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Abstract

English

Many speech processing tasks involve measuring the acoustic similarity between speech
segments. Conventionally, these speech comparisons are performed using dynamic time
warping (DTW), a computationally expensive alignment-based approach. Recent research
has shown that fixed dimensional vectors, which are representations for speech segments of
variable length, can be used in these tasks. These vectors, called acoustic word embeddings
(AWEs), allow for efficient comparisons. A number of studies have shown that AWEs can
be used in tasks such as unsupervised term discovery (UTD) and query-by-example-search
in a zero-resource setting, where transcriptions for speech are not available and full speech
recognition is therefore not possible. Therefore, some studies have focussed on developing
unsupervised AWEs methods in this setting. However, the intrinsic quality of supervised
AWEs is still vastly superior compared to unsupervised AWEs. This serves as motivation
to investigate methods to improve the quality of unsupervised AWEs. Additionally, this is
also of interest to the language acquisition field, considering that infants do not require
transcriptions to learn speech.

We focus on three different problem areas present in current AWEs. Firstly, we
consider the nuisance factors in AWEs. The acoustic properties of different speakers and
genders vary dramatically and in an unsupervised environment these properties, which
we call nuisance factors, can still be captured to a large extent. This is addressed by
applying speaker and gender conditioning and adversarial training to existing AWEs models,
the autoencoder recurrent neural network (AE-RNN) and correspondence autoencoder
recurrent neural network (CAE-RNN). We find that these methods reduce some speaker
and gender information and marginally improve the AWEs.

Secondly, we consider if improvements at the frame-level will have a positive effect
on the quality of the AWEs. Many AWE studies have focussed on the word-level, but
a few other zero-resource studies have instead focussed on developing short-time frame-
level speech representations that capture meaningful contrasts such as phonemes. These
contrasts are more relevant at a shorter time scale than most AWEs approaches, that focus
on discriminative words. Three existing representation types are considered: contrastive
predictive coding (CPC), autoregressive predictive coding (APC) and the correspondence
autoencoder (CAE). These are used as input features to the CAE-RNN and compared
to using conventional mel-frequency cepstral coefficients (MFCCs). Additionally, we
introduce a fourth learned representation method: correspondence autoregressive predictive
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Abstract iii

coding (CAPC), that combines the mechanisms of the frame-level CAE and APC models.
We find that better input features have a significant impact on the quality of the AWEs
with the best results from using the CPC features.

The last problem we consider is the training strategy used for AWE models. Motivated
by the idea that human infants are first exposed to speech from only a small number of
speakers which gradually increases, we apply a speaker number-based curriculum learning
strategy to the AE-RNN and CAE-RNN and compare it to using a multiple speaker
strategy. We find that this training strategy does not make a difference to the quality of
the AWEs.

Taken together, in our experiments we find that the most impactful solution is to
use learned frame-level representations as input. Speaker and gender normalising has a
marginally positive effect on the quality of the AWEs and the training strategy has no
impact. Going forward, these improved AWEs can be used in downstream tasks. Although
we only considered AWEs from the AE-RNN and CAE-RNN, the problems we focussed on
are not necessarily model-specific and our findings are relevant to other AWE modelling
research.
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Afrikaans

Baie spraakprosesseringstake behels dat die akoestiese ooreenkoms tussen spraaksegmente
gemeet word. Konvensioneel, word hierdie spraakvergelykings uitgevoer met behulp van
dinamies tyd-buiging, ’n raampie-ooreenstemgebasseerde metode wat berekenings gewys
duur is. Onlangse navorsing toon dat vaste dimensionele vektore, wat voorstellings vir
spraaksegmente van verskilende lengtes is, in hierdie take gebruik kan word. Hierdie
vektore, wat akoestiese woordinbeddings (AWI) genoem word, maak dit moontlik om
doeltreffend spraakvergelykings uit te voer. ’n Aantal studies het al gewys dat AWIs
gebruik kan word in take soos toesiglose term-ontdekking en navraag-na-voorbeeld soek
in ’n nul-hulpbron-spraakinstelling, waar transkripsies vir spraak nie beskikbaar is nie.
Daarom is daar in sommige studies gefokus op die ontwikkeling van toesiglose AWI-
modelering metodes in hierdie instelling. Die intrinsieke kwaliteit van AWIs onder toesig
is egter steeds ver hoër in vergelyking met toesiglose AWIs. Dit dien as motivering om
metodes te ondersoek wat die kwaliteit van toesiglose AWIs kan verbeter. Verder, is dit
ook van belang vir die taalverwerwingsveld, aangesien babas nie transkripsies benodig om
spraak aan te leer nie.

Ons fokus op drie verskillende probleemareas wat in huidige AWIs voorkom. Eerstens
beskou ons die oorlasfaktore in AWIs. Die akoestiese eienskappe van verskillende sprekers
en geslagte wissel dramaties en in ’n toesiglose instelling kan hierdie eienskappe, wat ons
na verwys as oorlasfaktore, nog tot in ’n groot mate vasgevang word in die AWIs. Ons
spreek dit aan deur spreker- en geslagsvoorwaardelikheid, en teenstrydige opleiding op
bestaande AWI-modelle, die outoenkodeerder herhalende neurale netwerk (OE-HNN) en
korrespondensie outoenkodeerder herhalende neurale netwerk (KOE-HNN), toe te pas.
Ons vind dat hierdie metodes van die spreker- en geslagsinligting verminder en dat dit die
kwaliteit van die AWIs effens verbeter.

Tweedens kyk ons of verbeterings op raamvlak ’n positiewe uitwerking op die kwaliteit
van die AWIs sal hê. Baie AWI-studies he al gefokus op die segmentvlak, maar ’n paar
ander nul-hulpbronstudies het eerder gefokus op die ontwikkeling van kort-tydperk spraak-
voorstellings op die raamvlak, wat betekenisvolle kontraste, soos foneme, kan opvang.
Ons oorweeg drie verskillende bestaande voorstellingtipes: kontrasterende voorpsellende
kodering (KVK), outoregresiewe voorspellende kodering (OVK) en korrespondensie ou-
toenkodeerder (KOE). Hierdie word as invoerkernmerkvektore vir die KOE-HNN gebruik
en ons vergelyk dit met die gebruik van die konvensionele Mel-frekewensie kepstrale
koëffisiënte. Ons stel ook ’n vierde metode vir geleerde voorstellings voor: korrespondensie
outoregresiewe voorspellende kodering, wat die meganismes van die raamvlak KOE- en
OVK-modelle kombineer. Ons vind dat hierdie beter invoerkernmerkvektore ’n groot
impak op die kwaliteit van die AWIs het waar die beste resultate van die gebruik van
KVK invoerkernmerkvektore is.
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Abstract v

Die laaste probleem wat ons oorweeg, is die opleidingstrategie wat vir AWI-modelle
gebruik word. Gemotiveer deur die idee dat babas aanvanklik aan spraak blootgestel word
van slegs ’n klein getal sprekers, pas ons ’n sprekergetalgebaseerde kurrikulumleerstrategie
toe op die OE-HNN en KOE-HNN en vergelyk dit met die gebruik van ’n meervoudige
sprekerstrategie. Ons vind dat hierdie opleidingstrategie nie ’n verskil maak aan die
kwaliteit van die AWIs nie.

Alles saamgevat, vind ons dat die mees effektiewe oplossing is om raamvlak geleerde
voorstellings as invoerkenmerkvektore te gebruik. Normalisering van spreker- en geslagin-
ligting in AWIs het ’n effens positiewe impak op die kwaliteit daarvan en die verskil in
opleidingstrategie het geen impak nie. Hierdie verbeterde AWIs kan vorentoe gebruik word
in stroomaf take. Alhoewel ons slegs AWIs van die OE-HNN en KOE-HNN oorweeg het,
is die probleme waarop ons gefokus het nie noodwendig modelspesifiek nie. Daarom is ons
vonds relevant vir ander AWI-modellering navorsing.
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Chapter 1

Introduction

A number of speech processing tasks rely on measuring the acoustic similarity between
speech segments [1–7]. Usually, similarity is measured using dynamic time warping (DTW),
an algorithm that finds an optimal alignment between speech segments [8]. However,
DTW is computationally expensive. This has led to research in methods of finding fixed-
dimensional speech representations, referred to as acoustic word embeddings (AWEs) [9–15].
These methods attempt to capture the acoustic information in speech segments of variable
length and condense it in such a way that segments containing the same words are mapped
to similar embeddings. Since speech segments can then be represented in the same fixed-
dimensional space, measuring the acoustic similarity can be done with a computationally
inexpensive distance calculation.

Only a few languages have the large amount of resources required for full speech
recognition tasks, yet there are 7 139 known languages in the world [16]. Gathering labelled
data for lower resourced language is expensive and not all languages even have writing
systems. Fortunately, many of the downstream tasks for which AWEs are useful can be
performed in a setting where transcribed speech resources are unavailable. Such tasks
include query-by-example search [1, 3, 4, 17], where a speech segment is used as a query
to search over a database of speech, and full speech segmentation [5–7], where the aim is
to discover the boundaries for spoken terms in a collection of spoken utterances. Speech
processing in settings without any labelled speech data is referred to as zero-resource
speech processing and with the introduction of the ZeroSpeech Challeges it has become
a popular field of research [18–21]. A number of studies have specifically focussed on
developing AWEs for this zero-resource setting [9, 11,13,22].

However supervised AWE methods (where word labels are available during training) still
greatly outperform unsupervised AWE methods [13, 22, 23]. Some studies have considered
finding better quality zero-resource language AWEs by using models that have been trained
in a supervised fashion on higher resourced languages [24–26]. Although these multilingual
studies have been successful, it is still of interest to research unsupervised AWE methods
as it relates closely to language acquisition – human infants acquire language without
access to transcribed speech data [27–29].

We consider a variety of problems in unsupervised AWEs that can be addressed at
the frame-level (short-time intervals in speech), segment-level (words or phrases) and
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3

batch-level (groups of words or phrases) by specifically focusing on the AWEs produced by
an autoencoder recurrent neural network (AE-RNN) [11] and those of a correspondence
autoencoder recurrent neural network (CAE-RNN) [13] model. The AE-RNN was the
first encoder-decoder model used as an AWE approach. Here, an input speech segment is
mapped to a latent variable and the model is trained to reconstruct the latent variable into
the input segment. These latent variables can then be used as AWEs. The CAE-RNN has
the same architecture as the AE-RNN, but the input-output pairs differ. Here, a pair of
speech segments that are predicted to be similar by a unsupervised term discovery (UTD)
system are used such that one segment is mapped to the latent variable and reconstructed
into the other. In a word discrimination task the AWEs of the CAE-RNN performed
comparable or slightly better compared to a DTW approach, indicating that the CAE-RNN
model is one of the current best unsupervised AWE approaches [13]. The aforementioned
word discrimination task, called the same-diff task [30], is also what we use to measure
the intrinsic quality of our AWEs. The specific problems surrounding unsupervised AWEs
that we consider are described below.

The acoustic properties of speech across different speakers and between adult men and
women vary dramatically. This includes properties like pitch, timbre and pronunciation
[31, 32]. In the unsupervised setting, where there is no word labels, these properties could
still be captured in the AWEs. This can lead to a scenario where AWEs for different words
from the same speaker can be more similar than AWEs representing the same word from
different speakers, and similarly for AWEs between men and women. In Chapter 3 we
confirm that unsupervised AWEs contain significant speaker and gender information by
showing that a classifier can predict the correct speaker identities or gender from AWEs
with high accuracy. This problem is addressed with two different methods: we apply
speaker or gender conditioning to the decoder component of the AE-RNN or CAE-RNN
and we adversarially train both models against a speaker or gender classifier. We find that
both of these methods reduce some of the speaker and gender information and result in
marginal improvement in the AWE performance.

Most unsupervised AWE approaches have only focused on the segment-level, where
they aim to encourage models to produce AWEs that are discriminative between words.
For example, the CAE-RNN uses top-down information presented by corresponding speech
segments in UTD pairs to form AWEs that capture segment-level relevant linguistic
information. However, also in the zero-resource speech field, there have been other studies
that focussed on unsupervised representation learning at the short-time frame-level [33–38].
In these studies they aim to learn frame-level speech representations that discriminates
well at a shorter time interval than words, like phonetic categories. Training deep neural
network (DNN) models on the audio waveform directly is computationally expensive and
most AWEs studies train models on feature engineered frame-level representations, like
MFCCs [9,11,13]. It is worth investigating if the quality AWEs can be improved if improved
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features are used as input to AWE models. We implement three existing types of frame-
level representations: the frame-level correspondence autoencoder (CAE) [37], contrastive
predictive coding (CPC) [39] and autoregressive predictive coding (APC) [38,40]. We also
introduce a fourth type that combines mechanisms from the frame-level CAE and APC
model and we call it CAPC. The frame-level CAE uses top-down information presented
in UTD pairs, like the CAE-RNN, but here the two segments in a pair are further aligned
so that each frame the one speech segment has a corresponding frame in the other. This
aim is to learn frame-level representations that only capture information that is present in
corresponding frames and therefore disregarding noise or speaker information. In both the
CPC and APC approaches, representations are learned by training the models to predict
future frames from previous frames. Here, the aim is for the frame-level representations
to capture the information shared between frames over short intervals. This usually
includes higher level information like phonemes and disregards noise. In our experiments,
in Chapter 4, we find that using these learned representations as input to the CAE-RNN
result in AWEs that significantly outperform those from the CAE-RNN trained on MFCCs.
Additionally, in probing tasks we show that the different learned representations capture
different information.

Most unsupervised AWE approaches train models from a fixed training set with multiple
speakers. Consider the order in which human infants are exposed to speech input: initially,
we are only exposed to the speech from a limited number of people and this pool of people
gradually grows as we get older. Some studies have shown that the strategy used to feed
input into a DNN model can have an impact in terms of the order of difficulty that the
input is presented in [41–47]. Keeping in mind both of these ideas, we suggest a curriculum
learning training strategy for AWE models where the order of difficulty is determined by
the variance in speakers. In Chapter 5 this training strategy is compared to using the
conventional multiple speaker strategy and we find that, unfortunately, there is almost
no difference in the quality of AWEs produced by models trained on the two different
strategies.

In summary, we investigate various approaches to improve the quality of unsupervised
AWEs from the CAE-RNN in Chapters 3, 4 and 5 and also from the AE-RNN in Chapters
3 and 5. The various approaches address the AWE models at different levels. Using
learned representations as input, addresses the frame-level. By using higher level speaker
and gender information for augmenting the models for speaker and gender conditioning or
changing the loss functions with adversarial training, we address the segment-level. In our
speaker number based curriculum learning approach, we focus on speaker variance, which
is also batch-level information. We find that the best improvement in AWE is from using
learned representations as input to the CAE-RNN. Normalising out speaker and gender
information leads to marginal improvement in AWEs and using a curriculum learning
training strategy does not lead to improvement.
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1.1. Thesis outline
The remainder of the thesis is organised as follows:

Chapter 2: We discuss background that relates to unsupervised AWEs in general,
the downstream tasks for which they are useful and previous unsupervised AWE
approaches. Other information relevant to the chapters that follow is also discussed:
the details of the AE-RNN and CAE-RNN that will be used, the same-diff task
evaluation method and the English, Xistonga and Hausa datasets.

Chapter 3: This chapter focusses on normalising out speaker and gender information
in AWEs. First, other work related to speaker and gender normalising in acoustic
modelling is briefly discussed. This is followed by the discussion of the methods
we will employ for normalising out speaker and gender information: speaker and
gender conditioning and adversarial training. Next is our experimental setup for
these methods. Then we discuss development experiment results to address some of
the questions relating to the methods used and we report the test results of the best
methods on English and Xitsonga data. The chapter is concluded with a summary
of our findings.

Chapter 4: This chapter focusses on implementing and using learned representations
as input to the CAE-RNN. We briefly discuss unsupervised representation learning
methods that has been presented in other studies, specifically representations that
use top-down information and predictive coding approaches. There are four learned
representations that we consider and we discuss their details and how our experiments
will be set up: the frame-level CAE, CPC, APC and CAPC. We report the test
results of using the four learned representations as input to an AWE model and
compare it to using MFCCs. Different probing tasks are set up to further analyse
the different learned representations and the different effects they have on produced
AWEs. The chapter ends with a short conclusion section.

Chapter 5: This chapter focusses on speaker number-based training strategies. First,
we discuss other studies that have incorporated a curriculum learning training
strategy for their models as well as work that is related to how the number of
speakers impact speech perception in humans. The details of the different training
strategies that we will compare are discussed: a multiple speaker, single speaker,
curriculum learning and reverse curriculum learning strategies. How these different
strategies will be set up is discussed next. Different combinations of the strategies
are used on the subsequently trained AE-RNN and CAE-RNN and we report the
development investigation results followed by the test results on Hausa data for
the best combinations. We also report as short analysis on the different training
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strategies by considering the average precision (AP) score progression through a
range of epochs. We conclude with a summary of our findings.

Chapter 6: In the final chapter we summarise and discuss the different approaches we
followed in an attempt to improve unsupervised AWEs and what our findings were.
This is followed by what we think should be focussed on in future work.

1.2. Contributions
In this thesis we use ideas and methods that have been presented in other areas of deep
learning or acoustic modelling and we apply them to unsupervised AWE models. Even
though we only consider the AE-RNN and CAE-RNN, we are the first to apply these
methods to any AWE model. More details are listed below.

• We are the first to apply speaker or gender normalising to AWE models directly,
using speaker or gender labels and to the best of our knowledge, we are the first to
apply direct gender normalising to an acoustic model.

