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Summary 

Coffee is popular worldwide for its diversity in flavour as well as its beneficial health 

factors. The coffee bean is produced from Coffea species, of which there are 103 different 

species. The chosen method for post-harvest processing plays an essential role in the 

development of the coffee bean’s flavour and aroma. Aside from the hybrid “semi-washed” 

process, no other processing has been commercially established in the last few decades. 

Germination has been proposed as a novel, post-harvest treatment for coffee bean 

processing, specifically for South African coffee beans. Although research has focused on 

germination and its effects in terms of sprouting seeds, no research has been conducted 

regarding intentional germination during coffee processing. 

In this research, liquid chromatography coupled to a mass spectrometer (LCMS) was 

used to analyze the various chemical components of South African coffee beans (C. arabica, 

Catuai). For the first study, caffeine, chlorogenic acid, trigonelline, and nicotinic acid were 

identified as key compounds that play a role in coffee’s flavour profile. These compounds 

were therefore evaluated to determine if germination influenced their concentration levels. 

Analysis of Variance (ANOVA) results revealed that the interaction effect of production 

stage and treatment were not significant (p < 0.05) for all the compounds studied. The 

main effect of treatment also did not reveal significant differences (p < 0.05) for all the 

compounds (caffeine (p = 0.48), chlorogenic acid (p = 0.27), trigonelline (p = 0.28), and 

nicotinic acid (p = 0.44)). The low p-values of chlorogenic acid and trigonelline suggest that 

perhaps some significance could be observed. However, further sampling a second 

population would be required to support this since the current research had a sampling 

size of 24 and only one coffee variety. The influence of germination on the key compounds 

was not observed for either green or roasted coffees and therefore it is assumed that the 

flavour profile would remain the same between control and germinated coffee. 

The second study focused on the entire phenolic profile of the coffee beans to 

determine if other compounds were being influenced. Principal Component Analysis (PCA) 

and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) were the chosen 

chemometric techniques to analyze the data matrices. Normalization, pareto scaling, and 

automated minor peak-shift alignments were applied as pre-processing techniques to 

eliminate unwanted variations. However, neither PCA nor OPLS-DA could distinguish 

significant differences (p < 0.05) between the control and germinated coffee samples. 
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Although the sampling size was sufficient for statistical analysis, the small sample set, from 

only two harvest years, impacted the reproducibility of the multivariate data analysis. 

Thus, it is recommended to gain more samples from different harvest years to determine if 

germination influences chemical composition. 

The results observed in this study reveal the first evaluation of a South African origin 

coffee bean and the first study of germination as novel, post-harvest treatment. Although 

the results suggest that germination has no influence on coffee’s flavour profile, more 

research should be conducted to include samples from different origins, different species, 

and different harvest years. 
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1 General Introduction 
 

 
The coffee bean, as well as the variety of products that are produced from it, is an 

exported commodity with a high demand. In the 2019/20 period, the International 

Coffee Organization (2020a) reported that 10.1 billion kg of coffee had been consumed 

worldwide. Europe contributed the largest proportion (33.4%) to this total, whereas 

Africa ranked 5th with a mere 6.6% (International Coffee Organization, 2020a). 

Although South Africa contributed less than 0.5% to the global consumption, there has 

been a steady increase in its own coffee market over the years due to the rapid 

development in coffee culture (International Coffee Organization, 2020b; van der 

Merwe & Maree, 2016). 

Of the 103 Coffea species currently reported in the world, primarily the arabica 

(Coffea arabica L.) and robusta (Coffea canephora Pierre) species are cultivated for 

commercial use (Kathurima et al., 2009). Aside from quality differences between these 

two species, the differences in characteristic attributes such as aroma or mouthfeel can 

be a result of the post-harvest treatment that was applied. Generally, coffee beans are 

either obtained via the “dry” or the “wet” processing method (Bytof et al., 2000; Tarzia 

et al., 2010). In the last two decades, a third process has developed known as the “semi-

dry” treatment (Bytof et al., 2000; Tarzia et al., 2010; Teketay, 1999), but no further 

processing methods have been established since. These treatments each have varying 

influences on the quality of the coffee bean produced. 

There is difficulty in defining quality as a trait, since the attributes within coffee 

have likely evolved over time and the definition can vary between the farmer and 

consumer levels (Leroy et al., 2006). The biochemical content can be related to factors 

such as taste and aroma, which can be used as a basis for defining quality (Kathurima et 

al., 2009). To date, coffee research has focused on the effects of post-harvest influences 

on both arabica and robusta species, specifically looking at the most abundant 

compounds such as carbohydrates, chlorogenic acids, and caffeine. Further insight can 

be gained from studying alternative treatments, such as germination, as a potential 

novel post-harvest method for the production of coffee beans by focusing on the 

chemical composition changes and quality aspects. 
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As mentioned previously, the post-harvest treatments are generally one of two 

options (the dry or wet method). During either process, the fundamental goal is to 

reduce the moisture content to between 10% and 12% by means of drying (Bytof et al., 

2000; Selmar et al., 2006). Once properly dried, the beans are ready to go through a de- 

hulling machine and finally the roasting process, which will develop the much-loved 

coffee aromas. For the “dry” method, the fruits are not required to be sorted and after 

harvesting are immediately spread out on covered ground and allowed to sun-dry. This 

natural drying process can last up to 25 days (Gonzalez-Rios et al., 2007). Alternatively, 

forced airflow from air dryers can also be used to dry the cherries and can take up to 9 

days when performed in a closed environment (Tarzia et al., 2010). The drying method 

causes the skins of the fruit to wither and detach from the seed, or commonly referred 

to as the bean. The dried matter can then pass through a dehulling machine that 

removes the husk of the bean by means of abrasive action. The second method, 

classified as a “wet” treatment, uses only mature coffee cherries for production (Bytof et 

al., 2000). Prior to being soaked, the flesh of the fruit is removed by means of a depulper 

resulting in coffee beans (seeds) which are surrounded by a mucilage layer (Tarzia et 

al., 2010). The soaking stage allows for the fermentation of the mucilage which greatly 

improves the overall quality (Bytof et al., 2000; Tarzia et al., 2010; Teketay, 1999). 

Lastly, the beans are left out to dry followed by the dehulling step to remove the 

parchment layer as opposed to the husk layer in the “dry” method (Tarzia et al., 2010). 

Another treatment often used in smaller scale coffee productions has been adapted 

from the “wet” method and is known as “semi-dry” processing. The cherry flesh is 

depulped, as in the wet method, but then the fermentation stage is omitted and the 

seeds are immediately submitted to drying (Bytof et al., 2000; Tarzia et al., 2010). As 

one would expect, the beans produced by this intermediary process have properties 

that lie in between the dry and wet treatments (Bytof et al., 2000). 

The process of germinating coffee seeds has been widely studied in terms of the 

changing metabolic activities that occur as well as the resulting chemical and physical 

properties of the seed (Bytof et al., 2007; Kim et al., 2018; Selmar et al. 2006; Waters et 

al., 2017). Germination is activated at various points throughout the post-harvest 

treatment and depends on the method which was used (Selmar et al., 2006). However, 

this activation is an unintentional side effect due to a metabolic stress and/or the change 

during embryogenesis (Bytof et al., 2007; Selmar et al., 2006). At the time of writing, no 
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studies have been found that consider the effects of germination as an intentional post- 

harvest method. If an intentional germination step was to be implemented, it could be 

seen as an extension of the fermentation stage that occurs during the wet treatment, or 

as an entirely new step during the dry processing treatment. The influence of the new 

proposed post-harvest treatment on the quality of coffee requires further investigation. 

“Coffee quality” is extremely complex to define. It is governed by two factors: the 

inherent properties resulting from environmental and genetic variation (physical and 

chemical properties), and the processing parameters from harvesting to delivery 

(Sylvian, 1958). External traits of coffee beans such as size, shape, uniformity, and so 

forth are collectively characterized as the physical properties. Chemical aspects include 

aroma, flavour and body which are dependent on the biochemical processes that take 

place within the bean (Selmar et al., 2000; Sylvian, 1958). It is therefore important to 

identify which compounds are responsible for certain key characteristics in coffee and 

how they evolve during the processing of coffee. The non-volatile compounds that are 

found in coffee partake in various reactions that ultimately have the most defining 

impact on the end quality. The volatile substances from coffee are also important for 

coffee profiling but are generally by-products of the non-volatile substances. Volatile 

components in coffee have been previously studied (Eroz Poyraz et al., 2016; 

Sunarharum, 2016) and will not be discussed further. The various non-volatile 

components have also been studied in terms of their role within coffee and the influence 

on quality. 

Compounds that potentially play key roles in different coffees are grouped into 

alkaloids, phenolics, organic acids, and carbohydrates. Trigonelline occurs in many 

plants and the coffee plant is no exception. This nitrogenous substance belongs to the 

alkaloid family and contributes a bitter taste to a brewed coffee, with minimal influence 

towards the final aroma. Studies have shown that there is a reduction in trigonelline 

during post-harvest processing, especially when the wet method is applied to either 

robusta or arabica coffee species (Farah, 2012; Selmar et al., 2000). The degradation 

during roasting produces volatile compounds like pyrroles and pyridines, as well as 

nicotinic acid (Oestreich-Janzen, 2010). Chlorogenic acids (CGAs) are a large family of 

phenolic compounds with numerous possible substitutions on the cyclohexane ring to 

form a range of isomers and/or epimers (Farah, 2012; Oestreich-Janzen, 2010). The 

influence of post-harvest processing on CGAs has been studied and results show that 
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both wet and dry methods result in changes in CGA content. This could also be because 

of the different maturation stages of fruits used during the dry process compared to the 

wet process (Selmar et al., 2000). Total CGAs as well as subgroups thereof are all 

significantly changed during the roasting process of coffee, which can create a unique 

flavour profile (Oestreich-Janzen, 2010). In brewed coffee, CGAs are responsible for the 

astringency, bitterness and acidity of coffee (Farah, 2012). Caffeine belongs to the 

alkaloid class of compounds. Unlike most constituents in coffee, caffeine is thermostable 

and therefore unaffected by the roasting stage (Oestreich-Janzen, 2010; Selmar et al., 

2000). Contrary to popular belief, caffeine plays a very small role in conferring 

bitterness to beverages even though it is commonly used as a ‘bitter’ standard in 

sensorial analysis (Oestreich-Janzen, 2010). Nicotinic acid, or niacin, is the degradation 

product of trigonelline which is produced during roasting (Oestreich-Janzen, 2010; 

Selmar et al., 2000). The compound plays a secondary role in coffee in terms of sensory 

attributes and instead offers benefits for human health and nutrition as a vitamin 

source. 

Other constituents that are found in coffee include the free amino acids, proteins 

and peptides. The free amino acid profile and protein content can play a role in aroma 

and cup quality as they are responsible for carrying important compounds via reaction 

pathways. They are affected by roasting, but not by any of the postharvest processes 

(Selmar et al., 2000). The carbohydrates represent the largest fraction of the dry coffee 

matter (Bradbury, as cited by Selmar et al., 2000). The various subgroups (low and high 

molecular compounds) are involved in numerous reactions from the time of harvesting 

to the green bean stage and finally the roasted beans. Most notable is their role during 

the roasting stage where they undergo the Maillard reaction and caramelization to form 

flavour compounds, as well as contribute to colour via production of melanoidins 

(Selmar et al., 2000). Last are the lipid constituents which are widely affected by 

climatic and environmental factors (Villarreal et al., 2009) and are therefore a tedious 

group to study in terms of coffee classification and comparison since coffee production 

occurs in various countries and under different cultivation conditions. Triacylglycerols, 

esters of diterpene alcohols, and fatty acids are the largest contributing fractions to the 

lipid content (Oestreich-Janzen, 2010). Compounds within coffee contribute in different 

ways to coffee’s profile and various techniques have been developed to identify and 

quantify them. 
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High Performance Liquid Chromatography (HPLC) is a popular analytical technique 

in industry for qualitative and quantitative purposes (Stander et al., 2019). The 

fundamentals of HPLC analysis are based on the separation of compounds in a liquid 

form because of their polarity and interaction with a mobile phase. The benefit of 

combining HPLC with spectral detection methods is that vast amounts of additional 

information about a sample can be derived. In a targeted approach, HPLC can be used to 

detect and quantify specific compounds of interest but it can also be used to compare 

the overall chemistry of samples by means of an untargeted approach. Alonso-Salces et 

al. (2009) studied the structures of various phenolic acids in coffee by means of an 

advanced liquid chromatography technique that was combined with a photodiode array 

detector, electrospray ionization, collision-induced dissociation and tandem mass 

spectrometer (LC-DAD/ESI-CID-MS/MS). The study identified ten compounds that had 

never been reported before in coffee. Similarly, another study only used ultra-

performance liquid chromatography (UPLC) coupled to a quadruple time-of-flight mass 

spectrometry (QTOF-MS) to analyse coffee bean extracts both quantitatively and 

qualitatively (O’Driscoll, 2014). The QTOF-MS detector provided additional information 

(fragmentation ions) that facilitated the identification of ten important compounds in 

the coffee (O’Driscoll, 2014). The coupling of more detectors to a standard HPLC unit 

can provide large amounts of additional data, but meaningful analysis and processing is 

required to properly interpret the results. 

The data that is generated is usually in the form of a complex matrix and requires 

analyses of a specialized nature. Chemometrics is a multivariate data analysis method 

used to tackle such matrices by means of applying complex statistical and mathematical 

functions (Lavine & Workman, 2013). Before multivariate data analysis can be 

performed, pre-processing is performed on the data to remove variation that is 

unrelated to the differences between sample groups (Lavine & Workman, 2013; Rabatel 

et al., 2020). Each pre-processing technique will correct for specific variation observed 

in data. For example, normalisation is a common tool used to correct data points when 

the quantity or concentration of compounds for a product vary between samples 

(Rabatel et al., 2020). There are numerous pre-treatment methods available and widely 

studied (Verboven et al., 2012; Lavine & Workman, 2013; Rabatel et al., 2020). 

Multivariate analysis, after correct pre-processing, can provide information pertaining 

to similarities and/or differences between samples. Principal component analysis is a 
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popular choice used to quickly observe trends within sample sets (Lavine & Workman, 

2013). Chemometric analysis of data obtained from HPLC with hyphenated techniques 

can provide valuable insight into the chemical composition of samples. 

The aim of this study was to investigate the effect of germination as an intentional 

post-harvest treatment during coffee processing via two objectives. The first was a 

targeted approach by quantifying chemical changes in four specific compounds: 

caffeine, chlorogenic acid, trigonelline, and nicotinic acid. Secondly, an untargeted 

analysis was conducted to compare overall chemical changes which might have 

occurred because of the new post-harvest treatment. 
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2 A literature review of coffee’s production methods, 

chemical composition, and the use of LCMS to evaluate 

coffee quality. 

 

The following literature review will discuss coffee with regards to its background, 

botany, processing methods, chemical composition, quality, and analysis techniques. 

The introductory paragraphs will briefly discuss the origin and history of coffee as well 

as discuss production and consumption in a global context as well as within a South 

African context. An overview of the coffee plant’s characteristics and ecological 

cultivation requirements will follow afterwards. Clarity will be provided on the 

processing steps involved in coffee production, with emphasis on the post-harvest 

methods. The chemical composition of coffee will also be highlighted. Quality 

parameters of coffee are important for industry and consumers and shall be discussed 

in relation to important chemical compounds. The review will conclude with a section 

on analytical techniques typically used to analyze coffee as well as the different 

approaches for data analysis. 

2.1 Introduction 

2.1.1 Coffee’s origin and history 

Coffee is an ancient commodity, dating back more than 1 000 years. There are a number 

of conflicting stories of where coffee was first discovered. The most popular and most 

likely apocryphal story is that of an Ethiopian goat-herder who witnessed his goats 

eating red berries from nearby bushes and soon after they began moving with intense 

energy (Smith, 1985; Teketay, 1998). Alternatively, another legend is that of a sick and 

dying Mohammed who was visited in his dreams by the Angel Gabriel. The Angel carried 

with him a dark beverage and told Mohammed of its healing benefits (Smith, 1985; 

Teketay, 1998). However there is no physical evidence that either of these tales took 

place. The first-ever written documentation of coffee’s medicinal features was dated 

1000 AD by a writer called Avicenna who named the drink bunchum or “black liquid” 

(Luttinger & Dicum, 2006). 

There also appears to be a divide in literature about where the first cultivation of 

coffee began. According to some, coffee originated from Arabia, hence the species name 
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‘Arabica’ (Oestreich-Janzen, 2010). For some time, there were heavy restrictions on the 

trade of coffee plants and coffee beans were made infertile but the growing interest in 

the plant resulted in the smuggling of seedlings and beans. On the other hand, Crawford 

(1985) and Teketay (1998) both reported that, although named after Arabia, the plant is 

in fact native to Ethiopia but quickly found its way to Arabia soon after first cultivation. 

