
it is clear that the F1 does not accurately measure temperatures outside of the
20 °C to 40 °C range. The uncertainty of the results from this sensor outweighs the
convenience of only attaching a small sensor to a smartphone. It was therefore
decided to not use the F1 for the remainder of the study.

The C3 has a constant error of about 2 K. It has a lower average error than the
single-area IR sensors, but a higher variation in error, as mentioned in Table 3.2.
The higher variation in error is to be expected as it has a lower specified accuracy
than the low-cost sensors.

Table 3.2. Calibration results for all the sensors. SD is standard deviation and s is
standard error of the fit

Sensor Original
MAE [K]

σ [K] Slope Intercept s [K] Calibrated
MAE [K]

C3 1.87 1.04 0.97 -1.00 1.82 0.74
F1 2.45 2.91 1.22 -7.70 2.95 1.29
IR_Arr 1.33 1.48 0.99 -0.60 0.78 1.23
IR12 1.46 0.45 1.02 -1.93 1.51 0.29
IR35 1.30 0.74 0.96 -0.19 1.45 0.37
IR90 1.37 0.92 1.06 -2.86 1.45 0.34

Note: s is standard error of the fit and MAE is mean average error.

IR Sensors

Sensor Field of view

Diffuser

Submersible pump

Recirculation heater
and pump

Pipe

Figure 3.5. Schematic of sensor calibration experiment set-up
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The three single-area IR sensors perform well with near linear offsets from the
reference temperature. At temperatures above 40 °C, the IR90 sensor has large
negative errors. According to the sensor data sheet, these errors were only ex-
pected to increase at a target temperature of around 60 °C (Melexis, 2019).

The IR_Arr sensor has large negative errors with high variation. It performs
well in the 22 °C to 33 °C range. The mean average errors of the C3,F1 and IR_Arr
are within the specified accuracy, while the single-area IR sensors are all outside
of the specified accuracy.
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Figure 3.6. Measurement errors for all the sensors at different temperatures using the
Apogee as a reference sensor. The errors were calculated by subtracting the reference
temperature from the respective sensor temperatures.
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Figure 3.7. Measurement errors after applying the linear calibration.
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The observed sensor errors are linear in the measured temperature range.
Linear calibration curves were used to calibrate the sensors to the Apogee sensor.
The standard error of the fit, s, relates to how closely a polynomial fits a data set
(Figliola, 1995) and is calculated as

s =
√∑N

i=1 (yf,i − yo,i)2

N − (m +1)
(3.1)

where m denotes the order of the fit, which is 1 in this case. The standard error
of the fit provides a measure of how much each data point is shifted with the
calibration. Table 3.2 presents s, the standard error of the fir, and the slope and
intercepts of the linear calibration. The C3 has the lowest fit error, while the F1
has the largest fit error of the investigated sensors.

The source of the errors in the single-area IR sensors is unknown, but it is
compensated for. Due to the low variation in and the linear nature of the errors,
the linear calibration is appropriate.

3.4 Conclusion

The different IR sensors, along with their various specifications and accuracies
are presented in this chapter. The implantation of the low-cost sensors in the
MR is explained. The calculation procedure for the Flir sensors is presented as a
suitable alternative to the use of Flir Tools.

A water bath calibration procedure was used to ensure that the sensors report
the same temperature. This allows for temperature comparisons between the
different sensors. It was found that the Flir F1 is not suitable for this study and
that the low-cost IR sensors have a nearly constant error when compared to a
calibrated IR sensor.
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Reference temperatures
modelling and measurement

4.1 Introduction

4.1.1 CWSI

The crop water stress index (CWSI) is the "best known" thermal stress index (Pou
et al., 2014). It was defined by Idso et al. (1981) and further refined by Jones
(1999). The CWSI has been used extensively in precision viticulture research (e.g.,
Grant et al. (2006); Petrie et al. (2019); Sepúlveda-Reyes et al. (2016); Shellie and
King (2020)).

CW SI = Tc −Twet

Tdry −Twet
(2.3)∗

The CWSI normalises the canopy temperature between the minimum pos-
sible temperature (Twet) of a canopy transpiring at the maximum potential rate,
and maximum possible temperature (Tdry) of a canopy not transpiring at all (Idso
et al., 1981). A plant under severe plant water stress will have a CWSI close to 1,
while a fully transpiring plant will have a CWSI close to 0. Ideally, a fully transpir-
ing and a non-transpiring plant, under the same environmental conditions as the
canopy being measured, must be used for Twet and Tdry measurements, respec-
tively. This approach is impractical as it is nearly impossible to have two such
reference plants under similar environmental conditions (Poirier-Pocovi et al.,
2020). Many researchers find that the practical implications of the reference
temperatures are a limitation to the implementation of IR technology in vine-
yards (e.g. Grant et al. (2006); Petrie et al. (2019); Sepúlveda-Reyes et al. (2016);
Poblete-Echeverria et al. (2017)).

4.1.2 Natural reference temperature method

Now-a-days, there are different methods to obtain Twet and Tdry. Jones (1999)
was the first to use Vaseline and soapy water-covered leaves for reference Tdry

31
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and Twet measurements, respectively. This method is referred to as the ’Natural
method’. The Vaseline prevents the leaf from transpiring and thus being cooled,
while the water covered leaf simulates a fully transpiring leaf that cools by evap-
oration. This method has become a common practice in research (Garcia-Tejero
et al., 2016; Petrie et al., 2019; Poirier-Pocovi et al., 2020). There are however some
practical limitations with this method. For example, Jones (1999) suggests mea-
suring Tdry and Twet before and after measuring each canopy, but this is imprac-
tical when measuring many plants.

Sudden gusts of wind, a passing cloud or the selection of the leaf can have
an influence on the reference temperatures, which the CWSI is very sensitive to.
The application of Vaseline is destructive to the leaf and can influence the plant’s
physiology if the Vaseline is applied to many leaves throughout the season.

4.1.3 Alternative reference temperature methods

These problems with the Natural reference method have motivated researchers
to look for alternative techniques in determining reference temperatures, such
as: (i) Mathematical leaf energy balance (LEB) equations which do not need di-
rect Twet and Tdry measurements and which account for physiological parame-
ters, net radiation, sensible heat transfer and evaporative cooling at steady state
(Jones, 2014). This method has been used in literature (e.g. (Fuentes et al., 2012)),
but requires physiological parameters that are difficult to determine (Poirier-Pocovi
et al., 2020); (ii) Artificial reference surfaces, such as cloth fabric (Maes et al.,
2016) and coloured paper (Poirier-Pocovi et al., 2020) have been investigated,
but do not have any physical resemblance to leaf material; (iii) Empirical cor-
relations, such as adding 5 K to 7 K to the ambient temperature for Tdry have
been investigated (Moller et al., 2007; Rud et al., 2014), but are usually done after
the season when the maximum temperature reached by the canopy can be ob-
served. The plants’ physiological response changes throughout the season and
Fernandes de Oliveira et al. (2021) used wet- and dry-bulb temperatures for Twet

and Tdry respectively, but had to add coefficients to compensate for the different
physiological stages; (iv) Modern methods such as machine learning have been
used successfully but requires large datasets (multiple seasons) to train the mod-
els (Shellie and King, 2020). These modern methods, such as machine learning
and optimisation, can be combined with engineering heat transfer approaches to
simulate the natural reference method, which is known to be reliable. This pro-
posed method can provide reference values which are based on the appropriate
theory, the development of the method is aided by optimisation in estimating
complicated parameters.

4.1.4 Chapter objectives

First, different protocols for the measurement of the natural method are com-
pared, in order to establish a consistent and reliable method for the rest of the
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study.
The second aim is to propose and test two new methods for determining ref-

erence temperatures. One is based on heat transfer principles, while the other
is an empirical formulation based on wet- and dry-bulb temperatures. The pro-
posed methods use only meteorological data from a local weather station and
eliminates the need for in-field reference temperature measurements. A par-
ticle swarm optimisation (PSO) technique was used to obtain the parameters
in the heat transfer (HT), LEB and empirical (EMP) methods. PSO was chosen
as it is easy to implement, derivative-free and insensitive to initial points when
compared to evolutionary methods (Lee and Park, 2006). This method, along
with LEB and EMP methods, which are traditional methods of estimating the ref-
erence temperatures, are compared to the Natural method proposed by Jones
(1999).

The final aim is to determine the applicability of low-cost sensors to measure
reference temperatures by comparing them to a commercial infrared camera.

4.2 Materials and methods

4.2.1 Experimental site and plant material

The study was conducted during the season 2020-2021 at Thelema wine farm
(-33°54’11.8"S - 18°55’12.4"E and 430 m above sea level) in Stellenbosch, South
Africa. The vine cultivar is Cabernet Sauvignon vines, clone CS 338 C grafted
on 101-14 rootstock which were planted in 2003 with a North-South orientation.
The 2.42 ha block has a 2 m vine spacing and 2.5 m m row spacing and it is drip-
irrigated with emitters spaced at 0.6 m (2.3 L/h). The vines are trained to a Verti-
cal Shoot Positioning trellis system with bi-lateral cordon and spur pruned. The
soil is sandy loam with a pH of 5.7 and the geology of the region is characterised
by compacted sedimentary formations of the Malmesbury Group from the Pre-
cambrian Era (Carey, 2005; King and King, 1984). The historical average yield in
the block is 8.24 Ton/ha with an average of 4.0 kg/vine. The climate in the area
is Mediterranean with winter rainfall. Koppen-Geiger climate classification - Csb
(Peel et al., 2007). The seasonal ambient temperature (from September 2020 to
March 2021) ranged between 5 °C and 44 °C. For the same period, the effective
rainfall was approximately 184 mm.

4.2.2 Meteorological data

Ambient conditions (solar radiation, wind speed, temperature, relative humidity
and rainfall) were measured hourly by a standard commercial weather station
located within 300 m of the experimental site. These ambient conditions were
used in the HT method, the EMP method and for importing the thermal image
data. A net radiometer (Hukselflux, model NR01, Delft, Netherlands) was used to
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measure net radiation at 15-minute intervals for the LEB model. Upon analysing
the data it was noticed that the radiation measurements from the weather station
were consistently lower than those of the net radiometer and weather station
data from Stellenbosch. It was decided to use net radiometer data, which also
measures solar radiation, for determining the net radiation.

4.2.3 Measurement procedure

Reference temperature measurements were done on seven days, at 12:00 and
14:00, in conjunction with canopy temperature measurements required for the
next chapters. Jones (1999) suggests taking measurements before and after mea-
suring canopy temperature. It is time-consuming and impractical to do this with
all plants and there is the risk of encountering changing weather and solar po-
sition conditions if measurements take too long. Six reference temperature data
points were collected for each measurement period, which lasted about 30 min-
utes. All measured leaves were orientated normal to and in the centre of the plant
canopy.

For measurements with the C3, thermal images were recorded from ±0.3 m,
without casting a shadow on the sunlit leaves. In the data processing process,
the average temperature of a selected region of interest (ROI), discussed in sec-
tion 3.2.1, is taken as the leaf temperature. The IR sensors in the measurement
rig (MR) were held close (±20 mm) to the target leaf. For the IR-array sensor, the
most frequent value from the temperature distribution was taken as the repre-
sentative temperature.

To ensure that outliers do not influence the average of the reference values
that are used, the following method is used to identify outliers: Compare the two
temperatures measured before and after each treatment group. If the values dif-
fer by more than 3 K, omit the value that is the furthest away from the group
average (not including the two points from the group).

4.2.4 Reference temperature measurement protocol

In literature both attached and detached leaves are used for reference temper-
atures and the methodology is not standardised. Some researches (e.g., Jones
(2002); Fuentes et al. (2012)) use attached reference leaves while others (e.g.,Petrie
et al. (2019); Stoll and Jones (2007)) use detached leaves. The benefit of using a
detached leaf is that it is not affected by plant conditions and a single leaf can be
reused for multiple measurements, causing less damage to the vines. The draw-
back is that it is not completely representative of the maximum temperature that
a canopy can reach, as it is not under the same physical conditions as the plants.
Comparing sunlit to shaded side of the canopy, most authors use reference sur-
faces from the same side of the canopy temperature measurement. From trials in
the previous season, it was observed that a sunlit wet leaf can reach a tempera-
ture similar to that of the sunlit canopy. Jones (2002) indicates that the difference
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Table 4.1. Alternative reference temperature methods considered

Method Code Comment Source
Natural
Method

N Baseline method where Twet is a
water sprayed leaf and Tdry is a
Vaseline covered leaf

(Jones, 1999)

Leaf energy
balance

LEB Optimise the stomatal resis-
tance, see Section 4.2.6

(Jones, 2014)

Heat transfer HT Optimise multiple parameters,
see Section 4.2.7

Proposed
method

Empirical
method

EMP Optimise empirical values, see
Section 4.2.8

Proposed
method

in exposure to solar radiation between the reference leaves and the canopy can
lead to errors.

The following reference temperatures were measured: (i) Wet sunlit leaf; (ii) Wet
shaded leaf; (iii) Dry attached shaded leaf; (iv) Dry detached shaded leaf; (v) Dry
attached sunlit leaf; (vi) Dry detached sunlit leaf. The detached leaves were at-
tached to the post supporting the vines with tape, in a similar orientation to the
attached leaves being measured.

4.2.5 Baseline method

In this study, the natural reference method (N) proposed by Jones (1999), de-
scribed in Section 4.1.2, is used as a baseline for comparison and parametrisa-
tion of the three alternatives methods. The average of all six measurements was
taken as the baseline temperature for that day. The exact condition of these ref-
erence leaves, discussed in Section 4.2.4 is established as the first objective of this
chapter.

The alternative methods of determining Tdry and Twet that are investigated
are summarised in Table 4.1.

4.2.6 Leaf energy balance method

The LEB method is described in section 2.4. The final equations are repeated for
sake of convenience:

Tdry = Ta + rHRRN

ρcp
(2.7)∗

Twet = Ta +
rHRrb,VγRN

ρcp (γrb,V + srHR)
− rHRδe

γrb,V + srHR
(2.8)∗
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4.2.7 Heat transfer calculations

Assumptions and simplifications

The heat transfer (HT) approach uses basic heat transfer principals and climatic
properties of the microclimate to estimate the reference surface temperatures.
The two reference surfaces, Twet and Tdry, are modelled as 0.1m×0.1m vertical
flat plates normal to and in the centre of the grapevine canopy, with North-South
oriented rows. Tdry is simulated as a Vaseline-covered leaf; fully stressed with
closed stomata allowing no transpiration. In contrast, Twet is simulated by as-
suming that the leaf is covered by a thin layer of water. This Twet method is an
over estimation of maximum transpiration rate, as a leaf will never get fully wet
by itself but it is independent of plant condition and stomatal resistance, which
are difficult to measure.