• We are the first to use learned representations as input to AWE models. Previous
studies have mostly used feature engineered frame-level speech representations
like MFCCs, perceptual linear prediction or frequency-domain linear prediction
features [9, 13, 48].

• The CAPC model of Chapter 4 is a novel frame-level representation learning model
that combines mechanisms of the frame-level CAE model [37] and APC. We show
that CAPC input features lead to improved results compared to both those of the
CAE model and APC on the English data, indicating that the combination of the
two is complementary.

• We are the first to apply a curriculum learning training strategy to AWE models
and also to the best of our knowledge, the first to introduce a curriculum learning
strategy based on the number of speakers. Previous speech processing studies have
consider curriculum learning training strategies based on levels of noise [43, 47] and
level of emotion ambiguity [45].

1.3. Publications and code
The majority of Chapter 3 is based on a paper presented in Proceedings of the Annual
Symposium of the Pattern Recognition of South Africa (PRASA) (2020) [49] and the
majority of Chapter 4 is based on a paper presented at the IEEE Spoken Language
Technology Workshop (SLT) 2021 [50]. The repository containing all the code used for the
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experiments in this thesis can be found at:
https://bitbucket.org/leesah20/acousticwordembeddings/src/master/
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Chapter 2

Background

In the chapters that are to follow we will discuss the related work relevant to the approach
focused on in each individual chapter. But in this chapter we focus on work related
to unsupervised AWEs in general. There have been a number of different modelling
approaches used for unsupervised AWE and we highlight some of these studies in Section
2.1. One of our main motivations for AWEs is that they can be used in downstream
tasks instead of DTW methods for more efficient computation. The work related to two
different downstream tasks for which AWEs have been used is highlighted in Section 2.2.
Further we discuss the details of the information that is relevant to the chapters that will
follow: the AE-RNN and CAE-RNN in Section 2.3, the word discrimination task we use
for evaluation in Section 2.4 and the English, Xitsonga and Hausa datasets that will be
used for our experiments in the chapters to follow in Section 2.5.

2.1. Modelling unsupervised acoustic word embeddings
Here we will highlight studies that have focused on modelling unsupervised AWEs, starting
with the early approaches and then those that used DNN models.

Levin et al. [9] was the first to introduce AWEs. They compared various unsupervised
and supervised approaches for extracting AWEs within a setting where only a few hours of
speech are available. The first approach they considered is downsampling, a method that
does not require any training data or labels. Here, a chosen number of frames is sampled
from a speech segment and concatenated together to form an AWE. The frames can be
sampled uniformly or with a non-uniform method (like in this study where they use an
hidden Markov model (HMM) to divide the segment into regions of which the averages are
then concatenated). Downsampling has also been used for AWE in a speech segmentation
task (Section 2.2.2) and as a baseline AWE method in other studies [13,15]. We also use
this approach as a baseline in Chapter 4.

The other unsupervised approaches that the study considers are reference vectors
and Laplacian eigenmaps. Reference vectors are a type of Lipschitz embedding [51, 52].
Here the DTW costs between a speech segment and each segment in a reference set is
determined and concatenated together to form the reference vector. The reference set

8
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must contain enough speech segment for it to form an adequate basis of all possible speech
segments, this can result in the reference vectors being very large. Linear dimensionality
reduction methods can be used to mitigate this, the unsupervised reduction method that
they use is principal component analysis (PCA). They found that the dimensionality can
be reduced significantly with this method with only a slight decrease in performance.

The only unsupervised AWE extraction approach that they found matched the per-
formance of DTW is by using Laplacian eigenmaps [53]. Here, a graph is created where
the vertices are the speech segments of the training data. A vertex has is connected to all
other vertices that are one of its k nearest neighbours, determined by the DTW cost. A
set containing chosen number of projection maps is then used to map a speech segment
to a set of values, which can then be used as the AWE. The projections maps are set up
so that training speech segments that are close together in the graph will be mapped to
embeddings that are close together. This type of AWE has been used in query-by example
search (Section 2.2.1) and speech segmentation (Section 2.2.2) tasks.

Although some of these unsupervised AWEs have proven useful [1, 5–7], they found
that all their supervised approaches, where they had access to the word label for each
training segment, significantly outperforms all unsupervised approaches and DTW in a
word discrimination task. Others have since focussed on producing higher quality AWEs
by using DNN models.

Chung et al. [11] was the first to propose a DNN model for learning AWEs. Their model
is the autoencoder recurrent neural network (AE-RNN) and based off the encoder-decoder
recurrent neural network (RNN) of [54]. This model consists of an encoder and decoder
which each comprises a stack of RNNs. The encoder maps an input sequence of features
to a fixed dimensional latent variable. The decoder then reconstructs this latent variable
to match the input sequence. The latent variable is then used as the AWE.

Kamper et al. [12] and Settle and Livescu [48] both used Siamese networks to train AWE
from speech segments that are known to be similar or different. In [12] a convolutional
neural network (CNN) architecture was used to train two speech segments at a time
on the same model with the same parameters. The loss was minimised or maximised,
depending on if the segments were known to be similar or not, respectively. In [48] an
RNN architecture was used and the model was trained on three segments at a time, where
one is chosen to be the anchor and of the other two, one is chosen to be similar to the
anchor and the other one to be different. A triplet loss function is then used on the three
AWEs. UTD can be used here to find known similar segments, but in this case the results
are poor [22].

Kamper [13] proposed a correspondence autoencoder recurrent neural network
(CAE-RNN) model that is similar to the AE-RNN with the exception that the model is
not trained to reconstruct the input segment but rather a different segment that is known
to be similar to the input. The input-output pair of similar pairs can be obtained in
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an unsupervised fashion by using a UTD system [55] (Section 2.2.2). In the same study
they also consider a variational autoencoder (AE) for learning AWEs, but the AWEs of
the CAE-RNN were superior. Their CAE-RNN trained on unsupervised input-output
pairs was shown to give comparable or slightly better performance compared to a DTW
approach [13], making it one of the best unsupervised AWE models. More details on the
AE-RNN and CAE-RNN are discussed in the next section (Section 2.3).

Some studies have considered improving the quality of unsupervised AWEs produced
by the CAE-RNN by training the model in a supervised fashion and then using it to
encode zero-resource language AWEs [25] or modifying the architecture by incorporating
variational AE elements [22].

2.2. Downstream tasks for unsupervised AWEs
Unsupervised AWEs are useful in downstream tasks where the tasks involve finding the
acoustic similarity between speech segments. We highlight two of these tasks that can
be used in low resource settings, query-by-example search on speech in Section 2.2.1 and
unsupervised spoken term segmentation in Section 2.2.2.

2.2.1. Query-by-example search

Query-by-example search on speech is the task of searching over a collection of speech
by finding matches for a spoken query [56–58]. This task can be particularly useful for
zero-resource setting applications as it does not necessarily require large vocabulary speech
data nor transcriptions [57,59].

Early methods for query-by-example search include HMM and DTW approaches. The
HMM approaches include using discrete HMMs to model phonetic confusion networks
to represent the query [60] or using the state sequence of an ergodic HMMs to represent
the queries [61]. Studies that followed DTW approaches were found to produce better
results, like in Hazen et al. [58] where they used an independently trained phoneme
classifier to convert the frames in the spoken query and speech collection into sequences
of phonetic posteriorgrams to which DTW is then applied to find the matches. Zhang
and Glass [57] followed this approach, but they avoided using a pretrained phonetic
classifier by training a gaussian mixture model (GMM) on the input speech without
transcription and then using it to generate Gaussian phonetic posteriorgrams. The DTW
algorithm is computationally expensive (it runs in polynomial time) and some studies
have considered less expensive DTW approximated alignments for query matches [62–64].
One of these methods,randomized acoustic indexing and logarithmic-time search (RAILS),
was introduced by Jansen and Durme [63]. Here, frames are first hashed to bit signatures
and when a query is presented an approximate nearest neighbours algorithm is used to
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retrieve likely frame-level matches. The frame-level matches are used to form similarity
matrices on which image processing techniques are used to find segment level matches.
This method reduces computational complexity to logarithmic time.

Besides being computationally expensive, another limitation to DTW approaches is
that longer phoneme sounds are weighted more, which must sometimes be accounted
for [57]. Levin et al. [17] introduced using AWEs for query-by-example search. Here
they used a similar system to [63] called segmental RAILS. However, here the queries
and speech collection were converted to laplacian eigenmap AWEs which then allows
the frame-level processing to be skipped and the AWEs can be hashed directly. In their
experiments they found that this system achieves considerable better accuracy results and
the runtime is greatly decreased compared to [63].

Settle et al. [1] used segmental RAILS for query-by-example search as well, but they
used DNN produced AWEs from the Siamese RNN model in [48] (which does require a
small amount of word-level transcriptions). They found that the DNN produced AWEs
result in large improvements in accuracy, compared to using the laplacian eigenmap AWEs
like in [17]. Other studies have since also had success with query-by-example search using
AWEs [3,4].

2.2.2. Unsupervised spoken term discovery and segmentation

Park and Glass [2] were the first to introduce unsupervised spoken term discovery. The
aim of this task is to find repeating patterns in speech and cluster matching terms together
[2, 55, 65]. In [2] a segmental DTW algorithm was used to find matching subsequences
between different speech utterances and an adjacency graph was then used to cluster the
terms. Jansen and Van Durme [55] presented a less computationally expensive spoken term
discovery system that runs in linear linearithmic time where as DTW runs in quadratic
time. They used an approximate nearest neighbours algorithm with randomised projections
to find a similarity matrices to which a search and retrieval algorithm is then applied to.
This system has been used to discover similar speech segment pairs that are used as input
and output to zero-resource speech models [37,66] including AWE models [13].

Unsupervised speech segmentation is another task that aims to find the boundaries for
spoken terms, but instead of isolating only discovered repeated terms, all speech input is
segmented. Some studies have focussed on modelling words from subword units, jointly [67]
or in a hierarchical fashion where subword units are first discovered and then words are
modelled on top of these units [68, 69]. One of these studies, Walter et al. [69], used
unsupervised speech segmentation for digit recognition. Here, they presented a two-stage
hierarchical system. In the first stage, subword units are discovered by segmenting these
units in the input, clustering them based of DTW distances and modelling each unit type
on a HMM. In the second stage, HMMs of repeating subword sequences are fed into a
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word-level HMM. There is a word-level HMM for each digit, so that the output of each is
a pronunciation dictionary.

Kamper et al. [7] introduced a system with the same digit recognition goal, but instead
of modelling on subword units, they modelled on AWEs. Here, the boundaries for segments
are iteratively hypothesised, starting with random boundaries. First, each segment is
mapped to a laplacian eigenmap AWE. Then the AWEs are modelled on a bayesian
GMM that cluster similar word types together so that each component represents one
word type. Next, the likelihood scores are calculated for all the AWEs which is used to
determine a segmentation score. Then the Gibbs sampling algorithm is used to sample the
likely segmentation boundaries based off the GMM probabilities. They found that this
approach outperforms the one followed by [69]. This approach has also been extended to
accommodate a large vocabulary where downsampled AWE [6] were used and made more
efficient by using k-means clustering instead of a GMM [5].

2.3. The autoencoder recurrent neural network and
correspondence autoencoder recurrent neural
network

In the following chapters we try to improve the AWEs from encoder-decoder RNN models,
specifically the AE-RNN and CAE-RNN. The details of these two models are discussed
below.

The architecture for the two models are the same as shown in Figure 2.1. In both
models, the encoder and decoder each consists of a stack of RNN layers. The encoder

Encoder Decoder

Figure 2.1: The CAE-RNN’s weights are initialised from those of an AE-RNN. The AE-
RNN is trained to reconstruct the input sequence X = (x0, x1, ..., xT ) from a latent vari-
able z. The CAE-RNN is trained to reconstruct a different sequence Y = (y0, y1, ..., yT )
predicted to contain the same word as the input X.
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maps an input sequence X of variable length into a fixed-dimensional latent variable z.
This latent variable could be the last hidden state of the last encoder RNN layer, but in
our case we add a linear layer after the encoder to transform the last hidden state into z.
We use these latent variables z as acoustic embeddings. The decoder then maps z to an
output sequence, denoted by X̂ for the AE-RNN and Ŷ for the CAE-RNN.

The AE-RNN is trained so that X̂ gives a reconstruction of the original input se-
quence [11]. We do this by minimising the mean square error (MSE) between the true
and reconstructed sequences:

LAE-RNN = 1
|X|
||X − X̂||22,1 (2.1)

Instead of reconstructing the input sequence, the CAE-RNN is trained to reconstruct
another instance of the same (predicted) word as the input sequence [13]. Since our training
data is unlabelled, we use a UTD system to automatically discover speech segments which
are predicted to be similar. For a given pair of sequences (X, Y ), the CAE-RNN is fed
with input X and then trained to reconstruct Y as its output. We do this by minimising
the MSE between the true sequence Y and the predicted output Ŷ .

LCAE-RNN = 1
|Y |
||Y − Ŷ ||22,1 (2.2)

The intuition behind the CAE-RNN is that the model learns to only encode information
that is shared between the input-output segments (such as the word identity) while
throwing out nuisance information.

2.4. Evaluation of acoustic word embeddings
We use the same-diff task to evaluate the intrinsic quality of the AWEs produced by
the different models [30]. This task works as follows. First an evaluation set of isolated
known words is encoded into AWEs using the trained AWE model that is in question
(the AE-RNN or CAE-RNN in our case). A decision of whether two AWEs, zi and zj

represent either the same or different words can then be made based on if the distance
between the AWEs are less than a chosen threshold. Here we use the cosine distance as
in [9] and [13]. The Euclidean distance can also be used, but [9] found that the cosine
distance generally leads to better results. The equation used to determine if zi and zj is
similar is as follows, where θ is the angle threshold.

cos−1
(

z>i zj

||zi|| · ||zj||

)
≤ θ (2.3)
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Next, for varying thresholds, a curve of the precision versus recall is created. Where
precision is defined as:

Precision = Number of word pairs correctly declared as similar
Total number of word pairs declared as similar

and recall is defined as:

Recall = Number of word pairs correctly declared as similar
Total number of similar word pairs

The area under this curved is called the average precision (AP) and we use this as a
metric to measure the quality of the AWEs, where higher values are better.

2.5. Data
In Chapters 3 and 4, we make use of two different languages for the experiments in this
thesis, English, from the Buckeye corpus [70] and Xitsonga, from from the NCHLT corpus
[71]. In Chapter 5, we use Hausa data from the Globalphone corpus [72].

The English training, validation and test sets each contain around six hours of speech
with 12 different speakers in the training set. For Xitsonga, we have a single set of 2.5 hours
with 24 speakers. The Hausa training set contains around six hours of speech and the test
and validation set each contain around one hour of speech.

Some of our experiments are trained on these full sets, but others like the experiments
with the CAE-RNN (Section 2.3) require pairs from a UTD system. The UTD system
allows our training to remain independent of speech transcription labels. In the English
training set around 14k unique pairs from 12 different speakers of are discovered. In
Xitsonga training set around 6k unique pairs with 24 different speakers are discovered.
Both languages have an equal number of male and female speakers. In the Hausa training
set around 33k unique pairs are discovered from 83 different speakers.

Since there is no validation data available for Xitsonga, we perform all development
experiments on the English validation data and then use exactly the same hyperparameters
on the Xitsonga set, replicating a true zero-resource setting.

All speech audio is transformed to into either 13- or 39-dimensional MFCCs.

2.6. Chapter summary
We discussed work related to unsupervised AWEs and the downstream tasks in which they
can be used. We specifically highlighted work related to query-by-example, UTD and full
speech segmentation. This should hopefully give the reader a good sense of how and why
AWEs came to be as well as why we are interested in using the AWEs from the CAE-RNN
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(it is currently one of the best AWE models). Furthermore we discussed the information
that is relevant to the remainder of this thesis. The details of both the AE-RNN and
CAE-RNN were discussed as we will use both these models in our experiments. We also
described the same-diff task that we use to calculate the AP score of AWEs from one
model which we use as a measure of intrinsic quality. Lastly some of the details of the
datasets that we will use were discussed. In Chapters 3 and 4 we use the English and
Xitsonga datasets. In Chapter 5 we rather use the Hausa dataset. The Hausa dataset
has a very unbalanced distribution of speech segments across different speakers, with the
majority of segments belonging to one speaker. This uneven distribution is appropriate
for the curriculum learning strategy of Chapter 5, but not for the methods used in the
other two chapters.
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Chapter 3

Speaker and gender normalised acoustic
word embeddings

In this chapter we investigate improving robustness of unsupervised acoustic word embed-
dings (AWEs) models against speaker and gender1 identity information. We specifically
aim to augment the autoencoder recurrent neural network (AE-RNN) and correspondence
autoencoder recurrent neural network (CAE-RNN) discussed in Section 2.3 so that their
resulting AWEs are speaker and gender normalised.

Two main ideas from previous acoustic modelling research are considered for our
approaches. In the first approach we condition the decoder component of the AE-RNN
or CAE-RNN on a trained speaker or gender embedding. We also compare initialisation
methods for these embeddings, we consider random initialisation and using pretrained
embeddings. In the second approach, we use adversarial training where an additional loss
term encourages the intermediate representation to be a poor signal for speaker or gender
classification. Both of these approaches make use of speaker and gender identity annotations.
However, in a low-resource environment these coarse annotations are presumably much
easier to obtain than transcriptions.

We evaluate the different approaches by analysing the speaker and gender information
retained in the resulting AWEs and by measuring the intrinsic quality using the word
discrimination task discussed in Section 2.4.

