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SUMMARY 

 

Forest inventories are constructed on a compartmental level and contain information such as forest 

age, species/genus, location, and extent. An up-to-date forest inventory is critical for monitoring 

harvests, assessing the production of timber, planning, maximising production, assessing water 

use, and assessing timber quality. On a national scale, forest inventories are used for monitoring 

the impact forests have on the climate and stream flow, assessing the contribution forests have on 

alleviating poverty, monitoring forest trends, and supporting policy and trade decisions. 

Conventional methods for obtaining forest inventory information, such as plantation 

genus/species, is done in-field, which is time-consuming and costly. Remote sensing is a more 

efficient way to capture forest genus information. Very high-resolution, hyperspectral, and 

unmanned aerial vehicle (UAV) imagery have been shown to contain suitable spectral and spatial 

information for machine learning algorithms to differentiate between forest species. However, 

such data requires extensive processing and is expensive to acquire, making it unsuitable for 

mapping over larger areas. High-resolution imagery, such as Sentinel-2, combined with textural 

measures and vegetation indices as features in machine learning algorithms, have shown potential 

to differentiate between spectrally similar classes. However, it is not known what impact training 

sample configuration and size have on classification accuracies when classifying acacia, 

eucalyptus, and pinus (pine) genera. It is also not known whether signature extension is a viable 

method for reducing the time and effort spent on obtaining in situ training data when mapping 

forest plantations over a large and complex area.  

This research set out two main experiments. The first experiment evaluated the impact of using an 

even, uneven, or an area-proportionate training sample configuration and size in a random forest 

machine learning model for classifying acacia, eucalyptus, and pine compartments. It was found 

that the study area that contained an uneven area planted with acacia, eucalyptus, and pine trees 

was classified more accurately using a balanced training sample configuration, compared to using 

an unbalanced and area-proportionate training sample configuration. It was also found that a 

saturation point exists where adding more training samples adds little value to the overall accuracy 

(OA). The saturation point was found to be ~ 57n, where n is the number of features used in the 

classification.  

The second set of experiments was set out to test the viability of training data signature extension 

for constructing random forest machine learning models to differentiate between acacia, 

eucalyptus, and pine trees using Sentinel-2 imagery as input. The study area was split into 19 

Sentinel-2 tiles spanning the Mpumalanga, KwaZulu-Natal, Eastern Cape, and Western Cape 
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provinces. Three separate random forest models were built using training data collected in one tile 

located in Mpumalanga, one tile located in KwaZulu-Natal, and one tile located in the Eastern 

Cape. A fourth model was built using training data from all three source tiles. The four models 

were applied to all 19 Sentinel-2 tiles to map forest plantation genera. The results show that a 

~70% OA can be achieved if the training data is collected in areas with similar climates (rainfall 

seasonality) to the areas that are being mapped. In addition, it was found that signature extension 

distance (i.e. distance between the training data and the area being classified) should not exceed 

500 km.  

KEYWORDS 

Remote sensing, forest mapping, training sample configuration, training sample size, signature 

extension, random forest 
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OPSOMMING 

 

Bosplantasie inventarisse word op 'n kompartementele vlak saamgestel en bevat inligting soos die 

ouderdom, spesie/genus, ligging en omvang van die plantasie. 'n Bygewerkte bosplantasie 

inventaris is van kritieke belang vir die monitering van oeste, die assessering van houtproduksie, 

beplanning, maksimalisering van produksie en die assessering van watergebruik en houtgehalte. 

Op nasionale skaal word bosplantasie inventarisse gebruik om die impak wat bosbou op die 

klimaat en stroomvloei het te monitor, die bydraes wat bosbou maak om armoede te verlig te 

assesseer, die tendense in bosbou te moniteer en beleids- en handelsbesluite te ondersteun. 

Konvensionele metodes om bosinventarisinligting, soos plantasie-genus/spesie, te bekom word in 

die veld gedoen, wat tydrowend en duur is. Afstandswaarneming is 'n doeltreffender manier om 

boom-genusinligting vas te lê. Daar is getoon dat baie-hoë-resolusie- en hiperspektrale beelde, 

asook beelde geneem uit onbemande lugvoertuie, geskikte spektrale en ruimtelike inligting bevat 

om masjienleer-algoritmes in staat te stel om tussen boomspesies te onderskei. Sodanige data verg 

egter omvattende verwerking en is duur om te bekom, wat dit ongeskik maak om groot gebiede te 

karteer. Hoë-resolusiebeelde, soos Sentinel-2, gekombineer met tekstuurmaatstawwe en 

plantegroei-indekse as veranderlikes in masjienleer-algoritmes, toon potensiaal om tussen klasse 

met soortgelyke spektrale eienskappe te kan onderskei. Dit is egter nie bekend hoe opleidingsdata 

konfigurasie en grootte die akkuraatheid van akasia, bloekom en pinus (denne) genera 

klassifikasies sal beïnvloed nie. Dit is ook nie bekend of klassifiseerder-uitbreiding 'n 

lewensvatbare metode is om die tyd en moeite benodig om opleidingsdata in situ te bekom, te 

verminder wanneer bosplantasies oor 'n groot gebied gekarteer word nie.  

Hierdie navorsing het twee hoofeksperimente uiteengesit. Die eerste eksperiment het die impak 

van die gebruik van 'n gelyke, ongelyke of area-proporsionele opleidingmonsteropstelling en -

grootte in 'n ewekansige-woud-masjienleermodel vir die klassifikasie van akasia-, bloekom- en 

denneplantasies geëvalueer. Meer akkurate resultate is vir die studiegebied wat 'n ongelyke area 

met akasia, bloekom en dennebome bevat behaal wanneer 'n gebalanseerde 

opleidingmonsteropstelling gebruik is. Daar is ook gevind dat 'n versadigingspunt bestaan waar 

die toevoeging van meer opleidingmonsters min waarde tot die algehele akkuraatheid (AA) 

toevoeg. Die versadigingspunt is ~ 57n, waar n die aantal veranderlikes wat in die klassifikasie 

gebruik word verteenwoordig.  

Die tweede stel eksperimente is uitgevoer om die lewensvatbaarheid van klassifikasie-uitbreiding 

te toets. Ewekansige-woud-masjienleer is aangewend om tussen akasia, bloekom en dennebome, 

met Sentinel-2-beelde as toevoer, te onderskei. Die studiegebied is verdeel in 19 Sentinel-2-teëls 
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wat oor die Mpumalanga, KwaZulu-Natal, Oos-Kaap en Wes-Kaap provinsies strek. Drie 

afsonderlike ewekansige-woud-modelle is met behulp van opleidingsdata, wat onderskeidelik in 

een teël in Mpumalanga, een teël in KwaZulu-Natal en een teël in die Oos-Kaap ingesamel is, 

gebou. 'n Vierde model is met behulp van opleidingsdata van al drie bronteëls gebou. Die vier 

modelle is op al 19 Sentinel-2-teëls toegepas om plantasie genera te karteer. Die resultate toon dat 

'n ~ 70% AA behaal kan word indien die opleidingsdata in gebiede met soortgelyke klimate 

(reënval seisoenaliteit) as die areas wat gekarteer word, ingewin word. Daarbenewens is gevind 

dat die afstand van klassifiseerder-uibreiding (d.w.s. afstand tussen die opleidingsdata en die area 

wat geklassifiseer word) nie 500 km moet oorskry nie.  

SLEUTELWOORDE 

Afstandswaarneming, bosplantasie kartering, opleidingmonsterskema, klassifiseerder-uitbreiding, 

ewekansige woud. 
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CHAPTER 1:  INTRODUCTION 

The forestry sector contributes 1% to South Africa’s gross domestic product and offers 

employment opportunities to many rural communities, with about 165 900 workers being 

employed within those communities (Tibane & Vermeulen 2014).  

The materials produced by plantations have different uses, such as timber and paper products 

(Mandy & Steve 2015), sustainable energy (Carle, Del Lungo & Varmola 2003) and tannin 

extracts for leather tanning (Mandy & Steve 2015). Many forest products are exported (Food and 

Agriculture Organization 2015), and the demand for these goods increases as uses of forestry 

products and populations grow.  

The South African forestry sector is experiencing afforestation constraints as the licensing process 

has become cumbersome as a result of the National Water Act of 1998. The Act was put in place 

to ensure a sustainable distribution of water to all parties (Gush et al. 2002). The implementation 

of the Act led to a decrease of 80 000 hectares (ha) of forest plantations (Food and Agriculture 

Organization 2015) as only a certain amount of forestry is permitted per catchment.  

National forest inventories have many uses, for example, to assess the quality and production of 

timber (Brown & Ball 2000), aid in planning, sustainably manage land use, maximise production, 

assess water use (Food and Agriculture Organization of the United Nations 2015), monitor timber 

harvests and rotations, and assist in decision-making. Information for silviculture, fixing rotation 

age, site management, and timber harvests are derived from inventories and are used in decision-

making (Mati & Dawaki 2015). Inventories include data such as location, genus, age, species, 

yield, and water use. However, the existing South African forest inventories are incomplete and 

outdated (DAFF 2008). Previously, the collection of inventory data was dependant on funding and 

policy demand. Currently, forests are monitored every three years according to national indicators 

and criteria such as; the development and maintenance of forest resources, biological diversity in 

forests, the health and vitality of forests, the productive functions of forests, the protective and 

environmental functions of forests, and the social functions of forests (Government of South Africa 

1998). Inventory data are collected through questionnaires that assess the use of forest resources 

on communal land and through licences. Private companies own 31% of commercial forests in 

South Africa, making them an important contributor to national forest inventories; however, the 

data comes at a cost (DWAF 2008). The current methods used to collect inventory data do not 

provide a comprehensive and up-to-date overview of forestry activities in South Africa. It is 

therefore important to develop a methodology whereby forest plantation genera can be mapped at 
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a national scale to frequently update the South African national forest inventory database (DWAF 

2008).   

1.1  PLANTATION FOREST CHARACTERISATION 

In South Africa, commercial forest species are evergreen trees (Mead 2013) categorised into three 

genera (Mandy & Steve 2015), of which 57% are pine trees, 35% are eucalyptus trees, and 8% are 

acacia (wattle) trees (Dye & Versfeld 2007).  

The Pinus genus (henceforth referred to as pines) contains many different hybrids and species, of 

which several are grown in South Africa (Mandy & Steve 2015) for wood and paper products. 

Pines have needle-like leaves and grow for 25 to 30 years, reaching a height of about 30 m, before 

they are harvested (Mead 2013).  

Eucalyptus trees are fast-growing (Albaugh, Dye & King 2013), which allows harvesting from 

when they are seven to ten years of age (Pillay 2012). The harvested trees are used for solid wood 

products, pulp, and paper (Mandy & Steve 2015).  

Acacia trees, also known as wattle trees, are grown for their bark, which is used for leather tanning 

(Mandy & Steve 2015). Acacia trees reach maturity after one to five years (Wilson et al. 2011) 

and a height of 15 m (De Beer 1986).  

1.2 REMOTE SENSING OF FORESTRY 

Remote sensing (RS) is a technology that uses a sensor to record reflected or emitted 

electromagnetic energy at a distance from the region of interest (Campbell & Wynne 2013). The 

recorded radiance is used to derive information about the earth’s surface.  

RS has been used in forestry to derive information about forest structure, crown closure estimates, 

health statuses, age estimation, as well as genus and species mapping.  

1.2.1 Common remote sensing application in forestry  

The structural characteristics of forests such as height, volume, and basal area (Tang & Shao 2015) 

have been successfully captured using RS technologies such as photogrammetry (Campbell & 

Wynne 2013), light detecting and ranging (LiDAR) (Holmgren & Thuresson 1998), and structure 

from motion (SfM) (Tang & Shao 2015). It has been shown that using geoinformation systems for 

capturing structure data is faster than using conventional methods (Budei et al. 2018).  

RS data such as aerial imagery (Campbell & Wynne 2013) or very high-resolution (VHR) satellite 

imagery (Tang & Shao 2015) has been used to accurately estimate the crown closure of plantations. 
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Data captured through RS can also be transformed into vegetation indices (VIs) to determine the 

health status of trees. This is possible as the chlorophyll in plants absorbs red light and strongly 

reflects radiation in the near-infrared (NIR) region of the electromagnetic spectrum (EMS). 

Researchers have successfully identified trees that are unhealthy using this method, and the 

methodology has directed foresters to apply fertilisers to specific problem trees (Tang & Shao 

2015).  

1.2.2 Regional forest mapping  

Forest mapping has been conducted at different scales. The scale of a forest mapping exercise is 

dependent on how big the study area is and its heterogeneity. The extent of a study can be global, 

continental, national, regional, or local (Herod 2016). The extent of regional studies varies, but, in 

general,  smaller areas with high heterogeneity can be considered as regional  (Muller et al. 2020). 

A large volume of work has been done on mapping forests at global and continental scales. 

McRoberts et al. (2002) classified four states in America into forest and non-forest areas using 

stratified national land cover data for training, while Hagner & Reese (2007) and Tomppo et al. 

(2008) classified forest types in Sweden and Finland. A land cover classification was conducted 

on a global level using Medium Resolution Imaging Spectrometer (MERIS) fine resolution (300 

m) data (Leroy et al. 2007). DeFries et al. (2000), Hansen et al. (2003) and Hansen et al. (2005) 

estimated the global percentage of tree cover using different machine learning algorithms and 

Medium Resolution Imaging Spectroradiometer (MODIS) imagery. However, the authors noted 

that it is difficult to quantify the accuracy of classifications at a global scale due to the lack of 

reference data. This is also a problem when it comes to training machine learning algorithms. 

Therefore, studies often have to rely on national inventory data, which is often incomplete, 

inaccurate, and/or out of date.  

Research conducted in smaller areas have successfully discriminated between plantation and 

natural vegetation (Nery et al. 2019; Lück 2018), conifers, deciduous and mixed forests 

(Nangendo, Skidmore & Van Oosten 2007), and other land cover types (Baatuuwie & Leeuwen 

2011) using medium resolution (15 m – 30 m) multispectral imagery. Classification approaches 

that use medium resolution multispectral imagery are generally unable to differentiate between 

spectrally similar features, such as plantation genera and species, but have been shown to 

successfully differentiate between plantation types, such as commercial forest plantations and 

natural forests, as the spectral properties of such classes are more dissimilar than plantation genera. 

The use of VHR multispectral imagery in classifications is useful in differentiating between forest 

species (Cho, Malahlela & Ramoelo 2015; Franklin & Ahmed 2018; Franklin, Ahmed & Williams 

2017; Immitzer, Atzberger & Koukal 2012; Ke, Quackenbush & Im 2010; Pu & Landry 2012; 
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Wagner et al. 2019; Xie et al. 2019). VHR hyperspectral data have been used to successfully 

classify exotic forests (Peerbhay, Mutanga & Ismail 2013), coniferous forest species 

(Buddenbaum, Schlerf & Hill 2005), eucalyptus and pine plantations (Van Aardt & Norris-Rogers 

2008), swamp tree species (Adam et al. 2012), and forest plantation species (Fagan et al. 2015; 

Voss & Sugumaran 2008), but―in addition to such data being very expensive (even more so than 

VHR multispectral imagery)―it requires extensive processing as it has high data dimensionality. 

Consequently, the use of VHR multispectral and hyperspectral data is not a viable solution for 

regional applications.  

Active RS data have been successfully used to map forest plantations. SAR data are unaffected by 

atmospheric conditions and can differentiate between trees and other land cover types in 

classification algorithms. Specifically, synthetic aperture RADAR (SAR) derived metrics have 

been used in conjunction with multispectral derived metrics in classification algorithms to map 

forest plantations. SAR derived metrics are often used to differentiate between forest and non-

forest areas (Chen et al. 2016; Dong et al. 2012; Dong et al. 2013).  

Airborne LiDAR has been used in classification algorithms to map tree species (Budei et al. 2018; 

Heinzel & Koch 2011; Li, Hu & Noland 2013; Martinuzzi et al. 2013) and deciduous and 

coniferous trees (Yao, Krzystek & Heurich 2012). LiDAR data are expensive and therefore only 

commonly used in small areas. Spaceborne LiDAR sensors such as the Geoscience Laser Altimeter 

System (GLAS) (Lefsky 2010; Simard et al. 2011), IceSat (Xing et al. 2010), and Global 

Ecosystem Dynamics Investigation (GEDI) (Qi et al. 2019) have been used to capture tree heights 

over large areas. However, the GLAS satellite only operated discontinuously between 2003 and 

2009 (Michez et al. 2016), and GEDI will only be operational for two years, making it unsuitable 

for operational forest monitoring solutions.  

1.2.3 In situ data for classifying forest plantations 

Supervised classification requires a sufficient amount of in situ data used for training the model. 

The accuracy of supervised classification is influenced by the number, distribution, and quality of 

the training samples (Lu & Weng 2007). Factors such as the spectral variability within and among 

classes (Lu & Weng 2007; Mather 2004), the number of features (bands) used in the classification 

(Mather 2004), and the number of classes being classified (Campbell & Wynne 2013) should be 

considered when collecting training data for a supervised classification.  

Forest plantations genera are spectrally similar making it difficult to differentiate between them. 

Literature has shown that the addition of textural feature and vegetation indices as bands increases 

the ability of classification algorithms to differentiate between forest plantation genera/species 
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(Vaglio Laurin et al. 2016). However, increasing the number of features (bands) to the 

classification often leads to the s << n problem, known as the Hughes effect, where s is the number 

of samples and n is the number of features. The Hughes effect states that as the number features 

increases the accuracy of the classification improves, but at some point the accuracies will decrease 

as the training data become sparser compared to the increased feature space (Ma et al. 2013).  

The recommended number of training samples required for classification varies among literature. 

Campbell & Wynne (2013) recommend training area sizes exceeding 100 pixels. Whereas, Mather 

(2004) recommends obtaining more than 30n samples per category, where n is the number of input 

features (bands). Similarly, Belgiu & Dragut (2016) propose collecting enough samples so that s 

> n. Congalton & Green (2019) suggests that, when the area being classified is smaller than 1 

million hectares, the number of training samples should be about four times larger than the 

dimensionality of the dataset being classified (i.e. s ~ 4n). Thanh Noi & Kappas (2017) showed 

that the overall accuracy of a classification generally increases as the training set size increases, 

but that a saturation point exists where the overall accuracy is unaffected with an increase in 

training set size. Adding training data beyond the saturation point is unnecessary (Foody 2009). 

Instead, the training data should be selected to maximise the spectral separability between classes 

by collecting information about the spectral variability between classes (Foody et al. 2006).  

There are different views on whether an equal number of training samples are required per class. 

Congalton & Green (2019) and Colditz (2015) suggests that classes that occupy a larger area 

require more training samples as they are often more complex and have a large spectral variation. 

Mellor et al. (2015) showed that complex classes, like forests, can be mapped more accurately by 

using an unbalanced training data set. In contrast, Dalponte et al. (2013) and Millard & Richardson 

(2015) showed that when an unbalanced training data set is used, the class with the most training 

data dominates the classification result. Belgiu & Dragut (2016) found that the user’s and 

producer’s accuracies of the scarce classes increase when using an area-proportionate (unbalanced) 

sample set.  

A disadvantage of supervised classifications is that the collection of training data can be time-

consuming and costly, especially when mapping at a regional or national scales (Pax-Lenney et al. 

2001). Signature extension or generalisation has been suggested to reduce the expense of training 

data collection. Signature extension is the process whereby a model is trained on one image and 

applied to other images or scenes (Laborte, Maunahan & Hijmans 2010). Signature extension can 

be applied across time and distance (Wang, Azzari & Lobell 2019).   
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1.3 PROBLEM STATEMENT  

Incomplete and outdated forest plantation inventories are impeding effective forest plantation 

management. Tree genus is a characteristic of plantations that are critical for national forest 

planning and inventorying. It is therefore important to evaluate―and, if necessary, 

adapt―methodologies used to acquire the genus of forest plantations on a national level. 

Although some successes have been reported on genera/species classifications using remotely 

sensed imagery (Budei et al. 2018; Hagner & Reese 2007; Lück 2018; Nery et al. 2019;  Peerbhay, 

Mutanga & Ismail 2014), previous studies have mapped forest plantations on a local scale, and 

very few attempts have been made to map forest and other land cover types on a continental scale 

(DeFries et al. 2000; Hansen et al. 2003; Hansen et al. 2005), and forest types on regional and 

national scales (Franco-Lopez, Ek & Bauer 2001; Hagner & Reese 2007; McRoberts et al. 2002; 

McRoberts et al. 2007). It is difficult to map forest plantations over large areas as they often occur 

in widely distributed patches (Geldenhuys & Mucina 2006) and are spectrally similar. VHR 

multispectral imagery, hyperspectral imagery and LiDAR data have been used to successfully 

classify forest plantation species; however, such data are expensive, making it unsuitable for 

mapping over large areas. SAR data have been used to map forests and non-forests (Chen et al. 

2016; Dong et al. 2012; Dong et al. 2013), but have not successfully been used to differentiate the 

forested areas into genera or species. High spatial resolution imagery has been used in classifiers 

to discriminate between forest types, genera, and species, but no studies have specifically 

discriminated between pine, acacia, and eucalyptus. Therefore, there is a research gap about the 

efficiency of RS methods to map and characterise forest plantations on regional or national scales. 

It is not clear which RS methods and data sources will be most effective for differentiating between 

the three main plantation forest genera in South Africa (pine, eucalyptus, and acacia) on a national 

scale. Also, factors such as climatic variations, tree age and densities, as well as different 

phonological characteristics of species, will likely have a negative effect on classification 

accuracies (Hansen et al. 2005). Although non-parametric machine learning algorithms have been 

shown to be effective for complex classification tasks, it is not clear how much training data and 

what training set configuration would be required to adequately represent such variations, and to 

what extent signature extension will lead to acceptable classification accuracies. 

1.4 AIM AND OBJECTIVES  

This study aims to evaluate RS and machine learning methodologies whereby forest plantation 

genera can be mapped at a national scale. Specifically, it aims to assess the impact of different 

sampling strategies on machine learning accuracies and to investigate the potential of signature 

extension for reducing training sample collection costs.  
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The following objectives have been set to achieve the research aim: 

1. Carry out a literature review to identify the most appropriate techniques for classifying 

forest plantation genera and estimating forest plantation age; 

2. Collect suitable data on forest genera that can be used to build and assess models;  

3. Carry out RS experiments to identify the most effective training sample strategy for 

discriminating between forest plantation genera over large and diverse areas; 

4. Evaluate signature extension (model transfer) as a means to reduce reliance on large sets 

of in situ genera data for training machine learning algorithms; and 

5. Evaluate the findings and make recommendations for implementing RS techniques for 

carrying out forest inventories on a national scale.  

1.5 RESEARCH METHODOLOGY 

This research is experimental in nature and will follow a deductive approach. Existing approaches 

to classify forest plantations will be adapted to characterise forest plantations in South Africa. The 

study will experiment with different sampling schemes and test the transferability of machine 

learning models. Primary data in the form of shapefiles containing genus data at compartmental 

level, obtained from forestry companies, will be used for training and validating the models. The 

results will be evaluated both quantitatively and qualitatively.  

Figure 1-1 shows the research agenda. Chapter 1 outlines the research aim and objectives. Chapter 

2 will review the literature and thoroughly evaluate previous studies relevant to this research. It 

will also provide a background of RS techniques that are frequently applied in forestry.  

Chapter 3 will detail the methods and results for mapping acacia, eucalyptus and pine forest 

plantations using a balanced, unbalanced, and area-proportionate training sample configurations 

at different sample sizes. This will be followed by Chapter 4, in which the methods and results for 

evaluating the extent to which signature extension is viable for mapping forest plantation genera 

will be evaluated. Finally, Chapter 5 will synthesise the findings of the study, highlight the study 

limitations, and make recommendations future research.  
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Figure 1-1 Research design for forest plantation mapping on a genus level and determining forest plantation ages 

using satellite imagery 
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CHAPTER 2:  LITERATURE REVIEW 

Discriminating between forest plantation genera using RS can contribute to accurate and up-to-

date forest inventory databases. It is therefore important to develop a methodology that accurately 

and automatically maps forest plantation genera at regional or national scales.  

This chapter overviews the principles of RS and image classification to better understand existing 

RS methodologies used in forestry. Research on forest and other land cover mapping, forest type 

classification, and genera/species classification will be reviewed to elaborate on the research gaps 

identified in Chapter 1 and to identify suitable methods to achieve the aim of this study.  

2.1 EARTH OBSERVATION 

Earth observation (EO) uses RS technologies to gather information about processes that occur on 

the earth’s surface. The principles of RS, image classification paradigms and accuracy assessment 

will be discussed in the following subsections.  

2.1.1 Principles of remote sensing 

RS is the science of observing the earth's surface through emitted or reflected electromagnetic 

energy (Lillesand, Kiefer & Chipman 2019) that is captured at a distance by a sensor 

(Roughgarden, Running & Matson 2010). Spaceborne or airborne vehicles are most commonly 

used to carry RS instruments, although hand-held and tower-based instruments have also been 

used (Roughgarden, Running & Matson 2010). The radiation or signal that is reflected/emitted 

from the objects on the earth’s surface is captured by the sensor and used to study those objects 

(Campbell & Wynne 2013). 

RS sensors are either passive or active. Passive RS sensors use the electromagnetic radiation 

(EMR) generated by the sun (Bangira 2019), which is comprised of the ultraviolet to the infrared 

portion of the EMS and records the radiation that is emitted or reflected from the earth's surface. 

