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Abstract 

Namibia is faced with the reality of an increase in the frequency of fatal and serious injury (FSI) 

crashes on national rural roads, despite the roadway infrastructure considered to be in good 

condition. More so, an increase in roadway traffic volume has subsequently worsened the crash risk 

levels for road users. To address this issue, the study was aimed at exploring the combinatorial 

effects of road and traffic characteristics of national rural roads in Namibia on fatal and serious injury 

crashes and the crash risk factors preceding the crashes. The main crash dataset, for the period 

2012 to 2016, and supplemented roadway design data were provided by the Namibian National 

Road Safety Council (NRSC) and Roads Authority (RA) respectively. The study applied novel robust 

multiple linear regression models and cluster analysis to the aggregated study dataset. The study 

objectives were five-fold. The first objective of the study was to examine the profiles and risk factors 

attributed to national rural road crashes. The goal of this objective was to create a new basis to 

assess the relationship between road characteristics and driver risk factors preceding road crashes. 

This will serve as a basis for crash risk factor comparisons for any future studies. The second 

objective was to identify high risk traffic crash locations on the different national rural road 

classifications. The third objective was to assess the distribution of fatal and serious injury crashes 

across the national rural road network by applying the KDE spatial analysis technique. The fourth 

objective was to investigate the compliance of the rural road design characteristics with road design 

guidelines. Recommendations on the suitability of the design standards were based on the results 

of the first three and fifth objectives of the study. The fifth objective of the study was to develop novel 

road crash predictive models; calibrated and within the context of the Namibian national rural road 

environment. This objective was underpinned by the other four objectives in examining the spatial 

distribution of the road crashes, the response of crash distribution to design compliance levels and 

the sensitivity of the novel CPMs to changes in design characteristics. The insights from the study 

will have a long-standing and significant impact on rural road safety in Sub- Saharan Africa (SSA) 

and beyond. The study has highlighted multiple areas in the rural road safety system that urgently 

need to be addressed to provide a safer environment for road users on the network. As Namibia 

prepares the new Decade of Action (DoA) Strategic Plan for the year 2021 to 2030, the insights from 

the study provide a backbone on which rural road safety can be addressed in the DoA, with an 

approach that is aimed at reducing and eliminating so-called latent gaps in the components of a safe 

road system. 
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Opsomming 

Namibië word gekonfronteer met die realiteit van ’n toename in die frekwensie van noodlottige en 

ernstige beserings (Fatal and Serious Injury, FSI) op plattelandse nasionale paaie, ondanks die feit 

dat die ryvlak infrastruktuur in ’n goeie toestand is. ’n Toename in die verkeersvolume het gevolglik 

ook die ongeluks-risiko vir padverbruikers vererger. Om hierdie kwessie aan te spreek, was die 

studie gerig op die navorsing van kombinatoriese effekte van pad- en verkeers-neigings van 

plattelandse nasionale paaie in Namibië op noodlottige en ernstige beserings-ongelukke en die risiko 

faktore wat die ongelukke voorafgaan. Die hoofbotsing-datastelsel vir die tydperk 2012 tot 2016, en 

aangevulde data van die ryvlak, is onderskeidelik deur die Namibiese Nasionale Padveiligheidsraad 

(Namibian National Road Safety Council, NRSC) en die Padowerheid (Roads Authority, RA) verskaf. 

Die studie het nuwe robuuste meervoudige lineêre regressiemodelle en groepsanalise toegepas op 

die geaggregeerde datastelsel. Die studie doelstellings was vyf-voudig. Die eerste doelstelling van 

die studie was om die profiel en risikofaktore wat toegeskryf word aan plattelandse nasionale 

padongelukke, te ondersoek. Die oogmerk van hierdie doel was om ’n nuwe basis te skep om die 

verband tussen padkenmerke en bestuurder risikofaktore voor padongelukke te beoordeel. Dit sal 

dien as basis vir die vergelyking van botsing risikofaktore vir toekomstige studies. Die tweede doelwit 

was om hoë risiko verkeersongeluk areas op die verskillende plattelandse nasionale pad-

klassifikasies te identifiseer. Die derde doelwit was om die verspreiding van noodlottige en ernstige 

beserings-ongelukke oor die plattelandse nasionale padnetwerk te beoordeel deur die KDE-

ruimtelike ontledingstegniek toe te pas. Die vierde doel was om te ondersoek of die plattelandse 

padontwerp eienskappe aan die padontwerp riglyne voldoen. Aanbevelings oor die geskiktheid van 

die ontwerpstandaarde is gebaseer op die resultate van die eerste drie en vyfde doelstellings van 

die studie. Die vyfde doelstelling van die studie was om nuwe voorspellingsmodelle vir padongelukke 

te ontwikkel; gekalibreer en spesifiek binne die konteks van die Namibiese plattelandse 

padomgewing. Hierdie doelstelling was ondersteun deur die ander vier doelstellings om die 

ruimtelike verspreiding van padongelukke, die reaksie van verspreiding van botsings op die ontwerp-

voldoeningsvlakke en die sensitiwiteit van die CPMe vir veranderinge in die ontwerpkenmerke, te 

ondersoek. Die insigte uit die studie sal ’n langdurende en belangrike invloed op padveiligheid in 

Afrika suid van die Sahara (SSA) en daarbuite stel. Die studie het verskeie areas in die plattelandse 

padveiligheidstelsels beklemtoon wat dringend aangespreek moet word om ’n veiliger omgewing vir 

padverbruikers op die netwerk te bied. Namate Namibië die nuwe ‘Decade of Action’ (DoA) 

strategiese plan vir die tydperk 2021 tot 2030 voorberei, bied die insigte uit die studie ’n grondslag 

waarop plattelandse padveiligheid in die DoA aangespreek kan word, met ’n benadering wat daarop 

gemik is om sogenaamde latente leemtes in die komponente van ’n veilige padstelsel te verminder 

en uit te skakel. 
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Chapter 1: Introduction 

Numerous research efforts on road safety analysis methods, including road safety statistical 

modelling (crash prediction models), descriptive road crash profiling and geospatial crash analysis 

have been conducted worldwide in recent years, in an attempt to investigate the link between the 

frequency and severity of road crashes, and road and traffic characteristics.  

Reducing the frequency and severity of road traffic crashes has constantly been one of the most 

important tasks for transportation and traffic engineers. Traffic safety can be influenced by improving 

the geometric aspects of the roadway system and their influence on driver behaviour, coupled with 

developing, enforcing traffic rules and educating road drivers on the importance of road safety. 

Investigating the extent of the link between road crashes and the characteristics of the roadways 

underpins the efforts to improve the precarious road safety situation on the roads. 

The ability to predict road crash rates is also important to transportation engineers, as it provides the 

capacity to identify potential high-risk road and traffic characteristics that influence the frequency and 

severity of road crashes, and potential hazardous road sections that warrant further road safety 

examinations. Moreover, an investigation into road crash profiles and crash causation factors 

reported in the historical crash data is vital in providing an insight into the behavioural aspects of the 

drivers on the roadways. Information on the factors influencing the occurrence of road crashes is 

key for road safety authorities to develop, identify and implement evidence-based proactive and 

remedial measures and treatments to provide a safer driving environment. 

The goal of the study was to develop a method that quantitatively investigates the extent of the 

combined effect of various national rural road geometric, pavement and traffic characteristics on 

road safety. The developed method provides a straightforward and mathematically sound way of 

predicting road crash rates and identifying combinational crash risk factors that potentially precede 

road crashes and affect driver safety on the roadways.  

1.1 Background 

At a global level, fatalities and injuries resulting from road traffic crashes have been on an increasing 

trend. Road safety is one of the most significant issues in modern society, with the World Health 

Organisation (WHO) (2017) estimates showing that over 1.3 million road users die every year 

globally on the world’s roads, and that another 20 to 50 million road users sustain non-fatal injuries 

of various severity. Traffic safety is a major concern for developing countries, due to a greater burden 

of higher injury severity crashes compared to other world regions. Developing countries are reported 

to account for 90 percent of road traffic crashes worldwide, while only having 48 percent of the 

world’s vehicle population (Peden et al., 2017).  
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Namibia is rated as one of the countries with the highest road traffic related fatalities on the African 

continent. In 2015, the Namibian Statistics Agency (NSA) (2015) reported that Namibia’s road fatality 

rate (31.1) (see Figure 1.1) was higher than the African continental average (26.6), by more than 4 

fatalities per 100 000 population. The Namibian National Road Safety Council (NRSC) (2012) states 

that road traffic crashes are one of the major and increasing causes of deaths in Namibia. This is 

despite considerable efforts by road safety stakeholders in Namibia, to reduce the frequency and 

severity of crashes. Moreover, with an increase in road traffic volumes, traffic safety has become 

and continues to be a serious concern for authorities in Namibia. 

 

Figure 1.1 Fatalities per 100 000 Population in Namibia 2009-2015 (NSA, 2015) 

In the same way to crash fatality rates, the Namibian Statistics Agency (2015) reported an increasing 

trend in the rate of seriously injured road users per 100 000 population on Namibian roads (see 

Figure 1.2). The period from 2011 to 2015 recorded a compounded increase of four (4) percent in 

the frequency of injury crashes.  

 

Figure 1.2 Injuries per 100 000 Population in Namibia 2010-2015 (NSA, 2015) 
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Road crashes are complex events and are influenced by multiple factors such as road geometric 

design, traffic volume and composition, speed differentials between vehicles of the same and 

different classes, weather and drivers physical and mental conditions (Vayalamkuzhi and 

Amirthalingam, 2016). Runji (2003) notes that a variety of factors influence the frequency and 

severity of road crashes, relating to driver behaviour and perceptions, the roadway environment and 

vehicle related factors. A graphical representation of the combination of main risk factors in crash 

occurrences is shown in Figure 1.3. It is important to note that the relative role of these three factors 

can differ significantly between countries. 

 

Figure 1.3 Factors influencing the occurrence of road crashes (Runji, 2003) 

Yingxue (2009) reports that despite unsafe behaviour of drivers, such as excessive operating 

speeds, fatigued driving, driving under the influence of alcohol and overloading, contributing highly 

to road traffic crashes, many road crashes are simply the result of road design elements and the 

road environment, due to negative road designs that lead to hazardous driver perceptions. 

The national rural roadway environment is often the location for higher severity road crashes due to 

undivided roads, high operating speeds and poor lighting conditions. Mohammed (2013) notes that 

aspects of the national rural road environment often included in road safety assessments include the 

geometrical characteristics of the road facilities and the traffic conditions on the roadway, relating to 

traffic composition and speeds. Ambunda & Sinclair (2019) mention that road safety analysis can be 

useful in identifying road sections prone to high road crash incidence and high injury severity, while 

determining the factors significantly contributing to the high road crash rates and influencing driver 

perceptions. Estimating the causes and factors influencing road crashes on a given national rural 

road is important in evaluating the different road design variables and alternatives (Glavić et al., 

2016). Road safety analysis plays an important role in ensuring a safe and efficient transportation 

system, with a variety of methods used to quantitatively assess and visually communicate the safety 

of transportation facilities (Stephan and Newstead, 2017). Various methods have been used to carry 
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out road safety analysis, with several statistical and geospatial analysis methods commonly used by 

road traffic engineers (Hauer, 2014). 

Hauer (2014) mentions that reducing road crashes on rural roads has always been one of the most 

important tasks for traffic engineers. Recently, the influence of rural road environments on road crash 

incidence has attracted considerable research interest, with road safety modelling taking the lead in 

statistical road safety analysis due to its wide variety of applications and practical implications 

(Karlaftis & Golias, 2002; Gaudry & Vernier, 2002). The study has used both geospatial and 

statistical road safety analysis methods to investigate and analyse the extent of the relationship 

between the rural roadway environment and crash risk levels on the Namibian national road network. 

1.2 Problem Statement 

Namibia is faced with the reality of an increase in the frequency of fatal, serious and slight injury 

crashes, despite roadway infrastructure considered to be in good condition. Moreover, with an 

increase in roadway traffic volume, traffic safety has become a serious concern for traffic safety 

management authorities in Namibia. 

Road traffic crashes occur as the result of a combination and interaction of several interrelated 

factors comprising driver related behaviour, the road environment and vehicle related factors (Turner 

et al., 2015). Notwithstanding the general recognition that road user behaviour and perceptions on 

the roadways are the primary cause of road traffic crashes, the road environment and its geometric 

properties play a significant role on the crash risk level, due to its impact on road user perceptions 

and general safety on the roadway (Deller, 2013; Taylor et al., 2000; Ambunda & Sinclair, 2019). 

Most developing countries, including Namibia are faced with a lack of tools to predict and investigate 

the crash likelihood. Therefore, road safety authorities tend to be reactive instead of proactive to 

road safety issues. Moreover, little is known of the influence that the Namibian national rural road 

environment has on the occurrence of road crashes and the level of crash severity, as no literature 

was found in relation to examining the extent of the relationship between road design elements and 

traffic characteristics on the crash risk level.  

Road elements are designed taking into consideration average driver behaviour, reactions and traffic 

conditions. Driver behaviour, however, is the direct result of how a driver ‘reads’ the road 

environment and determines what driving behaviour is appropriate given the physical environment. 

In this way driver behaviour is directly and immediately influenced by the combination of road design 

elements and traffic conditions. Road safety is abundant with studies investigating the influence of 

single road design and traffic elements on road safety – for example, the effect of the provision of a 

hard shoulder on driver perception and hence safety. Yet design elements work in tangent with each 

other – a hard shoulder is only one design detail among others which include lane width, horizontal 
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and vertical curvature, pavement design, road marking and so forth. In addition, prevailing traffic flow 

offers another dimension to the information received and interpreted by the driver – the prevailing 

speed and traffic volumes, the proportion of heavy goods vehicles etc. All these factors together 

determine how the road environment is perceived and what behaviour then emerges. As such, it is 

vital that the road environment is considered as a whole in investigating its effect on road safety, 

without isolating single design and traffic variables. 

Due to the lack of local studies on the relationship between road safety and combination of road 

elements, the authorities responsible for compiling road design standards have relied heavily on their 

own judgements or on standards imported from other countries, in the absence of appropriate local 

sources. The unavailability of local standards and the potential non-accordance of the adopted road 

design standards for the road network in Namibia increases the risks and contributes to the 

precarious road safety problem. 

Road safety analyses require reliable and accurate historical crash data, with information on traffic 

characteristics, traffic exposure variables and the road environment vital for an appropriate 

geospatial and statistical analyses. The historical crash data collected by the Namibian road safety 

authorities is not geo-coded, with majority of the site-specific crash information missing. It was thus 

important for the study to address the deficiencies in the data by developing an approach to attempt 

to overcome the data shortcomings and by gathering additional site-specific information to carry out 

a comprehensive statistical and geospatial analysis focused on addressing road safety on national 

rural roads. 

1.3 Study Aims and Objectives 

The study develops road crash predictive models and investigates the relationship between road 

crashes and the Namibian national rural road environment, using historic crash data from the period 

2012 to 2016. There is a need to inform and improve the road safety understanding on the 

implications of the rural road environment on the frequency and severity of road crashes in the 

Namibian context.  

The main aim of the study is to investigate and develop road safety crash predictive models to 

explore the relationship between the combination of national rural road design, pavement and traffic 

conditions, and road crashes of numerous severity levels, using Namibia as a case study. Data 

analytics plays a significant role in the development of the road crash predictive models and their 

benchmarking against road safety conditions in countries with similar road conditions to Namibia. To 

this end, the study has the following specific objectives: 
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1. To identify high risk road traffic crash locations on the different national rural road classifications 

by using geospatial analysis methods 

2. To assess how the geospatial analysis methods vary in performance at the different crash 

locations in identifying the high-risk road traffic crash locations. 

3. To investigate the compliance of the rural road environment design variables with the road design 

standards used to design Namibian national rural roads, with the intent to: 

a) To develop a tool to compare road attribute data with current road design standards and 

identify sub- standard road elements considered to be deficits; 

b) To quantify the extent of the link between road design standard compliance of the high crash 

risk zones with road crashes 

c) To find ways of increasing the impact of the safety aspect in road design standards on road 

safety. 

4. To examine and describe the road traffic crash profiles and crash risk factors attributed to the 

crashes from the historical crash database on the high-risk road traffic crash zones, with the 

intent to: 

a) To describe the road traffic crashes by injury severity 

b) To describe the road traffic crashes by the demographic characteristics 

c) To assess the road traffic crashes by the locations of the crashes 

d) To determine the extent to which temporal, demographic and roadway factors influence the 

combination of risk factors preceding road crashes and their overall impact on driver safety 

on national rural roads. 

5. To develop road crash prediction model tools to investigate the relationship between the 

geometric design, pavement and traffic conditions, and road crashes on the Namibian national 

rural road network, with the intent to: 

a) To Identify the rural road design variables and traffic characteristics that influence road crash 

incidence on the identified study sections 

b) To quantitatively assess the extent of the relationship between the rural road environment 

design variables and the road crashes, and how this varies spatially for the different study 

sections.  
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1.4 Study Definition of terms 

Road traffic safety: The methods and measures used to prevent road users from being killed or 

seriously injured (Ahmed, 2013). 

Traffic crashes: Refers to a collision between vehicles or with an object. The term road crash 

reflects an element of causality, apportioning responsibility to road users and/ or traffic and road 

characteristics. 

Road section: Uninterrupted flow facilities where traffic flow conditions result from the interaction 

among vehicles in the traffic flow, and between vehicles and the geometric and environmental 

characteristics of the roadway (Transportation Research Board, 2000).  

Crash rate: The number of road crashes in a given period of time as compared to the traffic volume 

or other exposure variables. 

Crash prediction model: Mathematical models that express the safety performance of road type/ 

network based on traffic and road characteristics (Duivenvoorden, 2010). 

Road user: Refers to anyone that uses the road. Usually grouped into motorised and non-motorised 

road users. 

Road fatality: A death resulting from a road traffic crash (usually within a 30 day period after the 

occurrence of a crash) (World Health Organisation, 2018). 

Road injury: Damage done to a person’s body by a sudden transfer of energy exceeding 

physiological tolerance caused by a road crash. 

1.5 Significance of the study 

In addressing road safety issues on national rural roads, it is vital for both research and practical 

purposes to examine and understand the relationship between the rural road environment and road 

traffic crashes. This understanding enables road safety stakeholders to develop adequate and 

efficient strategies and tools, which serve as effective and efficient proactive and remedial road 

safety measures.  

A limited body of research exists locally and internationally on studies that examine the influence of 

the combination of rural road environment variables on the frequency and severity of road crashes. 

This study serves as one of the few investigations into the development of road crash predictive 

models interrogating the relationship between the combination of numerous national rural road 

environment conditions (design characteristics, pavement and traffic conditions) and road crashes 

on a macro scale in the Namibian context.  
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The research findings are a crucial step in providing road safety stakeholders in Namibia with a basis 

to develop evidence-based proactive and remedial road safety measures, and examine their 

effectiveness in addressing road safety issues on rural roads. The findings on rural road safety from 

the study will also go a long way in addressing, supporting and building on the adopted “Wear. 

Believe. Act. A Decade for Road Safety 2011 to 2020” strategic road safety plan in Namibia, which 

is aimed at highlighting high risk road crash areas, to provide for public education on road safety, 

stricter traffic enforcement, safer vehicle practices, safer roads and improved road crash emergency 

responses (Namibia National Road Safety Council (NRSC), 2012).  

The insights expected from the study include identifying and evaluating the high-risk rural road traffic 

crash zones; assessing and addressing the deficiencies of the road design variables and road design 

standards used on the identified high-risk rural crash zones; and addressing the shortcomings in 

crash data collection and management systems. The study findings could potentially reduce the 

frequency and severity of road crashes by establishing effective and efficient road safety measures; 

making roadway improvements and providing comprehensive road safety orientated educational 

programs aimed at increasing the relevance of road safety research locally and internationally. 

The study on the development of crash predictive tools and the influence of the rural road 

environment conditions on the frequency and severity of crashes on the roadway can provide a 

better understanding of the factors that drive this association. These can guide the road safety 

stakeholders to develop evidence-based targeted measures to address the road safety issues on 

Namibian rural roads, in line with Sustainable Development Goals (SDG 3.61 and SDG 11.22) and 

the African Union (AU) Cross-Cutting Issues (6-Rural and Urban Road Safety3). 

1.6 Study statement 

The hypothesis of the study states that “A quantifiable relationship exists between the rural road 

environment conditions and the frequency and severity of road crashes”, based on the supposition 

that the rural road environment design variables, traffic operational characteristics and traffic 

exposure variables (traffic volumes, traffic speeds, traffic conflicts and road length) have a 

predictable influence on the frequency and severity of road crashes.  

                                                           
1 SDG 3.6 – By 2020, halve the number of global deaths and injuries from road traffic crashes  

2 SDG 11.2 – By 2030, provide access to safe, affordable, accessible and sustainable transport systems for 

all, improving road safety, notably by expanding public transport, with special attention to the needs of those 

in vulnerable situations, women, children, persons with disabilities and older persons 

3 AU Cross-cutting issues (Pillar 6) – The cross-cutting issues concern transport safety in rural areas. The 

objective is for states to undertake rural safety audits, ensure that this data is taken into account in the design 

and construction of roads in rural areas, improve transport safety through mixed transport measures and 

sensitise rural populations to road safety issues. 

Stellenbosch University https://scholar.sun.ac.za



9 

 

1.7 Study Assumptions 

The study is centred on examining historical road traffic crash data, which includes fatal and serious 

injury traffic crashes. The road traffic crashes sourced from the Namibian National Road Safety 

Council (NRSC), the Namibian Police Authority and the Motor Vehicle Accident Fund of Namibia 

(MVA) were not geo-coded. Due to inaccurate crash data recording and capturing, the locations of 

several traffic crashes on the Namibian Police road crash forms were described using landmarks 

close to the roadway. During geo-coding, the closest kilometre marker on the roads to the landmark 

mentioned in the crash forms were assumed as the crash location on the study road in this study. 

1.8 Limitations and Delineations  

Improving road safety is one of the important objectives for transportation stakeholders. In order to 

improve road safety effectively, it is vital to understand what and how factors affect road safety. This 

study has offered a review of current literature on road safety theory and the effect of various road 

factors, with a focus on the factors related to traffic characteristics (speed, traffic flow) and road 

characteristics (road geometry), mainly for road crashes on major roads in Namibia. 

Haddon (1972) notes that the safety of road users on roadways is affected by numerous factors; 

human factors, vehicle factors and environmental factors, which Krug & Sharma (2009) note form 

the basis of the Haddon matrix in relating the sequence of events in a road crash. The study was 

limited to investigating the pre-crash human and environmental factors of the Haddon matrix as 

illustrated in Table 1.1.  

Table 1.1 Factors considered for the study in the Haddon Matrix (Krug and Sharma, 2009) 

  FACTORS 

PHASE HUMAN 
VEHICLES & 

EQUIPMENT 
ROAD & ENVIRONMENT 

Pre-crash 
Crash 

prevention 

Information 

Attitudes 

Impairment 

Police 

enforcement 

Roadworthiness 

Lightning 

Braking 

Handling 

Speed management 

Road design & layout 

Speed limits 

Pedestrian facilities 

Crash Injury prevention 
Use of restraints 

Impairment 

Occupant restraints 

Other safety devices 

Crash-protective design 

Crash-protective road side 

objects 

Forgiving infrastructure 

Post-

crash 
Life sustaining 

First-aid skills 

Access to medics 

Ease of access 

Fire risk 

Rescue facilities 

Congestion 
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With regard to factors influencing traffic safety, the study has limited the crash analysis models to 

aspects of the rural road environment (roadway design), all aspects associated with the crash risk 

level and aspects related to traffic safety (road crash frequency and road crash severity).  

The study parameters considered in the study models were chosen according to the level of detailed 

information available in the Road management System (RMS) of the Namibian Roads Authority (RA) 

during the study period. The parameters include the following:  

1. Average annual daily traffic (AADT) (Averaged across 8 years); 

2. Segment lengths; 

3. Design, posted and operating speeds; 

4. Traffic composition; 

5. Lane widths; 

6. Shoulder widths and type; 

7. Horizontal and vertical curve characteristics; 

8. Access management; 

9. Sight distances; and 

10. Pavement condition. 

The behavioural aspects of the drivers on the selected roads were limited to a descriptive analysis 

in the study, through road traffic crash profiling and identifying factors attributed to road crashes in 

the historical crash data. Moreover, the study limited the GIS-based spatial analyses (Kernel Density 

Estimation (KDE)), descriptive and statistical analyses and modelling of historical crash data to 

national rural roads classifications on the Namibian road network. The national rural road network is 

categorised into trunk, main and district roads, guided by the Roads Authority of Namibia practices. 

In addition to other national rural road classifications investigated, the major national rural trunk roads 

on the Namibian road network are illustrated in Figure1.4. 

Stellenbosch University https://scholar.sun.ac.za



11 

 

 

Figure 1.4 Major trunk roads in Namibia 

1.9 Scope of the Study 

Previous research that acknowledged and investigated the association between the rural road 

environment design variables the frequency and severity of road traffic crashes served as the basis 

to structure the study and supported the outline adopted in the study (Shalom Hakkert & Gitelman, 

2014; Singh, 2017; Othman and Thomson, 2007; Dehuri, 2013). The study framework acknowledges 

that road crashes are the result of a complex combination of factors on the roadway, with the central 

factors in the framework considered in the study being the rural roadway environment (roadway 

design) and traffic safety on the roadway. Data on the mediators (shown in Figure 1.5) in the 

framework, that contribute to the crash risk level were available and considered in the study, as they 

were directly and indirectly linked with the design variables on the rural roadways. Figure 1.5 

illustrates the conceptual framework of the study as discussed. 
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Figure 1.5 Study conceptual framework 

1.10 Study Design 

The nature of the study was empirical, with the safety effects of the rural road attributes and traffic 

conditions on road crashes examined using several methodical techniques; spatial black spot 

analysis and regression (GIS-based); descriptive; Analysis of variance (ANOVA); and statistical 

crash modelling (General Linear Regression Approach), to address the study questions and achieve 

the study aims and objectives. A review of existing literature was carried out to identify emerging 

themes in the study area, with a focus on the methods used by researchers to achieve the aims and 

objectives of their studies. Through the examination of existing literature, the research topic and 

problem statement were formulated, with research questions and study aims and objectives 

influenced by the problem statement. 

Two methods of acquiring data necessary for the study were used, guided by research methods 

from relevant literature and road safety stakeholders in Namibia. Firstly, historical crash data was 

sourced from the NRSC, MVA and Namibian Police, whereas road geometric characteristic 

information was sourced from the Roads Authority of Namibia. Secondly, due to data deficiencies in 

the historical crash data and road geometric characteristic information sourced from the local 

institutions, site-specific information was collected from the selected study roads in an attempt to 

address the deficiencies in the data and improve data quality and reliability. The data was analysed 

using the numerous analysis techniques, furthermore, the results from the analysis techniques were 

discussed and compared to each other and to results from other studies in the same research area. 

The study design is illustrated in Figure 1.6.  

Rural Road 
Environment

•Roadway 
design

•Development 
Patterns

•Transport 
systems & 
Travel patterns 

Crash Risk Level

•Traffic speeds

•Traffic volumes

•Traffic conflicts

•Road length

Traffic Safety

•Road crash 
frequency

•Road crash 
severity

•Driver 
behaviour
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Figure 1.6 Study design 
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1.11 Chapter Overview 

Chapter 1 introduces the study, by outlining the background, discussing the problem statement and 

the research questions addressed by the study, stating the delineations and limitations, the study 

assumption, the study procedure and detailing the aims and objectives of the study. Chapter 2 

provides a comprehensive review of existing literature relevant to addressing the research questions, 

in order to provide a theoretical basis to achieve the aims and objectives of the study. Chapter 3 

discusses and details the study procedure applied for the collection and analysis of the data, with 

the purpose of addressing the study questions. Chapter 4 presents and discusses in detail the 

findings of the study from the analyses carried out, furthermore, comparisons between the study 

findings and results from studies in the similar research area are discussed. The detailed discussion 

of the results presented in Chapter 4 is presented in Chapter 5. Chapter 6 presents the conclusions 

drawn from the study results, impact of the results on current and future research and practical 

techniques in road safety and recommendations for future research studies. 
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Chapter 2: Literature review 

2.1 Introduction 

Roadway infrastructure attributes and driver behaviour both play a significant role in road safety 

(Garber and Hoel, 2009). While a large proportion of the crashes are caused by driver behaviour, a 

significant number involve roadway factors in some way (Ahmed, 2013). The second pillar of the 

United Nations Global Plan for the Decade of Action for Road Safety 2011-2020 (United Nations, 

2011) puts a lot of emphasis on raising the safety and protective characteristics of road networks for 

the benefit and safety of all road users. Knowledge of roadway parameters affecting and influencing 

road safety can help promote safety-conscious orientated planning, designing, building and 

maintaining of the road infrastructure to enable a safe road environment (World Health Organisation 

(WHO), 2017).  

This section provides a comprehensive review of previous literature most relevant to the study and 

the issue of road safety on rural highways. The review of previous literature provides a background 

to the study questions formulated, with the aim of providing a basis to attempt to address and achieve 

the aims and objectives of the study. Furthermore, the literature review reviews the methodologies 

used in previous studies to investigate rural roadway safety, with the aim of identifying analysis 

techniques pertinent to realise the aims and objectives provided in Chapter 1. The literature review 

of the study is structured as follows: 

1. Road classification 

2. Road design standards 

3. Road traffic safety 

4. Rural-urban road crash divide 

5. Road safety risk factors associated with traffic crashes 

6. The impact of road design characteristics and traffic conditions on road safety 

7. Road crash modelling and analyses techniques 

8. Key conclusions from the literature 

2.2 Road classification 

In this study, it is important to distinguish between roads that can be regarded as part of the rural 

road network and those which are part of the urban road network for road crash analysis. The 

Technical Recommendations for Highways 26 on Road Classifications and Access Management – 
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TRH 26 (Committee of State Road Authorities (CSRA), 1988) notes that roads in rural4 and urban5 

areas have the same six functional classes as shown in Table 2.1, however operating at different 

scales and standards (CSRA, 1988). 

Table 2.1 Functional classes of rural and urban roads (CSRA, 1988) 

Acronym Rural Classes Acronym Urban Classes 

R1 Rural principal arterial U1 Urban principal arterial 

R2 Rural major arterial U2 Urban major arterial 

R3 Rural minor arterial U3 Urban minor arterial 

R4 Rural collector road U4 Urban collector street 

R5 Rural local road U5 Urban local street 

R6 Rural walkway U6 Urban walkway 

A rural road is defined as a road leading through an area characterised by sparse development 

(CSRA, 1988). Roads that lead through urban areas, but do not have intersections and have 

restricted access for vehicles only are considered as rural (Through-way or a Bypass), provided their 

function remains that of a rural road (Archer and Vogel, 1999), as described in Section 2.2.1.  

An urban road is defined as a road located within the boundaries of an urban area (CSRA, 1988). 

Urban roads are defined by the Swedish Institute for Transport and Communications Analysis (SIKA, 

2000) according to the following requirements. 

a) Roads which are often directly adjacent to large numbers of buildings where people live and work 

(urban areas); 

b) Roads where there are numerous different types of road users (including pedestrians and 

cyclists) using the roadway; 

c) Roads with a high density of intersections, roundabouts, pedestrian crossings, traffic control 

devices etc. to allow for a reasonable level of accessibility for all road users; 

d) Roads where a maximum allowed speed is no greater than 60km/h, or where a higher speed 

limit is posted, however the density of the surrounding buildings and traffic conditions resemble 

those described above. 

The TRH 26 notes that an urban road leaving an urban area automatically becomes a rural road, 

with a recommended class not lower than that of the urban area (CSRA, 1988). The urban-rural road 

classification changes at the boundary of the urban area, with the TRH 26 recommending the 

                                                           
4 A rural area is defined as an area characterised by sparse development, mainly given over to nature or farming 
activities; 
5 An urban area is defined as an area that has been subdivided into erven, whether formal or informal. It includes 
informal settlements and areas on which townships have been formally declared. Rural settlements of one hectare or 
less are also included in the urban definition (CSRA, 1988). 
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adjusting of the road design in advance (500m) of the urban area to provide a transition area for 

drivers (CSRA, 1988). 

In road crash modelling, Joanne (2013) notes that for a road section to be considered as rural, an 

average minimum threshold of 5kms on a single carriageways and 10kms on motorways from urban 

areas are recommended as minimum distances for rural road crash risk level assessments. Road 

sections shorter than 5kms from an urban area were found to show greater year on year variability 

in crash numbers and were likely to change risk ratings from one period to the other when compared 

over time (Laird et al., 2010). The variances in crash numbers over time were found to be significantly 

high up to road section lengths of 10kms for motorways and dual carriageways (Joanne, 2013). 

2.2.1 Road functionality 

The road functionality principle aims at a clear distinction of roads into categories on the basis of 

their traffic function (SWOV, 2010). It is important to distinguish clearly the functions of different 

roads, and clear distinctions between roads with a through function or an access function need to 

be made (Karlaftis and Golias, 2009). The functionality of the roadway is vital in informing the road 

user the function of the road and ensuring that the road users uses the road for the purpose it was 

designed (Thomas et al., 2013).  

The Technical Recommendations for Highways 26 (TRH 26) manual on Road Classification and 

Access Management (Committee of State Road Authorities, 1988) classifies roads exclusively on 

the basis of their functions. The TRH 26 uses six –class rural and urban road classification system 

shown in Table 2.1, with the first three road classes6 (Class1-3) consisting of mobility roads and the 

second three classes (Class 4-6) consisting of access/ activity roads. The distinctive functions of 

rural and urban roads are discussed in Section 2.2.1.1 and Section 2.2.1.2. 

  

                                                           
6 Road classes’ means that all public roads and paths in the country are allocated into one of six functional classes, 
numbered for ease of reference. Each class has a unique function to fulfil; 
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2.2.1.1 Rural road functionality 

The main function of rural mobility roads is to connect areas that generate high volumes of traffic, 

typically cities, towns, airports and other mobility roads. In contrast, the main function of rural access/ 

activity roads is to provide access to individual properties, typically farms, mines, settlements and 

nature parks. In distinguishing between different road classes, the TRH 26 uses three primary 

criteria: Size and strategic importance of trip generator7; reach of connectivity8; and travel stage9, in 

distinguishing between different road classes (CSRA, 1988). Table 2.2 shows the classification of 

rural roads into primary classes according to the primary distinguishing criteria. 

Table 2.2 Road primary classes according to road classification criteria (CSRA, 1988) 

Primary class Trip generator Reach of connectivity Travel stage 

Mobility roads Large/ strategic generators Longer travel Through, destination not reached 

Access roads Individual properties Shorter connections Local, stop at destinations 

The reach of connectivity criterion for rural roads is further described in Table 2.3. Note that the 

distances are provided on a logarithmic scale. Moreover, there is no exact cut-off between road 

classes as their functions can overlap. 

Table 2.3 Rural road classes according to reach of connectivity criterion (CSRA, 1988) 

Distance (km) 1 2 4 8 16 32 64 128 256 612 1024 

Mobility 

R1 (Principal arterial)       ✓ ✓ ✓ ✓ ✓ 

R2 (Major arterial      ✓ ✓ ✓ ✓   

R3 (Minor arterial)    ✓ ✓ ✓ ✓     

Access/ Activity 

R4 (Collector)     ✓ ✓ ✓     

R5 (Local road)   ✓ ✓ ✓       

R6 (walkway) ✓ ✓ ✓         

The TRH 26 (CSRA, 1988) states that it is not possible to provide an exact quantitative estimate 

(traffic volumes, trip length or vehicle-kilometres travel (veh-km)) to distinguish between rural road 

classes. However, a broad guidance on the percentage of the total of different road classes can be 

estimated (Federal Highway Administration, 1989), as provided in Table 2.4. 

  

                                                           
7 A trip generator refers to a centre of development or zone from which trips originate or terminate; 
8 Reach of connectivity is an indication of the length of travel that can be accommodated on a particular road; and 
9 Travel stage describes that traveling is undertaken in three stages, local at the origin, through and local at the 
destination. Local in nature trips are served by access roads while through in nature trips are served by mobility roads 
(Committee of State Road Authorities, 1988). 
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Table 2.4 Traffic volume percentage of the different rural road classes (CSRA, 1988) 

Rural road classes FHWA description % of veh-km % of road length 

R1, R2 Principal arterials 30-55 2-4 

R1, R2, R3 Principal & minor arterials 45-75 6-12 

R4 Collectors 20-35 20-25 

R5 Local roads 5-20 65-75 

 

2.2.1.2 Urban road functionality 

The main function of urban mobility roads is to connect urban districts. Urban mobility roads should 

carry the traffic entering, leaving and traveling through urban areas. The efficiency of urban mobility 

roads is high when they serve the majority of urban travel with a minimum of road space and 

restricted access to individual properties (CSRA, 1988).  

The primary function of urban access/activity streets is to provide access to individual properties and 

to accommodate traffic that is local in nature having an origin or destination along the street (CSRA, 

1988). Urban access/activity streets are recommended not to serve traffic travelling through the 

urban area (Semar, 2003). 

As with rural roads, the TRH 26 uses three primary criteria to distinguish between the primary urban 

road classes, namely; size of the trip generator, reach of connectivity and the travel stages, as shown 

in Table 2.2. An indication of the proportion of vehicle travel and linear length on urban roads is given 

by the Federal Highway Administration (FHA) (1989) in Table 2.5. 

Table 2.5 Traffic volume percentage of the different urban road classes (FHA, 1989) 

Urban road classes FHWA description % of veh-km % of road length 

R1, R2 Principal arterials 40-65 5-10 

R1, R2, R3 Principal & minor arterials 65-80 15-25 

R4 Collector streets 5-10 5-10 

R5 Local streets 10-30 65-80 

 

2.2.2 Road homogeneity 

The road homogeneity principle aims to ensure relatively low variations in vehicle mass, speeds and 

the direction of road users, with the aim of reducing the occurrence and severity of road crashes 

(SWOV, 2010; Tolouei et al., 2012). Homogeneity results in relatively uniform traffic flows and 

operating speeds. In practice, homogeneity involves the adaptation of the road environment to 

minimise speed variations between road users and taking measures to separate different types of 

road users, either physically or using traffic control devices (Ahmed, 2013; SWOV, 2010). The Dutch 
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Ministry of Transport (2005) notes that the following requirements for homogeneity are mainly a 

result of crash analyses studies. 

1. Avoid conflicts with oncoming traffic; 

2. Separate vehicle types; 

3. Reduce speed at potential conflict points; 

4. Reduce speed variations along the road segment; and 

5. Avoid obstacles along the roadway. 

Rural roadways are considered to be the safest roads globally, based on the number of crashes per 

kilometre travelled as a safety indicator (Choudhary et al., 2018). Despite the higher operating 

speeds, rural roadways have been found to have relatively uniform speeds, with little variations in 

direction and vehicle mass (Dutch Ministry of Transport, 2005; Wegman & Elsenaar, 1997; Nusholtz, 

2011). Urban area zones with posted speed limits between 30 and 50 km/h were found to have lower 

road crashes per kilometre travelled despite a considerable variation in the direction and vehicle 

mass (Dutch Ministry of Transport, 2005; Maqbool, 2019). Tolouei et al. (2012) notes that the 

increased safety is attributed to considerably low driving speeds and low variations in speeds 

between different road users. 

Roads with a distributor function were found to be the most hazardous and to significantly impact 

the homogeneity of the roadway, due to greater vehicle mass and operating speed variations, and a 

considerably high amount of intersecting traffic (Eenink et al., 2005; SWOV, 2010; Demasi et al., 

2018). Meng et al. (2006) found that separating motorised and non-motorised traffic, using 

pedestrian walkways and cycle paths, improved the homogeneity and safety of the distributor roads.  

2.2.3 Self-explanatory roads (Road predictability) 

Given the modest success of traditional road safety countermeasures including posted speed limits 

and road warning signs, Herrstedt (2015) notes that additional road safety solutions have been 

sought. The self-explaining road approach emerged as a road safety solution in the Netherlands in 

the 1990s (Theeuwes and Godthelp, 1995), centred on providing information to drivers through 

implicit cues (Lewis-evans and Charlton, 2006).  

The self-explaining road concept is based on two cognitive psychology processes: categorisation 

and expectancy (Theeuwes & Godthelp, 1995 cited in Prestor et al., 2014). The categories 

themselves must be internally consistent and mutually exclusive or at least clearly distinguishable 

(Mackie et al., 2013). Theeuwes & Godthelp (1995) explain that road categories positively influencing 

driver behaviour can be achieved by assigning unique road category-defining properties, such as 

cues and affordances, to every road category. Weller et al. (2008) note that inadequate road 

categorisation is unsafe as it induces inadequate driver expectations. 
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Several studies have reported the importance of road categorisation and expectancy in a safe traffic 

system (AASHTO, 2010; Ambros, 2013; Edquist et al., 2009; Shalom Hakkert & Gitelman, 2014). 

The self-explaining road concept involves designing a road system in which the driver’s expectations 

created by the road environment are implicitly in line with the safe and appropriate driving behaviour 

(Ambros, 2013). Shalom Hakkert & Gitelman (2014) explain that self-explaining roads communicate 

to drivers the appropriate speeds to select on different road design elements and inform drivers on 

whether to expect traffic from access roads. Edquist et al. (2009) note that the speeding behaviour 

of the drivers may be influenced even without changing road geometry on internally consistent and 

clearly distinguishable roadway categories. The Highway Safety Manual (AASHTO, 2010) describes 

the following self-explaining roadway requirements. 

1. Avoid unpredictable driver behaviour through clear road designs, signing and marking; 

2. Make road categories clear and recognisable for appropriate driver speed selections and 

behaviour; and 

3. Limit the number of design elements and provide uniformity in road design. 

Similarly, Abele & Møller (2011) note that in a safe traffic system, road design should be consistent 

throughout the route, enabling drivers to correctly perceive the type of road and instinctively adopt 

their behaviour to the design and function of the road. To avoid uncertainty among road users, Hanno 

(2004) also states that roadways should be designed, constructed and marked to communicate the 

sort of behaviour expected from the drivers and for users to anticipate the behaviour of other drivers.  
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2.3 Road design standards  

2.3.1 Road design standards: Global perspective 

The Technical Recommendations for Highways 17 (TRH 17) of the Geometric Design of Rural Roads 

(Committee of State Road Authorities (CSRA), 1988) recognise road design standards to be vital 

principles to guide and control the design of the roadway. The Policy on Geometric Design of 

Highways and Streets (American Association of State Highway and Transportation Officials 

(AASHTO), 2011) reports that design standards are aimed at providing operational efficiency, safety, 

comfort and convenience to road users. The flexibility in the road design standards allow for localised 

solutions for numerous functional and operation requirements (Semar, 2003). However, Slop (1994) 

states that allowing space for interpretation may unintentionally lead to different road designs even 

in the same road area, which may cause safety issues. 

Kopits & Cropper (2005) note that the unsuitability and inability of large parts of the road network to 

fulfil the combination of functions they are designed for plays a role in the hazardous road safety 

situation in various regions in the world. Pinard et al. (2003) argue that adopting road design 

standards from developed countries with the aim of addressing the precarious road safety situation 

in developing countries is considered a misjudgement. In developed countries, design standards are 

generally backed by road safety training and traffic law enforcement, which is often not the case in 

developing countries (Eggleston, Hansen and Carrera, 2016). Additionally, the traffic and road 

characteristics in developing countries differ greatly from those in developed countries (Agerholm et 

al., 2017). Contingent on the required traffic capacity and the immediate road environment (rural or 

urban), whether in developing or developed countries, the design standards for individual road types 

are based on the following road safety principles (Dutch Ministry of Transport, 2005): 

1. To prevent unintended use of the road; 

2. To prevent significant speed and directional variances, thus reducing road user encounters with 

implicit risk; and 

3. To prevent uncertainty amongst road users, through enhancing the predictability of the road 

design and the behaviour of other road users. 

In most countries, geometric road design standards have been developed to aid transportation 

engineers to make sound decisions in developing efficient and safe roadways. Geometric design 

standards are largely underpinned on three main factors (Shalom Hakkert and Gitelman, 2014): 

a) To ensure uniformity among the road design elements. This aids in making traffic conditions and 

road user behaviour more predictable, leading to safer road conditions. 

b) To enable existing expertise in geometric design, often centred in major road authorities to be 

applied on a broad level; and 
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c) To ensure that road funds are spent satisfactorily through appropriate road designs. 

Over the years, it has been assumed that that design standards and norms, as they evolved, were 

developed from a solid base of research, with road safety as a major consideration for the design 

standards and the road elements (Thomas et al., 2013). However, during the past decades, the 

changing parameters of vehicle and the changing public attitudes have brought into question the 

solid foundations of the design norms (Padmanaban et al., 2010). 

Despite the acknowledgement of safety as a vital aspect of roadway design, empirical research 

necessary to establish the relationships between roadway geometry and safety are limited; 

sometimes contradictory, and otherwise insufficient to establish firm scientific and practically 

desirable relationships (Slop, 1994). Abele & Møller (2011) note that design standards that shape 

the road system are developed with safety in mind, but in some instances without quantitative 

knowledge of the link between the engineering decisions and their safety consequences. 

2.3.2 Road design standards: Namibian perspective 

The Southern African Development Community (SADC) Guidelines on Low-Volume Sealed Roads 

(Pinard et al., 2003) note that the design of a road is linked to key factors, including the state of 

development of a road network, functional and performance requirements within the characteristics 

of the local road environment. Additionally, Wedajo et al. (2017) reports that the road geometric 

design philosophy varies between developing and developed countries. 

The South African Pavement Engineering Manual (Rose et al., 2014) notes that the road network in 

the SADC region provides various complex characteristics and functionalities compared with road 

networks in developed countries. Design guidelines orientated towards developed countries are less 

suited to cater for the typically low traffic volumes, and complex network and operational efficiencies 

in the SADC region (CSRA, 1988). 

In SADC countries, as in most developing communities, there are no existing design standards that 

are solely based on local studies regarding safety and economic factors (Pinard, Ellis and Eriksson, 

2003). The design standards used in the design of SADC roads are rather a reflection of the 

standards in developed countries with which SADC countries have had ties. Most of the road design 

standards applied in SADC are a direct interpretation of global documents, with various modifications 

to address operational differences and deficiencies locally (CSRA, 1988). 

Within Namibia, The TRH 17 on the Geometric Design of Rural Roads (CSRA, 1988) explains that 

the surrounding road environment has a major impact on the level of safety road safety provided to 

road users through the design of roadway facilities. Due to the absence of standards designed and 

focused on the SADC region road setting (South African National Road Agency Limited, 2003), 
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standards designed for developed countries have been utilised and adopted to the local conditions 

in the SADC region, particularly the Policy of the Geometric Design of Highways and Streets 

(AASHTO, 2011). Ambunda (2018) found that alterations in international road design standards are 

often made without fully investigating the consequences that may arise from trying to incorporate 

local conditions in SADC. Similarly, in Namibia, practical measures to understand the impact of road 

design alteration to suit local conditions are not properly addressed, leading to potentially unsafe 

roadways for users (Nghishihange, 2018). 

The Technical Recommendations for Highways (TRH) series of guidelines, largely derived from 

practices in South Africa are used in the design of Namibian roads. The TRH series of guidelines 

were accepted by the Committee of State Road Authorities (1988) for the design and maintenance 

of local roadways. The TRH series is orientated towards addressing the operational and functional 

requirements of the South African road environment through recommending the appropriate 

practices for highway engineering (CSRA, 1988). 

For roads that traverse through the rural environment setting, the TRH 17 on Geometric Design of 

Rural Roads (CSRA, 1988) is used for the geometric design of the road elements. For urban roads 

in South Africa; the Urban Transport Guidelines (UTG) series; namely UTG 1, UTG 5 and UTG 7 are 

utilised for the geometric design of safe roads traversing through built up areas.  
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2.4 Road traffic safety 

2.4.1 Road traffic crashes 

A road traffic crash is defined as a collision or incident that may or may not result in an injury, 

occurring on a roadway and involving at least one moving vehicle (Peden et al., 2017). Road traffic 

crash history is a key indicator of the safety performance of a road section (Hagenzieker et al., 2014). 

Numerous techniques aid in determining the performance of road sections and serve as tools to 

analyse crash data, with the aim of identifying section with a greater need for safety improvements 

(Baguley et al., 2006; Hyldekær & Giacomo, 2016). In this regard, different methods of using 

historical crash data to conduct road network screening and assess safety performance are 

discussed in the following sections, highlighting their benefits and drawbacks. The methods 

discussed are: 

1. Crash frequency; 

2. Crash rate; and 

3. Critical rate. 

2.4.2 Road safety performance indicators 

2.4.2.1 Crash frequency 

Cenek et al. (2012) defines crash frequency as a frequency-based method of identifying and 

evaluating the safety performance of a site, which has traditionally been used by transportation 

engineers, and is still used by most road safety stakeholders. The crash frequency determined from 

historical crash data over a certain period of time can be used for the purpose of comparing and 

ranking the safety performance of different locations (Chen et al., 2016), at different injury severity 

levels (Cenek et al., 2012; Mannering & Bhat, 2014; Sisiopiku, 2011). 

Road crashes are relatively random events, such that a high crash frequency in any given year may 

simply be a random fluctuation around a much lower long-term crash average on a site, experiencing 

a phenomenon known as regression towards the mean (Choi et al., 2019; Demissie, 2017). 

Therefore, relatively shorter periods of analysis are not recommended as the basis for a safety 

intervention (Thomas et al., 2013). The Highway Safety Manual (AASHTO, 2010) recommends using 

data collected over a period of 3-5 years for a safety analysis, to minimise the effects of regression 

to the mean and unusual traffic activity (e.g. road reconstruction/ maintenance). 

In addition to experiencing the phenomenon of regression to the mean, sites with higher traffic 

volumes typically have higher crash frequencies than sites with lower volumes (Kockelman, 2006). 

This does not always mean that a site is in need of safety improvements, as crash sites with higher 

traffic volumes more often than not have lower severity risks compared to low volume crash sites 
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(Vayalamkuzhi and Amirthalingam, 2016). Also, the availability of reference group crash frequencies 

can be problematic in analysing the safety of crash sites, as crash causation factors are ascribed to 

a certain grouping of road users only (Kassu & Anderson, 2018; Mannering & Bhat, 2014; Massie & 

Campbell, 1993). 

2.4.2.2 Crash rate 

The crash rate technique improves upon the average crash frequency in that it normalises the 

frequency of crashes against exposure (Ambunda, 2018; Cenek et al., 2012). The road crash rates 

are determined by dividing the total crash frequency for a period of time by the estimated average 

annual daily traffic (AADT) during the time period investigated (Othman et al., 2009; AASHTO, 2010). 

Crash rates provide an improved method to compare the safety of two different sites (Gaudry and 

Vernier, 2002). 

Investigating sites with different traffic volumes requires the assumption that traffic volume and crash 

frequency have a linear relationship, which is often the case (Bamdad Mehrabani & Mirbaha, 2018; 

Taylor et al., 2002). Earlier studies using crash rates to identify hazardous road crash sites did not 

consider crash severity (Jones, 1976; Ogden, 1994). Sites with higher crash rates may have fewer 

severe crashes (fatal and serious injuries). To identify location with higher crash severities, recent 

studies have used fatal and serious injury crash rates to rank sites with a greater need for safety 

interventions (Ambunda & Sinclair, 2019; Zimmerman et al., 2012; Wang et al., 2009).  

The crash rates are determined from crash frequency, which fluctuates around a long-term average 

and experiences a regression towards the mean; For example, a site with an unusually recent period 

of high crash numbers might rank high compared to sites with an average higher number of crashes 

(AASHTO, 2010). To counter this phenomenon, similar to the crash frequency method, a study 

period of 3-5 years is recommended by the Highway Safety Manual (AASHTO, 2010) for a safety 

analysis. 

2.4.2.3 Critical rate 

The critical crash rate method is a widely used robust network screening technique, in which the 

calculated crash rate for a location is compared with a critical crash rate unique to each location 

(AASHTO, 2010). The critical crash rate is a function of the average crash rates of a reference group 

of locations with similar characteristics to the study being investigated (King, 2014). King (2014) 

states that the critical crash rate method provides a means of statistically testing how the crash rate 

at a particular location or section varies when compared to a reference group. The Highway Safety 

Manual (AASHTO, 2010) notes that locations with crash rates exceeding the critical crash rate 

Stellenbosch University https://scholar.sun.ac.za



27 

 

warrant a further detailed investigation in the diagnosis10 step of the road safety management 

process. 

Similar to the disadvantages of crash frequency and crash rate methods, the critical rate works with 

the assumption that road crashes and traffic volumes experience a linear relationship (AASHTO, 

2010). Also, the use of reference groups of critical rates can be problematic in examining the safety 

of roadways (Kassu & Anderson, 2018; Mannering & Bhat, 2014). Moreover, the regression to the 

mean is not addressed in this method (AASHTO, 2010; King, 2014). 

2.4.3 Road traffic safety: Global perspective  

Road safety remains one of the most significant issues globally, with current trends suggesting that 

it will continue to be the case in the foreseeable future, with estimates by the WHO (2017) indicating 

that road crashes kill over 1.2 million people annually and injure up to 50 million. Traffic safety has 

developed into a major concern in developing countries, with low- and middle-income countries 

(LMIC) reported to account for 90 percent of the road traffic crashes worldwide, while having only 48 

percent of the world’s vehicle population (Peden et al., 2017). Figure 2.1 illustrates the stark 

differences in the road traffic mortality rate among the different regions of the world. Globally, the 

average fatalities per 100 000 population are less than 9 in HIC, while LMIC have an average road 

fatality rate of 20, with the African region demonstrating the highest road fatality rate of 26.6 fatalities 

per 100 000 population (World Health Organisation (WHO), 2018).  

 

Figure 2.1 Road fatality rates in the various WHO regions in 2015 (WHO, 2018) 

While traffic safety has been improving in high-income countries (HIC), road safety trends indicate 

that road fatalities are forecasted to rise to almost 2 million road fatalities annually by 2020 in LMIC 

only (Wegman, 2017). Projections of future traffic fatalities suggest that the global road death toll will 

                                                           
10 The diagnosis step involves traffic engineers correctly diagnosing the type of safety problem on a road section/ 
location through reviewing the crash data, assessing field conditions and defining a problem statement (Rogers, 2003). 
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grow by approximately 66 percent between the years 2000 and 2020 (Kopits and Cropper, 2005). 

South Asia is estimated to have the highest change in the rate of fatalities over the 20-year period, 

with a 140 percent predicted. In contrast, countries in the high-income bracket are estimated to have 

a 24 percent decrease in the rate of fatalities over the same period. According to Kopits & Cropper 

(2005), Sub-Saharan Africa is estimated to have a growth of 70 percent in the rate of fatalities over 

the 20 year period. Figure 2.2 illustrates the average change of rates in the different regions of the 

world. 

Additionally, there is a stark difference in the road mortality rate in the types of road users in the 

different regions of the world (WHO, 2018). Figure 2.3 shows that the Africa has the highest risk for 

non-motorised users (NMU), with 43 percent of all road related deaths involving NMUs, compared 

to 19 percent globally. In contrast, the lowest proportion of NMUs deaths is reported in the Americas, 

with 16 percent of all road fatalities. The highest proportion of motorised users’ (MU) deaths is 

reported in the European region, with 62 percent of all road related deaths, which is above the global 

average of 54 percent. In Africa, MU deaths account for half (50 percent) of all the road related 

deaths (WHO, 2018). The lowest proportion of MU deaths is reported in South-East Asia, with 48 

percent of all road deaths in the region.  
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Figure 2.3 Road traffic deaths by type of road user in various WHO regions 2015 (WHO, 2018) 

The future of road safety is uncertain and definitely not the same for all regions of the world (Singh, 

2017). It is therefore important that LMIC work towards designing road safety strategies and 

implementing actions plans that align with local conditions, instead of adopting the road safety 

approaches taken by HIC which have different road environment and traffic conditions (Wegman, 

2017). 

2.4.4 Road traffic safety: Namibian Perspective 

The road traffic safety situation has been a cause for major concern in Namibia in recent years 

(Ambunda and Sinclair, 2019). Road traffic related deaths are reported as one of the leading causes 

of death in Namibia, reaching approximately 4 percent of the total deaths in the country (Namibia 

National Road Safety Council (NRSC), 2012). A study by Eggleston et al. (2016) reported that the 

number of fatalities increased by 34% from 2011 to 2014. Statistics by the Namibian Statistics 

Agency (2015) reported that at the end of 2015, the road crash fatality rate on Namibian roads 

significantly rose above the African continental average of 26.6 fatalities per 100 000 population, 

with 31.11 road fatalities per 100 000 population. A study by the World Health Organisation (2015) 

identified Namibia as one of the countries with a precarious road safety situation, ranking 45th out of 

the 185 countries assessed. Amweelo (2016) reports that 70 percent of road crashes in Namibia are 

reported in built-up environments, with a high proportion of slight injury crashes. In contrast, a high 

proportion of fatal and serious injury crashes are reported on rural roadways, despite crashes on 

rural roadways comprising 30 percent of crashes on the road network.  
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A study conducted by the Namibia National Road Safety Council (2012) on the historical crash data, 

with the aim of monitoring the level of safety over several years (2002-2012), identified a number of 

primary indicators to measure the risk of exposure for road users on the Namibian road network, 

with the aim of making meaningful comparisons and establish road safety trends. Table 2.6 shows 

the absolute variations in numbers in the road safety condition from 2002 to 2012. The number of 

road traffic crashes steadily increased from year to year, with an average yearly growth of 5.33 

percent. The number of fatalities vary from year to year, with the highest number of fatalities (549) 

recorded in 2010. The highest number of injury crashes (2 585) were recorded in 2011 according to 

the NRSC (2012).  

Table 2.6 Road crash statistics from 2002 to 2012 in Namibia (NRSC, 2012) 

Year 

Road Safety Numbers 

Crashes 

Number 

of 

Vehicles 

Involved 

Injury 

Crashes 
Fatalities 

Serious 

Injuries 

Slight 

Injuries 

Registered 

Vehicles 11 

Vehicle 

Kilometres 

Travelled 

(VKT) 12 

National 

Population 

2002 10 915 17 708 2 125 508 1 396 3 053 180 342 4 722 048 700 1 860 145 

2003 10 957 17 838 1 956 478 1 243 1 801 192 321 4 795 168 400 1 891 097 

2004 10 262 17 074 1 763 491 972 2 480 204 460 5 089 239 800 1 923 347 

2005 11 146 18 257 1 834 452 1 023 2 572 218 140 5 343 794 700 1 956 899 

2006 13 396 19 870 1 248 530 795 1 991 232 348 5 747 261 300 1 991 746 

2007 13 720 20 247 2 053 452 1 125 2 467 239 885 5 929 692 400 2 027 870 

2008 13 825 21 710 2 279 459 1 822 2 991 213 939 6 409 643 700 2 065 224 

2009 15 537 24 433 2 537 525 1 988 3 089 229 908 7 141 761 800 2 103 762 

2010 17 387 24 817 2 570 549 2 088 3 131 249 421 7 969 687 101 2 143 411 

2011 17 835 25 337 2 585 492 2 264 3 395 269 907 8 085 571 000 2 113 077 

2012 17 892 25 189 2 461 572 2 596 3 172 280 583 8 271 980 501 2 155 440 

Table 2.7 shows the results of the road safety risk indicators monitored to establish the level of safety 

on the Namibian road network during the period 2002 to 2012. According to the NRSC (2012), 

crashes per 100 000 population have increased steadily over the study period, with an average 

growth of 3.78 percent annually. In contrast, fatalities and injuries per 10 million VKT have steadily 

decreased, with a 3.89 percent and 1.23 percent average decrease annually. The fatalities per 

100 000 population vary over the period under consideration, with the highest fatality rate (27.3) 

                                                           
11 Registered vehicles information are obtained from the Namibian Roads Authority’s Traffic Information System for 
2012  
12 The national population figures are projections based on the calculations contained in the National Population Census 
Main Report 2011 (Namibia Statistics Agency, 2011). 
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recorded in 2002. Similarly, injuries per 100 000 population vary over the study period, with the 

highest injury rate (122.3) recorded in 2011. 

Table 2.7 Road safety risk indicators from 2002 to 2012 in Namibia (NRSC, 2012) 

Year 
 

Road safety Risk Indicators (Rates of Comparison) 

Crashe

s/ 1000 

vehicle

s 

Crashes/100 

000 

population 

Injury crashes/ 

100 000 

population 

Fatalities/ 100 

000 

population 

Injuries/ 100 

000 

population 

Fatalities / 

10 million 

VKT 

Injuries per 

10 million 

VKT 

2002 60,5 586,8 114,2 27,3 239,2 1,08 9,4 

2003 57,0 579,4 103,4 25,3 161,0 1,00 6,3 

2004 50,2 533,5 91,7 25,5 179,5 0,96 6,8 

2005 51,1 569,6 93,7 23,1 183,7 0,85 6,7 

2006 57,7 672,6 62,7 26,6 139,9 0,92 4,8 

2007 57,2 676,6 101,2 22,3 177,1 0,76 6,1 

2008 64,6 669,4 110,4 22,2 233,0 0,72 7,5 

2009 67,6 738,5 120,6 25,0 241,3 0,74 7,1 

2010 69,7 811,2 119,9 25,6 243,5 0,69 6,5 

2011 66,1 844,0 122,3 23,3 267,8 0,61 7,0 

2012 63,8 830,1 114,2 26,5 267,6 0,69 7,0 

A study entitled “Enhancing the road safety situation in Namibia” by the Legal Assistance Centre 

(2016) notes that the issue of road safety on Namibian roadways is undoubtedly a cause for concern, 

and it is vital that the solutions recognise the potential road safety improvement measures available 

on the regional and international levels, which may be considered and revised to address the local 

road safety conditions. 
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2.5 Rural-urban road crash divide 

Numerous spatial examinations of road crashes have found that road safety problems are hardly 

uniform over space (Loo et al., 2011; Satria and Castro, 2016; Imprialou et al., 2016). In fact, the 

rural-urban divide in road safety has been recognised worldwide. Several studies have found rural 

roads to be susceptible to higher severity crash rates compared to urban roads (Bayliss, 2009; 

Godavarthy and Russell, 2016; Loo et al., 2011; Kassu & Anderson, 2018). The outcome of road 

crashes on rural roads are usually more severe as a direct result of higher operating speeds, low 

traffic volumes and less restrictions by the operating environment (Godavarthy and Russell, 2016), 

despite the low number of road crashes occurring on rural roads compared to urban roads (Bayliss, 

2009). In contrast, the severity of crashes on urban roads is usually lower because of the greater 

limitations imposed on speed by the traffic conditions and traffic control measures (Kassu and 

Anderson, 2018), notwithstanding the higher occurrence of road crashes in urban areas (Bayliss, 

2009). The high number of crashes on urban roads has prompted road safety researchers to focus 

on urban roads, at the expense of rural roads which tend to have greater severity risks 

(Vayalamkuzhi and Amirthalingam, 2016). 

An early crash data analysis study by Robinson (1984) found that approximately two-thirds of fatal 

road crashes occur on rural roads while more than half to three-quarters of injury road crashes occur 

on urban roads. Also, a study by the Organisation for Economic Co-Operation and Development 

(OECD) (2003) on road safety in Austria, France, Germany, Italy and the United Kingdom found that 

50 to 75 percent of road crashes causing low severity injuries happened on urban roads. The OECD 

(2003) also found that more than 60 percent of fatalities in road crashes happened on rural roads. 

A study by Bayliss (2009) found that the proportion of serious and fatal crashes increased on rural 

roads compared to urban roads, despite an overall decrease in the occurrence of road crashes 

between 1972 and 2007 in Europe. Figure 2.4 shows that a higher proportion of fatal and serious 

road crashes occurred on rural roads compared to urban roads in the historical crash data analysed 

by Bayliss (2009). The fatal crashes on rural roads comprised of 57 percent of the analysed crash 

data compared to 43 percent on urban roads in 1972. Fatal crashes increased to 64 percent on rural 

roads while the proportion of fatal crashes on urban roads decreased to 34 percent of the crashes 

analysed in 2007. The rural-urban serious road crash divide also showed a similar trend. Serious 

rural road crashes comprised of 55 percent of all the crashes compared to 45 percent on urban roads 

in 1972. In 2007, the proportion of serious rural road crashes increased to 57 percent while the 

proportion of serious road crashes on urban roads slightly decreased to 43 percent. Singh (2017) 

notes that higher operating speeds on rural roads and improvements in the safety of urban roads 

are key factors contributing to the varied proportion of fatal and serious crashes on rural and urban 

roads. 
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Figure 2.4 Fatal and serious road crashes reported between 1972 and 2007 (Bayliss, 2009) 

Hakkert & Braimaister (2002) note that due to generally shorter travel distances and high traffic 

volumes on urban roads, a great number of people are encouraged to use bicycles or to walk to their 

destinations. Several road crash types occur on urban roads, with a great proportion of crashes 

occurring at intersections (Kassu and Anderson, 2018). Drivers on urban roads are also often 

involved in a great number of rear-end and turning crashes (Archer and Vogel, 1999). The urban 

roads are regarded as more complex compared to rural roads, due to vastly varied road user types 

and needs, and higher physical and mental demands placed on drivers, reflected in the high 

occurrence of crashes on urban roads (Bayliss, 2009). 