The mechanisms of heat transfer considered are radiative, convective, and
evaporative (only in the case of Twet), as shown in Figure 4.1. Conduction to plant
tissue is insignificant and can be ignored (Watson, 1933). The leaf is thin, and it
is assumed that it has a uniform temperature.

The back of the leaf is exposed to the shaded inside of the canopy, while the
front is exposed to the shaded side of the adjacent row canopy, the soil and the
sky, with direct sunlight for the Tdry leaf. The soil is a combination of red clay and
dead grass and a small portion of the soil is shaded by the adjacent row canopy.
The soil temperature can exceed 50 °C but has a relatively low influence on the
leaf temperature in terms of radiative heat transfer. The soil is therefore simu-
lated as a single surface with the radiative properties of soil being 27 °C above ob-
served ambient temperature (calculated based on the average ground truth mea-
surements observed over all the days). The canopy of the adjacent row is mod-
elled as a single shaded surface with the radiative properties of a big grapevine
leaf. It is assumed that the wind direction is North-South down the rows.

Radiative heat transfer

Heat is transferred between any two surfaces at dissimilar temperatures via ther-
mal radiation. Any surface above 0 K emits thermal radiation and the amount is
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proportional to the object’s surface temperature. Relevant radiation heat transfer
theory is presented in Appendix A.

Radiation heat transfer depends on the orientation of both surfaces. The view
factor, Fi j is defined as the fraction of radiation emitted from surface i that strikes
surface j directly. The sum of all the view factors for surface i to N surfaces is
equal to 1, to account for all the radiation emitted by object i . The heat transfer
from surface i is then

Q̇i = Ai

N∑
j=1

Fi j (Ji − J j ) (4.1)

with Q̇i the rate of heat transfer, A the area of surface i and J the radiosity (Cengal
and Ghajar, 2015, eq 13-34):

Ji = εiσT 4
i +ρi Gi (4.2)

where T is the temperature in Kelvin, G is the incident radiation on the surface
and ε is the emissivity of the surface. The reflectivity of grapevine leaves is low
(about 0.04), resulting in a very small fraction of the reflection off surface. Equa-
tion 4.2 is simplified to

Ji = εσT 4
i (4.3)

The radiation heat transfer between the soil and target leaf is thus

Q̇s−l = AsFs−lσ(εsT 4
s −εl T 4

l ) (4.4)

and similar relations are derived for Q̇bc−l ,Q̇sk y−l and Q̇oc−l .
The radiative emissions from the sky, mainly due to CO2 and H2O can be ap-

proximated by the temperature near the surface of the earth (Mills and Gansen,
2009). Brunt (1940) found an empirical correlation for the emissivity of the sky
based on the ambient temperature Ta and relative humidity, φ, for a clear sky.

εsky = 0.55+1.8
√

PH2O/Pa (4.5)

where Pa is the atmospheric pressure and PH2O is the water vapour pressure. The
water vapour pressure can be calculated as

PH2O =φ ·P∗
H2O (4.6)

The radiation from the sky can be estimated assuming the sky is at ambient tem-
perature with an emissivity of εsky (Mills and Gansen, 2009, example 6.9).

The view factors between the leaf and other surfaces were calculated with the
Nullselt unit sphere method. The radiating surfaces for 10 m in each direction
were taken into account for heat transfer relations.

The solar energy transferred to the surface of the leaves consists of diffuse
solar radiation (Gd) and direct solar radiation, GD (for the Tdry leaf). Diffuse solar
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radiation is scattered by the earth’s atmosphere and reaches the surface from all
directions. For a vertical surface at an angle:

Gd = 0.5 ·Gd · (1+cosβ) (4.7)

whereβ is the angle between the horizontal and the surface (Maxwell et al., 1986),
assuming diffuse radiation is isotropically scattered in a hemisphere. The total
incident solar radiation on a surface is the combination of the direct and diffuse
components.

Gsolar =GD cosθ+Gd (4.8)

where θ is the angle between the surface normal and the sun, shown in Figure
4.2. This angle is calculated with NREL’s Solar Position Algorithm (Reda and An-
dreas, 2008), with a Matlab function developed by Mahooti (2021). The direct
component of solar radiation is omitted for Twet as the leaf is in the shade. The
solar energy absorbed by a leaf is

Q̇solar =αlGsol (4.9)

where αl is the solar absorptivity of the leaf. Nobel (2009) indicates that α is
between 0.4 and 0.6 for plant leaf material, but Vaseline- and water-covered leaf
material, with undocumented properties, are simulated.

The total radiative heat transfer is the sum of the solar, sky, soil and opposite
canopy radiative heat transfer

Q̇rad = Q̇sol +Q̇oc−l +Q̇s−l +Q̇sky−l +Q̇bc−l (4.10)

Convective heat transfer

Convective heat transfer occurs between the leaf surface and the air. The Reynolds
number is calculated to estimate the flow regime of the moving air.

Re = V Lc

υ
(4.11)

υ is the kinematic viscosity of the air while Lc is the characteristic length of the
leaf, taken as the area divided by the circumference, Lc = 0.1 for the flat plate as-
sumption. For typical ambient conditions of wind (V ) at 1 m/s and Ta = 25°C, Re
is calculated and found to be around 7000 , which is in the laminar flow regime.
Only when wind speed reaches about 6 m/s, does the flow become turbulent.

According to Cengal and Ghajar (2015), the convective heat transfer coeffi-
cient can be calculated as

h = 0.664
k

Lc
Pr 1/3Re1/2 (4.12)
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where k is the thermal conductivity and Pr is the Prandtl number of air at the
given temperature. Finally, the energy lost due to convective cooling is calculated
as

Q̇conv = 2h Al(Tl −Ta) (4.13)

The multiplication by 2 is on account of convective heat transfer that occurs on
both sides of the leaf.

Evaporative heat transfer

As water is evaporated off a surface, it is converted to a gas and removes energy
from the surface in proportion to the mass flow rate and the enthalpy of evapo-
ration, hfg.

The diffusion of water vapour into the air has received significant attention
for the development of empirical equations (Cengal and Ghajar, 2015, p 841).
Marrero and Mason (1972) proposed the following formula:

DH2O−air = 1.87 ·10−10 T 2.072

P
(4.14)

Sc, the dimensionless Schmidt number is then calculated for the relative magni-
tude of momentum diffusivity to mass diffusivity.

Sc = υ

DH2O−air
(4.15)

Similar to the Nusselt number calculated for convective heat transfer, the Sher-
wood number is calculated for convective mass transfer. The Sherwood relation
(Sh) for laminar forced convection over a flat plate is

Sh = 0.664Re1/2Sc1/3 (4.16)

The mass transfer coefficient is then calculated

hmass =
Sh ·DH2O−air

Lc
(4.17)

before the mass flow rate of the water vapour is calculated as

ṁH2O = hmass Al(ρv,s −ρv,∞) (4.18)

with ρv,s and ρv,∞ the density of the water vapour at, and far from the surface
respectively. Finally, the heat energy lost due to the evaporation is calculated as

Q̇evap = ṁH2Ohfg (4.19)
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Calculate radiative and convective heat
tranfster
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Calculate difference
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Difference <
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Guess Tl

End

No

Figure 4.3. Flow diagram presenting the iterative method of calculating the leaf sur-
face temperature. Note the different paths for Twet and Tdry

Energy balance and iterative solution

The steady state of the leaf must calculated iteratively. According to convention,
energy transferred to the leaf is taken as positive.

Q̇in −Q̇out = 0 (4.20)

Q̇rad +Q̇evap +Q̇conv = 0 (4.21)

Rearranging the terms and solving for Tl in equation 4.13

Tl =
Q̇rad +Q̇evap

2h Al
+Ta (4.22)

For each of the radiation terms, as well as the evaporation term, the leaf sur-
face temperature as well as air properties are required. Tl is solved iteratively
by estimating a leaf’s temperature before recalculating it, while updating the air
properties at each step. Air properties are calculated by interpolation between
values found in the Air Properties table of (Cengal and Ghajar, 2015, p. 924)

Tl tends to diverge and a damping term is introduced to limit the effect of the
newly calculated Tl:

Tl = Tl,prev +d(Tl,new −Tl,prev) (4.23)

For a d value of 0.1, Tl was observed to converge. The solution strategy is pre-
sented in figure 4.3.

For the dry reference leaf, Q̇evap is simply omitted. For the wet reference leaf,
the direct component of solar radiation is omitted to simulate the leaf in a shaded
part of the canopy. This is done to ensure that Twet represents the absolute mini-
mum temperature that a leaf in the canopy can reach.

4.2.8 Empirical Method

Moller et al. (2007) found that calculating Tdry as a constant offset of 5 K from the
ambient temperature provided a simple method for estimating the maximum
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canopy temperature. The canopy temperature in our experiment often exceeded
the ambient temperature by as much as 7 K. The best value for this parameter,
δoffset is unknown.

Tdry,EMP = Ta +δoffset (4.24)

Furthermore, from this study’s experimental data, it was observed that the
Natural method’s Twet corresponds well to a temperature between the wet-bulb
and dry-bulb temperature.

Twet,EMP = Twb +δfrac(Tdb −Twet−bulb) (4.25)

Wet-bulb temperatures are calculated from the ambient (dry-bulb) temperature
and relative humidity, according to an empirical formulation by Stull (2011):

T ′
wb = Ta atan(0.151977

√
φ+8.313659)

+atan(T ′
a +φ)−atan(φ−1.676331)

+0.00391838(φ)3/2 atan(0.023101φ)

−4.686035

(4.26)

The values δoffset and δfrac are optimised to provide the best empirical corre-
lation that minimises the difference between Twet,N and Twet,EMP and Tdry,N and
Tdry,EMP, respectively.

4.2.9 Optimisation

Some parameters of the HT, LEB and EMP models are difficult to measure or not
documented. These parameters are listed in Table 4.2, along with a description
and bounds. Parameters were optimised by minimising the difference between
calculated and measured Tdry and Twet values over the seven test days (morning
and afternoon). The average error of Twet and Tdry were optimised as a single HT
model calculates both Twet and Tdry. Even though the vines go through different
phenological stages, the set of parameters that is optimised is constant through-
out the season. This is because the HT model is optimised to the values of the
Natural reference, which is not plant-dependent.

The data is split into training and testing at roughly 70% to 30% to verify the
results of the optimisation. The models are trained on all the data except for 26
January and 23 February that were selected as the last measurement days of the
two major physiological periods. Leaving these two days out ensures that the
data is not over fitted.

PSO was used as it is easy to implement, derivative free and insensitive to ini-
tial points when compared to evolutionary methods Lee and Park (2006). When
compared to other stochastic methods, it can provide quality results with sta-
ble convergence characteristics Gaing (2003). The built in Matlab PSO was used.
Five reruns were done with 50 particles and 50 iterations.
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Table 4.2. Optimisation parameters and bounds

Parameter Model Description Lower
bound

Upper
bound

αv HT Vaseline-covered leaf solar absorptiv-
ity

0.25 1

αw HT Water-covered leaf solar absorptivity 0.25 1
fdir HT Fraction of solar radiation that strikes

the Tdry leaf directly. This value is dif-
ficult to measure (Cengal and Ghajar,
2015)

0.8 0.95

δbc HT The surface of the internal canopy ra-
diates heat to the back of the reference
leaves. It is optimised to a difference
from Ta.

−10 K 10 K

θe HT The error from the calculated solar
angle of incidence presented in Fig-
ure 4.2. Leaves facing normal to
the canopy were selected for applying
Vaseline, but leaves are not simple flat
surfaces as approximated and the an-
gles were not determined accurately.

−10° 10°

δoffset EMP The difference between Ta andTdry −10 K 10 K
δfrac EMP The fraction between the wet-and dry-

bulb temperatures for Twet

0 1

HT and EMP are the heat transfer and empirical models respectively

Weather station 

FLIR C3

Net Radiometer LEB

HT Method

Natural Method

EMP Method

HT equations Compare

LEB equations

EMP equations

Optimisation

Compare

Optimisation

Figure 4.4. Data flow pipeline for computing the various models and optimisations.
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A fitness function calculates Tdry and Twet for each of the models, based on
the meteorological conditions and optimisation parameters. The fitness value is
calculated as

f = e |Twet,N−Twet,M|+eTdry,N−Tdry,M −2, (4.27)

where M denotes the model under consideration. A value of two is subtracted
for perfect fitness value to be equal to zero (only for convention). The use of
the exponential errors produce better results when compared with normal error
values (results not shown). The average of the Twet and Tdry errors across all the
training days is taken as the final fitness value. The flow of data to determine the
different reference methods is presented in Figure 4.4.

The PSO is used for the HT model, where the solution space is complex with
five variables. The built-in Matlab function fminc produced worse results com-
pared to PSO (results not shown). A complicated random technique such as PSO
is not necessary to optimise simple 2-dimensional problems like the EMP model,
but was used for consistency. Other minimising functions would be able to find
the optimal values for the EMP model.

4.2.10 Data analysis

A principle component analysis (PCA) of the meteorological data and measured
reference temperatures is used to investigate the correlation between the differ-
ent variables. PCA is a method of interpreting data by reducing data dimension-
ality while at the same time reducing information loss (Jolliffe and Cadima, 2016).
Variables with the same direction on the PCA diagram are positively correlated,
while uncorrelated variables are orthogonal. Individual points are plotted on the
PCA diagram to visualise their influence over the variables.

The root mean squared error (RMSE), which weighs large errors highly, is
used along with the mean absolute error (MAE) to compare the models. If the
variance between individual samples is large, the difference between the RMSE
and MAE will be large. The mean bias error (MBE) indicates whether a value
is over- or underestimated. A 95% confidence interval (CI), calculated with a t-
score due to the low sample numbers, is used to determine the true mean of the
population.

RMSE =
√√√√ 1

N

N∑
i=1

(x f ,i −xo,i )2 (4.28a)

M AE = 1

N

N∑
i=1

|x f ,i −xo,i | (4.28b)

MBE = 1

N

N∑
i=1

(x f ,i −xo,i ) (4.28c)

C I = MBE ± t
σp
N

(4.28d)
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where N is the sample size, σ is the standard deviation.