We show that in both the AE-RNN and CAE-RNN, conditioning models on speaker
and gender identity or using adversarial training leads to a reduction in some of this
information captured by the AWEs. However, for the English dataset, the intrinsic quality
of the AWEs are only marginally improved. The quality of Xitsonga AWEs show greater
improvement, with the biggest improvement being from speaker conditioning. We find
that conditioning on speaker or gender information leads to better results than adversarial
training and that using pretrained embeddings for the initialisation of speaker and gender
embeddings do not make a significant difference.

1In this chapter we make use of the term gender instead of sex in order to be consistent with the
terminology used in the released corpora.

16
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The work in this chapter is based on the work that was presented at Proceedings of the
Annual Symposium of the Pattern Recognition of South Africa (PRASA) (2020) in Van
Staden and Kamper [49].

3.1. Intuition and related work
We can divide the set of acoustic properties contained in any segment of speech into two
different types: the first type defines those that relate to linguistic content and the second
type defines those that are independent of linguistic content. We refer to the latter type
as nuisance factors. Nuisance factors include those that are similar in speech from the
same speaker or speakers of the same gender but differ across different speakers or genders
even if the contain some of the same word.

In many acoustic modelling tasks it is often only the linguistic content that is important.
Therefore it is necessary for acoustic models to generalise well across the variability of
different nuisance factors. The intrinsic quality of an AWE depends on the representation
of a speech segment’s linguistic content, but the AWE can also capture unwanted nuisance
factors. We hypothesise that AWE models that are robust against these factors will result
in AWEs with better represented linguistic content and therefore ultimately be of higher
intrinsic quality. In this chapter we specifically consider speaker and gender identity as
nuisance factors.

In Section 3.1.1 we discuss related work on speaker adaptive techniques used in speech
processing models. Two of these techniques include incorporating speaker embeddings and
adversarial learning, which we expand upon in Section 3.1.2 and Section 3.1.3, respectively.

3.1.1. Speaker adaptation and normalisation in acoustic modelling

Speaker adaptation refers to adapting data or a model to better fit a group of speakers and
normalisation refers to making data or a model invariant to speaker information. Our goal
is to normalise AWEs. However, take note that normalisation can fall under adaptation
and we use the two terms somewhat interchangeably.

There is evidence that suggests that speaker normalisation takes place in the human
auditory cortex. Behavioural experiments have shown that humans use speaker information
to correctly label vowel sounds: given a sound that is ambiguous between /u/ (as in “boot”)
and /o/ (as in “boat”), humans will label this sound as /o/ after a sentence spoken by
a person with a long vocal tract is played and label it /u/ after a sentence spoken by a
person with a short vocal tract is played [73]. Recent studies have demonstrated that the
parabelt region of the auditory cortex holds speaker invariant representation of speech
and conclude that the auditory cortex therefore applies some form of normalisation to
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speech [32,74]. This serves as motivation for applying normalisation techniques to acoustic
modelling.

Making use of speaker adaptation techniques is present in early acoustic modelling
research. Parameter transformation methods like maximum a posteriori (MAP) [75,76]
and maximum likelihood linear regression (MLLR) [77,78] are used for speaker adaptation
of HMMs. Here the parameters of the HMM model are re-estimated to better match
target speakers (often based on a small number of enrolment utterances). Re-estimating
the parameters of a DNN is more challenging due to the unpredictability of the weights
and the high number of parameters.

Some have looked at transforming neural network parameters by adding linear layers
at different levels of a network. Neto [79] investigated adding a layers after the input
layer and the output layer, respectively. Gemello et al. [80] proposed adding a layer after
the hidden layers of network. Siniscalchi et al. [81] changed the shape of the activation
functions in neural networks for different speakers. In all these cases the weights of a
trained acoustic model is frozen to which the transformation method is then added and
trained with the same objective function. Unfortunately, these methods are prone to
overfitting and require a lot of data for the adaptation phase to generalise well.

Research has also been done on speaker normalisation of features. Feature transforma-
tion methods like feature-space MLLR (FMLLR) [82] and vocal tract length normalisa-
tion (VTLN) [83] are used to extract features with GMM-HMMs systems.

Another approach is to allow the DNN to directly normalise across input speech features
without updating any of the network’s parameters. Abdel-Hamid et al. [84] introduced
using trained speaker embedding representations, called speaker codes, to condition a
neural network model at various layers. Here a DNN consists of an adaptation network
that is prepended to a trained speaker-independent network. The layers in the adaptation
network transform the input features into normalised features using the speaker information
represented by the speaker codes. Saon et al. [85] also proposed a system that makes
use of speaker embeddings as input, however, their system is trained end-to-end, where
one DNN model is trained to perform speaker adaptation and the acoustic modelling
task simultaneously, and instead of learning speaker codes they use pretrained speaker
embeddings called i-vectors. They found that this system achieves similar results to using
input features transformed by FMLLR or VTLN methods.

Xue et al. [86] proposed that instead of having a prepended adaptation network, only
one DNN is trained and conditioned on speaker embeddings at all layers. They found
that this method produced better results than in [84] and if the speaker embeddings were
initialised with i-vectors, the results further increased.

There has also been research done on directly normalising speaker information in
acoustic modelling with adversarial learning. Meng et al. [87] introduced a model that is
trained to learn acoustic units (senones) and encourages speaker invariance at the same
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time by mini-maximising the loss of a speaker classifier. They found that this methods
improve results and that the learned representations had less variability between speakers.

No direct speaker normalisation methods have been introduced to AWE models. The
CAE-RNN model does apply some speaker normalisation since the AWEs are trained to
encode information that is similar between segments spoken by different speakers. We aim
to explicitly normalise AWE by using the ideas presented in the existing conditioning and
adversarial methods.

3.1.2. Speaker and gender information as vectors

One popular approach in speaker verification and speaker recognition tasks is to use
embeddings that capture speaker characteristics. These speaker embeddings have also
proven to be useful in speaker adaptation tasks (as discussed in the previous section).

Dehak et al. [88] proposed a framework for speaker embeddings called i-vectors (named
after identity vectors). This framework consists of a GMM based universal background
model (UBM) that gathers high-dimensional statistics of the data which is then projected
to the low-dimensional i-vectors. I-vectors are not used as speaker representations only,
they have also been used to represent other types of information like gender identity [89,90].

DNNs can be used to replace or add to the UBM from the i-vector framework to
improve results [91–93]. There has also been proposals to replace the whole i-vector feature
extraction method with a DNN. Variani et al. [94] proposed a DNN model to extract
speaker embeddings called d-vectors (named after deep vectors). Here a feedforward neural
network (FNN) is used to map input speech features to speaker probabilities; the sequence
output from the last hidden layer is then averaged and used as the d-vector. However,
this model was designed for text-dependent systems (all the input utterances were the
same phrase spoken by different speakers). There have been adaptations of this model
for text-independent speakers. Li et al. [95] expanded this model for text-independent
systems by adding CNN and time-delay neural network (TDNN) [96] layers. They argue
that the CNN layers learn local speaker trait patterns and that the TDNN layers extend
the temporal context.

Snyder et a [97] proposed a different text-independent model that also makes use of
TDNN layers. Their model consists of TDNN layers followed by a statistics pooling layer
and then linear layers that map to speaker probabilities. The speaker embeddings can be
extracted from either of the two linear layers that follow the pooling layer. They found
that i-vectors still produce better results on long utterances, but on short utterances
(shorter than 20 seconds) x-vectors produce better results. In an i-vector versus x-vector
analysis, Raj et al. [98] found that x-vectors capture speaker and channel characteristics
well and suggest that they therefore will be useful in a speaker adaptation task.
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3.1.3. Adversarial learning for DNN models

Schmidhuber [99] introduced the idea of having two competing neural network models
in a task called predictability minimisation. From the first model, consider one hidden
layer with h units. Here their second model is trained to predict the value of one of the
units given the h− 1 other units as input and the first model is trained to minimise this
predictability. The aim of predictability minimisation is to aid the first model in learning
a main task by serving as a regulariser that encourages statistical independence between
units in the same layer.

More recently, Goodfellow et al. [100] proposed a generative adversarial network (GAN)
framework that shows that with the aid of adversarial learning, neural networks can be
very good at modelling distributions of high-dimensional data. Here a generative model
estimates the distribution of given training data and a discriminative model is trained to
predict if a sample data point is from the training data or produced by the generative
model. The models are put against each other by training the generative model to produce
samples that the discriminative model will classify as from the training data.

Based on these ideas, Ganin et al. [101] proposed an adversarial learning framework to
produce vector representations of images that are invariant to domain information. Here a
model maps an input image to a representation which is then used separately as input for
two different models, a domain and a target classifier. The loss of the domain classifier is
mini-maximised, this means that the domain classifier is trained to minimise its loss, but a
negative term is added to the representations’ loss function to maximise this classification
loss. This encourages the model to not encode domain information into the representations.
Others have used this same idea on speech, for noise [102] and speaker [87] robustness.

3.2. Methodology
We use the conditioning and adversarial training approaches discussed in Section 3.1 to
try and normalise out speaker and gender information from AWEs. Although gender is a
weaker label than speaker identity, as it represents classes of many different speakers, we
are still interested to see how gender normalisation will compare to speaker normalisation.

3.2.1. Speaker and gender conditioning

In our first approach for normalising out speaker and gender information from AWEs,
we hypothesise that conditioning the decoder components of both the AE-RNN and
CAE-RNN on the target speaker or gender will make the model less reliant on speaker
or gender information, specifically in the encoder. This means that the resulting AWE
will (hopefully) be more invariant to the speaker or gender information. This is different
to the approaches of other speaker conditioning models where the embeddings are given
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Encoder Decoder

speaker/gender

Figure 3.1: The architecture of both the conditioned AE-RNN and CAE-RNN. The
AE-RNN will decode the embedding into X̂ and the CAE-RNN will decode it into Ŷ .
The speaker or gender vector is concatenated with the input to the decoder at each time
step.

as input to the model [85] or at all layers [86]. However, the AE-RNN and CAE-RNN
are both trained to reconstruct a speech segment from the AWE; any speaker or gender
information contained will be useful for this task and therefore we only condition the
decoder component.

An array of trainable embeddings are created for each target speaker and gender in our
training set. During training, we append this embedding to the decoder input at each time
step. Fig. 3.1 illustrates where in the model the conditioning embedding will be added.

We consider three different ways to initialise the embeddings, namely, randomly, with
self-pretrained embeddings or with x-vectors.

Randomly initialised embeddings

The simplest way to initialise the speaker and gender embeddings is to sample them from a
random distribution. So, initially each embeddings will not contain any speaker or gender
information, but during training it will be updated so that it contains useful information
for the primary learning task. This is similar to speaker codes used in [86].

Self-pretrained embeddings

It is possible that the speaker or gender embeddings on their own have not been updated
sufficiently by the time the minimisation of the loss function has converged.

In a study on initialisation of word embeddings, Kocmi et al. [103], found that em-
beddings that are initialised with self-pretrained embeddings leads to improved results in
language modelling tasks. Here embeddings are extracted from a trained model and then
re-used to initialise the embeddings of an untrained model. Inspired by this idea, we extract
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the trained randomly initialised speaker and gender embeddings from trained AE-RNN
and CAE-RNN models and use them to initialise the embeddings of new untrained models.

X-vectors

Previous studies have shown that i-vectors are useful for speaker adaptation tasks [85, 86].
A more recent type of trained speaker vectors are x-vectors which have also been shown
to capture speaker information from short utterances, like in our datasets, better than
i-vectors [97].

The model used to extract x-vectors performs transformation at frame- and segment-
level. The function, fframe, consisting of five TDNN layers (which will be discussed below),
performs frame-level transformations on an input utterance X [96]. The architecture of
fframe is depicted in Figure 3.2. At each TDNN layer, frames at time step t are spliced
with the surrounding frames to form context vectors, these are then transformed by a
linear layer to be used as frames for the next layer. The first layer forms a context vector
at t from frames at time steps [t− 2, t+ 2]. The temporal context is widened in the next
two layers by choosing frames that are further away from t so that the context vectors at t
formed at the second and third layer is from time steps {t− 2, t, t+ 2} and {t− 3, t, t+ 3},
respectively. The two layers after this do not add any temporal context and only the frame
at t is transformed in both cases. The mean and standard deviation of the output of fframe

is then calculated and spliced together, (µfframe , σfframe). This steps ensures that input

Figure 3.2: The depiction of the frame level operation performed by fframe to produce
one output frame at time step t given X as input.
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Figure 3.3: The architecture of the model used to extract the x-vectors. Given X as
the input, the model is trained to predict the probabilities p of the speakers or genders.
Either v1 or v2 can be used as the x-vector.

sequences of different lengths are ultimately transformed to vectors of equal length. Next,
two linear layers, fsegment1 and fsegment2, perform transformations at the segment level so
that fsegment1((µfframe , σfframe)) = v1 and fsegment2(v1) = v2. Then v2 is finally mapped by a
third linear layer and softmax function to the probabilities of the utterance belonging to
each speaker or gender. This model is depicted in Figure 3.3.

For a training set ofN speakers the model will return a set of probabilities, p = p1, ..., pN .
If the true speaker label of the AWE is at c, then the loss function to be minimised for a
single utterance is the speaker classification loss function below:

LSC = −pc + log
(

N∑
i=1

exp (pi)
)

(3.1)

We use the same multiclass log loss for gender classification, but here there are only
two probabilities determined by the model, female, pf , and male, pm. The loss function
for a single utterance given as input is the gender classification loss below:

LGC = −pc + log (exp (pf) + exp (pm)) (3.2)

Either v1 or v2 can be used as an x-vector. In the original x-vector paper [97] they
used v1, but Kanagasundaram et al. [104] found that for short utterances (shorter than 10
seconds) better results are achieved if v2 is used.

3.2.2. Adversarial training

In our second approach to normalise speaker and gender information in AWE, we adver-
sarially train our model against a speaker or gender classifier.

Our approach is similar to the adversarial training method introduced by Ganin
et al. [101] and used for speaker invariance by Meng et al. [87]. However, instead of
representations that will minimise the target classification loss, our representations (AWEs)
are decoded into sequences that will match a target sequence.
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Figure 3.4: The FNN used to classify speaker or gender identity during adversarial
training.

We want the AWEs to contain enough information so that it is possible to sufficiently
minimise the loss functions defined in (2.1) for the AE-RNN and (2.2) for the CAE-RNN.
At the same time we also want to reduce some of the speaker and gender information in
the AWEs by maximising the loss of a speaker or gender classifier. For this classifier, we
use a FNN trained to predict the probability of an AWE belonging to each speaker or
gender in the training set by minimising a multi-class log loss function as defined in (3.1)
for speakers and (3.2) for genders. The classifier model is depicted in Figure 3.4. The
final loss for adversarial training is is defined as (3.3) for the AE-RNN and as (3.4) for
the CAE-RNN below.

Ladv
AE-RNN = LAE-RNN − γLC (3.3)

.

Ladv
CAE-RNN = LCAE-RNN − γLC (3.4)

Here LC is the classification loss for either speaker (3.1) or gender (3.2) of the AWE
and the trade-off weight value, γ, is a hyperparameter.

To ensure that the classifier can effectively determine the speaker or gender predictability
of the AWEs in training, its weights must be updated regularly. We enter the two models
into a turn-based system. During turn A, the weights of the classifier are frozen and
we train the model (the AE-RNN or CAE-RNN) to minimise the loss in (3.3) or (3.4).
During turn B, the weights of the model is frozen and we train the classifier to minimise
the loss in (3.1) or (3.1) given the AWEs produced by the previous turn A as input. This
system is depicted in Figure 3.5.

3.2.3. Determining speaker and gender predictability

As an additional analysis task, we investigate the speaker and gender information contained
in the AWEs produced by the AE-RNN and the CAE-RNN. We achieve this by using
linear speaker or gender classifiers to determine the speaker predictability (SP) and gender
predictability (GP) of the AWEs. Speaker or gender classification has also been used in
other studies for analysis of AWEs [24, 29] and x-vectors [98]. These classifiers will be
trained on the final AWEs produced by the trained AE-RNN and CAE-RNN models. The
intuition here is that if the classifiers can achieve a high accuracy then the AWEs contain
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a lot of speaker or gender information. Ultimately, all the AWE are compared to see if the
SP and GP decrease with speaker and gender conditioning or with adversarial training.

3.3. Experimental setup

3.3.1. X-vectors

We follow the setup of [97] and make the same changes as in [104] for our x-vector model
architecture. Here we use a five-layer TDNN based on the model introduced in [96] with
the context sizes and dilations for all five layers, in order, as (5, 3, 3, 1, 1) and (1, 2, 3, 1, 1),
respectively. The TDNN has a hidden dimensionality of 512 and an output dimensionality
of 1500. After the statistics pooling layer, follows two linear layers, both with an output
dimensionality of 150. We take the output from the second linear layer to use as the
x-vectors.

Then finally there is a linear and softmax layer to transform the output of the previous
layer into the speaker probabilities.

This model is trained on the English and Xitsonga full datasets for 1 000 epochs with
a batch size of 128 at a learning rate of 1 · 10−4 using the Adam optimizer [105].

3.3.2. Speaker and gender classifier

During the adversarial training of the AE-RNN and CAE-RNN models, we use the speaker
and gender classifiers as depicted in Figure 3.4. This is a FNN with three linear layers
with a dimension of 200. After the second ReLU layer we add a dropout layer with a rate
of 0.5. We use a learning rate of 1 · 10−3, a batch size of 50 and the Adam optimiser.