Further evidence for this is that wild Coffea Arabica plants are still seen in Ethiopia 

today whereas only commercialized plants are found in Arabia. From Arabia, it is 

assumed that the plant next appeared in India and then its cultivation quickly expanded 

to surrounding areas like Sri Lanka and Java (Oestreich-Janzen, 2010). By the mid- 

nineteenth century, coffee had been introduced to the United States and the 

establishment of the New York Coffee exchange occurred. The explosion of coffee’s 

expansion, and subsequently its popularity, continued during the 20th and 21st century. 

One can see the increase in the amounts of Brazilian, German, Colombian and African 

blends being imported throughout America, Europe and the rest of the world (Luttinger 

& Dicum, 2006; Teketay, 1998) as well as the development of instant coffees, espresso’s, 

and specialty blends. 

2.1.2 World production and consumption 

The International Coffee Organization (2020a) reports on the production and 

consumption of coffee for various countries during each year of production. In 2019, 

production from the top five producing countries equated to 7.26 million tons of coffee 

(Table 2.1.1). Brazil remained the top producing country but still experienced an 11% 

drop from its previous year. Although Indonesia ranked 4th and saw a 16.5% increase in 

production from 2018, this does not rival the capacity at which Brazil and Vietnam 

produce coffee beans. In the 2019/20 period, the International Coffee Organization 

reported that a total of 10.1 billion kg of coffee beans had been consumed worldwide 

(International Coffee Organization, 2020b). 
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Table 2.1.1. Coffee production (metric tons) in 2019 for the top five coffee producing 

countries (International Coffee Organization, 2020a). 

Ranked Country Crop year production (tons) Change since 2018 

1st Brazil 3.5 million -10.9% 

2nd Vietnam 1.8 million -1.7% 

3rd Columbia 840 000 1.7% 

4th Indonesia 660 000 16.5% 

5th Ethiopia 462 000 2.1% 

 
2.1.3 South African coffee market 

South Africa contributed less than 0.5% to the global consumption over the last five 

years. However, there has been a steady increase in coffee demand over the years due to 

the rapid development in coffee culture (International Coffee Organization, 2020b; van 

der Merwe & Maree, 2016). Most coffee beverages in South Africa are produced from 

beans that have been imported from numerous countries like Brazil, Vietnam, and 

Columbia with a greater support for African countries such as Ethiopia, Rwanda, Kenya, 

and Uganda. A small portion of South Africa is suitable for crop production with the first 

documented plantation appearing at a Tea Estate near Tzaneen in Limpopo 

(Department of Agriculture, Forestry, and Fisheries, 2012). The provinces identified 

(Table 2.1.2) are located along the eastern shores and experience high levels of rainfall 

and humidity necessary for the growth of coffee. The coffee produced in South Africa is 

not typically exported for retail, and rather aimed at the local and tourist markets (van 

der Merwe & Maree, 2016) 

Table 2.1.2. Province and districts where coffee is commonly cultivated in South Africa 

(Department of Agriculture, Forestry, and Fisheries, 2012). 

Province District 

KwaZulu-Natal South and North coast 

Mpumalanga Barberton 

Hazyview 

Bosbokrand 

Eastern Cape East London 

Limpopo Grenshoek Tea Estate 
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2.2 Botany 

2.2.1 Species classification 

The tropical coffee plant is a member of the Rubiaceae family, genus Coffea L. The most 

important economic species are that of Coffea arabica (arabica) providing 80% of the 

coffee market, followed by Coffea canephora (robusta) supplying approximately 20% of 

the world’s coffee, and lastly Coffea liberica with less than 1% of the global production 

(Farah, 2012; Mussatto et al., 2011). The three mentioned species form part of the 100 

identified species belonging to Coffea spp. (Oestreich-Janzen, 2010; Teketay, 1998). 

Subspecies within a species are typically referred to as either “varieties” or 

“cultivars”. However, these two terms should not be used interchangeably as they 

represent different breeding conditions of a coffee plant. The term “variety” should be 

used when the coffee plant subspecies has been bred through natural selection because 

of environmental fluctuations (Farah, 2012). “Cultivar” is the term given when 

intentional cross breeding to obtain desired attributes is used and therefore would not 

typically appear in the wild (Farah, 2012). 

 
2.2.2 Characteristic features 

Numerous factors can be used to differentiate between the main Coffea species, such as 

root system, leaves, flowers, fruits, height, and canopy diameter to name a few. Only the 

key features will be discussed further, namely height parameters, leaf shape and size, 

and fruits. 

The difference between the terminology of a “shrub” and “tree” is often regarding 

the height of the plant. Mature C. arabica plants can grow to a height of 4 to 6 m and 

therefore are termed a shrub, whereas the C. canephora and C. liberica are both coffee 

trees and grow up to heights of 12 m and 18 m, respectively (Oestreich-Janzen, 2010). 

However, in plantations they are often trimmed back to 3 m for ease of harvesting 

(DAFF, 2012). 

The leaves of the coffee plant are sometimes used to easily differentiate between 

robusta and arabica species. Robusta leaves are larger than that of arabica with a length 

of 20-35 cm, and a width of 8-15 cm with a rubbery outer layer whereas the arabica leaf 

is half the length (10-15 cm) and width (4-6 cm) and is shinier in appearance 

(Oestreich-Janzen, 2010). In comparison, C. liberica has the largest leaves of all the 

Stellenbosch University https://scholar.sun.ac.za



13  

coffee species, nearly twice the dimensions of arabica (Teketay, 1998). Figure 2.2.1 

illustrates the visual differences between the three mentioned species’ leaves as well as 

the variation within subspecies. 

 

Figure 2.2.1. Visual differences between the leaves of the coffee species C. liberica, C. 

canephora, and C. arabica (source: https://gcrmag.com/wp-content/uploads/2020/09/ 

gcr-wcr-arabica-lrg.jpg). 

 
A variety of colours exist for the coffee fruits which is highly dependent on the 

maturation stage of the fruit. The colours generally range from green (unripe) through 

to red and purple (ripe) to black (overripe), however some varieties appear light yellow 

or white (Teketay, 1998). All fruits are a fleshy berry containing two seeds or “beans” 

within and are deemed the essential part of the plant (Figure 2.2.2) (DAFF, 2012). 

During the dry processing method, the mesocarp is called the “husk” once removed 

during dehulling. However, during the wet processing method, the mesocarp is termed 

the “parchment” once removed during dehulling. Depending on the species, and 

sometimes subspecies, the pulp of the berry can either be bitter and unpalatable or it 

could have a sweet taste (Teketay, 1998). This fact generally goes together with the size 

of the fruit, for instance the larger the berry the sweeter the taste, and vice versa 

(Teketay, 1998). Coffee trees are harvested when they reach five years of age and every 

year thereafter if conditions are favourable (Mussatto et al., 2010). 
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Figure 2.2.2. Transverse and longitudinal cross-sections of a coffee berry (Adapted 

from J. N. Wintgens, 2004). 

 
For cultivation purposes, these three attributes play an important role for 

determining the yield of coffee fruit (DAFF, 2012; Teketay 1998). If a coffee tree is 

allowed to grow too tall, then less energy of the plant is given to producing good 

quantity and quality fruits. The physical properties of the coffee leaves do not influence 

the quality of the fruits produced. However, the leaves can provide the first signs of 

disease within a plant and therefore need to be monitored (Oestreich-Janzen, 2010). 

Coffee leaf rust, American leaf spot, and Cercospora spot are diseases commonly 

affecting coffee plants and, if left uncontrolled, can lead to lower yield of fruit (DAFF, 

2012). For obvious reasons, the fruit’s quality during cultivation is important. The fruits 

are also susceptible to disease and pest infestations, as well as scavenging by birds and 

insects (DAFF, 2012). 

2.2.3 Ecological cultivation requirements 

Environmental conditions which coffee crops are subjected to, are required to be 

maintained to ensure annual harvesting of good quality crops. Not all climates are 

suitable for coffee production and therefore the following discussion will outline the 

conditions that various coffee species require in order to flourish. 

The differences between arabica and robusta coffees are not only seen in the final 

products, but also in terms of their requirement for specific climate conditions. C. 

arabica requires rainfall of ca. 1 520 to 2 280 mm each year, however that range 

extends from below ca. 760 mm to well over 2 540 mm depending on the species and 

location of the plantation (Oestreich-Janzen, 2010; Teketay, 1998). For C. robusta, the 

rainfall range is more standard between species and is from ca. 1 000 to 2 500 mm 
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annually (Oestreich-Janzen, 2010; Teketay, 1998). South African coffees are sensitive to 

water levels and require 1 500 mm rainfall per year with preferably a dry winter to 

promote flowering (DAFF, 2012). 

Temperature is another aspect to be considered when trees are planted. Arabica 

coffees are tolerable of the lower temperature ranges (15-24 °C) whereas robusta 

coffees prefer warm temperatures (18-36 °C) (Oestreich-Janzen, 2010; Teketay, 1998). 

Low temperatures and frost can negatively influence the plant’s growth and, in severe 

cases, inhibit growth (DAFF, 2012). Development and ripening of coffee fruit requires 

warmer temperatures often during summer times (DAFF, 2012; Oestreich-Janzen, 

2010). The average temperature range for South African coffees is on the lower side, 12 

to 26 °C, which is ideal for arabica plantations (DAFF, 2012). Temperature is directly 

influenced by altitude, in that for every rise in 1 000 m there is a loss of 6 °C (Teketay, 

1998). For this reason, arabica plantations are found in the highland areas, for example 

Southwest Ethiopia, Kenya, and Brazil. Robusta plantations grow in lowlands such as 

in Java and Uganda (Oestreich-Janzen, 2010; Teketay, 1998). 

A further ecological requirement of coffee plants includes the quality of soil that the 

cultivations are propagated and grown in. Coffee is produced in many countries across 

most of the continents, and so long as the soil is fertile and suitable climate conditions 

are “provided” the plants will grow well. However, Teketay (1998) reported that 

adequate drainage is also needed in order to prevent over-collection of water which is 

in line with another study (DAFF, 2012) that states that sandy-loam is the best suited 

soil type for growing coffee. Teketay (1998) further details the exceptions to normal 

parameters of soil types as well as discusses effect of wind, humidity, and cloud cover. 

2.2.4 Geographical distribution 

Many countries that produce and export coffee are located within the tropical 

regions surrounding the equator. This is commonly termed the “coffee belt” (Oestreich- 

Janzen, 2010) and is illustrated in Figure 2.2.3 for the top 36 countries (ICO, 2020a). 

Small-scale farmers, such as those in South Africa who do not fall within the belt region, 

are still capable of producing coffee if ecological requirements are suitable (see 

Ecological cultivation requirements above). 
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Figure 2.2.3. Locations of the major coffee producing countries during the 2019 

production year (Data sourced from International Coffee Organization, 2020a; Map 

created with Datawrapper). 

2.3 Processing of coffee 

Coffee is the second most traded commodity in the world, after the trade of crude oil, 

and its production supplies more than 400 billion brewed cups annually (Mussatto et 

al., 2011). Its widespread popularity has motivated manufacturers to refine the process, 

and therefore it is important to understand the steps involved in the production of 

coffee, from berries to roasted beans. 

2.3.1 Harvesting 

The first stage in coffee processing begins with the harvesting of the fruits, which is 

generally done five years after planting (Mussatto et al., 2011). Due to the nature in 

which coffee cherries mature, they are not always at the same stage of maturity when 

harvested. The consequence of this is that there are differing proportions of immature, 

ripe, and overripe fruit on the same tree (de Melo et al., 2019; Waters et al., 2017). 

There are typically three ways in which harvesting can occur, either by hand-picking, 

stripping or mechanically picking the cherries. Hand-picked coffee fruits are known to 

produce better quality coffees because workers select only the ripe cherries and limit 

the inclusion of immature or overripe fruit as well as sticks, insects and foreign 

materials (de Melo et al., 2019). However, this method is equally time-consuming as 

it is labour intensive and is generally done for coffees that require a high final standard. 

Stripping is a more common method where all the cherries on a branch are 
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simultaneously removed and placed in baskets or on sheets below the trees (de Melo et 

al., 2019). There is some exclusion of foreign material and unacceptable fruits by quick, 

visual inspection, however this is a quick process to gather the cherries and still 

produce coffee of acceptable qualities. Similar to stripping, mechanical picking has also 

grown in popularity due to the low labour costs and fast harvesting times. Mechanical 

picking relies on the vibration of tree branches to knock off fruits (Mussatto et al., 2011; 

de Melo et al., 2019) but this will also include the immature or overripe cherries as well 

as undesirable matter such as bird’s nests and loose sticks or branches. Therefore, it is 

in the farmer’s best interest to apply some degree of sorting after the harvesting stage to 

minimize unwanted materials. 

2.3.2 Post-harvest methods 

After harvesting, coffee processing can commence. There are two dominant methods 

used, the dry method which produces “natural coffees” and the wet method which 

produces “washed coffees” (Oestreich-Janzen, 2010; Selmar et al., 2000; Waters et al., 

2017). In the 1990s, a combination of the two was also developed called the semi-dry 

method and results in a “pulped natural coffee” (Waters et al., 2017). Typically, arabica 

beans are produced via the wet processing method in countries such as Colombia and 

Kenya and the state of Hawaii (Schwan et al., 2012). In contrast, robusta coffees are 

usually processed with the dry method, in areas such as Indonesia and Yemen due to the 

limited rainfall and dry, sunny days. Regions that deviate slightly from the normal 

practices are Brazil, Ethiopia, Haiti and Paraguay which process both Robusta and 

Arabica coffee by means of the wet method (Schwan et al., 2012). 

2.3.2.1 Wet processing 

The wet processing technique requires coffee fruits that are at full maturity because the 

skin and pulp can easily be removed from the cherry. The cherries are first depulped in 

order to remove the pulp layer surrounding the coffee bean. The beans are placed in 

tanks where the mucilage layer (a sticky outer layer) is degraded by natural microbial 

fermentation and followed by a washing step (de Melo et al., 2019; Oestreich-Janzen, 

2010; Tarzia et al., 2010). There are inconsistent reports of the required time period for 

fermentation. Oestreich-Janzen (2010) reported that between 18 and 36 hours was 

required, whereas Waters et al. (2017) states that 24 to 48 hours is sufficient. Ideally, 

the producers need to assess the level of mucilage removed and decide on a timeframe 

most appropriate for the bean cultivar being processed. However, the time should 
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preferably be kept to a minimum to avoid microbial spoilage or over-fermentation 

which can lead to off flavours in the coffee. Once washed, the coffee seeds are dried 

either naturally under the sun or by means of forced airflow to a final moisture content 

between 10% to 12% (de Melo et al., 2019; Tarzia et al., 2010; Waters et al., 2017). 

2.3.2.2 Dry processing 

Fruits from all stages of maturation are used during the dry processing method, which is 

a much simpler process that requires less labour and machinery (Vincent, 1987). Once 

the whole fruits are harvested, they are immediately dried in the same manner as the 

wet method, either exposed to the sun or placed in air dryers with forced airflow. One 

study described a prior wash-and-sort method to separate the different cherries by 

density and therefore kept cherries of similar maturity together (Schwan et al., 2012). 

This, however, would negate the supposed ease of the process and would suggest a wet 

process was followed and possible fermentation could have occurred. The length of 

drying is also dependent on the producer as well as the conditions of drying. Forced 

airflow can take between 3 and 9 days (Oestreich-Janzen, 2010), whereas sun drying is 

between 10 and 25 days (Waters et al., 2017; Schwan et al., 2012). The important factor 

is that the final moisture content should drop to between 10% to 12% (de Melo et al., 

2019; Tarzia et al., 2010; Waters et al., 2017). Due to the type of processing steps in the 

dry method, the dried seeds are dehulled to remove the husks. Whereas during the wet 

method, the seeds are dehulled to remove the parchment layer. In either case, this 

renders  the green beans ready for roasting. 

2.3.2.3 Semi-dry processing 

The semi-dry method is an alternative way of processing coffee beans. Instead of 

adhering completely to the dry method, which subjects whole fruits to drying, it follows 

the wet method initially by pulping the fruit to remove the cherry skin and pulp, 

but then is submitted to drying with the mucilage layer still surrounding the beans 

(Selmar et al., 2006). This method is generally used for specialty coffees and/or farmers 

with the necessary machinery who wish to reduce their water usage associated with the 

fermentation stage. The resulting coffee quality lies somewhere between that of dry 

processed coffee and wet processed coffee, as the name would suggest. 