4.3 Results

4.3.1 Environmental conditions

A summary of the recorded meteorological data is presented in Table 4.3. Solar
and net radiation values are consistently high as only clear cloudless days were
selected for measurements. Humidity, which is temperature-dependent, is rela-
tively consistent. Wind speed has little variation, except for the first day where it
has double the average value. The ambient temperature varies by about 10 K.

Table 4.3. Summary of recorded meteorological data with the given measurement ID
that will be used throughout the document

ID Date Time T ′
a φ V Rsolar Rnet VPD

(2021) [°C] [%] [m/s] [W/m2] [W/m2] [kPa]

1a 01/13 12:00 30.3 51.2 2.5 988.1 654.4 2.09
1b 01/13 14:00 31.6 48.8 2.3 900.8 574.1 2.36
2a 01/14 12:00 32.1 40.3 1.9 969.7 628.8 2.83
2b 01/14 14:00 34.2 41.5 2.6 943.2 612.1 3.11
3a 01/22 12:00 30.7 45.9 0.9 960.9 628.2 2.37
3b 01/22 14:00 30.6 47.1 1.7 969.7 624.5 2.30
4a 01/26 12:00 25.4 58.5 1.9 988.1 652.1 1.33
4b 01/26 14:00 25.4 61.3 2.7 975.4 637.2 1.25
5a 02/02 12:00 29.2 40.0 1.1 951.4 628.2 2.41
5b 02/02 14:00 31.2 35.0 1.5 945.1 606.1 2.93
6a 02/09 12:00 27.8 55.5 1.2 936.2 610.2 1.65
6b 02/09 14:00 28.2 55.3 2.0 940.0 606.1 1.70
7a 02/23 12:00 21.3 61.4 1.4 890.6 586.0 0.97
7b 02/23 14:00 22.9 55.7 1.8 884.9 571.8 1.23
Note: The ID is used to identify the dates throughout the rest of the document. The ID
is created by chronologically assigning number to the measurement days and adding
an ’a’ or ’b’ for 12:00 and 14:00 measurements respectively. VPD is vapour pressure
deficit

A PCA of the meteorological data and measured reference temperatures is
presented in Figure 4.5. From the Figure, it is clear that radiation explains most
of the variability in the data. The solar and net radiation have a strong positive
correlation. Even though the radiation is responsible for most of the variation
in the data, it has low correlations to the other measured values. The wind has
no correlation to the other variables and this is due to the low variation of wind
conditions measured. In theory, if the absolute humidity remains constant and
the ambient temperature increases, the relative humidity will decrease. This is
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Figure 4.5. Principle component analysis on the meteorological conditions and the
measured reference temperatures

seen in the PCA, where the negative correlation between Ta and φ is strong. Two
points from the same day are generally close together, because of similar weather,
specifically radiation, which has the strongest effect on the variation conditions,
but not for 1a and 1b.. On this day, there was a sharp decrease in both solar and
net radiation from 12:00 to 14:00. This was verified with the commercial weather
station data that is not used.

4.3.2 Reference leaves condition selection

In Figure 4.6, the distributions of the different reference temperatures conditions
are presented for certain days, along with the distribution of the shaded and sun-
lit canopy temperatures. It was decided to take reference measurements before
and after each of three treatment groups discussed in Chapter 6.

With Twet, the sunlit reference leaves reach temperatures similar to the sunlit
and shaded canopies. The sunlit leaves have a larger variation than the shaded
leaves. By using the shaded wet leaf, it is ensured that the wet reference is lower
than the canopy temperatures, and a consistent temperature can be measured.

For Tdry, it is clear that the dry reference temperatures taken on the shaded
side of the canopy overlap the shaded and sunlit canopy temperatures and are
not fit for use. The dry sunlit leaves are well above the canopy temperatures, but
there is significant variation in the detached leaf temperatures. These detached
leaves reach very high temperatures as no convective cooling can take place on
at the back of these leaves. For these reasons, it is decided that a attached, sunlit
dry leaf must be used for a reference Tdry measurement. Is has a temperature
consistently above the canopy and has low variability. An outlier on day 5a is
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Figure 4.6. Box plots of Natural reference surfaces under different conditions

noticed, but this data point is not considered for the average, as discussed in
Section 4.2.3.

By fixing these reference methods as the baseline Natural method, it is en-
sured that the CWSI will be in the range of 0 to 1.

4.3.3 Optimisation

The results of the optimisation are presented in Table 4.4 and the errors are given
in Table 4.5. The Twet and Tdry errors are presented for each model and each
period (training and testing).

The HT model performed well in calculating Twet. The CI is within 0.5 K of
the physical measurements. Only on two occasions did the error exceed 1 K. On
the training day with the largest error (7a), all the models performed poorly, all
underestimating Twet. The HT method had the smallest Twet error on this day. For
Tdry, the largest HT error on day 5a, is once again overestimated by all the models.
The HT method performed better on the testing data than on the training data
for Tdry, which indicate that the model is not over-fitted. The 95% confidence
interval for the Tdry with the HT methods is (−0.11±0.87) K.

The EMP model performed relatively well considering the simplicity of the
method. The Twet calculation of the EMP model a has larger variation than the
HT model, as seen by the difference between the MAE and the RMSE. The Twet

errors of the EMP model are comparable to those of the HT model, at (−0.22±
0.54) K, but the Tdry errors are slightly higher at (−0.18±1.13) K.

The unoptimised LEB model consistently underestimated Twet and overesti-
mated Tdry. There is no difference in the testing and training data, as the same
model is used. The Tdry errors might be due to the temperature of a Vaseline-
covered leaf being used as reference, whereas the equations were derived for
a normal non-transpiring leaf. Likewise, the Twet is calculated for a fully tran-
spiring leaf, not a fully wet leaf and it was therefore expected that Twet would be
overestimated by the model. The use of Vaseline and water for Tdry and Twet al-
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Table 4.4. Model parameters reached with optimisation

Parameter Model Final Value Comment
θe HT −10° This value is on the lower bound and significantly in-

creases the temperature of Tdry.
αv HT 0.63 This value slightly lowers Tdry and is close to the

range of 0.4-0.6 that Nobel (2009) predicts for leaf
material

αw HT 0.25 Twet increases only slightly by this value
fdi r HT 0.8 Values of around 0.9 reported for clear days Cengal

and Ghajar (2015) but the final value is on the lower
bound, increasing both Twet and Tdry

δbc HT −5 K A negative value is expected as the shaded inside of
the canopy will be below Ta. This value will increase
Twet but decrease Tdry.

δoffset EMP 5.495 K Very similar to the 5 K offset used by Moller et al.
(2007) for Merlot in Israel. King and Shellie (2016)
found that CWSI values were not in the desired range
when using 5 K, indicating that a higher value is re-
quired. This value may be region and climate depen-
dent.

δfrac EMP 0.219 A value below ambient temperature and above
the wet-bulb temperature is guaranteed with this
method, but is not comparable with other values in
literature as it is a novel method. It provides consis-
tently good results.

HT and EMP are the heat transfer and empirical models respectively

ready over- and underestimate these reference leaf temperatures. The Twet and
Tdry confidence intervals at (−3.84±0.80) K and (3.57±0.71) K respectively, indi-
cate that the errors do not have large variations, but are nevertheless significantly
under- and overestimated.

Some days produce large errors in all the models. Day 1a for example, has
high Tdry errors. A change in the PCA for this day was discussed in Section 4.3.1.
The models overestimated Tdry, indicating that the actual leaf did not receive as
much radiation as measured by the weather stations. The radiation measure-
ment may be incorrect for this period. On this day, the wind was the strongest
of all the measurement periods, which explains the high error in the EMP model,
which does not directly account for wind. The wind cooled down the Tdry, but
the EMP model could not compensate for it. On day 5a, the calculated Tdry is
very high, but investigating the weather conditions does not reveal a clear expla-
nation of the large errors. The errors on this day do not conform to the errors
on the other days. On day 3a, the lowest wind speed was recorded and the HT
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and EMP models underestimated Twet and Tdry. This may indicate that at low
wind speeds, the wind is not transferred to the canopy rows. On day 7a, Twet was
underestimated by all the models. The LEB model had a particularly high Twet

error on this day, which had the highest relative humidity and the lowest VPD. As
a result, the evaporative demand on the Twet leaf was low. The models estimated
that more cooling would occur as a result of evaporation, but the atmospheric
conditions did not allow for this evaporation. The HT method, which directly
calculates evaporation, had the lowest Twet error on that day.

Overall, the HT method performed the best in calculating the reference tem-
peratures. The simple EMP method performed better than the more complicated
LEB method. The EMP model errors are within 0.5 K of the HT model. Optimi-
sation on more days with more variation in weather conditions may further im-
prove the results.

Table 4.5. Errors in calculating reference temperatures with the different automatic
methods in the different measurement periods

Phase ID
HT EMP LEB

Twet Tdry Twet Tdry Twet Tdry

Training Data

1a 0.81 2.08 0.79 2.69 -2.98 5.53
1b 0.41 -0.17 0.30 0.32 -1.89 3.76
2a 0.37 -0.69 -0.12 -1.64 -2.94 4.81
2b -0.89 -1.06 -1.43 -2.08 -3.36 3.75
3a -0.27 -2.77 -0.69 -3.61 -4.67 1.55
3b 1.12 0.89 1.09 1.35 -2.39 3.49
5a 0.70 2.98 0.95 3.50 -1.54 5.69
5b 0.78 -0.21 0.60 -0.66 -2.53 3.21
6a -0.59 -0.62 -0.90 -1.00 -2.17 2.98
6b 0.15 0.48 -0.05 0.54 -4.15 3.58

Testing Data

4a -0.25 -0.06 -0.60 0.05 -4.81 4.09
4b 0.67 -2.15 0.09 -2.35 -3.95 1.76
7a -1.56 0.66 -1.79 1.04 -6.39 3.58
7b -0.84 -0.85 -1.36 -0.72 -5.00 2.24

Testing Data
MAE 0.83 0.93 0.96 1.04 - -
RMSE 0.95 1.20 1.16 1.33 - -
MBE -0.49 -0.60 -0.91 -0.49 - -

All data

MAE 0.67 1.12 0.77 1.54 3.48 3.57
RMSE 0.76 1.46 0.92 1.90 3.73 3.77

CI
0.04 -0.11 -0.22 -0.18 -3.48 3.57
±0.46 ±0.87 ±0.54 ±1.13 ±0.80 ±0.71

Note: Twet and Tdry errors are in K. Negative errors are coloured and scaled blue
and positive errors are coloured and scaled red.
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Figure 4.7. Low-cost sensor reference temperature vs C3 reference temperature. The
black lines indicate a 1:1 relationship.

4.3.4 Low-cost sensor reference temperature

measurements

In Figure 4.7, the difference between the C3 and the low-cost sensors is presented
for Twet and Tdry for individual measurements. The average Twet errors are lower
than the average Tdry errors, but Twet has a different gradient from the C3. All
sensors underestimated Twet by about 2.5 K.

For Tdry, the low-cost IR sensors all measured higher temperatures than the
C3. This could indicate that the Flir has a systematic error, but this is unlikely as
the same offset is not observed for Twet. The variation in the Tdry errors are much
higher those that of Twet.

The errors in Figure 4.7 may be misleading as the reference temperatures are
taken as the average of six measurements. MAEs and MBEs are presented in Ta-
ble 4.6. When combining the six measurements, the MAE of the combined mea-
surements are lower, but the offsets seen in Figure 4.7 remains. The IR35 is the
best performing sensor, with MAE below 1.5 K for both Twet and Tdry.
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Table 4.6. Low-cost sensors average errors of the six measurements

MAE MBE
Sensor Twet Tdry Twet Tdry

IR12 1.75 1.89 1.75 -1.76
IR35 1.35 1.43 1.35 -1.29
IR90 1.77 2.77 1.77 -2.77
IR_Arr 1.14 2.29 0.90 -2.00

Note: Twet and Tdry errors are in K

4.4 Discussion

4.4.1 Heat Transfer model sensitivity to weather

conditions

The HT model’s sensitivity to weather conditions is presented in Figure 4.8a. As
expected, both Twet and Tdry are sensitive to Ta. Twet has evaporative cooling
which increases with an increased ambient temperature. As the ambient tem-
perature increases, the relative humidity decreases (assuming a constant abso-
lute humidity) and the rate of evaporation increases. This evaporation opposes
the increase in Ta and Twet is thus less sensitive to ambient temperature than
Tdry. For the same reason Twet is more sensitive to relative humidity than Tdry,
upon which it has no affect.

Change in wind speed does not have a linear effect on the reference temper-
atures. The convective heat transfer coefficient is proportional to the square root
of the wind speed (see Equations 4.11 and 4.12). As evaporative heat transfer is
analogous and opposite to convective heat transfer (see Equations 4.12 and 4.16),
Twet is less sensitive to wind than Tdry.

Solar radiation affects Tdry more than Twet. This is to be expected as Twet is in
the shade and only receives diffuse solar radiation.

Figure 4.8b shows the magnitude of the different heat transfer mechanisms
on the two reference leaves. The radiation term is the sum of radiative heat ex-
change between the leaf and the soil, sky, opposite canopy and the back canopy.
Tdry loses heat via convection and radiation as it is above the ambient tempera-
ture. The opposite applies to Twet. It is noted that the convection heat transfer
and evaporative heat transfer for Twet are in opposite directions, as the Twet leaf
is below Ta.

The results from the HT model’s sensitivity agree well with the PCA of the
measured weather conditions and reference temperatures in Figure 4.5. The am-
bient temperature has the largest positive correlation to Tdry, and slightly less to
Twet. This observation was also made for the HT model. The fact that solar ra-
diation is nearly orthogonal to the reference temperatures in h PCA, agrees with
the HT model, as the model predicts that the solar radiation has only a small in-
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Figure 4.8. HT model at nominal conditions of T ′
a = 30°C, φ = 0.5, V = 2m/s and

Gtot = 940W/m2.

fluence over the reference temperatures. In the HT model sensitivity analysis,
the wind speed had a low influence on the reference temperatures, which agrees
with the low correlation in the PCA. The relative humidity has a strong negative
correlation to the reference temperatures, which is contrary to the HT model,
as relative humidity is strongly dependent on ambient temperature. For Figure
4.8a, Ta was kept constant while increasing φ.

4.4.2 HT and LEB sensitivity to optimisation parameters

The sensitivity of the calculated Tdry and Twet to the optimised parameters listed
in Table 4.2 is presented in Figure 4.8. The most sensitive parameter for the HT
model is the solar absorptivity of the Vaseline,αv, and it only influences Tdry. The
solar absorptivity of the wet leaf has a small effect on Twet and none on Tdry.