In contrast, active RS sensors broadcast a signal and record the strength and the time it takes the 

signal to return to generate a point cloud of the earth's surface (Bangira 2019). Examples of active 

RS sensors are SAR and LiDAR. 

When EMR interacts with the earth’s surface it is either reflected, transmitted or absorbed. The 

proportions of the EMR that is reflected, transmitted or absorbed varies with wavelength and the 

object it interacts with (Jackson & Huete 1991). The EMS can be categorised into seven 

wavelength regions (Figure 2-1) (Murthy 2004). RS sensors often capture different portions 
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(bands) of the EMR, providing information about the various features on the earth’s surface (Shaw 

& Burke 2003). 

Source: Silva et al. (2019) 

Figure 2-1 EMS and its wavelengths 

Three types of optical sensors exist: panchromatic, multispectral, and hyperspectral (Shaw & 

Burke 2003). Panchromatic sensors collect wavelengths in one band, while multispectral sensors 

collect data at a variety of different wavelength ranges in multiple bands (Shaw & Burke 2003). 

Hyperspectral sensors generate imagery that contains hundreds of bands consisting of data ranging 

from the visible to thermal infrared regions of the EMS (Shaw & Burke 2003).  

Thousands of RS satellites exist and some have been operational for more than 40 years (Zhu et 

al. 2017). Table 2-1 summarises the characteristics of selected EO satellites.   

The resolution of a remotely sensed image determines whether it can accommodate fine spectral, 

spatial and radiometric characteristics (Lillesand, Kiefer & Chipman 2019). The spectral 

resolution is the sensor’s ability to capture radiation in small wavelength intervals. An image with 

a high spectral resolution contains many narrow bands from which the spectral responses can be 

used to better discriminate between spectrally similar objects (Lillesand, Kiefer & Chipman 2019). 

Temporal resolution refers to the time a satellite takes to revisit and capture the same scene. A 

satellite with a high temporal resolution improves the quantity and quality of images as the chance 

of capturing a cloud-free image increases (Lu & Weng 2007). The spatial resolution of an image 

determines the smallest discernible feature on the map. The higher the spatial resolution, the 

smaller the pixel, and the more detailed the image becomes (Lillesand, Kiefer & Chipman 2019). 
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Table 2-1 Selection of popular EO satellites 

 

Source: Dzikiti et al. (2019)
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Different spectral bands can be combined and compared to observe subtle characteristics of 

features on the earth's surface. VIs are linear combinations or ratios using two or more spectral 

bands (Huete et al. 2002). VIs are used to enhance the vegetation properties (Figure 2-2), which 

enables interpreters to better study variations in vegetation vigour and biomass (Lukas et al. 2016). 

They are computed without knowledge of climate conditions or land cover and consequently 

provide an unbiased representation of vegetation (Jackson & Huete 1991). 

 Source: Onjira (2014) 

Figure 2-2 Spectral signatures for soil, water, and green vegetation 

There are many different VIs, each intended for different applications. VIs aim to maximise the 

vegetation signal while minimising background signals (Jackson & Huete 1991). The most 

common VIs include the regular vegetation index (RVI), normalised difference vegetation index 

(NDVI), enhanced vegetation index (EVI), and soil adjusted vegetation index (SAVI), all of which 

makes use of the visible to the NIR region of the EMS as vegetation strongly reflects NIR radiation 

and absorbs a large proportion of radiation in the visible region (Xue & Su 2017). 

RVI is used to monitor vegetation variations during the peak growth period. The RVI is useful if 

the red band is measured with high accuracies (Jackson & Huete 1991) and is calculated by: 

𝑅𝑉𝐼 =  
𝜌𝑅

𝜌𝑁𝐼𝑅
 Equation 2-1 

 

where 𝜌𝑅 is the red image band; and 

 𝜌𝑁𝐼𝑅 is the near-infrared image band. 

 

RVI is sensitive to chlorophyll as it strongly reflects the NIR portion of the EMS (Huete et al. 

2002). RVI can compare the growth of vegetation at a seasonal and inter-annual level.  NDVI is a 

normalised ratio of RVI and is calculated by: 

𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅 −  𝜌𝑅

𝜌𝑁𝐼𝑅 +  𝜌𝑅
 

Equation 2-2 
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where 𝜌𝑁𝐼𝑅 is the near-infrared image band; and   

 𝜌𝑅 is the red image band. 

 

Although NDVI and RVI are functionally equivalent, RVI is unable to assess vegetation quantities 

at low densities, whereas NDVI can identify sparse vegetation as the normalised values enhance 

the visualisation of low RVI values (Jackson & Huete 1991). However, due to its nonlinearity, 

NDVI often saturates when there is high biomass as leaf pigments strongly absorb the red band 

and it is sensitive to canopy background noise (Huete et al. 2002). Soils and aerosols contribute to 

the signal received in the NIR and red bands causing higher and lower NDVI values respectively. 

Soils contribute more to the signal when vegetation is sparse, while aerosols contribute more when 

vegetation is dense (Liu & Huete 1995). 

EVI is used to measure structural variations of vegetation (Huete et al. 2002). EVI overcomes the 

limitation of NDVI in high biomass regions by identifying the background signal and separating 

it from the signal emitted from the vegetation canopy. The equation uses the aerosol resistance 

term coefficients, which applies the blue band to correct for aerosol reflectance in the red band. 

The canopy adjustment term is used to compensate for canopy background noise. Therefore, EVI 

is suitable for measuring structural variations of vegetation such as leaf area index, plant 

physiognomy, and canopy type (Huete et al. 2002). EVI is defined by:  

𝐸𝑉𝐼 = 𝐺 ×  
(𝜌𝑁𝐼𝑅 − 𝜌𝑅)

(𝜌𝑁𝐼𝑅 + 𝐶1 + 𝜌𝑅 − 𝐶2 × 𝜌𝐵 + 𝐿)
 

 

Equation 2-3 

 

where 𝐺  is the green band; 

 𝜌𝑁𝐼𝑅 is the near-infrared band ;  

 𝜌𝑅 is the red band; 

 𝐶1, 𝐶2 is the coefficient of aerosol resistance term; 

 𝜌𝐵 is the blue band; and 

 𝐿 is the canopy background adjustment. 

The main disadvantage of EVI is that it is sensitive to topographical effects. Therefore, it is 

important to remove topographical noise by applying bidirectional reflectance distribution 

function models before generating EVI (Matsushita et al. 2007). Similar to EVI, SAVI was 

developed to adjust for soil background noises that exist in the NDVI by incorporating a soil 

conditioning index into the equation (Xue & Su 2017). SAVI is calculated by: 
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𝑆𝐴𝑉𝐼 =  
(𝜌𝑁𝐼𝑅 −  𝜌𝑅)(1 + 𝐿)

(𝜌𝑁𝐼𝑅 +  𝜌𝑅 + 𝐿)
 

 

Equation 2-4 

 

where 𝜌𝑁𝐼𝑅 is the near-infrared image band;  

 𝜌𝑅 is the red image band; and 

 𝐿 is the soil conditioning index.  

 

SAVI is equivalent to NDVI when L is set to 0, but SAVI is generally more accurate than NDVI 

(Xue & Su 2017).  

In summary, VI's are useful for monitoring the growth, health status, and structural variations of 

different vegetation types and conditions. 

2.1.2 Image analysis paradigms 

RS has increased in popularity owing to improvements in digital data storage capacity and 

computing power, as well as the development of advanced software systems. Furthermore, many 

satellite data sources have become freely available and easily accessible, while the spatial, spectral, 

and temporal resolution of satellite images have also improved. This has led to the development 

and application of RS to Earth sciences, hydrological sciences, land use and land cover analysis, 

and plant sciences, etc. (Cracknell 2018).  

RS is used in Earth science to map drainage patterns, detect lineaments, identify rocks and 

minerals, map soils and landscapes, and in photoclinometry. The tone of the imagery is used to 

identify drainage patterns as light tones are used to characterise porous soils. Similarly, brightness 

values are used to assess the orientation of the surface (Peng et al. 2003). Filtering and 

segmentation techniques are applied to remotely sensed images to detect lines or edges indicating 

an area of lineaments (Marghany & Hashim 2010). Mineral, soil, and landscape mapping use 

spectral signatures in classification algorithms to classify an image into mineral, soil and landscape 

groups (Mujabar & Dajkumar 2019).  

Hydrospheric sciences apply active and passive RS techniques to locate the extent of water bodies 

by assessing a normalised difference water index derived from optical imagery (Kaplan & Avdan 

2017) and/or the backscatter received by SAR sensors (Prasad, Garg & Thakur 2018). 

Additionally, SAR can detect surface water roughness, and the radiation detected by optical 

sensors can determine ocean surface water temperature. Hydrological models are better understood 

by assessing land cover and land use (LCLU) information derived from classifying remotely 

sensed images (Gao et al. 2018). Evapotranspiration rates are estimated by combining elevation 
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and optical imagery with data collected by meteorological stations and satellites (Neale et al. 

2011). 

Scenes of RS data are often classified into LCLU to better understand and manage land. Multi-

temporal imagery is used to monitor the change of LCLU over time, driven by economic, social 

and environmental factors (Halefom et al. 2018).  

Plant sciences rely heavily on RS, particularly in the agriculture and forestry sectors. In forestry, 

RS is often used to estimate crown closure, timber volumes, species, and forest plantation ages. 

This information can be collected periodically to generate up-to-date forestry inventory databases 

(Tomppo et al. 2008). Section 2.2 will elaborate on the applications of RS in forestry. 

2.1.3 Classification 

A classified image is compiled by assigning every pixel in an image to a category. Each pixel is 

composed of values for each spectral band and is assigned to a class/category based on the 

similarity of these values to those of other pixels with known categories (Anand 2018).  

Image classification is conducted using either a per-pixel or object-based image analysis (OBIA) 

approach. Per-pixel classification is the conventional method (Bhaskaran, Paramananda & 

Ramnarayan 2010) of evaluating and classifying individual pixels. A disadvantage of per-pixel 

classification is speckled results (Liu & Xia 2010). Speckle, or the so-called salt-and-pepper effect, 

arises from neighbouring pixels having high spectral heterogeneity (Kelly et al. 2011).  

OBIA alleviates the effect of speckle by segmenting the image into homogenous and spatially 

continuous objects (Kelly et al. 2011). The results of image segmentation are influenced by the 

algorithm and its parameterisation. Object-based image classification assigns categories to the 

objects generated during the segmentation process based on the spectral, shape and spatial 

characteristics of each object (Blaschke 2010).  

Classification algorithms can be categorised as unsupervised, supervised, and knowledge-based. 

The following subsections expand on each of these image classification types.  

2.1.3.1 Unsupervised 

Unsupervised classification follows a clustering approach whereby pixels with similar spectral 

values are statistically grouped into clusters of pixels. Pixels can either be individual pixels or 

multiple pixels grouped into objects through image segmentation, but for sake of brevity the term 

“pixels” will henceforth be used to refer to both scenarios. The analyst then assigns (or labels) 

informational classes (categories of interest) to the spectral groups (Naghdy et al. 2014).  
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The advantage of unsupervised classification is that the analyst does not need to have implicit 

knowledge of the area of interest before classification, there is less risk of human error, and unique 

spectral classes that may relate to informational classes are automatically identified (Naghdy et al. 

2014). However, spectral classes do not always correspond to informational classes and may 

change over time, which reduces their value for automated classification methods (Naghdy et al. 

2014). Examples of unsupervised classification algorithms are k-means, iterative self-organising 

data analytics technique (ISODATA), and modified k-means. 

2.1.3.2 Supervised 

Supervised classification categorises unlabelled pixels into informational classes using a sample 

of labelled pixels representing each informational class. The labelled pixels are thus used as 

training samples. Unlabelled pixels are assigned a label according to how similar their spectral 

characteristics are to those that are labelled (Basha et al. 2018).  

The advantage of supervised classification is that informational classes are determined by the 

analyst (Basha et al. 2018). The disadvantage of supervised classification is that the classes 

selected by the analyst may be spectrally ambiguous, the training samples may not be 

representative as conditions may vary across the image influencing the pixel value, and collecting 

training samples is time-consuming (Campbell & Wynne 2013). 

The maximum likelihood classifier (MLC) is a popular supervised classification algorithm. It 

determines the probability of each pixel belonging to a class by calculating the statistical distance 

between clusters using the variance, mean value and brightness of each cluster. MLC assumes that 

the spectral data within each informational class is normally distributed (Baatuuwie & Leeuwen 

2011). 

Supervised classification methods such as k-nearest neighbour (KNN), classification and 

regression tree (CART), support vector machine (SVM), random forest (RF), and artificial neural 

networks (ANN) (Keuchel et al. 2003) are non-parametric as they do not make assumptions about 

data distribution and do not rely on statistical measures (Lillesand, Kiefer & Chipman 2019).  

KNN classifies unlabelled objects based on the k-nearest known labels in feature space (the pixel 

values of each band). The analyst can set the value for k, which determines the number of closest 

neighbours to consider when classifying an unlabelled pixel. The final classification is based on a 

majority vote. The higher the k-value the more training data are required (Xie et al. 2019). 

SVM attempts to find a hyperplane that best separates two classes in feature space. The feature 

space is transformed until a hyperplane can be used as a separator in the feature space. 

Mathematical functions such as radial basic function kernel, polynomial kernel, and linear kernels 
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are used to transform the feature space (Mather 2004). A disadvantage of SVM is that, if the 

number of features (n) is much greater than the number of samples (s) (i.e. when n >> s), the 

accuracy of the classification decreases. 

Decision trees (DT), also called CART, evaluates the training samples and creates a set of 

thresholds that are used to recursively split the samples based on an attribute value test. The process 

is repeated until splitting the subsets adds no value to the informational classes. The main 

disadvantage of DT is that a large training dataset is needed and it is prone to overfitting 

(Baatuuwie & Leeuwen 2011). 

RF is an ensemble classifier as it combines the results of multiple DT models. RF uses 2/3 of the 

sample data, known as subset R1, for training the model. The remaining 1/3 of the samples, known 

as the out of bag (OOB) sample subset, is used to estimate the variable importance and the 

classification error. At each node within each DT, the algorithm selects a random subset of input 

features (bands), known as F1. It then uses subset R1 to identify the feature in F1 that best splits 

the data for a class and creates new nodes. The process is repeated at each node. Once all nodes 

are split for each tree, the majority vote among trees decides the final output for the map (Budei et 

al. 2018). 

ANNs are more complex than traditional statistical classifiers as they can model non-linear 

relationships. They contain three elements: an input layer, hidden layers and an output layer. The 

input layer contains the source data (imagery), hidden layers represent weights of association 

between classes and pixel values, and there can be many hidden layers. The output layer represents 

the classes for the desired output, which is defined by the training data during model building. The 

input data are passed through the network and weights are adjusted until the expected classification 

(defined by the training data) is achieved. Once the neural network (NN) is established, the input 

data can be replaced with other data. The disadvantages of ANNs are that they are complex and 

prone to overfitting (Han, Liu & Fan 2018). 

Deep learning occurs when a multi-layered NN is formed, creating a deeper network than 

conventional NNs (Devi Mahalakshmi & Geethanjali 2019). A convolution NN (CNN) contains 

convolutional layers, max-pooling layers, and fully connected layers. Filters are applied to the 

convolutional layers, the dimensionality of the data is reduced in the max-pooling layers, and the 

fully connected layers ensure that all of the input data in one layer are connected to all of the units 

of the next layer (Devi Mahalakshmi & Geethanjali 2019). There are two main types of CNNs: 

LeNet and AlexNet. LeNet is a shallow NN containing two convolutional layers, two hidden 

layers, two subsampling layers, and an output layer (Devi Mahalakshmi & Geethanjali 2019). 

AlexNet is a deep CNN designed to classify an image into thousands of classes. AlexNet contains 
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five convolutional layers, three fully connected layers, three subsampling layers (Devi 

Mahalakshmi & Geethanjali 2019), and millions of parameters (Han, Liu & Fan 2018). NNs are 

advantageous as they can accept various numerical data even if the data does not have a statistical 

distribution, allowing them to process ancillary data to remotely sensed data (Mather 2004). A 

major disadvantage of NNs is that a large amount of training data and computing power is required 

(Han, Liu & Fan 2018). 

2.1.3.3 Training samples and dimensionality  

Training samples that are used in supervised classification methods are defined as pixels of known 

identity and are often collected from aerial photographs, satellite imagery (typically VHR), and/or 

maps, or using fieldwork (Lu & Weng 2007).  

The number and distribution of training samples influence the accuracy of supervised 

classifications (Lu & Weng 2007). Different classification algorithms require different statistical 

characteristics of training data (Mather 2004). Campbell & Wynne (2013) suggest the number of 

categories, source of reference data, and the diversity of the categories should determine the 

number of training samples required in a classification. Areas of high spectral variability typically 

require more training samples (Lu & Weng 2007; Mather 2004). In addition, Mather (2004) 

suggests that the sample size should relate to the number of features (bands) from which the 

classification will occur, their statistical properties, and the diversity of spectral information within 

and among classes, referred to as intra- and inter-class spectral variability respectively.  

The addition of bands to increase the separability between spectrally similar classes often leads to 

the s << n problem, where s is the number of samples and n is the number of features. This 

phenomenon, known as the Hughes effect, states that the classification accuracies increase 

gradually as features are added to the classifier, but at some point, the accuracies will decrease as 

the training data become sparser compared to the increased feature space (Ma et al. 2013). The 

Hughes effect is mitigated by increasing the number of samples or reducing the dimensionality of 

the data (Alonso, Malpica & De Agirre 2011).  

Dimensionality reduction is achieved by using feature selection or feature extraction techniques. 

Feature selection finds the features that best represent the data, while feature extraction finds linear 

combinations of the original data to produce a smaller, optimised feature set (Zebari et al. 2020). 

A disadvantage of feature extraction is that some information is lost, while a disadvantage of 

feature selection is that excluded features may contain critical information for particular classes 

(Khalid, Khalil & Nasreen 2014). Pearson correlation, forward selection, backward elimination, 

and recursive elimination are examples of popular feature selection techniques. Feature extraction 
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techniques include principal component analysis (PCA), multidimensional scaling (MDS), and 

linear discriminative analysis (LDA). When the number of features cannot be reduced, the 

selection and number of training samples can be manipulated to mitigate the Hughes effect (Ma et 

al. 2013). 

Training samples should represent distinct features, homogeneity and uniformity, and they must 

be placed throughout the image to capture the diversity in the image (Park & Lu 2015).  Selecting 

homogenous samples becomes difficult for complex scenes, especially if medium- or low-

resolution imagery is used in the classification. It is therefore important to consider the spatial 

resolution of the data being used in the classification and the complexity of the scene being mapped 

(Lu & Weng 2007). 

Training samples are often collected using polygons (Lu & Weng 2007). The required number and 

size of training polygons vary among literature sources. Campbell & Wynne (2013) recommend 

training polygons exceeding 100 pixels, whereas Mather (2004) recommends obtaining more than 

30n samples per category, where n is the number of input features (bands). Similarly, Belgiu & 

Dragut (2016) propose collecting enough samples so that s > n. Congalton & Green (2019) suggest 

that when the area being classified is smaller than 1 million ha, the number of training samples 

should be about four times larger than the dimensionality of the dataset being classified (i.e. s ~ 

4n).  

Thanh Noi & and Kappas (2017) showed that the overall accuracy (OA) of a classification 

generally increases as the training set size increases, but that a saturation point exists where the 

OA is unaffected with an increase in training set size. Adding training data beyond the saturation 

point is unnecessary (Foody 2009). Instead, the training data should be selected to maximise the 

spectral separability between classes by collecting information about the spectral variability 

between classes (Foody et al. 2006).  

There are different views on whether an equal number of training samples are required per class. 

Congalton & Green (2019) and Colditz (2015) suggest that classes that occupy a larger area require 

proportionately more training samples as they are often more complex and have a large spectral 

variation. Mellor et al. (2015) showed that complex classes, like forests, can be mapped more 

accurately by using an unbalanced training dataset. In contrast, Dalponte et al. (2013) and Millard 

& Richardson (2015) showed that when an unbalanced training dataset is used, the class with the 

most training data dominates the classification result. Belgiu & Dragut (2016) found that the user’s 

and producer’s accuracies of the scarce classes increase when using an area-proportionate 

(unbalanced) sample set.  
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A disadvantage of supervised classifications is that the collection of training data can be time-

consuming and costly, especially when mapping at regional or national scales (Pax-Lenney et al. 

2001). Signature extension or generalisation has been suggested to reduce the expense of training 

data collection. Signature extension is the process whereby a model is trained on one image and 

applied to other images or scenes (Laborte, Maunahan & Hijmans 2010). Signature extension can 

be applied across time and space (Wang, Azzari & Lobell 2019).  

Zhang et al. (2019) used the concept of signature extension to create annual land cover maps. They 

created a spectral library containing the spectra of each land cover type to train an RF model that 

was subsequently applied to annual Landsat composites with OAs ranging from 71.3% to 80.7%. 

Similarly, Dannenberg, Hakkenberg & Song (2016) and Gray & Song (2013) collected training 

data from stable sites to create spectral signatures for training MLC and RF classifiers to map land 

cover classes across time. OAs ranging from 60% to 73.3% were achieved. Wang, Azzari & Lobell 

(2019) used signature extension in an RF model for crop type mapping across time and 

geographical distance. They found that an 80% OA is possible if the model is trained with data 

that contains similar growing degree days to the target image.  

Phalke & Özdoğan (2018), Woodcock et al. (2001) and Li et al. (2020) classified land cover types 

over large areas by using signature extension with machine learning algorithms. They found that 

the OAs are affected by climatic, topological, and ecological differences. However, Olthof, Butson 

& Fraser (2005) and Verhulp & Van Niekerk (2016) found that as the distance increases away 

from the training scene, the classification accuracies deteriorate. Instead of signature extension, 

Knorn et al. (2009) used a chain approach to classify forest and non-forest areas over six Landsat 

scenes to reduce the impact of extension distance. Training data from one scene was collected and 

used to classify the scene. The portion of the classified scene that overlaps the neighbouring scene 

is used for training a second model, which is then applied to the neighbouring scene. This chain 

effect is repeated until all images are classified. However, as with conventional signature 

extension, the OA decreased as the distance from the first scene increased.  

2.1.3.4 Knowledge-based  

Knowledge-based (expert systems) classification is another alternative to overcome the expense 

of collecting training data (Stephenson 2010). It applies a set of rules defined by an expert to 

classify remotely sensed images (Peled & Gilichinsky 2010). Expert systems consist of a 

knowledge base containing a set of rules (e.g. if-then statements), an inference engine that stores 

information about how to apply the rules, and a database that contains the transformed or raw 

datasets. The structure of a knowledge-based classification is similar to a DT, however, the splits 

are based on rules defined by an expert instead of algorithms (Watkins 2019). In comparison to a 

Stellenbosch University https://scholar.sun.ac.za



 21 

supervised DT classifier, the rules defined in a knowledge-based classifier are based on the expert 

knowledge of the user, ancillary data and spectral information, mimicking how humans 

differentiate between classes on the earth’s surface (Cohen & Shoshany 2002). Apart from not 

requiring training data, knowledge-based classification is advantageous in that the rules are 

transparent (open for scrutiny) and can be easily updated/modified and applied to other areas 

and/or data (Peled & Gilichinsky 2010). A disadvantage of a knowledge-based classification is 

that it relies on the knowledge of the user, resulting in an increased risk of human error (Baierle et 

al. 2019) 

2.1.4 Classification accuracy assessment  

The classification scheme, the sampling method used to collect reference data, the amount of 

reference data, what reference data needs to be collected, and spatial autocorrelation are factors to 

consider when assessing the accuracy of a map (Lu & Weng 2007).  

The reference data must preferably be collected at the same time the image was acquired and they 

need to be geographically co-registered to the imagery being classified. When collecting the 

reference data, the sampling scheme needs to have a random element to minimise bias. A simple 

random sampling method is appropriate for large sample sizes and a stratified random sampling 

scheme is suitable for a small sample size. Less than 50 samples per class are needed if the area 

being mapped is smaller than 1 million ha and the number of classes is less than 12 (Congalton & 

Green 2019).  

Classified maps are evaluated in terms of site-specific and non-site-specific accuracy. Non-site-

specific accuracy compares only the overall areas of each category of the map being classified to 

a reference map. Site-specific accuracy considers specific locations to assess the similarity 

between the reference data and the classified map (Congalton & Green 2019). 

A confusion matrix (Figure 2-3) is constructed to calculate site-specific accuracies and documents 

the OA, error of commission, error of omission, and the kappa statistic (Lu & Weng 2007).  

Source: Pierce (2015) 

Figure 2-3 Confusion matrix showing commission and omission errors    
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A confusion matrix is only suitable for classifications that have mutually exclusive and exhaustive 

categories and where every location on the map belongs to only one category (Lu & Weng 2007). 