2.3.2.4 Germination 

There is a lack of research on germination as an intentional post-harvest treatment for 

coffee beans due to the simple reason that coffee producers do not apply this “extended 
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fermentation” step in their processing. It should be noted that research has been 

conducted on metabolic germination that occurs naturally during any of the processing 

methods (Bytof et al., 2007; Selmar et al., 2006). However, this germination does not 

proceed to the same extent as what is being proposed. As mentioned earlier, during the 

wet processing method, fermentation is meant to be kept as short as possible to prevent 

over fermentation and or microbial spoilage. A coffee farm in Port Edward, South Africa, 

has recently explored “extending” the fermentation stage which reportedly led to a final 

brewed coffee that was sweeter in taste (Cummings, D. 2019, Owner, Beaver Creek 

Coffee Estate, Port Edward, South Africa, personal communication, 19 March). In order 

to consider coffee bean germination as a post-harvest treatment during the processing 

of coffee, one should consider the origin of the germination process. 

Selmar et al. (2006) proposed that germination occurs both at the seed infancy 

stage when planted into the ground, but also after the cherries have been harvested for 

processing. Once the fruit has reached maturity on the tree, the metabolic activity 

changes are no longer due to maturation but instead attributed to germination (Bewley 

& Black, 1994; Selmar et al., 2006). However, this is a stress response of the coffee seeds 

and, in order to differentiate between natural and desired germination, this should be 

classified as metabolic germination. Whereas in Port Edward, desired germination is 

occurring whereby the seeds are allowed to germinate after the mucilage layer has been 

degraded. Metabolic germination is based on the seeds’ response to the immediate 

environment. For instance, while the coffee fruit is still ripe on the trees, germination is 

inhibited due to the combination effect of abscisic acid and the osmotic potential found 

in the cherry pulp surrounding the seed (Bewley & Black, 1994). However, by de-

pulping the cherry, and after the addition of water and oxygen, the seed undergoes both 

fermentation as well as initial germination reactions. After the fermentation period in 

wet coffee processing, the seeds are spread out to dry. The drying stage causes a 

different stress response, whereby the seed goes into dormancy to preserve itself 

(Bewley & Black, 1994) and thus preventing the germination process from continuing. If 

this germination continued, isocitrate lyase expression would occur which is a key 

enzyme during germination. This can be measured by the increase in β-tubulin, a 

marker for cell division or elongation (Bytof et al., 2007). 

The induced or desired germination is achieved by washing the mucilage residue 

from   the   fermented   beans,   thus   removing   majority   of   the   yeast,   bacteria   and 
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filamentous fungi (Pereira et al., 2016) responsible for fermentation. The washed beans 

are stored in a high humidity environment and monitored daily (Cummings, D. 2019, 

Owner, Beaver Creek Coffee Estate, Port Edward, South Africa, personal communication, 

19 March). At the time of writing, the germination period was allowed to proceed for 

five days (if sprouting occurs then germination has been exceeded) after which drying 

commenced as per the normal method. 

2.3.3 Roasting 

The three distinct organoleptic properties of coffee (flavour, aroma and colour) all 

develop during the roasting stage of processing via complex chemical and biological 

reactions (Mussato et al., 2011). Green coffee is placed in sealed units within the roaster 

and then subjected to temperatures reaching as high as 240 °C (Gonzalez-Rios et al., 

2007a). The time-temperature combination is important, and can result in either a light, 

medium or dark roasted coffee. The heat transferred to the beans will begin the 

transformation of various precursor compounds into products that have become 

synonymous with coffee. The dominating processes are the cascade of condensation, 

degradation and oxidative polymerization steps associated with the Maillard reaction 

(Oestreich-Janzen, 2010) that produce the characteristic nutty/roasted aroma of coffee. 

Different degrees of roasting will follow the same reaction pathways but instead 

produce varying amounts of the final products (ketones, furans, and pyrazines). The 

degree of roasting and the influences on chemical composition of coffee have been 

previously reported (Baggenstoss et al., 2008). 

2.4 Chemical components 

The chemical composition of coffee beans has been extensively reported (Buffo & 

Cardelli-Freire, 2004; Gonzalez-Rios et al., 2007a; Higdon & Frei, 2006; Oestreich- 

Janzen, 2010; Sunarharum, 2016). The presence of certain compounds before and after 

the roasting step as well as their respective concentrations, can be related to beneficial 

or undesirable sensory traits in the final brewed cup of coffee. The key sensory 

parameters for coffee are aroma and flavour, and are linked to volatile and non-volatile 

components, respectively. The chemical components in coffee beans can be categorized 

into these two groups. 

Non-volatile components are responsible for the flavour or taste of the coffee. These 

compounds can differ in concentration levels due to the different effects of pre- and 
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post-harvest influences. The compound concentration levels also differ between the 

green and roasted stages of the beans. Nonetheless, these components can be grouped 

into different classes, namely: nitrogenous compounds, carbohydrates, chlorogenic 

acids, organic acids, lipids, and other trace compounds (Buffo & Cardelli-Freire, 2004; 

Oestreich-Janzen, 2010; Ribeiro et al., 2009). These classes contain important precursor 

compounds that take part in various reactions during roasting to produce the 

characteristic aroma of coffee. 

2.4.1 Nitrogenous compounds 

The nitrogenous group is home to three well-known compounds, caffeine, trigonelline,   

and amino   acids.   Caffeine (1, 3, 7-trimethylxanthine) is naturally found in coffee beans 

and is famous for its stimulatory effects on the nervous system and brain (Higdon & 

Frei, 2006). Notably, the quality of a coffee beverage is often associated with its caffeine 

content and therefore becomes an important aspect when grading coffee. In terms of its 

contribution to a brewed cup of coffee it is believed to add to the overall strength and 

body and is only partially responsible for the bitterness associated with coffee 

(Oestreich-Janzen, 2010; Sunarharum, 2016). According to Oestreich-Janzen (2010), 

during the roasting process the caffeine content remains relatively unchanged. 

However, this is contradictory to a study by Bayle and Adamu (2019) who found that 

the caffeine content changed depending on the time-temperature combination that was 

used. A trend was observed where the content increased until a point (175 °C) and was 

then followed by a decrease in caffeine content. The difference in the outcomes of the 

two studies is due to their stated aims. Oestreich-Janzen (2010) was comparing content 

levels between that of green and roasted coffee, whereas Bayle and Adamu (2019) were 

studying the effects of roasting at different temperatures on the caffeine levels. Although 

this is evidence that roasting plays a role in the concentration levels of caffeine, if not 

for other compounds as well, the change in caffeine levels were insignificant for Bayle 

and Adamu (2019). Therefore, it could be considered negligible in the broader context of 

this work. 

Trigonelline (N-methylpyridinium-3-carboxylate) plays a role in aromatic 

development of coffee whereby, during roasting, thermal degradation of the compound 

leads to the production of pyridines and pyrroles (Oestreich-Janzen, 2010; Ribeiro et al., 

2009). One of its degradation products, nicotinic acid, is an important vitamin (B3 or 

niacin) which contributes to the nutritional value of coffee (Buffo & Cardelli-Freire, 
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2004). Unlike caffeine, the trigonelline concentration can undergo a drastic reduction 

during roasting, and is influenced by the temperature of the roast (Oestreich-Janzen, 

2010). At lower roasting temperatures approximately 60% can be lost whereas at 

higher temperatures up to 90% can be lost to degradation (Oestreich-Janzen, 2010). 

Trigonelline is therefore thermally labile. 

Amino acids play a vital role in the Maillard reaction where the amine group 

undergoes a condensation reaction with the carboxyl group of reducing sugars to form 

aldehydes and ketones (Sunarharum, 2016; Thaler, 1978). The products impart the 

brown colour to the roasted coffee beans but also carry the volatile components, thus 

contributing to the aroma. Amino acids, along with an alpha-dicarbonyl, also partake in 

the Strecker degradation reaction which produces numerous compounds, such as 

aldehydes, pyrazines, pyrroles and pyridines (Ribeiro et al, 2009), all contributing in 

different ways to the volatile profile of coffees. 

2.4.2 Carbohydrates 

In green coffee beans, polysaccharides are the dominating group of carbohydrates. 

Thaler (1978) claimed that mannan and galactan were the predominant compounds, 

present in coffee at equal proportions, and that araban and glucan were present at 1-3% 

of the extracts. A more recent paper, with improved analytical methods, reported that 

arabinogalactan type II and galactomannans were the two predominant types 

(Oosterveld et al., 2003). These polysaccharides are responsible for the viscosity of 

brewed coffee (Buffo & Cardelli-Freire, 2004) but also undergo various reactions during 

roasting, such as thermal and pyrolytic degradation to produce furans and carboxylic 

acids, and ketones respectively (Oestreich-Janzen, 2010; Ribeiro et al., 2009). More 

importantly, simple carbohydrates can react with proteins and amino acids in a 

significant reaction called the Maillard reaction. This reaction results in the brown-

coloured melanoidin products, and also nitrogen and sulfur containing compounds, 

which are linked to coffee flavour (Sunarharum, 2016). 

2.4.3 Chlorogenic acid and Organic acids 

Chlorogenic acids (CGAs) are considered a family of esters derived from the parent 

structure compounds of quinic acid and cinnamic acid. These parent compounds can 

have varying substitutions at the aromatic ring to form numerous isomers and epimers 

(Oestreich-Janzen, 2010). 5-O-caffeoylquinic acid is the most abundant CGA and has 

been attributed to the astringency of coffee beverages (Buffo & Cardelli-Freire, 2004). It 
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is common practice to refer to 5-O-caffeoylquinic acid as “chlorogenic acid”. The result 

due to degradation of CGAs is the production of phenolic compounds (Ribeiro et al., 

2009). A detailed analysis of green robusta coffee was conducted by Jaiswal et al. 

(2010) which identified and confirmed 69 chlorogenic acids as well as classifying seven 

new CGA classes in coffee samples. 

Although chlorogenic acid is also an organic acid, it is usually discussed separately 

from the group due to its abundance in coffee and the sheer number found. Aside from 

chlorogenic acids, the other organic acids found in coffee appear in much lower 

proportions. Citric acid and malic acid are the next abundant organic acids but only 

account for 1.3% and 0.3% of the dry weight (Oestreich-Janzen, 2010). It should be 

noted that in terms of total titratable acidity, chlorogenic acid only contributes 8% 

whereas citric acid accounts for 20% with the largest amount being for acetic acid, 25% 

(Oestreich-Janzen, 2010). Some organic acids are produced during the roasting process 

which causes carbohydrate compounds to degrade and produce acetic, formic, glycolic, 

and lactic acid (Oestreich-Janzen, 2010; Sunarharum, 2016). Whereas ascorbic acid 

breaks down during roasting to create furan compounds (Sunarharum, 2016). 

2.4.4 Trace compounds 

Other trace compounds found in both green and roasted coffee include the mineral 

composition with potassium forming most of the content. However, manganese, iron, 

and copper are also present in reasonable amounts (10-50 ug/g, 15-40 ug/g, and 2-5 

ug/g, respectively) (Buffo & Cardelli-Freire, 2004; Sunarharum, 2016). They are often 

defined as catalytic compounds in biochemical reactions because they assist in the 

release of compounds required for flavour development (Sunarharum, 2016). 

2.5 Quality of coffee 

2.5.1 Defining quality 

The coffee plant and fruit, like all species, has evolved since it was first discovered, and 

therefore defining quality needs to adapt as well. Belay et al. (2016) discussed that 

there is variation in quality parameters between the different levels of the supply chain. 

The different levels include the farmer, the exporter/importer, the roaster, and the 

consumer. In some instances, the farmer, exporter, and roaster are one entity and 

therefore quality standards are easily achieved. A farmer’s key concerns for quality 

would include price and production efficiency, whereas the exporter/importer would 
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assess lack of defects and weight of a shipment (Belay et al., 2016). The moisture 

content, price and origin would be important at the roasting level, and lastly, consumers 

are motivated by taste and flavour along with health implications and pricing (Belay et 

al., 2016). 

Sylvian (1958) concluded that quality was characterized by physical and chemical 

attributes of the coffee beans after roasting. Oetreich-Janzen (2016) stated that “good 

quality coffee flavour has a pleasant sensation, a balanced combination of flavour, body, 

and aroma in the absence of faults”. The latter definition is quite broad and does not 

include the preference of the individual experiencing the coffee. Defining ‘coffee quality’ 

can further be a challenge because each individual will have his or her own preference 

for how they drink coffee. The present study proposes that instead of defining coffee 

quality as a whole, one should identify key individual components within coffee and 

relate them to descriptive sensory attributes. For example, a high concentration of sugar 

is likely to correlate to a sweet coffee flavour. Whether a person enjoys sweet coffee or 

not, is therefore subjective. Sensorial analysis of coffee beverages has been studied in 

terms of both aroma and flavour (Sunarharum, 2016). Previously identified compounds 

(section 2.4) have different contributions to the overall quality of coffee and have been 

summarized in Table 2.5.1. 

 
Table 2.5.1. Identified key compounds and the influence on quality attributes of coffee. 

 

Compound Aroma Flavour 
Mouth- 

feel 

Health 

benefits 

Caffeinea,b,d,f,g  ✓  ✓ 

Trigonellineb,d,e,f,g ✓ 
   

Polysaccharidesa,b,d,e,f,g,h ✓ ✓ ✓ 
 

Chlorogenic acidsa,b,c,d,g 
 

✓ 
 

✓ 

Nicotinic acida,b,c,f 
 

✓ 
 

✓ 

Lipidsa,b,d,e,f 
 

✓ ✓ 
 

aBuffo & Cardelli-Freire (2004), bFarah (2012), cHigdon & Frei (2006), dOestreich- 

Janzen (2010), eRibeiro et al. (2009), fSelmar et al. (2006), gSunarharum (2016), 

hTarzia et al. (2010). 
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2.5.2 Governing factors 

Of all the quality aspects mentioned, two main factors govern them: 1) inherent features 

of the beans and 2) the handling of the beans from harvesting to market (Sylvian, 1958). 

Physical aspects of a coffee bean include the external traits such as shape, size and 

uniformity and the chemical nature includes aroma, flavour and body (Sylvian, 1958). 

Genetic composition is not easily changed, and careful consideration should be given to 

the species and cultivar types as well as their desired climate conditions. An easier 

manner to control quality is adapting the processing treatment for maximized beneficial 

gains. The effect of the post-harvest treatment selected for coffee processing is well 

known and has been previously investigated. Arabica coffees are well suited for the wet 

method of processing, and the Robusta species is generally processed with the dry 

method. There is a consensus among studies that the wet method produces coffees of 

higher quality with a full, rich aroma, pleasant acidity and less body compared to that of 

dry methods which result in full, fruitier body (Mussatto et al., 2011; Selmar et al., 2000; 

Tarzia et al., 2010). The products of the semi-dry method exhibit attributes that are 

intermediary to wet and dry methods. A reason for this is the lack of a fermenting stage 

and the remaining pulp on the bean which prevents the polysaccharides from being 

degraded to the full extent (Farah, 2012). Oestreich-Janzen (2010) suggested that the 

variation observed between the different modes of processing is as a result of different 

time durations of the chemical reactions taking place. This statement is supported by 

the findings of Bytof et al. (2007) who identified the highest levels of isocitrate lyase 

(ICL) – an enzyme found during fermentation – in wet processed beans two days after 

commencing the treatment compared to dry processed beans which recorded highest 

levels of ICL only on the seventh day after processing. Roasting is an essential stage in 

coffee processing and has an important influence on the quality parameters because the 

organoleptic properties (flavour,    colour,    aroma) develop here (Mussatti et al., 2011). 

2.6 Analytical techniques 

Over the years, different analytical techniques have been developed to examine coffee 

seeds and beverages in terms of chemical composition, quality control and sensory 

aspects (Alonso-Salces et al., 2009; Barbin et al., 2014; Correia et al., 2018; Perrone et 

al., 2008; Sunarharum, 2014). Techniques range from simple liquid chromatography-

mass spectrometry (LCMS) to more complex, hyphenated systems such as liquid 
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chromatography coupled to a photodiode array detector with an electrospray ionization 

and mass spectrometer (LC-DAD/ESI-MS) but the type of technique used is dependent 

on the aim of the research. Furthermore, the complexity of the data that is generated 

requires multivariate data analysis to accurately interpret and report the results 

(Lavine & Workman, 2013). 

2.6.1 Instrumentation 

Chromatographic techniques are widely used to study and identify different compounds 

within a sample, including at the trace level (Nolvachai et al., 2017). The principle of 

chromatography is the separation of compounds from one another based on their 

affinity for either a moving or stationary phase. Liquid chromatography (LC) and gas 

chromatography (GC) are the most abundantly used techniques for non-volatile and 

volatile compound analysis, respectively. Liquid Chromatography and Gas 

Chromatography methods have both been used to analyze food composition, each 

having advantages for certain food groups. For instance, GC is mostly applied for oils, 

fatty acids, and aroma component detection whereas LC is useful for detecting inorganic 

salts, proteins, and polysaccharides (Lehotay & Hajslova, 2002). Gas Chromatography is 

a well-established technique which has been used for assessing quality parameters for 

food aromas in various products, e.g. coffee, strawberries, and rice (Du et al., 2011; 

Mahattanatawee & Rouseff, 2014; Pua et al., 2020). However, GC analysis has slowly 

become overshadowed by LC analyses. 

