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a b s t r a c t 

Habitat heterogeneity can have profound effects on the spreading dynamics of invasive species. Using 

integro-difference equations, we investigate the spreading dynamics in a one-dimensional heterogeneous 

landscape comprising alternating favourable and unfavourable habitat patches or randomly generated 

habitat patches with given spatial autocorrelation. We assume that population growth and dispersal (in- 

cluding emigration probability and dispersal distance) are dependent on habitat quality. We derived an 

approximation of the rate of spread in such heterogeneous landscapes, suggesting the sensitivity of spread 

to the periodic length of the alternating favourable and unfavourable patches, as well as their spatial au- 

tocorrelation. A dispersal-limited population tends to spread faster in landscapes with shorter periodic 

length. The spreading dynamics in a heterogeneous landscape was found to be not only dependent on 

the availability of favourable habitats, but also the dispersal strategy. Estimates of time lag before de- 

tection and the condition for boom-and-bust spreading dynamics were explained. Furthermore, rates of 

spread in heterogeneous landscapes and corresponding homogeneous landscapes were compared, using 

weighted sums of vital rates. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

Landscape heterogeneity can affect the behaviour of biological

nvasions at different stages, especially when established species

tart to become invasive and spread into heterogeneous landscapes

1–3] . Empirical investigations have suggested that the spatial het-

rogeneity of landscapes can influence the rate of spread of

nvasive species [4] as demography and dispersal are both context

ased (i.e. sensitive to spatial heterogeneity) [1,5] . While many

obust estimates of the asymptotic rate of spread on homoge-

eous landscapes have been formulated [6] , the effects of spatial

eterogeneity on the spreading dynamics of species with habi-

at sensitive demography and dispersal demand more attention

7,8] . 

Invasion dynamics in heterogeneous landscapes has long been

heoretically explored using continuous time frameworks such

s partial differential equations. In particular, Shigesada et al.

9] simulate spatial heterogeneity by alternating homogeneously

avourable and unfavourable habitat patches on an infinite one-

imensional environment, with the growth rate and diffusion co-
∗ Corresponding author at: Mathematical and Physical Biosciences, African Insti- 
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fficient assumed as periodic step functions of locations. It empha-

ises the effect of the lengths of periodically alternating favourable

nd unfavourable patches on the rate of spread. In contrast,

inezaki et al. [10] consider the effect of spatial heterogeneity by

llowing vital rates to vary sinusoidally in space, representing a

ontinuous change in habitat quality. It emphasises the role of

oth the amplitude and periodic length of habitat heterogeneity

n the rate of spread. In both models, when the periodic length of

lternating habitat quality is short, the initial population will prop-

gate from the introduction point into periodic travelling waves,

ith the rate of spread being c = 2 
√ 〈 r〉 A 〈 D 〉 H , where 〈 r 〉 A and

 D 〉 H denote the spatial arithmetic mean of the growth rate and

he spatial harmonic mean of the diffusion coefficient, respectively.

When the focal species does not follow a diffusion-type move-

ent, integrodifference equations (IDEs) are commonly used for

odelling the spatiotemporal dynamics of biological invasions

11] . For instance, Kawasaki and Shigesada [7] have examined

he spreading dynamics with an exponentially damping (Laplace)

ispersal kernel in a patchy landscape with alternating favourable

nd unfavourable patches, while assuming that dispersal is insen-

itive to habitat heterogeneity. They found that the presence of

nfavourable patches can dramatically reduce the rate of spread,

lthough the population can always spread with wide enough

avourable habitats. Dewhirst and Lutscher [8] expanded this

http://dx.doi.org/10.1016/j.mbs.2016.02.013
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Fig. 1. (A) Travelling periodic waves in a heterogeneous landscape. Dashed black 

line represents the periodic steady state of the model. Solid black and grey lines 

indicate the population size at time t = 15 and t = 25 respectively. Hatched region 

indicate unfavourable patches. (B) Population range front for the initial population 

introduced in favourable (solid line) and unfavourable (dashed line) locations. While 

the former started to spread immediately, the population introduced into an un- 

favourable habitat experienced a lag between the introduction and detected spread. 