Driver exposure, longer travel distances and higher operating speeds, are more common problems 

on rural roads than on urban roads (Shibani, 2016). Several driver behaviour and design factors 

have been identified as key factors influencing the occurrence of various crash types on rural roads, 

including distracted driving, unsafe passing behaviour, narrower road lanes, lack of physical traffic 

separation and poor lighting conditions (Shalom Hakkert & Gitelman, 2014; Amarasingha & 

Dissanayake, 2015; Yan et al., 2012). Due to longer travel times on rural roads, drivers tend to get 

fatigued and become inattentive (Godavarthy and Russell, 2016), leading to a high occurrence of 

single-vehicle run-off road crashes on rural roads (Liu & Subramanian, 2009; Amarasingha & 

Dissanayake, 2015). Drivers on rural roads are also often involved in sideswipes and head-on road 

crashes, due to human errors (distracted driving and reckless overtaking), narrower road lanes and 

a lack of physical separation for opposing traffic (Yan et al., 2012).  
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2.6 Road safety risk factors associated with traffic crashes 

Road crashes are often caused by a combination of factors; human factors; roadway factors; and 

vehicle factors (Munteanu et al., 2014).The promotion of road safety should be a priority for every 

road authority and safety stakeholder (Wretstrand et al., 2014). Attention is generally focused on 

areas where a relatively high number of road crashes occur (Kundakci, 2014). Othman et al. (2009) 

state that measures designed to tackle the concentration of crashes should be based on a thorough 

and objective analysis of the causation factors. Understanding factors that influence the occurrence 

of crashes is vital in developing a proactive attitude towards avoiding situations that can create a 

hazardous road safety environment (Wegman, 2017; Dutch Ministry of Transport, 2005). 

A concept of Sustainable Road Safety with a vision orientated towards safer road traffic systems 

was developed in the Netherlands (Wegman and Elsenaar, 1997). The sustainable safety concept 

aims to avoid burdening the future generation with the consequences of road traffic crashes that 

may arise from current and future mobility demands. Sustainable safety is based on a systematic 

approach where all road safety factors and the transport system are linked, and affect the 

performance of the whole safety system (Wegman, 2017). At the highest level of the safety system 

is the interaction between the driver, the roadway environment and the vehicle factors. At the next 

level is the relation between the function13, form14 and usage15 of the roadway (Dutch Ministry of 

Transport, 2005). The systematic approach to Sustainable Road Safety is illustrated in Figure 2.5. 

 

Figure 2.5 Systematic approach to Sustainable Road Safety (Dutch Ministry of Transport, 2005) 

  

                                                           
13 Function related to the use of the roadway as intended by the road authority; 
14 Form related to the geometric design and layout characteristics of the roadway; 
15 Usage relates to the actual use of the roadway, the behaviour of the road users and the legislation relating to the 
requirements on the use of the roadway (Committee of State Road Authorities, 1988).  
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It is generally agreed that road safety risk factors should be investigated and understood towards 

delivering a safe and sustainable approach to road safety issues, with the aim of providing pro-active 

preventative measures addressing the functionality, homogeneity and predictability functions of road 

safety (Discussed in Section 2.2), as opposed to post-intervention measures. This section will 

examine the interactive relationship between risk factors that influence crash involvement; namely 

the behavioural aspects of the road user, the roadways environment; and the vehicle factors. The 

risk factors identified in the study and the Two-Step Cluster analysis technique applied to explore 

their correlation to crash occurrences are described in Chapter 3. 

2.6.1 The Swiss cheese model of road crash causation 

The Swiss Cheese Model (SCM) by James Reason in 1990, on the systems perspective theory of 

human error, focuses on the interaction between system wide inadequacies and errors and their 

influence on organisational failures (Reason, 1990). The SCM has served as one of the most central 

models in the explanation of road crash causation factors, as it considers a multilayer description of 

the complex factors and systems that contribute to road crashes (Hughes et al., 2015; Grant et al., 

2018). 

The SCM illustrated in Figure 2.6, describes the weaknesses that are created in the system’s 

defences by the different stakeholders at different levels . These system inadequacies occur due to 

inaction and/ or inapt decisions by various stakeholders. The weaknesses predispose the users of 

the system to high crash risks, due to the accumulation and alignment of a multitude of risk factors 

– the holes in the cheese (Zhang et al., 2018; Adanu et al., 2019; Venter, 2019).  

  

Figure 2.6 Swiss cheese model of road crash causation (Salmon and Johston, 2013) 

The SCM presents a vivid and simpler description of the failures that can occur in a transport system. 

The failures in the interactive factors that constitute a road traffic system can impact how road users 
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perceive the road environment, the behaviour and execution of tasks on the road and the planning 

and decision making of different stakeholder in road safety (Salmon and Johston, 2013;Afghari, 

2018). 

2.6.2 Driver behaviour 

In both developed and developing countries, the behaviour of drivers has been recognised as an 

important risk factor associated with road traffic crashes (Peden et al., 2017), with an estimated 90 

percent of road crashes involving human error to a certain extent (Čičković, 2016). Peden et al. 

(2017) cited in Demissie (2017) states that among the risk factors considered to significantly impact 

the frequency and severity of road crashes are driver age, gender, public safety education, driver 

fatigue, socio-economic status and propensity for speeding. In an attempt to address and effectively 

improve the road safety situation, it is vital to understand the human factors associated with driving 

safety (Bax et al., 2014). 

2.6.2.1 Driver age 

A report by the World Health Organisation (2018) indicated that road crash injury is the leading cause 

of death for young adult drivers between 15 and 44 years, accounting for 59 percent of global road 

traffic fatalities. Across the world, young drivers have a higher crash risk than older drivers. Literature 

from developed countries has shown that even with corrected exposure factors, young men have 

higher crash rates involvement than women (Parizel & Phillips, 2004; Butchart & Mikton, 2014). The 

elevated crash risk for young drivers was reported to be related to the following factors: 

a) Mobility patterns and vehicle characteristics (For example, using a borrowed vehicle) 

b) Psychological characteristics (over-confidence or thrill-seeking) 

c) High blood alcohol concentration levels 

d) Excessive or inappropriate speeds 

2.6.2.2 Driver gender 

The Global Status Report on Road Safety by the World Health Organisation (2018) indicated that 

approximately 77 percent of road traffic fatalities occurred among men. Road traffic fatality rates are 

reportedly higher in men than in women in all WHO regions globally across all age groups and 

income levels. The huge variation in fatality rates are significantly related to high exposure levels 

and thrill-seeking behaviour among men than in women (Peden et al., 2017).  
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2.6.2.3 Driver speed 

Speed is reported to be at the core of road safety, with both excessive16 and inappropriate17 speeds 

leading to unsuitable conditions on the roadway (World Health Organisation, 2018). Excessive driver 

speed has been found to have an exponentially detrimental effect on safety (Ahmed, 2013; Singh et 

al., 2004; Deublein et al., 2013). The NRSC (2012) found that driver excessive speeds and driving 

errors such as single-vehicle crashes and overtaking errors contributed to more than 63 percent of 

crashes on Namibian roads. A report by Peden et al. (2017) noted that the likelihood of road crashes 

and severity levels increased with higher average operating speed and speed variance. Foss & 

Goodwin (2003) identified numerous factors that significantly influence driver speed selections, as 

shown in Table 2.8. 

Table 2.8 Example of factors influencing driver speed selection (Foss and Goodwin, 2003) 

Road and vehicle related Traffic and environmental related Driver related 

Road Traffic Age 

Width Density Sex 

Gradient Traffic composition Reaction time 

Alignment Prevailing speed Attitudes 

Surrounding Environment Thrill-seeking 

Layout Weather Risk acceptance 

Markings Surface condition Hazard perception 

Surface quality Natural light Alcohol level 

Vehicle Road lighting Ownership of vehicle 

Type Signs Circumstances of trip 

Power/weight ratio Speed limit Occupancy of vehicle 

Maximum speed Traffic enforcement - 

Comfort - - 

 

2.6.2.4 Alcohol use 

Several reports and studies report that drinking and driving increases the risk and likelihood of fatal 

and serious injuries resulting from a road crash (Peden et al., 2017; Brookhuis, 2014; Schulze & 

Koßmann, 2010). Similarly, Shinar (2007) reports that alcohol impairment is directly related to the 

amount of alcohol consumed. The World Health Organisation (2018) reports that the risk of being 

involved in a crash increases significantly when the blood alcohol concentration (BAC) is above 

0.04g/dl (WHO, 2018). The relative risks of involvement in fatal crash for BAC levels illustrated in 

                                                           
16 Excessive speed is defined as vehicle speed exceeding the relevant speed limit; 
17 Inappropriate speed refers to vehicles travelling at a speed unsuitable for the prevailing road and traffic condition 
(Peden et al., 2017). 
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Figure 2.7, in a study by Compton et al. (2002) cited in the Global Status report on Road Safety 

(WHO, 2018). 

 

Figure 2.7 Relative risk of driver involvement in road crash in relation to blood alcohol concentration 

levels (Compton et al., 2002) 

2.6.2.5 Drug use 

Driving under the influence of drugs has increasingly become a safety issue in many countries 

globally (Li et al., 2013; Verstraete et al., 2014; Peden et al., 2017). Li et al. (2013) notes that driving 

performance can be impaired by a wide array of illicit and prescription drugs. Several studies have 

found marijuana as the most frequently detected drug substance in the general driver population and 

in drivers involved in road crashes (Ul et al., 2014; Li et al., 2013; Compton & Berning, 2015; Jones 

et al., 2003). Marijuana has been found to double the risk of road crash occurrence (Asbridge et al., 

2012; Li & Baker, 2012),by impairing driver cognitive functions and driving performance, such as 

psychomotor skills, driver divided attention and lane tracking (Arria et al., 2011; Kelly et al., 2004; 

Hartman & Huestis, 2013).  

Benzodiazepines have also been frequently detected in drivers (Carfora et al., 2018; Kelly et al., 

2004) and have been consistently found to significantly increase the risk of road crash involvement 

and crash culpability (Carfora et al., 2018; Li et al., 2013). Several studies have found that 

nonmedical stimulants pose a threat to driving safety, when used in high doses, in combination with 

alcohol or other drugs, or with lack of sleep (Kelly et al., 2004; Ramaekers et al., 2012). 

2.6.2.6 Distracted driving 

Numerous factors have been identified to influence impaired driving, with a recently marked increase 

in the use of mobile phones becoming a growing concern among road safety stakeholder. A Global 

Report on Road Safety by the WHO (2018) concluded that using mobile phones while driving results 
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in cognitive distraction, consequently reducing drivers alertness and perceptual skills . Drivers using 

mobile phones while driving are approximately four times more likely to be in a road crash (Karlaftis 

and Golias, 2009). Another study described that mobile phones impair the drivers cognitive whether 

they are used in a hand-held or hand-free manner (Thomas et al., 2013). 

2.6.2.7 Fatigued driving 

Fatigue is defined as a gradual and cumulative process associated with a loss of efficiency and a 

disinclination for any kind of effort (Grandjean, 1979 cited in Dagli, 2004). Zhang et al. (2016) note 

that fatigue increases as time-on-task progresses. Thus, Dagli (2004) defines driver fatigue as 

drivers’ loss of efficiency to drive a vehicle due to prolonged driving, sleep deprivation and 

exhaustion. Sleep deficiency and prolonged physical and mental activities have been found to 

significantly impact of the cognitive functions of drivers, including alertness, perceptual skills, risk 

proclivity and decision making (Swart & Sinclair, 2015; Hartley, 1998). Several human, temporal, 

environmental and sleep related factors shown in Table 2.9 were found to predispose a driver to 

fatigue. (Hartley & Arnold, 1996 cited in Dagli, 2004; Peden et al., 2017).  

Table 2.9 Factors that predispose a driver to fatigue (Peden et al., 2017) 

Driver at risk of fatigue Temporal factors Environmental factors Sleep-related 

factors 

Young drivers (up to 25 

years) 

Driving between 2am and 5am Driving in remote areas 

with featureless terrain 

Driving with sleep 

debt 

Drivers over 50 years More than 16 hours of wakefulness 

before trip 

Monotonous roads Driving with sleep-

related conditions 

Males Long work period before trip Long-haul driving Driving after poor-

quality sleep 

Shift workers and those 

working extended hours 

Long time since start of trip Main arterial roads Drivers disposed 

to nodding off 

Those with medical 

conditions (such as 

narcolepsy) 

Irregular shift work before trip Extreme climatic 

conditions 

 

Driving after consuming 

alcohol 

Driving after successive nights of shift 

work 

Driving on unfamiliar 

routes 

 

Driving after inadequate 

rest and sleep 

Driving under time pressure   

 Driving between 2pm and 6pm 

(Especially after eating or taking even 

one alcoholic drink) 
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Estimates of the proportion of road crashes attributed to driver fatigue vary in different part of the 

world. A population based case-control study in New Zealand by Connor (2002) found that factors 

that significantly increased the risk of a fatal/ serious injury road crash were: 

a) Driving while feeling sleep; 

b) Driving after less than five hours of sleep in the preceding 24 hours; and 

c) Driving between 2am and 5am 

Results from surveys have indicated that more than half of drivers have at some time fallen asleep 

while driving or are vulnerable to driver fatigue (ETSC, 2001; Swart & Sinclair, 2015). A study by 

Davidović et al. (2018) on the working hours and habits of professional drivers indicated the risk of 

driver fatigue related crashes increased when drivers were driving at night, the length of their working 

day had increased or when they were working irregular hours. Similarly, a temporal analysis of road 

crashes by Noce et al. (2008) indicated that peak levels of road crashes related to fatigue at night 

are often 10 times higher than daytime road crash levels as shown in Figure 2.8.  

 

Figure 2.8 Heavy vehicles involved in fatigue related road crashes according to time of day (Noce et 

al., 2008) 

Connor (2002) concluded that fatal/serious road crash incidence could reduce by up to 19 percent, 

with a reduction in all three of the driver behaviour factors. In the United States, studies by the 

National Transportation Board (NTSB) found that 52 percent of single-vehicle crashes involving 

heavy vehicles were related to driver fatigue and that nearly 18 percent of the road crashes were 

attributed to drivers falling asleep (NSTB, 1995; NSTB, 1999 cited in Peden et al., 2017). The 

European Transport Safety Council (ETSC) Identified driver fatigue as a significant factor in 20 

percent of commercial road crashes in European countries (ETSC, 2001). 
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2.6.3 Roadway environment 

Road crashes tend to be distributed throughout a road network, occurring in clusters on a single site 

or along a road section (Songpatanasilp et al., 2015). While good road design and regularly 

maintained roads can greatly aid in reducing the frequency and severity of road traffic crashes, 

negative road designs can significantly contribute to a precarious road environment (Batrakova and 

Gredasova, 2016). The road environment can trigger human factor failures as it influences the 

information and instructions communicated to the road users (Peden et al., 2017; Krug & Sharma, 

2009).  

Negative road engineering factors include those where a road defect directly causes a traffic crash, 

where a road design element communicates ambiguous information to drivers thereby causing a 

driver error, or where a feasible alteration to the road would have reduced the likelihood to a road 

crash has not been done (World Health Organisation, 2018). Krug & Sharma (2009) note that road 

environments that promote and allow risky driver behaviour (e.g. through encouraging high traffic 

speed) or that have not considered safety in all conditions (e.g. at night or in poor weather conditions) 

indirectly increase the likelihood of a road crash occurring. In the planning, design and maintenance 

of the road network, the following four key elements affecting road safety have been identified by 

Barrel et al. (2014). 

1. Safety awareness in the planning of new roads; 

2. The inclusion of safety features in the design of roads; 

3. Pro-active safety improvements to existing roads; and 

4. Remedial measures on high-risk crash locations. 

The contribution of road factors to the occurrence of road traffic crashes varies significantly between 

developing and developed countries. In Europe, a review of the road risk factors showed that road 

environment factors were highly influential in 28 percent of road traffic crashes (Hyder et al., 2017). 

A road safety analysis carried out in the Philippines found that poor road conditions only contributed 

to 5 percent of the road traffic crashes (Tamayo, 2009). Similarly, a study carried out by Demissie 

(2017) on the impact of the road environment on road traffic crashes revealed a low contribution of 

2.9 percent to traffic crashes in Kenya. This significant variance can likely be attributed to inter-

observer variations (Demissie, 2017). Despite the differences in the magnitude of the contribution of 

the road environment to road crashes, it is notable that a road designed according to operational 

and functional requirements, and that is maintained regularly, is vital in influencing the perception of 

drivers, leading to a safer road environment for all road users (Munteanu et al., 2014; Wedajo et al., 

2017).  

It has been reported that the road environment factor is worse in developing countries due to the 

poor road design and maintenance (Wegman, 2017). In addition, a variety of traffic mixes requiring 
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with different infrastructural needs, often not provided, are commonly observed on the roads such 

as high speed vehicles, heavy commercial traffic, pedestrians, cyclists and motorcycle users (Mitra 

et al., 2017). The rapidly increasing motorisation rates in developing countries are outpacing the 

current transportation infrastructure capacity, leading to an increase in crash rates and severity levels 

(Wang et al., 2013). 

2.6.4 Vehicle-related factors 

Vehicle defects are considered as a key factor in influencing road traffic crashes globally (Demissie, 

2017). Defective vehicle parts such as tyres, brakes and vehicle driving lights affect driver’s ability 

to maintain control of a vehicle and can lead to road crashes (Al-Matawah, 2009; Hakkert et al., 

2007). Defective safety tools including warning lights and vehicle indicator lights may also inhibit 

drivers from communication their intentions to other road users, leading to a dangerous interactions 

between vehicles and other road users (Demissie, 2017). The maintenance and inspection of the 

vehicle safety systems is crucial to ensure the safety of drivers and all road users (G Botha, 2005). 

In Namibia, the Namibian National Road Safety Council (NRSC) states that a significant number of 

vehicles on the rural roads are poorly maintained and this lack of maintenance affects the likelihood 

of crashes occurring (NRSC, 2012). Vehicle defects are only seldom reported to contribute to road 

crash occurrence. They are reported to contribute to 3 percent of crashes in developed countries, 

with examples of approximately 5 percent in Kenya and 3 percent in South Africa (World Health 

Organisation, 2018). A study by Kilawa & Nyongole (2015) reported that 15 percent of all road 

crashes in Tanzania were due to defective breaks. These regional differences could well reflect 

differences in crash reporting rather than differences in the actual extent of the problem. However, 

in all cases, vehicle defects appear to be a significantly less common cause of crashes than human 

errors. A study by Moodley & Allopi (2008), for example, found human error to be the most significant 

factor in affecting road crashes, with vehicle defects contributing less frequently.  

Most developing countries lack the effective regulations and, in some instance, poor implementation 

of regulations to ensure that vehicles are inspected and maintained with the aim of keeping defective 

vehicles off the roadway. A study carried out in South Africa found that transportation authorities are 

critical stakeholders in reducing road crashes through properly identifying vehicles with defects and 

ensuring that vehicles are roadworthy (van Scoor et al., 2001). 
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2.7 The Impact of road design characteristics and traffic conditions on road safety 

A large body of research exists that investigates the contributing factors to road crashes from a wide 

range of aspects and approaches, with relationships between road design elements, traffic 

conditions and road crashes explored on several occasions (Mohammed, 2013; Gaudry and Vernier, 

2002; Dwikat, 2014). This section provides a look at several relationships, assumed and proven, 

between road crashes, road design and traffic related characteristics, and the extent to which they 

impact road safety on rural roads worldwide. 

Road crashes are characterised by multiple causes (Dwikat, 2014). The alignment of the road 

influenced by the surrounding road environment is an important factor in road safety: dimension of 

radii, ratio of consecutive curves, dimension of vertical curves and sight distances conditions. In 

various evaluations of road safety effects, driver behaviour, influenced by personality, skills and 

experience plays a considerable role in the cause of road crashes (Mohammed, 2013). 

Deller (2013) affirms that geometric design elements play an important role in defining the traffic 

operational efficiency of any roadway. Key geometric design elements that influence traffic 

operations and impact the safety of the roadway include the number and width of road lanes, the 

presence and widths of shoulders and the horizontal and vertical alignment of the highway 

(Mohammed, 2013). 

Ahmed (2013) mentions that the road network has an effect on crash risk because it determines how 

road users perceive their environment. Roadway factors, including roadway and roadside design 

elements, play an important role on determining the risk of road crashes (Stephan and Newstead, 

2017). Negative road engineering factors include those where road defects directly triggers a crash 

or where some element of the road environment misleads a road user and thereby creates human 

errors (Parizel and Phillips, 2004). 

The geometry of the roadway plays a significant role in road crash frequencies as well as the crash 

severity levels (Dwikat, 2014). Different elements of the road design are important. However, a few 

parameters are considered to be more important in influencing road safety than others. This section 

provides an extensive review of literature on rural roads design and traffic characteristics on road 

safety. 
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2.7.1 Speed 

Traffic speed is probably the most important factor impacting crash frequency and severity on the 

roads (Elvik et al., 2004). Empirical data shown by several studies led to the assumption that 

increased speeds result in more severe road crashes, should other factors (environment and 

vehicles factors) remain the constant (Kockelman, 2006; Thomas et al., 2013). However, as the 

association between speed and the road crash frequency can be influenced by a multitude of other 

roadway factors, the extent of the relationship between speed and the likelihood of road crash 

incidence can vary depending on traffic and roadway conditions (Edquist et al., 2009; Vadeby et al., 

2018).  

Speed can affect the likelihood of a crash occurring in several ways. A distinction between excessive 

speeds (driving faster than the speed limit) and inappropriate speed (driving too fast for the road 

conditions, although speed may be under the posted speed limit) is made by the literature (Edquist 

et al., 2009; Organisation for Economic Co-operation and Development, 2006). Driving too fast 

makes lateral control more difficult and reduces the available time and distance to recognise and 

respond to hazards in the roadway (Edquist et al., 2009; Sjogren et al., 2012; Turner et al., 2015). In 

addition, the severity levels of a crash are highly affected by the impact speed (Organisation for 

Economic Co-operation and Development, 2006). 

The extent of the relationship between speed and road crashes has been investigated by several 

studies, with most study findings concluding that higher speed selections have a direct relationship 

with higher road crash rates (Godavarthy and Russell, 2016; Nilsson, 2004; Feuillet et al., 2015; 

Taylor et al., 2002). Taylor et al. (2002) found positive associations between speed changes and 

crash frequency by employing a cross-sectional analysis on 174 road segment in England. Taylor et 

al. (2002) created dummy variables to represent the different categories in the Poisson regression 

models and included the set of road characteristics used to classify the segments in the models.  

A before-after study by Nilsson (2004) extensively investigated the impact of change in speed on 

road safety using the Power Model. The study found positive correlations between change in speed 

and the severity of the road crashes, with the extent of the relationship influenced by the severity of 

the crash according to the power function as illustrated in Figure 2.9. Similarly, an extensive 

evaluation on the effects of speed change on road crashes by Elvik et al. (2004) concluded a linear 

causal relationship between speed changes and changes in road crashes. An area wide-level 

investigation by Nilsson (2005) on road speed and casualties concluded that an increase in the 

average operating speeds positively associated with an increase in road fatalities and injuries  
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Figure 2.9 Relationship between percentage change in speed and percentage change in road crashes 

in power model (Nilsson, 2004) 

The speed limits on the roads captures the characteristics of both the speed and speed variance 

(Wang et al., 2013). Several studies explored and found extensive relationships between road 

crashes and speed limits (Deller, 2013; Woolley et al., 2002; Richter et al., 2016). Studies examining 

speed limit impact on road safety are often based on either a highly aggregate region level speed or 

a disaggregate road level speed. An extensive investigation by Kockelman (2006) on highway speed 

limit change in Washington State using time series found that increasing the speed limit had a direct 

impact on higher crashes rates. Deller (2013) found that crash frequency would reduce if the speed 

limits were to be reduced on Australian highways. Richter et al. (2016) investigated the influence of 

speed limits on overtaking on two-lane rural highways and found that reduced speed limits led to a 

decrease in the number of road crashes. 

Speed was found to have significant effects on the safety of the roadway in the literature. Several 

studies concluded that increasing speed and greater speed variations create a hazardous road 

environment. Also, studies investigating speed limits concluded that changes in speed limits often 

resulted in changes in travel speed independent of the design conditions of the road, which resulted 

in a linear relationship between changes in posted speed limits and road crash rates.  
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2.7.2 Traffic volume 

Traffic volume is defined as the number of vehicles crossing a particular point on the road study 

segment per hour, often expressed in terms of average daily traffic (ADT) and measured in vehicles 

per day (May, 1990). The traffic volume is instrumental in determining the annual average daily traffic 

(AADT), which is vital in developing road crash prediction models (El-basyouny & Sayed, 2009; 

Eenink et al., 2005; Glavić et al., 2016).  

In understanding how road safety is affected by the volume of traffic and the interaction between 

vehicles, it is important to note that the operational conditions of the traffic flow on a roadway are 

characterised by the flow18-speed19 and the density20-flow diagrams, which serve as the basic 

theoretical traffic flow correlations (Marchesini and Weijermars, 2010). The actual field conditions 

need to be described while distinguishing more sophisticated correlations. The Highway Capacity 

Manual produced by the Transortation Research Board (2000) describes the correlations between 

flow characteristics illustrated in Figure 2.10, that when there are hardly any vehicles and therefore 

density approaches zero, speed will approach free-flow speed (uf), meaning that a driver’s speed is 

not influenced by that of other drivers. Simultaneously, flow will approach zero as well. Speed will 

decrease to an optimum speed (uo) when density increases to the optimum value (ko). As there are 

more vehicles on the roadway, there is more interaction of vehicles. At the same time, traffic flow will 

increase to the maximum flow called capacity (qm). A further increase of density to the maximum 

value or jam density (kj) will result in a further reduction of speed until speed approaches zero. Flow 

will also decrease and approach zero. 

                                                           
18 Flow (q): The number of vehicles passing a specific point or short section in a given period of time in a single lane; 
19 Speed: The average rate of motion; 
20 Density: The number of vehicles occupying a section of roadway in a single lane (May, 1990). 
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Figure 2.10 Traffic flow diagrams (Transportation Research Board, 2000) 

A study by Golob et al. (2004) demonstrated that a strong statistical relationship exists between 

traffic flow and road crashes. The study results found that an increase in the traffic flow resulted in 

an increase in the road crashes on the roads. Similarly, an investigation by Golob and Recker (2003) 

in Southern California found a linear relationship between traffic flow and related road crashes while 

controlling weather and light conditions in the multivariate statistical analyses used. The combination 

of high traffic volumes and narrower lane widths increases the likelihood of a road crash occurring 

(Dehuri, 2013). The low traffic volumes on rural roadways, compared to urban roadways, result in 

high speed impact road crashes, with a high risk for head-on or run-off crashes and higher injury 

severity levels (Alsubeai, 2017; Karlaftis & Golias, 2002; Nambahu, 2018). 

A study by Eenink et al. (2005) reported that in investigating the impact of traffic volumes on road 

safety, crash prediction models were developed with the aim of providing an insight into the safety 

levels on the roadways. Equation [2.1] was used in developing crash prediction models assess the 

extent of the impact of traffic volume on crash occurrence. 

𝐸(𝜆) = 𝛼𝒬𝛽ℯ∑𝛾𝑖𝑥𝑖           [2.1] 

Where; 𝐸(𝜆)  = estimated number of crashes 

 𝒬  = represents traffic volume 

 𝑥𝑖   = represents the risk factor (i = 1, 2, 3,…, n)  

 𝛾  = represents corresponding coefficient 

 𝛽  = represents the effect of traffic volume on road crashes 
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As illustrated in Equation [2.1], the traffic volume is a variable in univariate crash prediction models, 

with AADT used to represent the traffic volumes. To study the effect of traffic volume on road safety, 

a considerable amount of data is required, in particular data related to the length of the road segment 

and the AADT on the roads to be investigated. A study by Eenink et al. (2005) illustrated the 

relationship between traffic volumes and road crashes in Figure 2.11. 

 

Figure 2.11 Relationship between AADT and road crashes (Eenink et al., 2005) 

Duivenvoorden (2010) states that these models can be used to monitor the safety performance of a 

road network as traffic volumes changes, this gives authorities the opportunity to improve the level 

of safety offered to all road users. Overall, the examined literature indicated that the number of road 

crashes increased as the traffic volumes increased. 

2.7.3 Lane width and number of lanes 

The road lane is defined by Housley (2015) as the portion of the roadway used for a single line of 

vehicles. The TRH 17 on the Geometric Design of Rural Roads (CSRA, 1988) notes that the 

selection of lane width is based on traffic volume, vehicle type and speed. The widest lane width of 

3.7 m is recommended for roads with higher volumes and speeds, while the roads with expected 

lowest volumes are recommended to have the narrowest lane width of 3.1 m. Roads expected to 

have intermediate traffic conditions are recommended to have a lane width of 3.4 m (CSRA, 1988). 

Figure 2.12 illustrates  that on paved roads, the lane width excludes the edge line markings as they 

are considered part of the road shoulder (CSRA, 1988). 
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Figure 2.12 Lane width in the road cross sectional design (CSRA, 1988) 

Lane width is a vital parameter affecting the road crash rates (Meng et al., 2006; Papadimitriou et 

al., 2018). A linear relationship exists between the travel lane width and road crash rates (Wedajo et 

al., 2017; Park et al., 2010). In addition, the comfort of driving and operational characteristics of a 

roadway improve significantly with increasing travel lane width (Mohammed, 2013). Investigations 

into the impact of lane widths on roadway safety have found that for any functional classification of 

roadway, a reduction in the lane width resulted in a drastic increase in the likelihood of crashes 

occurring (Ambunda & Sinclair, 2019; Wang et al., 2013; Othman et al., 2009). 

An investigation by Ahmed (2013) found that increasing the lane width from 2.75m to 3.65m reduced 

the likelihood of head-on and other related crashes by approximately 50 percent. An earlier study by 

Iyinam et al. (1997) reported that road crash rates decreased from 1.5 to 1.1 crashes per million 

vehicle kilometres travelled with an increase in lane width from 2.7 m to 3.1 m. The crash rates 

further decreased on lanes widths between 3.4 m to 3.7 m to 0.9 crashes per million vehicle 

kilometres travelled (Iyinam et al., 1997). 

The Highway Safety Manual (HSM) (AASHTO, 2010) developed crash modification factors21 (CMF) 

to investigate the relationship between lane width and road crashes. The HSM found that an increase 

in lane width does not always result in an increase in road safety, particularly on roads with wider 

                                                           
21 Crash modification factor is a multiplicative factor used to compute the expected number of road crashes after 
implementing a given countermeasure at a specific site (Garber and Hoel, 2009). 
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shoulder widths (AASHTO, 2010). Figure 2.13 illustrates the relationship between lane width and 

rod safety on rural two-lane roadways. 

 

Figure 2.13 Relationship between lane widths, operating speed and safety on two-lane rural roadways 

(AASHTO, 2010) 

A study by Kononov et al. (2008) found that increasing the number of lanes available to the road 

users increased the crash frequency, arguing that the increased potential lane-change related 

conflict opportunities contribute to an unfavourable safety situation. Similarly, studies by Noland and 

Oh (2004) and Haynes et al. (2008) investigated the impact of number of lanes on road safety at an 

aggregate area level. The research results revealed that an increase in the number of lanes was 

associated with an increase in road fatalities on roadways with lower traffic volumes and higher traffic 

speed conditions. The effect of lane width and number of lanes on driver speed choice depend on 

the amount of roadway width (lane width and number of available lanes) the driver perceives as 

usable. Drivers perceived a wider road width as safer (perceived space to correct driver errors), 

resulting in higher speed choices (Edquist et al., 2009; Park et al., 2010; Ben-Bassat & Shinar, 2011). 

2.7.4 Shoulder width and type 

Roadway paved shoulders have several functions, including recovery area for driver errors and the 

emergency stop and pull off function as detailed by the Policy on the Geometric Design of Highways 

and Streets (AASHTO, 2001). Several studies have investigated the correlations between the 

shoulder width and the likelihood of a road crash, with considerable variations in findings cited (Liu 

et al., 2016; Zegeer et al., 1981; Ben-Bassat and Shinar, 2011). 

Ben-Bassat and Shinar (2011) state that in addition to the shoulder width, the shoulder type also 

impacts road crash frequencies. The presence of a paved shoulder is the best type of shoulder in 

terms of road safety, in contrast to a gravel shoulder (Karlaftis and Golias, 2009). Othman et al. 
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(2009) explained that while it is desirable that a shoulder be wide enough for a vehicle to be driven 

completely off the travelled way, narrow shoulders are better than no shoulder at all.  

An earlier study by Zegeer et al. (1981) in Oregon, found that an increase in the shoulder width led 

to an increase in road crashes, except on roads with an AADT of 3 600 to 5 500 vehicles. An area-

wide level investigation by Ambunda and Sinclair (2019) in Namibia, found a lack of correlation 

between shoulder widths and road crashes on two-lane rural roads with AADT less than 2000 

vehicles. The findings of a study by Huanghui (2012) in Kansas, illustrated in Figure 2.14 found that 

composite shoulders and wider shoulders had a more positive impact on road safety compared to 

narrow shoulders. 

 

Figure 2.14 Effect of shoulders on road crashes (Huanghui, 2012) 

An investigation by Karlaftis and Golias (2002) in Greece, found that as the shoulder width increases 

on two-lane rural roads up to 7.5 m, the road crash rates decreased significantly. In contrast, a study 

by Bamdad Mehrabani and Mirbaha (2018) found that paved shoulders with a width of 1.2 to 2.1 m 

had a significant positive effect on road crash rates. Park et al. (2010) identified the paved shoulder 

widths of 3.1 to 3.7 m as having a positive impact on road safety on roads with AADT between 3000 

and 5000 vehicles in Texas. The crash modification factors (CMF) estimated by The Highway Safety 

Manual (AASHTO, 2010) concluded that shoulder width has a larger positive effect on road safety 

when road lanes are narrow, but the effect of shoulder widths decreases as lane widths are 

increased. The effects of shoulder widening on road crashes shown in Table 2.10 were determined 

for paved and unpaved shoulders in an early before and after study conducted by Zegeer V et al. 

(1987) in North America. 

  

Stellenbosch University https://scholar.sun.ac.za



52 

 

Table 2.10 Effects of shoulder widening for related crash types on rural two-lane roadways (CSRA, 

1988) 

Shoulder widening (m) per side 
Percent (%) reduction in related crash types 

Paved Unpaved 

0.6 16 13 

1.2 29 25 

1.8 40 35 

2.4 49 43 

Several studies have shown that shoulder widths can also have a conflicting effect on driver 

behaviour, leading to hazardous road safety conditions on the roadway (Abele and Møller, 2011; 

Čičković, 2016; Ben-Bassat and Shinar, 2011). Drivers tend to select lower speeds on narrow roads 

with narrow paved shoulder widths due to the perception of lower safety for the road user. This 

creates a safer driving behaviour compared to higher speed selections on roads wider roads with a 

wider paved shoulder (Godley et al., 2004). Huanghui (2012) explained that speed selections are 

higher on roads with wider shoulders as they give drivers a sense of security and perceived space 

for correcting errors. In contrast, narrower roads and shoulders are perceived as less tolerant and 

therefore more dangerous, leading drivers to be more cautious to avoid risky situations (Liu et al., 

2016). In contrast, a study by Ben-Bassat and Shinar (2011) found that narrow shoulders led to 

drivers to steer away from the left shoulder and drive closer to the centre of the road, thus increasing 

the likelihood of a head-on road crash. 

A study by Abele and Møller (2011) reports that driver speed selections are lower on roads with 

gravel shoulders due to visual cues (colour difference between the paved roadway surface and the 

gravel surfaced shoulder) that give a perception of a narrower driving lane, compared to conditions 

where a paved hard shoulder is present.  

The TRH 17 on the Geometric Design of Rural Roads (CSRA, 1988) recommends the widest 

shoulder width of 3m for roads with the highest operating speeds and heavy traffic volumes. Roads 

with intermediate traffic volumes and higher operating speeds are recommended to have shoulder 

widths ranging from 1 to 2.5m. The South African National Roads Agency Ltd (SANRAL) Geometric 

Design Manual (South African National Road Agency Limited (SANRAL), 2003) provides Table 2.11 

showing recommended shoulder widths for use on undivided two-lane rural roads. 
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Table 2.11 Shoulder widths recommended for undivided rural roads (CSRA, 1988) 

Design Speed (km/h) 

Design hour volume (veh/h) 

<250 250-450 >450 

Shoulder width (m) 

50 1.0 - - 

60 1.5 1.5 - 

70 1.5 2.5 - 

80 2.5 2.5 2.5 

90 2.5 2.5 3.0 

100 2.5 2.5 3.0 

110 - 3.0 3.0 

120 - 3.0 3.0 

130 - - 3.0 

 

2.7.5 Horizontal and vertical alignment (Road alignment) 

Hanno (2004) defines the road alignment as the combination of vertical and horizontal geometric 

elements providing the location of the road through a terrain. The TRH 17 on the Geometric Design 

of Rural Roads (CSRA, 1988) states that the ease, comfort and safety of operations of a vehicle on 

rural roadways are determined by the consistency of design, among other factors. This consistency 

is achieved partly by relating the magnitude of successive elements of horizontal and vertical 

alignment to speed. 

A study by Hanno (2004) reports that most design practices are based on design guidelines 

considering the road alignment in two dimensions only. These guidelines were developed without 

considering the three-dimensional (3D) effect of the combined road alignment illustrated in Figure 

2.15, consequently resulting in a design process that does not ensure road user safety.  

Stellenbosch University https://scholar.sun.ac.za



54 

 

 

Figure 2.15 Three-dimensional combination of horizontal and vertical alignments (Hanno, 2004) 

Hanno (2004) states that a poor coordination between the horizontal and vertical alignments leads 

to poor perceptions and driving errors, which consequently compromise the safety of the road. 

Similarly, Krug and Sharma (2009) report that inconsistent roadway design increases drivers’ 

workload and results in a road alignment that does not meet driver expectations. The properties of 

the horizontal and vertical curves and their influence on road safety are described in Section 2.7.5.1 

and Section 2.7.5.2. 

2.7.5.1 Horizontal curves 

Hassan and Easa (2003) report that the road crash rates on horizontal curves are significantly higher 

than the road crash rates on road tangents. Drivers’ speed selections are significantly affected by 

the presence of a horizontal curve on a road section (Easa, 2003). An investigation by the National 

Cooperative Highway Research Program (NCHRP) Guide for Addressing Run-Off-Road (ROR) 

Collisions (Transportation Research Board, 2003) reports that 42 percent of ROR fatal crashes are 

reported on horizontal curves, with road fatalities increasing to 50 percent on two-lane rural roads.  

Easa et al. (2007) observed a reduction in operating speeds by drivers traversing horizontal curves, 

with a desire to maintain satisfactory side road friction, expressed in Equation [2.2] by the TRH 17 

(CSRA, 1988). Similarly, the study by Ambunda and Sinclair (2019) found that drivers speed 

selection on horizontal curves was lower than speed selection on straight sections.  
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𝑓𝐷 =
𝑣2

𝑔𝑅
−

𝑒

100
           [2.2] 

Where; 𝑓𝐷 = side friction demand factor 

 𝑒 = vehicle speed (m/s) 

 𝑔 = gravitational acceleration (9.807 m/s2) 

 𝑅 = radius of curve (m) 

 𝑒 = superelevation (%) 

The safety prediction tool developed in the Highway Safety Manual (AASHTO, 2010) investigated 

the relationship between the design speeds, horizontal curve radii and operating speeds on rural 

two-lane roadways. Figure 2.16 illustrates the influence of horizontal curve radii on vehicle operating 

speeds, considering temporal conditions on the roadway. The effect of horizontal curve radii on 

operating speeds is marginal until the radius falls below approximately 350 m (AASHTO, 2010; 

Bauer & Harwood, 2014). Similarly, the impact of the curve radius on the expected road crash 

frequency changes nominally until the curve radius falls below 350m, as indicated by the change in 

the crash modification factor (CMF) (AASHTO, 2010; Glavić et al., 2016). 

 

Figure 2.16 Relationship between horizontal curves radii, operating speed and safety on rural two-lane 

roadways (AASHTO, 2010) 

A study by Garcia and Abreu (2016) found that a reduction in crash rates occurred with an increase 

in the horizontal curve radius. Congruently to the Highway Safety Manual (AASHTO, 2010) findings, 

Turner (2005) found that the risk off a road crash on horizontal curves increases with a reduction in 

the radii of the curves, with horizontal curve radii considered critical at radii less than 350 m as 

illustrated by Figure 2.17.  
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Figure 2.17 Relative crash risk on various horizontal curve radii (Ambunda, 2018) 

The TRH 17 on the Design of Rural Roads (CSRA, 1988) provides the following guidelines to enable 

transportation engineers to design safe horizontal curves for road users: 

1. Minimum radii 

The minimum radius is a limiting value for a given design speed determined from the maximum rate 

of superelevation and the maximum allowable side friction factor. Minimum radii shown in Table 2.12 

are recommended by the TRH 17 (CSRA, 1988) only under critical road environment conditions, as 

the deviation angle of each curve should be as small as the physical conditions permit, so that the 

road can be as straight as possible. It should also be considered that excessively curves may cause 

operational problems leading to safety issues. 

Table 2.12 Minimum radii of horizontal curvature (CSRA, 1988) 

Design Speed (km/h) Radius (m) 

50 80 

60 110 

70 160 

80 210 

90 270 

100 350 

110 430 

120 530 

130 640 

140 760 
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2. Horizontal curve length 

The TRH 17 (CSRA, 1988) states that for small deflection angles, curves should be long enough to 

avoid the appearance of a kink22. A minimum length of 300 m is recommended, which can be reduced 

to 150m if operational space is limited. For deflection angles less than 5 degrees, it is recommended 

that the minimum length of the curve to be increased from 300m, by 150m by 30m for each 1 degree 

decrease in the deflection angle.  

For long curves, particularly near-minimum radius, may cause tracking problems. These are suffered 

principally by vehicles travelling at speeds significantly different from the roadways design speed. 

Gooch et al. (2016) reports that long curves may limit and negative affect the safety of overtaking 

manoeuvres on two-lane roads left-hand curves, as overtaking manoeuvres would have to start at a 

considerable distance behind the leading vehicle, due to the greater distance to be traversed on a 

left-hand curve compared to a right-hand curve during an overtaking manoeuvre. Consequently, the 

TRH 17 (CSRA, 1988) recommends that the length of the horizontal curve does not to exceed 

1000m. 

2.7.5.2 Vertical Curves 

Gichaga (2017) notes that the vertical curves have properties of length and gradient, representing 

the height gained or lost in metres, divided by a horizontal distance of 100 m, expressed as a 

percentage. Vertical curves provide a gradual change from one tangent grade to the next, to enable 

drivers to safely and smoothly traverse vertical road sections (Garber and Hoel, 2009). 

Easa (2003) found that vertical grades equal to or less than 5 percent have an insignificant influence 

on the occurrence of road crashes, while a steep increase in operational speeds and the occurrence 

of road crashes on vertical grades greater than 6 percent. A study by Hamzeie et al. (2017) found 

that drivers change their speeds as soon as a vertical curve in combination with a horizontal curve 

becomes visible. When approaching a vertical crest curve, drivers perceived the horizontal curve as 

sharper. Subsequently, drivers reduced their speeds. In contrast, drivers perceived the horizontal 

curve as less sharp and increased their speeds as they approached sag vertical curves. Hassan and 

Easa (2003) explained that the misperception of the combination of vertical and horizontal curves 

relates to the fact that drivers react to how the perceive the road alignment, independently of speed, 

warning or other regulatory safety signs. 

A study by Bella (2005) noted that on roadway sections where the vertical and horizontal curve are 

combined, the value of the horizontal curve radius influenced by the vertical alignment may appear 

different to the driver than the actual value, which can be detrimental to the safety of drivers on the 

                                                           
22 Kink: a sharp twist or curve on an otherwise straight road section (Karlaftis and Golias, 2009). 
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roadway. A study by Bidulka et al. (2002) discussed and developed a model shown by Equation [2.3] 

on how the type of vertical curve and the radius of the horizontal curve influences the perceived 

horizontal radius. 

𝑅𝑝 = −51.28 + 0.953𝑅𝑎 + 132.11𝑉 + 0.125𝑅𝑎𝑉       [2.3] 

Where 𝑉 is equal to 0 for crest vertical curves and equal to 1 for sag vertical curves. The model (units 

in metres) developed by Bidulka et al. (2002) states that the horizontal curve radius (𝑅𝑝) would be 

perceived as sharper than the actual radius (𝑅𝑎) when it overlaps with a crest vertical curve. 

Conversely, the radius would be perceived as flatter when it overlaps with a sag vertical curve, 

leading to higher operational speeds and an increase in the likelihood of a road crash. 

The TRH 17 on the Geometric design of Rural Roads (CSRA, 1988) provides the following guidelines 

for the design of vertical curves, with aim of providing a safe roadway system for road users. 

1. Minimum curve length 

The TRH 17 (CSRA, 1988) explains that where the algebraic differences between successive grades 

are small, the intervening minimum vertical curve becomes very short. This can create the 

impression of a kink in the grade line particularly where the tangents are long. For differences in 

grade greater than 0.5 percent, a certain minimum length is proposed depending on the design 

speeds illustrated in Table 2.13, with a minimum curve length of 240 m recommended for highways.  

Table 2.13 Minimum length of vertical curves (CSRA, 1988) 

Design speed (km/h) Length of curve (m) 

40 60 

60 100 

80 140 

100 180 

120 220 

140 260 

 

2. Gradients 

TRH 17 (CSRA, 1988) states passenger car speeds are relatively unaffected by the vertical curve 

gradient, as the horizontal alignment tends to influence driver speed selections. In contrast, truck 

speeds are significantly influenced by gradient. Therefore, the design of vertical curves targets 

grades that will not reduce the speed of heavy vehicles enough to cause hazardous condition for 

following drivers. Several studies globally have indicated that when truck speeds are reduced by 

more than 15km/h on vertical curves, the frequency of road crashes increased sharply (Dong et al., 
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2015; Pais et al., 2013; Choudhary et al., 2018). For South African conditions, a 20km/h speed 

reduction in heavy vehicle speeds is accepted as representing hazardous conditions for road users. 

Notably, it may be necessary to provide auxiliary lanes for slower moving vehicles if the appropriate 

grade cannot be provided economically. Table 2.14 shows the TRH 17 (CSRA, 1988) recommended 

maximum grades for various topographies.  

Table 2.14 Maximum vertical curve gradients (CSRA, 1988) 

Design speed (km/h) 
Topography 

Flat (%) Rolling (%) Mountainous (%) 

60 6 7 8 

80 5 6 7 

100 4 5 6 

120 3 4 5 

The critical length of any given grade is defined as the length that causes the speed of the design 

heavy vehicle to be reduced by 20km/h (CSRA, 1988). The starting point of the grade is 

approximated as a point halfway between the preceding vertical point of intersection and the end of 

the vertical curve (CSRA, 1988). The critical lengths shown in Table 2.15 therefore indicate where 

the provision of an auxiliary lane may have to be considered. 

Table 2.15 Critical length of grade (CSRA, 1988) 

Gradient (%) Length of grade (m) 

3 400 

4 300 

5 240 

6 200 

7 170 

8 150 

Notably, the road horizontal curve was found to have an inverse relationship with road crashes. 

Studies in the literature indicated that decreasing the radius of the horizontal curves resulted in the 

increase of the likelihood of a crash occurring on the curve segments. In contrast, studies in the 

literature found that increasing the grade of the road vertical curve resulted in a precarious road 

safety situation on the roads. 

2.7.6 Sight Distance 

Sight distance plays a vital role in determining the operational safety of a road (Housley, 2015; 

Yannis et al., 2016). It is critically important that sufficient sight distance is provided to ensure that 

drivers are able to safely control the operations of the vehicles while on the road (Mollel et al., 2011; 

Khan et al., 2014; Rogers, 2003). The alignment of the roadway has a great impact on road safety 
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because a drivers ability to see ahead is necessary for the safe operation of the vehicle and thus for 

the overall safety of the road system (Wang et al., 2009). The Technical Recommendations for 

Highways 17 on the Geometric Design of Rural Roads by the Committee of State Road Authorities 

(CSIR) (1988) affirms that the best visual cue to the driver is the roadway ahead. 

2.7.6.1 Stopping Sight Distance 

The stopping sight distance (SSD) refers to the ability of the driver to bring their vehicle to a standstill, 

and thus is based on speed, driver reaction time and skid resistance on the road surface. The SSD 

is expressed in Equation [2.4]: 

s = 0.694v + v2/254f         [2.4] 

where; s = total distance travelled (m) 

 v = speed (km/h) 

 f = brake force coefficient 

Table 2.16 provides the SSD distances based on traffic operating speeds and the appropriate brake 

coefficients adopted for design in Namibia. 

Table 2.16 Stopping sight distance on level roads (CSRA, 1988) 

Design Speed (km/h) Stopping Sight Distance (m) 

40 50 

50 65 

60 80 

70 95 

80 115 

90 135 

100 155 

110 180 

120 210 

130 230 

140 255 

Figure 2.18 provides the SSD requirements on roads passing through hilly terrain with various road 

grades. The SSD is based on the traffic operating speed, braking coefficients and the road gradient. 

Figure 2.19 indicates the horizontal curve radius requirements on a roadway to provide a safe and 

appropriate SSD on the road segment. 
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Figure 2.18 Stopping sight distance on roadway 

grades (CSRA, 1988) 

 

Figure 2.19 Stopping sight distance on roadway 

horizontal radius (CSRA, 1988)

2.7.6.2 Passing Sight Distance 

The Passing Sight Distance (PSD), is critically important on two-lane roads to enable drivers to use 

the opposing traffic lane for overtaking other vehicles without interfering with oncoming vehicles 

(Karlaftis and Golias, 2009).The TRH 17 on the Geometric Design of Rural Roads confirms that the 

PSD is an important criterion indicative of the quality of service provided by the roadway (CSRA, 

1988). 

Roads with heavy traffic volumes require a higher percentage of passing sight distance than roads 

with a light traffic volume to provide the same level of service and safety when overtaking (CSRA, 

1988). The passing sight distances used on Namibian rural roadways as determined on South 

African road conditions are provided in Table 2.17. 
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Table 2.17 Passing sight distance on level roads (CSRA, 1988) 

Design Speed (km/h) Passing Sight Distance (m) 

60 420 

70 490 

80 560 

90 620 

100 680 

110 740 

120 800 

 

2.7.6.3 Decision Sight Distance 

While the concept of the SSD and the PSD are the main Sight Distances to influence road safety, 

the Decision Sight Distance (DSD) is a third important element. SSDs are sufficient for reasonably 

competent and alert drivers to come to sudden stops under ordinary situations, but greater distances 

are needed for drivers to take complex decisions. 

The DSD is the distance needed for a driver to detect an unexpected or otherwise difficult to perceive 

information source in a roadway environment; to recognise its potential threat to safety; to select an 

appropriate speed and path; and to initiate and complete a safe manoeuvre. The DSD provides 

drivers additional margins for errors whenever there is a likelihood for errors in information reception, 

decision making and actions by the drivers. The DSD, as provided in Table 2.18, is related to the 

reaction time involved in a complex driving task. The reaction time selected for this purpose is 7.5 

seconds, which is roughly the mean of values as provided by American practices (American 

Association of State and Transportation Officials (AASHTO), 2001). The calculated values in Table 

2.18 are thus based on SSD to allow for the condition where the decision is to bring the vehicle to a 

stop. The TRH 17 (CSRA, 1988) reports that this has the effect of increasing the normal reaction 

time of 2.5 seconds by a further 5 seconds of travel at the design speed of the road, which has an 

adverse effect on road safety. The DSD is measured from an eye height of 1.05m to the road surface. 
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Table 2.18 Decision sight distance on level roads (CSRA, 1988) 

Design Speed (km/h) Decision Sight Distance (m) 

40 130 

50 160 

60 190 

70 215 

80 240 

90 270 

100 300 

110 325 

120 350 

130 380 

140 410 

 

2.7.7 Access management 

Access management is the concept that access-related vehicular manoeuvres and volumes can 

have serious consequences on the performance of traffic operations and road safety (Ahmed, 2013; 

Alsubeai, 2017; Jaiswal & Bhatore, 2016). Access management complements geometric design by 

reducing the likelihood of access-related conflicts, by minimising the frequency of major conflict 

movements and reducing the severity of crashes due to such conflicts (Ahmed, 2013; Karlaftis & 

Golias, 2002). 

Several studies have concluded that higher access density leads to more road crashes (Ahmed, 

2013; Mitra et al., 2017; Jinghui & Xuesong, 2018). A study by Ahmed (2013) in Malaysia, indicated 

that the doubling of access point frequency from 10 to 20 per kilometre increased the crash rates by 

roughly thirty percent. Poor access controlled highways have much greater road crash rates than 

the well-controlled highways (Mitra et al., 2017). Figure 2.20 shows the impact of access points per 

km on crash rates on the roads in Tennessee (Mitra et al., 2017). Using macro level analysis method, 

Jinghui & Xuesong (2018) also found a linear relationship between access density and road crash 

rates on road sections in Shanghai. 
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Figure 2.20 Impact of road access points per km on crash rates (Mitra, Haque and King, 2017) 

2.7.8 Pavement condition 

High traffic volumes, appalling weather conditions and bad ground conditions expose the road 

surface to wear and tear (rutting, cracks, and road unevenness) and create hazardous surface 

conditions that reduce riding comfort and can consequently lead to road crashes (Mohammed et al., 

2017). The pavement surface is often described using several key pavement surface condition 

indicators; International roughness index (IRI); pavement serviceability index (PSI); condition score; 

and ride score (Ghanbari, 2017). 

IRI relates road roughness to the overall road surface condition (Titi et al., 2018). Several thresholds 

for overall pavement condition in terms of IRI have been recommended, with Table 2.19 showing 

thresholds recommended by the Federal Highway Association.  

Table 2.19 Thresholds for pavement condition using IRI (Federal Highway Administration, 2014) 

Road classification IRI unit 
Category 

Poor Fair Good Excellent 

All roads m/km IRI> 2.68 1.50<IRI≤ 2.68 IRI≤1.50 

The pavement Serviceability Index (PSI) is defined as a numerical index computed from objective 

measurements of certain types of pavement surface characteristics and indicative of the pavements 

ability to safely serve traffic at any particular point in the pavements service life (AASHTO, 2010). 

The PSI scale has a rating ranging from 0 to 5, with 0 to 1 rated as very poor and 4 to 5 rated as 

very good. Chan et al 2009 notes that the minimum acceptable level of PSI ranges from 2.5 to 3.  

Li & Huang (2015) state that the condition score describes the average person’s opinion of the 

condition of the pavement by combining several factors into a single value; measurements of ride 
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quality; average daily traffic; distressing ratings; and speed limit. The score attributes for the different 

pavement conditions are shown in Table 2.20. 

Table 2.20 Condition score categories (Li & Huang, 2015) 

Pavement condition Condition score scale 

Very poor 1-49 

Poor 50-69 

Fair or good 70-89 

Very good 90-100 

The ride score pavement condition method describes the overall ride quality of the road section (Li 

& Huang, 2015). The ride scores rating ranges between 0.1 (rough) and 5.0 (smooth) calculated as 

the length-weighted average of the raw serviceability index values measured from road data. The 

ride score pavement condition categories are depicted in Table 2.21. 

Table 2.21 Ride score pavement condition scale (Li & Huang, 2015) 

Pavement condition Ride score scale 

Rough 0.1-2.5 

Fair 2.6-3.5 

Smooth 3.6-5 

Several studies have quantitatively investigated the impact of pavement condition on road crashes 

using pavement condition indicators (Ghanbari, 2017; Cenek et al., 2012; Tehrani & Falls, 2015). A 

study by Ghanbari (2017) found that the roughness of the road affects the riding quality experienced 

by drivers. It can also lead to hazardous situations: Pavement roughness23 has been found to 

influence driver steering capabilities by changing the normal forces that act at the tire-pavement 

interface, therefore negatively affecting the lateral forces required to control a vehicle (Chan et al., 

2008). 

A study by Cenek et al. (2012) found that road roughness can also cause significant loss of braking 

force or slip resistance on a vehicle. As the impact of road roughness can vary on the wheels of the 

vehicles, this exposes the vehicle to different levels of friction on each side. Differential friction 

significantly affects vehicle braking and can lead to incongruous conditions for all road users 

(Ghanbari, 2017). 

Ghanbari (2017) concluded that attempts to execute a turn having a small radius by vehicles 

traveling at high speeds on a rough road leads potentially dangerous safety situations. Such 

                                                           
23 Pavement roughness is defined in accordance with ASTM E867 as the deviation of the surface from the true planar 
surface with characteristic dimensions that affect vehicle dynamics, ride quality, dynamic loads and drainage (ASTM 
Standard E867-06, 2017 cited in Federal Highway Administration, 2014). 
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dangerous conditions exist on a straight road section when a vehicle attempting to overtake at a high 

speed suddenly has to return to its original lane due to oncoming traffic. The driver attempting to 

overtake may potentially lose control of the vehicle. 

Similarly, a study by King (2014), investigating the effect of road roughness on traffic speed and road 

safety in Australia, found that a statistically strong relationship exists between increased pavement 

roughness and higher crash rates and severity levels on road sections as illustrated in Figure 2.21. 

King (2014) also observed that passenger vehicles experienced a higher likelihood of being involved 

in road crashes than heavy commercial vehicles when pavement roughness increase. Moreover, a 

reduction in operating speeds when the pavement roughness increased was detected on some road 

sections (King, 2014). Li et al. (2013) suggested purposefully laying down rougher pavements on 

high speed roadways as a potential solution to address higher severity crashes. 

 

Figure 2.21 Pavement roughness vs road crash rates (King, 2014) 

Cairney & Bennet (2008) found a good correlation between crash rates and pavement roughness 

following a polynomial relationship. However, no clear relationship was found between road rutting 

and road crash rates. A study by Li et al. (2013) in Texas found that relatively higher severity crashes 

occurred on roads with very good pavement conditions as illustrated in Figure 2.22. The higher 

severity crashes were attributed to the higher speed impact crashes on roads with very good 

pavement conditions (Li et al., 2013). 

Stellenbosch University https://scholar.sun.ac.za



67 

 

 

Figure 2.22 Mean severities for several pavement indicator groups (Li et al., 2013) 

A study by Tehrani & Falls (2015) investigated the relationship between IRI values and road safety 

in Canada. Road sections with high IRI values were observed to have a higher crash probability to 

those with low IRI values. In addition, a statistically significant correlation was found between the 

crash frequency and rut depth. In contrast, a study Cenek et al. (2012) found no significant 

relationship between IRI values and the likelihood of crashes occurring. 

Several studies in the literature have concluded that the condition of the pavement significantly 

contributes to the safety of road users. Significant correlations were found to exist between pavement 

roughness and crash rates, while the contribution of rut depth to road safety was not well defined in 

literature. 
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2.8 Geographical Information System (GIS) tools for analysing road crashes and road design 

Areas with concentrated crashes are often referred to as crash hotspots (Toran & Moridpour, 2015; 

Thakali et al., 2015). The detection of clustering patterns of road traffic crashes has been enabled 

by both the effective application of Geographical Information System (GIS) in transportation research 

areas and by the opportunity given by Global Positioning System (GPS) with regard to spatial 

accuracy localisation of road traffic crashes (Hashimoto et al., 2016; Satria and Castro, 2016; Ghadi 

& Török, 2017). The primary reason behind employing spatial techniques for the detection of road 

crash hotspots rather than classical statistical techniques, is that road crashes are a spatial 

phenomenon (Yalcin, 2013; Choudhary et al, 2015).  

Spatial methods employed for the identification of road traffic crashes clustering patterns produce 

two kinds of results. The first one is identifying the global clustering tendency of road crashes within 

a road section, which includes the Quadrat methods (Ouni and Belloumi, 2019), the Nearest 

Neighbour methods (Satria and Castro, 2016; Afghari, 2018) and the K-function (Shafabakhsh et al., 

2017; Ouni & Belloumi, 2018). The second result is identifying the local cluster tendency of the 

crashes within a road section, which includes Kernel Density Estimation (KDE) (Kundakci, 2014; 

Toran & Moridpour, 2015; Pljakić et al., 2019) and spatial autocorrelation approaches such as local 

Moran (Getis & Ord, 2010; Pirdavani et al., 2014) and Getis-ord indices (Songchitruksa & Zeng, 

2010; Aghajani et al, 2017). 

In this section, spatial techniques in GIS employed to analyse road crashes are presented. Spatial 

analysis is used to geographically specify the road crash locations and to assess specific patterns 

of crash distribution through the visualisation of raster maps. 

2.8.1 Kernel density 

Kernel Density Estimation (KDE) is a spatial data analysis method in QGIS (Satria and Castro, 2016; 

Pljakić et al., 2019). KDE is employed to determine the risk spread of road crashes by computing 

the number of crash incidents in a defined region or road network (Kundakci, 2014; Hashimoto et 

al., 2016). The spread of crash risk can be defined as the area around the cluster where crash risk 

may increase due to a road crash. KDE is considered in two forms: (i) planar Kernel density 

Estimation (PKDE) and (ii) network Kernel Density Estimation (NKDE), an extension of the standard 

KDE (Ouni & Belloumi, 2018; Pljakić et al., 2019).  

The standard KDE applies the Euclidian distance measure in a continuous planar space by analysing 

hotspot locations (Thakali, Kwon and Fu, 2015). A study by Truong & Somenahalli (2011) employed 

KDE and spatial autocorrelation approach to identify and rank pedestrian-vehicle crash locations 

and unsafe bus stops in Adelaide, Australia. The study identified 3 and 10 pedestrian-vehicle 

hotspots at intersections and mid-block locations respectively. 
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NKDE employs network distance measure along a roadway while analysing hotspot locations (Ouni 

and Belloumi, 2018). A study by Benedek et al. (2016) employed the NKDE to identify vulnerability 

areas for road crashes in Cluj-Napoca in Romania. The results indicated that the majority of the 

vulnerable areas for road crashes were located at the entrances and exits of the city. While there 

are a variety of KDE features to choose from, several studies (Toran & Moridpour, 2015; Ghadi & 

Török, 2017; Ouni & Belloumi, 2018) have suggested that the Kernel function has no significant 

impact on the density pattern. The density pattern is influenced by the choice of bandwidth, with 

several optimal bandwidth variation intervals ranging from 200m to 1000m applied depending on the 

aim of the study (Hashimoto et al., 2016; Cheng et al., 2018; Pljakić et al., 2019). A bandwidth 

between 200m and 400m is recommended for urban road networks (Kundakci, 2014; Shafabakhsh 

et al., 2017), while a bandwidth between 600 to 1000m is recommended for rural road networks to 

produce a raster output (Toran & Moridpour, 2015; Pljakić et al., 2019). 

2.8.2 Moran’s Index Statistic 

Moran’s Index (MI) is a statistical tool measuring the spatial dependence of the road crash location 

(Moran, 1948). Moran’s index method is based on the covariance relationship of the statistical 

correlation coefficient (Satria and Castro, 2016; Cheng et al., 2018). Moran’s Index can be described 

with Equation [2.5]. 

𝐼 =
𝑛

𝑆0
∙

∑ ∑ 𝑤𝑖𝑗(𝑥𝑖−𝑥̅)(𝑥𝑗−𝑥̅)𝑛
𝑗=1

𝑛
𝑖

∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖

        [2.5] 

Where, 𝑥𝑖, 𝑥𝑗 denote the 𝑖th and 𝑗th spatial observed value respectively, 𝑥̅ =
1

𝑛
∑ 𝑥𝑖𝑤𝑖𝑗

𝑛
𝑖=1  represents 

the elements of a spatial binary contiguity matrix and computes whether neighbourhood relationships 

exist between location 𝑖 and its adjacent location 𝑗. 𝑆0 refers to the summation of all elements of 𝑤𝑖𝑗. 

A single value for the spatial correlation and checking the clustering of the road crash spatial pattern 

is provided by Moran’s Index (Satria and Castro, 2016). The statistical inference on Moran’s Index 

applies the calculated value and both z-score and p-value to evaluate if the spatial road crash pattern 

clusters observed are dispersed or random and determines the level of concentration (Songchitruksa 

& Zeng, 2010; Satria and Castro, 2016), as illustrated in Figure 2.23. 
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Figure 2.23 Z-scores and p-values interpretation by Moran's Index (Moran, 1948) 

Dense locations of the proximity between two points are often defined as the inverse of the distance 

between them (Satria and Castro, 2016; Gomes et al., 2017). The difference between each value 

and the value of the global Moran’s Index average is known as the attribute similarity severity index 

of the two points (Truong and Somenahalli, 2011). A study by Pirdavani et al. (2014) developed road 

crash prediction models (CPMs) using geographically weighted regression. The CPMs were 

developed by computing Moran’s Index for the dependent and selected explanatory variables. The 

results illustrated the necessity of considering spatial correlation when developing CPMs, as this 

provides an insight of the spatially varying relationship between crashes and related factors through 

the CPM estimated values. 

2.8.3 Getis-Ord 

G statistics are a family of statistics with a number of attributes that make them attractive to measure 

the inter-dependence of spatially distributed variables, especially when applied in conjunction with 

Moran’s Index (Songchitruksa & Zeng, 2010; Aghajani et al., 2017). G Statistics deepen the 

knowledge and understanding of the process that leads to spatial dependency and improve the 

detection of local ‘pockets’ dependence that may not appear using global statistics (Arthur, 1995; 

Getis & Ord, 2010). The Getis-Ord statistics are utilised to identify road crash hotspot locations. The 

Getis-ord statistics for each feature in the data set are calculated by the hotspot analysis 
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(Songchitruksa & Zeng, 2010; Saha & Ksaibati, 2016). A high value of the Getis-ord statistic 

represents a group of high index values (hotspots), while a low value represents a low index value 

(Getis & Ord, 2010; Satria and Castro, 2016). 

2.9 Review of statistical modelling tools 

Crash prediction is a crucial step in the management of road safety processes. The Highway Safety 

Manual suggests the use of safety performance functions (SPF) while predicting crash frequencies 

on different types of roads and also considers that the SPFs will vary significantly with the change of 

road environment – the road geometry, road traffic, road side environment (AASHTO, 2010). 

However, the manual is appropriate only for road segments of homogenous characteristics, 

expressed in terms of traffic volumes and roadway design characteristics. As a result, there is a need 

to develop indigenous crash prediction models, aimed at predicting crashes in developing countries 

where heterogeneity in traffic composition is prevalent (Basu and Saha, 2017; Ambros et al., 2018). 