To measure the speaker and gender predictability we also use speaker and gender
classifiers. Here, all the parameters are the same as above, except that the classifiers are
rather used to predict linear separability and therefore only consist of one linear layer.

DecoderEncoder

Classifier

Turn A

Turn B

Figure 3.5: In the adversarial training system the AE-RNN or CAE-RNN is trained
during turn A and the classifier is trained during turn B.
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3.3.3. AE-RNN and CAE-RNN

For the AE-RNN and CAE-RNN, we follow the model setup of [13]. Here the dimension
of the latent variables is set to 130. The encoder and decoder of both the AE-RNN and
CAE-RNN consist of a stack of three gated recurrent unit (GRU) layers, all with a hidden
dimension of 400.

We use learning rates of 1·10−3 and 1·10−4 for the AE-RNN and CAE-RNN, respectively,
and both models use a batch size of 256 and the Adam optimiser [105].

When we train our models with the parallel trained speaker and gender embeddings,
we use an embedding size of ten. In our developmental experiments, we found that larger
embeddings are detrimental to the AWE results. Therefore the self-trained embeddings
also have ten d imensions. The x-vectors are much larger at 150 dimensions. If they are
used as is, the models converge at a high training loss and the results are worse than
those produced by the models without conditioning. We assume this is due to either the
large size of the embeddings making it difficult for the GRU to apply sufficient weights to
the sequence information, or the large size of the values making up the x-vectors leading
to exploding gradients during back propagation. Therefore we use x-vectors to which
linear discriminant analysis (LDA) has been applied for dimensionality reduction. Here
the embedding size is one less that the number of speakers, so 11 for the English dataset
and 23 for the Xitsonga dataset. We also do experiments where the x-vectors are kept at
150 dimensions, but during training we rescale the values of a given x-vector so that the
euclidean norm of the vector is at most one.

With the adversarial training approach, the AE-RNN is initially trained for 50 epochs
and the CAE-RNN only for 1 epoch, and then the classifier is trained for 30 epochs. After
this initial training, the turn system starts, where during turn A, γ = 1 · 10−4 (Equation
(3.3)) for the AE-RNN and γ = 1 · 10−2 (Equation (3.4)) for the CAE-RNN.

With the English data as input, the AE-RNN and CAE-RNN are trained for 150 and
25 epochs respectively and we use early-stopping on the validation data. Since we do not
have validation data from the Xitsonga dataset, we average the number of epochs that it
takes to produce the best AWEs on the English validation data for each of the different
speaker or gender adaptation methods.

3.4. Experiments
We report results on the English and Xitsonga datasets for conditioning and adversarial
approaches. Our findings during the English development experiments are reported in
Section 3.4.1 and the English and Xitsonga test results in Section 3.4.2.
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3.4.1. Development experiments

During our development experiments there are a few different questions to address: (1) how
many layers to condition the models at, (2) which initialisation method produces the
best results for speaker and gender conditioning and (3) is it beneficial to combine the
conditioning and adversarial approaches?

In previous speaker adaptation work the DNN models were conditioned on speaker
information at multiple layers [84,86]. We also experiment with conditioning at multiple
layers and the results for speaker and gender conditioning are shown in Table 3.1 and
Table 3.2, respectively.

Here the models (the AE-RNN and CAE-RNN) are conditioned at the layers so that
the first layer to be conditioned at is the input to the first GRU of the decoder (as shown
in Figure 3.1), the second is at the input to the the second GRU and the third is at
input to the third GRU. The speaker and gender embeddings are randomly initialised
here. The results shown for when the models are conditioned at zero layers refer to no
conditioning. We see that adding conditioning at any number of layers does result in a
marginal improvement in the AP and that the SP and GP scores do reduce. The best
AP scores on speaker conditioning for both models are found when the models are only
conditioned at one layer and interestingly, here the SP and GP scores are higher than in the
other two cases (as seen in Table 3.1). However the different AP scores for different layers
of conditioning are very close together (within one standard deviation of one another) and
therefore we will not conclude that adding speaker conditioning to more than one layer
will reduce the AP score, but only that it offers no advantage to the models.

In Table 3.2 we see that even though the SP and GP scores are reduced, gender
conditioning on the AE-RNN does not lead to a significantly improved AP score. The
improvements on the AP score for the CAE-RNN are better yet still marginal and again
the scores are very close together.

Table 3.1: Development results on conditioning on speaker embeddings for different layer
counts. Where the layer count is 0 it refers to no conditioning. Displayed is the average
precision (AP), speaker predictability (SP) and gender predictability (GP).

Model Number of layers AP (%) SP (%) GP (%)

AE-RNN

0 26.89± 0.39 65.27± 4.30 84.28± 1.70
1 27.83 ± 0.22 52.10± 1.19 77.15± 0.68
2 27.67± 0.29 48.32± 1.22 76.42± 0.75
3 27.79± 0.62 48.69± 2.82 74.04± 0.26

CAE-RNN

0 32.05± 0.37 66.00± 4.93 82.75± 2.61
1 34.45 ± 0.73 53.32± 1.35 77.03± 0.60
2 33.92± 0.53 51.01± 0.68 79.59± 0.48
3 33.70± 0.65 49.24± 0.38 78.98± 1.64
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Table 3.2: Development results on conditioning on gender embeddings for different layer
counts. Displayed is the average precision (AP), speaker predictability (SP) and gender
predictability (GP).

Model Number of layers AP (%) SP (%) GP (%)

AE-RNN

0 26.89± 0.39 65.27± 4.30 84.28± 1.70
1 26.8± 0.28 51.13± 3.05 75.81± 1.64
2 26.71± 0.31 51.61± 4.85 76.6± 3.37
3 26.95 ± 0.39 51.74± 5.53 78.98± 2.51

CAE-RNN

0 32.05± 0.37 66.00± 4.93 82.75± 2.61
1 32.28± 0.63 51.92± 3.33 78.85± 2.53
2 32.72± 0.78 50.94± 3.98 78.18± 3.84
3 32.88 ± 0.47 53.08± 7.08 82.51± 1.25

Table 3.3: Development results on conditioning on speaker embeddings that have been
initialised differently. Displayed is the average precision (AP) %, speaker predictability
(SP) % and gender predictability (GP) %.

Model Initialisation AP SP GP

AE-RNN

random 27.83± 0.22 52.10± 1.19 77.15± 0.68
self-pretrained 27.91 ± 0.34 52.10± 2.35 75.93± 1.84
x-vector 27.54± 0.31 60.39± 2.77 80.07± 1.42
x-vector (LDA) 27.35± 0.39 53.87± 0.87 77.09± 0.31

CAE-RNN

random 34.45± 0.73 53.32± 1.35 77.03± 0.60
self-pretrained 33.70± 0.91 53.50± 2.93 81.47± 1.12
x-vector 33.06± 0.20 59.6± 2.74 81.05± 2.31
x-vector (LDA) 35.22 ± 0.75 52.71± 1.21 78.24± 0.91

It is expected that because the CAE-RNN is trained to do indirect speaker and gender
normalisation that the AWEs produced by it would have lower SP and GP scores than
those produced by the AE-RNN, but surprisingly, the SP and GP scores are similar for
the two models.

We experiment to see which is the best way to initialise the speaker and gender
embeddings. The results are shown in Tables 3.3 and 3.4 for speaker and gender condi-
tioning, respectively. Here we consider the initialising from a random normal distribution
(Section 3.2.1), with self-pretrained embeddings (Section 3.2.1) and with x-vectors (Sec-
tion 3.2.1). For the speaker conditioning we additionally also experiment with x-vectors
that have been projected into a lower dimensional space using LDA. The models are only
conditioned at one layer.

In the speaker conditioning initialisation results (Table 3.3) we see that initialising
the embeddings of the AE-RNN with self-pretrained embeddings produce the best results,
but this AP score is very close to that of the randomly initialised embedding. With the
CAE-RNN, the LDA projected x-vectors initialisation resulted in the highest AP score, but
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Table 3.4: Development results on conditioning on gender embeddings that have been
initialised differently. Displayed is the average precision (AP) %, speaker predictability
(SP) % and gender predictability (GP) %.

Model Initialisation AP SP GP

AE-RNN

random 26.80± 0.28 51.13± 3.05 75.81± 1.64
self-pretrained 27.51 ± 0.51 55.58± 1.28 78.00± 0.38
x-vector 27.15± 0.27 59.90± 1.99 81.47± 1.21

CAE-RNN

random 32.28± 0.63 51.92± 3.33 78.85± 2.53
self-pretrained 33.76 ± 0.84 57.59± 2.20 79.34± 0.79
x-vector 33.36± 0.40 61.79± 1.03 83.79± 0.86

it is only a marginal improvement upon that of the randomly initialised embeddings. With
both models, the AP cores of the different initialisation methods are close together which
indicates that the initialisation method does not have a significant impact for speaker
conditioning.

The gender embeddings initialisation results (Table 3.4) show that the self-trained
embedding initialisation leads to the highest scores across both models, but again the
improvements on the AP score is only marginal. Take note that condition on gender
with randomly initialised embeddings do not improve upon the results of the original
AE-RNN, but the self-trained embeddings and x-vectors do. This could indicate that the
randomly initialised gender embeddings are not updated sufficiently to contain meaningful
information by the time that the model is finished training.

We are interested to see if combining adversarial training with speaker or gender
conditioning will be complementary. In Table 3.5 we see results for training the models
adversarially against a speaker or gender classifier. With both speaker and gender
adversarial training, the AP score is marginally improved upon the original models’
score. However, the SP and GP is only marginally reduced in the AE-RNN and with the
CAE-RNN it has remained similar. Table 3.6 shows the results for combining conditioning
and adversarial methods. Here both models are conditioned on speaker and gender
embeddings that have been initialised with the methods (in parenthesis) that lead to the
best results as seen in Tables 3.3 and 3.4. We see that combining methods improves upon
the AP scores of adversarial training only for both speaker and gender experiments in the
AE-RNN and CAE-RNN. However, none of the results improve upon speaker or gender
conditioning only and therefore combining the two methods does not have a significant
benefit.

3.4.2. English and Xitsonga test results

We apply the conditioning and adversarial training methods to the English and Xitsonga
test datasets. All conditioning was performed at only one layer as during the development
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Table 3.5: Development results on training the models adversarially against a negative
speaker or gender loss. Displayed is the average precision (AP) %, speaker predictability
(SP) % and gender predictability (GP) %

Model Adversarial term AP SP GP

AE-RNN Speaker 27.30± 0.44 58.01± 2.99 78.79± 0.90
Gender 27.03± 0.10 60.33± 4.30 83.55± 0.91

CAE-RNN Speaker 32.35± 0.19 61.43± 5.19 83.49± 2.14
Gender 32.11± 0.09 63.50± 3.13 85.92± 1.51

Table 3.6: Development results on combining speaker and gender conditioning with
adversarial training. Displayed is the average precision (AP) %, speaker predictability
(SP) % and gender predictability (GP) %

Model Conditioned Adv. AP SP GP

AE-RNN speaker (self-pretrained) speaker 27.60±0.45 58.56±1.72 79.22±1.35
gender (self-pretrained) gender 27.56±0.61 57.04±4.27 77.70±1.04

CAE-RNN speaker (x-vector LDA) speaker 34.17±0.20 46.16±1.41 79.53±2.11
gender (self-pretrained) gender 33.49±1.12 56.55±3.96 80.99±1.79

experiments we found that more layers do not lead to a significant improvement in the
AP score. The speaker and gender embeddings for each experiment were initialised with
the methods that resulted in the highest AP score during development experiments.

In Table 3.7 we see the results for applying speaker and gender normalisation to the
English test data. The “Method” column indicates which method has been used. Take
note that the SP and GP scores when no normalisation is applied is much lower to those
in the development results, but this is due to the English tests data containing a different
set of speakers. For the AE-RNN all the speaker and gender normalisation methods,
except speaker adversarial training, result in a marginally improved score upon the original
model, seen in the first row. The highest AP score is from speaker conditioning, which is
consistent with the development experiments.

All normalisation methods improved upon the AP score of the original CAE-RNN
model, seen in the first row of the CAE-RNN results. The best results are from the speaker
and gender conditioning methods, speaker conditioning lead to the highest AP score with
lowest SP and GP scores, but gender conditioning, with the second highest AP score has
the median SP and GP scores. Here the absolute improvement over the AP score for the
best models is higher in the CAE-RNN than in the AE-RNN. This indicates that for the
English data, the CAE-RNN model benefits most from the normalisation methods. The
highest AE-RNN score is significantly less than the lowest CAE-RNN score, which shows
that the correspondence training method is more effective in learning higher quality AWEs
than our speaker or gender normalisation methods.
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Table 3.7: Results from applying the speaker and gender normalisation methods, condi-
tioning (cond.) and adversarial (adv.) training, on the English test data. Displayed is
the average precision (AP) %, speaker predictability (SP) % and gender predictability
(GP) %

Model Method AP SP GP

AE-RNN

– 25.78± 0.48 57.83± 1.94 91.12± 1.31
cond. speaker (self-pretrained) 26.60 ± 0.16 48.64± 1.91 83.85± 0.86
cond. gender (self-pretrained) 26.45± 0.20 56.43± 2.99 87.79± 0.82
adv. speaker 25.78± 0.17 49.73± 3.82 85.86± 0.76
adv. gender 25.86± 0.38 54.79± 4.6 89.85± 1.54

CAE-RNN

– 31.78± 0.59 57.79± 1.2 91.66± 1.03
cond. speaker (x-vector LDA) 33.68 ± 0.66 44.39± 0.70 79.00± 1.30
cond. gender (self-pretrained) 33.28± 0.18 54.91± 3.44 87.05± 0.66
adv. speaker 32.13± 0.75 50.47± 3.73 84.87± 1.91
adv. gender 32.90± 0.27 56.39± 4.77 89.31± 2.03

The Xitsonga test results are seen in Table 3.8. Speaker conditioning, as in the English
results, show the highest AP scores and also the lowest SP and GP scores for both the
AE-RNN and CAE-RNN. In the AE-RNN results, we see that both adversarial training
methods resulted in higher AP scores than gender conditioning. This is different to the
English results, where speaker adversarial training resulted in no improvement upon the
original model and gender adversarial training resulted in a marginal improvement that
was, however, within one standard deviation of the score of the original model. We
speculate that this difference in the adversarial training impact is due to more speakers in
the Xitsonga dataset. In the CAE-RNN results, we see that speaker conditioning leads
to a significant 7.96% absolute improvement over the original model’s AP score, where

Table 3.8: Results from applying the speaker and gender normalisation methods on the
Xitsonga test data. Displayed is the average precision (AP) %, speaker predictability
(SP) % and gender predictability (GP) %

Model Method AP SP GP

AE-RNN

– 12.46± 0.28 48.42± 1.08 91.26± 0.37
cond. speaker (self-pretrained) 13.81 ± 0.46 38.92± 1.51 78.99± 1.53
cond. gender (self-pretrained) 13.11± 0.35 42.08± 0.33 81.0± 1.45
adv. speaker 13.28± 0.22 42.91± 1.31 88.25± 0.42
adv. gender 13.20± 0.46 43.67± 0.66 89.51± 0.28

CAE-RNN

– 23.91± 0.7 48.08± 0.61 91.23± 0.51
cond. speaker (x-vector LDA) 31.87 ± 0.95 33.88± 1.06 74.94± 0.61
cond. gender (self-pretrained) 26.87± 0.4 39.15± 1.32 77.71± 1.79
adv. speaker 25.39± 0.69 41.29± 1.19 89.45± 0.99
adv. gender 25.52± 0.89 42.91± 0.73 89.82± 0.52
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Table 3.9: Results from conditioning the Xitsonga models on x-vectors that have been
encoded with an English-trained x-vector extractor model. Displayed is the average
precision (AP) %, speaker predictability (SP) % and gender predictability (GP) %

Model Conditioned AP SP GP

AE-RNN speaker 13.72± 0.55 38.87± 0.73 80.97± 1.16
gender 12.94± 0.12 47.59± 0.87 83.35± 0.93

CAE-RNN speaker 29.43± 1.87 34.46± 1.59 77.0± 1.79
gender 26.95± 0.22 42.73± 1.28 79.2± 1.51

speaker conditioning in the English results only showed a 1.90% absolute improvement.
Again, we speculate that this difference in impact is due to the higher number of speakers
in the Xitsonga dataset. As with the the English results, the CAE-RNN benefits most
from the speaker and gender normalising methods and the highest AP score from the
AE-RNN results is also much lower than the lowest CAE-RNN score.

As an additional task, we investigate the crosslingual transferability from a English
trained x-vector extractor model to Xitsonga data. In Table 3.9 we see the results for
training the AE-RNN and CAE-RNN models on Xitsonga data with speaker and gender
conditioning where the embeddings have been initialised with Xitsonga x-vectors that were
encoded by an English trained x-vector extractor. Although the English dataset contains
more speech, the models do not seem to benefit from the English trained x-vector extractor
as the AP scores are all lower than the monolingual conditioning methods used in Table 3.8,
except gender conditioning on the CAE-RNN, which shows marginal improvement.

3.4.3. Speaker and gender predictability analysis

We investigate the correlation between the AP and, SP and GP scores. In Figures 3.6
and 3.7 we see the scatter plots of the AP scores versus the predictability scores from
applying the different speaker and gender normalising methods to models during our
development experiments. Here speaker and gender predictability is shown in green and
blue, respectively, and the different normalising methods are shown with different marker
shapes. SP and GP scores from the same result lie on the same horizontal line. The lines
of best fit have been drawn in grey and labelled with the correlation coefficient, r.

