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Abstract

Low-Resource Neural Machine Translation for Southern African Languages

Evander EL-Tabonah Nyoni
Department of Mathematical Sciences,

Stellenbosch University,
Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc. (Applied Mathematics)

December 2021

The majority of African languages have not fully benefited from the recent advances
in machine translation due to lack of data. Motivated by this challenge we leverage
and compare transfer learning, multilingual learning and zero-shot learning on three
Southern Bantu languages (namely isiZulu, isiXhosa and Shona) and English. We fo-
cus primarily on the English-to-isiZulu pair, since it has the smallest number of training
pairs (30000 sentences), comprising just 28% of the average size of the other corpora.
We demonstrate the significant importance of language similarity on English-to-isiZulu
translations by comparing transfer learning and multilingual learning on the English-
to-isiXhosa (similar) and English-to-Shona (dissimilar) tasks. We further show that mul-
tilingual learning is the best training protocol when there is sufficient data, with BLEU
score gains of between 3.8 and 7.9 compared to transfer learning and zero-shot learning
respectively for the English-to-isiZulu task. Our findings show that zero-shot learning
is better than training a baseline model from scratch if there is not much English-to-
isiZulu data. Our best model improves the previous English-to-isiZulu state-of-the-art
BLEU score by more than 10. Taken together, our findings highlight the potential of
leveraging the inter-relations within and between South Eastern Bantu languages to im-
prove translations in low-resource settings.

Keywords: transfer learning, multilingual learning, zero-shot learning, BLEU.
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Opsomming

Neurale masjienvertaling met lae hulpbronne vir Suider-Afrikaanse Tale

Evander EL-Tabonah Nyoni

Departement Wiskundige Wetenskappe,
Universiteit Stellenbosch,

Privaatsak X1, Matieland 7602, Suid-Afrika.

Tesis: MSc. (Toegepaste Wiskunde)

Desember 2021

Die meeste Afrikatale het weens die gebrek aan data nie ten volle gebaat by die onlangse
vooruitgang in masjienvertaling nie. Gemotiveer deur hierdie uitdaging benut en ver-
gelyk ons oordragleer, veeltalige leer en nul-skoot leer op drie Suidelike Bantoe-tale
(naamlik isiZulu, isiXhosa en Shona) en Engels. Ons fokus hoofsaaklik op die Engels-
tot-isiZulu-paar, aangesien dit die kleinste aantal opleidingspare (30000 sinne) het, wat
slegs 28% van die gemiddelde grootte van die ander korpusse beslaan. Ons demon-
streer die belangrikheid van taalgelykheid in vertalings tussen Engels en isiZulu deur
die oordragleer en veeltalige leer op die take Engels-na-isiXhosa (soortgelyk) en Engels-
na-Shona (verskillende) te vergelyk. Ons toon verder dat meertalige leer die beste op-
leidingsprotokol is as daar voldoende data is, met BLEU-tellingwinste van tussen 3.8 en
7.9 in vergelyking met onderskeidelik oordragleer en nul-skoot leer vir die Engels-na-
isiZulu-taak. Ons bevindinge toon dat zero-shot-leer beter is as om ’n basislynmodel
van voor af op te lei as daar nie veel Engels-tot-isiZulu-data is nie. Ons beste model
verbeter ook die vorige Engels-tot-isiZulu SOTA BLEU telling met meer as 10. Ons
bevindings beklemtoon die potensiaal om die onderlinge verhoudings binne en tussen
Suid-Oosterse Bantoe-tale te benut om vertalings in lae-hulpbron-instellings te verbeter.

Sleutelwoorde: oordrag leer, veeltalige leer, nul-skoot leer, BLEU.
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Chapter 1

Introduction

1.1 Chapter Organisation

This chapter lays out a brief introduction to the study, with Section 1.2 being the motiva-
tion behind the research itself and is presented before the problem description in Section
1.3. Further on in Sections 1.4 and 1.5 the chapter presents the work that is related to
this study and the general structure of this thesis, respectively.

1.2 Motivation

Languages are an indispensable instrument of communication, without which social or-
der is difficult or impossible to achieve. They are undoubtedly the primary medium
of interaction for people from heterogeneous and homogeneous cultural backgrounds.
However, with over one hundred and forty-two known language families in existence
[29], this may present a communication barrier between individuals of different lan-
guages. Languages that are used predominantly in high-status functions like education,
media and other government enterprises are popularly known as institutional languages
[26]. Concerning economic globalisation currently, the challenge of communication bar-
rier is the principal motivation behind why so many individuals need to learn some in-
stitutional language. However, the learning process may prove to be a challenge to some
individuals as some of these institutional languages are non-native. In most African
countries, for example, the most dominant institutional languages are non-native [10].

Figure 1.1 shows the ranking of the 10 most spoken languages worldwide as either a
native or second language. More than 88% of the world’s population speak one of

1
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Figure 1.1: The ranking of the 10 most spoken languages worldwide as either a native or
second language. As of year 2019, approximately 88% of the world’s population spoke
one of these languages as either a native or second language. [29]

these languages as either a native or second language. Second, to Asia, Africa has the
second most indigenous languages, and unsurprisingly these two continents together
account for two-thirds of all the tongues in the world. The vast majority of people world-
wide use European or Asian languages, and this is mainly due to the sheer population
in some localities and the colonial expansion in centuries past. Perhaps this explains
why non-native languages are the most dominant institutional languages in Africa.

With a population that is over a billion, Africa is the second most populous continent
and has the highest linguistic diversity, see Figure 1.2. This is mainly due to the enor-
mous language diversity in the sub-Saharan-Africa region. Most of these languages are
under the Niger-Congo language family [29]. The Niger-Congo and Austronesian lang-
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Figure 1.2: A 2019 summary of language count per language family. Each section of the
donut pie chart represent the number of languages in a specific language family. [29]

uage families constitute over a thousand languages each, and they both form the two
largest families, see Figure 1.2. Each of the six language families shown in Figure 1.2
account for no less than 5% of the total languages in the world, and together they make
up two-thirds of the language families. With such language diversity, the spread of
information, knowledge and ideas across different cultures becomes a challenge. As a
result, translation becomes a viable tool of alleviating this problem, and thus making it
a tool that promotes social congruity and peace.

Although human translation is the barometer for high quality translations across lan-
guages, the dynamics of human mobility render it imperative that we have decent and
instantaneous translation systems. It is for this very reason that science has born a sub-
domain of computational linguistics called Machine Translation (MT), which focuses on
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Figure 1.3: A donut pie chart illustrating the proportion of endangered languages, 2019.
The institutional languages are in no danger at all. Should the speakers of the stable
languages begin to teach a more dominant language to their offspring, this would result
in the stable languages being endangered. [29]

automated language translation. Neural Machine Translation (NMT) has demonstrated
promising results in the development of instantaneous translation systems and is prov-
ing to be superior to phrase-based Statistical Machine Translation (SMT) [84]. NMT is
a MT model development technique that utilises neural networks to predict a probable
translation while on the other hand SMT uses statistical models to make the predictions.

In most African educational sectors, a learner’s understanding/development is greatly
affected by their proficiency in the institutional language. As a strategy for improving
African youth’s education, it has been suggested that the learning process be augmented
with online content [80]. For this reason, MT can help improve the learning process of
African youth. With enormous educational content available online, translating it into
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languages the learners are most comfortable with can help stimulate their interest in
learning. This view can perhaps be amplified by quoting Nelson Mandela, "If you talk
to a man in a language he understands, that goes to his head. If you talk to him in his
language, that goes to his heart." In other words, unless Africa’s educational systems
employ native languages as the principal medium of communication, in-place of the
foreign languages which largely dominate the government institutions, all attempts of
establishing quality educational systems will ultimately benefit the elite and its posterity
[11].

A language is said to be endangered whenever its native speakers begin to speak and
teach a more dominant language to their off-springs. On the other hand, a language
is said to be stable when a population’s new generation are constantly learning and
speaking that language. With approximately 41% and 51% of the world’s languages
being respectively endangered and stable as shown in Figure 1.3. Several African lan-
guages fall under the endangered category, as the non-native languages like English
continue to encroach more territory. The stable languages are also at the risk of being
endangered should its speakers begin to speak and teach a more dominant language to
their children. Therefore MT can be a viable tool in saving most of these endangered
languages.

1.3 Problem Formulation

Machine Translation has since the early 1900s experienced rapid growth due to the in-
crease in the availability of parallel corpora and computational power [61]. Subject to
the inception of neural machine translation (NMT) [14, 84], MT has seen substantial ad-
vancements in translation quality as modern MT systems draw closer and closer to hu-
man translation quality. Notwithstanding the progress achieved in the domain of MT,
the idea of NMT system development being data-hungry remains a significant chal-
lenge in expanding this work to low resource languages. Unfortunately, most African
languages fall under the low-resourced group and as a result, MT of these languages has
seen little progress. Irrespective the great strategies (or techniques) that have been de-
veloped to help alleviate the low resource problem, African languages still have not seen
any substantial research or application of these strategies. A result of African languages
accounting for the least amount of linguistic resources available to natural language
processing practitioners’ use [70].
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Figure 1.4: An illustration of the South-Eastern Bantu language family tree plus Shona.
This tree demonstrates the relationships within language classes and sub-classes or sub-
groups. In most cases, languages of the same subgroup exhibit high similarity, a prop-
erty that is demonstrated by vocabulary overlap between language pairs. [27].

With a considerable number of African languages being endangered [29], there is dire
need for MT tools to help save them from disappearing. In other words, this poses a
challenge to the African community of NLP practitioners. This work examines the ap-
plication of low-resource learning techniques on African languages of the Bantu family.
Of the three Bantu languages under consideration, isiZulu, isiXhosa and Shona, the first
two fall under the Nguni language sub-class indicating a close relationship between
them, as shown in Figure A.9. Shona is not closely related to the Nguni language sub-
class [40]. Comparing MT on these three gives us the opportunity to explore the effect of
correlations and similarities between languages. We give a comparative analysis of three
learning protocols, namely, transfer learning, zero-shot learning and multilingual modeling.

1.3.1 Aims and Objective of the study

The aim of this work is to use methods from natural language processing (NLP) and
deep learning to build a machine translation system for selected African languages. To
achieve this, the objectives are as follows:

1. Build machine translation systems for the following low resource language pairs:

• English-to-isiXhosa
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7 1.4. Related Work

• English-to-Shona

• English-to-isiZulu

• isiXhosa-to-isiZulu

2. Improve the translation quality of a low resource task by applying cross-lingual
transfer learning and zero-shot learning.

3. To determine the best learning technique.

All three target languages Shona, isiXhosa and isiZulu fall under the Bantu language
group. Furthermore, isiXhosa and isiZulu further fall under the Nguni language sub-
class, as a result, they are more closely related and share lots of vocabulary. Based on the
objectives of this study we employ the English-to-isiXhosa and English-to-Shona models
in performing a comparative analysis of transfer learning performance.

1.4 Related Work

The inception of NMT [84] has led to great advancements in translation quality as mod-
ern MT systems draw closer and closer to human translation quality [76]. Notwith-
standing the great advancements that have been made in the domain of MT, the idea of
NMT system development being ’data-hungry’ remains a major challenge in expanding
this work to low resource languages. In essence, NMT system performance improves
as training data increases [51]. Unfortunately, most African languages fall under the
low-resourced language group, and as a result, MT of these languages has seen little
progress.

Apart from the work that is done (or being done) by Google, most research on MT of
African languages can be dated back to the year 2010, a time when SMT was the conven-
tional technique of developing translation models. In the development of a translation
model for English to Setswana, phrase-based SMT [92] was shown to be a promising
technique of developing translation systems for African languages. This research em-
ployed both parallel and monolingual datasets. This technique, along with its variants
were later extended to other language pairs as shown by the work of [94] when they de-
veloped a model that translates English to isiZulu. In this work, the authors used isiZulu
syllables as their source tokens, a modification that proved to be efficient as it resulted in
a 12.9% increase in performance. Furthermore, they went on to show that syllabification
was languages dependent and could be extended to languages of the same family. As is
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the case with modern MT research and all other MT research discussed in this thesis the
bilingual evaluation understudy (BLEU) is the metric of evaluation.

Seeing that SMT was still the conventional technique of developing Machine Translation
Systems (MTS) [65] developed a SMT model for translating English to Xitsonga. The
training process was done on both parallel and monolingual corpus. The authors went
on to investigate the effects of adding extra-linguistic information on the training data,
data cleaning and decreasing data sparsity by using placeholders in place of certain
words on translation quality. The final findings revealed little increase in translation
quality for all conditions. The effects of unsupervised word segmentation coupled with
phrase-based SMT were investigated by [86], in translating from English to Afrikaans,
Northern Sotho, Tsonga and isiZulu. In their final analysis, the authors found their
experiment to be efficient only for Afrikaans and isiZulu datasets.

As SMT techniques became less popular, owing to the robust NMT techniques most re-
searchers began to adopt the novel NMT architectures in building translation models
for African languages. For example, [7] developed a model that translates English to
Setswana and the findings of this work indicated that NMT outperformed the previous
SMT model by up to 5.33 BLEU scores. These findings prompted out the opportunities
of extending NMT to other African languages. In addition to this work, [55] went on to
set up a benchmark for translating English to five African languages, namely Swahili,
Amharic, Tigrigna, Oromo and Somali. In their work, the authors compare each base-
line model versus models trained using semi-supervised learning, transfer learning and
multilingual modeling. The conclusions drawn from this research indicate that all three
techniques show significant BLEU score improvement with the multilingual model hav-
ing the most BLEU score gains at +5 scores. This thesis is closely related to the work
of [55] as we both employ transfer learning and multilingual modeling in developing
our models. However, this thesis is based on translating from English to southern Bantu
languages and between bantu languages. We also compare three training techniques,
namely zero-shot learning, transfer learning and multilingual training.

Seeing the need for further bench-marking of NMT for African languages [62] devel-
oped NMT models for translating from English to four South African languages, namely
isiZulu, Northern Sotho, Setswana and Afrikaans. As one would expect, their findings

Stellenbosch University https://scholar.sun.ac.za



9 1.5. Study Outline

indicated that the fewer the data the lower the BLEU score (i.e. translation quality de-
creased as the training data decreased). Still on the same notion of bench-marking [64]
went on to train ten models that translate between English and ten of South African
languages. It comes as no surprise that the amount of research done in MT of African
languages is relative to the resources available. As a result, this research aims at aiding
in the advancement of NMT for African languages.

1.5 Study Outline

Subsequent to this introductory chapter are six chapters, namely: Background, Recur-
rent Neural Networks, Encoder-Decoder Sequence-to-Sequence Architectures, Low Re-
source Training Protocols and Evaluation Metrics, Results, and the Conclusion and Fu-
ture work.

Chapter 2: Background

This chapter provides a review of the background and fundamental building blocks
of NMT. For the purpose of explaining the conventional sequence modelling neural net-
works, this chapter introduces the basic neural network architecture along with its train-
ing algorithm.

Chapter 3: Recurrent Neural Networks

Having introduced the basic building blocks of neural networks, this chapter focuses on
recurrent neural networks, a family of neural networks that are predominantly known
for modeling sequential data. The complications of modelling sequential data, particu-
larly text data, are discussed in this chapter which in turn leads to exploring the variants
of recurrent neural networks that help address these complications.

Chapter 4: Encoder-Decoder Sequence-to-Sequence Architectures

This chapter focuses mainly on the encoder-decoder architecture for sequence to se-
quence modelling. Furthermore, the drawbacks with recurrent neural networks and its
variants are discussed and consequently the solutions to these drawbacks. The transi-
tion from recurrent neural networks to the transformer network is also the subject of
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discussion in this chapter.

Chapter 5: Low Resource Training Protocols and Evaluation Metrics

The main protocols employed for training NMT models in this thesis are the key top-
ics of discussion in this chapter. In addition,the chapter also delves into the evaluation
metrics used in this research.

Chapter 6: Results

This chapter presents and discusses the experimental results from each training pro-
tocol per language pair. Taking into consideration the objectives and motivation behind
this work, the findings are evaluated and the protocols are compared.

Chapter 7: Conclusion and Future Work

This chapter summarizes the entire study and findings. Taking into consideration the
findings of this research, possible avenues of future work are discussed in this chapter.
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Chapter 2

Background

2.1 Chapter Organisation

To fully explain the model employed in this thesis, which has become the defacto stan-
dard for most NLP tasks, we take a bottom-up approach beginning with the basic build-
ing blocks of neural networks. In this chapter, we review the components needed to
construct neural networks, and this gives the reader an understanding of the funda-
mental concepts behind neural machine translation architectures. We begin by giving
an introduction to machine translation in Section 2.2. We then delve into the fundamen-
tals of neural networks in Section 2.3 with the aim of explaining the fundamental units
of neural machine translation systems later in this dissertation.

2.2 Machine Translation

The rise of MT began mid-twentieth century [90] and has since the early 1990s grown
exponentially [61] due to the growth in the availability of multilingual corpora and com-
putational power. Instigated by Petrovich Troyanskii [43], the research and development
of MT systems has since been investigated at large-scale. Thereafter, Rule-based ma-
chine translation systems (RBMTS) became a classical technique of MT. A language one
translates from is called the source language and the language one translates to is called
the target language. For every source and target language pair, RBMT relies on a combi-
nation of a myriad of built-in linguistic rules and bilingual dictionaries. In other words,
this technique (RBMTS) leverages the respective languages’ linguistic information ob-
tained from dictionaries and grammatical rules appertaining to the semantic, structural
and syntactic consistencies of the language pairs.

11
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RBMTS not only necessitate dictionaries of word semantics but translation rules de-
signed by humans (especially linguists) for each language pair as well. Though they
usually provide grammatically sound translations, RBMTS do not perform well under
domain change [54]. As a result, example-based machine translation systems (EBMTS)
were introduced by Makoto Nagao early in the 1980s [30]. At development, these
EBMTS use parallel texts (also known as a bilingual corpus) as a knowledge pool for
learning translations.

The earliest proposal of statistical machine translation (SMT) was by W. Weaver in the
late 1940s [90] and it incorporated Claude Shannon’s concepts of information theory.
Made prominent by [19] in the late 1980s, SMT systems were based on statistical models
that are learned from a pool of bilingual data. Afterwards, variants of SMT systems were
then developed and these were similar to RBMTS and EBMTS as they required little or
no linguistic rules at development [50]. Initially, most SMT systems were word-based
[88] but with the progression of time phrase-based models [52] were introduced. The
most recent advancement in SMT was the introduction of quasi-syntactic structures [21].
Before the advent of neural machine translation (NMT), SMT was the most prominent
machine translation technique.

The resurgence of neural networks has led to great strides (or advances) in many areas of
NLP [32]. However, the amalgamation of neural networks with MT was rather partial as
the early developments only integrated neural networks into existing SMT systems [83].
The introduction of NMT [84] in 2014 has led to cognisable growth of NMT research.
NMT systems differ from SMT in that they do not depend on manually curated linguistic
rules of the respective language pairs. Instead, they learn translations through function
approximation that is parametrised by neural networks [83]. Recent NMT results on
some languages have shown impressive achievements by producing translations that
are closely comparable to those of humans [67]. To gain an in-depth understanding of
NMT systems we begin by introducing neural networks.

2.3 Neural Networks

The foundations of neural networks stem from the mimicry of the biological neural cir-
cuit structure [53], hence the name "Artificial Neural Networks" (ANN). The human
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neural circuit comprises a myriad of interconnected neurons that pass on information
when activated. Notwithstanding the biological comparison being deemed a poor cari-
cature of the mechanism behind the human neural circuit [9], the fundamental principles
of neuroscience have been of great significance in the construction of various artificial
neural networks architectures.

2.3.1 Perceptrons

The main idea behind the development of perceptrons is that it is possible to mimic
some aspects of the complex neural circuit network, despite limited knowledge of the
biological neuron. Each biological neuron consists of three major parts, namely the cell
body, axon and root-like structures called dendrites as depicted in Figure 2.1. The mam-
malian neuron dendrites receive impulses which are transmitted forward through the
axon. The neurons in a neural circuit interconnect with one another at the synapse to
form a large network. The synapse is a structure that facilitates the relaying of specific
impulses/signals to the next neuron. The signal strength tends to vary, which in turn
determines which neurons to activate. The neuron-to-neuron connections tend to be-
come stronger or weaker relative to how often a specific type of signal is relayed in the
network.

Figure 2.1: An illustration of electrical signal transmission in the mammalian neuron.
The signal is passed on from the preceding neuron to the next via the dendrites on to
the cell-body, then through the axon and finally to the axon tips [12].
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Mimicking the biological neuron, the perceptron is the centrepiece of an artificial neu-
ral network and was proposed by Frank Rosenblatt in the 1950s [68]. Rosenblatt’s
perceptron (or system) comprised of a smart input-output connection, emulating the
McCulloch-Pitts perceptron. The McCulloch-Pitts perceptron had earlier been devel-
oped by Walter Pitts (a logician), and Warren S. McCulloch (a neuroscientist) in 1943,
as they sought to decipher the convoluted decision process of the human brain by ex-
ploiting the linear threshold unit. However, this perceptron could only solve binary
problems without any learning (or adaptation). The smartness of Frank Rosenblatt’s
perceptron lay in its ability to learn representations through updating its weights as
inputs are passed through the neuron, also known as a node.

Figure 2.2 (below) shows the basic structure of a perceptron. To describe the perceptron
mathematically, we consider a case where each input-output pair is of the form (xi, y),
where the input is xi ∈ {x1, x2, ..., xn} and the output y ∈ {−1,+1} is a binary class
variable, also called the observed value. At training, the input-output pairs are fed to
the model with an objective of learning the required representations that predict the
unobserved class values.

Figure 2.2: A simple artificial neuron, also known as the Perceptron model. The
weighted sum of inputs are fed into the activation function which then generates output
ŷ.

The term b in Figure 2.2 is called the bias, and serves the purpose of representing the
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invariant part (with respect to the inputs) of the predictions. The activation function
g(·) then receives as input, the weighted sum of input variables z (see Equation 2.3.1),
and in-turn predicts the output variable ŷ as shown in Equation 2.3.2. To get output
value ŷ ∈ {−1,+1} we employ the hyperbolic tangent activation function. However,
the choice of activation function depends on the machine learning model one intends to
simulate.

z =
n

∑
i=1

wi · xi + b (2.3.1)

ŷ = g

(
n

∑
i=1

wi · xi + b

)
= g(z)

(2.3.2)

In this thesis, we use the terms “weighted sum of inputs” and “pre-activation value” inter-
changeably. Similarly, we refer to the neuron’s output ŷ as the “post-activation value”.

2.3.2 Activation Functions

The process of choosing the appropriate activation function is a key component in de-
signing ANN. In the previously mentioned perceptron binary classifier (see Section
2.3.1), the ideal activation unit would be threshold-based i.e. the neuron’s output would
either be a −1 or +1 whenever the weighted input sum is above or below a set thresh-
old. Of the diverse activation functions that exist, the softmax, tanh, sigmoid and rectified
linear unit (ReLu) are the most common.