Parameter values are p = 0.5, R 1 = e , R 2 = e −0.5 , d 1 = 0.75, d 2 = 1, σ 1 
2 = 1, σ 2 

2 = 1. 

k  

h

 

t  

i  

t  

[  

f  

a  

c  

g  

b  

u  

0  

i

d

3

3

 

g  

h  

e  

(  

p  

t  

f  

u  

f  

p  

p

 

t  

t  

u  

r  

d  

t  

f  

c  

d  

f  

N  

u  

m  

i  
model by considering habitat dependent dispersal behaviours,

with individuals from unfavourable habitats dispersing farther

in an attempt to find favourable habitats. These works put the

emphasis on the existence of a minimum proportion of favourable

habitats for successful invasions and spread. Gilbert et al. [12]

further consider the effects of the landscape periods on the spread

of a structured population. 

We here formulate the spread of a species with non-

overlapping generations in a heterogeneous patchy landscape

as defined by Shigesada et al. [9] . Besides assuming a habitat-

dependent population growth, dispersal behaviours are further

affected by habitat quality in the following two ways. First, the

dispersal distance of migrating individuals is dependent on the

habitat quality, with individuals from unfavourable locations dis-

persing farther for locating favourable habitats [13,14] . Second, only

a fraction of the local population emigrates (defined as emigration

probability) while others remain sedentary - the number being

dependent on habitat quality. We also perform numerical simula-

tions to investigate the instantaneous rate of spread, and derive an

estimate for the asymptotic rate of spread in randomly generated

patchy landscapes with different levels of spatial autocorrelation. 

2. Model 

We consider a population with non-overlapping generations un-

dergoing growth and dispersal at separate times, using integrodif-

ference equations (IDEs). With the vital rates affected by spatial

heterogeneity, we have the following IDE model, 

u (x, t + 1) = 

∫ 
[ d(y ) k (x − y, y ) + (1 − d(y )) δ(x − y )] 

×g(u (y, t) , y ) dy, (1)

where u ( x,t ) denotes the population size at location x and time t .

The function g gives the population growth (more specifically, fe-

cundity in species with non-overlapping generations). It is a non-

negative function satisfying density dependent recruitment, g ( u,

x ) ≤ R ( x ) with R (x ) = ∂ g/∂ u | u =0 being the intrinsic growth rate

at location x . In the Ricker (1954) model, we have g(u (x, t) , x ) =
u e r(x ) −u (x,t) and R (x ) = e r(x ) . 

We considered two factors in formulating the habitat depen-

dent dispersal strategy [14,15] . First, the dispersal kernel k in

Eq. (1 ) gives the probability distribution that an individual from lo-

cation y disperses to location x . The dispersal distance effectuated

by an individual during a dispersal event can be influenced by the

habitat quality [13,14] . That is, k ( x – y,y ) not only depends on the

distance between location x and y but also the habitat quality of

the originating location y . For instance, a Gaussian dispersal kernel

is thus 

k (x − y, y ) = (1 / 
√ 

2 πσ 2 (y ) ) exp (−(x − y ) 2 / (2 σ 2 (y ))) , 

and a Laplace dispersal kernel 

k (x − y, y ) = (1 / 
√ 

2 σ 2 (y ) ) exp (−
√ 

2 | x − y | / 
√ 

2 σ 2 (y ) ) . 

Second, spatial heterogeneity can also influence the probability,

d ( y ), of an individual emigrating from its original location y to

other patches, often following a ‘good-stay, bad-disperse’ rule [5] .

Therefore, 1 − d(y ) gives the proportion of individuals remaining

sedentary, with δ(x − y ) in Eq. (1 ) being 1 if x = y and 0 otherwise.

Here we focused on periodically alternating habitats of

favourable and unfavourable patches, with lengths L 1 and L 2 ,

respectively [7,9] . The habitat was laid out with a periodic length

of L ( = L 1 + L 2 ) and a proportion of p ( = L 1 / L 2 ) favourable habitats

in the landscape. The intrinsic growth rate R ( x ) is given by R 1 ( > 1

to ensure population growing) in favourable habitats and R 2 ( > 0)

in unfavourable habitats. Similarly, we also defined the emigration

probability, d ( x ), being d and d , and the variation of dispersal
1 2 
ernel, σ 2 ( x ), being σ 2 
1 

and σ 2 
2 

in favourable and unfavourable

abitats, respectively. 