The angle of incidence error has a strong negative gradient, as the angle of
incidence is measured from the leaf normal (see Figure 4.2). The closer the solar
angle to the leaf normal, the more radiation it receives. Counter-intuitively, Tdry

and Twet decrease slightly with increasing direct component of solar radiation.
The total solar radiation that reaches the leaf is the sum of direct (around 90%)
and diffuse (around 10%) components of radiation. Of the direct component of
radiation, a small fraction (because of the low solar angle of incidence) heats up
the leaf. As the component of direct solar radiation ( fdir) increases, a larger pro-
portion is further attenuated by the effect of the angle of the leaf to the sun and
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Figure 4.9. Sensitivity of the HT model to the optimisation parameters at nominal
conditions of Figure 4.8. The parameters are varied between the lower and upper bounds
specified in Table 4.2. and the zero position is the value reached with optimisation.

less radiation reaches the Tdry leaf. See equation 4.8 for the sum of the direct and
diffuse components of solar radiation. The temperature of Twet decreases slightly
with an increase in fdir, as a smaller portion of the solar radiation is scattered dif-
fusely.

4.4.3 Comparison of the different models

The Natural method is an adequate baseline reference temperature method used
in many studies. By taking the average of the six measured temperatures in each
period, the effects of fluctuations in weather conditions are avoided.

The EMP method, being the simplest method, can be used as a reference
when no other data is available. A novel approach was used by taking a tem-
perature between the wet- and dry-bulb temperatures for Twet. This method
only takes ambient temperature and humidity into account, which are the two
most important weather parameters, as seen in the PCA. It was observed that the
model performed worst in periods with high wind speeds.

The unoptimised LEB model had large errors, but the consistency of the di-
rection of the errors allow the values to be usable. As Twet and Tdry are under
and overestimated, the canopy temperature will not be close to these reference
temperatures and the CWSI is guaranteed to be in the range of zero to one. This
model has the additional disadvantage of requiring a net radiometer. Other au-
thors such as Sepúlveda-Reyes et al. (2016) have successfully implemented LEB
models. When correlating the CWSI to the stem water potential (SWP), these au-
thors obtained a r 2 of 0.36 using an LEB method, compared to r 2 of 0.21 when
using the Natural method.

The HT method performed the best of all the models. To understand the pa-
rameters reached, one must take Figure 4.9 into account. It is noted that the
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optimisation parameters have a lesser effect on Twet than Tdry, and that θe and
αv only affect Tdry. As a result, the optimisation has independent control over
Tdry, using θe and αv. The model thus optimises Twet using the shared parame-
ters ( fdir and δbc) and αw which influence both Twet and Tdry, to optimise Twet. It
then uses θe and αv to optimise Tdry.

The shared parameters are optimised to values that lower Twet (except for fdir,
which has a very small influence). This indicates that the evaporative cooling
of the Twet leaf is underestimated, as it is the only method of heat transfer that
cools Twet, as seen in Figure 4.8b. In Table 4.5, it is seen that Twet is generally
overestimated by the HT model.

In Figure 4.9, the effects of the parameters on Tdry are seen. Remembering
that δbc is set by the optimisation of Twet, it is observed that θe reaches a value
that increases Tdry. αv is in the middle of its range, indicating that the model had
very good control over the model’s Tdry temperature.

The effect of convective heat transfer may be the cause of errors in the HT
model. The same model of convective heat transfer applies to both Twet and
Tdry (heating and cooling the respective surfaces). Had the magnitude of con-
vective heat transfer been lower, then Twet would be at a lower temperature and
the optimisation parameters would not reach its limits. Tdry would be at a higher
temperature and θe would not reach its limits. This is however not conclusive ev-
idence and further investigation into the convective heat transfer may improve
the results.

4.4.4 Low-cost sensors

When measuring Tdry, the MR obstructed sunlight when brought close to the leaf
and the steady state temperature of the leaf was disturbed, which can explain
the large variation in the data. This was confirmed by noting that the variation
between the C3 and low-cost sensors on the shaded Tdry leaves (in Section 4.3.2)
were lower for all the sensors (results not shown). The induced errors cannot be
avoided when using these low-cost sensors, except if a sensor with a very small
field of view (FOV) is used from around 0.3 m, not casting shade on the target
leaf.

The offset in Tdry may be as a result of the reflected temperature from the MR
that is higher than the reflected temperature from the opposing shaded side of
the canopy and the sky. The opposing canopy and sky contribute most of the
radiation heat transfer received by the Tdry leaves. Equation 4.2 shows that the
radiation emitted by a surface is the combination of its own temperature and re-
flected temperature. The IR sensors report higher Tdry values, even though the
leaf temperature is mostly unchanged (the MR only casts a shadow for a few sec-
onds). The MR reaches high temperatures when used in the sun, with IR internal
thermistor temperatures as much as 10 K above ambient temperature.

This reflected temperature explanation is motivated by the shaded Vaseline
covered leaf temperatures in Section 4.3.2, which has an offset of only ±2 K. In

Stellenbosch University https://scholar.sun.ac.za



Chapter 4. Reference temperatures modelling and measurement 54

this case, the opposing canopy is sunlit and the difference between the MR and
the canopy temperature is smaller, having a lesser effect on the reported temper-
ature.

One might argue that the radiation emitted by the atmosphere between the
leaf and the sensor can have a further influence over the temperature, but Costa
et al. (2013) and Jones (2004) state that it only needs to be taken into account with
airborne and satellite images. Figure 2.1 indicates that the atmospheric trans-
missivity of the air is very high at distances below 1 m.

The reflectivity of the Vaseline-covered leaf may higher than that of the water-
coated leaf, suggested by the fact that the temperature offsets are not observed
with Twet. A constant value of ε= 0.96 is used in literature. Watson (1933) found
that Vaseline can decrease the emissivity of leaf material, but does not specify
a value. Most authors use a value of 0.96 for grapevine leaves and do not re-
port using different emissivity values for reference leaves. The value of 0.96 was
thus used throughout this study. Jones (2004) found that a emissivity error of 1%
can lead to a temperature error of 0.75 K at an ambient temperature of 27 K°C. A
change in the emissivity of the Vaseline would be taken into account on the C3
as well, and the temperature offset would remain unexplained.

The IR35 sensor performed the best when taking both Twet and Tdry into ac-
count. The IR12 sensor only focuses on a small area of the leaf and may not give
a good representative leaf temperature. In contrast, the IR90 sensor has high
variability when measuring Tdry as it focuses on a large area and may include
non-leaf background material.

4.5 Conclusion

Different conditions for the application of the Natural method were compared
and it was found that an attached Vaseline-covered leaf in the sun and a water-
covered leaf in the shade provide the most consistent and applicable reference
temperatures. After these conditions were established as the baseline method, it
was used to measure target temperatures for the optimisation models.

Optimisation strategies were successfully implemented to calculate parame-
ters for different models of calculating CWSI reference temperatures. The most
complex method (HT) performed the best when evaluating it against training
data, but requires additional refinement in calculating the convective heat trans-
fer. The HT method could calculate Twet and Tdry to within 0.5 K and 1 K respec-
tively. The EMP method provided good results, considering that it only requires
temperature and humidity data. The LEB model performed poorly in calculating
Twet, and Tdry, but is was explained that the equations were not derived for these
specific conditions.

Lastly, the low-cost sensors were not found to be reliable in measuring Tdry,
but could measure Twet to within 2 K. It was found that the IR35 sensor per-
formed the best out of the low-cost sensors.

Stellenbosch University https://scholar.sun.ac.za



Chapter 5

Canopy Temperature

5.1 Introduction

5.1.1 Canopy temperature measurement

Canopy temperature is defined as the average of the plant’s leaf temperature dis-
tribution (Fuchs, 1990). This temperature is approximated with the use of in-
frared (IR) sensors, by taking the average temperature of the leaves in the field
of view (FOV) of the sensors. Pou et al. (2014) found that selecting a region of
interest (ROI) from an entire canopy’s thermal image, rather than single leaves,
provides an appropriate method to define canopy temperature. The authors ex-
plain that using large areas decreases disturbances caused in the microclimate of
the canopy.

Accurate canopy temperature measurements are essential for the determina-
tion of a plant’s water status, but they are not trivial to determine (Fuchs, 1990).
Background temperatures, observed due to gaps in the canopy, can introduce
measurement errors. To mitigate these effects, IR camera users can manually
select ROIs in the thermal image. For single-area sensors, these errors are un-
avoidable and only measurements close to the canopies can ensure that no back-
ground is included in them.

5.1.2 Chapter Objectives

The main objective of this chapter is to determine whether the low-cost sensors
can measure the same canopy temperatures as the Flir C3, which is used as a
baseline measurement and reference canopy temperature for this chapter. To
accomplish this, the low-cost sensors are used at different distances to accom-
modate for the differences in sensor FOVs. The use of a white panel (WP) as
background is investigated to determine whether it can improve the results of
the temperature measurements.

A second objective is to determine whether methods of calculating represen-
tative temperatures for the IR camera sensors can eliminate the process of man-

55

Stellenbosch University https://scholar.sun.ac.za



Chapter 5. Canopy Temperature 56

ually selecting ROIs on an normal images.

5.2 Materials and methods

5.2.1 Measurement procedure and study site

In the same experiment as described in Chapter 4, additional measurements
were taken of the canopies to investigate the different IR sensors. On six of the
seven days listed in Table 4.3, five sensors were used to measure the temperature
on both sides of nine plants. Measurements were taken at 2 m, 1 m and 0.5 m
on both sides of the canopy. All these measurements were taken with and with-
out a WP as background to attempt to eliminate the effect of the background sky
and soil temperatures. Measurements were done at 12:00 and 14:00, roughly one
hour before and after local solar noon respectively. In total, 24 measurements
were taken per plant per day.

The measurement sequence on both sides of each plant was: (i) C3 at 2 m;
(ii) measurement rig (MR) at 2 m; (iii) C3 at 1 m; (iv) MR at 1 m; (v) C3 at 0.5 m;
(vi) MR at 0.5 m. The 2 m measurement was taken aiming at the centre of the
canopy. Thereafter as the sensors were moved closer, the measurement was aimed
at dense areas in the canopy.

5.2.2 Canopy background

A WP was constructed from sheets of white Correx plastic sheeting and an alu-
minium frame, making it light enough to carry around in the vineyard. The
panel, at 3.5m× 2.5m is larger than the canopy of the vines. This WP is used
instead of the black panel mentioned in Section 2.6, to differentiate between the
background and the shaded leaves in the canopy. Giuliani and Flore (2000) chose
a black panel to heat up above the canopy temperature for thermal thresholding.
With the single-area sensors, that is not possible and a hot background panel
would further interfere with the results.

5.2.3 IR camera representative canopy temperatures

Masked temperature

An accurate reference canopy temperature is required for evaluating low-cost
sensors and array analysis methods. A manual process of selecting only leaf
material from the red-green-blue (RGB) image taken from 2 m ensures that the
maximum number of canopy leaves is taken into consideration for the reference
canopy temperature.

To accomplish this, a Matlab program was written to present the thermal and
RGB images and allows the user to select the ROI which is used for tempera-
ture calculations. An example of the masking process is presented in Figure 5.1.

Stellenbosch University https://scholar.sun.ac.za



Chapter 5. Canopy Temperature 57
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Figure 5.1. Masked RGB image of canopy with mask and the accompanying thermal
image

Only leaf material is carefully selected while avoiding background, especially sky,
which has a very low temperature measurement with an IR sensor, and the soil,
which can measure upwards of 55 °C. The representative canopy temperature is
then calculated as the average temperature of all the selected areas in the mask.
This reference canopy temperature method is referred to as the ‘Mask’ method.

Filter temperature

Another method to eliminate non-leaf material is to use the crop water stress
index (CWSI) reference temperatures (Twet and Tdry, taken by the same sensor)
as thresholds to eliminate thermal pixels (Jones, 2002; Gutiérrez et al., 2021). An
example of this approach is shown in Figure 5.2. This automatic method can
be applied to the IR_Arr and the C3 sensors. This method has the drawback of
not being able to discern between leaf and non-leaf material. The stem or grape
berries are likely to be within the range and will affect the average temperature.
This method is referred to as the ‘Filter’ method.

Figure 5.2. Thermal image filtered with CWSI reference temperatures. The white space
on the figure refers to temperatures that are out of the CWSI range. The same image as
Figure 5.1 is used.
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Figure 5.3. Temperature matrix and distribution of an IR_Arr canopy measurement

Peak temperature

A simple method of estimating a representative canopy temperature is to calcu-
late the most frequent temperature in the temperature matrix. To accomplish
this, the values are divided into 100 bins, equally scaled between the minimum
and maximum temperatures. The bin with the most values is selected as a repre-
sentative canopy temperature. This is synonymous with taking the peak value of
a histogram of the temperature values. As the canopy fills the largest portion of
the camera FOV, the most frequent temperature can be taken as a representative
canopy temperature that ignores the effects of background temperatures. This
method is referred to as the ‘Peak’ method.

In Figure 5.3 the temperature distribution is presented alongside the temper-
ature matrix. Two temperature distributions are presented, one with all the val-
ues included and one where the bottom and top rows on the temperature matrix
are omitted to avoid sky and soil temperatures. These two distributions indicate
that the method of selecting the peak from the histogram works well to eliminate
soil and sky temperatures, as the peaks are at the same temperature of 24.6 °C.

Average temperature

A simple average temperature of all the values in the matrix is provided to en-
sure that the proposed methods can outperform an approach where no complex
calculations are done.

5.2.4 Single-area sensors

The single-area sensors capture an entire area and report a weighted average
temperature, as discussed in Section 3.2.2.

Gaps in the canopy, allowing background surfaces to affect the canopy tem-
perature readings, cannot be avoided. By selecting sensors with appropriate
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(a) Non-stressed plant, SWP = −1.028 MPa (b) Stressed plant, SWP = −1.540 MPa

Figure 5.4. Stressed and non-stressed vines captured from 2 m with white panel back-
ground on 23 February 2021

FOVs at the different distances, these errors can be minimised. The water-stressed
plants have more gaps in their leaves, exposing the hot soil in the background.
This can lead to false positive correlations of high temperatures for the high water-
stressed plants when investigating CWSI. Figure 5.4 shows the difference between
a stressed and non-stressed plant. Both plants have small gaps in the leaves, but
the stressed plant has significant areas of missing leaves. It is therefore expected
that these sensors will perform better at closer distances.