Two potential events are likely to result from a road crash: a non-zero event (fatality) or a zero-event 

(non-fatality). In some cases, road crash may result in zero fatalities, hence this can result in an 

excess number of zeros in a crash dataset (Imprialou et al., 2016). The Poisson regression model is 

the simplest model applied to count data. As count data may exhibit over-dispersion (or in instances 

zero-inflated data -excess zeros), Poisson regression models are limited by the assumption that data 

exhibits equal mean and variance. In such a case, this shortcoming is addressed by applying 

Negative Binomial regression (NB), which largely belongs to a family of Generalised Linear Models 

(GLMs) (Mannering and Bhat, 2014; Kiranet et al., 2017). Even though NB models are capable of 

handling over-dispersion quite well, they may not be sufficient in addressing zero-inflated data. The 

issue of captured excess zeros is addressed through using zero-augmented models (zero-inflated 

models) and Hurdle models (Ridout et al., 1998; Imprialou et al., 2016). Zero-inflated models are a 

mixture of models that combine a count component and a point mass at zero, while Hurdle models 

combine a left-truncated count component with a right-censored hurdle component (Saffari & Adnan, 

2011; Saffari et al., 2012). Robust multiple linear regression models (MLR) have also been found to 

accommodate both crash rates and crash count data. The MLR approach involves data aggregation 

to satisfy linear regression assumptions; namely error structure normality and homoscedasticity. The 

robust MLR technique has been found to generate crash predictions consistent with traditional NB 

and zero-augmented NB GLMs (Rakha et al., 2010; Mohammed et al., 2018; Islam et al., 2019). 

These models are described in detail in this section. 
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2.9.1 Poisson regression 

Poisson regression is a traditional basic count model on which numerous other count models are 

based (Montgomery and Runger, 2014). Poisson models are some of the most popular when 

modelling count data. The Poisson distribution is the starting point for Poisson regression, shown by 

Equation [2.6]. 

𝐻𝑌𝑖
(𝑦𝑖) =

𝑒𝜇𝑖𝜇
𝑖

𝑦𝑖

𝑦𝑖
!           [2.6] 

The logarithm of the mean of Poisson distribution (𝜇𝑖) is assumed to be a linear function of the 

independent variable 𝑥𝑖 given by Equation [2.7]. 

log(𝜇𝑖) = 𝑥𝑖𝛽          [2.7] 

Where:  𝑦𝑖 denotes the dependent variable having a Poisson distribution 

  𝑥𝑖 denotes the independent variables 

Suppose the dependent variable (𝑌𝑖) is a count response variable that follows Poisson distribution, 

the probability of 𝑌𝑖 can be modelled as detailed by the Equation [2.8]. 

𝑓𝑖(𝑦𝑖 , 𝜇𝑖, 𝛼) = (
𝜇𝑖

1+𝛼𝜇𝑖
)

(1+𝛼𝑦𝑖)𝑦𝑖
−1

𝑦𝑖
! 𝑒𝑥𝑝 (

−𝜇𝑖(1+𝛼𝑦1)

1+𝛼𝜇𝑖
)      [2.8] 

Where: 𝑦𝑖 = 0,1, 2,…, n 

µ𝑖 = µ𝑖(𝑋) = 𝑒𝑋𝐵, where 𝑋 is a (𝑘 − 1) dimensional vector of covariates and 𝐵 is a 𝑘 – 

dimensional vector of regression parameters. 

𝛼 = is the dispersion parameter 

The dispersion parameter is observed in three dispersion cases; case (1) equi-dispersion; when 𝛼 =

0. Hence Equation [2.8] reduces to PR, case (2) over-dispersion; when 𝛼 > 0. Equation [2.8] thus 

adds to one and case (3) under-dispersion; when 𝛼 < 0. Here, Equation [2.8] gets truncated and 

may not add up to one. Therefore, the variance and mean of the response variables in Poisson 

regression are given by Equation [2.9] and equation [2.10] respectively. 

𝑉(𝑌𝑖|𝑥𝑖) = 𝜇𝑖(1 + 𝛼𝜇1)2         [2.9] 

(𝜇𝑖) = 𝐸(𝑌𝑖|𝑥 + 𝑖)         [2.10] 
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2.9.2 Negative Binomial regression 

The crash counts are mostly characterised by a Negative Binomial (NB) distribution. The NB 

distribution is a core part of Negative Binomial regression models, given by Equation [2.11].  

𝑓(𝑦𝑖) = 𝑝(𝑌𝑖 = 𝑦𝑖) =
Γ(𝜃+𝑦𝑖)

Γ(𝜃)𝑦𝑖
(

𝜃

𝜃+𝜇𝑖
)

𝜃
(

𝜇𝑖

𝜇𝑖+𝜃
)

𝑦𝑖
, 𝑦𝑖 = 0,1,2, … . , 𝑛    [2.11] 

Where; 𝜃 =
1

𝛼
. 𝛼 is the dispersion parameter. Γ(. ) is the gamma function. The dependant variable 

denoted by 𝑌𝑖  has a Negative Binomial distribution with two parameters 𝜇𝑖 ≥ 0 and 𝜃 ≥ 0, with the 

mean and variance denoted by Equation [2.12] and Equation [2.13] respectively. 

𝐸(𝑌𝑖) = 𝜃𝜇𝑖          [2.12] 

𝑣𝑎𝑟(𝑌𝑖) = 𝐸(𝑌𝑖)(1 + 𝜇𝑖) = 𝜃𝜇𝑖(1 + 𝜇𝑖)       [2.13] 

2.9.3 Generalized Linear Models (GLMs) 

GLMs are a set of statistical modelling tools used when the dependant variable violates the integral 

assumption of linearity (Ridout et al., 1998; Bagha & Madisetti, 2019). In that event, the dependant 

variable does not follow a normal distribution. Hence, GLMs that assume a link linear relationship 

based on a chosen link function are utilised to complete analyses (Montgomery & Runger, 2014; 

Bruce & Bruce, 2017). Statistical GLMs are a vital member of the exponential family, which take the 

form shown in Equation [2.14].  

𝑓(𝑦𝑖; 𝜃; 𝜙) = 𝑒𝑥𝑝 [
(𝑦𝜃−𝑏(𝜃))

𝑎(𝜙)
+ 𝑐(𝑦, 𝜙)]       [2.14] 

Therefore, statistical GLMs can be written as shown in Equation [2.15]  

y = g(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝑒       [2.15] 

Where; y is the vector of the dependant variables counts; 𝑥𝑖 are linearly associated covariates; 𝛽
𝑖
 

represents the regression coefficients; 𝑒 is the error variable unaccounted for by the covariates 

𝑥𝑖; g is a monotonic function linking the mean of the dependant variable to linear covariates and 

other functions.  

The values of the regression coefficients 𝛽
𝑖−𝑛

 , related to the covariates through Equation [2.16] and 

Equation [2.17] respectively, are estimated by the Maximum Likelihood (ML) estimations. 

𝐸(𝑌𝑖) = 𝜇𝑖          [2.16] 

g(𝜇𝑖) = 𝑋𝑇𝛽          [2.17] 
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For each 𝑌𝑖, the log-likelihood function is given by Equation [2.18]. 

𝑙𝑖 = 𝑦𝑖𝑏(𝜃𝑖) + 𝑐(𝜃𝑖) + 𝑑(𝑦𝑖)        [2.18] 

Where; the functions for 𝑏, 𝑐 and 𝑑 are known and linked to Equation [2.16], Equation [2.17] and 

Equation [2.18], through Equation [2.19], Equation [2.20] and Equation [2.21]. 

𝐸(𝑌𝑖) = 𝜇𝑖 = 𝐶′(𝜃𝑖)/𝑏′(𝜃𝑖)        [2.19] 

𝑉𝑎𝑟(𝑌𝑖) = [𝑏′′(𝜃𝑖)𝑐′(𝜃𝑖) − 𝑐′′(𝜃𝑖)𝑏′(𝜃𝑖)]/[𝑏′(𝜃𝑖)]3      [2.20] 

g(𝜇𝑖) = 𝑋𝑇𝛽 = 𝜂𝑖         [2.21] 

Where; 𝑋 is a vector with elements 𝑥𝑖𝑗, 𝑗 = 1,2, … . , 𝑛. Hence, the function for the log-likelihood for all 

the 𝑌𝑖 variables is given by Equation [2.22]. 

𝑙 = ∑ 𝑙𝑖
𝑛
𝑖=1 = ∑ 𝑦𝑖 𝑏(𝜃𝑖) + ∑ 𝑐 (𝜃𝑖) + ∑ 𝑑 (𝑦𝑖)      [2.22] 

To obtain the maximum likelihood estimate for parameter 𝛽𝑗 in Equation [2.23], the chain rule for 

differentiation is used by considering each term on the right-hand side to obtain Equation [2.24]. The 

variance-covariance of the 𝑈𝑗 matrix portrays the terms in Equation [2.25]. 

𝜕𝑙

𝜕𝛽𝑗
= 𝑈𝑗 = ∑ [

𝜕𝑙𝑖

𝜕𝛽𝑗
]𝑛

𝑖=1 = ∑ [
𝜕𝑙𝑖

𝜕𝜃𝑖
.

𝜕𝜃𝑖

𝜕𝜇𝑖
.

𝜕𝜇𝑖

𝜕𝛽𝑗
]𝑛

𝑖        [2.23] 

𝑈𝑖 = ∑ [
(𝑦𝑖−𝜇𝑖)

𝑣𝑎𝑟(𝑌𝑖)
. 𝑥𝑖𝑗 . (

𝜕𝜇𝑖

𝜕𝜂𝑖
)]𝑁

𝑖         [2.24] 

ℑ𝑗𝑘 = 𝐸[𝑈𝑗. 𝑈𝑘]          [2.25] 

The formula for the maximum likelihood estimation is thus given by Equation [2.26] 

𝑏(𝑚) = 𝑏(𝑚−1) + [ℑ(𝑚−1)]
−1

𝑈(𝑚−1)       [2.26] 

where the difference between 𝑏(𝑚) and 𝑏(𝑚−1) is considered to be insignificant. 

2.9.3.1 Generalized Poisson Regression Model 

The study will use the GLMs for the estimation of the dependant variable. The parameter 𝜇 will be 

used to express the mean instead of the parameter 𝜆, which is used in most literature to express the 

mean (Barua et al., 2016). The Poisson regression given by Equation [2.27] is used to model the 

relationship between the dependant variable and explanatory variables. 
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𝐻𝑌𝑖
(𝑦𝑖) =

𝑒𝜇𝑖𝜇
𝑖

𝑦𝑖

𝑦𝑖
! ;  𝑦𝑖 = 0,1,2, … . , 𝑛; 𝜇𝑖 > 0       [2.27] 

Where; 𝜇𝑖 = exp (𝑋′𝛽) is the models fitted mean; 𝑋 is the vector of the covariates and 𝑌𝑖 is the 

dependant variable counts. The Poisson distribution assumes equal mean and variance. The 

dependant variable 𝑌𝑖 is modelled as shown in Equation [2.28] should the count data follow Poisson 

distribution. 

𝑓𝑖(𝑦𝑖 , 𝜇𝑖, 𝛼) = (
𝜇𝑖

1+𝛼𝜇𝑖
) .

(1+𝛼𝑦𝑖)𝑦𝑖−1

𝑦𝑖
! . 𝑒𝑥𝑝 (

−𝜇𝑖(1+𝛼𝑦𝑖)

1+𝛼𝜇𝑖
) , 𝑦𝑖 = 0,1,2, … , 𝑛    [2.28] 

Where; 𝜇𝑖 = 𝜇𝑖(𝑋) = 𝑒𝑋𝐵; 𝑋 is a (𝑘 − 1) dimensional vector of covariates; 𝐵 is a 𝑘 − dimensional 

vector of the regression parameters and 𝛼 is the dispersion parameter. 

The dispersion parameter 𝛼 occurs in three observed forms; Case (1) Equi-dispersion, with 𝛼 = 0 

and Equation [2.28] reduced to PR; Case (2) Over-dispersion, with 𝛼 > 0 and Equation [2.28] always 

adding up to one; and Case (3) Under-dispersion, with 𝛼 < 0 and Equation [2.28] getting truncated, 

therefore, may not add up to one. The variance and mean of the dependant variable 𝑌𝑖 are given by 

Equation [2.29] and Equation [2.30] respectively. 

𝑉(𝑌𝑖|𝑥𝑖) = 𝜇𝑖(1 + 𝛼𝜇𝑖)2         [2.29] 

𝜇𝑖 = 𝐸(𝑌𝑖|𝑥 + 𝑖)          [2.30] 

2.9.3.2 Generalized Negative Binomial Regression Model 

In cases where the count data exhibits significant differences between variables, causing the 

variance to be greater than the mean over-dispersion) or less than the mean (under-dispersion), 

models such as the Generalized Negative Binomial Regression Model (NBR) are preferred because 

of their accuracy (Ridout et al., 1998; Montgomery & Runger, 2014). Poisson regression models, 

which may exhibit severe drawbacks limiting their use (mean assumed to be equal to the variance) 

are often shunned in this case. Moreover, Poisson distribution has one variable parameter, 

compared to the Negative Binomial distribution with two parameters (Ho, 2006; Montgomery & 

Runger, 2014). Hence, the Negative Binomial regression is considered more flexible than Poisson 

regression. The count data response variable 𝑌𝑖 is determined by the Negative Binomial Regression 

model using Equation [2.31]. 

𝑓(𝛾𝑖) = 𝑝(𝑌𝑖 = 𝛾𝑖) = (
Γ(θ+𝛾𝑖)

Γ(𝜃)𝛾𝑖
) . (

𝜃

𝜃+𝜇𝑖
)

𝜃
. (

𝜇𝑖

𝜇𝑖+𝜃
)

𝛾𝑖
, 𝛾𝑖 = 0,1,2, … , 𝑛;  𝑛 < ∞   [2.31] 

Substituting 𝑣𝑖 =
𝜃

𝜃+𝜇𝑖
, Equation [2.31] is thus replaced by Equation [2.32]. 
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𝑓(𝛾𝑖) = 𝑝(𝑌𝑖 = 𝛾𝑖) = (
Γ(θ+𝛾𝑖)

Γ(𝜃)𝛾𝑖
) . (𝑣𝑖)𝜃. (−(𝑣𝑖 − 1))𝛾𝑖      [2.32] 

Where; 𝜃 =
1

𝛼
; 𝛼 is the dispersion parameter; Γ(. ) is the gamma function.  

The dependant variable parameter 𝑌𝑖 has a Negative Binomial distribution with two parameters, 𝜇𝑖 ≥

0 and 𝜃 ≥ 0. Therefore, the mean and variance are given by Equation [2.33] and Equation [2.34] 

respectively. 

𝑀𝑒𝑎𝑛 = 𝐸(𝛾𝑖) = 𝜃𝜇𝑖         [2.33] 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑉𝑎𝑟(𝑌𝑖) = 𝐸(𝑌𝑖)(1 + 𝜇𝑖) = 𝜃𝜇𝑖(1 + 𝜇𝑖)     [2.34] 

Although Poisson and NBR models are recommended for count data modelling. In instances were 

a dataset has an inflated occurrence of zeros, Zero-Inflated models are recommended for analyses. 

2.9.3.3 Zero-Inflated Poisson Regression Model 

The presence of excess zero cases can result in an over-representation of these cases in estimated 

models. Zero-Inflated models that address excess zeros in count datasets are recommended as one 

of the alternatives for a better goodness-of-fit (Field, 2013; Mannering and Bhat, 2014). Using the 

Zero-Inflated Poisson Regression model (ZIP), the dependant variable (𝑌𝑖 = 0) with probability 𝛾𝑖 is 

assumed to follow a Poisson distribution with mean 𝜇𝑖 and probability 1 − 𝛾𝑖. The variable had a 

distribution with two components; a zero (𝛾𝑖 = 0) and non-zero component (𝛾𝑖 ≠ 0), given by 

Equation [2.35] and Equation [2.36] respectively.  

Pr(𝑌𝑖 = 0) = 𝛾𝑖 + (1 − 𝛾𝑖)−𝜇𝑖        [2.35] 

Pr(𝑌𝑖 = 𝑟) = (1 − 𝛾𝑖)𝑒
(−𝜇𝑖)(𝜇𝑖)𝑟

𝑟! , 𝑟 = 1,2,3, … , 𝑛      [2.36] 

The a mean and variance for the dependant variable can be determined using Equation [2.37] and 

Equation [2.38] respectively. 

𝐸(𝛾𝑖|𝑥𝑖,𝑧𝑖) = 𝜇𝑖𝜃, 𝑖 = 1,2,3, … , 𝑛        [2.37] 

𝑉(𝛾𝑖|𝑥𝑖,𝑧𝑖) = 𝜇𝑖(1 − 𝛾𝑖)(1 + 𝜇𝑖𝛾𝑖), 𝑖 = 1,2,3, … , 𝑛      [2.38] 

𝛾𝑖 and 𝜇𝑖 are expressed explicitly as functions of the explanatory variables to assess the extent of 

the link between the covariates and the dependant variable in ZIP. Therefore, the logistic regression 

model given by Equation [2.39] is applied as the standard method to model the probability of excess 

zeros in the count data. 
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log 𝑖𝑡(𝛾𝑖) = 𝑋𝐵          [2.39] 

Where; 𝑋 is the covariates (𝑥𝑖) vector and 𝐵 is a vector is a parameter 𝛽 vector. 

The effect of the explanatory variables on the dependant variable, excluding the excess zeros in the 

count data, can be modelled using Poisson distribution given in Equation [2.40]. 

𝑙𝑜𝑔(𝜇𝑖) = 𝑍𝛿          [2.40] 

Where; parameters 𝑍 and 𝑋 are 𝑠 − and 𝑤 − dimensional explanatory variable vector, whereas 𝛿 

and 𝐵 are corresponding regression coefficient vectors. 

2.9.3.4 Zero-Inflated Negative Binomial Regression Model 

Zero-Inflated Negative binomial (ZINB) models are a combination of distributions assigning the mass 

of 1 − 𝑦 and 𝑦 to a Negative Binomial distribution and excess zeros respectively, with 0 ≤ 𝛾 ≤ 1 

(Saffari & Adnan, 2011; Kiran et al., 2017). The ZINB distribution is given by Equation [2.41]. 

𝑃(𝑌𝑖 = 𝑟) = {
𝛾 + (1 − 𝛾) (

𝜃

𝜃+𝜇
)

𝜃
, 𝑟 = 0

(1 − 𝑦). (
Γ(θ+r)

r!Γ(θ)
) . (

𝜃

𝜃+𝜇
)

𝜃
. (

𝜇

𝜇+𝜃
)

𝑟
, 𝑟 = 1,2,3, … , 𝑛

    [2.41] 

The dependant variable mean and variance are determined using Equation [2.42] and Equation 

[2.43] respectively. 

𝐸(𝑌) = (1 − 𝛾)𝜇          [2.42] 

𝑉𝑎𝑟(𝑌) = (1 − 𝛾)𝜇(1 + 𝛾𝜇 +
𝜇

𝜃
)        [2.43] 

When 
1

𝜃
≈ 0 and 𝜇 ≈ 0 Equation [2.41] reduces to the Poisson distribution. Equation [2.41] also 

approaches the Zero-Inflated Poisson as 𝜃 → ∞. Similarly, Equation [2.41] approaches the Negative 

Binomial distribution as 𝛾 → 0. Parameters 𝛾 and 𝜇 related to the explanatory variables by the ZINB 

regression model through Equation [2.44] and Equation [2.45]. 

log(𝜇𝑖) = 𝑋𝐵          [2.44] 

log𝑖𝑡(𝛾𝑖) = 𝑍𝛿          [2.45] 

Where parameters 𝑍 and 𝑋 are 𝑠 − and 𝑤 − dimensional vectors of the explanatory variables, while 

𝛿 and 𝛽 are corresponding vectors of regression coefficients. 
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2.9.3.5 Generalized Poisson Hurdle Model 

The flexibility of the Generalized Poisson Hurdle Model (PHM) enables it to be applied to either over 

or under-dispersed count data. The PHM is considered valuable due its application of the hurdle at 

zero (Cameron & Trivedi, 1998; Mannering and Bhat, 2014). Similarly, it is suitable for application 

on positive dichotomous response variables, considering zero (𝑌𝑖 = 0) and non-zero cases (𝑌𝑖 ≠ 0). 

The probability function of the PHM is given by Equation [2.46]. 

𝑃(𝑌𝑖 = 𝑘) 𝑓𝑜𝑟 𝑖 = 1,2,3, … , 𝑛 = {
ℎ1(0), k = 0

(1 − ℎ1(0))ℎ2(𝑘), 𝑘 ≥ 1
     [2.46] 

Where; ℎ1(0) is the probability value when a zero count exists and ℎ2(𝑘), for 𝑘 ≥ 1, is the probability 

value when a non-zero count exists. Should a significantly higher zero case be observed in the 

dataset than can be modelled by Equation [2.46], Equation [2.47] and equation [2.48] are 

recommended. 

𝑃(𝑌𝑖 = 0) = 1 − 𝑞𝑖;  0 ≤ 𝑞𝑖 ≤ 1        [2.47] 

𝑃(𝑌𝑖 = 𝑟) = 𝑞𝑖. (
𝜇𝑟𝑒−𝜇

𝑟!(1−𝑒−𝜇)
) , 𝑟 = 1,2,3, … , 𝑛; 0 < 𝑛 < ∞     [2.48] 

Where; 𝑞𝑖 is the element that models all zero cases and 𝜇 represents the mean of the truncated 

Poisson distribution. In addition, the probability of the zero count cases can be modelled by applying 

the logistic regression model given in Equation [2.49]. 

log 𝑞𝑖 = 𝑋𝐵          [2.49] 

2.9.3.6 Hurdle Negative Binomial model 

The Hurdle Negative Binomial Model (HNB) is a two-part model applied in breaking down the 

dependant variable 𝑌𝑖 into two observed random regression components, given as 𝑦𝑖 > 0 and 𝑌𝑖|𝑦𝑖 >

0 (Saffari et al., 2012; Mannering and Bhat, 2014). The HNB is structured as shown in Equation 

[2.50] and Equation [2.51]. 

𝑃(𝑌𝑖 = 0) = 1 − 𝑞𝑖; 0 ≤ 𝑞𝑖 ≤ 1        [2.50] 

𝑃(𝑌𝑖 = 𝑟) = 𝑞𝑖 (
Γ(𝑟+𝜃)

𝑟!Γ(𝜃)
) (1 +

𝜇

𝜃
)

−𝑟
; 𝑟 = 1,2,3, … , 𝑛, 0 ≤ 𝜇 < ∞    [2.51] 

Where; 𝜇 is the mean parameter and 𝜃 represents over-dispersion.  
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2.9.4 Robust Multiple Linear Regression Modelling Approach 

The linear regression model development approach is considered in this section. Using the crash 

rate as the dependant variable, the variable model can be written as shown in Equation [2.52]. 

𝑊(𝐶𝑅) =
(365×5)𝑝

106 ∙ exp (𝛽0 + 𝛽1𝐿1 + ⋯ + 𝛽𝑛𝐿𝑛 + 𝐸)     [2.52] 

Where 𝑊(𝐶𝑅) is the dependant variable and represents the Winsorized crash rate. The regression 

constant in the model equation is represented by 𝛽0. The terms 𝛽1 to 𝛽𝑛 represent the model 

coefficients for the respective covariates. The terms 𝐿1 to 𝐿𝑛 represent the independent variables. 

Here, 𝐸 is a random error term that accounts for the error that is not captured in the model (Rakha 

et al., 2010; Schmidt et al., 2012; Mohammed et al., 2018). 

The analysis using crash rates ensures that the data are normalised across the different road 

sections. The development of the MLR using the least squares approach requires that the data follow 

a normal distribution (Karlaftis and Golias, 2002). The approach for applying the robust MLR to the 

data involves sorting data based on one of the variables and then aggregating the data using a 

variable bin size to ensure that another variable remains constant across the variable bins (Hicks 

and Fetter, 1991; Schmidt et al., 2012). Data transformation can then be applied to the data to ensure 

normality and equal variance. 
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2.10 Road crash modelling and analyses techniques 

In recent years, numerous studies have been conducted with the goal of developing crash predictive 

tools for roadway facilities for rural highways. Statistical road safety modelling is defined by Hauer 

(2014) as the fitting of a statistical model to data; namely crash data and characteristics of roadways 

and traffic. A wide range of statistical models frequently applied include multiple linear regression, 

negative binomial, Poisson, binomial, zero-inflated Poisson (ZIP) and negative binomial ZINB), and 

geographically weighted regression (GWR) models (Ayati & Abbasi, 2014; Arani et al., 2017; 

Mohanty & Gupta, 2015). Notably, the ZIP and ZINB models are applied to account for the 

preponderance of excess zero’s observed in crash data (Miranda-Moreno et al., 2007). The Highway 

Safety Manual (AASHTO, 2010) notes that identifying the appropriate statistical model for the type 

of crash data is vital to addressing the road safety issues by estimating consistent and representative 

parameter estimates.  

2.10.1 Crash modelling: Global perspective 

Statistical relationships between road crashes, design elements and traffic conditions on the 

roadways have been extensively modelled and evaluated in recent years. El-basyouny and Sayed 

(2009) state that the application of crash prediction models in assessing the safety of road 

infrastructure has become a standard practice among road safety stakeholders globally. Dwikat 

(2014) mentions that the development and use of crash prediction models in identifying crash 

hotspots has been crucial in improving the road safety condition of roads worldwide. Studies by 

Rakha et al. (2010) and Rogers (2003) have respectively investigated the use of robust multiple 

linear regression (MLRs) and generalized linear regression models (GLM) to quantify associations 

between explanatory variable and road crashes, with all models adopted showing an acceptable 

level of goodness of fit and over-dispersion. 

Recent studies have challenged the underlying statistical assumptions adopted in popular models 

for road crash modelling (Lord and Ivan, 2006; Miaou and Lord, 2007; Saha and Ksaibati, 2016). 

First, the assumption that the dispersion parameter is a fixed parameter across sites and time 

periods is challenged (Miranda-Moreno et al., 2007). Second, an examination of the mathematical 

limitations of some functional forms and their properties at the boundaries demonstrated that for a 

given set of data, a large number of plausible functional forms with almost the same overall statistical 

goodness of fit is possible (Murthy and Rao, 2015). This allows for an alternative class of logical 

formulations that enable a richer interpretation of the data to be introduced (Miaou and Lord, 2007). 

A distinction is made between the crash prediction models that use multivariate explanatory variables 

to predict a univariate dependant variable and those that involve multivariate dependant and 

independent variables (El-basyouny & Sayed, 2009; Ho, 2006). The former are termed as univariate 

crash prediction models, while the latter are termed multivariate crash prediction models. Kockelman 
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(2006) states that it should be noted that both univariate and multivariate crash prediction models 

use multiple covariates. Univariate analysis methods are used to study trends in a data set by 

determining the central tendency measures and dispersion values (Bruce & Bruce, 2017; Saxena et 

al., 2006). Multivariate analysis methods, particularly Generalized Linear Models (GLM), are widely 

used in the context of road safety (Songpatanasilp et al., 2015). A GLM usually comprises three 

components: a random component, a linear function of the regression variables and an invertible 

link function (Oppong, 2012; Sisiopiku, 2011; Songpatanasilp et al., 2015). 

The standard Poisson regression model has been applied for modelling crash data, with the model 

assuming that the number of road crashes over a period of time are independently Poisson 

distributed (Mohanty and Gupta, 2015). The Poisson regression model is often restrained by the 

assumption that the mean and variance of the predicted variable are equal (Taylor, Lynam and 

Baruya, 2000). Miranda-Moreno et al. (2007) explains that the shortcoming of the Poisson regression 

models is caused by the vector covariates often not explained completely due to the conditional 

mean and omitted exogenous variables or randomness. This leads to a problem of over-dispersion 

caused by unmeasured heterogeneities (Cameron and Trivedi, 1998). Over-dispersion is addressed 

through capturing the random variables in the conditional mean of the Poisson model by introducing 

a random effect term in a multiplicative way (Deublein et al., 2013). This leads to the development 

of mixed Poisson models, such as Poisson-lognormal and Poisson gamma (Negative Binomial) 

models (Miranda-Moreno et al., 2007). 

Similarly, Miaou and Lord (2007) note that the popular univariate approach for developing crash 

prediction models uses the Poisson-gamma hierarchy, which leads to the Negative Binomial 

regression model. The Poisson lognormal regression represents a viable alternative for modelling 

the extra–Poisson variation. Even though the majority of crash prediction models are developed 

using models with fixed dispersion parameters, Miranda-Moreno et al. (2007) challenged the use of 

fixed dispersion parameters by examining various dispersion parameter relationships in crash 

prediction models. 

Lord and Ivan (2006) state that extensive research has been carried out to address the problem of 

observing the excessive zeroes in road crash data, in addition to the development of crash prediction 

models from data characterised by a low sample mean, especially if combined with a small sample 

size. Ayati and Abbasi (2014) note that various modelling techniques have been proposed in 

advocating the use of random parameter negative binomial regression models. 

Several covariates have exhibited spatial dependency such as road and environmental 

characteristics across geographical areas (Satria & Castro, 2016). These covariates showed spatial 

heterogeneity and significantly influenced the estimation of model parameters. The spatial variations 

were addressed in the analyses by using geographically weighted Poisson and negative binomial 
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regression models (GWPR and GWNBR) to investigate the influence of spatial dependent covariates 

on road crashes (Zheng et al., 2011). The limited ability of traditional generalized linear models to 

take spatial effects into consideration can be overcome through the use of spatial regression 

techniques such as GWR models (Li et al., 2013). Pirdavani et al. (2014) argue that despite GWR 

models addressing the spatial dependency of the covariates, they fail to account for the possible 

over-dispersion that can be found in events that occur independently and randomly over time such 

as road crashes. 

Othman and Thomson (2007) state that model validation is an important step in crash prediction 

model development. The goal of model validation is not only to compare the accuracy of the different 

models developed, but also to evaluate the overall accuracy of crash prediction models for use in 

road safety (Semar, 2003). Butchart and Mikton (2014) stated that crash prediction model validation 

is required to demonstrate that a model is appropriate, meaningful and useful for the purpose it is 

intended. Road crash prediction models can be used as a quantitative tool to evaluate the impact of 

road design and traffic conditions on road safety (Al-Matawah, 2009). 

2.10.2 Crash modelling: Namibian perspective 

Only a very limited literature scope exists that explores the relationship between road design and 

traffic characteristics, and road crashes, using crash modelling techniques in Namibia. A study by 

Ambunda & Sinclair (2019) on the effect of two-lane two-way rural roadway design on road safety 

represents one of the first attempts to quantify the extent of the link between road crashes and road 

design on Namibian roads. 

The study used multivariate analyses techniques, namely Poisson gamma (Negative binomial) 

regression models to statistically investigate the road safety relationships. Similar to Taylor et al. 

(2000), Ambunda & Sinclair (2019) determined that the dependent variable variance and mean were 

not equal, which violated the Poisson model condition that requires the mean and variance to be 

equal. This consequently invalidated the t-test parameter estimates. Poisson gamma models 

overcame this restriction caused by over-dispersion and provided the functional form crucial to 

linking road crashes to the investigated covariates (Ambunda and Sinclair, 2019). 
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2.11 Key conclusions from the literature 

Improving road safety is one of the most vital objectives for transportation stakeholders. In order for 

safety to improve on roadways effectively and efficiently, stakeholders need to understand how the 

various complex factors are linked and affect road safety.  

Existing literature that has attempted to establish and quantify the associations between road 

elements and road safety was reviewed in this Chapter, with a focus on traffic and road 

characteristics on single carriageways. Several conclusions were established on the varying extent 

of influence of road design elements on the safety of road users on the roadway. The following key 

conclusions were made on the impact of two-lane roadway elements on national rural roadways: 

a) Uniform road design positively influences road safety on the roadway through communicating 

information needed for drivers to safely traverse road sections and to safely interact with other 

road users. 

b) Stopping, passing and decision sight distances were reported as key safety components, as 

driver’s ability to see ahead resulted in safe vehicle operations. 

c) Speed and speed variations have a significant influence on the occurrence of road crashes. 

Higher speeds and speed variations were associated with sections with higher crash rates. 

d) Mixed conclusions were found on the influence of lane widths and shoulder characteristics on 

road safety. Roads with narrower lane widths were association with lower driver speed selections 

and safer driving behaviour, while also having the highest risk for head-on crashes and single 

vehicle crashes. Narrower ground shoulder widths were associated with lower driver speed 

selections as the visual cues they communicated gave drivers the perception of a narrow road, 

which meant that space to correct driver errors was limited, leading to safer driving behaviour. 

e) High vertical grades were found to result in higher crash incidences, especially on roads with 

higher heavy traffic composition. 

f) Horizontal curve radii below the critical radius of 350m were strongly associated with high crash 

rates. The safety of the horizontal curves was found to increase with increasing curve radius. 

Curves length greater than 1000m were not recommended due to limited passing sight distance 

issues experienced by drivers. 

g) The roughness of the pavement surface was found to contribute to the safety of drivers on the 

roadway. Good correlations were identified between higher surface roughness and higher road 

crash rates. Poor road surface conditions as compared to good road conditions were associated 

with a higher crash risk for road users. 

h) Several statistical methods have been employed to investigate the significance of the association 

between road elements and road safety, influenced by the type of crash data and study location. 
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A summary of several of the key empirical studies along with the variables and modelling techniques 

are presented in Table 2.22.  

Table 2.22 Previous literature on associations between rural roadway elements and road safety 

 

Authors 

 

V
a
y
a
la

m
k
u
z
h
i 
&

 

A
m

ir
th

a
lin

g
a
m

 (
2
0
1
6
) 

M
a

ji 
e
t 

a
l.
 (

2
0
1
8
) 

G
h
a
n
b
a
ri
 (

2
0
1
7
) 

M
o

h
a
m

m
e
d
 e

t 
a
l.
 

(2
0
1
7
) 

A
b
e
le

 &
 M

ø
lle

r 
(2

0
1
1
) 

B
e
n
-B

a
s
s
a
t 
&

 S
h
in

a
r 

(2
0
1
1
) 

E
lv

ik
 e

t 
a
l.
 (

2
0
0
4
) 

K
o
c
k
e
lm

a
n
 e

t 
a
l.
 

(2
0
0
8
) 

A
g
h
a
y
a
ri
 e

t 
a
l.
 (

2
0
1
7
) 

M
it
ra

 e
t 

a
l.
 (

2
0
1
7
) 

A
ra

n
i 
e
t 
a
l.
 (

2
0
1
7
) 

R
a
k
h
a
 e

t 
a
l.
( 

2
0
1
0
) 

Variables 

Covariates 

Geometric factors 

Lane width ✓ ✓ ✓ ✓ ✓  ✓ ✓     

Segment length  ✓ ✓ ✓ ✓     ✓ ✓ ✓ 

Road alignment ✓ ✓ ✓  ✓ ✓  ✓ ✓ ✓ ✓  

Sight distance     ✓ ✓ ✓      

Shoulder  ✓  ✓    ✓     

Number of lanes ✓   ✓     ✓  ✓  

Road side and environmental factors  

Access    ✓    ✓ ✓ ✓   

Pavement condition   ✓    ✓  ✓    

Traffic factors  

Traffic volume ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Speed ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓  

Percentage of heavy vehicles   ✓  ✓        

Dependant variables  

Crash frequency  ✓ ✓      ✓ ✓   

Crash occurrence ✓   ✓  ✓ ✓ ✓ ✓ ✓ ✓  

Crash severity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  

Crash rate ✓    ✓ ✓ ✓      

Model type  

Poisson regression   ✓     ✓     

Poisson gamma (NB) ✓  ✓ ✓      ✓  ✓ 

Robust Multiple Linear Regression            ✓ 

Power model       ✓      

Geographically weighted regression         ✓  ✓  

Others (Hurdle, etc.)  ✓   ✓ ✓       
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Chapter 3: Methodology 

3.1. Introduction  

This chapter discusses the methodology that was used to develop road crash prediction models and 

investigate the combination of effects of the road design and traffic environment on road crashes in 

the national rural road environment of Namibia. It provides an outline of the approach used to achieve 

the objectives of the study; first, through the collection and processing of quantitative and qualitative 

rural road traffic crash data and road characteristics information; and second, through analysing the 

data to identify the extent of the relationships between road crashes on the national rural road 

network and the road design environment. The chapter also describes the study instruments and 

software packages utilised in collecting, processing and analysing the study database. The chapter 

is outlined below: 

1. Data collection 

2. Data processing and study database 

3. Research instruments 

4. Data analysis 

5. Project timeline 

6. Ethics 
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3.2. Data collection 

Data collection plays a crucial role in statistical analysis. In research, various methods are utilised to 

gather data, which fall into two categories; primary data and secondary data (Ajayi, 2017). Primary 

data was collected from all the national rural roads using the process described in Section 3.2.2. 

Using multiple forms of equipment, the primary data was used to supplement data sourced from 

different institutions. The institutions include: the Namibian National Road Safety Council (NRSC); 

Motor vehicle Accident Fund of Namibia (MVA); the Namibian Police and the Roads Authority of 

Namibia. Secondary data was collected from these institutions as the primary source of input data 

for the study.  

3.2.1. Data collection study area 

Fatal and serious injury crash data was sourced for the Namibia national rural road network. The 

national road network is divided into several classes according to the functions of the roads and 

traffic volumes experienced on these roads. The national rural roads span across all the fourteen 

regions in Namibia and are maintained by the Namibian Roads Authority, through subsidies provided 

by the Namibian Government and road user taxes and other fees collected by the Road Fund 

Administration (RFA). 

The study focused on fatal and serious injury crashes on trunk and main roads on the national rural 

road network as shown in Figure 3.1. Hence, crash data was sourced from the Namibian National 

Road Safety Council (NRSC), Motor Vehicle Accident Fund of Namibia (MVA) together with 

Namibian police forms for the aforementioned road classes. On a similar note, data on roadway 

design and conditions was sourced from the Roads Authority of Namibia (RA). This focused mainly 

on traffic volumes, speeds (operational, design and posted), road lane characteristics, road shoulder 

characteristics, road alignment, sight distances, access density and pavement conditions. Collection 

of roadway data also involved onsite data collection on the rural roads to supplement data sourced 

from the relevant authorities. 
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Figure 3.1 National rural road classes in Namibia 
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3.2.2. Primary data collection 

Primary data is defined as data collected for the first time by the researcher (Ajayi, 2017). At locations 

on road segments where variable data was not available on the RMS or was not accurately recorded, 

the researcher carried out site observations and measurements to supplement secondary data and 

ensure the quality of data used in the analyses.  

3.2.2.1. Road crash data 

The location of the road traffic crash data recorded by the road safety stakeholders in Namibia is not 

geo-coded. The crash locations are described in text format using the km markers and landmarks 

close to the crash locations. The researcher had to determine the geographical coordinates 

(longitude and latitude) of the crash data using google satellite images and aerial photographs to 

identify the exact location of the road crash as shown in Figure 3.2.  

 

Figure 3.2 Geo-coded NRSC data 

Identifying the exact crash location was vital in determining the road and traffic conditions on the 

road segment on which the crash occurred. Inaccurate information on crash locations limited the 

collection of vital roadway geometric data. Therefore, a data collection process illustrated in Figure 

3.3 was developed and used to collect and code data related to crash locations to supplement data 

collected from authorities.  
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Figure 3.3 Data collection process used for collecting supplementary information for dataset 
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3.2.2.2. Road design characteristics, pavement and traffic conditions 

It was important to establish the roadway condition (design, pavement and traffic condition) on the 

national rural road way network to determine the level of compliance of the road design variables 

that were used in the study with the Technical Recommendations for Highways 17 on the Geometric 

Design of Rural Roads – TRH 17 (Committee of State Road Authorities, 1988), the Technical 

Recommendations for Highways 20 on the Structural Design, Construction and Maintenance of 

Unpaved Roads - TRH 20 (Comittee for State Road Authorities, 1990) and the Technical 

Recommendations for Highways 26 on Road Classifications and Access Management – TRH 26 

(Committee of State Road Authorities, 1988), used for road classification and alignment designs in 

Namibia. Persia et al. (2016) note that establishing roadway conditions through road safety 

management systems allows for a set of procedures that support road authorities in decision making, 

related to the improvement of safety on a road network. Variable data collected on the roadway 

parameters was tested in the crash prediction models developed, with results compared to the crash 

prediction models test on the road design standards (TRH 17, TRH 20 and TRH 26) used on the 

roads for a safety analysis. In essence, the safety analysis was vital in investigating the compliance 

of the road conditions and the validity of the current road design standards on the safety of the road.  

For that reason, in this study, for road segments on which volume data was not available on the 

RMS, Average Annual Daily Traffic (AADT) was measured in one location only. That single value 

was used as the AADT of the control section. For road segments on which AADT was measured on 

two or more locations, the average AADT was calculated and used as the AADT for the segment. 

The vehicle population and types were also determined from observation on the study segments. 

The traffic speeds on the study segments were measured by the researcher on segments where no 

information is provided, to determine the 85th percentile operational speeds of the traffic. 

Information on the geometric characteristics of the segments was measured by the researcher on 

site at the study locations and used to supplement, improve the quality and accuracy of the 

information provided by the Roads Authority of Namibia. The pavement conditions were determined 

by the researcher using the condition score index provided in Table 2.20 together with road surface 

condition information given in the NRSC dataset. 

a) Selection of study variables 

The study road characteristic variables discussed and revisited in this section were chosen for 

inclusion in the analyses due to their relevance to road safety. The quality of data available on 

variables in the RA database and the ability to access the study locations to supplement data 

provided by the RA and NRSC was also considered. The study used the data on the following road 

variables to inform on the existing road conditions of national rural roads and to develop crash 

prediction models. 
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1. Traffic crash rates: The crash rate technique improves upon the average crash frequency method 

by normalising the frequency of road crashes with road user exposure (AADT and section length) 

(Cenek et al., 2012). In analysing the safety performance of a road segment, fatal and serious 

injury severities are important in identifying road segments with the highest severity risks and in 

need of safety interventions (Ambunda and Sinclair, 2019). Traffic crashes are key in determining 

the crash rates on the road segments, enabling the comparison and ranking of road segments 

according to their safety performance (Bamdad Mehrabani and Mirbaha, 2018).  

2. Traffic volume: The number of vehicles crossing a particular point on the study section per hour 

was instrumental in determining the Average Annual Daily Traffic (AADT), which was vital in 

calculating the road crash rates on the study sections. Duivenvoorden (2010) confirms that a 

statistically significant correlation exists between road crashes of different levels of severity and 

multiple covariates, including the AADT. 

3. Design, posted and operating speeds: Porter et al. (2012) state that design speed is a tool used 

to develop the geometric features of a road during the road design stage. The posted speed 

regulates the speeds that road users should adhere to when traversing a road section. The 

operating speed is the speed at which road users generally operate on a particular road. Wang 

et al. (2009) assert that speed is an important factor in road safety. It does not only affect crash 

severity levels but is also related to the risk of being involved in a road crash. Deller (2013) states 

that speed and excessive speed remains one of the most vital contributing factors to road 

crashes. 

4. Lane width and surface type: Lane width is defined as the width of the roadway available for 

drivers to travel. Deller (2013) notes that drivers tend to speed on roads with greater lane widths 

compared to roads that are narrow. A study by Dong et al. (2015) found that a reduction in the 

lane width resulted in an increase in injury severity and in the likelihood of a road crash. 

5. Section length: This represents the section of the road along which vehicles travel. A study by 

Ahmed (2013) found that as the length of the road section increases, drivers tend to increase 

their speed and make risky manoeuvres. The opposite happens on shorter road segments, 

where decelerations to bring a vehicle to a sudden halt can impact the steering capabilities of 

drivers (Chan et al., 2008). The length of the road section together with the volume of the road 

section determine the level of exposure for the road users (Chen et al., 2007). 

6. Number of road lanes: A road lane is defined as the portion of the roadway designated for use 

by a single line of vehicles in a single direction. Ahmed (2013) notes that road lanes help to 

control, guide drivers and reduce traffic conflicts. A study by Yang et al. (2017) found that the 

number of road lanes available to the road users influences drivers’ tendency to make risky 

overtaking manoeuvres, which impacts the safety situation on the roadway. 

7. Shoulder widths and type: The American Association of State Highways and Transportation 

Officials (2011) (AASHTO) define a road shoulder as the width of the roadway adjacent to the 

traffic lanes. Ben-Bassat and Shinar (2011) state that roadway paved shoulders have several 
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functions, including stop and pull off, and recovery area for driver errors. Karlaftis and Golias 

(2002) state that narrow shoulders can create a dangerous situation where the driver will not 

have a recovery area in case of lane deviation and they therefore increase the likelihood of off-

road crashes. However, wide shoulders may also create a dangerous road situation due to higher 

driver speed selections, as drivers feel they have enough space to correct errors (Liu et al., 

2016). 

8. Horizontal and Vertical curvature: These curves facilitate the smooth transition of a vehicle when 

there is a change of direction or elevations. Turner et al. (2015) note that roadway curves are a 

necessary and important element of nearly all highways. Several studies have indicated that 

highway curves exhibit higher road crash rates than tangent sections, and that crash rates 

increase as the degree of the curves increase (Chen et al., 2007; Othman and Thomson, 2007; 

Hassan and Easa, 2003). 

9. Sight distances: The alignment of the roadway has a great impact on road safety because a 

drivers’ ability to see ahead is necessary for the safe operation of the vehicle and thus for the 

overall safety of the road system (Ahmed, 2013). A stopping sight distance of sufficient length is 

necessary so that a driver can safely stop a vehicle to avoid hitting an unexpected object, while 

a passing sight distance of sufficient length is necessary to allow for safe overtaking manoeuvres 

(Bassan, 2016). 

10. Access Density: Alsubeai (2017) defines access density as the number of access points on the 

roadway per km. Turner et al. (2015) affirm that access density impacts safety on roadways. 

Ahmed (2013) notes that increasing the number of accesses per km to a highway increases the 

likelihood of access related road crashes and reduces the operational efficiency of the roadway. 

11. Pavement condition: The condition of the pavement is affected by traffic volumes, weather and 

ground conditions, which potentially expose the road surface to wear and tear (Mohammed et 

al., 2017). Several studies have found that increasing the roughness of the pavement surface 

resulted in poor road safety conditions; The impact of road roughness varies on the vehicles 

wheels, which exposes the vehicle to different levels of friction on each side, resulting in poor 

steering capabilities (Ghanbari, 2017; Chan et al., 2008; King, 2014). 

Table 3.1 shows a list of codes and formats used in the collection of roadway data related to the 

crash locations used in the study. 
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Table 3.1 List of codes and formats for variables 

Variable Description Code Format Unit 

Traffic volume Number of vehicles crossing a particular point on the study section per hour Value Numeric Vehicles/hr 

Posted speed limit Posted speed limited to which users should adhere to Value Numeric Km/h 

Operating speed Speeds at which road users operate at when using the road section Value Numeric Km/h 

Lane width Width of the roadway facility available to drivers Value Numeric m 

Surface type The type of road lane surface (paved/unpaved) 
Paved (0) 

Text 
- 

Unpaved (1) - 

Section length Length of study section  Value Numeric m 

Number of road lanes Number of lanes in both directions available to drivers 1 to 4 lanes Numeric - 

Shoulder width Width of the roadway adjacent to the road lanes Value Numeric m 

Shoulder type The type of ground shoulder surface (paved or gravel) adjacent to road lane 
Paved (0) 

Text 
- 

Unpaved (1) - 

Horizontal curvature Rate of change of horizontal alignment per road length (Curvature coefficient) Value Numeric - 

Vertical Curvature The maximum and minimum slopes on the study road (Elevation profile) 
Flat (0) 

Text - 
Sloped (1) 

Sight distances Distance provided to drivers  Value Numeric m 

Access density Number of access points provided to traffic to joining study road Value Numeric Access/km 

Pavement condition The riding comfort of the pavement  

Very 

poor Poor (1) 

Text 

- 

Poor - 

Fair or 

good 
Good (0) 

- 

Very 

good 
- 
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3.2.3. Secondary data collection 

Secondary data is defined as data collected or produced by investigator agencies and organisations 

earlier (Ajayi, 2017). The researcher collected data from the numerous road safety stakeholders to 

be utilised in the study. 

3.2.3.1. Road Crash data 

Information on road crashes are captured by the Namibian Police, the Motor Vehicle Accident Fund 

of Namibia (MVA) and the National Road Safety Council of Namibia (NRSC). A crash record consists 

of information on the date, time, location, number and types of vehicles, weather, number and types 

of injury severity, road surface condition, lighting and the type and cause of the road crash. Existing 

road crash data was collected in Microsoft Excel format from the NRSC, MVA databases and the 

Namibian Police road crash report forms (shown in Appendix A), considering data quality and 

availability from 2012 to 2016.  

1. Sampling of crash counts for statistical analysis 

The target population for this study are drivers who were involved in fatal and serious injury traffic 

crashes in the national rural road spaces. National rural roads of various classifications in Namibia 

were chosen as focus areas for the study based on the scale of safety concerns over the high number 

of fatal and serious injury crashes. Several reports and studies have confirmed that Namibian roads 

are some of the most dangerous regionally and globally, with fatal and serious injury crash rates 

above the average value for the African continent (Amweelo, 2016; Nambahu, 2018). The choice of 

the study was further motivated by access to road crash data for the study area. 

The dataset for fatal and serious injury crashes comprised 3 192 casualties on the Namibian national 

rural roads from 2012 to 2016. Therefore, it was important to establish the appropriate sample size 

to draw correct inferences on the study population and for sound statistical results. Due to the 

relatively random nature of traffic crashes, a high crash rate in any given year may simply be a 

random fluctuation around a much lower long-term crash rate average on the study segments, 

leading to regression towards the mean (Choi et al., 2019). Therefore, a study period of 3-5 years is 

recommended to minimise the effects of the regression to the mean phenomenon (Demissie, 2017). 

Considering the recommendations made, the study focused on road crash data for a period of five 

years, from 2012 up until 2016. 

The study period was chosen due to the high quality of the data available for this study period. 

Despite the good quality of the data, all the records lacked appropriate location information or had 

vague location descriptions. The researcher was required to cross-analyse multiple databases from 

the Namibian Police and identify the locations of the road crashes in the Namibian National Road 
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Safety Council database. Moreover, additional road information on the crash locations was required 

for the database and therefore required researcher to go out on site to undertake these remedial 

measures. 

In order to determine whether the 3 192 crash counts were sufficient to draw statistical inferences 

from the study population, a minimum required sample size (number of crash records) was 

calculated and compared with the number of available crash observations. This allowed the 

researcher to determine whether the minimum sample size requirement criteria was complied with, 

and whether inferences drawn would be representative of the entire population. 

The statistical power method was used in STATISTICA to evaluate the minimum sample size 

required to detect statistically significant relationships at a desired level of confidence. In inferential 

statistics, the probabilities of a type I error and a type II error are determined (Elviket et al., 2004; 

Field, 2013). A type I error is referred to as an alpha error (α) and a type II error is referred to as a 

beta error (β) (Ali and Bhaskar, 2016). The type I error value (α) is the probability that the null 

hypothesis H0 will be rejected when in fact it is true. In essence, a difference that does not exist is 

being investigated, committing a type I error (Elviket et al., 2004). The alpha value is often simple to 

determine, as it is can be specified in the model, usually set at 5 percent (0.5) (Ali and Bhaskar, 

2016; Cohen, 1992).  

The Type II error value (β) is not specified, rather the sample size (N), significance level (α) and the 

effect size (ES) influence the Type II error value (β), and similarly, they influence the power, which 

is equal to 1-β (Gogtay, 2010). Power is the probability that a difference that exists will be detected. 

The β value is the probability of a type II error, and a type II error is when the researcher fails to 

reject a false null hypothesis (Ali and Bhaskar, 2016). In essence, the model states that no difference 

exists when in fact it exists. Cohen (1988) illustrates the statistical decision matrix used in hypothesis 

testing in Table 3.2.  

Statistical power analysis deals with a type II error, estimating the power as 1-β as illustrated in Table 

3.2. The analysis can be interpreted as the probability that a statistical test will correctly reject a false 

null hypothesis (Elvik et al., 2004). Cohen (1992) suggested that the maximum acceptable p value 

of a type II error should be 20 percent (0.2), implying that to detect reasonable effects, the power of 

a statistical test (1- β) should be at least 80 percent (0.8). 
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Table 3.2 Statistical test decision matrix (Cohen, 1988) 

Test decision 
True state of population 

Effect absent H0 is true Effect present H0 is false 

Test result: p< α 

Test decision: reject H0 

Conclusion: “effect exists” 

Type I error 

p= αi 

Power 

p= 1-β 

Test result: p≥ α 

Test decision: accept H0 

Conclusion: “effect absent” 

Correct decision 

p= 1-α 

Type II error 

p= βii 

i α is the probability (p) of a type I error, which rejects the null hypothesis (H0) when true 
ii β is the probability of a type II error, which fails to reject the null hypothesis (H0) when false 

                                                           

The statistical power analysis method in STATISTCA was applied to test whether the crash count 

records used in the study were sufficient enough to record a statistical effect and the size of that 

effect. The α-level for the power analysis was set at 0.05 with a desired power of 0.9 (90 percent 

chance) of detecting a statistical effect should one exist). The analysis determined the required 

sample as 2 931 crash counts, indicated in Table 3.3, which is slightly lower than the actual sample 

size of 3 192 used in the study. 

Table 3.3 Summary output of the statistical power analysis 

 Sample Size Calculation 

One Proportion, Z, Chi-Square Test 

H0: Pi = Pi0 

 Value 

Null Proportion (Pi0) 0.5000 

Population Proportion (Pi) 0.5299 

Alpha (Nominal) 0.0500 

Actual Alpha (Exact) 0.0502 

Power Goal 0.9000 

Actual Power (Normal Approx.) 0.8997 

Actual Power (Exact) 0.9000 

Required Sample Size (N) 2 931  

The results of the power analysis suggest that the power of the study sample size of 3 192 is greater 

than 90 percent (0.90). To detect accurate and reliable inferences, the power of a statistical test (1- 

β) should be at least 80 percent (0.80). It can be observed from the plot of power goal against sample 

size (exact) in Figure 3.4 that the minimum sample size at the power of 80 percent is smaller than 

the actual sample size used in the study. 
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One Proportion: Sample Size Calculation

Test on One Proportion (H0:  Pi = Pi0)

N vs. Power (Pi = 0,5299, Pi0 = 0,5, Alpha = 0,05)
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Figure 3.4 Statistical power analysis Power goal (minimum sample) vs sample size (actual) 

2. Identification of variables currently informing crash risk 

Identifying the variables currently informing crash risk in the crash record information is one of the 

first vital steps to understand and determine the extent to which the roadway and environment impact 

national rural road crashes in Namibia, which may occur unaccompanied or in combination with 

human or vehicle related factors. 

The variables in Table 3.4 were identified from the NRSC crash dataset and are employed in 

determining the national extent to which roadway and environmental factors were involved in rural 

road crashes. Moreover, they provided a basis to understand the circumstances and context in which 

fatal and serious injury crashes occurred. It is important to note that these variables have been used 

for many decades by the police; and that they are completed by the police officers and not by people 

with specialist knowledge about road design. As such, most of the roadway factors that are currently 

recorded are inevitably generic and relate only to obvious issues, not to the relationship between 

design features of the roadway and crash risk.  

Actual Sample 

Minimum required 

sample size 
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Table 3.4 Data variables in crash dataset 

Column name Variable Format 

day_of_week The day of the week Text 

time_of_day The time of day Time 

year Year Numeric 

no_vehicle Number of vehicles Numeric 

no_fatality Number of fatalities Numeric 

seriously_injured Number of serious injuries Numeric 

slightly_injured Number of slight injuries Numeric 

not_injured Number of no injury cases Numeric 

vehicle_damage_only Number of property damage 

only cases 

Numeric 

Operating_speed_on_road 85th percentile operating speed Numeric 

junction_type Junction type Text 

road_type Road type Text 

weather Weather Text 

severe_wind Whether there were severe 

winds 

Text: TRUE or FALSE 

light_condition Lighting conditions Text 

road_surface Road surface Text 

road_surface_type The type of road surface Text 

road_surface_quality The quality of road surface Text 

road_mark_type Road mark type Text 

road_direction Horizontal alignment of the road Text 

road_shape Vertical alignment of the road Text 

traffic_control_type The type of traffic control Text 

road_signs_visible Whether the road sign was 

visible 

Text: TRUE or FALSE 

 

obstructions The type of obstruction 

observed 

Text 

accident_type Accident type Text 

built_up_area Whether the accident location is 

in the built-up area 

Text: TRUE or FALSE 

 

y_lat Latitude coordinate of crash 

location 

Numeric 

x_long Longitude coordinate of crash 

location 

Numeric 

road_name The name of the road on which 

crash occurred 

Text/ Numeric 

driver_action_A/ driver_action_B Actions of motorists involved 

before the accident 

Text 

personaccidentcount_P1 Number of the persons involved 

in the accident 

Numeric 

person_gender_P1 The gender of the persons 

involved 

Text 

person_age_P1 The age of the persons involved 

in the accident 

Numeric 

Is person_1_P1_driver Whether the persons in 

consideration were driving 

Text: Yes or No 

person_accident_description_P1/ 

person_accident_description_P2 

Description of the accident by 

the persons involved in the 

accidents Or Description of the 

Text: natural 

language text 
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accident by the officer who 

reported/investigated the 

accident 

person_alcohol_drug_test_confirmed_P1/ 

person_alcohol_drug_test_confirmed_P2 

Whether the persons involved 

were tested positive for alcohol 

or drugs 

Text: TRUE or FALSE 

 

person_seatbelt_helmet_used_P1/ 

person_seatbelt_helmet_used_P2 

Whether the persons involved 

were using seat belts or helmets 

Text: TRUE or FALSE 

 

3. Identification of crash risk and risk factor categorisation 

Any road traffic system is highly complex and is influenced by a multitude of factors, including road 

users, road environment and vehicles. To identify and address the hazards on a roadway requires a 

systems approach, where interactions between different interlinked factors are considered (Hughes 

et al., 2015; Adanu et al., 2020). Traditionally, crash risk factors analyses have examined the human, 

roadway and environment and vehicle separately. Building on Haddon’s insights discussed in 

Section 1.8, the study used a systems approach to define pre-crash risk types, informed by crash 

descriptions from crash victims. This allowed for the categorisation of crash records by main error 

categories; human, roadway and environmental and vehicle factors discussed in Table 1.1. The 

human-related factors in road crashes are shown in Table 3.5. 

Table 3.5 Human related risk factors 

Main error category Risk factor 

Recognition error Inadequate surveillance 

Internal distractions 

Inattention 

Confusion over the road environment 

Visual impairments 

Complex environments/overestimation 

Response delays 

Decision error Too fast for conditions 

Too fast for a curve 

False assessment if another’s actions 

Misjudgement of gap or other’s actions 

Failure to use passive safety features 

Swerve in front of other traffic 

Unsafe passing 

Performance errors Overcompensation 

Poor directional control 

Panic/freezing 

General driving ability/skills 

Other performance error 

Intentional risk Fatigue 

Alcohol/drugs 

Aggression 

Dangerous manoeuvres 

Traffic violations 

Following too close 
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Speeding 

Too fast for conditions 

Physiological conditions Physical impairments 

Heart attack 

Eyesight 

Medications 

Age ‐senior driver/ped (>65) 

Age – young driver/ped (<25) 

Age – child ped (<15) 

Blackouts 

Table 3.6 displays roadway factors and vehicles factors. The study is specifically focused on 

identifying the context and extent to which roadway factors play a role in crash occurrence, as a pre-

cursor to developing crash prediction models for the national rural roads. 

Table 3.6 Roadway and vehicle related risk factors 

Main error category Risk factors 

Roadway Factors Potholes 

Animals 

Obstructions 

Work zone 

Faulty traffic lights 

Weather 

Poor visibility/ night/glare/dawn/dusk 

Road surfaces 

Stone projected by another vehicle 

Stone 

Speed differentials/ congestion 

Road geometry: Curve/slope 

Vehicles Factors Tyre burst 

Defective lights or indicators 

Defective brakes 

Missing or defective mirrors 

Defective steering or suspension 

Overloaded or poorly loaded vehicle or trailer 

Tyre hooked off the vehicle 

Other 
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Other road user factors that that were identified to play a role in crashes are listed in Table 3.7. 

Table 3.7 Risk factors related to other road users 

Main category Risk factors 

Other road user factors Cyclist unsafe riding 

Intoxicated cyclist 

Cycling in darkness 

Cyclist distractions 

Jaywalking 

Traffic light violations 

Unsafe crossing/signalised crossing 

Crossing between parked cars 

Pedestrian using roadway 

Child running after car 

Intoxicated pedestrian 
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4. Application of risk factors to crash records 

The study investigated the descriptions provided by the person(s) involved in road crashes and 

investigators together with other provided information to identify risk factors for the crash records. 

Therefore, risk factors were classified into several levels below according to the information provided: 

a) Level 1: Primary risk factor 

b) Level 2: Secondary risk factor 

c) Level 3: Other possible risk factor 

3.2.3.2. Road design characteristics, pavement and traffic conditions 

Road geometry and traffic data on the rural roads was retrieved from the Road Management System 

(RMS) and Road Referencing System (RRS) of the Roads Authority of Namibia (RA) in PDF format 

as shown in Figure 3.5 and Figure 3.6. Road geometry data includes data on lane width, hard-

shoulder width, horizontal and vertical curves characteristics, segment length, road access density 

and sight distance. The study also used the geometric standards stipulated in the Technical 

Recommendations for Highways 17 (TRH 17) on the Geometric Design of Rural Roads in the 

development of crash prediction models to evaluate the performance of existing road geometry. 

The traffic conditions related to the study location, namely the average annual daily traffic (AADT), 

traffic composition (Percentage of heavy vehicles) and traffic speeds were sourced in Excel format 

from the RA as shown in Figure 3.7. In addition, the condition of the pavement (riding comfort index 

(RIC)) for each segment during the study period 2012 to 2016 was determined from the road data 

provided by the RA, in combination with information from the dataset provided by the NRSC. 

Using these factors, road crash prediction models were developed to estimate the effect of these 

factors on fatal and serious road crash counts. The traffic condition and crash data on the rural roads 

to be analysed was examined to ensure that no changes in either the layout or major traffic volumes 

due to alignment changes occurred over the course of the study period. 
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Figure 3.5 Cross sections report from Roads Authority Namibia 
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Figure 3.6 Road log report from Road Authority Namibia 
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Figure 3.7 Traffic volume report from Roads Authority Namibia 
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3.3. Data quality and limitations 

The quality of analyses and decision making in road safety is highly dependent on the quality of the 

data on which analyses are based (Montella et al., 2012; Abdulhafedh, 2017). Quality data results 

in a better understanding of road traffic operational problems, locating of hazardous road sections, 

identifying risk factors, developing accurate diagnosis and remedial measures, and evaluating the 

effectiveness of road safety programs (Mannering and Bhat, 2014; Abdulhafedh, 2017).  

Road crash investigations require a comprehensive, accurate and up to date database for an 

analysis to provide sound and accurate inferences. Therefore, the study required quality information 

pertaining to the road crashes, traffic, and roadway design and condition for a reliable statistical 

analysis. The quality of the data used is discussed in Section 3.3.1 and Section 3.3.2. 

3.3.1. Road crash data  

Road crash data focused on fatal and serious injuries only on national rural road network in Namibia 

was obtained from the NRSC in Microsoft Excel format for the period 2012 to 2016. The NRSC 

comprised 98 894 crash records. Approximately 34 percent (33 471) of these road crashes occurred 

on the national rural road network, with 37 field columns of information on each crash observation. 

The data set also included highlighted information of the roadway infrastructure and condition of the 

crash locations. The study identified 742 duplicated crash records, which reduced the crash dataset 

to 32 729 crash observations. The study focused on fatal and serious injury crashes only, which led 

to a crash dataset of 3 192 crash observations on the national rural road network. A summary on the 

quality of information of the variables in the crash dataset is detailed in Table 3.8. 
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Table 3.8 Quality of road crash data on the national rural road network for period 2012 to 2016 

Field name 
Number of 

variables 

Variables not 

reported/ 

Unknown 

Completeness 

Date 3 192  0 100.00% 

Weekday 3 192  0 100.00% 

Time 3 192  0 100.00% 

Lighting condition 2 956  236 92.61% 

Visibility 2 701  491 84.62% 

Weather 3 192  0 100.00% 

Month 3 192  0 100.00% 

Year 3 192  0 100.00% 

Police station 3 192  0 100.00% 

Latitude 16 3 176  0.50% 

Longitude 16 3 176  0.50% 

Km marker 1 244  1 948  38.97% 

Location description 1 948  1 244  61.03% 

Built up area (False) 3 192  0 100.00% 

Crash type 3 192  0 100.00% 

Crash cause 3 192  0 100.00% 

Fatal injuries 3 192  0 100.00% 

Serious injuries 3 192  0 100.00% 

Number of vehicles involved 3 192  0 100.00% 

Vehicle type 3 181  11 99.66% 

Is person_1 driver? 3 192  0 100.00% 

Person_1 gender 3 085  107 96.65% 

Posted speed limit 2 865  327 89.76% 

Road type 3 122  70 97.81% 

Road number 3 122  70 97.81% 

Road direction 3 122  70 97.81% 

Junction type 3 122  70 97.81% 

Surface type 3 192  0 100.00% 

Surface quality 3 011  181 94.33% 

Surface condition 3 011  181 94.33% 

Road marking type 2 926  266 91.67% 

Road marking condition 3 001  191 94.02% 

Terrain 3 173  19 99.44% 

Road sign type 2 942  250 92.17% 

Road sign condition 2 942  250 92.17% 

Traffic control 3 012  180 94.36% 

Obstruction 3 192  0 100.00% 

The crash locations in the dataset are described using text and km markers on the national rural 

road network. Only 0.5 percent of the crash observations had coordinates in the dataset. Information 

on the roadway facilities, traffic and surface condition, which was crucial for analyses in the study, 
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had a completeness ranging from approximately 89 percent to100 percent in the dataset. The data 

quality deficiencies in the NRSC dataset were addressed by comparing crash records against MVA 

crash records. The crash sample size of 3 192 records was tested using the power analysis in 

Section 3.2.3 to test whether it was sufficient to conduct sound statistical analyses and to make 

inferences on the study population. 