With the AE-RNN experiments, in Figure 3.6, we see that both SP and GP have a
weak-moderate negative correlation with AP, where with GP it is slightly stronger. The
best fit line for GP is also steeper than that of SP. This indicates that GP is a slightly
better AP indicator than SP. From the graph it does not seem that there exists a linear
relationship between SP and GP scores, but as expected, they do follow the same trend
for most of the scores. When no normalising method is applied (marked with a circle) it
results in the highest SP and GP scores, so all normalising methods do reduce SP and GP
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Figure 3.6: The predictability vs the average precision scores for different normalisation
methods applied to the AE-RNN. The blue markers indicate speaker predictability and
the green, gender predictability, where the standard deviations are shown with transparent
lines. The lines of best fit are in grey and r is the correlation coefficient.

scores. The result with the lowest AP score also has the lowest SP and GP scores, but
this seems to be an outlier as the other lower SP and GP scores seem to correlate with
higher AP scores. We see that the conditioning normalise methods, shown with square
markers, lead to the biggest reduction in SP and GP, but also the smallest reduction in SP.
Adversarial training, shown with triangle markers, leads to the smallest reduction in GP.

With the CAE-RNN experiments, in Figure 3.7, we see that both the SP and GP scores
have a moderate negative correlation with the AP scores. The GP scores have a marginally
stronger correlation and their line of best fit is also steeper than that of the SP scores.
Therefore the GP score is a slightly better indicator of the AP score and overall both the
SP and GP scores are better AP predictors for AWEs from the CAE-RNN compared to
those of the AE-RNN. The trends in the SP and GP scores are more dissimilar than in
the AE-RNN experiments. Interestingly, the adversarial training methods and one of the
conditioning methods, lead to a decrease in SP but an increase in GP. Conditioning and
adversarial training combined, shown with diamond markers, lead to the biggest decrease
in SP and conditioning leads to the biggest decrease in GP score.

3.5. Conclusion
We have trained AE-RNNs and CAE-RNNs with two different speaker and gender normalis-
ing approaches. In the first approach we conditioned the decoder components of the models
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Figure 3.7: The predictability vs the average precision scores for different normalisation
methods applied to the CAE-RNN. The blue markers indicate speaker predictability and
the green, gender predictability, where the standard deviations are shown with transparent
lines. The lines of bet fit are in grey and r is the correlation coefficient.

on speaker or gender embeddings. These embeddings are initialised in three different ways,
randomly, with self-pretrained embeddings or with x-vectors. We find that self-pretrained
embeddings leads to the best results for speaker and gender conditioning when applied to
the AE-RNN and gender conditioning when applied to the CAE-RNNs. X-vectors that
have been projected using LDA leads to the best results for speaker conditioning applied
to the CAE-RNN. However, the AP scores for using differently initialised embeddings
are quite close together and when weighing this up against the extra computation cost of
pretraining the x-vectors or self-pretrained embeddings, we recommend using randomly
initialised embeddings. In our second approach we use adversarial training to penalise the
AE-RNN or CAE-RNN models for capturing speaker or gender information in the AWEs.
We also performed experiments where the two approaches are used simultaneously, but we
found that this does not offer a significant benefit. When trained on the English dataset,
all normalising approaches marginally improve the test AP score and also reduces the
SP and GP scores of the AWEs from both the AE-RNN and CAE-RNN models. Speaker
conditioning leads to AWEs with the highest AP scores from both the AE-RNN and
CAE-RNN models. The best result is from the CAE-RNN with a 5.98 % relative improve-
ment. When trained on the Xitsonga dataset, all normalising approached also marginally
improve the test AP score of the AWEs produced by the AE-RNN, but with the AWEs
from the CAE-RNN, there is a bigger improvement. Again, speaker conditioning leads to
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AWEs with the highest AP scores from both the AE-RNN and CAE-RNN models and
the best result is also from the CAE-RNN with a significant 33.29% relative improvement.
We speculate that the reason for the bigger improvement in the AP score of the Xitsonga
trained models is that the Xitsonga dataset contains more speakers and these speakers
overlap in the training and testing set.

In all the results, the AWEs from the CAE-RNN models consistently outperform those
from the AE-RNN, even though the SP and GP scores are similar. This shows that the
correspondence method used to trained the CAE-RNN is superior to our speaker and
gender normalising approaches.

In an analysis of the SP and GP scores of the development experiments, we find that
these scores have a weak-moderate negative correlation with the AP scores in the AE-RNN
and a moderate negative correlation with those in the CAE-RNN.

The work presented in this chapter shows that normalising out some of the speaker
and gender information contained in AWEs leads to at least marginal improvement.
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Chapter 4

Frame-level speech representation
learning for acoustic word embeddings

In Chapter 3 we investigated improving AWEs by augmenting models at the segment-level
(specifically speaker and gender information). Here we will focus on the frame-level. Recent
studies have had success with learning frame-level representations that perform well in
phonetic category classification tasks [11,37,39]. We want to investigate if these learned
representations that have been encouraged to capture phonetic contrasts will benefit AWEs
if used as input to AWE models. Therefore, we will compare AWEs that have been
produced with four different learned frame-level speech representations used as input to
the CAE-RNN model. The models for learning these representations are listed below.

First, we consider a frame-level correspondence autoencoder (CAE) [37]. We find pairs
of speech segments that are predicted to be of the same type using a UTD system [55].
DTW is then used to align frames between the pair of discovered speech segments. The
frame-level CAE model is then trained to predict corresponding aligned frames from each
other.

The next two approaches make use of predictive coding mechanisms. In contrastive
predictive coding (CPC) [39], representations are learned by predicting the correct future
frames from a set containing negative examples. In autoregressive predictive coding
(APC)) [40], representations are learned by predicting future frames with an autoregressive
model.

Finally, we combine the mechanisms of the CAE and APC representations to form a
new representation learning approach, which we call CAPC. Here we use the same aligned
pairs used with the CAE and train an autoregressive model to predict future corresponding
frames from input frames.

We evaluate the different AWEs produced by each of the four learned representation
types as well as by MFCCs in a word discrimination task which was discussed in Section
2.4.

Finally, the different representations and AWEs are submitted to various probing tasks
for further analysis. Across two languages, English and Xitsonga, all four learned repre-
sentations improve upon MFCCs, with the CPC representations consistently producing

36
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the best results when used as input features to the AWE model. As an additional task,
we perform crosslingual experiments, where we find that using frame-level representation
models trained on a higher resourced language (English) to encode those of a low-resource
language (Xitsonga), improves the AWEs of the latter.

The work is this chapter is based on a paper presented at the IEEE Spoken Language
Technology Workshop (SLT) 2021 [50].

4.1. Related work
Of the most widespread used speech features for acoustic modelling are MFCCs [106], which
are also used in previous AWE modelling research [12,13,48,107]. Instead of using these
conventional speech features, several zero-resource studies have focussed on learning frame-
level speech representations where the linguistic information is emphasised and the nuisance
factors like speech identity, emotion or noise are disregarded. These studies have become
especially popular with the introduction of the Zero Resource Speech Challenges [20,21,108].
Many of the frame-level representation learning methods can be described as bottom-up
learning, as the representations learn to capture meaningful contrasts like phone categories
directly from lower-level features. In contrast, the CAE-RNN model (Section 2.3), relies
on weak top-down constraints in the form of discovered words from a UTD system.

The strategy of ultimately combining the top-down and bottom-up learning methods
when the frame-level representations are used as input to the CAE-RNN model relates to
the combination of contextual (top-down) and sensory (bottom-up) processing executed in
human perception [109].

Several studies have considered also using top-down constraints when training frame-
level features; we discuss these approaches in Section 4.1.1. Recently, predictive coding
approaches have also been introduced to train frame-level features and this is discussed in
Section 4.1.2.

4.1.1. Top-down constraints for learning unsupervised frame-level
features

On earlier unsupervised subword modelling methods, Jansen et al. [66] argued that the
absence of top-down constraints are the reason for the lack of speaker independence
exhibited. They proposed a subword modelling method that makes use of top-down
constraints in the form of aligned frames. Here a GMM is trained on speech data and
used to create a large UBM. Separately, a UTD system is used to predict pairs of similar
speech segments of which the frames are then aligned using a DTW algorithm so that each
frame has a corresponding frame from the other speech segment. Next, based on the idea
that corresponding frames also correspond to the same subword, the UBM components
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belonging to corresponding frames are clustered together to form UBM partitions which
serve as acoustic models for the different subwords. They found that this approach
improved upon the results of other bottom-up only methods.

Kamper et al. [37] used this same frame alignment idea for a DNN frame extractor
which they call a correspondence autoencoder (CAE). Here, for a pair of corresponding
frames, the model is trained so that one frame is encoded into a latent variable which
is then reconstructed into the other frame. The latent variables can then be used as
frame-level representations of which the speaker and noise information has been reduced.

Renshaw et al. [110] enhanced the CAE model architecture and compared its produce
representations with those of an AE and a de-noising AE. They found that representations
produced by the CAE led to the best results in a phoneme discriminability task.

Thiolliere et al. [111] also used corresponding aligned frames as input to a DNN, but with
a siamese network architecture. Here frames from the UTD segments are stacked so that
there is one centre frame and six surrounding context frames. Pairs of frame stacks are then
transformed by two identical networks to form phonetic representations; the representations
are trained to be similar for stacks with corresponding frames. These representations
performed better in a phoneme discriminability task than the CAE representations.

Zeghidour et al. [112] improved this model with a triamese architecture, which produces
three representations at a time instead of two, which are then put through a triplet loss.

Last et al. [35] compared the triamese representations with those of the CAE when the
two models have been trained on exactly the same UTD pairs. They found that the CAE
representations led to better results in a same-different task and when the triamese model
was trained to produce representations of the same smaller dimension as that of the CAE
representations, better results were also achieved in a phoneme discriminability task.

4.1.2. Predictive coding for self-supervised frame-level features

In cognitive neuroscience, predictive coding is a popular framework used to explain how
the brain efficiently processes sensory data [113,114]. The framework postulates that the
areas of the brain responsible for higher level processing predict the incoming sensory
information rather than the information being registered and processed from lower level
processing areas. Unsuccessful predictions lead to error signals in the lower level areas,
which in return updates the predictions in the higher level areas [115].

Independent of neural predictive coding, predictive mechanisms are also used in the long-
standing audio representation extraction method, linear predictive coding (LPC) [116,117].
Here, the predictive mechanisms are present in the linear prediction operation that LPC
is based on, where a future sample is estimated by the sum of linear mappings from past
samples in a discrete audio signal.
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Recently, research has considered using these predictive mechanisms in DNN archi-
tectures. Van den Oord et al. [39] proposed contrastive predictive coding (CPC), a
multi-domain representation extraction framework where representations are learned by
predicting the correct future samples from a set containing negative examples. More
specifically, an input sequence is mapped to context variables that are trained with the
aid of a contrastive loss function [118] to only hold the discriminative information that is
useful for predicting the future samples. They argue that by learning to predict across
short-time context (as others have also done with word representation learning [119]) the
representations learn to hold the underlying higher level information like phonemes and to
disregard low-level noise. In their experiments they found that CPC features led to better
phone classification results compared to MFCCs and other research has shown that using
CPC features also improves results for supervised speech recognition [120].

Chung et al. [40] also utilised predictive coding mechanisms for speech representation
learning in a DNN architecture which they call autoregressive predictive coding (APC).
Here an autoregressive model is trained to predict the future speech frames a number
of steps ahead. The intuition here is the same as with CPC except that the model is
not encouraged to disregard non-discriminant features. However, in a follow up study,
Chung and Glass [121] argued that representation learning models should not encourage
the disregard of certain information as it might be useful for downstream tasks. In their
experiments, they found that the APC representations led to better phonetic classification
results than those of CPC, but another study [122] found that CPC representations led to
better results in a phoneme discriminability task.

4.2. Methodology
We use the different existing frame-level representation learning approaches discussed in
Section 4.1 as input for an AWE model, we specifically consider the CAE, CPC and APC
representations. Additionally, we combine the mechanisms of the CAE and APC to form
a new representation learning approach, CAPC.

4.2.1. Frame-level correspondence autoencoder (CAE)

Unlike the the predictive coding representation learning models (that will be discussed in
the following subsections) the CAE model does not have an autoregressive component and
therefore the model is not encouraged to encode any temporally shared information. The
model is rather encouraged to encode only the information that is shared between frames
from different instances of the same (predicted) word. The intuition is that this encourages
the model to normalise out noise and speaker information, since these properties could be
different for the input and output frames.
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Figure 4.1: The CAE’s weights are initialised from those of an AE. The AE is trained
to reconstruct the input frames x0, x1, ..., xT directly. The CAE is trained to reconstruct
frames from another segment y0, y1, ..., yT , predicted to be a different instance of the
same word as the input.

The CAE model produces the best results if its weights are initialised with those of a
trained AE [35,37]. The architectures of these two models are similar and are shown in
Figure 4.1.

The AE takes a frame xt as input. A function g(AE)
enc encodes the input into a latent

variable zt. This latent variable is then decoded by the function g(AE)
dec , yielding the model

output x̂t = g
(AE)
dec (zt). The target for this output is the input frame itself (from there

the x̂t notation). For a batch of input frames X the AE is trained to minimise the MSE
between the input and predicted frames as described by the loss function below:

LAE = 1
|X|

∑
xt∈X

||xt − x̂t||22 (4.1)

For the CAE model, we first have to create pairs of similar frames. Given an unlabelled
speech collection, we use a UTD system to find speech segments which are predicted to be
of the same unknown type [2]. Pairs of discovered word segments are then aligned using
DTW, producing input-output frame pairs for the CAE. Since the segments may differ in
length, some frames could be paired with multiple other more than one frame of the other
segment.

The architecture of the CAE model is the same as that of the AE model, but instead of
decoding zt in order to predict the input frame itself, we use it to predict the corresponding
frame in the pair. Formally, discovered speech segments (X, Y ) are aligned to form
input-output frame pairs (xt,yt), the model takes xt as input, produces the latent
representation zt = g(CAE)

enc (zt), and then decodes zt to obtain the predicted corresponding
frame, ŷt = g

(CAE)
dec (zt). For a batch of input-output frame pairs P , the model is trained to
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minimise the MSE between the input and output frames as described by the loss function
below:

LCAE = 1
|P |

∑
(xt,yt)∈P

||yt − ŷt||22 (4.2)

We use the latent variables zt from the CAE model as the input representations to our
AWE models.

4.2.2. Contrastive predictive coding (CPC)

The aim of CPC is to encode only the information that is shared between current and
future acoustic observations [39]. This results in speech representations that better describe
shared short-time information, like phone categories or speech intonation, depending on
how far ahead future observations are. The original CPC study showed that it produced
effective speech representation when trained on raw audio waveforms [39]. A more recent
study [122] showed that it can also be successfully applied when predicting conventional
frame-level acoustic features.

Figure 4.2 shows the architecture for learning CPC representations. A sequence of
frames is received as input to the CPC model, with a single frame at time step t denoted as
xt. The input frames are encoded by a function genc into latent variables, denoted as zt at
time step t. In our case, this encoder function consists of a sequence of linear layers. Next,
the latent variables are encoded by an autoregressive function gar into context variables
ct. We use a RNN layer for this purpose. Because this function is autoregressive it allows
each ct to be a summary of all z≤t, such that ct = gar(z≤t).

The next step is to determine a prediction score for every ct at each prediction step.
Let K be the chosen number of steps that we want to predict into the future. Then for

Figure 4.2: The CPC model is trained to compute a score from the context variables,
c0, c1, ..., ct, and the future latent variables, zt+1, ..., zt+k.
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each step k ∈ [1, K] a function gk
pred is used to transform ct. A log bilinear function is

then used to calculate the score:

fk(zt, ct) = exp
(
z>t+kg

k
pred(ct)

)
(4.3)

Let Zt be a set that contains the true zt along with N − 1 negative samples of zt. We
also calculate prediction scores for the negative samples. The model is then trained to
maximise the score for zt and minimise it for the negative samples. Concretely, the loss
function used to do this is based on noise-contrastive estimation (NCE) [118]:

LInfoNCE(xt, k) = −log
(

fk(zt, ct)∑
zi∈Zt

fk(zi, ct)

)
(4.4)

The final loss function applied to the CPC model for a sequence X of input frames can
then be expressed as:

LCPC = 1
K

1
|X|

∑
k∈[1,K],xj∈X

LInfoNCE(xj, k) (4.5)

The NCE loss encourages the model to only encode information that is discriminatory
amongst the set of sample frames, Zt. We take advantage of this by sampling negative
frames from different utterances of only the same speaker as the true frame. This encourages
the CPC model to normalise out speaker information, since it can’t use this information
to select the correct frame from among the negative examples [36].

Either zt or ct can be used as frame-level representations for a downstream task. But
it is recommended to use ct when extra context from the past is useful [39]. In our
development experiments ct did give better results, and we therefore use it as our input
representations to the AWE models.

4.2.3. Autoregressive predictive coding (APC)

Similarly to CPC, the aim of APC is to encode only the information that is shared
between current and future frames. The original APC paper [40] argues that when learned
representations are encouraged to throw out nuisance information (like speaker identity or
noise) there is a risk that useful information might also be lost. So instead of encouraging
the model to normalise out non-discriminative features, as with the score maximisation
of CPC, an autoregressive function is used to decode the predicted future frame from a
latent variable containing general temporally-shared information.