5.2.5 Area measured by sensors

Figure 5.5 shows the different areas captured by the sensors at the three measure-
ment distances. A single vine is pruned to 2 m high, with cordon height at 0.8 m
and row spacing of 2 m. From Figure 5.5 it is clear that the IR_Arr and IR90 sen-
sors will measure areas all around the target plant when measured from 2 m. The
strategies mentioned above are used to correct for this. It is important to capture
as much leaf material as possible while minimising the amount of background
that is captured.

5.2.6 Temperature comparisons

All the sensors’ temperatures are compared to the C3 at 2 m with a WP back-
ground. As seen in Figure 5.5, the C3 includes the entire canopy, and the small
areas at the top and bottom of the canopy are omitted with the masking process.
The WP with manual image masking ensures that background temperatures are
avoided. Each of the six measurements taken with all the sensors is compared to
this reference canopy temperature measurement.

The measurements are grouped to compare only the distances and back-
ground. The purpose of this experiment is to determine under which conditions
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Figure 5.5. Side view of the FOVs of the different sensors at the three measurement
distances. The FOV from the top is less important as the canopies are 2 m wide and are
bordered by adjacent canopies under the same irrigation treatment.

low-cost sensors can accurately measure canopy temperature. In the next chap-
ter it will be determined under which measurement conditions the canopy tem-
perature is the best indicator for plant water stress.

5.3 Results and discussion

5.3.1 Automatic IR camera methods

The mean absolute errors (MAEs), root mean squared errors (RMSEs) and mean
bias errors (MBEs) between the reference canopy temperature and the automatic
IR camera methods are presented in Table 5.1.

Firstly, looking only at the different backgrounds with the Mask temperature,
it is seen that the errors are larger when no WP background is used. At the closest
distance, however, the WP does not matter as the camera’s entire FOV is focused
on canopy material. The best distance to determine accurate canopy tempera-
ture with the Mask method and no WP is from 2 m. This is to be expected as the
entire canopy is taken into account for a representative temperature.

The Peak method does not perform well, apart from at 2 m with a WP, where it
performs the best of all the methods and configurations. The MBE shows that the
Peak method underestimates the canopy temperatures, while the RMSE shows
that the variation in the errors is not large. This indicates that the canopy tem-
peratures are generally positively skewed. This method is inadequate as it does
not perform well without a WP or at closer distances.
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Table 5.1. Error matrix of canopy temperatures comparing the automatic IR image
methods to the masked C3 measurements
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1.0
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7 0.58 0.57 0.83 0.76

0.5
3 0.63 0.51 0.70 0.53
7 0.65 0.54 0.90 0.59
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2.0
3 Ref 0.51 0.36 0.59
7 0.78 0.80 1.12 1.66

1.0
3 0.48 0.66 0.66 0.68
7 0.81 0.73 1.05 0.96
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3 0.82 0.67 0.88 0.69
7 0.84 0.71 1.11 0.76

M
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2.0
3 Ref 0.32 -0.16 0.44
7 -0.17 0.06 -0.51 1.13

1.0
3 -0.17 0.05 -0.46 0.11
7 -0.21 -0.04 -0.67 0.42

0.5
3 -0.11 -0.14 -0.62 -0.06
7 -0.24 -0.25 -0.84 0.05

Note: All error values are in K. Negative errors
are coloured and scaled blue and positive er-
rors are coloured and scaled red

Apart from 2 m, the Average method performs better than the Peak method
when no WP is used, but the errors are larger than those of the Filter method. It
is not expected that this model performs well at long distances, due to the inclu-
sion of non-leaf background material. It is observed that a simple average tem-
perature performs almost as well as the best method at close distances where the
entire FOV of the sensor is filled by canopy material.

Overall, the Filter method performs the best of all the automatic methods
when no WP is used. This method performs well at all distances, and the best
at 0.5 m. As discussed in Section 5.2.3, the stem and fruit, which are within the
CWSI reference temperature thresholds, can skew the average of the filtered tem-
perature. As a result, the method performs better at 1 m than at 2 m, where the
stem and fruits are not visible. Moving too close to the canopy can result in a tem-
perature that is not representative of the entire canopy. The MBE at 1 m without
a WP is −0.04 K, which is very close to zero, and the temperatures are thus not
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skewed in either direction.
Sepúlveda-Reyes et al. (2016) investigated thermal image thresholding by us-

ing CWSI reference temperatures from the method described by Jones (1999) to
filter aerial and ground-based vineyard thermal images. Sepúlveda-Reyes et al.
(2016) found that only 70% of leaf material was correctly identified on the sunlit
side of the canopy in the ground-based measurements. The authors suggest that
measurement of reference leaves at different angles with respect to the sun in-
creased the variability of the measurements and lead to the misclassification of
leaf material. In our study, special care was taken to identify and measure refer-
ence leaves oriented normal to the canopy, as indicated in Section 4.2.3

Gutiérrez et al. (2021) successfully used thermal thresholding to calculate a
representative canopy temperature from thermal images obtained by a thermal
camera attached to an all-terrain vehicle. A correlation of r 2 = 0.71 was found
between CWSI stem water potential (SWP).

For the Mask method, the temperature measurement accuracy does not change
significantly as the measurement distance changes. The error of the Mask method
is less than 1 K in all the cases. The measurement distance and thus the camera
FOV does not have a significant effect on the Tc measurement, which is an advan-
tage of thermography. Pou et al. (2014) found that the selecting a ROI of an entire
canopy is more appropriate than selection a ROI of a single leaf in the canopy,
as disturbances in the microclimate of individual leaves are minimised with the
large area measurement.

5.3.2 Single-area IR sensors

To find the best measurement distance for the low-cost IR sensors, one must keep
Figure 5.5 in mind. At 2 m, the IR12 sensor captures a small area of the canopy
and the IR35 sensor measures slightly over the top and bottom of the canopy.
Only a small part of the IR90 sensor’s FOV is on the canopy at 2 m. At 1 m, the
IR35 sensor captures more than half of the canopy, excluding the top and bottom
surfaces where the extreme background temperatures occur. At this distance,
about half of the IR90 sensor’s FOV is filled by the canopy. At 0.5 m the IR12 and
IR35 sensors’ FOV is on even smaller portions of the canopies, while the IR90
sensor focuses on the entire canopy. This is the only distance where the IR90 is
expected to measure representative canopy temperatures.

The results of the temperature error analysis for the low-cost sensors are pre-
sented in Table 5.2. The sensor temperatures are again compared to the masked
canopy temperature, with a WP, using the C3 from 2 m.

As expected, the IR90 improves as the distance decreases. The smallest error
is observed at 0.5 m with the WP. The WP was not expected to make a difference
at this short distance, but it may cover gaps at diagonal angles in the canopy
that allow the sensor to measure soil or sky temperature. A relatively low error is
observed at 2 m without the WP. It may be that the low sky temperatures above
the canopy and the high soil temperatures below the canopy cancel out, but it

Stellenbosch University https://scholar.sun.ac.za



Chapter 5. Canopy Temperature 63

Table 5.2. Canopy temperature error matrix of the low-cost sensors compared to the
masked C3 measurements
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7 2.60 2.14 2.19 8.17 8.91

1.0
3 1.95 2.17 3.11 10.30 10.10
7 2.21 2.47 2.51 10.14 9.76

0.5
3 2.05 2.32 1.94 10.36 10.29
7 2.08 2.66 2.34 10.28 10.37

R
M

SE

2.0
3 2.32 2.70 3.58 9.70 9.40
7 2.87 2.58 2.69 8.92 9.54

1.0
3 2.41 2.37 3.62 11.00 10.80
7 2.62 2.78 3.13 10.80 10.38

0.5
3 2.86 2.51 2.20 11.02 10.96
7 2.74 2.87 2.66 10.93 11.02

M
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E

2.0
3 1.90 -2.23 -2.76 -8.95 -8.73
7 2.57 -1.54 -1.29 -8.13 -8.90

1.0
3 1.74 -2.17 -3.04 -10.29 -10.09
7 2.16 -2.46 -1.82 -10.12 -9.76

0.5
3 1.75 -2.32 -1.91 -10.35 -10.29
7 1.89 -2.66 -2.29 -10.27 -10.37

Note: All error values are in K. Negative errors are coloured
and scaled blue and positive errors are coloured and scaled
red.

is clear from Figure 5.5 that this measurement cannot be reliable. The relatively
large errors between the RMSE and MAE indicate that there is a large variation in
the errors at 2 m.

The IR35 sensor performs the best at 2 m with no WP, where most of the
canopy is in the sensor’s FOV. The small areas that do capture sky and soil tem-
peratures are on the outer section of the sensor’s FOV, which is weighted less than
the central areas in the FOV (see Figure 3.2). Unlike the IR90 sensor, the smallest
errors were observed without a WP. The error bias for this sensor is negative, indi-
cating that the sensor underestimates the canopy temperatures. The difference
between the MAE and RMSE of this sensor is generally lower than the other two
low-cost sensors, indicating that its error variance is lower.

The IR12 sensor performed the best of the low-cost sensors. As expected,
due to the small FOV of this sensor, the best temperature measurements were
taken from the furthest distance. In contrast to the other sensors, the IR12 sensor
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overestimates the canopy temperature, as seen with the MBE. The large MAE of
2.60 K at 2 m with no WP is unexpected. As only a small portion of the canopy is
in the sensor’s FOV, it was assumed that the background temperature would not
affect it significantly. But due to the low sensor FOV, a small gap in the canopy
has a large impact on the temperature measurement.

Considering the relative performance of the low-cost sensors, the IR35 sensor
at 2 m with no WP is recommended for canopy temperature measurements. The
slightly better MAE (0.18 K) performance of the IR12 with a WP is outweighed by
the physical implications of requiring a WP background. The IR35 under these
conditions ensures that a large area of the canopy is measured, while focusing on
the centre of the canopy where the most leaf material is.

Looking at the MBE in Table 5.2, it is evident that the IR12 sensor has a pos-
itive error bias while the IR35 and IR90 have negative error biases. The sensors’
spectral bands, mentioned in Section 3.2.2, may be responsible for these offsets.
The IR12 sensor detects IR radiation in a lower spectral band than the C3. Albedo,
which is reflected solar radiation (in the <4µm spectral band (North, 2015)), is
detected by this sensor which then reports an overestimated target temperature.
Figure 5.6a affirms this argument, where it is observed that the temperature er-
ror is greater (positive) on the sunlit than on the shaded side of the canopy. The
shaded side errors are also positive, as some sunlit leaves are still visible from the
shaded side of the canopy, due to gaps in the canopy and the high solar angle of
incidence. Leigh et al. (2006) emphasises the need to use IR sensors that oper-
ate in the long-wave band when measuring plant leaf material in sunlight. The
authors developed a method of taking a temperature measurement with 1 s after
shading the target leaves, to negate the effect of the albedo.

The calibration experiment did not account for the effect of albedo, as it was
done in laboratory conditions with no sunlight. It was not expected that the
albedo effect would be as significant. The higher spectral band of this sensor
might decrease the sensor’s accuracy in determining an accurate Tc for the CWSI,
which is investigated in the next chapter.

The IR35 and IR90 sensors consistently measure a lower temperature than
the C3. The C3 canopy temperature is calculated by taking a reflective tempera-
ture into account, while the low-cost sensors simply use an on-board ambient
temperature measurement to compensate for the reflected radiation (see Ap-
pendixes A.2 and A.3). Jones (2018) indicates that the environmental radiation
incident on the measured surface can have a significant effect on the object’s
apparent temperature. The ambient temperature is an overestimation of the re-
flected temperature, as the sky and opposite canopies are the dominant compo-
nents of the reflected radiation. The sensor’s on-board temperature calculation
subtracts the perceived effect of the reflected temperature. As a result, the low-
cost sensor reports a lower temperature than the C3, which has a more accurate
measurement of the reflected temperature. In Figure 5.6b, it is observed that the
error is larger on the sunlit side of the canopy, where the opposing canopy as well
as a portion of the soil are shaded. The lower temperature of this shade causes
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Figure 5.6. Canopy temperature differences between sunlit and shaded canopies,
taken with white panel from 2 m

a larger reflective temperature error in the sensors on the sunlit side than on the
shaded side of the canopies. This effect is not noticed in the IR12 sensor, in which
case the error is assumed to be dominated by the albedo effect.

Another cause for the underestimation of temperature may be the inclusion
of sky in the FOV of the IR35 and IR90 sensors. The IR12 sensor at 2 m is pointed
horizontally and is unlikely to include sky in its measurements. The IR35 and
especially the IR90 have a significant portion of the FOV pointing upwards and
can thus be influenced by low sky temperature measurements.

5.3.3 IR array methods

The IR_Arr sensor performed very poorly. In Table 5.1 it is seen that the mean
absolute errors (MAEs) are around 10 K using both the Peak and the Filter meth-
ods. These large errors were not observed with the Twet and Tdry temperatures in
Section 4.3.4.

In Figure 5.7a, the sensor temperature is plotted against the reference canopy
temperature. It is observed that the slopes of the sensor temperatures are very
high on the individual dates, and as a result, the overall correlation between the
sensor and the reference canopy temperature is poor. It is further noticed that
the 10 K is not a constant offset, but is accompanied by significant noise. Recal-
culating the errors by removing the calibration curve discussed in Chapter 3 does
not improve the results.

This sensor, which can be used to observe the temperature distribution shown
in Figure 5.3a, did serve a purpose in being used to aim the other sensors. The
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Figure 5.7. Scatter plot of sensor temperatures vs. reference temperatures. Measure-
ments taken from 1 m with no WP. The same legend applies to both plots.

sensor is, however, not useable for research or commercial purposes in measur-
ing canopy temperature.

The selected IR array type sensor was not successful in this study, but other
studies have implemented similar sensors successfully. Noguera et al. (2020)
measured CWSI in an olive orchard with a low-cost IR array type sensor. They
used a Melexis MLX90620 IR sensor (16× 4 pixels) to measure canopy temper-
atures and found a correlation of r 2 = 0.90 between CWSI and pre-dawn water
potential (only 8 plants were measured on a single day).

5.4 Conclusions

It was established that the low-cost IR35 sensor, measuring from 2 m, can deter-
mine the canopy temperature to within 2.5 K. The different spectral ranges of
the sensors and the method of calculating the reflective temperature of the IR
measurement were identified as sources of erroneous Tc measurements with the
low-cost sensors. In the next chapter, it is investigated whether the single-area
low-cost sensors can be used to accurately measure CWSI.

