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Abstract

We explicitly describe the ramified places in any separable cubic extension of a cubic
global function field in terms of a unique given parameter. This is all done using the
uniqueness of the purely cubic closure, which is a useful new tool for the study of cubic
function fields. We give a notion of local standard forms, that is useful for many
purposes, including classifying and computing of integral bases. We then determine
explicitly the genus of any separable cubic extension of any global function field given
the minimal polynomial of the extension. The formulae we obtain is particularly useful
for further study owing to the well-understood and straightforward close relation
between the parameter we define and ramification within the extension.
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1 Introduction
Let K be an arbitrary field of characteristic p, the authors in [5] (Theorem 1.1) proved
that any separable cubic extension of an arbitrary field K admits a generator y, explicitly
determined in terms of an arbitrary initial generating equation, such that

(1) y3 = a, with a ∈ K , or
(2) (a) y3 − 3y = a, with a ∈ K , when p �= 3, or

(b) y3 + ay + a2 = 0, with a ∈ K , when p = 3.

In this paper, the base field K will be a one-variable global function field. As we will show
in the following, this classification allows one to deduce the ramification at any place of K
to obtain an explicit formulae for the different, and therefore in §3.3, we deduce explicit
Riemann–Hurwitz formulae (Theorems 5.2, 5.4, 5.7), which are computable entirely using
the single parameter a as above for the minimal polynomial of the extension.
The ramification and Riemann–Hurwitz formulae have previously been studied for

function fields extensions as they give important insights toward understanding them
better (see [12,Corollaries 2.2, 2.3 and 2.6], [9,10,14]: biquadratic case).Degree 2 separable
extensions are Galois either Kummer or Artin-Shreier extensions, therefore the study of
ramification and Riemann–Hurwitz formulae are well-known (see [13]).
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The study of the ramification is interesting in the way that it uses the new notion of
purely cubic closure and it uniqueness, which we have previously defined in the paper [5].
Notably, through this work, when the extension is Galois (Corollary 4.6), we proved that

only even degree places can be ramified for cubic extension of the form (2)(a) (which are
called impurely cubic extension) but not of the form (1) whereas there are no restrictions
on the degree for any other type of cubic extensions. We have also proven that, unlike in
the known cases (Kummer and Artin-Schreier), the place at infinity can always be chosen
unramified (Corollary 4.7). This makes the study of impure cubics promising as an initial
case for a better understanding of situations that do not fall within the traditional Kummer
and Artin-Schreier theory. This work does not omit any of the possible cases of separable
cubic extensions, and does not exclude any field characteristic. For completeness of the
present paper, we chose to include the study of the purely cubic extensions to keep the
paper as self-contained as possible.
Importantly, the techniques used have been chosen as such, as they can be generalised

for higher degree extensions: For instance, they have been already used in [4]. Moreover,
not all Riemann–Hurwitz formulae have equal ranges of applications or usability; the
major advantage of our formulae is that there is a very close and understood connection
between the form of the parameter and the resulting Riemann–Hurwitz formulae. Not
every parameter of the form as in (1) and (2) permits this connection directly, but it is
possible to choose parameters in a natural way so that ramification can be read off this
parameter easily. We call these standard forms for (1) and (2) (see Lemma 4.1, Theo-
rem 4.4, and Lemma 4.9). These choices of parameters are important in addition to our
Riemann–Hurwitz formulae, as this well understood relationship between them permits
to compute explicit integral bases for any separable cubic function field (see [6]) in a gen-
eralisable way for higher degree extensions. Such formulae are also very useful towards a
classification of cubic fields given prescribed ramification data (This connect with [2,8]).
They possibly as well help to the understanding the structure of the correspondingmoduli
spaces, computingWeierstrass points, and so on.Wedonot do this here but see possibility
for this based on success with generating these formulae.
Using the present work, one could also algorithmically obtain - for any cubic extension

over a rational field given in any arbitrary form - aminimal polynomial such that ramifica-
tion data can be completely read off by factorising the associated parameter and thereby
compute the genus.

2 Notation
Throughout the paper we denote the characteristic of the field by p (including the possi-
bility p = 0).We letK denote a one-variable global function field with field of constants k .
Let K be a fixed algebraic closure of K . For an extension L/K , we letOL,x denote the inte-
gral closure of k[x] in Lwhere x is a transcendental element over k in K . We denote by p a
place of K . We denote vp(a) the valuation of a ∈ L at p (for the definition we refer to [13,
§2.2]). The degree dK (p) of p is defined as the degree of its residue field, which we denote
by k(p), over the constant field k . For a placeP of L over p, we let f (P|p) = [k(P) : k(p)]
denote the inertia degree of P|p. We let e(P|p) be the ramification index of P|p, i.e., the
unique positive integer such that vP(z) = e(P|p)vp(z), for all z ∈ K . If vp(a) ≥ 0, then we
let
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a := a mod p

denote the image of a in k(p).
We will denote gL for the genus of the function field L defined in [13, Definition 3.3.4].

The differential exponent at a given place is closely related to the ramification at that place
and permits one to obtain explicit genus formulae, such as the one obtained in this paper.
We will denote by d(P|p) the differential exponent at the place p in L/K , as it is defined
in [13, §5.6].
Henceforth, we let F denote a field and p = char(F ) the characteristic of this field, where

we admit the possibility p = 0 unless stated otherwise. We let F denote a fixed algebraic
closure of F and L/F a cubic extension.

Definition 2.1 ([5, Definition 0.1])

• If p �= 3, a generator y of a cubic extension L/F with minimal polynomial of the form
X3 − a (a ∈ F ) is called a purely cubic generator, and L/F is called a purely cubic
extension. If p = 3, such an extension is simply called purely inseparable.

• If p �= 3 and a cubic extension L/F does not possess a generator with minimal
polynomial of this form, then L/F is called impurely cubic.