Figure 4.3 shows the APC architecture. A sequence of frames are encoded by an
autoregressive function genc-ar. In our case the autoregressive function is a stack of RNN
layers. The last layer’s hidden states at each time step is then used as the latent variables,
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Figure 4.3: The APC model is trained to predict the frame k steps ahead of the input
frame from a latent variable. The CAPC model is trained to predict the corresponding
frame k steps ahead of the input frame.

denoted as zt for time step t. Next, a prediction function gpred transforms each zt to the
predicted input frame k steps ahead, such that it can be described as x̂t+k = gpred(zt).
For a sequence of input frames X = (x0,x1, . . . ,xT ) the model is trained to minimise the
mean absolute error (MAE) between the true and predicted future frames:

LMAE(X) = 1
|X|

∑
xt∈X

||xt+k − x̂t+k||1 (4.6)

A follow-up study on APC proposed adding an auxiliary loss as a regularisation
term [38]. This loss encourages the latent variables to also include information from
previous frames in the sequence. Concretely, M different frames are chosen at random
from X to use as anchors. An anchor at position m is denoted by xam . For each anchor
we take a slice of X, denoted by Am, that contains n frames that start s time steps behind
am, such that Am = (xam−s,xam−s+1, ...,xam−s+n−1).

Let A denote the set that contains every Am sequence sliced from X. Then the auxiliary
loss is given as the MAE loss for every Am:

Laux(X) = 1
M

∑
Am∈A

LMAE(Am) (4.7)

In our development experiments we found that adding the auxiliary loss does result in
a small improvement for the AWEs. The final loss function for our APC model is therefore

LAPC = LMAE + λLaux (4.8)

where λ is a hyper-parameter.
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The hidden states from any of the layers of genc-ar can be used as frame representations
for downstream tasks. Previous research on autoregressive textual word embedding models
showed that the information in hidden states are hierarchical across layers [123]. The
original APC study [40] concluded that earlier layers in the autoregressive function contain
more speaker information and later layers more phonetic information. Therefore we use
the hidden states of the last layer zt as speech representations in our AWE experiments.

4.2.4. Correspondence autoregressive predictive coding (CAPC)

As discussed previous subsections, APC produces representations that are encouraged to
contain shared temporal information, whereas those of the CAE model are encouraged
to contain information that is shared between frames from similar speech segments. We
hypothesise that by combining the mechanisms of both these representation learning
methods, the CAPC model will produce representations that carry the advantages of both
encoding the higher level short-time information and normalising out speaker and noise
information.

The CAPC model has the same architecture as the APC model, but instead of
reconstructing the future frames of the input sequence, the model is trained to reconstruct
the future frames of the corresponding speech segment, as illustrated in Figure 4.3. Here,
the corresponding speech segments are the discovered UTD pairs where the frames have
been aligned (as with the CAE model). The CAPC model uses corresponding frame
pairs (xt,yt) from pairs of aligned speech segment sequences (X, Y ) as input-output pairs.
Similarly to the APC model, an autoregressive function, g(CAPC)

enc-ar encodes the input frames
into a sequence of latent variables, Z. Then a prediction function g(CAPC)

pred transforms each
zt ∈ Z to the predicted corresponding frame k steps ahead, such that it can be described
as ŷt+k = gpred(zt). For a sequence of pairs, P , made up of the aligned frames in (X, Y )
the CAPC model is trained to minimise the MAE between the true and predicted future
frame in Y that is k steps ahead:

LCAPC(X) = 1
|P |

∑
(xt,yt)∈P

||yt+k − ŷt+k||1 (4.9)

Unlike the CAE model that has to be initialised with the weights of a trained AE
model, the CAPC model can be initialised with random weights. We use the hidden states
of the last RNN layer in g(CAPC)

enc-ar as speech representations, like the APC representations.

4.2.5. Probing the different frame-level speech representations

For further analysis of the different frame-level speech representations and the AWEs
produced by them, we perform five probing tasks. The goal is to investigate how the
encoded information differs between the different types of representations and if there
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are correlations between the increases or decreases in certain types of information and
the intrinsic quality of the resulting AWEs. By probing the AWEs, as well as the
frame-level representations, we can discover what information in the different frame-level
representations is important to the AWE models. We perform two probing tasks on the
produced AWEs and three on the frame-level representations as outlined in this section.

Speaker predictability of the AWEs

In Chapter 3, we used linear classifiers to determine the speaker and gender predictability
of AWEs from which the models had been augmented in different ways. Other studies have
also considered speaker classification as an analysis task on AWEs that were produced
by different models [24, 29]. Here, we will use the a linear speaker classifier on AWEs
that have been produced by the same model architecture (the CAE-RNN model) but with
different types of speech representations as input. Similarly to Chapter 3, we use Equation
(3.1) as the loss function for training the speaker classifier. As stated before, the intuition
here is that a higher speaker classification accuracy is indicative of more encoded speaker
information in the AWEs.

Utterance length predictability of the AWEs

Utterance length prediction has also been used in previous research as an analysis of
AWEs [24,29] and x-vectors [98]. We want to investigate if the different types of frame-level
representations result in more or less of the utterance length information encoded into
the AWEs. Here we use a linear regression model to predict the number of frames that
the original input utterance was made up of from the AWE. For a batch of N AWEs, the
model is trained to minimise the MSE between the true, T , and predicted, T̂ , number of
frames of the original utterances:

LUL = 1
N

N∑
n=1

(Tn − T̂n)2 (4.10)

The coefficient of determination (R2) is then used to evaluate the predictions.

Speaker predictability of the frame-level representations

It is worth investigating if the amount of speaker information encoded into the AWEs
correlate to the amount in the frame-level speech representations. Therefore, we also
determine the speaker predictability of the representations directly. Another study has
also performed speaker predictability probing of frame-level representations, specifically
predictive coding representations, but they were interested in analysing the correlation
with the training loss [124]. Again, we use a linear speaker classifier and minimise the loss
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function of Equation (3.1), but here the model maps the first M frames of an utterance,
spliced together, to the speaker probabilities.

Correct sequence order predictability of the frame-level representations

Since the predictive coding representation learning approaches are encouraged to encode
shared temporal information, we are interested in investigating if these representations
will perform better in temporal-related tasks and how they will compare to each other.

We perform a correct order of sequence prediction task with a linear binary classifier.
Here, we extract the first M frames of an utterance and splice them together to form
a vector x1:M , then we do the same with the next M frames of the utterance and form
xM+1:2M . Next, we create true samples by splicing x1:M and xM+1:2M together, x1:2M

and we create negative samples by doing the reverse, xM+1:2M,1:M . The classifier then
maps each sample to a probability, p, of it being in the correct order. Given a batch of N
samples where at the nth sample, cn = 1 if it is in the correct order and cn = 0 if it is not,
the classifier is trained to minimise the following binary cross entropy loss function:

LCO = 1
N

N∑
n=1

cn log(pi) + (1− cn) log(1− pn) (4.11)

The intuition here is that this task will achieve higher accuracy scores for representation
approaches where frames share more information with surrounding frames.

Last frame predictability of the frame-level representations

We consider another probing task that relates to higher level information encoded into
the representations. Here, we predict the last frame of an utterance from a set containing
negative samples. Following the approach that others have used for language modelling
[125,126], we use linear prediction to form the predicted last frame. Given an utterance
X = (x0,x1, . . . ,xT ) and T − 1 context matrices, (C0, C1, . . . , CT−15), the predicted last
frame x̂T is calculated as follows:

x̂T =
T−1∑
t=1

Ctxt (4.12)

Take note that the approach followed here is similar to that of CPC. With CPC the
goal is also to predict the correct future frame from a set containing negative samples,
but here we only try to predict the last frame. The autoregressive function in the CPC
approach summarises over previous frames to form context variables which is transformed
into the predicted future frame and here we simply sum over previous frames to form the
predicted future frame.
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Next, we calculate a score between x̂T and the true (or negative) last frame, xT . For
a batch containing N utterances, where xn,T is the last frame and bn the bias of the nth

utterance, the score function, flin, is described as follows:

flin(xn,T , x̂n,T ) = exp
(
x>n,T x̂n,T + bn

)
(4.13)

Our model, gLF, is made up of T − 1 linear regression functions of which the weight
matrices represent the context matrices, Ct, and the bias vectors, bt will eventually form
part of the bias term, bn. Therefore, the dot product of the output of gLF(Xn) and xn,T is
log(flin(xn,T , x̂n,T )), which is made clear in the following derivation:

gLF(Xn) =
T−1∑
t=1

Ctxn,t + bt

= x̂n,T +
T−1∑
t=1

bt

x>n,TgLF(Xn) = x>n,T x̂T + x>n,T

(
T−1∑
t=1

bt

)

= x>n,T x̂T + bn

As with CPC, we want to maximise the score of the true last frame and minimise the
score of the negative samples. Therefore, here we also use NCE loss as past of the loss
function used to train the model:

LLF = 1
N

N∑
n=1
−log

(
flin(xn,T , x̂n,T )∑

xi∈Xn
flin(xi, x̂n,T )

)
(4.14)

Again, we assume that the representation learning approaches that result in frames
that contain shared information with surrounding frames, will perform better in this task.
Additionally, considering that this method is similar to CPC, we want to investigate if the
CPC representations, specifically, will lead to better performance in this task compared to
the other representations.

4.3. Experimental Setup

4.3.1. Representation learning model implementations

We set up our frame-level AE and CAE models (Subsection 4.2.1) as in [35]. The encoder
and decoder functions both consist of six 100-unit linear layers with a 39-dimensional
latent variable in between. Through development experimentation we found that on the
English datasets the best results are achieved if the AE model is trained for five epochs and
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the CAE for ten epochs, and therefore again do the same on Xitsonga. A learning rate of
1 · 10−3 is used for both models. All our neural networks are optimised using Adam [105].

For our CPC model (Subsection 4.2.2), we use an encoder of six 512-unit linear layers
with layer normalisation and ReLU activation functions in between. A dropout layer with a
rate of 0.5 is added after the third ReLU activation function. In development experiments
we found that the dropout layer does not improve results, but it does stabilise training.
We choose a long-short term memory (LSTM) layer as our summarising autoregressive
function [127]. The dimensions of zt and ct are 64 and 256, respectively. For the contrastive
loss in (4.4), based off development experiments, we choose 31 negative examples from the
same batch and we predict three steps ahead. The model is trained with a learning rate of
1 · 10−5.

Each batch contains nine utterances from nine different speakers. We train the English
model for a maximum of 15k epochs, but stop at the epoch that produced the best results
on validation data. We find that this happens when the model is at a training loss of
around 0.93, and so we train the Xitsonga model until it reaches this loss value.

The autoregressive encoder of our APC model (Subsection 4.2.3) consists of a stack
of three gated recurrent unit (GRU) [54] layers with a hidden state dimensionality of
512, which is thus also the dimensionality of zt. The predictor function is one linear
layer and based on development experiments, predicts two steps ahead. For the auxiliary
loss (4.7), based on development experiments, we choose twelve anchors that we use to
create sequences of seven frames from 14 steps back and we predict five steps ahead. We
use an auxiliary loss weight of λ = 0.1. In development experiments we found the number
of epochs that produces the best AWEs on the English validation data to be 50, and also
use this many epochs on the Xitsonga data. We use a learning rate of 1 · 10−3.

Our CAPC model (Subsection 4.2.4) has the same architecture as the APC model,
however, the predictor function only predicts one step ahead and we do not use an auxiliary
loss. As with APC, we train the model for 50 epochs with a learning rate of a learning
rate of 1 · 10−3 on both English and Xitsonga.

4.3.2. Unsupervised AWE model implementation

We compare MFCCs, CAE, CPC, APC and CAPC representations (Section 4.2) as input
features to the unsupervised CAE-RNN AWE model of Section 2.3. This model is pre-
trained as an AE-RNN using (2.1) before switching to the CAE-RNN loss of (2.2). We
follow the model setup of [13] as we did in Section 3.3. Due to the different learned
representations having larger dimension sizes than that of the MFCC, we increase the
dimensionality of the layers in the AE-RNN and CAE-RNN, so that the encoder and
decoder functions each consist of a stack of three GRUs with a hidden state dimensionality
of 512. For the English dataset, we train the AE-RNN for 150 epochs and the CAE-RNN
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for 25 epochs and use early-stopping on validation data. For the Xitsonga dataset, we do
not have validation data, so we average the number of epochs that it takes to produce
the best AWEs on the English validation data for each of the different types of input
representations.

4.3.3. Evaluation

To evaluate the intrinsic quality of the AWEs we use the same-diff task discussed in
Section 2.4.

As an AWE baseline, we use downsampling [9, 15]. In this method, we choose ten
equally spaced frame representations from a sequence and interpolate them to form an
AWE. We obtain downsampled AWEs from each of the representation learning methods
considered. For the validation of the CPC model, we also use downsampling and determine
the AP score of the downsampled AWEs.

As an additional way of performing the same-different task, we consider using DTW
over the speech segments, each segment represented using a sequence of the frame-level
representations that are under consideration. Therefore, this approach has access to the
full sequences without any compression.

4.3.4. Probing tasks

We split the English validation data 80:20 into training and development sets. All the
models are then trained on this training set at a learning rate of 1 · 10−2 with a bath size of
50 using the Adam optimiser. In order, the speaker prediction on AWEs (SE), utterance
length prediction (UL), speaker prediction on representations (SR), corect order prediction
(CO), and last frame prediction (LF) tasks are trained using 300, 100, 200, 200 and 300
epochs with early stopping. All the models are linear with the same input dimension as
the size of the respective representations. The SE and SR task models have an output
dimension of the number of speakers, which is eight. The UL and CO task models have
an output dimension of one and for numerical stability, we add a sigmoid layer to the
CO prediction results just before the loss function is applied. The LF task model has an
output dimension equal to that of the input.

4.4. Experiments
Our main research question is whether improved self-supervised frame-level feature learning
is beneficial when used in combination with a segment-level model for producing AWEs.
The MFCC, CAE, CPC, APC and CAPC frame-level representations are therefore used as
input to AWE models and the results on the English and Xitsonga test data are reported
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Table 4.1: AP (%) results on the English test data for DTW and the CAE-RNN and
downsampling AWE approaches.

DTW Downsampling CAE-RNN

MFCC 35.90 19.40 30.18± 0.34
CAE 41.49 ± 1.97 21.27± 1.51 31.31± 1.17
CPC 16.03± 0.03 25.38± 0.48 36.83± 0.92
APC 30.68± 0.26 20.48± 0.08 33.55± 1.03
CAPC 36.89± 0.31 24.42± 0.11 35.62± 0.62

in Section 4.4.1. Further analysis of the different types of representations are performed
on the English validation data of which the results are discussed in Section 4.4.2.

4.4.1. Results

We compare MFCC, CAE, CPC, APC and CAPC representations when used as input
representations to the CAE-RNN model of Section 2.3. As a baseline comparison, we also
use these representations to create downsampled AWEs. Additionally, we run DTW over
all the representations for a direct same-different task evaluation. All experiments are
performed three times and we report the AP scores along with the standard deviation.

Table 4.1 shows the AP scores of these evaluations on the English test data. First
focusing only on the AWE results (downsampling and CAE-RNN columns), we see that in
both cases all the learned representations improve upon MFCCs. In both AWE approaches,
best results are achieved when using the CPC representations. The CAPC representations
results in higher AP scores than the CAE and APC AWEs, indicating that the combination
of the correspondence and predictive learning have been complementary on the English
dataset.

Somewhat surprisingly, when the representations are used directly to do the same-
different task (DTW column), the only representations to outperform MFCCs are the
frame-level CAE and CAPC representations with the CAE representations resulting in
the highest AP score overall. Moreover, for both the CPC and APC representations, the
corresponding CAE-RNN outperforms its DTW counterpart (e.g. 29.52% vs. 34.76% for
the CPC representations). This is despite DTW having access to the full sequences while
the CAE-RNN needs to compress the sequences into AWEs. One reason for this could be
that the top-down constraints used in both the frame-level CAE and CAPC model are
the same as those used in the CAE-RNN model (obtained from the UTD system), and
therefore does not provide any additional signal. In contrast, the self-supervision signal
for the CPC and APC models are obtained in a bottom-up fashion which is different
from that of the CAE-RNN—the top-down signal used in the CAE-RNN seems to be
complementary to the bottom-up approach of CPC and APC. This reason could also
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Table 4.2: AP (%) results on the Xitsonga test data for DTW and the CAE-RNN and
downsampling AWE approaches.

DTW Downsampling CAE-RNN

MFCC 28.15 18.36 22.52± 0.29
CAE 48.32 ± 1.96 26.01± 0.33 29.61± 3.21
CPC 7.65± 0.32 18.66± 1.24 40.93± 0.77
APC 18.65± 0.42 16.16± 0.22 38.96± 0.74
CAPC 30.62± 0.30 24.38± 0.81 34.89± 0.64

explain why the DTW result of the CAPC representations is closer to the corresponding
CAE-RNN result compared to the frame-level CAE results.

Some similar trends are observed on the Xitsonga data in Table 4.2, but here the affects
are even more pronounced. Again, the best AWE approach is when the CPC representations
are used as input to the CAE-RNN. Note that, here the APC representations as input to the
CAE-RNN results in a higher AP score compared to using the CAPC representations. The
reason that CAPC representations lead to worse performance than the APC representations
on the Xitsonga data is possibly that the CAPC representations are more sensitive to
validation tuning.