Figure 2.3: A plot of the sig-
moid activation as described
in Equation 2.3.3.

Figure 2.4: A plot of the soft-
max activation as described
in by Equation 2.3.4.
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When faced with a scenario where we seek to predict the probability of a specific bi-
nary class, the favourable activation function would be the sigmoid activation function
(Equation 2.3.3), which is shown in Figure 2.3. In other words, the sigmoid activation
function maps real pre-activation values to an interval [0,1].

g(z) =
1

1 + e−z (2.3.3)

The softmax activation function shown in Figure 2.4, is defined by Equation 2.3.4 and
is used when mapping non-normalised pre-activation values to a multi-class distribution.
For example, supposing that we want to perform k-way classification, we employ the
softmax activation function to map the pre-activation values z = [z1, z2, ..., zK] to the
(set of) probability values of a multi-class distribution. To be specific, the ith output is
obtained in the following manner:

g(zi) =
ezi

K
∑

j=1
e−zj

∀i ∈ {1, 2, ..., k} (2.3.4)

Put differently, the softmax activation function normalises each exponentiated element
of vector z by dividing it with the sum of all the exponentials in the vector. As a result,
the softmax activation output falls in interval [0, 1]. The ReLu activation function shown
in Figure 2.5, gained popularity sometime early in the 21st century [66]. The ReLu
function is open ended [17] and is defined as follows:

g(z) = max(0, z) (2.3.5)

Unlike the tanh and sigmoid functions, the simple mathematical operation of the ReLu
function makes it computationally inexpensive. Portrayed in Figure 2.6 is the tanh
activation function and is expressed mathematically in the following manner:

g(z) =
ez − e−z

ez + e−z (2.3.6)

The tanh function maps a real pre-activation value to an interval [-1, 1] and it yields a
zero-centered output [25] and as a result, the tanh activation function is often preferred
over the sigmoid activation function.
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Figure 2.5: A plot of the relu
activation function as defined
by Equation 2.3.5.

Figure 2.6: A plot of the tanh
activation function as defined
by Equation 2.3.6.

In summary, activation functions serve the purpose of mapping a pre-activation value
to a different output space. The choice of an activation function is not limited to the
four mentioned above. The four we have discussed are among the most popular ones
in applications. However, the choice of an appropriate activation function depends on
both the network architecture and the data at hand.

2.3.3 Neural Network Structure

The perceptron model described earlier in Section 2.3.1 consists of an input layer that
relays data to the computation performing layer as depicted in Figure 2.2. This sim-
ple perceptron has become the fundamental unit that powers what are today known as
deep neural networks. Deep artificial neural networks are an ensemble of perceptrons
whereby each network contains multiple computational layers in-between the inlet and
output layer as illustrated by Figure 2.7. These layers that lie between the inlet and
outlet layers are are known as the hidden layers. The processing layers in a neural net-
work learn data representations by performing several sequential level abstractions [57].
The entire network is sometimes called the feed-forward network (FFN), a consequence of
the successive layers feeding their post-activation values to their subsequent layers, in a
sequential and forward manner, from the inlet to the outlet layer.

The feed-forward architecture is based on the assumption that each of the nodes in a
single layer is connected to all the subsequent layer nodes. As a result, a neural net-
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work architecture is almost entirely defined when we have the number of layers, their
respective

Figure 2.7: The basic architecture of a simple ANN with four layers. The first layer on
the far left takes in input data and relays it to the hidden layers which in turn relays it
to the single node output layer.

number of nodes and the node type. Which leaves us with the loss function (Section
2.3.4) as the only missing detail. Suppose we have a network of L layers and each layer
contains n1,n2,...,nL neurons respectively. We let l ∈ {1, ..., L} denote the lth layer in
the network. In sequel let zl and zl

i respectively denote the layer and ith neuron pre-
activation values. Similarly, we let al and al

i denote the layer and neuron post-activation
values respectively. In like manner, bl ∈ Rnl represents the lth layer’s vector of biases,
such that bl

i is the respective layer’s ith neuron bias. The network’s inlet and first hid-
den layers have their connecting weights contained in matrix w1 ∈ Rn1×n2 . In the same
manner, we denote the connecting weights between layers l and (l− 1) as wl ∈ Rnl−1×nl .
The edge weight between a kth node belonging to layer (l − 1) and a jth node belonging
to subsequent layer l is denoted wl

jk.

The network’s mapping of input vector x from Rn1 to RnL is summarised by the fol-
lowing successive transformations:

a1 = g
(

w1x + b1
)

(2.3.7)

al+1 = g
(

wl+1al + bl+1
)
∀ l ∈ {1, .., L− 1} (2.3.8)

aL = g
(

wLaL−1 + bL
)

(2.3.9)
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where g(·) denotes the activation function (one should probably notice that here the
function g() applies on a vector value). Equations 2.3.7, 2.3.8 and 2.3.9 respectively
represent the input to hidden layer transformation, hidden layer to hidden layer trans-
formation and hidden layer to output layer transformation. It then follows that the
post-activation value for the jth node belonging to layer l is computed as follows:

al
j = g

(
∑

k
wl

jkal−1
k + bl

j

)
= g

(
zl

j

)
,

(2.3.10)

with the sum being over all the nl−1 neurons in layer (l − 1). The overall training ob-
jective of the network is to find parameters wl and bl that best map each input to its
corresponding output. In quantifying the aforementioned objective, the network seeks
to minimise the cost (discussed Section 2.3.4) associated with the mapping from the in-
put (or domain-set) Rn1 to the output RnL . It has been demonstrated [42] that networks
that comprise of a single non-linear hidden layer that relays its output to a linear outlet
layer can approximate almost any rational function.

2.3.4 Cost Function

The metric of quantifying model performance is called the cost function (or loss func-
tion). Selecting the appropriate evaluation metric is an essential requirement of machine
learning as it helps characterise the model outputs in a way that is relative to a specific
task or problem. For instance, let the training pairs be {xi, yi}m

i , for which the ith corre-
sponding ground truth is y(xi). In training a model that comprises L layers, we define
the quadratic loss function as follows:

L(w, b) =
1

2m ∑
x
‖y(x)− aL(x)‖2

, (2.3.11)

where parameters w and b denote the network weights and biases. aL represents the
post-activation vector of the output layer. Intuitively, for each training pair (x, y), the
loss function calculates the squared difference or magnitude between the ground-truth
and model’s output value. In a case where both ground-truth and predicted value are
vectors, we take the difference in magnitude.

The quadratic cost function is usually preferred to those of higher powers predomi-
nantly because it has a single global minimum, which is not the case with cost functions
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Figure 2.8: An illustration of a quadratic surface with weights and bias parameters on
the x-axis and y-axis respectively. The loss function is denoted L and is represented by
the z-axis.

of higher powers. Illustrated in Figure 2.8 is a representation of the quadratic surface
with weights and bias parameters on the x-axis and y-axis respectively. The z-axis rep-
resents the cost associated with a pair of weight and bias parameters. Regardless of the
type of loss function one chooses, it must satisfy two primary drivers. The first being
that it must at all points be strictly greater than zero save for the global minimum as
shown in Figure 2.8. It is at this global minimum that the network finds the optimal
pair of parameters w and b. The second property of the cost function is that it must be
differentiable, which means that the gradient of the cost function is defined at all points.
To find the cost function’s local minima, we employ a classical algorithm called gradient
descent to be discussed in Section 2.3.5.

2.3.4.1 Training Conditional Distributions with Maximum Likelihood

Modern neural networks are predominantly trained using the maximum likelihood loss
function [33], which implies that the cost function can be thought of as a negative log
likelihood or cross entropy between the model distribution and the training data. The cost
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function L(w, b) is then expressed as follows

L(w, b) = − ∑
(x,y)∈D

log pmodel(y|x) (2.3.12)

where D represents the set of training pairs (x, y) and pmodel is the model distribution.
The main advantage of using the log-likelihood as our loss function is that it eliminates
the burden of defining a specific loss function for each model. In specifying a model
p(y|x) we simultaneously determine the loss function − log p(y|x).

When training neural networks, it is imperative that the magnitude of the cost func-
tion gradient be well-behaving to govern/assist the learning algorithm. In many cases,
activation functions that vanish or explode tend to subvert this training objective. For
this reason, the negative log likelihood helps alleviate this problem as some neural net-
work output units have an exponent that saturates whenever it has an argument that is
strongly negative. The logarithmic component in Equation 2.3.12 undoes the exponent
in these output units. Another key factor of using the cross entropy cost function is that
it usually does not have a maximum or minimum output value. In other words, for
discrete output variables, we parametrise the model in such a way that it can not give
as output a probability of 0 or 1. It then follows that the model’s probabilities can only
get arbitrarily close to 0 or 1.

2.3.5 Gradient Descent

We have shown that the criterion L(w, b) is a composition of multiple non-linear func-
tions. The process of analytically computing the cost function’s minimum is generally
mathematically intractable. Fortunately, there exists a mathematical algorithm called
gradient descent which finds a minimum value for differentiable functions. Gradient de-
scent is a classical iterative algorithm and is by far the most favoured when optimising
neural networks [77]. The function we seek to optimise is called the objective function
or criterion. Considering our input-output pairs {xi, yi}m

i respectively, we define our
training hypothesis as

hθ(x) = θ0x + θ1, (2.3.13)

along with loss function:

L(θ) = 1
2

m

∑
i=1

(hθ(x(i))− y(i))2

Goal : min
θ
L(θ)

(2.3.14)
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where θ represents the parameters to be optimised. For the purpose of breaking the
symmetry, gradient descent sets off by randomly initialising parameter θ and then re-
peatedly updating it until it converges to a value that minimises L(θ). The iterative
updates are as follows:

θj := θj − α
∂

∂θj
L(θ) ∀ j = 0, .., m and α > 0. (2.3.15)

where learning rate hyper-parameter is denoted α. This learning rate controls the rate
of convergence, such that small values of α lead to slow convergence and on the other
hand, extremely large values result in the algorithm overshooting the minima and di-
verging. In implementing this algorithm one has to compute the partial derivative
∂L(θ)/∂(θj) in Equation 2.3.15. Given a single training pair this partial derivative is
derived as:

∂

∂θj
L(θ) = ∂

∂θj

1
2
(hθ(x)− y)2

= 2 · 1
2
(hθ(x)− y) · ∂

∂θj
(hθ(x)− y)

= (hθ(x)− y) · ∂

∂θj

(
m

∑
i=0

θixi − y

)
= (hθ(x)− y)xj,

(2.3.16)

It then follows that a single update can be generalised to:

θj := θj + α(y(i) − hθ(x(i)))x(i)j (2.3.17)

In the case of multiple training examples Equation 2.3.15 is generalised as follows:

θj := θj + α
m

∑
i=1

(y(i) − hθ(x(i)))x(i)j for ∀ j (2.3.18)

The summation in Equation 2.3.18 is equivalent to the partial derivative ∂L(θ)/∂θj in
Equation 2.3.15 which implies this is gradient descent on the original criterion L(θ).
This method is called batch gradient descent as the entire training set is used to compute
the gradient at every iteration. Since for every update batch gradient descent requires
that we compute the gradients for the entire training set, the algorithm tends to be slow
for large datasets. Another form of gradient descent is stochastic gradient descent which
for every update employs a single training and consequently increases the variance of
parameter updates. A blend of both stochastic and batch gradient descent yields the
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most favorable and widely variant called mini-batch gradient descent. Instead of using
the entire training set at every update, it uses a subset or batch of b examples from
m training data points. For illustrative purposes, we consider 1000 training pairs and a
batch size of 10. After arbitrary parameter initialisation the parameters are then updated
as follows:

θj := θj + α
1
10

i+9

∑
k=i

(y(k) − hθ(x(k)))x(k)j for ∀ j = 0, .., n and i = 1, 11, 21, ..., 991 (2.3.19)

Updating the parameters with respect to each batch helps lessen the variance thus lead-
ing to more steady and smooth convergence.

Now we implement gradient descent in the training of our simple neural network shown
in Figure 2.7 based on the following weight and bias update rules:

w(l)
jk ← w(l)

jk − α
∂L

∂w(l)
jk

(2.3.20)

b(l)j ← b(l)j − α
∂L

∂b(l)j

(2.3.21)

We can view multilayered neural networks as a system of convoluted composite func-
tions that are evaluated at each neuron. Taking the network in Figure 2.7 as an example,
the computations in the lth layer (output layer) can be expressed as the composite func-
tion f (g1(·), g2(·), ..., gnk(·)), where gi(·) denotes the output of a neuron belonging to
layer (l − 1). The calculation of the loss at each layer involves a complex nested func-
tion of weights and biases of prior layers. The gradients of these nested functions are
computed using a highly efficient algorithm called back-propagation as discussed in the
following Section.

2.3.6 Back-propagation Algorithm

As discussed earlier in Section 2.3.5, gradient descent entails calculation of cost function
gradients with respect to weight and bias parameters. In ANN training, the process of
calculation gradients can be mathematically intractable, due to the large number of neu-
rons and layers. Nonetheless, the advocacy of the back-propagation algorithm in the
mid-1980s [99] has since brought about research renaissance in the field of deep learn-
ing, as the the training of complex network architectures had finally become feasible.
Hence the application of ANN to a myriad of problems from various domains, which
previously had been impossible due to computational constraints.
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Back-propagation addresses the problem of learning good weights and biases for each
hidden-layer neuron. Unlike the network output layer which has a target output, each
hidden layer neuron has no specific target output, which renders the defining of an er-
ror function for each of these neurons impossible. In lieu of a specific target output,
all the hidden layer neuron error functions would depend on the preceding and subse-
quent layer’s parameters. In other words, the back-propagation seeks to compute the
loss function partial derivatives ∂L/∂wl

jk and ∂L/∂bl
j, with respect to the weights and

biases respectively. Now we consider a single training pair (x, y) with quadratic cost
function

L =
1
2
‖y− aK‖2

(2.3.22)

where aK is the output neuron’s post activation value, the only neuron on which the
cost function depends. From this section on-wards we let f ′(x) denote the derivative of
a function f (x), such that the an activation function’s derivative is denoted σ′(x). Now
we rewrite the post-activation value in Equation 2.3.10 in a vectorised form as

al = g(wlal−1 + bl)

= g(zl), for l = 2, .., L,
(2.3.23)

where zl ∈ Rnl , such that zl
j denotes the input to the jth neuron in layer l. The computa-

tion of partial derivatives ∂L/∂wl
jk and ∂L/∂bl

j involves the introduction of intermediary
term δl ∈ Rnl which denotes the lth layer error term. It then follows that for each lth layer
we compute the jth neuron error in the following manner:

δl
j =

∂L
∂zl

j
, for 2 ¶ l ¶ L and 1 ¶ j ¶ nl (2.3.24)

The back-propagation gives us a way of calculating the intermediate term δl
j , which is

then linked with ∂L/∂wl
jk and ∂L/∂bl

j. It is imperative to note that the calculating of δl
j

will prove to be dependent on the error terms in the preceding layer. This is suggestive
of the "backwards propagation of errors", hence the name back-propagation.

In the back-propagation process we start off by calculating the error term for the out-
put layer as

δL
j =

∂L
∂zL

j
. (2.3.25)
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By applying the chain rule, we then can express Equation 2.3.25 as a sum of all the
neurons in the final layer

δL
j = ∑

k

∂L
∂aL

k

∂aL
k

∂zL
j

, (2.3.26)

where aL
k is the kth neuron post-activation value and it depends on pre-activation value

zL
j only, given that j = k. In other words ∂aL

k /∂zL
j would vanish whenever k 6= j. That

being so, we can now rewrite Equation 2.3.26 as shown below:

δL
j =

∂L
∂aL

j

∂aL
j

∂zL
j

(2.3.27)

Now it is worth noting that since aL
j = g(zL

j ), which implies we can rewrite ∂aL
j /∂zL

j as
g′(zL

j ). As a result, Equation 2.3.27 is simplified to

δL
j =

∂L
∂aL

j
g′(zL

j ). (2.3.28)

Rewriting Equation 2.3.28 in matrix notation yields the following:

δL = ∇aC� g′(zL), (2.3.29)

where symbol � and and∇aC denote the Hardamard product [41] and vector of partial
derivatives ∂L/∂aL

j . Having calculated the error term for the Lth layer, we then proceed
to doing the same for the hidden layers. We now show how the calculation of δl is
dependent on the error term of the (l + 1)th layer. In other words we seek to express the
error term δl

j = ∂L/∂zl
j as a function of δl+1

k = ∂L/∂zl+1
k . To accomplish this, we once

again employ the chain rule:

δl
j =

∂L
∂zl

j

= ∑
k

∂L
∂zl+1

k

∂zl+1
k

∂zl
j

.
(2.3.30)

By the definition of intermediate term δl
j , the partial derivative ∂L/∂zl+1

k can be substi-
tuted with δl+1

k such that Equation 2.3.30 is simplified to

δl
j = ∑

k
δl+1

k
∂zl+1

k

∂zl
j

(2.3.31)
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For us to evaluate the term ∂zl+1
k /∂zl

j, it is worth remembering that

zl+1
k = ∑

j
wl+1

kj al
j + bl+1

k

= ∑
j

wl+1
kj g(zl

j) + bl+1
k .

(2.3.32)

It then follows that calculating the partial derivative of zl+1
k yields the following result:

∂zl+1
k

∂zl
j

= wl+1
kj g′(zl

j) (2.3.33)

Substituting the above result (Equation 2.3.33) into Equation 2.3.31 will give

δk
j = ∑

k
wl+1

kj δl+1
k g′(zl

j). (2.3.34)

Expressing the above result in matrix notation yields

δl = [(wl+1)Tδl+1]� g′(zl). (2.3.35)

Now it is clear that for any lth layer in the network, we can compute the error term δl

by first computing Equation 2.3.29 followed by a repetition of Equation 2.3.35 until we
reach the desired layer. Now we can express our partial derivatives as a function of δl

j .
From Equation 2.3.10, we note that ∂zl

j/∂bl
j = 1, therefore:

∂L
∂bl

j
=

∂L
∂zl

j

∂zl
j

∂bl
j

= δl
j .

(2.3.36)

Similarly, based on Equation 2.3.10 ∂zl
j/∂wl

jk = al−1
k and ∂zl

g/∂wl
jk = 0 where g 6= j. It

then follows that

∂L
∂wl

jk
=

∂L
∂zl

j

∂zl
j

∂wl
jk

= δl
j a

l−1
k

(2.3.37)

Assuming we have an optimal learning rate α and arbitrary weight parameters wl
jk, we

summarise the back-propagation computations as follows:
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Back-propagation Algorithm

1. Feed-forward phase: each training pair in {xi, yi}n
i is fed into the network

to generate ŷi, zl
j and al

j for each jth neuron of the lth layer.

2. Backward phase: for each neuron belonging to (l − 1) calculate ∂L/∂wl
jk

and ∂L/∂bl
j based on each training pair in {xi, yi}n

i .

a) Calculate δL using Equation 2.3.29

b) For each hidden layer calculate δl
j using Equation 2.3.34

c) Evaluate the desired partial derivatives as given in Equations 2.3.37
and 2.3.36

3. Summing gradients: calculate ∂L(X, w)/∂wl
jk the total gradient of the train-

ing set X = {(xi, yi)}n
i=1.

4. Weight update: update the weights and biases using Equations 2.3.20 and
2.3.21.

2.3.7 Regularisation for Neural Networks

The main challenge in training deep learning models is to ensure that the trained model
is able to generalise well on an unseen data-set (or test data). To ensure this, machine
learning practitioners keep track of the following key factors:

• model’s proficiency on minimising the training error.

• model’s proficiency on minimising the difference between the train and test error.

The above conditions are necessitated by the two fundamental challenges of training
machine learning algorithms known as underfitting and overfitting. As shown in Figure
2.9, a scenario where a trained model fails to obtain an adequately low training error
is referred to as underfitting. On the other hand, a scenario where the trained model
fails to adequately minimise the error magnitude between the test and training data
(see Figure 2.9) is called overfitting.
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Figure 2.9: An illustration of underfitting vs overfitting [5]. To the far left is an illus-
tration of model underfitting, on the far right is model overfitting. The sought-after
generalisation is shown in the center image.

(a) An example of a simple neuron from
the standard neural network in Figure 2.7

(b) A simple neuron with dropout, modified
from the standard neural network.

Figure 2.10: A contrast between the standard neural network vs a neural network with
dropout. Figure a) shows a standard neural network and on the other hand Figure b)
shows a neural network with drop out.

Several techniques have been devised to reduce the test error. In this section we look at
the one called dropout regularisation [81]. Regularisation is the modification of machine
learning algorithms with an intent of reducing the generalisation error. It is worth noting
that this reduction in generalisation error does not necessarily imply an improvement on
the training error. Dropout regularisation mitigates the co-adaptation of the network’s
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individual hidden neurons by modifying the network architecture. This modification
is done by randomly ignoring (or dropping) the neurons in the hidden layers at the
forward pass, and the results are back-propagated through the modified network. The
neurons are independently retained based on some fixed probability p. The weight and
bias update is done over a mini-batch of examples. Thereafter the network is once again
thinned by replacing the previously dropped neurons and dropping a new subset, after
which the forward and back propagations are performed. This process is repeated a
number of times to allow the network to learn a set of weights and biases.

Figure 2.10 shows a comparison between a standard neural network (see Figure 2.10a)
and a neural network with dropout (see 2.10b). The forward pass in Figure 2.10b is
computed as follows:

zl+1
i = wl+1

i ãl + bl+1
i

al+1
i = g(zl+1

i )
(2.3.38)

where ãl is the element wise product between the vector ηl ∼ Bernoulli(p) and al . At
inference, the weights and biases of each neuron are scaled down by the probability of
retaining each neuron during training. Thus ensuring that all hidden nodes have an
expected output that is equivalent to the ground truth at test time.

2.4 Summary

In this chapter we have given a brief review on the history of ANN. A comprehensive
review is given in [37]. A full review is beyond the scope of this thesis. We also give a
brief outline of the fundamental building blocks of developing and training deep neural
networks. In the next chapter, we then delve into a variant of neural networks that are
commonly used in learning representations from sequential data.
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Chapter 3

Recurrent Neural Networks

3.1 Chapter Organisation

In the previous chapter we delved into the basic building blocks of ANNs that typically
are employed when modelling continuous data. In this chapter, we introduce a variant
of ANNs that is normally used when modelling sequential data. The chapter organisa-
tion is as follows; Section 3.2 introduces the concept of sequential data and the impor-
tance of learning sequential dependencies. Subsequently, Section 3.3 then presents the
fundamental units of a recurrent neural network conjointly with the respective training
algorithm. The complications one may encounter in the training of recurrent networks
are then discussed in Section 3.4. Section 3.5 then looks into the concept of alleviating
long term dependencies with the aid of bidirectional recurrent neural networks. The
next section introduces Long Short-Term Memory Neural Networks. Section 3.7 then
presents a variant of the Long Short-Term Memory Neural Network called the Gated
Recurrent Neural Network. The overall summary of the chapter is then presented in
Section 3.8.

