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Abstract 

Background 

Patellofemoral pain (PFP) is a musculoskeletal disorder of the knee commonly known to affect 

active adolescent and young adult populations. Altered lower-extremity biomechanics is 

recognised as a contributing factor resulting in increased stress of the patellofemoral joint (PFJ), 

which may ultimately cause PFP. Two-dimensional (2D) video gait analysis is a practical way 

to assess gait kinematics in a clinical setting. However, comparisons between 2D clinical 

observational gait analysis and the ‘gold standard’ three-dimensional (3D) motion analysis 

using an evidence-based biomechanical risk factor screening tool to identify biomechanical risk 

factors have not been established yet.  

Aim and objectives 

This study aimed to ascertain agreement between the identification of biomechanical risk 

factors in individuals with PFP using 2D observational gait analysis (clinical standard) by 

clinicians and 3D motion analysis (gold standard) by an experienced analyst. The interrater 

reliability and concurrent validity of 2D clinical observational gait analysis by employing an 

evidence-based biomechanical risk factor screening tool were investigated. 

Methods 

The data were collected using a cross-sectional, descriptive study design. Interrater reliability 

and concurrent validity of 2D clinical observational gait analysis were investigated by 

observing walking and running videos of 18 recreational runners. Two physiotherapists (raters) 

independently reviewed the recordings to identify kinematic risk factors constructed from the 

evidence-based biomechanical risk factor screening tool. Sixteen frontal, sagittal and transverse 

hip, knee and ankle kinematic variables were investigated and rated dichotomously (yes/no) at 

specific phases in the gait cycle. The percentage agreement and Cohen’s kappa statistic were 

used to calculate agreement within raters and between 2D and 3D kinematic variables.  
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Results 

Overall, 2D clinical observational gait analysis demonstrated moderate interrater reliability and 

concurrent validity based on the percentage agreement. The agreement for interrater reliability 

ranged widely for walking (percentage agreement = 50%–77.78%; kappa = -0.09–0.27) and 

running (percentage agreement = 44.44%–77.78%; kappa = -0.15–0.35). Only two of the eight 

kinematic variables for walking demonstrated a high percentage agreement, namely increased 

peak knee extension and increased overall ankle dorsiflexion (77.78%). Running showed a high 

percentage agreement in three of the eight kinematic variables, namely increased peak knee 

flexion (77.78%), increased ankle dorsiflexion and increased ankle eversion (72.22%). 

Observed agreement for 2D kinematics versus 3D kinematics observed differed significantly 

between raters. Rater 1’s mean findings demonstrated a percentage agreement of 60.41% (with 

kappa = 0.05) in walking and 64.58% (with kappa = 0.09) in running. Rater 2’s mean findings 

demonstrated a percentage agreement of 76.38% (with kappa = 0.15) in walking and 81.25% 

(with kappa = 0.20) in running.  

Conclusion 

The study findings invalidated the use of 2D clinical observational gait analysis employed for 

the identification of lower-extremity biomechanics and constructed from the evidence-based 

biomechanical risk factor screening tool in recreational runners with PFP. However, there was 

overall moderate to fair interrater reliability. The results show that 2D clinical observational 

gait analysis of certain kinematics included in the evidence-based biomechanical risk factor 

screening tool should be used cautiously, as the reliability and validity are not adequate for all 

the kinematic factors included. Clinicians should consider both the best available evidence and 

the reliability of clinical measurements when screening individuals with PFP in clinical practice 

to ensure that biomechanical analysis is accurate and relevant. 
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Opsomming 

Agtergrond 

Patellofemorale pyn (PFP) is ŉ muskuloskeletale knieversteuring wat algemeen onder aktiewe 

adolessente en jong volwassenes voorkom. Veranderde laerekstremiteit-biomeganika word 

erken as ŉ bydraende faktor tot verhoogde spanning van die patellofemorale gewrig (PFG), wat 

uiteindelik PFP kan veroorsaak. Gangontleding deur tweedimensionele (2D) video is ŉ 

praktiese manier om gangkinematika in ŉ kliniese omgewing te assesseer. Vergelykings tussen 

2D gangontleding deur kliniese waarneming en die ‘goue standaard’, driedimensionele (3D) 

bewegingsontleding, met behulp van ŉ bewysgebaseerde biomeganiese risikofaktor-

siftingsinstrument vir die identifikasie van biomeganiese risikofaktore is egter nog nie 

voldoende bewerkstellig nie. 

Doel en doelstellings  

Die doel van hierdie studie was om ooreenstemming tussen die identifikasie van biomeganies 

geassosieerde risikofaktore by individue met PFP met behulp van 2D gangontleding deur 

kliniese waarneming (kliniese standaard) deur klinici en die gebruik van 3D 

bewegingsontleding (goue standaard) deur ŉ ervare ontleder met behulp van die 

bewysgebaseerde biomeganiese risikofaktor-siftingsinstrument te bepaal. Die 

tussenbeoordelaar-betroubaarheid en gepaardgaande geldigheid van 2D gangontleding deur 

kliniese waarneming met behulp van ŉ bewysgebaseerde biomeganiese risikofaktor-

siftingsinstrument is ondersoek.  

Metodes 

Die data is ingesamel deur ŉ deursnee-, beskrywende studie-ontwerp. Interbeoordelaar-

betroubaarheid en gepaardgaande geldigheid van die 2D gangontleding deur kliniese 

waarneming is ondersoek deur waarneming van stap- en drafvideo’s van 18 

ontspanningsdrawwers. Twee fisioterapeute (beoordelaars) het die opnames onafhanklik 

beoordeel ten einde kinematiese risikofaktore te identifiseer wat uit die bewysgebaseerde 

biomeganiese risikofaktor-siftingsinstrument saamgestel is. Sestien frontale, sagittale en 

transverse heup-, knie en enkel- kinematiese veranderlikes is ondersoek en tweedelig (ja/nee) 

by spesifieke fases in die gangsiklus beoordeel. Die persentasie-ooreenstemming en Cohen se 
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kappa-statistiek is gebruik om ooreenstemming tussen beoordelaars en tussen 2D en 3D 

kinematiese veranderlikes te bereken.  

Resultate 

In die algemeen het die 2D gangontleding deur kliniese waarneming matige interbeoordelaar-

betroubaarheid en gepaardgaande geldigheid op grond van die persentasie-ooreenkoms getoon. 

Die ooreenstemming vir interbeoordelaar-betroubaarheid het aanmerklik gewissel vir stap 

(persentasie-ooreenstemming = 50%–77.78%; kappa = -0.09–0.27) en draf (persentasie-

ooreenstemming = 44.44%–77.78%; kappa = -0.15–0.35). Slegs twee van die agt kinematiese 

veranderlikes vir stap het ŉ hoë persentasie-ooreenstemming getoon, naamlik verhoogde 

piekknie-ekstensie en verhoogde algehele enkeldorsifleksie (77.78%). Draf het ŉ hoë 

persentasie-ooreenstemming in drie van die agt kinematiese veranderlikes getoon, naamlik 

verhoogde piekkniefleksie (77.78%), verhoogde enkeldorsifleksie en verhoogde enkeleversie 

(72.22%). Waargenome ooreenstemming tussen 2D kinematika en 3D kinematika het 

aanmerklik tussen die beoordelaars verskil. Beoordelaar 1 se gemiddelde bevindinge het ŉ 

persentasie-ooreenkoms van 60.41% (met kappa = 0.05) vir stap en 64.58% (met kappa = 0.09) 

vir draf getoon. Beoordelaar 2 se gemiddelde bevindinge het ŉ persentasie-ooreenkoms van 

76.38% (met kappa = 0.15) vir stap en 81.25% (met kappa = 0.20) vir draf getoon.  

Gevolgtrekking  

Die studiebevindinge het die gebruik van 2D gangontleding deur kliniese waarneming vir die 

identifikasie van laerekstremiteit-biomeganika by ontspanningsdrawwers met PFP saamgestel 

uit ŉ bewysgebaseerde biomeganiese risikofaktor-siftingsinstrument ongeldig verklaar. Daar 

was egter algehele matige tot redelike interbeoordelaar-betroubaarheid. Die resultate toon dat 

2D gangontleding deur kliniese waarneming vir sekere kinematika ingesluit by die 

bewysgebaseerde biomeganiese risikofaktor-siftingsinstrument omsigtig gebruik moet word, 

aangesien die betroubaarheid en geldigheid daarvan nie voldoende is vir al die kinematiese 

faktore wat daarby ingesluit is nie. Klinici moet sowel die beste beskikbare bewyse as die 

betroubaarheid van kliniese metings in ag neem wanneer individue met PFP in die kliniese 

praktyk gesif word ten einde akkurate en toepaslike biomeganiese ontleding te verseker.  
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Glossary 

Patellofemoral pain 

Patellofemoral pain refers to diffuse retro-patellar or peri-patellar knee pain characterised by an 

insidious nature in the absence of intra-articular pathology. The pain is reproduced by activities 

that increase patellofemoral joint stress with a flexed knee joint and are commonly seen in 

activities such as walking, running, squatting, prolonged sitting, kneeling and stair climbing 

(Collins et al., 2016; Crossley, Stefanik, et al., 2016; Crossley, Van Middelkoop, et al., 2016). 

Kinematics 

Kinematic data or variables encompass the displacement and alignment of body segments, joint 

angles and spatio-temporal gait parameters (Lencioni et al., 2019). The kinematic analysis 

entails using 3D motion analysis systems to assist in the digital reconstruction of an individual’s 

body as a multisegmented system and is measured in all three cardinal planes (frontal, sagittal 

and transverse) (Dicharry, 2010). 

 

 

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



1 

 

 

CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Patellofemoral pain (PFP) is a common overuse musculoskeletal condition that affects the knee 

joint and is characterised by pain around or posterior the patella, intensified by activities that 

load the patellofemoral joint (PFJ) (Crossley, Stefanik, et al., 2016; Crossley, Van Middelkoop, 

et al., 2016; Waiteman et al., 2021). PFP can restrict an individual’s ability to perform 

functional movements and activities, for instance negotiating stairs, performing a squat and 

running (Crossley, Stefanik, et al., 2016; Powers et al., 2017; Collins et al., 2018). There are 

numerous definitions and synonyms known to describe PFP, and it is often a diagnosis of 

exclusion, with pain typically depicted in the absence of other pathology (e.g. intra-articular 

pathology). The terminologies interchangeably used are anterior knee pain, runner’s knee, 

patellofemoral pain syndrome, chondromalacia patellae, patella arthralgia and patellofemoral 

joint dysfunction (Crossley, Stefanik, et al., 2016; Powers et al., 2017; Collins et al., 2018). 

PFP has an estimated annual prevalence of 23% in adults, 29% in adolescents and 29% in 

athletes (Smith et al., 2018) and is present among a large proportion of young, physically active 

individuals. However, PFP does not only affect the physically active population. The incidence 

is estimated to be as high as 11 to 14% in the sedentary population and 25 to 40% in those 

performing any physical activity aside from sports (Crossley, Stefanik, et al., 2016; Smith et 

al., 2018). PFP is also prevalent in runners and active women, with both groups being twice as 

likely to be affected as their counterparts (Almeida et al., 2016; Neal et al., 2016).  

The aetiology of PFP is intricate and multifactorial (Bertelsen et al., 2017; Dingenen et al., 

2019) and may depend on whether symptoms are acute or chronic (Leibbrandt & Louw, 2017b). 

Numerous pathways, such as mechanical, pathophysiological and psychological, have been 

proposed as ongoing pain sources (Leibbrandt & Louw, 2017b; Powers et al., 2017). 

Nevertheless, the origin of pain is hypothesised to be caused by unwarranted patellofemoral 

joint stress (PFJS) amid activities loading a flexed knee joint, ultimately resulting in articular 

cartilage pathology (Powers et al., 2017; Leibbrandt & Louw, 2019). The precise source of 

increased PFJS is unknown, which may pose treatment challenges to many clinicians. 

According to Collins et al. (2018), reduced contact space of the PFJ is caused by joint 

malalignment as a result of an alteration in bone structure or muscle imbalance (strength 
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deficits, activation timing of vastus medialis oblique [VMO], altered tissue extensibility) at the 

knee, femur and hip (Islam et al., 2015; Collins et al., 2018; Leibbrandt & Louw, 2019). 

Altered biomechanics is often observed during functional activities in individuals with PFP 

(Willy et al., 2019). Multifactorial factors have been proposed during walking and running, 

including kinematic alterations proximal at the hip joint, local at the PFJ and distal at the foot 

and ankle, contributing to PFP (Powers et al., 2012; Leibbrandt & Louw, 2017a; Powers et al., 

2017). The most common altered kinematic features described in the literature for these factors 

are increased hip adduction observed in running and single-leg squatting (SLS) (Noehren, Pohl, 

et al., 2012; De Oliveira Silva, Barton, et al., 2016; Neal et al., 2016), reduced knee flexion 

when ascending stairs (Dierks et al., 2011; De Oliveira Silva et al., 2015) and increased rearfoot 

eversion in running and walking (Barton et al., 2012; De Oliveira Silva, Barton, et al., 2016). 

Hip adduction is typically coupled with hip internal rotation when performing weight-bearing 

activities (Dingenen et al., 2019; Neal et al., 2019). These altered movement patterns in 

individuals with PFP are likely to add to the persistence and recurrence of symptoms (Powers 

et al., 2017; Kingston et al., 2020) by modifying PFJ and tibiofemoral kinematics and kinetics 

(Dingenen et al., 2019). As a result, this could lead to increased PFJ reaction forces, a reduced 

contact area of the PFJ and increased PFJS (Besier et al., 2009; Powers et al., 2017; Neal et al., 

2019). 

PFP tends to become chronic and can be a precursor to patellofemoral osteoarthritis (PFOA) 

(Thomas et al., 2010; Powers et al., 2017). The development of PFP can be debilitating due to 

its recurrence and persistence of symptoms and its role in an individual’s levels of physical 

activity (Rathleff et al., 2016). In addition to its prevalence and chronicity, PFP is challenging 

to manage, as the causes are not well understood (Powers et al., 2017). Therefore, PFP remains 

a health concern for many clinicians because of the interplay of multiple facets contributing to 

pain, its effect on individuals’ physical activity levels and its association with PFOA 

development.  

The prognosis of PFP is often not favourable, as symptoms tend to persist and reoccur despite 

evidence-based interventions that are effective in the short term (Lankhorst et al., 2016; Ferrari 

et al., 2018). Conservative approaches, including physiotherapy, are the preferred alternative 

for managing PFP (Collins et al., 2012; Collins et al., 2018). Therefore, physiotherapy 

interventions should be individualised and should aim to address modifiable risk factors (such 

as altered biomechanics) involved in the development of PFP. The best available evidence-
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based treatment recommended for PFP is a multimodal approach incorporating exercise therapy 

(a combination of knee- and hip-focused exercises), collective treatment modalities (manual 

therapy, patellar taping or exercise therapy with the use of foot orthoses) and foot orthoses to 

improve pain and function in people with PFP (Barton et al., 2015; Crossley, Van Middelkoop, 

et al., 2016; Collins et al., 2018). In addition, the combination of proximal (hip) and local (knee) 

exercises is proposed instead of knee exercises alone to obtain more desirable outcomes in the 

long term (Crossley, Van Middelkoop, et al., 2016; Collins et al., 2018).  

Furthermore, substantial evidence is linked to higher levels of pain and kinematic changes 

throughout the lower extremity in individuals with chronic PFP compared to acute PFP groups 

and healthy controls (Ferrari et al., 2018; Fox et al., 2018). Therefore, recognising kinematic 

discrepancies linked to increased pain levels in individuals with PFP is essential, as it may 

indicate a poorer prognosis and may be associated with several biomechanical risk factors 

affecting the entire kinetic chain (Neal et al., 2016; Lack et al., 2018). 

A systematic review by Leibbrandt and Louw (2017a) examined literature pertaining to 

biomechanical risk factors for PFP. They concluded that peak hip internal rotation and peak 

rearfoot eversion timing between subjects with PFP and controls were evident in the PFP group 

observed in walking (Leibbrandt & Louw, 2017a). The review also reported evidence of risk 

factors during SLS in individuals with PFP and found increased ipsilateral trunk lean, peak hip 

adduction and knee adduction in subjects with PFP compared to controls (Leibbrandt & Louw, 

2017a). Furthermore, the authors categorised risk factors based on their level of evidence and 

significance and consistency in findings (Leibbrandt & Louw, 2019).  

An evidence-based biomechanical risk factor screening tool was created (see Appendix 2), 

which included eight kinematic variables of the ankle, knee and hip for walking and running, 

respectively, in frontal, sagittal and transverse planes. This tool was developed to assist 

clinicians in future screening, prevention and management of PFP. However, all the included 

studies used three-dimensional (3D) motion analysis procedures to identify these associated 

risk factors in a movement laboratory. It is still unclear whether this tool can be used by 

physiotherapists using two-dimensional (2D) gait analysis methods such as video analysis and 

clinical gait observation.  

3D motion analysis is regarded as the ‘gold standard’ for quantifying lower-extremity 

kinematics observing functional tasks due to its precision and reliability (Nakagawa et al., 2012; 
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Noehren, Pohl, et al., 2012; Kingston et al., 2020). However, this procedure imposes high 

financial costs, requires additional time and space, and relies on trained laboratory technicians 

(Maykut et al., 2015). Most clinicians managing people with PFP do not have access to these 

facilities, and therefore there is a need for clinical alternatives to screen for biomechanical risk 

factors (Maykut et al., 2015). 2D gait analysis is generally performed in the clinical setting and 

usually assesses many body postures and alignment in frontal and sagittal planes. However, 

there is still limited research on the reliability of clinicians’ analyses of various lower-extremity 

kinematic variables in frontal and sagittal planes (Reinking et al., 2018). There are also 

conflicting findings in kinematic variables of interest, and it is unclear whether there is an 

agreement between 2D clinical gait analysis and 3D motion analysis for variables in both frontal 

and sagittal planes.     

Maykut et al. (2015) compared frontal plane motion variables in healthy cross-country runners 

during treadmill running. Their findings concluded a strong correlation between 2D and 3D 

video analysis when investigating the hip adduction angle (Maykut et al., 2015). Hip adduction 

is associated with a degree of excessive pelvic drop (Neal et al., 2016) and excessive knee 

valgus, which is a common feature, with valgus forces most likely causing pain; however, the 

reliability and validity of 2D measurements in individuals with PFP are limited to running 

(Kingston et al., 2020; Neal et al., 2020). In contrast, a study investigating trunk and frontal and 

sagittal lower-extremity kinematics between 2D and 3D motion analysis during SLS reported 

a high correlation between the sagittal and poor correlations between the frontal variables 

(Schurr et al., 2017). Damsted, Nielsen and Larsen (2015) and Pipkin et al. (2016) investigated 

the intra- and interrater reliability of 2D running kinematics in healthy recreational runners and 

those with running-related injuries. They reported that reliability was sufficient between 

experienced raters (Damsted, Nielsen & Larsen, 2015; Pipkin et al., 2016). However, Damsted, 

Nielsen and Larsen’s (2015) findings are limited to two sagittal variables (knee and hip flexion 

angles) and in Pipkin et al.'s (2016) study, only five of the 11 kinematic variables investigated 

showed significant interrater reliability.  