The DTW system using CPC representations performs substantially worse than the
DTW system using MFCCs, with the CAE representations performing best of the DTW
systems. And again the CPC and APC representations as input to the CAE-RNN lead to
substantially better performance compared to the corresponding DTW systems (e.g. 38.96%
vs. 18.65% for the APC representations). Interesstingly, here the CAPC representations
as input to the CAE-RNN lead to a higher AP score compared to the corresponding score
of DTW.

Finally, we are interested to see if the learned representations can be used across
languages. This is related to previous studies applying frame-level features learned on one
language to another [128,129]. However, here we are specifically interested in the resulting
AWEs, which has not been considered before. We train the frame-level representations on
English data and then use the trained models to encode the Xitsonga data which is then
used as input to the CAE-RNN.

Table 4.3 shows the cross-lingual test results of the resulting AWEs. Again, the
CPC representations perform best. Surprisingly, the representations learned on English
perform better than using those trained on Xitsonga (Table 4.2) (except for the CAPC
representations). The reason for this is likely due to the English dataset containing more
speech data. Therefore there is potential for even larger improvements by using more
substantial amounts of unlabelled data to train the learned representations.
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4.4.2. Further analysis

We want to investigate the information that is encoded into the different frame-level
representations and resulting AWEs. We discuss the results of the probing tasks setup as
described in Section 4.2.5. All tasks are repeated three times and the average scores and
standard deviations are reported.

First, we consider the information that is encoded in the resulting AWEs. In Table
4.4 we see the accuracy and R2 scores of the speaker classification and length prediction
tasks, respectively. From the speaker classification results (in the Speaker column), we see
that all the AWEs produced by the learned representations, except those of the CAPC
representations, have reduced speaker classification accuracy scores compared to those
of the MFCCs. The lowest speaker classification score is from the AWEs produced by
the CAE representations. This is maybe indicative that the frame-level CAE model is a
stronger speaker normalising method compared to CPC where the model is encouraged to
only encode frame-level information that is discriminatory within utterances of the same
speaker. It is unexpected that the CAPC AWEs have the highest speaker classification
score, since both the CAE and APC representations lead to AWEs with reduced speaker
classification scores.

Focussing on the utterance length prediction scores (in the Utt. Length column), we see
that all the AWEs produced by learned representations have reduced R2 scores compared
to those of the MFCCs. Interestingly, all the representations that make use of predictive
coding lead to the lowest scores.

Next, we consider the probing tasks performed directly on the representations, these
results are seen in Table 4.5. In the left-most column is the speaker classification accuracy
scores. The scores of the predictive coding representations, when compared to each other,
correlate to the trend of their corresponding acoustic word embedding speaker accuracy
scores. However, here the representations of the CAE has the lowest score and the MFCCs
the second lowest score. The dimensionality of the predictive coding representations are
much larger than that of the MFCCs and CAE representations (e.g., the MFCCs are
13-dimensional and the APC representations are 512-dimensional). It is possible that the
linear speaker classifier can better fit the speaker information in the larger representations.

Table 4.3: AP (%) results on Xitsonga when training the frame-level representations on
English before applying it to the Xitsonga data to train a CAE-RNN AWE model.

AP (%)

CAE 34.25± 1.61
CPC 41.79± 0.60
APC 40.07± 1.13
CAPC 31.88± 2.06
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In the middle column are the accuracy scores for the correct order binary classification.
Here we see that all the learned representations have higher scores than the MFCCs
and surprisingly, the CPC representations achieved a 100 % accuracy in all three the
repeated experiments. The CAE representations have the second highest score. This
seems to counter our initial intuition that representations that share more information
with surrounding frames will lead to higher accuracy scores, since the CAE representations
are not encouraged to encode temporally shared information. However, the speaker and
noise normalising of the CAE could result in the classifier being better able to fit to the
natural English language order information in the frame representations.

In the right-most column are the accuracy scores for the last frame prediction. This
task shares similarities with the CPC approach and as expected, the CPC representations
lead to the highest score. These results seem to correspond with our initial intuition that
frames that have more mutual information with surrounding frames will lead to higher
scores as the top three scores are from the predictive coding representations.

Finally, we investigate the correlation between the various probing tasks and AP scores
of the validation data. Figure 4.4 shows a lower triangular matrix of the correlation
coefficients between the different tasks, where the correlation coefficient between tasks
i and j are in the ith row and jth column. Take note that for each task there are five
different types of representations of which there are three results each. Therefore there are
only 15 data values per task and the reader should be wary to draw strong conclusions
about the correlations until further investigation with more data.

The strongest positive correlation is between the average precision (AP) and last
frame (LF) prediction scores. The strongest negative correlation is between the speaker
classification of the representations (SR) and the utterance length prediction (UL). The
weakest correlation is between the correct order prediction (CO) and speaker classification
of the AWEs (SE). All the tasks, except for SE, have at least a moderate correlation with
the AP score.

Table 4.4: The scores for the prediction tasks performed on the final English validation
AWEs. On the left is the speaker classification accuracy (%) and on the right is the R2

score for the utterance length prediction.

Speaker Utt. Length

MFCC 64.05± 3.89 0.95± 0.01
CAE 51.43± 1.95 0.94± 0.01
CPC 57.83± 1.65 0.90± 0.02
APC 60.76± 3.20 0.90± 0.03
CAPC 67.70± 4.15 0.88± 0.02
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Table 4.5: The scores for the prediction tasks performed on the different final English
validation representations. The columns from left to right show the speaker classification
accuracy (%), correct order binary classification accuracy (%) and last frame prediction
accuracy (%).

Speaker Order Last Frame

MFCC 32.72± 2.47 83.03± 1.24 90.68± 0.54
CAE 23.95± 0.83 88.06± 0.63 85.50± 1.45
CPC 53.69± 0.60 100.0± 0.00 99.15± 0.34
APC 57.83± 1.64 85.80± 1.01 94.09± 0.62
CAPC 66.91± 0.90 87.93± 1.38 92.81± 0.31
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Figure 4.4: The lower triangle matrix of correlation coefficients between the results of
the different probing experiments. From left to right on the x-axis is: average precision
score (AP), speaker classification of the AWEs (SE), utterance length prediction (UL),
speaker classification of the representations (SR), correct order prediction (CO) and last
frame prediction (LF).

4.5. Conclusion
In this chapter we considered how AWEs from an unsupervised model can be improved by
using frame-level representations from self-supervised approaches as input. Concretely, we
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compared CAE, CPC and APC when used as input to the CAE-RNN. We also introduce
and compare a new type of representation learning approach, CAPC, that combines the
mechanisms of the CAE and APC.

In a word discrimination task on two languages, all AWEs from learned representations
outperform those from MFCCs with CPC consistently achieving the best results. On
the English data, the CAPC results outperformed the CAE and APC representations,
showing that the combined approach was complimentary, but unfortunately this results is
not consistent in the Xitsonga experiments.

Different trends were observed when using the features to perform the task directly
using DTW: in this case, the AWEs produced by CPC representations performed worst
while those of the frame-level CAE performed best.

In a crosslingual experiment we found that that using the larger English dataset to
train the representation learning models and then to encode the Xitsonga representations
results in better quality AWEs, compared to the Xitsonga only method, for all learned
representations except those of the CAPC approach.

We also performed various probing tasks of the different learned representations and
MFCCs.

The work presented in this chapter shows that the quality of AWEs can be improved
by using better (learned) frame-level representations as input to the AWE model.
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Chapter 5

Speaker-based training strategies for
acoustic word embeddings

In Chapter 3 we investigated improving AWEs by augmenting the models and in Chapter 4
we investigated improving the frame-level input features. Here, we will consider the
training strategy used for both the AE-RNN and CAE-RNN.1 Inspired by the way that
humans are exposed to speech input and curriculum learning strategies that have been
used for other DNN models, we investigate if training the AE-RNN and CAE-RNN with a
strategy where the number of speakers are gradually increased is beneficial for the resulting
AWEs. This strategy is compared to other strategies, including, training on input from a
single speaker, from multiple speakers and gradually decreasing speakers. The different
strategies are evaluated by evaluating the resulting AWEs. We find that the different
training strategies do not have a significant impact on the quality of the AWEs and that
the strategies that allows input from multiple speaker in the first few epochs lead to faster
convergence.

5.1. Intuition and related work
A lot of acoustic models are trained on speech from the same set of speakers for all
iterations and outside of the low-resource setting these sets often consist of thousands
of speakers. However, when humans learn to process and recognise speech, they are not
introduced to the speech of a large set of speakers immediately. Instead, in the early
stages of life, humans likely only hear speech from a small number of speakers (like from
household members and caretakers) and as they get older they are exposed to more and
more speakers. In Section 5.1.1 below we discuss work that has investigated the impact of
the number of speakers at different stages of life.

It is worth investigating if a training strategy that more closely resembles the way
that humans are exposed to different speakers will have an impact on AWEs. Other deep
learning models used for a variety of tasks have benefited from a training strategy where

1The work in this chapter formed part of a collaboration between Stellenbosch University and the
University of Edinburgh.
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the difficulty of the learnt task is gradually increased and more on this is discussed in
Section 5.1.2.

5.1.1. The impact of the number of speakers on speech perception

A range of studies related to human speech perception have lead to results that suggest
different levels of impact of the number of speakers a human is exposed to on their
performance in speech perception tasks.

Bergmann and Christia [130] did an experimental investigation on the effect of the
number of speakers that provide input (three groups of ages four, six and 12 months) to
infants on their ability to discriminate native vowels. The data that they gathered indicate
that there is likely not a link between the number of speakers and the ability of infants to
discriminate between native vowels.

Schatz et al. [131] introduced a phonetic model that successfully resembles observations
of infant phonetic discriminability [132] when the model is trained on dataset of roughly
evenly distributed speech from more than 20 different speakers with an equal number of
male and female speakers. The conditions of their dataset don’t match those observed for
infants (empirical evidence based on North American children) [133] where the speaker
distribution skews heavily towards female speakers and infants don’t receive an even
amount of speech from all available speakers. Li et al. [134] investigated whether variation
in input to this model will have an impact on the results, this included comparing models
trained on multiple speakers versus a single speaker. They found that models trained
on either a balanced set of multiple or single speaker(s) resemble the observations of the
phonetic discriminability of infants, but those trained on a single speaker (which more
closely matches the set of speech that infants receive as input [133]) have a slightly closer
resemblance.

The before mentioned studies all relate to speech perception in infants, however, other
studies suggest that the number of speakers can have a greater impact at later stages
in life. Li-Ari [135] investigated the relationship between social network size and speech
perception. They performed an empirical experiment where adult participants (between
the ages of 20 and 57) had to note the number of speakers that a participant interacted
with via speech for in a week and were then scored on a number of speech perception
tasks. An analysis of the results revealed that participants that were exposed to more
speakers were better at identifying vowel sounds embedded in noise. To find the reason
for this correlation, they performed a simulation similar to the experiment to investigate
the different variables and they found that the the increase in variability of speech from
an increased number of speakers leads to better phoneme categorisation. In a second
simulation experiment, they found that at the early stages of learning a larger number
of speakers does not have the same impact. The boundaries between native phonetic
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categories are not yet known at the early stages of learning and the variation in these
categories from different speakers can make the learning task more difficult or not have an
impact [133,135,136]. However, when the learner is able to discriminate between different
categories, a larger number of speakers can aid the learner in robustness against speaker
variation [135,137].

5.1.2. Curriculum learning for DNNs

In behaviour analysis, the term shaping refers to a human or animal training strategy where
the learner is gradually guided towards a target behaviour by successive reinforcements
of increasingly accurate target responses [138, 139]. Research in machine learning has
investigated if training models with a similar strategy can be advantageous [140–142].
Bengio et al. [41] formalised this strategy for training machine learning models with
increasingly difficult tasks and called it curriculum learning. They used this training
strategy on various different machine learning models and found that it can result in
significant improvement in generalisation compared to training with no curriculum learning
strategy. One of the machine learning models that they considered is a DNN language
model [143] that is trained to predict the the next word in a sentence. They use text
from Wikipedia as their training dataset and implement curriculum learning by gradually
increasing the vocabulary size of the input data. During the first iteration, only word that
are within the top 5 000 most frequent words are used as input and this is increased with
the next 5 000 most frequent words with every iteration.

Other studies have also since taken advantage of curriculum learning [42–46] including
those focussing on acoustic modelling. Braun et al. [47] investigated an approach that
they call accordion annealing to improve noise robustness in automatic speech recognition.
In this approach the training of their model is divided into stages. In the first stage the
model is trained on speech with low signal-to-noise ratios and in the next stages the range
of signal-to-noise ratios is gradually expanded to include higher ratios. They found that
this approach showed improved performance over a model that is trained on wide range
signal-to-noise ratio speech from the start. This approach seems counter-intuitive and
different from other curriculum learning methods as the model starts with training on
the most noisy speech (a more difficult task than training on clean or less noisy speech)
but [47] argues that this allows the model to explore a wider parameter space in the first
stages and they further show that this approach also outperforms a model that is instead
first trained on high signal-to-noise ratio speech. This strategy has also been used for a
denoising AEs [43].
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5.2. Methodology
We will implement and compare various speaker number based training strategies on the
AE-RNN and CAE-RNN models. This includes a curriculum learning strategy, discussed
in Section 5.1.2, where we will first train the models on a single speaker and then
gradually increase the difficulty by incrementing the number of speakers in the training set.
Incidentally, the way in which we train the AE-RNN and CAE-RNN consecutively can also
be viewed as a curriculum learning strategy: first the AE-RNN is trained to reconstruct
the input speech segment, an easy task, and then with the same model parameters, the
CAE-RNN is trained to reconstruct the speech segment in the same pair as the input, a
more difficult task.

We setup four different training strategies and they are discussed below:

Multiple speaker learning (multi): At each iteration the model is trained on speech
segments from all the speakers in the training dataset. This is the same strategy
followed for the AE-RNN and CAE-RNN models in Chapters 3 and 4 and in most
other AWE studies [29].

Single speaker learning (single): The model is trained on speech segments from one
speaker. We choose the speaker with the most speech segments or with the most
same speaker UTD pairs, for the AE-RNN and CAE-RNN, respectively. A multi and
single strategy were also compared to each other in [134] in a phoneme discrimination
task, where they found that both strategies result in similar trends. It is expected
that the multi strategy will result in better quality AWE, but it will be interesting
to see what the impact of speaker variation is by comparing it to the AWEs from
the single strategy.

Incremental speaker learning (incr): At each stage/iteration the model is trained on
speech segments only from j selected speakers from the training set; initially j = 1
and then increments with every subsequent stage. The j speakers are always the top
j speakers with the most speech segments. We assume that this will be an adequate
approximation for the top j speakers with the most UTD pairs consisting of speech
segments from only the j speakers. This is a curriculum learning strategy where
difficulty is linked to the variation of speakers.

Decremental speaker learning (decr): As in the incr strategy, the model is trained
on speech segments from only j selected speakers at each stage, but here j is initially
equal to the total number of speakers in the training set and then decrements with
each stage. Again, the j speakers are always the top j speakers with the most speech
segments. This is the opposite of a curriculum learning strategy as the model is first
trained on the most difficult task and then the difficulty is decreased at each stage.
It will be interesting to compare the results of this strategy to the incr strategy.
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If it proves to be true that the gradual increase in difficulty aids the models to
produce better quality AWEs, then it is expected that the decr strategy should have
a detrimental impact on the quality of the AWEs.

5.3. Experimental setup
The AE-RNN and CAE-RNN models follow the setup in [13], described in Section 3.3.3
and the AWEs are again evaluated using the same-diff task (Section 2.4).

For the incremental and decremental training strategies, we want there to be a sufficient
number of stages to train the models effectively. Therefore, for the experiments in this
chapter we use the Hausa dataset (of which more details were discussed in Section 2.5)
which contains 83 different speakers which is considerably more than the English and
Xitsonga datasets with 12 and 24, respectively. The Hausa training set is also very
unbalanced with the speaker with the most speech segments containing about x % of the
total segments, which means that the single, first stage of the incr and last stage of the
decr training strategies should hopefully allow a sufficient amount of input for the models.
For the multi strategy and stages of the incr and decr strategies where speech segments
from multiple speakers are selected we choose speech segments so that there is somewhat
speaker uniformity to prevent the models from having a bias towards the most frequent
speakers. Therefore, at each stage with j speakers with the jth having Nj speech segments
or pairs consisting of speech segments from the j speakers only, the number of speech
segments or pairs to choose is defined as follows:

max
(

min
i∈[1,j]

(Ni) , Nmin

)
(5.1)

Nmin is 200 for the AE-RNN and 1 400 for the CAE-RNN, which was picked based off
of development experiments.

We experiment with two different methods of updating the stages in the incr and decr
training strategies. One option is to update a stage after one epoch, like in [41] where the
difficulty is increased after every iteration. In this we train the AE-RNN and CAE-RNN
on an additional 20 and 10 epochs, respectively, after the last speaker has been added to
the training set. The other option is to exhaustively train the model at each stage and
then load the model parameters which resulted in the best validation score for the next
stage, like in [47]. Here we train the models for 120 and 15 epochs at each stage for the
AE-RNN and CAE-RNN, respectively. Needless to say, this option requires considerably
more training time compared to the first option with total epoch counts of 9960 and 1245
versus 103 and 93 for the AE-RNN and CAE-RNN, respectively.
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5.4. Experiments
We report results on the Hausa dataset. There are a number of training strategy explo-
rations to consider, which we discuss in Section 5.4.1 and the test results of the best
training strategies are discussed in Section 5.4.2.