3.2 Introduction

The neural network architectures discussed earlier in Chapter 2 are inherently designed
to process data types with attributes that are predominantly independent of each other.
However, there are some data types whose attributes largely depend on each other (time
sequential dependencies). Examples of time sequential data include but are not limited
to, text sentences, time-series data and biological sequences in genetic code. The val-
ues of these sequential datasets can either be real-valued or symbolic. These sequential

30
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dependencies are described as follows:

• Text data is a symbolic data type and is usually treated as a bag of words [98],
however, in gaining reasonable/proper linguistic representations we have to take
into consideration the order and dependence of words.

• In the case of a time-series dataset, each time-stamp (or position in the sequence)
is real-valued and has an influence on the subsequent time stamps. Treating the
information at each time-stamp as an independent feature results in the loss of in-
formation. For instance, given a sequential representation of some sentence, we
would expect real-valued time-stamp t to be closely associated with its prior val-
ues, therefore we lose valuable information by independently treating this and
other time-stamps.

• Biological sequences are of a symbolic nature and often comprise of nucleotide
or amino acids which are the fundamental units of DNA [89]. Similarly, the nu-
cleotides are arranged in sequential fashion and altering this order yields a differ-
ent amino acid.

It is important to stress that while modelling sequential data, the model of choice should
be capable of capturing these sequential dependencies. With most sequence-centric
problems within the sphere of NLP, capturing the semantic representation is of paramount
importance. To best illustrate this idea, we consider the following sentences:

Semantic Examples

Ex 3.2.1. The toothless bulldog is chasing the cat.

Ex 3.2.2. The cat is chasing the toothless bulldog.

The two sentences above are different, and to best capture the semantics in each sentence
one has to utilize models that best take into consideration the relationship between a
word and its neighbouring counterparts. From the sentences above, it is clear that a
simple change in word order can result in a change in semantic connotations. Therefore,
this shows how important it is for a model to capture word order. As a result, the two
main prerequisites of processing sequential data are as follows:

• The capacity to process sequence input attributes cognizant of their ordering in
the source sequence.
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• All time-step inputs are treated in the same manner, relative to their respective
preceding attributes.

Recurrent neural networks (RNNs) inherently address the above prerequisites. As a
result, the RNN become relevant to NLP and other domains that leverage sequential
data.

3.3 Recurrent Neural Network

The RNN is a variant of FFNs and has a unique design (or arrangement) that appertains
to the concept of time-stratification [9]. Unlike the FFNs that have a varying number
of input attributes in a solitary input layer, RNNs not only have a varying number of
hidden layers but each respective layer has an input attribute that corresponds to a spe-
cific time-step. As a result, this enables the down-stream interaction of hidden layer
attributes, relative to their respective sequence positions. To ensure uniform modelling
at each time-step, each layer uses unique parameters, which results in a fixed number of
network parameters. For this reason, the RNN can be thought of as the replication of a
single layer-wise architecture over time, ergo the name “recurrent neural networks”.

3.3.1 RNN Architecture

Figure 3.1: An illustration of the basic building block of a RNN. The self loop allows the
passing of information from one time-step to the next, for example the learned repre-
sentations at time-step x<t−1> is relayed to time-step t.

To best comprehend the RNN architecture we consider an input sequence of some arbi-
trary length T, represented as x = (x1, x2, x3, ..., xT), such that sequence x exists in some
setX ∗ of all the sequences over an input spaceX . We also let y = (y1, y2, y3, ..., yτ) be the
relative output sequence of length τ, belonging to some set Y∗ over an output space Y .
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Suppose the RNN processes our sequence vector x, such that x<t> denotes the tth token
in the sequence. In principle, the RNN processes data in mini-batches, and for simplic-
ity, the mini-batch index is omitted. The basic building block of an RNN architecture is
similar to that of a traditional neural network as shown in Figure 3.1, with the addition
of a self-loop being the major difference between the two. The self-loop represents the
effect of the network’s < t− 1 >th value on the < t >th value.

Taking classification as an example use case, the generation of the respective output will
not be done at every time-stamp. Instead, the output is generated at time-stamp T, as
the sequence terminates. Notwithstanding that the input and output attributes may be
available only to a select few time-stamps, we consider a simple scenario case wherein
the attributes are accessible through out all time-stamps, such that

h<t> = f (h<t−1>, x<t>). (3.3.1)

In Equation 3.3.1 the recurrent layer, also known as the hidden state is given as a func-
tion of the preceding hidden state h<t−1> along with input vector x<t>. The process
of learning hidden state h<t−1> is done by utilizing some weights along with certain
activation functions, as is the case in basic NNs. These weights are applied at every
time-stamp. For this reason, even though the hidden state changes with time, the prime
function f (·, ·) and weights are kept fixed through out all time-stamps, as the network
is trained. The output layer generates unnormalized log probabilities from the hidden
states and these are learnt through a different function

o<t> = g(h<t>). (3.3.2)

It should be borne in mind that output vector o<t> comprises of continuous elements
and has a dimensionality of vocabulary size i.e. o<t> ∈ R|V|, where |V| denotes the
magnitude of the vocabulary. Applying a softmax layer (described in Section 2.3.2 of
Chapter 2) to the output o<t> results in some probability vector of length |V|. Now, to
help define the activation functions f (·, ·) and g(·) more concretely, we incorporate the
weights into Equation 3.3.1 which yields the following

h<t> = f (Whhh<t−1> + Whxx<t> + bh) (3.3.3)

likewise, Equation 3.3.2 becomes

o<t> = g(Wyhh<t> + by). (3.3.4)
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where coefficients Whh,Whx,Wyh bh and by are the shared weights and biases respectively.
By virtue of the recursive attribute of Equation 3.3.1 RNNs have the capacity to model
functions of varying input lengths.

Figure 3.2: The unfolding of a RNN basic building block into a deep RNN network.
Given a sequence of length t, the term "unfolding" simply means we transcribe a net-
work for the entire sequence, to obtain a network of t layers, with each layer correspond-
ing to it’s respective time-stamp.

In essence we can unfold or expand the recursive operation of Equation 3.3.1 while
maintaining its subjectivity to t, as illustrated in Figure 3.2. For instance, by beginning
with some fixed constant vector h<0> which is also known as an initialization vector, we
obtain

h<1> = f (h<0>, x<1>). (3.3.5)

and

h<2> = f ( f (h<0>, x<1>), x<2>). (3.3.6)

It is important to note that h<1> depends on x<1> only, whereas h<2> is determined by
both x<1> and x<2>. In summary, the forward pass initiates h<0> thereafter, for time-
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stamp t = 1 to t = T we implement the recursive process:

a<t> = Whhh<t−1> + Whxx<t> + bh (3.3.7)

h<t> = f (a<t>) (3.3.8)

o<t> = Wohh<t> + bo (3.3.9)

ŷ<t> = g(o<t>). (3.3.10)

The above system of equations represents a RNN mapping where both input and output
are of the same length T, as shown in Figure 3.2. For this reason, to get the total loss,
we would have to sum the losses over all t time stamps. For example, considering the
aforementioned input x = {x<1>, ..., x<t>} with respective output y<t> has a negative
log-likelihood L<t> as follows

L({x<1>, ...., x<τ>}|{y<1>, ...., y<τ>}) = ∑
t
L<t>

= −∑
t

log pmodel(y<t>|{x<1>, ...., x<t>}).

(3.3.11)

with pmodel denoting the probability distribution of the model. The process of comput-
ing gradients is computationally expensive as it involves a forward and backward pass
of the unrolled network. In consequence, the time complexity of this process is OT and
parallelization can not help alleviate it, as the forward pass is intrinsically sequential.
This implies that the computations at time-stamp t + 1 can only be computed after the
computation of time-stamp t. Besides, the forward pass “hidden states” are kept in mem-
ory until back-propagation. As a result, both time complexity and memory cost are
OT. The back-propagation process in RNNs is known as back-propagation through time
(BPTT) and is explained in Section 3.3.3. Irrespective of their computational abilities the
recursive nature of RNNs renders them computationally expensive and they take longer
converge, to curb this complexity (i.e to help the network converge faster) we make use
of a technique called teacher forcing, which we discuss in the forthcoming section.

3.3.2 Teacher Forcing

Teacher forcing is an ingenious method of training RNN to obtain quicker convergence.
This technique is based on the maximum likelihood criterion, whereby during the train-
ing of time stamp t − 1, in-place of the predicted output ŷ<t−1> the RNN receives the
ground truth y<t> as input. Given the nature of the maximum likelihood principle,
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teacher forcing is by far the most common strategy for training RNNs [93]. For illus-
trative purposes, we consider two time-stamps with conditional maximum likelihood
criterion

log pmodel(y1, y2|x1, x2) = log pmodel(y2|y1, x1, x2) + log pmodel(y1|x1, x2), (3.3.12)

where pmodel is the probability distribution of the model. The conditional distribution in
Equation 3.3.12 represents a model whose goal is to maximise the conditional probabil-
ity of y2 taking into account both input and output sequence (x1, x2) and y1 respectively.

Figure 3.3: A pictorial representation of teacher forcing. In place of feeding state h<t>

with state h<t−1> output, we instead feed it with its respective ground truth y<t>. Dur-
ing inference the model feeds y<t−1> output to its subsequent hidden state h<t>.

In training RNN with the gradient descent algorithm, teacher forcing helps inhibit var-
ious trajectories (from several initial states) from having the same point of convergence
[74]. In summary, Equation 3.3.12 demonstrates that in-place of feeding the RNN with
its generated outputs we feed it with the correct values (or ground truth) relative to the
respective time-stamps as depicted in Figure 3.3.
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3.3.3 Back-propagation Through Time

Back-propagation through time (BPTT) stems from the modification of the conventional
back-propagation algorithm we discussed earlier in Section 2.3.6 and applies to the com-
puting of gradients for RNNs. For illustrative purposes we make use of Equations 3.3.8
and 3.6.6 in explaining how BPTT algorithm operates. As in the case of Equation 3.3.11,
we employ the negative log-likelihood loss function to the ground truth y<t> given t− 1
inputs. We compute the model’s cost function gradients with respect to its outputs o<t>

as follows:

∂L
∂ô<t>

k
=

∂L
L<k>

L<k>

∂ô<t>
k

= ŷ<t>
k − I(k,jt),

(3.3.13)

where

I(k,jt) =

1 if k = jt

0 otherwise

As is the case of simple neural networks, our computations take a backward direction
starting from the time stamp t = τ to t = 1. Which implies the final hidden state h<τ>

possesses a single progeny o<τ> and as such, its gradients are computed as follows:

∂L
∂h<τ>

= W>oh
∂L

∂o<τ>
. (3.3.14)

However, in the case of time stamp t = τ − 1 up to t = 1 the hidden state h<t> has o<t>

and h<t−1> as its progeny. In this case h<t> gradients are given by

∂L
∂h<t> =

(
∂h<t−1>

∂h<t>

)> (
∂L

∂h<t+1>

)
+

(
∂o<t>

∂h<t>

)> (
∂L

∂o<t>

)
= W>hh

(
∂L

∂h<t+1>

)
D + W>oh

(
∂L

∂o<t>

)
,

(3.3.15)

where diagonal matrix D = diag(1− (h<t+1>)2), comprising of < t + 1 >th elements,
1− (h<t+1>

i )2. Which are the jacobians of the hyperbolic tangents in relation to hidden
state i.

Having obtained the computational graph’s internal node gradients we proceed to com-
pute the weight node gradients. In doing this, implementing conventional back prop-
agation discussed in Section 2.3.6 will only lead to the layer update conundrum as the
weights are shared across different time stamps. This weight sharing has an influence
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on the update process. To enable straightforward weight update we assume that the
weights in different layers are independent of each other. In consonance with this as-
sumption we introduce dummy variables W<t>

hh , W<t>
hx and W<t>

hy for time stamp t. As
a result, we can now perform standard back-propagation under the supposition that
the shared weights are independent of each other. Thereafter we sum the gradient con-
tribution of each temporal weight archetype to form a single weight update for each
parameter. The gradients of the remaining parameters are computed as follows:

∂L
∂bo

= ∑
t

(
∂o<t>

∂bo

)> (
∂L

∂o<t>

)
= ∑

t

(
∂L

∂o<t>

)
,

(3.3.16)

∂L
∂bh

= ∑
t

(
∂h<t>

∂b<t>
h

)> (
∂L

∂h<t>

)
= ∑

t
diag(1− (h<t>)2)

(
∂L

∂h<t>

)
,

(3.3.17)

∂L
∂Woh

= ∑
t

∑
i

(
∂L

∂o<t>
i

)
∂o<t>

i
∂Woh

= ∑
t

(
∂L

∂o<t>

)
h<t>>

(3.3.18)

∂L
∂Whh

= ∑
t

∑
i

(
∂L

∂h<t>
i

)
∂h<t>

i
∂W<t>

hh

= ∑
t

diag(1− (h<t>)2)

(
∂L

∂h<t>

)
h<t−1>>

(3.3.19)

∂C
∂Whx

= ∑
t

∑
i

(
∂L

∂h<t>
i

)
∂h<t>

i
∂Whx

= ∑
t

diag(1− (h<t>)2)

(
∂L

∂h<t>

)
x<t>>

(3.3.20)

Computing the gradients with respect to x<t> is not necessary, owing to it not having
any parent parameters in the loss defining computational graph. The gradient compu-
tations above follow a direct implementation of the multivariate chain rule. Much like
all back-propagation algorithms with shared weights, we have benefited from the fact
that partial derivatives of temporal avatar parameters (such as W<t>

hh ) with respect to
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the primary parameter can be set to 1. Therefore, it follows that for us to compute the
update equations we have to wrap the temporal assemblage around traditional back-
propagation. This ingenious algorithm of back-propagating through time is believed
to have been introduced in Werbos’ fundamental work sometime in 1990 before RNN
became more prominent [91].

3.4 The Vanishing and Exploding Gradient Problems

Given a set of weight matrices, the process of training RNN appears simple and straight
forward, however, the recurrent connection makes it a complicated task. To be precise,
the difficulty arises from the manner in which the gradients of preceding layers relate
with their successive layers. To best conceptualize the reason for this difficulty we anal-
yse the back-propagation of Equations 3.3.8 and 3.3.10. Having completed the forward
pass computations, it is worth noting that during the backward pass the gradients may
become too small or too large. Which results in a phenomenon called vanishing and ex-
ploding gradient problem [73], respectively. The conundrum of vanishing and exploding
gradients was discovered by [39] [16] and [18], independently. One might anticipate
that this problem may be solved by avoiding the regions with vanishing or exploding
gradients. However, for the RNN to be able to save memories in a manner that remains
sturdy under minor perturbations, it has to get into such a space [18] (the regions be-
ing avoided). This phenomenon is prominent when learning long-term dependencies in
sequential data. [18] gives a detailed outline of how learning long term dependencies
gives rise to the vanishing gradient problem. In essence, this phenomenon is unnotice-
able as we go a few time steps back in time but is rather more evident when we go
further back in time.

Vanishing of gradients make it difficult for optimization algorithms to know which di-
rection (or slope) to take when optimizing the weights. On the other hand, the explod-
ing of gradients results in an unstable learning process. Looking at the aforementioned
equations of consideration, we only assess the weights that are associated with the input,
output and recurrent nodes denoted Wxh, Wyh and Whh respectively. In calculating the
loss of a sequence of length τ we sum the losses of all the time-stamps. For illustrative
purposes, we opt to compute only the gradients that are with respect to hidden-hidden

Stellenbosch University https://scholar.sun.ac.za



Chapter 3. Recurrent Neural Networks 40

recurrence weights Whh.

∂L
∂Whh

=
∂L

∂ŷ<t>
∂ŷ<t>

∂h<t>
∂h<t>

∂Whh

= ∑
t

∂C<t>

∂ŷ<t>
∂ŷ<t>

∂h<t>
∂h<t>

∂h<k>
∂h<k>

∂Whh

(3.4.1)

In Equation 3.4.1 above, we examine the term ∂h<t>

∂h<k> and apply the chain rule to compute
its gradient as follows

∂h<t>

∂h<k> =
∂h<t>

∂h<t−1>
∂h<t−1>

∂h<t−2> ....
∂h<k>

∂h<k−1>

=
t

∏
j=k+1

∂h<j>

∂h<j−1> .
(3.4.2)

The resulting product in Equation 3.4.2 represents a derivative between two vectors,
which implies a Jacobian matrix of the time-step to time-step transition function. As a
result, the term ∂h<j>

∂h<k> represents the product of Jacobian matrices that are each associated
with a forward computation step. We further examine the term ∂h<j>

∂h<j−1> (in Equation
3.4.2) as follows

∂h<j>

∂h<j−1> = W>hh diag(1− (hj)
2). (3.4.3)

Taking the norm of Equation 3.4.3 yields the following∥∥∥∥∥ ∂h<j>

∂h<j−1>

∥∥∥∥∥ =
∥∥∥W>hh diag(1− (h<j>)2)

∥∥∥
≤
∥∥∥W>hh

∥∥∥∥∥∥diag(1− (h<j>)2)
∥∥∥

= βwβh,

(3.4.4)

where βw =
∥∥∥W>hh

∥∥∥ and βh =
∥∥∥diag(1− (h<j>)2)

∥∥∥. Now when we combine Equations
3.4.2 and 3.4.3 it yields∥∥∥∥∥ ∂h<t>

∂h<k>

∥∥∥∥∥ =

∥∥∥∥∥ t

∏
h=k+1

∂h<j>

∂h<j−1>

∥∥∥∥∥ ≤ (βW βh)
t−k (3.4.5)

It then follows that as the sequence length t becomes larger (t → ∞), Equation 3.4.5
tends to explode or vanish, regardless of the magnitude of βW βh. To overpass this
phenomenon we employ a technique called gradient clipping [73], and or variants of
RNN called long short-term memory (LSTM) and gated recurrent unit (GRU) networks.
Yoshua Bengio [18] gives a detailed outline of how learning long term dependencies
brings about vanishing gradients.
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3.4.0.1 Gradient Clipping

As discussed earlier in Section 3.4, the non-linear functions computed by deep RNN
prioritize gradients with magnitudes that are either too large or too small. Figure 3.4a
below, illustrates a representation of gradient explosion where gradient descent updates
toss the parameters into a region with a larger objective function. The tossing of param-
eters nullifies all the work done in obtaining the current solution. A simple solution to
this problem is gradient clipping, a technique which was proposed by Tomas Mikolov
[73].

(a) Learning without clipping (b) Learning with clipping

Figure 3.4: An illustration of clipping RNN gradients with the weight and bias parame-
ters denoted w and b, respectively. On the left is a case where gradients overshoot which
calamitously hurls the parameters of interest away from the solution neighbourhood.
On the right side is the is a scenario whereby the gradient is scaled to a threshold which
in turn restricts the step-size such that the parameter updates are within the vicinity of
the solution.[33]

The main idea of gradient clipping is based on scaling the gradient of a magnitude ex-
ceeding a predetermined threshold into matching the set threshold. Figure 3.4b illus-

Algorithm 1 Gradient clipping.

1: Result: g← gv
‖g‖

2: if
∥∥g
∥∥ > v then

3: g← gv
‖g‖

4: end if
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trates the effects of gradient clipping. In contrast with the exploding gradients in Figure
3.4a, the clipped optimizer tends to perform best around a cliff. As the parameter up-
dates ascend the cliff, we restrict the step-size such that the updates do not move further
away from the solution neighbourhood [73].

3.5 Bidirectional Recurrent Neural Networks

One major drawback of the RNN discussed in earlier sections is that at hidden state
h<t> computation the RNN only considers information about its prior hidden states but
has no knowledge of the subsequent hidden states. In some applications of sequence
modelling, the model performance is vastly improved by availing both historical and
futuristic information to hidden state h<t>. For example, to gain some intuition on the
semantic representations of Examples 3.2.1 and 3.2.2 at each time-stamp t, the RNN has
to leverage information about both prior and subsequent words which in turn results in
improved context understanding. It is from this idea of learning sequences from both
directions that the bidirectional recurrent neural network emanates from [79].

Figure 3.5: A standard bidirectional RNN that maps input vector x to target output vec-
tor y such that the cost function L<t> represents the loss at time stamp t. At each time-
stamp t the recurrences h<t> and g<t> the propagation of information in the forward
and backward directions respectively. Therefore, output unit o<t> leverages historic
and futuristic information from h<t> and g<t> computations respectively.
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As illustrated in Figure 3.5, bidirectional RNNs combine two RNN whereby one propa-
gates through time in the forward direction while the other propagates in the backward
direction. As a result, at each time-stamp, bidirectional RNNs have separate indepen-
dent hidden states h<t> and g<t>. In other words, each hidden state h<t> only interacts
with its prior hidden state h<t−1>. Similarly, hidden state g<t> only interacts with its
prior hidden state g<t−1>. The major development in this network is the stacking of
combinations of two unidirectional layers or sub-networks. On one layer, the forward-
hidden states interact in the forward direction from the time-stamp t = 1 to t = τ, where
τ is the sentence length. On the other layer, hidden states interact in the backward di-
rection from time-stamp t = τ to t = 1. However, both h<t> and g<t> inputs are from
the same sequence, the same token x<t> . Consequently, this enables the computation
of output units o<t> to capture representations of information from both the prior and
subsequent hidden states. Therefore, the representations in o<t> are strongly related to
the inputs (or words) within the neighbourhood of input x<t>. All this happens without
specifying a fixed size neighbourhood window.

In the RNN under consideration we have a separate set of weights for the forward pass
and backward pass sub-networks. We denote the forward pass weights as Wxh, Whh, Why

and bh. The backward pass parameters are then denoted as Wxg, Wgg, Wgy and bg, such
that the recurrence propagation conditions are computed in the following manner:

h<t> = tanh(Whhh<t−1> + Whxx<t> + bh) (3.5.1)

g<t> = tanh(Wggg<t−1> + Wgxx<t> + bg) (3.5.2)

o<t> = Wohh<t> + Wogg<t> + bo. (3.5.3)

From Equations 3.5.1 to 3.5.3 above, it can be seen that the recurrence conditions are
a generalization of the standard RNN recurrence conditions in Equations 3.3.7 to 3.6.6.
Another observation from these recurrence equations is that the hidden states h<t> and
g<t> are independent of each other, meaning one can compute the forward pass hid-
den states and then compute the backward pass hidden states concurrently. Thereafter,
combining each time-stamp’s backward and forward pass hidden states in computing
the respective output states.