Furthermore, most of the previous research conducted was based on laboratory studies and 

cross-sectional evidence. Consequently, more research is warranted through prospective studies 

on the reliability of 2D clinical observational gait analysis to identify lower-extremity kinematic 

variables in both frontal and sagittal planes. Especially in South African settings where 

physiotherapists lack access to 3D motion analysis systems, this can enable a more cost-
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effective and clinical approach to assess biomechanical risk factors. Therefore, there was a need 

to investigate whether clinicians can accurately identify biomechanical risk factors for PFP 

using 2D clinical observational gait analysis during walking and running.  

None of the previous studies investigating PFP and biomechanics using 2D gait analysis used 

an evidence-based biomechanical risk factor screening tool to identify kinematic variables of 

interest that may contribute to the development of PFP. More improved clinical biomechanical 

evaluation methods will allow clinicians to tailor treatment to address subject-specific risk 

factors, improving treatment outcomes. It will also validate the evidence-based biomechanical 

risk factor screening tool (Appendix 2) based on laboratory-based studies in a clinical setting 

to determine its usefulness when managing individuals with PFP who do not have access to 

expensive 3D motion analysis equipment.  

1.2 Study aim and objectives 

This study aimed to ascertain the agreement between biomechanical risk factors identified using 

2D clinical observational gait analysis (clinical standard) by clinicians and 3D motion analysis 

(gold standard) by an experienced analyst using the evidence-based biomechanical risk factor 

screening tool.  

The objectives of the study were the following: 

1. To identify associated PFP biomechanical risk factors during walking and running 

using the evidence-based biomechanical risk factor screening tool in people with 

PFP using 2D clinical observational gait analysis 

2. To assess the concurrent validity between the biomechanical PFP risk factors 

identified with 3D motion analysis compared to biomechanical factors identified 

using 2D clinical observational gait analysis using an evidence-based biomechanical 

risk factor screening tool  

3. To assess the interrater reliability in identifying biomechanical PFP risk factors with 

an evidence-based biomechanical risk factor screening tool using 2D clinical 

observational gait analysis.   
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1.3 Conclusion 

PFP is a common condition affecting the young adult physically active population. In addition, 

altered lower-extremity biomechanics is proposed as one of the main contributing factors 

leading to increased PFJS and causing PFP. Considering the financial implications of 3D gait 

analysis for many clinicians and patients, more accessible alternatives are required to screen for 

biomechanical risk factors. Therefore, this study aimed to employ 2D clinical observational gait 

analysis to identify these risk factors to prevent and manage PFP. The following chapter 

presents a discussion of literature pertaining to the aetiology and the proposed underlying risk 

factors, particularly lower-extremity biomechanics, involved in PFP. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Purpose  

The purpose of the literature review was to outline the relevance of assessing lower-extremity 

biomechanics in people affected by PFP. The key concepts of PFP and biomechanics are 

discussed. The review primarily focused on the proposed biomechanical risk factors for the 

development of PFP and the underlying kinematic variables associated with walking and 

running. In addition, the evidence of validated physical assessment tools used to help clinicians 

detect these biomechanical risk factors in clinical practice during gait-related activities is 

discussed. The literature search was performed using the available electronic databases on 

Stellenbosch University’s Library and Google Scholar. The following key search terms were 

used: patellofemoral pain; retro-patellar pain; patellofemoral pain syndrome; anterior knee 

pain; kinematics and/or biomechanics; risk factors; physical assessment; and walking and 

running gait analysis. 

2.2 Introduction 

PFP is described as self-reported diffuse pain around or behind the patella, characterised by 

insidious onset without any distinct cause in the absence of intra-articular pathology (Crossley, 

Stefanik, et al., 2016). Symptoms are commonly exacerbated during activities with the knee 

flexed, loading the PFJ (Witvrouw et al., 2014; Collins et al., 2016; Crossley, Stefanik, et al., 

2016; Crossley, Van Middelkoop, et al., 2016). Several definitions and synonyms are used to 

describe PFP. Terminology interchangeably used in literature includes patellofemoral pain 

syndrome, chondromalacia patellae, patellofemoral joint dysfunction, runner’s knee, patella 

arthralgia and anterior knee pain (Crossley, Stefanik, et al., 2016; Powers et al., 2017; Collins 

et al., 2018). For this review, the term ‘patellofemoral pain’ (PFP) is used.  

PFP occurs in both women and men of all ages (Glaviano et al., 2015; Smith et al., 2018; 

Kingston et al., 2020) and is common among active adolescents (Hall et al., 2015; Crossley, 

Stefanik, et al., 2016). The association between specialising in specific sports and the risk of 

young female athletes developing PFP was investigated in a study by Hall et al. (2015). The 

authors concluded that participation in a single sport, contrary to involvement in multiple sports, 

was connected to a higher occurrence of PFP (Hall et al., 2015; Willy et al., 2019). It is reported 

that PFP has an estimated annual prevalence of 23% in adults and 29% in adolescents, and 29% 

in athletes (Collins et al., 2018; Smith et al., 2018; Pazzinatto et al., 2020). PFP mainly presents 
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in young, active individuals and contributes to approximately 25 to 40% of knee conditions 

observed in a sports injury clinic (Crossley, Stefanik, et al., 2016; Dutton, Khadavi & 

Fredericson, 2016). Furthermore, the onset of PFP can occur at any time in a person’s life and 

may depend on his/her level of activity and the environmental risk factors involved (Crossley, 

Stefanik, et al., 2016; Willy et al., 2019).  

Current literature supports evidence of women being a high-risk group to develop PFP (Neal et 

al., 2019). Smith et al. (2018) investigated the incidence and prevalence of PFP and reported 

that women working in the military were twice as likely to suffer from PFP compared to male 

recruits (Smith et al., 2018; Crossley et al., 2019). The knee joint is the most implicated joint 

in running-related injuries (Taunton et al., 2002; Linton & Valentin, 2018; Neal et al., 2019). 

In addition, PFP is one of the most typical conditions (Taunton et al., 2002), with an incidence 

of 6% among recreational runners (Neal et al., 2019).  

PFP is not a self-limiting condition (Willy et al., 2019), as it may persist for many years 

(Lankhorst et al., 2016; Rathleff et al., 2016), causing a decline in participation in sport, 

physical activity and even work-related tasks (Crossley, Stefanik, et al., 2016; Rathleff et al., 

2016). Long-term treatment outcomes for PFP were reported as inadequate, with more than 

50% of people expected to report symptoms exceeding five years after diagnosis (Lack et al., 

2018). PFP can significantly impact quality of life. However, this is not limited to the physical 

domains and can include thoughts of fear and confusion related to pain and even concern for 

the future (Smith et al., 2019; Willy et al., 2019). There are various factors of PFP, which may 

pose challenges to clinicians to assess, diagnose and manage this condition effectively, 

especially once it becomes chronic.  

2.3 The proposed aetiological factors  

The proposed aetiology of PFP is postulated as the interchange among structural (anatomical 

and biomechanical) and behavioural changes and psychological and social components (Powers 

et al., 2017; Sisk & Fredericson, 2019). PFP seems mainly to be the cause of atypical anatomy, 

predisposing the individual to biomechanical anomalies (e.g. patella maltracking) (Sherman, 

Plackis & Nuelle, 2014). Nevertheless, the relationship between these factors and the 

presentation of PFP continues to be poorly understood (Leibbrandt & Louw, 2017a; Powers et 

al., 2017). An underlying premise of the proposed pathomechanics of PFP is atypical loading 

of the joint, resulting in excessive PFJ stress (Powers et al., 2017; Crossley et al., 2019). An 

increase in joint stress affects various dynamic and static structures, which influences 
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nociception (Powers et al., 2017) and ultimately results in articular cartilage pathology; 

however, the precise structural tissue sources connected to PFP are unknown (Islam et al., 2015; 

Powers et al., 2017).  

The key concepts described in the pathomechanics of PFP consist of the contact surface area of 

the PFJ, maltracking of the patella, joint kinematics and kinetics, together with associated 

muscle imbalances (Carlson, Boden & Sheehan, 2017; Powers et al., 2017; Crossley et al., 

2019). Imbalances in muscle strength and the timing of trunk and lower-extremity muscle 

contractions, especially the quadriceps, are believed to influence the patella’s tracking during 

loading of the PFJ (Dutton, Khadavi & Fredericson, 2016; Powers et al., 2017). The nature of 

PFP is intricate as a consequence of structural and functional PFJ malalignment (Neal et al., 

2016; Bertelsen et al., 2017). According to Collins et al. (2018), a reduced contact area of the 

PFJ is caused by malalignment resulting from an alteration in bone structure or muscle 

imbalance at the hip, femur and knee.  

Another proposed source of PFP is increased intraosseous pressure (Crossley et al., 2019). The 

increased pressure is ascribed to poor venous flow (tissue homeostasis model) (Ho et al., 2014; 

Van der Heijden et al., 2018). A disturbance of tissue homeostasis from an acute injury or 

repetitive overloading may exceed tissue homeostasis and result in pathology, followed by the 

experience of pain (Post & Dye, 2017). In addition to the other proposed risk factors, constant 

loading of the PFJ can elevate patellar bone metabolic activity (Dye, 2005; Draper et al., 2012; 

Powers et al., 2017; Dye & Dye, 2018), resulting in elevated levels of patellar bone water 

content (Ho et al., 2014). Subsequently, this contributes to greater loads being transferred to 

subchondral bone (Ho, Keyak & Powers, 2014), causing increased mechanical nociceptor 

stimulation (Ho et al., 2014). These external pressures can arise from overuse; poor running 

technique; rapidly increasing the intensity, speed, duration and frequency of training; irregular 

training surfaces; improper footwear; or insufficient recovery time between training sessions 

(Dutton, Khadavi & Fredericson, 2016; Sisk & Fredericson, 2019). Overuse as a risk factor has 

become more evident, particularly in novice runners. A study by Nielsen et al. (2014) in healthy 

novice runners reported that runners increasing their training distance with more than 30% 

mileage for two weeks were more prone to running-related injury (Ho et al., 2014; Sisk & 

Fredericson, 2019). 
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The presentation of PFP is reported to be more than just that of nociception (Maclachlan et al., 

2017). Individuals who report persistent PFP symptoms tend to display atypical nociceptive 

processing (e.g. widespread mechanical hyperalgesia, diminished modulation of pain) 

(Noehren et al., 2016; Rathleff et al., 2016; Powers et al., 2017) and altered somatosensory 

processing (implying neuropathic pain) (Jensen, Kvåle & Baerheim, 2008). Impaired 

sensorimotor function (e.g. proprioception and balance) (Yelvar et al., 2017) and individual 

psychological factors (e.g. catastrophising and kinesiophobia) (Doménech, Sanchis-Alfonso & 

Espejo, 2014; De Oliveira Silva et al., 2019) have also been apparent in individuals with PFP. 

Recent research explores how non-physical influences on symptoms such as pain sensitisation 

and psychological status influence PFP (Willy et al., 2019). Current literature demonstrates 

moderate to strong evidence of these risk factors (Neal et al., 2019) that contrast with an array 

of physical, structural and associated psychological influences that have been recognised as 

impairments prevalent in individuals with PFP (Hart et al., 2017; Maclachlan et al., 2017; 

Coburn et al., 2018; Crossley et al., 2019). 

Vicenzino, Maclachlan and Rathleff (2019) suggest that the pathophysiological model should 

consist of psychological and social aspects in conjunction with biological, structural and 

somatic elements (Crossley et al., 2019). Numerous people who experience PFP develop pain-

related fear, for example fear avoidance and catastrophising thoughts relative to their pain 

(Maclachlan et al., 2017; Maclachlan et al., 2018; Smith et al., 2019). Maclachlan et al. (2017) 

investigated the psychological factors in individuals with PFP. The authors compared 

participants with PFP to healthy controls. Participants were grouped based on four 

psychological concepts, namely mental health, cognitive, behavioural and additional 

psychological factors (Maclachlan et al., 2017). The study demonstrated that mental health 

factors, which include anxiety and depression, cognitive factors (e.g. pain catastrophising) and 

behavioural factors (e.g. fear avoidance) could potentially be intensified and are linked to higher 

pain levels and lower function in individuals with PFP (Maclachlan et al., 2017; Willy et al., 

2019).  

Another cross-sectional study by Maclachlan et al. (2018) compared the psychological profiles 

of individuals with PFP and controls. The authors conducted a preliminary analysis in 

subgroups with PFP based on the severity of pain (according to the Knee Injury and 

Osteoarthritis Outcome Score) and reported no changes between groups for depression and 

anxiety, pain catastrophising and kinesiophobia (Maclachlan et al., 2018). However, individuals 
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with more severe pain demonstrated higher catastrophising and depression levels than controls; 

in addition, higher levels of depression, pain catastrophising and kinesiophobia were also 

demonstrated in the severe PFP group compared to the group who demonstrated less severe 

pain (Maclachlan et al., 2018). Persistent PFP and poor long-term outcomes can negatively 

impact a person’s social engagement and participation in physical activities (Crossley, Stefanik, 

et al., 2016). In addition, individuals with prolonged symptoms, including increased severity of 

pain and limited function at baseline, are more likely to experience undesirable outcomes or 

unfavourable recovery (Willy et al., 2019). Therefore, early detection of these psychological 

factors is crucial, as it may affect long-term treatment outcomes in managing PFP. 

The complexity of PFP and the minimal evidence of a direct causal relationship between the 

various aetiological factors and the reported intensity of pain experienced can obscure 

clinicians’ ability to tailor person-specific interventions according to the underlying risk factors 

(Fick, Grant & Sheehan, 2020).  

2.4 Associated or underlying risk factors 

Success with preventing and managing PFP is dependent on identifying the associated risk 

factors (Crossley et al., 2019). Identifying these risk factors will help clinicians to personalise 

interventions according to the underlying risk factors presented during assessment and 

screening. As an overuse injury, there are various risk factors, including intrinsic and extrinsic 

factors involved in the pathogenesis and development of PFP. PFP is commonly ascribed to 

local, proximal or distal factors that increase or alter PFJ stress (Thomas et al., 2010; Leibbrandt 

& Louw, 2017a; Willy et al., 2019). Dutton, Khadavi and Fredericson (2016) further 

categorised these risk factors as local impairments, biomechanical dysfunction in lower-

extremity biomechanics and common training errors. The local components consist of all 

structures stabilising the PFJ that directly influence joint position (patellar tracking) and 

function (Dutton, Khadavi & Fredericson, 2016).  

Lower-extremity biomechanics mainly consists of hip muscle dysfunction or weakness, hip 

abductor and rearfoot eversion and deviations in gait kinematics (Dutton, Khadavi & 

Fredericson, 2016). Additional factors, including training errors, particularly a sudden 

escalation in duration, frequency, speed and intensity in exercise, with a short recovery period 

and changes in training surfaces and shoe wear, should be considered in the active population 

(Dutton, Khadavi & Fredericson, 2016). Petersen et al. (2014) and Petersen, Rembitzki and 

Liebau (2017) describe patellar maltracking and dynamic knee valgus in people with PFP as 
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proposed risk factors for developing PFP. Furthermore, Petersen, Rembitzki and Liebau (2017) 

suggest that decreased hip abductor strength and rearfoot eversion may contribute to dynamic 

knee valgus. Therefore, assessing hip strength and foot kinematics when screening people, 

especially athletes, may prevent the development of and guide the management of PFP. 

An individual’s characteristics, anthropometrics, body posture and alignment are frequently 

proposed essential factors resulting in PFP (Willy et al., 2019). Recent reviews indicate that the 

quadriceps angle (Q-angle), age, weight, height, body mass index and body fat percentage are 

not predictive factors for developing PFP (Lankhorst, Bierma-Zeinstra & Van Middelkoop, 

2012; Neal et al., 2019; Willy et al., 2019). There is evidence suggesting that a larger proportion 

of women develop PFP (Crossley et al., 2019). The exact mechanism for gender disparity is 

unknown, but might be ascribed to certain PFP risk factors more predominant in women than 

men (Crossley et al., 2019). Typically, female participants have about half the quadriceps 

muscle strength than their male counterparts (Anderson et al., 2001; Crossley et al., 2019), 

potentially putting them at higher risk of developing PFP (Holden et al., 2017). Limited 

evidence exists for greater knee abduction as a risk factor for PFP, despite compelling evidence 

from multiple biomechanical studies reporting uninjured women displaying increased dynamic 

knee abduction when performing weight-bearing tasks compared to men (Cronström et al., 

2016; Simon et al., 2018; Crossley et al., 2019).  

Generalised quadriceps weakness and atrophy have long been associated with PFP (Lankhorst, 

Bierma-Zeinstra & Van Middelkoop, 2012; Neal et al., 2019) and are typically weakened in 

individuals suffering from chronic PFP (Werner, 2014). In addition, there is evidence that 

reduced quadriceps strength is associated with an increased risk of developing PFP, 

predominantly among the military population (Crossley et al., 2019; Neal et al., 2019), which 

is exposed to physical activity of greater rigour than that to which the general physically active 

population might be accustomed. However, quadriceps weakness cannot be generalised as a 

proposed risk factor in all subgroups, as it was not recognised in the adolescent population, 

thereby highlighting the heterogeneity of risk factors associated with PFP across a person’s 

lifespan (Rathleff et al., 2015; Neal et al., 2019).  

Concentric quadriceps strength is approximately 30% lower in PFP patients than healthy 

controls, while eccentric strength is decreased by approximately 40% (Guney et al., 2016). 

Functional activities demanding eccentric control of the quadriceps are usually more 

challenging and painful in people with PFP, and reduced quadriceps eccentric strength can be 
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expected in individuals with PFP (Werner, 2014). Quadriceps muscle forces play an essential 

role in regulating a balance between medial and lateral forces that influence contact force and 

pressure distribution within the patella (Besier et al., 2009). Therefore, the quadriceps muscles, 

particularly the VMO, are linked to directly impacting the patella’s tracking capabilities. A 

muscle imbalance between VMO and vastus lateralis oblique (VLO) forces can alter patellar 

tracking, resulting in decreased contact areas, elevating the stress on the PFJ, and subsequent 

PFP (Besier et al., 2009; Sisk & Fredericson, 2019).  

Isolated VMO atrophy has been reported inconsistently in individuals with PFP (Giles et al., 

2015; Powers et al., 2017). In contrast, quadriceps weakness (Lankhorst, Bierma-Zeinstra & 

Van Middelkoop, 2012, 2013; Neal et al., 2019), along with a delay in VMO activation relative 

to the VLO (Witvrouw et al., 2000; Van Tiggelen et al., 2009; Powers et al., 2017), is suggested 

to be related to the development of PFP. Briani et al. (2016) found that physically active women 

with PFP have considerable differences in VMO/VLO activation times compared to women 

who exercise moderately and healthy controls (Sisk & Fredericson, 2019). Furthermore, the 

finding that activation timing of muscles is linked with PFP demonstrates that muscle imbalance 

factors for PFP do not occur in isolation (Sisk & Fredericson, 2019). In summary, deficits in 

strength and endurance, decreased isometric and isokinetic properties, decreased muscle torque 

and delayed activation of muscles surrounding the hip and knee are accepted to be linked with 

PFP (Glaviano & Saliba, 2016; Nunes et al., 2019; Steinberg et al., 2020).  