5.4.1. Development experiments

We explore the following questions: (1) What is the impact of training AWEs on multiple
speakers? (2) What is the best stage update method? (3) Does speaker based curriculum
learning have a positive effect? (4) Does the opposite of a curriculum learning strategy
have a negative effect?

First we compare AWEs that have been trained on multiple speakers vs on a single
speaker. These results are shown in Table 5.1. The subsequent AE-RNN and CAE-RNN
can be trained with the same or different strategy and the respective columns show which
was used for each model.

From the results in the table we see that training on multiple speakers results in AWEs
with significantly higher AP scores, shown in the first row, compared to training on a
single speaker only, shown in the second row. We know from previous work [13] that
training the CAE-RNN without initialising with the pretrained AE-RNN parameters leads
to poor results. However, training on a single speaker is an easier task than training on
multiple speakers and we investigate if training the CAE-RNN on randomly initialised
parameters with a single speaker will also lead to poor results. In the third row, we see
that this does indeed also result in a very poor AP score (worse than the AE-RNN trained
on a single speaker).

Next, we investigate which stage update method is better for the incr strategy. For
now, we only compare two different AE-RNN and CAE-RNN combinations of strategies
and these results are shown in Table 5.2. The first method is to exhaustively train the
model at each stage and load the best parameters at the next stage, denoted by BM. The
second methods is to update the stage after one epoch, denoted by OE.

Table 5.1: Development results for the multi versus the single curriculum learning
strategies. In the AE-RNN and CAE-RNN columns are the strategies used for each and
the AP scores are shown in the AP columns.

AE-RNN AP (%) CAE-RNN AP (%)
multi 25.81± 0.38 multi 41.18± 0.64
single 14.08± 0.38 single 20.52± 0.40
none - single 6.70± 0.76
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Table 5.2: Development results for using the one epoch till next stage (OE) and best
parameters till next stage (BP) stage update methods. In the AE-RNN and CAE-RNN
columns are the strategies used for each and the AP columns shows the scores of the final
AWEs.

AE-RNN AP (%) CAE-RNN AP (%)
single 14.08± 0.38 incr(BM) 29.92± 0.11
single incr(OE) 31.16± 0.59
incr(BM) 19.03± 1.5 multi 32.53± 2.69
incr(OE) 22.46± 0.94 multi 39.53 ± 0.67

From the results in the table we see that the OE method consistently leads to higher
AP scores compared to the BM counterparts, e.g. 31.16 versus 29.0.11 in the CAE-RNN
column of the top two rows and 22.46 versus 19.03 in the AE-RNN column of the two
bottom rows. It is possible that the BM method guides the model parameters into a local
minima before the last stage which leads to worse performance.

In Table 5.3 are the results for different incr strategy combinations. There are a large
number of combinations that can be investigated, but we consider only the four where
the AE-RNN strategy is as easy or easier than the strategy used for the CAE-RNN (the
difficulty order is: none, single, incr, multi).

From the results we see that training the AE-RNN with the incr strategy leads to
the best CAE-RNN results. However, the multi-multi strategy in Table 5.1 still achieves
a slightly higher AP score. This shows that the incr strategy, unfortunately, has slight
negative or no impact on the AWEs. Here the CAE-RNN initialised without the parameters
of a pretrained AE-RNN produces AWEs also with an AP score significantly lower than
the CAE-RNN initialised with the parameters of an AE-RNN trained with the single
strategy (like in Table 5.1).

Finally, we investigate following a training strategy that is the opposite to a curriculum
learning strategy. The results for different combination of the decr strategy are shown
in Table 5.4. Again, there is a large number of possible combinations but here we only
consider the three where the strategy for the AE-RNN is more difficult or as difficult than
the strategy used for the CAE-RNN (order of difficulty is single, decr, multi).

Table 5.3: Development results for different combinations of the incr strategy. In the
AE-RNN and CAE-RNN columns are the strategies used for each and the AP columns
shows the scores of the final AWEs.

AE-RNN AP (%) CAE-RNN AP (%)
single 14.08± 0.38 incr 31.16± 0.59
none - incr 23.57± 1.52
incr 22.46± 0.94 multi 39.53 ± 0.67
incr incr 38.82± 0.97
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Table 5.4: Development results for different combinations of the decr strategy. In the
AE-RNN and CAE-RNN columns are the strategies used for each and the AP columns
shows the scores of the final AWEs.

AE-RNN AP (%) CAE-RNN AP (%)
multi 25.81± 0.38 decr 41.11 ± 0.29
decr 22.10± 0.36 single 33.93± 1.58
decr decr 38.51± 0.38

Table 5.5: Test results for the top three training strategy combinations. In the AE-RNN
and CAE-RNN columns are the strategies used for each and the AP columns shows the
scores of the final AWEs.

AE-RNN AP (%) CAE-RNN AP (%)
multi 21.56± 0.27 multi 34.16± 0.74
multi decr 34.20± 0.37
incr 20.91± 0.39 multi 33.59± 0.14

From the results we see that the highest AP scores are from the AWEs produced by the
CAE-RNN trained with the decr strategies, in the first and third row. Interestingly, AP
score from the multi-decr strategy is higher than any of the incr strategy combinations and
within one standard deviation of the score from the multi-multi strategy. Therefore the
opposite of a curriculum learning approach does not have a negative impact and it seems
that there is actually slightly better performance if the model is introduced to multiple
speakers at an early stage.

Overall, the results seem to indicate that the specific training strategy has very little or
no impact as long as both the AE-RNN and CAE-RNN are trained on multiple speakers
(this includes the multi, incr and decr strategies).

5.4.2. Hausa test results

The test AP scores for the top three development training strategy combinations (multi-
multi from Table 5.1, incr-multi from Table 5.3 and multi-decr from Table 5.4) are shown
in Table 5.5. The highest AP score is from the multi-decr strategy AWEs in the second
row, however, all three scores are within one standard deviation of the multi-multi AP
score in the first row. From the development and test experiment results, it is evident
that the selected speaker-based strategy has very little or no impact as long as both the
AE-RNN and CAE-RNN models are exposed to input from multiple speakers.

5.4.3. Further analysis

We are interested to see how the AP scores of the different strategies at different epochs
compare, especially to those with increasing and decreasing speaker numbers. The epoch
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Figure 5.1: The average precision score at every epoch for the different training strategies
applied to the AE-RNN. The vertical bars indicate the standard deviation.
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Figure 5.2: The average precision score at every epoch for the different training strategies
applied to the CAE-RNN. The vertical bars indicate the standard deviation

number versus the AP scores of various strategies reported on in Section 5.4.1 are shown
in Figures 5.1 and 5.2 for the AE-RNN and CAE-RNN, respectively. We show the first 83
epochs which is up until all speakers have been added in the incr strategies or removed in
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the decr strategies. Take note that in Figure 5.2 all the light colour lines end at 30 epochs
and this is because the CAE-RNN trained with the single and multi strategies are only
trained for so many epochs.

The different strategies seem to follow the same rate of increase in AP score across
models. In the figure we see that there is a fast increase in the AP scores for the multi
(blue line in Figure 5.1 and light blue and light orange in Figure 5.2) and decr (purple line
in Figure 5.1 and dark blue and dark purple in Figure 5.2) strategies. Although, [41] found
that curriculum learning training strategies lead to faster convergence, here, the similar
trends in the multi and decr strategies shows that many speakers in the early stages are
what drives faster AP score convergence where the incr strategies (orange line in Figure
5.1 and dark green, dark grey and dark orange lines in Figure 5.2)) instead show a slower
increase in AP score. Also notice that after about 20 speakers have been introduced to the
AE-RNN with the incr strategy the increase in AP score is accelerated, again highlighting
that many speakers drive faster AP score increase.

5.5. Conclusion
We have investigated various speaker number based training strategies for the AE-RNN
and CAE-RNN. This includes training on multiple speakers at all epochs, like in Chapters
3 and 4 on a single speakers. Inspired by curriculum learning, we train the models on
an increasing number of speakers, to better mimic the way that humans are exposed to
different speakers. To further investigate the different number of speakers at each stage,
we train the models with the opposite of a curriculum learning strategy, by decreasing the
number of speakers at every epoch.

Unfortunately, the curriculum learning inspired strategy does not improve on the
quality of the AWEs trained on multiple speakers. In fact, we find that as long as both
the subsequently trained AE-RNN and CAE-RNN receive input from multiple speakers at
some stages, there is very little difference between the results. Additionally, in an analysis
we find that input from many speakers in the early epochs lead to faster convergence of
the measure of the AWE quality.

There are two reasons for the absence of AWEs improvement to consider. Firstly, it
could be that an increase in speaker number is not a task well suited for a curriculum
learning strategy as other types of tasks have achieved significant success [41]. Secondly,
there might be a too small amount of input data. The experiments in this chapter were
conducted in a zero-resource setting (as it is the focus in this thesis) with a limited number
of hours of speech, but infants are exposed to a considerable number of hours of speech [133]
and other studies that have successfully modelled infant speech trends [131, 134] have
taken this into the consideration.
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Chapter 6

Conclusion

6.1. Thesis summary
We have investigated various methods at an attempt to improve the intrinsic quality of
unsupervised AWEs produced by both the AE-RNN [11] and CAE-RNN [13] models.

In Chapter 3 we considered two approaches to normalise out speaker and gender
information, speaker and gender conditioning and adversarial training, and investigated if
a reduction in this information does indeed result in improved AWEs.

In the conditioning approach, the decoder component of either the AE-RNN or
CAE-RNN is conditioned on speaker or gender embeddings. Conventionally, embeddings
are initialised randomly, but some studies have had success with initialising embeddings
with other trained embeddings like i-vectors [86] or self-pretrained embeddings [103]. There-
fore, we also compared using different initialisations: from a random uniform distribution,
x-vectors (a DNN approach for i-vectors) and AE-RNN and CAE-RNN self-pretrained
embeddings. The self-pretrained and x-vectors initialisations do lead to better results, but
it is still very close to the results of the randomly initialised embeddings. In the adversarial
training approach, the AE-RNN or CAE-RNN is penalised with a negative loss term if
the speaker identity or gender can be predicted from the AWEs. We find that the best of
the two approaches is conditioning.

On the English dataset the best result is from applying speaker conditioning to the
CAE-RNN with the speaker embeddings initialised from LDA projected x-vectors with a
5.98 % relative improvement compared to the original CAE-RNN. We see a more significant
improvement on the Xitsonga dataset with speaker conditioning on the CAE-RNN having
a 33.29% relative improvement. However, the bigger improvement in the Xitsonga dataset
is likely due to the Xitsonga training set having more speakers (24 versus 12 in the English
training set) and overlapping speakers between the training and test sets.

Additionally, we analysed the speaker and gender information captured in the AWEs
by training and evaluating the final AWEs of all the different methods on a speaker or
gender classifier. We find that these method did indeed reduce the speaker and gender
information captured by the AWEs, but only slightly. Furthermore, we find that there is a
correlation between AP and the amount of speaker or gender information. This suggests

66
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that if more of this information can be reduced it can lead to more improved AWEs, but
this is evidently a harder problem than previously thought.

In Chapter 4 we implemented different frame-level speech representation types, three of
them are from previous studies, the frame-level CAE model [37], CPC [39] and APC [38]
and a fourth is our own, CAPC, which is a combination of the frame-level CAE and APC.

The frame-level CAE uses top-down information from pairs of speech segments that are
predicted to be of the same type using a UTD system [55]. The model is then encouraged
to only encode information that is shared between aligned frames and disregard what is not,
like speaker and noise information. In a probing task, we do find that the frame-level CAE
representations contain the least amount of speaker information and also result in AWEs
with the least amount of speaker information. However, although the frame-level CAE
representations result in the best DTW AP score, AWEs from these representations result
in the smallest improvement of all the learned representations used as input when compared
to MFCCs. The reason for this could be that the CAE-RNN uses the same top-down
information as the frame-level CAE and so the combination is perhaps not complementary.
This reason can be confirmed in future work by using other frame-level representation
learning methods that uses the same top-down information as the frame-level CAE [35].

Both the CPC and APC models learn representation by being trained to predict future
frames, this encourages the models to encode shared temporal information into the learned
representations, like higher level phoneme information. More specifically, the CPC model
learns representations by being trained to predict the correct sequence of future frames
from a set containing negative examples from the same speaker. This encourages the CPC
representations to additionally only encode information that is discriminatory between
frames of the same speaker, therefore speaker information will be disregarded. The APC
model uses an autoregressive function to predict future frames and in contrast to the CPC
model, it is not encouraged to disregard any information. Both of these representations
used as input to the CAE-RNN lead to improvement in AP compared to using MFCCs
as input, with the CPC representations leading to the highest score. Interestingly, using
DTW directly on both of these representation types lead to worse performance than
their CAE-RNN AWE counter parts. This is despite the DTW approach having full
access to the representations, indicating that the CAE-RNN used together with these
representations that have been trained in a bottom-up way is complementary.

For the CAPC model, we use the same architecture as that of the APC model, but we
use the input-output aligned frames that was used with the frame-level CAE. We hope
that by combining these two different mechanisms, we can gain the benefit of encoding
shared temporal information as well as disregard speaker and noise information. In our
experiments we find that on the English data, these representations as input to the
CAE-RNN does outperform both the frame-level CAE and APC representations used as
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input, but not on the Xitsonga data set. This indicates that the CAPC model is perhaps
more sensitive to validation tuning than the APC model.

Taking together all the results from the different learned representations, we find that
AWEs from all four different learned representations outperform those from MFCCs, with
CPC representations consistently achieving the best results on English and Xitsonga data.
Compared to the CAE-RNN trained on MFCCs, AWEs trained on CPC representations
showed a 18.02 % relative improvement on the English data and a 81.75 % relative
improvement on the Xitsonga dataset. We also performed a crosslingual experiment, where
we train the speech representation models on the larger English dataset and then use these
trained models to encode Xitsonga representations. This results in even better quality
AWEs, compared to the Xitsonga only method, with the CPC AWEs having a 85.57 %
relative improvement compared to the MFCC AWEs. Additionally, we also performed
a number of probing tasks on both the different AWEs and frame-level representations
directly.

In Chapter 5 we investigated different training strategies based on the variance of
speakers in a training batch. Inspired by the fact that human infants are first only exposed
to speech from a limited number of speakers which gradually increases, we use a curriculum
learning strategy [41] where the level of difficulty is determined by the number of different
speakers in the batch. This strategy is compared to three other strategies, training on
multiple speakers, on a single speaker and with a reverse curriculum learning strategy.
These strategies are applied in different combinations to both the AE-RNN and CAE-RNN.
We find that the training strategy has very little to no impact on the quality of the AWEs
as long as there are multiple speakers at some stage of the training. Additionally, in
an analysis we find that input from many speakers in the early epochs lead to faster
convergence of the AP score.

In summary, we conclude that normalising out some of the speaker and gender infor-
mation contained in AWEs leads to at least marginal improvement in AWE quality. Using
self-supervised frame-level speech representations can lead to significant improvement in
AWE quality and different training strategies do not contribute towards improved AWE
quality.

6.2. Future work
There are a number of areas that should be focussed on in future work, this includes
extensions to our presented approaches for improving AWEs and other ventures.

In Chapter 3 we found that conditioning the AE-RNN and CAE-RNN on speaker and
gender embeddings leads to some improvement in AWE quality. These are only two types
of nuisance properties and future work could consider looking into other types like for
example: age, accent, method of recording and level of noise. Previous studies have had
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success with training acoustic models to be noise invariant [102] and in a multilingual
study, language conditioning has been used for the CAE-RNN [24].

In Chapter 4 we performed a multilingual experiment where representation learning
models were trained on the larger English dataset and then used to encode Xitsonga
representations which was used as input to the CAE-RNN. This resulted in AWEs with
higher AP scores as those from models trained on Xitsonga-only representations. We
focused on a zero-resource setting where a only a limited amount of data is available in
this thesis and future work should consider doing this same multilingual experiment with
a much larger initial training set for the representation models.

In Chapter 5 we took inspiration from human infant speech learning for a curriculum
learning training strategy based on the number of speakers. However, infants are usually
exposed to many hours of speech [133] and other studies that have tried to mimic infant
learning in acoustic modelling have taken this into account [131,134]. Therefore future
work should consider implementing our same experiments on a much larger corpus to
confirm if the curriculum learning strategy does not have an impact on the quality of
AWEs.

In an analysis study on the current evaluation metrics used for AWEs, including the
AP score, Algayres et al. [23] found that these current metric scores do not necessarily
correspond to how the AWEs will fair in downstream tasks. Therefore, future work should
include using our AWEs in downstream tasks like query-by-example search and full speech
segmentation. Additionally, future research should focus on coming up with evaluation
metrics for AWEs that are task independent.

Although we focussed on the AE-RNN and CAE-RNN, none of our proposed methods
are specific to these models (except speaker and gender conditioning which is dependent
on an encoder-decoder architecture). Future work should include applying these methods
to other AWE models to see if they have the same effects, like the Siamese RNN [12,48]
and the correspondence variational autoencoder [22].

Another area that should be focused on to improve unsupervised AWEs is the method
used to retrieve the similar pairs of speech segment used as input-output pairs for the
CAE-RNN. In this thesis and other work [13, 35, 37, 66] a UTD system [55] is used to
discover similar segments of speech in an unsupervised way. This system has to be finely
tuned for each dataset, which means it would be a laboursome task to use this system for
the many other zero-resource languages. Also, the CAE-RNN trained on supervised word
pairs achieves much better results compared to training on UTD pairs. Therefore, if we
can find an approach to retrieve better pairs of similar speech segments, the quality of the
AWEs from the CAE-RNN will be improved.
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