The matrix compares the reference data and classified map at each reference sample to compute 

the different metrics. The OA is calculated by dividing the sum of the correctly classified pixel by 

the total number of pixels. The error of omission records when a feature is left out of the category 

being evaluated and errors of commission records when a feature is incorrectly included in the 

category being evaluated (Rwanga & Ndambuki 2017). A kappa statistic is used in conjunction 

with the OA. It considers the agreement of two maps by chance and is calculated by:  

𝑘 =  
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

1 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 
 

Equation 2-5 

 

      

Pontius & Millones (2011) stated that kappa is unreliable for three reasons: firstly, kappa is a ratio 

making interpretation difficult as it is unknown whether the denominator or numerator is the 

dominating factor. Also, if the denominator is zero, the results will be undefined. Secondly, kappa 

does not indicate where the classification needs improving, and lastly, kappa compares the 

observed accuracy relative to accuracy due to chance, which is irrelevant. Quantity disagreement 

and allocation disagreement are more suitable for quantifying accuracy. Quantity disagreement is 

the similarity in the proportions of the categories, which is used to quantify the difference between 

the reference map and a comparison map. Allocation disagreement is the spatial allocation of the 

categories that are used to analyse the similarity in the proportion of the categories to quantify the 

difference between the reference map and a comparison map (Pontius & Millones 2011). 

2.2 REMOTE SENSING IN FORESTRY 

RS has been used in forestry applications to identify trees, estimate crown closure and timber 

volumes, delineate compartments, and estimate tree ages. This section considers the following 

forestry applications of RS: mapping forested and other land cover types, classification of forest 

types, and genera/species classification. Specifically, RS methods/data that can be applied at 

regional/national scales are reviewed. 

2.2.1 Mapping forests and other land covers 

Leroy et al. (2007) classified 250 m (bands 1-2), 500 m (bands 3-7), and 1 000 m (bands 8-36) 

MERIS imagery into land cover types on a global scale (Table 2-2). Temporal and spectral 

information was used in a clustering algorithm to capture phenological characteristics of land cover 

types. The classes were first labelled according to predefined classes and then an expert-based 

labelling system was applied to improve the labelling.  
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DeFries et al. (2000) generated a prototype global map depicting percentage tree cover and 

associated portions of trees with different longevity and leaf type using Advanced Very High-

Resolution Radiometer (AVHRR) scenes. Data derived from a global network of Landsat scenes 

were used to determine weightings and endmembers for training. A mixture model was developed 

to estimate proportional coverage of woody vegetation, herbaceous vegetation and bare ground. A 

separate mixture model was developed for each continent to determine mixtures of broadleaf 

evergreen, broadleaf deciduous, and woody vegetation, depending on which types are present in 

each continent. Overall, the percentage of tree cover estimates appeared to depict the broad spatial 

patterns of forest distribution observed in Landsat thematic mapper (TM) scenes. Hansen et al. 

(2003) estimated the percentage tree cover globally using 500 m resolution MODIS imagery and 

a regression tree (RT) algorithm. Landsat images were used for training data collection. Hansen et 

al. (2005) tested 40-day composites and multi-temporal annual metrics derived from MODIS 

imagery for mapping percentage tree cover globally and continentally using an RT algorithm. 

MODIS global percentage tree cover data was used for training. Globally, the multi-temporal 

images produced better results than the composite images. The use of multi-temporal images 

produced better results over the African continent due to the different seasonal phenology 

experienced by common cover types in northern Africa compared to southern Africa. Continents 

that experience the same season at a given time, like North America, achieved similar results using 

the composite images and multi-temporal annual metrics in a RT.  

Carrão et al. (2010) classified MERIS imagery of Portugal into land cover types using a linear 

discriminant classifier. Existing land cover data were used to assess the accuracy and an 80% OA 

was achieved. McRoberts et al. (2010) estimated the area of forested and non-forested plots on 

Landsat 5 scenes in four states of the United States of America (USA). They obtained an average 

location error of 7.9 m using supervised classification with stratified national land cover data as 

training. Tomppo et al. (2008) estimated forests and non-forested areas in Sweden and Finland 

using a KNN classification on Landsat scenes using national forestry inventory data for training. 

The root mean square error (RMSE) at a subsampling scale ranged from 5% to 16% for pine 

volume estimates. 
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Table 2-2 Summary of forest and land cover-type mapping studies 

 
Study Methods Results Source 

N
a
ti
o

n
a
l 
S

c
a
le

 

Estimated  forest/non-forest areas for Indiana, Iowa, 
Minnesota, and Missouri in the United States 

Used a supervised classification with stratified national 
land cover data as training An average error of 7.9 m was obtained 

McRoberts 
et al. 
(2002) 

Estimates forests in Sweden and Finland  

Used a KNN classification algorithm with different 
variables to classify Landsat images with NFI data for 
training RMSE at a subsampling scale ranges from 5% to 16% 

Tomppo et 
al. (2008) 

Estimate land cover types in Portugal  
Used a linear discriminant classifier on MERIS imagery 
and tested with existing land cover data Overall accuracy of 80% was achieved 

Carrão et 
al. (2010) 

C
o
n
ti
n

e
n
ta

l/
G

lo
b
a
l 
S

c
a
le

 

Classifies land cover types on a global scale  

Used a clustering algorithm with spectral and temporal 
information to capture phonological characteristics on 
MERIS imagery.  The classes were then labelled into 
previously defined classes. An expert-based labelling 
system was then applied to improve the labels  

Intensive validation campaign led by a network of experts 
from several parts of the world 

Leroy et 
al. (2007) 

Generated a prototype global map depicting percentage 
tree cover and associated proportions of trees with 
different leaf longevity (evergreen and deciduous) and 
leaf  types (broadleaf and needle-leaf) on a global scale  

Used RT on AVHH scenes with training data derived 
from a global network of Landsat scenes was used to 
determine weightings and end members 

Overall the percentage tree cover estimates appear to 
depict the broad spatial patterns of forest distribution 
observed in the Landsat TM scenes 

DeFries et 
al. (2000) 

Estimated percentage tree cover per 500m pixel globally 
Used a supervised regression tree to classify MODIS 
imagery with Landsat grids as training data 

Shows that MODIS data can discriminate percentage 
tree cover better than AVHRR 

Hansen et 
al. (2003) 

40-day composites and multi-temporal annual metrics are 
tested in mapping percentage tree cover globally and 
continental  

Used a regression tree with MODIS global percentage 
tree cover data for training 

Globally - the metrics as input outperformed the 
composite images slightly. Africa - similar results as 
global due to the different seasonal phenology for 
common cover types. N America - the  metrics and 
composites had similar results due to the common 
seasonal phenology change  

Hansen et 
al. (2005) 
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2.2.2 Forest type classification 

Baatuuwie & Leeuwen (2011) classified an ASTER image of a forest reserve in Ghana into built-

up/bare, plantation forests, new plantations, natural forests, and mixed/degraded forest by 

exploiting an MLC, spectral angle mapper (SAM), and a DT classifier. The MLC was the most 

accurate achieving an 88.5% OA and a 0.85 kappa statistic. Nangendo, Skidmore & Van Oosten 

(2007) compared the ability of an MLC, SAM, MLC with an expert system, and SAM with an 

expert system to classify a Landsat scene of a forest reserve in Uganda into forest, woodland, and 

savannah types. The combination of SAM with an expert system was the most accurate, achieving 

a 96% OA. Lück (2018) used Landsat scenes covering three sites in South Africa to test the ability 

of a spectral rule-based classifier and two machine learning classifiers (RF and SVM) to 

discriminate between indigenous and forest plantations. The machine learning classifiers 

outperformed the spectral rule-based classifier obtaining between 93% and 98% OAs. Nery et al. 

(2019) utilised an OBIA with SVM, RF, and CART to classify a Landsat scene of an Australian 

catchment into indigenous and forest plantations. Texture metrics were calculated and added as 

features to the image, after which a principal component analysis (PCA) was applied to reduce the 

dimensionality of the data. A segmentation was conducted, training and testing data were 

identified, and the machine learning algorithms were implemented and compared. SVM achieved 

better results (92% OA) than RF (90%) and CART (88%).   

Hagner & Reese (2007) applied an MLC to Landsat scenes of Sweden’s forests to discriminate 

coniferous, deciduous and mixed-forest classes. Compared to Baatuuwie & Leeuwen (2011) 

(88.5%) a lower OA (74%) was achieved. However, Hagner & Reese (2007) classified a larger 

(and likely more complex) area than Baatuuwie & Leeuwen (2011) which may explain the lower 

accuracy. 

Wagner et al. (2019) used OBIA with a CNN algorithm to classify a VHR image (WorldView2, 

WV2) of a forest biome in Brazil into eucalyptus and natural forest groups. A 95% OA was 

achieved. The combination of OBIA with CNN on VHR data (Wagner et al. 2019) outperformed 

the combination of OBIA with machine learning algorithms on medium resolution imagery (Nery 

et al. 2019).  

Compared to the accuracies achieved in the studies that made use of VHR (Wagner et al. 2019) 

and medium resolution multispectral imagery (Baatuuwie & Leeuwen 2011; Hagner & Reese 

2007; Lück 2018; Nangendo, Skidmore & van Oosten 2007 & Nery et al. 2019), it seems that 

hyperspectral data does not necessarily result in better accuracies when classifying forest 

plantation types/genera. 
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Table 2-3 Summary of forest type mapping studies 

  Study Methods Results Source 

M
e

d
iu

m
 r

e
s
o

lu
ti

o
n

 i
m

a
g

e
ry

 

Classified built-up/bare, plantation forest, 
new plantations, natural forests, & 
mixed/degraded forests in a forest 
reserve 

Tested ML, SAM, & DT using ASTER imagery 
ML algorithm was the most accurate achieving an 
accuracy of 88.5% 

Baatuuwie & 
Leeuwen (2011) 

Classified forest, woodland, and 
savannah types in a forest reserve 

Used ML classifiers, SAM, ML + expert system, SAM + expert 
system to classify Landsat imagery 

SAM + expert systems were the most accurate with a 
96% accuracy 

Nangendo, 
Skidmore & van 
Oosten (2007) 

Classified indigenous & plantation 
forests on a study area in SA 

Tested rule-based and machine learning classifiers (RF & SVM) 
to classify Landsat imagery 

Machine learning classifiers achieved 93% to 98% 
accuracy Lück (2018) 

Classified indigenous & plantation 
forests over a catchment 

Use OBIA. Used texture to segment and PCA, SVM, RF & CART 
to classify Landsat scenes 

SVM was the most accurate (92%) 
Nery et al. 
(2019) 

Classified coniferous, deciduous & 
mixed forests in a Sweden  

Used an ML classifier with Landsat imagery  ML classifier achieved a 74% overall accuracy 
Hagner & Reese 
(2007) 

V
e
ry

 h
ig

h
-

re
s
o

lu
ti

o
n

 &
 

h
y

p
e
rs

p
e

c
tr

a
l 

im
a
g

e
ry

 

Classified eucalyptus & natural forests in 
a forest Biome in Brazil  

Used a segmentation technique followed by a CNN classification 
on WV2 imagery 

Achieved an overall accuracy of 95% 
Wagner et al. 
(2019) 

S
A

R
 i
m

a
g

e
ry

 

Classified deciduous and evergreen 
forests in Hainen Island  

Used KNN classification on PALSAR imagery and then used 
MODIS imagery to identify rubber plantations 

Achieved an 89% accuracy 
Dong et al. 
(2012) 

Classified tropical forests and rubber 
plantations in Hainen Island  

Used structural information derived from PALSAR & Vis derived 
from Landsat 

Achieved a 86% accuracy 
Chen et al. 
(2016) 

Classified rubber plantations in Danshou 
region close to Hainen Island using  

Used PALSAR to delineate forest and Vis derived from Landsat 
to classify forest plantations 

Achieved a 96% accuracy 
Dong et al. 
(2013) 
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Dong et al. (2012) used an NN algorithm to classify a Phased Array type L-band Synthetic 

Aperture Radar (PALSAR) scene of Hainan Island into forested and non-forested areas, from 

which forest types were identified using a KNN algorithm to classify a MODIS image of the same 

scene. An OA of 89% was achieved for the PALSAR dataset and an 85% OA was achieved for 

the MODIS imagery. Similarly, Chen et al. (2016) utilised structural information derived from 

PALSAR imagery with VIs derived from Landsat imagery to map tropical forests and rubber 

plantations on Hainan Island, obtaining an 86% accuracy for the tropical forests and a 96% 

accuracy for the rubber plantations. Similar results were reported by Dong et al. (2013) who 

combined Landsat-derived metrics with PALSAR metrics to classify rubber plantations in the 

Danzhou region. From these studies, one can conclude that classification algorithms are capable 

of classifying SAR imagery into forest types, but are of greater value when differentiating between 

forest and non-forest land cover types.  

2.2.3 Genera/species classification 

Xie et al. (2019) compared the ability of MLC, KNN, DT, RF, ANN, and SVM to classify seven 

forest tree species of a scene captured by bi-temporal ZiYuan-3 multispectral and stereo imagery. 

Spectral responses, textures, height, slope, and elevation were used to train the classification 

algorithms. MLC achieved the highest accuracy (89.4%), but RF (88.8%) and SVM (88.2%) 

obtained similar OAs. Vaglio Laurin et al. (2016) used VIs and texture metrics derived from 

Sentinel-2 data to distinguish between different forest species in a conservation area in Ghana. 

Jeffries-Matusita (J-M) separability, which shows how well the training data (regions of interests) 

are statistically different, was above 1.8 when texture metrics were included. Stabach et al. (2009) 

used an MLC to discriminate between forest species of Landsat 7 and Satellite Pour l'Observation 

de la Terre, lit (SPOT) 5 scenes. Low accuracies (69% to 72%) were achieved for both data sources 

due to the complexity and heterogeneity of the study area and the low spatial and spectral 

resolution of the imagery. Similarly, Franco-Lopez, Ek & Bauer (2001) used KNN to classify 

forest species using Landsat images of St Louis County and achieved low (47% to 52%) OAs. 

Francois & Leckie (2006) used an MLC to classify individual trees in a research forest into seven 

species. The analysis was done using a VHR IKONOS image. A rule-based algorithm was applied 

to delineate individual tree crowns from which spectral signatures were generated for each of the 

seven species classes; a 67% OA was achieved. Ke, Quackenbush & Im (2010) obtained better 

results by applying a segmentation technique followed by DT classification on integrated LiDAR 

data and VHR Quickbird imagery to classify forest species in the Heidelberg Memorial Forest. 

Adding LiDAR data to the Quickbird imagery in the segmentation and classification processes 

increased the OA of the classification from 89% to 94%. Pu & Landry (2012) compared WV2 and 
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IKONOS data for mapping seven tree species using LDA and CART for classification in an object-

based approach. Tree species were better differentiated using WV2 imagery compared to IKONOS 

imagery.  

Immitzer, Atzberger & Koukal (2012) compared an object-based and per-pixel approach on VHR 

WV2 imagery by applying an RF algorithm to classify ten tree species. The object-based approach 

was more accurate (82%) than the per-pixel approach (73%). Similarly, Cho, Malahlela & 

Ramoelo (2015) used WV2 imagery and compared the ability of an object-based SVM and a per-

pixel SVM classifier to map three forest plantation species in KwaZulu-Natal. The results showed 

that the object-based SVM is more accurate (89%) than the per-pixel classification (85%). Van 

Aardt & Norris-Rogers (2008) used CART to classify Compact Airborne Spectrographic Imager 

(CASI) hyperspectral data into eucalyptus and pine plantations. The dimensionality of the data 

was reduced by applying a minimum noise fraction (MNF) algorithm. The classification 

performed on the reduced dataset improved the outcome to an 85% OA and the computational 

time decreased. Furthermore, the classification improved to 97% OA when classifying plantations 

of the same age. 

Franklin, Ahmed & Williams (2017) made use of OBIA with RF to classify an image captured by 

an unmanned aerial vehicle (UAV). Combining NIR with red-green-blue (RGB) bands and using 

crown shape, tone, texture and crown size showed an increase from 72% to 87% in OAs compared 

to just using NIR and RGB bands. Similarly, Franklin & Ahmed (2018) employed an object-based 

RF classification to differentiate four hardwood species on an UAV VHR image and an 78% OA 

was obtained.  

Peerbhay, Mutanga & Ismail (2013) compared a classification of six forest species using a partial 

least square analysis on all the bands of an AISA Eagle hyperspectral image and selected bands of 

the same image from a variable importance algorithm. The OA improved from 80.61% to 88.78% 

using only the selected bands in the classification compared to using all of the bands in the 

classification. Buddenbaum, Schlerf & Hill (2005) used SAM and MLC to classify a HyMap 

hyperspectral image into coniferous forest species. Experiments were carried out using four sets 

of data, namely spectral information only, spectral information and stem density, spectral and 

textural information, and all the data together. The OA improved from 66% when using only the 

spectral information to 77.8% when texture metrics were added.  
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Table 2-4 Summary forest genera and species mapping studies 

  Study Methods Results Source 

M
e

d
iu

m
 r

e
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o

lu
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o
n

 i
m

a
g

e
ry

 Classified 7 forest tree species 
Used spectral responses, texture, height, slope, & elevation derived from 
Bi-temporal ZiYuan-3 multispectral and stereo imagery to train the 
algorithm 

Achieved an 84.5% accuracy Xie et al. (2019) 

Classified forest species in a 
conservation reserve in Ghana 

Used vegetation indices & textures in SVM & ML 
SVM was more accurate than ML. The addition of 
texture is very important 

Vaglio Laurin et al. 
(2016) 

Classified forest species in a field 
research area  

Used KNN vegetation plots to guide class assignment on Landsat & 
SPOT imagery 

Very low accuracies were achieved 
Stabach et al. 
(2009) 

Classified forest species over St. Louis 
Country  

Used KNN with different hyper-parameters to classify Landsat images Very low accuracies of 47% to 52% were achieved 
Franco-Lopez, Ek & 
Bauer (2001) 

V
e
ry

 h
ig

h
-r

e
s
o

lu
ti

o
n

 i
m

a
g

e
ry

 

Classified individual trees into seven 
species  in a research forest  

Used a rule-based algorithm to delineate individual trees on IKONOS 
imagery. Applied an ML algorithm based on spectral signatures 

Achieved a 67% overall accuracy 
Francois & Leckie 
(2006) 

Classified forest species in Heidelberg 
Forest  

Used LiDAR-derived metrics with Quickbird data to segment and classify 
the forest 

Achieved a 91.6% kappa statistic 
Ke, Quackenbush & 
Im (2010) 

Classified 7 tree species  
Compared WV2 & IKONOS by using an OBIA with LDA & CART for 
classification 

WV2 imagery was more accurate  Pu & Landry (2012) 

Classified 10 tree species  
Compared OBIA to per-pixel classification using an RF classifier to 
classify WV2 imagery 

OBIA was more accurate with an 82% overall 
accuracy 

Immitzer, Atzberger 
& Koukal (2012) 

Classified 3 forest plantation species in 
a small area in KZN  

Compared OBIA to per-pixel classification using SVM to classify WV2 
imagery 

OBIA Was more accurate with an 89% accuracy 
Cho, Malahlela & 
Ramoelo (2015) 

Classified eucalyptus & pine plantations  
Used MNF to reduce the dimensionality of CASI hyperspectral data & 
applied a CART classification 

Achieved an 85% overall accuracy of mixed aged 
trees. Improved to 97% accuracy when classifying 
trees of the same age 

Van Aardt & Norris-
Rogers (2008) 

UAV 
imagery 

Classified conifer forests into species  
Used an object-based classification using NIR, RGB, crown shape, tone, 
texture & crown size on UAV imagery 

The addition of crown shape, tone, texture & crown 
size increase accuracy to 87% 

Franklin, Ahmed & 
Williams (2017)  

Continued overleaf 
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Table 2-4 continued 

  

Study Methods Results Source 

H
y
p

e
rs

p
e

c
tr

a
l 

Im
a
g

e
ry

 

Classified four hardwood species  
Used object-based classification with an RF algorithm to classify UAV 
imagery 

Achieved a 78% accuracy 
Franklin & 
Ahmed (2018) 

Classified coniferous forest species 
using HyMap hyperspectral data  

Compared spectral information, stem density and textural information 
using SAM and ML classifiers  

Statistical textural information proved to be the 
most accurate achieving a 0.74 kappa statistic  

Buddenbaum, 
Schlerf & Hill 
(2005) 

Classified swamp tree species using 
HyMap data 

Used simple forward selection for dimensionality reduction & applied an 
RF classification 

Achieved a 90.5% overall accuracy 
Adam et al. 
(2012) 

Classified forest plantation species 
using AISA hyperspectral and LiDAR 
data 

Used LiDAR data to segment the image and then used hyperspectral to 
classify the image using a rule-based classification an MNF for 
dimensionality reduction 

Achieved a 57% accuracy 
Voss & 
Sugumaran 
(2008) 

L
iD

A
R

 i
m

a
g

e
ry

 

Classified tree species using multi-
temporal and HyMap hyperspectral data 

Used LDA to reduce the data. Multi-temporal data was combined with 
hyperspectral data in an RF classification 

Obtained an 88.5% accuracy 
Fagan et al. 
(2015) 

Classified tree species using full-
waveform LiDAR 

Used LDA to identify the important variables and applied a classification 
Obtained a 91% accuracy when classifying 
conifers and broadleaves 

Heinzel & Koch 
(2011) 

Classified 4 tree species using LiDAR-
derived metrics 

Used a genetic algorithm to select important variables to use in an LDA 
for classification 

Obtained a 77% accuracy 
Li, Hu & Noland 
(2013) 

Classified two study sites into nine 
species using multispectral LiDAR 

Used an RF classification  Achieved a 75% accuracy 
Budei et al. 
(2018) 

Classified forest species using LiDAR-
derived metrics 

Used a DT classify with LiDAR-derived measures  Obtained a 0.9 kappa statistic 
Martinuzzi et al. 
(2013) 
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Adam et al. (2012) used RF and RT to classify swamp tree species using a HyMap image as input. 

A simple forward variable selection algorithm was used to reduce the dimensionality of the data. 

The OA of 90.5% was achieved using RF compared to 84.5% using RT. The classification 

improved from 88.4% to 90.5% and 80.5% to 84.5% using a reduced data set compared to the full 

dataset in RF and RT respectively. 

Voss & Sugumaran (2008) classified a study area in northern Iowa into forest plantation species 

using OBIA. LiDAR data was used to segment the hyperspectral image to compensate for the 

shadow effect present in the hyperspectral image. A rule-based classification was applied using 

NDVI to separate vegetation and non-vegetation, LiDAR-derived height metrics to separate high 

vegetation and low vegetation, and LiDAR intensity to differentiate between coniferous and 

deciduous trees. An MLC was used to classify species within the coniferous and deciduous parent 

groups. The classification accuracies improved from 48% to 57% when including LiDAR data in 

the classification. Fagan et al. (2015) achieved superior results compared to Voss & Sugumaran 

(2008) by combining hyperspectral data with multi-temporal Landsat imagery as classification 

input data to differentiate between tree species in the lowlands of Costa Rica. The hyperspectral 

image was used in an RF algorithm to differentiate between tree species. The dimensionality of 

the hyperspectral data was reduced to the most important bands, which were then combined with 

multi-temporal data, resulting in an 88.5% OA. 

2.3 SUMMARY AND EVALUATION 

Based on the literature reviewed, it seems that using low-resolution (>250 m) imagery as input to 

classifiers for forest type/species/genera mapping is not effective, likely due to spectral mixing 

that reduces the ability of the imagery to adequately represent small spectral differences in and 

among forests. Better results were achieved using LiDAR-derived metrics and hyperspectral data 

as input to classifiers. But LiDAR and hyperspectral data are processing-intensive and costly to 

acquire, which reduces their viability for forestry applications over large areas. Although VHR 

multispectral imagery has successfully been combined with machine learning to distinguish 

between forest genera in small areas, such data are also expensive to acquire over large areas. The 

backscatter recorded by SAR sensors has been successfully used to estimate vegetation structure. 

This data has potential for regional applications given that some data sources are freely available 

(e.g. Sentinel-1). High-resolution (10-30 m) multispectral imagery is another potential source of 

data as some sources (e.g. Sentinel-2 and Landsat-8) are freely available, but it is not known 

whether such data would be suitable for differentiating genera in regions with different 

environmental characteristics, such as those that support forestry in South Africa.  
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OBIA seems to work better than per-pixel analysis to distinguish between forest genera because 

the crown structure and transmissivity of forest plantation is better represented over multiple pixels 

rather than individual pixels, particularly when VHR imagery is used as input (Immitzer, Atzberger 

& Koukal 2012). However, object delineation and segmentation parameterisation is an ill-

structured problem (Louw & Van Niekerk 2019). Given that most of the literature uses a per-pixel 

approach and that there is a level of uncertainty with image segmentation, this study will use a per-

pixel approach. Supervised classification techniques generally perform better than unsupervised 

classification to distinguish between forest plantation genera. A likely explanation is that 

plantation forests are spectrally similar, which causes unsupervised classification techniques to 

group multiple genera in the same spectral class. Supervised classification seems to be more 

suitable because it uses training samples of predefined classes to label pixels/objects and can thus 

be manipulated to distinguish between forest plantations. Furthermore, multi-temporal images are 

more suited than single date images as phenological variations among forest plantation genera can 

be considered.  

Forest plantation genera information is important for forest planning and inventorying. However, 

the current methods used to collect such information is time-consuming, costly, and only occurs 

every three years in South Africa. An operational solution that uses RS and machine learning to 

map genera at national scale will consequently be of great value. Satellite imagery with very high 

spatial and a medium to high spectral resolution is likely the most viable source of RS data to 

represent variations in the crown structure, texture, and spectral information of genera and to 

produce forest plantation maps over large and complex areas. Landsat-8, Sentinel-2, and Sentinel-

1 are the most viable sources of data given that they have high spatial resolution, are freely 

available and have a global coverage. According to the literature, Sentinel-2 seems to show the 

most potential, given that it has a 10 m spatial resolution which is suitable for generating texture 

measures to capture crown structures. To data, Sentinel-2 has not yet been used to map forest 

plantation genera over large and complex areas such as South Africa.  