Hamstring, quadriceps and gastrocnemius muscle flexibility have been previously reported in 

the development of PFP. The hamstring muscle’s inflexibility can produce constant knee 

flexion motion in the patella, causing an increased load and resulting in PFJ stress. PFP resulting 

from gastrocnemius muscle tightness is caused by the posterior translation of the patella on the 

femoral trochlea (Dutton, Khadavi & Fredericson, 2016). Witvrouw et al. (2000) demonstrated 

significant hamstring muscle inflexibility in individuals with PFP compared to controls, but 

hamstring flexibility was not identified as a risk factor for the development of PFP. However, 

there is moderate evidence supporting the assessment of soft-tissue structures such as the rectus 

femoris, hip flexors, hamstrings, gastrocnemius and soleus muscles, including the iliotibial 

band, when screening for PFP (Witvrouw et al., 2000; Waryasz & McDermott, 2008; Dutton, 

Khadavi & Fredericson, 2016; Capin & Snyder-Mackler, 2018). 

Soft-tissue structure extensibility around the knee plays an integral role in PFP. The lateral 

retinaculum comprises transverse fibrous tissue from the iliotibial band and quadriceps 
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aponeurosis that extends into the lateral facet of the patella, creating a dense piece of connective 

tissue (Merican & Amis, 2009; Sisk & Fredericson, 2019). The presence of excessive tautness 

in these lateral structures results in lateral forces overcoming medial forces, causing patellar 

maltracking (Dutton, Khadavi & Fredericson, 2016; Sisk & Fredericson, 2019). Lack et al. 

(2018) report an association of tightness and thickness of the iliotibial band and lateral 

retinaculum to be more significant in those with PFP than without, contributing to altered 

patellar kinematics. In addition, studies have also linked quadriceps and gastrocnemius 

inflexibility, delayed onset of VMO activation and excessive medial translation of the patella 

related to the incidence of PFP (Witvrouw et al., 2000; Waryasz & McDermott, 2008; Willy et 

al., 2019). Changes in all these soft-tissue structures can increase stress on the patella and irritate 

surrounding structures, resulting in PFP.  

Hip abductors and external rotator muscles may cause exorbitant femoral internal rotation, 

which in exchange has been connected to the development of PFP (Lankhorst, Bierma-Zeinstra 

& Van Middelkoop, 2013; Van Cant et al., 2014; Dutton, Khadavi & Fredericson, 2016). 

However, based on previous reviews, prospective studies reported no correlation between 

reduced isometric hip rotators (internal and external), abductors and extensor strength and the 

risk of individuals developing future PFP (Rathleff et al., 2014; Willy et al., 2019). These 

findings contrast with multiple cross-sectional studies that provided evidence of reduced 

isometric hip muscle strength in individuals with PFP (Rathleff et al., 2014; Willy et al., 2019). 

In addition, more recent studies investigating the association between running-related injuries 

in long-distance runners and hip abduction strength reported conflicting findings demonstrating 

no correlation between reduced strength of the hip abductors and the incidence of PFP (Mucha 

et al., 2017; Willy et al., 2019).  

Moderate evidence exists for increased isometric hip abduction strength as a predicting factor 

for the development of PFP among the adolescent population (Finnoff et al., 2011; Neal et al., 

2019). Women with PFP are also reported to have decreased hip abduction strength (Bolgla et 

al., 2011; Leibbrandt & Louw, 2019). Bolgla et al. (2011) demonstrated that women with PFP 

had 26% less hip abduction strength than their matched controls. Although no causality was 

reported connecting hip muscle weakness and the occurrence of PFP (Mucha et al., 2017; Willy 

et al., 2019), hip muscle weakness can potentially be a result of PFP instead of a risk factor for 

developing PFP (Rathleff et al., 2014; Wyndow, Collins, et al., 2016; Sisk & Fredericson, 

2019).  
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Muscular imbalance and inadequate neuromuscular control of the hip abductor muscles may 

contribute to the development of PFP (Ford et al., 2015; Leibbrandt & Louw, 2019). Hip 

musculature plays a crucial role in pelvic control and lumbopelvic stability. Discrepancies in 

gluteus medius strength could alter frontal plane movement patterns and correlated strongly 

with PFP in SLS and running in women (Souza & Powers, 2009; Nakagawa et al., 2012; Sisk 

& Fredericson, 2019). It is suggested that hip abductor muscle weaknesses, especially in 

women, may result in an inability to oppose knee valgus forces coupled with hip internal 

rotation motion in activities, for example running and SLS (Bolgla et al., 2011; Leibbrandt & 

Louw, 2019). There is also evidence supporting findings that runners with increased hip 

abductor eccentric strength have a lower risk of developing PFP (Ramskov et al., 2015; Willy 

et al., 2019). This emphasises the importance of dynamic and functional testing of the hip when 

screening for risk factors associated with PFP, especially in women and running subgroups, as 

risk factors may differ within groups (Neal et al., 2019). 

PFP is reported transversely in different life stages and could be a precursor to PFOA (Crossley, 

2014; Powers et al., 2017). Therefore, understanding and acknowledging the risk factors linked 

to PFP development, its incidence and its prevalence in diverse populations are essential to 

prevent the recurrence of symptoms and the development of chronicity (Neal et al., 2019). 

Dingenen, Barton et al. (2018) support the evidence of previous research, acknowledging that 

altered lower-extremity biomechanics during dynamic weight-bearing activities may be 

involved in the development of PFP. Due to functional malalignment or dynamic knee valgus, 

patellar maltracking can occur and can be an underlying premise for developing PFP (Petersen, 

Rembitzki & Liebau, 2017). In addition, multiple factors have been implicated as risk factors 

causing PFP, ranging from quadriceps imbalance, adjacent muscle tightness (gastrocnemius 

and hamstring), decreased hip muscle strength and abnormal foot biomechanics (Petersen, 

Rembitzki & Liebau, 2017; Powers et al., 2017). Identification of these underlying risk factors 

and their clinical significance is essential in order to develop a tailored person-specific 

treatment plan (Petersen, Rembitzki & Liebau, 2017). Therefore, the following section 

discusses biomechanical risk factors associated in individuals with PFP.  
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2.5 Biomechanical factors  

Biomechanical dysfunctions are known as probable factors causing PFP (Boling et al., 2009), 

accounting for increased cartilage stress and bone strain across the PFJ (Ho et al., 2014; Powers 

et al., 2017). The source of altered biomechanics in individuals with PFP is multifactorial, and 

numerous key factors have been proposed for walking and running. Alterations in the 

kinematics and alignment of the PFJ that promote joint stress include tibia varum, increased 

genu valgum, increased dynamic Q-angle, a lateral shift of the patella and muscle imbalances 

(Lankhorst, Bierma-Zeinstra & Van Middelkoop, 2012; Leibbrandt & Louw, 2017a; Collins et 

al., 2018; Leibbrandt & Louw, 2019). The most common altered kinematic features reported in 

the literature include increased hip adduction during running and SLS (Noehren, Hamill & 

Davis, 2013; De Oliveira Silva, Magalhães, et al., 2016; Neal et al., 2016). Studies have also 

reported evidence of reduced knee flexion when ascending stairs and increased rearfoot 

eversion during walking and running in individuals with PFP (Barton et al., 2012; De Oliveira 

Silva, Magalhães, et al., 2016). 

Altered hip kinematics in female runners and during SLS has strongly been linked with PFP 

(Nakagawa et al., 2012; Sisk & Fredericson, 2019; Boling et al., 2021). Furthermore, hip 

adduction when performing certain weight-bearing activities is frequently combined with hip 

internal rotation (Powers, 2010; Dingenen et al., 2019) and correlates with knee abduction, 

resulting in medial displacement of the knee (dynamic knee valgus) (Powers et al., 2017). Both 

increased hip adduction and internal rotation have been observed in female runners with PFP 

(Noehren, Sanchez, et al., 2012; Esculier, Roy & Bouyer, 2015; Neal et al., 2019), but these 

changes are not essentially seen in male runners (Neal et al., 2019).  

Although a hip adducted position was not directly associated with PFP during the jump-landing 

task, women who landed with 10 degrees or less hip abduction compared with those who landed 

with more than 10 degrees hip abduction were almost twice inclined to develop PFP (Boling et 

al., 2021). The same study also investigated men and found that individuals landing with less 

than 20 degrees knee flexion at initial contact were more than twice as likely to develop PFP 

than men landing with 20 degrees or more knee flexion. In addition, men who exhibited external 

hip rotation more than 5 degrees at 50% of the stance phase were almost doubly expected to 

obtain PFP than men landing between 0 to 5 degrees external hip rotation (Boling et al., 2021). 

Subsequently, the authors speculate that decreased knee flexion at heel strike and femoral 
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rotation could lead to altered patellofemoral contact stress and, eventually, the development of 

PFP in men (Boling et al., 2021). 

Limited evidence has been reported for increased peak hip adduction as a risk factor for 

developing PFP in female runners (Noehren, Hamill & Davis, 2013; Neal et al., 2016). A 

systematic review and meta-analysis by Neal et al. (2016) also provided moderate evidence 

from studies suggesting increased contralateral pelvic drop, peak hip adduction and hip internal 

rotation related to the development of PFP (Dierks et al., 2011; Bazett-Jones et al., 2013; 

Esculier, Roy & Bouyer, 2015; Neal et al., 2016). A prospective study by Noehren, Hamill and 

Davis (2013) investigated 3D instrumental gait analysis in 400 healthy female runners and 

tracked the participants for running-related injuries developed over two years. The findings 

reported 15 cases of PFP whose initial running kinematics were equally compared to several 

runners who remained uninjured (Noehren, Hamill & Davis, 2013). They also reported that 

female runners who acquired PFP displayed significantly greater hip adduction (Noehren, 

Hamill & Davis, 2013). Leibbrandt and Louw (2017a) reviewed the lower-extremity kinematic 

factors related to PFP during common aggravating activities. The authors report that peak hip 

internal rotation and peak rearfoot eversion timing were evident in subjects with PFP compared 

to controls during walking (Leibbrandt & Louw, 2017a). The review also reports evidence of 

risk factors during SLS, including increased ipsilateral trunk lean, increased peak hip adduction 

and increased knee adduction in individuals with PFP compared to healthy controls (Leibbrandt 

& Louw, 2017a).  

Excessive lower-extremity frontal plane kinematics (dynamic knee valgus) can lead to 

extensive loading of the lateral facet of the patella when performing dynamic tasks such as 

squatting (Lee, Morris & Csintalan, 2003; Powers, 2010; Neal et al., 2016). As a result, 

individuals who experience PFP frequently present with larger frontal plane projection angles 

(FPPAs), which is a 2D substitute for 3D measures of hip adduction, hip internal rotation, knee 

abduction and knee external rotation and have been demonstrated in SLS (Willson & Davis, 

2008b; Herrington, 2014; Willy et al., 2019) and hop-landing task (Herrington, 2014). In 

addition, athletes have the tendency to transfer into significant FPPAs when executing jump-

landing tasks and may therefore be more prone to develop PFP (Holden et al., 2017; Willy et 

al., 2019). 

Altered ankle and foot biomechanics are inconsistent when observed in individuals with PFP 

(Powers et al., 2017; Willy et al., 2019). Previous prospective research assessed navicular drop 

Stellenbosch University https://scholar.sun.ac.za



  

18 

 

(Boling et al., 2009), Foot Posture Index (FPI) (Thijs et al., 2008), lower leg-heel frontal plane 

alignment (Witvrouw et al., 2000) and heel-to-forefoot frontal plane alignment (Witvrouw et 

al., 2000; Waryasz & McDermott, 2008) as risk factors for PFP. An increased navicular drop 

was the only foot posture measure significantly associated with a risk of developing PFP, but 

this finding was not specific to gender (Boling et al., 2009; Neal et al., 2014; Lack et al., 2018). 

Another study reported no relationship between the navicular drop and development of PFP 

when analysed in men and women separately and no conclusive evidence to support foot 

posture measures as risk factors for developing PFP in men or women (Boling et al., 2021).  

Neal et al. (2019) report in their systematic review on two studies that investigated foot kinetics 

in individuals with PFP during walking and running (Thijs et al., 2007; Thijs et al., 2008) and 

found moderate evidence indicating that there was no significant association in time peak force 

at several aspects of the foot. Pronation of the subtalar joint is a typical phenomenon during 

gait (Sisk & Fredericson, 2019). However, it does become atypical when it occurs in the 

incorrect phase of gait or does not resupinate (Sisk & Fredericson, 2019). Excessive subtalar 

joint pronation could contribute to increased tibia and femur rotation through coupling 

mechanisms (Powers, 2003; Powers et al., 2017), thereby creating a larger Q-angle and 

increasing lateral forces on the patella (Powers, 2003; Souza et al., 2010).  

Overpronation of the foot has been previously linked to the development of PFP in some 

prospective studies (Boling et al., 2009). Furthermore, rearfoot eversion can also be attributed 

to internal tibial rotation (Levinger & Gilleard, 2007), resulting in increased foot pronation. 

Low associations between rearfoot eversion and hip adduction have been reported in 

individuals with PFP and healthy people (Barton et al., 2012; Kedroff et al., 2019). Kedroff et 

al. (2019) investigated foot posture observed during walking kinematics in individuals with 

PFP. These authors also identified peak rearfoot eversion and internal tibial rotation as evident 

only in the PFP group, suggesting that tibial rotation is implicated in PFP (Kedroff et al., 2019). 

In contrast, other studies refute a relationship between peak rearfoot eversion and tibial rotation 

(Luz et al., 2018) and foot pronation (Powers et al., 2002). Luz et al. (2018), who investigated 

running kinematics, found no differences within the PFP and control group for peak rearfoot 

eversion and internal tibial rotation. However, they did report a strong correlation between 

increased peak rearfoot eversion and increased peak femoral adduction in runners with PFP 

(Luz et al., 2018). 
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Delayed timing of peak rearfoot eversion, decreased rearfoot eversion range of motion and 

increased rearfoot eversion at heel strike are some of the foot kinematics reported to be involved 

in the onset of PFP (Petersen et al., 2014). These findings are supported by previous studies 

that reported that a decreased rate of peak rearfoot eversion and increased rearfoot eversion at 

initial contact were evident in individuals while walking (Barton et al., 2009; Petersen et al., 

2014; Willy et al., 2019) and that individuals with PFP displayed less rearfoot eversion range 

of motion during running (Barton et al., 2009; Willy et al., 2019). Therefore, to summarise, 

there are limited studies with moderate evidence of a correlation between rearfoot eversion and 

lower-extremity kinematics in individuals with PFP (Barton et al., 2012; Powers et al., 2017).   

Dynamic foot function was not identified as an emerging factor for the development of PFP 

(Noehren, Hamill & Davis, 2013; Dowling et al., 2014; Powers et al., 2017). However, altered 

plantar pressures are also thought to be present in people with PFP (Dowling et al., 2014; 

Powers et al., 2017). Thijs et al. (2007) demonstrated significantly greater lateral rearfoot 

pressures, signifying a less pronated foot in individuals with PFP during walking. In addition, 

during running, an increased peak force rate in the lateral heel and midfoot was reported in 

individuals who developed PFP (Dowling et al., 2014; Willy et al., 2019). However, 

inconsistencies between altered foot kinematics and the presence of PFP development continue 

to exist due to a lack of supporting evidence (Willy et al., 2019). 

PFP can cause changes in affected people’s gait (Arazpour et al., 2013), causing them to walk 

slower than healthy controls (Nourbakhsh et al., 2018). Kinematic changes during walking, 

such as increased hip adduction, delayed peak rearfoot eversion and significant reduction of the 

knee flexion angle and step length, have been observed among individuals with PFP (Barton et 

al., 2011; Willson et al., 2014). Arazpour et al. (2016) in their review included increased 

contralateral pelvic drop and a reduced knee extensor moment during walking. In addition, 

different kinematic results are reported for female and male runners. Female runners 

demonstrated increased hip adduction and internal rotation (Sakaguchi et al., 2014) during 

stance compared to controls, while male runners showed increased contralateral pelvic drop 

with hip adduction (Esculier, Roy & Bouyer, 2015; Neal et al., 2016). Leibbrandt and Louw 

(2017a) summarised the evidence for walking and running kinematics to screen biomechanical 

risk factors for PFP and developed a clinical evidence-based biomechanical risk factor 

screening tool (see Appendix 2).  
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Numerous factors have been proposed relating to PFP; however, increased knee valgus has 

been reported as a standard feature in PFP (Rees, Younis & MacRae, 2019). Therefore, the 

evaluation of this movement pattern (knee valgus) should be included in the clinical assessment 

of PFP, as it is often present during functional movements such as squatting and running 

(Manske & Davies, 2016).  

3D motion analysis is considered the ‘gold standard’ when quantifying movement during 

functional tasks and is superior to other methods due to its high-level accuracy and reliability 

(Nakagawa et al., 2012; Noehren, Pohl, et al., 2012; Knorz et al., 2017; Ferrari et al., 2018). To 

conclude, most of the biomechanical risk factors associated with PFP discussed in this section 

were identified using 3D motion analysis systems, highlighting its superiority over other 

methods. The following section discuss more clinical accessible alternatives to assess and 

identify biomechanical risk factors related to PPP.   

2.6 Validity of physical assessment tools for PFP 

There is no definitive gold standard for the clinical diagnosis of PFP (Nunes et al., 2013), yet 

clinical evaluation remains the cornerstone of the diagnostic criteria (Crossley, Callaghan & 

Van Linschoten, 2015). Furthermore, there continues to be limited evidence for the diagnostic 

validity of physical assessment tests for PFP (Décary et al., 2017; Décary et al., 2018), and 

evidence suggests that when used in isolation, clinical tests may not have the ability to diagnose 

PFP accurately (Cook et al., 2012; Nunes et al., 2013; Décary et al., 2017; Décary et al., 2018).  

The best available and most accurate test, according to literature, is to provoke pain while 

performing the squat manoeuvre (Nunes et al., 2013; Crossley, Stefanik, et al., 2016). In a recent 

study, the step-down test or SLS (squatting manoeuvre) (Halabchi et al., 2017) was more 

predictive of PFP than other functional tasks such as the single-leg hop test, gait or stair 

negotiation (Lopes Ferreira et al., 2019). Additional tests to diagnose PFP, but with limited 

evidence, include assessing for palpation tenderness of the patella edges, patellar mobility, 

patella tilt, patellar compression and apprehension tests, along with muscle strength and 

flexibility tests (Fredericson & Yoon, 2006; Nunes et al., 2013; Petersen et al., 2014; Crossley, 

Stefanik, et al., 2016).  