Following the output computations, we apply back-propagation in computing the gra-
dients of the various parameters. To achieve this we first compute the gradients with
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respect to the output states. Thereafter, we compute the forward pass parameter gradi-
ents from time-stamp t = τ to t = 1. We then compute the backward pass gradients
from time-stamp t = 1 to t = τ. Finally, the gradients are aggregated based on the
respective shared parameters. Consequently, BPTT can be modified to suit the case of
bidirectional RNN as summarised below.

Bidirectional RNN training

1. Step 1: Independently and separately compute the forward pass and back-
ward pass hidden states.

2. Step 2: Compute the time-stamp output states relative to the forward and
backward pass hidden states.

3. Step 3: Compute the loss concerning each output state and output dummy
parameter.

4. Step 4: Independently calculate the gradients concerning the forward and
backward pass states. Use these results to evaluate the partial derivatives
for each forward and backward-pass dummy parameters.

5. Step 5: Aggregate the gradients of the shared parameters.

The performance of Bidirectional RNN is almost similar to that of an ensemble of two
separate RNNs, whereby one has as its input, the original input vector x and the other
has the reversed vector x as its input. The difference between the ensemble and bidi-
rectional RNN is that the bidirectional forward and backward-pass are jointly trained.
However, this joint training exhibits some weakness as the forward and backward states
are not directly related.

3.6 Long Short-Term Memory Neural Networks

As mentioned earlier, the major drawback with conventional RNNs is that they struggle
with learning long term dependencies, a consequence of the vanishing and exploding
gradient problem [15]. In addition to gradient clipping, another way of handling this
problem is by using a version of RNNs known as long short-term memory (LSTM) neural
networks [39]. The principal idea behind these LSTMs is to substitute the conventional

Stellenbosch University https://scholar.sun.ac.za



45 3.6. Long Short-Term Memory Neural Networks

RNN hidden-hidden recurrence cell with an LSTM cell. The main objective of these
LSTMs is to have control over the information stored in memory. Figure 3.6 below de-
picts a simple LSTM cell that replaces the conventional RNN cell.

Figure 3.6: An illustration of an LSTM recurrent cell. The horizontal line at the top of
the cell represents information flow along the cell state. The LSTM cell inputs and out-
puts are represented by (x<t>, ht−1, St−1) and (h<t>, St) respectively. The forget gate
determines what information from previous cell state St−1 to filter out. The input gate
determines what information from the current time step is worth filtering out. The out-
put gate determines the representations to pass as output relative to cell state St and
filtered input ot.

In contrast with conventional an RNN that essentially implements component-wise
non-linearity to the affine transformation of the input sequence and hidden states, LSTMs
comprise of a cell that posses an inherent interior self-loop. This self-loop generally im-
plies that LSTM networks have two self-loops, one within the cells and the other being
the outer conventional RNN self-loop. Moreover, LSTM RNN cells have a grid of gates
that curb information flow. As in the case of conventional RNN, LSTMs have a unique
or specific input and output with their key component being the cell state. In Figure 3.6,
the cell state is represented by the horizontal line running from Ct−1 to Ct and has a
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couple of linear alterations to it. At time-stamp t the amount of information that flows
through the network’s ith cell self-loop is regulated by the forget gate f<t>

i whose output
values are between 0 and 1.

f<t>
i = ∑

j
W f

x,i,jx
<t>
j + ∑

j
W f

h,i,jh
<t>
j + b f

i (3.6.1)

where W f
x , W f

h and b f represent the input weight, hidden-hidden weights and biases
respectively. The input and recurrence vectors are denoted x<t> and h<t> respectively.
The following step subsequently determines what information to store in the cell state
S̃<t>. This information regulator has two phases, the first c<t> determines which values
are to be updated next. The second phase S̃<t> generates a vector of candidate values
which contribute towards the updating of the cell state S<t>.

c<t>
i = σ

∑
j

Wc
x,i,jx

<t>
j + ∑

j
Wc

h,i,jh
<t−1>
j + bc

i

 (3.6.2)

S̃<t>
i = tanh

∑
j

W S̃
x,i,jx

<t>
j + ∑

j
W S̃

h,i,jh
<t−1>
j + bS̃

i

 . (3.6.3)

Equations 3.6.2 and 3.6.3 are then combined to update the cell state as follows

S<t>
i = f<t>

i S<t−1> + c<t>
i S̃<t>

i (3.6.4)

Finally, the LSTM cell then computes the output h<t>, by multiplying the output gate
o<t> by the filtered cell state in the following manner

h<t>
i = o<t>

i tanh S<t>
i (3.6.5)

where

o<t>
i = σ

∑
j

Wo
x,i,jx

<t>
j + ∑

j
Wo

h,i,jh
<t−1>
j + bo

i

 . (3.6.6)

Compared to conventional RNN cells, LSTMs have proven to be more capable of han-
dling/learning long term dependencies [38]. However, there are pertinent questions
that arise from LSTM architectures, such as:

1. Which LSTM cell components are more important ?

2. How can one regulate the forget gate performance ?

In answering these questions, we delve into an ingenious variant of the LSTM cell called
the gated recurrent unit.
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3.7 Gated Recurrent Units

In response to the aforementioned questions (see Section 3.6) we consider the GRU
which has crafty alterations to the LSTM cell [23]. An example of a GRU cell is shown
in Figure 3.7 below. The GRU can be thought of as a simplified version of the LSTM
with the absence of an explicit cell state as the major distinguishing factor. In contrast
with the LSTM which has forget and output gates for controlling the flow of informa-
tion within the cell, GRUs have this dual functionality handled by a single reset gate. In
essence, this GRU gating unit simultaneously scales both the forget component and the
state unit update.

Figure 3.7: A pictorial representation of the GRU cell where inputs and outputs are
denoted (x<t>, h<t−1>) and h<t> respectively. In contrast with the LSTM which has
forget and output gates for controlling the flow of information within the cell, GRUs
have this dual functionality handled by a single reset gate. The reset and update gates
scale both the forget and state unit update.

Nonetheless, the partial resetting of the hidden states within the GRU cell closely resem-
bles that of the LSTM. On this account the GRU cell has the following update equations:

h<t>
i = z<t−1>

i h<t>
i + (1− z<t−1>

i )o<t>
i , (3.7.1)
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where z<t−1>
i denotes an update unit and is defined as:

z<t−1>
i = σ

∑
j

Wz
x,i,jx

<t>
j + ∑

j
Wz

h,i,jr
<t>
j h<t−1>

j + bz
i

 , (3.7.2)

and

o<t>
i = tanh

∑
j

Wo
x,i,jx

<t>
j + ∑

j
Wo

h,i,jr
<t>
j h<t−1>

j + bo
i

 , (3.7.3)

the reset unit r<t> is defined as:

r<t>
i = σ

∑
j

Wr
x,i,jx

<t>
j + ∑

j
Wr

h,i,jh
<t−1>
j + br

i

 . (3.7.4)

These update and reset gates can sometimes ignore a portion of the state vector h<t−1>.
Reset gate r<t> regulates the proportion of states that are used when computing the
target state h<t>. In doing so, nonlinear relation between the < t− 1 >th and < t >th

state is introduced by the reset gate. An in-depth investigation on the performance of
the LSTM variants is found in the work of [82] and that of [46].

3.8 Summary

This chapter has given a brief introduction to the modelling of sequential data with
RNNs and its variants. Additionally, the chapter outlines the process of training RNN.
Having discussed the training of RNNs, the chapter then gave an outline of the com-
plications that arise from learning to model long sequences. As a means of alleviating
these long term dependencies, then followed an analysis of bidirectional RNNs, LSTMs
and GRUs architectures.
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Chapter 4

Sequence-to-Sequence
Encoder-Decoder Architectures

4.1 Chapter Organisation

In Section 4.2 we lay out an overview of the many-to-one and one-to-many mappings.
The next section (Section 4.3) then introduces the basic building blocks of an encoder-
decoder architecture. Thereafter, in Section 4.4 we then discuss the attention mechanism,
an ingenious solution to the long term dependency problem. The discussion on the
attention mechanism includes the self-attention mechanism which constitutes the funda-
mental component of the transformer network. The transformer network is then intro-
duced in Section 4.5. A summary is given in Section 4.6.

4.2 Introduction

We define sequence-to-sequence modelling as the mapping of a fixed-length sequence to
another sequence of a fixed length. In these mappings, the output sequence length can
differ from that of the input. Earlier in Chapter 3, we demonstrated how RNNs map a
fixed size input sequence to another fixed-size sequence. We refer to this type of map-
ping as a many to many mapping. This type of mapping has one major restriction, which
is that both input and output sequence lengths must be equal. In Section 4.3 we discuss
how this restriction is solved. Furthermore, RNN also allow us to perform many to one
and one to many mappings. In addition to their ability to perform sequence modelling,
the flexibility of RNN architectures with regards to the type of mapping is what has
made them so prominent in the domain of sequence modelling.

49
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4.2.1 Many to One Mappings

We have so far only discussed RNN models where both input and output sequences are
of the same lengths. However, RNNs are also capable of mapping some sequence of
fixed-length to a single output as shown in Figure 4.1. Similar to the RNN discussed in
Section 3.3.1, Figure 4.1 represents a time unfolded RNN basic building block with the
only difference being the single output in Figure 4.1. Many to one models are largely
used in sentiment classification and when producing an output that is further processed
by another network (such as the network in Section 4.2.2). When training the model,
the gradient concerning the output o<τ> is computed by back-propagating from the
subsequent nodes.

Figure 4.1: An illustration of a RNN that maps a fixed length input sequence to a single
output. The network cells can be of any form of RNN variant. An input sequence x is
fed into the network which then learns to map the sequence to a single output o<τ>.

4.2.2 One to Many Mappings

As discussed earlier in Section 2.3.4.1, any model that represents variable p(y; (w, b))
might be described as a conditional distribution p(y|θ) where θ = (w, b). If we express θ

as a function of input x the model p(y|θ) can then be extended to p(y|x). In general this
represents distribution over y variables conditioned on a single input x. This condition-
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ing is also called a one to many mapping. To achieve this, for each time-step t the RNN
takes as input the target variable y<t−1> and the weighted input x as shown in Figure
4.2 below. The reciprocal relationship between the input vector x and each h<t> (the
hidden state) is parametrized by the matrix of weighted input x>W, which was absent
in the many-to-many and many-to-one model. At all time-steps the product x>W is added
to the hidden unit inputs.

Figure 4.2: An illustration of a RNN that represents the distribution over some y vari-
ables conditioned on a fixed length input vector x. When training, each element y<t>

serves both as an input (at time t) and as the target for time step t− 1.

4.3 Encoder-Decoder

We have discussed how RNN can learn to model a many-to-many, many-to-one and
one-to-many mappings (see Sections 3.3.1, 4.2.1 and 4.2.2). Based on these mapping vari-
ants, we now discuss how RNNs can be trained to model a sequence-to-sequence map-
ping where input and output sequences are of different lengths. In principle, such mod-
els have applications in the domain of NLP for example, machine translation, question
answering and speech recognition. Although the input and output sequence lengths
might be different, they tend to be related [33]. The encoder-decoder architecture is a
type of network that maps a sequence of varying length to an output sequence of vari-
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able length was first developed by [84] and [22].

The main idea of the encoder-decoder architecture is based on coupling the many-to-
one with the one-to-many model discussed earlier in Sections 4.2.1 and 4.2.2. As de-
picted in Figure 4.3, the many-to-one RNN model output is passed onto the one-to-many
RNN model as input. For nomenclature we denote our input and target sequences as
x = (x<1>, x<2>, ...., x<τ1>) and y = (y<1>, y<2>, ...., y<τ2>) respectively. Where input
and output sequence lengths are denoted by τ1 and τ2 respectively. For each input-
output pair of sentences (x, y) ∈ D we add artificial tokens < SOS > and < EOS >

to denote the start-of-sentence and end-of-sentence, such that x<1> =< SOS >,y<1> =<

SOS >,x<τ1> =< EOS > and y<τ2> =< EOS >. In essence, the

Figure 4.3: A pictorial representation of a RNN encoder-decoder architecture that maps
sequence x = (x<1>, x<2>, ...., x<τ1>) to sequence y = (y<1>, y<2>, ...., y<τ2>). The en-
coder RNN processes the input to generate the context vector C, which is passed onto
the decoder RNN as input. In essence, the encoder is viewed as a many-to-one mapping
and the decoder as a one-to-many mapping.

processing steps of this architecture are as follows:

1. The encoder or many-to-one component learns representations that summarise the
source sentence x into c, a vector of fixed-length. Through a RNN, these represen-
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tations are learnt in the following manner

h<t> = f (x, h<t−1>) (4.3.1)

and
c = g(h<1>, h<2>, ...., h<τ1>) (4.3.2)

where h<t> ∈ Rn denotes time step t hidden state and c denotes the vector that
summarises the source sentence semantic representation. Furthermore, f and g
denote some nonlinear functions.

2. To generate the target sentence y, the decoder RNN (or one-to-many component)
is conditioned on context vector c. At each time step the decoding process is said
to be auto-regressive, meaning when generating the next target word the decoder
uses as additional input the previously generated/predicted outputs [34]. In other
words the decoder learns to predict the word y<t> in view of context vector c
along with prior words {y<1>, y<2>, ...., y<t−1>}. In essence, the decoder learns a
conditional distribution over the target sentence y as follows:

p(y) =
τ2

∏
t=1

p(y<t>|{y<1>, y<2>, ...., y<t−1>}, c). (4.3.3)

Therefore, since the decoder uses a RNN architecture we express its conditional
probability as

p(y<t>|{y<1>, y<2>, ...., y<t−1>}, c) = q(y<t−1>, s<t>, c) (4.3.4)

whereby q represents a multilayered transformation that calculates the probability
of y<t>. The context vector is denoted by c. For each time step t, the RNN decoder
hidden state is denoted s<t>.

The objective of this model is to jointly train the encoder and decoder such that it maxi-
mizes the conditional log-likelihood as follows

max
θ

1
|x| ∑

(x,y)∈D
log pθ(y|x) (4.3.5)

where D and θ are sets of training pairs and parameters respectively. The target transla-
tion ŷ is predicted by the following procedure

ŷ = arg max
y

pθ(y|x). (4.3.6)
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An encoder with bidirectional RNN computations (see Section 3.5) will comprise of a
forward pass

−→
h and backward pass

←−
h which will each sequentially out put hidden

states (
−→
h <1>,

−→
h <1>, ....,

−→
h <τ1>) and (

←−
h <1>,

←−
h <2>, ....,

←−
h <τ1>) respectively. It there-

fore follows that the annotation for each word x<t> is obtained by concatenating
−→
h and

←−
h in the following circumstances

h<t> =

[−→
h <t>>;

←−
h <t>>

]>
. (4.3.7)

Therefore, the annotation h<t> will contain the compressed representation of the sub-
sequent and prior words. As a consequence of RNN being better at learning recent
input representations, it then follows that h<t> is centered on the words that are around
x<t>. Which implies such an architecture will tend to struggle when learning long-term
dependencies, a phenomenon we discussed in Section 3.4. Nonetheless, this architec-
ture archived SOTA performance on MT tasks [22]. However, the performance of this
encoder-decoder RNN architecture decreases with an increase in input sequence length.
That is to say, as the input sequence length increases the encoder-decoder RNN struggles
to compress long input representations into a single context vector [22]. The solution to
this phenomenon (long-term dependency problem) was firstly proposed by [24] and is the
subject of discussion in the upcoming sections.

4.4 Sequence to Sequence with Attention

As discussed earlier in Section 3.6 of Chapter 3 LSTM RNNs were from 2014-2017, the
most popular RNN variant for machine translation tasks. Although LSTMs are usually
the architecture of choice, for simplicity sake we shall in this section generalize our no-
tation to suit any type of RNN. Despite the theoretical fact that LSTMs can alleviate the
long-term dependency problem, in practice, they tend to perform badly when sentences
become too long [51], for example when translating a paragraph or an article. The ra-
tionale being that the probability of keeping the learned representation of a word that
is too far from the current word being learned decays exponentially [18] with the dis-
tance from it. Which implies that as the sentence length becomes too large, oftentimes
the model will forget the distant representations. To alleviate this problem, researchers
have developed a technique that translates sentences by paying attention to different to-
kens within the source sentence.

The attention mechanism can be defined as the mapping of some input vectors, known
as the query and value-key pairs to some output vector of weighted sum of values. The
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weights relating to these values are generated by means of some correspondence func-
tion which takes in as arguments the query and value. There are various ways of in-
corporating the attention mechanism into RNN machine translation models. The most
prominent being additive attention, global attention, local attention and self-attention. Foun-
dational to the other two is the additive attention also know as translation with alignment
[14].

4.4.1 Additive Attention

The main objective of this technique and the modifications that stem from it is to help
memorise long-term dependencies in sequential data. Figure 4.4 gives a pictorial repre-
sentation of this technique. We can envision this technique as having three major steps

1. The processing of input data (source sentence) to produce vectors of distributed
representations. In the case of a bidirectional RNN encoder, the time step pro-
cessed representations are computed in the following manner

h<t> =

[−→
h <t>>;

←−
h <t>>

]>
, t = 1, .., τ1 (4.4.1)

2. Storing the outputs h<t> into memory vector c (list of vectors which can be re-
trieved in any order). Such that the context vector c<i> denotes the sum of weighted
hidden states and is computed in the following manner

c<i> =
τ1

∑
t=1

α<it>h<t>. (4.4.2)

The weights associated with each value h<t> (or hidden state) are computed in the
following manner

α<it> =
exp (e<it>)

∑τ1
k=1 exp (e<ik>)

(4.4.3)

where alignment score e<it> is a function of s<i−1> and h<t>, the decoder’s prior
hidden state and encoder hidden state respectively.

e<it> = a(s<i−1>, h<t>) (4.4.4)

whereby s<i−1> and h<t> are called the query and key. The alignment function
a is a general feed-forward network jointly trained with the entire model. This
alignment model calculates the scores that determine how well the inputs within
the neighbourhood of element t match with the ith output.
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3. The decoder sequentially predicts the target outcome by exploiting the memory
vector c. Therefore, we rewrite the conditional probability in Equation 4.3.4 as
follows

p(y<i>|{y<1>, ..., y<i−1>}) = q(y<i−1>, s<i>, c<i>) (4.4.5)

where hidden state s<i> is computed in the following manner:

s<i> = q(s<i−1>, y<i−1>, c<i>). (4.4.6)

Figure 4.4: Illustration of an encoder-decoder architecture with a weighted average at-
tention mechanism as introduced by [14]. The model is at a state where it is predicting
the tth target output given the input (x<1>, ..., x<τ1>).

As the model aligns the source words with its corresponding target words, it becomes
possible to associate the source word with the target words that are closely related to it.

4.4.2 Global Attention

The global attention mechanism [60] is an improvement of the additive attention tech-
nique [14]. The main objective of this mechanism is to incorporate the learned represen-
tations from the encoder hidden states into the target hidden states by generating a new
and improved target hidden state as shown in Figure 4.5. For the model to accomplish
this at some time step t, the attention layer has to find a representation of the source
sentence that is close to s<t>, the output hidden state which is accomplished
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Figure 4.5: A pictorial representation of the global attention mechanism as introduced by
[60]. For each time step t, the architecture employs state s<t> to infer alignment vector
a<t>. Thereafter, the sought-after content vector c<t> is then computed as a weighted
average with respect to all the input hidden states and the alignment vector a<t>.

by first computing context vector c<t>. To compute context vector c<t>, we apply a
similarity-weighted average of the input hidden states as follows:

c<t> =
∑τ1

j=1 exp (h<j> · s<t>)h<j>

∑τ1
j=1 exp (h<j> · s<t>)

(4.4.7)

Another way of representing this weighting is by way of an alignment variable a(t, s)
which determines the relevance of input word s to target output t:

a(t, s) =
exp (h<s> · s<t>)

∑τ1
j=1(h

<j> · s<t>)
. (4.4.8)

As a result, our attention vector which relates to the tth target word is denoted a<t> =

[a(t, 1), ...., a(t, τ1)]. In other words this vector represents a set of probabilistic weights
that sum to 1 and has a cardinality that is equal to the input sequence length τ1. Now by
substituting Equation 4.4.8 into Equation 4.4.7 we obtain

c<t> =
τ1

∑
j=1

a(t, j)h<j>. (4.4.9)
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In principle, this technique seeks to determine a semantic representation of the input
hidden states that are highly significant to the output hidden state of consideration.
This significance is determined by the similarity dot product between the input and
target hidden states as represented by the attention vector a(t, s). The final step is to
generate a target hidden state s̃<t> which combines context vector c<t> representations
and s<t>, the original output hidden state:

s̃<t> = tanh (Wc[ c<t>

s<t> ]). (4.4.10)

To predict the output y<t> the newly generated hidden state s̃<t> is used in-place of
s<t>, the original hidden state.

4.4.3 Local Attention

The major setback with global attention is that it is computationally expensive, which
is due to the fact that when predicting each target word the model has to attend to all
the input words. Which makes it difficult to translate long sequences such as para-
graphs or short articles. In response to this setback [60] further developed the local
attention mechanism which derives inspiration from the application of attention in im-
age captioning [96]. In the work of [96] they refer to global attention as soft attention,
this is because the weights are softly placed on all the locales in the input image. On
the other hand [96] proposed an attention mechanism which only attends to a single
locale of an image at a time and this technique they called hard attention. Although hard
attention is seemingly computationally inexpensive when compared to soft attention it
being non-differentiable implies it requires sophisticated techniques of training such as
reinforcement learning and variance reduction [60]. On the other hand, local attention
discriminately focuses on a definite portion of context and this makes it computationally
inexpensive.

In essence, this technique sets of by computing the alignment position p<t> with re-
gards to each target word at time step t as shown in Figure 4.6. Thereafter, the model
computes a weighted average over all the input hidden states within a specified window
[p<t> − D, p<t> + D], to generate context vector c<t>. The window width D is chosen
based on a trial and error criterion. In contrast with the variable-length alignment vec-
tor in the global attention mechanism, the local attention alignment vector has a fixed
dimension of a<t> ∈ R2D+1. This model has two variations of alignment:
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Figure 4.6: A pictorial representation of the local attention mechanism. At time step t the
attention computations start of by predicting the alignment positions p<t>. Thereafter,
the model then computes context vector c<t> using a window that is centered around
point p<t>. During time step t inference, the model employs the input hidden state h<t>

and output hidden state s<t> to compute the weights a<t>.