To study the dynamics of the above IDE model, we first inves-

igate its non-trivial steady states by replacing u ( x,t + 1) and u ( y,t )

n Eq. (1 ) with v ( x ) and v ( y ), and numerically solving the equa-

ion using the routine optimize.fsolve in the Python library SciPy

16] . To investigate the spreading dynamics, we ran the model

or 100 generations and calculated the population range at time t

s x ∗(t) = max { x ; u (x, t) ≥ u ∗} for a threshold of detection u ∗. The

orresponding instantaneous and average rate of spread can be

iven as c I (t) = x ∗(t + 1) − x ∗(t ) and c A (t ) = x ∗(t ) /t . The time lag

efore range expansion is defined as the first time when the pop-

lation was detected after its introduction, T ( u ∗) = min { t ; x ∗(t ) >

 } . The spreading dynamics was also compared with the dynamics

n homogenous landscape with normalised vital rates (e.g. d = p ·
 1 +( 1 – p ) d 2 ). 

. Results 

.1. General behaviour 

The model exhibited a periodic steady state, with obvious

aps between the population sizes in favourable and unfavourable

abitats ( Fig. 1 A). The gap size is more sensitive to changes in

migration probability ( d ) than to changes in dispersal distance

 σ 2 ), with even higher sensitivity observed when increasing dis-

ersal probability from favourable habitats than when increasing

he same factor in unfavourable ones. When the proportion of

avourable habitats ( p ) increased, population sizes remained largely

nchanged in favourable habitats whilst population sizes in un-

avourable habitats increased notably. Similarly, increasing only the

eriodic length of spatial heterogeneity ( L ) notably reduced the

opulations in unfavourable habitats. 

Unless the population eventually became extinct, it was found

o expand its range in both directions from the introduction loca-

ion, in the form of a periodic travelling wave (i.e. u (x + L ; t + t ′ ) =
 (x ; t) for some t ′ > 0) ( Fig. 1 A). (We note that Fig. 1 and the

emaining figures in this section were obtained using Gaussian

ispersal kernel) A time lag was often observed before the de-

ection of the population after its initial introduction in an un-

avourable patch ( Fig. 1 B). The time lag can be shortened by in-

reasing the initial population size or the vital rates (growth and

ispersal rates). Time lags on the other hand can be prolonged

or larger thresholds of detection or wider unfavourable patches.

onetheless, the spreading dynamics remained the same for pop-

lations in landscapes with different periodic lengths but a com-

on proportion of favourable habitats ( p ), regardless of whether

t was initially introduced into a favourable or unfavourable patch.
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Fig. 2. Instantaneous rate and average rate of spread associated to a periodic length 

of habitat L = 10. Other parameter values are R 1 = e , R 2 = e −0.5 , d 1 = 0.75, d 2 = 1, 

σ 1 
2 = 1, σ 2 

2 = 1. The instantaneous rates of spread are shown by the grey area. 
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Fig. 3. Estimated and computed rate of spread for 300 set of parameter values. In 

the simulations, the period of environmental variation is L = 1, the threshold of de- 

tection is 0.01 and local populations that fall below 10 −16 were considered extinct. 

Other parameter values were randomly generated with the restrictions 0 < p < 1, 

1 < R 1 < 2, 0 < R 2 < 1, 0 < d 1 , d 2 < 1 and 0 < , σ 1 
2 , σ 2 

2 < 5.The points that lie on the 

x-axis correspond to parameter values for which the population spreads but re- 

mained a low density (less than the threshold of detection). 

Fig. 4. The range front for given proportion of suitable habitat, p = 0.05, 0.1 (un- 

successful invasions), 0.5 and 0.75 (successful invasions). Parameter values are 

R 1 = e 0.25 , R 2 = e −0.25 , d 1 = 0.75, d 2 = 1, σ 1 
2 = 1, σ 2 

2 = 0.5. The threshold of detec- 

tion is 10 −6 . 
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s such, the following analysis was done for populations initially

ntroduced in a favourable patch. 