Liquid Chromatography methods have become more widely accepted for the 

majority of food analyses in publications since the start of the century, even for 

traditional GC applications (Lehotay & Hajslova, 2002). This is because it can separate 

all organic compounds irrespective of volatility or polarity characteristics (Lehotay & 

Hajslova, 2002) and over the years these instruments have only become more 

sophisticated. The separation of various types of compounds can be achieved by using 

different solvents and/or columns that are best suited for the compounds of interest. 

Typically, two solvents are used for separation: 1) LC grade water (ultrapure water) 

with 0.1% acid and 2) an organic solvent. Popular organic solvents include methanol 

and acetonitrile (Figure 2.6.1). Methanol is classified as a polar-protic solvent because it 

is able to form hydrogen bonds either with itself or other compounds due to the 

presence of a hydrogen connected to an electronegative atom (O-H in Figure 2.6.1A). 

Whereas acetonitrile is classified as a polar-aprotic solvent because it cannot form 
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hydrogen bonds (Figure 2.6.1B). Formic acid or acetic acid are generally used as the 

acid of choice for LC methods because it provides a source of protons which is suitable 

for ionizing analytes, as well as improving the resolution of peaks. The coupling of 

additional detectors to LC devices can also provide clearer, more informative data about 

a compound. 

 

A) B) 
 
 
 
 
 

Figure 2.6.1. Structural illustration of the compounds A) methanol and B) acetonitrile 

to illustrate the presence and absence of an electronegative atom, respectively. 

 
Spectrometry is a different mode for the detection of analytes that is simple, fast 

and capable of analyzing a series of analytes at one given time for a sample (Barbin et 

al., 2014). This is advantageous as it negates the need for multiple sample preparations. 

Spectrometry techniques involved the application of spectroscopy, which is based on 

the fundamental principle that light of a certain wavelength will interact uniquely with 

different bonds in a functional group of a molecule (Correia et al., 2018). The most 

popular type is mass spectrometry (MS) due to its ability to obtain structural 

information of compounds (Hites, 2016). The quantitative and qualitative information 

of complex systems, such as coffee, can be obtained from chromatographic techniques 

coupled to detectors with increased selectivity and sensitivity, such as mass 

spectrometry or photo diode array detectors (Nolvachai et al., 2017). A study by Alonso-

Salces et al. (2009) made use of multiple detectors (LC-DAD/ESI-CID-MS/MS) to 

examine various polyphenols and methylxanthines in coffee extracts to elucidate 

compound structures for undiscovered analytes in coffee. The complementary 

information allowed the authors to confirm the presence of ten new, natural compounds 

in the coffee samples. In comparison, research by Perrone et al. (2008) was solely 

focused on simultaneously quantifying target compounds known in coffee compared to 

previous studies that individually quantified the same analytes. This simultaneous 

method had a short run- time (6 min) and high accuracy (within 15% unity) (Perrone et 

al., 2008). The instrument used was a simplified LC system coupled to an MS detector 
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which provided a rapid analysis, often necessary in industry. The basic setup for an LC 

instrument can be seen in Figure 2.6.2 with the option of additional devices indicated. 

Examples of post- column apparatuses include mass spectrometers and quadruple time-

of-flight devices. The application range of chromatography and spectrometry is endless 

and has been applied within various industries, including pharmaceutical, biochemistry 

and food technology. However, with such information-rich data being produced, 

appropriate data analysis techniques are also required. 

Figure 2.6.2. The basic schematic of a liquid chromatography device (adapted from 

LaCourse, 2017). 

 
2.6.2 Data analysis 

Data analysis involves applying statistical or logical approaches in order to represent 

data in a manner that is easy for evaluation. Before data analysis can be applied, pre- 

processing the data is necessary in order to remove unwanted variation. For example, 

light scattering, background noise or sample outliers may negatively impact or skew 

results. Once the data have been ‘cleaned’, the next phase is to undergo multivariate 

analysis (MVA). Numerous studies have shown the outcomes of using different MVA 

techniques for qualitative and quantitative analysis (Verboven et al., 2012; Calvini et al., 

2015; Liu et al., 2015). Principal component regression and partial least squares 

regression are most often used for developing robust models for quantitative purposes 

because they are capable of reducing large amounts of data into fewer variables while 
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still accurately predicting quality attributes (Verboven et al., 2012; Liu et al., 2015). 

Furthermore, for qualitative analysis the techniques available are based on computer 

intelligence that are designed to predict future relationships from a training dataset. 

These qualitative techniques include Gaussian mixture models, K-means, principal 

component analysis, K-nearest neighbours, support vector machine, and orthogonal 

partial least squares discriminant analysis (Caporaso et al., 2018; Smrke et al., 2015; 

Verboven et al., 2012). A key difference within these techniques are whether they are 

supervised, i.e. require prior knowledge of the dataset attributes, or unsupervised, i.e. 

no prior knowledge of the data (Liu et al., 2015). However, the core principle of these 

techniques is to observe trends in the data that can be linked to key features (Liu et al., 

2015). Comparisons of different pre-processing methods have been researched 

(Verboven et al., 2012). Selection of the appropriate pre-processing method is 

subjective to the type of dataset that is being analyzed and not one pre-processing is 

perfect for all conditions. Therefore, sufficient time is required to properly assess all the 

possible techniques, as mentioned earlier, in order to not misrepresent the results. 

2.6.3 Summary 

Coffee is a popular commodity, both as a beverage and as an item of interest for 

researchers. Studies have focused on three main aspects: 1) effect of different post- 

harvesting methods; 2) the chemical composition of coffee; and 3) the quality of coffee 

based on chemical and sensorial attributes. Other than the establishment of the semi- 

dry processing method in the 1990s, no other post-harvest treatment has been 

recorded in recent times. Germination has been noted to occur in coffee beans during 

processing as an unintentional reaction. The aim of the proposed project is to determine 

if germination has an effect as an intentional post-harvest treatment and what chemical 

changes are occurring. 
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3 Methods & Materials 
 

 

3.1 Materials 

3.1.1 Chemicals 

HPLC-grade methanol, formic acid (analytical grade) and the caffeine standard 

(99% purity) were generously supplied by the Mass Spectrometry Unit (Central 

Analytical Facility, University of Stellenbosch) and originally obtained from Sigma-

Aldrich. The reference standards for chlorogenic acid (98% purity), nicotinic acid (99% 

purity), and trigonelline (research chemical) were purchased from Protea Laboratory 

Solutions (Midrand, Johannesburg, South Africa). HPLC-grade water was prepared using 

a Millipore water purification system (Merck, Germany). 

Each reference   standard   was   individually   prepared   to   a   concentration   of 

1 000 ppm. A 250 ppm stock solution containing all the standards was then prepared, 

and subsequent dilutions made to the following concentrations (ppm): 5, 10, 20, 50, 

100, and 200. The solvent used throughout was a standardized 50% (v/v) methanol-

water with 0.1% (v/v) formic acid mixture. 

3.1.2 Samples 

Green and medium roasted coffee beans from six different batches were obtained from 

Beaver Creek Coffee Estate (Port Edward, Durban, South Africa). The roasting and 

germination processing parameters cannot be revealed for confidentiality reasons. The 

germination treatment was performed as part of the coffee post-harvest process. All 

samples were of the same species and varietiy (C. arabica, Catuai). Harvesting and 

processing occurred during two periods, May until August in 2019 and June until August 

in 2020. All coffee beans were subjected to the “wet processing method” because it is 

most commonly used for commercial coffees around the world. The samples were 

stored in a -18°C freezer until required. 

With regard to the sample coding information (Table S1), codes were applied to the 

samples in order to provide a shorthand for the harvest, batch number, production 

stage and treatment but otherwise in no particular order. The sample codes were used 

for easy identification purposes by the author and for easy referral in the discussions. 

3.1.3 Sampling procedure 

Coffee samples were taken from two harvest years (2019 and 2020). Three batches 

Stellenbosch University https://scholar.sun.ac.za



35  

from each year were acquired, therefore six batches in total. Each batch consisted of two 

production stages, green and roasted beans. Furthermore, each production stage of 

beans was divided into a control and germinated (treated) beans. Figure 3.1.1 

graphically illustrates the above-mentioned sampling procedure. 

 
 
 

 

Figure 3.1.1. Illustration of the sampling procedure. The 2nd and 3rd batches followed 

the outline set out by batch one. The 2020 harvest followed the outline of the 2019 

harvest for the 4th, 5th, and 6th batches. 

 

3.2 Methodology 

3.2.1 Sample preparation 

Liquid nitrogen was used to flash-freeze the coffee beans prior to grinding in a MM400 

Mixer Mill (Retsch, Germany). The frequency was set at 29 Hz and the duration to 5 min. 

On occasion, if more grinding was required then 2 min intervals at the same frequency 

was used until a fine powder was achieved. 

3.2.2 Extraction 

Approximately 1 g of ground sample was weighed out into 50 mL cylindrical centrifuge 

tubes and 15 mL of the solvent was added. The containers were placed in a sonication 

bath for 30 min without heat and then allowed to stand for a further 1.5 h outside of the 

sonication bath. After the 2 h extraction period, each container was briefly vortexed. 

Thereafter, 2 mL of the liquid was transferred to a 2 mL Eppendorf tube and centrifuged 

at 14 000 rpm for 5 min (Hermle Z 160 M, Lasec). Next, 1 mL of supernatant was 

transferred to a 2 mL glass vial, sealed with a screw cap and stored at 4°C. This method 

was repeated five (5) times per sample as technical repeated measurements. 
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3.2.3 Liquid Chromatography-Mass Spectrometry analysis 

The experimental procedure used here was based on a study by Stander et al. (2017) 

which analyzed phenolic compounds in rooibos tea samples. High-resolution analysis 

was achieved with a Waters Acquity ultra-performance liquid chromatograph (UPLC) 

connected to a Waters Synapt G2 Quadrupole time-of-flight (QTOF) mass spectrometer 

(MS) with an Acquity photo diode array (PDA) detector in front of the MS (Waters, 

Milford, MA, USA). The electrospray ionization (ESI) parameters, as described by 

Stander et al. (2017), were setup as follows: ESI in the positive and then negative mode 

with a cone voltage of 15 V, the desolvation temperature set to 275°C, and Nitrogen 

used as the desolvation gas at 650 L/h. However, modification to the resolution mode 

was made in order to scan from 130 m/z to 1 500 m/z to detect trigonelline which has 

a m/z of 138, which was not investigated in the rooibos tea samples. 

MSE is a more powerful and efficient mode of acquiring data. It is capable of 

recording the exact-mass information for precursor and fragment ions while 

simultaneously providing the quantitative data for each component detected (Waters 

Corporation, 2011). For this study, the MSE mode consisted of two channels. The first 

was a low collision energy (4 V) which produced the precursor ions and no 

fragmentation information. The second channel was a collision energy ramp (40 V to 

100 V) that produced maximum information from the fragmented ions (Waters, 2011). 

Separation was achieved on an Acquity UPLC HSS T3, 2.1 × 150 mm, 1.8 μm column. The 

column parameters were as follows: 2 μL injection volume; 0.1% formic acid in water 

(solvent A) and acetonitrile containing 0.1% formic acid (solvent B) as the mobile 

phase; 0.3 mL/min flow rate; and the column temperature was maintained at 55°C. The 

gradient started at 100% solvent A for 1 min and changed to 28% solvent B over 22 min 

in a linear manner. It then went to 40% solvent B over 50 s and a wash step of 1.5 min at 

100% solvent B, followed by re-equilibration to initial conditions for 4 min. The total 

run time was 29.5 min. 

3.3 Targeted approach 

3.3.1 Chromatogram processing 

MassLynx software (V4.1, 2010, Waters, Milford, USA), specifically the application 

manager “TargetLynx”, was used to correct for the shifts in peak retention time. The 

method was setup to quantify the four key compounds (caffeine, chlorogenic acid, 
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trigonelline, and nicotinic acid). It is important to note, that the nature of the 

TargetLynx program requires that all major peaks be identified by their Exact 

Mass/Retention Time pairs (EMRTs) for the method to work optimally. Signal 

intensities were automatically integrated to generate their concentrations for each 

peak. 

Caffeine, trigonelline, and nicotinic acid are best detected when scanned in the 

positive mode, whereas chlorogenic acid and most other phenolic compounds in coffee 

are detected in the negative mode. The monoisotopic masses for caffeine, chlorogenic 

acid (5-caffeoylquinic acid), trigonelline, and nicotinic acid are expected to be 195 m/z, 

353 m/z, 138 m/z, and 124 m/z, respectively (Angelino et al., 2018). Information 

pertaining to the ultraviolet (UV) absorbance of a compound was obtained via a 

photodiode array (PDA) detector. The UV wavelengths for the detection of caffeine, 

chlorogenic acid (5-caffeoylquinic acid), trigonelline, and nicotinic acid are previously 

reported as 273 nm, 325 nm, 264 nm, and 261 nm, respectively (Rodrigues & 

Bragagnolo, 2013). The assignment of a peak to one of the four compounds under 

investigation was based on three parameters: 1) the retention time 2) the 

characteristics of the UV information and 3) MS spectra compared to the reference 

standards. The quantification of each compound was determined using external 

standards to generate a six-point calibration curve. All quantitative results were 

expressed as mg/g dry weight basis for caffeine, chlorogenic acid, and trigonelline. 

Nicotinic acid was expressed as ug/g dry weight basis. 

3.3.2 Data analysis 

Descriptive statistics of the dataset were computed which included the mean, standard 

deviation, and the standard error. In addition, a test for outliers was performed. Further 

analysis by means of analysis of variance (ANOVA) provided information regarding the 

F-ratio, probability (p-value), and a post-hoc correlation table. 

The average of a group is defined as the sum of all the values for each sample 

divided by the total number of samples and represents the center of a numerical data 

set. This is important because it can summarize large data sets into one value. The 

standard deviation represents the variability of an individual data point to the mean of 

the sample group, while the standard error is the amount of variability of the sample 

mean from the population mean. A standard deviation value that is close to zero 

indicates the data points are not spread out but instead localized around the mean. 
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Outliers are data points that do not conform to the general trend of the data; in other 

words their standard deviation is a certain distance away from the mean as set by a 

threshold. The Interquartile Range Method (IQR) defines limits that are a certain factor 

of the IQR below the 25th percentile and above the 75th percentile. The factor value that 

is used varies between literatures, but common practice is to use 1.5 for “general” 

outliers or a factor of 3 for the “extreme” outliers. The IQR was used to detect outliers 

within the data set and visually assessed by means of boxplots. All descriptive statistics 

were performed in Microsoft Excel (Version 16.0, 2016). 

The data was also imported into R statistical software (R Development Core Team, 

2015) and the lmer Package was used for analysis (Kuznetsova et al., 2017). A mixed 

model analysis of variance (ANOVA) was used to investigate main effects and the 

interaction effects for each compound of interest, to determine significant differences 

(α=0.05) in the sample set (24 samples x two production stages x two treatments). 

Kenward-Rogers approximation was used for determining the degrees of freedom, 

along with a confidence interval of 95%. Kenward-Rogers approximation provides more 

accurate p-values, however it is severely affected by computational time for 

observations greater than 2 500 (Kuznetsova et al., 2017). The small data set (n = 24) of 

the current research project is satisfactory. 

3.4 Untargeted approach 

3.4.1 Chromatogram processing 

The “MarkerLynx” application manager in the MassLynx software (V4.1, 2010, Waters, 

Milford, USA) was used to correct for shifts in retention time of peaks. MarkerLynx 

transformed the data to retention time/mass pairs with each peak allocated to its 

corresponding signal intensity. The data that was produced is in the form of a complex 

matrix where the rows represent the different samples, and the columns represent the 

dependent variables. 

3.4.2 Data analysis 

Data matrices require multivariate techniques to be analyzed. Multivariate data analysis 

often involves the reduction of large data sets into a few key components (substantially 

less than the initial number of variables) that explains the largest portion of variation 

observed between variables while still preserving as much information as possible. 

Principal Component Analysis (PCA) is an example of multivariate data analysis used for 
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exploratory analysis. The PCA scores plot can illustrate which classes or groups are 

similar, while the loadings plot indicates why they are different (Steiman, 2003). 

However, the loadings plot cannot explain which of the classes or groups are of interest. 