A large number of training samples are needed for supervised classification to be an operational 

solution. The samples have to be collected in-field, but only need to be updated sporadically, given 

that forest plantations grow at a slow rate. The cost to collect samples over South Africa will be 

very costly, which reduces the value of a RS approach to map forest plantation genera. Therefore, 

it is vital to find a sampling strategy that will maximise classification accuracies while keeping 

costs as low as possible. This study is a first step towards the establishment of a sampling scheme 

for operational monitoring of forests at a national scale as it intends to provide a greater 
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understanding of how sampling factors (e.g. size, configuration/balance, and placement) influence 

genera classification accuracies.   

Chapter 3 (objective 3) will investigate which training sampling configuration and size will result 

in the best accuracies for classifying forest plantation genera. The main purpose of the chapter is 

to identify the best training sample configuration and size so that the costs and time associated 

with training data collection can be minimised. Chapter 4 (objective 4) evaluates the efficiency of 

signature extension for classifying forest plantations over large and diverse areas. In essence, it 

evaluates how signature extension can be used to minimise training data collection costs and time. 

Chapters 3 and 4 were written as research articles and are intended for publication in scientific 

journals. Each chapter was consequently written as independent documents, which means that 

there is some duplication between the two chapters. Chapter 5 (objective 5) is a synthesis of the 

research and the research limitations and recommendations for operationalising the methods are 

also discussed.
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CHAPTER 3:  IMPACT OF TRAINING SET CONFIGURATIONS FOR 

DIFFERENTIATING BETWEEN PLANTATION FOREST GENERA 

WITH SENTINEL-2 IMAGERY AND MACHINE LEARNING 

3.1 ABSTRACT  

The genus of planted trees is a fundamental forest inventory variable and is generally collected 

using costly and time-consuming in situ observations. Although remotely sensed data and machine 

learning show potential for mapping genera at regional scales, such approaches require training 

data and there is uncertainty about which sampling configuration, sample size, and sample 

distribution will be most effective over large and complex areas. This study aimed to evaluate the 

effect of different sampling strategies (e.g. even, uneven, and area-proportionate) for training the 

random forest (RF) machine learning classifier to differentiate among acacia, eucalyptus, and pine 

trees using Sentinel-2 imagery as input. Sample size (s) was related to the number of input features 

(n) to better understand the potential impact of sample sparseness. The results show that an even 

sample with a maximum size (100%, s ~ 81n) produced the highest overall accuracy (OA) (76.3%). 

A 6% difference in OA was recorded when the training samples were enlarged from ~ 20% to 

100% of the total samples. Although larger training set sizes (s > n) resulted in higher OAs, a 

saturation point was reached at s ~ 57n. The eucalyptus class was the most accurately classified, 

followed by pine and then acacia. We concluded that RF yields the most accurate plantation genera 

maps when a balanced sampling scheme is used, but noted that accuracies are influenced by genus 

mix and spectral separability of classes. More work is needed to assess model transferability, 

particularly to areas where the genus proportions are severely skewed. 

3.2 INTRODUCTION 

Forest inventories include information about compartment location, extent (area), planting date, 

tree genus/species/clone, yield, and water use (Mati & Dawaki 2015). The information derived 

from inventories is used for planning, for land management, to maximise production by assessing 

the mean annual increments of growth rates, to assess water use, to monitor timber harvests and 

rotations, and to assist in forest management (Mati & Dawaki 2015). Genus information is 

specifically used in allometric equations for carbon stock estimates and changes (Maniatis et al. 

2011) (to estimate the biomass and carbon stock levels) (Basuki et al. 2009) and in streamflow 

reduction models (Gush et al. 2002). Although commercial forestry companies keep records of 

plantings, such data are not in the public domain and will likely never be made known as they can 

be used by competitors to gain a commercial advantage. In addition, many plantations are owned 

by small growers who are unlikely to keep plantation records (Forestry South Africa 2019). The 
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inventory data that do exist are often inaccurate, outdated, and inconsistent and there is no way of 

validating the data.     

Inventory data are traditionally collected in-field, which is time-consuming and costly. A 

methodology whereby forest plantation genera can be cost-effectively mapped and frequently 

updated at regional/national scales would be beneficial for keeping forest inventories up-to-date 

(Food and Agriculture Organization  2015). Earth observation (EO) and remote sensing (RS) offers 

a potential solution as satellite images are captured over vast areas (global coverage) at regular (up 

to 15-minute) intervals, e.g. EUMESAT (Schulz et al. 2009). Although RS is often used for 

regional land cover mapping (Jokar Arsanjani, Tayyebi & Vaz 2016; Thompson 2019), land cover 

maps tend to only differentiate forests from other land covers (e.g. water, built-up areas, crops). 

Some land cover maps differentiate between indigenous and plantation forests (DEA 2019; Lück 

2018) but do not disaggregate these land covers into types or genera.  

Medium resolution (30 m – 250 m) imagery has been combined with machine learning algorithms 

to map forest species with varying success. For example, Landsat (30 m) and SPOT (20 m) 

imagery were used by Franco-Lopez, Ek & Bauer (2001) to generate a three-class species map 

with an accuracy of 47%, and by Stabach et al. (2009) to generate a 13-class species map with a 

63% accuracy. Higher accuracies have been achieved using very high-resolution (VHR) satellite 

imagery (Cho, Malahlela & Ramoelo 2015; Francois & Leckie 2006; Immitzer, Atzberger & 

Koukal 2012; Ke, Quackenbush & Im 2010; Pu & Landry 2012), while unmanned aerial vehicle 

(UAV) data (Franklin, Ahmed & Williams 2017; Franklin & Ahmed 2018) and/or hyperspectral 

imagery (Buddenbaum, Schlerf & Hill 2005; Bujang & Baharum 2017; Fagan et al. 2015; 

Peerbhay, Mutanga & Ismail 2013; Voss & Sugumaran 2008) have also been used for this purpose. 

However, VHR, UAV and hyperspectral imagery are often too costly to acquire over large areas 

and require substantial computing power to process, making them less suitable for regional and/or 

national applications. The employment of high-resolution (10 m - 60 m) imagery―such as those 

generated by the Sentinel-2 constellation as part of the Copernicus Programme (ESA 2015)―is 

more viable, as it is freely available, frequently updated and can be cost-effectively processed on 

cloud computing platforms such as Google Earth Engine (GEE).  

Nomura & Mitchard (2018) used Sentinel-2 data with supervised classification to map seven 

commercial forest plantation species/genera in Myanmar. They achieved a 95% overall accuracy 

(OA) using an unbalanced training dataset. Mngadi et al. (2019) classified seven species in the 

Clan forest plantation (located in South Africa) using Sentinel-2 bands in a linear discriminative 

analysis (LDA) and achieved an 84% OA. When adding Sentinel-1 vertical-vertical (VV) and 

vertical-horizontal (VH) features, the accuracies increased to 87%.  
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Vegetation indices (VIs) and textural measures, derived from the original bands, are frequently 

used to improve forest plantation species/genera classification accuracies (Nomura & Mitchard 

2018; Vaglio Laurin et al. 2016). However, such image transformations increase the 

dimensionality of input data, which is problematic for many supervised classification algorithms, 

especially parametric classifiers such as the maximum likelihood classifier (MLC) (Loggenberg 

et al. 2018). High dimensionality can lead to the so-called s << n problem, where s is the number 

of samples per class and n is the number of features. This phenomenon, known as the Hughes 

effect, states that at some point, the increased number of features may result in lower accuracies 

unless the number of training samples is increased proportionally (Ma et al. 2013). 

Belgiu & Dragut (2016) stated that training samples need to be statistically independent and 

representative of the class being mapped, while the number of training samples per class must be 

balanced and large enough so that s > n. In contrast, Congalton & Green (2019) recommend that s 

should be equal to 50 when n = 12 (s ~ 4n) and when the area being mapped is smaller than 1 

million hectares (ha), while Mather (2004) suggests using 10n to 30n training samples. Thanh Noi 

& Kappas (2017) found that classification accuracy increases as sample size increases, but Foody 

(2009) showed that a saturation point exists, where adding more samples does not significantly 

increase classifier performance and the addition of samples beyond this point is a waste of 

resources. To minimise training sample collection cost, Foody et al. (2006) suggest collecting 

training data that maximise inter-class separability, while minimising intra-class spectral 

variability. However, such an approach requires prior knowledge of the spectral variability within 

and among target classes. Congalton & Green (2019) suggest collecting more samples for larger 

areas as they are often more complex. They also suggest collecting samples for each class relative 

to the importance of those classes for the mapping objective.  

Dalponte et al. (2013) investigated the impact of using unbalanced training sets and found that the 

class with the most samples was favoured in the classification. This is in agreement with Millard 

& Richardson (2015), who found that the dominant class in the training set resulted in that class 

being the most accurate. In contrast, Mellor et al. (2015) showed that an imbalance in the training 

data can improve the accuracies of complex classes, such as open-canopy woodlands and forests, 

which occur over diverse ecosystems and topography. Generally, classes that occupy a larger area 

require more samples due to a large spectral variation (Colditz 2015), and when area-proportional 

samples (s/A) are used, the producer’s and user’s accuracies of the smallest class being mapped 

increases (Belgiu & Dragut 2016).  

Forest plantations are generally grown in areas with mean annual precipitations of 750 mm or 

more. When forest plantations are grown in semi-arid areas, such as South Africa, they often occur 
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in localised areas where the rainfall is sufficient, resulting in plantations being sparsely distributed 

in the landscape. Forest plantations in South Africa occupy only 1.2% of the land surface and cover 

approximately 1.2 million ha (Figure 3-1). It is roughly estimated that about 50% of plantations 

are planted with pine, 43% with eucalyptus, and 7% with acacia trees (Van der Zel 1995). In terms 

of the geographic make-up of these plantations, 40% are likely situated in Mpumalanga (MP), 40% 

in KwaZulu-Natal (KZN), 11% in the Eastern Cape (EC) and the remaining 9% in equal 

proportions in the Western Cape (WC) and Limpopo (Van der Zel 1995). The sparseness and 

proportion of each genus pose a unique machine learning challenge, particularly in terms of 

collecting representative training samples over such a vast area (Xulu et al. 2018). Although some 

successes have been achieved at local scales (Mngadi et al. 2019), no attempts have been made to 

map South Africa’s main commercial forest genera (acacia, eucalyptus, and pine) at a 

regional/national scale. As with many EO machine learning applications, the main obstacle for 

producing such an inventory is the absence of suitable in situ data to train and build a model. 

Collecting in situ data over such a vast area would be very costly and there is uncertainty about 

which sampling configuration (total sample size, samples per class, and spatial distribution of 

samples) will be most effective for training a machine learning classifier to differentiate among 

genera at national scale. 

 

Figure 3-1 Distribution of South African forest plantations (DAFF 2008) 

This study aims to investigate the impact of employing different training data set sampling 

configurations and sizes on the performance of a machine learning classifier (RF) for forest 

plantation genus mapping. Using Sentinel-2 imagery as input, different sampling strategies are 

used to train the classifier and the resulting accuracies are compared. Experiments are carried out 

in two very diverse study sites to assess the effect of enlarging training set size under balanced 
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(where s/n is constant for all classes), imbalanced (s < 12n for some classes), and area-proportional 

(s/A is constant) scenarios. The results are interpreted within the context of finding the most 

effective approach to training sample collection, particularly for regional/national forest genus 

mapping in semi-arid areas where plantations are sparsely distributed and where genus mix varies 

dramatically from one area to another. In contrast to previous studies, the focus of the present study 

is on the relative accuracies achieved among sampling strategies using a consistent feature space 

(a common set of imagery) and classification algorithm (RF), rather than a general assessment of 

the viability/suitability of using different machine learning algorithms and data sets for genus 

classification. 

3.3 METHODS AND MATERIALS 

3.3.1 Study areas 

Two study sites (Figure 3-2) were selected for carrying out the experiments. Study Area 1 stretches 

from the settlements Knysna to Kranshoek in the WC province of South Africa, while Study Area 

2 spans settlements New Hanover to Osborn in KZN. These sites were chosen owing to the 

diversity of the genera planted and the availability of reference data (in situ forest plantation 

extents and genera). The selected sites are also climatically representative, as they are respectively 

located in the winter and summer rainfall regions of South Africa.  

 

Figure 3-2 Locations of Study Area 1 (a), along the southern coast of the Western Cape (WC) province, and Study 

Area 2 (b) in the KwaZulu-Natal (KZN) midlands 

Study Area 1 receives ~ 875 mm of rainfall per annum, with peak rainfall during July. The mean 

temperature in the area is 16.9°C (Kraaij et al. 2018). The annual rainfall in Study Area 2 ranges 

from 1 400 mm in the southwest to 1 570 mm in the northeast (peak rainfall during January) and 

has a mean temperature of 17.5°C  (Fuller & Perrin 2001).  
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Study Area 1 is dominated by pine, followed by eucalyptus and then acacia, whereas Study Area 

2 is planted equally by acacia, eucalyptus and pine.  

3.3.2 Data collection and preparation 

3.3.2.1 Imagery 

The GEE platform was used to access Sentinel-2 level-2A surface reflectance satellite imagery. 

Sentinel-2 imagery has a five-day temporal resolution and contains 13 spectral bands with spatial 

resolutions of 10 m (B2, B3, B4, B8), 20 m (B5, B6, B7, B8A, B11, B12) and 60 m (B1, B9, B10). 

A median composite image was generated from images dated 2019-06-30 to 2020-06-30. The 

reasoning behind using a composite image was to remove cloud contamination and to compensate 

for seasonal variations among the two study areas. Although it is well known that phenological 

variations and multi-temporal EO approaches can aid in genus classifications (Mngadi et al. 2019), 

we purposefully excluded such variations as it would introduce uncertainty to our sampling 

strategy results. For instance, some training sample sets may benefit more from seasonal variations 

than others, which would add complexity and potentially skew the findings.  

Machine learning algorithms can better distinguish between forest plantation genera when adding 

textural measures and vegetation indices as features to multispectral imagery (Vaglio Laurin et al. 

2016 & Xie et al. 2019). Therefore, the normalised differential vegetation index (NDVI), enhanced 

vegetation index (EVI), entropy, and grey level co-occurrence matrix (GLCM) measures were 

derived and added as bands to the composite image, which resulted in a total of 37 features (Table 

3-1).  

Table 3-1 Features (bands, indices and textural measures) used as input to the classifications generated from a 

composite of individual Sentinel-2 images taken from 2019-06-30 to 2020-06-30 

Bands Textural Measures 

B1 – coastal aerosol 

B2 – blue 

B3 – green 

B4 – red 

B5, B6, B7, B8A – vegetation red edge 

B8 – NIR  

B9 – water vapour 

B10 – SWIR - cirrus 

B11, B12 – SWIR 

angular second moment 

contrast 

correlation 

difference entropy 

dissimilarity 

difference variance 

entropy 

inverse difference moment 

information measure of correlation 1 

information measure of correlation 2 

inertia 

maximum correlation coefficient 

 

cluster prominence 

sum average 

sum entropy 

cluster shade 

sum variance 

variance 

Vegetation Indices 

NDVI  

EVI 
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3.3.2.2 In situ data 

In situ (ground-truthed) data at plantation compartment level were collated from several South 

African commercial forestry companies as polygons in a shapefile format. This data included 

records of the species, genus, and planting date of the trees in each compartment. Table 3-2 

provides an overview of the collected in situ sample data per genus within each study area.  

Table 3-2 Summary of in situ data (forest compartment information) collated, including tree genus, age (mean and 

standard deviation) and planted area per study area 

 Study Area 1 (WC)  Study Area 2 (KZN) 

Genus Age 
(mean) 

Age 
(stddev) 

Area 
(ha) 

Area 
(%) 

# Age 
(mean) 

Age 
(stddev) 

Area 
(ha) 

Area 
(%) 

# 

Acacia 35.94 12.61 118.14 3.56 40 8.75 7.10 3869.7 33.33 406 

Eucalyptus 43.18 20.49 145.79 4.40 50 6.52 4.57 3869.4 33.33 718 

Pine 9.97 11.08 3052.81 92.04 940 8.78 6.50 3869.3 33.33 478 

Total   3316.74  1030  11608.4  1602 

Key: Standard deviation (stddev); Number of compartments (#) 

Figure 3-3 shows the geographic distribution of in situ data within each study area. Compared to 

Study Area 1, the in situ data in Study Area 2 spans a larger area and are more widely distributed. 

The areas covered by each genus in Study Area 1 is unbalanced (dominated by pine), while in 

Study Area 2 the area covered by each genus is more or less equal. 

 

Figure 3-3 Genus distribution of in situ data in Study Area 1 (a) and Study Area 2 (b) 

3.3.3 Experimental design 

The in situ data were consolidated into a shapefile and the compartments were dissolved to form 

a single polygon per genus. Random points were generated in each polygon to obtain 3 000 

samples per genus (i.e. 9 000 in total) in both study areas. This sample set was denoted SS_0 and 
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represents 2.7% and 0.76% of the total area for which in situ data were available for all three 

genera in both study areas. The Sentinel-2 band values were then extracted at each point in SS_0 

using GEE. The training data was collected with a minimum distance of 10 m between samples 

within each genus polygon. The polygons from which the training data were collected contain 

many compartments of different tree ages and some with different species. The variety of age and 

species per genera and the distance between the random samples minimises autocorrelation in the 

training data. Each experiment made use of the 9 000 possible point samples for training the model.  

The experiments (Table 3-3) were designed to investigate the combined effect of training set size 

and imbalance.  

Table 3-3 Summary of Experiments A to H 

Exp. A Exp. B Exp. C Exp. D Exp. E Exp. F Exp. G Exp. H 

Select 50 
samples per 
genera. 
Iteratively 
add 50 
samples per 
genera until 
3 000 
samples per 
genera are 
used. 

Select 50 
samples per 
genera. 
Iteratively 
add 50 
eucalyptus 
and pine 
samples until 
3 000 
eucalyptus 
and pine 
samples are 
used. 

Select 50 
samples per 
genera. 
Iteratively 
add 50 
acacia and 
50 pine 
samples until 
3 000 
samples 
acacia and 
pine samples 
are used. 

Select 50 
samples per 
genera. 
Iteratively 
add 50 
acacia and 
50 
eucalyptus 
samples until 
3 000 acacia 
and 
eucalyptus 
samples are 
used. 

Select 50 
samples per 
genera. 
Iteratively 
add 50 pine 
samples until 
3 000 pine 
samples are 
used. 

Select 50 
samples per 
genera. 
Iteratively 
add 50 
eucalyptus 
samples until 
3 000 
eucalyptus 
samples are 
used. 

Select 50 
samples per 
genera. 
Iteratively 
add 50 
acacia 
samples until 
3 000 acacia 
samples are 
used. 

Select 3 
acacia, 4 
eucalyptus 
and 50 pine 
samples. 
Iteratively 
add 3 acacia, 
4 eucalyptus 
and 50 pine 
samples until 
3 000 pine 
samples are 
used. 

 

Experiment A aimed to quantify the effect of a balanced training sample set in different sample 

size scenarios. The experiment starts with randomly selecting 50 (~ 1.6%) samples per genus from 

SS_0. When compared to the number of features (n), this initial subset’s size (s) can be expressed 

as s ~ 2n (i.e. about two samples per feature/dimension, per genus). The training sample was then 

enlarged by iteratively adding 50 (randomly selected) samples from SS_0 until all (100%, s ~ 81n) 

of the samples in SS_0 were utilised for training the model.  

Experiments B, C, and D are similar to Experiment A, except that the size of the initial subset (s = 

50) was not enlarged for one of the genera. For instance, in Experiment B, the acacia subset was 

kept at 50 samples, while the subsets for the other two genera (eucalyptus and pine) were enlarged 

by 50 samples per iteration until all available samples were utilised (s = 3 000). Similarly, the 

training subsets for eucalyptus and pine were kept at 50 samples in Experiments C and D 

respectively. These experiments were conducted to assess the effect when one class (genus) is 

severely under-sampled.  

Experiments E, F, and G are similar to Experiments B, C, and D, except that the size of the initial 

subset (s = 50) was kept constant for two of the genera. For instance, in Experiment E, the acacia 
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and eucalyptus subsets were kept at 50 samples each, while the subset of pine was enlarged with 

50 samples per iteration until all the available samples were utilised (s = 3000). Similarly, the 

training subsets for acacia and pine, and then eucalyptus and pine, were kept at 50 samples each 

in Experiments F and G respectively. These experiments assessed the effect when two classes 

(genera) are severely under-sampled.  

The purpose of Experiment H was to assess the effect of area-proportional training datasets on 

classification accuracies. As with the other experiments, Experiment H starts with 50 randomly 

selected points (sampled from SS_0). In Study Area 1 (WC), the sample size was iteratively 

enlarged by 0.02% for acacia, 0.03% for eucalyptus, and 0.56% for pine samples until 4% (s ~ 3n), 

6% (s ~ 5n), 100% (s ~ 81n) of the acacia, eucalyptus, and pine samples were selected. In Study 

Area 2, Experiment H equates to Experiment A given that the planted areas are more or less equal.  

3.3.4 Accuracy assessment  

An independent test sample set of 100 points per genus were used to calculate the OA, kappa 

statistic (KS), user’s accuracy (UA), producer’s accuracy (PA), indices of disagreement (Pontius 

& Millones 2011), and a McNemar’s test. The OA measures the percentage of pixels that are 

correctly classified and the KS measures the chance agreement between the reference and 

classified maps. The PA and UA are used to quantify the performance of each class. The PA shows 

the occurrence of features on the ground that are correctly shown on the classified map. The error 

of omission can be calculated by 1-PA. The UA shows the occurrence of the class on the map that 

will be present on the ground. The error of commission can be calculated by 1-UA (Foody 2002). 

The RF algorithm was run 100 times per iteration to remove any random error due to the stochastic 

nature of the algorithm, and the mean OA, KS, UA, and PA were calculated from confusion 

matrices. The standard deviations of the 100 iterations of the OA and KS were also calculated to 

assess to what extent the calculated means are representative of the 100 iterations (Rodriguez-

Galiano et al. 2012). 

Indices of disagreement and McNemar’s statistical test were calculated for seven of the sample 

increase iterations, namely for the initial iteration (50 samples), and then at every tenth iteration. 

Indices of disagreement were analysed to validate the statistics derived from the confusion matrix, 

and McNemar’s test was used to analyse whether the differences between the OAs were 

statistically significant. 
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3.3.5 Spectral analysis  

The reflectance values of the samples (SS_0) were used to develop a spectral profile of each genus 

within each study area to assist with the interpretation of the results. A pair-wise Jeffries-Matusita 

(J-M) distance separability analysis was carried out in R-studio using the J-M built in package to 

better understand inter-class variations. The J-M distance quantifies the average distance between 

two classes in feature space based on a density function (probability distribution) of each class 

(Mahdianpari et al. 2019). Both mean and variance are considered in the distance calculations. The 

J-M distances range from 0 to 2, where 0 represents a low separability between classes and 2 

represents a high separability between classes. 

3.4 RESULTS 

3.4.1 Genus spectral profiles 

The spectral properties of the genera, as extracted from the S2 imagery and all SS_0 samples, are 

shown in Figure 3-4. The spectral properties of trees are dependent on many factors, including 

age, species composition and location. The spectral signatures of the acacia and pine classes are 

very similar, especially in Study Area 2 (KZN). Although it seems that there are some differences 

in the mean values in bands B4, B6 to B8, and B11 to B12, there is a large spectral overlap between 

the classes (indicated by the error bars), which suggests that the genera are spectrally similar. This 

is confirmed by the J-M distance scores (shown as bars in Figure 3-4), where eucalyptus and pine 

are the most separable, followed by acacia and eucalyptus, and to a lesser degree acacia and pine. 

The highest separability (0.8) in Study Area 1 (WC) is between eucalyptus and pine in B12 (Figure 

3-4a). These two genera are consistently the most separable in this region, which corresponds well 

with the spectral profiles (mean reflectance values of eucalyptus and pine are most distinct in 

almost all bands).  

 

Figure 3-4 Average spectral signatures of the training samples, the standard deviation of the spectral signatures 

(shown as error bars), and the J-M separability score for all the training samples for (a) Study Area 1 

(WC) and (b) Study Area 2 (KZN)  
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In Study Area 1 (WC), the visible (B2, B3, and B4) and shortwave infrared (SWIR) (B11 and B12) 

region of the electromagnetic spectrum (EMS) provides higher separability scores (0.4-0.7) than 

the red edge region (0-0.3) of the EMS (Figure 3-4a).  

In contrast, all three genera in Study Area 2 (KZN) have low separability in the visible and SWIR 

region of the EMS. The strongest separability scores (0-0.33) were recorded in the red edge (B6 

and B7), NIR (B8 and B8A) and water vapour (B9) bands (Figure 3-4b). Eucalyptus and pine trees 

are most separable, followed by acacia and eucalyptus.  

When the spectral profiles are compared, it is clear that pine and acacia trees have very similar 

spectral responses, while those of eucalyptus trees are more distinct. It is also clear that the 

separability scores of the genera vary dramatically between the two study areas. 