The evaluation of automatic methods of IR camera representative temper-
ature calculation was accomplished by comparing three methods. The Filter
method which uses Twet and Tdry as temperature thresholds to eliminate values
in the temperature matrix proved to be the most successful. For commercial pur-
poses, this method could prove useful, as it requires no image analysis from the
operator while providing accurate canopy temperature measurements.
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Chapter 6

Crop water stress index

6.1 Introduction

6.1.1 General introduction

Even though thermography is emerging as a robust and non-invasive strategy to
assess plant water stress of vineyards, it has not been widely adopted (Garcia-
Tejero et al., 2016). The use of a stress index which normalises the canopy tem-
perature to the instantaneous environmental conditions of the measurement is
required.

The crop water stress index (CWSI) is such an index which depends on the
canopy temperature and two reference temperatures. The requirement of three
temperatures for the calculation of CWSI introduces measurement uncertainty.

CW SI = Tc −Twet

Tdry −Twet
(2.3)∗

Practical measurement uncertainties such as the canopy side, the use of a
white panel (WP) background, time of day and measurement distance are not
consistent in literature. The high cost and complicated image analysis tech-
niques of IR cameras make low-cost single-area infrared (IR) sensors appealing.
Clarity with regard to the best measurement parameters and IR sensor require-
ments will accelerate the commercial adoption of the CWSI technique.

6.1.2 Chapter objectives

The first objective is to establish whether canopy temperature is an accurate in-
dicator of plant water stress. Thereafter, the need for a normalising stress index
must be demonstrated.

The main objective of this chapter is to investigate under which measure-
ment parameters low-cost sensors can be used to accurately determine CWSI.
In addition, it is evaluated whether the best performing automatic temperature
calculation method from Chapter 5 can be used to determine CWSI.

67
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Finally, it is investigated whether the reference temperature strategies devel-
oped in Chapter 4 can be used for CWSI calculation with the different sensors.
The overall goal is to determine whether a low-cost sensor, along with an auto-
matic reference temperature method can be used as an indicator of plant water
stress.

6.2 Materials and methods

6.2.1 Reference plant water stress measurement

Stem water potential (SWP), discussed in Section 2.5.3, is a comprehensive indi-
cator of water shortage in plants (Choné et al., 2001) and was taken as the refer-
ence water stress measurement for this study. A pressure chamber (PMS Instru-
ment Company, model 1505D, Albany, USA) was used to perform the measure-
ments. SWP was measured within 15 minutes of taking the thermal images. So as
to reduce human error, the same operator performed all the SWP measurements.
Full-grown and healthy leaves were selected from the middle of the canopy of
each vine facing the shaded side of the canopy, to avoid overheating. To dimin-
ish leaf transpiration, each selected leaf was covered with aluminium foil inside
a plastic zip bag at least 1 hour before the measurements (Choné et al., 2001).

SWP is used as a baseline for plant water stress when comparing IR sensors.
Carrasco-Benavides et al. (2020) points out that some studies compare the res-
olution of thermal images by linear regression between two sensors measuring
the same variable (Martin, 2000). Linear regression is only recommended for
comparing a new method with an established method and assumes that the new
method is the source of error (Stockl et al., 1998). The established SWP is used as
a reference and the correlation coefficient of CWSI to SWP is used to evaluate the
different measurement parameters and sensors.

6.2.2 CWSI reference temperatures

In many studies (e.g., Costa et al. (2013) and Zhou et al. (2021)) reference leaves
or surfaces are placed in the field of view (FOV) of the canopy’s thermal images
to record the instantaneous reference temperature at Tc measurement time. For
this study, single-area IR sensors are used, which cannot differentiate between
different temperatures in its FOV. For consistency, reference temperature mea-
surements were taken separately from canopy temperatures, with all the sensors.

The reference temperatures, recorded as described in Chapter 4, were used
for this chapter.
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Extra irrigation

Commercial irrigation

No irrigation

Figure 6.1. Satellite image of mea-
surement site (Google Earth, 2021)

Figure 6.2. Grapevines at measure-
ment site

6.2.3 Experimental setup

To have a wide range of water conditions during the growing season, three wa-
ter regimes were implemented in the field with three replicates each (vine level):
(i) Control vines were irrigated according to the commercial practice defined by
the viticulturist; (ii) Dryland, where the vines were not irrigated during the en-
tire season and received water only from rain; (iii) Full irrigation, in which case
the vines received additional water every week to keep a minimum SWP value of
−0.9 MPa. SWP below −0.9 MPa is classified as weak water deficit (Van Leeuwen
et al., 2009) (negative pressures are discussed in Section 2.5.3.) A total of 300 L
of water was given to the fully irrigated plants in addition to the commercial ir-
rigation, to control the water deficit. The regions were selected based on data
from the previous season which indicated significant differences in stress levels,
determined with SWP. The physical distances between the sets were taken into
consideration to minimise the time taken to travel between the different sets. A
satellite view of the measurement site is presented in Figure 6.1, and a view of a
grapevine row is presented in Figure 6.2.

Taking into account that measurements take about 30 minutes, measurements
were started at 11:45 and 13:45, approximately one hour before and after solar
noon, respectively. Garcia-Tejero et al. (2016) suggest that between 11:00 and
14:00 (locally) is the best time of the day to collect thermal data that is physiolog-
ically meaningful.
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6.3 Results and discussion

6.3.1 Physiological response

The plant water stress, measured with SWP, is presented in Figure 6.3. Initially,
on 14 January, there is only a slight difference in the SWP of the groups. This
difference between the groups increased as the season progressed, and reached
a maximum difference of 1.12 MPa at the end of the season. It was observed that
all the plants recovered some water deficit between 2 and 9 February. No rain
fell during this period, but the block was irrigated for 12 hours (at 2.3 l/h) on 3
February. Some water did reach one of the stressed plants on 7 February and
26 February, as its SWP is significantly higher than the other two plants in its
group. This is not a problem as a wide SWP range is still observed between the
minimum and maximum SWP. The extra irrigation of the fully irrigated plants
ensured that these plants did not reach a high water stress level. It is observed
that the commercial irrigation was implemented when a moderate level of plant
water stress was reached, according to Table 2.2.

The SWP measured is in a similar range to that of Poblete-Echeverria et al.
(2017) who measured SWP to be from −0.5 MPa to −2.0 MPa (cv. Carménère).
The seasonal progression of the difference between irrigated an non-irrigated
SWP values is similar to that of Fernandes de Oliveira et al. (2021) (cv. Cannonau).
The authors measured SWP of −0.6 MPa for both groups in the initial path of the
season and recorded a minimum SWP of −1.65 MPa for the non-irrigated vines at
the end of the season and the maximum difference between the irrigation groups
were 0.4 MPa. The SWP values measured in this study are thus in the expected
range and cover a wide range of plant water stress values.
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6.3.2 Solar angle of incidence

The solar angle of incidence at the middle of the measurement time is presented
in Figure 6.4a. The angle of incidence is dependent on measurement date, time,
location and the orientation of the canopy. As the season progresses, the angle of
incidence decreases if the measurement time is kept constant. It was, however,
observed that the measurement time had a larger effect on the angle of incidence
than the seasonal shift in the solar zenith angle.
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Figure 6.4. Solar incidence angle and measurement time

6.3.3 Thermal response of vines

Figure 6.5a presents the correlation between SWP and canopy temperature on
the different days. There are strong correlations between the variables on any
given day (r 2 ranging from 0.41 to 0.95), but in general, over all the days, there is
no correlation. The results agree with Gutiérrez et al. (2018) that indicate that the
correlation between CWSI and SWP is greater on any given day than when days
are combined, but individual days provide little information and days should al-
ways be combined.

It is noted that there is a definite change in the slope of the curves after 2
February. This coincides with the phenological stage of veraison, where the plant
changes focus from using energy for plant growth to berry growth. The data is
therefore split into two groups: pre-veraison (Stage II) and post-veraison (Stage
III). The CWSI in the different stages is presented in Figure 6.5b. Fernandes de
Oliveira et al. (2021) found a similar change in grapevine thermal response and
suggests that as the phenological stages progress, lignification along the main
shoot causes variation in water transport along the main shoots of the vines. The
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change in water transport results in different thermal responses of the vines in
the different growth stages. The authors accounted for this by adjusting their
stress index by adding different constants for the different major phenological
stages. It has furthermore been suggested that at the end of the season, some
leaves approach a senescent condition, where these leaves are not representative
of the entire canopy, which might negatively influence results(Moller et al., 2007).

Bellvert et al. (2014) provided evidence that the physiological stages of the
grapevine affect the correlation and the equation between leaf water potential
and CWSI (using the vapour pressure deficit (VPD) method described in Sec-
tion 2.4.1). The authors explain that a change in the solar zenith angle affects
the canopy temperature as the season progresses. As the sun’s maximum solar
zenith angle decreases from summer to winter, the fraction of shaded leaves in
the canopy changes.

In this study two periods are separated and presented, but not adjusted with
constants. The CWSI equation is used without modifications. The observed dif-
ference in the CWSI response in the different phenological stages agrees with
Mwinuka et al. (2021) who found differences is the CWSI correlation to leaf water
content in the different vegetative stages of African Eggplant

The SWP range (Figure 6.3) is larger in the second stage, and one would expect
better correlations between CWSI and SWP, but in Figure 6.5a it is seen that the
temperature variation in this period is lower than in the first period. This period
after veraison, is important for viticulturists as the water stress in the vines has
an influence over the ultimate wine quality.
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6.3.4 CWSI Comparisons

The full matrix of CWSI to SWP correlations under the different measurement
techniques, is presented in Table 6.1. The correlations were calculated indepen-
dently for both stages, using 3 days per stage. Each r 2 value is thus calculated
with 27 points, as there are nine target plants in the study. On 2 February, the
IR12 sensor became disconnected, and the high correlations for this sensor in
stage III are, in part, due to a lower number of measurements.

Table 6.1. CWSI vs SWP correlation matrix
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1.0 3 0.25 0.29 0.23 0.34 0.11 0.11 0.39 0.41 0.01 0.03
2.0 7 0.30 0.43 0.02 0.43 0.35 0.11 0.09 0.20 0.02 0.05
2.0 3 0.34 0.35 0.37 0.39 0.46 0.22 0.30 0.22 0.01 0.18

Sh
ad

e
12

:0
0

0.5 7 0.38 0.16 0.36 0.18 0.16 0.03 0.21 0.22 0.19 0.12
0.5 3 0.40 0.26 0.41 0.28 0.12 0.11 0.27 0.25 0.20 0.17
1.0 7 0.45 0.16 0.44 0.13 0.16 0.15 0.23 0.13 0.14 0.11
1.0 3 0.42 0.26 0.41 0.18 0.21 0.04 0.30 0.19 0.04 0.06
2.0 7 0.43 0.27 0.44 0.27 0.18 0.06 0.07 0.30 0.00 0.21
2.0 3 0.43 0.17 0.42 0.11 0.21 0.01 0.25 0.12 0.04 0.06

Note: Correlations (r 2) shaded from white (weak) to green (strong)
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IR camera

To investigate only the C3 and the measurement sides, an extract from Table 6.1
is presented in Table 6.2.

Table 6.2. Extract from Table 6.1 of the CWSI vs SWP correlations for C3 at 0.5 m

Side Sunlight WP Stage II Stage III

East
Sun 12:00

7 0.49 0.09
3 0.64 0.27

Shade 14:00
7 0.39 0.48
3 0.49 0.54

West
Sun 14:00

7 0.12 0.14
3 0.23 0.18

Shade 12:00
7 0.38 0.16
3 0.40 0.26

Note: Correlations (r 2) shaded from white (weak)
to green (strong)

Comparing the Eastern and Western sides of the canopy for the C3 with the
best conditions (WP at 0.5 m) only, it is clear that the correlation is better on the
Eastern side, irrespective of the measurement time and thus the sun’s position.
Gutiérrez et al. (2021) found that the Eastern side of the canopy provided the best
correlations when combining four days measured over two seasons (only using
afternoon measurements). The side of the canopy that received sunlight during
the morning proved to be the better indicator of plant water stress. The East-
ern side is photosynthetically active for a prolonged period of time (the whole
morning, compared to the one hour that the Western side receives sunlight be-
fore measurements).

It is further noticed that the sunlit side, at 12:00, performed very well in stage
II, and very poorly in stage III. The Eastern side, at 14:00, performs consistently
in both periods. The change in the canopy’s thermal response, discussed in Sec-
tion 6.3.3, has a larger impact on the sunlit side of the canopies.

The consistency of the results at 14:00 on the shaded side of the canopy makes
it attractive as a standard method for CWSI measurement. The results are con-
sistent with literature that indicate that the shaded canopy side should be used
for CWSI measurements (Jones, 2002; Pou et al., 2014; Petrie et al., 2019).

The C3 performed well at all three distances, but the correlation is the best
at the closest distance, especially when no WP is used. Error is introduced by
measuring non-canopy temperatures, such as background, trunk and fruit, when
measuring from further distances. The benefit of including a larger sample of the
canopy leaves for a representative canopy temperature does not outweigh these
background errors. The fact that the shaded side of the canopy is used, reduces
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the need to capture a larger sample of the canopy, as the leaves on the shaded
side of the canopy are at a similar temperature.

Low-cost sensors

The findings in Section 6.3.4, regarding the canopy side, also apply to the low-
cost sensors (presented in Table 6.1). The correlations are good on the sunlit side
of the canopy at 12:00 in the first stage, but in the second stage, the correlations
on the shaded side, at 14:00, are the best. A summary of the low-cost sensor CWSI
to SWP correlation is presented in Table 6.3 for all distances, with and without a
WP on the shaded side at 14:00.

Table 6.3. Extract from Table 6.1 of the CWSI vs SWP correlations for the low-cost
sensors on the Eastern side of the canopy at 14:00

D
is

ta
n

ce

W
P IR12 IR35 IR90

St
ag

e
II

St
ag

e
II

I

St
ag

e
II

St
ag

e
II

I

St
ag

e
II

St
ag

e
II

I

2.0 7 0.06 0.44 0.04 0.01 0.00 0.00
2.0 3 0.10 0.34 0.08 0.09 0.02 0.01
1.0 7 0.26 0.67 0.29 0.21 0.05 0.02
1.0 3 0.29 0.64 0.28 0.51 0.00 0.00
0.5 7 0.50 0.24 0.33 0.42 0.13 0.29
0.5 3 0.41 0.56 0.35 0.57 0.20 0.41

Note: Correlations (r 2) shaded from white (weak) to
green (strong)

It is clear, for the IR90 sensor, that the measurements at 0.5 m are the best,
and the findings agree with that of Section 5.3.2. The FOV of the IR90 sensor is
simply too large to accurately measure Tc. In stage III, at 0.5 m, the correlations
with the WP are significantly better than the results without the WP. Similarly, the
IR35 sensor performs best at 0.5 m. In most cases, the results with the WP are
better than the results without the WP.