• For any cubic extension L/F , we define the purely cubic closure of L/F to be the
unique smallest extension F ′ of F such that LF ′/F ′ is purely cubic. In [5, Theorem
2.1], we prove that the purely cubic closure exists and is unique.

Recall that by [5, Corollary 1.2], if p �= 3, then every impurely cubic extension L/K has
a primitive element y with minimal polynomial of the form

f (X) = X3 − 3X − a.

We mention this here, as we will use it whenever this case occurs in §3. Throughout the
paper, the element y will denote any such choice of primitive element.

3 Constant extensions
In this subsection, we wish to determine when a cubic function field over K is a constant
extension of K . We do this before a study of ramification simply because constant exten-
sions are unramified and their splitting behaviour is well understood [13, Chap. 6]. This
will also help with identifying the non-constant extensions, as we will see later. In the
subsequent sections, we will thus assume that our cubic extension L/K is not constant,
which, as 3 is prime, is equivalent to assuming that the extension is geometric (see [13,
Definition 5.2.29.]).

3.1 X3 − a, a ∈ K , when p �= 3

Lemma 3.1 Let p �= 3, and let L/K be purely cubic, i.e. there exists a primitive element
y ∈ L such that y3 = a, a ∈ K. Then L/K is constant if, and only if, a = ub3, where b ∈ K
and u ∈ k∗ is a non-cube. In other words, there is a purely cubic generator z of L/K such
that z3 = u, where u ∈ k∗.

Proof Suppose that a = ub3, where b ∈ K and u is a non-cube in k∗. Then z = y
b ∈ L is

a generator of L/K such that z3 = u. The polynomial X3 − u has coefficients in k , and as
a consequence, L/K is constant.
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Suppose then that L/K is constant. We denote by l a fixed algebraic closure of k in L,
so that L = Kl. Let l = k(λ), where λ satisfies a cubic polynomial X3 + eX2 + fX + g with
e, f, g ∈ k . Hence, L = K (λ). We denote

α = −2 − (27g2 − 9efg + 2f 3)2

27(3ge − f 2)3
∈ k.

As L/F is purely cubic, it then follows by [5, Corollary 1.2 and Theorem 2.1] that either
3eg = f 2 or the quadratic polynomial X2 + αX + 1 has a root in K . In both cases, there is
a generator λ′ ∈ L such that

λ′3 = β ∈ k.

Hence λ′ ∈ l. The elements λ′ and y are two purely cubic generators of L/K , whence by
[5, Theorem 3.1], it follows that y = cλ′j where j = 1, or 2 and c ∈ K . Thus, a = c3β j ,
where β ∈ k . The result follows. ��

3.2 X3 − 3X − a, a ∈ K , when p �= 3

Via [5, Corollary 1.2 and Theorem 3.3], a proof similar to that of Lemma 3.1 yields the
following result.

Lemma 3.2 Let p �= 3 and L/K be an impurely cubic extension, so that there is a primitive
element y ∈ L such that y3 − 3y = a (see [5, Corollary 1.2]). Then L/K is constant if, and
only if,

u = −3aα2β + aβ3 + 6α + α3a2 − 8α3 ∈ k∗,

for some α,β ∈ K such that α2 + a2αβ + β2 = 1. In other words, there is a generator z of
L/K such that z3 − 3z = u, where u ∈ k∗.

3.3 X3 + aX + a2, a ∈ K , when p = 3

In this case, one may prove the following result, similarly to the proof of Lemma 3.1, via
[5, Corollary 1.2 and Theorem 3.6].

Lemma 3.3 Let p = 3 and L/K be a separable cubic extension, so that there is a primitive
element y ∈ L such that y3 + ay + a2 = 0 (see [5, Corollary 1.2]). Then L/K is constant if,
and only if,

u = (ja2 + (w3 + aw))2

a3
∈ k∗,

for some w ∈ K and j = 1, 2. In other words, there is a generator z of L/K such that
z3 + uz + u2 = 0, where u ∈ k∗.

4 Ramification
In this section, we describe the ramification of any place of K in a cubic extension L/K .
We divide the analysis into the three fundamental cubic forms derived in [5, Corollary
1.2].

4.1 X3 − a, a ∈ K , when p �= 3

We are aware that the purely cubic case might be well-know. Unable to find specific
references but also for completeness, we chose to include the proofs in that case too.
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If the extension L/K is purely cubic, one may find a purely cubic generator of a form
which is well-suited to the determination of ramification, as in the following lemma.

Lemma 4.1 Let L/K be a purely cubic extension. Given a place p of K , one may select a
primitive element y with minimal polynomial of the form X3 − a such that either

(1) vp(a) = 1, 2, or
(2) vp(a) = 0.

Such a generator y is said to be in local standard form at p.

Proof Let y be a generator of L such that y3 = a ∈ K . Given a place p of K , we write
vp(a) = 3j + r with r = 0, 1, 2. Via weak approximation, one may find an element c ∈ K
such that vp(c) = j. Then y

c is a generator of L such that
( y
c
)3 = y3

c3 = a
c3 and vp

(
a
c3

)
= r.

Hence we obtain the result. ��

When a purely cubic extension L/K is separable, one may also easily determine the fully
ramified places in L/K .

Theorem 4.2 Let p �= 3, and let L/K be a purely cubic extension. Given a purely cubic
generator y with the minimal polynomial X3 − a, a place p of K is ramified if and only if
it is fully ramified if, and only if, (vp(a), 3) = 1.