3.3.2. Road design characteristics, pavement and traffic conditions 

Data on road design characteristics, pavement and traffic conditions was sourced in PDF format 

from the Roads Authority of Namibia (RA) and was also found in the NRSC crash dataset as detailed 

in Table 3.9. The RA dataset includes 14 fields of road design and traffic condition information for 

multiple rural roads on the national road network. Table 3.9 shows a summary of the attributes of 

the crash location design, condition and traffic data provided by the RA and used in the study. 

Additional information on national rural roads with zero crashes over the study period was also 

collected for the development of the crash prediction models. 

Table 3.9 Quality of roadway design, condition and traffic data from the Roads Authority of Namibia 

Field name Number 

of 

variables 

Unknown 

variables 

Completeness 

AADT 3105 87 97% 

Posted Speed 3192 0 100% 

85th Percentile operating speeds 2922 270 92% 

Lane width 1629 1563 51% 

Road lane surface type 1629 1563 51% 

Section length 2847 345 89% 

Number of road lanes 2847 345 89% 

Shoulder width 1629 1563 51% 

Shoulder type 1629 1563 51% 

Horizontal curvature 0 3192 0% 

Vertical curvature 0 3192 0% 

Sight distances 1811 1381 57% 

Access density 1629 1563 51% 

Pavement conditions 2943 249 92% 

Data on posted speed limits of the various rural roads was the only fully complete (100 percent) 

variable in the dataset. No data was found in the RA road management system on the horizontal 

and vertical curvature variables. Data on lane and shoulder characteristics, roadway access and 

sight distances variables were slightly above 50 percent complete. Data on traffic volumes, operating 

speeds, section lengths, lane numbers and pavement conditions had a completeness ranging 

between 89 and 97 percent. 
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3.4. Data processing  

After obtaining the raw data from the various road safety stakeholders discussed in Section 3.2, data 

processing was performed. Data processing initially involved cleaning the raw data and performing 

initial screening in order to make the data useful for performing further statistical analyses. As the 

study data was collected from various sources, linking all the available data and compiling the data 

(road crash rates, road geometric characteristics, road traffic and pavement condition information) 

into one dataset was vital in ensuring the quality of the data before proceeding with further analysis. 

3.4.1. Road crash data processing 

The road crash data had to be processed to determine the extent to which roadway factors were 

involved as risk factors in the occurrence of road crashes on rural roads. This involved examining 

the victim/ witness descriptions of the crashes and determining the various levels described in 

Section 3.2.3, at which the different road crash risk factors were involved in the crashes as illustrated 

in Figure 3.8.  

 

Figure 3.8 Crash risk factors levels in crash dataset 

This step also allowed for the creation of georeferenced crash data aggregated at the national road 

level. Crash rates were combined together with roadway design and condition characteristics for the 

national rural road network and normalised to allow for a sound comparison over the whole network. 

The combined Excel file with crash rates was then imported into QGIS, converted to a QGIS 

shapefile and mapped to visualise the level of distribution of road crashes on the road network. 
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3.4.2. Road design characteristics, pavement and traffic conditions processing 

Roadway data was collected from the on-site observations, PDF format and Excel format data from 

authorities. The raw data was then aggregated at the national level using Excel. The national rural 

road network was provided by the RA in shapefile format and used to identify all rural roads on which 

data was available and on which data had to be collected on site to augment the data collected from 

authorities in the excel sheet. Information on the road design standards (TRH 17) was also added to 

the Excel spreadsheet to augment all crash data and roadway data required for the analyses on a 

national dataset level. The steps taken to process roadway data are illustrated in Figure 3.9. 

 

Figure 3.9 Roadway data processing steps  
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3.5.  Research instruments 

The following software packages and study equipment were used to collect, manage and analyse 

research data: 

3.5.1. Data collection tools 

a) Radar speed gun: The device was used to measure the speeds of moving vehicles on the 

national rural roads. 

b) Measuring (Trundle) wheel: The device was used to measure the width of lanes on the national 

rural roads. 

c) Google maps: The web-based application was used in determining the coordinates of the crash 

locations on the national rural road network. 

3.5.2. Data Management tools 

d) Mendeley: The application enabled the creation of the reference database and as a means to 

organise and manage the study material (journals, reports and other research studies).  

3.5.3. Data processing and analysis tools 

e) QGIS: The Geographical Information System tool was used to develop heat maps, which 

provided a visual summary of the road crash clusters of multiple severity on the road network. 

f) IBM SPSS Statistics 25, STATISTICA and Microsoft Excel 2019: These software applications 

provided a comprehensive set of data processing and statistical tools to clean, aggregate and 

process study data. These software’s were also used as data management tools (Section 3.5.2) 
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3.6. Data analysis 

3.6.1. Road crash, driver risk factors and behavioural aspects analyses (Univariate and 

Bivariate analyses) 

The statistical package STATISTICA, IBM SPSS 25 and Excel were used to analyse data in this 

section. The packages were used to run univariate and bivariate analyses. The statistical analyses 

were based on a 95 percent confidence level. The data was coded accordingly and dummy variables 

for the independent variables namely: Gender, Weekday, Week, Month and Week of the month and 

Region were created for the analyses, using 1 and 0 for the variable under consideration. The 

dependant variable was the fatal and serious crash counts. Table 3.10 describes the categorisation 

of key variables used in the analyses. 

Table 3.10 Categorisation of demographic variables 

Independent variables Categorisation 

Gender Gender of driver involved in crash {0 = Male; 1 = Female} 

Week of the month 

The week of the month when the accident took place: {1 = 

1st week of the Month, 2 = Second Week of the Month, 3 

= Third Week of the Month, 4 = 4th Week of the Month, 5 

= 5th Week of the Month}  

Weekday 

Whether the accident took place during the weekday or 

weekend day {0= Week day: [Monday, Tuesday, 

Wednesday, Thursday & Friday]} and 1= Weekend day: 

[Saturday & Sunday]}  

Month 

Month in which the accident took place {1 = January; 2 = 

February; 3= March; 4= April; 5 = May; 6 = June; 7 = July; 

8 = August; 9 = September; 10 = October; 11 = November 

and 12 = December} 

Region 

The region in which the road accident took place: { 1 = 

Erongo, 2 = Caprivi, 3 = Hardap, 4 = Karas, 5 = Kavango 

West, 6 = Kavango East, 7 = Khomas, 8 = Ohangwena, 9 

= Omaheke, 10 = Omusati, 11 = Oshana, 12 = Oshikoto, 

13 = Otjozondjupa and 14 = Kunene}  

 

3.6.1.1. Univariate analysis (Descriptive) 

The univariate analysis method was used to describe and observe the trends of the historic crash 

data by reviewing the distribution of the crash records and determining the central tendency 

measures (mean, mode and median) and dispersion values (standard deviation, range, quartiles, 

variance , minimum and maximum values) (Bruce and Bruce, 2017). Further, the extent to which 

roadway factors shown in Figure 3.10, at different levels of significance and combinations, were 

involved in crash observations was determined using univariate analysis methods.  
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Figure 3.10 Crash risk factors combination 

3.6.1.2. Bivariate analysis 

Bivariate analysis refers to the process of investigating associations between two variables with the 

aims of describing the data set and drawing inferences from the association of those variables (Ali 

and Bhaskar, 2016). Although univariate analysis (descriptive statistics) is vital to describe a set of 

data in terms of the frequency of occurrence, central tendencies and the dispersion of the data, it is 

not sufficient to address the statistical queries that arise from reviewing data (Saxena et al., 2006). 

Inferential statistics is a type of bivariate statistical analysis used to arrive at conclusions beyond 

sample statistics, with the aim of hypothesis testing (Bruce and Bruce, 2017). 

Confidence intervals and hypothesis testing are dependent on whether the statistical test is 

parametric or non-parametric (Ali and Bhaskar, 2016). The underlying assumptions of parametric 

tests restrict its application to a “normally distributed population, a data set with a homogeneity of 

variance and a dataset where all the observations are independent of each other” (Montgomery and 

Runger, 2014).  

Several assumptions were made in numerous steps shown in Figure 3.11 to ensure that the most 

appropriate statistical tests were used in this study. Firstly, the distribution of the data was analysed 

for outliers using Excel and STATISTICA. This was done through determining Cook’s distance and 

the development of box-whisker diagrams and histograms to display percentiles and outlier 

summaries. The lower quartile (Q1) (25th percentile) and upper quartile (Q3) (75th percentile) 

indicators were determined to apply the outlier labelling rule. The interquartile range (IQR) (difference 

between the upper and lower quartiles) was calculated for the distribution. For accurate outlier 

spotting, values lower than the lower limit (Q1 – (2.2(IQR)) and values greater than upper limit (Q3 

+ (2.2(IQR)) were labelled as outliers.  

Human factors

Vehicle factors
Roadway 
factors
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Secondly, linearity – which assumes a linear relationship between the independent and dependant 

variables - was evaluated using scatter plots. A linear relationship is assumed if the scatter plot 

follows a linear pattern, otherwise a non-linear relationship is assumed.  

Thirdly, the distribution of the data was assessed for normality by visually inspecting whether the 

histograms were symmetrical or not (if bell-shaped or not). The normal distribution test can also be 

done using the probability-probability plot (P-P plot). For a normal distribution the data points are 

expected to be as close as possible to the ideal diagonal line in the plot. Should the data points 

significantly deviate from the diagonal line, the normal distribution is not appropriate to describe the 

distribution. 

Lastly, the assumption of homogeneity of variance of the data set was tested using Levene’s test 

(Neill, 2006). Levene’s test investigates the null hypothesis that different data groups have an equal 

variance at an alpha level of 5 percent (0.05) (Gastwirth et al., 2010). The p-value determined by 

Levene’s test confirms whether the assumption is approved or negated. For p-values greater than 

0.05, the assumption that the variance is equal across the data groups is accepted. For p-values 

less than 0.05, the alternative hypothesis that variance is different across the data groups is 

accepted.  

 

Figure 3.11 Assumptions applicable to Bivariate analyses 

In carrying out inferential statistic tests on the data set, an extension of the independent t-test called 

the one-way analysis of variance (ANOVA) was used to test whether statistically significant 

differences exist between the means of two or more data groups (Al-Matawah, 2009). As ANOVA 

does not indicate which data groups are different, follow-up post hoc tests were used to identify the 
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specific differences alluded to by the ANOVA test (Ho, 2006; Field, 2013). Various post-hoc tests (in 

red) shown in Figure 3.12 were used to investigate the differences in the data groups, based on 

assumptions on variances and data groups sample sizes. Therefore, the post-hoc tests used in the 

study were determined by the variance tests from Levene’s test and the sample sizes of the crash 

data groups.  

 

Figure 3.12 Post-hoc tests application 
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3.6.2. Determining road segment crash rates 

Crash frequency is a useful tool to compare the temporal differences in the number of crashes 

occurring at a given location and observing trends (Vinayakamurthy et al., 2017). Crash frequency 

is often inadequate to compare the occurrences of road crashes on multiple road locations as it does 

not consider road user exposure (Demissie, 2017). The crash rate method improves on the crash 

frequency by normalising the frequency of the road crashes with exposure, as measured by the 

traffic factors and the length of the study links(Garber and Hoel, 2009). The crash rate method also 

allows for a direct comparison of the road safety condition of multiple road segments (Cenek et al., 

2012).  

In order to identify road segments with the highest severity risks, the crash rate considered the fatal 

and serious crash information from the database and the rest of the rural road network, using 

Equation [3.1] presented as crashes per million vehicle kilometres.  

𝐶𝑅 =
𝐶𝑟𝑎𝑠ℎ𝑒𝑠×106

𝐴𝐴𝐷𝑇×365×𝑇×𝐿
         [3.1] 

Where; CR = Crashes per million vehicle kilometres 

 AADT = Average Annual daily Traffic 

 L = Length of road segment (km) 

 T = Length of study period (years) 

 365 = Number of days in a year 

  

Stellenbosch University https://scholar.sun.ac.za



117 

 

3.6.3. Road crash geospatial analysis (Crash distribution on road network)) 

In road safety, road crash hot spots refer to a location with a record of large number of road crashes 

or crashes with high severity (Toran and Moridpour, 2015). Geographic Information System (GIS) is 

one of the useful tools in crash hot spot analysis. Using GIS, it is possible to join road crash dataset 

to the road network and other variables (Lloyd, 2010; Choudhary et al., 2015). GIS in spatial data 

analysis is used to analyse road crash hot spots in road networks (Ouni and Belloumi, 2019). In this 

study, an analytical procedure proposed by Mitchel (2005) was adopted to carry out the geospatial 

analysis with the use of QGIS. The analytical procedure is presented in Figure 3.13. 

 

Figure 3.13 Geospatial analytical procedure analysis (Mitchel, 2005) 

1. Formulation of study questions 

The geospatial analysis process was performed with the intention of addressing specific study 

questions as formulated in Chapter one of the study. Geospatial analysis enabled the identification 

and examination of the location of road crashes to study the combination effects of road design and 

traffic conditions on road crashes. The geospatial analytical procedure addressed the following 

research questions: (i) Where are the road crash hotspots on the Namibian national rural road 

network? (ii) What are the characteristics of the road crashes on the identified study sections? (iii) 

Do the design variables on the identified study sections comply with road design standards in 

Namibia? Addressing the formulated study questions in a spatial context generated an 

understanding of the relationship between the road crashes and the national rural road environment. 

2. Understanding of data 

The type of data and its features help determine the specific method to use in geospatial analyses 

(Mitchel, 2005; Smith et al., 2009). Features can be represented in GIS using two models of the 

world; vector and raster (Farkas et al., 2016). With the vector model, each feature is a row in a table 

and feature shapes are defined by x and y locations in space (GIS connects the dots to draw lines 

Formulate study questions

Understand your data

Choose method

Visual inspection of mapped data

Pattern analysis

Spatial cluster analysis using QGIS
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and outlines) (Lloyd, 2010). Features can be discrete locations or events, lines or areas (Satria and 

Castro, 2016; Dereli and Erdogan, 2017).  

Locations - such as the precise location of a road crash - are represented as points having a pair of 

geographic coordinates (Lloyd, 2010), as shown in Figure 3.14.  

 

Figure 3.14 Representation of a location in GIS  

Lines - such as roads, streams or pipelines - are represented as a series of coordinate pairs (Lloyd, 

2010), as shown in Figure 3.15.  

 

Figure 3.15 Representation of a line in GIS 

Areas are defined by borders and are represented as closed polygons (Taha, 2016; Lloyd, 2010), 

as shown in Figure 3.16. Areas can be defined as administrative; such as regions or provinces, or 

naturally occurring boundaries; such as watersheds (Câmara et al., 2002; Farkas et al., 2016). When 

analysing vector data, much of the analysis involves working with the attributes in the layers data 

table (Lloyd, 2010). 

 

Figure 3.16 representation of an area in GIS 
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With the raster model, features are represented as a matrix of cells in continuous space (Sommer 

and Wade, 2006). Each layer represents one attribute (other attributes can be attached); associated 

with a numerical value or class and positional information (Lloyd, 2010). Most analysis occur by 

combining the layers to create new layers with new cell values.  

The type, quality, strengths and weaknesses of the spatial data are significant in determining the 

analytic tasks and statistical techniques applicable. Therefore, understanding the type of data and 

its aspects is an important step in the overall process of geospatial analysis. The spatial data for the 

study comprised different types of data, i.e. points, lines, polygons and raster data. 

3. Choosing Geospatial analyses method 

A wide variety of approaches can be performed in geospatial analysis to study spatial locations and 

investigate the distribution of a phenomena. These approaches are known as spatial statistics or 

geostatistics as they apply a range of statistical techniques designed to analyse and predict the 

values attached to spatial phenomena (Sommer and Wade, 2006). Geostatistics makes use of 

standard statistical techniques such as exploratory data analysis, descriptive and inferential 

statistics, and modelling techniques to analyse the spatial data (Câmara et al., 2002). 

The geospatial analysis in the study encompassed two main tasks; the creation and manipulation of 

map layers and running of exploratory spatial data analysis (ESDA). The first task includes activities 

such as the creation of map layers in QGIS from the spatial data, reviewing the created maps and 

checking attribute data connected to the map features, editing attribute tables, aggregating data and 

performing spatial queries. The second task - exploratory spatial data analysis (ESDA) - involves a 

range of techniques to (i) visualise spatial data in a spatial framework using maps and other graphics; 

(ii) identify patterns of spatial clustering and association through spatial correlation and regression 

analysis; (iii) detect significant patterns; and (iv) recommend different forms of spatial heterogeneity 

(de Smith et al., 2009). Descriptive statistics and feature clustering to quantify spatial patterns are 

utilised by this approach. The spatial autocorrelation techniques used in the study are discussed 

below. 

4. Visual inspection of mapped data 

The visualisation of data was the starting point for ESDA after the creating of maps and performance 

of spatial queries in QGIS. Several techniques are involved in the visualisation of data, including 

data graphing and mapping using a combination of visual elements; heatmaps, choropleth maps, 

scatter plots, graphs and 3D maps (de Smith et al., 2009). A heat map is a graphical representation 

of data where the different individual values contained in a matrix are represented using a colour 

coding system to provide a visual summary (Sommer and Wade, 2006; de Smith et al., 2009).  
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The study applied spatial visualisation GIS-related techniques, including categorising of spatial data 

and designing map symbology for each category, controlling selected values to be displayed, 

addressing spatial outliers, creating a map series and mapping density values, creating map layouts, 

adding graphs and printing map outputs. 

5. Pattern analysis 

Spatial pattern analysis is used to geographically specify the locations where road crashes occurred 

and to assess the specific patterns of distribution through map visualisation (Toran and Moridpour, 

2015; Kundakci, 2014). Kernel Density Estimation (KDE) is one of the most significant spatial data 

analysis techniques. Several studies in the literature have employed the KDE technique to analyse 

road traffic crashes. The main reason for employing this method is that hotspots in KDE are based 

on an area with crash risk rather than a certain point. This is because the real position of the crash 

is dependent on the accuracy of a GPS device. Identifying the exact position of a road crash is not 

always easy. For instance, the point of cause of a road crash may be different from the position of 

the crash, thus the location of the crash reported by the police officer is different from the exact point 

of the crash. In this study, KDE was applied to identify road crash hotspots on the different national 

rural road classifications. 

Kernel Density Estimation 

A kernel distribution is a nonparametric representation of the Probability Density Function (PDF) for 

a random variable (Satria and Castro, 2016; Ghadi and Török, 2017). Kernel distribution is used 

when a parametric distribution cannot properly describe the data. Also, kernel distribution is utilised 

to avoid making assumptions about the distribution of spatial data (Pljakić et al., 2019). Kernel 

distribution is defined by a smoothing function and a bandwidth value which control smoothness of 

the resulting density curve and affect the results of the hotspot analysis (Toran and Moridpour, 2015; 

Shafabakhsh et al., 2017). 

KDE involves placing a symmetrical surface over each variable and evaluating the distance from a 

point to a reference location based on a mathematical function (Toran and Moridpour, 2015; 

Hashimoto et al., 2016). The values of all surfaces related to each variable are accumulated for the 

reference location and this procedure is repeated for all reference locations in this estimation. In the 

kernel method, a study area is divided into a number of predetermined cells (Toran and Moridpour, 

2015). Hence, the kernel method draws a circular neighbourhood around each feature point (each 

road crash). Subsequently Equation [3.2] is used, which goes between 1 at the position of the crash 

and 0 at the neighbourhood boundary as illustrated in Figure 3.17. 
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𝑓(𝑥, 𝑦) =
1

𝑛ℎ2
∑ 𝐾(

𝑑𝑖

ℎ
)𝑛

𝑖=1         [3.2] 

Where;  𝑓(𝑥, 𝑦) = Density estimation at location (𝑥, 𝑦) 

 𝑛 = Number of observations 

 ℎ = bandwidth or kernel size 

 𝐾 = Kernel function 

 𝑑𝑖 = Distance between the location (𝑥, 𝑦) and the location of 𝑖th      observation 

 

Figure 3.17 Kernel function 

There are different types of kernel functions, such as Quartic, Conic, Gaussian, Negative exponential 

and epanichnekok (Toran and Moridpour, 2015; Satria and Castro, 2016; Pljakić et al., 2019). The 

choice of the kernel function K is less important than the impact of the bandwidth r in planar KDE 

(Toran and Moridpour, 2015). The study applied the specific form of the Quartic kernel function 

(QKF) shown in Equation [3.3]. The QKF was applied as it provides the best approximation of the 

true density of the variables in the study area. 

𝑘 (
𝑑𝑖

ℎ
) = 𝐾 (1 −

𝑑𝑖
2

ℎ2) when 0 < 𝑑𝑖 ≤ ℎ      [3.3] 

𝑘 (
𝑑𝑖

ℎ
) = 0 when 𝑑𝑖 > ℎ 

Where; 𝑘 = Kernel function 

𝑑𝑖 = Distance between the location (𝑥, 𝑦) and the location of the 𝑖th observation 

 𝐾 = Scaling factor (To ensure the total volume under Quartic curve is 1) 
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6. Spatial cluster analysis using QGIS 

The planar kernel density estimation (KDE) was applied to visualise where the clusters of road 

crashes appear. The bandwidth and the grid size are two key parameters that influence the results 

of the hotspot analysis (Satria and Castro, 2016; Saha and Ksaibati, 2016). Five different bandwidth 

values were tested (200 m, 400 m, 500 m, 800 m and 1 000 m) to achieve the best visualisation of 

road crash hotspots on a grid cell size of 30 m by 30 m, given the size of the study area and the 

processing time required for hotspot identification in QGIS. The bandwidth values were applied in 

several previous studies and were adopted in this study, to allow for a comparison between the study 

results and previous study findings. 

The KDE tool produces a raster map where the density of the road crashes is displayed by 

continuous surfaces (Hashimoto et al., 2016; Pljakić et al., 2019). Lighter shades on the raster map 

represent locations with lower road crash intensity, while darker shades indicate areas with higher 

road crash densities. The study classified the surfaces into four equal intervals according to their 

density as shown in Figure 3.18. The top density locations in the classification are defined for the 

highest 25 percent of total density and lowest density sections for the lowest 25 percent of total 

density in each location. 

 

Figure 3.18 Classification of road crash hotspots 
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3.6.4. Road Crash Prediction Model Development (Multivariate analysis) 

The study developed a General Regression Model – multiple linear regression (MLR) model 

approach that can be applied to predict rural road crash rates and investigate the combinational 

effects of geometric and traffic characteristics on road safety. The approach involved the aggregation 

of design and traffic factors detailed in Section 3.2.2, and fatal and serious injury (FSi) to satisfy the 

linear regression assumptions – namely error structure normality and homoscedasticity. The 

modelling approach was tested and validated using data from three datasets, representing FSi 

crashes on all rural roads, higher and lower order rural roads. Through the use of data manipulation, 

it was possible to satisfy the assumptions of the GRMs and thus develop robust crash prediction 

models (CPMs). The study produced and compared the CPMs using the base mean multiple linear 

regression models and the robust winsorised and transformed CPMs to determine the best 

performing model described in Section 2.9.4. The approach that was taken in the development of 

the crash prediction tool incorporates principles from Safe System and Sustainable Safety 

approaches to road safety. This section provides a description of the crash prediction model 

development process and the goodness-of-it measures of the model. 

3.6.4.1. Model development 

General Regression Model – best subsets multiple linear regression (MLR) is an exploratory model 

building regression analysis approach that was used to perform and build a correlation analysis 

between FSi rural road crashes (independent variable) the various geometric and traffic 

characteristics (covariates) (Rakha et al., 2010; Islam et al., 2019). The best subsets MLR compared 

all possible models using a specified set of predictors (geometric and traffic variables) and displayed 

the best-fitting model (Denis, 2021). The model function took the form shown by Equation [3.4]. 

𝑌 = 𝐵0 + 𝐵1𝑋1 + 𝐵2𝑋2 + 𝐵3𝑋3 + ⋯ + 𝐵𝑚𝑋𝑚     [3.4] 

Where: 𝑌 = Dependant variable, 

 𝐵0 = Regression constant, 

 𝐵1, 𝐵2, 𝐵3…. 𝐵𝑚 = Regression coefficients of respective m dependant variables, 

 𝑋1, 𝑋2, 𝑋3…. 𝑋𝑚 = Covariates. 

A statistical test of the model was done, which included determining the following: (1) the coefficient 

tests (R2 test), (2) the significance test of the regression coefficient (t-test), and (3) the significance 

test of regression equation (F-test) (Field, 2013). In any case were the significant test of regression 

equation failed, it was possible that important factors were missing during the selection of covariates 

or the relationship between the independent variable and the covariates was found to be non-linear 

(Field, 2013; Gupta, 2017). In such a case the CPM is rebuilt.  
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The MLR analysis assumed and examined several key assumptions for the developed crash 

prediction models (Rakha et al., 2010). These assumptions comprised: 

o Linear relationship between model variables 

o Error structure normality of the model variables 

o Multicollinearity, independence and homoscedacity between the model variables 

3.6.4.2. Testing autocorrelation and variable selection 

I. Factor Analysis 

The factor analysis is a statistical technique applied to reduce a large number of variables into a 

fewer regression factors – latent variables, based on shared variance. The Factor Analysis method 

is part of the General Linear Models (GLM) and assumes several key assumptions. These 

assumptions include: (I) a linear relationship and no multicollinearity between relevant variables 

included in analysis, and (II) a true correlation between the tested variables and factor (Qian and 

Künsch, 1996; Rohe and Zeng, 2020).  

The factor analysis technique extracts the maximum common variance from all variables and places 

them under a common score. The total variance of a particular variable consists of three 

components:  

1. Variance that is shared with other variables (common variance) 

2. Variance that is specific to that variable (unique variance), and 

3. Error or random variance (referred to as unreliability of variance) 

The proportion of common variance present in a variable is referred to as “communality”. As a result, 

a variable with no unique variance and error variance would have a commonality of one (1) while a 

variable that shares none of its variance with other variables would have a commonality of zero (0). 

Communality is a key concept in factor analysis as the approach is oriented towards finding common 

variance between the analysis variables (Achcar et al., 2013). For this reason, variables with low 

communalities (less than 0.20 o that 80 percent of variance is unique) are eliminated from the CPM 

analysis. 

The study thus applied the common factor analysis method to extracts common variance and reduce 

the large number of variables into smaller set of factors. This method does not include the unique 

variance of all the variables and is applied in Structural Equation Modelling (SEM) (Gargoum and El-

Basyouny, 2016); (Bamdad Mehrabani and Mirbaha, 2018). The factors analysis had the following 

components: 
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a) Factor loading  

Factor loading is the correlation coefficient for the analysis variable and factor. Factor loading 

indicates the variance explained by the variable on that particular factor. In the SEM approach, as a 

rule of thumb, 0.7 or the highest factor loading selected allows that the factor extracts sufficient 

variance from that variable, while ensuring that the variables are not duplicated in the factor rows 

(Rohe and Zeng, 2020). Table 3.11 shows an extract of the higher order rural roads variance at a 

factor loading of 0.58, resulting in the reduction of the variables into a set of five factors. The factor 

loading for all and lower rural road datasets are given in Appendix B. 

Table 3.11 Principle factor components from factor loadings-Varimax normalised for High Order Rural 

Roads 

Variable 

Factor Loadings (Varimax normalized) (High Order Rural Roads 

Extraction: Principal components (Marked loadings are >.58) 

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

AADT_Heavy 0,184 0,862 0,154 0,011 -0,108 

AADT_Light 0,136 0,894 -0,063 0,019 0,141 

85th Percentile Speed (Ops) 0,113 -0,047 -0,099 0,774 0,181 

Lane_Width 0,021 0,380 0,611 -0,058 -0,182 

No_Lanes -0,449 0,570 -0,214 0,169 0,078 

Shoulder_type 0,855 0,057 -0,161 0,001 0,151 

Surface_SW -0,881 -0,025 0,086 0,038 -0,007 

Ground_SW 0,725 0,169 0,190 0,101 -0,239 

Horizontal_(Curves/Length) 0,074 0,261 -0,794 -0,104 -0,105 

Terrain_Vertical -0,129 0,208 0,227 0,663 -0,210 

Access_Density -0,127 0,098 -0,083 0,074 0,615 

Pavement_Condition 0,094 -0,001 0,111 -0,102 0,740 

SSD -0,010 0,181 0,286 -0,304 -0,414 

Expl.Var 2,346 2,200 1,308 1,202 1,337 

Prp.Totl 0,180 0,169 0,101 0,092 0,103 

 

b) Eigenvalues 

Eigenvalues are referred to as characteristic roots. The Eigenvalues showed variance explained by 

each particular factor out of the total variance. The commonality column explains how much variance 

is explicated by the first factor out of the total variance (Walker and Maddan, 2009; Daniel, 2016). 

The Eigenvalues were used to determine the best number of variables that can be applied to develop 

the best CPM. 

Criteria for determining the number of factors  

Eigenvalues are a good criterion for determining factors according to the Kaiser Criterion. The study 

also applied the scree plot (a line of eigenvalues of factors) as an indicator of the number of factors 

to retain in the principal component analysis (Ho, 2006). The cut-off for the principle factors was 
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determined according to where the “elbow” formed on the scree plot, which represented the point 

where a smaller number of interpretable factors explain the maximum amount of variability in the 

data. Figure 3.19 shows the eigenvalues and scree plot applied in the selection of factors in the 

higher order rural roads dataset. The eigenvalues and scree plots for all and lower order rural roads 

are given in Appendix B. 

 

Figure 3.19 Eigenvalues and Scree plot for High Order Rural Roads 

Rotation Method  

Rotation method improves the reliability and understandability of the Factor Analysis output. The 

rotation method affects the percentage of variance extracted from the factors (Field, 2013; Daniel, 

2016). The study applied the Kaiser-Varimax Rotation (KVR). The KVR maximises the sum of the 

variance of the squared loadings. This process results in high factor loadings for a smaller number 

of variables and low factor loadings for the rest (Daniel, 2016). 
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Key summaries for Factor Analysis 

The Factor Analysis technique assumes and tests the following assumptions about the dataset: 

i. No outlier: Assumes that there are no outliers in the dataset. 

ii. Adequate sample size: The case must be greater than the factor. 

iii. No perfect multicollinearity: Factor analysis is an interdependency technique. There should 

be seamless multicollinearity between the dataset variables. 

iv. Homoscedasticity: Factor analysis does not require homoscedasticity between variables 

since it is a linear function between measured variables. 

v. Linearity: Factor analysis assumes of linearity. Non-linear variables can also be used after it 

has been transferred into the model and converted into a linear variable. 

vi. Interval data: Interval data is assumed in factor analysis. 

 

II. Durbin Watson Test 

The Durbin Watson (DW) test is measure of autocorrelation (serial correlation) in residuals from a 

regression analysis (Maxwell and David, 1995). Autocorrelation is the similarity of a time series over 

successive time intervals. Autocorrelation can lead to underestimates of the standard error and can 

misidentify predictors as statistically significant (Alexopoulos, 2010; Field, 2013). The study applied 

the Durbin Watson statistic to test the assumption that the error terms used in the CPM are 

independent of each other. The DW test statistic was calculated using Equation [3.5] 

𝐷𝑊 =
∑ (𝑒𝑖−𝑒𝑖−1)2𝑛

𝑖=2

∑ 𝑒𝑖
2𝑛

𝑖=1

         [3.5] 

Where, 𝐷𝑊 = the Durbin Watson value 

 𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖 are the residuals 

 𝑛 = the number of elements in the sample 

 𝑘 = the number of independent variables 

The DW test reports a test statistic value between zero (0) and four (4), where: 

o A DW value equal to two (2) means no autocorrelation  

o A DW value from 0 to < 2 means positive autocorrelation 

o A DW value > 2 to 4 means negative correlation 

A rule of thumb is that DW values in the range of 1.5 to 2.5 are relatively normal. However, values 

outside of this range could be a cause of concern as they suggest that the data elements being either 

too close (positive autocorrelation) or too far (negative autocorrelation) from the subsequent data 

element (Field, 2013). Table 3.12 shows the results of the Durbin Watson residual test on the higher 
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order rural road crash prediction model developed. A DW value of 2.009569 which is closer to two 

indicates that no autocorrelation exists in the model and a very low serial correlation of -0.005469 

also supports the conclusion made by the DW value. 

Table 3.12 Durbin-Watson Test for High Order Rural Roads CPM 

Durbin-Watson d (CR Model and Serial Correlation of Residual) 

 Durbin-Watson d Serial Corr. 

Estimate 2.009569 -0.005469 

 

3.6.4.3. Outlier analysis 

Outliers are defined as data points that are different from the rest of the data (Chambers et al., 2000; 

Achcar et al., 2013) . The identification of outliers is vital as the results of statistical analyses should 

not be highly influenced by errant data points (Field, 2013). The study applied 2D box plots as a 

diagnostic tool for detecting outliers and data influential points, and ultimately used the Winsorization 

technique to address detected outliers in the dataset. Winsorizing is the process of replacing a 

specified set of extreme values of a given variable in a set of sample data with specified values 

computed from the data. The 2D Box Plots of the crash rate distribution are shown in Figure 3.20 

before and after the Winsorization process. A pre-defined rule is used to adjust an outlying (positive) 

value 𝑌𝑖 of the dataset variable 𝑌 downwards, leaving the remaining values unchanged (Hicks and 

Fetter, 1991; Reifman and Keyton, 2010). The value of the adjusted variable is denoted 𝑌𝑖
∗ and the 

corresponding winsorised estimator adjusted to a fixed cut-off is represented by Equation [3.6]. 

𝑌̂𝑡 = ∑ 𝑎𝑑𝑗𝑤𝑗
𝑡𝑦𝑗

𝑛
𝑗=1          [3.6] 

Where, 𝑡 = truncation level 

 𝑦𝑗 = reported crash rate for the 𝑗𝑡ℎ unit 

 𝑎𝑑𝑗 = 
∑ 𝑤𝑗𝑛

∑ 𝑤𝑗
𝑡

𝑛
 

 𝑤𝑗
𝑡 = 

𝑤𝑗, 𝑖𝑓 𝑤𝑗𝑦𝑗 ≤ 𝑡
𝑡

𝑦𝑗
, 𝑖𝑓 𝑤𝑗𝑦𝑗 > 𝑡

 

The weights of the observations whose expanded weighted value is larger than 𝑡 are truncated so 

that the expanded value now equals to 𝑡. The truncated portions are then smoothed over for all 

observations.  
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Figure 3.20 2D Box Plots of the crash rate distribution before and after Winsorization 
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3.6.4.4. Crash model Biplots 

Biplots are a graphical representation of information in a 𝑛 × 𝑝 data matrix, with information in rows 

representing samples and information in columns representing covariates. In the Principal 

Component (PC) analysis a plot can be obtained by graphing the first two principal components of 

the units (Gower et al., 2011). In biplots the idea is to add information about the covariates to the PC 

graph. 

Construction of Biplots 

The best two-dimensional approximation of data in a 𝑛 × 𝑝 matrix is determined by approximating 

the 𝑗𝑡ℎ observation vector 𝑥𝑗 in terms of the sample values of the first two PC’s. The approximation 

is given by Equation [3.7]. 

𝑥𝑗 = 𝑥 + 𝑦̂𝑗1
𝑒̂1 + 𝑦̂𝑗2

𝑒̂2         [3.7] 

Where; 𝑒̂1 and 𝑒̂2 are the first two eigen vectors of (𝑛 − 1)𝑆 = 𝑥𝑐
′ 𝑥𝑐. Where, 𝑥𝑐 is equal to the mean 

corrected data with row vectors (𝑥𝑗 − 𝑥)’. 

On the biplot, the eigen vectors 𝑒̂1 and 𝑒̂2 define plane. The coordinates 𝑦̂𝑗1
 and 𝑦̂𝑗2

 for 𝑗 = 1, … . , 𝑛, 

define the 𝑛 units in that plane - Principal Component scores. The variables 𝑥1 … 𝑥𝑝 are positioned 

on the graph by the row vectors of 𝐸̂ = [𝑒̂1, 𝑒̂2]: 𝑝 × 2 , since: 

𝑌 = [
𝑌1

𝑌2
] = [

𝑒̂1
′

𝑒̂2
′ ] [

𝑥1

⋮
𝑥𝑝

]         [3.8] 

The lengths of the vectors from 𝑥1 to 𝑥𝑝 can be adjusted to ensure that all the variables are plotted 

on the same graph as the points (𝑦̂1𝑗 , 𝑦̂2𝑗); 𝑗 = 1, … 𝑛. 

3.6.4.5. Assessment of goodness-of-fit 

Two goodness -of-fit statistic tests were used to evaluate the fit of the crash prediction models 

developed for the rural road network – R-Squared and the overall F-test. The model fit tests are 

based on the two sums of squares theories: Sum of Squares Total (SST) and Sum of Squares Error 

(SSE) (Alexopoulos, 2010; Field, 2013). The SST measures how far the data points are from the 

mean and the SSE measures how far the data points are from the crash predictions model’s 

predicted values (Field, 2013). Different combination of the SSE and SST values provide different 

information about how the crash models compare to the base mean models (Field, 2013). 
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I. The R-Squared and Adjusted R-Squared 

The difference between the SST and SSE is the improvement in prediction from the regression 

model developed, compared to the mean model. The R-squared value is then determined by dividing 

the difference between the SST and SSE by the SST (Maydeu-Olivares and Garcia-Forero, 2010; 

Field, 2013). The R-squared value represents the proportional improvement in prediction from the 

regression model compared to the mean model, and indicates the goodness of fit of the crash model 

to the crash dataset. 

The R-squared statistic has the useful property that it is intuitive: it ranges from zero to one. An R 

squared statistic value of zero indicates that the proposed crash model does not improve predictions 

over the base mean test model, while a statistic value of one indicates a perfect prediction 

characteristic from the crash model (Alexopoulos, 2010; Field, 2013). Therefore, improvements in 

the crash model result in proportional increases in the R-squared statistic. 

One pitfall of the R-squared statistic is that it can only increase as predictors are added to the crash 

prediction model. This increase in the statistic is artificial when predictors are not actually improving 

the model’s goodness-of-fit to the crash data. To remedy this, a related statistic, the Adjusted R-

squared, incorporates the crash model’s degrees of freedom in the test (Field, 2013). The Adjusted 

R-squared will decrease as predictors are added if the increase in the model fit does not make up 

for the loss of degrees of freedom. In the same way, the Adjusted R-squared statistic will increase 

as predictors are added if the increase in the model fit is improving. The adjusted R-squared should 

always be used with models with more than one covariate. In summary, The Adjusted R-squared 

statistic is interpreted as the proportion of the total variance explained by the model in the outcome 

variable (Montgomery and Runger, 2014). 

II. The F-Test 

The F-test statistic evaluates the null hypothesis that all regression coefficients are equal to zero 

versus the alternative that at least one coefficient is not equal to zero (Field, 2013; Niewiadomska‐

Bugaj and Bartoszynski, 2021). An equivalent null hypothesis is when the R-squared statistic is equal 

to zero. A significant F-test indicates that the observed R-squared I reliable and is not a spurious 

result of oddities in the crash dataset. Thus, the F-test determines whether the proposed relationship 

between the outcome variable and the set of covariates is statistically reliable and can be useful 

when the objective is prediction and correlation. 
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3.6.4.6. Model Benchmarking 

Benchmarking is aimed at demonstrating and improving the performance of crash prediction models 

by means of utilising a more diverse dataset, including some potential explanatory variables. To this 

end, benchmarking was carried out based on the macro CPMs developed with available road crash 

information from countries or regions (Northern Cape, Chile, Australia) with similar road conditions; 

to test the applicability of the crash prediction models in these countries. Gomes et al. (2019) notes 

the importance of addressing the strong dependence of CPMs on suitable and diverse input 

information, enabling these models to perform as “powerful tools” in road safety.  
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3.6.5. The Two-Step Cluster Analysis 

The Two-Step Cluster (TSC) Models - A hybrid approach which first uses a distance measure to 

separate groups and then a probabilistic approach to choose the optimal subgroup models. Using 

the driver risk factors identified in Section 3.2.3, the study coded and grouped, through the TSC 

technique, all the risk factor combinations (see Figure 3.21) for each crash record. This allowed for 

combinations to be applied and tested in the TSC against explanatory factors explored in the study 

– demographic, temporal, and roadway and environmental factors. The development of the TSC 

models is discussed in Section 3.6.5.1. 

 

Figure 3.21 Coding and grouping of risk factor combinations by TSC technique 
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3.6.5.1. Development of the Two-Step Cluster analysis model 

The Two-Step Cluster technique is an explanatory tool designed to reveal natural groupings 

(clusters) within a dataset that would otherwise not be apparent. The algorithms employed by the 

TLC have several desirable features that differentiate it from traditional clustering techniques. These 

features are: 

o The ability to create clusters based on both categorical and continuous variables 

o Automatic selection of the number of clusters 

o The ability to analyse large data files efficiently 

 

1. Clustering principles 

In order to handle categorial and continuous variables, the Two-Step Analysis procedure uses a 

likelihood distance measure which assumes that variables in the cluster models are independent. 

Further, each continuous variable is assumed to have a normal (Gaussian) distribution and each 

categorical variable is assumed to have a multinomial distribution (Bacher et al., 2004).  

The TSC technique can be summarised as follows: 

Step 1 – Pre-clustering of cases: The TSC tool technique begins with the construction of a Cluster 

Features (CF) Tree. The tree begins by placing the first case at the root of the tree in a leaf node 

that contains variable information about that case. Each successive case is then added to an existing 

node or forms a new node, based upon its similarity to existing nodes and using the distance 

measure as the similarity criterion. Two distance measures are available: Euclidean distance and a 

log-likelihood distance (Bacher, 2000; Chiu et al., 2001). The log-likelihood distance can handle 

mixed type attributes. The log-likelihood distance between two clusters 𝑖 and 𝑠 is defined in Equation 

[3.9]. 

𝑑(𝑖, 𝑠) = 𝜉𝑖 + 𝜉𝑠 − 𝜉(𝑖,𝑠)        [3.9] 

Where; 

𝜉𝑖 = −𝑛𝑖 (∑
1

2
log(𝜎̂𝑖𝑗

2 + 𝜎̂𝑗
2) − ∑ ∑ 𝜋̂𝑖𝑗𝑙 log(𝜋̂𝑖𝑗𝑙)

𝑚𝑗

𝑙=1
𝑞
𝑗=1

𝑝
𝑗=1 )    [3.10] 

𝜉𝑠 = −𝑛𝑠 (∑
1

2
log(𝜎̂𝑠𝑗

2 + 𝜎̂𝑗
2) − ∑ ∑ 𝜋̂𝑠𝑗𝑙 log(𝜋̂𝑠𝑗𝑙)

𝑚𝑗

𝑙=1
𝑞
𝑗=1

𝑝
𝑗=1 )    [3.11] 

𝜉(𝑖,𝑠) = −𝑛𝑖 (∑
1

2
log(𝜎̂𝑖𝑗

2 + 𝜎̂𝑗
2) − ∑ ∑ 𝜋̂𝑖𝑗𝑙 log(𝜋̂𝑖𝑗𝑙)

𝑚𝑗

𝑙=1
𝑞
𝑗=1

𝑝
𝑗=1 )    [3.12] 
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𝜉𝑣 can be interpreted as a kind of dispersion (variance) within cluster 𝑣(𝑣 = 𝑖, 𝑠, (𝑖, 𝑠)). 𝜉𝑣 consists of 

two parts. The first part −𝑛𝑣 ∑
1

2
log(𝜎̂𝑣𝑗

2 + 𝜎̂𝑗
2) measures the dispersion of the continuous variables 𝑥𝑗 

within cluster 𝑣. If only 𝜎̂𝑣𝑗
2  would be used, 𝑑(𝑖, 𝑠) would be exactly the decrease in the log-likelihood 

function after merging cluster 𝑖 and 𝑠. The term 𝜎̂𝑗
2 is added to avoid the degenerating situation for 

𝜎̂𝑣𝑗
2 = 0. The entropy −𝑛𝑣 ∑ ∑ 𝜋̂𝑣𝑗𝑙 log(𝜋̂𝑣𝑗𝑙)

𝑚𝑗

𝑙=1
𝑞
𝑗=1  is used in the second part as a measure of 

dispersion for the categorical variables.  

Similar to agglomerative hierarchical clustering, those clusters with the smallest distance 𝑑(𝑖, 𝑠) are 

merged in each step. The log likelihood function for the step with 𝑘 clusters is computed as shown 

in Equation [3.13]. 

𝑙𝑘 = ∑ 𝜉𝑣
𝑘
𝑣=1          [3.13] 

The function 𝑙𝑘 is not the exact log-likelihood function. The function can be interpreted as dispersion 

within clusters. If only categorical variables are used, 𝑙𝑘 is the entropy within 𝑘 clusters. 

Step 2 – Clustering of cases: A model based hierarchical technique is applied here. This means 

the leaf nodes of the CF tree are grouped using an agglomerative clustering algorithm. The 

agglomerative clustering can be used to produce a range of solutions. To determine the best number 

of clusters, each of the cluster solutions are compared using Schwarz’s Bayesian Criterion (BIC) or 

the Akaike Information Criterion (AIC) as the clustering criterion (Chiu et al., 2001). Using the two-

phase estimator to automatically determine the number of clusters, the AIC is computed as shown 

in Equation [3.14]. 

𝐴𝐼𝐶𝑘 = −2𝑙𝑘 + 2𝑟𝑘        [3.14] 

Where 𝑟𝑘 is the number of independent parameters. The BIC is computed as shown in Equation 

[3.15]. 

𝐵𝐼𝐶𝑘 = −2𝑙𝑘 + 𝑟𝑘 log 𝑛        [3.15] 

Step 3 – Cluster membership assignment: Each object is assigned deterministically to the closest 

cluster according to the distance measure used to find the clusters. The deterministic assignment 

may result in biased estimates of the cluster profiles if the clusters overlap (Bacher, 2000). The 

importance measures of the assigned covariates are standardized so that they range from 0 to 1. 

This measure is set to range from 0 to 1, with the maximum value for any predictor set to 1. The use 

of p values as a beginning was designed to allow some comparability of categorical and scale or 

"continuous" predictors. The base 10 logarithmic transformation was chosen for utility in spreading 

out the p values. The negative is then required to make resulting raw values positive, though if it 
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were neglected it would cancel out in the numerator and denominator of the ratios used to calculate 

the final values. 

Step 4 – Modification: The modification procedure allows for the defining of an outlier treatment. 

The researcher specified a value for the fraction of noise (5 percent). A leaf (pre-cluster) is 

considered as a potential outlier cluster if the number of cases is less than the defined fraction of the 

maximum cluster size. Outliers are ignored in the second step (Chiu et al., 2001; Bacher et al., 2004). 

3.7. Ethics 

At the University of Stellenbosch, ethical considerations are guided by the Policy for Responsible 

Research Conduct at Stellenbosch University (SU) (Stellenbosch University, 2013). The main 

guiding values Policy for Research and Conduct at SU are: 

a) Transparency; 

b) Mutual respect; 

c) Scholarship (scientific and academic professionalism); and 

d) Responsibility. 
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Chapter 4: Results of the study 

4.1 Introduction 

The majority of road crashes are caused by a combination of interrelated factors. Although human 

related factors are a significant contributor to road crashes, direct control and prediction of human 

factors is difficult. For that reason, human factors can be indirectly controlled and predicted through 

investigations of roadway and environmental factors, particularly roadway traffic characteristics and 

geometric design. For that reason, a mixed analysis method was used in the study to understand 

the types of crashes on the national rural roads, examine their relationship with interrelated factors 

and attempt to mitigate their occurrence through developing crash predictive models factoring in 

road characteristics. 

This chapter presents the results of the study done using mix analysis methods discussed in Chapter 

3.  

The Chapter is outlined below: 

1. Road crash univariate and bivariate analyses 

2. Road crash geospatial analyses 

3. Road crash prediction model results 

4. Driver characteristics and risk factors – roadway condition analyses models 

4.2 Road crash univariate and bivariate analyses 

This section provides a univariate analysis of the crash data used in the study. It is important to 

contextualise the fatal and serious injury (FSI) crash data collected and used in the study as it is a 

key aspect in carrying out the study through determining and analysing driver risk factors and 

behaviour and subsequently the development of the crash prediction models (CPMs) and models 

investigating the combinational effect of national rural road conditions on driver risk factors. 

4.2.1. Road crash frequency analysis 

4.2.1.1. Temporal variation of road crashes  

The crash dataset analysed in the study comprises 3 190 road crashes involving fatal and/ or serious 

injuries collected by the Namibian National Road Safety Council (NRSC), Namibian Motor Vehicle 

Accident Fund (MVA) and Namibian Police Authorities over a period between 2012 and 2016. An 

analysis of the crash data depicted in Figure 4.1, found that 493 (15 percent) of the crashes were 

recorded in 2012, 691 (22 percent) of the crashes reported in 2013, 701 (22 percent) FSI crashes in 

occurred in both 2014 and 2015, while 604 (19 percent) crashes were reported in 2016. The annual 
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frequency determined from the crash data for the study period indicate that an average of 638 fatal 

and serious injury crashes were recorded on the national rural road network in Namibia between 

2012 and 2016. It is evident from the temporal analysis that the frequency of FSI crashes does not 

vary significantly over the study period. Using the Namibian population to determine the exposure of 

road users, the study found that 21.3 FSI crashes per 100 000 population on national rural roads in 

the study area. 

 

Figure 4.1 Frequency of road crashes per year 

The analysis of the road crash counts by month of the year indicates that the drivers are at the 

highest risk of being involved in fatal and serious injuries during the peak holiday months. The highest 

number of crash incidence is observed in December as illustrated by Figure 4.2. December is 

normally the festive period and traffic on the national rural roads tends to peak during this period. 

Another peak is observed during May and August. These months are filled with public holidays in 

Namibia. Because of this, the traffic peaks on rural roads as holiday makers begin to travel. It is also 

observed in Figure 4.2 that the lowest road crash incidences were reported in February and October 

over the calendar years. 
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Figure 4.2 Frequency of road crashes per month from 2012 to 2016 

4.2.1.2. Road crash frequency by yearly quarters 

The 5-year road crash weekly incidence dataset on national rural roads was divided up into four 

quarters of the calendar year to assess seasonal trends in the crash frequencies as shown in Figure 

4.3. Each year comprises four quarters, and each calendar year quarter consists of 13 weeks, with 

each quarter in the 5-year crash sample size comprising 65 weekly crash count variables. 

Figure 4.3 illustrates the road crash count weekly fluctuations of five plots over the four quarters of 

a calendar year for each year included in the analysis. It can be observed that higher weekly road 

crash counts are more pronounced in the third quarter of the calendar year. More marked weekly 

differences between the highest and lowest crash frequencies are observed in the second and third 

quarter of the calendar year. A further detailed year by year observation indicates noticeably high 

weekly crash count fluctuations for the year 2014 in the last quarter of the calendar year. 
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Figure 4.3 Weekly road crash count across calendar year quarters 
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The quarterly frequencies and means of weekly road crash counts were generated for the 5-year 

crash dataset after identifying a disproportionate distribution of road crash incidences over the 

calendar year. Table 4.1 and Figure 4.4 present a descriptive analysis of the quarterly road crash 

dataset. 

Table 4.1 Descriptive statistics of yearly quarterly road crash counts 

Dependant variable: Weekly count of road crash incidences 

Quarter of Calendar Year Mean Std. Dev N 

Quarter 1 10.98 4.414 65 

Quarter 2 12.75 4.187 65 

Quarter 3 12.94 4.419 65 

Quarter 4 12.40 5.656 65 

Total 12.27 4.669 260 

 

From Table 4.1, it is evident that the highest mean weekly crash count is observed over the third 

quarter of the calendar year. This peak is recorded over the winter season months in Namibia. From 

Figure 4.4, on the temporal variation of the estimated marginal mean of weekly crash counts, slight 

temporal variations are observed over the quarters of the calendar year, with a peak mean value in 

the third quarter and a minimum mean value in the first quarter of the year. 

 

Figure 4.4 Estimated marginal means of weekly (quarterly) road crash counts across yearly quarters 
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To determine whether statistically significant mean differences exist among the mean values of the 

quarterly weekly crash counts, the individual mean differences were tested using the Analysis of 

Variance (ANOVA) test. The two underlying assumptions of ANOVA were tested and the results 

determined the type of Post-hoc test applied in the analysis. These ANOVA assumptions are: (1) 

normality of distributions; and (2) homogeneity of variance. The Post-hoc test provided detailed 

information on where the statistically significant means exist between the means. The results of the 

ANOVA test scores and Levene’s test for homogeneity of variance are presented in Table 4.2 and 

Table 4.3 respectively. 

Table 4.2 Results of ANOVA Test Scores on Weekly (quarterly)) road crash counts 

Tests of Effects Between-Subjects 

Dependent Variable: Weekly road crash counts (quarterly) 

Source 

Type III Sum of 

Squares 
df Mean Square F Sig.(p) 

Corrected Model 152.754a 3 50.918 2.300 0.048 

Intercept 39138.846 1 39138.846 1768.238 0.000 

Group 152.754 3 50.918 2.300 0.048 

Error 5666.400 256 22.134   

Total 44958.000 260    

Corrected Total 5819.154 259    

a. R Squared = 0.026 (Adjusted R Squared = 0.015) 

The ANOVA test scores presented in Table 4.2 indicates that the mean of the sums of squares 

(variance estimate) between the calendar year quarters of 50.918. (i.e. the mean difference between 

the quarters of the calendar year). The variance estimate within the quarters of the calendar year is 

indicated as 22.134. The F value (F ratio) of 2.300 for this test is then calculated by dividing the 

variance estimate between groups by the variance estimate within groups. The F ratio indicates that 

the variance estimate between the groups (quarters) is about 2 times greater than the amount of 

error variance (within subjects’ variance) that has been accounted for. The results presented in Table 

4.2 also indicate that the test is significant at 5 percent level (p=0.048< 0.05) which implies that the 

null hypothesis (the assumption that the means between the groups for the dataset are equal) is 

rejected and the assumption of homogeneity of variance is invalid. The R-squared gives an indication 

of how much variance in the dependant variable is accounted for by the covariates. An adjusted R-

squared value if 0.015 indicates that 1.5 percent of crash incidence variance is explained by the 

predictors (calendar year quarters) at 95 percent confidence level. 

In the same way, the results of Levene’s test for homogeneity of variance for weekly counts over 

calendar year quarters (presented in Table 4.3) indicate that the test is significant at 95 percent 

confidence level (pmean=0.019<0.05). The Levene’s test results reject the null hypothesis which 

implies that the variance is equal across the calendar year quarters. Levene’s test is crucial in 
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determining the appropriate Post-hoc test as explained in Section 3.7.1.2 and Figure 3.12. The 

choice of Post-hoc test is contingent on the assumptions of equal variances and equal group sample 

sizes. The Games-Howell Post-hoc test was determined as the appropriate technique to assess the 

mean differences as a result of unequal variance and group sample sizes.  

Table 4.3 Results of Levene's Test for Homogeneity of variance for weekly (quarterly) road crash 

counts 

Levene's Test of Equality of Error Variancesa,b 

 
Levene 

Statistic 
df1 df2 Sig. 

Count 

Based on Mean 3.377 3 256 0.019 

Based on Median 3.140 3 256 0.026 

Based on Median and with 

adjusted df 
3.140 3 249.199 0.026 

Based on trimmed mean 3.193 3 256 0.024 

Tests the null hypothesis that the error variance of the dependent variable is equal across 

groups.a,b 

a. Dependent variable: Quarterly weekly crash count 

b. Design: Intercept + Group 

The results from the Games-Howell Post-hoc test applied are presented in Table 4.4. The Games-

Howell Post-hoc procedure compared the means of all calendar year quarters (groups) with each 

other. The values “Sig (p)” values shown in red are statistically significant (p<0.05) at 95 percent 

confidence interval. 

The Games-Howell test results found the mean values of the quarterly weekly crash counts to be 

consistent over the 2nd and 4th quarters of the calendar year. The mean differences of these quarters 

(2nd and 4th) were not significant (p<0.05) at 95 percent confidence level. Statistically significant mean 

differences were identified between the mean values of the 1st and 3rd quarters of the calendar year, 

which are also visually evident in Figure 4.4. 
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Table 4.4 Results of Games-Howell Post Hoc Test on weekly (quarterly) road crash counts 

Post Hoc test: Games Howell 

Multiple Comparisons 

Dependant variable: Yearly Weekly (Quarters) count of road crashes 

(I) Quarter (J) Quarter 
Mean 

Difference (I-J) 
Std. Error Sig. (p) 

95% Confidence Interval 

Lower Bound Upper Bound 

1 

2 -1.77 0.755 0.093 -3.73 0.20 

3 -1.95* 0.775 0.041 -3.97 0.06 

4 -1.42 0.890 0.388 -3.73 0.90 

2 

1 1.77 0.755 0.093 -0.20 3.73 

3 -0.18 0.755 0.995 -2.15 1.78 

4 0.35 0.873 0.977 -1.92 2.63 

3 

1 1.95* 0.775 0.041 -0.06 3.97 

2 0.18 0.755 0.995 -1.78 2.15 

4 0.54 0.890 0.930 -1.78 2.86 

4 

1 1.42 0.890 0.388 -0.90 3.73 

2 -0.35 0.873 0.977 -2.63 1.92 

3 -0.54 0.890 0.930 -2.86 1.78 

Based on observed means. 

The error term is Mean Square (Error) = 22.134. 

*. The mean difference is significant at the 0.05 level. 
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4.2.1.3. Road crash frequency by week of the month 

The amount of traffic on the national rural; roads is affected by the week of the month during which 

road users are paid. This ultimately impacts the level of safety on the roads due to higher exposure 

levels. The univariate analysis included three categorical covariates according to the week of the 

month to investigate the trend of road crash incidents according to the financial state of the drivers. 

These covariates are termed: (1) Pay week; (2) 2nd week after pay week; and (3) Other weeks. The 

pay week represents the week that contains the first date of the month (e.g. 1st June). The second 

week after pay week represent the week following the pay week and other week denotes the 

remaining week of the month. Table 4.5 presents the descriptive statistics for the weekly fatal and 

serious injury 5-year road crash counts. 

Table 4.5 Descriptive statistics of weekly road crash counts 

Dependant variable: Weekly road crash counts 

Weekly financial status Mean Std. Deviation N 

Pay week 11.78 4.244 65 

2nd week after pay week 12.60 4.620 65 

Other weeks 12.35 4.990 130 

Total 12.27 4.731 260 

 

The mean differences across the three covariates are illustrated in Figure 4.5. It is visually apparent 

from Figure 4.5 that the weekly road crash counts peak over the second week after pay week and 

the mean value differences are lowest during the pay week. 

 

Figure 4.5 Estimated marginal means of weekly road crash counts 
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The study tested the mean differences among the three covariates using the ANOVA test and 

Levene’s test of homogeneity of variance. The ANOVA test scores are presented in Table 4.6. The 

ANOVA test scores reveal that the individual mean differences between the weeks of the month are 

not statistically significant (p=0.599> 0.05) at 95 percent confidence level. For this reason, the null 

hypothesis that equal variance exists across the study groups is accepted. 

Table 4.6 Results of ANOVA Test Scores on weekly road crash counts 

Tests of Effects Between-Subjects 

Dependent Variable: Weekly road crash counts 

Source 
Type III Sum of 

Squares 
df Mean Square F Sig. 

Corrected Model 23.146a 2 11.573 0.513 0.599 

Intercept 35077.885 1 35077.885 1555.384 0.000 

Week of the month 23.146 2 11.573 0.513 0.599 

Error 5796.008 257 22.553   

Total 44958.000 260    

Corrected Total 5819.154 259    

a. R Squared = 0.004 (Adjusted R Squared = -0.004) 

 

The Levene’s test for homogeneity of variance results are presented in Table 4.7. Levene’s test also 

demonstrates that the no statistically significant (p=0.256>0.05) difference exists between the means 

of the weeks of the month at 95 percent confidence interval. Therefore, the test results suggest that 

the null hypothesis (equal variance across the test groups) is valid. 

Table 4.7 Results of Levene's Test for Homogeneity of variance for weekly road crash counts 

Levene's Test of Equality of Error Variancesa,b 

 
Levene 

Statistic 
df1 df2 Sig. 

Count 

Based on Mean 1.369 2 257 0.256 

Based on Median 1.263 2 257 0.284 

Based on Median and with 

adjusted df 
1.263 2 255.078 0.284 

Based on trimmed mean 1.262 2 257 0.285 

Tests the null hypothesis that the error variance of the dependent variable is equal across 

groups.a,b 

a. Dependent variable: Weekly road crash counts 

b. Design: Intercept + Weekly road crash counts 
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The procedure defined in Figure 3.12 identified the Bonferroni Post-hoc test as the most suitable 

test to assess the individual mean difference across the weeks of the month (test group) with equal 

variance and unequal sample sizes. The results of the Bonferroni Post-hoc test are presented in 

Table 4.8. The Bonferroni test indicates that a statistically significant (p<0.05) difference exists 

between the means of the weekly crash count of the “pay week” and the “2nd week after the pay 

week” at 95 percent confidence interval. This suggests that the fatal and serious injury crashes 

occurred more frequently over the pay week s compared with the second week after the pay week. 

This conclusion is illustrated by the significant mean differences between the pay weeks and second 

week after the pay weeks covariates shown in Figure 4.5. 

Table 4.8 Results of Bonferroni Post Hoc Test on weekly road crash counts 

Post Hoc test: Bonferroni 

Multiple Comparisons 

Dependant variable: Weekly road crash counts 

(I) Week of the 

month 

(J) Week of the 

month 

Mean Difference 

(I-J) 
Std. Error Sig.(p) 

95% Confidence Interval 

Lower Bound Upper Bound 

Pay week 

2nd week after pay 

week 
-0.82* 0.833 0.002 -2.82 1.19 

Other weeks -0.56 0.721 1.000 -2.30 1.18 

2nd week after 

pay week 

Pay week 0.82* 0.833 0.002 -1.19 2.82 

Other weeks 0.25 0.721 1.000 -1.48 1.99 

Other weeks 

Pay week 0.56 0.721 1.000 -1.18 2.30 

2nd week after pay 

week 
-0.25 0.721 1.000 -1.99 1.48 

Based on observed means. 

 The error term is Mean Square (Error) = 22.553. 

*. The mean difference is significant at the 0.05 level. 
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4.2.1.4. Road crash frequency by day of the week 

The distribution of the 5-year daily road crash counts over a week on rural roads is presented in 

Figure 4.6. The univariate analysis identified a peak occurrence of road crashes over weekends, on 

Friday (548 road crashes), Saturday (663 road crashes) and Sunday 551 road crashes). The 

weekend road crashes represent a majority (55 percent) of all crashes over the week. The lowest 

occurrence of road crashes was observed during the week, on Tuesday (313 road crashes) and 

Wednesday (315 road crashes). 

 

Figure 4.6 Road crash frequency by weekdays 

The analysis identified a disproportionate distribution of road crashes over the week. For this reason, 

the daily frequencies and mean daily frequencies for the 5-year national road crash dataset were 

computed. The results for descriptive analysis are presented in Table 4.9 and illustrated in Figure 
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Table 4.9 Descriptive statistics of weekdays road crash counts 
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Holiday dates were included in the analysis for more insights on crash risk on these certain days. 31 

national public holidays for each year (2012-2016 period). Data on holidays were collected from the 

official website of the Namibian Government (Government of Namibia, 2020) and corroborated using 

the www.timeanddate.com website.  

 

Figure 4.7 Estimated marginal means of weekday road crash counts 

The ANOVA test was used to ascertain whether a statistically significant difference exists between 

the individual means of the weekday’s road crash incidences. The results of the ANOVA test are 

presented in Table 4.10. The ANOVA test scores indicate that the test identified a statistically 

significant (p=0.000<0.05) difference between the weekday road crash counts (test group) at 95 

percent confidence interval. As a result, the null hypothesis that the equal variance exists across the 

weekday is termed invalid. 

Table 4.10 Results of ANOVA Test Scores on weekdays road crash counts 

Tests of Effects Between-Subjects 

Dependent Variable: Weekday count of road crashes 

Source 
Type III Sum of 

Squares 
df 

Mean 

Square 
F 

Sig. 

(p) 

Corrected Model 34697.500a 7 4956.786 19.655 0.000 

Intercept 254402.500 1 254402.500 1008.783 0.000 

Weekday 34697.500 7 4956.786 19.655 0.000 

Error 8070.000 32 252.187   

Total 297170.000 40    

Corrected Total 42767.500 39    

a. R Squared = 0.811 (Adjusted R Squared = 0.770) 
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Similar to the ANOVA test, Levene’s test was used to assess the homogeneity of variance across 

the test group (weekday road crash count). In addition, Levene’s test results determined the choice 

of Post-hoc test applied in the study. The results of Levene’s test are given in Table 4.11. The results 

indicate that the test is statistically significant (p=0.034<0.05) at 95 percent confidence level, which 

implies that the null hypothesis (equal variance across the test group) is invalid. 