Discriminate analysis (DA) methods can also be used to examine the differences 

between groups of a sample, such Partial Least Squares (PLS-DA) and Orthogonal 

Partial Least Squares (OPLS-DA) (Steiman, 2003; Worley & Powers, 2016). These two 

methods both produce models that can predict group membership. However, OPLS-DA 

is more ideal compared to PLS-DA because of its ability to adequately explain the data in 

the simplest model otherwise known as parsimony. Whereas PLS-DA will form complex 

models when uncorrelated variance in an experimental group is observed (Worley & 

Powers, 2016). In should be noted that PLS and OPLS analyses find separations based 

upon class membership assigned to the samples which could lead to unreliable 

interpretation of results. Therefore, the supervised models need to be cross-validated. 

The MarkerLynx software was used to pre-process the data. Normalization, pareto- 

scaling, and peak alignment were the pre-processing techniques chosen. Principal 

component analysis was performed on all the variables detected in the coffee samples, 

i.e. the green-control, green-germinated, roasted-control, and roasted-germinated 

datasets. Afterwards, OPLS-DA was computed to investigate possible differences 

between the same category groups. Tentative assignment of the important peaks 

identified in the OPLS-DA was based on parameters similar to the targeted approach. In 

other words, the retention time (where possible), the characteristics of the UV 

information (wavelength), and MS spectra (parent and daughter ions) can be compared 

with published literature and open-source databases to tentatively predict the identity 

of the compounds. 
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4 Results & Discussion 
 

 

4.1 Method Selection 

A test-run of the reference standards was performed to confirm which electrospray 

ionization (ESI) mode would be most appropriate for detecting the desired compounds – 

with consideration for both the targeted and the untargeted approach. Initially, all three 

modes of detection, ESI positive, ESI negative, and photon diode array (PDA), were 

investigated. In Figure 4.1.1C, caffeine, trigonelline, and nicotinic acid could be clearly 

identified in the ESI+ mode. Whereas the chlorogenic acid peak was identified in the ESI– 

mode (Figure 4.1.1B). All four compounds were also identified by the PDA detector 

(Figure 4.1.1A). However, studies have reported that other coffee phenolic compounds 

are mostly identified in the ESI– mode and ESI+ provides little additional information 

(Angelino et al., 2018). Therefore, only the combined ESI– and PDA methods were used 

for detecting the four compounds and other phenolic compounds in the coffee in order to 

reduce analysis time because the ESI modes each took 25 minutes. Quantification of 

caffeine, trigonelline, and nicotinic acid was achieved by UV-peak integration. Although 

the chlorogenic acid peak was also observed with the PDA, better peak detection was 

seen in the ESI– mode. 

The caffeine standard had a retention time of 12.12 min with an absorbance 

maximum at 273 nm using the PDA detector. The trigonelline standard had a retention 

time of 1.64 min and a maximum absorbance at 230 nm. The nicotinic acid standard had a 

retention time of 2.72 min and an absorbance maximum at 261 nm. The chlorogenic acid 

standard had a [M-H]-a of 353 m/z and a fragment ion of 191. The fragmentation ion of 

191 m/z is key for identifying 5-caffeoylquinic acid, commonly called chlorogenic acid, 

specifically because 3-caffeoylquinic acid and 4-caffeoylquinic acid also have [M-H]- of 

353 m/z but the fragmentation patterns are unique for each. The fragmentation pattern 

MS spectra of chlorogenic acid is seen in Figure 4.1.2. The 707 m/z ion fragment is also 

important as this indicates two chlorogenic acid molecules bound together and 

protonated. Simply, 

353 m/z + 353 m/z = 706 + H+ = 707 m/z 
 
 

a Molecular ions observed in negative mode of mass spectra are usually represented as M- or [M-H]- when 
depronotated, and M+ or [M+H]+ when protonated. 
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Figure 4.1.1. Separation of caffeine, chlorogenic acid, trigonelline, and nicotinic acid in a 

50 ppm reference standard solution of 50% methanol with 1% formic acid. (A) UV 

chromatogram from a PDA detector in front of the MS, (B) base peak intensity 

chromatogram in ESI negative mode, and (C) base peak intensity chromatogram in ESI 

positive mode. Scales are not comparable. 
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Figure 4.1.2. ESI negative ion mode MS/MS spectrum of the fragmentation pattern for 5-

caffeoylquinic acid. 

4.2 Targeted approach 

4.2.1 Peak identification 

A typical MS and UV chromatogram is seen for the 2019 harvest season in Figure 4.2.1 

and Figure 4.2.2, respectively. The MS and UV chromatograms for the 2019 germinated 

coffee (Figure S1, Figure S2) and the 2020 control coffee (Figure S3, Figure S4) and 

germinated coffee (Figure S5, Figure S6) can be seen in the supplementary notes. Peaks 

12.11 

2.0e-1 

191.0560 

707.1900 

708.1918 

354.0890 

192.0620 

186.9343 
351.0804 355.0955 

437.0554     480.9641  567.1932 
705.1662       729.1801 

856.2649 936.9740 966.4555   1061.2720      1114.2050 1175.3456 

A
U

 

%
 

%
 

%
 

Nicotinic acid 12.12 

11.58  273.12 

758.57 24.86 

A 

Stellenbosch University https://scholar.sun.ac.za



43  

A
U

 

191.02 

283.12 

were identified by comparing the m/z, retention time, and fragmentation data to the 
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Figure 4.2.1. Typical base peak intensity chromatogram for the 2019 coffee harvest 

season showing (A) green coffee control and (B) roasted coffee control in the ESI negative 

mode to illustrate chlorogenic acid peak identification. Scales are not comparable. 
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Figure 4.2.2. Typical UV chromatogram for the 2019 coffee harvest season showing (A) 

green coffee control and the (B) roasted coffee control from the PDA detector to illustrate 

peak identification of trigonelline (230 nm), nicotinic acid (261 nm), and caffeine (272 

nm). Scales are not comparable. 
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Similar peaks were observed in the chromatogram for the 2020 harvest season, apart 

from differences in peak retention times. Most of the peak shifts occurred during the 

second gradient change from 100% solvent A to 28% solvent B. This means the early 

eluting compounds, trigonelline and nicotinic acid, will have consistent retention times 

but the later compounds, caffeine and chlorogenic acid, will have different retention 

times. The peak shifts were likely due to instrumental drift which occurs slowly over time. 

The same instrument was used for analysis, but the two analyses were performed one 

year apart which meant the instrumental drifts were larger. Therefore, the older the 

column becomes and/or the more it is used will have an influence on the ability to 

separate the compounds. This was unavoidable as the chemical composition of the coffee 

samples deteriorate over time and therefore required immediate analysis after harvesting 

and processing. After observing the peak shifts, the standards were re-analyzed in order 

to confirm the “new” retention times – the standards “new” retention agreed with that of 

the shifted compounds. The peak shifts did not affect quantification of the targeted 

compounds because the TargetLynx application (V4.1, 2010, Waters, Milford, USA) 

required the retention times of each compound to be manually added into the software 

and therefore was easily adjusted. 

4.2.2 Calibration parameters 

The integration of peak intensities requires calibration curves of the different 

reference standards. Table 4.2.1 provides the parameters used for each calibration curve 

as well as the Limit of Detection (LOD) and Limit of Quantification (LOQ). All the 

calibration curves were linear and forced through the origin. The chlorogenic acid curve 

only had five concentration points because one point was detected as an outlier and 

therefore removed. This explains the marginally lower coefficient of determination (R2) 

observed for the chlorogenic acid curve (R2 = 0.9367) compared to caffeine (R2 = 0.9990), 

trigonelline (R2 = 0.9975), and nicotinic acid (R2 = 0.9998). The LOD was determined as 

three times the ratio of the standard deviation for the y-responses to the slope of the 

calibration curve. Whereas the LOQ was determined as ten times this ratio. The LOD 

values for caffeine (1.09 ug/L) and nicotinic acid (1.04 ug/L) were comparable with 

findings by Perrone et al. (2008) but the LOD for trigonelline (9.19 ug/L) was nearly two 

times higher than the amount reported by Perrone et al. (2008). The chlorogenic acid LOD 

(12.68 ug/L) was found to be almost half the amount reported by Angelino et al. (2018). 
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Table 4.2.1. Calibration parameters and limits of detection (LOD) and quantification 

(LOQ) for the concentration curves prepared in 50% methanol with 0.1% formic acid. 

Compound na R2b LOD (ug/L) LOQ (ug/L) 

Caffeine 6 0.9990 1.09 3.30 

CGAc 5 0.9367 12.68 38.41 

Trigonelline 6 0.9975 9.19 27.86 

Nicotinic acid 6 0.9998 1.04 3.16 

a The number of points used in the calibration curve 

b The coefficient of determination 

c CGA: chlorogenic acid 

 

 

4.2.3 Outlier Detection 

It is common practice to determine outliers before performing any type of analysis on a 

data set. This is done to determine if any observations deviate from the general trend of 

the sample group and to investigate if human error, instrumental error or natural 

variation might have occurred (Dawson, 2011; Hodge & Austin, 2004). The interquartile 

range method (IQR) was used to calculate outliers which can be easily visualized with 

boxplots (Figure 4.2.3). The upper and lower limits were defined as the 1.5 times the 

range between the 1st quartile and the 3rd quartile, respectively. These limits are 

displayed as the “whisker” portion of the boxplot. For this study, observations that are 

outside these limits were represented by circles on the plot and required further 

investigation. 

No outliers were identified for the chlorogenic acid (CGA), trigonelline, and nicotinic 

acid data. However, five data points were identified as outliers in the caffeine 

concentrations (Figure 4.2.3A) indicated as spheres on the plots. Upon further 

examination, the five data points all belonged to samples collected during the 2020 

harvest season. All of the outliers were classed as “green” coffee beans; however three 

samples were from control groups and the remaining two were from the germinated 

groups. The values of the five outliers ranged from 33.70 mg/g to 38.70 mg/g, which is 

approximately two times the average content for green coffee samples (17.21 mg/g). 

Initial assumptions about outliers might lead one to think that they should be removed. 
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Figure 4.2.3. Boxplot representations for the concentrations of (A) caffeine, (B) 

chlorogenic acid (CGA), (C) trigonelline, and (D) nicotinic acid in Coffea arabica beans 

(n=24). Lower and upper “whiskers” were defined as 1.5 times the interquartile range. 

 
Instead, the data points suggest that sudden spikes in concentration levels are natural 

occurrences and these samples should therefore remain as representatives in the dataset. 

Also, it is possible that the germination treatment was not properly controlled for those 

few samples which led to the larger caffeine levels. Germination as a post-harvest method 

has not been reported on and therefore this remains an unsupported deduction. 

Furthermore, the outliers were identified from the 2020 harvest season and might in fact 

represent differences between harvest years. A study by Zhou et al. (2019) reported that 

polyphenol content of Merlot and Pinot Noir grapes were significantly affected by 

different harvest times. Although grapes and wines were the focus of the aforementioned 

research, the authors also reported phenolic changes in the seeds of the grapes between 

different harvest times (Zhou et al., 2019). The seeds of the grapes could be likened to the 

seeds (or beans) of the coffee cherry and the reasoning could be tentatively applied to the 

coffee samples of the current research paper. 

Additionally, Dawson (2011) stated that when a sample size is small then the IQR can 

be unrepresentative of the population and is more likely to detect outliers because the 

quartiles will include high variation. Theoretically, there is a 0.8% probability of 

encountering an outlier in a data set (Dawson, 2011). The coffee sampling size of the 

present objective totaled n = 24, which would mean that the five detected outliers 

represented 20% of the data. Unfortunately, the small sample size does not allow for 

proper deductions to be made about the larger coffee population and the removal of the 
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outliers could drastically affect the results. For these reasons, it was decided to retain the 

outlier values in the data set as they potentially form a valid part of the population and 

reflect important variation between the coffee samples. 

4.2.4 Analysis of Variance 

The nature of the experimental design (two production stages x two treatments) requires 

the analysis of the main effects of the independent variables (treatment and production 

stage) as well the observed interaction effects between the two independent variables. 

This is done to determine which (if any) were significantly different. Analysis is 

performed on the mean ( ) concentrations and reported in terms of mean ± the standard 

deviation on a dry weight basis (DW). The units for caffeine, chlorogenic acid, and 

trigonelline are in mg/g DW and nicotinic acid is reported as µg/g DW. 

4.2.4.1 Caffeine concentration 

The average concentration for caffeine between the control and treated samples at each 

production stage can be seen in Figure 4.2.4 below. The average concentration for green- 

control, green-germinated, roasted-control, and roasted-germinated coffee beans were 

determined to be 24.90±13.65 mg/g DW, 19.79±13.06 mg/g DW, 12.22±2.3 mg/g DW, 

and 11.94±2.3 mg/g DW respectively. The descriptive statistics can be found in the 

supplementary notes (Table S2). 

 

Figure 4.2.4. Two-way mixed model analysis of variance (ANOVA) for the main effects 

between sample group treatments (control vs. germinated) and production stage for the 

mean concentrations of caffeine. Different letters in the bar’s bases indicate significant 

differences (p = 0.05). Vertical bars denote standard deviation. 
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A two-way mixed model ANOVA (2 production stage x 2 treatment) performed on the 

caffeine concentrations revealed that the main effect for production stage was significant 

F(1,15) = 7.58, p = 0.01. Thus, there was an overall difference in the concentrations for 

green coffee (   = 22.35 mg/g DW) compared to roasted coffee (   = 12.08 mg/g DW). The 

main effect for treatment was not significantly different, F(1,15) = 0.52, p = 0.48 and 

therefore the caffeine concentration for the control group (   = 18.56 mg/g DW) did not 

differ from the germinated coffees ( = 15.87 mg/g DW). When analyzing the interaction 

effect between production stage and treatment, no significant difference was observed, 

F(1,15) = 0.42, p = 0.53. Closer examination of the means indicated that there was a 

decrease in caffeine concentration for the green coffee from the control stage (   = 24.9 

mg/g DW) to the germinated group (  = 19.79 mg/g DW), and the same trend was seen 

for the roasted coffee from the control group (  = 12.22 mg/g DW) to the germinated 

group (  = 11.94 mg/g DW). As mentioned earlier, these differences are not significant. 

Therefore, based on the results of this study it can be said that the change in caffeine 

concentration for a coffee sample is dependent on the production stage, i.e. being green or 

roasted, and not due to germination. 

Caffeine is widely reported as not being affected by roasting (Oestreich- Janzen, 2010; 

Sunarharum 2016). The results of this study are not in agreement with the prior 

statement, and furthermore the concentration range for caffeine was not in the same 

range as previous reports (Moon et al., 2009; Sunarharum 2016). The present findings 

saw a decrease in caffeine levels after roasting which is contrary to the reports by Moon 

et al. (2009) who saw an increase after roasting for Colombian, Ethiopian, Guatemalan, 

Mexican, Nicaraguan, and Papuan coffees. To the authors best knowledge, this is the first 

study reporting on caffeine concentrations in South African produced coffee. It is 

proposed that the South African climate provides different conditions from that of typical 

coffee regions and could therefore have played a role. 

It was seen that caffeine content decreased significantly after roasting. The final, 

roasted concentrations were similar between control and germinated treatments. For this 

reason, it is postulated that regardless of initial compound content, the roasting process 

will degrade caffeine until its end-point is reached. Different degrees of the roasting (e.g. 

light, medium, dark, French) are applied throughout literature because this is not a 

standardized procedure but rather based on the requirements of the farmer, roaster, or 
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consumer (Belay et al., 2016). Therefore, perhaps the roasting temperature-time 

combination is an important factor when controlling concentration levels. This is outside 

the scope of the current study but is still important to consider. 

4.2.4.2 Chlorogenic acid quantification 

The chlorogenic acid isomer that is most abundant in coffee is 5-caffeoylquinic acid and 

has been referred to as “chlorogenic acid” throughout literature. Likewise, this study 

refers to 5-caffeoylquinic acid interchangeably with “chlorogenic acid” (CGA). The mean 

concentration of chlorogenic acid for green-control samples was 22.92±6.6 mg/g DW, for 

green-germinated coffee it was 17.13±10.59 mg/g DW, for roasted-control coffee it was 

14.59±6.23 mg/g DW, and for roasted-germinated samples it was 13.94±5.8 mg/g DW 

(Figure 4.2.5). Similar to the trend seen in caffeine concentrations, chlorogenic acid 

concentrations decreased in both green and roasted coffees when the germination 

process was applied at the post-harvest treatment stage. 

 
 

Figure 4.2.5. Two-way mixed model analysis of variance (ANOVA) for the main effects 

between sample group treatments (control vs. germinated) and production stage for the 

mean concentrations of Chlorogenic Acid. Different letters in the bar’s bases indicate 

significant differences (p = 0.05). Vertical bars denote standard deviation. 