The IR12 sensor also performs the best at the closest distance, which was not
expected. When measuring from 2 m with the IR12 sensor, a small change in
the angle has a significant effect on the measured area, which could lead to the
measurement of background material.

When no WP is used, the IR35 sensor from 0.5 m, or the IR12 sensor, from 1 m
performed the best. But as explained, the IR12 results in stage III are better due
to fewer measurements. It is therefore recommended, that if no WP is to be used,
measurements should be taken from 0.5 m with the IR35 sensor. The results from
this section agree with literature which indicates that where single area-sensors
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are used to measure Tc, the sensors are placed within 0.5 m of the canopy (Ahi
et al., 2015; Shellie and King, 2020; Van Asbroeck, 2018).

6.3.5 Alternative CWSI reference temperature methods

The measurement of CWSI can be simplified by using the automatic reference
temperature methods discussed in Chapter 4. A correlation matrix, for the dif-
ferent sensors and automatic reference methods, is presented in Table 6.4. The
Filter method from Chapter 5 is presented as a sensor type.

Table 6.4. CWSI and SWP correlations for the different reference temperature methods.
Measurements taken at 0.5 m with a WP on the shaded side of the canopy at 14:00.

R
ef

er
en

ce Mask Filter IR12 IR35 IR90 IR35*

St
ag

e
II

St
ag

e
II

I

St
ag

e
II

S t
ag

e
II

I

St
ag

e
II

St
ag

e
II

I

St
ag

e
II

St
ag

e
II

I

St
ag

e
II

St
ag

e
II

I

St
ag

e
II

St
ag

e
II

I

NAT 0.49 0.54 0.44 0.55 0.41 0.56 0.35 0.57 0.20 0.41 0.33 0.42
HT 0.30 0.46 0.28 0.43 0.41 0.43 0.29 0.42 0.23 0.40 0.30 0.35
EMP 0.46 0.53 0.42 0.52 0.61 0.53 0.70 0.48 0.60 0.44 0.65 0.38
LEB 0.32 0.51 0.30 0.47 0.49 0.52 0.49 0.62 0.47 0.59 0.46 0.57

Note: NAT, HT, EMP and LEB are the Natural, Heat transfer, Empirical and Leaf energy balance
models respectively. Correlations (r 2) shaded from white (weak) to green (strong). *These IR35
measurements are from 0.5 m with no WP.

For the C3, the correlations do not improve by using the other reference meth-
ods. This is to be expected, as the methods were optimised to match the Natural
method. The EMP method performs the best, with CWSIs in the range of 0.2 to
0.9. The leaf energy balance (LEB) seems to perform better than the heat trans-
fer (HT) method, but it has a very narrow CWSI range of 0.3 to 0.75, which is
explained by the under- and overestimation of the reference temperatures dis-
cussed in Section 4.4.3. The CWSI range of the HT method is 0.20 to 0.85. By using
the automatic filtering method, the correlation for the natural method decreases
in stage II, and increases slightly in Stage III. The increase in the correlation is
not significant, and is assumed to be a random effect. By using the Empirical
(EMP) method along with the automatic filtering method, the correlations only
decrease by 0.07 and 0.02 in stage II and III respectively. This semi-automatic
method requires a minimal amount of effort from the user, but crucially still re-
quires the use of a WP. Without a WP, the r 2 is 0.39 and 0.43 in stage II and III
respectively.

The CWSI calculated with the IR35 and IR90 sensors improves significantly
when certain automatic reference temperature methods are used. The HT method,
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which provided the most accurate results in Chapter 4, does not improve the cor-
relations. This may be due to the constant offsets observed in the low-cost sen-
sors in Chapter 5. The simple EMP method and LEB methods do improve the
results. For the IR35 sensor, the LEB could improve the correlations in stages II
and III, while the EMP method could only improve the correlations in stage II.
For the IR90 sensor, both the EMP and LEB methods improve the correlations
in both stages. The inaccuracy of the reference temperature measurements with
these low-cost sensors, as discussed in Section 4.4.4, causes the correlations to
improve for the low-cost sensors when using automatic reference temperatures.
As with the C3, the correlations decrease significantly when no WP is used.

The IR35 sensor, however, with no WP has good correlations when using the
EMP and LEB methods. In stage II the LEB correlations for this sensor are slightly
worse than the C3 with the natural method, but they are slightly better in stage
III. When using the EMP method, the correlations are better than the C3 in stage
II and worse in stage III. The EMP approach is more attractive as a low-cost sen-
sor, as with an automatic method that only requires ambient temperature and
humidity data, it can accurately determine CWSI. The LEB method has the draw-
back of requiring a net radiometer in addition to the temperature, humidity and
wind speed from the commercial weather station.

The HT method, which performed the best in Chapter 4, was outperformed
by the EMP method in every case presented in Table 6.4. The LEB method that
did not perform well in Chapter 4 gave good results when used with the low-
cost sensors to calculate the CWSI. The EMP method performed the best and it
is recommended that it should be used in conjunction with the low-cost sensors.
Results from chapter 4 indicate that the EMP method perform the best in low-
wind conditions.

Sepúlveda-Reyes et al. (2016) compared the correlation of CWSI to SWP and
found that by using the Natural method for CWSI reference temperatures, the
correlations are slightly better (r 2 = 0.36 vs r 2 = 0.33) than when using LEB equa-
tions. These results agree with that of the C3, but not with that of the low-cost
sensors.

6.3.6 CWSI equation sensitivity

Accurate Tc measurements alone do not ensure accurate CWSI values. This was
evident with the low-cost IR sensor which had canopy temperatures similar to
the C3, but could not accurately determine the CWSI due to inaccurate reference
temperature measurements.

Figure 6.6 presents the CWSI error vs measurement errors of the three in-
put temperatures. CWSI is very sensitive to the overestimation of Twet and the
underestimation of Tdry but responds linearly to erroneous Tc measurements.
The CWSI equation is sensitive when the reference temperatures are close to the
canopy temperatures, and a large Tdry−Twet range ensures that the CWSI is in the
0 to 1 range. The LEB reference temperature method, which consistently over-
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Figure 6.6. CWSI error vs measurement error for Twet, Tdry and Tc. Plotted from nom-
inal values of T ′

c = 30°C, T ′
wet = 25°C and T ′

dry = 35°C about the origin with no measure-
ment error.

estimates and underestimates Tdry and Twet respectively, is very robust against
these errors.

If all measurements are taken with the same instrument that has a system-
atic error, the errors will cancel out when calculating CWSI (Poirier-Pocovi et al.,
2020). This eliminates the need for calibration, but not when automatic refer-
ence temperature methods are used.

Besides the equation, the environmental conditions further complicate the
CWSI accuracy. Wind speed negatively affects CWSI accuracy as rapid changes
in the leaves’ stomatal conductance influences the transpiration and in turn the
leaf temperature (Jones, 1999). Furthermore, low VPD as a result of low ambient
temperature and high relative humidity, influences the accuracy of CWSI (Jones,
1999). The effect of the solar radiation could not be verified as only clear cloud-
less days were selected for tests, but this is well established in literature (Fuchs,
1990; King and Shellie, 2016; Jones, 1999).

6.4 Conclusion

In this chapter, the ability of different IR sensors and techniques to measure
plant water stress was investigated. It was found and verified in literature that
grapevines have different thermal responses in their different major physiolog-
ical stages. Independent correlations for these stages were evaluated and mea-
surement techniques that perform consistently well in both measurement pe-
riods were identified. The shaded, Eastern side of the canopy, after midday, was
identified as the best period to measure Tc. This was confirmed by all the sensors
and agrees well with literature. The shaded side of the canopy, still photosynthet-
ically active from the morning sun, provides the best measurement conditions
for the CWSI.
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The thermal camera could be used to determine CWSI most accurately when
using the Natural method for CWSI reference temperatures. It was also evident
that the use of a WP background increases the accuracy of the CWSI measure-
ments. A thermal thresholding technique (Filter) can be used to automatically
calculate representative canopy temperatures from the thermal images, along
with the EMP method for CWSI reference temperatures.

The low-cost sensors could accurately predict the plant water stress level only
when alternative methods of determining CWSI reference temperatures were used.
The simple EMP method provided the best reference temperatures for these low-
cost sensors.

The general aim of this study is accomplished: Methods of obtaining CWSI
canopy temperatures and reference temperatures measurements have been im-
proved. Low-cost sensors can be used to accurately determine grapevine CWSI.
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Conclusions and
recommendations

7.1 Overview

This study aimed to determine whether low-cost IR sensors could be used to ac-
curately determine grapevine crop water stress index (CWSI). In order to investi-
gate this, CWSI reference and canopy temperature measurements methods were
evaluated and new methods were developed. It was found that, when using au-
tomatic reference temperatures, the low-cost sensors could be used to accurately
determine grapevine CWSI.

7.2 Conclusions and recommendations

according to aims and objectives

Objective 1: Improve CWSI reference temperature measurement

(a) Select a baseline reference temperature measurement protocol.

The method proposed by Jones (1999), which used a Vaseline-covered leaf
for Tdry and a water-covered leaf for Twet, is a standard method of mea-
suring CWSI reference temperatures. Different measurement protocols of
this method are, however, used in literature. By comparing different mea-
surement protocols, it was found that a sunlit Tdry leaf, attached to the
canopy, serves as a reliable upper reference temperature. Furthermore, the
attached Twet leaf, in the canopy shade, serves as a reliable lower reference
temperature.

(b) Compare and select automatic reference temperature methods.

Two new automatic reference temperature methods were proposed and
developed. The heat transfer (HT) model uses fundamental heat transfer
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formulations to calculate Twet and Tdry. The model accounts for radiative,
convective and evaporative heat transfer, and the relevant equations are
presented. The Empirical (EMP) method, on the other hand, uses empiri-
cal correlations to estimate the reference temperatures based only on am-
bient temperature and humidity.

Five unknown parameters of the HT method and two parameters of the
EMP method were determined by using Particle Swarm optimisation. These
parameters were established by optimising the methods’ output to ground
truth measurements taken with an IR camera in a commercial vineyard.
These ground truth measurements were based on the standard technique
from literature. In addition to these two new methods, the well-established
leaf energy balance (LEB) was used to calculate the reference temperatures.
By comparing the models’ output to the physical measurements, it was
found that the HT method performed the best. It was able to calculate Twet

and Tdry to within 0.5 K and 1 K respectively. It was shown that the model
responds to meteorological conditions as expected. The EMP method per-
formed well for its simplicity. It provided accurate results, but proved un-
stable in windy conditions. Reference temperatures calculated with the
leaf energy balance (LEB) method were significantly higher and lower than
the physical Tdry and Twet measurements respectively. The LEB equations
were not developed for the situation in this study, but the method still
proved useful for the low-cost sensors, as was found in the later chapters.

The HT method can be refined by measuring wind speed at leaf level and
further developing the convective and evaporative heat transfer relations
for the different airflow conditions. Investigation into the radiative proper-
ties of the reference surfaces may lead to improved results.

(c) Compare measurements of the low-cost sensors to those of an IR camera.

The low-cost sensor measurements of the CWSI reference leaf temperature
were found to be unreliable. The errors were investigated, and the induced
error from casting a shadow on the measurement surface was shown to be
an error source. The results emphasise the need for automatic reference
surface temperature measurements.

Objective 2: Investigate hardware and physical requirements of canopy tem-
perature measurements

(a) Calibrate the sensors that will be compared in the study.

A water bath calibration method was used to ensure that all the sensors
measure the same temperatures in the expected vineyard temperature range.
It was determined that the Flir One would not be appropriate for use in this
study.
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(b) Investigate automatic analysis techniques of thermal images.

Automatic methods of thermal image analysis were investigated to elim-
inate user input in manually selecting canopy material from the normal
camera images. A histogram analysis (which picks the most frequent tem-
perature in the matrix), and a filtering method (which uses the measured
Twet and Tdry to eliminate background pixels), were investigated. It was
found that the filtering method performs better than the histogram analy-
sis.

(c) Compare low-cost sensor canopy measurements to commercial IR camera
measurements.

Constant offsets between the low-cost sensors and the C3 were identified
when measuring the canopy temperature. The difference in spectral ranges
of these sensors was identified as a major cause of these offsets. A further
source of error is the different methods of compensating for the reflected
IR radiation that the sensors use. The low-cost IR array temperature sen-
sor was found to be inaccurate in measuring the canopy temperature. The
histogram and filtering method did not improve the IR array sensor’s per-
formance.

Thermal cameras with higher accuracy and resolution will improve back-
ground temperature avoidance, while improving the measured canopy tem-
perature. Similar sensor spectral ranges should be used when comparing
the temperatures of sunlit plant canopies. While the use of a WP back-
ground does improve the results, more practical methods of avoiding back-
ground temperatures with the low-cost sensors must be investigated.

Objective 3: Determine the best conditions for CWSI measurements

(a) Determine the best measurement parameters for accurate CWSI measure-
ment.

The best measurement parameters were identified by correlating CWSI to
stem water potential (SWP). The phenological progression of the grapevines
necessitated the need for different correlations in their different phenolog-
ical stages. The plants’ thermal response in the latter stages of the season
was much lower than in the initial stages of the season, even though the
SWP range was larger.

It was found that measurements taken on the shaded (Eastern) side of the
canopies, at 14:00, provided the most consistent correlations between CWSI
and SWP. This side of the canopies was photosynthetically active the en-
tire morning, resulting in a good thermal response to the plants’ water sta-
tus. In addition, the lower variability of the unshaded leaves provides more
consistent canopy temperatures. For the C3, the best measurement dis-
tance was found to be 0.5 m, using a WP background. These conditions
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provide canopy temperature measurements which, when used for CWSI,
correlate well to SWP.

This measurement time and distance were also found to work the best for
the low-cost sensors. All the low-cost sensors performed well at 0.5 m with
a WP, while the IR35 sensor also performed well with no WP at 0.5 m.