Table 4.11 Results of Levene's Test for Homogeneity of variance for weekdays road crash count 

Levene's Test of Equality of Error Variancesa,b 

 Levene Statistic df1 df2 Sig. (p) 

Count 

Based on Mean 2.533 7 32 0.034 

Based on Median 1.334 7 32 0.267 

Based on Median and with 

adjusted df 
1.334 7 16.777 0.295 

Based on trimmed mean 2.433 7 32 0.041 

Tests the null hypothesis that the error variance of the dependent variable is equal across 

groups.a,b 

a. Dependent variable: Road crash count 

b. Design: Intercept + Weekday 

 

The approach illustrated by Figure 3.12 was followed in identifying the appropriate Post-hoc test 

after assessing the results of Levene’s test. For this analysis, the test identified unequal variances 

between the study groups and the sample sizes (N) differ across the week days (test groups) as 

shown in Table 4.9. As a result, the Games-Howell Post-hoc test was suitable to assess the mean 

differences for unequal variance and sample size. Table 4.12 presents the results of the Games-

Howell Post-hoc procedure, with statistically significant (p<0.05) probability values marked in red. 

The Games-Howell results indicate that individual mean differences on Friday, Saturday and Sunday 

(weekend) are higher compared with other week days (probability values “Sig. (p)” are significant 

(p<0.05) at 95 percent confidence interval). Also Notable in Table 4.9, road crashes occurred more 

frequently over these days (weekends) compared to other days of the week. In the same way, the 

mean differences on holidays are higher compared with Friday, Saturday and Sunday (p<0.05). This 

suggests that a statistically significant relationship exists between road crash occurrence on national 

rural roads over holidays during weekends. In contrast, the mean differences were found to be 

consistent over Mondays, Tuesday, Wednesday and Thursdays (p>0.05).  
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Table 4.12 Results of Games-Howell Post Hoc Test on weekdays road crash counts 

Post Hoc test: Games-Howell 

Multiple Comparisons 

Dependent Variable: Weekdays count of road crashes 

(I) Weekday (J) Weekday 
Mean 

Difference (I-J) 
Std. Error Sig.(p) 

95% Confidence Interval 

Lower Bound Upper Bound 

Mon 

Tue 17.20 7.984 0.469 -16.49 50.89 

Wed 17.80 7.975 0.435 -15.88 51.48 

Thu 1.40 8.814 1.000 -33.94 36.74 

Fri -27.40* 8.678 0.045 -62.37 7.57 

Sat -51.80* 15.784 0.015 -121.06 17.46 

Sun -30.80* 10.244 0.001 -71.44 9.84 

Hol 45.20 7.331 0.169 11.21 79.19 

Tue 

Mon -17.20 7.984 0.469 -50.89 16.49 

Wed 0.60 5.697 1.000 -21.95 23.15 

Thu -15.80 6.822 0.390 -43.45 11.85 

Fri -44.60* 6.645 0.003 -71.38 -17.82 

Sat -69.00* 14.765 0.016 -140.08 2.08 

Sun -48.00* 8.591 0.015 -84.97 -11.03 

Hol 28.00 4.754 0.056 8.17 47.83 

Wed 

Mon -17.80 7.975 0.435 -51.48 15.88 

Tue -0.60 5.697 1.000 -23.15 21.95 

Thu -16.40 6.812 0.354 -44.03 11.23 

Fri -45.20* 6.635 0.003 -71.96 -18.44 

Sat -69.60* 14.760 0.010 -140.69 1.49 

Sun -48.60* 8.583 0.014 -85.57 -11.63 

Hol 27.40 4.739 0.054 7.65 47.15 

Thu 

Mon -1.40 8.814 1.000 -36.74 33.94 

Tue 15.80 6.822 0.390 -11.85 43.45 

Wed 16.40 6.812 0.354 -11.23 44.03 

Fri -28.80* 7.622 0.005 -58.98 1.38 

Sat -53.20* 15.230 0.036 -123.06 16.66 

Sun -32.20* 9.367 0.006 -70.24 5.84 

Hol 43.80 6.045 0.063 16.94 70.66 

Fri 

Mon 27.40* 8.678 0.045 -7.57 62.37 

Tue 44.60* 6.645 0.003 17.82 71.38 

Wed 45.20* 6.635 0.003 18.44 71.96 

Thu 28.80* 7.622 0.005 -1.38 58.98 

Sat -24.40 15.151 0.735 -94.41 45.61 

Sun -3.40 9.239 1.000 -41.16 34.36 

Hol 72.60* 5.845 0.000 46.85 98.35 

Sat 

Mon 51.80* 15.784 0.015 -17.46 121.06 

Tue 69.00* 14.765 0.016 -2.08 140.08 

Wed 69.60* 14.760 0.010 -1.49 140.69 

Thu 53.20* 15.230 0.036 -16.66 123.06 

Fri 24.40 15.151 0.735 -45.61 94.41 

Sun 21.00 16.100 0.870 -48.25 90.25 

Hol 97.00* 14.422 0.017 24.47 169.53 

Sun Mon 30.80* 10.244 0.001 -9.84 71.44 
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Tue 48.00* 8.591 0.015 11.03 84.97 

Wed 48.60* 8.583 0.014 11.63 85.57 

Thu 32.20* 9.367 0.006 -5.84 70.24 

Fri 3.40 9.239 1.000 -34.36 41.16 

Sat -21.00 16.100 0.870 -90.25 48.25 

Hol 76.00* 7.987 0.002 38.37 113.63 

Hol 

Mon -45.20 7.331 0.169 -79.19 -11.21 

Tue -28.00 4.754 0.056 -47.83 -8.17 

Wed -27.40 4.739 0.054 -47.15 -7.65 

Thu -43.80 6.045 0.063 -70.66 -16.94 

Fri -72.60* 5.845 0.000 -98.35 -46.85 

Sat -97.00* 14.422 0.017 -169.53 -24.47 

Sun -76.00* 7.987 0.002 -113.63 -38.37 

Based on observed means. 

 The error term is Mean Square (Error) = 252.187. 

*. The mean difference is significant at the 0.05 level. 

 

4.2.1.5. Road crash frequency by time of day 

The analysis of road crash incidences by time of crash during the 5-year period is presented in Figure 

4.8. The analysis indicates that the risk of a driver being involved in a road crash on national rural 

roads is highest during the peak hours of the day. From Figure 4.8, the highest road crash incidences 

are observed in the early evening hours, between 15h00 and 19h00, with a marked peak between 

17h00 and 18h00. This stretch of high crash frequencies represents approximately 37 percent of all 

crashes throughout the day. Another peak is observed in the morning hours, starting from 06h00 to 

8h00, as well as in the late morning to midday hours, occurring between 11h00 and 12h00. The 

lowest crash incidences were recorded early morning hours from 02h00 to 05h00. 
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Figure 4.8 Road crash counts by time of day 

Figure 4.9 illustrates a male to female driver ratio for road crashes across the time of day. It is 

observed that the risk for drivers to be involved in a road crash is higher for male drivers than female 

drivers throughout the whole day. Examining the ratios across the time of day, male drivers are at 

the highest road crash risk during the early morning hours compared to female drivers, with the crash 

risk (M: F=24) peaking between 02h00 to 03h00. This high crash risk occurs during the time period 

(02h00 to 05h00) in which the frequency of road crashes on the national rural roads is lowest. 

Another notable crash risk peak occurs between 22h00 and 23h00, with male drivers 15 times more 

likely to be involved in a road crashes than their female counterparts. The crash risk over time periods 

with higher road crash frequencies is observed to be lower compared with the lower frequency time 

periods, with a male to female driver ratio averaging six. 

Stellenbosch University https://scholar.sun.ac.za



154 

 

 

Figure 4.9 Road crash counts by time of day and driver gender ratio 
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4.2.1.6. Road crash frequency by driver age and gender 

The 5-year national rural road crash dataset exhibited an overrepresentation of male drivers as 

expected (see Figure 4.10). The dataset comprised 3 320 (85 percent) male drivers and 567 (14.52 

percent) female drivers involved in rural road crashes. The records indicate that the gender of the 

road crash casualty was indicated as “unknown” for 19 (0.49 percent) of the drivers involved in a 

crash. From the crash records, the male driver to female driver crash risk ratio (M: F) was computed 

as 5.86. Similar to the average male to female driver ratio (M: F= 5 to 6) seen in Figure 4.9. This 

suggest that male drivers are approximately six times more likely to be involved in a fatal or serious 

injury crash than female drivers on the national rural roads. 

 

Figure 4.10 road crash counts by driver gender 

The crash analysis distributed the driver road crash casualties among various age groups in the 

crash records as illustrated in Figure 4.11. The analysis was restricted to drivers involved in fatal and 

serious injury (FSI) only crashes on the national rural roads. The dataset comprised of 3 906 drivers, 

of which 19 cases were removed due to insufficient information on driver gender and age. For the 

remaining 3 887 cases, the computed mean driver age was 28.16 years, with a standard deviation 

(S.D) of 14.33. The highest observed age in the crash analysis was 85 years while the lowest 

observed age was 11 years.  

As illustrated by Figure 4.11, the road crashes are disproportionately distributed across the various 

driver age groups. The highest frequency of FSI road crashes is observed in the driver age group of 

31 to 35 years, closely followed by the driver age group of 26 to 30 years. From the driver age group 

of 21- 25 years, road crash frequencies rise notable for both genders. This can be potentially 

attributed to the high levels of exposure these drivers experience around that age. As expected, a 

considerable reduction in road crash frequencies is observed from driver age group of 46 to 50 years 

and older, due to lower risk exposure for these drivers.  
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Figure 4.11 Road crash counts by driver age and gender 

The disproportionate distribution of road crashes among the driver genders and across the various 

driver age groups is also evident in Table 4.13. In addition, the results in Table 4.13 and Figure 4.12 

indicate the male to female driver ratio for road crash frequencies across the various age groups.  

Table 4.13 road crash counts by gender and age 

Age  Male Female Total Crash Frequency M: F 

11-15 1 0 1 - 

16-20 54 5 59 10.80 

21-25 286 26 312 11.00 

26-30 656 119 775 5.51 

31-35 600 139 739 4.32 

36-40 475 100 575 4.75 

41-45 494 69 563 7.16 

46-50 219 32 251 6.84 

51-55 248 39 287 6.36 

56-60 122 24 146 5.08 

61-65 102 12 114 8.50 

66-70 48 0 48 - 

71-75 9 1 10 9.00 

76-80 4 0 4 - 

81-85 3 0 3 - 

86-90 0 0 0 - 

 

Across all age groups, the crash analysis indicates that male drivers are at a much higher risk 

compared to female drivers on rural roads. Examining the top five age groups with the highest male 

to female driver crash risk ratio, male drivers are at the highest crash risk in the young adults (21-25 

years) and teenager (16-20 years) age groups, with male drivers more than ten times likely to be 

involved in a road crash than females (M: F= 11.00 and M: F= 10.80 ratios respectively. Interestingly, 
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male drivers are also at a higher risk in the 71-75 age group (M: F=9.00) and 61-65 (M: F=8.50) age 

group. However, these age groups recorded the lowest crash frequencies. Another age group that 

recorded higher male driver crash risk ratio is the 41-45 age group (M: F= 7.16). Notable observation 

from Figure 4.12, the male to female driver ratios were lower in the age groups with the highest road 

crash frequencies. This is in line with the expected higher crash risk exposure for both genders. 

 

Figure 4.12 Road crash counts by gender (M: F) and age 
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4.2.2. Road crash analysis by fatal and serious injury (FSI) severities 

This section provides further insights into the distribution of fatal and serious only injuries of all car 

occupants across the time of day, day of the week and month of the year over a 5-year period. The 

dataset comprises 6 712 cases, of which 4 644 (69 percent) are male and 2 068 (31 percent) are 

female road user casualties. As expected, the crash dataset comprised an overrepresentation of 

male casualties with an injury crash risk ratio (M: F=2.25) more than double that of female road 

users.  

4.2.2.1. FSi occupants by time and gender 

The distribution of road users fatal and serious injuries (FSI) only casualties by crash occurrence 

time and the corresponding male to female casualty ratios are presented in Figure 4.13 and Figure 

4.14 respectively. It is evident from the analysis that fatal and/ or serious road crashes are more 

prevalent among male road users than among female road users. 

 

Figure 4.13 Distribution of FSI casualties by time and gender 
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It is observed from the crash analysis that FSI frequencies peak in the late afternoon to early evening, 

with higher injury frequencies stretching from 15h00 to 18h00. The FSI injury frequencies during this 

stretched peak represent approximately 32 percent of all injuries recorded across the day. The 

highest injury peak during this time period is notable from 16h00 to 17h00 (579 road user FSI 

casualties). 

Examining the male to female injury ratios illustrated in Figure 4.14, male road users are at a highest 

FSI risk (M: F = 3.36) during the early morning hours (01h00 to 02h00) despite the lower FSI 

casualties recorded then. Male road users are also at a higher risk of sustaining fatal and/ or serious 

injuries (M: Fmorning= 3.10 and M: Fevening= 3.11) in the morning hours (06h00 to 07h00) and late 

evening hours (22h00 to 23h00) respectively. The lowest gender injury ratios occurred during the 

high injury casualty time periods, which were observed in the late afternoon to early evening. It is 

evident that all the ratios are above one. As a result, it can be concluded that male road users are 

generally at a higher FSI risk than female road users across the day.  

 

Figure 4.14 FSI road crash casualties and male to female ratio by time of day 
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4.2.2.2. FSI occupants by day of the week 

The study assessed the temporal fatal and serious injury (FSI) road user casualties’ temporal 

variations across the days of the week through descriptive and inferential statistics. The descriptive 

statistics for the daily national rural road causalities are presented in Table 4.14 and visually 

illustrated in Figure 4.15 and Figure 4.16.  

Table 4.14 Descriptive statistics of weekdays FSI road crash casualties 

Dependent Variable: FSI Casualty Count 

Weekday Mean Std. Deviation N 

Mon 155.20 39.271 5 

Tue 119.80 32.889 5 

Wed 121.80 25.223 5 

Thu 149.80 20.117 5 

Fri 215.00 47.207 5 

Sat 268.80 86.085 5 

Sun 235.80 39.047 5 

Hol. 81.40 9.555 5 

Total 168.45 72.813 40 

 

From Table 4.14, it is observed that the highest frequency of fatal and serious road crash injuries 

occurred on Saturdays (1 427 FSI casualties), followed by Fridays (1 174 FSI causalities) and 

Sundays (1 233 FSI casualties). The lowest FSI frequencies over the day of the week were observed 

over Holidays (407 FSI casualties).  

 

Figure 4.15 Distribution of FSI road crash casualties by day of the week 

Similar to Figure 4.15, the estimated marginal means for the week day casualties illustrated in Figure 

4.16 indicate that higher casualties were observed over the weekend days (Friday, Saturday and 

Sunday) and were lower during the week days (Monday to Thursday) and over holidays. 
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Figure 4.16 Estimated FSI road crash casualties means by day of the week 

Using the ANOVA test, the daily FSI road casualties’ individual mean differences were evaluated at 

95 percent confidence interval. The ANOVA test scores indicated in Table 4.15 show that the mean 

differences between the test groups (weekdays) are statistically significant (p=0.000<0.05). This 

suggest that the assumption that variances of casualties are equal across the days of the week is 

invalid. The test scores also indicate that 64.8 percent of the variance in the week day variances is 

predicated on the influence of the predictors.  

Table 4.15 Results of ANOVA Test Scores on weekdays FSI road crash casualties 

Tests of effects between subjects  

Dependent Variable: FSI road crash casualties 

Source 
Type III Sum of 

Squares 
df Mean Square F Sig. 

Corrected Model 147085.900a 7 21012.271 11.267 0.000 

Intercept 1135016.100 1 1135016.100 608.588 0.000 

Weekday 147085.900 7 21012.271 11.267 0.000 

Error 59680.000 32 1865.000   

Total 1341782.000 40    

Corrected Total 206765.900 39    

a. R Squared = .711 (Adjusted R Squared = .648) 

 

In the same way, Levene’s test for homogeneity of variance (see Table 4.16) was applied to test the 

assumption that road FSI casualties’ variances are equal across the days of the week. Further, 

Levene’s test results give an indication of the appropriate Post-hoc procedure to apply in assessing 

the individual mean differences between the test groups (days of the week). Levene’s test results 

presented in Table were found to be statistically significant (p=0.022<0.05) at 95 percent confidence 
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interval. This suggests that the equal variance assumption across the test group is negated. Owing 

to the statistical significance of the Levene’s test results and following the procedure illustrated in 

Figure 3.12, the Games-Howell Post-hoc procedure was identified as the appropriate test to assess 

individual mean differences. 

Table 4.16 Results of Levene's Test for Homogeneity of variance for weekdays FSI road crash 

casualties 

Levene's Test of Equality of Error Variancesa,b 

 
Levene 

Statistic 
df1 df2 Sig. 

FSI 

Cases 

Based on Mean 2.788 7 32 0.022 

Based on Median 1.596 7 32 0.172 

Based on Median and with 

adjusted df 
1.596 7 15.573 0.209 

Based on trimmed mean 2.683 7 32 0.026 

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.a,b 

a. Dependent variable: FSI Cases 

b. Design: Intercept + Weekday 

 

The Games-Howell Post-hoc test results are presented in Table 4.17. The Games-Howell test was 

used to assess the differences in mean values across the days of the week. The relationships found 

statistically significant (p<0.05) at 95 percent confidence level are marked in red. 

From Table 4.17, the differences in weekdays casualty mean values emerged statistically significant 

(p<0.05) between: 

• Tuesday and Sunday 

• Wednesday and Sunday 

• Thursday and Sunday and holidays 

• Friday and holidays; and 

• Sunday and holidays 
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No statistically significant differences in mean values was identified between: 

• Monday and all days of the week; and 

• Saturday and all the days of the week. 

Table 4.17 Results of Games-Howell Post Hoc Test on weekdays FSI road crash casualties 

Post Hoc test: Games Howell 

Multiple Comparisons 

Dependent Variable: FSI Weekday causalities 

(I) Weekday (J) Weekday 
Mean 

Difference (I-J) 
Std. Error Sig.(p) 

95% Confidence Interval 

Lower Bound Upper Bound 

Mon 

Tue 35.40 22.908 0.768 -56.00 126.80 

Wed 33.40 20.873 0.740 -53.13 119.93 

Thu 5.40 19.733 1.000 -80.21 91.01 

Fri -59.80 27.462 0.448 -169.44 49.84 

Sat -113.60 42.315 0.288 -301.63 74.43 

Sun -80.60 24.767 0.123 -178.60 17.40 

Hol 73.80 18.075 0.094 -14.79 162.39 

Tue 

Mon -35.40 22.908 0.768 -126.80 56.00 

Wed -2.00 18.536 1.000 -76.69 72.69 

Thu -30.00 17.242 0.670 -102.14 42.14 

Fri -95.20 25.730 0.079 -200.36 9.96 

Sat -149.00 41.213 0.122 -338.50 40.50 

Sun -116.00* 22.832 0.014 -207.05 -24.95 

Hol 38.40 15.317 0.362 -35.12 111.92 

Wed 

Mon -33.40 20.873 0.740 -119.93 53.13 

Tue 2.00 18.536 1.000 -72.69 76.69 

Thu -28.00 14.428 0.564 -85.86 29.86 

Fri -93.20 23.936 0.076 -196.14 9.74 

Sat -147.00 40.117 0.128 -339.35 45.35 

Sun -114.00* 20.789 0.012 -200.09 -27.91 

Hol 40.40 12.062 0.157 -15.15 95.95 

Thu 

Mon -5.40 19.733 1.000 -91.01 80.21 

Tue 30.00 17.242 0.670 -42.14 102.14 

Wed 28.00 14.428 0.564 -29.86 85.86 

Fri -65.20 22.949 0.250 -168.57 38.17 

Sat -119.00 39.536 0.237 -313.56 75.56 

Sun -86.00* 19.644 0.048 -171.12 -.88 

Hol 68.40* 9.960 0.006 24.51 112.29 

Fri 

Mon 59.80 27.462 0.448 -49.84 169.44 

Tue 95.20 25.730 0.079 -9.96 200.36 

Wed 93.20 23.936 0.076 -9.74 196.14 

Thu 65.20 22.949 0.250 -38.17 168.57 

Sat -53.80 43.907 0.898 -241.61 134.01 

Sun -20.80 27.398 0.991 -130.24 88.64 

Hol 133.60* 21.540 0.022 26.28 240.92 

Sat 

Mon 113.60 42.315 0.288 -74.43 301.63 

Tue 149.00 41.213 0.122 -40.50 338.50 

Wed 147.00 40.117 0.128 -45.35 339.35 

Stellenbosch University https://scholar.sun.ac.za



164 

 

Thu 119.00 39.536 0.237 -75.56 313.56 

Fri 53.80 43.907 0.898 -134.01 241.61 

Sat 33.00 42.274 0.988 -155.06 221.06 

Hol 187.40 38.735 0.061 -11.16 385.96 

Sun 

Mon 80.60 24.767 0.123 -17.40 178.60 

Tue 116.00* 22.832 0.014 24.95 207.05 

Wed 114.00* 20.789 0.012 27.91 200.09 

Thu 86.00* 19.644 0.048 .88 171.12 

Fri 20.80 27.398 0.991 -88.64 130.24 

Sat -33.00 42.274 0.988 -221.06 155.06 

Hol 154.40* 17.978 0.005 66.34 242.46 

Hol 

Mon -73.80 18.075 0.094 -162.39 14.79 

Tue -38.40 15.317 0.362 -111.92 35.12 

Wed -40.40 12.062 0.157 -95.95 15.15 

Thu -68.40* 9.960 0.006 -112.29 -24.51 

Fri -133.60* 21.540 0.022 -240.92 -26.28 

Sat -187.40 38.735 0.061 -385.96 11.16 

Sun -154.40* 17.978 0.005 -242.46 -66.34 

Based on observed means. 

 The error term is Mean Square (Error) = 1865.000. 

*. The mean difference is significant at the 0.05 level. 
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4.2.2.3. Distribution of FSi occupants by month of the year 

The distribution of fatal and serious injury casualties across the months of the year is illustrated in 

Figure 4.17. On the whole, the trend of fatal injuries causalities was found to be consistent across 

the months of the year, with the highest casualties recorded over December (256 fatal road 

casualties). In contrast, serious injury road casualties had three separate peaks across the months 

of the year. The highest serious injury peak is observed in December (467 serious injuries). The 

other peaks are observed over May (418 serious injuries) and August (394 serious injuries). These 

distinct peaks coincide with the holiday seasons in Namibia, when the traffic load on national rural 

roads is high. As a consequence, a high exposure for road users over these holiday months. 

 

Figure 4.17 FSI road crash casualties by month of the year 
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4.2.3. Analysing driver risk factors and behavioural aspects 

Road crashes and the consequences arising from them can be represented by a system of 

interlinked factors. However, the traditional crash causation model illustrated in Figure 1.3, lean 

towards placing the fault of road crashes on individual road users, with all other factors being perfect. 

As a consequence, human factors have become an overarching category of blame, rather than a 

vital source of information in identifying the multiplicity of factors that coupled together represent 

potential crash risks. The reality is that human factors are commonly involved in road crashes. In 

order to try and minimise some of the human led causation factors, it is important to provide a road 

environment (design characteristics) that does not provide the driver with too much or too little 

information at a single time, as this can cause confusion. The relationship between driver 

performance and environmental demand is clearly summed up in Blumenthal’s early work (illustrated 

in Figure 4.18), which remains relevant today. Blumenthal’s findings (cited in Shinar, 2017)) show 

that increasing the demands of a driver led to an increase in the likelihood of a crash occurring. 

 

Figure 4.18 Blumenthal environmental demand and performance model (1968) (Shinar, 2017) 

The developed localised road crash predictive models (CPMs) are important tools working to identify 

hazardous areas on the road. It is, however, important to recognise that models cannot work in 

isolation and identifying driver factors on national roads will play a crucial role in understanding how 

human factors intersect with road environment factors. CPMs are a crucial tool in tackling the 

frequency of fatal and serious injury crashes, moreover coupled with identified driver risk factors in 

the study areas to develop appropriate remedial measures. It is important to understand the full crash 

causation process, as it provides vital information and almost always leads to a wide scope of 

possible areas of preventive and remedial actions. This section of the study assesses the role of 

driver behaviour and risk factors and attempts to understand the extent to which crash risk factors, 

including the road environment (traffic and design characteristics), impact crash risk on national rural 

roads in Namibia. 
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4.2.3.1. Driver gender-based crash risk analysis 

The driver gender-based crash risk analysis described in Section 3.4.1 and Section 3.7, was carried 

out using the crash datasets for the 5-year period. The results of the analysis are presented in Table 

4.18. The dataset comprised 3 325 drivers, with a gender breakdown showing that 2 629 (79 

percent) were male drivers while 696 (21 percent) were female drivers. This indicates an 

overrepresentation of male driver (M: F=3.78) in the crash dataset. The male to female driver ration 

in the dataset is higher compared with the international male to female ratio (M: F= 3). 

The driver risk analysis clearly indicates that human factors were predominant crash factors for both 

genders, followed by roadway and environmental factors, vehicle and other factors respectively. A 

detailed breakdown of human factors (contributing 67 percent to male driver crash causation) in male 

drivers indicates that intentional risks were the highest contributing factors (23 percent), followed by 

recognition errors (20 percent). In comparison, the human factors (contributing 70 percent to female 

driver crash causation) for female drivers indicate that recognition errors were the predominant 

factors (25 percent), followed by intentional risks (23 percent) in the dataset. The composition of the  

top three primary risk factors in both genders is presented below: 

• Both driver genders were found to exhibit inadequate surveillance on the rural roads. This 

risk factor was more marked in females (9 percent) than in males (7 percent). 

• Inattention among the drivers was observed a significant risk factor – more in females (8 

percent) than in males (6 percent). 

• Misjudgement of gaps was notable in both driver genders, with the risk factor slightly more 

dominant in males (6 percent) than females (5 percent). 

• Dangerous manoeuvres (M=4 percent; F=6 percent) and following too close (M=4 percent; 

F=5 percent) risk factors were also identifiable in both driver genders. More unexpected, they 

were more marked in female drivers than in male drivers on national roads. 

• Traffic violations were equally noticeable in both driver genders, accounting for 4 percent as 

a primary risk factor in each gender. 

For both male and female drivers, roadway and environmental risk factors were the second highest 

(25 and 26 percent respectively) contributor to crash occurrence, after human related crash factors. 

The following primary factors were of interest: 

• Both driver genders were found to have significantly higher encounters with animals 

compared with other roadway and environmental factors. These encounters were higher for 

males than females, which can possibly be attributed to the higher exposure/ 

overrepresentation of male than female drivers. 
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• Poor visibility and weather were equally experienced as a primary risk factor by both driver 

genders. 

• Speed differential was more marked as a primary risk factor in female drivers than in males. 

The study identified vehicles factors as more of a primary risk factor in male drivers compared with 

female drivers.  

Table 4.18 Driver gender and risk factors 

Risk factors 

As a primary 

contributing factor 

(Level 1) (n) 

As a primary 

contributing factor 

(Level 1) (%) 

Male Female Male Female 

R
e
c

o
g

n
it

io
n

 e
rr

o
r 

Inadequate surveillance 191 62 7% 9% 

Internal distraction 29 9 1% 1% 

Inattention 165 53 6% 8% 

Confusion over the road environment 26 11 1% 2% 

Visual impairment  60 12 2% 2% 

Complex environment: overestimation 10 17 0% 2% 

Response delay 48 12 2% 2% 

  Sub-total 529 176 20% 25% 

D
e
c

is
io

n
 e

rr
o

r 

Too fast for conditions 16 18 1% 3% 

Too fast for a curve 38 4 1% 1% 

False assumption of other’s action 92 15 3% 2% 

Misjudgement of gap or other’s action 162 32 6% 5% 

Failure to use passive safety features  2 1 0% 0% 

Swerve in front of other traffic 11   0% 0% 

Unsafe passing 3   0% 0% 

  Sub-total 324 70 12% 10% 

P
e

rf
o

rm
a

n
c

e
 e

rr
o

r 

Overcompensation 38 11 1% 2% 

Poor directional control 92 21 3% 3% 

Panic/Freezing 20 27 1% 4% 

Other performance error 81 14 3% 2% 

General driving ability: Skills 72 9 3% 1% 

  Sub-total 303 82 12% 12% 

In
te

n
ti

o
n

a
l 

ri
s
k
 

Fatigue 109 26 4% 4% 

Alcohol 44 12 2% 2% 

Drugs 0   0% 0% 

Aggression 44   2% 0% 

Dangerous manoeuvre 113 44 4% 6% 

Traffic violation 93 31 4% 4% 

Following too close 101 34 4% 5% 

Speeding 21   1% 0% 

Too fast for conditions 84 14 3% 2% 

  Sub-total 609 161 23% 23% 

Stellenbosch University https://scholar.sun.ac.za



169 

 

P
h

y
s

io
lo

g
ic

a
l 
ri

s
k
 

Physical impairment     0% 0% 

Heart attack     0% 0% 

Eyesight     0% 0% 

Medications     0% 0% 

Age Senior driver/ped (<65)     0% 0% 

Age Young driver (<25)     0% 0% 

Age Child ped (<15)     0% 0% 

Blackout 3   0% 0% 

  Sub-total 3 0 0% 0% 

R
o

a
d

w
a

y
 a

n
d

 e
n

v
ir

o
n

m
e
n

ta
l 

Potholes 18 11 1% 2% 

Animal 305 73 12% 10% 

Obstructions     0% 0% 

Work zones     0% 0% 

Faulty traffic light     0% 0% 

Roadblock     0% 0% 

Weather 74 25 3% 4% 

Poor visibility: night/glare/dawn/dusk 87 19 3% 3% 

Road surface 62 23 2% 3% 

Stone projected by another car 11 1 0% 0% 

Stone  12   0% 0% 

Speed differentiation: Congestion 21 29 1% 4% 

Road geometry: Curve/slope 59 3 2% 0% 

  Sub-total 649 184 25% 26% 

V
e

h
ic

le
 f

a
c

to
rs

 

Tyre bust 53 7 2% 1% 

Defective lights or indicators     0% 0% 

Defective brake 18   1% 0% 

Missing or defective mirrors     0% 0% 

Defective steering or suspension 16   1% 0% 

Overloaded or poorly loaded vehicle or trailer 29   1% 0% 

Other 14 3 1% 0% 

Tyre hooked off the vehicle 22   1% 0% 

  Sub-total 152 10 6% 1% 

      

O
th

e
r 

ro
a

d
 u

s
e

r 
e

rr
o

r 

Cyclist unsafe riding  4   0% 0% 

Bicycle equipment malfunction     0% 0% 

Cycling without helmet     0% 0% 

Intoxicated cyclist     0% 0% 

Unsafe riding environment     0% 0% 

Cycling in darkness 9   0% 0% 

Cyclist distraction     0% 0% 

Traffic light violation 9 2 0% 0% 

Pedestrian using the roadway 29 11 1% 2% 

Intoxicated pedestrian 9   0% 0% 

  Sub-total 60 13 2% 2% 
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4.2.3.2. Driver-age based crash risk analysis 

This analysis probed the relationship between the driver ages and primary risk factors in crash 

occurrences between 2012 and 2016. The results of the driver-age based crash risk analysis on 

national rural roads are presented in Table 4.19. Several points of interest across the driver age 

groups are discussed below: 

• Drivers in the adolescent age group (less than 18 years) were found to be more prone to 

human errors (86 percent) than other road user errors in the risk analysis. Of the human 

errors, response delay (29 percent), inadequate surveillance (21 percent) and driving too fast 

for curves (21 percent) were found as the most notable primary contributing factors in the 

crash occurrences. 

• For the young adults (18 to 25 years) in the crash dataset, as expected, a majority (75 

percent) of the primary risk factors involved in the crashes were deemed to be human-related 

errors. The majority of the primary factors were found to be intentional (33 percent of human 

errors), with traffic violations (11 percent of intentional risks) playing a major role. Roadway 

and environmental risk factors (25 percent) played the second highest impact of crash 

occurrence in this age group, with a marked contribution to crashes by animals (19 percent) 

on the national rural roads. 

• The driver gender analysis described and illustrated in Figure 4.11 shows that the age group 

26 to 35 years represents the largest population (approximately 40 percent of driver 

population) of drivers on the national rural roads. In the same way as the previously discussed 

age groups, though lower, human related errors contributed to the highest number of crashes 

on the roads, representing 64 percent of all risk factors. Inattention (10 percent), inadequate 

surveillance (8 percent) and dangerous manoeuvres (8 percent) were identifiable primary 

human risk factors in this age group. Roadway and environmental risk factors were found to 

account for 33 percent of all risk factors attributed to drivers in the 26 to 35 years age group. 

Animals (17 percent of roadway and environmental risk factors) on the rural roads were 

identified as a significantly high primary crash risk factor in this grouping. Vehicle and other 

road user factors contributed 4 percent to crashes in the aforementioned age group. 

• The study found that human-related risk factors also played the highest role in crash 

occurrences among the 36 to 65 years age group in the crash dataset. The crashes that 

occurred in the age group comprised 70 percent human-related risk factors. Roadway and 

environmental, vehicle and other road user factors represented approximately 22 percent, 5 

percent and 3 percent respectively, of all primary risk factors in the age group. Of contrast to 

other age groupings, where animals are the highest contributing risk factor in the roadway 

and environmental category, the road surface (10 percent) was identified as the highest 

contributing risk factor. 
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• As expected, the highest human related risk factors in crash occurrences among all the age 

groups was identified in the elderly (greater than 65 years). These can possibly be attributed 

to reduced physiological processes as the aging process occurs. The human related errors 

contributed approximately 95 percent in all crashes were elderly drivers were involved during 

the period 2012 to 2016. The highest primary risk factors identified in the human-related 

errors by the elderly were confusion over the road environment, a false assumption of other 

road users’ action and panic/ freezing in complex situations on the road. All these primary 

risk factors equally accounted for 11 percent of the human-related factors. 
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Table 4.19 Analysis of road crash risk by driver age using primary contributing risk factors 

Risk factors 

As a primary contributing factor (Level 1) (n) As a primary contributing factor (Level 1) (%) 

Adolescen
t (<18 
years) 

Young 
adults (18-25 
years) 

Adults 
(26-35 
years) 

Middle Age 
(36-65 
years) 

Elderly 
(>65 
years) 

Adolescen
t (<18 
years) 

Young 
adults (18-25 
years) 

Adults 
(26-35 
years) 

Middle Age 
(36-65 
years) 

Elderly 
(>65 
years) 

R
e
c
o

g
n
it
io

n
 e

rr
o

r 

Inadequate 
surveillance 

3 33 63 49 3 21% 10% 8% 7% 6% 

Internal distraction 
 2 1 15  0% 1% 0% 2% 0% 

Inattention 
 16 81 34 4 0% 5% 10% 5% 8% 

Confusion over the 
road environment 

 
2 3 7 6 0% 1% 0% 1% 11% 

Visual impairment  
    

3 0% 0% 0% 0% 6% 

Complex 
environment: 
overestimation 

   6  0% 0% 0% 1% 0% 

Response delay 4 1 
 

22 5 29% 0% 0% 3% 9% 

  

Sub-total 7 54 148 133 21 50% 17% 19% 19% 40% 

D
e
c
is

io
n
 e

rr
o

r 

Too fast for conditions 
 

13 2 
 

1 0% 4% 0% 0% 2% 

Too fast for a curve 3  14 21  21% 0% 2% 3% 0% 

False assumption of 
other’s action 

1 11 41 37 6 7% 3% 5% 5% 11% 

Misjudgement of gap 
or other’s action 

 
4 17 26 5 0% 1% 2% 4% 9% 

Failure to use passive 
safety features  

 
1 

   
0% 0% 0% 0% 0% 

Swerve in front of 
other traffic 

 7 2   0% 2% 0% 0% 0% 

Unsafe passing 
     

0% 0% 0% 0% 0% 

  

Sub-total 4 36 76 84 12 29% 11% 10% 12% 23% 
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P
e

rf
o

rm
a

n
c
e

 e
rr

o
r Overcompensation 

 9 15 2 1 0% 3% 2% 0% 2% 

Poor directional 
control 

 18 10 53  0% 6% 1% 7% 0% 

Panic/Freezing 
 

7 2 14 6 0% 2% 0% 2% 11% 

Other performance 
error 

1 
 

31 51 
 

7% 0% 4% 7% 0% 

General driving ability: 
Skills 

 12 11 17 2 0% 4% 1% 2% 4% 

  

Sub-total 1 46 69 137 9 7% 14% 9% 19% 17% 

In
te

n
ti
o

n
a

l 
ri
s
k
 

Fatigue 
 

4 44 31 
 

0% 1% 6% 4% 0% 

Alcohol 
 

13 11 3 
 

0% 4% 1% 0% 0% 

Drugs 
     

0% 0% 0% 0% 0% 

Aggression 
 14 19 6  0% 4% 2% 1% 0% 

Dangerous 
manoeuvre 

 21 62 16 1 0% 6% 8% 2% 2% 

Traffic violation 
 

35 19 16 2 0% 11% 2% 2% 4% 

Following too close 
 

19 27 41 4 0% 6% 3% 6% 8% 

Speeding 
 

1 10 2 
 

0% 0% 1% 0% 0% 

Too fast for conditions 
  13 28  0% 0% 2% 4% 0% 

  

Sub-total 0 107 205 143 7 0% 33% 26% 20% 13% 

P
h

y
s
io

lo
g

ic
a

l 
ri
s
k
 

Physical impairment 
     0% 0% 0% 0% 0% 

Heart attack 
     

0% 0% 0% 0% 0% 

Eyesight 
     

0% 0% 0% 0% 0% 

Medications 
     

0% 0% 0% 0% 0% 

Age Senior driver/ped 
(<65) 

    1 0% 0% 0% 0% 2% 

Age Young driver 
(<25) 

     0% 0% 0% 0% 0% 

Age Child ped (<15) 
     

0% 0% 0% 0% 0% 

Blackout 
   

1 
 

0% 0% 0% 0% 0% 

  

Sub-total 0 0 0 1 1 0% 0% 0% 0% 2% 
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R
o
a

d
w

a
y
 a

n
d

 e
n
v
ir

o
n
m

e
n

ta
l 

Potholes 
     0% 0% 0% 0% 0% 

Animal 
 62 133 49 3 0% 19% 17% 7% 6% 

Obstructions 
     0% 0% 0% 0% 0% 

Work zones 
     

0% 0% 0% 0% 0% 

Faulty traffic light 
     

0% 0% 0% 0% 0% 

Roadblock 
     0% 0% 0% 0% 0% 

Weather 
 16 41 23  0% 5% 5% 3% 0% 

Poor visibility: 
night/glare/dawn/dusk 

 5 26 11  0% 2% 3% 2% 0% 

Road surface 
  

49 70 
 

0% 0% 6% 10% 0% 

Stone projected by 
another car 

     
0% 0% 0% 0% 0% 

Stone   
     0% 0% 0% 0% 0% 

Speed differentiation: 
Congestion 

  14 6  0% 0% 2% 1% 0% 

Road geometry: 
Curve/slope 

     
0% 0% 0% 0% 0% 

Infrastructure 
     

0% 0% 0% 0% 0% 

  

Sub-total 0 83 263 159 3 0% 25% 33% 22% 5% 

V
e

h
ic

le
 f
a

c
to

rs
 

Tyre bust 
  5 14  0% 0% 1% 2% 0% 

Defective lights or 
indicators 

     0% 0% 0% 0% 0% 

Defective brake 
   

9 
 

0% 0% 0% 1% 0% 

Missing or defective 
mirrors 

     0% 0% 0% 0% 0% 

Defective steering or 
suspension 

     0% 0% 0% 0% 0% 

Overloaded or poorly 
loaded vehicle or 
trailer 

  
17 11 

 
0% 0% 2% 2% 0% 

Other 
     0% 0% 0% 0% 0% 

Tyre hooked off the 
vehicle 

  3 1  0% 0% 0% 0% 0% 
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Sub-total 0 0 25 35 0 0% 0% 3% 5% 0% 

O
th

e
r 

ro
a

d
 u

s
e

r 
e

rr
o
r 

Cyclist unsafe riding  
     0% 0% 0% 0% 0% 

Bicycle equipment 
malfunction 

     0% 0% 0% 0% 0% 

Cycling without 
helmet 

     
0% 0% 0% 0% 0% 

Intoxicated cyclist 
     

0% 0% 0% 0% 0% 

Unsafe riding 
environment 

     0% 0% 0% 0% 0% 

Cycling in darkness 
     0% 0% 0% 0% 0% 

Cyclist distraction 
     

0% 0% 0% 0% 0% 

Obstructions 
     

0% 0% 0% 0% 0% 

Traffic light violation 
     

0% 0% 0% 0% 0% 

Pedestrian using the 
roadway 

2  2 11  14% 0% 0% 2% 0% 

Child running after the 
car 

     0% 0% 0% 0% 0% 

  Sub-total 2 0 6 23 0 14% 0% 1% 3% 0% 

  
     

     

 Total 14 326 792 715 53      

 Total (Percent) 1% 17% 42% 38% 3%      

 Total 1900      
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4.2.3.3. Determination of crash risk factors and relationship between risk factors 

A second level crash risk factor analysis was carried out to determine the probable relationship 

between the primary risk factors and other risk factors (level 2 and level 3) to have possibly 

influenced the occurrence of crashes. The results of this analysis are presented in Table 4.20. 

Several relationships were noticeable between the different levels of risk factors. Of interest 

are the following relationships: 

• Level 2 and level 3 crash risk factors contributed the highest secondary risk (49 

percent) to road crashes were intentional risks were identified as the leading risk factor 

preceding a crash. 

• In road crashes were recognition errors were identified as the leading primary risk 

factor, level 2 and level 3 contributed slightly higher than three quarters (29 percent) 

of all the secondary risk identified to have preceded the crash. Recognition errors were 

identified as primary risk factors in 17 percent of all risk factors in the risk analysis. 

• In road crashes were the leading risk factors were roadway and environment related, 

the results indicated that level 2 and level 3 risk factors contributed approximately 27 

percent of all secondary risk factors. Also, roadway and environmental risk factors 

were identified as the second highest (25 percent) primary risk factors in the crash risk 

analysis, only after intentional risks (human-related factor). 

• As expected on Namibian national rural roads, animals were identified as the highest 

(17 percent) individual primary risk factor for crashes. In the same way, they were also 

recorded as the highest (19 percent) level 2 and level 3 possible contributing factor 

when a primary factor was identified. 

• Also identifiable from the crash risk analysis, the following risk factors were individual 

high level 2 and level 3 contributors: (1) dangerous road manoeuvres (15 percent); (2) 

the misjudgement of gaps or other driver’s road actions (14 percent); (3) traffic 

violations (12 percent); and (4) drivers following too close (11 percent). 
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Table 4.20 Analysis of road crash risk at Level 1,2 and 3 risk factors 

Risk factors 

As a primary 

contributing 

factor (Level 1) 

 As a possible contributing factor (Level 2 and Level 3) 

 Driver Human factors 
Roadway 

and 

environm

ental 

factors  

Vehicle 

factors  

Oth

er 

road 

user 

fact

ors  

Total 

(Percent)  Recognitio

n error  

Decision 

error  

Perform

ance 

error  

Intenti

onal 

risk  

Physiolo

gical 

conditio

ns  

Freque

ncy 

Percent

age 
 

R
e
c
o

g
n
it
io

n
 e

rr
o

r 

Inadequate surveillance 236 8%  109 91 17 72 3 19 2 0 10% 

Internal distraction 9 0%  0 9 0 10 0 9 0 0 1% 

Inattention 136 4%  53 64 82 51 5 44 0 0 10% 

Confusion over the road 

environment 21 1%  24 10 11 1 0 10 0 0 2% 

Visual impairment  51 2%  16 17 11 10 0 15 0 0 2% 

Complex environment: 

overestimation 18 1%  11 9 14 4 0 14 2 0 2% 

Response delay 61 2%  39 10 1 20 2 22 0 0 3% 

  Sub-total 532 17%          29% 

D
e
c
is

io
n
 e

rr
o

r 

Too fast for conditions 101 3%  74 21 6 13 2 23 0 0 4% 

Too fast for a curve 16 1%  11 7 2 5 1 8 0 0 1% 

False assumption of other’s 

action 63 2%  51 12 5 11 3 3 1 1 3% 

Misjudgement of gap or other's 

action 271 9%  147 87 55 62 9 69 2 0 14% 

Failure to use passive safety 

features  4 0%  0 9 0 11 0 14 0 2 1% 

Swerve in front of other traffic 16 1%  17 11 4 6 1 1 0 0 1% 

Unsafe passing 5 0%  13 3 0 3 0 0 0 0 1% 

  Sub-total 476 15%                  25% 
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P
e

rf
o

rm
a

n
c
e

 e
rr

o
r 

Overcompensation 22 1%  7 9 6 2 7 11 0 0 1% 

Poor directional control 105 3%  72 31 18 21 4 31 0 0 6% 

Panic/Freezing 25 1%  14 8 11 23 7 8 0 0 2% 

Other performance error 57 2%  32 26 1 16 8 15 0 0 3% 

General driving ability: Skills 50 2%  34 11 18 16 10 2 0 0 3% 

  Sub-total 259 8%                  15% 

In
te

n
ti
o

n
a

l 
ri
s
k
 

Fatigue 101 3%  76 0 6 6 0 11 0 0 3% 

Alcohol 44 1%  31 20 9 26 14 1 0 0 3% 

Drugs 6 0%  2 7 0 5 2 0 0 0 1% 

Aggression 47 2%  19 18 24 38 0 1 0 0 3% 

Dangerous manoeuvre 225 7%  93 126 92 109 14 31 0 0 15% 

Traffic violation 223 7%  125 57 64 81 14 22 0 0 12% 

Following too close 195 6%  108 97 28 52 13 40 0 0 11% 

Speeding 28 1%  7 18 3 0 0 0 2 21 2% 

  Sub-total 869 28%                  49% 

P
h

y
s
io

lo
g

ic
a

l 
ri
s
k
 

Physical impairment 0 0%  0 0 0 0 0 0 0 0 0% 

Heart attack 0 0%  0 0 0 0 0 0 0 0 0% 

Eyesight 0 0%  0 0 0 0 0 0 0 0 0% 

Medications 0 0%  0 0 0 0 0 0 0 0 0% 

Age Senior driver/ped (<65) 0 0%  0 0 0 0 23 0 0 0 1% 

Age Young driver (<25) 0 0%  0 0 0 0 0 0 0 0 0% 

Age Child ped (<15) 0 0%  0 0 0 0 1 0 0 0 0% 

Blackout 14 0%  0 0 0 6 0 1 0 0 0% 

  Sub-total 14 0%                  1% 

R
o
a

d
w

a
y
 a

n
d

 

e
n

v
ir
o

n
m

e
n

ta
l 

Potholes 6 0%  0 17 4 1 0 11 0 0 1% 

Animal 519 17%  293 121 9 23 6 127 0 0 19% 

Obstructions 43 1%  0 0 15 18 0 1 0 0 1% 

Work zones 6 0%  0 1 1 0 0 0 0 0 0% 
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Weather 30 1%  1 26 8 0 0 38 0 0 2% 

Poor visibility: 

night/glare/dawn/dusk 85 3%  0 2 0 4 0 0 0 0 0% 

Road surface 36 1%  0 23 0 11 0 14 0 0 2% 

Stone projected by another car 29 1%  0 0 0 18 0 1 0 0 1% 

Stone   4 0%  0 0 0 0 0 1 0 0 0% 

Speed differentiation: 

Congestion 13 0%  19 1 0 0 0 0 0 0 1% 

Road geometry: Curve/slope 17 1%  0 1 7 0 0 10 0 0 1% 

  Sub-total 788 25%                  27% 

V
e

h
ic

le
 f
a

c
to

rs
 

Tyre bust 42 1%  0 6 18 8 0 27 0 0 2% 

Defective lights or indicators 3 0%  0 0 0 2 0 3 0 0 0% 

Defective brake 26 1%  0 0 3 4 0 14 0 0 1% 

Defective steering or 

suspension 7 0%  0 0 0 3 0 10 0 0 0% 

Overloaded or poorly loaded 

vehicle or trailer 30 1%  0 9 5 10 0 0 11 0 1% 

Other 10 0%  0 0 2 0 0 0 0 0 0% 

Tyre hooked off the vehicle 21 1%  0 4 6 0 0 7 0 0 1% 

  Sub-total 139 4%                  5% 

O
th

e
r 

ro
a

d
 

u
s
e

r 

fa
c
to

rs
 Cyclist unsafe riding  3 0%  9 0 0 0 0 0 0 0 0% 

Jaywalking 22 1%  11 2 1 0 8 15 0 0 1% 

Pedestrian using the roadway 11 0%  19 0 0 0 0 24 0 0 1% 

  Sub-total 36 1%          3% 

Total 3113 100%           
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As discussed at the beginning of Section 4.2.3, the analysis of crash risk has traditionally examined 

the road user, vehicle and road environment separately. Moreover, researchers tend to look for one 

or a few crash risk factors, while in actual fact they should be analysing multiple causation factors. 

The systems approach taken in this study has attempted to build on Haddon’s insights discussed in 

Section 1.1. This approach seeks to identify and rectify the major sources of error and design 

weaknesses that contribute to fatal and serious injuries on roads. For the Namibian national rural 

roads, the distribution of primary road crash risk factors was determined for national rural roads. The 

summary of this distribution is illustrated in Figure 4.19. 

 

Figure 4.19 Distribution of road crash risk factors in Namibia 

 

 

  

Primary road crash risk factors distribution in Namibia

Roadway 
factors
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4.3 Road crash geospatial analyses 

The distribution of road crashes was tested for all rural roads, high order (HORR) and low order rural 

roads (LORR) according to their functional classes detailed by the TRH 26 on Road Classification 

and Access Management in Table 2.1. The spatial distribution of fatal and serious injury (FSI) 

crashes was visualised by applying the planar Kernel Density Estimation (KDE) method to generate 

the raster maps for the three datasets. The FSI crash densities are classified into four classes of 

equal intervals showed in Figure 3.18. These classes are: (1) extreme; (2) high; (3) moderate; and 

(4) low crash intensities. 

4.3.1. Distribution of road crashes on All Rural Roads  

The FSI crash densities for crashes on all national rural roads are represented by the raster map in 

Figure 4.20. The raster map shows extreme clusters of FSI crashes in the central and northern parts 

of the high order rural road network. The raster map indicates higher crash densities in the western 

part of the HORR network and moderate to lower crash densities across the rest of the HORR 

network. 

 

Figure 4.20 FSI crash rate distribution on all rural roads 
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4.3.2. Distribution of crashes on High Order Rural Roads 

The map in Figure 4.21 presents the distribution of crashes that occurred on roads classified as high 

order (R1-R3) by the TRH 26. The KDE analysis indicates extreme crash densities in the northern, 

central and western parts of the HORR network. Higher to moderate crash densities were identified 

on the HORR network between the northern and central parts of the road network. The KDE analysis 

also revealed lower crash densities in areas towards the north-eastern and slightly south of the 

HORR network. 

 

Figure 4.21 FSI crash rate distribution on high order rural roads 
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4.3.3. Distribution of crashes on Low Order Rural Roads 

Figure 4.22 presents the distribution of FSI crash densities on roads classified as low order rural 

roads on the Namibian national road network. Extreme crash densities were identified towards the 

north, north western and eastern parts of the low order rural road network. Moderate to higher crash 

densities were identified in the north western part of the network while moderate to lower crash 

densities were identified on LORRs across the whole road network. 

 

Figure 4.22 FSI crash rate distribution on low order rural roads 
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4.4 Compliance of National Rural Roads Design Environment with TRH 17 & TRH 26 

Guidelines 

This section explores the compliance of road design characteristics in the three study datasets with 

the Technical Recommendations for Highways 17 on the Geometric Design of Rural Roads (TRH 

17), the Technical Recommendations for Highways 20 on the Structural Design, Construction and 

Maintenance of Unpaved Roads (TRH 20) and the Technical Recommendations for Highways 26 

on Road Classification and Access Management (TRH 26). For this purpose, it is important to 

acknowledge that some of the roads investigated were designed for traffic conditions that have been 

far exceeded by current traffic conditions. Assessing the level of compliance on national rural roads 

with design guidelines is important to understanding the road environment on which the crash 

prediction models (CPMs) are developed and operating. For this reason, the level of compliance of 

model covariates will affect the parameter estimates and undoubtedly influences the type and 

magnitude of mediating effects that can be undertaken by authorities on the covariates and their 

impact on road safety.  

4.4.1. Compliance Summary 

Table 4.21 present the results of the road design covariates compliance assessment on the national 

rural roads to the TRH 17 and TRH 26, for the three datasets used in the study. These datasets are: 

(1) All national rural roads irrespective of the classification (ARR); (2) the High Order Rural Roads 

(HORR), class R1 to class R3; and (3) the Low Order Rural Roads (LORR), class R4 to R6 as shown 

in Table 2.1. The classification of the rural roads on the latter two datasets were according to a) the 

size and importance of the trip generator, b) reach connectivity and c) the travel stage. Some 

indication is also given by the traffic volumes, but that should not entirely be used in establishing the 

road classes. 

The compliance assessment on the datasets was carried out on six geometric covariates with 

minimum design requirements stipulated in the aforementioned design guidelines. Covariates with 

a high level of non-compliance in the three datasets are highlighted in red. The lane width (LW) 

covariate demonstrated a higher level of compliance on paved roads in all datasets (LWARR= 65.25%; 

LWHORR= 71.89%; LWLORR= 62.11%). Of contrast, less than half of all lane widths on unpaved roads 

complied with the design requirements (LWARR= 47.81%; LWHORR= 47.18%; LWLORR= 48.46%). 

Significantly lower levels of compliance were shown by the surfaced shoulder width on all datasets 

(SSWARR= 14.20%; SSWHORR= 21.24%; SSWLORR= 8.22%)., with compliance levels below a quarter 

of the sample size. Similar to SSW, the proportion of road recommended to have paved shoulders 

in all three datasets also demonstrated compliance levels lower than a quarter (STARR= 16.95%; 

STHORR= 24.40%; STLORR= 10.26%) of the sample size assessed.  
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The Ground Shoulder Width (GSW) demonstrated the highest level of compliance with design 

requirements on unpaved roads. All the three datasets proved compliance levels above eighty 

percent (GSWARR= 85.49%; GSWHORR= 81.23%; GSWLORR= 89.21%). However, the GSW 

compliance levels on paved roads were much lower than on paved roads. Less than half of all 

datasets (GSWARR= 30.21%; GSWHORR= 43.12%; GSWLORR= 22.45%) were found to comply with the 

design requirements for national rural roads. The compliance assessment also found significantly 

high levels of Stopping Sight Distance (SSD) compliance with design guidelines on paved national 

rural roads. More than ninety percent of the paved SSD datasets (SSDARR= 93.51%; SSDHORR= 

92.33%; SSDLORR= 94.21%) proved to be compliant with the TRH 17. The SSD compliance levels 

on unpaved roads were evidently lower compared with SSDs on paved roads. Unpaved HORRs 

demonstrated a slight reduction in SSD compliance, while unpaved ARR and LORRs demonstrated 

higher reductions in compliance with design guidelines (SSDARR= 65.27%; SSDHORR= 90.24%; 

SSDLORR= 39.54%). The pavement conditions (PC) of all three datasets on paved and unpaved rural 

roads was evidently good on more than two thirds of all roads assessed. PC compliance on paved 

roads (PCARR= 79.24%; PCHORR= 87.26%; PCLORR= 71.82%) were slightly highly than PCs on 

unpaved roads (PCARR= 72.11%; PCHORR= 74.11%; PCLORR= 69.80%), with paved HORR PCs 

demonstrating a much higher compliance level. 

Table 4.21 Geometric design and road characteristic compliance summary 

 

ARR HORR LORR 

Average 
Complianc

e 
TRH17 Average 

Complianc
e 

TRH17 Average 
Complianc

e 
TRH17 

LW 

3,592m 65,25% 
3,5m 

(Paved) 
3,641m 71,89% 

3,5m 
(Paved) 

3,501m 62,11% 
3,5m 

(Paved) 

8,789m 47,81% 
9-11m 

(Unpaved
) 

8,811m 47,18% 
9-11m 

(Unpaved
) 

8,748m 48,46% 
9-11m 

(Unpaved
) 

SS
W 

0,179m 14,20% 
1,5-3m 
(Paved) 

0,356m 21,24% 
2-3m 

(Paved) 
0,020m 8,22% 

1,5-2,5m 
(Paved) 

- - 
0m 

(Unpaved
) 

- - 
0m 

(Unpaved
) 

- - 
0m 

(Unpaved
) 

ST 
Paved 16,95% Paved Paved 24,40% Paved Paved 10,26% Paved 

- - Unpaved - - Unpaved - - Unpaved 

GS
W 

1,532m 30,21% 
1,5-3m 
(Paved) 

1,633m 43,12% 
2-3m 

(Paved) 
1,402m 22,45% 

1,5-2m 
(Paved) 

1,802m 85,49% 
1,5-2,5m 
(Unpaved

) 
1,752m 81,23% 

1,5-2,5m 
(Unpaved

) 
1,899m 89,21% 

1,5-2,5m 
(Unpaved

) 

SSD 

168,114
m 

93,51% 
80-210m 
(Paved) 

186,275
m 

92,33% 
155-
210m 

(Paved) 

149,063
m 

94,21% 
80-210m 
(Paved) 

108,580
m 

65,27% 
80-155m 
(Unpaved

) 

138,211
m 

90,24% 
80-155m 
(Unpaved

) 
77,214m 39,54% 

80-155m 
(Paved) 

PC 

- 79,24% 
Good 

(Paved) 
- 87,26% 

Good 
(Paved) 

- 71,82% 
Good 

(Paved) 

- 72,11% 
Good 

(Unpaved
) 

- 74,11% 
Good 

(Unpaved
) 

- 69,80% 
Good 

(Unpaved
) 
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4.4.2. Distribution of road crashes by design non-compliance 

This section provides a description and spatial illustration of the crash distribution on national rural 

roads according to the non-compliance of design parameters assessed in the previous section 

(Section 4.4.1). Using the Kernel Density Estimation (KDE), the spatial analyses generated raster 

maps for the visualisation of the density of road crashes, with the classification intervals used shown 

by Figure 3.18. 

The spatial distribution of road crashes by lane width (LW) non-compliance is shown in Figure 4.23. 

The extreme density of road crashes due to LW non-compliance is evident on the High Order and 

Low Order Rural Roads (HORR and LORR) in Northern part of the road network, with moderate to 

lower crash densities across the rest of the national rural road network.  

 

Figure 4.23 FSI crash rate distribution by non-compliance to TRH 17 LW design recommendations 
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Non-compliance to surfaced shoulder width (SSW) design requirements is shown to possibly have 

an influence on the occurrence of FSI crashes on High Order Rural Roads (HORR) in the northern, 

central and western part of the national rural road network in Figure 4.24. Moderate impact is shown 

in the north eastern section of the HORR with lower impacts towards the eastern and southern parts 

of the rural road network. This possible correlation is explored in Section 4.5.3. 

 

Figure 4.24 FSI crash rate distribution by non-compliance to TRH 17 SSW design recommendations 

In the same way, the non-compliance of ground shoulder widths (GSW) on the national rural road 

network is notable on the Northern part of the road network, as shown by Figure 4.25, with extreme 

possible impacts on both LORRs and HORRs. This possible causal relationship between the crashes 

and GSWs is examined in Section 4.5.3. Slightly high to moderate impact on crash occurrence owing 

to GSW non-compliance is evident towards the central and western parts of the HORRs on the road 

network, with lower impacts visualised on the LORRs across the network. 
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Figure 4.25 FSI crash rate distribution by non-compliance to TRH 17 GSW design recommendations 

Figure 4.26 presents the impact of non-compliance of shoulder type (ST) on the occurrence of road 

crashes on both high and low order rural roads on the national road network. As a result of ST non-

compliance, LORR and HORR road crash densities are shown to be extreme on the northern part 

of the road network. The central and western HORRs are shown exhibit higher densities of road 

crashes owing to ST non-compliance. LORRs across the national rural road network showed a low 

response to St non-compliance. 
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Figure 4.26 FSI crash rate distribution by non-compliance to TRH 17 ST design recommendations 

The impact of stopping sight distance (SSD) non-compliance on crash distribution on the national 

rural road network is presented in Figure 4.27. In contrast to the impact of non-compliance of other 

design parameters on crash occurrence, SSD non-compliance is shown to cause extreme crash 

densities in the central part of the High Order Rural Road (HORR) network. The extreme densities 

due to SSD non-compliance are likely to stem from the fact that the central part of the HORR network 

is located in the hilliest part of the country. As a consequence, the terrain may have a high impact 

on the SSD available to drivers on the road network in the areas. 
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Figure 4.27 FSI crash rate distribution by non-compliance to TRH 17 SSD design recommendations 

Figure 4.28 shows the impact of pavement condition (PC) non-compliance on road crash densities 

distribution across the national rural road network. The FSI crash densities demonstrate an extreme 

classification on the northern and central parts of the HORR network. Moderate to low crash 

densities are visible on the HORR network towards the western and northern parts from the centre. 

The non-compliance of the pavement condition to design guidelines was found to have a limited 

impact on crash occurrence on LORRs as depicted by Figure 4.28. 
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Figure 4.28 FSI crash rate distribution by non-compliance to TRH 17 PC design recommendations 
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4.5 Road crash prediction model development 

A way to improve road safety is by improving the road characteristics (design and traffic) to mitigate 

crash frequency and severity. In order to improve road characteristics, it is crucial to evaluate and 

define the relationships between road characteristics and road crashes. 

For this reason, two road crash modelling techniques (General Regression Multivariate – Winsorized 

(MLR) and Simple Multivariate Regression – Base Mean Test Model (BMM) modelling approaches 

were applied in the study to develop crash prediction tools to find out the relationship between road 

characteristics (geometric design and condition) and road crash rates on national rural roads. The 

crash modelling techniques were applied on three rural road crash datasets. The first dataset 

encompassed all rural road (ARR) fatal and serious injury (FSIs) crashes, the second dataset 

encompassed FSIs on High Order Rural Roads (HORR R1-R3) and the third dataset comprised 

FSIs on Low Order Rural Roads (LORR R4-R6). The HORR and LORR classifications were carried 

out in the study using the Technical Recommendation for Highways 26 (TRH 26) on Road 

Classification and Access Management described in Table 2.1. The road crash models developed 

from the respective datasets are termed as Models 1-6 in the study. 

4.5.1. Description of dependant variable 

A combination of normality of distribution tests; box plots and the normal P-P plot, Kolmogorov-

Smirnov (K-S) and Shapiro-Wilk (S-W) tests and visual inspection of the histogram shapes were 

performed on the three dataset effect variables; ARR, HORR and LORR to test for normality. The 

results of the normality tests carried out and the descriptive statistics summaries for the three FSI 

datasets: ARR, HORR and LORR are described in Figures 4.29, Figure 4.30 and Figure 4.31 

respectively. The normality tests indicated a normal distribution of the three datasets, confirmed by 

the values of the variance, which are higher than the mean values, implying that the three datasets 

are over-dispersed. The normality of the datasets is further confirmed by the K-S and S-W tests 

results. The K-S value further from one (1) is indicative of a normal distribution in the dataset (K-SARR 

= 0.110, K-SHORR = 0.083 and K-SLORR = 0.142). Also, S-W statistic is indicative of a normal 

distribution when the test value is closer to one (S-WARR = 0.925, S-WHORR = 0.927 and S-WLORR = 

0.873). As a result, the Winsorized MLR modelling approach was identified as the appropriate 

method to handle the over-dispersed study datasets and to avoid overestimated standard errors and 

misleading inferences. 
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Figure 4.29 Description of All Rural Roads (ARR) output variables 

 

Figure 4.30 Description of High Order Rural Roads (HORR R1-R3) output variables 
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Figure 4.31 Description of Low Order Rural Roads (LORR R4-R6) output variables 
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4.5.2. Description of covariates  

A summary of the covariates used in the model development procedure are presented in Table 4.22. 

A total of 16 variables were included in the model development process. The covariates are divided 

into two groups of variable types, numerical and categorical covariates. Of these variables, nine of 

the variables relate to the geometric characteristics of the rural roadway system. Seven of the 

variables relate to the characteristics of the rural roadway, describing the traffic modal split, terrain 

and roadway surface types and conditions.  

Table 4.22 Summary statistics of all covariates 

Descriptive statistic summary of covariates 

Covariate Description of covariate Min Max Mean 
Std. 

Deviation 
Variance 

N
u

m
e

ri
c

a
l 

C
o

v
a

ri
a

te
s

 

AADT_Light 
Light Vehicle Annual Average 

Daily Traffic of rural road section 
85 14005 2328.44 2921.117 

8532926.9

24 

AADT_Heavy 
Heavy Vehicle Annual Average 

Daily Traffic of rural road section 
2 1400 345.29 376.970 

142106.05

5 

AADT_Total 
Total Annual Average Daily 

Traffic (Heavy+Light Vehicles) 
91 15362 2673.73 3231.762 

10444282.

947 

Operating_Speed 

(OS) 

Operating Speeds on the rural 

road sections 
0 120 44.02 53.010 2810.020 

Lane_Width (LW) 
Width of rural road lanes (one-

direction) 
2.940 12.450 5.156 2.552 6.513 

No_Lanes (NL) 

Number of lanes available to 

traffic on rural roads (Bi-

direction) 

1 6 1.79 .683 0.466 

Surface_SW (SSW) Width of surfaced road shoulder 0.000 3.175 0.255 0.562 0.316 

Ground_SW (GSW) 
Width of ground/ unsurfaced 

road shoulder 
0.000 8.9900 1.713 0.652 0.425 

Horizontal_(Curves/L

ength) (Hor) 

Horizontal curves per rural road 

km 
0.000 0.709 0.176 0.143 0.020 

Access_Density (AD) Access points per rural road km 0.000 0.409 0.121 0.086 0.007 

Section_Length (SL) Length of rural road section 12.230 22.967 15.462 1.486 2.207 

SSD 
Stopping sight distance on rural 

road section 
15 2215 179.76 63.002 3969.274 

C
a
te

g
o

ri
c

a
l 

C
o

v
a

ri
a

te
s
 

Surface_type (SurT) 
Type of surface on road section 

(Paved/ Unpaved) 
0 1 - - - 

Shoulder_type 

(ShoT) 

Type of shoulder on road section 

(Paved/ Unpaved) 
0 1 - - - 

Terrain_Vertical (TV) 
Representative of vertical 

alignment (Flat/ Slope) 
0 1 - - - 

Pavement_Condition Condition of road surface 0 1 - - - 
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4.5.3. Crash Prediction Models (CPMs) results 

This section presents and discusses the results of the road crash prediction models developed in 

the study, to uncover the relationship between the selected covariates and road crash rates on 

national rural roads. 