Proof Let p be a place of K and P be a place of L above p. Suppose that (vp(a), 3) = 1.
Then 3vP(y) = vP(y3) = vP(a) = e(P|p)vp(a). Since (vp(a), 3) = 1, we obtain 3|e(P|p),
and as e(P|p) ≤ 3, it follows that e(P|p) = 3, so that p is fully ramified in L.
Conversely, suppose that (vp(a), 3) �= 1. By Lemma 4.1, we know that there exists a

generator z of L such that z3−c = 0 and vp(c) = 0. A study of all the possible factorisation
of X3 − a mod p together with Kummer’s theorem [11, Theorem 3.3.7] shows that p is
either inert or there exists 2 or 3 places above it in L. Thus, p cannot be fully ramified
in any case. Moreover, there are no partially ramified places. Indeed, if L/K is Galois,
then this is clear, and if L/K is not Galois, its Galois closure of L/K is L(ξ ) with K (ξ )/K
constant, hence unramified, and since the index of ramification ismultiplicative in towers,
the only possible index of ramification in L(ξ )/K is 3, and so is the only possible index of
ramification in L/K . ��

4.2 X3 − 3X − a, a ∈ K , p �= 3

In order to determine the fully ramified places in extensions of this type, we begin with an
elementary but useful lemma. These criteria and notation will be employed throughout
what follows.

Lemma 4.3 We consider the polynomial X2 + aX + 1 where a ∈ K. We suppose this
polynomial is irreducible over K . Let c−, c+ denote the roots of this polynomial in K . We
denote K (c) the quadratic extension K (c±) of K . Let p be a place of K and pc be a place of
K (c) above p. We have:

(1) For any place pc of K (c),

vpc (c±) = −vpc (c∓).
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(2) For any place pc of K (c) above a place p of K such that vp(a) < 0,

vp(a) = −|vpc (c±)|,
and otherwise, vpc (c±) = 0.

Proof (1) At any place pc of K (c), we have

vpc (c+ · c−) = vpc (c+) + vpc (c−) = vpc (1) = 0,

whence

vpc (c+) = −vpc (c−).

(2) As c2± + ac± + 1 = 0, the elements c′± = c±
a satisfy

c′2± + c′± + 1
a2

= 0.

Thus, for any place pc of K (c) above a place p of K such that vp(a) < 0, we obtain

vpc (c′2± + c′±) = −2vpc (a) > 0.

By the non-Archimedean triangle inequality, this is possible if, and only if, vpc (c′±) >

0 or vpc (c′±) = 0. If vpc (c′±) > 0, then

vpc (c′±) = −2vpc (a) and vpc (c±) = −vpc (a).

If on the other hand vpc (c′±) = 0, we obtain

vpc (c±) = vpc (a).

Thus, the latter together with part (1) of this lemma implies that either

vpc (c+) = vpc (a) and vpc (c−) = −vpc (a)

or vice versa (with the roles of c− and c+ interchanged). Moreover, note that pc
is unramified in K (c)/K so that vpc (a) = vp(a). For if, when p �= 2, then K (c)/K
has a generator w such that w2 = −27(a2 − 4) and 2|vp(−27(a2 − 4)), thus by
Kummer theory, p is unramified and when p = 2, K (c)/K has a generator w such
that w2 − w = 1

a2 and vp( 1
a2 ) ≥ 0, thus by Artin-Schreier theory, we have that p is

unramified in K (c), thus the first part of (2). For any place pc of K (b) above a place p
of K such that vp(a) > 0. As

vpc (c′2± + c′±) = −2vpc (a) < 0,
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again using the non-Archimedean triangle inequality, we can only have vpc (c′2±) < 0,
whence vpc (c′2±) = −2vpc (a). This implies that vpc (c±) = 0. Finally, via the triangle
inequality once more, for any pc such that vpc (a) = 0, we must have vpc (c±) = 0.

��

Theorem 4.4 Let p �= 3. Let L/K be an impurely cubic extension. Le y be a primitive
element with minimal polynomial f (X) = X3 − 3X − a. Then

(1) the fully ramified places of K in L are precisely those p such that (vp(a), 3) = 1 and
(2) the partially ramified places p that is the one with index of ramification 2 are precisely

those such that a ≡ ±2 mod p and

(a) (vp(a2 − 4), 2) = 1, when p �= 2;
(b) there exists w ∈ K such that vp(1/a+ 1+w2 −w) < 0 and (vp(1/a+ 1+w2 −

w), 2) = 1, when p = 2.

Proof (1) As usual, we let ξ be a primitive 3rd root of unity. We also let r be a root of
the quadratic resolvent R(X) = X2 + 3aX + (−27 + 9a2) of the cubic polynomial
X3 − 3X − a in K . As in [1, Theorem 2.3], we know that L(r)/K (r) is Galois, and by
[5, Corollary 1.6], we have that L(ξ , r)/K (ξ , r) is purely cubic.We denote by p a place
in K , Pξ ,r a place of L(ξ , r) above p, P = Pξ ,r ∩ L, and pξ ,r = Pξ ,r ∩ K (ξ , r). By [5,
Theorem 1.5], we know that that L(ξ , r)/K (ξ , r) is Kummer; more precisely, there
exists v ∈ K (ξ , r) such that v3 = c where c is a root of the polynomial X2 + aX + 1.
We thus obtain a tower L(ξ , r)/K (ξ , r)/K (ξ )/K with L(ξ , r)/K (ξ , r) Kummer of
degree 3, and where K (ξ , r)/K (ξ ) and K (ξ )/K are both Kummer extensions of
degree 2. As the index of ramification is multiplicative in towers and the degree
of L(ξ , r)/K (ξ , r) andK (ξ , r)/K are coprime, the places ofK that fully ramify in L are
those places ofK which lie below those ofK (ξ , r) which fully ramify in L(ξ , r)/K (ξ , r).
As L(ξ , r)/K (ξ , r) is Kummer, the places ofK (ξ , r) that ramify in L(ξ , r) are described
precisely by Kummer theory (see for example [13, Example 5.8.9]) as those pξ ,r in
K (ξ , r) such that

(vpξ ,r (c±), 3) = 1.