 
The main effects for production stage and treatments were both not significant, 

F(1,15) = 4.25, p = 0.06 and F(1,15) = 1.34, p = 0.27, respectively. Thus, there was no 

overall difference in the concentrations for green coffee (  = 20.02±8.9 mg/g DW) 

compared to roasted coffee (   = 14.27±5.7 mg/g DW), as well as for the control treatment 

(  = 18.76±7.5 mg/g DW) compared to the germinated treatment (  = 15.53±8.3 mg/g 
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DW). It should be noted that the production stage probability value (p = 0.06) was very 

small and almost within the boundaries of the 95% confidence interval. Since green and 

roasted coffees are known as being visually and chemically different, this value for all 

intents and purposes indicates significant differences between the two groups. Should a 

larger sample size be used in any future work, then one could expect this to be significant. 

Analyzing the interaction effect between production stage and treatment for CGA, no 

significant difference was observed, F(1,15) = 0.85, p = 0.37. This result implies that the 

production stage has no effect on the outcome of the treatment, and vice versa. However, 

the probability value was marginally low (p = 0.37) and so perhaps if a larger sampling 

size was obtained then, one might have seen an interaction effect. In other words, the CGA 

concentration for a given treated coffee sample might be subject to variation based on the 

production stage. A bigger decrease in CGA concentration is seen for the green coffee 

from control(    = 22.92 mg/g DW) to germinated (   = 17.13 mg/g DW) compared to the 

decrease in roasted samples from control  (       = 14.59 mg/g DW)  to  germinated 

(  = 13.94 mg/g DW) beans. 

Chlorogenic acid was expected to drop in concentration after roasting based on 

previous reports that indicated that CGA is degraded to produce quinic acid along with 

the corresponding lactone-products (Bennat et al., 1994). As assumed, CGA decreased 

during roasting for both treatment groups. However, both degraded to approximately the 

same end-point even though they had a 5-mg difference in their “green” concentrations. 

The results agree with the postulation suggested for caffeine that regardless of initial 

compound content, the roasting process will degrade CGA until the reaction reaches its 

end-point. To confirm this would require studying the reaction kinetics of the roasting 

process which was outside the scope of the research. 

4.2.4.3 Trigonelline and Nicotinic acid quantification 

Trigonelline and nicotinic acid are compounds involved in the same pyridine nucleotide 

cycle (Ashihara, 2008). Trigonelline is reported as being present in higher concentrations 

in green coffee beans and levels are reduced during the roasting stage. During roasting 

trigonelline is broken down to produce nicotinic acid as well as other volatile products. 

For this reason, they will be discussed in tandem with one another. 

The mean concentrations for trigonelline were found to be present in smaller 

concentration ranges compared to published works. The green-control and green- 
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germinated coffee samples had mean concentrations of 7.85±0.6 mg/g DW and 6.42±1.8 

mg/g DW, respectively. The roasted-control and roasted-germinated coffees had mean 

concentrations of 10.75±0.6 mg/g DW and 11.15±1.1 mg/g DW, respectively. Figure 4.2.6 

illustrates the same decreasing trend after the germination treatment applied for green 

coffee, however an increase after roasting was seen for both control and germinated 

coffees. This is an unexpected outcome because, as mentioned earlier, trigonelline is 

typically degraded and not produced when thermally processed. 

In terms of nicotinic acid concentrations, the mean values for green-control, green- 

germinated, roasted-control, and   roasted-germinated   were   determined   as 

98.19±71.9 µg/g DW, 102.54±89.4 µg/g DW, 98.02±70.0 µg/g DW, and 49.61±74.1 µg/g 

DW respectively (Figure 4.2.7). It is important to note the high standard deviation values. 

This is because of the large range of values obtained for nicotinic acid. Excluding the 

seven samples that measured 0.0 µg/g DW, the concentration range for nicotinic acid was 

30.65 µg/g DW to 193.17 µg/g DW. 
 

Figure 4.2.6. Two-way mixed model analysis of variance (ANOVA) for the main effects 

between sample group treatments (control vs. germinated) and production stage for the 

mean concentrations of Trigonelline. Different letters in the bar’s bases indicate 

significant differences (p = 0.05). Vertical bars denote standard deviation. 
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Figure 4.2.7. Two-way mixed model analysis of variance (ANOVA) for the main effects 

between sample group treatments (control vs. germinated) and production stage for the 

mean concentrations of Nicotinic Acid. Different letters in the bar’s bases indicate 

significant differences (p = 0.05). Vertical bars denote standard deviation. 

 
Trigonelline mean concentrations were also subjected to a mixed model ANOVA. The 

main effect for production stage was found to be significant, F(1,15) = 69.62, p < 0.01, but 

the main effect for treatments was not significant, F(1,15) = 1.27, p = 0.28. However, the 

p-value for treatment effects was quite low (p = 0.28) and warranted a further 

investigation into the post-hoc information (Table 4.2.2). This revealed significant 

differences between all pairwise groups except between roasted-control and roasted-

germinated (p = 0.55). This is in line with the current study’s findings of the above-

mentioned compounds where no significant difference was seen between treatments 

after the roasting process. 

 
Table 4.2.2. Post-hoc information after a two-way mixed model ANOVA for trigonelline in 

Arabica coffees. Values are representative of the p-value outcome. 

Production 

stage 

Treatment Green- 

control 

Green- 

germinated 

Roasted- 

control 

Roasted- 

germinated 

Green Control 1    

Green Germinated 0.04 1   

Roasted Control < 0.01 < 0.01 1  

Roasted Germinated < 0.01 < 0.01 0.55 1 
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The interaction effect for trigonelline between production stage and treatment was 

F(1,15) = 3.98, p = 0.06 which indicates no significant difference was observed even 

though the p-value fell just outside the confidence interval. Although statistically 

insignificant, the very low p-value should not be ignored because in future work, with a 

larger sample size, there could be an interaction effect between treatment and production 

stage. This would therefore require further investigation into the main effects. As 

previously mentioned, the same postulation is made for trigonelline in that the roasting 

process for this study allowed for the same reaction end-point to be reached regardless of 

initial concentrations. 

The nicotinic acid concentrations revealed that the main effect for production stage 

was not significant F(1,15) = 0.9, p = 0.36. Thus, for the first time, there was no overall 

difference in the concentrations for green coffee groups compared to roasted coffee 

groups. The main effect for treatments was not significant, F(1,15) = 0.62, p = 0.44. Upon 

examination of the interaction effect between production stage and treatment for 

nicotinic acid concentration, the resulting difference was not significant, F(1,15) = 0.88, 

p = 0.36. 

As previously mentioned, trigonelline and nicotinic acid are linked in their production 

cycles, generally in an inverse relationship. It was assumed the trigonelline content would 

decrease after roasting, and a proportional amount of nicotinic acid would be produced 

(Oestreich-Janzen, 2010). However, the opposite appears to have occurred. For 

trigonelline, a significant increase for both control and germinated treatments after 

roasting was observed. Whereas nicotinic acid stayed unchanged except for a decrease in 

the germinated samples after roasting. Interestingly, the roasted-germinated decrease in 

nicotinic acid could perhaps be correlated to the increase in trigonelline because of the 

known relationship between the two compounds. 

There is no current literature that accounts for the increase in trigonelline after 

roasting and this observation remains a puzzling phenomenon. According to Ashihara 

(2008), trigonelline is stored in the seeds and converted to nicotinic acid when NADb 

synthesis is activated. This would explain the decrease observed in trigonelline content 

for the green-germinated samples of this study. It is further postulated that perhaps 

trigonelline was used for synthesis of a different compound in the pyridine nucleotide 

 

b Nicotinamide Adenine Dinucleotide (NAD) is a coenzyme found in many living cells and functions as an 
electron acceptor during different metabolic pathways. 
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cycle, such as nicotinamide (Ashihara, 2008). This, however, requires investigation of 

compound biosynthesis and is beyond the scope of the current research. A more practical 

solution for this artefact could be that possibly the extraction procedure for trigonelline 

in the green coffee beans was not optimal. Similar papers also used aqueous methanol as 

the extraction solvent however various extraction times have been used. Extraction 

periods range from 20 min (Farah et al., 2005) to 5 hours (Jaiswal et al., 2012) to allowing 

the material to soak overnight (Stander et al., 2017). 

Another point of discussion is the very low concentrations for nicotinic acid before 

and after roasting. According to literature, nicotinic acid is generally recorded in very low 

quantities or not at all in green samples, and for roasted coffee the values were detected 

on the lower end compared to other compounds (Casal et al., 1998; Perrone et al., 2008). 

The present study found that the average nicotinic acid concentrations were in fact in the 

range reported by Casal et al. (1998). 

4.2.5 Influence on quality 

The findings presented above revealed that germination did not have an effect on the 

concentrations of four key compounds in coffee. These compounds each have 

contributing roles in the aroma and flavour of coffee. Therefore, the main aroma and/or 

flavour profile of the control and germinated beans would not be distinguishable, and so 

the perceived quality attributes would also not change. Due to the lack of research on 

South African coffee species, it is possible that the key compound’s concentrations can 

vary from that of commercial coffee species, typically Brazilian or Ethiopian. This could 

suggest that germination can influence the composition of other compounds not 

mentioned in this study and it is recommended that a full chemical profile of South 

African coffee beans be established. 

4.2.6 Summary 

The results of the two-way mixed model ANOVA revealed that the interaction effect of 

production stage and treatment were not significant (α = 0.05) for all the compounds 

studied (caffeine (p = 0.53), chlorogenic acid (p = 0.37), trigonelline (p = 0.06), and 

nicotinic acid (p = 0.36)). The main effect of treatment did not reveal significant 

differences (α = 0.05) for caffeine (p = 0.48), chlorogenic acid (p = 0.27), trigonelline (p = 

0.28), and nicotinic acid (p = 0.44) for the coffees. These results indicate that germination 

as an intentional post-harvest treatment has no influence on the key compounds in coffee. 

The low p-values of chlorogenic acid and trigonelline suggest that perhaps some 
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significance could be observed. Additional sampling groups would be required to support 

this that could include different harvest years, various Coffea species and varieties, other 

coffees of different origins, different germinating conditions, or different roasting 

conditions (time, temperature). The influence of germination on the key compounds was 

not observed in the roasted coffees and therefore it is assumed the aroma and flavour 

profiles would remain the same between control and germinated coffee. 

However, coffee matrices are vastly different between species depending on their 

geographical origin and are inherently very complex. For this reason, it is necessary to 

also perform an untargeted analysis in order to gain a broader understanding of the 

changes that are possibly occurring during germination. This might provide insight into 

other lesser-known compounds in coffee that are being affected and that potentially 

influence the quality. 
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4.3 Untargeted approach 

4.3.1 Chromatogram transformation 

Similar chromatograms were observed for green coffee from the 2019 and 2020 harvest 

seasons, except for differences in peak retention times (Figure 4.3.1). The peak shifts 

likely occurred for of two reasons: 1) the long period of time between the two harvest 

seasons can allow for instrumental drifts to occur which is the natural ageing of the HPLC 

column and thus effects its ability to properly separate compounds. The time between 

analyses is unavoidable as the chemical composition of the coffee samples degrade over 

time and therefore require immediate analysis, i.e. the 2019 samples could not be stored 

for a year. 2) Alternatively, different peak retention times could also mean that different 

types of compounds are present which could be related to seasonal variation. The 

fragmentation data acquired from the HPLC analysis revealed that the same compounds 

were present (square boxes in Figure 4.3.1) but at different retention times and therefore 

it was deduced that instrumental drifts caused the differences. The peak shifts were 

between 1 min and 5 min apart for the 2019 and 2020 samples. Although there are several 

techniques to overcoming misaligned peaks or peak shifting (Korifi et al., 2014), they 

require a deep understanding of the various algorithms used as well as the software 

required to perform them. Selecting the appropriate method is also time consuming. The 

MarkerLynx application used for this study was able to correct for minor shifts in peaks 

(± 0.5 min). “Minor shifts” is when the same compound in different samples from the two 

seasons has slightly different retention times. However, the software could not correct for 

the large peak shift variation seen between the 2019 and 2020 coffee seasons. Thus, the 

decision was made to analyze the two harvest seasons separately and compare the results 

and trends afterwards. 

Principal Component Analysis is an unsupervised data analysis technique that 

attempts to determine trends between samples based on no prior knowledge of the 

groupings and to observe similarities or differences in the data. Orthogonal Partial Least 

Squares Discriminant Analysis (OPLS-DA) is a supervised analysis and requires 

assignment of samples to a class prior to analysis. After computation, the differences that 

are observed are between the two (or more) groups assigned to the samples. For these 

reasons, it was decided to use both PCA and OPLS-DA to determine if differences between 
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samples existed, specifically for the control and germinated beans. If differences were 

observed, the compounds which were causing the differences were identified. 

 
 
 
 
 

 

A 
 

 

B 
 
 

 
 
 
 

 

Figure 4.3.1. Typical chromatograms for germinated, green coffee from the (A) 2019 

harvest season and (B) 2020 harvest season. Retention time shifts are observed on the 

horizontal axis, and similar peak patterns are identified by red boxes with different 

outlines. Horizonal axis was retention time and vertical axis was peak intensity. 

 
4.3.2 Principal Component Analysis (PCA) 

PCA can be used to identify trends in a data set which illustrate similarities or differences 

between groups or classes (Steiman, 2003). PCA was initially performed on the 2019 and 

2020 harvest data sets, and the scores plots are seen in Figure 4.3.2. Clustering is 

primarily seen based on the production stage of the beans, i.e. green or roasted, for both 

harvest years. Obvious differences between green and roasted beans are confirmed via 

visual aspects of the two classes but also by their chemical composition. Therefore, it was 

expected that variation between the production stages would cause the most separation. 

The five green, germinated replicates on the right-side of Figure 4.3.2A which clustered 

together were identified as all belonging to sample “G” from the 2019 harvest. Similarly in 

the 2020 harvest, four green, control replicates were spread to the left-side away from the 

rest of the samples and were identified as belonging to sample “P” and “R” (Figure 4.3.2B). 
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Figure 4.3.2. PC score plots for the (A) 2019 harvest season and (B) 2020 harvest season 

of coffee (C. arabica). The colouring is based on the production stage/treatment 

combination. There are five technical repeats for each sample. 

 
Two deductions can be made regarding these irregular samples. The first, is that the 

chemical composition of the “G”, “P”, and “R” samples were different because they were 

processed in a different manner from the rest of the beans. The second reason could be 

that the manner in which the beans were ground and extracted for analysis was not 

performed optimally. It is likely that both deductions had an influence. Every effort was 

made to communicate consistent processing and germination throughout the production. 

Since the coffee production was performed externally by the coffee estate, consistency 

cannot be guaranteed. There is also evidence to suggest that the extraction method was 

also inconsistent for samples “G”, “P”, and “R”. This is because the data points in the PC 

score plot represent replicates of a sample and therefore each replicate should have the 

same chemical composition and be clustered close together. Since the extraction process 

was identical for each sample, it was deduced that the grinding stage prior to extraction 

was not ideal. The grinding step only involved a visual assessment of the particle size and 

therefore proper homogeneity was not guaranteed. It is recommended that a particle 

sizing step be integrated after the grinding process to ensure uniform particle sizes, such 

as using different mesh-plates that allow particles of a certain size to pass through. The 

aim of this study was to determine if germination as a treatment causes differences in 

coffee’s chemical composition, thus it was decided to observe trends between the 

treatments only and not the production stage (green or roasted beans). 
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Principal component analysis was computed separately for the green and roasted 

data sets for each harvest year. To reiterate, the two harvest years could not be combined 

because of retention time shifts observed in the chromatograms (Figure 4.3.1 above). The 

initial attempt of PCA for the 2019 green data set (Figure S7) illustrates the outlier sample 

“G” that separated differently. The reason for this group’s difference was due to irregular 

chromatographic responses of four compounds which was approximately 1000 times 

larger than the other samples from that year and production stage. The identities of the 

compounds are unknown and fall outside the scope of the immediate research, 

however the retention time and m/z pair were as follows: 1) 16.37 min, m/z 525.23; 

2) 16.38 min, m/z 481.24; 3) 18.14 min, m/z 553.22; 4) 19.48 min, m/z 181.09. These 

compounds account for 82.97% of the variation observed along Principal Component one 

(PC1) in the initial PC scores plot. 

The data points were classed as outliers, excluded and PCA was recalculated (Figure 

4.3.3). PC1 explained 45.70% and PC2 explained 16.94% of the variation between the 

samples. No clear trends were observed – the control and germinated samples were 

interspersed. Figure 4.3.3A illustrates that the control and germinated groups were 

similar in chemical composition for the 2019 green coffee beans, and so germination did 

not appear to have an influence. Figure 4.3.3B further examines the scores plots based on 

sample identification. Each sample was analyzed by means of five technical repeats. 

Therefore, the poor groupings of the sample replicates (Figure 4.3.3B) support the idea 

that the sample grinding method was not optimal since the technical repeats did not 

cluster together. Pinelo et al. (2007) studied the effect of different ground coffee particle 

sizes during extraction of phenolic compounds and concluded that the smallest particle 

size (125 µm) allowed for maximum surface contact with the solvent and therefore 

enhanced the phenolic content. Thus, the lack of a proper particle size assessment could 

have caused an inconsistent extraction process and affected the concentration values. 