3.4.2 Classification 

Table 3-4 summarises the classification results using the traditional confusion matrix. The results 

showing the indices of disagreement are shown in Appendix A and are not discussed as they 

coincide with the OA and KS metrics (Table 3-4).  The mean OA of all experiments in Study Area 

1 (79.8%) was significantly (p > 0.001) higher than that of Study Area 2 (76.7%). From Experiment 

A it is evident that larger training sample set sizes (s > n) resulted in higher OAs. In Study Area 1 

(WC), the highest mean OA (76.3%) and best individual classification result (Max OA = 81.3%) 

were achieved when all (100%) of the available samples (SS_0) were used for training. However, 

the improvement in accuracy was not linear (Figure 3-5: A1), with the OA increasing by only 2% 

when the sample size was enlarged from 67% (s ~ 54n) to 100% (s ~ 81n). The same trend can be 

observed in Study Area 2 (KZN) (Figure 3-5: A4), although fewer (50%) training samples were 

required for achieving maximum OA (70.7%).  

When the PAs and UAs are considered in Study Area 1 (WC) (Figure 3-5: A2 and A3), it is evident 

that the eucalyptus class was the most accurately classified, as it has the lowest errors of omission 

and commission, followed by pine and then acacia. In Study Area 2 (KZN), the PAs and UAs of 

the three genera are relatively similar.
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Table 3-4 A summary table showing the overall accuracy, the standard deviation of the overall accuracy, kappa statistic, the standard deviation of the kappa statistic, consumer's and user's 

accuracy and the maximum OA and KS of the 100 iterations per sample size of experiments A to G conducted on Study Area 1 (WC) and Study Area 2 (KZN) 

 

Key: Low accuracies         High accuracies; Low Std                               High Std; Overall accuracy (OA); Standard devation (Std); Kappa statistic (KS); Maximum (Max); Important results (* 

Bold text) 
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Figure 3-5 Trends of the overall accuracies, standard deviation of the overall accuracies for the 100 iterations, kappa statistics, standard deviation of the kappa statistics for the 100 iterations, 

user’s accuracies, and producer’s accuracies of experiments A to D for Study Area 1 and Study Area 2 
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Figure 3-6 Trends of the overall accuracies, standard deviation of the overall accuracies for the 100 iterations, kappa statistics, standard deviation of the kappa statistics for the 100 iterations, 

user’s accuracies, and producer’s accuracies of experiments E to H on Study Area 1 and Study Area 2 
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The experiments dealing with imbalanced training sets (Experiments B to D) showed that the OAs 

and KSs remain relatively constant as sample imbalance increases. The UAs of the class for which 

the training subset was not enlarged (i.e. is kept at 50 samples throughout all iterations) are 

generally higher (Figure 3-5: B2, B5, C2, C5, D2, D5) than those of the two classes for which the 

training subsets were systematically enlarged, which indicates that the errors of commission (i.e. 

false positives) are relatively low for this class. Conversely, the PAs (Figure 3-5: B3, B6, C3, C6, 

D3, D6) of the genus for which the training set was kept constant is consistently lower compared 

to those of the other two genera.  

In Experiments E to G (where two genera were kept at 50 samples throughout all iterations), the 

OA and KS decrease as the sample imbalance increases. The UA of the class for which the sample 

size was systematically enlarged is generally lower (Figure 3-6: E2, E5, F2, F5, G2, G5) than the 

two classes for which the training subset was kept constant (i.e. was kept at 50 samples throughout 

all iterations). Conversely, the PA (Figure 3-6: E3, E6, F3, F6, G3, G6) of the genus for which the 

training set was enlarged is consistently higher compared to the other two genera for which the 

training sets were kept constant.  

In Experiment H, Study Area 2 (KZN) has consistently higher OAs and KSs than Study Area 1 

(WC). The OAs and KSs for Study Area 1 (Figure 3-6: H1) are relatively low and stable when the 

sample size was enlarged in proportion to the area being mapped. Eucalyptus has the highest UA, 

followed by acacia and then pine (Figure 3-6: H2). The PA of pine is the highest, followed by 

eucalyptus and then acacia (Figure 3-6: H3). Conversely, the increases in OAs and KSs for Study 

Area 2 (Figure 3-5: H4) is initially dramatic, but then moderates as the sample sizes were enlarged. 

Additionally, the UAs and PAs among classes are relatively similar in this study area (Figure 3-6: 

H5, H6).  

In summary, the results show that the best accuracies were achieved when using an equal number 

of training samples per class (mean OA of 72.2% for Experiment A). OAs generally increased as 

the training sample sets were enlarged, but only when training datasets were balanced. 

Comparatively, low classification accuracies were achieved when unbalanced training samples 

were used. A trend of low error of commission (i.e. false positives) and high errors of omission 

(false negatives) was noted for under-represented classes (those for which sample sizes are not 

systematically enlarged). Classification accuracies were generally higher (mean OA of 61.8%) in 

Study Area 2, where the area covered by the sampled genera were similar in proportions. However, 

accuracies were generally low (mean OA of 53%) when an area-proportional sampling strategy 

was used to differentiate the genera in Study Area 1, i.e. where the targeted area of interest (i.e. 

population from which sampling was done) was dominated by one class (pine). 
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3.5 DISCUSSION 

Satellite RS, combined with machine learning, is effective for monitoring plantation forests (Lück 

2018) and for differentiating forest plantation genera/species (Mngadi et al. 2019). However, 

machine learning requires labelled (in situ) data for model training and validation. The cost of 

collecting large quantities of such data can impede regional implementations. Given that 

classification accuracies are strongly related to the size of training datasets (Foody et al. 2006), 

operational solutions should ideally strike a balance between classification accuracies and training 

data collection efforts. However, very little is known about how training set size will impact forest 

plantation genera classification accuracies. It is also not clear whether the number of samples per 

class should be proportional to the targeted populations, as suggested by Colditz (2015), Millard 

& Richardson (2015), and Shetty (2019), or if an equal number of samples per class will be most 

effective, as suggested by Mellor et al. (2015) and Thanh Noi & Kappas (2017). A further 

complication is that the distributions and proportions of genera vary greatly from region to region 

– often with one or two dominating genera – which means that sampling strategies might have to 

be region-dependent.    

In this study, we investigated the effect of different sampling schemes on the performance of the 

RF machine learning classifier for differentiating between three genera in two diverse regions – 

using 37 features extracted from a cloud-free Sentinel-2 composite image as input. Our findings 

agree with those of Myburgh & Van Niekerk (2014), who showed that higher (~90%) classification 

accuracies were achieved when the number of samples per class was increased from s ~ 0.5n to s 

~ 2n, but that the relationship between the number of samples per class and accuracy is non-linear. 

This is attributed to the reduction of sparsity as samples are added until the training samples 

sufficiently represent inter- and intra-class spectral variations. Similarly, Heydari & Mountrakis 

(2018) found that classification accuracy increased by 2% to 6% when the training sample size 

was enlarged from s ~ 37n to s ~ 370n respectively, but accuracies tended to flatten out at s = 2218 

(s ~ 370n). Enlarging the training set beyond this saturation point (Foody 2009) did not add any 

value to the classification. Based on our data (Experiment A), a saturation point was reached at s 

~ 2100 (s ~ 57n) when the samples per class were balanced. This suggests that collecting more 

than 57n training samples per class may be superfluous for our particular application.  

Our results show that the RF classifier did not handle the unbalanced training datasets well. 

Generally, low errors of commission (i.e. false positives) and high errors of omission (false 

negatives) were noted for minority (under-represented) classes (i.e. those for which sample sizes 

were not systematically enlarged). Pixels belonging to the minority class were often erroneously 

allocated to the majority class. This agrees with Mellor et al. (2015) who found that majority 
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classes performed well at the expense of minority classes when the training sets were unbalanced. 

The RF classifier is an ensemble of tree classifiers, where each tree makes its decision on a set of 

rules derived from labelled features (training data) (Pal 2005) and a majority vote is used to 

determine the consensus class (Gislason, Benediktsson & Sveinsson 2006). Classes with larger 

training data sets tend to have fewer false negatives (omission errors) as a larger set of rules 

(splitters) can be constructed. In contrast, classes with limited training data are likely to have fewer 

false positives (error of commission) as insufficient data are available for constructing splitting 

rules.  

It is clear from our results that spectral separability among classes also played a role in 

classification accuracies, with low separability classes generally requiring a larger proportion of 

samples compared to those with high separability (Mellor et al. 2015). In our application, the 

spectral properties of eucalyptus trees are the most distinct, which resulted in larger differences in 

UAs among classes when the sample size of eucalyptus was contained (C2 compared to B2 and 

D2 in Figure 3-5). The SWIR wavelengths are known to be absorbed by vegetation with high 

moisture content (Manna & Raychaudhuri 2020). This suggests that the water content varies 

between the plantation genera in Study Area 1 as water availability is scarce. In contrast, the genera 

in Study Area 2 have similar SWIR values, suggesting that the genera have similar water content 

as a result of more rainfall. Trees with similar water content will absorb and reflect similar amount 

of radiation in the SWIR region of the EMS.  

Colditz (2015) and Shetty (2019) evaluated the effect of different sampling designs on ML 

classifications for land cover mapping and found that area-proportional samples resulted in the 

best accuracies. This agrees with Millard & Richardson (2015) who recommended randomly 

selected, area-proportional training sets. In contrast to these findings, an area-proportional 

sampling scheme performed poorly in our Study Area 1 (Experiment H). Study Area 1 is 

dominated by pine (ratios of acacia, eucalyptus and pine are about 1:1:26), which resulted in highly 

skewed training sets in Experiment H. According to Figure 3-5 H2 and H3, the pine class was 

over-classified (i.e. low UA, high error of commission), while the acacia and eucalyptus classes 

were under-classified (i.e. low PA, high error of omission). For example, the error of omission 

(EO=1-PA) of the acacia class exceeded 86% throughout the experiment, even when s ~ 3n for 

this class. Contrastingly, in Experiment A (balanced samples) the error of omission for acacia was 

37% when s ~ 2n (initialisation of Experiment A). This suggests that an area-proportional sampling 

approach is not effective when the populations (total number of pixels) of some classes are severely 

skewed (i.e. where some classes dominate, while others are under-represented). Based on our 

results, a balanced training set (Experiment A) produced the most consistent (stable) per class (i.e. 
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PAs and UAs) results for both the skewed (Study Area 1) and equivalent (Study Area 2) 

populations. This agrees with the findings of Foody & Mathur (2004), Mellor et al. (2015), and 

Thanh Noi & Kappas (2017). 

Our results show that OAs were often not a good reflection of overall class performance, 

particularly when training data were unbalanced. For instance, it is noticeable that the mean OAs 

of Experiment D in Study Area 1 is 64%, while it is clear that pine has a low mean PA (29%) and 

acacia has a low UA (55%). This demonstrates that OA is an unreliable measure of accuracy, 

particularly when the training data are skew. In contrast, the mean KS of Experiment D in Study 

Area 1 is low (0.025), which better depicts the overall performance of the experiment. Similarly, 

the OAs of Experiment B – G are relatively high, while they resulted in varying UAs and PAs. The 

relatively low KSs of these experiments are consequently better indicators of the overall 

classification performance and they corresponded to indices of disagreement (see Appendix A for 

a summary showing the indices of disagreement). This agrees with Viera & Garrett (2005) and 

Thanh Noi & Kappas (2017), who observed that OAs were often deceiving when training datasets 

were unbalanced.  

Although the purpose of this study was not to assess the efficacy of machine learning for genus 

classification, our findings show that accuracies exceeding 80% can be achieved when a composite 

Sentinel-2 image (and its derivatives) is used as input. Better results are likely when the 

methodology is extended to incorporate multi-temporal imagery, data fusion (e.g. the combination 

of SAR data), feature selection/extraction, and alternative machine learning techniques. 

Operationalising such approaches will enable more frequent updates of national forest inventories 

at a reduced cost compared to traditional (field survey) methods. However, this study showed that 

training sample design significantly affects classification results and that data collection efforts 

must be carried out accordingly.  

Although this study demonstrated potential for classifying the main forest plantation genera in two 

very diverse study areas (WC and KZN), more work is needed to evaluate the transferability of 

machine learning models to other regions. Our study showed that the sample set should be ~ 57n 

within each area being mapped, but we did not assess whether samples can be extended to classify 

genera in other regions where no samples are available. Signature extension and model 

transferability should be investigated in future work as they could reduce the costs of in situ 

training data collection.  
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3.6 CONCLUSION 

Although it is known that the accuracy of machine learning approaches for classifying remotely 

sensed imagery is affected by training data size and configuration, little is known about how 

different sampling strategies may affect the differentiation of forest plantation genera. This study 

evaluated the effect of different training dataset configurations on RF’s ability to differentiate 

between acacia, eucalyptus, and pine trees in two diverse regions within South Africa. The RF 

algorithm was implemented using Sentinel-2 bands, as well as several spectral and textural indices, 

as input features (n = 37). In situ forest plantation data were used to generate various sample sets, 

which were used to train and assess the ability of the RF classifier to differentiate among genera. 

Our findings show that although spectral separability of classes affected the ability of RF to 

accurately differentiate among forest plantation genera, classification accuracies were mainly 

influenced by training sample size and imbalance. Balanced training datasets produced the most 

accurate and consistent results, while unbalanced training data did not work well for differentiating 

genera using RF. It is clear that sampling scheme design is critical for regional forest genera 

mapping implementations and that a balanced approach is needed for in situ (labelled) data 

collection efforts. Although the purpose of the study was not to assess the value of Sentinel-2 

imagery for genus classifications, our results suggest that such imagery, combined with machine 

learning, holds much potential for this purpose. Future research should consider a multi-temporal 

approach to exploit the phenological differences among genera. Model transferability and/or 

sample extension should also be investigated to minimise sample collection efforts. Answering 

these questions may lead to operational solutions for mapping forest plantation genera at 

regional/national scales and for regularly updating forest inventories. Accurate and up-to-date 

inventories will allow for improved land and forest management, water use assessments, carbon 

stock estimates and streamflow reduction modelling. 
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CHAPTER 4:  SIGNATURE EXTENSION AS A MACHINE LEARNING 

STRATEGY FOR MAPPING PLANTATION FOREST GENERA WITH 

SENTINEL-2 IMAGERY 

4.1 ABSTRACT  

Plantation forest inventory data such as tree genus is important for supporting forestry decisions 

and policymaking, but such data are traditionally collected in-field, which is time-consuming and 

costly. Although machine learning and remote sensing technologies have shown great potential to 

reduce the time and effort for mapping forest plantation genera at regional scales, they rely on 

training (labelled) data which are also costly to collect over large areas. One approach to reducing 

the effort of training data collection is to make use of signature extension, whereby training data 

collected in one area is used to train and apply a machine learning model in a different area. This 

study aimed to evaluate the viability of training data signature extension for constructing random 

forest (RF) machine learning models to differentiate between acacia, eucalyptus and pine trees 

using Sentinel-2 imagery as input. The study was carried out over a large area (about 4 920 km2) 

in South Africa. The study area was divided into 19 tiles of 100 x 100 km (each tile coincides with 

the footprint of a Sentinel-2 tile) from which three were chosen for sourcing (collecting) training 

data. Four experiments were conducted. In the first experiment, a fixed number (3 000 per genera) 

of training samples were collected in the first source tile and used to build an RF model. The 

resulting model was then applied and assessed in all 19 tiles. This protocol was repeated in the 

second and third experiments using the training data collected in the other two source tiles 

respectively. In the final experiment, training data from all three source tiles were combined and 

applied to all 19 tiles. The mean overall classification accuracy of each classified tile was 

compared to the extension distance (i.e. the distance between the target and source tile), differences 

in rainfall seasonality, and variation in the mean annual temperature among tiles to gain an 

understanding of how signature extension efficiency is influenced by distance and environmental 

conditions. The results show that signature extension is viable (~ 70% overall accuracies) over 

distances of up to 500 km, but only if the source and target tiles represent areas with similar rainfall 

regimes.   

4.2 INTRODUCTION 

Forest plantation inventory data includes the location, extent, planting date, tree 

species/genus/clone, water use, and yield at individual compartmental levels (Mati & Dawaki 

2015). Such data are fundamental for forest management, which involves planning, land 

management, analysing growth rates to maximise production, assessing water use, monitoring 
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rotations and harvests. Forest inventories are useful to monitor the status of forests, identify trends 

in the forestry industry, model climate change, carry out hydrological modelling, quantify 

forestry’s contribution to alleviating poverty, and inform trade and policy decisions at a national 

scale (Food and Agriculture Organization 2007). It is therefore vital to maintain and continuously 

update national forest inventories. Although commercial forestry companies maintain detailed 

inventories of the forests under their management, such information is often not publicly available 

as competitors may use it to gain a commercial advantage. Many small-scale timber farmers do 

not keep detailed inventory information (FSA 2019).  

Inventory data, such as the genus of trees planted, are usually collected in-field, which requires 

manpower and time (Food and Agriculture Organization 2015). RS and image classification offers 

a more efficient way for collecting such information, especially over large regions.  

Machine learning algorithms and medium resolution (30 m – 250 m) satellite imagery have been 

used to map forest species with varying success. For instance,  Franco-Lopez, Ek & Bauer (2001) 

used SPOT (20 m) and Landsat (30 m) imagery with machine learning algorithms to map three 

forest species with an accuracy of 47%, while Stabach et al. (2009) classified 13 species with a 

63% overall accuracy (OA). Higher accuracies have been achieved using very high-resolution 

(VHR) imagery (Cho, Malahlela & Ramoelo 2015; Francois & Leckie 2006; Immitzer, Atzberger 

& Koukal 2012; Ke, Quackenbush & Im 2010; Pu & Landry 2012), hyperspectral imagery 

(Buddenbaum, Schlerf & Hill 2005; Bujang & Baharum 2017; Fagan et al. 2015; Peerbhay, 

Mutanga & Ismail 2013; Voss & Sugumaran 2008), and/or unmanned aerial vehicle (UAV) data  

(Franklin, Ahmed & Williams 2017; Franklin & Ahmed 2018). However, UAV, VHR and 

hyperspectral imagery are not suitable for mapping at a national or regional scale due to the 

imagery being costly and the need for sufficient computing power for processing the very large 

volumes of data. High-resolution imagery (10-60 m) such as Sentinel-2, is freely available, can be 

processed on the cloud through platforms like Google Earth Engine (GEE), and has a high (5-day 

interval) temporal resolution, making it ideal for mapping over large areas. 

Nomura & Mitchard (2018) mapped seven forest plantation species using supervised classification 

with Sentinel-2 data in Myanmar, achieving a 95% OA. Mngadi et al. (2019) used Sentinel-2 bands 

in a linear discriminative analysis (LDA) to classify seven species in the Clan forest plantation 

(located in South Africa) and obtained an 84% OA. They found that adding Sentinel 1 VV and VH 

features increased accuracies by 3%.  

Image classification is generally done by collecting training data in one image and applying the 

classifier to that same image scene (Knorn et al. 2009). This is problematic when classifying large 

areas that are covered by multiple image scenes, as the training data collection becomes time-
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consuming and costly. In machine learning modelling, signature extension or generalisation 

reduces the effort and cost of training data collection (Pax-Lenney et al. 2001). Signature extension 

is the process of training a model on one image scene and applying it to other image scenes 

(Laborte, Maunahan & Hijmans 2010).  

Pax-Lenney et al. (2001) classified Landsat images into conifer forests across time and space using 

artificial neural networks (ANN). The ANN was trained using in situ data obtained from one image 

and applied to other images. There was a mean decline of 8 to 13% in OA when the model was 

trained with a raw image and applied to images that were atmospherically corrected. It was 

concluded that the atmospheric correction algorithm used influences the accuracy of a model when 

signature extension is applied. Olthof, Butson & Fraser (2005) classified ten Landsat scenes into 

land cover classes using a k-means classifier to initially create sample cluster signatures in one 

reference Landsat scene. The sampled cluster signatures were used to classify all other Landsat 

scenes by using a minimum distance classifier to produce similar clusters to those in the reference 

scene. This was done using two radiometric correction algorithms on the Landsat scenes to 

evaluate whether they affect the OA when using signature extension to map land cover. However, 

both sets of images produced an OA of ~71% and it was concluded that the accuracy is influenced 

more by extension distance (distance between training data and the area being classified) than the 

radiometric correction algorithm used. Knorn et al. (2009) also found that an increased extension 

distance decreases the OA of the classification. Instead of creating sample cluster signatures, they 

created a chain classifier whereby a support vector machine (SVM) algorithm was trained and 

applied on the same Landsat scene. The part of the classified image that overlaps with a second 

Landsat scene formed the training data for the second scene. This process is repeated to form a 

“chain” classifier until all the Landsat scenes in the chain are classified. An average OA loss of 

1.9% was reported per neighbouring scene. Verhulp & Van Niekerk (2017) tested the 

transferability of CART for land cover classification. The model was trained on four mosaicked 

coastal Landsat scenes and applied to two inland scenes. The OA of the four coastal scenes was 

80.6%, while the two inland scenes had OAs of 61.4% and 83.6% respectively. Similar to Olthof, 

Butson & Fraser (2005) and Knorn et al. (2009), they concluded that accuracies decrease as the 

distance increases from the training scene (extension distance).  

Woodcock et al. (2001) mapped forest change using signature extension by training an ANN with 

data from the Rocky Mountains and applied it to Cascades of Oregon and visa-versa, achieving a 

15.3% OA. They concluded that ecological/topographic/climatic differences affect the 

effectiveness of signature extension more than atmospheric correction techniques and extension 

distance.  Similarly, Phalke & Özdoğan (2018) found that agro-ecological conditions affect the 
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generalisation (transferability) of machine learning models when mapping croplands vs non-crop 

lands. Wang, Azzari & Lobell (2019) trained an RF classifier using data in one state and applied 

the model to eight other states. The results showed that the accuracies consistently exceeded 80% 

when the model is trained and applied in areas with similar growing degree days. 

It is clear from the literature that signature extension is a viable approach for reducing the costs 

associated with collecting labelled data to train machine learning algorithms. However, many 

factors influence its effectiveness and it is not known whether signature extension is a viable 

strategy for mapping forest plantation genera over large regions. There is often a trade-off between 

extension distance and classification accuracy, while climatic variations can also negatively 

influence signature extension efficiency. These factors may outweigh the benefits of signature 

extension in complex regions such as South Africa, where forest plantations are sparsely 

distributed and where climate gradients are dramatic (range from subtropical summer rainfall to 

semi-arid winter rainfall). A further complicating factor is that genera are planted in unequal 

proportions throughout South Africa, with pine trees being favoured in the Western and Eastern 

Cape provinces, while most plantations in KwaZulu-Natal and Mpumalanga are planted with 

eucalyptus trees.  

This study aims to quantify and map the relationship between genus classification accuracy and 

training sample cluster distribution. The RF classifier is used to classify forest plantations covered 

by a set of 19 Sentinel-2 tiles of 100 x 100 km in size―distributed throughout the forestry regions 

of South Africa and representing eight Köppen-Geiger climatic zones―into three target genera 

(pine, eucalyptus, and acacia). Several experiments are carried out. In the first experiment, all 19 

tiles are classified using a model trained with samples collected in a tile with a mid to late summer 

precipitation pattern and a mean summer temperature of 18˚C (Köppen-Geiger climatic zone 

Cwb). In the second experiment, training data from a tile with an early, mid, and late summer 

precipitation pattern and a mean summer temperature of 20˚C (Köppen-Geiger climatic zones 

Cwb, Cwa, Cfb, Cfa) are used, while the third experiment uses training data from a tile that 

experiences precipitation throughout the year, but with a wetter winter and a mean summer 

temperature of 19 ˚C (Köppen-Geiger climatic zones Cfb, CSk, BWk). In the final experiment, 

training data from all three source tiles are used to classify all 19 tiles. An independent set of in 

situ data is used to quantify the classification accuracy in each of the 19 tiles. The relationship 

between classification accuracy, extension distance and rainfall seasonality is quantified and 

interpreted within the context of optimising in situ data collection efforts for operational mapping 

of plantation genera at a national scale. 
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4.3 METHODS AND MATERIALS 

4.3.1 Study area 

The study area covers an area of ~ 4 920 km2 and includes plantations located in Mpumalanga, 

KwaZulu-Natal (KZN), EC, and Western Cape (WC) provinces of South Africa (Figure 4-1). 

These sites were chosen due to the genera planted and the availability of in situ data. These sites 

are also representative of the commercial forest plantations in South Africa.  

 

Figure 4-1 Location of compartments used in the study 

The South African rainfall patterns vary from winter rainfall in the southwest to early summer 

rainfall in the northeast. Regions with mid-summer rainfall, late summer rainfall, very late summer 

rainfall, and a bimodal to summer rainfall are also present (Figure 4-2). The WC experiences 

winter rainfall, while the rest of the country generally experiences summer rainfall (Botai, Botai 

& Adeola 2018).  

Stellenbosch University https://scholar.sun.ac.za



 58 

 

Figure 4-2 Rainfall seasonality in South Africa 

Most (80%) of the plantations are located in Mpumalanga and KZN, with each being home to 

about 40% of the total plantations, while the EC represents about 11% of the total commercial 

plantations. The remainder are located in the WC, particularly along the south coast. The variation 

in rainfall and temperatures across South Africa are represented by no less than 13 Köppen-Geiger 

climate zones (Schulze 1947) (Figure 4-3), while the targeted forest plantations are located the 

nine listed in Table 4-1. 