Lemma 4.3 states that if vp(a) < 0, then vpξ ,r (c±) = ±vpξ ,r (a) and that otherwise,
vpξ ,r (c±) = 0. Thus, the ramified places of L/F are those places p below a place pξ ,r
of K (ξ , r) such that (vpξ ,r (a), 3) = 1. Also,

vpξ ,r (a) = e(pξ ,r |p)vp(a),
where e(pξ ,r |p) is the ramification index of a place p ofK inK (ξ , r), equal to 1, 2, or 4,
and in any case, coprime with 3. Thus, (vpξ ,r (a), 3) = 1 if, and only if, (vp(a), 3) = 1.
As a consequence of the above argument, it therefore follows that a place p of K is
fully ramified in L if, and only if, vp(a) < 0. If L/K is Galois then all the places are
fully ramified.

(2) If L/K is not Galois and a ramified place p is not fully ramified in L/K , its index of
ramification is 2. The Galois closure of L/K is L(r)/K . Since L(r)/K (r) is Galois, all
the ramified places in L(r)/K (r) are fully ramified and the only possible way that the
index of ramification of a place is 2 in L/K is that this place is ramified in K (r)/K ,
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since the index of ramification is multiplicative in tower. By Kummer and Artin-
Schreier theory, this implies that vp(a) ≥ 0 when p �= 2 and vp(a) > 0 when p = 2,
since K (r)/K is defined by a minimal equation X2 = −27(a2 − 4) when p �= 2 and
X2 − X = 1 + 1/a when p = 2.
When vp(a) ≥ 0, via Kummer’s theorem, for p to be partially ramified in L/K , the
only possible decomposition of X3 − 3X − amod p is

X3 − 3X − a = (X − α)2(X − β) mod p

with α �= β .
The equality f (X) = (X − α)(X − β)2 gives us

X3 − 3X − a = (X − α)(X − β)2 = X3 − (2β + α)X2 + (β2 + 2αβ)X − αβ2.

Thus α = −2β . We therefore have −3 = β2 − 4β2 = −3β2 and a = −2β3. The
first of these implies that

3(β2 − 1) = 3β2 − 3 = 0.

Thus β = ±1 and a = ∓2. Conversely, when a = ∓2 mod p. , then

X3 − 3X ∓ 2 = (X ± 2)(X ∓ 1)2.

Therefore, in order for p to be partially ramified we need that p ramified in K (r) that
is

(a) (vp(a2 − 4), 2) = 1, when p �= 2;
(b) there exists w ∈ K such that vp(1/a+ 1+w2 −w) < 0 and (vp(1/a+ 1+w2 −

w), 2) = 1, when p = 2.

Conversely, suppose that p is a place such that a ≡ ∓2 mod p and p ramified in
K (r). Since p cannot be ramified in K (r) without vp(a) ≥ 0 and L(r)/K is Galois,
then when a ≡ ∓2 mod p and p ramified in K (r), then the place above p in K (r)
is unramified in L(r)/K (r) (see proof of (1)) therefore completely split and we must
have

pOL(r),x = (P1,rP2,rP3,r)2

Since a ≡ ∓2 mod p, we have X3 − 3X − a = (X − α)(X − β)2 mod p with
α,β ∈ k(p) and α �= β , by Kummer’s theorem, we know that there is at least two
place above p in L thus either

(a) pOL,x = P1P2 wherePi, i = 1, 2 place of L above p, or
(b) pOL,x = P2

1P2 wherePi, i = 1, 2 place of L above p, or
(c) pOL,x = P1P2P3 wherePi, i = 1, 2, 3 place of L above p.

By [7, p. 55], we know that p is completely split in L (case (c)) if, and only if, (1) p is
completely split inK (r) and (2)pr completely split inL(r). Thus, eitherpOL,x = P1P2
or pOL,x = P2

1P2 where eachPi (i = 1, 2) is a place ofL above p. Note that 2 | e(Pr |p)
for any places Pr in L(r) above p. If pOL,x = P1P2, then as e(Pi|p) = 1, we have
that 2 | e(Pi,r |Pi) and pOL(r),x = P2

1,rP
2
2,r , wherePi,r , i = 1, 2 are places above p in

L(r), which is impossible, as pOL(r),x = (P1,rP2,rP3,r)2. Thus, in this case, we must
have pOL,x = P2

1P2 andP1 is split in K (r) andP2 ramifies in K (r). ��
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This theorem yields the following corollaries, the first being immediate.

Corollary 4.5 When K does not contain a third root of unity. Let L/K be a Galois cubic
extension, so that there exists a primitive element y of L with minimal polynomial f (X) =
X3 − 3X − a. Then the (fully) ramified places of K in L are precisely those places p of K
such that vp(a) < 0 and (vp(a), 3) = 1.

Corollary 4.6 When K does not contain a third root of unity. Let L/K be a Galois cubic
extension, so that there exists a primitive element y of L with minimal polynomial f (X) =
X3 − 3X − a. Then, only those places of K of even degree can (fully) ramify in L. More
precisely, any place p of K such that vp(a) < 0 is of even degree.

Proof In Lemma 4.3, it was noted that σ (c±) = c∓ where Gal(K (c±)/K ) = {Id, σ }, when
c± /∈ K . Let ξ again be a primitive 3rd root of unity. We denote by p a place of K and pξ a
place of K (ξ ) above p. We find that

vpξ (c±) = vσ (pξ )(σ (c±)) = vσ (pξ )(c∓).

Note that if σ (pξ ) = pξ , it follows that vpξ (c±) = vpξ (c∓). However, by Lemma 4.3, we
have that, for any place pξ of K (ξ ) above a place p of K such that vp(a) < 0, it holds that
vpξ (c±) = ±vpξ (a), and that vpξ (c±) = −vpξ (c∓). Thus, for any place pξ of K (ξ ) above a
place p of K such that vp(a) < 0, we find that vpξ (c±) �= vpξ (c∓) and thus σ (pξ ) �= pξ .
Therefore, by [13, Theorem 6.2.1], we obtain that p is of even degree, for any place p of

K such that vp(a) < 0. ��

Corollary 4.7 Suppose that the constant field of K is Fq with q ≡ −1 mod 3. Let L/K
be a Galois cubic extension, so that there exists a primitive element y of L with minimal
polynomial f (X) = X3 − 3X − a. Then one can choose a single place P∞ at infinity in K
such that vP∞ (a) ≥ 0.