The clinical examination of active individuals and athletes may require testing to be more 

demanding with highly dynamic testing (e.g. SLS or drop vertical jump test) to expose more 

subtle conditions (Halabchi et al., 2017). The diagnosis of PFP is made collectively according 
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to the physical findings that result in changes to the extensor mechanism, specifically in altered 

biomechanics, which predisposes individuals to develop PFP (Sisk & Fredericson, 2019). 

Subsequently, no single test in isolation is able to diagnose PFP accurately, therefore, a cluster 

of tests to aid clinicians’ diagnostic process is suggested (Décary et al., 2018). Furthermore, the 

screening for potential risk factors can guide clinical assessment and assist clinicians in 

establishing a differential diagnosis (Sisk & Fredericson, 2019).  

2.7 Physical assessment tools for assessing influences on biomechanical parameters 

Clinical screening methods to evaluate lower-extremity biomechanical dysfunctions are 

essential, yet it is not easy to translate these findings into clinical practice (Ortiz & Micheo, 

2011). Functional performance measures simulating activities of daily living, such as walking, 

running and stair negotiation (Leibbrandt & Louw, 2019), are often explored to objectively 

measure altered movement patterns in people affected by PFP. The following clinical tests can 

facilitate the assessment of movement patterns in a clinical setting.  

2.7.1 Functional tests  

2.7.1.1 Frontal plane projection angle  

FPPA is a 2D substitute for 3D frontal kinematic measures of the knee (abduction and external 

rotation) and hip (adduction and internal rotation) in SLS (Willson & Davis, 2008a; Herrington, 

2014; Willy et al., 2019), during a hop landing (Herrington, 2014; Holden et al., 2017) and for 

hip adduction in running (Creaby et al., 2017). The FPPA is a reliable (Munro, Herrington & 

Carolan, 2012) and valid 2D measure (Milner, Westlake & Tate, 2011) for generating 2D knee 

kinematics findings equivalent to 3D kinematic analysis (Mizner et al., 2012; Rees, Younis & 

MacRae, 2019). The test is calculated by determining the mean of the first three successful 

attempts (Herrington, Munro & Comfort, 2015; Wyndow, De Jong, et al., 2016; Rees, Younis 

& MacRae, 2019). Similarly, the knee valgus position is recorded as a positive, and the knee in 

varus is recorded as a negative angle (Rees, Younis & MacRae, 2019). 

2.7.1.2 Single-leg squatting   

The SLS test is clinically used to detect dynamic knee valgus and identify poor hip muscle 

strength and control (Crossley et al., 2011). As demonstrated in previous studies, individuals 

with PFP displayed greater ipsilateral trunk lean, contralateral pelvic drop, hip adduction and 

knee abduction during SLS (Nakagawa et al., 2012; Manske & Davies, 2016; Halabchi et al., 

2017). The test is performed with individuals crossing their arms over their chest while lowering 
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into the squatting position in a slow and controlled manner (Crossley et al., 2011). To be 

considered acceptable, individuals need to achieve four out of five criteria in five trials. 

Performance is considered flawed if participants do not meet all prerequisites for at least one 

criterion for all the attempts and is appraised as good, fair or poor (Crossley et al., 2011). The 

five criteria are (1) overall impression for the five trials, (2) posture of the trunk over the pelvis, 

(3) posture of the pelvis, (4) hip joint posture and movement, and (5) knee joint posture and 

movement (Crossley et al., 2011). The SLS test is quick, reliable and straightforward (Crossley 

et al., 2011) to utilise in a clinical setting to demonstrate hip muscle dysfunction in people with 

PFP.  

2.7.1.3 Step-down  

The step-down test is performed similarly to the SLS; apart from using a step, individuals are 

required to perform the test in a precise manner by slowly lowering until the heel reaches the 

ground while keeping their balance (Halabchi et al., 2017). Scoring is based on the knee, hip, 

pelvis and trunk kinematic aberrations, which can help identify muscle imbalances throughout 

the kinematic chain (Manske & Davies, 2016; Halabchi et al., 2017). Markers are set on the 

tibial tuberosity and the step, aligned with the second toe and performed with the involved knee 

at 60 degrees flexion. Scoring is calculated as follows: good quality of movement = 0 to 1 point, 

moderate quality of movement = 2 to 3 points and poor movement = 4 to 5 points. This test 

reported excellent reliability (Crossley et al., 2011; Halabchi et al., 2017). 

2.7.1.4 Lateral step-down  

This test is an adapted version of the step-down test, with movement in a lateral direction 

instead of the frontal plane (Rabin et al., 2014; Halabchi et al., 2017). First, a step of 

approximately 15 cm is used to stand on, where the involved knee is required to bend at about 

60 degrees (Halabchi et al., 2017). Next, individuals are requested to slowly lower the 

uninvolved leg until the heel touches the surface and to resume the initial position again 

(Halabchi et al., 2017). Scores are based on criteria related to steadiness, arm strategy, and knee, 

pelvis and trunk alignment (Manske & Davies, 2016; Halabchi et al., 2017). 

2.7.1.5 Drop vertical jump   

The drop vertical jump requires individuals to stand on a box of approximately 31 cm, with 

their hands on their hips and their feet shoulder-width (Holden et al., 2017). Instructions include 
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dropping directly off the box and, once landing, instantly performing a maximum exertion 

vertical jump (Holden et al., 2017). Three drop vertical jump attempts can be recorded, and 

trials are excluded if participants cannot maintain their balance or remove their hands from their 

hips (Holden et al., 2017). Research by Boling et al. (2009) and Holden et al. (2017) indicates 

that knee valgus angle during a jump land task is not a risk factor for future PFP. 

2.7.2 Quadriceps angle  

The Q-angle is measured at the junction, drawing a line from the anterosuperior iliac spine to 

the centre of the patella and from the proximal tibial tubercle extension to the centre of the 

patella (Smith, Hunt & Donell, 2008). The reliability of measuring the Q-angle using the 

goniometer has been established, and the correction through magnetic resonance imaging 

investigation is moderate (Draper et al., 2011). Nevertheless, a greater Q-angle may create 

larger lateral forces on the patella and potentially result in lateral patellar tracking and increased 

retro-patellar pressure compared to a smaller Q-angle (Witvrouw et al., 2000; Brechter & 

Powers, 2002). Furthermore, due to the inconsistency of measurement techniques of the Q-

angle (with quadriceps contracted or relaxed, in supine and standing), the clinical utility of this 

measurement cannot be recommended, as it is more of a subjective measurement and clinically 

cannot easily be quantified (Smith, Hunt & Donell, 2008). However, 2D video analysis might 

be more appropriate to assess Q-angle during functional and dynamic activities (Almeida et al., 

2016).  

2.7.3 Foot posture 

Foot posture is customarily assessed in standing, and excessive pronation can usually be 

observed in a relaxed standing position and during walking and running. Multi-segmental 

kinematic models for the foot have been recognised; the Oxford Foot Model (Carson et al., 

2001) evaluates the tibia and three-foot segments and demonstrates good reliability and 

repeatability (Kedroff et al., 2019). Another kinematic model of the forefoot, rearfoot and shank 

demonstrated high repeatability (Redmond, Crosbie & Ouvrier, 2006; Kedroff et al., 2019). 

Static foot posture is often used to assess pronation, which may be associated with PFP (Kedroff 

et al., 2019). Foot posture tests frequently used include arch height ratio (Williams & McClay, 

2000); navicular drop, the only measurement assessed prospectively accounting for PFP (Neal 

et al., 2014); and FPI (Barton et al., 2010), evaluating multi-segmental signs of pronation 

(Kedroff et al., 2019).  
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Navicular drop measures the sagittal navicular movement from a neutral subtalar position to a 

relaxed calcaneal stance (Neal et al., 2014; Kedroff et al., 2019). This test is performed while 

standing with the bodyweight equally distributed through both legs, measuring the vertical 

height from the surface to the navicular tuberosity (anteroinferior aspect) during a relaxed 

stance, and is deducted from the height attained in a neutral stance (Kedroff et al., 2019). The 

navicular drop has been reported to be a reliable test (Barton et al., 2010), with average scores 

ranging between 2 and 8 mm (Nielsen et al., 2009). In addition, individuals with PFP have 

reported higher navicular drop and FPI scores than controls (Barton et al., 2010; Kedroff et al., 

2019). While a low arch height ratio is frequently associated with knee pain among runners 

(Williams et al., 2001; Kedroff et al., 2019), these findings are widely inconsistent with other 

case-control studies, suggesting no differences in arch height ratio (Lankhorst, Bierma-Zeinstra 

& Van Middelkoop, 2013; Kedroff et al., 2019) related to knee pain.  

The FPI-6 measures the rearfoot, midfoot and forefoot in the three cardinal planes (Redmond, 

Crosbie & Ouvrier, 2006; Kedroff et al., 2019). Individuals must march on the same spot, 

followed by a natural stance position with their weight evenly distributed through their legs 

(Kedroff et al., 2019). The calcaneal angle is defined by the curvature surrounding the lateral 

malleoli, talonavicular prominence, medial longitudinal arch, forefoot to rearfoot alignment and 

talar head position (Kedroff et al., 2019). Scores range from -12 to 12 representing supination, 

0 to 5 neutral and 6 to 12 pronating foot posture (Kedroff et al., 2019). The index demonstrated 

good reliability and sensitivity to group differences in individuals with PFP (Barton et al., 2010; 

Kedroff et al., 2019). 

In summary, the functional tests, measuring Q-angle and foot posture are quick and simple tests 

that can assist clinicians, aside from gait analysis, to screen for aberrant biomechanics. These 

tests can also be used in conjunction with clinical gait analysis to detect biomechanical risk 

factors associated with the development of PFP. 

2.7.4 Gait deviations/analysis 

The fundamentals of gait analysis are based on the relationship between a person’s functional 

capabilities, limitations and gait pattern to enhance performance while preventing injury 

(Dicharry, 2010). According to Baker (2006), clinical gait analysis usually requires clinicians 

to discriminate amid abnormal and normal gait patterns and evaluate these gait changes over 

time. Clinical gait assessment is a practical tool for elucidating biomechanical dysfunctions 

causing people’s symptoms (Dicharry, 2010). However, gait assessment should be performed 
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together with a comprehensive subjective and physical evaluation and functional screening tests 

(Dicharry, 2010). Gait analysis can be conducted with or without the use of computerised 

recording analysis equipment to assist diagnosis, target treatment goals and evaluate treatment 

outcomes (Harradine, Gates & Bowen, 2018).  

The current methods for quantifying kinematics during movement are 3D motion capture 

systems, deemed ‘the gold standard’ (Maykut et al., 2015; Knorz et al., 2017). Walking and 

running kinematics observed on a treadmill have shown to be comparable and reasonably 

replicated to overground in some studies (Firminger et al., 2018; Sinclair et al., 2013), but there 

still appears to be conflicting findings. As observational or qualitative gait assessments are 

reported to be moderately reliable (Chmielewski et al., 2007) and sensitive (Ekegren et al., 

2009), the application of 2D video analysis to assess biomechanics and objectively quantify 

kinematic patterns is an effective way to recognise various gait (walking and running) styles. 

Both sagittal plane (Teng & Powers, 2014; Willson et al., 2015) and frontal plane (Barton et 

al., 2009; Noehren, Hamill & Davis, 2013) kinematic measures have been associated at initial 

contact and midstance of the gait cycle in individuals with PFP.  

Although 3D video assessment is ideal, as it allows one to analyse considerably more than 2D, 

in a clinical setting, 2D analysis has demonstrated to be a more feasible, accurate and reliable 

tool (Pipkin et al., 2016; Souza, 2016; Esculier et al., 2018; Reinking et al., 2018). 

Observational gait analysis is believed to improve and bridge the outcome of special tests and 

equipment required to assess dynamic function in gait in a clinical setting (Dicharry, 2010). 2D 

video analysis of gait kinematics using high-speed cameras is a standard method of clinical 

practice (Pipkin et al., 2016). Pipkin et al. (2016) demonstrated that video running analysis 

investigating joint kinematics using a qualitative approach (visual categorial rating) could be 

reliably achieved in clinical practice, depending on measured variables. The authors reported 

excellent intrarater reliability, while only moderate reliability was reported for interrater 

reliability (Pipkin et al., 2016).  

Dingenen, Barton, et al. (2018) showed a substantial correlation between peak 2D hip 

adduction, contralateral pelvic drop, femoral adduction and 3D hip adduction running 

kinematics. Dingenen, Staes et al. (2018) also demonstrated a significant relationship between 

peak 2D and 3D contralateral pelvic drop throughout the larger portion of the stance phase. This 

study’s findings agreed with a previous study conducted by Maykut et al. (2015). These authors 

reported excellent intra- and interrater reliability among all frontal plane angles measured, 
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including hip and femoral adductions and contralateral pelvic drop, when videos were assessed 

on different days (Maykut et al., 2015). However, studies have reported different kinematic 

outcomes for sagittal plane variables resulting from 2D video analysis at heel strike and 

midstance, such as foot and tibia inclination (Pipkin et al., 2016; Souza, 2016; Dingenen, 

Barton, et al., 2018) and knee flexion (Damsted, Nielsen & Larsen, 2015; Souza, 2016; 

Dingenen, Barton, et al., 2018). In addition, 2D knee flexion demonstrated sufficient intra- and 

interrater reliability (Damsted, Nielsen & Larsen, 2015), whereas tibia inclination and knee 

flexion angles demonstrated moderate to poor interrater reliability (Pipkin et al., 2016).  

Many 2D validity and reliability studies were conducted among healthy runners or included 

participants with running-related injuries (not specific to only PFP) and exclusively investigated 

running kinematics. Previous research was also conducted based on laboratory studies and 

cross-sectional evidence. Therefore, more research is warranted through prospective studies on 

the clinical use of gait analysis to reliably analyse 2D lower-extremity kinematic variables in 

frontal and sagittal planes in people with PFP in a clinical setting.   

2.8 Development of a validated screening tool for the screening of biomechanical risk 

factors  

The clinical implications of biomechanical factors remain unclear (whether the cause or a result 

thereof); therefore, the best available evidence is warranted to assist clinicians on which factors 

to address during treatment (Leibbrandt & Louw, 2017a; 2019). Subsequently, this has directed 

the development of a clinical evidence-based algorithm (Leibbrandt & Louw, 2017a) for 

biomechanical risk factor screening and management of PFP. The evidence-based algorithm 

(screening tool) was initially created by Aderem and Louw (2015) to identify biomechanical 

risk factors linked with iliotibial band syndrome (Leibbrandt & Louw, 2019). The evidence-

based biomechanical risk factor screening tool was modified to guide clinicians when screening 

predictive kinematic variables that can influence the development and chronicity of PFP.  

The effect sizes determined for the categories “must consider” and “maybe consider” and with 

an outcome “must consider” were classified when there was supporting evidence based on at 

least two cross-sectional studies, with findings being significant and consistent (Leibbrandt & 

Louw, 2017a; 2019). The kinematic variables based on the evidence and categorial inclusion 

for walking and running can be found in Appendix 2. To the best of my knowledge and 

according to preliminary research by Leibbrandt and Louw (2017a), no other risk factor 

screening tools for associated biomechanical factors exist and have been validated in clinical 
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practice to screen people with PFP. Therefore, the aim was to utilise expert opinion from a 

preliminary study by Leibbrandt and Louw (2017a) in conjunction with the clinical 

biomechanical risk factor screening tool to validate it against the gold standard, 3D motion 

analysis.  

2.9 The rationale for the study 

Improved clinical management of PFP is mainly dependent on a better understanding of the 

roles that biomechanical risk factors play in the pathogenesis of PFP. In their systematic review, 

Leibbrandt and Louw (2017a) summarised the biomechanical risk factors for PFP during 

common aggravating activities and created a clinical algorithm for risk factor screening. 

However, all the included studies in the review used 3D movement analysis procedures to 

identify these risk factors in a movement laboratory. Therefore, it is unclear whether this 

screening tool can be used by clinicians using 2D gait analysis methods such as video analysis 

and observation. Nevertheless, such evidence would be clinically valuable, as kinematic 

variations could indicate a more severe condition associated with poor prognosis to help 

clinicians in clinical practice (Lankhorst et al., 2016).  

The use of 3D motion analysis imposes financial, spatial and temporal costs, suggesting that 

more clinically practical alternatives to assess biomechanical risk factors are necessary (Maykut 

et al., 2015). Clinical evaluation of biomechanical factors is crucial for recognising gait 

deviations, guiding clinicians’ clinical decision making, tailoring person-specific treatment, 

monitoring individual progress and proving treatment benefits in a clinical setting (Leibbrandt 

& Louw, 2019). This study aimed to determine whether biomechanical risk factors for PFP 

could be accurately identified using 2D observational gait analysis in a clinical setting. It also 

aimed to validate a biomechanical risk factor screening tool based on laboratory-based studies 

to determine its usefulness for clinicians treating patients with PFP who do not have access to 

expensive 3D movement analysis equipment in clinical practice.  
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2.10 Conclusion 

In summary, altered lower-extremity biomechanics during functional activities is evident as 

potential risk factors in people who present with and develop PFP. Therefore, early 

identification of these biomechanical factors during activities such as gait is essential. 

Furthermore, the analysis of gait in a clinical setting can immediately guide clinicians to tailor 

their management plan and prevent the development of chronic PFP according to the 

biomechanical factors detected. The following chapter discusses the methodology employed by 

observing recreational runners’ gait to identify associated biomechanical risk factors and 

achieve the study objectives. 
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CHAPTER 3: RESEARCH METHODOLOGY 

3.1 Introduction 

This chapter outlines the research methodology of my study. It also describes the larger PFP 

project and how the preliminary research links my study to the larger PFP project.  

3.2 Preliminary research 

My master’s research project was a substudy of an existing, ongoing PFP project conducted by 

the supervisory team, led by D.L. Ethical approval for the ongoing project was obtained from 

the Health Research and Ethics Council of Stellenbosch University (ethics reference number 

N19/05/063). The ethics approval letter is attached as Appendix 6. Publications emanating from 

the ongoing PFP project have also been incorporated into the methodological design of my 

project. The first publication (Leibbrandt & Louw, 2017b) describes a clinical ‘diagnostic’ 

checklist (Appendix 1), which was applied in my study to select participants with PFP. The 

second publication was a systematic review reporting on a screening tool for biomechanical 

risk factors in individuals with PFP (Appendix 2) (Leibbrandt & Louw, 2017a). The reliability 

and validity of this screening tool were tested in the present study, which formed the basis of 

my project (see section 3.3).  

The larger PFP study (led by D.L.) included the investigation of lower-extremity kinematics 

during walking and running gait in 18 recreational runners with PFP using 3D motion analysis 

(Vicon Motion Analysis Systems Ltd, Oxford, UK). The aim was to test the 3D risk factor 

screening algorithm based on the systematic review (Leibbrandt & Louw, 2017a) for tailored 

rehabilitation addressing individual needs depending on each individual’s unique kinematic 

profile. The 3D kinematic factors were identified using the screening tool based on objective 

3D kinematic outcomes produced by the Vicon system. The Vicon has demonstrated high 

accuracy and reliability (Ehara et al., 1997). The system has a resolution of 1 megapixel and 

captures 10-bit greyscale images using 1120 x 896 pixels, with the ability to capture speeds of 

up to 250 frames per second (Windolf, Götzen & Morlock, 2008). 