4.5.3.1. Performance of CPMs: Goodness-of-fit measures 

A well-fitting regression model results in predicted values close to the observed data values. The 

mean model, which uses the mean for every predicted value was used as the base test model 

(BMM). The fit of the proposed regression model should therefore be better than the fit of the mean 

model. Two statistics were used to evaluate the fit of the developed models: Adjusted R-squared 

and the overall F-test. The two goodness-of-fit tests are based on two sums of squares – Sum of 

Squares Total (SST) and Sum of Squares Error (SSE). SST measures how far the data is from the 

mean while SSE measures how far the data is from the model’s predicted values. Different 

combinations of the SST and SSE provide different information on how the regression model 

compares to the mean model. A summary of the goodness-of-fit measures of the road crash models 

developed are presented in Table 4.23. The general regression multivariate (MLR) crash prediction 

models, developed using the winsorized (W) crash rate, were found to be the best fit for the datasets 

compared to the base models (mean models), due to the observed improvement (Adjusted R-

squared) in the prediction of the crash models, and the higher statistically significant F-test value, 

which indicates that the observed R-squared is reliable and is not a spurious result of oddities in the 

study datasets. Further comparing the performance of the BMM and MLR models, the adjusted R-

squared generated by the MLR models for CPM 1, CPM 2 and CPM 3 are 2.04 times higher, 2.01 

times higher and 1.58 times higher than those generated by the BMMs respectively. These 

differences slightly increase for the F-test, with the with the MLR crash models exhibiting F-test 

values 2.13 times higher, 2.29 times higher and 1.61 times higher for the respective crash models. 

Furthermore, the full test and parameter estimates outputs for the Base Mean CPMs are provided in 

the Appendix C-1 (from Table C.1 to Table C.9) for comparison of the crash predictive models. 

Table 4.23 Goodness-of-fit measures for all CPMs 

Goodness of Fita 

Parameter 

Base Mean Models (BMM) General Regression Multivariate (MLR) 

CPM 1 (All 

Rural Roads) 

CPM 2 (High 

Order Rural 

Roads) 

CPM 3 (Low 

Order Rural 

Roads) 

CPM 1 (All 

Rural Roads) 

CPM 2 (High 

Order Rural 

Roads) 

CPM 3 (Low 

Order Rural 

Roads) 

Adjusted R-

squared 
0.21654 0.20950 0.10331 0.44306 0.42078 0.16337 

F-test (p-

value) 
238.39 (0.000) 141.88 (0.000) 23.028 (0.000) 508.22 (0.000) 325.14 (0.000) 37.142 (0.000) 
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After the assessment of the performance of the base mean models (BMM) and the general 

regression multivariate model (MLR), the following analyses and discussions presented in the 

section are based on the results generated by the MLR road crash prediction models developed for 

the three datasets, towards revealing the relationship between national rural road characteristics and 

crash rates. 
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4.5.3.2. CPM 1 (Robust MLR) tests and parameter estimates (All Rural Roads) 

The results of the Breusch-Pagan (BP) test are presented in Table 4.24. The BP test is a chi-squared 

test. The test statistic distributed 𝑛𝜒2 with 𝑘 degrees of freedom. If the test statistic has a probability 

value (p value) below the alpha value of 0.05, that means the size of the error terms differ across 

the values of the model covariates. As a result, the null hypothesis of homoskedasticity is rejected 

and heteroskedasticity is assumed. The BP test results explain that a statistically significant 

(p=0.000<0.05) difference exists for the explanatory variables included in the crash prediction model 

(CPM 1) for the all rural roads dataset at 95 percent confidence interval. 

Table 4.24 CPM 1 Breusch-Pagan test 

Breusch-Pagan Test for heteroskedasticity 

BP df p-value 

473.65 5 0.000 

Figure 4.32 shows the plot of predicted model values with the observed dataset values. This 

demonstrates a visual representation of the assumed heteroskedasticity of the error terms of CPM 

1. 

 

Figure 4.32 CPM 1 Predicted model values vs observed dataset values 

The ARR biplot indicates the variance structure of the study variables for all the rural roads in the 

dataset. The biplot generated shows the projected observations (points) and the projected variables 

(vectors) approximated by the first two principal components (PCs) shown in Table 4.25.  
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Table 4.25 CPM 1 Principal Component summary 

Principal  

Component 

Eigenvalues (All rural Roads) 

Extraction: Principal components 

Eigenvalue 
 

% Total variance 
 

Cumulative Eigenvalue 
 

Cumulative (%) 
 

1 3,676 26,257 3,676 26,257 

2 2,240 15,999 5,916 42,256 

3 1,337 9,549 7,253 51,805 

4 1,221 8,721 8,474 60,525 

5 1,104 7,885 9,577 68,411 

6 0,865 6,180 10,443 74,590 

7 0,859 6,138 11,302 80,728 

8 0,714 5,102 12,016 85,830 

The PCs in the biplot, graphically represented in Figure 4.33, explain the distribution and possible 

influence of the principle components on crash rates on all road classification – high order rural roads 

(HORRs) and low order rural roads (LORRs).  

 

Figure 4.33 CPM 1 Principal Component biplot 

As shown in Figure 4.33, the first two PCs explains 26 percent (PC1) and 16 percent (PC2) of the 

variance contributed by the variables on the different road classifications at an alpha elipses level of 

0.75. Without factoring in autocorrelation, the biplot gives an indication of which covariates are likely 

to explain the correlation with crash rates. For the HORRs in the dataset, the model (CPM 1) variance 

in PC1 is potentially explained by:  

▪ The widths of the surfaced shoulders  
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The model (CPM 1) variance for HORRs in PC 2 is potentially explained by: 

▪ The access density  

▪ The number of lanes on the HORR sections 

▪ The hilliness of the vertical alignment 

▪ The stopping sight distance (SSD) available to drivers on HORRs 

▪ The heavy and light vehicle annual average daily traffic, and 

▪ The number of horizontal curves per km on the road sections. 

For the LORRs in the dataset, the biplot in Figure 4.33 indicates that the model (CPM 1) variance in 

PC 1 is potentially explained by: 

▪ The width of the unpaved shoulder (Ground_SW) on the LORRs 

▪ The type of hard shoulder available of the LORR sections, and 

▪ The 85th percentile operating speed (Ops) 

The variance in the model (CPM 1) for LORR sections in PC 2 is potentially explained by: 

▪ The condition of the pavement surface on the LORRs 

▪ The width of the available lanes, and 

▪ The type of the surface (paved or unpaved) on the LORRs. 

A detailed crash prediction model analysis for the HORRs (CPM 2) and LORRs (CPM 3) is carried 

out in Section 4.5.3.3 and Section 4.5.3.4 respectively. 

The study applied the “best regression” developed macro in the multivariate modelling approach 

(MLR) to generate the best-fit crash prediction model for CPM 1. The regression coefficients for the 

best twenty (20) tested sub models for CPM 1 are presented in Table 4.26. 
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Table 4.26 Summary of best subset models for CPM 1 

Subse
t No. 

Summary of best subsets; variable(s): Crash_Rate (Winsorized) (All Rural Roads)  

R square and standardized regression coefficients for each sub model 

R 
Squa

re 

No. of 
Effects 

AADT_
Light 

AADT_
Heavy 

85th Operating 
Speed (Ops) 

Lane_
Width 

No_L
anes 

Surface
_type 

Shoulde
r_type 

Surfac
e_SW 

Groun
d_SW 

Horizont
al (C/L) 

Terrain_
Vertical 

Access_
Density 

Pavement_C
ondition 

Sight 
SD 

 

3 0,435 5 - 0,491 0,080 0,270 - - - -0,070 - - 0,083 - - - 

9 0,432 5 - 0,482 0,084 0,281 - - - - - - 0,077 -0,040 - - 

13 0,432 5 - 0,484 0,078 0,279 - - 0,036 - - - 0,081 - - - 

18 0,432 5 - 0,492 0,080 0,278 - - - - 0,034 - 0,077 - - - 

19 0,431 5 - 0,475 0,082 0,274 -0,028 - - - - - 0,080 - - - 

20 0,431 5 - 0,484 0,084 0,294 - - - - - - 0,075 - - 0,021 

22 0,431 5 - 0,480 0,082 0,288 - - - - - -0,011 0,076 - - - 

23 0,431 5 - 0,481 0,082 0,289 - - - - - - 0,076 - -0,002 - 

26 0,430 5 - 0,495 - 0,269 - - - -0,072 - - 0,096 -0,033 - - 

27 0,430 5 - 0,478 0,094 0,274 
 

- - -0,061 - - 
 

-0,036 - - 

30 0,430 5 - 0,498 0,103 
 

- 0,254 - -0,077 - - 0,089 - - - 

31 0,430 5 - 0,493 - 0,274 - - - -0,075 - -0,020 0,094 - - - 

33 0,429 5 - 0,482 0,094 0,287 - - - -0,064 - - 
 

- - 0,027 

36 0,429 5 - 0,496 - 0,278 - - - -0,074 - - 0,094 - - 0,013 

37 0,429 5 - 0,476 0,091 0,279 - - - -0,065 - -0,022 
 

- - - 

38 0,429 5 - 0,496 - 0,273 - - - -0,070 0,007 - 0,094 - - - 

39 0,429 5 - 0,495 - 0,276 0,004 - - -0,074 - - 0,094 - - - 

40 0,429 5 - 0,494 - 0,275 - - - -0,073 - - 0,095 - -0,003 - 

44 0,429 5 - 0,481 0,091 0,286 0,014 - - -0,066 - - 
 

- - - 

45 0,429 5 - 0,478 0,092 0,284 - - - -0,063 - - 
 

- -0,010 - 
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The study results identified subset 3 as the best performing crash prediction sub model (SM) for all 

the rural roads dataset as shown in Table 4.26. At 95 percent confidence interval, the best performing 

sub model (SM 3) generated shows a R-squared value of 0.435. Five covariates with varying 

standardised regression coefficients (b*) were identified as “best” performers and selected in the 

best sub model. These covariates are: 

1. The proportion of heavy vehicles in the annual average daily traffic (AADT_Heavy) on the 

rural road network. The AADT_Heavy was identified as the best performing covariate after 

being selected in all the 20 sub models tested for CPM 1. 

2. The width of the lanes on the rural road sections. The lane width (LW) covariate was identified 

as one of the covariates best explaining the relationship between crash rates and the 

geometric and traffic characteristics on total roads. The LW covariate was selected in 

nineteen (19) of the best 20 sub models generated by the MLR modelling approach. 

3. The hilliness of the vertical alignment (Vertical terrain) of the entire rural road network 

dataset. The MLR results identified the vertical terrain covariate as the third best covariate 

explaining correlation to rural road crash rates, as the vertical terrain covariate was selected 

in fifteen (15) of the 20 best CPM 1 sub models.  

4. The operating speed (Ops) on the rural road network. The MLR model results identified the 

speed selected by drivers on rural road sections as a covariate in the best-performing sub 

model in CPM 1. The operating speed covariate was selected fourteen (14) time in the sub 

models generated by the MLR approach. 

5. The surface shoulder width (SSW) covariate. The width of the paved hard shoulders on the 

rural road section was selected as one of the covariates best explaining the correlation to 

crash rates. The SSW covariate exhibited significant correlations with crash rates in thirteen 

(13) of the best 20 tested sub models. 

The covariates identified in the best performing sub model (SM 3) developed for CPM 1 were further 

investigated using the MLR modelling approach. Table 4.27 presents the parameter estimates for 

the final MLR road rash prediction model developed for the study, based on the entire national rural 

road FSI crash dataset. The best fit model comprises five (5) covariates that were found to exhibit 

significant effects on national rural road crash rates. The effect that the covariate has on the outcome 

variable is indicated by the sign and magnitude of the coefficient estimate b*. A positive coefficient 

b* sign implies that the covariate is associated with an increase in the rural road crash rates while a 

negative coefficient b* is associated with a decrease in the crash rate. All the covariates in the final 

crash model have exhibited effects statistically significant at an alpha level of 0.05 (5%). The 

adjusted R-square for CPM 1 suggests that 44.3 percent of the variance in all the rural road crash 

rates is accounted for by the covariates in the model. In addition, the continuous variable summary 

for the explanatory variables used in CPM 1 is presented in Table C.7 in Appendix C. 
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Table 4.27 CPM 1 Parameter Estimates 

N=3189 

Regression Summary for Dependent Variable: Crash_Rate(W) (All Rural Roads) 

R= 0.66628116; R²= 0.44393059; Adjusted R²= 0.44305709; CV-R^2=0.44 

F (5,3183) = 508.22; p<0.0000 

Std. Error of estimate = 0.07956 

b* 
Std. Err. of 

b* 
b 

Std. Err. of 

b 
t (3183) p-value 

No. of times 

in best 20 SM 

Intercept   0,076 0,005 15,133 0,00000  

AADT_Heavy 0,464 0,015 0,000 0,000 30,331 0,00000 20 

85th Percentile 

Speed (Ops) 
0,028 0,014 0,000 0,000 2,040 0,04147 14 

Lane Width 0,293 0,016 0,012 0,001 18,206 0,00000 19 

Surface_SW -0,069 0,014 -0,013 0,003 -4,995 0,00000 13 

Terrain_Vertical 0,082 0,013 0,022 0,004 6,087 0,00000 15 

AADT_Light Excluded      0 

No_Lanes Excluded      3 

Surface_type Excluded      1 

Shoulder_type Excluded      1 

Ground_SW Excluded      2 

Horizontal (Curves/ 

length) 
Excluded      3 

Access_Density Excluded      3 

Pavement 

_Condition 
Excluded      3 

SSD Excluded      3 

For CPM 1, the standardised regression coefficients b* generated by the MLR modelling approach 

are given in Table 4.27. Using the coefficient estimates, the following can be concluded on the five 

(5) covariates that exhibited statistically significant associations to national rural road crash rates in 

STATISTICA. 

▪ The highest absolute influence on rural road crash rates was exhibited by the proportion of 

heavy vehicles in the traffic streams (AADT_Heavy) on the road sections. The AADT_Heavy 

covariate exhibited a positive correlation (b*= 0.464) to crash rates, meaning that an increase 

in the heavy vehicle volume on the roads would result in an increase in the FSI crash rate. 

▪ The width of the rural roads lanes (LW) demonstrated the second highest absolute influence 

on crash rates. The LW coefficient estimates (b*= 0.293) explains that an increase in the 

width of the lanes on the sections would result in an increase in the crash rates. 

▪ The hilliness of the vertical alignment (vertical terrain) covariate demonstrated the third 

highest absolute influence of the rural road crash rates. The MLR CPM 1 generated 

coefficient estimate (b*= 0.082) explains that the rural road crash rate would increase as a 

result of an increase in the hilliness of the vertical alignment. 

▪ The surface shoulder width (SSW) covariate demonstrated the fourth highest absolute 

influence on crash rates in the novel final crash prediction model for all the rural roads. The 

SSW covariate demonstrated a negative association (b*= -0.069) to the crash rate, meaning 
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that an increase in the surface of the paved shoulder width on the road sections would result 

in a decrease in the crash rate. 

Despite the operating speed covariate performing better in SM 3 (b*= 0.080), it was found to have 

the fifth highest absolute influence on crash rates in the final novel model. The final model coefficient 

(b*= 0.028) explains that an increase in the driver speed selections on the rural roads would result 

in an increase in the crash rates as well. 
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4.5.3.3. CPM 2 (Robust MLR) tests and parameter estimates (High Order Rural Roads) 

The Breusch-Pagan (BP) test results for the High Order Rural Roads (HORR) crash prediction 

model, referred to as CPM 2, are presented in Table 4.28. The probability value (p) of the BP tests 

is significantly smaller than the alpha value at 5 percent (p=0.000<0.05). For that reason, the results 

prove that a statistically significant different exists between the error terms of the variables included 

in CPM 2. The assumption of homoskedasticity is thus rejected and heteroskedasticity is assumed.  

Table 4.28 CPM 2 Breusch-Pagan test 

Breusch-Pagan Test for heteroskedasticity 

BP df p-value 

396.00 5 0.000 

The assumed heteroskedasticity of the error terms of CPM 2 are also visually demonstrated in Figure 

4.34, which indicates the plot of the predicted and observed model (CPM 2) values. 

 

Figure 4.34 CPM 2 Predicted model values vs observed dataset values 

The MLR modelling technique applied the “best regression” approach to determine the final crash 

prediction model. The regression coefficients for each tested sub-model for CPM 2 are presented in 

Table 4.29.  
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Table 4.29 Summary of best subset models for CPM 2 

Subse
t No. 

Summary of best subsets; variable(s): Crash_Rate (Winsorized) (High Order Rural Roads)  

R square and standardized regression coefficients for each sub model 

R 
Squa

re 

No. of 
Effects 

AADT_
Light 

AADT_
Heavy 

85th Operating 
Speed (Ops) 

Lane_
Width 

No_L
anes 

Surface
_type 

Shoulde
r_type 

Surfac
e_SW 

Groun
d_SW 

Horizont
al (C/L) 

Terrain_
Vertical 

Access_
Density 

Pavement_C
ondition 

Sight 
SD 

 

12 0,421 5 - 0,681 0,034 0,138 
 

- 
  

0,107 
 

0,112 
  

- 

13 0,421 5 - 0,682 
 

0,135 
 

- -0,037 
 

0,127 
 

0,111 
  

- 

14 0,421 5 - 0,679 
 

0,135 
 

- 
 

-0,032 0,093 
 

0,119 
  

- 

15 0,421 5 - 0,689 
 

0,139 0,030 - 
  

0,116 
 

0,111 
   

16 0,420 5 - 0,677 
 

0,133 
 

- 
  

0,107 -0,021 0,114 
  

- 

17 0,420 5 - 0,681 
 

0,135 
 

- 
  

0,109 
 

0,115 
 

-0,019 - 

19 0,420 5 - 0,680 
 

0,135 
 

- 
  

0,108 
 

0,116 -0,004 
 

- 

40 0,416 5 - 0,658 0,038 0,140 
 

- 
 

-0,074 
  

0,121 
  

0,017 

41 0,416 5 - 0,652 
 

0,133 
 

- 
 

-0,078 
 

-0,038 0,122 
  

- 

44 0,416 5 - 0,664 
 

0,141 0,030 - 
 

-0,084 
  

0,120 
  

- 

45 0,415 5 - 0,657 
 

0,135 
 

- 
 

-0,073 
  

0,125 -0,024 
 

- 

46 0,415 5 - 0,657 
 

0,136 
   

-0,074 
  

0,123 
 

-0,019 - 

78 0,412 5 - 0,645 0,037 0,139 
 

- 
   

-0,027 0,112 
  

- 

79 0,412 5 - 0,649 0,038 0,140 
 

- 
    

0,114 -0,026 
 

- 

80 0,411 5 - 0,667 0,045 0,147 
 

- -0,054 
 

0,135 
    

- 

81 0,411 5 - 0,680 0,044 0,155 0,050 - 
  

0,121 
    

- 

82 0,411 5 - 0,650 0,040 0,141 
 

- 
    

0,112 
 

-0,021 - 

83 0,411 5 - 0,650 0,038 0,142 
 

- 0,018 
   

0,116 
  

- 

84 0,411 5 - 0,679 
 

0,149 0,044 - -0,046 
 

0,144 
    

- 

85 0,411 5 - 0,648 0,038 0,142 -0,000 - 
    

0,114 
  

- 
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As indicated in Table 4.29, the study results found subset 12 as the best performing sub model (SM) 

for CPM 2 with an R square of 0.421 at 95 percent confidence interval. Subset 12 was found to 

contain five (5) covariates with varying performances – standardised regression coefficients (b*). 

These covariates are: 

1. The heavy vehicle annual average daily traffic (AADT_Heavy) on high order rural roads. The 

AADT_Heavy covariate performed well and exhibited statistical significance standardised 

regression coefficients at 95 percent confidence interval in all twenty tested CPM 2 sub 

models. 

2. The width of the lanes (LW) on the high order rural roads sections. Similar to the 

AADT_Heavy, the LW covariate was also selected as a model predictor in all the 20 best 

performing sub models for CPM 2 at 95 percent confidence interval. 

3. The vertical terrain characteristics on high order rural roads. The results indicate that the 

vertical terrain covariate was selected seventeen (17) times as one of the best performing 

predictors in the best CPM 2 test sub models developed. 

4. The ground shoulder width (Ground_SW_ on the higher order road sections. The 

Ground_SW covariate was selected as one of the best performing predictors for the crash 

rate in ten (10) of the best 20 tested sub models for CPM 2. 

5. The 85th percentile operating speed (Ops) on higher order rural road sections. The Ops 

covariate was found to exhibit significant standard regression coefficients at 95 percent 

confidence interval in nine (9) of the best 20 tested CPM 2 sub models. 

The standardised regression coefficients of the covariates in the best performing sub-model (subset 

12) of CPM 2 shown in Table 4.29 were further investigated.  

The parameter estimates for the crash prediction model (CPM 2) developed on the FSI dataset on 

High Order Rural Roads (HORR) are presented in Table 4.30. The F-test performed on the overall 

model linking the FSI crash rates on HORRs with the geometric design and traffic related covariates 

was found to be statistically significant (p<0.05) at 95 percent confidence interval. The adjusted R2 

for CPM 2 suggest that 42.2 percent of the variance in HORR crash rates is accounted for by the 

covariates in the model. The study found that five (5) of the fourteen (14) covariates tested in CPM 

2 exhibited statistically significant (p<0.05) associations to rural road crash rates. All the five 

covariates in CPM 2 exhibited positive associations with crash rates on HORRs. Furthermore, the 

continuous covariate summary for CPM 2 is presented in Table C.8 in Appendix C. 

  

Stellenbosch University https://scholar.sun.ac.za



208 

 

Table 4.30 CPM 2 Parameter Estimates 

N=2232 

Regression Summary for Dependent Variable: Crash_Rate(W) (High Order Rural Roads) 

R= 0.64967267; R²= 0.42207458; Adjusted R²= 0.42077645; CV-R^2=0.42 

F (5,2226) = 325.14; p<0.0000 

Std. Error of estimate = 0.04218 

b* 
Std. Err. of 

b* 
b 

Std. Err. of 

b 
t (2226) p-value 

No. of times 

in best 20 SM 

Intercept   0,015 0,008 1,967 0,04934  

AADT_Heavy 0,682 0,017 0,000 0,000 39,491 0,00000 20 

85th Percentile 

Speed (Ops) 
0,032 0,016 0,000 0,000 1,981 0,04770 9 

Lane Width 0,137 0,016 0,017 0,002 8,403 0,00000 20 

Ground_SW 0,108 0,017 0,009 0,001 6,380 0,00000 10 

Terrain_Vertical 0,112 0,017 0,016 0,002 6,746 0,00000 17 

AADT_Light Excluded - - - - - 0 

No_Lanes Excluded - - - - - 5 

Surface_type Excluded - - - - - 0 

Shoulder_type Excluded - - - - - 4 

Surface_SW Excluded - - - - - 6 

Horizontal (Curves/ 

length) 
Excluded - - - - - 3 

Access_Density Excluded - - - - - 3 

Pavement 

_Condition 
Excluded - - - - - 3 

SSD Excluded - - - - - 1 

The study results indicate that nine (9) covariates were excluded from the model due to their limited 

impact on crash rates. Using the standard regression coefficients (b*) generated by CPM 2 and 

presented in Table 4.30, the impact of the covariates included in the model on the crash rates explain 

that: 

▪ Heavy vehicle annual average daily traffic (AADT_Heavy) on HORRs has the highest 

absolute influence (b*=0.682) on crash rates, with an increase in heavy vehicle traffic 

resulting in the crash rate increasing.  

▪ An increase in the widths of the lanes (LW) on HORRs would result in an increase in the 

crash rate, with the LW covariate demonstrating the second highest influence (b*=0.137) on 

crash rate levels. 

▪ The positive association (b*=0.112) between crash rate and the vertical terrain means that 

increasing the hilliness of the terrains in the vertical alignment would result in the crash rate 

on HORRs increasing.  

▪ Increasing the ground shoulder width (GSW) would result in the HORR crash rate increasing, 

as shown by the positive association (b*=0.108) exhibited by the GSW covariate. 

An increase in the 85th percentile operating speed on HORRs would result in the crash rate 

increasing, with the association demonstrated by the positive standardised coefficient (b* = 0.032).  
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4.5.3.4. CPM 3 (Robust MLR) tests and parameter estimates (Low Order Rural Roads) 

Table 4.31 presents the results of the Breusch-Pagan test for the Low Order Rural Roads (LORRs) 

crash prediction model (CPM 3). The Breusch-Pagan test proves that statistically significant 

(p=0.02<0.05) differences exist between the error terms of the selected covariates in the final fitted 

LORR crash prediction model at 95 percent confidence interval. The assumption of homoskedasticity 

is thus negated and heteroskedasticity is assumed. 

Table 4.31 CPM 3 Breusch-Pagan test 

Breusch-Pagan Test for heteroskedasticity 

BP df p-value 

13.13 5 0.02 

Figure 4.35 shows the plot of the predicted LORR crash rate values vs the observed LORR crash 

rate values. This represents a visual description of the assumed statistically significant differences 

between the error terms of the LORR crash prediction model.  

 

Figure 4.35 CPM 3 Predicted model values vs observed dataset values 

Table 4.32 presents a summary of the best 20 sub models (SMs) generated while testing the novel 

LORR crash prediction model. The summary comprises R-square and standardised regression 

coefficient values for all the best performing covariates for the tested SMs. 
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Table 4.32 Summary of best subset models for CPM 3 

Subse
t No. 

Summary of best subsets; variable(s): Crash_Rate (Winsorized) (Low Order Rural Roads)  

R square and standardized regression coefficients for each sub model 

R 
Squa

re 

No. of 
Effects 

AADT_
Light 

AADT_
Heavy 

85th Operating 
Speed (Ops) 

Lane_
Width 

No_L
anes 

Surface
_type 

Shoulde
r_type 

Surfac
e_SW 

Groun
d_SW 

Horizont
al (C/L) 

Terrain_
Vertical 

Access_
Density 

Pavement_
Condition 

Sight 
SD 

 

1 0,296 5 0,326 
 

0,177 
    

-0,173 -0,274 
 

0,069 
   

2 0,295 5 0,339 
 

0,190 
    

-0,169 -0,271 0,067 
    

3 0,295 5 0,280 
 

0,166 
 

-0,090 
  

-0,154 -0,282 
     

4 0,293 5 0,359 
 

0,208 -0,068 
   

-0,190 -0,264 
     

5 0,292 5 0,323 
 

0,184 
    

-0,169 -0,276 
   

0,038 
 

7 0,292 5 0,325 
 

0,185 
    

-0,172 -0,276 
  

-0,032 
  

8 0,292 5 0,345 
 

0,187 
   

0,155 
 

-0,262 0,068 
    

10 0,291 5 0,332 
 

0,176 
   

0,156 
 

-0,264 
 

0,064 
   

11 0,291 5 0,330 
 

0,185 
    

-0,173 -0,272 
    

0,011 

14 0,291 5 0,285 
 

0,166 
 

-0,091 
 

0,137 
 

-0,273 
     

15 0,288 5 0,330 
 

0,182 
   

0,155 
 

-0,267 
   

0,037 
 

16 0,288 5 0,362 
 

0,202 -0,060 
  

0,173 
 

-0,255 
     

17 0,288 5 0,331 
 

0,183 
   

0,158 
 

-0,267 
  

-0,032 
  

18 0,288 5 
 

-0,251 0,172 
 

-0,124 
  

-0,107 -0,270 
     

20 0,287 5 0,336 
 

0,183 
   

0,159 
 

-0,262 
    

0,013 

23 0,284 5 
 

-0,252 0,176 
 

-0,128 
 

0,080 
 

-0,261 
     

24 0,284 5 0,309 
   

-0,141 
  

-0,192 -0,285 
 

0,086 
   

25 0,284 5 
 

-0,307 0,197 
    

-0,123 -0,255 
 

0,059 
   

26 0,283 5 0,259 
 

0,207 
 

-0,144 
   

-0,250 0,077 
    

27 0,282 5 
 

-0,250 0,189 
 

-0,144 
   

-0,246 
 

0,059 
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The study results indicate that subset (SM) 1 was found to be the best performing sub model for 

CPM 3 on low order rural roads, with a R square value of 0.296 at 95 percent confidence interval 

(CI). The best subset (SM 1) comprised five covariates with varying significance and correlation 

performance with the crash rates. These covariates are: 

1. The ground shoulder width (GSW) on the LORR sections covariate was identified as one of 

the best predictors of the crash rate in the subset summary. The GSW covariate was selected 

as a predictor in all 20 sub models tested at 95 percent CI. 

2. The operating speed (Ops) on the low order rural road was identified as one of the best 

contributors to the performance of sub models generated for CPM 3. The Ops covariate was 

selected in 19 of the best 20 sub models developed and tested for CPM 3. 

3. The proportion of light vehicles in the annual average daily traffic (AADT_Light). The 

AADT_Light covariate was selected in 16 of the best 20 sub models, including the best 

performing SM 1 at 95 percent CI. 

4. The width of the paved hard shoulders (SSW) covariate was identified as one of the best 

performing covariates in the sub models. The SSW covariate was selected in half (10) of all 

the sub models generated and presented in the subset summary. 

5. The vertical terrain characteristics of the LORRs was identified as one of the best predictors 

of crash rates in the best performing sub model. The vertical terrain was only selected in 5 of 

the 20 sub models generated for CPM 3. 

Using the MLR modelling technique, the five (5) selected covariates were investigated and the 

parameter estimates for the final fitted Low Order Rural Road crash prediction model (CPM 3) were 

generated. The LORR CPM 3 parameter estimates are presented in Table 4.33. The results show 

that four (4) of the 5 selected CPM 3 covariates exhibited statistically significant (p<0.05) correlations 

with crash rates at 95 percent CI. The adjusted R-square value of CPM 3 suggests that 15.9 percent 

of the variance in the LORR crash rates is accounted for by the covariates in the model. Of the five 

covariates, two covariates demonstrated a negative association to the crash rates These covariates 

are: (1) the surface shoulder width and (2) the ground shoulder width. The remaining three 

covariates; (1) the AADT_Light, (2) the operating speed and (3) the vertical terrain, exhibited positive 

associations to the crash rates. The continuous covariate summary for CPM 3 is presented in Table 

C.9 in Appendix C.  
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Table 4.33 CPM 3 Parameter Estimates 

N=957 

Regression Summary for Dependent Variable: Crash_Rate(W) (Low Order Rural Roads) 

R= 0.40419606; R²= 0.16337445; Adjusted R²= 0.15897579; CV-R^2=0.15 

F (5,941) = 37.142; p<0.0000 

Std. Error of estimate = 0.13791 

b* 
Std. Err. of 

b* 
b 

Std. Err. of 

b 
t (2226) p-value 

No. of times 

in best 20 SM 

Intercept   0,325 0,017 19,588 0,00000  

AADT_Light 0,315 0,030 0,000 0,000 10,530 0,00000 16 

85th Percentile 

Speed (Ops) 
0,049 0,030 0,000 0,000 1,646 0,10005 19 

Surface_SW -0,138 0,031 -0,153 0,034 -4,515 0,00001 10 

Ground_SW -0,205 0,030 -0,054 0,008 -6,739 0,00000 20 

Terrain_Vertical 0,066 0,030 0,024 0,011 2,231 0,02588 5 

AADT_Heavy Excluded      4 

Lane_Width Excluded      2 

No_Lanes Excluded      7 

Surface_type Excluded      0 

Shoulder_type Excluded      8 

Horizontal (Curves/ 

length) 
Excluded      3 

Access_Density Excluded      2 

Pavement 

_Condition 
Excluded      2 

SSD Excluded      2 

The MLR modelling technique excluded nine (9) of the 14 tested covariates in the final fitted novel 

LORR crash prediction model CPM 3. Using the standard regression coefficients b* generated by 

CMP 3 and presented in Table 4.33, the following is concluded about the impacts of the covariates 

selected for the crash prediction model on LORRs. 

▪ The proportion of light vehicles in the annual average daily traffic (AADT_Light) exhibited the 

highest statistically significant (p<0.05) absolute influence on road crash rates. The 

AADT_Light coefficient estimate (b*=0.315) explains that an increase in the light vehicle 

volume on the low order roads would result in an increase in the crash rates. 

▪ The second highest absolute influence on crash rates was demonstrated by the ground 

shoulder width (GSW) on the road sections. The GSW coefficient estimate (b*=-0.205) 

indicates that the road crash rates would decrease as a result of widened unpaved hard 

shoulders on the rural road sections. 

▪ The width of the paved hard shoulders (SSW) covariate exhibited a statistically significant 

correlation to the LORR crash rates. The coefficient estimate of the SSW covariate describes 

that the crash rates would decrease on the road sections as a result of widening the paved 

hard shoulders. 

▪ The hilliness of the vertical alignment covariate demonstrated statistically significant positive 

associations (b*=0.066) with the crash rates. The positive associations mean that an increase 
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in the hilliness of the vertical terrain would result in an increase in the crash rates on the 

LORRs. 

▪ The speeds (Ops) selected by drivers on the LORRs did not exhibit any statistical significance 

(p=0.100>0.05) in predicting the crash rates. The positive coefficient estimate (b*=0.049) of 

the Ops covariate explains that an increase in driver speed selections would result in an 

increase in the crash rates. Despite a lack of statistical significance, the Ops covariate was 

found to demonstrate some influence on the overall prediction of crash rates by CPM 3. 
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4.5.3.5. Evaluation of CPMs performance 

The crash prediction models (CPMs) performances were assessed by evaluating the goodness-of-

fit measures presented in Table 4.23. The study further examined and applied the generated 

standardized residual values, representing the difference between the observed and mean value 

predicted by the crash models developed (residuals). The study generated the residual values while 

fitting the CPMs to the crash dataset. These generated residuals, adopted for heteroskedasticity, 

were used to test the CPMs fitting performance, through determining whether the models were 

underestimating (positive residual value – suggests predicted value is less than observed value) or 

overestimating (a negative residual value- suggests predicted value is greater than observed value) 

the effects of design and traffic covariates, with reference to their difference from zero. For that 

purpose, the covariate effects (coefficient b estimates) from testing the residual values adopted for 

heteroskedasticity are compared to the best-fitting CPMs developed in Table 4.34. The result 

indicate that no marked difference exists between the covariate effects generated by the best-fitted 

CPMs and those generated using residuals adopted for heteroskedasticity. All the covariates 

exhibited the similar effects albeit slight differences in their extent. In summary, this implies 

satisfactory performance by the CPMs. 

Table 4.34 Standardised residuals CPMs performance test 

Parameter 

Parameter Estimate (regression coefficient b*) 

CPM 1: 

ARR 

CPM 1: 

adopted for 

heteroskedasti

city 

CPM 2: 

HORR 

CPM 2: 

adopted for 

heteroskedasti

city 

CPM 3: 

LORR 

CPM 3: 

adopted for 

heteroskedasti

city 

Intercept 0,075639 0,075639 0,015033 0,015033 0,324966 0,324966 

AADT_Heavy 0,000131 0,000131 0,000099 0,000099 - - 

85th Percentile 

Speed (Ops) 
0,000056 0,000056 0,000033 0,000033 0,000172 0,000172 

Lane Width 0,012227 0,012227 0,017089 0,017089 - - 

Surface_SW -0,013159 -0,013159 - - -0,153058 -0,153058 

Terrain_Vertical 0,022135 0,022135 0,016033 0,016033 0,024086 0,024086 

AADT_Light - - - - 0,000040 0,000040 

No_Lanes - - - - - - 

Surface_type - - - - - - 

Shoulder_type - - - - - - 

Ground_SW - - 0,008970 0,008970 -0,054447 -0,054447 

Horizontal 

(Curves/ length) 
- - - - - - 

Access_Density - - - - - - 

Pavement 

_Condition 
- - - - - - 

SSD - - - - - - 

  

Stellenbosch University https://scholar.sun.ac.za



215 

 

4.5.3.6. Comparison of CPMs performance  

The goodness-of-fit measures for the developed models presented in Table 4.23, evidently 

demonstrate that the General Regression Multivariate (MLR) model approach has the highest 

adjusted R-squared and significant F-test values. As a result, the MLR models were found to be the 

most suitable for the national rural road crash data in the study. A summarised comparison between 

the parameters of all crash prediction models is also provided in this section. 

a) Best-fit CPMs performance: Standardised regression coefficient b* 

The estimates (standardised regression coefficient b*) for all the General Multivariate Crash 

Prediction Models (MLR-CPMs) developed and applied in this study to fit the datasets used (All rural 

roads (ARR), high order rural roads (HORR) and low order rural roads (LORR)) are summarised in 

Table 4.35 The crash prediction models tested all the study covariates with the ARR and HORR 

MLR-CPMs eventually exhibiting the highest number (five covariates) of covariates showing 

statistically significant (p<0.05) relationships with crash rates. The CPM on LORR had four 

covariates that presented statistically significant associations with crash rates.  

Table 4.35 Best-fit Road Crash Prediction Models (MLR-CPMs) performance 

Parameter 

Standardised Regression Coefficient (Coefficient b*) 

CPM 1 All Rural 

Roads 

CPM 2 High Order Rural 

Roads 

CPM 3 Low Order Rural 

Roads 

AADT_Heavy (AADTH) 0,464 0.682 - 

85th Percentile Speed (Ops) 0,028 0,032 0,049 

Lane Width (LW) 0,293 0,137 - 

Surface_SW (SSW) -0,069 - -0,138 

Terrain_Vertical (TV) 0,082 0,112 0,066 

AADT_Light (AADTL) - - 0,315 

No_Lanes (NL) - - - 

Surface_type (ST) - - - 

Shoulder_type (ShoT) - - - 

Ground_SW (GSW) - 0,108 -0,205 

Horizontal (Curves/ length) (Hor) - - - 

Access_Density (AD) - - - 

Pavement _Condition (PC) - - - 

SSD - - - 
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Of the fourteen covariates tested in the models, seven (7) different covariates were found to exhibit 

statistically significant (p<0.05) effects in the CPMs. The following seven covariates tested in all the 

crash prediction models did not show any statistically significant affiliation with the crash rates on 

the rural roads: (1) the number of lanes available to traffic (NL); (2) the type of surface on the different 

road classifications (ST); (3) the proportion of hard shoulder surfaces (ShoT); (4) the number of 

horizontal curves per km length of rural road section (Hor); (5) the number of access points per km 

road section length (AD); (6) the condition of the pavement surface (PC); and (7) the stopping sight 

distance available on the rural road sections (SSD)  

Two (2) covariates were shown to be influential (p<0.05) in all three of the CPMs, with varying effects 

on the crash rates. These covariates are: (1) the operating speed (Ops) on the road sections and (2) 

the vertical terrain – hilliness (TV) (all indicated in blue in Table 4.35). The 85th percentile operating 

speed exhibited positive association with crash rates in all the CPMs, with coefficient estimates 

ranging from 0.028 to 0.049. Similar to the operating speed, the hilliness of the vertical alignment 

exhibited a positive association to crash rates on all rural road classifications. The coefficient 

estimates generated by the CPMs for the hilliness covariate range from 0.066 to 0.122. 

Two covariates exhibited statistically significant (p<0.05) parameter estimates in both CPM 1 and 

CPM 2. These covariates are: (1) the proportion of heavy vehicles in the annual average daily traffic 

(AADTH), and (2) the width of the rural road lanes (LW). Of the two covariates in CPM 1 and CPM 

2, the proportion of heavy vehicles in the traffic stream (AADTH) covariate showed positive 

associations with the crash rates. The CPM 1 and CPM 2 standardised regression coefficient b* for 

the AADTH covariate are 0.464 to 0.682 respectively. In CPM 1, for all rural roads, the model results 

indicate that the lane widths (LW) are positively related (b*= 0.293) to the crash rates. In the same 

way, on higher order rural roads on the road network, the lane width (LW) covariate demonstrated a 

positive statistically significant correlation (b*= 0.137) to crash rates.  

Two other covariates emerged with statistically significant coefficient b* estimates in two of the three 

developed crash prediction models: (1) the surfaced shoulder width (SSW) and (2) the ground 

shoulder width (GSW) on the road sections. The SSW was identified to have a negative relation with 

crash rates in CPM 1 (b*= -0.069) and CPM 3 (b*= -0.138). The GSW demonstrated significant 

relations to the crash rates in both CPM 2 and CPM 3. In CPM 2, the GSW covariate indicated a 

positive relation to crash rates, with a 0.108 coefficient b* estimate. In contrast, the GSW covariate 

in CPM 3 indicated a negative relation to crash rates, with a -0.205 coefficient b* estimate.  

The proportion of light vehicles in the annual average daily traffic (AADTL) covariate was found to 

only exhibit statistically significant relations with crash rates in CPM 3. In CPM 3, the AADTL has a 

positive relation coefficient b* of 0.315 to rural road crash rates. 
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4.6 Impact of compliance with rural road design guidelines on developed Crash Prediction 

Models (CPMs)-Sensitivity Test 

The Impact of compliance of the national rural roads to the Technical Recommendations for 

Highways 17 on the Geometric Design of Rural Roads (TRH17), the Technical Recommendations 

for Highways 20 on the Structural Design, Construction and Maintenance of Unpaved Roads (TRH 

20) and Technical Recommendations for Highways 26 on Road Classification and Access 

Management (TRH 26) on the crash rates were tested to learn of the sensitivity of the parameter 

estimates to the road characteristic changes. For that reason, three additional models were included 

in the study analysis. One model was developed to test the sensitivity of the crash rates on all the 

rural roads (CPM 4). The other model was developed to test the sensitivity on high order rural roads 

(CPM 5) while the last model was developed to test the sensitivity of crash rates on low order rural 

roads (CPM 6). The sensitivity analysis intends to test possible mediating effects of road design 

variables 

The three additional models were developed using the General Multivariate (MLR) crash predictive 

modelling approach with reference to the 16 covariates tested in CPMs 1, CPM 2 and CPM 3, to 

allow for a better basis for comparison of parameter estimates. All covariates in the MLR-CPMs were 

adjusted to meet the TRH 17, TRH 20 and TRH 26 minimum requirements. The coefficient b* 

estimates for the statistically significant (p<0.05) covariates are demonstrated and compared in 

Table 4.36 (ARR), Table 4.37 (HORR) and Table 4.38 (LORR) in the sections below. 

4.6.1. Impact of compliance (CPM 4) on CPM 1 (All Rural Roads) 

Table 4.36 presents the parameter estimate (coefficient b*) results of the road design compliance 

sensitivity analysis. Similar to CPM 1, CPM 4 also generated five (5) statistically significant (p<0.05) 

covariates. The results show a slightly improved adjusted R-square value (CPM 1adj R-sq.= 0.443; 

CPM 4adj R-sq.= 0.476) in the models due to compliance. As a result of compliant covariates, one 

covariate demonstrated a change in effect on the outcome variable in the sensitivity test results in 

CPM 4. This covariate is: 

▪ The proportion of heavy vehicles in AADT (b*MLR-CPM 1= 0.464 to b*MLR-CPM 4= -0.380); 

An increase in the contribution to the outcome variable with reference to the magnitude of coefficient 

b* is only apparent in one significant covariate This variable is: 

▪ The operating speed on the rural road sections (b*MLR-CPM 1= 0.028 to b*MLR-CPM 4= 0.036);  

In the same way, one covariate has a decreasing influence on the ARR crash rates when the road 

characteristics are compliant with TRH 17 and TRH 26 guidelines. This covariate is: 
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▪ The vertical terrain on ARRs (b*MLR-CPM 1= 0.082 to b*MLR-CPM 4= 0.076); 

It is evident in the model results that the highest positive association between the outcome variable 

and a covariate was demonstrated by the proportion of heavy vehicles in the AADT (b*MLR-CPM 1= 

0.464) covariate in CPM 1 (existing road characteristics), while in CPM 4 (compliant with TRH 17 

and TRH 26), the proportion of paved shoulders (b*MLR-CPM 1= 0.378) generated a significantly higher 

coefficient b* estimate on ARRs. In contrast, the magnitude of the speed selection covariates 

contribution to the outcome variable is the lowest in both ARR CPMs (b*MLR-CPM 1= 0.028; b*MLR-CPM 

4= 0.036), with a lower positive parameter estimate value in CPM 1. 

The lane width (b*MLR-CPM 1= 0.293) and the width of the paved hard shoulders (b*MLR-CPM 1= -0.069) 

covariates which reflected statistically significant positive and negative associations with the 

outcome variable in CPM 1 respectively, failed to influence the crash rates in CPM 4 as a result of 

road compliance with TRH 17 and TRH 26.  

In a different way, the ground shoulder width (BGP-CPM 4= 0.369) and the proportion of paved shoulders 

(b*MLR-CPM 1= 0.378) reflect a significant association with the crash rates when compliance is tested 

in CPM 4. However, the significant association exhibited by the ground shoulder width and proportion 

of paved shoulders covariates in CPM 4 is absent in CPM 1, when existing road characteristics are 

tested. For comparison purposes, the full performance tests and parameter estimates outputs for 

CPM 4 are provided in Appendix C-3. 

Table 4.36 Sensitivity test on parameter estimates to road design guidelines (Comparing CPM 1-CPM 

4) 

Parameter 

Parameter Estimate (Coefficient b*) 

CPM 1 All Rural Roads (Existing 

Road Characteristics) 

CPM 4 All Rural Roads (TRH 17 & TRH 26 

Compliant Road Characteristics) 

AADT_Heavy (AADTH) 0,464 -0.380 

85th Percentile Speed (Ops) 0,028 0.036 

Lane Width (LW) 0,293 - 

Surface_SW (SSW) -0,069 - 

Terrain_Vertical (TV) 0,082 0.076 

AADT_Light (AADTL) - - 

No_Lanes (NL) - - 

Surface_type (ST) - - 

Shoulder_type (ShoT) - 0.378 

Ground_SW (GSW) - -0.078 

Horizontal (Curves/ length) (Hor) - - 

Access_Density (AD) - - 

Pavement _Condition (PC) - - 

SSD - - 
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4.6.2. Impact of compliance (CPM 5) on CPM 2 (High Order Rural Roads) 

The estimates for the road design guidelines (TRH 17 and TRH 26) compliance sensitivity analysis 

of the crash prediction model (CPM) on high order rural roads (HORR) are presented in Table 4.37. 

The crash prediction model tested with the compliant road design characteristics on HORRs (CPM 

5) generated five (5) covariates with significant effects on the outcome variable. In the same way, 

the same number (5) of covariates demonstrated significant effects on crash rates on the CPM 

developed with existing road characteristics on HORRs (CPM 2). The CPM developed with compliant 

design characteristics (CPM 5adj R-sq.= 0.445) demonstrated an improved adjusted R-square value 

compared to the CPM with existing rural road characteristics (CPM 2adj R-sq.= 0.421). 

In the crash prediction model developed with existing road characteristics, the proportion of heavy 

vehicles in the AADT on the road section (b*MLR-CPM 2= 0.682) reflected the highest absolute value of 

coefficient b*. The same covariate (heavy vehicles in AADT) demonstrated the highest absolute 

coefficient b* value in CPM 5 (b*MLR-CPM 5= -0.594). In contrast to the association with the crash rates 

demonstrated in CPM 2, the heavy traffic AADT covariate showed an opposite signed effect on 

HORR crash rates in CPM 5. 

Two (2) of the covariates reflected an increased effect on the output variable after the design 

guideline compliance test, with reference to the estimate value of coefficient b*. These covariates 

are: 

▪ The operating speed on HORRs (b*MLR-CPM 2= 0.032 to b*MLR-CPM 5= 0.041); and. 

▪ The vertical terrain on the HORRs (b*MLR-CPM 2= 0.112 to b*MLR-CPM 5= 0.120). 

The sensitivity analysis results presented in Table 4.37, indicate that two covariates that are 

statistically significant in influencing the crash rates on HORRs with existing road characteristics, do 

not influence the outcome variable in the model developed with road design compliant road 

characteristics. These covariates are: 

▪ The lane width on high order rural roads (b*MLR-CPM 2= 0.137); and 

▪ The ground shoulder width on high order rural roads (b*MLR-CPM 2= 0.108). 

As a result of compliant road design characteristics, the proportion of paved shoulders (b*MLR-CPM 5= 

0.234) and the number of horizontal curves per rural road length (b*MLR-CPM 5= -0.033) covariates 

demonstrated statistically significant effects on the crash rates on HORRs. This significant 

association is however absent in the model (CPM 2) tested using existing rural road characteristics 

on high order roads. For comparison purposes, the full performance tests and parameter estimates 

for CPM 5 are provided in Appendix C-3. 
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Table 4.37 Sensitivity test on parameter estimates to road design guidelines (Comparing CPM 2-CPM 

5) 

Parameter 

Parameter Estimate (Coefficient b*) 

CPM 2 High Order Rural Roads 

(Existing Road Characteristics) 

CPM 5 High Order Rural Roads (TRH 17 & 

TRH 26 Compliant Road Characteristics) 

AADT_Heavy (AADTH) 0.682 -0.594 

85th Percentile Speed (Ops) 0.032 0.041 

Lane Width (LW) 0.137 - 

Surface_SW (SSW) - - 

Terrain_Vertical (TV) 0.112 0.120 

AADT_Light (AADTL) - - 

No_Lanes (NL) - - 

Surface_type (ST) - - 

Shoulder_type (ShoT) - 0.234 

Ground_SW (GSW) 0.108 - 

Horizontal (Curves/ length) (Hor) - -0.033 

Access_Density (AD) - - 

Pavement _Condition (PC) - - 

SSD - - 
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4.6.3. Impact of compliance (CPM 6) on CPM 3 (Low Order Rural Roads) 

Table 4.38 presents the sensitivity analysis of the crash prediction model (CPM) parameter estimates 

on low order rural roads (LORR) to changes in compliance with TRH 17 and TRH 26 design 

guidelines. The crash prediction model for LORRs using design compliant parameters (CMP 6adj R-

sq.=0.386) showed a markedly high improvement due to compliance compared to the model with 

existing road characteristics (CPM 3adj R-sq.=0.159), as indicated by the adjusted R-square values of 

the respective models. In response to changes in design compliance, the crash prediction model 

developed for LORRs generated three (3) statistically significant covariates (CPM 6), compared to 

the four (4) significant covariates generated by the developed CPM 3 using the existing road 

characteristics. 

The model results indicate that the proportion of light vehicles in the AADT (b*MLR-CPM 3= 0.315) 

demonstrated the highest absolute influence (coefficient b* estimate) on the outcome variable in the 

LORR CPM 3. As a result of road characteristic compliance, the light vehicle AADT b*MLR-CPM 6= -

0.204) covariate exhibited a reduced and opposite signed association to crash rates in CPM 6. On 

the other hand, the model results indicate that the ground shoulder width (b*MLR-CPM 3= -0.205; b*MLR-

CPM 6= -0.412) covariate showed and increased coefficient b* estimate and exhibited the highest 

absolute influence on crash rates in CPM 6. In the same way, an increased influence on crash rates, 

though not statistically significant (p>0.05), is demonstrated by the vertical terrain (b*MLR-CPM 3= 0.062; 

b*MLR-CPM 6= 0.086) as a result of compliance to road design guidelines. 

The model results also indicate that the operating speed (b*MLR-CPM 3= 0.049), which did not 

demonstrate a statistically significant coefficient estimate, and the surface shoulder width (b*MLR-CPM 

3= -0.138) covariates lose their statistical significance in influencing the crash rates, as a 

consequence of compliant road characteristics to guidelines. In contrast, as a result of compliance 

to guidelines, the proportion of paved shoulder (b*MLR-CPM 6= 0.241) and stopping sight distance 

(b*MLR-CPM 6= 0.081) on LORRs demonstrated positive associations to crash rates. The paved 

shoulder significant association to crash rates was not recognised by the CPM developed for existing 

road characteristics on LORRs. Despite the stopping sight distance exhibiting some influence on the 

crash rates in CPM 6, it was however found to be statistically insignificant (p>0.05). The full 

performance tests and parameter estimates for CPM 6 are presented in Appendix C-3. 
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Table 4.38 Sensitivity test on parameter estimates to road design guidelines (Comparing CPM 3-CPM 

6) 

Parameter 

Parameter Estimate (Coefficient b*) 

CPM 3 Low Order Rural Roads 

(Existing Road Characteristics) 

CPM 6 Low Order Rural Roads (TRH 17 & 

TRH 26 Compliant Road Characteristics) 

AADT_Heavy (AADTH) - - 

85th Percentile Speed (Ops) 0.049 - 

Lane Width (LW) - - 

Surface_SW (SSW) -0.138 - 

Terrain_Vertical (TV) 0.066 0.086 

AADT_Light (AADTL) 0.315 -0.204 

No_Lanes (NL) - - 

Surface_type (ST) - - 

Shoulder_type (ShoT) - 0.241 

Ground_SW (GSW) -0.205 -0.412 

Horizontal (Curves/ length) (Hor) - - 

Access_Density (AD) - - 

Pavement _Condition (PC) - - 

SSD - 0.081 
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4.7 Driver characteristics and risk factors – roadway condition analysis models (TSC Model): 

The synergy 

This section presents a novel undertaking to investigate the interaction between the most probable 

combination of risk factors (see Table 4.18) and the demographic, temporal (see Section 4.2.1), and 

roadway and environmental elements (see Section 4.5.2), which are also applied in the development 

of crash prediction models in the study. The study applied the Two-Step Cluster (TSC) analysis 

method to develop a model that identifies covariate combinations (clustered) with an impact on the 

types and distribution of risk factors across the national rural road network. The covariates used for 

the TSC analysis are presented in Table 4.39. This section signifies the importance that all these 

covariates together determine how the national rural road environment is perceived and what driver 

behaviour is elicited in response. Therefore, it supports the importance of considering the road 

environment as a whole when investigating the its effect on road safety, reinforced by demographics 

and temporal data, without isolating single design and traffic covariates.  

Table 4.39 Descriptive statistics variables included in the models 

Variable Name 

Mean 

(Standard 

Deviation) 

 

Risk factors Combination Variables -Estimated variables 

Risk factor combination (See Table 4.2): 

Recognition error = 1 

Decision error = 2 

Performance error = 3 

Intentional error = 4 

Physiological error = 5 

Roadway and environmental = 6 

Vehicle factor = 7 

- 

 

Demographic and Temporal Explanatory Variables 

Night/ Unlit Indicator (1 if true, 0 otherwise) 0.33(0.469) 

Dawn/dusk indicator (1 if true, 0 otherwise) 0.08(0.266) 

Young driver indicator (1 if driver ≤ 25 years old, 0 otherwise) 0.10(0.301) 

Male driver indicator (1 if male, 0 otherwise) 0.85(0.355) 

Weekday indicator (1 if Monday-Thursday, 0 otherwise) 0.46(0.498) 

Weekend indicator (1 if Friday-Sunday, 0 otherwise) 0.54(0.498) 

 

Road & Traffic Explanatory Variables 

Narrow lane width indicator (1 if LW<3.2 m, 0 otherwise) – Paved (1 if LW <8 m, 0 otherwise) – 

Unpaved 
0.08(0.277) 

Wider lane width indicator (1 if LW>3.5 m, 0 otherwise) – Paved (1 if LW> 10 m, 0 otherwise) - 

Unpaved 
0.17(0.373) 

Narrow shoulder width indicator (1 if SW< 1.5 m, 0 otherwise) 0.95(0.212) 

Wider shoulder width indicator (1 if SW>2.1 m, 0 otherwise) 0.03(0.172) 

No overtaking/ crossing line indicator (1 if true, 0 otherwise) 0.42(0.493) 
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Unpaved road indicator (1 if road unpaved, 0 otherwise) 0.31(0.463) 

Unpaved shoulder indicator (1 if shoulder unpaved, 0 otherwise) 0.82(0.383) 

Poor road surface condition indicator (1 if poor, 0 otherwise) 0.29(0.452) 

Poor sight distance Indicator (1 if insufficient, 0 otherwise) 0.23(0.420) 

Two road lane indicator (1 if true, 0 otherwise) 0.68(0.467) 

High AADT Indicator (1 if AADT > 2 000, 0 otherwise) 0.39(0.489) 

Low density of horizontal curves (HC/km) indicator (1 if HC < 0.35 HCs/km, 0 otherwise)  0.89(0.313) 

Flat terrain indicator (1 if true, 0 otherwise) 0.81(0.389) 

High Access Density (AD/km) Indicator (1 if AD >0.21, 0 otherwise) 0.13(0.337) 

High operating speed (OS) indicator (1 if OS > 85th percentile speed, 0 otherwise) 0.01(0.110) 

 

A list of the coded crash risk factor combinations is presented in Table D.1 in Appendix D. Out of a 

possible 343 possible risk factor combinations, the study identified a total of 93 crash risk factor 

combinations from the crash dataset for the development and analysis of Two-Step Cluster Models. 

The identified risk factor combinations are presented in Table D.2 in Appendix D, with five frequently 

occurring risk factor combinations highlighted. These risk factor combinations are:  

1. The combination of recognition, decision and intentional risk factors – code 2 (7 percent) 

2. The combination roadway and environmental, and recognition risk factors – code 90 (6 

percent) 

3. The combinations of a recognition and decision risk factors – code 33 (5.6 percent) 

4. The combination of a recognition, decision and roadway and environmental risk factor – 

code 4 (5.2 percent), and 

5. The combination of two intentional risk factor errors and a recognition error – code 78 (4.1 

percent). 
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4.7.1 The Two-Step Cluster (TSC) Combination Model 

In the development of the TSC combination model, the study sought to investigate how demographic, 

temporal and road and traffic characteristics impact the combination of risk factors on the national 

rural roads. The study tested 21 covariates (see Table 4.39) in the initial model (TSC-1) development 

attempt. Only six (6) variables generated a predictor importance value above the model threshold of 

0.4. The 6 covariates were used to develop a final recalibrated model (TSC-2), with 3 recognised 

cluster groups, for better performance in identifying the factors that affect crash risk factor 

combinations. The auto-clustering for TSC-2 presented in Table 4.40, summarises the process by 

which the number of clusters were generated and chosen by the Two-Step Clustering model. 

Table 4.40 TSC-2 Auto-Clustering Parameters 

TSC- 2 Model Auto-Clustering  

Number of Clusters 
Akaike's Information 

Criterion (AIC) 
AIC Changea 

Ratio of AIC 

Changesb 

Ratio of Distance 

Measuresc 

1 3 011.761    

2 1 099.495 -3 512.267 1.000 1.821 

3 (TSC-2) 568.073 -1 225.600 0.349 2.264 

4 671.600 -1 005.895 0.286 1.364 

a. The changes are from the previous number of clusters in the table. 

b. The ratios of changes are relative to the change for the two-cluster solution. 

c. The ratios of distance measures are based on the current number of clusters against the previous 

number of clusters. 

The Akaike’s Information Criterion was computed for each of the number of clusters. Smaller AIC 

values indicate the better cluster model. Furthermore, the Ratio of AIC Changes (RAICC) and Ratio 

of Distance Measures (RDM) are evaluated to determine the best cluster solution. The “best” cluster 

solution will have a reasonably large RAICC and a large RDM. As presented in Table 4.40, the three 

(3) cluster solution exhibited the smallest AIC value of 568.073. Also indicative of the good solution 

provided by the TSC in the study, the three-cluster solution exhibited the largest ratio of distance 

measure (2.264) and a reasonably large ratio of change (0.349) with respect to the change at the 

two clusters, applying cluster two solution as the base cluster. 

The quality of TSC-2 is further illustrated in Figure 4.36, in which a comparison between TSC-1 and 

TSC-2 is presented. The cluster quality for TSC-1 fell within the “fair” value of the Silhouette measure 

(SM). After the recalibration and removal of covariates with a threshold value less than 0.4, the new 

model (TSC-2) showed an improved cluster quality, with a “good” Silhouette quality measure. 

Stellenbosch University https://scholar.sun.ac.za



226 

 

 

Figure 4.36 Cluster quality of the TSC models 

The results indicate that three cluster sizes were identified by the TSC-2 model. The ratio of the 

largest cluster group to the smallest cluster group is 1.21 (see Figure 4.37), which lies between 1 to 

3. This is indicative of good cluster groupings. The largest cluster grouping represented 36.7 percent 

of all the crash records analysed, with the smallest cluster grouping representing a slightly less 30.3 

percent of the crash records. 

 

Figure 4.37 TSC-2 Cluster sizes 
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The TSC-2 model developed identified the following 6 significant (SM>0.4) covariates with an impact 

on the frequency of various crash risk factor combinations. The following four (4) covariates were 

found to have an importance equal to one (1): 

o Two lane road indicator (SM = 1) 

o Unpaved road indicator (SM = 1) 

o Weekend indicator, and (SM = 1) 

o Weekday indicator (SM = 1) 

The following covariates exhibited SM measures above 0.5 mark, as shown in Figure 4.38. 

o Poor pavement condition indicator (SM = 0.54), and 

o No overtaking/ crossing road mark indicator (SM = 0.53) 

 

Figure 4.38 Covariate importance in TSC-2 Model 

The study further investigated the importance of the significant covariates in the different cluster 

groupings determined by the TSC-2 model. The distribution and importance of the covariates are 

presented in Figure 4.39.  
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Figure 4.39 Covariate effects in the cluster groups 

The following sections discuss the distribution of the covariates across the three determined cluster 

groups, underpinned by the distribution presented in Figure 4.39. 

4.7.1.1 TSC-2 Cluster 1 

The crash risk factor covariates in cluster 1, shown in Figure 4.39 and also illustrated in Figure 4.40, 

were found to influence the combination of national rural road risk factors. The distribution of these 

covariates is given below: 
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o Two-road lanes – All (100 percent) the rural road crashes in cluster 1 were found to have 

occurred on roads with two lanes (single carriageway) 

o Paved roads – the study found that 98 percent of the crash records in cluster 1 occurred on 

paved roads. 

o The weekdays were not found to have any impact on the crash records in cluster 1. This is 

shown by the 0 (100 percent) “otherwise” indication. 

o All (100 percent) the crash records in crash cluster 1 were found to have occurred during 

weekends. 

o The indicator on the pavement condition indicated that only 9.2 percent of the crash records 

in cluster 1 were in any way affected by poor pavement conditions. 

o The study found that 78.1 percent of the crashes in cluster 1 occurred on road sections with 

visible overtaking/ crossing road markings. 

 

Figure 4.40 Covariates distribution in Cluster 1 

The study further identified the extent to which the foremost (The five highest occurring crash risk 

factor groupings) risk factor combinations occurred in the model cluster groups (presented in Section 

4.7) generated by TSC-2. The TSC-2 model identified 805 crash records within cluster 1. From the 

results, the distribution of the highest occurring risk factor combinations was determined as follows:  
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o The combination of recognition, decision and intentional risk factors in cluster 1 (code 2), 

represents the highest (6.46 percent) combination of all the risk factor combinations 

influenced by the covariate combination determined in cluster 1. 

o The risk factor combination – recognition and decision risk factors (code 33), represents the 

second highest (6.09 percent) combination of all combinations influenced by cluster 1 

covariates. 

o The third highest combination of recognition and roadway and environmental risk factors 

(code 90) due to cluster 1 covariate combinations, represents 5.59 percent of the risk factor 

combinations. 

o The combination of recognition, decision, and roadway and environmental risk factors (code 

4) represents the fourth highest (4.72 percent) combination among the foremost model risk 

factors impacted significantly influenced by the combination of covariates in cluster 1. 

o The combination of intentional risk factors and a recognition risk factor (code 78) in the 

dataset is shown to represent the fifth highest (4.22 percent) of all the combinations that 

constitute cluster 1. 

4.7.1.2 TSC-2 Cluster 2 

Figure 4.39 and Figure 4.41 describe and illustrate the distribution of risk combination factors due to 

covariates in cluster 2. The distribution of the covariates as determined by TSC-2 is discussed below: 

o A high majority (97.5 percent) of road crashes grouped in cluster group two occurred on 

roads other than two-lane roads, this being 1 lane roads (mostly gravel roads) and dual 

carriageways. 

o Most (90.9 percent) of the crash records in cluster 2 were reported to have occurred on roads 

with unpaved surfaces. 

o The study results indicated that the weekends (Friday-Sunday) had a slightly higher impact 

on road crashes compared to weekdays. This impact is owing to the majority (53.9 percent) 

of crashes recorded over the weekends.  

o A majority (66.6 percent) of road crashes in cluster 2 occurred on rural road sections with 

poor road conditions. 

o A significantly high majority (82.9 percent) of the road crashes in cluster 2 were recorded on 

roads with no overtaking/ crossing road markings. This is expected as most of the unpaved 

roads are gravel in the study area. 
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Figure 4.41 Covariates distribution in Cluster 2 

The TSC-2 model identified 724 crash records influenced by the covariate combination in cluster 2. 

The study therefore interrogated the distribution of the foremost risk factor combinations identified in 

the crash dataset. The distribution of the risk factor combinations in cluster 2 is given below in 

descending order: 

o The combination of recognition, decision and intentional risk factors (code 2) represents 7.46 

percent of all the crash risk combinations influenced by the cluster 2 covariates 

o The study results showed that the combination of recognition, decision, and roadway and 

environmental risk factors (code 4) represents 6.22 percent of the risk factor combinations 

identified in cluster 2. 

o Similar to risk factor combination in code 4, the risk factor combinations in code 90 – the 

recognition and roadway and environmental risk factors, represent 6.22 percent of all risk 

factor combinations in cluster 2. 

o The combination of recognition and decision risk factors (code 33) represents approximately 

5.80 percent of all risk factor combinations owing to covariates combinations in cluster 2. 

o The results shown that the combination of intentional risk factors and recognition risk factor, 

represented by code 78, account for 3.59 percent of all risk factor combinations in cluster 2. 
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4.7.1.3 TSC-2 Cluster 3 

The results of the TSC-2 model presented in Figure 4.39 and Figure 4.42 show the combinational 

impact of the various covariates tested on the risk factor combinations found in the crash dataset. 