Proof One can choose x ∈ K\k such that the place p∞ at infinity for x has the property
that all of the places inK above it are of odd degree. In order to accomplish this, we appeal
to a method similar to the proof of [13, Proposition 7.2.6]; because there exists a divisor
of degree 1 [13, Theorem 6.3.8], there exists a prime divisor P∞ of K of odd degree; for
if all prime divisors of K were of even degree, then the image of the degree function of K
would lie in 2Z, which contradicts [13, Theorem 6.3.8]. Let d be this degree. Let m ∈ N

be such that m > 2gK − 1. Then, by the Riemann–Roch theorem [13, Corollary 3.5.8],
it follows that there exists x ∈ K such that the pole divisor of x in K is equal to Pm∞. By
definition, the pole divisor of x in k(x) is equal to p∞. It follows that

(p∞)K = Pm∞,

from which it follows thatP∞ is the unique place of K above p∞, and by supposition that
P∞ is of odd degree. From this argument, we obtain that, with this choice of infinity, all
places above infinity in k(x) are of odd degree. (We also note that wemay very well choose
m relatively prime to p, whence K/k(x) is also separable; in general, K/k(x) as chosen will
not be Galois.)
As q ≡ −1 mod 3, L/K is a Galois extension, and y is a primitive element withminimal

polynomial of the form X3 − 3X − a where a ∈ K , we know that all of the places p of
K such that vp(a) < 0, and in particular, all the ramified places, are of even degree
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(see Corollary 4.6). It follows that the process described in this proof gives the desired
construction, and the result follows. ��

Remark 4.8 We note that when K is a rational function field, one may use Corollary 4.7
to show that the parameter a has nonnegative valuation at p∞ for a choice of x such that
K = k(x), and thus such p∞ is unramified.

4.3 X3 + aX + a2, a ∈ K , p = 3

As for purely cubic extensions, there exists a local standard form which is useful for a
study of splitting structure and ramification.

Lemma 4.9 Let p = 3, and let L/K be a cubic separable extension. Let p be a place of K .
Then there is a generator y such that y3 + ay + a2 = 0 such that vp(a) ≥ 0, or vp(a) < 0
and (vp(a), 3) = 1. Such a y is said to be in local standard form at p.

Proof Let p be a place ofK . Let y1 be a generator of L/K such that y31+a1y1+a21 = 0 (this
was shown to exist in [3]). By [5, Theorem 3.6], any other generator y2 with a minimal
equation of the same form y32 + a2y2 + a22 = 0 is such that y2 = −β( j

a1 y1 − 1
a1w), and we

have

a2 = (ja21 + (w3 + a1w))2

a31
.

Suppose that vp(a1) < 0, and that 3 | vp(a1). Using the weak approximation theorem, we
choose α ∈ K such that vp(α) = 2vp(a1)/3, which exists as 3 | vp(a1). Then

vp(α−3ja21) = 0.

Let w0 ∈ K be chosen so that w0 �= −α−3ja21 and

vp(α−3ja21 + w0) > 0.

This may be done via the following simple argument: As vp(α−3ja21) = 0, then α−3ja21 �= 0
in k(p).
We then choose some w0 �= −α−3ja21 ∈ K such that w0 = −α−3ja21 in k(p). Note that

vp(w0) = 0. Thus, α−3ja21 + w0 = 0 in k(p) and vp(α−3ja21 + w0) > 0. As p = 3, it follows
that the map X → X3 is an isomorphism of k(p), so we may find an element w1 ∈ K such
that w3

1 = w0 mod p. Hence

vp(α−3ja21 + w3
1) > 0.

We then let w2 = αw1, so that

vp(ja21 + w3
2) = vp(ja21 + α3w3

1) > vp(ja21).

Thus, as vp(a1) < 0, we obtain

vp(ja21 + (w3
2 + a1w2)) ≥ min{vp(ja21 + w3

2), vp(a1w2)}
> min{vp(ja21), vp(a1w2)}
= min{vp(ja21), vp(a1) + 2vp(a1)/3}
= min{2vp(a1), 5vp(a1)/3}
= 2vp(a1).
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Hence

vp(a2) = vp

(
(ja21 + (w3 + a1w))2

a31

)

> 4vp(a1) − vp(a31) = vp(a1).

We can thus ensure (after possibly repeating this process if needed) that we terminate at
an element a2 ∈ K for which vp(a2) ≥ 0 or for which vp(a2) < 0 and (vp(a2), 3) = 1. ��

Remark 4.10 Note that we can do what we have done in the previous Lemma simultane-
ously at any finite place (see [6, Lemma 1.2]).

Theorem 4.11 Suppose that p = 3. Let L/K be a separable cubic extension. Let y be a
primitive element with minimal polynomial X3 + aX + a2. Let p be a place of K andP a
place of L above p. Then

(1) p is fully ramified if, and only if, there is w ∈ K, vp(α) < 0 and (vp(α), 3) = 1 with

α = (ja2 + (w3 + aw))2

a3
.

Equivalently, there is a generator z of L whose minimal polynomial is of the form
X3 + αX + α2, where vp(α) < 0 and (vp(α), 3) = 1, and

(2) p is partially ramified if and only if (vp(a), 2) = 1 and there is w ∈ K such that
vp(α) ≥ 0 with

α = (ja2 + (w3 + aw))2

a3
.

The later is equivalent to the existence of a generator z of L whoseminimal polynomial
is of the form X3 + αX + α2, where vp(α) ≥ 0.