Good conditions for canopy temperature measurements for CWSI calcula-
tion were found, but further refinement can improve the results. It is es-
tablished that the shaded canopy temperatures, about an hour after solar
noon work well, but different times in this period can be investigated. Im-
ages taken automatically every few minutes for a few hours after solar noon
can be used to establish the ideal measurement time. Another measure-
ment aspect that can be investigated is the measurement angle. At angles
other than directly normal to the canopy, less gaps in the canopy may be
visible, which could improve the results and avoid the use of a WP.

(b) Investigate whether the low-cost sensors can be used along with automatic
reference temperature methods to determine CWSI.

When using the different automatic reference methods, the C3’s results
were not found to improve. The low-cost sensors’ CWSI had better correla-
tions to SWP when the automatic reference temperatures were used. This
is as the low-cost sensors cannot accurately measure the CWSI reference
temperatures. It is concluded that a low-cost sensor, used in conjunction
with a simple reference temperature calculation, can be used to accurately
measure CWSI without the need for a WP background. This finding pro-
vides a low-cost and low-effort method of measuring plant water stress and
accomplishes the general aim of the study.

7.3 Final Remarks

This study provides valuable groundwork in the improvement of grapevine wa-
ter stress measurement with infrared sensors. The results from this study are
insightful, but have led to more research questions. Continued research and de-
velopment will ensure that canopy temperature measurement for water stress
detection becomes common practice among researchers and viticulturists. Veri-
fication across more grapevine cultivars will further improve the results.

Low-cost single-area sensors, used along with weather station data, can be
used to accurately determine grapevine CWSI.

Stellenbosch University https://scholar.sun.ac.za



Appendices

84

Stellenbosch University https://scholar.sun.ac.za



Appendix A

Infrared energy

A.1 Basic principles

A.1.1 Electromagnetic and thermal radiation

Electromagnetic radiation that applies to heat transfer is the thermal radiation
emitted as energy transitions within atoms, molecules and electrons of matter
(Cengal and Ghajar, 2015). The infrared (IR) region of the electromagnetic spec-
trum ranges from 0.75µm to 100µm. Radiation is a volumetric phenomenon be-
ing emitted, transmitted and absorbed throughout the volume of matter. For
non-transparent (opaque) materials, however, radiation is a surface phenomenon,
as the radiation emitted by the inner regions cannot reach the surface of the ma-
terial (Cengal and Ghajar, 2015). By applying a thin coating to a material, the
radiation characteristics of material can be altered completely.

A theoretical material, known as a blackbody is a perfect emitter and absorber
of radiation, independent of wavelength (grey surface) and direction (diffuse sur-
face). In 1879 Joseph Stefan expressed the radiation energy emitted by a black-
body as

Eb(T ) =σT 4 (A.1)

where σ is the Stefan-Boltzmann constant (5.670× 10−8) and T is the absolute
surface temperature in Kelvin. Eb is the blackbody emissive power, which is the
sum of radiation emitted over all wavelengths.

A.1.2 Surface radiative properties

At a given temperature, a blackbody emits the maximum possible radiation and
is used as a reference for describing the radiative properties of a material (Cengal
and Ghajar, 2015). Emissivity (ε) of a material is defined as the ratio of radiation
emitted by a surface to the radiation emitted by a blackbody at the same temper-
ature. ε varies with temperature, wavelength and direction of emittance. The to-
tal hemispherical emissivity is the ratio of radiation emitted over all wavelengths
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Figure A.1. Sum of components of IR radiation.

and directions, to the blackbody emissive power

ε(T ) = E(T )

Eblackbody(T )
(A.2)

For practical applications, grey and diffuse approximations are used in radiation
calculations (Cengal and Ghajar, 2015). A material’s emissivity is taken as its total
hemispherical emissivity.

Radiation incident on a body (known as irradiation, G) can either be absorbed,
transmitted , or reflected by the surface. The fraction of the absorbed, transmit-
ted and reflected irradiation is known as a surface absorptivity (α), transmissivity
(τ) and reflectivity (ρ), respectively. The sum of the components must be equal
to 1, and these are presented in Figure A.1. These irradiation properties are total
hemispherical properties, as α, τ and ρ are average properties for a surface over
all directions and wavelengths.

A.1.3 Kirchoff’s law

Given a small body with emissivity ε, surface area As and absorptivity α at tem-
perature T , surrounded by an enclosure at the same temperature; the interior of
the enclosure approximates a blackbody as radiation is reflected multiple times
inside the cavity and is given many opportunities to be absorbed by the surface.
This blackbody approximation is valid regardless of the surfaces’ radiative pro-
prieties and the small body in the enclosure is too small to alter the blackbody
nature of the enclosure. The irradiation on any surface of the body is equal to the
radiation emitted by a blackbody at the same temperature.

G = Eb(T ) =σT 4 (A.3)

The portion of the irradiation that is absorbed is

Gabs =αG =ασT 4 (A.4)
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and radiation emitted by the body is

Eemit = εσT 4 (A.5)

Since the body is in equilibrium with its surroundings, the incoming radiation is
equal to the outgoing radiation

AsεσT 4 = AsασT 4 (A.6)

and it is concluded that
ε(T ) =α(T ) (A.7)

The total hemispherical emissivity of a surface is equal to its total hemispher-
ical absorptivity coming from blackbody at the same temperature. This is an ap-
proximation based on the assumption that the surface temperature is the same
temperature as the irradiation source and is only valid for temperature differ-
ences less than a few hundred degrees (Cengal and Ghajar, 2015).

A.2 Temperature calculation from infrared

radiation measurement

Every blackbody surface emits radiation in proportion to its temperature. As sur-
faces are not ideal blackbodies, only a fraction (ε) of the energy is emitted.

Radiation Eobj is emitted by the object and is attenuated by its emissivity εobj.
The atmosphere, with a transmissivity of τatm, further attenuates the radiation
between the object and the sensor. The radiation emitted by the object that is
observed by the sensor is

ϕobj = Eobjεobjτatm (A.8)

where ϕ is the radiative heat flux. τatm is the transmissivity of the atmosphere
between the object and the sensor.

The surroundings emit radiation which reflects off the object’s surface. As the
transmissivity of the opaque object is zero, the object’s reflectivityρ = 1−εobj. The
radiation heat flux emitted from the surroundings, reflected off the surface and
passing through the air is

ϕsurr = Esurr(1−εobj)τatm (A.9)

The atmosphere between the object and sensor has a transmissivity τatm,
which depends on the ambient temperature and humidity. As no radiation is
reflected off the atmosphere εatm = 1−τatm. The radiation heat flux emitted from
the atmosphere is

ϕatm = Eatm(1−τatm) (A.10)
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Figure A.2. Components of IR signal measured by the detector

The transmissivity of the air is a function of air temperature, relative humidity
and measurement distance (Minkina and Dudzik, 2006). IR sensor manufactur-
ers use proprietary empirical functions to calculate τatm (Minkina and Dudzik,
2009). An approximation is used in this study.

The total signal (S) observed by the sensor is dependent on components of
the radiation emitted by the object, surroundings and the air between the object
and the sensor, as shown in Figure A.2

S =C (ϕobj +ϕsurr +ϕatm) (A.11)

where C is some parameter depending on the specific detector, optical compo-
nents and atmospheric properties (Minkina and Dudzik, 2009). Following the
principles of equations A.8 through A.11, the total detector signal is derived as
(Minkina and Dudzik, 2006):

Stot = Sobjεobjτatm +Ssurr(1−εobj)τatm +Satm(1−τatm) (A.12)

Sobj, Ssurr and Satm are detector signals proportionate to black body radiation
intensity of the respective fluxes. The sensor detector can only detect the sum of
these signals and cannot differentiate between the sources of these signals.

The components the signal emitted by the atmosphere and surroundings must
be compensated for. Rearrange A.12 to find Sobj, the signal of the object at tem-
perature Tobj.

Sobj =
Stot

εobjτatm
− (Ssurr

1−εobj

εobj
+Satm

1−τatm

εobjτatm
) (A.13)

To calculate Sobj, the exitance of the air and surroundings are required, to remove
their components in the sum of Sobj.

Software converts a signal to a temperature by

Ti = B2

ln( B1
Si
+B3)

(A.14)
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B1, B2 and B3 are sensor calibration constants (Minkina and Dudzik, 2009). Rewrite
A.14 in terms of S, the calibrated IR signal measured by the sensor, in terms of the
temperature causing the signal.

Si = B1

exp B2
Ti

−B3

(A.15)

Ssurr and Satm can be calculated with A.15 by estimating its respective tempera-
tures. Substitute Ssurr and Satm into equation A.13

Sobj =
S

εobjτatm
− (

B1

exp B2
Tsurr

−B3

· 1−εobj

εobj
+ B1

exp B2
Tatm

−B3

· 1−τatm

εobjτatm
) (A.16)

Substitute equation A.14 into equationA.16 and finally calculate the object tem-
perature as

Tobj =
B2

ln( B1
Sob j

+B3)
(A.17)

The process described here takes the emissivity of the target surface into ac-
count. Commercial thermal cameras use the process mentioned here to give an
accurate temperature measurement of a target surface.

A.3 Simple emissivity correction for low-cost

sensors

Low-cost sensors often do not take the radiation reflected off the surface and the
radiation emitted by the atmosphere into account when reporting a temperature
measurement. They assumes that all the radiation received by the sensor is from
the target surface (assuming a blackbody).

If the radiation emitted by the atmosphere is ignored, which is a reasonable
assumption at short distances, then the IR radiation received by the sensor is
only the sum of the radiation emitted by and reflected off the surface:

Erecieved = εEobj + (1−ε)Esurr (A.18)

Eqn A.1 is substituted into equation A.18 to calculate the emissivity corrected
temperature (Apogee Instruments (2021)):

S = 4

√
T 4

sensor − (1−ε)T 4
reflected

ε
(A.19)

The reflected temperature can be approximated as the ambient temperature (Mink-
ina and Dudzik, 2009).
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Appendix B

Climatic and thermodynamic
properties

B.1 Atmospheric pressure

Atmospheric pressure, Patm, can be estimated using the ideal gas law

Patm = 101300(
293−0.0065z

293
)5.26 (B.1)

from equation (7) in Allen et al. (1998), where z is altitude in m and assuming an
atmospheric temperature of 20 °C.

B.2 Latent heat of vaporization

λ, the latent heat of vaporization of water is the amount of energy required to
change the temperature of 1 kg of water by 1 K. λ only varies slightly over ambient
temperate ranges and a value of 2.45 MJ/kg is adequate for air temperature of
around 20 °C (Allen et al., 1998).

B.3 Psychometric constant

The Psychometric constant γ, correlates the partial pressure of water vapour to
the air temperature:

γ= cpPatm

0.622λ
= 0.665×10−3Patm (B.2)

where cp is the specific heat of air at constant pressure, and0.622 is the ratio of
the molecular weight of water vapour to that of air. γ is mainly dependent on
air pressure and can be assumed constant at a particular location (Allen et al.,
1998). More accurate values can be obtained by evaluating cp at the specific air
temperature.

90
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B.4 Saturation vapour pressure

Water vapour pressure contributes to the total atmospheric pressure. The par-
tial pressure of the water vapour (PH2O) is directly related to the amount of water
in the air. The maximum amount of water vapour in air is called the saturated
vapour pressure (P∗

H2O) and is dependent on the air temperature. At higher tem-
peratures, air has a larger capacity for water vapour and the relationship is expo-
nential.

P∗
H2O is related to air temperature and can be calculated, according to Allen

et al. (1998) as

PH2O,sat = 0.6108exp(
17.27T ′

a

T ′
a +237.3

) (B.3)

where the ambient temperature T ′
a is in °C.

B.5 Slope of the saturation vapour pressure

curve

The slope of the saturation vapour pressure curve (∆), measured in (kPa/°C) is
used in evapotranspiration equations and increases with temperature. ∆ can be
approximated as

∆=
4098[0.6108exp( 17.27Ta

Ta+237.3 )]

(Ta +237.3)2
(B.4)

using the ambient temperature (Allen et al., 1998).

B.6 Vapour pressure deficit

Vapour pressure deficit, also known as vapour pressure depression, is the dif-
ference between the partial vapour pressure of saturated atmospheric air (at a
certain dry-bulb temperature) and the vapour pressure of unsaturated air at the
same dry-bulb temperature.

δe = P∗
H2O −PH2O (B.5)

B.7 Relative humidity

Relative humidity is the fraction of water vapour in the air compared to the max-
imum water vapour that can be carried by the air at a specific temperature. As
water vapour is directly related to partial pressure, the relative humidity can be
expressed as
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φ= PH2O

P∗
H2O

(B.6)

As the temperature changes throughout the day, relative humidity will change,
even though the vapour pressure might remain relatively constant.

B.8 Net radiation

The net radiation (Rnet) is the difference between the absorbed incoming solar
radiation and the emitted radiation from a leaf surface and is dependent on the
leaf surface temperature Tl (Jones, 2014).

Rnet = Rabsorbed −εσ(Tl)
4 (B.7)

Rni, the isothermal net radiation, is defined as radiation absorbed by an identical
surface at the ambient temperature Ta.

Rni = Rabsorbed −εσ(Ta)4 (B.8)

Combining equations B.7 and B.8 and defining Tl = Ta +∆T gives

Rni = Rn +εσ(T 4
a +4T 3

a (∆T )+6T 2
a (∆T )2 +4Ta(∆T )3 + (∆T )4 −T 4

a ). (B.9)

As ∆T << Ta, all terms with ∆T 2 or higher can be neglected. This results in

Rni ' Rnet +4εσT 3
a∆T. (B.10)

The second term in equation B.10 is long wave radiative heat loss and is put in a
form that is similar to equations used for conductive and convective heat trans-
fer:

4εσT 3
a∆T = (

4εσT 3
a

ρcp
)ρcp(Ts −Ta) (B.11)

The ρcp term cancels out. Conductance to radiative heat transfer (gr) is defined
as

gr =
4εσT 3

a

ρcp
) (B.12)

The combination of equations B.10 and B.12 gives

Rnet ' Rni − grρcp(Ts −Ta). (B.13)
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Appendix C

Measurement rig

A graphical user interface developed for the touch screen display is presented
in Figure C.1. It was developed with the Nextion Editor software. It allows the
user to specify measurement parameters that is later used to divide the data for
analysis.

A wiring schematic for the measurement rig and its sensors is presented in
Figure C.2.

Figure C.1. Measurement rig touch screen graphical user interface

93
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Figure C.2. Measurement rig schematic
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