 

Figure 4-3 Köppen-Geiger climate zones of South Africa 
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Table 4-1 Description of the Köppen-Geiger zones in South Africa 

Köppen-Geiger zone Conditions 

BSh Semi-arid, hot and dry 

BSk Semi-arid, cool and dry 

Csb Summers long, dry and cool 

Csa Summers long, dry and hot 

Cfa Wet all seasons, summers long and hot 

Cfb Wet all seasons, summers long and cool 

Cwb Winters long, dry and cool 

Cwa Winters long, dry and hot 

Aw Tropical wet, dry winter season 

From this regional overview, it should be clear that the classification of South Africa’s forest 

plantation genera poses a unique challenge as plantations are sparsely distributed over a large 

region. Collecting in situ genera data (for training machine learning models) over such a large 

region is prohibitively expensive. Although signature extension is a viable option, its effective 

implementation in a region with dramatic climatic variations will likely depend on the quantity 

and distribution of the training samples used for model building.  

4.3.2 Data collection and preparation 

4.3.2.1 Imagery 

Sentinel-2 level-2A satellite imagery was accessed through the GEE platform. Sentinel-2 imagery 

contains 13 spectral bands and has a five-day temporal resolution. Four bands (B2, B3, B4, B8) 

have a spatial resolution of 10 m, while six bands (B5, B6, B7, B8A, B11, B12) and three bands 

(B1, B9, B10) have a spatial resolution of 20 m and 60 m respectively. Median pixel values of the 

images dated 2019-06-30 to 2020-06-30 were calculated to form a composite image. The 

composite image was produced to remove cloud contamination and to compensate for seasonal 

variations among the plantations. Although it is known that multi-temporal earth observation 

approaches and phenological variations can aid in genus classifications (Mngadi et al. 2019), such 

variations were purposefully excluded from our experiments as seasonal variations may benefit 

some training sets more than others, which in turn will add complexity to the findings; i.e. using a 

single composite image allows for direct comparisons. The assumption is that a multi-temporal 

approach will improve classification accuracies, but testing this assumption is outside the scope of 

this study. 
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The normalised differential vegetation index (NDVI), enhanced vegetation index (EVI), entropy, 

angular second moment, contrast, dissimilarity, and difference variance were derived and added 

as bands to the composite image, resulting in 18 features. 

4.3.2.2 In situ data 

In situ (ground-truthed) data at a plantation compartment level were collated from several South 

African commercial forestry companies. This data included records of the species, genus, and 

planting date of the trees in each compartment. Table 4-2 provides an overview of the in situ 

sample data per genus within each province.  

Table 4-2 Summary of in situ data (forest compartment information) collated, including tree genus and planted area 

per province 

 Acacia (ha) 
Acacia (%) 

Eucalyptus (ha) 
Eucalyptus (%) 

Pine (ha) 
Pine (%) Total 

(ha) 

MP  1429 0.65 117543 53.83 99369 45.51 218341 

KZN  4832 2.02 199035 83.23 35277 14.75 239144 

EC  102 0.39 220 0.85 25650 98.76 25972 

WC  118 1.44 181 2.21 7902 96.35 8201 

Total  6482 1.32 316980 64.47 168198 34.21 491659 

Sample 
size 

30 
0.46 

30 
0.01 

30 
0.02 

90 

Key: Hectare (ha); Mpumalanga (MP); KwaZulu-Natal (KZN); Eastern Cape (EC); Western Cape (WC) 

KZN contains the most sampled acacia and eucalyptus plantations, while most pine compartments 

are located in Mpumalanga. The sampled compartments in the EC and WC are sparser.  

4.3.3 Experimental design 

The in situ genus data were consolidated into a shapefile and geographically split by Sentinel-2 

tiles. The resulting groups of genus polygons were labelled 1 to 19 (Figure 4-1).  

The total area covered per genus per tile was calculated to identify the tiles with the most evenly 

distributed genera (Table 4-3). Tiles 4 and 10 were selected as source tiles (for model training) as 

they contained a relatively large percentage of acacia compartments, as well as a sufficient number 

of eucalyptus and pine compartments. Tile 17 was selected as the third source tile, as it contained 

the most acacia in the southwestern part of the country.  
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Table 4-3 Summary of in situ data (forest compartment information) collated, including tree genus and planted area 

per block 

 

Key: Hectares (ha); number of compartment polygons (#) 

Four experiments were set out to evaluate the viability of sample extension for classifying forest 

plantation genera. All experiments used 9 000 training samples (3 000 per genera). A stratified 

(per genus) random sampling scheme was used to generate samples, with the minimum distance 

between samples set to 10 m. The genus polygons from which the training samples were generated 

contain compartments of different tree ages and species. This variation, combined with the 

minimum distance between samples, reduced autocorrelation in the training data.  

The Sentinel-2 band values were extracted at each training point (pixel) and four RF models were 

built and applied to each tile. The first experiment (Experiment 1) used training data from Tile 4, 

while the model in the second experiment (Experiment 2) was trained using samples from Tile 10. 

Experiment 3 was trained with samples from Tile 17. For comparison purposes, Experiment 4 used 

training data from all three tiles. 

4.3.4 Accuracy assessment  

An independent test data set of 100 samples per genus in each tile was used to conduct the accuracy 

assessments. The OA, kappa statistic (KS), consumer’s accuracy (CA), and producer’s accuracy 

(PA) were deduced from confusion matrices. OA measures the percentage of pixels that are 

correctly classified and the KS measures the chance agreement between the reference and 

classified maps. The PA and UA are used to quantify the performance of each class. The PA shows 

the occurrence of features on the ground that are correctly shown on the classified map. The error 

of omission can be calculated by 1-PA. The UA shows the occurrence of the class on the map that 

will be present on the ground. The error of commission can be calculated by 1-UA (Foody 2002). 

 

Area (ha) # Area (ha) # Area (ha) #

1 0.00000 0 24085.22280 2613 11252.55382 844 35337.77661 353377766.1

2 1.59898 1 40744.05417 2519 71008.31219 3422 111753.9653 1117539653

3 0.52017 1 1145.12945 112 6466.84901 524 7612.498628 76124986.28

4 1411.15116 117 53764.61090 3990 21706.04727 1374 76881.80934 768818093.4

5 249.56682 34 17628.11371 1435 2634.10616 270 20511.78668 205117866.8

6 0.00000 0 2066.87156 155 0.00000 0 2066.871556 20668715.56

7 1249.37819 101 26784.86371 1787 3710.84429 262 31745.08619 317450861.9

8 6.66984 1 54811.62499 3199 253.17720 60 55071.47203 550714720.3

9 4.75796 1 18903.90321 1580 11091.76549 916 30000.42666 300004266.6

10 2647.13672 316 54675.70224 4825 22487.42953 1965 79810.26848 798102684.8

11 312.62138 42 3609.25956 282 0.00000 0 3921.88094 39218809.4

12 406.73914 35 35880.90225 2202 6606.75598 521 42894.39737 428943973.7

13 720.11692 65 46153.98210 2808 4445.49181 326 51319.59083 513195908.3

14 1.14891 1 49.11812 19 9919.45114 1748 9969.718167 99697181.67

15 92.52951 24 140.05582 62 13139.63649 3137 13372.22182 133722218.2

16 111.73580 38 195.01783 81 17297.28591 4431 17604.03954 176040395.4

17 118.13468 40 145.44645 50 3044.90083 942 3308.481957 33084819.57

18 0.00000 0 12.03381 5 1894.22266 327 1906.256476 19062564.76

19 0.00000 0 1.86178 2 727.20226 246 729.064035 7290640.35

Area (m2)
Acacia Euc Pine

Block ID Total Area (ha) 
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4.3.5 Spectral analysis 

The reflectance values of the training samples were used to develop a spectral profile of each genus 

within each tile to assist with the interpretation of the results. A pair-wise Jeffries-Matusita (J-M) 

distance separability analysis was carried out to better understand inter-class variations. The J-M 

distance quantifies the average distance between two classes in feature space based on a density 

function (probability distribution) of each class (Mahdianpari et al 2019). Both mean and variance 

are considered in the distance calculations. The J-M distances range from 0 to 2, where 0 represents 

a low separability and 2 a high separability between classes. 

4.3.6 Variable drivers 

Several factors can influence the efficacy of signature extension. The geographical distance 

between the training samples and the scene being classified (i.e. extension distance) has been 

shown to influence accuracies (Olthof, Butson & Fraser 2005; Pax-Lenney et al. 2001), while Li 

et al. (2020), Phalke & Özdoğan (2018), Verhulp & Van Niekerk (2017), Wang et al. (2016) and 

Woodcock et al. (2001) showed that climatic variations can also affect the success of signature 

extension implementations. Given that the study area spans eight climatic regions, each with 

unique rainfall seasonality and temperature profiles, rainfall seasonality and annual mean 

temperature were examined along with extension distance to evaluate to what extent these factors 

influence the efficiency of signature extension.  

The distance from the centroid of the source tile to the centroid of all other tiles was calculated. 

The long-term mean monthly and annual precipitation was obtained from Schulze (2007). A 

seasonality index was calculated according to Walsh & Lawler (1981):  

𝑆𝐼 =  
1

𝑅𝑖
∑ |𝑋𝑖𝑛 −

𝑅𝑖

12
|

𝑛=12

𝑛=1

 

 

Equation 4-1 

 

where 𝑅𝑖  is the total annual long-term mean precipitation; and 

 𝑋𝑖𝑛 is the long-term monthly mean precipitation for month n.  

Similarly, the long-term mean monthly and annual temperatures were obtained from Schulze 

(2007) for each tile to calculate a temperature seasonality index: 

𝑇𝐼 =  
1

𝑅𝑖
∑ |𝑋𝑖𝑛 −

𝑅𝑖

12
|

𝑛=12

𝑛=1

 

 

Equation 4-2 

 

where 𝑅𝑖  is the long-term mean annual temperature; and 

 𝑋𝑖𝑛 is the long-term monthly mean temperature for month n. 
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The OAs (dependent variable) for Experiments 1, 2, and 3 were plotted against the rainfall 

seasonality, temperature seasonality and extension distance (independent variables) to establish if 

there was a relationship between the OAs and independent variables for each experiment.  

In addition, the intra-class J-M distance score was calculated for each experiment using the training 

data and testing data for each class in every tile (i.e. the training data for acacia in the source tile 

vs the testing data for acacia in the classified tiles, the training data for eucalyptus in the source 

tile vs the testing data for eucalyptus in the classified tiles, and the training data for pine in the 

source tile vs the testing data for pine in the classified tiles, for every experiment). This was done 

to compare the spectral variations of genera among tiles and to assist in the interpretation of the 

results.  

4.4 RESULTS 

4.4.1 Spectral profiles 

The spectral signatures extracted from each source tile (i.e. Tiles 4, 10 and 17) and all three source 

tiles in combination are shown in Figure 4-4. The spectral signatures of eucalyptus are consistently 

more distinct, compared to those of pine and acacia. The greatest dissimilarities among classes are 

noticeable in B6 to B8, although the standard deviation bars indicate large overlaps. The 

dissimilarity of eucalyptus to pine and acacia are confirmed by the J-M scores (shown as bar graphs 

in Figure 4-4). The acacia and pine classes consistently produced the lowest separability scores. 

The classes seem to be the most separable in Tile 17 (Figure 4-4c), followed by the classes in 

Experiment 1 (Figure 4-4a), then the classes in Experiment 4 (Figure 4-4d), and to a lesser degree 

the classes in Experiment 2 (Figure 4-4b). 

Generally, the separability between the classes in the red edge region of the electromagnetic 

spectrum (EMS) is higher than in the visible and SWIR region of the EMS. In Tile 17, the 

separability in the visible and SWIR region of the EMS is higher compared to the other two source 

tiles. The SWIR region of the EMS is known to be absorbed by vegetation with high water content. 

Therefore, the reflectance in the SWIR region of the EMS will vary for trees located in water 

scarce areas – i.e. Tile 17 – as they retain different amounts of moisture.  
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Figure 4-4 Average spectral signatures for the training samples and J-M separability score for Tile 4 (a), Tile 10 (b), 

Tile 17 (c), and all source tiles in combination (d) 

4.4.2 Classification 

Table 4-4 summarises the classification results for each experiment. The mean OA was the highest 

in Experiment 4 (70%), followed by Experiment 1 (68%), Experiment 2 (62%), and Experiment 3 

(52%). From Experiment 4, it is evident that collecting training data in a large number of climatic 

regions resulted in higher OAs. In Experiments 1 and 2, the mean OAs for Tiles 1 to 13, located 

in the summer rainfall regions, are higher than the mean OAs in Tiles 14 to 19, located in the 

winter and bimodal to summer rainfall regions. Similarly, in Experiment 3, the mean OAs for Tiles 

14 to 19, located in the winter and bimodal to summer rainfall regions, are higher than the mean 

OAs in Tiles 1 to 13, located in the summer rainfall regions.  

In general, the pine class was classified with higher PAs than the eucalyptus and acacia classes. 

However, when considering the UAs, the pine and eucalyptus classes returned similar results. The 

acacia class consistently produced the lowest mean PA and UA in all experiments.  
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Table 4-4 The overall accuracy, kappa statistic, user’s accuracy (UA), and producer’s accuracy (PA) of each block for all experiments 

 

Key:  Low accuracies                         High accuracies; Overall accuracy (OA); Kappa statistic (KS) 
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In Experiment 3, the PAs of acacia in Tiles 14 to 17 exceed 92% but are less than 10% in Tiles 1 

to 13. This suggests that for the acacia class the model built in the winter rainfall region is not 

transferable to the summer rainfall region, and visa-versa. Furthermore, the OAs and KSs of the 

tiles containing no or little acacia are low, which coincide with the producer’s and user’s accuracies 

of acacia.  

4.5 Factors influencing signature extension  

Figure 4-5 compares classification accuracies achieved by signature extension to 1) extension 

distance; 2) rainfall seasonality; and 3) temperature seasonality. It is clear that the OAs decrease 

as extension distance increases, with a general decline of 3%, 6% and 2% per 100 km for 

Experiment 1, 2 and 3 respectively. The OAs are frequently below 50% when the extension 

distance exceeded 500 km (Figure 4-5a, b, and c). The statistical relationship between OA and 

extension distance was strong (R2=0.723) in Experiment 2, but very weak (R2=0.18) in Experiment 

3.  

 

Figure 4-5 Overall accuracy vs distance from the source tile for exp 1 (Tile 4) (a). exp 2 (Tile 10) (b), and exp 3 

(Tile 17) (c), overall accuracy vs rainfall seasonality index for exp 1 (d), exp 2 (e), and exp 3 (f), and 

overall accuracy vs temperature index for exp 1(g), exp 2 (h), exp 3 (i) 

In general, higher accuracies were obtained for tiles with a similar rainfall seasonality to the source 

tile. In Experiment 1, the statistical relationship between OA and rainfall seasonality was stronger 

(R2=0.5) than extension distance (R2=0.403), but weaker (R2=0.413) in Experiment 2. As with 

Stellenbosch University https://scholar.sun.ac.za



 67 

extension distance, the relationship with rainfall seasonality was weak (R2=0.098) in Experiment 

3. The relationship between OA and temperature is weak (R2<0.11) in all three experiments. 

In summary the OAs have the strongest relationship with rainfall seasonality in Experiment 1, 

whereas extension distance was the strongest driver of OAs in Experiments 2 and 3. Temperature 

has the weakest effect on the OA for all experiments.  

When comparing the intra-class spectral variability (as quantified by the J-M distances calculated 

among tiles) between the training data from Tile 4, Tile 10, Tile 17 and the testing data in each tile 

(Table 4-5), it is clear that the intra-class spectral variability of the pine class is lower compared 

to the eucalyptus and acacia classes. As can be expected, the intra-class J-M scores are lowest in 

the source tiles (i.e. Tile 4 for Experiment 1, Tile 10 for Experiment 2, and Tile 17 for Experiment 

3), highlighted in light red. However, for Experiment 3 the intra-class J-M distance for eucalyptus 

in the source tile (Tile 17) is high compared to acacia and pine. This suggests a high level of 

spectral variability within the eucalyptus class in Tile 17. 

Table 4-5 Intra-class spectral variability among tiles, as quantified by Jefferies-Matusita distance 

 

Key: Low J-M scores                            High J-M scores, * class not present 

4.6 DISCUSSION 

RS technologies have been effectively used for mapping commercial forest plantations (Mngadi 

et al. 2019). One limitation of machine learning is that sufficient in situ data are required for 

training and testing the models generated. In situ data collection is costly and time-consuming, 

especially when collecting large quantities over large areas. Ideally, a balance must be struck 

between training data collection efforts and classification accuracies targeted, particularly when 

operational solutions are sought. Very little is known about whether signature extension is a viable 

solution for reducing training sample collection costs when mapping forest plantation genera at a 

national scale. Olthof, Butson & Fraser (2005), Knorn et al. (2009), and Verhulp & Van Niekerk 

(2016) showed that with signature extension there is a trade-off between extension distance and 
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OA, while Woodcock et al. (2001), Phalke & Özdoğan (2018), and Wang, Azzari & Lobell (2019) 

suggested that seasonal variabilities can also negatively affect signature extension 

implementations. However, little is known about how these factors will impact a signature 

extension approach for mapping forest plantation genera at regional scales, particularly in areas 

where plantations are sparsely distributed and where climatic variations are dramatic.  

In this study, we evaluated the extent to which signature extension can be used, along with RF 

machine learning, to map forest plantation genera across a large region in South Africa, using 18 

features derived from a composite Sentinel-2 image as input. We found that when the model was 

trained with in situ data obtained from an area (Sentinel-2 tile) in the northeast (with summer 

rainfall) and applied to the southwestern parts (with bimodal to summer and winter rainfall) of the 

study area, the accuracies were generally low. In comparison, much better results were obtained 

when the same model was applied to areas with similar climatic profiles to where the training data 

were collected. This is attributed to larger inter-class spectral variability as extension distance 

increases and climatic conditions change, shown in Figure 4-5. 

This is in agreement with Olthof, Butson & Fraser (2005), who generated spectral signatures in a 

source scene and applied them to other scenes. The OAs were strongly affected by extension 

distance. Similar conclusions were drawn by Knorn et al. (2009), who found a 1.9% average 

decrease in OA as extension distance increased by one Landsat scene (i.e. ~ 1% per 100 km). 

Whereas, we observed a mean decrease of ~ 4% in OA per 100 km increase in extension distance. 

Our findings are also in agreement with Woodcock et al. (2001), who found that high accuracies 

can be achieved when the source and classified tiles are in the same climatic regions, but when the 

model is applied across different climatic regions the accuracies decrease. They concluded that the 

accuracies are influenced by extension distance and climatic variation. Our findings show that 

lower accuracies are achieved when models are trained with a data collected in areas with different 

rainfall seasonality to the area being mapped. 

The inter-class spectral analysis showed that there was high separability in the SWIR region of the 

EMS when the source tiles were located in the winter and bimodal to summer rainfall regions, 

suggesting that moisture content may have been a discriminating factor (Manna & Raychaudhuri 

2020). The SWIR wavelengths are known to be absorbed by vegetation with high moisture content 

(Manna & Raychaudhuri 2020). The source tiles located in the summer rainfall regions had a low 

separability in the SWIR region of the EMS suggesting that moisture content did not have an 

influence on the separability of the genera, because the annual rainfall is higher resulting in the 

trees having less water stress (Manna & Raychaudhuri 2020).   
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Our results show that pine compartments were generally classified with high accuracy, with mean 

PAs ranging from 70% to 88%. This is attributed to pine having a more consistent spectral 

profile―relative to the other two genus classes―throughout the study region (supported by the 

low intra-class J-M scores in each block shown in Table 4-5). Acacia had the highest intra-class  

J-M scores (Table 4-5), which is directly related to the low PAs of acacia, which ranged from 28% 

to 60%.  

Furthermore, Tile 6 contained eucalyptus, Tiles 1, 2, 18, and 19 contained eucalyptus and pine, 

and Tile 11 contained acacia and eucalyptus. A disadvantage of machine learning is that if the 

model has been trained with three classes, all unknown pixels will be categorised into three classes 

regardless of whether all three classes are present in the area being classified. As a result, Tiles 2, 

6, 18, and 19 consistently had low OAs and KSs as some classes were absent from those tiles. 

Our findings show that an average OA of ~70% can be achieved using signature extension for 

mapping acacia, eucalyptus and pine trees if the training samples are collected from tiles that 

adequately represent variation in rainfall seasonality. Furthermore, our results suggest that an 

extension distance of 500 km or less is recommended. The source tiles from where the training 

samples are collected should also contain all of the target classes. Temperature seasonality did not 

have a significant effect on OAs and can be disregarded when mapping forest plantation genera 

over large and complex areas. 

Our findings demonstrate the potential of signature extension for forest plantation genera mapping 

at a regional scale. However, more work is needed to evaluate whether multi-temporal variables 

will improve the differentiation between acacia, eucalyptus, and pine. It is expected that such 

imagery will represent at least some of the phenological differences among genera and will 

increase classification accuracies. Furthermore, acacia plantations are spectrally similar to pine 

plantations and suffered from low accuracies because they are in the minority (in the study area). 

More work is needed to evaluate whether sequential binary classifications (Dong et al. 2013) will 

improve the OAs. For instance, by initially classifying eucalyptus and pine plantations, and then 

further extracting acacia plantations from the pine class. In addition, more work is needed to 

evaluate how the reduction of the number and distribution of training samples for classes with low 

intra-class separability will affect overall classification accuracies. The intra-class spectral 

variability of the pine class was generally low and relatively high accuracies were achieved in most 

tiles, even when the training data was collected in one source tile (Experiments 1, 2 and 3). It 

would be worth investigating differential signature extension configurations, whereby extension 

distance is increased for some classes (e.g. pine in our case), while shorter distances are used for 
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classes that are more difficult to differentiate (e.g. acacia and eucalyptus). Such an approach could 

potentially further reduce in situ data collection efforts.  

4.7 CONCLUSION 

The training data used in machine learning influence the OA of the classified map. Training data 

are traditionally collected in the image scene being mapped, which can be prohibitively expensive 

for operational applications (such as genera mapping) at regional scales. This study evaluated the 

viability of machine learning and signature extension for mapping forest plantation genera at a 

regional scale, using Sentinel-2 bands and derivatives (e.g. NDVI, EVI, and textural measures) as 

input (n = 18). Three RF models were built using training data collected in three different Sentinel-

2 tiles. A fourth model was produced by combining the training data from all three tiles. Each 

model was applied to 19 Sentinel-2 tiles and the resulting OAs were plotted against signature 

extension distance, as well as rainfall and temperature seasonality.  

Our findings show that extension distance and seasonal variations negatively influence overall 

classification accuracy. The location and clustering of the training data are critical for the 

implementation of signature extension. Our results show that OAs of ~70% can be achieved for 

mapping plantation forest genera as long as the extension distance does not exceed 500 km and if 

the machine learning models are trained and applied in areas of similar rainfall seasonality. 

Specifically in South Africa, three source tiles, located in Mpumalanga, KwaZulu-Natal, and the 

Eastern Cape, are highly suitable for collecting training data. Further efforts for operational 

mapping of forest genera in South Africa should consider the impact of differential signature 

extension, whereby extension distance for some classes is more than others. Other approaches, 

such as multi-temporal image analysis and sequential binary classification may also improve 

results. Answering these questions may further reduce in situ data collection efforts and potentially 

increase the OAs of genera maps. Operationalising these methods may contribute to more frequent 

updating of forest inventories, and at a reduced cost. Up-to-date and accurate inventory 

information will help monitor the state and trends of forestry activities, provide valuable input to 

climate change modelling, support policymaking and trade decisions, and monitor the socio-

economic impact of forests at regional and national scales.  
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CHAPTER 5:  DISCUSSION AND CONCLUSION 

5.1 REVISITING THE AIMS AND OBJECTIVES 

Forest inventories are used to monitor water levels, assess climate change, monitor forest trends, 

evaluate the contribution of forestry to the economy, and support decisions regarding 

policymaking and trade. On a local scale, inventory data are used for planning, sustainable land 

management, assessing water use, monitoring timber harvests and rotations, and site management. 

Genera data are important for carbon stock estimations and changes, and used as an input for 

allometric equations for predicting biomass and carbon stock levels, and are used in streamflow 

reduction models. Such information is recorded by commercial forestry companies but it is not in 

the public domain due to competitors potentially gaining a commercial advantage. In addition, 

small plantation owners are unlikely to record genus information. Currently, genus information is 

collected in-field, which is costly and time-consuming.  Therefore, this research was conducted to 

find an operational solution for mapping forest plantation genera to aid forest inventorying over 

large areas.  

RS technologies have shown to be a viable alternative to collecting inventory data. Supervised 

classification methods are more suitable than unsupervised methods for mapping forest plantation 

species/genera, as unsupervised methods are unable to group pixels into the correct genus/species 

group. However, supervised methods require sufficient training data to produce accurate genera 

maps. It is unknown which sampling configuration and size will be most effective for the machine 

learning algorithms to map forest plantation genera. Furthermore, image classification is usually 

done per image scene, which is problematic when mapping over large areas, as the training data 

collection becomes cumbersome. It is not known whether signature extension―training a model 

on one image scene and applying it on other image scenes―will produce accurate genera maps.  