1. Monotonic alignment: the model assumes that the input sentence is approximately
aligned with the target sentence such that the alignment vector is defined as:

a(t, s) =
exp (h<s> · s<t>)

∑τ1
j=1(h

<j> · s<t>)
. (4.4.11)

2. Predictive alignment: the model assumes no predefined alignments. Instead it
learns to predict these alignments as follows:

p<t> = |x| · sigmoid(v>p tanh (Wph<t>) (4.4.12)

where vp and Wp denote the parameters which the model learns. On the other
hand, |x| denotes the input sequence length τ1. It then follows that the alignment
position p<t> ∈ [0, τ1], a consequence of the sigmoid function. In preference of
the points within the neighbourhood of p<t>, the model incorporates a Gaussian
distribution that is centered at p<t>. As a result, the alignment weight a(t, s) is
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modified to

a(t, s) = a(h<s>, s<t>)

= exp (
−(s− p<t>)2

2σ2 ),
(4.4.13)

where the standard deviation is experimentally set to σ = D
2 and s ∈ [p<t> −

D, p<t> + D].

4.4.4 The input-feeding technique

The limitation with global and local attention is that the attention decisions are inde-
pendently made, which renders these models sub-optimal [60]. This is different from the
standard machine translation technique that simultaneously learns to align and translate
[14]. To solve this difference [60] introduced an input feeding architecture as depicted
in Figure 4.7. This architecture is fully cognizant of the previous alignment ordering.
Which implies the model is capable of deciding which attention constraints are nec-
essary. For each tth decoding time step, the model concatenates the newly generated
hidden state s̃<t> with the (t + 1)th input as shown in Figure 4.7.

Figure 4.7: Illustration of an input-feeding architecture. At each time step t, the newly
generated attention vector h<t> is passed as input at time step t + 1. For tth decoding
time step, the model concatenates the newly generated hidden state s̃<t> with the (t +
1)th input.
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4.4.5 Self-Attention

Suppose that x = (x<1>, ..., x<τ1>) is an input sequence of length τ1, where x<i> ∈ Rdx .
The self attention [20] mechanism maps x to some output sequence z = (z<1>, ..., z<τ1>)

where z<i> ∈ Rdz . Each z<i> output is generated as the sum of weighted linear trans-
forms of the input sequence:

z<i> =
τ1

∑
t=1

α<it>(x<t>Wv) (4.4.14)

where α<it> computation is similar to Equation 4.4.3. The component e<it> is computed
by means of a compatibility function known as the scaled dot product [87]

e<it> =
(x<i>WQ)(x<t>WK)

>
√

dz
, (4.4.15)

where WQ, WK, WV ∈ Rdx×dz denote the model’s attention parameters. This attention
mechanism has some resemblance of dot-product attention [60], with the only difference
being the scaling factor 1/

√
dz. It is worth noting that for long dimensions of z the

compatibility function yields a dot product that is large in magnitude which catapults
the softmax function into zones of vastly small gradients. It is for this reason that the
scaling factor is incorporated into the compatibility function.

4.5 Transformer Model

The novel transformer architecture [87] is without a doubt one of the most influential
developments in the domain of machine translation. This model’s key component is a
development of the global attention mechanism discussed in Section 4.4.2 which makes
the modelling of sequence-to-sequence mappings without RNN feasible. In addition
to the long-term dependency problem discussed in Section 4.4, RNN are difficult to
parallelize due to their sequential computations. The transformer architecture aims at
concurrently solving the variable length and parallelization problems. This is done by
simultaneously encoding sequence token positions and capturing sequence-to-sequence
recurrences by utilizing the self-attention mechanism [49]. As a result, the transformer
is trained in a significantly shorter time frame.

Reminiscent of the modern sequence-to-sequence architectures the transformer also uses
the encoder-decoder mechanism as shown in Figure 4.8b. For a comprehensive expla-
nation of the transformer model, we give a side-by-side comparison between the trans-
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former and RNN sequence-to-sequence model, as shown in Figure 4.8. The two archi-
tectures are both similar in the following manner:

• Both architectures take in as input the embedded source sentence into a block of
encoder layers. Furthermore, both decoders take in as input, the encoder’s output.

• In both models, the target sequence embeddings are fed into the decoder layers as
part of the inputs. A densely connected layer (with a size equal to the vocabulary
size) is used to generate the outputs of each decoder.

(a) RNN sequence-to-sequence with attention. (b) Transformer sequence-to-sequence model.

Figure 4.8: A side by side comparison of the RNN sequence-to-sequence architecture
and transformer sequence-to-sequence architecture. Both architectures have an encoder-
decoder mechanism. However, the transformer’s encoder and decoder comprises of n
stacked heads. The encoder feeds its output to the decoder for further processing.
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On the other hand, the two networks differ in the following manner:

• Transformer blocks: the RNN layers are replaced with n transformer blocks. The
encoder blocks contain multi-head self-attention layers along with position-wise
FF layers. This is also the case for the decoder however the decoder has multi-head
self-attention layers that take in as part of their input the encoder’s output.

• Add & Norm: the outputs of both the fully connected and multi-head self-attention
layers are fed into a layer that contains a residual connection and normalization
component [13].

• Positional Encoding: with the self attention layers not being able to capturing
sequential representations the transformer employs positional encoding layers in-
stead.

4.5.1 Multi-Head Self-Attention

The self-attention mechanism constitutes the fundamental unit of multi-head self-attention.
As a result, it is imperative that we discuss self-attention first. As shown in Figure 4.9
the self-attention model computes output z<i> ∈ Rdz based on the linearly

Figure 4.9: The self attention mechanism returns an output based on the query, key and
value inputs. The output vectors are of the same length and unlike RNN architectures
with attention, self attention can be computed in parallel and this results in efficient
implementation.
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projected query and value-key pairs. In contrast with the RNN layers, self-attention
allows for the parallel computations of z<i> outputs, which results in more efficient
computations. The multi-head self-attention layer comprises a fixed number of parallel
self-attention layers h. Each of these parallel layers is called an attention head. Given
a query, key and value with dimensions dq, dk and dv respectively. Prior to feeding the
query, value and keys into the self-attention layers, the model projects them with dense
layers of hidden size dimensions pq, pvandpk respectively. The attention heads then per-
form the attention transform on the projected query, key-value pairs in parallel, resulting
in a pv-dimensional output vector per head. The output vectors are first concatenated
then fed into a dense layer as shown in Figure 4.10. The transformer decoder has a
multi-head attention layer that takes in the encoder state as a part of its input. To be
precise, for some query input x<t> at inference, the computation of output vector z<t>

includes the past queries {x<1>, x<2>, ..., x<t−1>} as shown in Figure 4.11.

Figure 4.10: A pictorial representation of the multi-head self attention mechanism. The
query, key and value are fed into dense layers that feed to the self attention heads re-
spectively. The attention values are simultaneously computed by each head and con-
catenated before being fed into a dense layer.

The multiple self-attention heads enable the model to collectively learn from dissimilar
representation sub-spaces at various positions, such that for every attention head j =

1, ..., h the model learns parameters W(j)
q ∈ Rpq×dq , W(j)

k ∈ Rpk×dk and W(j)
v ∈ Rpv×dv . As
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a result, each attention head generates the following outputs:

o(j) = φ(W(j)
q q, W(j)

k k, W(j)
v v) (4.5.1)

where φ denotes the dot-product attention. The pv-dimensional outputs o(j) are con-
catenated into a hpv dimensional output which in-turn is passed on to a dense layer
comprising of do hidden units. This dense layer learn parameters Wo ∈ Rdo×hpv .

Figure 4.11: Pictorial representation of a decoder self-attention head at inference. For
some query input x<t> at inference, the computation of output vector z<t> includes the
past queries {x<1>, x<2>, ..., x<t−1>}.

In general, the multiple attention heads generate a single attention output

o = Wo


o(1)

o(2)
...

o(h)

 . (4.5.2)

In this work, we use h = 16 parallel attention heads and do = 256 . It then follows that
pq = pk = pv = do/h = 16.

4.5.2 Position-wise Feed Forward Network

Along with the encoder-decoder attention sub-layers the transformer model contains
position-wise feed forward (FFN) sub-layers. These FFNs accept as input a 3-dimensional
tensor of shape (batch− size, sequence− length, f eature− size) and includes two linear
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transformations which are separately and identically applied to each position. A RELU
activation function lies between the transformations as follows

FFN(x) = max(0, xW1 + b1)W2 + b2. (4.5.3)

Though both linear transforms are identical throughout all the locations, they each em-
ploy weight parameters that are different from layer to layer.

4.5.3 Positional Encoding

Given that the transformer model has no recurrence components, it is important that the
model have some mechanism of capturing positional sequence representations. To ex-
pound on the positional encoding component we suppose e ∈ Rτ1×d is an embedding of
some input sequence x, such that τ1 and d denotes the sequence length and embedding
dimension respectively. The positional encoding layer encodes P ∈ Rτ1×d a position in
e the input embedding and outputs P + e. Notwithstanding the numerous choices of
positional encoding methods [31], as is the case in [87] we employ the sine and cosine
functions for positional encoding as shown in Figure 4.12.

Figure 4.12: An illustration of a four dimensional positional encoding toy model. As
shown above, the 4th and 5th dimension curves only differ in offset but they generally
have the same frequency. Similarly, the 6th and 7th dimension curves only differ in offset
but have the same frequency.
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These sine and cosine functions are of varying lengths such that the value P is obtained
by using the following equations:

Pi,2j = sin

(
i

10000
2j
d

)

Pi,2j+1 = cos

(
i

10000
2j
d

)
,

(4.5.4)

where i and j denote the sentence position and embedding dimension respectively. Such
that each positional encoding dimension matches up with a sinusoid with wavelengths
that resemble a geometric progression that ranges from 2π to 10000 · 2π.

4.5.4 Model regularization

The transformer architecture employs drop out regularization to the sub-layer outputs.
A constant dropout rate pdrop = 0.1 is used through out all the layers with dropout.
Firstly the model applies dropout to the encoder and decoder encoded embeddings.
Thereafter, dropout is applied to all sub-layers before it is passed on as input to the
add-norm layers.

4.6 Summary

We have given a comprehensive overview of the RNN encoder-decoder architecture
models for machine translation and their drawbacks. As the main objective of this re-
search is to employ the transformer model, we have highlighted how this architecture
(transformer) solves the RNN drawbacks. Furthermore, we also gave a contrast between
the RNN and transformer architectures. Hence the demystification of the transformer
model.
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Chapter 5

Low Resource Training Protocols and
Evaluation Metrics

5.1 Chapter Organisation

The first section of this chapter is a discussion about the data. The hardware and data
splitting technique are then discussed in Section 5.3. The next section then introduces
transfer learning and how it can help solve the problem of low resources. Section 5.4.4
then discusses multilingual models and how they help improve translations on low-
resource datasets. An extreme variant of transfer learning called zero-shot learning is
examined in Section 5.4.5. Sections 5.5 then expounds on the evaluation metrics em-
ployed in this research. Finally, we give an overview of the content covered in this
whole chapter.

5.2 Introduction

The conventional requirement for developing machine translation models is the avail-
ability of a large parallel dataset or corpus. It is by virtue of this requirement that much
machine translation success is for institutional languages with millions/thousands of
parallel text corpora. Albeit, of over 7000 human languages in existence, we have ap-
proximately 20 institutional languages. In most cases financial constraints make it diffi-
cult to source linguistically trained professionals (or speakers) to prepare machine trans-
lation datasets. Which leaves the great majority of human languages in great need of
solutions or tools to solve this resource barrier. As a result, this research focuses on the
application of multilingual learning, transfer learning and zero-shot learning to alleviate this

68
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low-resource problem. Stated simply, these machine learning techniques for improving
a modelling task by leveraging knowledge from a related task.

En-Sh En-Zu En-Xh Xh-Zu
Sentence count 77 500 30 253 128 342 125 098
Source token count 7 588 4 649 10 657 27 144
Target token count 16 408 9 424 33 947 25 465

Table 5.1: Summary statistics for each language pair. The sentence count denotes the
number of examples each language. The source sentence token count denotes the num-
ber of words in the respective source languages. Similarly, the target token count de-
notes the number of words in the entire target language, respectively.

Our data sets comprise of parallel sentences obtained from [2] [3] [4] and [6]. The source
and target languages for these parallel sentences are English-to-Shona (En-Sh), English-
to-isiXhosa (En-Xh), English-to-isiZulu (En-Zu) and isiXhosa-to-isiZulu (Xh-Zu). These
training pairs from different domains, with [2] supplying the En-Zu phrases for learning
isiZulu. Similarly, [3] comprises of En-Xh and En-Zu phrases for learning both isiXhosa
and isiZulu. [6] also contains more En-Xh phrases for learning isiXhosa. These three
domains are not distant as they use similar writing styles. From the Orpus Corpus
we obtain parallel sentences (En-Xh,En-Zu,En-Sh) from web crawls, some Wikipedia
translations (En-Xh,En-Zu,En-Sh) and the En-Xh South African Navy corpus. As is the
case with most machine learning projects, the data had to be cleaned and this was done
through manually verifying the randomly selected alignments and dropping duplicates
to avoid data leakage [78] . Manual alignment and other corrections were done with
help of Shona, isiXhosa and isiZulu speakers.

Table 5.1 gives summary statistics for the four language pairs employed in this research.
The number of tokens represents the the number of unique words in each dataset. The
En-Xh pair had approximately 128 000 examples, making it the largest set. The second
largest pair was the Xh-Zu pair with about 125 000 examples. The En-Sh and En-Zu
pair were the third and fourth largest pairs with about 77 500 and 30 000 examples
respectively. As stated in Section 1.3.1, one of our key objectives is to improve NMT of a
low resource task by employ in cross-lingual transfer learning. In this work, we employ
En-Xh and En-Sh language pairs as our high resource language pairs (see Table 5.1) for
performing transfer learning.
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5.3 Data splitting and Hardware

Our models were trained on High Performance Computer clusters comprising of fifth
generation Intel CPUs [1]. We configured our node to 23 cores and 60gb of RAM. Fur-
thermore, the models were also configured to train on machines with GPUs. Our models
were developed in pytorch 1.7, a python machine learning package. Data-set splitting is
an important concept of machine learning which helps prevent overfitting. We split our
data sets into train, validation and test sets at a split ratio of 14 : 3 : 3 respectively for
each language pair. Figure 5.1 shows a visualization of this data splitting while Table 5.2
below gives a summary of the number of pairs per dataset subset.

Figure 5.1: A visualization of the dataset splits. The dataset is first partitioned into two,
on a ratio of 3:7. Thereafter, the smaller partition is equally partitioned into validation
and test set.

En-Sh En-Zu En-Xh Xh-Zu
Train 54 250 21 177 88 192 87 570
Validation 11 625 4 538 20 075 18 765
Test 11 625 4 538 20 075 18 763

Table 5.2: Number of examples per partition. The dataset splitting was based on a ratio
of 3:3:14 for the validation, test and training set respectively. Such that the total num-
ber of examples per language pair can be obtained by summing the number of train,
validation and test set examples, respectively.
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The training set contains 70% of the primary data set and it is on this subset that the
model learns its generalization. The validation set contains 15% of the primary dataset
(the entire set) and is used for computing an unbiased estimate of the model’s general-
ization when finding and optimizing the best model. In other words, the trained model
is occasionally allowed to see the validation subset without learning from it. We then
use the validation results to optimise the model’s hyper-parameters. As a result, the
validation set has an indirect influence on the final model. For an unbiased estimate of
our model performance, we employ an unseen test set for learning the model’s overall
generalization performance. Our test dataset comprises of the remaining 15% in the pri-
mary dataset. We refer to the testing of the model on the test an "unbiased evaluation"
of the final model.

5.4 Low Resource Training Protocols

The process of training a machine learning task that learns to map an input (source
sentence) to some output (target sentence) based on input-output pairs examples, is
called supervised machine learning. In training these supervised learning tasks, espe-
cially deep learning models, the models tend to perform better with more data. For
this reason, MT of low resource languages remains a challenge. Fortunately, there are
a number of training protocols that have been developed to help alleviate the problem
of low resources translation tasks. From these training protocols, we employ transfer
learning, multilingual learning and zero-shot learning. To evaluate the performance of
these training protocols we compare them against each other and the baseline models.

5.4.1 Baseline model training

We train our baseline models based on the NMT encoder-decoder protocol [84] dis-
cussed earlier in Section 4.3. However, in place of the RNN encoder-decoder architec-
ture, we employ transformer-based encoder-decoder protocols. Two of these baseline
models are then used as the parent or source model when performing transfer learning,
a training protocol that leverages learned representations from a related task. A detailed
discussion of transfer learning is given in the next section.

5.4.2 Transfer Learning

The human mind has an inherent ability to transfer knowledge across tasks. In other
words, given two related tasks A and B, the knowledge we acquire while solving task
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A can be leveraged to solve task B. It then follows that the more related the tasks at
hand, the easier the cross-utilization of knowledge. As examples of knowledge cross-
utilization, we consider the following

1. A mathematician/statistician −→ Learns machine learning.

2. One who knows how to play a guitar −→ Learns how to play the violin.

3. A baseball player −→ Learns how to play cricket.

In all the above examples, the learner does not have to learn everything from the onset.
Instead, they focus on adapting to the new concepts at hand. Put differently the learner
leverages and transfer knowledge gained from the prior task to the later. It is from
this phenomenon that transfer learning in the domain of machine learning gathers its
inspiration.

Conventional deep learning algorithms are usually developed to independently solve
isolated tasks [69]. Such models have to be trained from scratch whenever we encounter
a change in feature space distribution. This change is predominantly known as domain
shift [48]. Deep learning models require a substantial amount of training data for better
performance. On the contrary, the gathering of large sums of data (especially in the case
of supervised learning) is challenging, taking into account the amount of time and effort
required to label the data. Hence the motivation to apply transfer learning whenever
we are faced with the problem of low resources (i.e. few data). The inception of transfer
learning with application to machine learning research is believed to have cropped up
at the Neural Information Processing Systems (NIPS) workshop back in 1995 [85] and
has since then been used in multiple domains.

5.4.3 Understanding Transfer Learning

Transfer learning is a domain adaptation technique where a model that has been trained
on one task is exploited to better the generalizations on a related task [33]. This tech-
nique is generally efficient when faced with a low resource problem. In other words, to
accomplish this cross-utilization of learned features/knowledge we first employ a base
dataset for training the base model, thereafter we leverage the learned features to train a
second model on another task and dataset. This technique works best if the prior/base
model features can be generalized to the second task, which means the base features
have to be adaptable to the later task instead of them being task specific [97]. In the
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case of our NMT experiments, we employ En-Xh and En-Sh translation tasks as the base
models for training translations for En-Zu pairs.

Before we give a formal definition of transfer learning we start of by introducing our
nomenclature. Suppose a domain D comprises two elements: a source feature space X
over which is a marginal probability distribution P(X), where X = {x1, ..., xn} ∈ X ,
such that D = {X , P(X)}. A simple example is the case of a binary classification task
like movie review sentiment analysis, the feature spaceX will consist of vectors xi where
i ∈ {0, .., n}. Here, n denotes the number of training examples, and each X denotes a
learning sample. As a general rule, the variations between two domains may result in
having dissimilar feature spaces which in-turn leads to dissimilar marginal probability
distributions [71]. Taking D = {X , P(X)} into consideration, our task T = {Y , f (·)}
comprises of two elements: Y , a target feature space and the respective objective func-
tion f (·). The objective predictive function f (·) is learnt from the paired training exam-
ples (xi, yi) where each xi ∈ X and yi ∈ Y , ∀i ∈ {1, ..., n}. Function f (·) is employed to
generate the ith commensurate output f (xi). From a probabilistic end-point, the func-
tion f (xi) can be expressed as P(yi|xi). In our sentiment analysis example the target
space Y consists of all the binary labels such that yi = "positive" or "negative".

With regards to the two tasks A and B mentioned earlier in Section 5.4.3 we denote the
source domain data (i.e. task A data) as DS = {(xS1 , yS1), ..., (xnS , ynS)} where xSi ∈ XS

and ySi ∈ YS denote the ith input feature and target label respectively. In like manner
we denote our target domain data (i.e. task B data) as DT = {(xT1 , yT1), ..., (xnT , ynT )}. In
the context of a low resource problem it follows that 0≤ nT≤ nS.

Definition 5.4.1. Accorded with source and target domainsDS andDT respectively, along with
their respective tasks TS and TT, cross-lingual transfer learning intends to boost or enhance the
performance of fT(·), the target predictive function belonging to target domainDT. Performance
enhancement is done by leveraging the learned representations from the source domain and source
task DS and TS, respectively, where DS 6= DT or TS 6= TT.

In view of Definition 5.4.1 the domain is expressed as D = {X , P(X)}. Therefore, DS 6=
DT insinuates thatXS 6= XT otherwise fS(·) 6= fT(·). In context of the sentiment analysis
example, this implies that source domain DS and target domain DT differ only on their
input features (e.g different languages) or on the marginal probability distributions. In
like manner, task T = {Y , P(Y|X)} points out that TS 6= TT implies that fS(·) 6= fT(·)
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otherwise YS = YT. It is worth noting that whenever the conditions DS = DT and
TS = TT are met, the learning technique reverts to a conventional machine learning
problem.

The difference in domains implies one of the following:

1. XS 6= XT i.e. the feature spaces between the two problems are different.

2. XS = XT but fS(·) 6= fT(·) i.e. although the two feature spaces are the same, the
objective predictive function are different.

In line with the sentiment analysis example, the above cases can respectively imply the
following:

1. the two input datasets are of different languages.

2. the source and target domains focus on different sentiment classes.

A scenario where we are provided with task specific domains DS and DT with their
respective tasks TS 6= TT suggests the following:

1. YS 6= YT i.e. the two domains have different output spaces.

2. fS(·) 6= fT(·) i.e. the source and target objective predictive functions are different.

In context of the sentiment analysis example, the above conditions respectively corre-
spond to the following:

1. the source task TS is a binary classification task while target task TT is a multino-
mial classification problem.

2. the number of classes in the source task is not equal to the number of classes in the
target task.

Furthermore, the existence of some implicit or explicit relationship between DS and DT

affirms the presence of some relation between the two domains [71].
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5.4.4 Multilingual Model

Inter-lingual translation models are a quintessential technique of translating between
two languages [44, 75]. Notwithstanding its distinguished background, the research on
this technique had since the mid-twentieth century experienced little growth as it was
computationally expensive to build individual models to handle such tasks. The in-
ception of NMT systems [14, 47, 84] proved to be an essential tool for developing both
inter-lingual and multilingual machine translation systems. The earliest development
of multilingual NMT [28] was a modification of the encoder-decoder attention mecha-
nism [14] and had an overall architecture that was based on having individual attention-
based decoders for the respective target languages. [59] proposed a multitask learning
encoder-decoder architecture without attention. This model had multiple encoders and
decoders for each source-target language pair.

There are a number of multilingual NMT architecture proposals that are based on these
early developments, however in this research we employ Google’s multilingual NMT
protocol [45] which surpasses all prior developments with regard to performance and
computational efficiency. Our multilingual NMT system is based on the Transformer
architecture [87]. The multilingual models leverage learned representations from indi-
vidual translation pairs and is generally identical to single pair translation architecture.