Proof (1) Let p be a place of K , and denote by P a place of L above p. When L/F is
Galois, this theorem is simply the usual Artin-Schreier theory (see [11, Proposition
3.7.8]). Otherwise, since the discriminant of the polynomial X3 + aX + a2 is equal
to � = −4a3 = −a3, by [1, Theorem 2.3], we know that the Galois closure of
L/F is equal to L(�) = L(b), where b2 = −a. Let pb a place of K (b) above p. The
extension L(b)/K (b) is an Artin-Schreier extension with Artin-Schreier generator
y/b possessing minimal polynomial X3 − X + b. As L(b)/K (b) is Galois, if pb is
ramified in L(b), then it must be fully ramified. Furthermore, as the degree K (b)/K
is equal to 2, which is coprime with 3, and the index of ramification is multiplicative
in towers, it follows that the place p is fully ramified in L if, and only if, pb is fully
ramified in L(b). By [11, Proposition 3.7.8],

(a) pb is fully ramified in L(b) if, and only if, there is an Artin-Schreier generator z
such that z3 − z − c with vpb (c) < 0 and (vpb (c), 3) = 1, and

(b) pb is unramified in L(b) if, and only if, there is an Artin-Schreier generator z
such that z3 − z − c with vpb (c) ≥ 0.

Suppose that there is a generator w such that w3 + a1w + a21 = 0, vp(a1) < 0
and (vp(a1), 3) = 1. Then over K (b1), where b21 = −a1, we have an Artin-Schreier
generator z of L(b1) such that z3 − z + b1. Moreover,

vpb1 (b1) = vpb1 (a1)
2

= e(pb1 |p)vp(a1)
2

,
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where e(pb1 |p) is the index of ramification of pb1 over K (b1), whence e(pb1 |p) = 1 or
2. As a consequence,

(vpb1 (b1), 3) = (vp(a1), 3) = 1,

and pb1 is fully ramified in L(b1), so that p too must be fully ramified in L.
Suppose that there exists a generator w such that w3 + a1w + a21 = 0, vp(a1) ≥ 0.
Then overK (b1), where b21 = −a1, we have a generator z of L(b1) such that z3−z+b1
and

vpb1 (b1) = e(pb1 |p)vp(a1)
2

≥ 0.

Thus pb is unramified in L(b), so that p cannot be fully ramified in L, since the ram-
ification index is multiplicative in towers. The theorem then follows by Lemma 4.9.
If L/K is Galois, then the ramified places are all fully ramified.

(2) If L/K is not Galois and a ramified place p is not fully ramified in L/K its index
of ramification is 2. Moreover, when p is not fully ramified we know by (1) and
Lemma 4.9 that there is w ∈ K such that vp(α) ≥ 0 with

α = (ja2 + (w3 + aw))2

a3
.

The Galois closure of L/K is L(b)/K where b2 = −α since L(b)/K (b) is Galois then
all the ramified places in L(b)/K (b) are fully ramified and the only possible way that
the index of ramification of a place is 2 in L/K is that this place is ramified in K (b)/K
since the index of ramification is multiplicative in tower. That is

(vp(a), 2) = (vp(α), 2) = 1.

Since the Galois closure has also as generator c such that c2 = −a. Therefore,
vp(α) > 0 and (vp(a), 2) = 1.
Conversely, suppose there is w ∈ K such that vp(α) > 0 with

α = (ja2 + (w3 + aw))2

a3

and (vp(a), 2) = 1. If vp(α) > 0, then L(b)/K (b) is an Artin-Schreier extension
by [1, Theorem 2.3], and there is an Artin-Schreier generator w = z

b such that
w3 − w + b = 0 and vpb (b) > 0, where pb is a place of K (b) above p. Thus b ≡ 0
mod pb, and the polynomial

X3 − X + b ≡ X3 − X mod pb

factors as X(X − 1)(X + 1) modulo pb. By Kummer’s theorem ([11, Theorem 3.3.7]),
we then have that pb is completely split in L(b).
As pb is completely split in L(b), we have that p cannot be inert in L. Indeed, if pwere
inert in L, then there are at most two places above p in L(b), in contradiction with
the proven fact that pb is completely split in L(b).
By [7, p.55], p splits completely in L if, and only if, p is completely split in K (b) and
pb is completely split in L(b).
Also, since by the previous argument p cannot be inert in L, we have that either

pOL,x = P1P2 or pOL,x = P1P
2
2,
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wherePi, i = 1, 2 are places of L above p. LetPb be a place of L(b) above p.When p is
ramified inK (b), then the index of ramification at any place above p in L(b) is divisible
by 2, since L(b)/K is Galois by [1, Theorem 2.3], whence pOL,x = P1P2

2. ��

5 Different exponents and Riemann–Hurwitz formulae
Using the extension data, it is possible to give the Riemann–Hurwitz theorem for each of
our forms in [5, Corollary 1.2]. These depend only on information froma single parameter.

5.1 X3 − a, a ∈ K , p �= 3

Lemma 5.1 Let p �= 3. Let L/K be a purely cubic extension and y a primitive element of
L with minimal polynomial f (X) = X3 − a. Let p be a place of K and P a place of L over
p. Then precisely one of the following is true:

(1) d(P|p) = 0 if, and only if, e(P|p) = 1.
(2) d(P|p) = 2, otherwise. That is, e(P|p) = 3, which by Theorem 4.2 is equivalent to

(vp(a), 3) = 1.

Proof By Theorem 4.2, either e(P|p) = 1 or e(P|p) = 3.

(1) As the constant field k of K is perfect, all residue field extensions in L/K are auto-
matically separable. The result then follows from [13, Theorem 5.6.3].