A detailed description of the Vicon 3D motion analysis output and preparation according to the 

plug-in gait model can be found in Appendix 8. The principal investigator (D.L.) had seven 

years’ experience in biomechanical motion analysis, specifically with the Vicon system and the 

system’s kinematic output (Leibbrandt, 2020). She underwent additional training at Salford 

University in the United Kingdom in 2014. The kinematic factors identified in each of the PFP 
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participants based on the Vicon objective output served as the gold standard for my validation 

and reliability study. More information on the methodology of the larger PFP study is available 

in Appendix 7.  

3.3 Master’s research study 

3.3.1 Study design 

A cross-sectional descriptive study design was used to address the research objectives of the 

current study.  

3.3.2 Study population 

The study population included physiotherapists from the Cape Metropolitan region and 

surrounding Cape Winelands working predominantly with musculoskeletal conditions. 

3.3.3 Study sample 

The study sample comprised two physiotherapists residing in the Cape Winelands and the 

northern suburbs of the Cape Metropolitan region in the Western Cape, South Africa. Both 

physiotherapists had over 10 years’ experience managing individuals with musculoskeletal 

conditions, including PFP. (Refer to section 3.3.7 for the study sample size based on published 

studies investigating interrater reliability).   

3.3.4 Eligibility criteria  

The physiotherapists were eligible for inclusion in the study if they had two years or more of 

clinical experience managing musculoskeletal conditions and individuals with PFP. In addition, 

they were required to be registered practitioners with the Health Professions Council of South 

Africa. Experience or formal training in biomechanical gait analysis was not a requirement. The 

participants had to reside in the Cape Metropolitan region or the Cape Winelands to attend face-

to-face training. They were also required to attend the training session using the biomechanical 

PFP risk factor screening tool; therefore, only therapists who completed the training session 

were considered eligible to participate.  
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3.3.5 Sample recruitment 

Pragmatic sample recruitment was designed to attract clinicians who had experience in 

musculoskeletal conditions, with a particular interest in biomechanical assessment and 

management of PFP. Participants had to be from the surrounding area, either residing in the 

Cape Winelands or the Cape Metropolitan region. The principal investigator (T.G.) sent a letter 

of invitation (Appendix 4) and an advertisement (Appendix 5) attached via email to various 

sports clinics and physiotherapy practices in these two regions. The physiotherapists had to 

respond via email or WhatsApp. The aim was to recruit four potential physiotherapists to 

complete the training session, should any dropouts occur during the study. Three 

physiotherapists responded to the invitation letter and received training within one week of 

consent to participate in the study.   

3.3.6 Study setting 

The principal investigator conducted the training of the two physiotherapists separately at a 

venue of their convenience. The intention was for the training session to occur at one venue; 

however, to adhere to government regulations and ensure social distance amid the global Covid-

19 pandemic, this was the preferred alternative. Accordingly, Rater 1 was trained in 

Stellenbosch at the Stellenbosch Academy of Sport and Rater 2 in Kuils River (both sessions 

were conducted at the physiotherapists’ workplace at the time).  

3.3.7 Sample size 

Key factors informing the study’s sample size included the scope of this master’s project, the 

project aims, the project costs and study duration, and the impact of the Covid-19 pandemic. 

Based on these factors, a minimum of two physiotherapists was required to participate. This is 

also in agreement with similar published research. The two physiotherapists included (based on 

eligibility) assessed the video recordings of 18 recreational runners. This was also in line with 

the number of participants included in similar, published reliability and validity studies 

(Damsted, Nielsen & Larsen, 2015; Maykut et al., 2015; Pipkin et al., 2016; Dingenen, Staes, 

et al., 2018; Reinking et al., 2018).  
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3.3.8 Ethical considerations  

Ethical approval for the study was obtained from the Stellenbosch University Health Research 

Ethics Committee (ethics reference number S19/10/236). The ethics approval letter is attached 

as Appendix 9. After confirming the two participants’ eligibility, the principal investigator 

(T.G.) obtained informed consent from both participants before the data collection for the study 

commenced. The principal investigator informed the physiotherapists of the study procedure, 

aims, requirements, risks and benefits of participation, which can be seen in the study 

information leaflet along with the informed consent form (Appendix 3). Feedback on the 

assessment for agreement from participants in the study remained anonymous, and participants 

were provided with a copy of the informed consent document. Where photographs were used, 

the investigator from the preliminary research obtained written permission from the research 

participants, and their faces were hidden. A recent annual progress report was submitted, and 

approval of the report is attached as Appendix 10. In addition, all new Covid-19 ethical 

requirements for observational research studies implemented in 2020 were adhered to 

throughout the study according to the Stellenbosch University Health Research Ethics 

Committee’s Covid-19 guidelines.  

3.3.9 Data collection tools 

Evidence-based biomechanical risk factor screening tool 

A previous systematic review by Leibbrandt and Louw (2017a) reviewed and summarised the 

literature on lower-limb biomechanical risk factors associated with PFP. These risk factors were 

classified according to their level of evidence and the consistency of findings (Leibbrandt & 

Louw, 2017a). Subsequently, this led to the development of an evidence-based clinical 

decision-making algorithm for clinicians to use as a screening tool to prevent and manage 

individuals with PFP. The evidence-based biomechanical risk factor screening tool created by 

D.L. is attached in Appendix 2. The participating physiotherapists used this screening tool to 

identify the biomechanical risk factors in 18 individuals with PFP by reviewing 2D video 

recordings.  
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3.3.10 Study procedures 

The main PFP study and current study’s procedures are depicted in figures 3.1 and 3.2. 

 
 

Figure 3.1. Illustration of main PFP study with various substudies and data collection tools  

 

Validation of an evidence-based biomechanical screening tool (T.G.) 

August–September 2020

A pilot study was conducted prior to the data collection for the main study 

June–July 2020

3D movement analysis study (D.L.)

January 2020 – March 2020

Main PFP study (PhD study)

Leibbrandt and Louw (2017b)

Development of diagnostic checklist 

Leibbrandt and Louw (2017a)

Development of biomechanical 
screening tool
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Figure 3.2. Flow diagram of study procedures 

1. Pilot study

A physiotherapist who was not included in the study reviewed pre-
existing 2D video recordings of two participants

2. Recruitment

An advertisement with a letter of invitation was emailed to private practice 
physiotherapists and sports clinics

3. Eligibility criteria

Physiotherapists had to be registered with the Health Professions Council of 
South Africa, have two years’ experience working with musculoskeletal 

conditions and reside in the Cape Metropolitan region or the Cape Winelands. 
No experience in biomechanical or gait assessment was required.

Two physiotherapists were included

4. Training procedure

The physiotherapists were trained using the biomechanical risk factor 
screening tool. The Kinovea freeware analysis program was explained and a 

practice video was completed during the training. 

5. Reviewing of recordings

The two physiotherapists reviewed the pre-existing recordings of the 18 participants. 
Kinematic variables from the biomechanical risk factor screening tool were identified 

during walking and running. 

6. Data Analysis

Dichotomous data (yes/no) for agreement was captured to determine interrater 
reliability and concurrent of 2D clinical observational gait analysis compared to 3D 

gait analysis.
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3.3.10.1 Pilot study  

The pilot study aimed to assess the proposed methodology of the current study. An independent 

physiotherapist was asked to review 2D video recordings of two participants from D.L.’s 

preliminary study. The physiotherapist was required to perform an observational gait analysis 

to identify associated biomechanical risk factors during walking and running. The 

physiotherapist, E.C. (who did not form part of the main study), received a short training 

session. The evidence-based biomechanical risk factor screening tool (Appendix B) and video 

analysis software program (Kinovea, version 0.8.15, http://www.kinovea.org) were used to 

review 2D video recordings. During this session, the investigator (T.G.) obtained verbal and 

written consent, and according to the evidence-based biomechanical risk factor screening tool, 

the 16 kinematic variables of interest were highlighted. The physiotherapist (E.C.) was asked 

to complete a ‘practice’ 2D walking and running analysis at the end of the session to address 

any questions or concerns about the risk factor identification procedures or video analysis 

software. Questions were mainly asked on the different functions of the analysis software to 

slow down and pause gait cycles to identify the kinematic variables.  

The pilot results comparing the physiotherapist’s 2D clinical observational gait analysis 

findings to 3D gait analysis based on percentage agreement were as follows: Two participants’ 

(one male and one female) video recordings were assessed in the pilot. Six of the eight 

kinematic variables for walking and seven of the eight for running demonstrated 100% 

agreement when comparing 2D clinical observational gait analysis to 3D gait analysis. 

Increased peak rearfoot eversion and increased peak knee extension were the only two 

kinematic variables that demonstrated 50% agreement during walking. In addition, increased 

peak knee varus also demonstrated a 50% agreement for running. However, these findings were 

limited to only two out of the 18 participants’ pre-existing 2D recordings used in the main study. 

3.3.10.2 Training of participants 

Prior to 2D clinical observational gait analysis, both physiotherapists who participated as raters, 

having no experience in biomechanical gait analysis, received a short training session of two 

hours by the principal investigator (T.G.). The two training sessions were held separately, and 

the principal investigator met with each physiotherapist individually (see section 3.3.6 for the 

training venues). In the first hour of training, both raters were given written and verbal 

instructions on what the research and reviewing process of recordings entailed. The principal 

investigator carefully explained the evidence-based biomechanical risk factor screening tool 
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and how they could screen for associated biomechanical risk factors by applying the screening 

tool. The participants were also trained to access and use the free video analysis software 

program (Kinovea, version 0.8.15). Kinovea is a video player used for sports analysis, providing 

a set of tools to capture, slow down, study, compare, annotate and measure technical 

performance. The freeware analysis software was used to slow down and freeze frames in the 

various gait cycles to identify kinematic variables of interest. 

Furthermore, raters were asked to complete a practice 2D walking and running analysis on a 

runner who was not included in the study. The analysis of the practice runner was conducted 

independently by each rater. The principal investigator was then available for the remainder of 

the session to address any questions or concerns regarding the risk factor identification 

procedures or video analysis software.  

3.3.10.3 Procedure for assessing agreement between raters 

The two raters independently reviewed the pre-existing 2D video recordings of all 18 

participants with PFP obtained from D.L.’s preliminary research. Video recordings were 

imported into the freely available software package Kinovea and analysed independently of the 

3D movement analysis data.  

Raters were asked to complete reviews within a week. Each participant from the pre-existing 

video recordings (n = 18) had four 30-second clips: two for walking and two for running 

(sagittal and frontal views). The raters were allocated 30 to 40 minutes to review all four clips 

per participant and, within that timeslot, viewed the clips as many times as needed. They were 

not to view participant clips again beyond the allocated time. The physiotherapists were 

instructed to identify whether specific biomechanical PFP risk factors (as listed in the PFP 

evidence-based biomechanical risk factor screening tool) were present or not based on their 2D 

clinical observational analysis of the 18 participants with PFP. Both raters were provided with 

their own Microsoft Excel spreadsheet (Appendix 11). Therefore, they could capture their 

findings using dichotomous data (yes/no) for each of the 16 kinematic risk factors listed on the 

biomechanical risk factor screening tool. Figures 3.3 and 3.4 depict examples of the 2D walking 

and running recordings, respectively. 
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Figure 3.3. 2D video walking gait analysis of sagittal and frontal plane 

 

 

Figure 3.4. 2D video running gait analysis of sagittal and frontal plane 

3.3.11 Data management 

A study-specific code was assigned to both raters and the 18 individuals used for the 2D video 

recordings collected in the previous study linked to the research project code. Therefore, no 

personal information of the participants in the study materials could be used to identify them. 

Subsequently, both raters’ findings were captured by the blinded research assistant (who was 

blinded to the aims of the study), and data were imported into a Microsoft Excel spreadsheet 

see (Appendix 11). Data were stored in a Dropbox folder and on Stellenbosch University’s 

OneDrive on the principal investigator’s password-protected office computer and personal 

laptop, stored in a secure location. Back-ups were regularly performed on the Dropbox folder, 

and the principal investigator’s private external hard drive was also password-protected. In 

addition, hard copies of all study documents, such as informed consent forms, were stored in a 
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locked room at the Campus Health Physiotherapy rooms and will be kept for five years in a 

secure place. This approach to data management ensured the confidentiality, safety and security 

of all collected data. 

3.3.12 Outcomes for analysis 

The reliability and validity of 2D clinical gait analysis were investigated by comparing frontal 

and sagittal plane ankle, knee and hip kinematics derived from the 2D video recordings to 

kinematic variables obtained by 3D motion analysis during walking and running trials at a self-

selected pace. The kinematic variables for walking were increased peak hip external rotation, 

increased peak rearfoot eversion, early hip internal rotation, increased peak hip adduction, 

decreased knee flexion at heel strike, decreased knee flexion in stance, increased peak knee 

extension and overall ankle dorsiflexion.  

The kinematic variables for running were increased peak hip adduction, increased hip internal 

rotation, increased peak knee varus, increased peak knee external rotation, increased peak knee 

flexion, increased rearfoot eversion, increased peak ankle eversion and increased ankle 

dorsiflexion. Table 3.1 shows an example of how data of the project were captured and recorded 

for analysis.  

Table 3.1. Example of data collected by raters for one individual with PFP 

Biomechanical 

risk factor for 

PFP 

2D video clinical 

analysis (Rater 1) 

2D video clinical 

analysis (Rater 2) 

3D analysis 

(reference 

standard) 

E.g. increased 

DF 

Yes (present) No (risk factor absent) Yes 

Variable 2 Yes Yes Yes 

Variable 3 No No  Yes 
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3.3.13 Data/Statistical analysis 

The IBM SPSS Statistics (version 27) program was used to perform all data analyses. The 

principal investigator also consulted a biostatistician (L.S.) to assist with the statistical analysis 

and interpretation of results where needed. 

Only data concerning the affected leg were included in the analysis for interrater reliability and 

validity to reduce type 1 error (see Menz, 2005). Therefore, the most affected limb with the 

highest rating with the Numeric Rating Scale (NRS) were observed when participants presented 

bilateral symptoms. In addition, where the participants reported equivalent symptoms and NRS 

scores, the raters were instructed only to assess the dominant limb. As a result, eighteen knees 

were included in the analysis. 

3.3.13.1 Interrater reliability 

The principal investigator analysed the data collected from both raters to determine the level of 

agreement on kinematic variables of interest identified from the pre-existing 2D video 

recordings. The dichotomous data (yes/no) were descriptively analysed for kinematic variables 

of interest for walking and running. Furthermore, interrater reliability was investigated for each 

kinematic variable, followed by calculating an overall agreement for walking and an overall 

agreement for running.  

3.3.13.2 Concurrent validity 

Following the procedure of interrater reliability, the principal investigator analysed the 

concurrent validity of the kinematic variables of interest investigated, comparing the collected 

2D clinical observational gait analysis data to 3D kinematic variables obtained using the Vicon 

motion analysis system. Each kinematic variable for all 18 participants was assessed to establish 

an agreement for walking and running gait analysis. Finally, the principal investigator captured 

all the data on agreement on a Microsoft Excel spreadsheet comparing both raters’ data to the 

3D motion analysis kinematic variables from D.L.’s study.  
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3.3.13.3 Statistical analysis for interrater reliability and concurrent validity 

The percentage of observed (raw) agreement and Cohen’s kappa statistic were used to calculate 

the agreement for interrater reliability and concurrent validity between 2D and 3D frontal, 

sagittal and transverse plane kinematic variables of interest. Subtracting that percentage from 

the value of 1.00 presents the data that are incorrect or misrepresent the collected data 

(McHugh, 2012). This statistic is often employed to test interrater reliability and extend the 

collected data to correct representations of the kinematic variables under investigation 

(McHugh, 2012). The percentage of observed agreement, followed by the kappa statistic with 

95% confidence interval (CI) and standard error (SE), are demonstrated in the results.  

Agreement according to Cohen’s kappa was categorised as disagreement (0.00 to -0.10), poor 

(≤ 0.00), slight (0.01 to 0.20), fair (0.21 to 0.40), moderate (0.41 to 0.60), substantial (0.61 to 

0.80) or almost perfect (0.81 to 1.00) using accepted approaches (Landis & Koch, 1977; 

McHugh, 2012; Pipkin et al., 2016). Where a kappa value was not able to compute (calculate) 

and kappa = 0.00, such a result could be ascribed to a rater’s findings for a specific variable that 

was a constant. Kinematic variables, for example, were not observed by one of the raters for 

any of the 18 participants’ recordings analysed, therefore having zero in one or more of the 

cross-tabulations when calculating kappa values. Another possible explanation for a kappa 

value of 0.00 is that there were 50% agreement and 50% disagreement for a specific variable. 

An overall (mean) percentage agreement was also calculated for interrater reliability and 

concurrent validity. This was analysed by comparing all the kinematic variables across the 18 

participants for walking and running separately. The next chapter will discuss the study results 

for the agreement of kinematic variables identified between the two raters and compare the 

findings of each raters to the 3D kinematic variables identified. 
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CHAPTER 4: RESULTS 

4.1 Introduction 

This chapter reports on the findings on the interrater reliability and validity of 2D clinical 

observational gait analysis using a biomechanical risk factor screening tool and the correlation 

of kinematic variables identified using 3D motion analysis.  

4.2 Participating physiotherapists 

One physiotherapist missed the deadline for responding to the invitation and advertisement, and 

another declined and dropped out within two days after receiving training and initially agreeing 

to participate. Therefore, the remaining two out of the four who responded received training 

and were included in the study. Rater 1 was a 35-year-old woman working in a private 

musculoskeletal physiotherapy practice in Stellenbosch. She completed a BSc degree in 

Physiotherapy at the University of the Witwatersrand and obtained an MPhil in Sports 

Physiotherapy at the University of Cape Town. Rater 2 was a 35-year-old man who owned a 

private practice in Kuils River. He obtained a BSc degree in Physiotherapy and a master’s 

degree in Physiotherapy at the University of the Western Cape. Both raters were involved in a 

broad spectrum of sports, with the most experience working in rugby, and were actively 

involved with rugby teams on provincial and national levels. 

4.3 Participants with PFP demographics 

A total of 18 participants with PFP from the pre-existing 2D video recordings was included in 

the study. The participants comprised 10 men and eight women, with a mean age of 33.89 years. 

The demographics of the participants (n = 18) are presented in Table 4.1. 

Table 4.1. Participant' characteristics (2D video recordings) 

Variables                                                                                  Mean (SD) 

Age (years)                                                                                

Height (cm)                                                                                

Weight (kg) 

BMI (kg/m2) 

Symptom duration (months) 

NRS (at time of recordings)                                                      

Walking speed (k/h)                                                                

Running speed (k/h)                                                

33.89 (3.95) 

171.72 (11.14) 

74.67 (16.28) 

25.05 (4.29) 

10.28 (11.15) 

4.28 (1.41)                                                                                  

5.67 (0.48) 

9.83 (1.98) 
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4.4 Preliminary data 

The 3D kinematic data findings from the preliminary research conducted by D.L. are presented 

in figures 4.1 and 4.2. The results indicate the biomechanical risk factors that were identified 

during 3D motion analysis.   