Stellenbosch University https://scholar.sun.ac.za



60  

A B 

  
 

  

Figure 4.3.3. PC score plots for the 2019 green coffee (C. arabica) data. (A) Samples are 

coloured by the treatment applied. (B) Samples are coloured by the sample code. Each 

sample includes five technical repeats. The samples labelled C, H, and J are control coffee 

samples. The samples labelled K and i are germinated coffee samples. 

 
In comparison, the score plots of the green beans from the 2020 harvest revealed 

slight groupings based on the treatment applied (Figure 4.3.4). The technical repeats 

belonging to samples “P” and “R” are control samples and separated different from the 

other control repeats and sample (sample “Q”). As previously discussed, the insufficient 

grinding method that was used could have impacted the extractability of the compounds 

and caused these repeats to cluster separately. On the other hand, these could also 

represent a larger variation within control coffee samples compared to that of germinated 

coffee samples. As can be observed, there was tight clustering of the germinated samples 

in the upper-right quadrant, whereas most of the control samples were spread out away 

from the germinated samples. The separation was observed when plotting PC1 (73.16%) 

versus PC4 (3.73%). This would suggest that chemical differences between control and 

germinated beans was achieved but is overshadowed by other variation within the 

samples. Further sampling and analysis would be required to produce more robust 

results. 
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Figure 4.3.4. PC score plots for the 2020 green coffee (C. arabica) data. (A) Samples are 

coloured by the treatment applied. (B) Samples are coloured by the sample code. Each 

sample includes five technical repeats. The samples labelled P, Q, and R are control coffee 

samples. The samples labelled S, T, and U are germinated coffee samples. 

 
The results of PCA for the green coffee beans provides conflicting information. The 

2019 data suggests that germination did not have an impact on the chemical composition 

of the samples. Whereas the 2020 data implies that germinating the beans resulted in 

chemically similar profiles compared to the control samples which had more chemical 

variation. It was deduced that a poor grinding procedure was applied that did not 

adequately homogenize the samples which led to inconsistent compound extractions. 

Furthermore, roasting is a necessary step in coffee production and should be studied in 

tandem with the treatment of germination to determine if any chemical composition 

changes occurred that carry through the roasting process. It was expected that similar 

trends would be observed in the roasted beans. 

PCA was also calculated for the roasted coffee beans data from the two harvest 

seasons. This was done to confirm the assertion that similar trends were expected as 

deduced from the PCA results of the green coffee samples. The PC score plot for the 2019 

roasted coffee data revealed two cluster groups (Figure 4.3.5). Similar to the 2019 green 

data, the groups were not based on the treatment applied and is supported by the mixed 

clusters of control and germinated samples (blue and orange dots). Evaluation of the 

clusters based on sample code information, revealed that better groupings of the 

technical repeats was observed compared to the green data of the same year (Figure 
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4.3.5B). This suggests that partially consistent extractions were obtained for the replicate 

analyses. Perhaps, since roasted coffee beans are softened after the roasting process they 

are easier to grind down compared to green coffee beans which are extremely hard and 

brittle. This would support the idea that better clusters of the technical repeats was 

observed after roasting compared to the green data PC score plot. A further interesting 

observation was noted whereby samples “N” and “O” were grouped separately from the 

other clusters. Both samples “N” and “O” originated from a similar batch cycle and so this 

would suggest that the processing for those samples was not performed in the same 

manner as the other batches. Thus, their chemical composition may be different from the 

other batches. 

A B 

 

Figure 4.3.5. PC score plots for the 2019 roasted coffee (C. arabica) data. (A) Samples are 

coloured by the treatment applied. (B) Samples are coloured by the sample code. Each 

sample includes five technical repeats. The samples labelled E, L, and N are control coffee 

samples. The samples labelled F, M, and O are germinated coffee samples. 

 
A similar trend was observed for the 2020 roasted data. Unlike the 2020 green data, 

two cluster groups formed that were not distinguishable based on the treatment applied 

(Figure 4.3.6A). Separation was mostly seen along PC1 which explained 64.17% of the 

variation, but also a bit of separation along PC2 which explained 13.06% variation. In 

Figure 4.3.6B, the groupings of the technical repeated measures for each sample was 

similar to the previous green coffee score plots (Figure 4.3.3B, Figure 4.3.4B) because no 

tight clusters were seen. This is unlike the 2019 roasted data (Figure 4.3.5B). It is strongly 

believed that the grinding process was not comprehensive enough which led to 
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inconsistent chemical profiles after extraction. As previously mentioned, a particle sizing 

assessment should be incorporated to ensure uniform particle sizes are obtained prior to 

extraction. This will allow for effective contact of the coffee particle surface area with the 

solvent. 

A B 

 

Figure 4.3.6. PC score plots for the 2020 roasted coffee (C. arabica) data. (A) Samples are 

coloured by the treatment applied. (B) Samples are coloured by the sample code. Each 

sample includes five technical repeats. The samples labelled V, W, and X are control coffee 

samples. The samples labelled Y, Z, and AA are germinated coffee samples. 

 
Application of a supervised analysis method, such as pre-selecting the data according 

to the treatment applied, can allow for identification of differences between control and 

germinated samples. Orthogonal partial least squares discriminant analysis is a type of 

supervised analysis method which can be used to determine the driving factors of 

separation between control and germinated coffee beans in this study are. 

4.3.3 Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) 

OPLS-DA was used to visualize trends that were specific to the treatment that was 

applied, as well as determine which compounds were contributing to the differences. 

Typically, in literature, PCA highlights trends in the data which can then be further 

observed in the OPLS-DA results (Li et al., 2008; Zhang et al., 2015). However, since the 

PCA for the current research did not reveal satisfactory differences between control and 

germinated samples, the outcome of the OPLS-DA should be interpreted with caution. 

The leave-n-out cross-validation approach was used. This process holds one 

observation out of the model and performs analysis (OPLS-DA in this case) on the 
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remaining samples in order to predict the one that was held back. It then repeats this 

process for all the observations. All the models had 30 observations except for the Green 

2019 model which had 25 observations. This is because of the five outliers identified in 

sample “G” that were removed. This method of validation was selected because of the 

small sample size in this study. The outcome of the OPLS-DA model can be seen in Table 

4.3.1. 

Table 4.3.1. OPLS-DA parameter results of four different models. 
 

Model Observations X Variables R2Y (cum.) Q2Y (cum.) 

Green 2019 25 33 0.8 0.25 

Green 2020 30 38 0.2 0.025 

Roasted 2019 30 37 0.7 0.35 

Roasted 2020 30 20 0.86 0.28 

 
The output parameters for the OPLS-DA models include the coefficient of 

determination (R2Y) and the goodness of prediction (Q2Y). The former represents how 

much variation is explained by the model while the latter explains the predictive power 

or performance (Zhang et al., 2015) which in this case is based on cross-validation. The 

model indicates that a moderate separation was achieved for the treatment based on the 

R2Y values. With the exception of the Green 2020 model, which achieved a low R2Y value 

(0.2) indicating that the model could only explain or fit 20% of the data. The Green 2020 

model therefore could not find a relationship between the measured variables (chemical 

compounds) and the class labels. The extremely low Q2Y values also suggests that all the 

models are unreliable and would not be able to distinguish future samples based on the 

treatment, and that the model has overfitted the data. Ideally, the Q2Y value should not be 

less than 0.4 (Worley & Powers, 2013). Although undesirable, these model values were to 

be expected as the sample size was small because the different harvest years were kept 

separate. Perhaps, if the peak alignment of the chromatograms had been achieved then 

the model parameters could have improved. 

Although the model is unreliable in terms of future predictions for South African 

coffees, the model can still provide information as to which compounds were contributing 

to the variation for this specific research. This information is found from the model’s 

corresponding S-plot which is also produced from OPLS-DA (Figure 4.3.7). Each point 

represents a retention time-m/z (RT-m/z) pairing for an ion detected in the LCMS 
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analysis. The variables circled in green had a variable importance in projection (VIP) of 

larger than 2.5 which was based upon previous literature (Bao et al., 2016). Thus, 

indicating the important metabolites for separating the control and treated coffee groups. 

In total, 18 ion RT-m/z pairs were selected based on the above criteria. The tentative 

identification of 14 compounds was based on comparisons between the current LCMS 

information and that of published literature. The mass-to-charge ratio and retention time 

for each variable was used (Table 4.3.2). 

The majority of compounds identified belonged to the chlorogenic acid family and 

were specifically derived from caffeoylquinic acid. The caffeoylquinic acid was observed 

in both green and roasted coffees for both harvest years. In each model, the presence of a 

compound with m/z of 353 (compounds 1, 5, 8, 11, and 16) indicates that isomeric 

structures of this compound are present. Isomers are compounds with the same chemical 

formula but which have different arrangements of atoms (Scheschkewitz, 2016). These 

isomers may therefore have chemical and/or physical properties which are different from 

one another (Scheschkewitz, 2016). This would explain the different elution times of the 

“same” compound during LCMS analysis as this method involves compounds interacting 

with a stationary phase based on their chemical properties. The study by del Pilar 

Fernandez-Poyatos et al. (2019) only identified the compounds as caffeoylquinic acids. In 

comparison, the work by Jaiswal et al. (2010) further identified the structures based on 

their fragmentation patterns. The MSE fragments of m/z 191, 179, and 135 are important 

for characterizing Neochlorogenic acid (3-O-caffeoylquinic acid), Cryptochlorogenic acid 

(4-O-caffeoylquinic acid), and Chlorogenic acid (5-O-caffeoylquinic acid) (Willems et al., 

2016). Neochlorogenic acid produces the fragment ions with m/z 191 and 179 only, 

Cryptochlorogenic acid produces all three daughter fragments, and Chlorogenic acid 

produces only the m/z 191 fragment (Willems et al., 2016). Compound 12 was identified 

as Quinic acid (m/z 191) and compound 17 was also a Quinic acid but with the loss of a 

water (H2O) molecule (m/z 173). Both compounds 12 and 17 were identified in the 

roasted coffees which was expected because during the roasting process the chlorogenic 

acid molecules are degraded. These compounds would not be ideal for distinguishing 

between control and germinated coffees because their presence would be found in all 

Coffea spp regardless. 

Compounds 9, 10, and 15 with a m/z of 707 were assumed to be dimers of 

caffeoylquinic acid. In other words, two caffeoylquinic acid  structures bound to each 
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other via hydrogen bonds. Similarly, compounds 2 and 3 with a m/z of 705 are also 

dimers of caffeoylquinic acid except they are assumed to have undergone 

dehydrodimerization (del Pilar Fernandez-Poyatos et al., 2019). This process is the 

removal of a hydrogen atom to form a radical which becomes the new location of the 

bond. These compounds are similar to the X-O-caffeoylquinic acids mentioned earlier. 

However, the presence of these compounds as well as the m/z 353 are not suitable for 

playing a role as a biomarker because they are present sporadically between the different 

production stages and harvest years. In this case, an ideal biomarker should be selective 

for the specific treatment applied. 

Both compounds 6 and 14 had a parent ion of m/z 515 and produced daughter ions of 

m/z 353 and 179. This corresponded to the compound named 3,5-dicaffeoylquinic acid 

which, as the name suggests, is a caffeoylquinic acid derivative. This compound has been 

previously reported in Coffea spp. (Clifford et al., 2003). Since this is not a typical 

caffeoylquinic acid derivative, this could potentially be important for separating control 

and germinated beans. Further studies would be required to confirm this claim, especially 

since the compound was higher in the 2019 germinated green beans but then instead 

higher in the control group for the roasted beans of the same harvest year. 

To the authors best knowledge, the four unknown compounds (4, 7, 13, and 18) have 

not been previously reported in Coffea spp. Compound 4 had a parent ion at m/z 525 

which yielded daughter ions at m/z 481 and 119. Compound 7 had a [M-H]- ion at m/z 

771 and produced fragments at m/z 727 and 360. Compound 13 ([M-H]- ion at m/z 335) 

is thought to perhaps be a chlorogenic acid derivate because of the daughter ion at m/z 

191 (quinic acid). Compound 18 had a parent ion at m/z 963 and yielded fragment ions at 

m/z 591 and m/z 545. Compounds 4, 13, and 18 had larger response values for the 

germinated beans compared to the control beans. This should perhaps be addressed in 

future work as they may be specific to the germination treatment and may be of valuable 

use in measuring the influence of germination on coffee beans. Compound 7 should not be 

ruled out as unimportant even though it was higher in the control coffee groups, because 

it could be unique to the South African coffee variety. 

The OPLS-DA S-plot revealed interesting compounds for the separation of control 

and germinated coffee beans (Figure 4.3.7B, D, E, H). It is vital to reiterate that the 

goodness of prediction (Q2Y) parameters were less than satisfactory, and future studies 

might find that other compounds separate the two groups. However, since South African 
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coffee varieties have not been previously reported on (at the time of writing) this study 

provides some clarity on the chemical composition of these coffees and gives a starting 

point for future identifications. 

4.3.4 Summary 

The results from PCA and OPLS-DA revealed no trends in the data to suggest that 

germination had a significant effect on the chemical composition of C. arbaica beans from 

South Africa. These results agree with the results observed in the targeted approach 

section (section 4.2). Clusters in PCA suggest that the grinding method was not optimal 

and future work should include a particle size assessment to ensure optimum compound 

extraction. 

The OPLS-DA models were adequate for the current dataset but would not be suitable 

for future sample classifications. The OPLS-DA S-plot’s revealed interesting compounds 

for the separation of control and germinated coffee beans. The Q2Y parameters were less 

than satisfactory, and future studies might find other compounds that separate the two 

groups. This study provides some clarity on the chemical composition of South African 

coffees and gives a starting point for future compound identifications. 
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Figure 4.3.7. OPLS-DA score plot and the corresponding S-plot of HPLC-QTOF-MS 

profiling data of coffee bean extracts. (A,B) OPLS-DA score plot and S-plot for the green, 

2019-harvest coffee beans. (C,D) OPLS-DA score plot and S-plot for the green, 2020-

harvest coffee beans. (E,F) OPLS-DA score plot and S-plot for the roasted, 2019-harvest 

coffee beans. (G,H) OPLS-DA score plot and S-plot for the roasted, 2020-harvest coffee 

beans. Score plot: control group = blue, and germinated group = red; black ellipse 

indicates 95% confidence interval. S-plot: variables with VIP ≥ 2.5 are circled in green; 

control group = -1, and germinated group = +1. 

Stellenbosch University https://scholar.sun.ac.za



69  

Table 4.3.2. The tentative identification of compounds via HPLC-QTOF-MS analysis of coffee extracts. 
 

OPLS-DA Retention 
No. Primary ID 

[M-H]- MSE fragments C to G 
Potential identification(s) 

 Model  time (min) (m/z) (m/z) ratioa 

1 
 

9.30_353.0867 9.3 353.0867 191, 179, 135 
Caffeoylquinic acidb; 4-O- 

 

caffeoylquinic acidc 

2 
 

10.44_705.1645 10.44 705.1645 513, 339, 229, 191 Caffeoylquinic acid dehydrodimerb 

 

 
 

Caffeoylquinic acidb; 3-O- 

 

 

 

 

 

 

 

 
 

 
11 

Roasted 
12 

2019 

Caffeoylquinic acidb; 5-O- 

caffeoylquinic acidc 

Quinic acid less H2Od 

 

 

 
13 14.30_335.0774 14.3 335.0774 191 Unidentified 

14 19.93_515.1191 19.93 515.1191 353, 179 3,5-dicaffeoylquinic acidb 

 

3 11.66_705.1638 11.66 705.1638 513, 339, 229, 191 Caffeoylquinic acid dehydrodimerb 

Green 
4 16.37_525.2340 16.37 525.234 481, 119 Unidentified 

 2019     

5  18.79_353.0868 18.79 353.0868 191, 179 
caffeoylquinic acidc 

6 
 

19.95_515.1194 19.95 515.1194 353, 179 3,5-dicaffeoylquinic acidb 

7  21.76_771.3414 21.76 771.3414 727, 360 Unidentified 

8 13.50_353.1045 13.5 353.1045 191 
Caffeoylquinic acidb; 5-O- 

 Green     caffeoylquinic acidc 

9 2020 13.68_707.1637 13.68 707.1637 353, 191 Caffeoylquinic acid dimerb 

10  14.97_707.1635 14.97 707.1635 353, 191 Caffeoylquinic acid dimerb 

 
11.74_353.0867 11.74 353.0867 191 

 

 

11.77_173.0451 11.77 173.0451 
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15  15.33_707.1631 15.33 707.1631 353, 191 
 

 Caffeoylquinic acid dimerb 

 
16 

 
Roasted 

2020 

 
15.39_353.1051 

 
15.39 

 
353.1051 

 
191, 179 

 
 

 

Caffeoylquinic acidb; 3-O- 

caffeoylquinic acidc 

17 18.04_191.0827 18.04 191.0827 110 
 

 Quinic acidd 

18  19.97_963.4449 19.97 963.4449 591, 545 
 

 Unidentified 

a C: control, G: germinated 

b del Pilar Fernandez-Poyatos et al. (2019) 

c Jaiswal et al. (2010) 

d Simirgiotis et al. (2015) 
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5 General conclusions and recommendations 
 

 

5.1 General conclusions 

The aim of the present research was to determine whether the use of germination, as a 

novel post-harvest treatment during coffee production, had an influence on the 

chemical composition of a South African coffee variety (Coffea arabica Catui). The 

analysis included a targeted approach of key compounds identified from literature, 

followed by an untargeted approach to gain information regarding other compounds 

that are influencing the coffee’s profile. 