(2) If e(P|p) = 3, then as p � 3, it follows again from [Theorem 5.6.3, Ibid.] that d(P|p) =
e(P|p) − 1 = 2. ��

We thus find the Riemann–Hurwitz formula as follows for purely cubic extensions when
the characteristic is not equal to 3, which resembles that of Kummer extensions, but no
assumption is made that the extension is Galois.

Theorem 5.2 (Riemann–Hurwitz I) Let p �= 3. Let L/K be a purely cubic geometric
extension, and y a primitive element of L with minimal polynomial f (X) = X3 − a. Then
the genus gL of L is given according to the formula

gL = 3gK − 2 +
∑

(vp(a),3)=1
dK (p).

Proof This follows from Lemma 5.3, [13, Theorem 9.4.2], and the fundamental identity
∑

eifi = [L : K ] = 3. ��

5.2 X3 − 3X − a, a ∈ K , p �= 3

Lemma 5.3 Let p �= 3. Let L/K be an impurely cubic extension and y a primitive element
of L with minimal polynomial f (X) = X3−3X −a. Let p be a place of K andP a place of L
over p. Let � = −27(a2 − 4) be the discriminant of f (X) and r ∈ K a root of the quadratic
resolvent R(X) = X2 + 3aX + (−27 + 9a2) of f (X). Then precisely one of the following is
true:

(1) d(P|p) = 0 if, and only if, e(P|p) = 1.
(2) If e(P|p) = 3, which by Theorem 4.4 is equivalent to vp(a) < 0 and (vp(a), 3) = 1,

then d(P|p) = 2.
(3) If e(P|p) = 2,
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(a) If p �= 2, by Theorem 4.4, this occurs precisely when � is not a square in K ,
a ≡ ±2 mod p, (vp(�), 2) = 1. In this case, 2 | vP(�) and d(P|p) = 1.

(b) If p = 2, by Theorem 4.4, this occurs when r /∈ K, a ≡ 0 mod p, there is wp ∈ K
such that vp(

(
1
a2 + 1 − w2

p + wp

)
, 2) = 1 and vp

(
1
a2 + 1 − w2

p + wp

)
< 0.

Also, in this case, there exists ηP ∈ L such that vP
(

1
a2 + 1 − η2P + ηP

)
≥ 0,

and we have for thisP that

d(P|p) = −vp
(

1
a2

+ 1 − w2
p + wp

)
+ 1.

Proof Let p be a place of K ,Pr a place of L(r) above p,P = Pr ∩ L, and pr = Pr ∩K (r).

(1) As the constant field k of K is perfect, all residue field extensions in L/F are auto-
matically separable. The result then follows from [13, Theorem 5.6.3].

(2) If e(P|p) = 3, then as p � 3, it follows again from [Theorem 5.6.3, Ibid.] that d(P|p) =
e(P|p) − 1 = 2.

(3) When e(P|p) = 2,

(a) if p �= 2, then by [Theorem 5.6.3, Ibid.], d(P|p) = e(P|p) − 1 = 1.
(b) ifp = 2, thenweworkon the towerL(r)/K (r)/K . If e(P|p) = 2, then e(pr |p) = 2,

e(Pr |pr) = 1 and e(Pr |P) = 1. As p = 2, the extension K (r)/K is Artin-
Schreier and is generated by an element α such that α2 − α = 1

a2 + 1. By
Artin-Schreier theory (see [11, Theorem 3.7.8]), as e(pr |p) = 2, there exists an
element wp ∈ K such that

(
vp

(
1
a2

+ 1 − w2
p + wp

)
, 2

)
= 1 and vp

(
1
a2

+ 1 − w2
p + wp

)
< 0.

In addition, since e(Pr |P) = 1, there exists ηP ∈ L such that

vP
(

1
a2

+ 1 − η2P + ηP

)
≥ 0.

By Artin-Schreier theory (see [11, Theorem 3.7.8]), we obtain

d(pr |p) = −vp
(

1
a2

+ 1 − w2
p + wp

)
+ 1.

By [13, Theorem 5.7.15], we then find by equating differential exponents in the
towers L(r)/K (r)/K and L(r)/L/K that

d(Pr |p) = d(Pr |P) + e(Pr |P)d(P|p) = d(Pr |pr) + e(Pr |pr)d(pr |p).
This implies that

d(P|p) = d(pr |p) = −vp
(

1
a2

+ 1 − w2
p + wp

)
+ 1,

as e(Pr |P) = e(Pr |pr) = 1 implies d(Pr |P) = d(Pr |pr) = 0. ��

We are now able to state and prove the Riemann–Hurwitz formulae for this cubic form.

Theorem 5.4 (Riemann–Hurwitz II) Let p �= 3. Let L/K be a cubic geometric extension
and y a primitive element of L with minimal polynomial f (X) = X3 − 3X − a. Let � =
−27(a2 − 4) be the discriminant of f (X) and r a root of the quadratic resolvent R(X) =
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X2 + 3aX + (−27 + 9a2) of the cubic polynomial X3 − 3X − a in K . Then the genus gL of
L is given according to the formula

(1) If p �= 2, then

gL = 3gK − 2 + 1
2

∑

p∈S
dK (p) +

∑

vp(a)<0
(vp(a),3)=1

dK (p).

where S is the set of places of K such that both a ≡ ±2 mod p and vp(�, 2) = 1.
Moreover, � is a square in K up to a unit if, and only if, the set S is empty.

(2) If p = 2, then

gL = 3gK − 2 + 1
2

∑

p∈S

[
−vp

(
1
a

+ 1 − w2
p + wp

)
+ 1

]
dK (p) +

∑

vp(a)<0
(vp(a),3)=1

dK (p),

where S is the set of places of K such that both a ≡ 0 mod p and there exists wp ∈ K
such that vp

( 1
a + 1 − w2

p + wp

)
< 0 and (vp

( 1
a + 1 − w2

p + wp

)
, 2) = 1. Moreover,

if r ∈ K (hence the extension L/K is Galois), then the set S is empty.