Definition 5.4.2. Given a training tuple (xi, yj) where i, j ∈ {1, .., T}, the multilingual model’s
task is to translate source language i to target language j. It then follows that the model’s objective
is to maximize the log-likelihood over all the training sets Di,j appertaining to all the accessible
language pairs S :

max
θ

1
|S| · |Di,j| ∑

(xi ,yj)∈Di,j,(i,j)∈S
log pθ(yj|xi, j∗), (5.4.1)

where j∗ denotes the target language ID.

To be precise, the model is provided with an artificial token j which acts as a target
language ID and is added at the beginning of the input sequence. For example, if we
consider an English-to-Zulu pair:

• Finally, he achieved his goal −→ Ekugcineni, wafinyelela umgomo wakhe.

which is modified to:

• <2zu> Finally, he achieved his goal −→ Ekugcineni, wafinyelela umgomo wakhe.
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Language ID <2zu> is the key modification to the single pair translation model. The
multilingual model learns a universal or shared representation space for all the available
languages pairs, which in-turn facilitates zero-shot learning [56], an extreme variant of
transfer learning .

5.4.5 Zero-shot Learning

Explicit bridging is a conventional technique of translating between languages with low
or no resources. Explicit bridging employs an intermediate language (usually English)
to which we first translate our source sentence to, and thereafter we translate from in-
termediate to target language. The major drawbacks with this approach are:

• It is computationally expensive.

• There is a high risk of losing information when translating to and from the inter-
mediate language.

A more recent approach to this problem of translating between low resource languages
is zero-shot learning, an implicit bridging technique. Zero-shot learning is a machine
learning technique whereby a model aims to perform a task whose examples are not ac-
cessible during training [95]. The feasibility of this approach relies on the additional in-
formation that is exploited during training [33]. To give a unified definition of zero-shot
learning, we adopt the definitions of a "domain" and "task" as stated earlier in Section
5.4.3.

Definition 5.4.3. Given a domain or set D = {X , P(X)} along with its respective source task
TS = {Y , P(Y|X)} where input and output feature spaces are denoted by X and Y accordingly.
The objective of zero-shot learning is to estimate the predictive function P(Y|X, TS) where TS

denotes the target task to be learnt by the model.

Applying the above definition to the context of multilingual NMT, a model can be
trained on the following pairs:

• English −→ isiXhosa

• isiXhosa −→ isiZulu

and thereafter assigned a task of translating English −→ isiZulu. The feasibility of zero-
short learning lies on the fact that the overall parameter optimization of the model yields
a shared feature space for all encoded inputs, from which the target language is then
decoded [35].
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5.5 Model Evaluation

The growth in MT system development has rendered it imperative for researchers to
formulate language-independent MT evaluation metrics that will replace the tardy and
expensive human evaluation approaches. Han Lifeng [36] gives a comprehensive sur-
vey on both the automatic and manual evaluation techniques of evaluation MT outputs.
In this work, we choose perplexity and the bilingual evaluation understudy, the widely used
metrics in modern NMT tasks. In the forthcoming sections, we give a detailed outline
of these two metrics.

5.5.1 Perplexity

In information theory, perplexity quantifies the efficiency of a probability distribution in
predicting some given test-set. Derived from exponentiating the entropy of a probability
distribution, perplexity has been widely used in the domain of NLP. When computing
perplexity, the entropy is the average amount of information required to encode the
representations of a random variable. Suppose we have a random variable X and prob-
ability distribution p(x). We compute H(p), the entropy of probability distribution p(x)
in the following manner:

H(p) = −∑ p(x) log2 p(x) (5.5.1)

Exponentiating Equation 5.5.1 yields the weighted average number of possible choices
a random variable has (the perplexity, PP(X)).

PP(X) = e
− 1

N

N
∑

i=1
ln q(xi)

= e
− 1

N

N
∑

i=1
ln q(xi)

=
N

∏
i=1

q(xi)
− 1

n

= N

√
1

q(x1)q(x2)....q(xN)

(5.5.2)

where q,N and Xi denote the proposed probability model,total number of words and
ith word respectively. As a result, smaller values of perplexity indicated better model
performance.
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5.5.2 Bilingual Evaluation Understudy

In the domain of MT, the bilingual evaluation understudy (BLEU) score is the exten-
sively used evaluation metric. The BLEU metric depends on modified precision Pn, the
degree of word pair (n-grams) overlap between the MTS outputs and the human trans-
lation references [72]. To compute the modified precision we first count the n-gram
matches in each target sentence and thereafter add the clipped count of n-grams in all
the candidate sentences. We then divide the resulting sum by the sum of probable n-
grams in the test data.

Pn =

∑
C∈{Candidates}

∑
ngram∈C

Countclip(ngram)

∑
C∗∈{Candidates}

∑
ngram∗∈C∗

(5.5.3)

The modified precision ensures that the candidate sentence is neither too long nor too
short by penalizing words that do not appear in the reference sentences. In addition,
modified precision also penalizes the words that appear all the more much of the time
than their maximum reference count. This allows MTS to use a word however many
occurrences as it could be allowed, while restricting its usage more than it appears in
any of the reference sentences. To account for the exponential decay of Pn with n, a
weighted average of the logarithm of Pn is taken. The weighted average is computed
with uniform weights λn, making it equivalent to a geometric mean of Pn. In any case,
Pn by itself has no restriction on sentence length. Therefore, as a measure of sentence
length restriction, Pn is weighted by the brevity penalty BP

BP =

1 if c > r

e(1−
r
c ) if c ≤ r

(5.5.4)

where r denotes the total length of the respective corpus reference sentence, and c is the
length of candidate translations in the corpus. The overall BLEU score is given as:

BLEU = BP · exp

(
N

∑
n=1

λn log Pn

)
(5.5.5)

5.6 Summary

We have given a brief discussion on the hardware used in training all our models. The
data, data-cleaning,data-sources and partitioning are outlined in this chapter. The chap-
ter also discusses the transfer learning in detail. Borrowing some ideas from transfer
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learning, we also discuss zero-shot learning and multilingual learning. Lastly, we dis-
cuss the NMT evaluation metrics employed in this work, namely, the BLEU and per-
plexity.
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Results

6.1 Chapter Organisation

This chapter discusses the experimental findings from all the training protocols dis-
cussed earlier in Chapter 5. Section 6.2 gives a brief recap of the training protocols and
evaluation procedure. The results are outlined in the following manner; presented first
in Section 6.3 are the experimental findings from the four baseline models. Thereafter,
multilingual learning, zero-shot learning and transfer learning results are presented in
Sections 6.4, 6.5 and 6.6 respectively. Section 6.7 then presents the comparison of the
training protocols. An overview of the model performance with increase in training
data is then given in Section 6.8. Finally, Section 6.9 gives a summary of the entire chap-
ter.

6.2 Introduction

As outlined earlier in Chapter 5, we employ perplexity and the BLEU score metrics for
evaluating translation quality of the different translations produced by our models. The
core concept of the BLEU score is to quantify MT quality by comparing it with the re-
spective human translations i.e. how close the MT output is to the human translation. In
respect of our experiments, we perceive translation quality as the similarity between our
model’s translation and the respective human translation. The BLEU score values are
presented as numbers ranging from 0 to 100, with preference given to higher scores. On
the other hand, perplexity quantifies how well a probability model predicts a sentence
or the next word. Perplexity ranges from 0 to infinity with preference given to lower
values. For model inference, we use fixed samples of randomly selected sentences from
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Stellenbosch University https://scholar.sun.ac.za



81 6.3. Baseline models

unseen data. These sampled sentences are then used for comparing the performance
of different training protocols. In all of our translation outputs, we focus primarily on
the dataset of interest, the En-Zu language pair. However, in the case of the baseline
models, we delve into the translation quality of these models. The translation examples
of all other languages pairs are presented in the Appendix.

6.3 Baseline models

As discussed earlier in Section 5.4.1 baseline models are based on the conventional
encoder-decoder training protocol without any modifications. The transformer archi-
tecture is employed for all training pairs (NB: in all our training protocols we employ
the same architecture as described in Section 4.5). Furthermore, these baseline mod-
els are used as a benchmark against which we compare the performance of the other
training protocols.

6.3.1 English to isiZulu model

As discussed earlier in Section 5.2, the En-Zu pair had the least amount of training ex-
amples. Consequently, the En-Zu transformer model performance was not good and
gave a minimum training and validation entropy loss of 1.14 ±0.07 and 2.54 ±0.01, re-
spectively. Similarly, the training and validation perplexity was high with values of 3.13
±0.43 and 12.68 ±0.25, respectively (see Figure A.1 in appendix for overall training per-
formance per epoch). On the test-set the model produced an entropy loss of 2.52 ±0.05
and perplexity of 12.42 ±0.88.

English source sentence isiZulu reference sentence isiZulu translation

i wish i knew what i should say . ngifisa ukuthi ngabe ngazi ukuthi kufanele
ngithini .

ngifisa ukuthi ngabe <unk> ukuthi ngabe <unk>
. <eos>

words rarely have only one meaning . amagama akuvamile ukuba nencazelo
eyodwa .

ukubonakala <unk> <unk> <unk> <unk>
. <eos>

Table 6.1: En-Zu baseline model translations illustrating how the model managed to
correctly translate one tri-gram though failing to correctly predict any of the words in
the other sentence. The reference sentences column denotes the actual translation or
target translation and the model’s prediction/translation is called the ’isiZulu transla-
tion’. Each source-target/reference pair is presented along with its respective model-
translation.

The overall BLEU score on the test-set was 8.7 ±0.3, however low this value is, it still
falls within the range of SOTA translations, with a BLEU score range of 7− 9 [63]. This
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low BLEU score is an indication of bad and unreliable translations. Table 6.1 shows
some of the test-set translations produced by the model (see Table A.1 in appendix for
more translations). The model translations were not good as shown by the number of
unknown tokens and a few target words correctly predicted by the model. The model
did not get any of the sampled sentences correct, save for a single tri-gram and a few
words in the respective sentences.

6.3.2 English to isiXhosa model

The En-Xh language pair had the most training examples (see Section 5.2), indicating a
higher likelihood of obtaining good translations. During training the model achieved a
minimum entropy loss and perplexity of 0.61 ±0.11 and 1.84 ±0.41, respectively. In the
case of the validation, we respectively obtained an entropy loss and perplexity of 2.00
±0.01 and 7.44 ±0.15 (for overall training performance per epoch see Figure A.2 in ap-
pendix). Testing the model on an unseen data set yielded an entropy loss of 2.02 ±0.06

Source sentence isiXhosa reference sentence isiXhosa translation

the question is what are you going to do about it . umbuzo uthi wena uzakwenza ntoni ngaloo nto . umbuzo ngowokuba nina nakwenza ntoni ngalo . <
eos>

a deal is a deal . isivumelwano sisivumelwano. isivumelwano isivumelwano . <eos>

Table 6.2: En-Xh baseline translations showing how the model got some of the trans-
lations correct though opting for new words in some instances but still maintaining
context. The reference sentences column denotes the actual translation or target trans-
lation and the model’s prediction/translation is called the ’isiXhosa translation’. Each
source-target/reference pair is presented along with its respective model-translation.

and perplexity of 7.57 ±0.54. Table A.2 shows how the model’s translations closely re-
semble the reference translations and this was evidenced by a BLEU score of 20.9 ±1.4
and the number of n-grams predicted correctly. In a nutshell, the model produced rea-
sonable translations on most of the sentences. In some cases, the model used words
that did not exist in the reference translation though still maintaining the context. For
example the source sentence "the question is what are you going to do about it ." was
translated to "umbuzo ngowokuba nina nakwenza ntoni ngalo .", with the major differ-
ence between reference and model translation being the word "nina".

6.3.3 English to Shona model

The En-Sh language pair had more than double the number of training examples than
the En-Zu language pair (See Section 5.2). As a result, the En-Sh model performed bet-
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ter than the En-Zu model with a minimum training loss and perplexity of 0.72 ±0.08
and 2.06 ±0.33 respectively. On the validation set, the model obtained an entropy loss
of 2.09 ±0.13 and perplexity of 8.92 ±0.84 (for overall training performance per epoch
see Figure A.3 in appendix). Compared with the En-Zu model, this model obtained 3.76
±0.9 less validation perplexity.

Testing the model on an unseen dataset, we obtained an entropy loss of 2.24 ±0.02 and
perplexity of 9.40 ±0.38. In comparison with the En-Zu model, the En-Sh model ob-
tained 3.02 ±0.96 less perplexity, making it a potential parent model for transfer learn-
ing. The model produced an overall BLEU score of 16.5± 0.8 on the test-set. In compar-
ison with the En-Zu baseline model, the En-Sh model performed 7.8± 0.85 BLEU better.
However, regardless of the BLEU score being higher than that of the En-Zu model, not
all En-Sh model translations make sense.

English source sentence Shona reference sentence Shona translation

maybe i can show you . pamwe ndinogona kukuratidza . pamwe ndinofanira <unk> . <eos> <
eos>

she showed me her new car . akandiratidza mota yake nyowani . akandiratidza mota yake . <eos>

i will go and get you some . ndichaenda ndikutorere mamwe . ndichaenda newe iwe . <eos>

Table 6.3: En-Sh baseline translations results illustrating how the model failed to main-
tain context in some sentences and in some it did maintain context though with "un-
known" tokens.

Tabulated in Table 6.3 are some of the example translations from the test-set. In some
translations the model predicts "unknown" tokens, which resemble unknown words i.e
the words are not in the model’s vocabulary. However, as much as the model did man-
age to predict some of the keywords in some of the sentences, some translations were
far from the reference translations. For example, the model translation, "ndichaenda
newe iwe ." which can be back-translated to "I will go with you", is far from the source
sentence, "i will go and get you some.".

6.3.4 isiXhosa to isiZulu model

The Xh-Zu language pair had about thrice as much data as the En-Zu pair (see Section
5.2). With the second most amount of training examples, one would expect the Xh-Zu
model to produce the second highest BLEU score. However, this training pair yielded
the best translation results largely due to the similarities between the two languages
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(source and target language). With most south eastern Bantu languages of the same
subclass, there is a substantial word/vocabulary overlap between language pairs. Con-
sequently, the Xh-Zu model produced the best BLEU and perplexity scores on both val-
idation and test-set. While training, we obtained 0.48± 0.31 minimum entropy loss and
1.63± 0.21 perplexity. The model produced a validation entropy loss and perplexity of
1.79± 0.9 and 6.02± 0.82, respectively ( for overall training and validation performance
per epoch see Figure A.4 in appendix).

isiXhosa source sentence isiZulu reference sentence isiZulu translation

ndifuna ukukwazisa ukuba andikwazi ukuya
kwintlanganiso yasemva kwemini .

ngifuna ukukwazisa ukuthi angikwazi ukuya
emhlanganweni ntambama .

ngifuna ukukwazisa ukuthi kufanele uhlehlise
umhlangano . <eos>

ndicinge ukuba ndingakufumana apha . bengicabanga ukuthi ngingakuthola lapha . bengicabanga ukuthi ngingakuthola lapha . <eos>

ukuba kukho nantoni na ofuna ukuyenza , kuya
kufuneka uyenze .

uma kukhona ofuna ukukwenza , kuzofanele
ukwenze .

uma ufuna ukwenza okuthile ofuna ukukwenza
. <eos>

Table 6.4: Xh-Zu translation examples showing how close to the reference sentences the
model’s translations are. Each source-target/reference pair is presented along with its
respective model-translation.

Tabulated in Table A.3 are some test-set translation examples for the Xh-Zu model which
yielded a BLEU score of 34.9± 2.5. Most of the model translations are relatively close to
their respective target sentences save for a few. For example, the reference sentence "uma
kukhona ofuna ukukwenza , kuzofaneleukwenze ." with an english translation of "if
there be anything you want to do, do it", was translated to "uma ufuna ukwenza okuthile
ofuna ukukwenza", which has an english equivalent of "if you want to do anything".
These results show that the Xh-Zu model translations were relatively close to the ground
truth which hypothetically can be credited to the language similarity between the source
and target languages.

6.4 Multilingual models

Our multilingual models were trained on a combination of sets of language pairs. For
each language pair, we appended the target sentence token to each source sentence.
For example, the source sentence "good morning" becomes "2zu good morning" where
token "2zu" indicates that the sentence is to be translated to isiZulu. We trained three
multilingual models, namely MultilingualA, MultilingualB and MultilingualC.

Stellenbosch University https://scholar.sun.ac.za



85 6.4. Multilingual models

6.4.1 MultilingualA

MultilingualA was trained on En-Zu, En-Xh and Xh-Zu pairs. On the training set, this
model achieved a minimum entropy loss of 1.12 ± 0.09 and perplexity of 3.07 ± 0.45.
On the validation set, the model achieved an entropy of 1.93± 0.21 and perplexity of
6.90± 0.95 ( for overall performance per epoch see Figure A.5 in appendix.). The model
was then tested on an unseen En-Zu test-set and achieved a minimum entropy loss of
2.16± 0.31 and respective perplexity of 8.71± 0.27. We obtained an overall BLEU score
of 18.6± 1.0 on the En-Zu test-set.

English source sentence isiZulu reference sentence isiZulu translation

2zu he is one of my neighbours . ungomunye womakhelwane bami . ungomunye wabangane bami . <eos>

2zu the thief was handed over to the police . isela linikelwe emaphoyiseni . isela linikelwe amaphoyisa . <eos>

Table 6.5: Some examples of En-Zu translation results for MultilingualA, illustrat-
ing how close to the reference translation the model translation are. Each source-
target/reference pair is presented along with its respective model-translation.

Presented in Table 6.5 are some of the test-set translation examples for model MultilingualA
on En-Zu. The translations are fairly close to the reference sentences and in some cases,
the model opted for new words, which led to a slight change in meaning. For example,
the reference sentence "ungomunye womakhelwane bami ." with source sentence "he
is one of my neighbours .", was translated to "ungomunye wabangane bami . <eos>"
which means, "he is one of my friends". Furthermore, we tested the model on En-Xh
and Xh-Zu tests sets on which we obtained 18.5± 1.2 and 30.4 ± 1.5 BLEU scores re-
spectively. The test-set translations for En-Xh and Xh-Zu language pairs are presented
in the Appendix, see Tables A.4 and A.5. Both En-Xh and Xh-Zu translation are fairly
good with the model opting for unused words in some translations.

6.4.2 MultilingualB

Trained on En-Zu and En-Sh pairs, MultilingualB achieved an entropy loss of 0.71 ±
0.02 and perplexity of 2.04± 0.08 on the training set (for model performance per epoch
see Figure A.6 in appendix). On the validation set containing both En-Zu and En-Sh
language pairs, we obtained an entropy loss of 2.19± 0.06 and perplexity of 8.94± 0.34.
The model was tested on an unseen dataset containing En-Zu language pairs, on which
it yielded an entropy loss of 2.57± 0.01 and perplexity of 13.05± 0.13. Table A.6 presents
some of the En-Zu test-set translations.
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English source sentence isiZulu reference sentence isiZulu translation

2zu words rarely have only one meaning . amagama akuvamile ukuba nencazelo
eyodwa . <unk> <unk> . <eos>

2zu why does everybody love cats ? . kungani wonke umuntu ewathanda amakati ? . kungani ubaba <unk> ? . <eos>

Table 6.6: Some examples of En-Zu translation results for MultilingualB illustrating how
bad the model’s translations were. Each source-target/reference pair is presented along
with its respective model-translation.

On the En-Zu test-set, we obtained an overall BLEU score of 6.0± 0.3. On most of the En-
Zu translations, the model failed to predict the target words and instead opted for the
"<unk>" tokens (see Table 6.6), which denote unknown words i.e the words were not in
the model’s vocabulary. The En-Sh translation examples are presented in the appendix
(see Table A.9). On the En-Sh translations we obtained a BLEU of 14.3 ± 0.20 which
is about 8 BLEU scores higher than the En-Zu translation score. This huge difference
in BLEU scores is largely due to the En-Zu pairs having few training examples and
as a result, the model favours the En-Sh generalizations when training. Furthermore,
the two training pairs, (particularly the target languages) are distantly related therefore
there is little to no information to be leveraged from either pair. Instead, the language
pair dissimilarities intensify the complexity of learning the mappings.

6.4.3 MultilingualC

MultilingualC was trained and validated on En-Zu and En-Xh languages pairs. On the
training set, we obtained a minimum entropy loss of 0.70± 0.02 and perplexity of 2.01±
0.08. On the validation set, the model achieved a minimum entropy loss of 2.02± 0.04
and perplexity of 7.46± 0.59 (see Table A.7 in the appendix for model performance per
epoch). Tested on an unseen En-Zu test-set, the model achieved a minimum entropy
loss of 2.06± 0.12 and perplexity of 7.81± 0.16.

English source sentence isiZulu reference sentence isiZulu translation

2zu why does everybody love cats ? . kungani wonke umuntu ewathanda amakati ? . kungani wonke umuntu ezithanda ikati
? . <eos>

2zu he is one of my neighbours . ungomunye womakhelwane bami . <unk> omakhelwane bami . <eos>

2zu the thief was handed over to the police . isela linikelwe emaphoyiseni . isela <unk> amaphoyisa. <eos>

Table 6.7: En-Zu translations, illustrating how MultilingualC performed when translat-
ing on the test-set. Though the model failed to predict all the sentences correctly, it still
manages to get a few n-grams correct. Each source-target/reference pair is presented
along with its respective model-translation.
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The model yielded a BLEU score of 14.6± 0.20 on the test-set. A few of the translations
examples on the En-Zu test-set are presented in Table 6.7. The model translations were
fairly close to the target translations, though with a number of "<unk>" tokens. For
example, source sentence "2zu the thief was handed over to the police ." was translated
to "isela <unk> amaphoyisa. <eos>" which can be back-translated to "the thief <unk>
the police ". On the En-Xh pair we obtained an overall BLEU of 18.7 ± 0.80 and the
respective translation examples are tabulated in the Appendix (see Table A.10).

6.5 Zero-shot learning model

In implementing zero-shot learning, we first train a multilingual model on En-Xh and
Xh-Zu language pairs, and thereafter test the model on an unseen En-Zu test-set. The
model achieved a minimum entropy loss of 1.19± 0.13 and 1.99± 0.07 on the training
and validation sets, respectively. As for perplexity, the model achieved a minimum of
3.30± 0.47 and 7.31± 0.37 on the training and validation sets, respectively (see Figure
A.8 in the appendix for model performance per epoch).

English source sentence isiZulu reference sentence isiZulu translation

i wish i knew what i should say . ngifisa ukuthi ngabe ngazi ukuthi ku-
fanele ngithini .

ngifisa ukuthi ngabe <unk> ukuthi nga-
be <unk> . <eos>

2zu why does everybody love cats ? . kungani wonke umuntu ewathanda
amakati ? .

kungani wonke umuntu ezithanda izi-
ngane ? . <eos>

2zu the thief was handed over to the
police . isela linikelwe emaphoyiseni . isela labaleka nemali . <eos>

Table 6.8: Some examples of En-Zu translation results for zero-shot learning model.
The reference sentences are also called the target sentences and the model’s prediction
is called the translation. Each source-target/reference pair is presented along with its
respective model-translation.