The distribution of the covariates in cluster 3 is discussed below, according to Figure 4.39: 

o The study results indicated that all (100 percent) the crash records grouped into cluster 3 by 

the TSC-2 model occurred on roads with two lanes – single carriageways. 

o A markedly low (1.5 percent) proportion of the crash records in cluster 3 occurred on rural 

roads with unpaved surfaces. This is indicative of the high percentage (98.5 percent) of crash 

records occurring on paved surfaces in cluster 3.  

o All (100 percent) the crash records in cluster 3 were found to have occurred during the 

weekdays (Monday- Thursday) 

o The results showed that a majority (89.3 percent) of the crash records in cluster 3 occurred 

on roads with good pavement conditions. This is also illustrated by the dummy variable 

shown in Figure 4.42. 

o A majority (78.8 percent) of the crash records in cluster 3 were also found to have occurred 

on roads with visible overtaking/ crossing road markings.  

 

Figure 4.42 Covariates distribution in Cluster 3 
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The results show that the TSC-2 model identified 666 road crashes that occurred as a result of the 

covariate combinations in cluster 3. The study further interrogated the distribution of the foremost 

risk factor combinations due to the covariates identified in cluster 3. The interrogation is presented 

here, in descending order (contribution to total risk factor combinations in cluster): 

o The results indicated that the combination of recognition, decision and intentional risk factors 

(code 2) represents the highest (7.21 percent) risk factor combination as a result of covariates 

in cluster 3. 

o The risk factor combination coded 90, comprising recognition and roadway and 

environmental risk factors, represent 6.31 percent of all the risk factor combinations identified 

in cluster 3. 

o The risk factor combination represented by code 33 – combination of recognition and 

decision risk factors, accounts for 4.95 percent of all risk factor combinations influenced by 

the covariate combination determined in cluster 3. 

o The study results indicated the combination of recognition, decision, and roadway and 

environmental risk factors (code 4) in cluster 3 account for 4.64 percent of all risk factor 

combinations identified in the cluster. 

o Of the foremost risk factor combinations, the combination of intentional and recognition risk 

factors (code 78) represents approximately 4.35 percent of all the risk factor combinations 

identified by the TSC-2 model in cluster 3. 

4.7.1.4 Comparison of covariate combinations in TSC-2 model clusters  

The TSC-2 model tested the interactive relationship between the numerous road crash risk factor 

combinations and covariates that were found to exhibit a Silhouette Measure (SM) greater than 0.4. 

The results found six (6) significant covariates with different dummy variable combinations across 

three (3) generated road crash cluster groups. The dummy variable combination of the covariates 

across the 3 cluster groups is presented in Table 4.41. 

Table 4.41 Dummy variable combinations in TSC-2 model cluster groups 

Covariate TSC-2 Cluster 1 TSC-2 Cluster 2 TSC-2 Cluster 3 

Two-lane road indicator 1 0 1 

Unpaved road indicator 0 1 0 

Weekday indicator 0 0 1 

Weekend indicator 1 1 0 

Poor pavement indicator 0 1 0 

No overtaking/ crossing 

mark indicator 
0 1 0 

The TSC-2 model generated various covariate combinations with possible impacts on the risk factor 

combinations identified in the three cluster groups (see Table 4.41). The two-lane road indicator was 
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found to have an impact on risk factor combinations in cluster 1 and 3. In cluster 3, the risk factor 

combinations were found to be influenced by roads with either one or more than two-lanes. As 

expected, the unpaved surface nature of the roads was only found to have an impact on the 

combination of risk factors in cluster 2.  

The TSC-2 model found that weekdays (Monday to Thursday) were having a possible influence on 

the combination of risk factors in cluster 3. In comparison, the TSC-2 model found that the risk factor 

combinations in cluster 1 and cluster 2 were influenced by the weekends (Friday to Sunday). The 

results of the TSC-2 model indicated that poor pavement conditions only had an impact on risk factor 

combinations found in cluster 2. In the same way, road with no overtaking, crossing markings were 

found affect the risk factor combinations in cluster 2 as well. This is expected as the roads in cluster 

2 are mostly gravel roads.  

4.7.1.5 Comparison of risk factor distribution levels across the cluster groups 

The TSC-2 model in the study interrogated the distribution of the foremost risk factor combinations 

in the various cluster groups. This presents an opportunity to identify and investigate the impact of 

the covariate combinations in the various clusters on the most common risk factor combinations in 

the crash dataset. The distribution of the five highest occurring risk factor combinations in the clusters 

is presented in Table 4.42. 

Table 4.42 Risk factor combination distribution across TSC-2 cluster groups 

Top five risk factor combinations (Code) 
TSC-2 

Cluster 1 

TSC-2 

Cluster 2 

TSC-2 

Cluster 3 

Recognition, Decision and Intentional risk (Code 2) 6,46% 7,46% 7,21% 

Recognition, Decision, and Roadway and Environmental risk (Code 4) 4,72% 6,22% 4,64% 

Recognition and decision risk (Code 33) 6,09% 5,80% 4,95% 

Intentional and Recognition risk (Code 78) 4,22% 3,59% 4,35% 

Recognition and roadway and environmental risk (Code 90) 5,59% 6,22% 6,31% 

The results of the risk factor distribution in the cluster groups found that risk factors in code 2 

(recognition, decision and intentional risk factors) represent the account for the highest combinations 

in all three clusters (C1,2 = 6.46 percent; C2,2 = 7.46 percent; C3,2 = 7.21 percent). In cluster 1 (4.72 

percent) and cluster 3 (4.64 percent), the combination of recognition, decision, roadway and 

environmental risk factors (code 4) represent the fourth highest occurring combinations due to the 

covariate cluster combinations. In comparison, the code 4 combination represents the second 

highest occurring combination in cluster 2 (6.22 percent). In the same way, the combination of 

recognition and, roadway and environmental risk factor (code 90) in cluster 2 (6.22 percent) and 

cluster 3 (6.31 percent), represents the second highest occurring combination in the clusters. 

However, code 90 risk factor combinations represent the third highest occurring combination in 

cluster 1 (5.59 percent). The study results showed that the combination of recognition and decision 
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risk factors (code 33) accounts for the second highest occurring combination in cluster 1 (6.09 

percent). Code 33 combinations however account for the third highest occurring risk factor 

combination in cluster 2 (5.80 percent) and cluster 3 (4.95 percent)). The combination of intentional 

and recognition risk factors (code 78) were found to be the least occurring risk factor combination of 

all the foremost combinations identified by TSC-2 across all cluster groups (C1,78 = 4.22 percent; C2,78 

= 3.59 percent; C3,78 = 4.35 percent). 
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4.8 Summary of key results 

A mix analysis method was applied in the study to develop crash predictive models for national rural 

roads and examine the relationship between road characteristics and road crashes. The study 

applied several analysis methods including descriptive, inferential, spatial and statistical modelling 

techniques on the crash dataset. A summary of the key results from the analyses carried out are 

presented in this section. 

4.8.1. Univariate and bivariate crash analyses  

4.8.1.1 National rural road crash frequencies 

o On average, 638 fatal and serious injury crashes were recorded annually between 2012 and 

2016 on the national rural road network in Namibia. 

o A road crash rate of 21.3 fatal and serious injury road crashes per 100 000 population was 

computed for the period from 2012 to 2016. 

o The frequency of road crashes was found to peak over holiday months (May-April, August 

and December) 

o The highest mean weekly crash counts were observed over the third quarter of the calendar 

year (12.94±4.419). The lowest road crash counts were recorded over the first quarter 

(10.98±4.414). 

o Statistically significant (p=0.041<0.05) interactions were found between the mean values of 

the quarterly weekly crash counts of the first quarter of the year and the third quarter. 

o Weekly road crash occurrences were found to be consistent (p>0.05) over the second and 

fourth quarters of the calendar year. 

o The highest frequency of road crashes was observed over the second week after pay week 

(12.60±4.260), followed by weeks other than the first two weeks of the month (12.35±4.990). 

The lowest frequency of road crashes over the study period was observed during the pay 

week (11.78±4.244). 

o As revealed by the Post-hoc test results, statistically significant (p=0.002<0.05) interaction 

was found between the individual mean values of the pay week and those of the second 

week after the pay week. 

o The highest week day road crash frequencies were observed over the days of the weekend, 

with a peak on Saturdays (128±31.757). Sunday (107±16.956) and Friday (103.6±11.803) 

had the next highest crash frequencies recorded over the study period. The lowest crash 

frequencies were observed over Holidays (31±5.612), Wednesday (58.4±8.989) and 

Tuesdays (59±9.028). 
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o Statistically significant (p<0.05) relationships were identified between the weekend and all 

the week days (Monday, Tuesday, Wednesday and Thursday). Also, mean values of crashes 

over holidays were found to significantly interact with weekend days (Friday, Saturday and 

Sunday). 

o The study observed that the highest frequency of road crashes occurred in the late afternoon 

(17h00 to 18h00). Lower peaks were observed during the mid (11h00 12h00) to and early 

hours (07h00 to 08h00) of the day respectively. The lowest crash frequencies were observed 

during the early morning hours (03h00 to 04h00) of the day. 

o An overrepresentation of male drivers was observed in the crash dataset. Male drivers were 

more likely (M: F= 5.86) to be involved in road crashes on national rural roads than female 

drivers. 

o Male drivers were found to be at a higher crash risk across the whole day (24 hours). The 

highest crash risk for males (M: F=24) was found to be in the early morning hours (02h00 to 

03h00) despite the lowest crash frequency observed during that stretch of time (02hh00 to 

05h00). The lowest crash risk for males (M: F= 4) was found to be during the afternoon 

(13h00 to 14h00). 

o The mean driver age for the crash dataset was found to be 28.16 years (S.D 14.33). The 

oldest driver on the national rural roads was recorded as being 85 years while the youngest 

was 11 years. 

o The road crashes were disproportionally distributed across the driver age groups. The 

highest crash frequencies emerged in the driver age group of 31 to 35 years. The frequency 

of road crashes rose drastically from the age group 21 to 25 years, with the high frequency 

stretch maintained until the 41 to 45 years age group. 

o The highest male to female driver crash risk ratio emerged in young adults (21 to 25 years) 

and teenagers (16 to 20 years), with male drivers more than ten times (M: F>10) likely to get 

involved in a road crash. 

4.8.1.2 National rural road casualties 

o The fatal and serious injuries casualty dataset comprised 6 712 cases. More male road users 

(M: F=2.25) were likely to be FSI casualties than female road users. 

o The distribution of FSI casualties across the time of day was found to be disproportionate. 

The highest FSI casualty frequency occurred in the late afternoon (16h00 to 17h00) 

o The crash risk ratio emerged higher for male road users (M: F= 3.36) across the whole day, 

with a peak occurring in the early hours of the morning (01h00 to 02h00). Other higher risk 

casualty ratios emerged for male road users in the morning (06h00 to 07h00) and late 

evening hours (22h to 23h00). 

o FSI casualty frequency emerged highest over the weekend (Fridays, Saturdays and 

Sundays), with a peak observed on Saturdays (268.80±86.085).  
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o FSI casualties were found to be consistent (p>0.05) between Mondays and all the days of 

the week. In the same way, between Saturdays and all the days of the week. 

o Fatal injury casualty counts were found to be fairly consistent across all the months of the 

year, with a slight peak emerging in December.  

o Serious injury casualties emerged with a marked peak in December and slightly lower peaks 

emerging in May and August. 

4.8.1.3 Driver risk factors and behavioural characteristics 

Driver-gender based crash risk analysis 

o Inadequate surveillance of the road environment emerged highly among both driver genders 

as a primary risk factor – more dominant in female drivers than male drivers. 

o Inattention also emerged significantly among both driver genders, with female drivers more 

prone to this risk factor than male drivers. 

o Both driver genders showed similar degrees of traffic violations 

o Dangerous manoeuvres and following too closely were identifiable in both driver gender- 

more in female than male drivers. 

o Misjudgement of gaps between vehicles was notable in both driver gender as a primary crash 

risk factor- more in males than female drivers 

o Encounters with animals on national rural roads were high for both driver genders. Animals 

emerged as the highest primary contributing factor for bother genders. 

o Poor visibility emerged as a primary contributing factor for both gender- similar impact extent 

in both driver genders. 

o Speed differential (congestion) was identifiable as a primary risk factor for both driver 

genders- emerging more for females than male drivers. 

Driver-age based crash risk analysis results 

o Human-related errors (86 percent) emerged strongly in driver in the adolescent age group 

(less than 18 years). Of the human errors in this age group, delay in response to traffic 

situations, inadequate surveillance and driving too fast for curves were most notable. 

o Majority of primary factors in road crashes when young adults (18 to 25 years) were driving 

were human-related errors (75 percent). Animals (19 percent) and traffic violations (11 

percent) were identifiable primary crash factors for young adults. 

o Human-related errors (64 percent) were found to be the main crash risk factor for the age 

group 26 to 35 years. The most notable risk factors in this age group were animals (17 

percent), inattention (10 percent), inadequate surveillance of the surrounding environment (8 

percent) and dangerous manoeuvres on the roads (8 percent). 
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o As with other age groups, human-related errors group was the main errors leading to crashes 

in adults age group (35 to 65 years). Unexpectedly, the condition of the road surface (10 

percent) was the leading primary factor (level 1) in road crash occurrences for the adult age 

group.  

o For the elderly (greater than 65 years), a significantly high number of road crashes were 

primarily influenced by human errors (95 percent). The most common primary factors among 

the elder were a false assumption of other road users’ actions (11 percent) and panicking/ 

freezing in complex traffic situations (11 percent). 

Relationship between driver risk factors  

o The highest possible level 2 and level 3 crash risk factors contribution (49%) was observed 

in road crashes were intentional risks were the leading primary factors (28%). 

o As expected, roadway and environmental risk factors were the second highest (27 percent) 

contributing factor towards road crashes in both the level 1 and level 2 analyses. 

o Animals were identified as the highest individual primary and level 2 and 3 possible risk 

factors in crash occurrences on the national rural roads 

o Dangerous road manoeuvres (15 percent), misjudgement of gaps or other driver actions (14 

percent) and traffic violations (12 percent) were also identifiable as individual risk factors in 

crash occurrences. 
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4.8.2. Road crash geospatial analyses 

Using the Kernel Density Estimation (KDE) in QGIS, the study carried out a geospatial analysis and 

developed raster maps to investigate the distribution of fatal and serious injury crashes and identify 

hazardous sections- crash densities on the different classifications of the national rural roadway. The 

key results of this method are summarised in this Section. 

Distribution of FSI crashes on All Rural Roads (ARR- R1 to R6 classifications) 

o The highest FSI crash densities were observed on the Northern part of the national rural road 

network- trunk, main and district roads. The national rural road network within the area 

connecting the following towns was identified to be hazardous (extreme clustering of road 

crashes): 

▪ Ongwediva 

▪ Oshakati 

▪ Oshikuku 

▪ Oniipa 

▪ Eenhana 

▪ Helao Nafidi 

o The national rural roads leading to and from the following towns/ cities on the Northern and 

Central road network were identified to have higher road crash intensities: 

▪ Okahandja 

▪ Windhoek 

▪ Rehoboth 

▪ Omuthiya 

o On the Western part of the national rural road network, higher crash densities were observed 

on the rural road between the following towns: 

▪ Arandis 

▪ Swakopmund 

▪ Walvis Bay 

o Moderate crash densities were identifiable on the road sections around and between the 

following towns: 

▪ Usakos and Karibib 

▪ Otjiwarongo and Okahandja 

▪ Otjiwarongo and Otavi 

▪ Nkurenkuru 

▪ Rundu 

▪ Okahao 

▪ Outapi 
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o Lower degrees of crash densities were observed on national roads in the Southern regions 

(Hardap and !Karas) of Namibia and towards the Eastern (Omaheke) and North- Eastern 

(Kavango East and Zambezi) parts of the road network. 

Distribution of FSI crashes on High Order Rural Roads (HORR- R1 to R3) 

o The FSI road crashes on high order rural roads- classified R1 to R3, were visualised at a 

bandwidth of 1 000 m using the KDE tool. Extreme crash densities were observed on rural 

roads around and between the following localities: 

▪ Oniipa 

▪ Ongwediva 

▪ Eenhana 

▪ Okahandja 

▪ Windhoek 

▪ Rehoboth  

o Higher crash densities were observed on high order rural roads between and around the 

following localities: 

▪ Walvis Bay 

▪ Arandis 

▪ Usakos 

▪ Karibib 

▪ Oniipa 

▪ Omuthiya and Tsumeb 

▪ Nkurenkuru 

o Rural roads in the central part of Namibia displayed moderate crash densities during the 

period between 2012 to 2016. These included national roads between: 

o Otjiwarongo and Otavi 

o Otavi and Tsumeb 

o Otjiwarongo towards Okahandja 

o Lower crash densities were observed on high order rural roads traversing in the following 

regions: 

▪ Hardap 

▪ !Karas 

▪ Kunene 

▪ Kavango East  

▪ Zambezi 
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Distribution of FSI crashes on Low Order Rural Roads (LORR- R4 to R6) 

o The geospatial analysis of FSI crashes that occurred on national low order rural roads only 

from 2012 to 2016 allowed for a more focused identification of hazardous low order roads on 

the national road network. 

o Extreme FSI crash densities on LORRs were observed on the roads surrounding the 

following areas/ in regions: 

▪ Oshikuku 

▪ Outapi  

▪ Okahao 

▪ Ongwediva 

▪ Oniipa 

▪ North of Gobabis 

o Higher to moderate crash densities were mostly observed on rural roads around the following 

regions: 

▪ Kunene 

▪ Kavango East 

▪ Kavango West 

▪ Erongo 

o Lower crash densities were mostly observed in the following regions: 

▪ Khomas 

▪ Otjozondjupa 

▪ !Karas 

▪ Zambezi 

▪ Oshikoto 
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4.8.3. Road design and traffic characteristics compliance summary 

4.8.3.1. Compliance summary results 

o In all three datasets examined - all rural roads, high order and low order rural roads, more 

than half (50 percent) of the unpaved rural roads lane widths were non-compliant with the 

design guidelines. 

o Less than a quarter (25 percent) of the surfaced shoulder widths in all datasets were found 

to be compliant with design guidelines. 

o The proportion of roads recommended to have paved shoulders and complying with the 

design guidelines on the national road network were less than a quarter (25 percent) of the 

sample size examined. 

o The extent of compliance of ground shoulder widths on paved roads was found be 

significantly lower than half (50 percent) of all paved roads investigated. 

o More than three-fifths (60 percent) of paved roads in all the datasets complied with the design 

guidelines set for lane widths 

o More than four-fifths (80 percent) of the unpaved roads studied on the national rural road 

network complied with the ground shoulder width requirements set in the TRH 17. 

o Significantly higher levels (above 90 percent) of compliance for stopping sight distances were 

observed on paved roads 

o Stopping sight distance compliance levels on unpaved roads was found to be less than half 

(39.5 percent) in the low order roads dataset and slightly above nine-tenths (9.24 percent) in 

the high order roads dataset. 

o The conditions of the pavements on paved and unpaved roads, guided by Table 2.20 were 

found to be ranging between 69 percent and 80 percent. 

4.8.3.2. Distribution of road crashes by non-compliance 

Lane width non-compliance spatial distribution results 

o The spatial distribution of road crashes by the non-compliance of lane widths LW was evident 

on both high order and low order rural roads on the Northern part of the national road network. 

With extreme crash densities around the following localities: 

▪ Oniipa 

▪ Ongwediva 

▪ Eenhana 

▪ Oshakati 
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o Higher crash densities due to LW non-compliance were observed on national roads close to 

the following localities: 

▪ Outapi 

▪ Oshikuku 

▪ Okahao 

o The national rural road north of the Gobabis locality showed moderate FSI crash densities 

due to LW non-compliance. 

o National rural roads with across the rest of the country exhibited FSI lower crash densities 

due to LW non-compliance levels. These roads are in the following regions: 

▪ Kunene 

▪ Kavango East 

▪ Kavango West 

▪ Zambezi 

▪ Erongo 

▪ Khomas 

▪ !Karas 

▪ Hardap 

Surfaced shoulder width non-compliance spatial distribution results 

o The non-compliance of surfaced shoulder widths (SSW) was found to cause an extreme 

density of FSI road crashes on the far Northern part of the national rural road network. The 

extreme densities were identified on roads around the following localities: 

▪ Ongwediva 

▪ Eenhana 

▪ Helao Nafidi 

o Higher FSI crash densities were identifiable on the road networks between and around the 

following localities: 

▪ Walvis Bay 

▪ Arandis 

▪ Windhoek 

▪ Nkurenkuru 

o Moderate FSI crash densities due to SSW non-compliance levels were prominent on roads 

in the following localities: 

▪ Karibib 

▪ Rundu 

▪ Katima Mulilo 

▪ Oshikuku 

▪ Outapi 
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▪ Oniipa 

o Lower crash densities were identifiable on national rural roads in the following regions: 

▪ Hardap 

▪ Otjozondjupa 

▪ Kunene 

▪ Oshikoto 

o The extent of compliance of the SSW parameter was not found to significantly influence the 

occurrence of FSI crashes on national roads in the !Karas region. 

Ground shoulder width non-compliance spatial distribution results 

o The ground shoulder width extent of non-compliance was identified to cause extreme 

densities of FSI crashes on the national rural roads between and around the following 

localities: 

▪ Oniipa 

▪ Ongwediva 

▪ Oshakati 

o Higher crash densities are identifiable on national roads between and around the following 

areas: 

▪ Eenhana 

▪ Helao Nafidi 

▪ Oshikuku 

▪ Outapi 

▪ Omuthiya towards Oniipa 

▪ Okahao 

▪ Windhoek 

o Moderate FSI crash densities were found to be prominent on national roads around and 

between localities on the Western, Central and North-Eastern parts of the network: These 

areas are: 

▪ Walvis Bay 

▪ Arandis 

▪ Okahandja 

▪ Nkurenkuru 

▪ Rundu 

o Lower crash densities were identifiable on national rural roads around and between the 

following localities: 

▪ Gobabis 

▪ Katima Mulilo 

▪ Tsumeb 
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▪ Grootfontein 

▪ Keetmanshoop to Mariental 

▪ Mariental to Rehoboth 

▪ Rehoboth towards Windhoek 

▪ Okahandja to Otjiwarongo 

▪ Otjiwarongo towards Otavi 

▪ Rundu towards Katima Mulilo 

Shoulder type (proportion of paved shoulders) non-compliance spatial distribution results 

o The spatial distribution of FSI road crashes due to the extent of shoulder type non-compliance 

is mostly concentrated along the high order rural roads across the national road network. 

o Extreme FSI crash densities are prominent on the Northern part of the national road network. 

The densities are identifiable around the following localities: 

▪ Oniipa 

▪ Ondangwa 

▪ Ongwediva 

▪ Eenhana 

▪ Helao Nafidi 

o Higher crash densities were identifiable around and between the following localities: 

▪ Omuthiya towards Oniipa 

▪ Okahao 

▪ Oshikuku 

▪ Outapi 

▪ Between Windhoek and Okahandja 

▪ Between Walvis Bay and Arandis 

o Moderate to lower crash intensities were mostly prominent around the Central, Southern and 

North Eastern parts of the national road network. These densities are around and between 

the following areas: 

▪ Between Otjiwarongo and Okahandja 

▪ Between Otjiwarongo and Otavi 

▪ Between Karibib and Usakos 

▪ Tsumeb 

▪ Otavi 

▪ Nkurenkuru 

▪ Rundu 

▪ Katima Mulilo 

▪ Rehoboth towards Mariental and Keetmanshoop 
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Stopping sight distance (SSD) non-compliance spatial distribution results 

o The non-compliance of stopping sight distance was found to have a pronounced impact on 

crash occurrence on the central part of the national rural road network. Localities with 

extreme densities include: 

▪ National roads around Windhoek. 

▪ National roads around Okahandja. 

▪ Between Windhoek and Rehoboth. 

o Higher crash densities were marked on the following roads: 

▪ Okahandja towards Otjiwarongo. 

▪ Otjiwarongo towards Otavi. 

▪ National roads around Grootfontein. 

o Moderate to lower FSI crash densities were identifiable on the following roads: 

▪ National rural roads in the Kunene region - around Opuwo town. 

▪ Road between Walvis bay and Arandis. 

▪ Roads in the Southern regions - Hardap and !Karas region. 

▪ Roads around Nkurenkuru and Rundu towns in Kavango West. 

▪ Roads in the Omaheke region. 

o SSD non-compliance levels was found not to have an impact on crash occurrence on roads 

in the Northern part of the network, which are significantly affected by the non-compliance of 

other parameters. 

Pavement condition (PC) non-compliance spatial distribution results 

o The overall poor condition of the ride surface – non-compliance thereof, was found to have 

a marked impact on the occurrence of FSI road crashes on the central and northern parts of 

the national rural road network. The “extreme” crash densities were identifiable around the 

following localities: 

▪ Oniipa 

▪ Ongwediva 

▪ Oshakati 

▪ Windhoek towards Okahandja 

o Moderate crash densities were identifiable on the national road network through and around 

the following localities: 

▪ Okahandja to Otjiwarongo 

▪ Walvis Bay to Omuthiya through the following areas: Arandis, Usakos, Karibib, 

Omaruru, Otjiwarongo, Otavi and Tsumeb. 

▪ Rehoboth towards Mariental and Keetmanshoop 
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o Lower crash densities were identifiable on the national network around Katima Mulilo and 

Rundu. 

4.8.4. Road crash prediction model development results 

o The General Multivariate Regression (MLR) models developed demonstrated better crash 

prediction performance – higher and statistically significant adjusted R-square and F-test 

values, compared with the Base Mean Multivariate (BMM) models at predicting the rate of 

fatal and serious injury (FSI) crash occurrences. 

o The crash prediction model 1 (CPM 1), fitted to FSI crashes on all national rural roads 

comprised five (5) statistically significant (p<0.05) covariates with effects of various 

magnitudes. 

▪ The following covariates demonstrated statistically significant positive associations 

(coefficient b* estimate) with FSI road crashes on the rural roads, in descending order: 

i. The proportion of heavy vehicles in the annual average daily traffic – AADT_H 

(0.464) 

ii. The lane width (0.0.293) 

iii. The vertical terrain – hilliness (0.082) 

iv. The operating speed (0.028) 

▪ The following covariate was shown to be negatively associated with the occurrence 

of FSI crashes on rural roads: 

i. The surfaced shoulder width (-0.069) 

o The CPM 2 was fitted to road crashes that occurred on high order rural roads (HORRs) and 

comprised five statistically significant covariates. 

▪ All five covariates demonstrated positive associations (coefficient b* estimates) with 

the occurrence of FSI road crashes on rural roads. These covariates are shown below 

in descending order: 

i. The proportion of light vehicles in the AADT (0.682) 

ii. The lane width (0.137) 

iii. The vertical terrain (0.112) 

iv. The ground shoulder width (0.108) 

v. The operating speed on road sections (0.032) 

o The FSI road crashes that occurred on low order rural roads were used to develop CPM 3. 

The best performing CPM 3 comprised four (4) statistically significant covariates with various 

effects on road crash occurrence. One (1) covariate exhibited influence on the crash rates 

but had no statistical significance. 

▪ The following two covariates demonstrated positive associations (coefficient b* 

estimates) with the occurrence of FSI road crashes on low order roads (in descending 

order): 
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I. The proportion of light vehicles in the AADT (0.315). 

II. The vertical terrain – hilliness (0.066). 

▪ The operating speed (0.049) is the only covariate in CPM 3 that demonstrated positive 

associations with the occurrence of road crashes on the roads classified as low order, 

with no statistical significance demonstrated. 

▪ The following two covariates were shown to be negatively associated with the 

occurrence of FSI crashes on rural roads, in descending order: 

I. The surfaced shoulder width (-0.138) 

II. The ground shoulder width (-0.205) 

4.8.5. Impact of compliance of crash predictive models 

The best-performing crash prediction models (General Multivariate (MLR) crash prediction models 

(CPMs)), fitted to the crash datasets and existing road conditions, had a sensitivity to design 

compliance test performed to examine the extent to which design compliance affects the outcome 

variables (covariate effects). 

Sensitivity test results of CPM 1 – CPM 4 

o The sensitivity test on MLR-CPM 1 - fitted to all the FSI crashes on national rural roads, had 

a greater influence on the following covariates: 

▪ The proportion of heavy vehicles in AADT (opposite effect on crash rates) 

▪ The ground shoulder width (gained statistical significance) 

▪ The shoulder type – proportion of paved shoulder on paved roads (gained statistical 

significance). 

o The following covariate demonstrated an increased influence (coefficient b* value) on the 

outcome variable when design conditions are considered “ideal”: 

▪ The operating speed 

o The following covariates exhibited reduced influence on the occurrence of FSI road crashes 

on all national rural roads: 

▪ The vertical terrain on the road sections – hilliness. 

o The following variables did not demonstrate statistically significant effects in CPM 5 after the 

sensitivity to road design compliance test: 

▪ The lane width on the road sections. 

▪ The width of the paved hard shoulders on the road sections. 
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Sensitivity test results of CPM 2 – CPM 5 

o The sensitivity test results of MLR-CPM 2 for crashes on high order rural roads indicate that 

the following covariates had no statistically significant influence on the occurrence of road 

crashes when “ideal” road characteristics are considered: 

▪ The lane width 

▪ The ground shoulder width 

o The following variables showed an increased influence (coefficient b* estimate) on the 

occurrence of road crashes on high order rural roads: 

▪ The operating speed  

▪ The vertical terrain on the road sections 

o The compliance of design characteristics had a major influence on the following covariates: 

▪ The proportion of heavy vehicles in the AADT (exhibiting a change of effect on crash 

rates). 

▪ The proportion of paved shoulder on the high order roads (exhibiting statistically 

significant effects on crash rates) 

▪ The number of horizontal curves per length high order rural road (exhibiting 

statistically significant effects on crash rates). 

Sensitivity test results of CPM 3 – CPM 6 

o As a result of design compliance, the sensitivity test had a greater influence on the following 

variables on low order rural roads:  

▪ The operating speed on the road sections (influence on crash rates lost) 

▪ The surfaced shoulder width (loses influence and statistical significance) 

▪ The proportion of light vehicle in the AADT (change in effect on crash rates) 

▪ The shoulder type on the road sections (demonstrates statistically significant effects). 

▪ The stopping sight distance (shows influence on crash rates but no statistical 

significance). 

o The following variable demonstrated an increased absolute effect on the frequency of road 

crashes: 

▪ The ground shoulder width. 

▪ The vertical terrain – hilliness (increase influence but loses statistical significance). 
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4.8.6. Driver characteristics and risk factors – roadway condition analysis models (TSC 

Model) 

o The risk factor combination analysis in this section identified 93 combinations of a possible 

343 risk factor combinations in the dataset. 

o The Two-Step Cluster (TSC-2) Model exhibited the lowest AIC value (568.073) and the 

largest ratio of AIC changes (0.349) and ratio of distance measures (2.264) with respect to 

the base cluster. 

o The Two-Step Cluster (TSC-2) analysis generated three (3) cluster groups for the crash 

dataset, in which the following indicators (six (6) of twenty-one (21) indicators) were found to 

have a Silhouette Measure (SM) greater than the threshold of 0.4, which is indicative of the 

importance of the predictor. 

▪ Two-lane road indicator (SM = 1.0) 

▪ Unpaved road indicator (SM = 1.0) 

▪ Weekday indicator (SM = 1.0) 

▪ Weekend indicator (SM = 1.0) 

▪ Poor pavement condition indicator (SM = 0.54), and 

▪ No overtaking/ crossing line mark indicator (SM = 0.53) 

o In cluster one (1), the following covariate indicators were found to exhibit a dummy variable 

of one (1), indicating a validation of the indicators impact. 

▪ Two-lane road indicator 

▪ Weekend indicator  

o The following covariate indicator exhibited a validation dummy variable in cluster two (2). 

▪ Unpaved road indicator 

▪ Weekend indicator 

▪ Poor pavement condition indicator 

▪ No overtaking/ crossing line mark indicator 

o In the same way to cluster 1, cluster three (3) also had two covariates exhibiting validating 

indicator dummy variables 

▪ Two-lane road indicator 

▪ Weekday indicator 

o The following risk factor combinations, in descending order, were identified as the foremost 

occurring combinations of all the risk factor combinations identified in the crash dataset. 

▪ Recognition, Decisions and Intentional risk factors – Code 2 (7 percent) 

▪ Recognition, and Roadway and Environmental risk factors – Code 90 (6 percent) 

▪ Recognition and Decision risk factors – Code 33 (5.6 percent) 

▪ Recognition, Decisions, and Roadway and Environmental risk factors – Code 4 (5.2 

percent), and 
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▪ Recognition and Intentional risk factors – Code 78 (4.1 percent) 

o A further examination of the risk factor combinations distribution across the TSC cluster 

groups, found that the combination of the recognition, decision and intentional risk factors 

was the highest occurring combination across all the TSC model cluster groups. 

o The following individual risk factors were found to feature the most (in descending order) 

among the risk factor combinations identified in the dataset: 

▪ Recognition risk factor (100 percent) 

▪ Decision risk factor (60 percent) 

▪ Intentional (40 percent), and Roadway and Environmental risk factors (40 percent). 
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Chapter 5: Discussion of results 

Road crashes are a complex event influenced by a multiplicity of interacting factors – human, road 

environment and vehicle related. Human related factors are globally affirmed as the leading crash 

factors. However, it is not easy to directly control and predict human related factors on roads. One 

way to directly impact human related factors is through investigation into the roadway environment 

(Gaudry and Vernier, 2002; Farahmand and Boroujerdian, 2018; Islam et al., 2019). The study took 

a mixed approach to understand and examine the crash dataset from 2012 to 2016, to determine 

the various factors affecting the occurrence of road crashes in Namibia and to develop road crash 

prediction models driven by road and traffic conditions on national rural roads. A univariate and 

bivariate approach was taken to examine the crash frequencies over the study period, investigating 

the temporal and demographic variations of crashes on driver risk factors, therefore creating a basis 

to understand how a change in the crash prediction models developed will affect human related 

factors in the future. The crash prediction models are novel in the context that they investigate 

multiple interactive road environmental factors (geometric and traffic characteristics) on national rural 

roads, different from the usual approach of investigating the impact of a single road characteristic on 

road crashes, when in fact road elements work in tandem to create a road environment 

understandable by road users. In an effort to explore how all the study findings impact the driver risk 

factor combinations preceding a crash occurrence, the study explored how several covariates 

(demographic, temporal, roadway and environmental) influenced the combination of several 

identified driver risk factors by using the Two-Step Cluster analysis method. This approach is new in 

Namibia and to an extent in Sub-Saharan Africa - where literature on the impact of the road 

environment on risk factors and actions preceding road crashes are almost non-existent. On the 

whole, the mixed approach applied in the study is novel in Sub-Saharan Africa and globally and 

contributes to the attempt by researchers to understand the impact of the road environment on road 

crashes holistically.  

The results of the study are discussed in the sections below: 

5.1 Discussion of univariate and bivariate analyses results 

5.1.1. Univariate and bivariate analyses of crash datasets 

Between the years 2012 to 2016, the study results show that an average of 638 fatal and serious 

injury (FSI) crashes were recorded annually on the national rural road network in Namibia. This 

represents an annual FSI crash rate of 21.3 FSI crashes per 100 000 population. The study found 

an overrepresentation of male drivers involved in FSI road crashes and FSI casualty counts in the 

crash datasets. This is however not a novel finding, as previous studies have also shown a high 

proportion of male road users compared to females (NRSC, 2012; Namibia Statistics Agency, 2015; 

Nteziyaremye, 2018; World Health Organisation, 2018). As a result, male road users were found to 
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be at a higher crash risk than their female counterparts across all age groups. Findings from previous 

studies were also telling of the high risk-taking behaviour among male drivers, which can be 

attributed to the innate risk-taking nature of male road users and young drivers (Schulze and 

Koßmann, 2010; Berhanu Bezabeh, 2013; World Health Organisation, 2018; Jones et al., 2019). 

An analysis of road crash frequencies by driver age group found that road crash frequencies rose 

drastically from the 21 to 25 age group. The high crash frequency remained steady in this 

economically active cluster until the 41 to 45 age group. The holistic peak in the high crash 

frequencies stretch emerged in the 31 to 35 age group. A more detailed examination of the 

distribution of road crashes across the age groups showed that the highest crash frequencies for 

female drivers were in the age group 31 to 35. For male drivers, the highest frequencies are observed 

in the 26 to 30 age group. A report by the African Development Bank (AfDB) on Road Safety in Africa 

also reported that casualties among male road users are highest in the 15 to 29 age groups in Sub-

Saharan Africa (Berhanu Bezabeh, 2013). Driver crash frequencies dipped drastically from the 41 to 

45 age group, with a steady decrease in crashes as the age group years increased. The reduction 

in crash frequencies in both advanced driver age groups could possibly be attributed to the reduced 

exposure that older drivers get on the national roads. Literature on distribution of road crashes on 

national roads in Namibia and the factors influencing it are non-existent, as a result, the reasons on 

the distribution of road crashes across the age groups cannot be validated.  

The study results found three distinct high road crash frequency peaks over a virtual day. The study 

revealed that the safest time to be on the road was the early morning hours (00h00 to 06h00). From 

the early morning onwards, road crashes increased steadily and peaked in the late afternoon. Lower 

peaks were observed during the middle of the day (11h00 to 12h00) and in the morning hours (07h00 

to 08h00). This is in line with findings reported in previous studies in which crash frequencies were 

observed to be highest during the peak traffic hours of the day (Botha, 2005; NRSC, 2012; Carey 

and Sarma, 2017). The leading primary risk factor was found to be animals on the national road, 

with road crashes involving animals mostly observed to have occurred in the late afternoon and 

evening hours, during which the highest peak crash frequencies are noted to have occurred. This 

finding corroborates findings from previous studies on road crashes in Namibia (Eggleston et al., 

2016; Nghishihange, 2018). 

An examination of road crashes over the days of the week revealed that the highest road crash 

incidents occurred over the weekends – Friday, Saturday and Sunday. The lowest crash frequencies 

were observed on Tuesdays and Wednesdays. This finding is in line with findings from other studies 

(NRSC, 2012; Nghishihange, 2018). Previous studies have also observed high crash frequencies 

over the weekends, which are exacerbated by the high traffic volumes on national roads as most 

people travel to and from their regions of origin to visit families and friends. The relative riskiness 

and specific psychological conditions of young drivers operating long-distance public transport 
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services are well documented (Sinclair, 2013; Amweelo, 2016). Other factors such as the 

monotonous road environment and road design also play a crucial role in this regard as they play a 

crucial role on drivers’ mental workload (Farahmand and Boroujerdian, 2018). 

The study examined the occurrence of FSI road crashes by the week of the month. The study results 

showed that in the Namibian context, the highest occurrence of road crashes occurred during the 

second week after the pay week and the remaining weeks after that. It was expected for road user 

activity and risk factors to be more pronounced during the pay week as traffic activities are highest 

due to increased road use because of increased public and individual economic activities among 

communities. No studies exist in Namibia that attempt to explain the reasons why high crash 

frequencies are observed in the weeks after pay week, despite pay week usually being the most 

active week. 

The temporal variation analysis of road crashes across the months of the year showed the highest 

frequencies of FSI crashes occurred around December, August and April to May respectively over 

the years examined. These high crash frequencies and casualties are mostly observed during 

August and December when festivities take place in Namibia. Many Namibians travel from the 

coastal and central regions towards the northern regions during the festive season (NRSC, 2012; 

Eggleston et al., 2016; Nghishihange, 2018). As a result, high traffic volumes are observed on the 

national rural roads during this time, causing increasing likelihood of road crashes. The high crash 

frequencies observed in this analysis corroborate findings from previous studies that April to May, 

August and December are high risk months for road users on national rural roads (NRSC, 2012; 

Nambahu, 2018). 

5.1.2. Driver risk factors and behaviour analyses 

An examination of driver risk factors found that inattention, inadequate surveillance and dangerous 

manoeuvres were some of the predominant driver risk factors. However, these risk factors were 

found to be more prevalent among female drivers on rural roads than in male drivers. These risk 

factors are a possible indication of driver fatigue and can be attributed to the monotonous road 

conditions that exist on Namibian national roads, where long straight sections with few geometric 

changes exist between major towns. These monotonous road environments cause a highly 

predictable and dull driving experience, which often leads to boredom and trigger hazardous risk-

taking behaviours by drivers. Researchers have also noted that such conditions generate 

physiological states that can worsen driver fatigue (Karlaftis and Golias, 2009; Gastaldi et al., 2014; 

Farahmand and Boroujerdian, 2018). 

Poor visibility and animals also emerged as leading primary contributing risk factors on the national 

rural roads. This finding was validated by results from previous studies which noted that animals on 

the national roads are one of the leading causes of road crashes (NRSC, 2012; Eggleston et al., 
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2016; Nghishihange, 2018). Road crashes caused by animals are significant in the study because 

most of the national roads traverse through communal and commercial farm lands, with little to no 

barriers separating the roads from the animals. The animal-related crashes were observed to have 

occurred during the night hours (18h00 to 06h00). Visibility at night time is constrained, for that 

reason, the risk of getting involved in an animal-related crash is higher for drivers on these national 

roads. 

Human-related errors strongly emerged in all the age groups. Even though this was self-evident, it 

served to corroborate the risk assessment and gave assurance that the application of risk was 

applied correctly. Traffic violations and dangerous manoeuvres were notable in the 18 to 35 age 

groups. There are common assertions as to why young drivers are more likely to be involved in road 

crashes. Prominent among these assertions is that young drivers are prone to crashes due to life-

stage perceptions evident in other youth behaviours. As a result, human-centred factors that 

contribute to crashes are often pronounced in younger drivers (Blockey and Hartley, 1995; 

Stevenson et al., 2001; Johnson and Jones, 2011; Adanu et al., 2018). The elderly (greater than 65 

years) were found to be prone to panicking or freezing in complex traffic environments and falsely 

assuming other road users’ actions. The inability of older drivers to process complex road 

environments may be attributed to their reduced physical and physiological capabilities, which can 

cause slower processing and reactions to traffic situations that require drivers to act promptly 

(Hakkert and Braimaister, 2002; Huvarinen et al., 2017; Cox et al., 2017). 

The combination of risk factors on crashes has not been studied extensively in Namibia nor 

internationally. The study analysis found that in FSI road crashes where intentional risk was the 

primary risk crash factor, a significantly high proportion of risk was contributed by level two and three 

risk factors. The results also evidently showed that other contributing factors played a significant role 

in road crashes where the primary crash risk factor was found to be roadway and environment 

related. The study results confirmed that road crashes are a result of a combination of several 

interrelated factors and are mostly not caused by a singular risk factor (Persia et al., 2016; Ouni and 

Belloumi, 2019; Islam et al., 2019). 
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5.2 Discussion of geospatial analyses and design compliance results 

The study carried out a geospatial analysis to locate where road crashes occurred and to assess the 

specific patterns of distribution through heat map visualisations. The study applied the Kernel Density 

Estimation technique to analyse the distribution of FSI road traffic crashes on national rural roads. 

The study applied a bandwidth value of 1000 m to achieve the best hotspot visualisation on a grid 

size of 30 m by 30 m.  

The results of the geospatial analysis on all the rural roads identified that the highest (extreme crash 

densities) occurrence of FSI crashes occurred on rural roads leading to or close to localities in central 

and northern Namibia. These localities form part of the socio-economic hub of the country, with high 

volumes of commercial vehicles observed on the rural roads daily. In addition, high traffic volumes 

are observed on the rural roads between central and northern Namibia over the holiday seasons. 

This predisposes the road users to higher crash risks due to the lengthy time spent on the road and 

the high traffic peaks. 

On high order rural roads, higher crash densities were observed on the rural roads on the western 

part (coastal area) of the road network. The western part of the road network connects the coastal 

towns, which harbours the national ports and other high value commercial activities, to the rest of 

the country. These rural roads form an integral part of the Trans-Kalahari Corridor and the Walvis 

Bay-Ndola-Lubumbashi Development Road, formerly the Trans-Caprivi Corridor. The 

aforementioned rural roads accommodate a high volume mix of commercial and passenger vehicles 

traveling to and from the western part, to other parts of the Namibia and land locked countries. The 

high combination of commuters between these coastal localities, holiday-makers and long-distance 

drivers who are mostly predisposed to fatigue, creates an undesirable safety hazard for all users and 

can be attributed to the “higher” crash densities recorded on that part of the high order rural road 

network. 

As expected, moderate crash densities were found on rural roads leading to and from the north-

central parts of the high order rural roads. The localities on this part of the road network mostly serve 

the purpose of rest-stops for passenger and commercial vehicles en-route to their final destinations. 

Drivers driving from these towns are usually rested due to the pit-stops and are thus more aware of 

the complex traffic conditions that may occur on the road, to which they can appropriately react to. 

Lower crash intensities were observed on rural roads in the southern, north-western and north-

eastern parts of the high order road network. In the historical context of Namibia, only one high order 

rural road network was developed, running from the central part of Namibia to the southern borders. 

This road ran through sparsely populated areas and was primarily for the purpose of transporting 

commercial goods and resources from Namibia to South Africa. However, this status quo largely still 

remains. The high order rural roads on the southern part of the network serves mostly commercial 
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vehicles, with little interaction with passenger vehicles. Despite the high volumes of commercial 

vehicles, the lower crash densities can possibly be attributed to the wider roads on these sections, 

which provide the larger commercial vehicles with more space to travel compared to other parts of 

the high order rural roads in other parts of Namibia. The north-western part of the road network, 

which is one of the largest regions in Namibia, remains one of the most under-developed (mostly 

low order roads) when it comes to the extent of high order roads in the regions. The low traffic 

volumes on roads in the north-western and eastern parts of the high order network could also 

contribute to the lower crash intensities recorded on these parts of the network. 

On low order rural roads, extreme and higher crash densities were observed on rural roads mostly 

around localities in the north and north-eastern part of the country. This part of the country is densely 

populated with rural communities using the connector and low order unpaved roads to commute to 

urban areas, which house most basic services and markets (Starkey et al., 2017). The low safety 

conditions of these low order roads caused by high traffic volumes, especially during the rainy 

months over which most of the crashes on these roads were recorded, can be attributed to the 

extreme crash densities. The conditions on these roads are further exacerbated by the low visibility 

and poor road conditions that accompany the rains and the high number of domestic animals on the 

roads (Nghishihange, 2018; Jones et al., 2019). 

The compliance assessment of the roads showed that the majority of the unpaved rural roads on the 

road network are not compliant with lane width design guidelines. The road lanes on unpaved roads 

were found to be narrower than the recommendations set out in the TRH 20. Similarly, the majority 

of unpaved shoulder widths on national rural paved roads that were examined were not compliant 

with the design guidelines. More worrisome, the compliance assessment also showed that only less 

than a quarter of the paved roads authorised to have paved hard shoulders were compliant, with a 

quarter of those having the appropriate width as recommended by the TRH 17. The sight distances 

on all the roads were found to be highly compliant with the set-out design guidelines in TRH 17. The 

SSD compliance is affirmed by the favourable effects that the SSD has shown in the crash predictive 

models developed and discussed in Section 5.3. 
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5.3 Crash predictive models (CPM) results 

5.3.1. CPM results 

The results of the crash prediction models developed provide a platform to further link and examine 

the impact of road and traffic characteristics on driver behavioural traits and their distribution across 

the national rural road network. Three crash models were developed to investigate the impact of 

road and traffic characteristics on FSI crashes. These models focused on road crashes on all the 

national rural roads (CPM1), high order rural roads (CPM2) and low order rural roads (CPM3) on the 

road network. 

The combinational influence of road and traffic characteristics on the safety of road users has not 

been investigated extensively locally or internationally. The study developed a novel crash prediction 

model for all the national rural roads classifications. The study found several positive associations 

between road characteristics and fatal and serious injury crashes in all the CPMs developed. The 

vertical terrain was found to demonstrate a positive association to road crash occurrence, with an 

increase in the degree of hilliness causing an increase in crash occurrences on the rural roads. 

Several studies have found no significant correlation between hilliness as a single variable on the 

occurrence of road crashes (Bester and Makunje, 1998; Taylor et al., 2002; Gitelman et al., 2016). 

However, high correlations between hilliness and bendiness have been reported by researchers, 

where the combination has been found to lead to an increase in the frequency of road crashes. This 

increase has been attributed to poor coordination between the horizontal and vertical alignment, 

leading to poor driver perceptions and driving errors (Bester and Makunje, 1998; Walmsley et al., 

1998; Hanno, 2004; Laird et al., 2010). This agrees with the study finding that hilliness is a significant 

contributor to crash risk in combination with other road design and traffic parameters examined. 

The results from CPM 1 and CPM 2 found that an increase in the width of the travel lanes increased 

the occurrence of FSI crashes. On high order rural roads where lane widths were found to be mostly 

wide (LW > 3.5 m) with extremely narrow (SSW < 1.5 m) or no surfaced shoulder widths, drivers 

tend to select high operating speeds, with high levels of lateral lane deviations mostly observed. This 

has led to a higher same direction road crash frequency (National Road Safety Council, 2012; 

Nghishihange, 2018). The study findings can be attributed to the dangerous behaviour by drivers 

attempting to move to the narrow shoulder of the road to make way for faster drivers to overtake. 

Another important finding of the study is the influence of the proportion of heavy vehicles (HV) and 

light vehicles (LV) in the traffic stream on the safety of road users on national rural roads. The novel 

models demonstrated that an increase in the proportion of both vehicle types increased the 

occurrence of FSI crashes. The effect contributed by this modal split can possibly be attributed to 

the speed differences between the different types of vehicles on the highways – speed variations. 

HVs are mostly always moving at lower speeds than the modus speed and this inadvertently exposes 
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the entire traffic stream to higher crash risks, as the patience of other drivers may dwindle and 

possibly lead to dangerous road manoeuvres. Another possible contributing factor is that HV drivers 

usually have to drive long distances, as they deliver products from commercial hubs locally and 

regionally. These drivers are mostly predisposed to poor sleep quality and fatigue, due to the long 

hours they spend on national roads. In general, sleep plays an important role in physical and mental 

well-being (Bener et al., 2017; Kwon et al., 2019). Lack of quality sleep and severe fatigue are 

significantly associated with more frequent human errors (Aworemi et al., 2010; Gastaldi et al., 

2014). The risk of road crashes involving both vehicle types may also be exacerbated by other factors 

including twilight and night time driving, weather and the high presence of animals on the national 

highways. As per the researcher’s best knowledge, no study exists investigating the impact of heavy 

vehicles on road safety locally.  

The operating speed is fundamental to the development of any roadway facility through determining 

the appropriate design speed and subsequently the development of geometric design elements. The 

study found that operating speed demonstrated a statistically significant positive association to the 

occurrence of FSI crashes in all the CPMs. This finding suggests that a higher crash frequency is 

associated with higher operating speeds. The positive relationship can be attributed to the wider 

road lanes available on the national roads. The wider roads can give the driver the perception that 

they have enough space to correct their driving errors, therefore increasing the driver’s appetite for 

risk. Another possible factor that can lead to high speed selections is the monotonous road 

environment and long straight sections on the road network, which predispose the driver to risk-

taking perceptions, as they perceive an adequate stopping sight distance from the road environment 

should any dangerous situation occur. The study findings corroborated previous studies on the 

impact of operating speeds on Namibian national roads (Ambunda, 2018). 

The study found that the ground shoulder width (GSW) had dissimilar statistically significant 

influences on high order and low order national rural roads. On high order rural roads, the model 

demonstrated that ground shoulder widths have a positive association with FSI crash frequencies. 

This finding suggests that despite increasing the width of the ground shoulder on the road section, 

an increase in crash frequencies will be observed. This finding corroborates the design compliance 

findings, that there is a high presence of wrong shoulder types (unpaved) on high order roads. As a 

consequence, the high crash frequencies cannot be addressed by increasing the shoulder widths 

available to drivers, but rather by making available the correct shoulder type. On low order rural 

roads – mostly low volume paved roads or one lane gravel roads – the ground shoulder width 

demonstrated a negative correlation to the occurrence of FSI road crashes. This novel finding in the 

local context suggested that an increase in the width of the ground shoulder results in the decrease 

of crash frequencies. This finding confirms the finding that ground shoulder widths on low order rural 

roads are mostly non-compliant (existing GSW < recommended TRH 17 GSW) with design 

guidelines, and thus increasing the GSW could reduce crash frequencies. A possible contributing 
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factor is that driver speed selections tend to be lower on roads with gravel shoulders due to visual 

cues (colour difference between the paved roadway surface and the gravel surfaced shoulder) that 

give a perception of a narrower driving lane. The finding on the impact of GSW on low order rural 

roads corroborates results from several international researchers (Zegeer V et al., 1987; Gitelman 

et al., 2019). 

The surfaced shoulder width (SSW) demonstrated a negative association to the frequency of FSI 

road crashes on all the rural roads (CPM1). This means that increasing the width of paved shoulders 

on road sections results in a decrease in road crashes. This finding goes hand in hand with the 

design compliance finding, where existing SSW were found to be significantly non-compliant 

(existing SSW < recommended TRH 17 SSW) with design guidelines. International studies explain 

that drivers tend to select lower speeds on narrow travel lanes (LW < 3.2 m) with narrow surfaced 

shoulders (SSW < 1.5 m) due to the perception of lower safety. However, in the existing local context, 

the combination of narrow shoulders and wider travel lanes (LW > 3.5 m) provides a situation where 

drivers select high speeds due to a false sense of security and perceived space to correct driving 

errors. These actions are also confirmed in the appetite shown by drivers to make dangerous 

manoeuvres shown in Section 4.7.1.3. Despite the wider lanes, the narrow shoulder could also 

inadvertently lead drivers to steer away from the left shoulder and drive closer to the centre of the 

rural road (Liu et al., 2016; Ambunda and Sinclair, 2019). In this case, the likelihood of head-on 

crashes increases significantly. The high head-on crash likelihood is also confirmed by crash 

statistics from the Namibian National Road Safety Council (NRSC, 2012). 

5.3.2. Compliance impact on CPMs 

The study investigated the sensitivity of the models to the compliance of the design parameters to 

the TRH 17, TRH 20 and TRH 26. To the researcher’s best knowledge, no local or international 

study exists examining the aspect of how road and traffic design fundamentals impact rural road 

safety. The novel findings from the sensitivity analysis are discussed in this section. 

The sensitivity analysis on the model developed (CPM 4) for all rural roads found that the operating 

speed demonstrated an amplified influence, discussed in Section 5.3.1, on the occurrence of FSI 

crashes. It is important to note that speed will always play a key role in the functioning of a road. It 

is expected that should all design parameters ideally comply with design guidelines, parameters 

such as the operating speed and other road environment and land use factors will play a key role in 

the safety of the roadway. More interesting, the sensitivity analysis found that the proportion of heavy 

vehicles in the annual average daily traffic (b*MLR-CPM 1 = 0.464 to b*MLR-CPM 4 = -0.380) demonstrated 

completely opposite effects (coefficient b* estimates) on the occurrence of road crashes. The 

sensitivity analysis also proved that several direct design parameters – the lane widths and surfaced 

shoulder widths – will exhibit a reduced or no statistically significant influence on road crashes due 
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to the combined effect of compliant parameters to design guidelines. The expected improved driver 

perceptions could also play a significant role in the reduction of road crashes as a result of “better 

communicating” parameters. On the other hand, as a result of compliant covariates, the proportion 

of paved shoulders and the ground shoulder widths were found to significantly influence crash 

occurrence. An increase in the ground shoulder widths was observed to lead to a decrease in crash 

rates. The opposite effect (increase in crash rates) was however observed as a result of increasing 

the proportion of paved shoulders.  

A detailed analysis of the results on high order rural roads (CPM 5) shows that the sensitivity test 

amplifies the influence of the operating speed and the vertical terrain – hilliness on FSI crash rates. 

The operating speed parameter was also observed as showing an increased influence in CPM4. 

The proportion of heavy vehicles in the traffic stream (b*MLR-CPM2 = 0.682 to b*MLR-CPM5 = -0.594) 

demonstrated a change in effect on road crashes. Unsurprisingly, the sensitivity test caused several 

of the direct-design parameters to lose effect (statistical significance) on road crash frequencies. 

These parameters are: (1) the lane width and (2) the ground shoulder width. Similar to CPM4, an 

increase in the proportion of paved shoulders on the higher order roads was found to result in an 

increase in road crash rates, due to design compliance. This result is rather surprising as the 

compliance test on the high order roads indicates that the majority of these roads do not have the 

appropriate shoulder types to accommodate the observed high traffic volumes and expected high 

traffic speed selections by drivers. A number of factors could explain this correlation between 

shoulder types and crashes. An increase in the proportion of a paved shoulder combined with wider 

lane widths may result in perceived space to correct errors and thus higher speed selections and in-

lane deviations. This however increases the risk for run-off crashes. Also, drivers may decide to use 

the hard-paved shoulder as an “extra” lane to give space to vehicles making overtaking manoeuvres 

in the traffic stream. This unacceptable practice can present dangerous situations for other drivers, 

especially when combined with factors such as night-time driving, non-compliant ground shoulder 

widths and high traffic speeds. Several studies have investigated the impact of present shoulder 

types on road sections, without delving into whether the appropriate shoulder type is provided 

(Stamatiadis et al., 2009; Sisiopiku, 2011; Ambunda and Sinclair, 2019). 

The sensitivity test results on higher order roads indicated that increasing the extent of bendiness 

resulted in a decrease in the frequency of road crashes. In the local context, conditions are such that 

long straight sections in monotonous road environments are prevalent on the road network (Adanu 

et al., 2020; Ambunda and Johannes, 2020). These sections can predispose rural road drivers to 

fatigue-related crashes. Fatigue can affect driving skills by increasing the frequency, amplitude and 

variability of errors (Dagli, 2004; Bener et al., 2017). Therefore, the model findings explain that 

increasing the bendiness, which indirectly leads to an increase in the level of driver engagement in 

the driving process, may reduce road crashes due to monotonous environment-related fatigue. 
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The sensitivity test on low order rural roads (CPM 6) had a significant impact on the effect that the 

surfaced shoulder width and the hilliness of the vertical alignment have on crash occurrence. Both 

parameters lost their statistically significant influence on crash frequency, due to the combined 

effects of design compliant parameters. The proportion of light vehicles demonstrated a change in 

effect while the ground shoulder width on the road sections demonstrated an increased absolute 

effect on crash frequency. Similar to CPM4 and CPM5, an ideal design environment on lower order 

roads resulted in the proportion of paved hard-shoulders demonstrating a statistically significant 

positive association to crash rates. The stopping sight distance (SSD) was found to exhibit “some” 

influence in the sensitivity test, though statistically insignificant. The statistical insignificance of the 

SSD is expected due to the road environment on the rural road network – mostly flat terrains and 

long road sections with high levels of forward visibility. 
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5.4 Two-Step Cluster analysis model results 

The TSC analysis findings are novel in their nature as they inform on the impact of several predictors 

in the rural road environment on the nature and combination of risk factors preceding a crash 

occurrence. The results of the novel TSC analysis models further strongly add to the importance of 

investigating the impact of all potential risk factors that impact the occurrence of road crashes on 

national rural roads. The TSC model identified three (3) clusters categorising the impact of the 

predictors on the dependant variable (risk factors). The three-cluster solution was identified as the 

“best” solution. The “best” solution was a result of the TSC-2 model exhibiting the lowest AIC value 

and the largest ratio of AIC changes and ratio of distance measures. The cluster groups developed 

by the TSC analysis demonstrate that covariates have different impacts on the cluster crashes, 

depending on the level of rural road classification and to a certain extent, the purpose of the trip. 

Therefore, the TSC model presents a synergy between the crash analyses carried out on the 

demographic, temporal, road and traffic characteristics and their impact of crash causation risk 

factors identified in the crash dataset. 

In cluster one (1), the TSC analysis found a relationship between the characteristics of the two-lane 

road during weekends (Friday to Sunday) and numerous combinations of crash causation risk 

factors. The crash records in cluster 1 represent drivers using high order roads (HORR) to travel 

long distances, in this case, possibly holiday-makers and long distance private and commercial 

drivers. The majority of drivers in cluster 1 were found to be prone to the combination of recognition, 

decision and intentional crash risk factors. A second class of drivers in cluster 1 was also found to 

be highly prone to the combination of only recognition and decision risk factors. These risk factor 

combinations confirm the high impact of the primary level contributing factors on crash occurrence, 

identified in Section 4.2.3. These primary level contributing factors, as part of the main risk factor 

groups, include inadequate surveillance, inattention, false assumption of other drivers’ actions, 

fatigue and dangerous manoeuvres. The high number of crash records on HORRs found in cluster 

1 is indicative of the impact and role played by features of the HORR environment (see Section 

4.5.3) on crash occurrence and crash risk factor combinations identified in the TSC analysis.  

A high number of crash records in cluster two (2) were found to have occurred on unpaved low order 

rural roads (LORRs). The poor surface conditions on the unpaved roads were identified to have a 

high impact on driver risk factor combinations during the weekends. The high number of trips made 

in rural communities on unpaved rural roads to commercial regional centres over the weekends are 

a key contributor to the high number of crashes recorded on these roads. The TSC analysis 

demonstrates that the interaction of these covariates contributes to several high-risk factor 

combinations. In the same way to road crashes in cluster 1, the combination of recognition, decision 

and intentional risk factors was the highest observed risk factor combination preceding crashes in 

the cluster. The TSC analysis also found that drivers in cluster 2 were also highly prone to risk factor 
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combinations involving the roadway and environment, such as (1) the combination of recognition, 

decision, and roadway and environmental risk factors, and (2) the recognition and roadway and 

environmental risk factors. The findings of the TSC analysis on the impact of roadway and 

environment risk factors are reinforced by findings from several studies and reports on how animals, 

as part of roadway and environmental risk factors, are one of the leading causes of road crashes on 

the Namibian national rural roads (NRSC, 2012; Eggleston et al., 2016). 

The TSC analysis identified several road crashes that occurred on paved lower order rural roads 

(LORRs) over the weekdays (Monday to Thursday) – cluster three (3) records. The records in cluster 

3 possibly represent drivers using the LORRs to commute or travel between several small towns 

every day. Similar to the two previous TSC clusters discussed, the combination of recognition, 

decision and intentional risk factors emerged as the highest combination of risk factors preceding 

crashes on paved LORRs. Drivers using paved LORRs were also found to be highly prone to 

recognition, roadway and environmental risk factor errors during the weekdays, stemming from the 

interactive covariate relations discussed and modelled in Section 4.5.3.  
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Chapter 6: Conclusions 

6.1 Introduction 

The study developed novel road crash predictive models and two-step analysis clusters that explored 

the interactive relationship between road characteristics on national rural roads, demographic and 

temporal factors, fatal and serious road injury (FSI) crashes and driver actions and risk factors 

preceding crashes. A road crash occurs when there is failure in the road traffic system at multiple 

levels, therefore, the study explored driver behaviour by creating an unprecedented analysis to 

inform on driver behaviour and risk characteristics on national rural roads with specific characteristics 

in the Namibian road and traffic environment. Human factors are globally affirmed as leading crash 

risk factors, they are however unpredictable and difficult to directly control. This study has created a 

basis on which driver behaviour on national rural roads can be directly influenced to some extent, 

through investigating the roadway characteristics. 

The study objectives were five-fold. The first objective of the study was to examine road crash profiles 

and factors attributed to rural road crashes. The goal of this objective was to create a new basis to 

assess the relationship between road characteristics and driver risk factors preceding road crashes 

– a two step cluster analysis. This will serve as a basis for comparison for any future studies. 

The second objective was to identify high risk traffic crash locations on the different national rural 

road classifications. The third objective was to assess how the spatial analysis varied in the 

distribution of FSI crashes across the national rural road network. The second and third objectives 

aided in the understanding of how population characteristics and road design guidelines compliance 

(fourth objective) influenced the distribution of FSI road crashes across the rural road network. The 

fourth objective was to investigate the compliance of the rural road design characteristics with road 

design guidelines. Recommendations on the suitability of the design standards are based on the first 

three and the fifth objectives of the study.  

The fifth objective was to develop novel road crash predictive models in the context of the Namibian 

national rural road environments. This objective is underpinned by the other four objectives in 

examining the spatial distribution of the road crashes, the response of crash distribution to design 

compliance levels and the sensitivity of the novel CPMs to changes in design characteristics. The 

fifth objective also provides a basis to examine how the sensitivity of CPMs to design characteristics 

affects driver risk factors on the national rural roads.  

Therefore, this chapter presents a summary of the study by talking to the points below: 

I. Summary of key findings of the study. 

II. Summary of original contributions and practical implications of the study. 
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III. Model transferability. 

IV. Discussion of key challenges of the study. 

V. Future research and developments. 

6.2 Key findings of the study 

The main findings of the study are summarised below with reference to the stated study objectives. 

6.2.1 Study objective one 

The study applied various analytical methods that demonstrated a multitude of relationships between 

the characteristics of the driver population and road crash incidences on national rural roads. This 

objective was focused on examining driver risk factors on the current road environment and finding 

out whether a measurable link exists between the driver population characteristics and the high 

severity road crash dataset used in the study. 