 

Figure 4.1. 3D walking kinematic data  

Of the 18 participants from the pre-existing recording of 3D kinematic data, nine (50%) 

presented with increased hip adduction and four with decreased knee flexion at heel strike. Only 

one participant presented with peak hip external rotation and another with early hip internal 

rotation during walking. 

The 3D kinematic running analysis presented in Figure 4.2 shows that seven of the 18 

participants presented with increased hip adduction (38.89%) and only two with increased ankle 

eversion.  

 

Figure 4.2. 3D running kinematic data 
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4.5 Interrater reliability  

The percentage agreement for 2D clinical observational gait analysis between the two 

physiotherapists for all the kinematic variables of interest across all 18 participants ranged from 

50% to 77.78% for walking (mean = 61.81%) (Table 4.2) and 44.44% to 77.78% for running 

(mean = 63.89%) (Table 4.3). The highest percentage agreement for 2D clinical observational 

gait analysis during walking for individual kinematic variables was observed for increased peak 

knee extension (kappa = fair agreement) and increased overall ankle dorsiflexion. Moderate 

percentage agreement was demonstrated for increased peak external hip rotation (kappa = fair 

agreement) and increased peak hip adduction (kappa = slight agreement). The lowest 

percentage agreement was presented by decreased knee flexion at heel strike and midstance 

(kappa = slight agreement).  

Table 4.2. Interrater reliability between physiotherapists for walking gait analysis (n=18) 

based on 2D clinical observational gait analysis   

nc = not computed; no statistics were computed because: 
a = Rater 2 early hip IR is a constant 

 

The interrater reliability for running 2D clinical observational gait analysis between 

physiotherapists, presented in Table 4.3, showed the highest percentage agreement for 

increased peak knee flexion (kappa = fair agreement), increased ankle eversion (kappa = fair 

agreement) and increased dorsiflexion. Moderate percentage agreement was identified for 

increased hip adduction (kappa = fair agreement), and the lowest percentage agreement was 

demonstrated in increased rearfoot eversion (kappa = slight agreement). 

Outcome   % 

agreement 

Kappa 

value 

Interpretation SE  P-value  95% CI 

↑ Peak hip ER  66.67% 0.27 Fair  0.17 0.09 (-0.56, 0.60) 

↑ Peak rearfoot 

eversion 

50% 0.00 No agreement 0.15 1.00 (-0.29, 0.29) 

Early hip IR 50% 0.00 ncᵃ ncᵃ ncᵃ ncᵃ 

↑ Peak hip 

ADD 

61.11% 0.16 Slight 

agreement 

0.19 0.40 (-0.21, 0.54) 

↑ Peak knee E 77.78% 0.26 Fair agreement 0.22 0.10 (-0.16, 0.70) 

↓ Knee F at 

heel strike 

55.56% 0.06 Slight 

agreement 

0.24 0.78 (-0.40, 0.53) 

↓ Knee F in 

stance 

55.56% 0.01 Slight 

agreement 

0.23 0.95 (-0.43, 0.46) 

↑ Overall ankle 

DF 

77.78% -0.09 Disagreement 0.07 0.64 (-0.23, 0.05) 
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Table 4.3. Interrater reliability between physiotherapists for running gait analysis (n=18) 

based on 2D clinical observational gait analysis  

nc = not computed; no statistics were computed because: 

a = Rater 2 peak knee ER is a constant 

4.6 Concurrent validity 

4.6.1 Concurrent validity for Rater 1 

The percentage agreement for kinematic variables identified by Rater 1 during walking 

comparing 2D clinical observational gait analysis to 3D gait analysis ranged from 44.44% to 

94.44% (mean = 60.41%) (Table 4.4) and 38.89% to 83.33% (mean = 64.58%) (Table 4.5). The 

highest percentage agreement was exhibited during walking for increased overall dorsiflexion, 

followed by increased peak hip external rotation (kappa = slight agreement) and increased peak 

rearfoot eversion (kappa = fair agreement). The lowest percentage agreement was calculated 

for decreased knee flexion at heel strike. 

 

 

 

 

 

 

 

Outcome % 

agreement 

Kappa 

value 

Interpretation SE P-value 95% CI 

↑ Peak hip ADD  61.11% 0.22 Fair  0.14 0.13 (-0.06, 0.50) 

↑ Peak hip IR 61.11% 0.06 Slight  0.18 0.73 (-0.30, 0.41) 

↑ Peak knee 

varus 

61.11% -0.03 Disagreement 0.23 0.89 (-0.48, 0.41) 

↑ Peak knee ER 61.11% 0.00 nc a  nc a  nc a  nc a  

↑ Peak knee F 77.78% 0.20 Fair 0.28  0.40 (-0.35, 0.75) 

↑ Rearfoot EV 44.44% 0.03 Slight  0.15 0.83 (-0.25, 0.32) 

↑ Ankle EV 72.22% 0.35 Fair  0.23 0.14 (-0.11, 0.81) 

↑ Ankle DF 72.22% -0.15 No agreement 0.07 0.50 (-0.30, -0.01) 
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Table 4.4. Concurrent validity between 2D clinical observational walking gait analysis and 

3D walking analysis (n=18) (Rater 1) 

 nc = not computed; no statistics were computed because: 
 a = 3D overall ankle DF is a constant 

 

The percentage agreement for running kinematic variables presented in Table 4.5 shows that 

the highest percentage agreement for validity was observed in increased peak knee flexion, 

increased ankle dorsiflexion and increased ankle eversion (kappa = slight agreement). A 

moderate percentage agreement was found in peak knee external rotation and increased hip 

adduction (kappa = slight agreement) and the lowest in increased rearfoot eversion. Comparison 

between 2D clinical observational gait analysis by Rater 1 and 3D gait analysis also 

demonstrated a higher percentage agreement for kinematic variables identified during running 

than walking. 

Table 4.5. Concurrent validity between 2D clinical observational running gait analysis and 3D 

running analysis (n=18) (Rater 1) 

nc = not computed; no statistics were computed because: 
a = 3D peak knee F is a constant 
b = 3D rearfoot EV is a constant 
c = 3D ankle DF is a constant 

Outcome  % 

agreement 

Kappa  

value 

Interpretation SE 

  

P-value  95% CI 

↑ Peak hip ER 61.11% 0.14 Slight  0.13 0.25 (-0.11, 0.39) 

↑ Peak rearfoot 

eversion 

61.11% 0.22 Fair  0.14 0.13 (-0.61, 0.50) 

Early hip IR 55.56% 0.11 Slight  0.11 0.30 (-0.99, 0.32) 

↑ Peak hip ADD 50% 0.00 No agreement 0.23 1.000 (-0.46, 0.46) 

↑ Peak knee E 61.11% -0.03  Poor  0.23 0.89 (-0.48, 0.41) 

↓ Knee F at heel 

strike 

44.44% -0.23  Poor  0.20 0.31 (-0.63, 0.17) 

↓ Knee F in 

stance 

55.56% -0.04 Poor  0.20 0.83 (-0.43, 0.34) 

↑ Overall ankle 

DF 

94.44% 0.00 ncᵃ ncᵃ ncᵃ  ncᵃ 

Outcome % 

agreement 

Kappa 

value 

Interpretation SE 

 

P-value 95% CI 

↑ Hip ADD 55.56% 0.11 Slight  0.23 0.63 (-0.34, 0.56) 

↑ Peak hip IR 55.56% -0.04 Disagreement 0.20 0.83 (-0.43, 0.34) 

↑ Peak knee 

varus 

66.67% 0.05 Slight  0.23 0.81 (-0.40, 0.51) 

↑ Peak knee ER 61.11% 0.06 Slight  0.18 0.73 (-0.30, 0.41) 

↑ Peak knee F 83.33% 0.00 nc a  nc a  nc a  nc a 

↑ Rearfoot EV 38.89% 0.00 nc b  nc b  nc b  nc b 

↑ Ankle EV 72.22% 0.15 Slight  0.23 0.46 (-0.30, 0.61) 

↑ Ankle DF 83.33% 0.00 nc c  nc c  nc c   nc c 
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4.6.2 Concurrent validity for Rater 2 

Table 4.6 shows the agreement between 2D clinical observational gait analysis by Rater 2 and 

3D gait analysis during walking. The percentage agreement ranged from 55.56% to 94.44% 

(mean = 76.38%) for individual kinematic variables. The highest percentage agreement for 

walking was identified in early hip internal rotation, increased peak hip external rotation, 

increased peak knee extension (kappa = fair agreement), increased overall dorsiflexion and 

increased peak rearfoot eversion. A moderate percentage agreement was found in identifying 

increased peak hip adduction (kappa = fair agreement) and decreased knee flexion in stance and 

the lowest for decreased knee flexion at heel strike.  

Table 4.6. Concurrent validity between 2D clinical observational walking gait analysis and 

3D walking analysis (n=18) (Rater 2) 

nc = not computed; no statistics were computed because: 
a = 2D early hip IR is a constant 
b = 3D overall ankle DF is a constant 

The percentage agreement comparing 2D clinical observational gait analysis by Rater 2 and 3D 

running gait analysis ranged from 72.22% to 88.89% (mean = 81.25%), as presented in Table 

4.7. All eight kinematic variables of interest demonstrated a high percentage agreement during 

running gait analysis. The highest percentage agreement was peak knee external rotation and 

increased ankle dorsiflexion. This was followed by increased peak hip internal rotation (kappa 

= fair agreement), increased ankle eversion (kappa = fair agreement), increased hip adduction 

(kappa = fair agreement) and peak knee varus (kappa = slight agreement).  

Outcome  % 

agreement 

Kappa 

value 

Interpretation 

 

SE 

  

P-

value  

95% CI 

 

↑ Peak hip ER 83.33% -0.08 Disagreement 0.06 0.72 (-0.19, 0.03) 

↑ Peak rearfoot 

eversion 

77.78% -0.12 Disagreement 0.06 0.60 (-0.25, -0.03) 

Early hip IR 94.44% 0.00 ncᵃ ncᵃ ncᵃ ncᵃ 

↑ Peak hip 

ADD 

66.67% 0.33 Fair  0.17 0.06 (0.01, 0.66) 

↑ Peak knee E 83.33% 0.34 Fair  0.26 0.05 (-0.17, 0.85) 

↓ Knee F at 

heel strike 

55.56% 0.01 Slight  0.23 0.952 (-0.43, 0.46) 

↓Knee F in 

stance 

66.67% 0.05 Slight  0.23 0.814 (-0.40, 0.51) 

↑ Overall ankle 

DF 

83.33% 0.00 ncᵇ ncᵇ ncᵇ ncᵇ 
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Table 4.7. Concurrent validity between 2D clinical observational running gait analysis and 3D 

running analysis (n=18) (Rater 2) 

nc = not computed; no statistics were computed because: 

ᵃ = 2D peak knee ER is a constant 
 b = 3D peak knee F is a constant 

ᶜ = 3D rearfoot EV is a constant   

ᵈ = Ankle DF is a constant 

 

4.7 Conclusion 

The interrater reliability of 2D clinical observational gait analysis for walking and running 

demonstrated overall moderate agreement based on percentage agreement and slight agreement 

based on kappa interpretation. Concurrent validity demonstrated overall poor to fair validity 

based on kappa values and moderate to high percentage agreement compared to kinematic 

variables identified using the Vicon 3D motion analysis system. 2D clinical gait analysis by 

Rater 2 compared to 3D gait analysis also obtained higher percentage agreement than the 

findings of Rater 1. A higher percentage agreement and kappa values were demonstrated for 

interrater reliability and validity of 2D clinical observational gait analysis during running than 

walking. The sagittal kinematic variables of interest during 2D clinical observational gait 

analysis showed more reliability than frontal and transverse plane kinematic variables of 

interest. The following chapter presents the main findings of the study, potential clinical 

implications, the limitations of the study and recommendations for future research for 2D 

clinical observational gait analysis.  

Outcome % 

agreement 

Kappa 

value 

Interpretation SE P-value 95% CI 

↑ Hip ADD 72.22% 0.33 Fair  0.19 0.06 (-0.04, 0.70) 

↑ Peak hip IR 83.33% 0.31 Fair  0.30 0.18 (-0.28, 0.90) 

↑ Peak knee 

varus 

72.22% 0.12 Slight 0.26 0.61 (-0.38, 0.62) 

↑ Peak knee ER 88.89% 0.00 ncᵃ ncᵃ ncᵃ ncᵃ 

↑ Peak knee F 83.33% 0.00 nc b  nc b  nc b  nc b 

↑ Rearfoot EV 83.33% 0.00 ncᶜ ncᶜ ncᶜ ncᶜ 

↑ Ankle EV 77.78% 0.40 Fair  0.21 0.03 (-0.01, 0.81) 

↑ Ankle DF 88.89% 0.00 ncᵈ ncᵈ ncᵈ ncᵈ 
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CHAPTER 5: DISCUSSION 

5.1 Introduction 

This study aimed to determine whether physiotherapists can use 2D clinical observational gait 

analysis to identify person-specific, evidence-based biomechanical factors in individuals with 

PFP during walking and running. The risk factors for PFP were identified using an evidence-

based biomechanical risk factor screening tool (Appendix 2). In addition, frontal, sagittal and 

transverse plane hip, knee and ankle kinematics derived from pre-existing 2D video recordings 

were assessed for the interrater reliability between two raters and validity between kinematic 

variables identified during 2D clinical observational gait analysis and objective 3D gait 

analysis.  

5.2 Main findings 

5.2.1 3D kinematic variables identified in participants with PFP 

This study’s findings revealed that half of the participants presented with increased hip 

adduction during walking, of which more than half were identified among women. The 3D 

kinematics for running also identified increased hip adduction among seven participants, six of 

whom were women. Therefore, this study provided evidence supported by previous studies 

identifying increased hip adduction during running in women and a higher risk in this 

population of developing and experiencing persistent and recurrent PFP symptoms (Willson & 

Davis, 2008a; Noehren, Hamill & Davis, 2013; Almeida et al., 2016). In addition, peak hip 

internal rotation and peak knee varus were also identified in participants with PFP during 

running. Other important kinematic factors commonly identified during 3D motion analysis for 

walking were decreased knee flexion at heel strike (Powers et al., 1999), decreased knee flexion 

in stance (Nadeau et al., 1997) and increased peak knee extension (Salsich & Long-Rossi, 

2010). These risk factors identified are typical in individuals with PFP.  

5.2.2 Interrater reliability 

The comparison of 2D clinical observational gait analysis between the two raters demonstrated 

higher interrater reliability (agreement) for identifying kinematic variables of interest during 

running than walking. These results may be ascribed to the increased variability of gait 

kinematics in recreational runners and individuals with PFP investigated in this study, 

compared to more consistent kinematic findings in elite or competitive athletes (Clermont et 

al., 2017). Running is also a more demanding task than walking. Walking gait consists of a 
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period of double support with both legs in contact with the ground, while running gait exhibits 

single-leg support or double-leg float periods (Dicharry, 2010). Subsequently, running requires 

more neuromuscular control of the hip, knee and ankle to maintain single-leg support during 

the stance phase of the running gait cycle. Therefore, if an individual exhibits altered 

kinematics, it can easily be detected during the single-leg support phase, as deficits in hip and 

knee may provide more reliable and robust indicators of changes in lower-extremity kinematics 

(Kedroff et al., 2019).   

The current study’s results also indicated overall moderate reliability (see tables 4.2 and 4.3) 

based on percentage agreement and slight agreement based on kappa interpretation when 

identifying kinematic variables of interest constructed from the evidence-based biomechanical 

risk factor screening tool (Leibbrandt & Louw, 2017a). According to the study findings, 

increased peak knee extension and increased overall ankle dorsiflexion during walking are 

considered reliable between the two raters using 2D clinical observational gait analysis. Three 

of the eight running kinematic variables of interest, namely increased peak knee flexion, 

increased ankle dorsiflexion and increased ankle eversion, were found to be reliable between 

the raters. Findings from previous studies suggest that the reliability of 3D knee and ankle 

sagittal plane kinematics was slightly higher than that of coronal and transverse plane 

kinematics (McGinley et al., 2009). Similarly, the interrater findings for 2D sagittal plane 

kinematics were more reliable based on percentage agreement and are supported by studies by 

Reinking et al. (2018) and Schurr et al. (2017), who also investigated the reliability of 2D video 

analysis. However, these studies quantified joint angles, and therefore knee and ankle joint 

angles might have been easier to measure than hip, knee and foot frontal and transverse joint 

angles. 

Previous research investigating interrater reliability of 2D hip and knee kinematics during 

treadmill running reported substantial intra- and interrater reliability between experienced raters 

(Damsted, Nielsen & Larsen, 2015; Pipkin et al., 2016). In addition, the studies included 

experienced raters who were accustomed to using high-quality and high-speed video analysis 

as a tool to observe and quantify joint angles during running and trained in biomechanical gait 

analysis (Damsted, Nielsen & Larsen, 2015; Pipkin et al., 2016). In contrast, the two raters from 

the current study had no previous experience in biomechanical gait analysis. Therefore, their 

lack of training and the use of clinical observational gait analysis without quantifying joint 

angles may have impacted the results of this study.  
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Damsted, Nielsen and Larsen (2015) found that the reliability was sufficient to justify using 2D 

video analysis in a clinical setting. However, these findings were limited to two sagittal 

variables (knee and hip flexion angles), supporting the current study’s findings that 2D sagittal 

plane variables are more reliable than frontal plane variables. Pipkin et al. (2016) investigated 

15 individual kinematic variables; however, only five reported substantial interrater reliability. 

The authors evaluated ankle dorsiflexion (midstance) and knee flexion angles at initial contact 

and midstance. The results showed poor to moderate interrater reliability, similar to the findings 

of the current study, based on kappa values that ranged from 0.00 to 0.68 following a qualitative 

approach using a visual categorical rating to identify gait event and kinematic variables (Pipkin 

et al., 2016).  

Another study investigating the reliability of 2D knee flexion (sagittal plane), hip adduction and 

rearfoot angles (frontal plane) demonstrated substantial to almost perfect agreement between 

experienced and inexperienced raters (Reinking et al., 2018). These authors also concluded that 

interrater reliability levels were higher for the sagittal plane kinematic variables assessed than 

kinematic variables observed in the frontal plane (Reinking et al., 2018). A more recent study 

by Neal et al. (2020) showed moderate interrater reliability for 2D measurements of peak knee 

flexion (intraclass correlation coefficient [ICC] = 0.71) and poor interrater reliability for peak 

hip adduction (ICC = 0.31). The latter study’s findings were more similar to the reliability of 

peak hip adduction that demonstrated only a moderate percentage (61.11%) and slight 

agreement (kappa = 0.16) in the current study. 