On an unseen En-Zu test-set the model yielded a minimum entropy loss of 2.36± 0.03
and perplexity of 10.59± 0.39, respectively. Tabulated in Table 6.8 are some of the test
translations on which the model achieved an overall BLEU of 10.60± 0.20. The examples
indicate that the model did not get any of the translations correct. However, it still
managed to predict a few target n-grams (i.e combination of n ordered words) correctly.
For example, the source sentence "2zu why does everybody love cats ? ." was translated
to "kungani wonke umuntu ezithanda izingane ? . <eos>" which can be back-translated
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to "2zu why does everybody love kids ? .". This shows that with more training data,
zero-shot learning has the potential of alleviating the low resource problem of Bantu
languages.

6.6 Transfer learning models

Leveraging pre-trained models to improve the performance of a low resource task, we
made use of the En-Xh and En-Sh baseline models to train separate En-Zu models.

6.6.1 English to isiXhosa parent model

Making use of the En-Xh baseline model weights to initialize a En-Zu model, the model
exhibits an overall training performance depicted in Figure 6.1. All training and vali-
dation curves exhibit some exponential decay from epochs 1-17, denoting the baseline
model training performance. Thereafter, the huge spike in both Figures 6.1a and 6.1b is
caused by the introduction of a new language pair (a new domain). After epoch 17,

(a) Training and validation entropy loss per
epoch

(b) Training and validation perplexity per
epoch

Figure 6.1: A pictorial representation of the training and validation entropy loss and
perplexity for transfer leaning with a En-Xh parent model, per epoch. The En-Xh base-
line model is used for initializing the En-Zu model. The spikes in both entropy loss and
perplexity denote the introduction of a new domain or language pair.
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English source sentence isiZulu reference sentence isiZulu translation

i do not want you touching my stuff . angikufuni uthinta izinto zami . angifuni ukukuhlupha izinto zami . <eos>

we are going the wrong way . sihamba ngendlela engafanele . akulungile indlela . <eos>

the thief was handed over to the police . isela linikelwe emaphoyiseni . isela <unk> amaphoyisa . <eos>

Table 6.9: Some examples of En-Zu translation results from the En-Xh parent model,
showing how the model managed to predict a number of n-grams correctly. Each
source-target/reference pair is presented along with its respective model-translation.

the model then begins to learn the new representations while leveraging the preexist-
ing representations. This model achieved a minimum entropy loss of 0.49± 0.10 and
perplexity 1.63 ± 0.18 on the training set. On the validation set, the model achieved
2.09± 0.08 minimum entropy loss and 8.06± 0.44 perplexity.

The model was tested on the En-Zu test-set and it yielded an entropy loss of 2.03± 0.04
which corresponds to a perplexity of 7.62± 0.31. This model achieved a test-set BLEU
score of 14.8± 0.20. A sample of the test-set translations is tabulated in Table 6.9, from
which we notice that the model managed to correctly translate a single sentence. The
other translation examples show that the model was able to get some of the target n-
grams correct. For example, the source sentence "the thief was handed over to the police
." was translated to "isela <unk> emaphoyiseni . <eos>" which can be backtranslated to
"the thief <unk> police <oes> . ".

6.6.2 English to Shona parent model

As our second transfer learning-based model, we initialize another En-Zu model with
the En-Sh parent model weights. Figure 6.2 gives a pictorial view of the entropy and
perplexity loss per epoch. Similar to the transfer learning task discussed in Section 6.6.1,
the decay from epochs 1-20 is based on the training of the parent model (or baseline
model). The spike that then follows denotes the introduction of a new domain (or data
set). After the 21st epoch, the model begins to leverage the pretrained En-Sh representa-
tions to learn the new En-Zu representations. This model achieved a minimum entropy
loss of 0.76± 0.03 on the training set and 2.46± 0.02 on the validation set. These entropy
losses respectively correspond to perplexity scores of 2.14± 0.11 and 11.70± 0.38 on the
train and validation set.

Stellenbosch University https://scholar.sun.ac.za



Chapter 6. Results 90

(a) Training and validation entropy loss per
epoch

(b) Training and validation perplexity per
epoch

Figure 6.2: Training and validation entropy loss and perplexity for transfer leaning with
a En-Sh parent model per epoch, illustrating how the model behaves when we introduce
a new domain. The En-Sh baseline model is used for initializing the En-Zu model.

English source sentence isiZulu reference sentence isiZulu translation

i do not want you touching my stuff . angikufuni uthinta izinto zami . angifuni ukulahlekelwa <unk> zami . <eos>

words rarely have only one meaning . amagama akuvamile ukuba nencazelo
eyodwa . amazwi <unk> <unk> <unk> . <eos>

why does everybody love cats ? . kungani wonke umuntu ewathanda amakati ? . kungani wonke umuntu <unk> ? . <eos>

the thief was handed over to the police . isela linikelwe emaphoyiseni . isela <unk> emaphepheni . <eos>

Table 6.10: Some examples of En-Zu translation results from the En-Sh parent model .
The reference sentences are also called the target sentences and the model’s prediction
is called the translation. Each source-target/reference pair is presented along with its
respective model-translation.

To best infer the model performance we, tested the model on the En-Zu test-set and
obtained a minimum entropy loss of 2.48± 0.01, corresponding to a perplexity of 11.94±
0.24. The model achieved an overall BLEU score of 9.6± 0.7. Tabulated in Table 6.10 are
some of the test-set translation examples. The model managed to correctly translate the
first tri-gram in reference translation "kungani wonke umuntu ewathanda amakati ? ." .
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Though most of the translations are not correct, the model still managed to get a few of
the n-grams correct. For some translations, however, the model failed to predict any of
the words which is due to the model failing to generalize onto the new data-set.

6.7 Training protocol comparison

To best explore the training protocol comparisons, we focus mainly on the BLEU evalu-
ation metric along with back translating the model outputs to English. All four training
protocols were tested on the En-Zu language pair. The En-Zu baseline BLEU score of
8.7± 0.3 was used as the benchmark against which the other protocols are compared.
The final BLEU scores for the four training protocols are summarised in Table 6.11. Look-
ing at the baseline models, we notice an increase in model performance with an increase
in training data and source-target language similarity. The effects of language similarity
between source and target languages is shown by the Xh-Zu pair having the highest
BLEU score. This high score is largely due to the huge vocabulary overlap between the
source (Xh) and target language (Zu), as a result the model easily learns to generalize
the source to target language transcriptions.

Model type En-Zu En-Xh Xh-Zu En-Sh En-Zu Gain
Baseline 8.7 ±0.3 20.9 ±1.4 34.9 ±2.5 16.5 ±0.8 -
MultilingualA 18.6 ±1.0 18.5 ±1.2 30.4 ±1.5 - 9.9 ±1.0
MultilingualB 6.0 ±0.3 - - 14.3 ±0.2 - 2.7 ±0.4
MultilingualC 14.6±0.2 18.7 ±0.8 - - 5.9 ±0.3
TL En-Xhparent 14.8 ±0.2 - - - 6.1 ±0.4
TL En-Shparent 9.6 ±0.7 - - - 0.9 ±0.8
Zero-shot 10.6 ±0.2 18.1 ±1.5 34.0 ±2.4 - 2.0 ±0.4

Table 6.11: BLEU scores for the baseline, transfer learning, multilingual and zero-
shot learning for the language pairs built from English (En), Shona (Sh), isiXhosa (Xh),
isiZulu (Zu). The gains are calculated only for English-to-isiZulu (En-Zu), our target
pair. Error bars are given by the standard deviations from ten separate re-training of the
models in each case. MultilingualA is trained on En-Zu, En-Xh & Xh-Zu. MultilingualB
is trained on En-Zu & En-Sh. MultilingualC is trained on En-Zu & En-Xh. Zero-shot
learning applies only to En-Zu, built from a En-Xh & Xh-Zu multilingual model.
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Model type Train Loss Val Loss Test Loss Train PPL Val PPL Test PPL
En-Sh 0.72 ±0.08 2.09 ±0.13 2.24 ±0.02 2.06 ±0.33 8.92 ±0.84 9.40 ±0.38
En-Zu 1.14 ±0.07 2.54 ±0.01 2.52 ±0.05 3.13 ±0.43 12.68 ±0.25 12.42 ±0.88
En-Xh 0.61 ±0.11 2.00 ±0.01 2.02 ±0.06 1.84 ±0.41 7.44 ±0.15 7.57 ±0.54
Xh-Zu 0.48 ±0.31 1.79 ±0.09 1.80 ±0.03 1.63 ±0.21 6.02 ±0.82 6.02 ±0.28
MultilingualA 1.12 ±0.09 1.93 ±0.21 2.16 ±0.31 3.07 ±0.45 6.90 ±0.95 8.71 ±0.27
MultilingualB 0.71 ±0.02 2.19 ±0.06 2.57 ±0.01 2.04 ±0.08 8.94 ±0.34 13.05 ±0.13
MultilingualC 0.70 ±0.02 2.02 ±0.04 2.06 ±0.12 2.01 ±0.08 7.46 ±0.59 7.81 ±0.16
TL En-Xhparent 0.49 ±0.10 2.09 ±0.08 2.03 ±0.04 1.63 ±0.18 8.06 ±0.44 7.62 ±0.31
TL En-Shparent 0.76 ±0.03 2.46 ±0.02 2.48 ±0.01 2.14 ±0.11 11.70 ±0.38 11.94 ±0.24
Zero-Shot 1.19 ±0.13 1.99 ±0.07 2.36 ±0.03 3.30 ±0.47 7.31 ±0.37 10.59 ±0.39

Table 6.12: Training, validation and test entropy and perplexity loss scores for all the
models. All En-Zu test perplexity values are in bold. Error bars are given by the stan-
dard deviations from ten separate re-training of the models in each case.

Source sentence we are going the wrong way .
Reference sentence sihamba ngendlela engafanele .

Training protocol Model translation Back-translation
Baseline model <unk> indlela . <eos> <unk> the way . <eos>
MultilingualA sihamba ngendlela engalungile . <eos> we are going the wrong way . <eos>
MultilingualB <unk> . <eos> <unk> . <eos>
MultilingualC <unk> umgwaqo . <eos> <unk> the road . <eos>
TL En-Xhparent akulungile indlela . <eos> road not right . <eos>
TL En-Shparent <unk> indlela . <eos> <unk> way . <eos>
Zero-Shot ngendlela esifanele kwenzeke . <eos> the way we happen . <eos>

Table 6.13: A comparison of all the respective translations with back translated outputs.
Though difficult to back translate some of the model outputs, we had native language
speakers back translate the model translation to English. All multilingual model source
sentences begin with target sentence token "2zu".

The overall BLEU score ranking of the six models (on the En-Zu task) is as follows:

1. MultilingualA 2. TL En-Xhparent 3. MultilingualC 4. Zero-shot learning
5. TL En-Shparent 6. Baseline model 7. MultilingualB.

These rankings are also demonstrated by the translation quality in Tables 6.13, 6.14 and
6.15. The minimum training, validation and test loss scores for all the models are tabu-
lated in Table 6.12. Looking at Tables 6.11 and 6.12, we note that though MultilingualA
has a perplexity that is greater than that of TL En-Xhparent, its overall translation
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Source sentence 2zu why does everybody love cats ? .
Reference sentence kungani wonke umuntu ewathanda amakati ?

Training protocol Model translation Back-translation
Baseline model kungani <unk> <unk> ? . <eos> why <unk> <unk> ? . <eos>

MultilingualA kungani wonke umuntu ewathanda am-
akati ?. <eos>

why does everybody love cats ? . <eos>.

MultilingualB kungani ubaba <unk> ? . <eos> why does father <unk> ? <eos>

MultilingualC kungani wonke umuntu ezithanda ikati ?
. <eos>

why does everybody love cats ? . <eos>.

TL En-Xhparent kungani abantu bethanda ikati ? . <eos> why do people love cat ? . <eos>
TL En-Shparent kungani wonke umuntu <unk> ? . <eos> why does everybody <unk> ? . <eos>

Zero-Shot kungani wonke umuntu ezithanda izing-
ane ? <eos>.

why does everybody love kids ? . <eos>.

Table 6.14: A comparison of all the respective translations with back translated outputs.
Though difficult to back translate some of the model outputs, we had native language
speakers back translate the model translation to English. All multilingual model source
sentences begin with target sentence token "2zu".

Source sentence i wish i knew what i should say .
Reference sentence ngifisa ukuthi ngabe ngazi ukuthi kufanele ngithini .

Training protocol Model translation Back-translation

Baseline model ngifisa ukuthi ngabe <unk> ukuthi nga-
be <unk> . <eos>

I wish <unk> that <unk> . <eos>

MultilingualA ngifisa ukuthi ngazi ukuthi ngithini
. <eos>

i wish i knew what i should say . <eos>

MultilingualB ngiyazibuza ukuthi ngiyakwazi yini
. <eos>

I wonder if I know . <eos>

MultilingualC ngifisa ukuthi ngabe ngazi iqiniso . <eos> I wish I knew the the truth <eos>

TL En-Xhparent ngifisa ukuthi ngabe ngazi ukuthi kufa-
nele ngazi . <eos>

I wish I knew that I should know <eos>

TL En-Shparent ngifisa ukuthi ngabe ngazi ukuthi ngabe
<unk> . <eos>

I wish I knew that that <unk> <eos>

Zero-Shot ngifisa ukuthi ngabe <unk> ukuthi nga-
be <unk> . <eos>

I wish that <unk> that <unk> <eos>

Table 6.15: A comparison of all the respective translations with back translated outputs.
Though difficult to back translate some of the model outputs, we had native language
speakers back translate the model translation to English. All multilingual model source
sentences begin with target sentence token "2zu".
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quality better than that of the later, as shown by both BLEU score and translation ex-
amples in Tables 6.13, 6.14 and 6.15. Furthermore, this phenomenon of TL En-Xhparent
perplexity being lower than that of MultilingualA shows the importance of BLEU score
as it has a high correlation with the reference sentence. Whereas perplexity focuses on
the most likely word which allows room for word variations.

MultilingualA produced the highest BLEU score (18.6 ±1.0 ), with a gain of 9.9± 1.0.
However, this model resulted in a slight decrease in En-XH and Xh-Zu BLEU scores,
due to the complexity of learning to generalize multiple language pair representations.
The other reason as to why MultilingualA gave the highest score, is the language simi-
larity between Xh and Zu. In this particular case the model only learns to transcribe the
source sentence to either isiZulu or isiXhosa, two languages with a high similarity. This
is forcibly illustrated in Tables 6.13, 6.14 and 6.15, where MultilingualA outperforms all
the other models in correctly translating the respective source sentences.

Since both isiXhosa and isiZulu fall under the Nguni language family and not only
are they similar but they have a high vocabulary overlap. For this reason, models
MultilingualA and MultilingualC leverage the isiXhosa representations in decoding to
isiZulu. Still on the notion of language similarity, En-Xhparent model achieved the sec-
ond largest BLEU gain of 6.1± 0.4, and this is also due to transfer learning leveraging the
pretrained En-Xh representations, for which there is a significant word overlap and sim-
ilarity between the source task target language (Xh) and the target task target language
(Zu). As a result, the En-Xhparent model greatly improves the En-Zu generalizations.

The performance of the En-Shparent also demonstrates the importance of languages sim-
ilarity when performing transfer learning. This model achieved a BLEU gain of 0.9± 0.8,
which is 5.2± 0.85 BLEU less than the En-Xhparent. Compared to TL En-Xhparent, the
En-Shparent model’s lower BLEU gain bears witness to the fact that there were fewer
representations to be leveraged from this parent model. Tables 6.13, 6.14 and 6.15 trans-
lations give evidence of languages similarity importance as En-Xhparent translations
gives the second most accurate results. En-Shparent translations on the other hand are
better than both baseline and MultilingualB.

MultilingualB had the least BLEU gain with a score of −2.7± 0.4. The decrease in BLEU
corroborates the idea of language similarity, as the model is faced with a daunting task
of learning to translate unrelated pairs. Faced with a task of generalizing on distant lan-
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guage pairs, MultilingualB favoured the pair with the most training examples. With the
third highest BLEU gain of 5.9± 0.3, MultilingualC also demonstrates the importance of
language similarity and this gain is due to both target languages being similar, thus sim-
plifying the decoding process. Zero-shot learning on the other hand achieved a BLEU
gain of 2.0± 0.4, having not seen the En-Zu language pair at training. This result shows
that with the necessary data, zero-shot learning can be used as a training protocol for
unavailable pairs.

6.8 Model performance with increase in data

Figure 6.3: A graphical representation of BLEU score results for examining model per-
formance with increase in data. MultilingualA and TL En-Xhparent models trained on
En-Zu data-sets of different sizes. The zero-shot learning model is not retrained as its
learned representations do not depend on the amount of En-Zu training pairs. The mul-
tilingual model outperforms transfer learning for any reasonable training set size.
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To assess the effects of the amount of training data on multilingual and transfer learn-
ing training protocols, we train and validate our respective models on En-Zu pairs of
increasing sizes. We exponentially increase the size of the training and validation sets
while maintaining a constant test-set size. The zero-shot learning model was not re-
trained, as its learned representations do not depend on the size of the En-Zu target
pair. Figure 6.3 shows the model performance for the respective protocols. We notice a
clear exponential trend growth of both multilingual and transfer learning performance.

Taken together, the multilingual and transfer learning result prove a known reality, that
deep learning models perform better with increase in data. An interesting observation
shown Figure 6.3 is that to reach a BLEU score of 10.6, the equivalent of the zero-shot
learning model, the multilingual model required less training data compared to transfer
learning model. To attain 10.6 BLEU score TL En-Xhparent model required 38.78% more
training data than MultilingualA. This result is a consequence of multilingual learning
leveraging the representations from the closely related En-Xh pair.

Furthermore, the decoding of En-Zu also makes the most of the Xh-Zu representations
as the target languages in both pairs (En-Zu and Xh-Zu) are similar. A summary of the
BLEU scores is presented in Table A.11. The result of this experiment cements the idea
of opting for multilingual models over transfer learning whenever one is faced with a
low-resource task and with the necessary data. Furthermore, these results illustrate the
potentials of leveraging language similarity in a low resource setting. MultilingualA
leverages the existing relations and word overlap between Zu and Xh, which makes the
model perform better than the En-Xhparent model.

6.9 Summary

In this chapter, we have discussed the findings of this research. A comparative analysis
of the training protocols has been given, from which we found Multilingual learning to
be the favourable protocol, followed by transfer learning and zero-shot learning, suc-
cessively. Furthermore, we have demonstrated the significance of language similarity in
leveraging low resource training protocols, namely Zero-shot learning, transfer learning
and multilingual learning.
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Conclusion and Future Work

7.1 Chapter Organisation

In this Chapter, we present the conclusions to the experimental objectives outlined in
Chapter 1. We also discuss the possible avenues of furthering this work.

7.2 Conclusion

The main aim of this work was to explore the potential of leveraging low-resource learn-
ing protocols, namely transfer learning, zero-shot learning and multilingual learning on
NMT of interrelated languages of the Southern-Bantu family. Furthermore, we exam-
ine the importance of language similarity on multilingual and transfer learning. Of all
the Southern-Bantu languages, we focus on English-isiZulu, English-isiXhosa, English-
Shona and isiXhosa-isiZulu languages pairs. Of these language pairs, isiXhosa and
isiZulu fall under the same subclass called the Nguni class. As a result, these two lan-
guages are closely related, with a lot of vocabulary overlap. Shona, on the other hand,
is distantly related to the two Nguni languages.

In training all our models, we employ the transformer architecture. Before discussing
the underlying theory of the transformer architecture we discuss the fundamental build-
ing blocks of neural networks in Chapter 2, along with a background of NMT. Thereafter,
we discuss sequential modelling and how RNNs help these problems in Chapter 3. To
understand the sequence to sequence models, we discuss the encoder-decoder architec-
ture in Chapter 4. In addition, we also outline the drawbacks of RNN and its variants.
As a means of alleviating these drawbacks, we introduce the transformer architecture

97
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in Chapter 4 by giving a side by side comparative analysis of the transformer with the
RNNs architecture.

A comprehensive analysis of the underlying theory behind transfer learning, zero-shot
learning and multilingual learning is outlined in Chapter 5. We also explain how NMT
models are evaluated in the fifth chapter. We train four baseline models, namely En-Zu,
En-Xh, En-Sh and Xh-Zu. The En-Xh and En-Sh models are then employed as par-
ent models for transfer learning on En-Zu translation task. We also train three mul-
tilingual models on {En-Zu, En-Xh, En-Sh}, {En-Zu, En-Sh} and {En-Zu, En-Xh} pairs
and these models are called MultilingualA, MultilingualB and MultilingualC respec-
tively. All transfer learning zero-shot and multilingual models were tested on common
datasets.

Using multilingual learning (MultilingualA) we achieve a BLEU score of 18.6 ±1.0 for
En-Zu pair, more than doubling the previous state-of-the-art and yielding significant
gains (9.9 in BLEU score) over the baseline En-Zu transformer model. Multilingual
learning for this dataset outperforms both transfer learning and zero-shot learning, though
both of these techniques are better than the baseline model, with BLEU score gains
of 6.1 and 2.0 respectively. The significance of language similarity is emphasised by
MultilingualA and MultilingualC surpassing MultilingualB by more than 9.9 and 5.9
BLEU gains respectively.

We further demonstrate that transfer learning is a highly effective technique for training
low resource translation models for closely related Southern-Eastern Bantu languages.
Using the En-Xh baseline model, transfer learning to isiZulu had a BLEU score gain of
6.1 while using the En-Sh baseline model for transfer learning yielded no significant
gain at all (0.9± 0.8). Since isiXhosa is similar to isiZulu while Shona is quite different,
these findings illustrate the performance gains that can be achieved by exploiting lan-
guage inter-relationships with transfer learning. The significance of leveraging language
similarity is further emphasised or demonstrated by the fact that zero-shot learning, in
which no En-Zu training data was available, outperformed transfer learning using the
En-Sh baseline model. In conclusion, this work has led us to affirm that in addition to
multilingual, transfer learning and zero-shot learning having tremendous opportunity
of alleviating the low resource problem language similarity is of great significance. Fur-
thermore, under similar experimental conditions (i.e the amount of data) we conclude
that it is better to employ zero-shot learning than training baseline models from scratch.
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With enough data multilingual learning is the best protocol for developing low resource
NMT systems, followed by transfer learning.