The literature review (Objective 1) identified many different sources of imagery and machine 

learning algorithms used to map forest plantation genera. High-resolution imagery, such as 

Sentinel-2, has been used with machine learning algorithms to map land cover types that are 

spectrally similar. However, the literature review revealed conflicting recommendations on which 

training sampling configuration and size is best for mapping forest plantation genera. Therefore, 

in situ plantation data were acquired from commercial forest plantation companies (Objective 2) 

to develop experiments to investigate the factors that influence accuracies. In this study, Sentinel-

2 imagery was obtained through the GEE data catalogue to create composite images spanning a 

year to compensate for seasonal variations so that the experiments can be directly compared to 

each other.  
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Chapter 3 (Objective 3) was experimental, as different sampling configurations and sample sizes 

were tested to identify an optimal sampling design for obtaining training data for machine learning 

algorithms to map three forest plantation genera (acacia, eucalyptus, pine). Furthermore, training 

data collection becomes cumbersome when mapping over large areas as image classification is 

usually done per image scene. A potential solution is to use signature extension. In Chapter 4, 

signature extension using RF was evaluated (Objective 4) for mapping genera across four 

provinces in South Africa. The main aim was to gain a better understanding of how extension 

distance and environmental factors influence the accuracies when mapping forest plantation 

genera. The findings of these experiments are synthesised and discussed in the next section. This 

is followed by a critical review of the study, as well as some recommendations for further research 

(Objective 5).  

5.2 SYNTHESIS 

The aim of Chapter 3 was to investigate the impact of using different sampling strategies for 

collecting training data on the performance of a machine learning classifier for differentiating 

between forest plantation genera.   

An even number of 3 000 samples per genera was selected from two diverse study areas; one in 

KwaZulu-Natal and one in the Western Cape. An RF machine learning classifier was used with 

37 features extracted from a Sentinel-2 composite image representing one year of images (31-06-

2019 to 31-06-2020). Eight experiments were carried out using different sample sizes to quantify 

the effect of a balanced, unbalanced, and area-proportionate training data set on the accuracies of 

the classified maps.  

The results showed that the RF model did not handle unbalanced training datasets well. The 

minority classes generally showed high omission and low commission errors, while the majority 

classes showed low omission and high commission errors. The spectral separability of the classes 

was also evaluated, showing that the eucalyptus class was more separable from the acacia and pine 

classes. As a result, the differences between the UAs of the classes were larger when the number 

of training samples for the eucalyptus class was limited. An area-proportionate sampling scheme 

did not work well in the Western Cape study area as it was dominated by the pine class (the ratio 

of acacia, eucalyptus, and pine was 1:1:26), resulting in a highly skewed training data set. The pine 

class was generally over-classified, while the eucalyptus and acacia classes were under-classified. 

A balanced training data set produced the most consistent map accuracies in both study areas.  

Chapter 4 aimed to investigate the potential of signature extension by quantify the relationship 

between training sample cluster distribution and genus classification accuracy. The study area 
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spanned Mpumalanga, KwaZulu-Natal, the Eastern Cape and the Western Cape, representing nine 

Köppen-Geiger climatic zones and six rainfall seasonality regions. The study area was divided into 

19 Sentinel-2 tiles to test the viability of signature extension for mapping forest plantation genera. 

Acacia, eucalyptus, and pine, were mapped using an RF model with signature extension. Four 

experiments were carried out. For the first experiment, training data from one Sentinel-2 tile 

(located in Mpumalanga) was used to build an RF model, which was then used to classify all 19 

Sentinel-2 tiles. Similarly, in Experiment 2 and 3, samples from one Sentinel-2 tile (located in 

KwaZulu-Natal and the Eastern Cape respectively) were used for building two RF models, which 

was then applied to all tiles. In the final experiment, training samples from three tiles (one in each 

of the aforementioned provinces) were used for model building, which was then applied to all tiles. 

The experiments revealed that accuracies decreased as the distance increased from the training tile. 

In addition, it was found that rainfall seasonality had a strong impact on accuracies. Specifically, 

accuracies dropped when the models were applied to areas with different rainfall seasonality (e.g. 

summer vs. winter rainfall). A separability analysis showed that the pine class is very stable across 

the study area, while the spectral characteristics of the eucalyptus class are more variable. The 

acacia class showed the most spectral variability of the three classes. This suggests that the 

collection of pine samples can be clustered, while the eucalyptus and acacia classes require a 

sampling configuration that is stratified according to seasonal variations (e.g. per Köppen-Geiger 

climatic zone). In general, samples should be within 500 km of the areas being mapped.  

The findings of this research demonstrate the importance of considering different sampling 

configurations and sizes to maximise the capability of machine learning algorithms to differentiate 

between spectrally similar classes, specifically when using Sentinel-2 data and its derivatives as 

input features. 

5.3 VALUE OF RESEARCH 

This research shows that RS technologies and machine learning can contribute to updating forest 

inventories which will, in turn, benefit forest management, predictive modelling, forest 

monitoring, climate change monitoring, and decision-making regarding trade and policies. 

Although VHR, hyperspectral, and LiDAR data have been used in machine learning algorithms to 

successfully map forest plantation genera/species, this study focused on finding a regional/national 

solution. Freely available Sentinel-2 imagery was identified as the most viable source of data. The 

study area spans Mpumalanga, KwaZulu-Natal, the Eastern Cape, and the Western Cape provinces 

of South Africa and represents nine climatic regions and six rainfall seasonality regions. 
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The results of Chapter 3 showed that accuracies of up to 76.3% can be achieved for mapping forest 

plantation genera on a local scale using a balanced sample configuration with a sample size of 

~57n. These findings can be used to reduce the time taken to obtain training data. 

Furthermore, the results of Chapter 4 showed that the training data obtained from regions with 

similar climatic conditions and within 500 km of the area being mapped are most effective for 

mapping plantation forest genera at regional scales using the signature extension in an RF model. 

This finding can be used to reduce in situ data collection efforts, by clustering samples in areas 

with similar rainfall seasonality and within 500 km of the mapping scene. In addition, a 70% OA 

can be achieved for mapping acacia, eucalyptus and pine in South Africa if the training data are 

collected from three Sentinel 2 tiles―one in Mpumalanga, one in KwaZulu-Natal, and one in the 

Eastern Cape. 

5.4 STUDY LIMITATIONS AND RECOMMENDATIONS FOR FURTHER 

RESEARCH 

One limitation of this study is that the classification was conducted on delineated forest 

compartment boundaries. This means that the forest compartment boundaries need to be delineated 

prior to analysis if the methods employed in this study are to be replicated. An alternative is to 

make use of existing land cover maps (DEA 2019) to mask known forest plantations, followed by 

image segmentation to produce objects (polygons) that can be used instead of delineated forest 

compartments. One can also make use of multi-temporal Sentinel-2 images for delineating 

compartment boundaries using Canny edge detection and watershed segmentation, as suggested 

by Watkins & Van Niekerk (2019).  

Another limitation of the study was that RF was the only classification algorithm used. Although 

previous research has shown that RF is suitable for plantation classifications (Adam et al. 2012; 

Franklin & Ahmed 2018; Immitzer, Atzberger & Koukal 2012; Lück 2018 & Nery et al. 2019), 

other machine learning algorithms have shown much potential to differentiate between spectrally 

similar classes (Nery et al. 2019; Vaglio Laurin et al. 2016). It would be worthwhile comparing 

the accuracies of forest plantation mapping using MLC, SVM, NN and RF. 

This study showed that Sentinel-2 bands, combined with textural measures and VIs, are suitable 

for mapping forest plantation genera. However, Mngadi et al. (2019) showed that fusing optical 

imagery with active satellite imagery such as SAR can improve the differentiation between forest 

plantation genera/species. Future studies should investigate whether SAR imagery fused with 

Sentinel-2 can improve the classification of forest plantation genera using RF. 
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Chapter 3 showed that there is a relationship between the number of samples and the OAs achieved 

by machine learning algorithms. All the Sentinel-2 bands (13 bands), NDVI, EVI, and all GLCM 

texture measures available in GEE were used as input to the classifications, totalling 37 features. 

According to the Hughes phenomenon, as the number of features increases, so do the accuracies, 

but at some point, the accuracies start to decrease unless the number of samples is also increased 

(Ma et al. 2013). It would be interesting to determine which of these features are most important 

for differentiating between forest plantation genera. Future studies should consider applying 

feature selection methods to reduce the number of features. This, in theory, should further reduce 

the number of samples needed to differentiate between forest plantation genera.  

This research aimed at classifying the three most common plantation genera in South Africa. 

However, compared to eucalyptus and pine, acacia compartments are scarce. This resulted in low 

producers and user’s accuracies for acacia, which in turn decreased the overall accuracies of the 

classifications. An experiment (shown in Appendix B) that excluded acacia in the Eastern and 

Western Cape showed a significant increase in the OA from 65% to 74%. Furthermore, pine is 

more distinct from eucalyptus than it is from acacia, resulting in better producer’s and user’s 

accuracies when acacia was left out of the classification.  

This study purposefully used a composite image spanning a year to compare the results of each 

experiment. However, it is known that multi-temporal variables can improve the separability 

between genera as phenological characteristics can be represented (Fagan et al. 2015). It is 

recommended to include a multi-temporal variable to initially classify the eucalyptus and pine 

classes (leaving out acacia due to its scarcity). It is then suggested that the pine class be further 

subdivided (classified) into pine and acacia classes using spectral and temporal information.  

Although per-pixel classification was used in this study, as it was the most common method in 

literature for classifying forest plantations, some research suggests that OBIA produces better 

accuracies than per-pixel approaches (Immitzer, Atzberger & Koukal 2012). It is recommended 

that future studies compare OBIA and per-pixel approaches for classifying acacia, eucalyptus, and 

pine trees. However, given that object delineation and segmentation parameterisation is an ill-

structured problem (Louw & Van Niekerk 2019), image segmentation will add a level of 

uncertainty to the mapping workflow which will have to be taken into account in OBIA 

experimental designs.  

5.5 CONCLUSION 

Forest inventories are important for forest management, monitoring timber harvest, predictive 

modelling, and assessing the contribution of forestry to the economy. Traditional methods for 
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forest inventory data collection are costly and time-consuming. This research set out to evaluate 

whether freely available Sentinel-2 imagery and its derivatives could be used as input to machine 

learning to differentiate between the three main forest plantation genera in South Africa. The aim 

was to develop an RS methodology whereby forest plantation genera can be mapped at a national 

scale. The aim was achieved by investigating the impact of training sample size and configuration 

when mapping forest plantation genera, and by investigating the viability of signature extension 

as a strategy for mapping forest plantation genera at a national scale.  

The use of Sentinel-2 bands, NDVI, EVI, and textural measures as input to machine learning 

algorithms produces genera maps with ~76% OA using a balanced training sample size of 57n. An 

important finding of the research was that the training sample configuration and size used 

influences the machine learning algorithms’ ability to differentiate between forest plantation 

genera. The most accurate results were produced using a balanced training sample configuration. 

Additionally, the number of samples used also influences the classification accuracies. This 

research showed that as the number of samples increases, so do the OAs, but when the number of 

samples reaches 57n, the increase in accuracies become marginal.  

Signature extension can be used to map forest plantation genera at a national scale. However, the 

samples must be collected in areas with similar seasonal characteristics to the areas being mapped 

and the distance away from the training sample site should be < 500 km. To map forest plantation 

genera at national scale in South Africa, it is recommended that in situ data be collected from one 

Sentinel-2 tile in Mpumalanga, one in KwaZulu-Natal, and one on the border of the Eastern and 

Western Cape.  

The guidelines developed in this research can contribute towards regularly mapping forest 

plantation genera at regional scales and with minimal costs. The South African forestry sector 

contributes 1% to its GDP, employing ~165 900 workers from many rural communities (Tibane 

& Vermeulen 2014). Since South Africa implemented the National Water Act of 1998, the 

licensing process for afforestation has become cumbersome. The Act states that there should only 

be a certain amount of forestry activity per catchment to ensure all parties have access to a 

sustainable amount of water (Gush et al. 2002). As a result, there has been a decrease of 80 000 ha 

of forestry activity. It is therefore important to make use of forestry inventories to maximise the 

production of forestry. 

Currently, forest inventory in South Africa is collected every three years, making use of 

questionnaires and information gained from the licensing process (DWAF 2008). Regularly 

updated forest inventories will greatly improve forest management and can be used to evaluate the 

contribution that forestry makes to the economy and ensure sustainable practices so that future 
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generations can benefit from the important services and products that forests provide. Updated 

forest inventories will also improve plantation land management, planning, production by 

regularly assessing the annual growth rates, the assessment of water use, and forest management. 

Furthermore, updated genera data will specifically improve the accuracy of allometric equations 

used to estimate carbon stock and biomass levels, and the accuracy of streamflow models.  

Stellenbosch University https://scholar.sun.ac.za



 78 

REFERENCES 

 

Adam EM, Mutanga O, Rugege D & Ismail R 2012. Discriminating the papyrus vegetation 

(Cyperus papyrus L.) and its co-existent species using random forest and Hyperspectral data 

resampled to HYMAP. International Journal of Remote Sensing 33, 2: 552–569. 

Albaugh JM, Dye PJ & King JS 2013. Eucalyptus and water use in South Africa. International 

Journal of Forestry Research 1: 1–11. 

Alonso MC, Malpica JA & De Agirre AM 2011. Consequences of the hughes phenomenon on 

some classification techniques. American Society for Photogrammetry and Remote Sensing 

Annual Conference 2011, May: 32–40. 

Anand A 2018. Unit 13 Image Classification. Processing and Classification of Remotely Sensed 

Images, 41–58. 

Baatuuwie NB & Van Leeuwen IL 2011. Evaluation of three classifiers in mapping forest stand 

types using medium resolution imagery : a case study in the Offinso Forest District, Ghana. 

African Journal of environmental Science and Technology 5, January: 25–36. 

Bangira T 2019. Mapping Surface Water in Complex and Heterogeneous Environments Using 

Remote Sensing. Doctoral dissertation. Stellenbosch: Stellenbosch Univeristy, Department 

of Geography and Environmental Studies. 

Baierle IC, Sellitto MA, Frozza R, Schaefer JL & Habekost AF 2019. An artificial intelligence 

and knowledge-based system to support the decision-making process in sales. South African 

Journal of Industrial Engineering 30, 2: 17–25. 

Basha SM, Rajput DS, Poluru RK, Bharath Bhushan S & Basha SAK 2018. Evaluating the 

performance of supervised classification models: Decision tree and Naïve Bayes using 

KNIME. International Journal of Engineering and Technology(UAE) 7, 4: 248–253. 

Basuki TM, van Laake PE, Skidmore AK & Hussin YA 2009. Allometric equations for 

estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest 

Ecology and Management 257, 8: 1684–1694. 

Belgiu M & Dragut L 2016. Random forest in remote sensing: A review of applications and 

future directions. ISPRS Journal of Photogrammetry and Remote Sensing Random forest in 

remote sensing 114: 24–31. 

Bhaskaran S, Paramananda S & Ramnarayan M 2010. Per-pixel and object-oriented 

classification methods for mapping urban features using Ikonos satellite data. Applied 

Stellenbosch University https://scholar.sun.ac.za



 79 

Geography 30, 4: 650–665.  

Blaschke T 2010. Object based image analysis for remote sensing. ISPRS Journal of 

Photogrammetry and Remote Sensing 65, 1: 2–16.  

Botai CM, Botai JO & Adeola AM 2018. Spatial distribution of temporal precipitation contrasts 

in South Africa. South African Journal of Science 114, 7–8: 1–9. 

Brown C & Ball J 2000. World View of Plantation Grown Wood1. Forestry Department, Food 

and Agricultre Organization of the United Nations. 

Buddenbaum H, Schlerf M & Hill J 2005. Classification of coniferous tree species and age 

classes using hyperspectral data and geostatistical methods. International Journal of Remote 

Sensing 26, 24: 5453–5465. 

Budei BC, St-Onge B, Hopkinson C & Audet FA 2018. Identifying the genus or species of 

individual trees using a three-wavelength airborne lidar system. Remote Sensing of 

Environment 204, October 2017: 632–647.  

Bujang MA & Baharum N 2017. Guidelines of the minimum sample size requirements for 

Cohen ’s Kappa. Epidemiology Biostatistics and Public Health 14, 2. 

Campbell J & Wynne R 2013. Introduction to Remote Sensing. Remote Sensing 5, 1: 337–375 

Carle J, Del Lungo A & Varmola M 2003. The need for improved forest plantation data. Rome: 

Forestry Department, Food and Agriculture Organization. 

Carrão H, Araújo A, Gonçalves P & Caetano M 2010. Multitemporal MERIS images for land-

cover mapping at a national scale: A case study of Portugal. International Journal of 

Remote Sensing 31, 8: 2063–2082. 

Chen B, Li X, Xiao X, Zhao B, Dong J, Kou W, Qin Y, Yang C, Wu Z, Sun R, Lan G & Xie G 

2016. Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by 

integrating PALSAR 25-m and multi-temporal Landsat images. International Journal of 

Applied Earth Observation and Geoinformation 50: 117–130.  

Cho MA, Malahlela O & Ramoelo A 2015. Assessing the utility WorldView-2 imagery for tree 

species mapping in South African subtropical humid forest and the conservation 

implications: Dukuduku forest patch as case study. International Journal of Applied Earth 

Observation and Geoinformation 38: 349–357.  

Cohen Y & Shoshany M 2002. A national knowledge-based crop recognition in Mediterranean 

environment. International Journal of Applied Earth Observation and Geoinformation 4: 

75-87. 

Stellenbosch University https://scholar.sun.ac.za



 80 

Colditz RR 2015. An evaluation of different training sample allocation schemes for discrete and 

continuous land cover classification using decision tree-based algorithms. Remote Sensing 

7, 8: 9655–9681. 

Congalton RG & Green K 2019. Assessing the Accuracy of Remotely Sensed Data. 3rd ed. Taylor 

& Francis: CRC Press. 

Cracknell AP 2018. The development of remote sensing in the last 40 years. International 

Journal of Remote Sensing 39, 23: 8387–8427.  

DAFF 2008. Report on commercial timber resources and primary round wood processing in 

South Africa. Department of Agriculture, Forestry and Fisheries. 

Dalponte M, Ørka HO, Gobakken T, Gianelle D & Næsset E 2013. Tree species classification in 

boreal forests with hyperspectral data. IEEE Transactions on Geoscience and Remote 

Sensing 51, 5: 2632–2645. 

Dannenberg MP, Hakkenberg CR & Song C 2016. Consistent classification of landsat time 

series with an improved automatic adaptive signature generalization algorithm. Remote 

Sensing 8, 8. 

De Beer H 1986. Black wattle. Pretoria: Department of Agriculture and Water Supply. 

DeFries RS, Hansen MC, Townshend JRG, Janetos AC & Loveland TR 2000. A new global 1-

km dataset of percentage tree cover derived from remote sensing. Global Change Biology 6, 

2: 247–254. 

DEA 2019. South African National Land-Cover 2018 Report & Accuracy Assessment .4: 1–39. 

Department of Environmental Affairs, Pretoria, South Africa. 

DWAF 2008. Expression of interest to revise, update and create the national forestry inventory 

and plantation database for KwaZulu-Natal. Department of Water Affairs and Forestry, 

Pretoria, South Africa. 

Devi Mahalakshmi S & Geethanjali V 2019. Plant classification using deep learning. Journal of 

International Pharmaceutical Research 46, 3: 745–749.  

Dong J, Xiao X, Chen B, Torbick N, Jin C, Zhang G & Biradar C 2013. Mapping deciduous 

rubber plantations through integration of PALSAR and multi-temporal Landsat imagery. 

Remote Sensing of Environment 134: 392–402.  

Dong J, Xiao X, Sheldon S, Biradar C & Xie G 2012. Mapping tropical forests and rubber 

plantations in complex landscapes by integrating PALSAR and MODIS imagery. ISPRS 

Journal of Photogrammetry and Remote Sensing 74: 20–33.  

Stellenbosch University https://scholar.sun.ac.za



 81 

Dye P & Versfeld D 2007. Managing the hydrological impacts of South African plantation 

forests: An overview. Forest Ecology and Management 251, 1–2: 121–128. 

Dzikiti BS, Jarmain C, Jovanovic N, Le Maitre D, Mashimbye E, Stephenson G, Van Niekerk A 

& Vermuelen D 2019. The application of national scale remotely sensed evapotranspiration 

(ET) estimates to quantify water use and differences between plantations in commercial 

forestry regions of South Africa. Report to the Water Research Commission, Stellenbosch. 

ESA 2015. ESA’s Optical High-Resolution Mission for GMES Operational Services. European 

Space Agency. 

Fagan ME, DeFries RS, Sesnie SE, Arroyo-Mora JP, Soto C, Singh A, Townsend PA & 

Chazdon RL 2015. Mapping species composition of forests and tree plantations in 

northeastern Costa Rica with an integration of hyperspectral and multitemporal landsat 

imagery. Remote Sensing 7, 5: 5660–5696. 

Food and Agriculture Organization 2007. Brief on National Forest Invenory NFI. September. 

Available from: https://www.forestresearch.gov.uk/tools-and-resources/national-forest-

inventory/. 

Food and Agriculture Organization 2015. Southern Africa’s Forests and People - Investing in a 

Sustainable Future. Availale from: http://www.fao.org/3/i4894e/i4894e.pdf. 

Foody GM 2009. Sample size determination for image classification accuracy assessment and 

comparison. International Journal of Remote Sensing 30, 20: 5273–5291. 

Foody GM 2002. Status of land cover classification accuracy assessment. Remote Sensing of 

Environment 80, 1: 185–201. 

Foody GM & Mathur A 2004. Toward intelligent training of supervised image classifications: 

Directing training data acquisition for SVM classification. Remote Sensing of Environment 

93, 1–2: 107–117. 

Foody GM, Mathur A, Sanchez-Hernandez C & Boyd DS 2006. Training set size requirements 

for the classification of a specific class. Remote Sensing of Environment 104, 1: 1–14. 

FSA 2019. Timber plantation ownership. Foresty South Africa. 

Franco-Lopez H, Ek AR & Bauer ME 2001. Estimation and mapping of forest stand density, 

volume, and cover type using the k-nearest neighbors method. Remote Sensing of 

Environment 77, 3: 251–274. 

Francois A & Leckie DG 2006. The individual tree crown approach to Ikonos images. 

Photogrammetric Engineering & Remote Sensing 72, 11: .1287–1297. 

Stellenbosch University https://scholar.sun.ac.za

https://www.forestresearch.gov.uk/tools-and-resources/national-forest-inventory/
https://www.forestresearch.gov.uk/tools-and-resources/national-forest-inventory/
http://www.fao.org/3/i4894e/i4894e.pdf


 82 

Franklin SE & Ahmed OS 2018. Deciduous tree species classification using object-based 

analysis and machine learning with unmanned aerial vehicle multispectral data. 

International Journal of Remote Sensing 39, 15–16: 5236–5245.  

Franklin SE, Ahmed OS & Williams G 2017. Northern conifer forest species classification using 

multispectral data acquired from an unmanned aerial vehicle. Photgrammetry Engineering 

& Remote Sensing 83, 7: 501–507. 

Fuller JA & Perrin MR 2001. Habitat assessment of small mammals in the Umvoti Vlei 

conservancy, KwaZulu-Natal, South Africa. African Journal of Wildlife Research 31, 1–2: 

1–12. 

Gao H, Sabo JL, Chen X, Liu Z, Yang Z, Ren Z & Liu M 2018. Landscape heterogeneity and 

hydrological processes: a review of landscape-based hydrological models. Landscape 

Ecology 33, 9: 1461–1480.  

Geldenhuys CJ, Mucina L 2006. Towards a new national forest classification for South Africa. 

In: S.A. Ghazanfar & H.J Beentje (eds), Taxonomy and ecology of Africa plants, their 

conservation and sustainable use, pp. 111-129. Royal Botanic Gardens, Kew. 

Gislason PO, Benediktsson JA & Sveinsson JR 2006. Random forests for land cover 

classification. Pattern Recognition Letters 27, 4: 294–300. 

Gray J & Song C 2013. Consistent classification of image time series with automatic adaptive 

signature generalization. Remote Sensing of Environment 134: 333–341.  

Gush MB, Scott DF, Jewitt GPW, Schulze RE, Hallowes LA & Görgens AHM 2002. A new 

approach to modelling streamflow reductions resulting from commercial afforestation in 

south africa. Southern African Forestry Journal 196, 1: 27–36. 

Hagner O & Reese H 2007. A method for calibrated maximum likelihood classification of forest 

types. Remote Sensing of Environment 110, 4: 438–444. 

Halefom A, Teshome A, Sisay E & Ahmad I 2018. Dynamics of land use and land cover change 

using remote sensing and GIS: A case study of Debre Tabor Town, South Gondar, Ethiopia. 

Journal of Geographic Information System 10, 02: 165–174. 

Han D, Liu Q & Fan W 2018. A new image classification method using CNN transfer learning 

and web data augmentation. Expert Systems with Applications 95: 43–56.  

Hansen MC, DeFries RS, Townshend JRG, Carroll M, Dimiceli C & Sohlberg RA 2003. Global 

percent tree cover at a spatial resolution of 500 meters: First results of the MODIS 

Vegetation Continuous Fields Algorithm. Earth Interactions 7, 10: 1–15. 