5.2.3 Concurrent validity  

The findings suggest that 2D clinical observational gait analysis of lower-extremity kinematic 

variables of interest showed overall poor to fair validity compared to kinematic variables 

identified using the Vicon 3D motion analysis system. The findings for validity were similar to 

those of Neal et al. (2020), who investigated the validity and reliability of markerless, 

smartphone 2D videos to measure peak knee flexion and peak hip adduction in participants with 

PFP. These videos were analysed using the ‘Hudl technique’ (Hudl, Agile Sports Technologies 

Inc., Nebraska, USA), a running software analysis application designed for smartphones that 

aids in identifying joint kinematic variables during running (Neal et al., 2020). This study 

established poor validity for 2D measurements of hip adduction (ICC = 0.06, 95% CI -0.35, 

0.45) and peak knee flexion (ICC = 0.42, 95% CI -0.10, 0.75) (Neal et al., 2020), where again 

validity was higher in the identification of the sagittal plane variable. In contrast, studies by 

Stellenbosch University https://scholar.sun.ac.za



  

51 

 

Maykut et al. (2015) and Dingenen, Staes, et al. (2018) compared frontal plane motion variables 

and suggested a strong correlation for peak hip adduction between 2D and 3D analysis 

measurements. However, these studies only investigated running and did not include any 

walking kinematics. 

The findings regarding the 2D clinical observational gait analysis by Rater 2 and the 3D motion 

analysis demonstrated an overall higher percentage agreement compared to those of Rater 1. In 

addition, both raters had no previous experience in biomechanical gait analysis, had the same 

amount of clinical experience and relied on their observational skills to identify kinematic 

variables. Therefore, the data indicate that kinematic variables derived from 2D clinical 

observational gait analysis using a biomechanical risk factor screening tool during gait of 

individuals with PFP do not provide sufficient accuracy in identifying kinematic variables 

compared to 3D gait analysis.  

Although the current findings between the raters were inconsistent for some kinematic variables 

compared to 3D motion analysis (see sections 4.6.1 and 4.6.2), higher percentage agreement 

was still demonstrated for sagittal kinematic variables than frontal and transverse plane 

kinematic variables. The findings also showed a higher percentage agreement for kinematic 

variables for running than walking, similar to interrater reliability findings. The only kinematic 

variable that demonstrated good validity based on percentage agreement between both raters 

was increased overall ankle dorsiflexion during walking. In running, increased peak knee 

flexion, increased ankle dorsiflexion and increased ankle eversion demonstrated good validity 

for the two raters’ 2D clinical observational gait analysis compared to 3D gait analysis.  

Concluding on the findings of overall poor to fair reliability and validity of 2D gait analysis, it 

seems that clinical observational screening may not be adequate to identify evidence-based 

biomechanical risk factors in people with PFP. It appears that clinicians first need to consider 

the most reliable factors that obtained the highest percentage agreement and kappa values, as 

demonstrated in the current study, when screening individuals with PFP in clinical practice. 

The study’s findings also indicated that the reliability and validity of sagittal plane kinematics 

were slightly higher than those of frontal plane kinematics. This may direct physiotherapists to 

screen for these factors first during gait analysis and alternatively employ other functional tasks, 

such as SLS, which is more reliable to obtain frontal kinematic variables in a clinical setting.  

A recent study by Kingston et al. (2020) investigated the validity and reliability of the frontal 

plane trunk, hip and knee kinematics during functional tasks in women with PFP. The authors 
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investigated frontal plane peak angles during drop vertical jumps, single-leg hops and SLS and 

reported good to excellent reliability, with only 2D hip joint angles valid for all three tasks 

(Kingston et al., 2020). Therefore, these tasks might be more reliable to observe frontal hip and 

knee kinematics in clinical practice than gait kinematics as presented in this study, especially 

for physiotherapists who do not have experience in biomechanical gait analysis. 

There are several reasons why a significant difference in 2D kinematic factors identified using 

the evidence-based biomechanical risk factor screening tool between raters and 2D versus 3D 

objective measurements demonstrated poor to fair reliability and concurrent validity. When 

comparing the present study to similar 2D reliability and validity published research, the other 

studies only investigated running kinematics, and different methods and measurement tools 

were applied (Damsted, Nielsen & Larsen, 2015; Maykut et al., 2015; Pipkin et al., 2016; 

Dingenen, Staes, et al., 2018; Reinking et al., 2018; Neal et al., 2020). The majority of previous 

research performed was laboratory-based and based on cross-sectional evidence (Damsted, 

Nielsen & Larsen, 2015; Maykut et al., 2015; Dingenen, Staes, et al., 2018; Neal et al., 2020). 

Pipkin et al. (2016) and Reinking et al. (2018) also used pre-existing 2D recordings in their 

studies; in contrast to the current study investigating walking and running gait, these authors 

only analysed running gait. The outcomes of studies on kinematic variables all involved a 

quantification process of joint angle measurements when correlating the interrater reliability 

and comparing measurements to the gold standard, objective 3D measures (Damsted, Nielsen 

& Larsen, 2015; Maykut et al., 2015; Dingenen, Staes, et al., 2018; Neal et al., 2020).  

Previous research also used different gait analysis software applications, such as Dartfish 

(Fribourg, Switzerland) (Maykut et al., 2015; Dingenen, Staes, et al., 2018) and QuickTime 

(Apple Inc, Cupertino, CA) (Pipkin et al., 2016), which may have improved the identification 

process. Although Damsted, Nielsen and Larsen (2015) and Reinking et al. (2018) used the 

same free software analysis program, Kinovea, both studies quantified kinematic variables of 

interest by measuring joint angles and body posture alignment. In contrast, the findings of the 

raters in my study were based purely on observational gait analysis to identify kinematic 

variables. The primary explanation for disagreement in the current study results compared to 

previous studies may be its methodology. This study used the evidence-based biomechanical 

risk factor screening tool (Appendix 2). The 2D video recordings that were analysed purely 

relied on the two raters’ observational skills, without any measurement or quantification process 
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to identify joint kinematic variables of interest. The raters had to review recordings and observe 

the presence of each kinematic variable during walking and running. 

Percentage agreement and Cohen’s kappa were used to determine interrater reliability and 

concurrent validity between kinematic variables derived from 2D video gait analysis and 3D 

motion analysis. Various statistical tests and methods were applied in previous studies 

investigating the reliability and validity of 2D gait analysis. Frequently employed methods 

included ICC, Pearson’s product correlation and Bland-Altman limits of agreement (Damsted, 

Nielsen & Larsen, 2015; Maykut et al., 2015; Dingenen, Staes, et al., 2018; Reinking et al., 

2018; Neal et al., 2020), which are more applicable when quantifying kinematic variables and 

investigating validity. Pipkin et al. (2016) calculated interrater reliability values for individual 

kinematic variables by employing weighted kappa.  

The participants from the 2D video data represented a specific PFP subgroup with chronic pain 

(> 3 months) and presented with a mean symptom duration of 10.28 months, moderate pain 

levels (4.28/10) and a higher BMI (mean 25.05) than those of previous studies investigating 

healthy participants and athletes. These findings may also have influenced the accuracy of 2D 

video digitisation by affecting and increasing visual misinterpretation (Neal et al., 2020). 

Furthermore, the PFP participants in this study might have had lower physical activity levels 

than the healthy collegiate and elite runners investigated in previous studies (Maykut et al., 

2015; Dingenen, Staes, et al., 2018; Reinking et al., 2018). The literature reports elite runners 

and athletes to have more reliable kinematic gait deviations than recreational runners (Clermont 

et al., 2017), thereby increasing the likelihood of agreement between 2D and 3D measurement 

(Dingenen, Barton, et al., 2018). 

5.3 Clinical applicability of the study 

Although not as precise and detailed as 3D motion analysis, 2D clinical observational gait 

analysis can enhance a clinician’s ability to bridge the outcome of using special investigative 

equipment when performing gait analysis (Dicharry, 2010). The test and methods could be 

easily employed in a clinical setting, forming part of the physical assessment of the knee by 

physiotherapists. The 2D video capture and its ability to slow down and freeze frames can vastly 

improve gait visualisation (Dicharry, 2010), which can be implemented in clinical practice. 

Simple 2D video gait analysis for detecting altered kinematics can be measured using 

smartphone applications and free analysis software with digital goniometers during real-time 

clinical gait analysis. In addition, clinicians could tailor person-specific rehabilitation and 
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management strategies by identifying aberrant kinematic variables and less optimal movement 

patterns in their clinical setting.  

The evidence-based biomechanical risk factor screening tool could help physiotherapists screen 

for altered lower-extremity biomechanics in individuals with PFP. Reliability and validity 

findings specified that running kinematic variables were more easily identified than walking. 

The findings also indicated sagittal plane kinematic views to be more reliable than frontal 

kinematic views. This study’s 2D clinical observational gait analysis could still be clinically 

applicable and employed to identify specific kinematic factors based on the more easily 

identified factors. The kinematic factors observed that resulted in a higher percentage 

agreement and fair kappa agreement of specific individual kinematics (sections 4.5 and 4.6) 

should be considered first when assessing gait in individuals with PFP.  

The outcomes constructed from the evidence-based biomechanical risk factor screening tool 

are still of clinical importance and recommended when screening using 2D video gait analysis. 

Based on this study’s findings (highest percentage agreement) and previous research, sagittal 

plane peak knee kinematics and ankle dorsiflexion obtained consistent high percentage 

agreement between raters and compared to 3D gait analysis. Frontal plane kinematics, ankle 

eversion, knee varus and hip adduction demonstrated moderate percentage reliability and 

validity. Hip rotation and foot kinematics (rearfoot eversion) findings were inconsistent 

between the two raters, suggesting that these factors might be difficult to detect on video, 

especially without quantifying joint kinematics. Based on the evidence and this study’s 

findings, running analysis is more useful and recommended above walking analysis. Gait 

analysis is recommended for runners with PFP, but these findings might not be generalisable to 

other groups. 

5.4 Limitations  

This study was not without any limitations. According to the evidence-based biomechanical 

risk factor screening tool, the findings were particular to the 16 kinematic variables: eight for 

walking and eight for running. Biomechanics was assessed during self-selected walking and 

running speeds in individuals with PFP. Therefore, the findings cannot be generalised to other 

running-related conditions or kinematic measures obtained from 2D videos. The study only 

investigated interrater reliability and did not consider the intrarater reliability of raters. Testing 

was completed once, and no in-between-day testing was conducted. In addition, the method 

chosen to identify kinematic variables of interest was limited to the two raters’ clinical 
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observational skills in the study, without a standardised protocol on identifying the kinematic 

variables constructed from the evidence-based biomechanical risk factor screening tool. 

Previous research was laboratory-based and kinematic variables included quantifying joint 

angles and joint positions.  

While 3D motion analysis (Vicon system) is considered the ‘gold standard’, specific outcomes 

are more accurate than others. Sagittal plane knee and hip are the most accurate, and transverse 

is the least (McGinley et al., 2009). As demonstrated, sagittal plane kinematic variables showed 

the highest percentage agreement when identifying individual kinematic factors. However, it 

was limited to only six out of 16 kinematic variables of interest investigated in the present study, 

which can advocate for the fair to moderate overall (mean) interrater reliability and validity 

findings. This study’s findings also revealed that running kinematics was more easily 

identifiable than walking. Another limitation could be that gait analysis might be useful for 

runners with PFP, but might not be relevant and cannot be generalised to other subgroups. The 

pre-existing 2D video recordings were recorded with high-quality and high-speed cameras in a 

laboratory, which might not be readily available or feasible in most physiotherapy practices.  

Therefore, more appropriate, portable and inexpensive clinical movement analysis equipment 

and methods are needed that can provide clinicians with accurate feedback in clinical settings. 

In addition, although having vast clinical experience, the present study’s physiotherapists had 

little to no biomechanical gait analysis experience, which could have influenced the reliability 

and validity findings. Another limitation can also include that the physiotherapists had to reside 

in the Cape Metropolitan region or the Cape Winelands to be considered eligible. In summary, 

the study findings also revealed that physiotherapists might require more formal biomechanical 

gait analysis training in addition to simple, affordable 2D video cameras, software analysis 

programs and smartphone applications to employ during real-time clinical gait analysis. 

5.5 Recommendations for future research 

There is still limited research on clinical observational gait analysis methods for identifying 

kinematic factors in individuals affected by PFP without objectively quantifying joint 

kinematics. The poor to fair interrater reliability and validity and the wide range of percentage 

agreement and kappa values demonstrated in this study’s results remain a cause for concern in 

identifying kinematic variables during gait analysis in clinical practice, particularly in settings 

where high-quality video cameras and gait analysis software programs or applications are 

lacking. An investigation of more improved methodologies is warranted, aiming to enhance 2D 
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clinical observational gait analysis accuracy to predict 3D laboratory-based kinematics in a 

clinical setting. Furthermore, studies should also employ clinicians with more standardised, 

structured and detailed protocols or recommendations (e.g. from expert opinion) together with 

screening tools similar to the evidence-based biomechanical risk factor screening tool to 

increase the reliability and validity of observational gait analysis performed in a clinical setting. 

To conclude, future research should explore less expensive and portable methods for accurately 

measuring and identifying kinematics during clinical gait assessments.  
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CHAPTER 6: SUMMARY AND CONCLUSION 

This study’s main objective was to ascertain the agreement between biomechanical risk factors 

derived from 2D clinical observational gait analysis and 3D gait analysis by utilising an 

evidence-based biomechanical risk factor screening tool (Appendix 2) based on a systemic 

review by Leibbrandt and Louw (2017a). A cross-sectional descriptive study design was used 

to collect the data. The 3D lower-extremity biomechanics in 18 recreational runners with PFP 

was obtained as part of a preliminary study conducted by one of the co-investigators (D.L.). 

The pre-existing 2D video data used in this study were collected concurrently with the 3D 

objective measures using the Vicon 3D motion analysis system. The Vicon system was 

previously used for 3D gait analysis and is deliberated as the ‘gold standard’ approach for 

detailed running analysis (Maykut et al., 2015). 

Participants for this study were recruited from the Cape Metropolitan region and the Cape 

Winelands. Two eligible physiotherapists responded to the study’s electronic invitation and 

advertisement and provided informed consent to participate in the study. Both physiotherapists 

had over 10 years’ experience working with musculoskeletal conditions and treating individuals 

with PFP. The raters received a short training session where the kinematic variables of interest 

were specified according to the evidence-based biomechanical risk factor screening tool 

(Appendix 2). The reviewing procedure of the recordings was done separately by each rater (at 

a venue of their convenience) and independent of the 3D gait analysis by D.L., who has clinical 

and research experience in movement analysis. The raters performed visual clinical 

observational gait analysis to identify the lower-extremity kinematic variables of interest during 

walking and running in sagittal and frontal views.  

Dichotomous data were collected for each of the pre-existing recordings (n = 18) and raters 

were instructed to identify the 16 sagittal, frontal and transverse kinematic variables of the hip, 

knee and ankle. 2D clinical observational gait analysis data were analysed by raters using the 

free software video analysis application Kinovea (version 0.8.15) to pause and slow down video 

clips in specific gait cycles to identify kinematic variables during walking and running. 

Percentage agreement and Cohen’s kappa statistical calculations were performed to test the 

interrater reliability of 2D clinical observational gait analysis and concurrent validity compared 

to 3D gait analysis.   
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This study’s main findings demonstrated that 2D kinematic variables of interest identified using 

the evidence-based biomechanical risk factor screening tool had low validity levels. Validity 

was better for running than walking. Poor to fair interrater reliability for the identification of 

frontal, sagittal and transverse plane kinematics of the ankle, knee and hip in walking and 

running was noted. Studies that support these findings include those of Neal et al. (2020) and 

Pipkin et al. (2016). Contrary to these findings, Damsted, Nielsen and Larsen (2015), Maykut 

et al. (2015), Reinking et al. (2018) and Dingenen, Staes et al. (2018) reported substantial to 

excellent reliability and strong correlation between 2D and 3D gait analysis, but these studies 

were limited to running kinematics. The current study’s findings also demonstrated that sagittal 

kinematics was more reliable than frontal and transverse kinematics and running kinematics 

also showed higher percentage agreement and kappa values than walking kinematics. Studies 

by Reinking et al. (2018) and Neal et al. (2020) supported these findings for sagittal plane 

variables.  

The severity of PFP (symptom duration, NRS), the BMI and the activity levels of participants 

from the pre-existing video recordings are believed to have contributed to this study’s findings, 

compared to previous research conducted in healthy participants and elite runners. These poor 

findings may be ascribed to the study’s statistical analysis and methodology, where raters relied 

solely on their observational skills to identify kinematic variables. The findings can also be 

attributed to the increased variability of gait kinematics in runners with PFP (Neal et al., 2020).  

Although this study’s overall outcomes resulted in poor to fair findings, not all findings on the 

kinematic variables of interest were relevant. However, there are still individual kinematic 

factors that clinicians could consider when screening individuals with PFP, especially in the 

running subgroups. Kinematic variables constructed from the evidence-based biomechanical 

risk factor screening tool that are still of clinical importance based on this study’s findings 

(highest percentage agreement) and previous research are sagittal plane increased peak knee 

extension and overall ankle dorsiflexion during walking and increased peak knee flexion and 

increased ankle dorsiflexion in running. Frontal plane kinematics ankle eversion also 

demonstrated a high percentage agreement, followed by knee varus and hip adduction, which 

demonstrated moderate percentage reliability and validity. The findings from this study also 

propose kinematic factors to be slightly easier to identify during running than walking. This 

finding could be ascribed to compensatory gait patterns that are more evident during running, 

demanding greater lower-extremity neuromuscular control than walking, especially in this 
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population. Therefore, investigating running analysis is recommended over walking gait 

analysis in recreational runners with PFP.  

The test procedure for 2D video gait analysis is reproducible in a clinical setting. 