Coffee is a popular choice of beverage for individuals and is consumed on a daily 

basis worldwide. Unsurprisingly, the coffee plant as well as the beverage have been the 

focus of research studies for nearly a century. Specifically, in the last few decades there 

has been an increased interest in the effects of post-harvest treatments on the quality of 

coffee (Bytof et al., 2000; Gonzalez-Rios et al., 2007). The germination of coffee seeds 

has also been studied (Selmar et al., 2006; Waters et al., 2017), however not in the 

capacity where it is used as an intentional post-harvest treatment method. 

The focus of the initial scientific literature review was the identification of key 

compounds which are important for coffee characteristics and quality as well as gain an 

understanding of the current post-harvest treatments and their effects on coffee 

production. There are well over 1 000 compounds identified in coffee beans (Eroz 

Poyraz et al., 2016). However, only a handful have been recognized as playing defining 

roles in the aromatic and flavour quality of the coffee. In terms of aroma development, 

chlorogenic acid is involved in numerous pathways that result in the production of 

volatile components, and it is also important for flavour as it imparts astringency (Buffo 

& Cardelli-Freire, 2004). Trigonelline was also identified as an important compound 

that contributes toward aroma of coffee products. After roasting, the compound 

continues to break down to produce volatile compounds such as pyridines and pyrroles 

that are generally linked to fish-like and nutty aromas, respectively (Oestreich-Janzen, 

2010). Coffee beverages also have numerous health benefits (Higdon & Frei, 2006). 

Nicotinic acid (or niacin / vitamin B3) is found in coffee and linked to lowering 

cholesterol levels in the body (Higdon & Frei, 2006). Since nicotinic acid is produced 

from trigonelline during the roasting stage of coffee, it serves 
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as an important compound to investigate in terms of health benefits as well as chemical 

composition changes. An additional health benefit of coffee is stimulation of the nervous 

system and improved brain functioning which is attributed to the caffeine content 

(Higdon & Frei, 2006; Oestreich-Janzen, 2010). Caffeine is notably linked to all coffee 

beverages and is an important aspect when grading coffee. It is also responsible for the 

strength and body of a brew, and only partially associated to the bitterness (Oestreich- 

Janzen, 2010). Although the four chosen compounds were indeed important for coffee 

flavour, there was a missed opportunity to also evaluate the carbohydrate content of the 

coffees especially in terms of mono- and polysaccharide content. These components are 

integral during the roasting stage when the Maillard reaction occurs and therefore 

might have been influenced differently because of the germination process. However, 

numerous sugars are present in coffees and a comprehensive analysis would have 

required an in-depth investigation which was beyond the scope of this study. 

The next objective was to determine if the germination treatment had an influence 

on the concentrations of the four key compounds selected. The plant material 

preparation included a grinding and extraction stage. A MM400 Mixer Mill (Retsch, 

Germany) was used to finely grind the green and roasted beans. Green coffee beans 

are extremely firm and required more force to obtain the desired particle size, 

compared to roasted coffees which are softer and easily ground down. Particle size 

uniformity was not assessed according to a standard, instead only a visual assessment 

of “fineness” was performed. This proved unsatisfactory when evaluating the PCA 

results which revealed that the technical repeated measures for a sample was 

chemically different, i.e. the replicate measures did not cluster together. The effect of 

particle size on sufficient extraction has been previously discussed (Pinelo et al., 2007) 

and it was found that a size of 125 µm allows for maximum surface contact with the 

solvent. Thus, it is recommended that a particle size assessment should be performed in 

future work. 

The phenolic compounds were extracted using a 50% methanol-water with 1% 

formic acid solvent followed by a 30 min sonication period without applying heat. The 

chromatographic data results showed well resolved peaks and were ideal for 

quantifying the necessary target compounds. Overall, similar trends were observed in 

the works of Moon et al. (2009), Sunarharum (2016), and Jeska-Skowron et al. (2020) 

with regards to the chosen compounds of interest and their respective concentrations. 
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The average concentrations reported in this study for green coffee beans were generally 

not in line with previous reports. For instance, Moon et al. (2009) and Sunarharum 

(2016) both reported chlorogenic acid content of 50 mg/g whereas this study observed 

an average of 22.92 mg/g DW. As for caffeine content, the works mentioned above 

reported concentrations of 12 mg/g, in comparison to the current research which found 

an average of 24.90 mg/g DW. This could be due to the fact that the current research 

used South African coffee beans compared to the likes of Brazilian, Ethiopian and 

Guatemalan coffees. This is the first reporting of caffeine, chlorogenic acid, trigonelline, 

and nicotinic acid in arabica coffees from South Africa. 

The last objective also focused on the potential influence of germination as a post- 

harvest treatment but in terms of an untargeted approach by means of PCA and OPLS- 

DA. Pre-processing multivariate data was identified as an important step prior to 

analysis of variance. This is performed to remove unwanted variation and is generally 

specific to the type of variation, i.e. normalizing a dataset corrects for differences in 

overall concentrations between samples. Peak alignment of the chromatographic data 

was necessary for the different harvest year datasets. Unfortunately, due to limitations 

in the MarkerLynx software package, the chromatograms could not be corrected for 

peak shifts. This resulted in separate analyses that further reduced the sample size for 

each production and treatment group. 

PCA and OPLS-DA are best performed with larger datasets because they are able to 

produce robust models that can be utilized in predictive algorithms. It is suggested that 

additional green and roasted coffee samples from different harvest years and batches be 

obtained that also undergo germination in order to increase the dataset. Furthermore, 

an improved method for processing peak alignments in the chromatograms can be 

achieved. Although the OPLS-DA models were not deemed reliable for predictive work 

in future studies, certain compounds were still identified as important. Overall, the 

family of chlorogenic acid compounds were prominent in separating control and 

germinated coffees with 12 of the 18 metabolites recognized as a caffeoylquinic acid 

derivative. In agreement with similar suggestions made by Sunarharum (2016), it is 

recommended that internal standards of different chlorogenic acid isomers be used. 

This may assist in profiling the South African coffees as well as confirm the specific 

compounds identified from the OPLS-DA results. Internal standards of chlorogenic acid 
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isomers could include, but are not limited to, 3-/4-/5-caffeoylquinic acid and 

dicaffeoylquinic acids. 

5.2 Recommendations for future research 

The improvement of methodologies and analysis techniques to study coffee beans are 

crucial for future studies because better results and greater knowledge can benefit its 

production process and overall coffee quality. Research should be focused on studying 

the complexity of coffee chemistry and the challenges that come with studying it 

because there are diverse chemical compositions for the same coffee species (arabica 

versus robusta) but also for coffee from different origins (Ethiopian versus South 

African) and varieties/cultivars. 

The germination treatment for the current project was performed as part of the 

coffee post-harvest process which occurred externally to the experimental procedure. 

In-person evaluation of the production premises revealed that the processing is not 

done under scientific conditions. General hygiene practices are maintained for food 

safety reasons, but perfect consistency between batches is not necessary at the market 

level. Therefore, variation in the stages of soaking, drying, germinating, and roasting 

could have had an impact on the chemical composition of the coffee beans. A 

recommendation for future studies would be to perform the germination treatment and 

the roasting process as an in-house experiment in order to maintain experimental 

consistency and limit any outside factors influencing the outcome. This could also be 

expanded into exploring approaches to optimize the germination treatment and 

evaluate its influence on the chemical composition. 

Quality parameters of coffee are not only found in the non-volatile fraction of 

coffees but also the volatile fractions. Therefore, it is advised that follow-up research 

should include an analysis of the volatile profile for the control and germinated coffees 

to determine if aroma compounds are affected by the proposed new post-harvest 

treatment. This focus could also be done in a targeted and untargeted approach, similar 

to the current research. Gas chromatography and other advanced techniques (e.g. 

olfactometry) can be utilized to compare chemical and sensory parameters 

(Sunarharum, 2016). This would be essential in thoroughly analyzing the effect of 

germination on volatile fractions with respect to overall coffee quality. 
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The reports of the current study were indicative but not conclusive and therefore it 

is recommended that an in-depth profiling of South African coffees be performed. This 

will provide a comprehensive foundation for South African coffees as well as allow for 

easier comparisons with coffees of other origins. This could be performed on both green 

and roasted coffee varieties grown in South Africa in order to determine “before and 

after” characteristics of the coffees. This could be followed up with a metabolomics 

approach to identify biomarkers within South African coffees in order to distinguish it 

from coffees of other origins. Such approaches could include ligand-binding assays or 

flow cytometry. However, these can be expensive analyses to run and preparatory 

research should be done first. 

In conclusion, the study of germination as a novel, post-harvest treatment process 

on a South African coffee variety provided new insights. The importance of additional 

samples was emphasized during the targeted approach because p-values were low 

enough to suggest a trend but not enough to be classified as significant (p = 0.05). These 

trends could be clarified by including samples from different harvest years or different 

origins for example. Furthermore, the multivariate data analysis did not produce the 

anticipated models needed to accurately distinguish between future samples. Instead, it 

provides insight into the compounds that were identified in the present samples. These 

both can provide a platform for future research opportunities to grow from, with a 

specific focus on South African varieties. 
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Figure S1. Typical base peak intensity chromatogram for the 2019 coffee harvest 

season. (A) Green, germinated coffee and (B) roasted, germinated coffee in ESI negative 

mode to illustrate chlorogenic acid peak identification. Horizonal axis was retention 

time and vertical axis was peak intensity. 
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Figure S2. Typical UV chromatogram for the 2019 coffee harvest season. (A) Green, 

germinated coffee and (B) roasted, germinated coffee from the PDA detector to illustrate 

peak identification of trigonelline (230 nm), nicotinic acid (261 nm), and caffeine (272 

nm). Horizonal axis was retention time and vertical axis was peak intensity. 
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Figure S3. Typical base peak intensity chromatogram for the 2020 coffee harvest 

season. (A) Green, control coffee and (B) roasted, control coffee in ESI negative mode to 

illustrate chlorogenic acid peak identification. Horizonal axis was retention time and 

vertical axis was peak intensity. 
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Figure S4. Typical UV chromatogram for the 2020 coffee harvest season. (A) Green, 

control coffee and (B) roasted, control coffee from the PDA detector to illustrate peak 

identification of trigonelline (230 nm), nicotinic acid (261 nm), and caffeine (272 nm). 

Horizonal axis was retention time and vertical axis was peak intensity. 
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Figure S5. Typical base peak intensity chromatogram for the 2020 coffee harvest 

season. (A) Green, germinated coffee and (B) roasted, germinated coffee in ESI negative 

mode to illustrate chlorogenic acid peak identification. Horizonal axis was retention 

time and vertical axis was peak intensity. 
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Figure S6. Typical UV chromatogram for the 2020 coffee harvest season. (A) Green, 

germinated coffee and (B) roasted, germinated coffee from the PDA detector to illustrate 

peak identification of trigonelline (230 nm), nicotinic acid (261 nm), and caffeine (272 

nm). Horizonal axis was retention time and vertical axis was peak intensity. 
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Table S2. Mean data of the measured concentrations for targeted compounds in green and roasted South African coffee beans (C. arabica). 
 

Harvest 

Year 

   Caffeine  Chlorogenic Acida Trigonelline  Nicotinic Acid 
                                                                                                                                                                                                        Sample 

Code 
Batch Stage TMTb Mean ±SDc 

(mg/g) 

RSDd 

(%) 

Mean ±SD 

(mg/g) 

RSD 

(%) 

Mean ±SD 

(mg/g) 

RSD 

(%) 

Mean ±SD 

(µg/g) 

RSD 

(%) 

2019 1 Green Ce 12.94 ±0.48 3.77 29.06 ±0.43 1.50 7.69 ±0.25 3.26 119.20 ±13.1 11.06 C 

2019 1 Roasted C 13.49 ±1.01 7.52 21.82 ±0.79 3.62 10.52 ±0.83 7.91 64.0 ±35.3 55.16 E 

2019 1 Roasted Gf 13.33 ±0.93 7.04 21.76 ±0.76 3.54 9.79 ±0.52 5.36 43.2 ±35.4 82.00 F 

2019 1 Green G 5.47 ±0.14 2.67 0.62 ±0.23 37.35 3.89 ±0.12 3.30 0.00 0.00 G 

2019 2 Green C 12.10 ±0.73 6.08 29.15 ±0.96 3.32 7.12 ±0.29 4.09 0.00 0.00 H 

2019 2 Green G 11.51 ±0.32 2.81 28.38 ±0.45 1.59 7.09 ±0.20 2.83 0.00 0.00 i 

2019 2 Roasted C 14.77 ±0.43 2.92 23.29 ±0.47 2.04 11.30 ±0.35 3.11 0.00 0.00 L 

2019 2 Roasted G 13.82 ±0.19 1.45 20.83 ±0.29 1.43 11.35 ±0.17 1.50 0.00 0.00 M 

2019 3 Green C 12.38 ±0.39 3.21 28.59 ±0.61 2.17 7.19 ±0.25 3.56 98.36 ±7.34 7.47 J 

2019 3 Green G 12.08 ±0.78 6.48 28.78 ±0.94 3.29 7.12 ±0.45 6.38 75.34 ±38.0 50.47 K 

2019 3 Roasted C 14.58 ±0.70 4.83 9.23 ±0.37 4.02 9.70 ±0.47 4.93 193.17 ±33.8 17.50 N 

2019 3 Roasted G 14.42 ±0.74 5.16 7.97 ±0.19 2.48 9.64 ±0.37 3.92 190.65 ±16.3 8.58 O 

2020 4 Green C 38.70 ±3.50 9.06 16.28 ±0.96 5.92 8.34 ±0.42 5.04 30.65 ±61.3 200.00 P 

2020 4 Green G 37.81 ±1.51 4.01 17.42 ±0.51 2.94 8.49 ±0.21 2.51 191.13 ±25.5 13.38 S 

2020 4 Roasted C 10.36 ±1.02 9.92 11.48 ±0.57 5.00 11.01 ±0.97 8.83 62.37 ±76.3 122.47 V 

2020 4 Roasted G 10.42 ±0.99 9.56 10.81 ±0.48 4.47 11.65 ±1.08 9.27 63.81 ±85.8 134.51 Y 

2020 5 Green C 37.87 ±0.98 2.61 17.45 ±0.33 1.94 8.35 ±0.30 3.66 150.49 ±30.4 20.22 Q 

2020 5 Green G 18.20 ±0.88 4.84 12.38 ±0.32 2.65 4.29 ±0.22 5.33 168.75 ±23.2 13.80 T 
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2020 5 Roasted C 10.13 ±0.25 2.53 10.99 ±0.30 2.73 10.49 ±0.21 2.09 154.29 ±18.0 11.69 W 

2020 5 Roasted G 8.83 ±0.61 6.92 10.43 ±0.62 6.01 12.16 ±0.68 5.67 0.00 0.00 Z 

2020 6 Green C 35.42 ±1.05 2.97 16.98 ±0.32 1.92 8.40 ±0.31 3.76 190.44 ±22.0 11.58 R 

2020 6 Green G 33.70 ±1.40 4.17 15.16 ±0.52 3.43 7.64 ±0.33 4.44 180.02 ±39.1 21.75 U 

2020 6 Roasted C 9.96 ±0.65 6.60 10.75 ±0.37 3.47 11.48 ±5.71 49.75 114.19 ±90.7 79.43 X 

2020 6 Roasted G 10.81 ±0.64 5.99 11.82 ±0.49 4.15 12.29 ±6.15 50.04 0.00 0.00 AA 

a General term given for 5-caffeoylquinic acid 

b TMT: treatment 

c SD: standard deviation 

d RSD: relative standard deviation 

e C: control 

f G: germinated 

All mean values were obtained from five technical repeated measures; data rounded to two decimal points only. 
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Figure S7. Initial PC score plot for the 2019 green coffee (C. arabica) data. Samples are 

coloured by the treatment applied. The five points clustered away from the main group are 

technical repeated measures for sample “G” (germinated coffee). 
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