7.3 Future work

In as much as this work has demonstrated the potential of leveraging the inter-relations
within the sub-classes of the Bantu languages, namely the Nguni sub-class. An apparent
extension of this research is to apply transfer learning, zero-shot learning and multilin-
gual learning on other Bantu language sub-classes. Some potential techniques that are
worth investigating are as follows:

• Cross-lingual Word Embeddings: this technique involves the training of word
embeddings of multiple languages such that the final representations have words
with the same semantic representation being closer to each other. The trained
embeddings are then used in the final NMT model.

• Back-Translation: a simple data augmentation technique which does not involve
any alterations to the pre-defined MT task. Instead, it involves the training of a
target to source language translation task which is then used to generate more
training examples for the predefined translation task.

• Joint Back-Translation and Transfer Learning: this technique employs the con-
ventional back-translation method discussed above. Back-translation is incorpo-
rated into hierarchical transfer learning architectures to improve the quality of tar-
get translations. [58]

• Self-Training enhanced Back-Translation: this technique leverages the conven-
tional back-translation method discussed above. Back-translation is incorporated
into hierarchical transfer learning architectures to improve the quality of target
translations. [8]

Considering the challenge of low resources, the above techniques are worth investigat-
ing as they do not require huge parallel corpus, save for the training of word embed-
dings which requires large monolingual corpora. Monolingual data is not as much a
low resource as parallel corpus.
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Appendix

A.1 Training and Evaluation Results

In this appendix we present a comprehensive summary of results for all of the different
models we study, both in terms of training and validation as a function of epoch, as well
as examples of translations.

(a) Training and validation entropy loss per
epoch

(b) Training and validation perplexity per
epoch

Figure A.1: Model loss and perplexity for En-Zu language pair. The graph on the left
presents the training and validation entropy loss per epoch. Similarly, the graph on the
right depicts the training and validation perplexity per epoch.
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English source sentence isiZulu reference sentence isiZulu translation

we talked about what we could do . sakhuluma ngalokho esingakwenza . <unk> ukwenza lokho kunalokho ngikwenze
. <eos>

i do not want you touching my stuff . angikufuni uthinta izinto zami . angifuni izinto <unk> yami . <eos>

i wish i knew what i should say . ngifisa ukuthi ngabe ngazi ukuthi kufanele
ngithini .

ngifisa ukuthi ngabe <unk> ukuthi ngabe <unk>
. <eos>

it is very surprising . kuyamangaza kakhulu . <unk> kakhulu . <eos>

we are going the wrong way . sihamba ngendlela engafanele . <unk> indlela . <eos>

he can only pay twenty dollars at most . angakhokha amadola angamashumi
amabili kuphela . . <unk> <unk> ezintathu . <eos>

words rarely have only one meaning . amagama akuvamile ukuba nencazelo
eyodwa .

ukubonakala <unk> <unk> <unk> <unk>
. <eos>

why does everybody love cats ? . kungani wonke umuntu ewathanda amakati ? . kungani <unk> <unk> ? . <eos>

he is one of my neighbours . ungomunye womakhelwane bami . <unk> <unk> wami . <eos>

the thief was handed over to the police . isela linikelwe emaphoyiseni . isela <unk> isela <unk> <unk> . <eos>

Table A.1: Some examples of En-Zu translation results for baseline model. These trans-
lations illustrate how the model performed on the test-set. The translation quality is far
from being decent with the model producing many "unknown" tokens.

(a) Training and validation entropy loss per
epoch

(b) Training and validation perplexity per
epoch

Figure A.2: Model loss and perplexity for En-Xh language pair. The graph on the left
presents the training and validation entropy loss per epoch. Similarly, the graph on the
right depicts the training and validation perplexity per epoch.
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(a) Training and validation entropy loss per
epoch

(b) Training and validation perplexity per
epoch

Figure A.3: Model loss and perplexity for En-Sh language pair. The graph on the left
presents the training and validation entropy loss per epoch. Similarly, the graph on the
right depicts the training and validation perplexity per epoch.

English source sentence Shona reference sentence Shona translation

today is extremely hot . nhasi kwakanyanya kupisa . nhasi kupisa chaizvo . <eos>

her story turned out to be true . nyaya yake yakazove chokwadi . zano rake yakazove chokwadi . <eos>

maybe i can show you . pamwe ndinogona kukuratidza . pamwe ndinofanira <unk> . <eos> <
eos>

she showed me her new car . akandiratidza mota yake nyowani . akandiratidza mota yake . <eos>

i will go and get you some . ndichaenda ndikutorere mamwe . ndichaenda newe iwe . <eos>

they are looking for a complaint . vari kutsvaga kunyunyuta . <unk> . <eos>

we are all going to die anyway . tese tichafa . isu tese <unk> . <eos>

Table A.2: Some examples of En-Sh translation results for baseline model. The refer-
ence sentences are also called the target sentences and the model’s prediction is called
the translation. Each source-target/reference pair is presented along with its respective
model-translation.
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(a) Training and validation entropy loss per
epoch

(b) Training and validation perplexity per
epoch

Figure A.4: Model loss and perplexity for Xh-Zu language pair. The graph on the left
presents the training and validation entropy loss per epoch. Similarly, the graph on the
right depicts the training and validation perplexity per epoch.

isiXhosa source sentence isiZulu reference sentence isiZulu translation

xa ndandisengumntwana , ndandidla ngokuha-
mba elunxwemeni rhoqo ngehlobo .

lapho ngiseyingane , ngangivame ukuya olwan-
dle njalo ehlobo .

lapho njalo njalo ngiseyingane , ngangivame uku-
ya echibini . <eos>

ndifuna ukukwazisa ukuba andikwazi ukuya
kwintlanganiso yasemva kwemini .

ngifuna ukukwazisa ukuthi angikwazi ukuya
emhlanganweni ntambama .

ngifuna ukukwazisa ukuthi kufanele uhlehlise
umhlangano . <eos>

ndicinge ukuba ndingakufumana apha . bengicabanga ukuthi ngingakuthola lapha . bengicabanga ukuthi ngingakuthola lapha . <eos>

ubonakala umhle ngeenwele zakho ezimfutshane . ubukeka muhle ngezinwele zakho ezimfushane . ubukeka muhle ngezinwele zakho ezimfushane . <
eos>

ukuba kukho nantoni na ofuna ukuyenza , kuya
kufuneka uyenze .

uma kukhona ofuna ukukwenza , kuzofanele
ukwenze .

uma ufuna ukwenza okuthile ofuna ukukwenza
. <eos>

ngaba usakhumbula ixesha esadibana ngalo oko-
kuqala ? .

usasikhumbula isikhathi esahlangana ngaso oko-
kuqala ? .

usasikhumbula isikhathi esahlangana okokuqala ? .
<eos>

awunalungelo lakuhlala apha . awunalo ilungelo lokuhlala lapha . awunalo ilungelo lapha <unk> . <eos>

uye khona endaweni yam . uye endaweni yami . uye endaweni yami . <eos>

Table A.3: Xh-Zu translation examples showing how close to the reference sentences the
model’s translations are. Each source-target/reference pair is presented along with its
respective model-translation.
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(a) Training and validation entropy loss per
epoch

(b) Training and validation perplexity per
epoch

Figure A.5: Model loss and perplexity for MultilingualA trained on En-Zu, En-Xh and
Xh-Zu pairs. The graph on the left presents the training and validation entropy loss per
epoch. Similarly, the graph on the right depicts the training and validation perplexity
per epoch.
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Source sentence Target sentence Translation

2xh we need to make sure that you are legally enti-
tled to the grant .

kufuneka siqinisekise ukuba uselungelweni ngoku-
semthethweni lokusifumana isibonelelo eso .

kufuneka siqinisekise ukuba unelungelo loku-
sifumana isibonelelo eso . <eos>

2xh sassa is the branch of governmental that over-
sees the distribution of social grants to the people
of south africa .

isassa licandelo elisisongezo kunikezelo lweenkon-
zo zikarhulumente nelijongene nokunikezela kwee-
nkonzo nezibonelelo zoluntu kubemi basemzantsi
afrika .

isassa sisongezo sengalo lweenkonzo zikarhulumente
esilawula unikezelo lweminikelo kubemi bomzantsi
afrika . <eos>

2xh the domestic violence act intends to establish
shelters for victims of abuse .

umqulu wokuhlukunyezwa ezindlini ubonelela
ngokusekwa kwamaziko okhuseleko .

umthetho wobundlobongela basekhaya unolungise-
lelo lokusekwa lokusekwa kwamakhaya angama-
khusi . <eos>

2xh the plane crash was only last week . ukuqhekeka kwenqwelomoya bekukho kwiveki
ephelileyo .

ingozi yenzeke ibigqithile kwiveki ephelileyo . <eos>

2xh you can probably guess what happens though . unokuqikelela ukuba kwenzeka ntoni na . akudingeki wazi ukuthi kwenzekeni . <eos>

2xh i thought we could do it . ndacinga ukuba singayenza . bengicabanga ukuthi ngizokwenza . <eos>

2xh the question is what are you going to do about
it . umbuzo uthi wena uzakwenza ntoni ngaloo nto . umbuzo ngowokuba nina nakwenza ntoni

ngaloo nto . <eos>

2xh most of our houses have not yet complied
with the policy change from quantity to quality
housing .

izindlu zethu ezininzi azikaluthobeli ushenxiso
olukhankanyiweyo kumgaqonkqubo oluthetha
ukungaleqi ukwakha izindlu ezininzi kusuke ku-
gxilwe ekwakheni izindlu ezikowona mgangatho
uphezulu nowamkelekileyo .

’uninzi lwezindlu zethu azikathobelani nokutshints-
ha nokutshintsha nokutshintsha izindlu kwinani
ukuya kumgangatho wezindlu . <eos>’

2xh a deal is a deal . isivumelwano sisivumelwano. ’isivumelwano <unk> . <eos>’

Table A.4: Some examples of En-Xh translation results for MultilingualA. The refer-
ence sentences are also called the target sentences and the model’s prediction is called
the translation. Each source-target/reference pair is presented along with its respective
model-translation.

Xhosa source sentence Zulu reference sentence Zulu translation

2zu xa ndandisengumntwana , ndandidla ngokuha-
mba elunxwemeni rhoqo ngehlobo .

lapho ngiseyingane , ngangivame ukuya olwan-
dle njalo ehlobo .

lapho njalo njalo ngiseyingane , ngangivame uku-
ya echibini . <eos>

2zu ndifuna ukukwazisa ukuba andikwazi ukuya
kwintlanganiso yasemva kwemini .

ngifuna ukukwazisa ukuthi angikwazi ukuya
emhlanganweni ntambama .

ngifuna ukukwazisa ukuthi kufanele uhlehlise
umhlangano . <eos>

2zu ndicinge ukuba ndingakufumana apha . bengicabanga ukuthi ngingakuthola lapha . bengicabanga ukuthi ngingakuthola lapha . <eos>

2zu ubonakala umhle ngeenwele zakho ezimfutshane . ubukeka muhle ngezinwele zakho ezimfushane . ubukeka muhle ngezinwele zakho ezimfushane . <
eos>

2zu ukuba kukho nantoni na ofuna ukuyenza , kuya
kufuneka uyenze .

uma kukhona ofuna ukukwenza , kuzofanele
ukwenze .

uma ufuna ukwenza okuthile ofuna ukukwenza
. <eos>

2zu i thought we could do it . ndacinga ukuba singayenza . ndacinga ukuba singayenza . <eos>

2zu ngaba usakhumbula ixesha esadibana ngalo oko-
kuqala ? .

usasikhumbula isikhathi esahlangana ngaso oko-
kuqala ? .

usasikhumbula isikhathi esahlangana okokuqala ? .
<eos>

2zu awunalungelo lakuhlala apha . awunalo ilungelo lokuhlala lapha . awunalo ilungelo lapha <unk> . <eos>

2zu uye khona endaweni yam . uye endaweni yami . uye endaweni yami . <eos>

Table A.5: Some examples of Xh-Zu translation results for MultilingualA. The refer-
ence sentences are also called the target sentences and the model’s prediction is called
the translation. Each source-target/reference pair is presented along with its respective
model-translation.
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(a) Training and validation entropy loss per
epoch

(b) Training and validation perplexity per
epoch

Figure A.6: Model loss and perplexity for MultilingualB trained on En-Zu and En-Sh
pairs. The graph on the left presents the training and validation entropy loss per epoch.
Similarly, the graph on the right depicts the training and validation perplexity per epoch.

English source sentence isiZulu reference sentence isiZulu translation

2zu we talked about what we could do . sakhuluma ngalokho esingakwenza . <unk> isenzo ngakho . <eos>

2zu i do not want you touching my stuff . angikufuni uthinta izinto zami . angifuni <unk> yami . <eos>

2zu i wish i knew what i should say . ngifisa ukuthi ngabe ngazi ukuthi kufanele
ngithini . ngiyazibuza ukuthi ngiyakwazi yini . <eos>

2zu it is very surprising . kuyamangaza kakhulu . <unk> . <eos>

2zu we are going the wrong way . sihamba ngendlela engafanele . <unk> . <eos>

2zu he can only pay twenty dollars at most . angakhokha amadola angamashumi
amabili kuphela . . <unk> amabili <unk> . <eos>

2zu words rarely have only one meaning . amagama akuvamile ukuba nencazelo
eyodwa . <unk> <unk> . <eos>

2zu why does everybody love cats ? . kungani wonke umuntu ewathanda amakati ? . kungani ubaba <unk> ? . <eos>

2zu he is one of my neighbours . ungomunye womakhelwane bami . ungumfowethu . <eos>

2zu the thief was handed over to the police . isela linikelwe emaphoyiseni . isela <unk> nemali . <eos>

Table A.6: Some examples of En-Zu translation results for MultilingualB . The refer-
ence sentences are also called the target sentences and the model’s prediction is called
the translation. Each source-target/reference pair is presented along with its respective
model-translation.
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(a) Training and validation entropy loss per
epoch

(b) Training and validation perplexity per
epoch

Figure A.7: Model loss and perplexity for MultilingualC trained on En-Zu and En-Xh
pairs. The graph on the left presents the training and validation entropy loss per epoch.
Similarly, the graph on the right depicts the training and validation perplexity per epoch.
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English source sentence isiZulu reference sentence isiZulu translation

2zu we talked about what we could do . sakhuluma ngalokho esingakwenza . sitshele konke <unk> ngakho . <eos>

2zu i do not want you touching my stuff . angikufuni uthinta izinto zami . angifuni <unk> <unk> zami . <eos>

2zu i wish i knew what i should say . ngifisa ukuthi ngabe ngazi ukuthi kufanele
ngithini . ngifisa ukuthi ngabe ngazi iqiniso . <eos>

2zu it is very surprising . kuyamangaza kakhulu . kuyamangalisa kakhulu . <eos>

2zu we are going the wrong way . sihamba ngendlela engafanele . <unk> umgwaqo . <eos>

2zu he can only pay twenty dollars at most . angakhokha amadola angamashumi
amabili kuphela . . <unk> <unk> amathathu <unk> . <eos>

2zu words rarely have only one meaning . amagama akuvamile ukuba nencazelo
eyodwa . <unk> <unk> <unk> <unk> . <eos>

2zu why does everybody love cats ? . kungani wonke umuntu ewathanda amakati ? . kungani wonke umuntu ezithanda ikati
? . <eos>

2zu he is one of my neighbours . ungomunye womakhelwane bami . <unk> omakhelwane bami . <eos>

2zu the thief was handed over to the police . isela linikelwe emaphoyiseni . isela <unk> amaphoyisa. <eos>

Table A.7: Some examples of En-Zu translation results for MultilingualC . The refer-
ence sentences are also called the target sentences and the model’s prediction is called
the translation. Each source-target/reference pair is presented along with its respective
model-translation.
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(a) Training and validation entropy loss per
epoch

(b) Training and validation perplexity per
epoch

Figure A.8: Zero-shot learning model training and validation entropy loss and perplex-
ity per epoch. The multilingual model was trained on and validated on a combination
of En-Xh and Xh-Zu language pairs. Thereafter, the model used for zero shot learning
on the En-Zu language pair.

English source sentence isiZulu reference sentence isiZulu translation

i wish i knew what i should say . ngifisa ukuthi ngabe ngazi ukuthi ku-
fanele ngithini .

ngifisa ukuthi ngabe <unk> ukuthi nga-
be <unk> . <eos>

2zu it is very surprising . kuyamangaza kakhulu . kuyathakazelisa kakhulu . <eos>

2zu we are going the wrong way . sihamba ngendlela engafanele . ngendlela esifanele kwenzeke . <eos>

2zu words rarely have only one me-
aning .

amagama akuvamile ukuba nencazelo
eyodwa . amagama kuphela <unk> . <eos>

2zu why does everybody love cats ? . kungani wonke umuntu ewathanda
amakati ? .

kungani wonke umuntu ezithanda izi-
ngane ? . <eos>

2zu he is one of my neighbours . ungomunye womakhelwane bami . ungomnye wabafundi sabo . <eos>

2zu the thief was handed over to the
police . isela linikelwe emaphoyiseni . isela labaleka nemali . <eos>

Table A.8: Some examples of En-Zu translation results for zero-shot learning model.
The reference sentences are also called the target sentences and the model’s prediction
is called the translation. Each source-target/reference pair is presented along with its
respective model-translation.
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English source sentence Shona reference sentence Shona translation

2sh i should not have to tell you to do your
homework .

handifanire kukuudza kuti uite basa rako
remumba .

usakanganwa kuita kuti uite basa rako
remumba . <eos>

2sh today is extremely hot . nhasi kwakanyanya kupisa . nhasi <unk> . <eos>

2sh her story turned out to be true . nyaya yake yakazove chokwadi . <unk> nyaya yacho . <eos>

2sh maybe i can show you . pamwe ndinogona kukuratidza . <unk> . <eos>

2sh she showed me her new car . akandiratidza mota yake nyowani . akandiratidza mota yake . <eos>

2sh i will go and get you some . ndichaenda ndikutorere mamwe . enda <unk> . <eos>

"2sh hurry up , or you will miss the last train " . " kurumidza kumhanyisa , kana iwe ucha-
potsa chitima chekupedzisira . " .

" kurumidza kumhanyisa , chitima . "
. <eos>

2sh they are looking for a complaint . vari kutsvaga kunyunyuta . <unk> . <eos>

2sh we are all going to die anyway . tese tichafa . tese tichava ipapo . <eos>

Table A.9: Some examples of En-Sh translation results for MultilingualB. The refer-
ence sentences are also called the target sentences and the model’s prediction is called
the translation. Each source-target/reference pair is presented along with its respective
model-translation.

Source sentence Target sentence Translation

2xh we need to make sure that you are legally enti-
tled to the grant .

kufuneka siqinisekise ukuba uselungelweni ngoku-
semthethweni lokusifumana isibonelelo eso .

kufuneka siqinisekise ukuba unelu-
ngelo lesibonelelo ngokusemthethweni . <eos>

2xh sassa is the branch of governmental that over-
sees the distribution of social grants to the people
of south africa .

isassa licandelo elisisongezo kunikezelo lweenkon-
zo zikarhulumente nelijongene nokunikezela kwee-
nkonzo nezibonelelo zoluntu kubemi basemzantsi
afrika .

isassa sisolulo sengalo karhulumente yo-
bonelelo nenikela ngezibonelelomali kubemi basemzantsi afrika
. <eos>

2xh the domestic violence act intends to establish
shelters for victims of abuse .

umqulu wokuhlukunyezwa ezindlini ubonelela
ngokusekwa kwamaziko okhuseleko .

umthetho wobundlobongela basekhaya unolungis-
elelo lokusekwa kwamakhaya angamakhusi
. <eos>

2xh the plane crash was only last week . ukuqhekeka kwenqwelomoya bekukho kwiveki
ephelileyo .

ingozi <unk> ibigqithile kwiveki ephelileyo . <eos>

2xh you can probably guess what happens though . unokuqikelela ukuba kwenzeka ntoni na . inokuba uyikholelwe into eyenzekileyo . <eos>

2xh i thought we could do it . ndacinga ukuba singayenza . ndacinga ukuba singayenza . <eos>

2xh the question is what are you going to do about
it . umbuzo uthi wena uzakwenza ntoni ngaloo nto . umbuzo ngowokuba nina nakwenza ntoni

ngaloo nto . <eos>

2xh most of our houses have not yet complied
with the policy change from quantity to quality
housing .

izindlu zethu ezininzi azikaluthobeli ushenxiso
olukhankanyiweyo kumgaqonkqubo oluthetha
ukungaleqi ukwakha izindlu ezininzi kusuke ku-
gxilwe ekwakheni izindlu ezikowona mgangatho
uphezulu nowamkelekileyo .

uninzi lwezindlu zethu azikathobelani nokutshi-
ntsha komgaqonkqubo osuka kwinani
ukuya kumgangatho wezindlu . <eos>

2xh a deal is a deal . isivumelwano sisivumelwano. isivumelwano . <eos>

Table A.10: Some examples of En-Xh translation results for MultilingualC. The reference
sentences and model predictions are labeled target sentences and translation respec-
tively. Each source-target/reference pair is presented along with its respective model-
translation.
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Train & Val Size MultilingualA TL En-Xhparent Difference
200 2.68 ±0.14 2.44±0.1 0.24±0.17
256 3.07±0.24 3.53±0.11 −0.46± 0.26
327 3.13±0.25 3.54±0.15 −0.41± 0.29
418 3.19±0.27 3.67±0.16 −0.48± 0.31
534 3.23±0.28 3.73 ±0.17 −0.50± 0.33
682 3.31 ±0.32 3.77 ±0.17 −0.58± 0.36
872 3.43 ±0.35 4.01 ±0.16 −0.58± 0.38
1114 3.90±0.37 4.36 ±0.19 −0.46± 0.42
1424 4.13±0.4 4.69±0.19 −0.56± 0.44
1820 6.31 ±0.44 5.05±0.18 1.21± 0.48
2327 6.89±0.47 5.91±0.17 0.98± 0.50
2974 7.85±0.48 7.1±0.19 0.75± 0.52
3801 8.33 ±0.53 7.93 ±0.21 0.40± 0.57
4858 10.59±0.61 9.02 ±0.2 1.57± 0.64
6209 12.62±0.62 9.97±0.19 2.65± 0.65
7936 13.7±0.64 10.62±0.2 3.08± 0.67
10143 14.21 ±0.69 11.39±0.21 2.82± 0.72
12964 15.98 ±0.75 12.58±0.21 3.40± 0.78
16569 16.82±0.80 13.57±0.22 3.35± 0.83
21177 17.78 ±0.82 14.62±0.23 3.16± 0.85

Table A.11: BLEU score results for examining model performance with increase in data.
MultilingualA and TL En-Xhparent models trained on En-Zu data-sets of different sizes.
Each model is trained and validated on data-sets of the same size and then tested on a
fixed size test-set from which we record the difference between MultilingualA and TL
En-Xhparent BLEU scores.
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Figure A.9
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