Physiotherapists should include a basic gait analysis as part of their clinical physical assessment 

of the knee joint and lower-limb biomechanical assessment. Based on highlighted findings for 

individual kinematics, 2D clinical observational gait analysis using the evidence-based 

biomechanical risk factor screening tool could potentially be considered reliable for some PFP 

biomechanical risk factors. Still, poor to fair interrater reliability and validity were noted for 

many of the evidence-based biomechanical risk factors using 2D clinical observational gait 

analysis compared to 3D gait analysis. Therefore, clinicians are recommended to use the best 

available evidence and the reliability of relevant clinical measurements when screening 

individuals with PFP to ensure that biomechanical analysis is accurate and applicable in clinical 

practice. 
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Appendix 1: Diagnostic Checklist 

Checklist for diagnosis of patellofemoral pain 

 Created by Leibbrandt & Louw (2017) 

SUBJECTIVE INFORMATION:  

Area (must be yes for one) 

     YES   NO 

Front of the knee or retropatella3, 12, 16, 23   

Local tendon pain11, 15   

 

Chronicity  

Longer than three months3, 6, 14, 17   

 

Aggravated by (must be yes for two or more of the following) 

Squatting4,7,16   

Prolonged sitting4,7,16   

Stairs (ascending or descending)4,7,16   

Kneeling8,12, 1   

Lunging23, 15, 9, 11, 22, 20   

Jumping23, 15, 9, 11, 22, 20   

 

Excluded if any of the below known  

Previous lower limb surgery16, 19, 1, 23   

History of trauma1, 23   

Rheumatological conditions   

Known intra-articular pathology: ligament and 

osteoarthritis16, 19, 1, 23 

  

Referred pain from the lumbar spine or hip23   

Stress fracture of patella23   

Patellar instability1, 23   

Knee effusion1, 23   

Patella subluxation/ dislocation1, 23   

Fat pad impingement/ bursitis1, 23   

Osgood Schlatter1, 19   
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OBJECTIVE TESTS: 

Symptom reproduction with (must be positive for at least 2 of the following activities) 

Squatting3, 4, 6, 7, 13, 14, 16, 21   

Kneeling3, 4, 6, 7, 13, 14, 16, 21   

Ascending or descending stairs3, 4, 6, 7, 13, 14, 16, 21   

 

OR  

(Minimum 2/3) positive for combination of 

Squatting3   

Isometric quads3   

Palpation of patella borders3   

 

Excluded if positive for 

           Yes   No  

Lachman’s Test2, 5, 10 ACL   

Posterior Drawer Test2, 10 PCL   

Valgus Stress Test2, 10  MCL   

Varus Stress test2, 10 LCL   

McMurray’s Test2, 10 MENISCUS   
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Appendix 2: Combined evidence-based biomechanical risk factor screening tool for walking and running 
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Appendix 3: Informed consent forms 

TITLE OF THE RESEARCH PROJECT: 

Validation of an evidence-based biomechanical risk factor screening tool for 

patellofemoral pain  

PROJECT ID: 11912 

ETHICS REFERENCE NUMBER: S19/10/236 

PRINCIPAL INVESTIGATOR: Tanya Green  

ADDRESS: Faculty of Medicine & Health Sciences, Division of Physiotherapy, Stellenbosch 

University, 4th floor, Teaching Building, Tygerberg, 7505 

CONTACT NUMBER: 021 808 3392 

You are invited to partake in a research project. Please take ample time to read the information 

presented below, which entails all the details of this project. Please ask the principal researcher 

any questions about any part of this project that you do not entirely understand. It is essential 

that you understand how you could be involved and what this research project entails. Your 

participation is also entirely voluntary, and you are free to decline participation. Feedback given 

on reviewed recordings will be anonymous. Should you do decide to decline, this will not affect 

you negatively. As a participant, you have the right to withdraw from the study at any point, 

even if you agree and signed consent to take part. 

This study has been approved by the Health Research Ethics Committee at Stellenbosch 

University. The study will be conducted according to the ethical guidelines and principles of 

the international Declaration of Helsinki, the South African Guidelines for Good Clinical 

Practice (2006), the Medical Research Council (MRC) Ethical Guidelines for Research (2002), 

and the Department of Health Ethics in Health Research: Principles, Processes and Studies 

(2015). 

What is this research study about? 

Patellofemoral pain (PFP) frequently affects the knee joint and may limit an individual's ability 

to perform everyday activities of daily living (ADLs) such as running, squatting and stair 

climbing. The overall aim of this research is to establish whether an evidence-based decision-
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making biomechanical risk factor screening tool can be used to identify associated kinematic 

factors for PFP in a clinical setting. 

The preliminary research prior to this study will be conducted at the Tygerberg CAF Motion 

Analysis Laboratory. Eighteen individuals with PFP will undergo 3D gait analysis during 

walking and running. Biomechanical laboratory analysis will be done by D. L, a postdoctoral 

researcher who has been trained in movement analysis procedures and interpretation of data. A 

second researcher (Q. L) will also analyse the data independently to screen for associated 

biomechanical risk factors.  

In the light of the global COVID-19 pandemic, training of participants for this study will no 

longer be held at Campus Health Services physiotherapy rooms in Stellenbosch. The principal 

investigator (T.G.) will meet each participant (physiotherapist) at a venue of their convenience 

(while maintaining social distancing and adhering to government regulations), where she will 

deliver a short training session on how to screen for common biomechanical risk factors using 

the screening tool. The review of data (videos) will also be taking place at a venue of your 

convenience. You will be required to analyse the gait videos and attempt to identify gait-related 

associated biomechanical risk factors. These findings will be analysed and compared to the gold 

standard, 3D motion analysis, to validate the evidence-based clinical decision-making 

biomechanical risk factor screening tool and ascertain the level of agreement between 

laboratory analysis and clinical assessment in recognising associated kinematic factors for 

participants with PFP. 

Why have you been invited to participate? 

You have been invited to participate in this study because you are a qualified and registered 

physiotherapist with the Health Profession Council and have at least two years of clinical 

experience in treating PFP, therefore meeting the inclusion criteria and responded to our 

invitation or advertisement.  

What will your responsibilities be? 

You will be required to complete a short training session using the clinical decision-making 

biomechanical risk factor screening tool and video analysis software program that will be used 

to review recordings. This will assist you in assessing the 2D video gait analysis to identify 

biomechanical risk factors during walking and running in subjects with PFP. 
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Will you benefit from taking part in this research project? 

By participating in this study, you will have the opportunity to improve and upskill yourself in 

biomechanical assessment and analysis. You will also be introduced to an evidence-based 

clinical decision-making biomechanical risk factor screening tool that has not yet been 

implemented in a clinical setting and can prove relevant in clinical practice.  

Are there any risks involved in your taking part in this research project? 

There are no risks in taking part in this research. 

Will you be paid to take part in this study and are there any costs involved? 

• There are no costs to you should you decide to participate in the study. You will not pay 

anything if you do take part. 

• Compensation for your time includes a standard hourly market-related rate for 

participating in this project.  

Is there anything else that you should know or do? 

• You can contact the principal researcher Tanya Green at 021 808 3392 if you have any 

further queries or encounter any problems. 

• You can contact the Health Research and Ethics Committee at 021 938 9207 if you have 

concerns or complaints that your study investigator did not adequately address. 

• You will receive a copy of this information and a consent form for your records. 

Declaration by participant 

By signing below, I …………………………………………… agree to take part in a research 

project entitled, (Patellofemoral Pain: Validation of an evidence-based clinical decision- 

making algorithm to identify associated risk factors). 

I declare that: 

• I have read or had this information read to me on the consent form and it is written in 

a language with which I am fluent and comfortable. 

• I have had enough time to ask questions and all my questions have been answered to 

my satisfaction. 
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• I understand that taking part in this study is voluntary and I have not been pressured to 

participate.   

• I may choose to leave the study at any time and will not be penalized for doing so in 

any way. 

 

• I may be asked to leave the study before it has finished if the researcher feels it is in 

my best interest or if I do not follow the study guide agreed upon. 

 

Signed at (place) ……………………………………. on (date)……………………………...  

……………………………..                                                              …………………………. 

Signature of participant      Signature of witness 

 

Additional Clinician/ Participant information 

Name of participant: 

Email address:  

Contact number: 

Occupation: 

Years treating individuals with PFP: 

Declaration by investigator 

I (name) …………………………………… declare that: 

I explained the information in this document to……………………………. 

I encouraged him/her to ask questions and too adequate time to answer them. 

I am satisfied that he/she adequately understand all aspects of the research project, as 

discussed in detail above. 

I did/ did not use an interpreter. (If an interpreter is used, then the interpreter must sign the 

declaration below).  

Signed at (place) …………….……………………… on (date) ……………………………… 

 

……………………………..      …………………………. 

Signature investigator      Signature of witness 
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Appendix 4: Electronic Letter of Invitation for Research Participation 

Title of study: Validation of an evidence-based biomechanical risk factor screening tool for 

patellofemoral pain (PFP) 

Principal Investigator: Tanya Green, M in Physiotherapy Candidate, Division of 

Physiotherapy, Stellenbosch University 

Supervisor: Prof Quintette Louw, Professor, Division of Physiotherapy, Stellenbosch 

University 

Co-supervisor: Ms. Dominique Leibbrandt, Post-Doctoral Candidate, Division of 

Physiotherapy, Stellenbosch University 

Address: Division of Physiotherapy, Department of Interdisciplinary Health Sciences, 

Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, 

Tygerberg, Cape Town, 8000 

Contact number: 073 33240 20/ email: tanyagreen@sun.ac.za  

Dear Colleagues 

My name is Tanya Green, and I am a master’s student at the Division of Physiotherapy, 

Stellenbosch University (SU). I invite you to participate in a research project 

that aims to investigate whether an evidence-based decision-making screening tool can be used 

to identify associated kinematic factors for patellofemoral pain (PFP) in a clinical setting. 

Please take ample time to read the information presented below, which explains the details of 

this project, and contact me if you require further explanation or clarification regarding any 

aspect of the study. Participation in this study is entirely voluntary, and you are free to decline 

to participate. If you decline, this will not affect you negatively. You are also free to withdraw 

from the study at any point, even if you agree to participate. 

This study has been approved by the Health Research Ethics Committee (HREC) at 

Stellenbosch University: S19/10/236, and the research will be conducted according to 

accepted and applicable National and International ethical guidelines and principles. 

The purpose of this research project is to determine whether clinicians can accurately identify 

biomechanical risk factors for PFP using 2D video analysis. Furthermore, it will also validate 

a risk factor screening tool created on laboratory-based studies in a clinical setting to determine 
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its usefulness for clinicians treating patients with PFP who do not have access to expensive 3D 

motion analysis equipment. 

Should you choose and accept participating in this study, you will be required to analyse the 

2D gait videos and attempt to identify gait-related associated biomechanical risk factors. Before 

reviewing the recordings, the principal investigator (T.G.) will deliver a short training session 

explaining the biomechanical risk factor screening tool. In this session, you will also receive 

training on how to use the freeware motion- analysis software Kinovea (version 0.8.15, 

available for download at http://www.kinovea.org), which will assist you to slow down, pause 

and stop videos to capture specific frames in the various cycles of gait to identify kinematic 

variables of the hip, knee and ankle in both frontal and sagittal views. You will be allocated 30- 

40 minutes to review a subject’s recordings for walking and running. A data capturing 

spreadsheet will be provided to you along with the recordings, where you can import your 

dichotomous data (yes/no) for each of the risk factors identified.  

All personal details will be kept confidential throughout the study, and you will participate in 

this project on an anonymous basis respecting your privacy.  

If you are willing to participate in this study, please reply to this email address: 

tanyagreen@sun.ac.za - further information and arrangements will then be sent to 

you via email. 

Yours sincerely 

Tanya Green 

Principal Investigator 
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Appendix 5: Study Advert 

Do you often treat individuals with Patellofemoral Pain (PFP)? 

• Are you a qualified and registered physiotherapist?

• Have at least two years of working experience?

• Work in Cape Metropolitan/Cape Winelands region?

Campus Health Services Physiotherapy, Stellenbosch University, invites you to participate in a 

research project as part of my master’s degree investigating biomechanical risk factors 

associated with PFP. Participants will review 2D video gait analysis to identify associated 

biomechanical risk factors in subjects with patellofemoral pain. Additionally, you will be 

required to complete a short training session before reviewing the recordings. 

If you are interested, please contact the principal researcher for further inquiries regarding 

the study 

021 808 3392 or tanyagreen@sun.ac.za 
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Appendix 6: Ethics Letter of Approval Larger PFP Project 
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Appendix 7: Methodology of Larger PFP Study 

Research objectives 

The research aims to establish whether an evidence-based biomechanical risk factor screening 

tool can be used to identify kinematic risk factors for PFP in a clinical setting and create an 

evidence-based screening tool for clinicians to decide which risk factors to address the 

treatment of PFP. This evidence-based algorithm is based on a systematic review by Leibbrandt 

& Louw (2017). The first objective is to obtain expert feedback on the current evidence-based 

risk factors for PFP identified in a previous systematic review (Leibbrandt & Louw, 2017a). 

The second objective is to compare the risk factors identified using 3D motion analysis in a 

laboratory to the risk factors identified in a clinical setting. Creating a clinical algorithm will be 

the last step following my master’s study and the focus group interviews (clinical expert 

opinion).  

Study Setting 

The data collected was at the CAF Human Motion Analysis Unit, Faculty of Medicine and 

Health Sciences, Stellenbosch University, South Africa. 

Sampling and Recruitment 

This study population consisted of recreational runners residing in the Cape Metropolitan. 

Participants were recruited through advertisements placed in the community, university, and 

school-based newspapers to attract a range of participants from a broad spectrum of activities, 

backgrounds, sports, and ages. In addition, social media platforms for running club groups such 

as Facebook and advertisements were posted in the weekly university bulletin and on 

noticeboards. Convenient sampling was employed, and ten males and eight females with an 

average age of 33.89 years were included in the larger study.  

Eligibility criteria 

• Inclusion criteria 

 

All participants were screened for eligibility with the PFP evidence-based clinical diagnostic 

checklist (Appendix 1) by D.L. Participants included males and females aged between 18 and 

40 who were physically active, with an insidious onset of clinical signs and symptoms of PFP. 

According to the diagnostic checklist, participants were included if symptoms were elicited by 

prolonged sitting, squatting, stair-climbing, and or running. Participants with unilateral and 
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bilateral PFP were considered for inclusion. In cases where both knees were affected with PFP, 

the most affected knee was tested for altered lower limb biomechanics. 

• Exclusion criteria 

 

Participants were excluded if PFP resulted from a traumatic event such as a motor vehicle 

accident, previous knee surgery, or patellar tendonitis. Prior history of patella 

subluxation/dislocation and pain due to neurological involvement, such as referred pain from 

the lumbar spine or referred pain from the hip joint. Reported degenerative changes, including 

osteoarthritis of the knee, or as demonstrated by a radiograph. If there was any clinical evidence 

of other knee pathologies. 

Data collection tools 

• Vicon 3D motion analysis system  

 

The Vicon Motion Analysis (Ltd) (Oxford, UK) 3D system was used to obtain the 3D 

movement analysis data. The Vicon has demonstrated high accuracy and reliability (Ehara et 

al., 1997). The T-10-series is a motion-capturing system with a unique combination of high-

speed accuracy and resolution. The system has a resolution of 1-mega pixels and captures 10-

bit greyscale images using 1120 × 896 pixels, capturing speeds of up to 250 frames per second. 

Retro-reflective markers with a diameter of 9.5 mm were used. The standard plug-in gait model 

was used, as the model provides the angle output sought in the current study. VICON-specific 

anthropometric measurements obtained are height, weight, leg length, knee, and ankle diameter. 

The researcher (D.L.) did all marker placements; she previously received training in marker 

placement and has two years of experience in marker placement. This serves to reduce marker 

bias.  

• 2D Motion analysis equipment and set-up  

 

2D video recordings were captured in parallel with 3D motion capture. Two high-definition 

cameras were be placed in front and lateral to the treadmill to record frontal and sagittal views. 

2D recordings were done in Noraxon MyoResearch software with the myovideo module 

(https://www.noraxon.com/our-products/video-analysis/). The Ninox 250 (resolution of 

704x1088, framerate: 99 FPS, orientation: portrait) and Ninox 125 (resolutions: 1088x704, 

framerate: 60FPS (max of camera for that resolution), orientation: landscape). Cameras were 

placed 2 meters from the treadmill to obtain frontal and sagittal views. 
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Study procedures 

• Vicon 3D motion analysis system  

 

3D kinematic analysis for walking and running gait was performed. The participants performed 

six shod walking trials at a self-selected pace for walking and running gait. The lead researcher 

(D. L.) analysed the 3D kinematic trials for the larger study to identify the biomechanical risk 

factors using the biomechanics screening tool published in (Leibbrandt & Louw, 2017a). This 

method to identify biomechanical risk factors has been published in ‘Physical Therapy reviews’ 

in 2017.  

• 2D recordings procedure 

 

Video capture for 2D analysis was conducted concurrently during 3D movement analysis data 

collection. Two Ninox cameras were placed 2 meters behind and lateral of the treadmill to 

obtain frontal and sagittal views. Both cameras were set up on standard camera tripods and at 

the participants’ approximated hip height when they were on the treadmill, which was raised, 

to minimize distortion due to the view. Walking and running videos (of 30 seconds) were 

recorded in frontal and sagittal views, respectively. Participants were given ample time to warm 

up to ensure video clips represent the most acclimated walking and running pattern. The warm-

up included a 2-minute walk and run, followed by a fatigue protocol, which consisted of a 2-

minute wall sit and 2-minute alternating lunges. Each speed for walking and running was self-

selected based on their average 10-kilometre pace.  

Outcomes of larger PFP study applied masters’ project 

The 3D biomechanical data collected and the identification of biomechanical risk factors (using 

the published screening tool) for the larger study also served as the reference (gold standard) 

for the validation study. 

The 2D video recordings were used in my master’s study to investigate the interrater 

reliability and validity of 2D observational clinical gait analysis using the biomechanical 

screening tool between raters and the 3D biomechanical data collected in D. L’s study. 
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Appendix 8: Description of 3D analysis output 

3D analysis output 

Gait analysis data was collected using the Vicon T-10- series motion-capturing analysis system 

(Vicon Motion Analysis Ltd., Oxford, UK). The Vicon Motion Analysis (Ltd) (Oxford, UK) is 

a 3D motion capture system employed to obtain the 3D motion gait analysis data. The Vicon 

has demonstrated high accuracy and reliability (Ehara et al., 1997). The T-10- series is a motion-

capturing system with a unique combination of high-speed accuracy and resolution. The system 

has a resolution of 1- megapixels and captures 10- bit greyscale images using 1120 x 896 pixels, 

with the ability to capture speeds of up to 250 frames per second (Windolf, Götzen & Morlock, 

2008). Retro-reflective markers with a diameter of 9.5 mm were used. The standard plug-in gait 

model was used, as the model provides the angle output sought in the current study.  

Vicon-specific anthropometric measurements to acquire are height, weight, leg length, and knee 

and ankle diameter. The researcher who received training in marker placements and has seven 

years of experience in marker placement (D.L.) prepped the marker placements of participants, 

which reduces marker bias. 

Preparation 

The Vicon specific anthropometrics measured are height, weight, leg length, and knee and ankle 

diameter. The lead investigator (D.L.) conducted the placement of the retro-reflective marker 

on participants’ bony landmarks. The skin over the bony areas was prepped with alcohol swabs 

to ensure that the markers stick firmly on the participant’s skin. The placement of the markers 

was performed according to the plug-in gait model. A static calibration trail and a dynamic 

calibration trial were performed before commencing the formal testing.  

(https://docs.vicon.com/display/Nexus25/Lower+body+modeling+with+Plug-in+Gait). 

Procedure 

Participants were required to perform six successful shod walking trials at a self-selected speed. 

After that, all participants were instructed to run naturally on a motorised treadmill at their 

preferred running speed. A treadmill acclimatisation period of 6 minutes was used before 

running kinematics was measured. One clinician identified contributing risk factors from the 

3D motion analysis assessments using individual participant gait arrays, a second researcher 

Stellenbosch University https://scholar.sun.ac.za

https://docs.vicon.com/display/Nexus25/Lower+body+modeling+with+Plug-in+Gait
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(Q.L.) assessed the 3D kinematic data independently to identify associated biomechanical risk 

factor’s reliability. 
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Appendix 9: Ethics Study Letter of Approval  
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Appendix 10: Ethics Study Letter of Approval of Annual Progress Report 
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Appendix 11: Data Collection Spreadsheet for Risk Identification 
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