Proof (1) By [13, Theorem 9.4.2], the term associated with a placeP of L in the different
DL/F contributes 1

2dL(P)d(P|p) to the genus of L, where p is the place of K belowP,
dL(P) is the degree of the placeP, and d(P|p) is the differential exponent ofP|p. By
the fundamental identity

∑
i eifi = [L : K ] = 3 for ramification indices ei and inertia

degrees fi of all places of L above p, we always have that fi = 1 whenever p ramifies
in L (fully or partially). Thus from Lemma 5.3, it follows that d(P|p) = 2 if p is fully
ramified, whereas d(P|p) = 1 if p is partially ramified. The result then follows by
reading off [Theorem 9.4.2, Ibid.] and using the conditions of Lemma 5.3.

(2) This follows in a manner similar to part (1) of this theorem, via Lemma 5.3 for p = 2.

We obtain directly the following corollary when the extension L/K is Galois.

Corollary 5.5 Let p �= 3. Let L/K be a Galois cubic geometric extension and y a primitive
element of L with minimal polynomial f (X) = X3 − 3X −a. Then the genus gL of L is given
according to the formula

gL = 3gK − 2 +
∑

vp(a)<0
(vp(a),3)=1

dK (p).

5.3 X3 + aX + a2, a ∈ K , p = 3

Lemma 5.6 Suppose that p = 3. Let L/K be a separable cubic extension and y a primitive
element with minimal polynomial X3 + aX + a2. Let p be a place of K andP a place of L
above p. Then precisely one of the following is true:

(1) d(P|p) = 0 if, and only if, e(P|p) = 1.
(2) When e(P|p) = 3, by Theorem 4.11, there is wp ∈ K such that vp(αp) < 0 and

(vp(αp), 3) = 1 with

αp = (ja2 + (w3
p + awp))2

a3
.

Then d(P|p) = −vp(αp) + 2.
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(3) d(P|p) = 1 whenever e(P|p) = 2. Moreover, by Lemma 4.11, when e(P|p) = 2, there
is generator zp such that z3p + cpzp + c2p = 0 and vp(cp) ≥ 0 and (vp(cp), 2) = 1.

Proof Let b ∈ K such that b2 = −a, p be a place of K , Pb be a place of L(b) above p,
pb = Pb ∩ K (b),P = Pb ∩ L.

(1) This is an immediate consequence of [13, Theorem 5.6.3].
(2) Suppose that p is ramified in L, whence pb is ramified in L(b). Moreover, by Theo-

rem 4.11, there exists wp ∈ K such that vp(αp) < 0 and (vp(αp), 3) = 1, where

αp = (ja2 + (w3
p + awp))2

a3
,

and furthermore, there exists a generator zp of L such that z3p + αpzp + α2
p = 0.

Again by [Theorem 5.6.3, Ibid.], the differential exponent d(pb|p) = d(Pb|P) of p
over K (b) (resp.P over L(b)) is equal to

(a) 1 if p is ramified in K (b), whence e(pb|p) = e(Pb|P) = 2, and
(b) 0 if p is unramified in K (b), whence e(pb|p) = e(Pb|P) = 1.

By [1, Theorem 2.3], L(b)/K (b) is Galois and −αp is a square in K (b). We write
−αp = β2

p. Moreover, wp = zp
βp

and w3
p − wp − βp = 0. Moreover,

vpb (βp) = vpb (αp)
2

= e(pb|p)vp(αp)
2

with e(pb|p) = 2 or 1, depending on whether p is ramified or not in K (b). Also,
vpb (βp) = vp(αp) when p is ramified in K (b), whereas vpb (βp) = vp(αp)

2 when
p is unramified in K (b) (note that in this case 2|vp(αp)). Thus vpb (βp) < 0 and
(vpb (βp), 3) = 1 and by [11, Theorem 3.7.8], we also have that the differential expo-
nent d(Pb|pb) of pb in L(b) satisfies

d(Pb|pb) = 2(−vp(βp) + 1).

By [13, Theorem 5.7.15], the differential exponent of p in L(b) satisfies

d(Pb|p) = d(Pb|pb) + e(Pb|pb)d(pb|p) = d(Pb|P) + e(Pb|P)d(P|p).
Thus,

(a) if p is ramified in K (b) = K (βp), that is, (vp(αp), 2) = 1 by [11, Proposition
3.7.3], then 2(−vp(αp) + 1) + 3 = 1 + 2d(P|p) and

d(P|p) = −vp(αp) + 2,

whereas
(b) if p is unramified in K (b), that is, 2|vp(αp) again by [11, Proposition 3.7.3], then

also

d(P|p) = 2
(

−vp(αp)
2

+ 1
)

= −vp(αp) + 2.

(3) This is immediate from Theorem 4.11 and [13, Theorem 5.6.3], via application of
the same method as in Lemma 5.3 (3). ��
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Finally, we use this to conclude the Riemann–Hurwitz formulae for cubic extensions in
characteristic 3.

Theorem 5.7 (Riemann–Hurwitz III) Suppose that p = 3. Let L/K be a separable cubic
extension and y a primitive element with minimal polynomial X3 + aX + a2. Then the
genus gL of L is given according to the formula

gL = 3gK − 2 + 1
2

∑

p∈S

(−vp(αp) + 2
)
dK (p) + 1

2
∑

p∈T
dK (p),

where

(1) S is the set of places of K for which there exists wp ∈ K such that vp(αp) < 0,
(vp(αp), 3) = 1 with

αp = (ja2 + (w3
p + awp))2

a3
,

and
(2) T is the set of places of K for which there is generator zp such that z3p + cpzp + c2p = 0,

vp(cp) ≥ 0 and (vp(cp), 2) = 1.

Proof This follows from Lemma 5.6, [13, Theorem 9.4.2], and the fundamental identity
∑

eifi = [L : K ] = 3. ��
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