Stellenbosch University https://scholar.sun.ac.za



 83 

Hansen MC, Townshend JRG, DeFries RS & Carroll M 2005. Estimation of tree cover using 

MODIS data at global, continental and regional/local scales. International Journal of 

Remote Sensing 26, 19: 4359–4380. 

Heinzel J & Koch B 2011. Exploring full-waveform LiDAR parameters for tree species 

classification. International Journal of Applied Earth Observation and Geoinformation 13, 

1: 152–160.  

Herod A 2016. Scale: The local and the global. May: 217–235. 

Heydari SS & Mountrakis G 2018. Effect of classifier selection, reference sample size, reference 

class distribution and scene heterogeneity in per-pixel classification accuracy using 26 

Landsat sites. Remote Sensing of Environment 204, February 2017: 648–658.  

Holmgren P & Thuresson T 1998. Satellite remote sensing for forestry planning–A review. 

Scandinavian Journal of Forest Research 13, 1–4: 90–110. 

Huete A, Didan K, Miura T, Rodriguez EP, Gao X & Ferreira LG 2002. Overview of the 

radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing 

of Environmnet 83: 195–213. 

Immitzer M, Atzberger C & Koukal T 2012. Tree species classification with Random forest 

using very high spatial resolution 8-band worldView-2 satellite data. Remote Sensing 4, 9: 

2661–2693. 

Jackson RR & Huete AR 1991. Interpreting veget indices. Preventive Veternary Medicine 11: 

185–200. 

Jokar Arsanjani J, Tayyebi A & Vaz E 2016. GlobeLand30 as an alternative fine-scale global 

land cover map: Challenges, possibilities, and implications for developing countries. 

Habitat International 55: 25–31.  

Kaplan G & Avdan U 2017. Object-based water body extraction model using Sentinel-2 satellite 

imagery. European Journal of Remote Sensing 50, 1: 137–143.  

Ke Y, Quackenbush LJ & Im J 2010. Remote sensing of environment synergistic use of 

QuickBird multispectral imagery and LIDAR data for object-based forest species 

classification. Remote Sensing of Environment 114, 6: 1141–1154.  

Kelly M, Blanchard SD, Kersten E & Koy K 2011. Terrestrial remotely sensed imagery in 

support of public health: New avenues of research using object-based image analysis. 

Remote Sensing 3, 11: 2321–2345. 

Keuchel J, Naumann S, Heiler M & Siegmund A 2003. Automatic land cover analysis for 

Stellenbosch University https://scholar.sun.ac.za



 84 

Tenerife by supervised classification using remotely sensed data. Remote Sensing of 

Environment 86, 4: 530–541. 

Khalid S, Khalil T & Nasreen S 2014. A Survey of feature selection and feature extraction 

techniques in machine learning. Paper delivered at the Science Information Conference, 

London. 

Knorn J, Rabe A, Radeloff VC, Kuemmerle T, Kozak J & Hostert P 2009. Land cover mapping 

of large areas using chain classification of neighboring Landsat satellite images. Remote 

Sensing of Environment 113, 5: 957–964.  

Kraaij T, Baard JA, Arndt J, Vhengani L & van Wilgen BW 2018. An assessment of climate, 

weather, and fuel factors influencing a large, destructive wildfire in the Knysna region, 

South Africa. Fire Ecology 14, 2: 1–12. 

Laborte AG, Maunahan AA & Hijmans RJ 2010. Spectral signature generalization and 

expansion can improve the accuracy of satellite image classification. PLoS ONE 5, 5.  

Lefsky MA 2010. A global forest canopy height map from the moderate resolution imaging 

spectroradiometer and the geoscience laser altimeter system. Geophysical Research Letters 

37, 15: 1–5. 

Leroy M, Bicheron P, Latham J, Gregorio A Di, Witt R, Herold M, Sambale J, Achard F, 

Durieux L, Plummer S & Weber J 2007. GlobCover : European space agency service for 

global land Cover from MERIS. IEEE International Geoscience and Remote Sensing: 

2412–2415. 

Li J, Hu B & Noland TL 2013. Classification of tree species based on structural features derived 

from high density LiDAR data. Agricultural and Forest Meteorology 171–172: 104–114.  

Li Q, Qiu C, Ma L, Schmitt M & Zhu XX 2020. Mapping the land cover of africa at 10 m 

resolution from multi-source remote sensing data with google earth engine. Remote Sensing 

12, 4: 1–22. 

Lillesand T, Kiefer R & Chipman J 2019. Remote Sensing and Image Interpretation 1, 7: 59-84. 

Liu D & Xia F 2010. Assessing object-based classification: Advantages and limitations. Remote 

Sensing Letters 1, 4: 187–194. 

Liu HQ & Huete A 1995. Feedback based modification of the NDVI to minimize canopy 

background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing 

33, 2: 457–465. 

Loggenberg K, Strever A, Greyling B & Poona N 2018. Modelling Water Stress in a Shiraz 

Stellenbosch University https://scholar.sun.ac.za



 85 

Vineyard Using Hyperspectral Imaging and Machine Learning. Remote Sensing 10, 2: 202-

216. 

Lu D & Weng Q 2007. A survey of image classification methods and techniques for improving 

classification performance. International Journal of Remote Sensing 28, 5: 823–870. 

Lück W 2018. Generating Automated forestry geoinformation products from remotely sensed 

imagery. Master’s thesis. Stellenbosch: Stellenbosch University, Department of Geography 

and Enivronmental Studies. 

Lukas V, Novák J, Neudert L, Svobodova I, Rodriguez-Moreno F, Edrees M & Kren J 2016. The 

combination of UAV survey and Landsat imagery for monitoring of crop vigor in precision 

agriculture. International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences - ISPRS Archives 41, July: 953–957. 

Ma W, Gong C, Hu Y, Meng P & Xu F 2013. The Hughes phenomenon in hyperspectral 

classification based on the ground spectrum of grasslands in the region around Qinghai 

Lake. International Symposium on Photoelectronic Detection and Imaging 2013: Imaging 

Spectrometer Technologies and Applications 8910: 89101G. 

Mahdianpari M, Salehi B, Mohammadimanesh F, Homayouni S & Gill E 2019. The first wetland 

inventory map of newfoundland at a spatial resolution of 10 m using Sentinel-1 and 

Sentinel-2 data on the Google Earth Engine cloud computing platform. Remote Sensing 11, 

1: 43. 

Mandy L & Steve H 2015. Tree farming guidelines for private growers. Science of The Total 

Environment 2: 10–15. 

Maniatis D, Malhi Y, Saint André L, Mollicone D, Barbier N, Saatchi S, Henry M, Tellier L, 

Schwartzenberg M & White L 2011. Evaluating the potential of commercial forest 

inventory data to report on forest carbon stock and forest carbon stock changes for REDD+ 

under the UNFCCC. International Journal of Forestry Research 2011: 1–13. 

Manna S & Raychaudhuri B 2020. Mapping distribution of Sundarban mangroves using 

Sentinel-2 data and new spectral metric for detecting their health condition. Geocarto 

International 35, 4: 434–452.  

Marghany M & Hashim M 2010. Lineament mapping using multispectral remote sensing 

satellite data. International Journal of Physical Sciences 5, 10: 1501–1507. 

Martinuzzi S, Gould WA, Vierling LA, Hudak AT, Nelson RF & Evans JS 2013. Quantifying 

tropical dry forest type and succession: Substantial improvement with lidar. Biotropica 45, 

Stellenbosch University https://scholar.sun.ac.za



 86 

2: 135–146. 

Mather PM 2004. Computer Processing of Remotely-Sensed Images. Third edit. England: John 

Wiley & Sons Ltd. 

Mati A & Dawaki SA 2015. Role of forest inventory in sustainable forest management : A 

review. Intrnational journal of Forestry and Horticulture 1, 2: 33–40. 

Matsushita B, Yang W, Chen J, Onda Y & Qiu G 2007. Sensitivity of the enhanced vegetation 

index (evi) and normalized difference vegetation index (ndvi) to topographic effects: A case 

study in high-density Cypress Forest. Sensors 7: 2636–2651. 

McRoberts RE, Cohen WB, Erik N, Stehman S V. & Tomppo EO 2010. Using remotely sensed 

data to construct and assess forest attribute maps and related spatial products. Scandinavian 

Journal of Forest Research 25, 4: 340–367. 

McRoberts RE, Tomppo EO, Finley AO & Heikkinen J 2007. Estimating areal means and 

variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery. 

Remote Sensing of Environment 111, 4: 466–480. 

McRoberts RE, Wendt DG, Nelson MD & Hansen MH 2002. Using a land cover classification 

based on satellite imagery to improve the precision of forest inventory area estimates. 

Remote Sensing of Environment 81, 1: 36–44. 

Mead DJ 2013. Sustainable management of Pinus radiata plantations. Rome: Food and 

Agriculture Organization. 

Mellor A, Boukir S, Haywood A & Jones S 2015. Exploring issues of training data imbalance 

and mislabelling on random forest performance for large area land cover classification using 

the ensemble margin. ISPRS Journal of Photogrammetry and Remote Sensing 105: 155–

168.  

Mendoza F & Lu R 2015. Hyperspectral Imaging Technology in Food and Agricuture: 9–56. 

Michez A, Bauwens S, Bonnet S & Lejeune P 2016. Characterization of forests with LiDAR 

technology. Land Surface Remote Sensing in Agriculture and Forest: 331–362. 

Millard K & Richardson M 2015. On the importance of training data sample selection in random 

forest image classification: A case study in peatland ecosystem mapping. Remote Sensing 7, 

7: 8489–8515. 

Mngadi M, Odindi J, Peerbhay K & Mutanga O 2019. Examining the effectiveness of Sentinel-1 

and 2 imagery for commercial forest species mapping. Geocarto International 0, 0: 1–12.  

Stellenbosch University https://scholar.sun.ac.za



 87 

Mujabar PS & Dajkumar S 2019. Mapping of bauxite mineral deposits in the northern region of 

Saudi Arabia by using Advanced Spaceborne Thermal Emission and Reflection Radiometer 

satellite data. Geo-Spatial Information Science 22, 1: 35–44.  

Muller SJ, Sithole P, Singels A & Van Niekerk A 2020. Assessing the fidelity of Landsat-based 

fAPAR models in two diverse sugarcane growing regions. Computers and Electronics in 

Agriculture 170, March. 

Murthy VRK 2004. Satellite remote sensing and GIS Applications in agricultural meteorology. 

Satellite remote sensing and GIS applications in agricultural meteorology: 235. 

Myburgh G & Van Niekerk A 2014. Impact of training set size on object-based land cover 

classification: A comparison of three classifiers. International Journal of Applied 

Geospatial Research 5, 3: 49–67. 

Naghdy GA, Todd C, Olaode A & Naghdy G 2014. Unsupervised Classification of Images: A 

Review. International Journal of Image Processing (IJIP) 8, 5: 325.  

Nangendo G, Skidmore AK & van Oosten H 2007. Mapping East African tropical forests and 

woodlands - A comparison of classifiers. ISPRS Journal of Photogrammetry and Remote 

Sensing 61, 6: 393–404. 

Neale CMU, Geli H, Taghvaeian S, Masih A, Pack RT, Simms RD, Baker M, Milliken JA, 

O’Meara S & Witherall AJ 2011. Estimating evapotranspiration of riparian vegetation using 

high resolution multispectral, thermal infrared and lidar data. Remote Sensing for 

Agriculture, Ecosystems, and Hydrology XIII 8174: 81740P. 

Nery T, Sadler R, Solis Aulestia M, White B & Polyakov M 2019. Discriminating native and 

plantation forests in a Landsat time-series for land use policy design. International Journal 

of Remote Sensing 40, 11: 4059–4082. 

Nomura K & Mitchard ETA 2018. More than meets the eye: Using Sentinel-2 to map small 

plantations in complex forest landscapes. Remote Sensing 10, 1693. 

Olthof I, Butson C & Fraser R 2005. Signature extension through space for northern landcover 

classification: A comparison of radiometric correction methods. Remote Sensing of 

Environment 95, 3: 290–302. 

Onjira P 2014. Application of remote sensing and rainfall-run-off inundation modeling to near-

real time flood monitoring in Kenya. Master’s thesis. Tokyo: National Graduate Institute for 

Policy Studies. 

Pal M 2005. Random forest classifier for remote sensing classification. International Journal of 

Stellenbosch University https://scholar.sun.ac.za



 88 

Remote Sensing 26, 1: 217–222. 

Park B, Lu R with Mendoza F 2015. Hyperspectral Imaging Technology in Food and 

Agriculture. New York: Springer Science+Business Media LLC New York 

Pax-Lenney M, Woodcock CE, Macomber SA, Gopal S & Song C 2001. Forest mapping with a 

generalized classifier and Landsat TM data. Remote Sensing of Environment 77, 3: 241–

250. 

Peerbhay KY, Mutanga O & Ismail R 2013. Commercial tree species discrimination using 

airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis 

(PLS-DA) in KwaZulu-Natal, South Africa. ISPRS Journal of Photogrammetry and Remote 

Sensing 79: 19–28. 

Peerbhay KY, Mutanga O & Ismail R 2014. Investigating the capability of few strategically 

placed worldview-2 multispectral bands to discriminate forest species in KwaZulu-Natal, 

South Africa. IEEE Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing 7, 1: 307–316. 

Peled A & Gilichinsky M 2010. knowledge-based classification of land cover for the quality 

assessement of GIS database.  Paper delivered at ISPRS joint workshop on: Core spatial 

databases-updating, maintenance and services – from theory to practice conference, Haifa. 

Peng W, Wheeler DB, Bell JC & Krusemark MG 2003. Delineating patterns of soil drainage 

class on bare soils using remote sensing analyses. Geoderma 115, 3–4: 261–279. 

Phalke AR & Özdoğan M 2018. Large area cropland extent mapping with Landsat data and a 

generalized classifier. Remote Sensing of Environment 219, October 2017: 180–195. 

Pierce KB 2015. Accuracy optimization for high resolution object-based change detection: An 

example mapping regional urbanization with 1 m aerial imagery. Remote Sensing 7, 10: 

12654–12679. 

Pillay M 2012. Classical genetics and traditional breeding in Musa. Genetics, Genomics, and 

Breeding of Eucalypts: 34–55. 

Pontius RG & Millones M 2011. Death to Kappa: Birth of quantity disagreement and allocation 

disagreement for accuracy assessment. International Journal of Remote Sensing 32, 15: 

4407–4429. 

Prasad NR, Garg V & Thakur PK 2018. Role of sar data in water body mapping and reservoir 

sedimentation assessment. ISPRS Annals of the Photogrammetry, Remote Sensing and 

Spatial Information Sciences 4, 5: 151–158. 

Stellenbosch University https://scholar.sun.ac.za



 89 

Pu R & Landry S 2012. A comparative analysis of high spatial resolution IKONOS and 

WorldView-2 imagery for mapping urban tree species. Remote Sensing of Environment 

124: 516–533. [online]. Available from: http://dx.doi.org/10.1016/j.rse.2012.06.011 

Qi W, Lee S, Hancock S, Luthcke S, Tang H, Armston J & Dubayah R 2019. Improved forest 

height estimation by fusion of simulated GEDI Lidar data and TanDEM-X InSAR data. 

Remote Sensing of Environment 221: 621–634. 

Rodriguez-Galiano VF, Chica-Olmo M, Abarca-Hernandez F, Atkinson PM & Jeganathan C 

2012. Random forest classification of Mediterranean land cover using multi-seasonal 

imagery and multi-seasonal texture. Remote Sensing of Environment 121: 93–107.  

Roughgarden J, Running S. & Matson PA 2010. What does remote sensing do for ecology? 

Ecological Society of America 72, 6: 1917–1922. 

Rwanga SS & Ndambuki JM 2017. accuracy assessment of land use/land cover classification 

using remote sensing and GIS. International Journal of Geosciences 08, 04: 611–622. 

Schulz J, Albert P, Behr HD, Caprion D, Deneke H, Dewitte S, Dürr B, Fuchs P, Gratzki A, 

Hechler P, Hollmann R, Johnston S, Karlsson KG, Manninen T, Müller R, Reuter M, 

Riihelä A, Roebeling R, Selbach N, Tetzlaff A, Thomas W, Werscheck M, Wolters E & 

Zelenka A 2009. Operational climate monitoring from space: The EUMETSAT satellite 

application facility on climate monitoring (CM-SAF). Atmospheric Chemistry and Physics 

9, 5: 1687–1709. 

Schulze BR 1947. The climates of South Africa according to the classifications of Köppen and 

Thornthwaite. South African Geographical Journal 29, 1: 32–42. 

Shaw G & Burke H 2003. Spectral imaging for remote sensing. Lincoln Laboratory 14, 1: 121–

126. 

Shetty S 2019. Analysis of machine learning classifiers for LULC classification on Google Earth 

Engine. Master’s Thesis. Twente: University of Twente, Faculty of Geo-Information 

Science and Earth Observation. 

Silva JR, Rodrigues WP, Ruas KF, Paixão JS, de Lima RSN, Filho JAM, Garcia JAC, Schaffer 

B, Gonzalez JC & Campostrini E 2019. Light, photosynthetic capacity and growth of 

papaya (Carica papaya L.): A short review. Australian Journal of Crop Science 13, 3: 480–

485. 

Simard M, Pinto N, Fisher JB & Baccini A 2011. Mapping forest canopy height globally with 

spaceborne lidar. Journal of Geophysical Research: Biogeosciences 116, 4: 1–12. 

Stellenbosch University https://scholar.sun.ac.za

http://dx.doi.org/10.1016/j.rse.2012.06.011


 90 

South Africa 1998. National forests act, Act 30 of 1998. Government Gazette of South Africa 

400, 30.10.1998. 

Stabach JA, Dabek L, Jensen R & Wang YQ 2009. Discrimination of dominant forest types for 

Matschie’s tree kangaroo conservation in Papua New Guinea using high-resolution remote 

sensing data. International Journal of Remote Sensing 30, 2: 405–422. 

Stephenson G 2010. A Comparison of Supervised and Rule-Based Object-Orientated 

Classficiation for Forest Mapping. Master’s thesis. Stellenbosch: Stellenbosch University, 

Department of Geography and Environmental Studies. 

Tang L & Shao G 2015. Drone remote sensing for forestry research and practices. Journal of 

Forestry Research 26, 4: 791–797. 

Thanh Noi P & Kappas M 2017. Comparison of random forest, k-nearest neighbor, and support 

vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 

18, 18. 

Thompson M 2019. South African National Land-Cover 2018 Report & Accuracy Assessment. 

Pretoria: Department of Environmental Affairs and Tourism. 

Tibane E & Vermeulen A 2014. South Africa yearbook 2013/2014. Science And Technology 21, 

December: 33–59. 

Tomppo E, Olsson H, Ståhl G, Nilsson M, Hagner O & Katila M 2008. Combining national 

forest inventory field plots and remote sensing data for forest databases. Remote Sensing of 

Environment 112, 5: 1982–1999. 

Vaglio Laurin G, Puletti N, Hawthorne W, Liesenberg V, Corona P, Papale D, Chen Q & 

Valentini R 2016. Discrimination of tropical forest types, dominant species, and mapping of 

functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote 

Sensing of Environment 176: 163–176.  

Van Aardt J & Norris-Rogers M 2008. Spectral-age interactions in managed, even-aged 

Eucalyptus plantations: Application of discriminant analysis and classification and 

regression trees approaches to hyperspectral data. International Journal of Remote Sensing 

29, 6: 1841–1845. 

Van Der Zel DW 1995. Accomplishments and Dynamics of the South African Afforestation 

Permit System. Pretoria: Department of Water Affairs and Forestry. 

Verhulp J & Van Niekerk A 2016. Effect of inter-image spectral variation on land cover 

separability in heterogeneous areas. International Journal of Remote Sensing 37, 7: 1639–

Stellenbosch University https://scholar.sun.ac.za



 91 

1657.  

Verhulp J & Van Niekerk A 2017. Transferability of decision trees for land cover classification 

in a heterogeneous area. South African Journal of Geomatics 6, 1: 30–46. 

Viera AJ & Garrett JM 2005. Understanding interobserver agreement: the kappa statistic. Family 

Medicine 37, 5: 360–363.  

Voss M & Sugumaran R 2008. Seasonal effect on tree species classification in an urban 

environment using hyperspectral data, LiDAR, and an object-oriented approach. Sensors 8, 

5: 3020–3036. 

Wagner FH, Sanchez A, Tarabalka Y, Lotte RG, Ferreira MP, Aidar MPM, Gloor E, Phillips OL 

& Aragão LEOC 2019. Using the U-net convolutional network to map forest types and 

disturbance in the Atlantic rainforest with very high resolution images. Remote Sensing in 

Ecology and Conservation 5, 4: 360–375. 

Walsh RPD & Lawler DM 1981. Rainfall Seasonality: Description, Spatial Patterns and Change 

Through Time. Weather 36, 7: 201–208. 

Wang S, Azzari G & Lobell DB 2019. Crop type mapping without field-level labels: Random 

forest transfer and unsupervised clustering techniques. Remote Sensing of Environment 222, 

November 2018: 303–317.  

Watkins B 2019. Agricultural field boundary delineation using earth observation methods and 

multi-temporal sentinel-2 imagery. Master’s thesis. Stellenbosh: Stellenbosch University: 

Department of Geography and Environmental Studies. 

Wilson JRU, Gairifo C, Gibson MR, Arianoutsou M, Bakar BB, Baret S, Celesti-Grapow L, 

Ditomaso JM, Dufour-Dror JM, Kueffer C, Kull CA, Hoffmann JH, Impson FAC, Loope 

LL, Marchante E, Marchante H, Moore JL, Murphy DJ, Tassin J, Witt A, Zenni RD & 

Richardson DM 2011. Risk assessment, eradication, and biological control: Global efforts 

to limit Australian acacia invasions. Diversity and Distributions 17, 5: 1030–1046. 

Woodcock CE, Macomber SA, Pax-Lenney M & Cohen WB 2001. Monitoring large areas for 

forest change using Landsat: Generalization across space, time and Landsat sensors. Remote 

Sensing of Environment 78, 1–2: 194–203. 

Xie Z, Chen Y, Lu D, Li G & Chen E 2019. Classification of land cover, forest, and tree species 

classes with Ziyuan-3 multispectral and stereo data. Remote Sensing 11, 2: 1–27. 

Xue J & Su B 2017. Significant remote sensing vegetation indices: A review of developments 

and applications. Journal of Sensors 2017: 1-17. 

Stellenbosch University https://scholar.sun.ac.za



 92 

Xulu S, Peerbhay KY, Forests S & Gebreslasie M 2018. Remote sensing of forest health and 

vitality: A South African perspective. Southern Forests: a Journal of Forest Science  2018: 

1–16 

Yao W, Krzystek P & Heurich M 2012. Tree species classification and estimation of stem 

volume and DBH based on single tree extraction by exploiting airborne full-waveform 

LiDAR data. Remote Sensing of Environment 123: 368–380.  

Zebari RR, Abdulazeez AM, Zeebaree DQ, Zebari DA & Saeed JN 2020. A comprehensive 

review of dimensionality reduction techniques for feature selection and feature extraction. 

Journal of Applied Science and Technology Trends  01, 02: 56–70. 

Zhang X, Liu L, Chen X, Xie S & Gao Y 2019. Fine land-cover mapping in China using Landsat 

datacube and an operational SPECLib-based approach. Remote Sensing 11, 9. 

Zhu L, Suomalainen J, Liu J, Hyyppa J, Kaartinen H & Haggren H 2017. A Review: Remote 

Sensing Sensors. In Multi -purposeful Applicatioin of Geospatial Data, 20–39. 

 

  

Stellenbosch University https://scholar.sun.ac.za



 93 

APPENDICES 

 

Appendix A  Indices of disagreement for Chapter 3 experiments at the initial 

iteration and then at every tenth iteration sample increase 

94 

Appendix B  
Binary classification (eucalyptus and pine) accuracies using signature 

extension with training data obtained from Tile 17 

 

95 

 

Stellenbosch University https://scholar.sun.ac.za



 94 

APPENDIX A 
 

Indices of disagreement for Chapter 3 experiments at the initial iteration and then at every tenth iteration sample increase  

 

 
Figure  A.1   A summary table showing the overall accuracy, the figure of merit, omission errors and commission errors for Experiments A to G conducted Study Area 1 (WC) and 

Study Area 2 (KZN).
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APPENDIX B 

 

Binary classification (eucalyptus and pine) accuracies using signature extension with training 

data obtained from Tile 17 

Table B.1 The overall accuracy, kappa statistic, user’s accuracy, and producer’s accuracy of Tile 14 to 19 for 

Experiment 5, which used tile 17 as the source tile to train the RF model to classify eucalyptus and pine 

 Exp 5. Train on block 17 (Eucalyptus & Pine) 

Tile OA KS 

Producers Accuracy Users Accuracy 

Eucalyptus Pine Eucalyptus Pine 

14 0,50 0,00 0,00 1,00 0,00 1,00 

15 0,72 0,43 0,45 0,98 0,96 0,64 

16 0,75 0,49 0,51 0,98 0,96 0,67 

17 0,98 0,95 1,00 0,95 0,95 1,00 

18 0,50 0,00 1,00 0,00 0,00 0,50 

19 0,94 0,87 0,92 0,95 0,95 0,92 

Mean 0,73 0,46 0,65 0,81 0,64 0,79 
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