1. The study examined how population characteristics (driver gender and age) and temporal 

variations are distributed in the fatal and serious injury road crash dataset. These interactive 

demographic factors are interrelated with the driver risk factors. The average age of the driver 

population was found to be 28 years, with the male driver population at a higher risk of being 

involved in FSI crashes than females. The male driver population group crash risk pointedly 

began to increase from the age group of 21 to 25 years (young adult) and peaked at the age 

group of 31 to 35 years (adult). The young adult driver population group demonstrated the 

highest ratio of male to female crash risk. Young male adults were more than ten times 

predisposed to risky situations than their female counterparts. 

 

2. The study found an annual fatal and serious injury road crash rate of 21.3 road crashes per 

100 000 population. The crash rate was found to be slightly lower than the road fatality crash 

rate reported by previous studies in Namibia.  

 

3. The analysis on the temporal variation and distribution of road crashes found statistically 

significant t-test relationships between the FSI crashes and the following temporal 

distributions: 

i. Time of the day – higher crash occurrences during the peak traffic hours 

ii. Day of the week – higher crash occurrences over weekends and holidays 

iii. Week of the month – higher crash frequency over the 2nd week after pay week and 

all other weeks of the month 

iv. Month of the year – higher crash frequencies over the holiday months (April to May, 

August and December) 

Stellenbosch University https://scholar.sun.ac.za



268 

 

v. Yearly quarters – higher crash frequencies observed over the first and third quarters 

of the calendar year 

 

4. The driver risk factor and behavioural characteristics analysis revealed that inattention, 

inadequate surveillance and dangerous manoeuvres were prominent risk factors among the 

driver population. These human-centred risk factors were found to be more pronounced in 

the young adults and adults, which encompassed drivers aged 18 to 35 years. The study 

applied the Two-Step Cluster analysis technique to explore the relationship between the 

combination of human-centred risk factors preceding the occurrence of a road crash and the 

demographic, temporal, and road and traffic environmental factors on Namibian national rural 

roads. Several risk factor combinations were identified as playing key roles in crash 

occurrences on high and low order road classifications. The study revealed that human-

related factors play a key role in crash occurrences where road and environmental factors 

were the primary risk contributors. This is an indication of the inter-relationship between the 

crash risk factors and that no single factor is responsible for a road crash. 

6.2.2 Study objective two and three 

The study applied the planar Kernel Density Estimation (KDE) geospatial analysis technique to 

detect clusters of FSI road crashes across the national rural road network. The KDE was applied on 

three data sets predicated on the classification of rural roads (high and low order roads). The KDE 

with a bandwidth value of 1 000 m over grid sizes of 30 m by 30 m achieved the best hotspot 

visualisation of the FSI crashes. On high order rural roads, the KDE technique highlighted higher to 

extreme FSI crash clusters were observed on roads leading to and from localities in the northern, 

central and western parts of the network – these localities are situated primarily along some of the 

most active trade routes across the country and thus experience an abnormally high amount of 

diverse road users. On lower order rural roads, extreme to higher crash densities were observed on 

roads in the northern regions of the country, on rural roads around localities in rural and peri-urban 

areas. These parts of the country are densely populated and have a high dense network of 

connecting low order unpaved roads with high traffic volumes. 

6.2.3 Study objective four 

The compliance to road design guidelines (TRH 17, TRH 20 and TRH 26) assessment revealed that 

the majority of the unpaved rural low order roads are not compliant with lane width design standards 

– the combination of non-compliant lane width and high traffic volume on unpaved roads is best 

visualised in Figure 4.23, where higher to extreme crash clusters are observed on the northern zone 

of the national rural road network. In the same way, the majority of unpaved hard shoulders on paved 

rural roads assessed were not compliant with design standards set out in the TRH 17, to the 
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detriment of road safety on these roads. A much less desirable revelation from the compliance 

assessment was that less than a quarter of the paved roads had the appropriate hard shoulder, with 

less than a quarter of those having the appropriate width for the traffic conditions on those roads. 

6.2.4 Study objective five 

The study developed and calibrated multiple novel crash predictive models (CPMs) as tools to 

examine the relationship between the road design and traffic environment and the frequency of FSI 

road crashes in the Namibian context. The model measures of goodness-of-fit indicated that the 

General Multivariate CPMs were the best performing models suitable for the FSI crash datasets on 

both high and low order rural roads. The developed CPMs were further used to carry out a sensitive 

analysis on the design parameters applied in the study. The sensitivity analysis indicated that despite 

applying design compliant parameters in the models, several model covariates demonstrated more 

pronounced effects detrimental to the safety of the road system – indicative of how important an 

assessment of the much deep-seated over-reliance on “international” design guidelines is needed, 

in an effort to localise guidelines to suit the road environment and behavioural characteristics of road 

users. Inferences on the suitability of the road design standards applied in Namibia are underpinned 

by the design sensitivity analysis using the CPMs. 

6.3 Applicability of CPMs 

The crash predictive models (CPMs) were calibrated and tested for the Namibian national rural road 

environment. The models provide a road crash risk assessment tool that relies on road 

characteristics and traffic information across the national road network. The CPMs allow for the 

identification of design parameters that may pose a hazard to the safety of road users. Furthermore, 

the CPMs present an opportunity to examine the impact of the road environment on human-centred 

crash risk factors by comparing the changes that may result from road characteristic improvements 

through, before and after studies. The replication and applicability of the models at an aggregated 

level in countries with similar rural road environments will need to be investigated further, as the 

models are predicated on road design and traffic data, which requires an extensive amount of time 

to collect and a comprehensive road management system. 

6.4 Summary of contributions and practical implications 

6.4.1 Key contributions  

The study has developed a novel tool for road safety assessment in Sub-Saharan Africa and beyond, 

underpinned by design and traffic data on the Namibian rural road environment. The study is novel 

in the following ways: 
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i. The type of study is undoubtedly rare globally and novel in the Namibian context in that the 

safety analysis has included a large number of design and traffic related parameters 

describing the rural road environment in Namibia. This approach is underpinned by the 

understanding that road elements work in tandem and as such it is important to consider the 

impact of the road environment on road safety as a whole. 

ii. The study has developed a methodology that comprehensively improved the quality of the 

historical road crash data and allowed for the aggregation of crash data with road 

characteristic data at a macro road network level for safety analysis. In the same way, the 

study developed a novel approach to identify driver crash risk factors at multiple levels linked 

to road crashes on rural roads. 

iii. The study has primarily understood that road elements are designed taking into consideration 

average road user behaviour and traffic conditions and that driver behaviour is a direct result 

of how drivers perceive the road environment. The study has thus informed on driver crash 

risk factors and behaviour during the study period, by applying the Two-Step Cluster analysis 

technique to explore the relationship. This has allowed for a novel link to be developed 

between several combinations of human-centred factors, the road environment, temporal 

and demographic factors. Human factors are very difficult to predict and directly address. As 

a result, one way to impact these factors is through examining the roadway environment. 

This study has thus formed the basis on which future comparisons of the impact of several 

key factors including demographics, temporal and road characteristics on driver behaviour 

and risk factors can be built. 

The study developed FSI road crash predictive models that will be useful in forecasting future road 

crash occurrences using comprehensive design and traffic parameters datasets. These CPMs also 

represent a tool that is significantly able to explore the nature and magnitude of the relationship 

between the rural road environment and FSI road crashes at a macro road network level. 

6.4.2 Practical implications of the study on road safety 

The insights from the study will have a long-standing significant impact on rural road safety in Sub- 

Saharan Africa (SSA) and beyond. The study is one of the few compositions of literature that has 

greatly contributed to the knowledge gap that exists on road safety studies on rural roads and has 

significantly improved the understanding of the combinatorial effects of road design and traffic 

attributes on rural road FSI crashes. The study explored the role of driver crash risk factors in the 

rural road safety system and has built a foundation on which the sensitivity of crash risk factors can 

be tested against changes in road parameters. The study has highlighted multiple areas in the rural 

road safety system that urgently need to be addressed to provide a safer environment for road users 

on the network. As Namibia prepares the new Decade of Action (DoA) Strategic Plan for the year 

2021 to 2030, the insights from the study provide a backbone on which rural road safety can be 
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addressed in the DoA, with an approach that is aimed at reducing and eliminating so-called latent 

gaps in the components of a safe road system. 

The new DoA strategic plan for the period 2021 to 2030 is developing its strategies (performance 

indicators and targets), based on the principles of the five (5) road safety pillars designed to guide 

strategic planning and action and anchored on the twelve (12) United Nations (UN) global road safety 

performance targets (Peden et al., 2017; Olivier, 2020). The new DoA plan is also in line with the 

eight (8) African Union (AU) guidelines / cross-cutting issues (CCIs) guided by the Sub-Saharan 

Africa Transport Policy Program (SSATPP) (World Bank, 2012). The CCIs focus on road safety in 

rural areas. A study by the African Union in 2018 had found that a majority of African countries, 

including Namibia, have taken only very minimal steps to implement the recommended rural road 

safety activities – states should undertake rural road safety audits, ensure that safety audits are 

taken into consideration in the design and construction of rural roads, improve rural transport safety 

through mixed transport measures and sensitise road users using national rural roads on road safety 

issues (African Union, 2018).  

I. Global road safety performance pillars and cross-cutting issues 

The five global road safety pillars and AU guidelines provide a good understanding of the areas 

where insights from the study will enhance road safety performance. The road safety pillars and 

cross-cutting issues are presented in Figure 6.1 and Figure 6.2 respectively. The target areas directly 

impacted by the study insights are highlighted in red in both figures and discussed thereafter.  

 

Figure 6.1 The 8 AU cross cutting issues 
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Figure 6.2 The 12 UN Global road safety performance targets 
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The study will assist in the success of the following AU cross-cutting issues (CCIs) 1, 2, 3, 4 ,5 ,6 

and 8 highlighted in Figure 6.1 and the global road safety pillars – Pillar 1, Pillar 2 and Pillar 4, 

highlighted in Figure 6.2. The pillars and CCIs are discussed below:  

Pillar 1 and CCIs 2,3, 4 and 5: Road safety management, strengthened stakeholder capacity, 

private sector participation, digitisation and effective monitoring and evaluation of road 

safety 

Road safety management serves as the key pillar on which the other four global road safety pillars 

are based. Therefore, a comprehensive road crash data collection system through which data is 

collected regularly, disseminated and used to improve the effectiveness of road safety measures. 

The study provided a challenge in that three road crash databases exist in Namibia – MVA crash 

data, NRSC data and police reported data. This provided a challenge in addressing the deficiencies 

from each individual database and aggregating the data while avoiding duplications. This challenge 

was indicative of the need for strengthened and effective stakeholder collaborations and 

partnerships. Other limitations such as missing records, crash locations – or rather a lack thereof - 

and inaccurate crash records also presented a daunting challenge to the application of the databases 

in the study. The study developed a method to address the deficiencies in the databases and 

significantly improved the quality and management of the data. These challenges highlighted the 

importance of having a centralised and well managed high-quality crash data centre geared towards 

driving data centred road safety decisions and actions. The method applied in the study could be 

used as reference on how important high-quality and comprehensive databases are in encouraging 

innovative and value-adding road safety investigations. The novel crash prediction models (CPMs) 

and two step analysis clusters (TSC) developed in the study will help in the formation of pro-active 

safety management systems that are geared towards identifying potential deficiencies in the safety 

of road users. This modern approach will lead to a more digitised and effective road safety monitoring 

system. This digital approach will bring about a better synergy between the development and 

implementation of road safety policies, as decisions are more “data proof”. 

In order to create and enable an environment in which insights from this study will be best applied 

and effective, the Law Reform and Development Commission (LRDC) of Namibia undertook the 

review of existing road safety laws24 and development of a new Road Safety Management Bill 

(RSMB) in 2018 to bring about uniformity and effective cooperation among road safety stakeholders 

(LRDC, 2018). The RSMB will culminate in the development of a New Decade of Action (DoA) road 

safety strategy for the period 2021 to 2030 in Namibia.  

                                                           
24 Road safety act No. 29 of 1992 
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Pillar 2 and CCI 6 and 8: Safer roads and mobility, rural road safety and safety of regional 

corridors 

The second pillar focusses on safer roads and road environments (new and existing roads), for all 

road users, based on high technical / design standards with reference to road safety and 

incorporating safe system principles. Pillar 2 is also in line with the AU cross cutting issues 6 and 8. 

The road design and traffic characteristics play a crucial role in the behaviour of drivers on national 

rural roads. Design principles are thus crucial to achieve a road environment that is cognisant of 

road safety and expands on the idea of the interaction between humans (drivers) and road factors. 

The study carried out a crash hot spot analysis for the difference classification of national rural roads 

– high order25 and low order roads26. The crash hotspot analysis is crucial in that it allows for 

stakeholders to develop targeted remedial measures and prioritise road safety funding. To further 

expand on the identification of hazardous and potential hazardous road sections on rural roads, the 

study carried out a road design standards compliance assessment. The design compliance 

assessment identified areas on the national roads with non-compliant design elements. The 

distribution of the FSI crashes across the rural road network in reference to the non-compliance of 

design elements carried out, expanded on the relationship between road design principles and road 

safety – determining potential defects in the perception of the road and surrounding environment by 

a driver, which may lead to erroneous actions and running the risk of a crash incident. The design 

compliance assessment identified numerous design deficiencies, which the design non-compliance 

geospatial analysis found to be detrimental to the safety of national road users. These design 

shortcomings in the system will need to be urgently addressed to address the high FSI rate on 

Namibian national rural roads.  

The study developed novel crash prediction models (CPMs) for the various road classification. Using 

the existing rural road design data as the key cog in the CPMs, the models developed are intended 

to supplement and potentially replace road safety traditional tools, as their application and insights 

will further expand the stakeholder’s ability to determine road sections with potential crash risk and 

eliminate the risk for road users. These CPMs are novel in that they determine and quantify the 

operational characteristics of the roads and identify elements which do not comply with the function 

of the roads and therefore disorient the drivers, causing a breach in the smoothness of psychological 

perception of the road and creating an element of surprise and ambiguity on the road. 

Inherently, roads designed according to suitable design principles should absorb the potential risk 

that other road users could pose by adhering to sustainable safety principles. Design principles 

enable road characteristics to play a clear role in guiding drivers of all categories as to the type and 

                                                           
25 High order rural roads classification includes R1 to R3 TRH 26 classified roads 
26 Low order rural roads classification includes R4 to R6 TRH 26 classified roads 
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function of the road, as well as inform on the level of risk that they should prepare for. Road designs 

need to create the right impressions to solicit expectations from all drivers. Design and planning 

authorities should therefore consider spatial knowledge, the skills and awareness of road users that 

develop over time and facilitate the development of skills, hazard and risk perception, inter alia, 

manoeuvring in relation to the road characteristics, estimation of vehicle speeds and the ability to 

judge and accept gaps. 

With this in mind, the novel CPMs developed were used to carry out a sensitivity analysis using the 

design standards that were applied in the design of most of the national rural roads, to test how the 

model parameters would react to potential remedial design measures and indirectly test the level of 

safety incorporated into the design principles. The insights from the sensitivity analysis were 

unnerving and pointed towards the application of remedial measures on the rural roads and revision 

of some of the design principles used. Also, it is important to note that the capacity of some of the 

roads has been far exceeded over the course of the years. This emphasises the urgency to audit 

some of these roads and apply findings from the study towards developing a safe system for current 

and future road users. In summary, the novel CPMs provide a crucial opportunity and step towards 

building a crash risk control system that embraces all crash risk factors throughout the life cycle 

stages of the roads. 

Underpinned by the understanding that road environment, temporal and demographic factors do not 

influence crash occurrences in silos, the study explored how the combination of human-centred risk 

factors preceding road crashes are influenced by multiple factors, including the road and traffic 

environment. This provides valuable new information on how the safety of rural roads depends on 

addressing multiple perceptive and behavioural issues triggered by the environment in which drivers 

find themselves. 

Pillar 4 and CCI 1 and CCI 6: Safe road users, improved awareness of road safety and rural 

road safety 

In Namibia, and most countries, the cause of a road crash with combined crash risk factors of human 

related errors and the road environment, is mostly blamed on the driver’s inability to control the 

vehicle. This solely puts the fault of the crash on the driver whether they consciously or 

subconsciously committed an error that led to the crash. It is however important to recognise that 

road crashes occur as a result of a combination of factors, among which the driver’s ability plays a 

fundamental part. 

In light of this, the study carried out and reported on driver crash risk factors and behaviours. The 

study applied a multi-level approach to the identification of crash risk factors. This was done with the 

understanding that road crashes are potentially caused by a multitude of interrelated factors. The 

insights from the primary analysis showed that human-related errors were the most predominant risk 
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factors in FSI crashes. The main categories of human failures revolved around driver’s ignorance 

towards safe driver behaviour norms (intentional risks) and their inability to recognize complex traffic 

and road situations, which could be exacerbated by the “tricky” road environment (several high 

design non-compliance levels). The findings also largely identified high levels of manoeuvring 

failures coupled with high impatience levels among drivers on the rural road network – a combination 

of decision and performance related errors. 

The second level analysis was geared towards identifying factors leading to a crash and allowing for 

a more relational assessment of the crash risk factors. The study identified with the second level 

analysis that the highest risk to FSI crashes was posed by significant levels of ignorance to principles 

of safe driver behaviour. The overall results indicated that crash risk factors related to the roadway 

ranked the second highest in the primary analysis and the more nuanced secondary level crash risk 

factor analysis. In crashes where roadway factors where the primary causation factor, the human-

related responses were remarkably high. This was indicative of the significant relation between these 

factors and how addressing roadway deficiencies could have a possible significant impact on the 

more unpredictable human-related issues. The other factors that proved to have a considerable 

impact on crash incidences were decision errors and performance errors.  

The study findings are clear on the significant role played by the human-related and roadway crash 

risk factors on FSI crashes in Namibia. The adolescent (less than 18 years) and young adult (18 to 

25 years) age groups were particularly prone to performance and intentional crash risk factors. This 

finding raises the importance of basic driver traffic safety training during the early phases of licensing 

to ensure that drivers are well versed in safe driving and behavioural practices. Inattention and 

inadequate surveillance (recognition errors) were found to be more prevalent among the adult driver 

population – 25 to 35 years. These type of errors could be attributed to the thought process of young 

adults who believe they have enough driving experience and feel that they are not prone to driving 

errors compared to most age groups.  

The study then developed Two-step Cluster models to discern how multiple factors, explored in the 

study, impact on the interaction between the different level driver risk factors prior to a crash 

occurring. This analysis sought to enhance the understanding of underlying factors that influence 

the safety of road users and by extension, serve as an illustrative example for an analysis of similar 

data within the context of countries with similar road and traffic conditions. The insights from the 

study also raise the importance of using educational initiatives to constantly inform and increase 

awareness among all driver categories of the risks associated with poor driving behaviour.  

It is recommended that the crash reporting system applied in Namibia should fall in line with 

international best practices. This allows for the recording of specific crash risk factors associated 

with a crash. This will present an opportunity for the development of new, improved and safer road 
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user practices, introduced and enforced to sensitise and improve road safety on rural roads, using 

quality data as a backbone. 

II. Harmonisation of the study insights, pillars and guidelines in a safety strategy 

The strategy of the study, aided by international experience and best practices is focused on making 

Namibian rural roads safer and inspire safer road users through positive attitudes and behaviours 

towards good safety practices. This strategy is aimed towards reducing the frequency and level of 

severity of crashes on national rural roads. Pillar 2 and Pillar 4 are particularly aimed at reducing 

driver crash risks and preventing crashes. These two core pillars, together with other pillars (Pillar 3 

and Pillar 5) have to be supported by effective and efficient road safety management. This foundation 

should be built on Pillar 1, which is geared towards making sure institutional arrangements are in 

place to provide an enabling environment for road safety programmes to take off. An enabling 

environment will involve a system designed to house road safety responsive legislation, ensure 

sustainable funding, promote good stakeholder collaborations and partnerships, and an effective 

integrated road safety management system. The strategy is presented in Figure 6.3. 

 

Figure 6.3 Road safety strategy map 
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6.5 Discussion of challenges 

Several data limitations were observed in the study: 

1. Missing crash information and incorrect crash data information: Some of the crash 

records in the database were missing critical information on the description of the road 

crashes, inter alia, the type and number of casualties involved. Crash records with missing 

data needed for the study were removed for the analysed database due to their quality 

deficiencies. This hindered the level and quality of analysis that could be carried out to 

determine driver crash risk factors and behavioural traits. 

2. Missing crash location information: Several crash records did not have a description of 

the crash location and the database was not georeferenced. For crashes where the location 

could not be determined from the description of the location in the records, the record had to 

be removed. The study observed that 21 percent of all the crash records could not be located 

due to the missing location descriptors. This represented a high number of crash records that 

would help to improve the level of detail and quality of the geospatial and CPM analysis. 

6.6 Future research 

The study has developed novel crash prediction models in an attempt to address the knowledge gap 

that exists in the investigation of combinational road elements on road safety in Sub-Saharan Africa 

and globally. The study has primarily built a foundation for investigating the impact of road 

characteristics on FSI road crashes and has determined the driver crash risk factors linked to these 

characteristics. With that in mind, the future research and development are suggested below: 

1. As the CPMs were developed, they were referenced on the Namibian crash data set. It will 

be imperative to test the transferability of the models to countries with similar road conditions 

to the Namibian national rural road network, where long straight sections exist between 

towns.  

2. A before and after study on the impact of road design changes on driver risk factors on 

national rural roads will help to garner more insights into the relationship between the road 

traffic elements in the CPMs and driver crash risk factors. Such a study will improve the 

understanding of stakeholders on the effectiveness of the remedial measures applied and 

will improve decision making in the formulating of road safety guidelines and policies. 

3. In an effort to improve proactive road safety measures and improve road safety management, 

real time monitoring of the road environment through the application of CPMs built on 

historical crash data could be used to identify potential hazardous road sections and 

proactively move towards the potential reduction and removal of crash risks for road users in 

the road system. Real-time crash prediction will present a huge opportunity to test the 

application of the novel CPMs using real-time road design and traffic data in crash prevention. 
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4. Applying immersive technologies, virtual and augmented reality, quantifying the perceptive 

impact that the road and traffic environment has on drivers through controlling environments, 

and further investigating and presenting innovative applications for crash causation risk 

factors, prevention and education among drivers on different levels of national rural road 

classifications. Applying immersive technologies to explore the risk factors on different road 

classifications may prove beneficial to addressing crash causation knowledge gaps that exist 

in road safety. 
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A. Appendix A: Design Compliance  

 

Figure A.1 Compliance assessment of national rural roads (existing – purple; design standards – green) 
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B. Appendix B: Crash data analysis: Best-fit models (MLR) 

This section presents extra information on the factor selection and analysis carried out for the 

development of the novel best-fit crash predictive models (MLR-CPMs) in the study. The information 

for CPM 2 was used to explain the method in Chapter 3, therefore not included here. 

1. CPM 1: All Rural Roads 

a) Factor analysis 

Table B.1 Principle factor components from factor loadings-Varimax normalised for All Rural Roads 

Variable 

Factor Loadings (Varimax normalized) (Low Order Rural Roads 

Extraction: Principal components (Marked loadings are >.48) 

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

AADT_Heavy -0,155 0,092 0,883 0,033 0,111 

AADT_Total -0,291 0,100 0,834 0,083 -0,183 

Ops 0,028 0,165 -0,079 0,701 0,352 

Lane_Width 0,860 0,139 -0,217 0,080 -0,151 

No_Lanes -0,472 -0,364 0,538 0,061 0,205 

Shoulder_type 0,885 0,094 -0,183 -0,030 -0,155 

Surface_SW 0,133 0,882 0,024 -0,043 0,155 

Ground_SW -0,112 -0,889 0,002 0,079 -0,010 

Horizontal_(Curves/Length) 0,052 0,687 0,148 0,153 -0,390 

Terrain_Vertical 0,194 0,073 0,379 -0,397 0,366 

Access_Density 0,095 -0,138 0,206 0,700 -0,141 

Pavement_Condition -0,104 -0,054 0,061 0,044 0,735 

SSD 0,731 0,058 -0,015 -0,005 0,072 

Expl.Var -0,511 -0,049 0,157 -0,093 -0,366 

Prp.Totl 2,743 2,278 2,088 1,199 1,268 

 

 

Figure B.1 Scree plot for All Rural Roads 
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b) Durbin-Watson test 

Table B.2 Durbin-Watson Test for All Rural Roads CPM 

Durbin-Watson d (CR Model and Serial Correlation of Residual) 

 Durbin-Watson d Serial Corr. 

Estimate 1.904595 0.045799 

 

c) Outlier analysis 

 

Figure B.2 2D Box Plots of the crash rate distribution before and after Winsorization: All Rural Roads 
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2. CPM 3: Low Order Rural Roads 

a) Factor analysis 

Table B.3  Principle factor components from factor loadings-Varimax normalised for Low Order Rural 

Roads 

Variable 

Factor Loadings (Varimax normalized) (Low Order Rural Roads 

Extraction: Principal components (Marked loadings are >.49) 

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

AADT_Heavy -0,924 -0,009 -0,055 0,033 0,009 

AADT_Light -0,924 0,120 0,067 0,035 0,008 

Ops 0,586 0,387 -0,103 0,094 0,320 

Lane_Width 0,787 0,431 -0,085 -0,136 -0,013 

No_Lanes -0,766 -0,275 0,168 0,164 0,002 

Shoulder_type 0,190 0,903 0,073 0,002 -0,004 

Surface_SW -0,187 -0,905 -0,061 -0,001 0,034 

Ground_SW -0,090 0,513 -0,210 -0,362 0,018 

Horizontal_(Curves/Length) -0,182 -0,011 0,739 -0,200 -0,013 

Terrain_Vertical 0,082 0,016 0,033 -0,167 0,851 

Access_Density 0,009 0,019 0,782 0,209 0,031 

Pavement_Condition 0,092 0,005 0,003 -0,800 0,193 

SSD -0,347 -0,197 -0,030 0,494 0,428 

Expl.Var 3,504 2,363 1,266 1,183 1,050 

Prp.Totl 0,270 0,182 0,097 0,091 0,081 

 

 

Figure B.3 Scree plot for Low Order Rural Roads 
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b) Durbin-Watson test 

Table B.4 Durbin-Watson Test for Low Order  Rural Roads CPM 

Durbin-Watson d (CR Model and Serial Correlation of Residual) 

 Durbin-Watson d Serial Corr. 

Estimate 1.922284 0.035597 

 

c) Outlier analysis 

 

Figure B.4 2D Box Plots of the crash rate distribution before and after Winsorization: Low Order Rural 
Roads 
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C. Appendix C: Road Crash Prediction Models 

This section presents extra model information on the novel crash predictive models (CPMs) 

developed in the study – both the best-fit models (MLR) and the base test models (BMM). 

1. BMM: Developed test and parameter estimates 

a) CPM 1: All Rural Roads 

 

Figure C.1 BMM CPM 1 Predicted model values vs residual dataset values 

 

Figure C.2 Normal probability plot of residuals BMM CPM 1 
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Table C.1 Summary of best subset models for BMM CPM 1 

Subse
t No. 

Summary of best subsets; variable(s): Crash_Rate (Base Mean) (All Rural Roads)  

R square and standardized regression coefficients for each sub model 

R 
Squa

re 

No. of 
Effects 

AADT_
Light 

AADT_
Heavy 

85th Operating 
Speed (Ops) 

Lane_
Width 

No_L
anes 

Surface
_type 

Shoulde
r_type 

Surfac
e_SW 

Groun
d_SW 

Horizont
al (C/L) 

Terrain_
Vertical 

Access_
Density 

Pavement_C
ondition 

Sight 
SD 

 

4 0,201 5 - 0,308 0,070 0,207 
   

-0,056 
  

0,043 
   

5 0,201 5 - 0,287 0,079 0,221 
   

-0,073 -0,050 
     

6 0,201 5 - 0,302 0,079 0,206 
   

-0,050 
   

-0,042 
  

12 0,200 5 - 0,307 0,080 0,221 
   

-0,053 
     

0,032 

13 0,200 5 - 0,302 0,075 0,214 
      

0,039 -0,044 
  

16 0,200 5 - 0,299 0,077 0,209 
  

0,036 
    

-0,045 
  

18 0,199 5 - 0,303 0,077 0,223 
   

-0,053 
    

-0,024 
 

21 0,199 5 - 0,304 0,068 0,212 
  

0,039 
   

0,043 
   

25 0,199 5 - 0,312 0,089 
  

0,200 
 

-0,060 
  

0,048 
   

26 0,199 5 - 0,301 0,077 0,212 
   

-0,051 
 

0,002 
    

27 0,199 5 - 0,301 0,077 0,213 0,002 
  

-0,052 
      

30 0,199 5 - 0,287 0,082 0,225 
    

-0,027 
  

-0,048 
  

31 0,199 5 - 0,300 0,083 0,226 
       

-0,041 
 

0,026 

32 0,199 5 - 0,305 0,098 
  

0,198 
 

-0,053 
   

-0,045 
  

37 0,199 5 - 0,285 0,075 0,224 
  

0,050 
 

-0,039 
     

40 0,199 5 - 0,297 0,081 0,226 
       

-0,042 -0,018 
 

42 0,199 5 - 0,305 0,075 0,230 
      

0,037 
  

0,028 

43 0,198 5 - 0,297 0,081 0,218 
     

0,011 
 

-0,044 
  

44 0,198 5 - 0,293 0,081 0,211 -0,014 
      

-0,042 
  

45 0,198 5 - 0,303 0,078 0,226 
  

0,035 
      

0,032 
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Table C.2 BMM CPM 1 Parameter Estimates 

N=3189 

Regression Summary for Dependent Variable: Crash_Rate (All Rural Roads) 

R= 0.46665730; R²= 0.21776903; Adjusted R²= 0.21654027; CV-R^2=0.21 

F (5,3183) = 238.39; p<0.0000 

Std. Error of estimate = 0.05811 

b* 
Std. Err. of 

b* 
b 

Std. Err. of 

b 
t (3183) p-value 

No. of times 

in best 20 SM 

Intercept   0,084 0,011 7,777 0,000  

AADT_Heavy 0,323 0,018 0,000 0,000 17,797 0,000 20 

85th Percentile 

Speed (Ops) 
0,050 0,016 0,000 0,000 3,096 0,002 20 

Lane Width 0,211 0,019 0,016 0,001 11,051 0,000 18 

Surface_SW -0,057 0,016 -0,020 0,006 -3,454 0,001 9 

Terrain_Vertical 0,045 0,016 0,022 0,008 2,827 0,005 5 

AADT_Light Excluded      0 

No_Lanes Excluded      2 

Surface_type Excluded      2 

Shoulder_type Excluded      4 

Ground_SW Excluded      3 

Horizontal (Curves/ 

length) 
Excluded      2 

Access_Density Excluded      9 

Pavement 

_Condition 
Excluded      2 

SSD Excluded      4 
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b) CPM 2: High Order Rural Roads 

 

Figure C.3 BMM CPM 2 Predicted model values vs residual dataset values 

 

Figure C.4 Normal probability plot of residuals BMM CPM 2 
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Table C.3 Summary of best subset models for BMM CPM 2 

Subse
t No. 

Summary of best subsets; variable(s): Crash_Rate (Base Mean) (High Order Rural Roads)  

R square and standardized regression coefficients for each sub model 

R 
Squa

re 

No. of 
Effects 

AADT_
Light 

AADT_
Heavy 

85th Operating 
Speed (Ops) 

Lane_
Width 

No_L
anes 

Surface
_type 

Shoulde
r_type 

Surfac
e_SW 

Groun
d_SW 

Horizont
al (C/L) 

Terrain_
Vertical 

Access_
Density 

Pavement_C
ondition 

Sight 
SD 

 

3 0,177 5 - 0,455 0,086 0,116 
 

- 
  

0,090 
 

0,044 
   

4 0,176 5 - 0,449 0,094 0,125 
 

- 
 

-0,040 0,070 
     

6 0,176 5 - 0,459 0,091 0,123 0,029 - 
  

0,098 
     

7 0,175 5 - 0,449 0,095 0,121 
 

- 
  

0,085 
  

-0,020 
  

8 0,175 5 - 0,438 0,089 0,122 
 

- 
 

-0,076 
  

0,050 
   

9 0,175 5 - 0,450 0,092 0,125 
 

- 0,016 
 

0,082 
     

10 0,175 5 - 0,451 0,094 0,122 
 

- 
  

0,090 
   

-0,007 
 

11 0,175 5 - 0,450 0,093 0,123 
 

- 
  

0,090 
    

0,002 

12 0,175 5 - 0,450 0,093 0,123 
 

- 
  

0,090 -0,001 
    

14 0,174 5 - 0,432 0,100 0,126 
 

- 
 

-0,070 
   

-0,035 
  

15 0,174 5 - 0,440 0,096 0,130 0,032 - 
 

-0,082 
      

16 0,173 5 - 0,430 0,097 0,127 
 

- 
 

-0,073 
 

-0,012 
    

17 0,173 5 - 0,433 0,099 0,128 
 

- 
 

-0,072 
     

0,010 

18 0,173 5 - 0,432 0,098 0,129 
 

- 
 

-0,072 
    

-0,009 
 

21 0,173 5 - 0,434 0,086 0,125 
 

- 0,059 
   

0,050 
   

25 0,172 5 - 0,428 0,097 0,129 
 

- 0,054 
    

-0,041 
  

30 0,171 5 - 0,456 
 

0,106 
 

- 
 

-0,046 0,074 
 

0,062 
   

31 0,171 5 - 0,427 0,094 0,118 
 

- 
    

0,044 -0,040 
  

32 0,171 5 - 0,432 0,094 0,133 0,017 - 0,056 
       

33 0,171 5 - 0,428 0,096 0,131 
 

- 0,054 
     

-0,011 
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Table C.4 BMM CPM 2 Parameter Estimates 

N=2232 

Regression Summary for Dependent Variable: Crash_Rate (All Rural Roads) 

R= 0.45963999; R²= 0.21126892; Adjusted R²= 0.20949729; CV-R^2=0.20 

F (5,2226) = 141.88; p<0.0000 

Std. Error of estimate = 0.04659 

b* 
Std. Err. of 

b* 
b 

Std. Err. of 

b 
t (2226) p-value 

No. of times 

in best 20 SM 

Intercept   -0,092 0,022 -4,149 0,000  

AADT_Heavy 0,466 0,020 0,000 0,000 23,077 0,000 20 

85th Percentile 

Speed (Ops) 
0,039 0,019 0,000 0,000 2,076 0,038 19 

Lane Width 0,176 0,019 0,055 0,006 9,226 0,000 20 

Surface_SW Excluded - - - - - 8 

Terrain_Vertical 0,057 0,019 0,020 0,007 2,943 0,003 5 

AADT_Light Excluded - - - - - 0 

No_Lanes Excluded - - - - - 3 

Surface_type Excluded - - - - - 0 

Shoulder_type Excluded - - - - - 5 

Ground_SW 0,100 0,020 0,021 0,004 5,019 0,000 9 

Horizontal (Curves/ 

length) 
Excluded - - - - - 2 

Access_Density Excluded - - - - - 4 

Pavement 

_Condition 
Excluded - - - - - 3 

SSD Excluded - - - - - 2 
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c) CPM 3: Low Order Rural Roads 

 

Figure C.5 BMM CPM 3 Predicted model values vs residual dataset values 

 

Figure C.6 Normal probability plot of residuals BMM CPM 3 
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Table C.5 Summary of best subset models for BMM CPM 3 

Subse
t No. 

Summary of best subsets; variable(s): Crash_Rate (Base Mean) (Low Order Rural Roads)  

R square and standardized regression coefficients for each sub model 

R 
Squa

re 

No. of 
Effects 

AADT_
Light 

AADT_
Heavy 

85th Operating 
Speed (Ops) 

Lane_
Width 

No_L
anes 

Surface
_type 

Shoulde
r_type 

Surfac
e_SW 

Groun
d_SW 

Horizont
al (C/L) 

Terrain_
Vertical 

Access_
Density 

Pavement_C
ondition 

Sight 
SD 

 

1 0,165 5 0,190 
 

0,161 
    

-0,128 -0,275 0,070 
    

2 0,165 5 0,174 
 

0,154 
    

-0,134 -0,284 
  

-0,069 
  

3 0,163 5 0,220 
 

0,186 -0,091 
   

-0,155 -0,265 
     

4 0,162 5 0,194 
 

0,161 
   

0,113 
 

-0,268 0,071 
    

5 0,162 5 0,179 
 

0,153 
   

0,120 
 

-0,276 
  

-0,069 
  

6 0,162 5 0,180 
 

0,161 
    

-0,129 -0,272 
   

-0,041 
 

7 0,162 5 0,146 
 

0,144 
 

-0,059 
  

-0,118 -0,283 
     

8 0,161 5 0,177 
 

0,154 
    

-0,129 -0,277 
 

0,024 
   

9 0,161 5 0,182 
 

0,155 
    

-0,133 -0,275 
    

0,018 

14 0,160 5 0,221 
 

0,182 -0,083 
  

0,138 
 

-0,257 
     

15 0,159 5 
 

-0,154 0,167 
    

-0,109 -0,276 
  

-0,074 
  

16 0,159 5 0,185 
 

0,160 
   

0,115 
 

-0,264 
   

-0,042 
 

17 0,159 5 0,149 
 

0,145 
 

-0,060 
 

0,102 
 

-0,275 
     

18 0,158 5 0,184 
 

0,203 
     

-0,250 0,089 
 

-0,079 
  

19 0,158 5 0,181 
 

0,155 
   

0,114 
 

-0,269 
 

0,020 
   

20 0,158 5 0,187 
 

0,155 
   

0,119 
 

-0,267 
    

0,018 

21 0,158 5 
 

-0,113 0,150 
 

-0,086 
  

-0,094 -0,279 
     

25 0,157 5 0,133 
 

0,176 
 

-0,102 
   

-0,258 0,078 
    

26 0,156 5 
 

-0,157 0,178 
    

-0,102 -0,267 0,049 
    

27 0,156 5 
 

-0,157 0,171 
   

0,087 
 

-0,267 
  

-0,073 
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Table C.6 BMM CPM 3 Parameter Estimates 

N=957 

Regression Summary for Dependent Variable: Crash_Rate (Low Order Rural Roads) 

R= 0.32908278; R²= 0.10829547; Adjusted R²= 0.10360723; CV-R^2=0.08 

F (5,951) = 23.028; p<0.0000 

Std. Error of estimate = 0.13083 

b* 
Std. Err. of 

b* 
b 

Std. Err. of 

b 
t (951) p-value 

No. of times 

in best 20 SM 

Intercept   0,414 0,031 13,564 0,000  

AADT_Heavy Excluded - - - - - 4 

85th Percentile 

Speed (Ops) 
0,098 0,031 0,001 0,000 3,181 0,002 20 

Lane Width Excluded - - - - - 2 

Surface_SW -0,108 0,032 -0,204 0,060 -3,423 0,001 10 

Terrain_Vertical Excluded - - -  - 2 

AADT_Light 0,223 0,031 0,000 0,000 7,151 0,000 16 

No_Lanes Excluded - - - - - 4 

Surface_type Excluded - - - - - 0 

Shoulder_type Excluded - - - - - 8 

Ground_SW -0,207 0,031 -0,094 0,014 -6,615 0,000 20 

Horizontal (Curves/ 

length) 
0,033 0,031 0,054 0,050 1,066 0,287 5 

Access_Density Excluded - - - - - 5 

Pavement 

_Condition 
Excluded - - - - - 2 

SSD Excluded - - - - - 2 
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2. Continuous variable summary for best-fit MLR crash prediction models 

Table C.7 CPM 1 (MLR) Continuous Variable Summary (All Rural Roads) 

Parameter 
All Rural Roads Continuous Summary 

Valid N Mean Grubbs Test Stat. P-value Median Min Max Low. Quartile Upp. Quartile Std. Dev. 

Crash_Rate 3191 0,117 16,340 0,000 0,052 0,000 3,307 0,015 0,143 0,195 

Crash_Rate(W) 3191 0,097 2,392 1,000 0,052 0,000 0,352 0,015 0,143 0,107 

AADT_Light 3191 2328,440 3,997 0,200 952,000 85,000 14005,000 358,000 3111,000 2921,117 

AADT_Heavy 3191 345,294 2,798 1,000 93,000 2,000 1400,000 41,000 690,000 376,970 

Ops 3189 44,017 1,433 1,000 0,000 0,000 120,000 0,000 100,000 53,010 

Lane_Width 3191 5,156 2,858 1,000 3,655 2,940 12,450 3,515 8,184 2,552 

No_Lanes 3191 1,788 6,169 0,000 2,000 1,000 6,000 1,000 2,000 0,683 

Surface_SW 3191 0,255 5,198 0,001 0,000 0,000 3,175 0,000 0,154 0,562 

Ground_SW 3191 1,713 11,165 0,000 1,915 0,000 8,990 1,245 2,110 0,652 

Horizontal_(Curves/Length) 3184 0,176 3,742 0,573 0,136 0,000 0,709 0,068 0,250 0,143 

Access_Density 3191 0,121 3,337 1,000 0,127 0,000 0,409 0,064 0,188 0,086 

SSD 1814 178,655 3,988 0,117 200,000 15,000 225,000 155,000 210,000 41,037 
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Table C.8 CPM 2 (MLR) Continuous Variable Summary (High Order Rural Roads) 

Parameter 
High Order Rural Roads Continuous Summary 

Valid N Mean Grubbs Test Stat. P-value Median Min Max Low. Quartile Upp. Quartile Std. Dev. 

Crash_Rate 2234 0,070 18,272 0,000 0,026 0,000 2,591 0,011 0,068 0,138 

Crash_Rate(W) 2234 0,051 2,341 1,000 0,026 0,000 0,180 0,011 0,068 0,055 

AADT_Light 2234 461,074 2,446 1,000 402,000 3,000 1400,000 71,000 696,000 383,851 

AADT_Heavy 2234 3551,247 3,447 1,000 2695,000 125,000 15362,000 838,000 5684,000 3426,048 

Ops 2232 52,135 1,236 1,000 0,000 0,000 120,000 0,000 120,000 54,921 

Lane_Width 2234 3,616 11,198 0,000 3,599 2,940 8,593 3,480 3,682 0,444 

No_Lanes 2234 2,097 6,951 0,000 2,000 1,000 6,000 2,000 2,000 0,561 

Surface_SW 2234 0,356 4,408 0,022 0,101 0,000 3,175 0,000 0,314 0,640 

Ground_SW 2234 1,634 2,440 1,000 1,879 0,000 2,900 1,047 2,102 0,670 

Horizontal_(Curves/Length) 2227 0,173 3,795 0,321 0,136 0,000 0,688 0,068 0,229 0,136 

Access_Density 2234 0,128 3,105 1,000 0,130 0,000 0,387 0,064 0,188 0,083 

SSD 1499 184,873 3,526 0,617 205,000 55,000 225,000 155,000 210,000 36,835 
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Table C.9 CPM 3 (MLR) Continuous Variable Summary (Low Order Rural Roads) 

Parameter 
Low Order Rural Roads Continuous Summary 

Valid N Mean Grubbs Test Stat. P-value Median Min Max Low. Quartile Upp. Quartile Std. Dev. 

Crash_Rate 957 0,226 12,026 0,000 0,159 0,003 3,307 0,094 0,270 0,256 

Crash_Rate(W) 957 0,203 2,468 1,000 0,159 0,003 0,575 0,094 0,270 0,150 

AADT_Light 957 75,018 6,735 0,000 32,000 2,000 1152,000 18,000 63,000 159,920 

AADT_Heavy 957 625,286 7,903 0,000 363,000 91,000 10089,000 252,000 517,000 1197,450 

Ops 957 25,084 2,226 1,000 0,000 0,000 120,000 0,000 60,000 42,648 

Lane_Width 957 8,749 3,429 0,558 9,116 3,000 12,450 8,660 9,450 1,676 

No_Lanes 957 1,066 10,778 0,000 1,000 1,000 4,000 1,000 1,000 0,272 

Surface_SW 957 0,020 13,088 0,000 0,000 0,000 1,794 0,000 0,000 0,136 

Ground_SW 957 1,898 12,521 0,000 2,004 0,000 8,990 1,820 2,110 0,566 

Horizontal_(Curves/Length) 957 0,182 3,344 0,764 0,140 0,000 0,709 0,065 0,267 0,158 

Access_Density 957 0,105 3,354 0,738 0,072 0,000 0,409 0,000 0,144 0,091 

SSD 315 149,063 2,866 1,000 145,000 15,000 220,000 115,000 195,000 46,770 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



C13 

 

3. CPMs developed with Road Design Guidelines (TRH 17 and TRH 26) performance tests 

and parameter estimates 

a) CPM 4: All Rural Roads (MLR tests and parameter estimates) 

Table C.10 CPM 4 Breusch-Pagan test 

Breusch-Pagan Test for heteroskedasticity 

BP df p-value 

402.43 5 0.000 

 

 

Figure C.7 CPM 4 Predicted model values vs observed dataset values 

Table C.11 CPM 4 Principal Component summary 

Principal  

Component 

Eigenvalues (All rural Roads) 

Extraction: Principal components 

Eigenvalue 
 

% Total variance 
 

Cumulative Eigenvalue 
 

Cumulative (%) 
 

1 5,280 37,717 5,280 37,717 

2 1,812 12,943 7,092 50,660 

3 1,173 8,380 8,266 59,040 

4 1,111 7,935 9,377 66,976 

5 0,913 6,523 10,290 73,499 

6 0,863 6,168 11,153 79,666 

7 0,781 5,578 11,934 85,244 

8 0,643 4,590 12,577 89,834 

9 0,607 4,337 13,184 94,172 

10 0,378 2,700 13,562 96,871 
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Figure C.8 CPM 4 Principal Component biplot 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



C15 

 

Table C.12 Summary of best subset models for CPM 4 

Subse
t No. 

Summary of best subsets; variable(s): Crash_Rate (Winsorized) (All Rural Roads)  

R square and standardized regression coefficients for each sub model 

R 
Squa

re 

No. of 
Effects 

AADT_
Light 

AADT_
Heavy 

85th Operating 
Speed (Ops) 

Lane_
Width 

No_L
anes 

Surface
_type 

Shoulde
r_type 

Surfac
e_SW 

Groun
d_SW 

Horizont
al (C/L) 

Terrain_
Vertical 

Access_
Density 

Pavement_C
ondition 

Sight 
SD 

 

3 0,460 5 - -0,422 0,077 
   

0,335 
 

-0,064 
 

0,076 
   

15 0,458 5 - -0,447 0,076 
   

0,337 
   

0,077 -0,037 
  

16 0,457 5 - -0,450 0,075 
   

0,352 
   

0,075 
  

0,032 

17 0,457 5 - -0,447 0,074 
   

0,355 
   

0,075 
 

-0,025 
 

18 0,457 5 - -0,444 0,073 
   

0,344 
  

-0,017 0,075 
   

23 0,456 5 - -0,445 0,073 
 

-0,002 
 

0,342 
   

0,077 
   

34 0,455 5 - -0,413 0,088 
 

0,043 
 

0,361 
 

-0,079 
     

35 0,455 5 - -0,412 0,090 
   

0,337 
 

-0,062 
  

-0,028 
  

37 0,455 5 - -0,415 0,089 
   

0,350 
 

-0,061 
    

0,028 

39 0,455 5 - -0,412 0,089 
   

0,352 
 

-0,063 
   

-0,023 
 

41 0,454 5 - -0,428 
    

0,339 
 

-0,055 
 

0,088 -0,026 
  

42 0,454 5 - -0,410 0,088 
   

0,342 
 

-0,063 -0,014 
    

45 0,454 5 - -0,428 
  

0,029 
 

0,356 
 

-0,068 
 

0,083 
   

49 0,454 5 - -0,430 
    

0,348 
 

-0,055 
 

0,086 
  

0,020 

53 0,454 5 - -0,427 
    

0,350 
 

-0,057 
 

0,086 
 

-0,017 
 

54 0,454 5 - -0,426 
    

0,343 
 

-0,057 -0,012 0,086 
   

66 0,453 5 - -0,440 0,088 
   

0,354 
    

-0,032 
 

0,034 

69 0,453 5 - -0,452 
    

0,352 
   

0,087 -0,030 
 

0,025 

70 0,452 5 - -0,437 0,087 
   

0,356 
    

-0,033 -0,027 
 

71 0,452 5 - -0,450 
    

0,354 
   

0,087 -0,031 -0,021 
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Table C.13 CPM 4 Parameter Estimates 

N=3189 

Regression Summary for Dependent Variable: Crash_Rate(W) (All Rural Roads) 

R= 0.69039066; R²= 0.47663927; Adjusted R²= 0.47581715; CV-R^2=0.47 

F (5,3183) = 579.77; p<0.0000 

Std. Error of estimate = 0.07719 

b* 
Std. Err. of 

b* 
b 

Std. Err. of 

b 
t (3183) p-value 

No. of times 

in best 20 SM 

Intercept   0,176 0,014 12,779 0,000  

AADT_Heavy -0,380 0,016 -0,000 0,000 -23,930 0,000 20 

85th Percentile 

Speed (Ops) 
0,036 0,013 0,000 0,000 2,721 0,007 13 

Lane Width Excluded      0 

Surface_SW Excluded      0 

Terrain_Vertical 0,076 0,013 0,020 0,004 5,808 0,000 13 

AADT_Light Excluded      0 

No_Lanes Excluded      3 

Surface_type Excluded      0 

Shoulder_type 0,378 0,015 0,088 0,004 24,525 0,000 20 

Ground_SW -0,078 0,014 -0,037 0,007 -5,496 0,000 11 

Horizontal (Curves/ 

length) 
Excluded      3 

Access_Density Excluded      7 

Pavement 

_Condition 
Excluded      5 

SSD Excluded      5 
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b) CPM 5: High Order Rural Roads (MLR tests and parameter estimates) 

Table C.14 CPM 5 Breusch-Pagan test 

Breusch-Pagan Test for heteroskedasticity 

BP df p-value 

354.69 5 0.000 

 

 

Figure C.9 CPM 5 Predicted model values vs observed dataset values 
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Table C.15 Summary of best subset models for CPM 5 

Subse
t No. 

Summary of best subsets; variable(s): Crash_Rate (Winsorized) (High Order Rural Roads) -CPM 5 

R square and standardized regression coefficients for each sub model 

R 
Squa

re 

No. of 
Effects 

AADT_
Light 

AADT_
Heavy 

85th Operating 
Speed (Ops) 

Lane_
Width 

No_L
anes 

Surface
_type 

Shoulde
r_type 

Surfac
e_SW 

Groun
d_SW 

Horizont
al (C/L) 

Terrain_
Vertical 

Access_
Density 

Pavement_C
ondition 

Sight 
SD 

 

59 0,409 5 - -0,606 0,076 
  

- 0,135 
  

-0,048 0,124 
   

61 0,409 5 - -0,612 0,078 
  

- 0,135 
   

0,129 -0,046 
  

70 0,409 5 - -0,586 0,081 
  

- 0,127 -0,047 
  

0,128 
   

75 0,408 5 - -0,612 0,079 
  

- 0,136 
   

0,124 
 

-0,034 
 

79 0,408 5 - -0,609 0,075 0,025 
 

- 0,129 
   

0,128 
   

80 0,407 5 - -0,617 0,074 
  

- 0,138 
 

0,018 
 

0,128 
   

81 0,407 5 - -0,612 0,077 
  

- 0,136 
   

0,127 
  

0,015 

82 0,407 5 - -0,609 0,075 
 

-0,005 - 0,137 
   

0,128 
   

90 0,405 5 - -0,610 
   

- 0,135 
  

-0,045 0,137 -0,039 
  

94 0,405 5 - -0,620 
   

- 0,137 
 

0,032 -0,052 0,135 
   

96 0,404 5 - -0,610 
   

- 0,136 
  

-0,047 0,133 
 

-0,026 
 

97 0,404 5 - -0,594 
   

- 0,130 -0,029 
 

-0,045 0,136 
   

98 0,404 5 - -0,608 
 

0,025 
 

- 0,128 
  

-0,047 0,136 
   

100 0,404 5 - -0,626 
   

- 0,138 
 

0,031 
 

0,141 -0,045 
  

101 0,404 5 - -0,614 
 

0,029 
 

- 0,128 
   

0,141 -0,043 
  

103 0,404 5 - -0,599 
   

- 0,131 -0,030 
  

0,141 -0,039 
  

104 0,404 5 - -0,609 
  

0,004 - 0,136 
  

-0,048 0,134 
   

105 0,404 5 - -0,609 
   

- 0,136 
  

-0,047 0,135 
  

0,004 

108 0,404 5 - -0,615 
   

- 0,137 
   

0,139 -0,039 -0,022 
 

113 0,403 5 - -0,614 
   

- 0,137 
   

0,140 -0,041 
 

0,002 
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Table C.16 CPM 5 Parameter Estimates 

N=2225 

Regression Summary for Dependent Variable: Crash_Rate(W) (All Rural Roads) – CPM 5 

R= 0.66784454; R²= 0.44601633; Adjusted R²= 0.44476805; CV-R^2=0.44 

F (5,2219) = 357.31; p<0.0000 

Std. Error of estimate = 0.04121 

b* 
Std. Err. of 

b* 
b 

Std. Err. of 

b 
t (2219) p-value 

No. of times 

in best 20 SM 

Intercept   0,085 0,002 43,624 0,000  

AADT_Heavy -0,594 0,016 -0,000 0,000 -36,212 0,000 20 

85th Percentile 

Speed (Ops) 
0,041 0,016 0,000 0,000 2,556 0,011 8 

Lane Width Excluded      3 

Surface_SW Excluded      3 

Terrain_Vertical 0,120 0,016 0,017 0,002 7,421 0,000 20 

AADT_Light Excluded      0 

No_Lanes Excluded      2 

Surface_type Excluded - - - - - 0 

Shoulder_type 0,234 0,016 0,079 0,005 14,572 0,000 20 

Ground_SW Excluded      3 

Horizontal (Curves/ 

length) 
-0,033 0,016 -0,013 0,007 -2,064 0,039 8 

Access_Density Excluded      7 

Pavement 

_Condition 
Excluded      3 

SSD Excluded      3 
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c) CPM 6: Low Order Rural Roads (MLR tests and parameter estimates) 

Table C.17 CPM 5 Breusch-Pagan test 

Breusch-Pagan Test for heteroskedasticity 

BP df p-value 

22.28 5 0.000 

 

 

Figure C.10 CPM 6 Predicted model values vs observed dataset values 
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Table C.18 Summary of best subset models for CPM 6 

Subse
t No. 

Summary of best subsets; variable(s): Crash_Rate (Winsorized) (Low Order Rural Roads) -CPM 6 

R square and standardized regression coefficients for each sub model 

R 
Squa

re 

No. of 
Effects 

AADT_
Light 

AADT_
Heavy 

85th Operating 
Speed (Ops) 

Lane_
Width 

No_L
anes 

Surface
_type 

Shoulde
r_type 

Surfac
e_SW 

Groun
d_SW 

Horizont
al (C/L) 

Terrain_
Vertical 

Access_
Density 

Pavement_C
ondition 

Sight 
SD 

 

3 0,396 5 -0,204 
    

- 0,241 - -0,412 
 

0,086 
  

0,081 

6 0,394 5 -0,222 
    

- 0,200 - -0,420 0,059 0,090 
   

10 0,393 5 -0,205 
 

0,067 
  

- 0,161 - -0,416 
 

0,084 
   

14 0,392 5 -0,206 
    

- 0,201 - -0,423 
 

0,090 -0,037 
  

17 0,391 5 -0,220 
    

- 0,246 - -0,409 0,058 
   

0,085 

23 0,391 5 
 

-0,252 0,115 
 

-0,065 - - - -0,418 
 

0,072 
   

24 0,390 5 
 

-0,283 0,132 
  

- - - -0,422 
 

0,071 -0,046 
  

26 0,390 5 -0,208 
    

- 0,202 - -0,420 
 

0,090 
 

0,000 
 

30 0,390 5 -0,222 
 

0,086 
  

- 0,151 - -0,412 0,063 
    

31 0,390 5 -0,204 
    

- 0,247 - -0,412 
  

-0,038 
 

0,086 

34 0,390 5 
 

-0,284 0,139 
  

- - - -0,419 0,035 0,070 
   

35 0,389 5 -0,205 
 

0,048 
  

- 0,211 - -0,408 
    

0,070 

39 0,389 5 
 

-0,282 0,134 
  

- - - -0,418 
 

0,069 
 

0,015 
 

40 0,388 5 -0,206 
    

- 0,246 - -0,409 
   

0,017 0,087 

41 0,388 5 
 

-0,287 0,134 
  

- - - -0,418 
 

0,070 
  

0,013 

48 0,388 5 -0,224 
    

- 0,203 - -0,421 0,070 
 

-0,051 
  

52 0,388 5 
 

-0,289 0,144 
  

- - - -0,419 0,048 
 

-0,056 
  

57 0,387 5 -0,200 
 

0,088 0,129 
 

- - - -0,440 
 

0,082 
   

58 0,387 5 
 

-0,255 0,126 
 

-0,071 - - - -0,414 0,044 
    

60 0,387 5 -0,208 
  

0,188 
 

- - - -0,456 0,065 0,089 
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Table C.19 CPM 6 Parameter Estimates 

N=315 

Regression Summary for Dependent Variable: Crash_Rate(W) (All Rural Roads) -CPM 6 

R= 0.62892763; R²= 0.39554997; Adjusted R²= 0.38576922; CV-R^2=0.37 

F (5,309) = 40.442; p<0.0000 

Std. Error of estimate = 0.12416 

b* 
Std. Err. of 

b* 
b 

Std. Err. of 

b 
t (309) p-value 

No. of times 

in best 20 SM 

Intercept   0,749 0,090 8,314 0,000  

AADT_Heavy Excluded - - - - - 7 

85th Percentile 

Speed (Ops) 
Excluded - -  - - 11 

Lane Width Excluded - - - - - 2 

Surface_SW Excluded - - - - - 0 

Terrain_Vertical 0,086 0,044 0,034 0,017 1,940 0,053 12 

AADT_Light -0,204 0,054 -0,000 0,000 -3,754 0,000 13 

No_Lanes Excluded - - - - - 2 

Surface_type Excluded - - - - - 0 

Shoulder_type 0,241 0,059 0,101 0,025 4,074 0,000 11 

Ground_SW -0,412 0,046 -0,351 0,039 -9,020 0,000 20 

Horizontal (Curves/ 

length) 
Excluded - - - - - 8 

Access_Density Excluded - - - - - 5 

Pavement 

_Condition 
Excluded - - - - - 3 

SSD 0,081 0,049 0,000 0,000 1,635 0,103 6 
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D. Appendix D: Driver characteristics and risk factors – roadway condition analysis 

1. Risk factor coding  

Table D-1 presents coded risk factor combinations identified in the crash dataset used in the study. 

Table D.1 Crash causation risk factor codes 

No 

(Code) 
Combinations 

1 1 2 3 

2 1 2 4 

3 1 2 5 

4 1 2 6 

5 1 2 7 

6 2 3 4 

7 2 3 5 

8 2 3 6 

9 2 3 7 

10 3 4 1 

11 3 4 5 

12 3 4 6 

13 3 4 7 

14 4 5 1 

15 4 5 2 

16 4 5 6 

17 4 5 7 

18 5 6 1 

19 5 6 2 

20 5 6 3 

21 5 6 7 

22 6 7 1 

23 6 7 2 

24 6 7 3 

25 6 7 4 

26 1 1   

27 2 2   

28 3 3   

29 4 4   

30 5 5   

31 6 6   

32 7 7   

33 1 2   

34 1 3   

35 1 4   

36 1 5   

37 1 6   
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38 1 7   

39 2 3   

40 2 4   

41 2 5   

42 2 6   

43 2 7   

44 3 4   

45 3 5   

46 3 6   

47 3 7   

48 4 5   

49 4 6   

50 4 7   

51 5 6   

52 5 7   

53 6 7   

54 1     

55 2     

56 3     

57 4     

58 5     

59 6     

60 1 1 2 

61 1 1 3 

62 1 1 4 

63 1 1 5 

64 1 1 6 

65 1 1 7 

66 2 2 1 

67 2 2 3 

68 2 2 4 

69 2 2 5 

70 2 2 6 

71 2 2 7 

72 3 3 1 

73 3 3 2 

74 3 3 4 

75 3 3 5 

76 3 3 6 

77 3 3 7 

78 4 4 1 

79 4 4 2 

80 4 4 3 

81 4 4 5 

82 4 4 6 

83 4 4 7 
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84 5 5 1 

85 5 5 2 

86 5 5 3 

87 5 5 4 

88 5 5 6 

89 5 5 7 

90 6 6 1 

91 6 6 2 

92 6 6 3 

93 6 6 4 

94 6 6 5 

95 6 6 7 

96 7 7 1 

97 7 7 2 

98 7 7 3 

99 7 7 4 

100 7 7 5 

101 7 7 6 

102 1 3 4 

103 1 3 5 

104 1 3 6 

105 1 3 7 

106 1 4 2 

107 1 4 5 

108 1 4 6 

109 1 4 7 

110 1 5 2 

111 1 5 3 

112 1 5 6 

113 1 5 7 

114 1 6 2 

115 1 7 3 

116 1 7 4 

117 2 4 5 

118 2 4 6 

119 2 4 7 

120 6 6 6 

121 7 5 3 

122 7 5 2 

123 1 1 1 

124 2 2 2 

125 3 3 3 

126 4 4 4 

127 7     
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2. Frequency of risk factor combination 

Table D.2 Crash causation risk factor frequency 

Risk factor combinations 

Risk Factor 

Combination 

Frequency 

(N) 
Percent Valid Percent 

Cumulative 

Percent 

1 51 2.3 2.3 2.3 

2 153 7.0 7.0 9.3 

3 46 2.1 2.1 11.4 

4 114 5.2 5.2 16.6 

6 36 1.6 1.6 18.2 

7 8 0.4 0.4 18.6 

8 13 0.6 0.6 19.2 

9 2 0.1 0.1 19.3 

11 41 1.9 1.9 21.1 

12 31 1.4 1.4 22.6 

13 4 0.2 0.2 22.7 

14 3 0.1 0.1 22.9 

15 29 1.3 1.3 24.2 

16 7 0.3 0.3 24.5 

18 4 0.2 0.2 24.7 

19 1 0.0 0.0 24.7 

23 8 0.4 0.4 25.1 

24 7 0.3 0.3 25.4 

25 13 0.6 0.6 26.0 

26 12 0.5 0.5 26.6 

27 8 0.4 0.4 26.9 

28 5 0.2 0.2 27.2 

29 17 0.8 0.8 27.9 

31 16 0.7 0.7 28.7 

32 1 0.0 0.0 28.7 

33 124 5.6 5.6 34.4 

34 61 2.8 2.8 37.1 

35 41 1.9 1.9 39.0 

36 8 0.4 0.4 39.4 

37 66 3.0 3.0 42.4 

39 25 1.1 1.1 43.5 

40 46 2.1 2.1 45.6 

41 2 0.1 0.1 45.7 

42 22 1.0 1.0 46.7 

43 4 0.2 0.2 46.9 

44 22 1.0 1.0 47.9 

45 6 0.3 0.3 48.2 

46 5 0.2 0.2 48.4 

47 19 0.9 0.9 49.2 

48 7 0.3 0.3 49.6 

49 16 0.7 0.7 50.3 

50 9 0.4 0.4 50.7 

51 1 0.0 0.0 50.8 
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53 15 0.7 0.7 51.4 

54 48 2.2 2.2 53.6 

55 14 0.6 0.6 54.3 

56 29 1.3 1.3 55.6 

57 28 1.3 1.3 56.9 

58 1 0.0 0.0 56.9 

59 63 2.9 2.9 59.8 

60 21 1.0 1.0 60.7 

61 18 0.8 0.8 61.5 

62 57 2.6 2.6 64.1 

63 1 0.0 0.0 64.2 

64 1 0.0 0.0 64.2 

66 36 1.6 1.6 65.9 

67 1 0.0 0.0 65.9 

68 13 0.6 0.6 66.5 

70 8 0.4 0.4 66.9 

72 6 0.3 0.3 67.2 

73 1 0.0 0.0 67.2 

74 1 0.0 0.0 67.2 

75 1 0.0 0.0 67.3 

76 1 0.0 0.0 67.3 

77 4 0.2 0.2 67.5 

78 89 4.1 4.1 71.6 

79 28 1.3 1.3 72.8 

80 14 0.6 0.6 73.5 

81 47 2.1 2.1 75.6 

82 39 1.8 1.8 77.4 

90 132 6.0 6.0 83.4 

91 47 2.1 2.1 85.6 

92 5 0.2 0.2 85.8 

93 22 1.0 1.0 86.8 

94 2 0.1 0.1 86.9 

95 5 0.2 0.2 87.1 

102 79 3.6 3.6 90.7 

103 12 0.5 0.5 91.3 

104 29 1.3 1.3 92.6 

106 3 0.1 0.1 92.7 

107 12 0.5 0.5 93.3 

108 44 2.0 2.0 95.3 

110 1 0.0 0.0 95.3 

111 1 0.0 0.0 95.4 

112 5 0.2 0.2 95.6 

115 1 0.0 0.0 95.6 

117 5 0.2 0.2 95.9 

118 55 2.5 2.5 98.4 

119 3 0.1 0.1 98.5 

120 2 0.1 0.1 98.6 

121 3 0.1 0.1 98.7 

122 2 0.1 0.1 98.8 
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123 2 0.1 0.1 98.9 

124 3 0.1 0.1 99.0 

126 20 0.9 0.9 100.0 

Total 2195 100.0 100.0  

 

3. TSC-1 Model Information 

 

Figure D.1 TSC-1 Cluster sizes 
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Figure D.2 Covariate importance in TSC-1 Model 
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Figure D.3 Covariate effects in the cluster groups 
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a) TSC-1 Cluster 1 

 

Figure D.4 Covariate distribution in TSC-1 cluster 1  
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b) TSC-1 Cluster 2 

 

Figure D.5 Covariate distribution in TSC-1 cluster 2  
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c) TSC-1 Cluster 3 

 

Figure D.6 Covariate distribution in TSC-1 cluster 3 
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