.2. Instantaneous and average rate of spread 

With the increase of periodic length ( L ), the magnitude of fluc-

uation of the instantaneous rate of spread increased, although the

verage rate of spread was less sensitive to the changes of periodic

ength in the landscape ( Fig. 2 ). 

Let M 1 ( λ) and M 2 ( λ) denote the moment generating function of

he dispersal kernels k 1 and k 2 respectively and 

(λ) = 

(
p d 1 M 1 (λ) R 1 + (1 − d 1 ) R 1 p d 2 M 2 (λ) R 2 

(1 − p) d 1 M 1 (λ) R 1 (1 − p) d 2 M 2 (λ) R 2 + (1 − d 2 ) R 2 

)
. 

As derived in Appendix , the asymptotic rate can be approxi-

ated by 

 

∗ = min 

λ
c(λ) (2) 

here 

(λ) = 

1 

λ
Log 

(
1 

2 

(
T r(M(λ)) + 

√ 

T r (M(λ)) 
2 − 4 Det(M(λ)) 

))
nd Tr ( M ( λ)) and Det ( M ( λ)) indicate the trace and determinant

f the matrix M ( λ). In particular, when the emigration probabili-

ies d 1 =d 2 =1, we obtain the relation established by Dewhirst and

utscher (2009) 

 

∗ = min 

λ

1 

λ
ln ( p M 1 (λ) R 1 + (1 − p) M 2 (λ) R 2 ) . 

The accuracy of the estimation in Eq. (2 ) is further supported

y Fig. 3 A, where the minimisation in Eq. (2 ) was performed using

he function Minimize in Mathematica 10.0. 

Understanding the dependence of the invasion conditions and

he rate of spread on the vital rates can be challenging due to the

onlinear and implicit nature of Eq. (2 ). To obtain a more explicit

ependence of the rate of spread on the vital rates, let 

ˆ R = p d 1 R 1 + (1 − p) d 2 R 2 + (1 − d 1 ) R 1 + (1 − d 2 ) R 2 

˜ R = 

√ 

ˆ R 

2 − 4 ( 1 − (1 − p) d 1 − p d 2 ) R 1 R 2 

R̄ = 

1 

2 

(
ˆ R + 

˜ R 

)
¯
 

2 = 

1 

2 

(
p d 1 R 1 σ

2 
1 + (1 − p) d 2 R 2 σ

2 
2 

)
ˆ 
 

2 = 2 

(
p(1 − d 2 ) d 1 σ

2 
1 + (1 − p)(1 − d 1 ) d 2 σ

2 
2 

)
R 1 R 2 

˜ 
 

2 = 2 ̂

 R ̄C 2 + 

ˆ C 2 

The rate of spread can be approximated (see Appendix) by 

 ≈
√ 

2 ̄C 2 + 

˜ C 2 

˜ R 

√ 

Log( ̄R ) 

R̄ 

. (4) 
Fig. 3 suggests that Eq. (4 ) provides a good approximation of

he rate of spread derived in Eq. (2 ). Furthermore, the population

an spread whenever R̄ > 1 (Fig. 4) and the invasion condition can

e reduced to 

p d 1 R 1 + (1 − d 1 ) R 1 + (1 − p) d 2 R 2 + (1 − d 2 ) R 2 

−(1 − (1 − p) d1 − pd2) R 1 R 2 > 1 . (5) 

With the increase of growth rates ( R 1 and R 2 ) and the variance

f the dispersal kernels ( σ 2 
1 and σ 2 

2 ), the rate of spread will

ncrease . However, the dependence of the rate of spread on the

migration probabilities ( d 1 and d 2 ) is less evident. We thus con-

ucted a sensitivity test for the rate of spread as a function of d 1 
nd d 2 under different proportions of favourable habitats p ( Fig. 5 ).

irst, the rate of spread increased with the dispersal probability

rom unfavourable habitats d 2 . Second, when d 1 < d ∗
1 

(emigration

robability in favourable habitats less than some threshold d ∗1 ),
ncreasing d 1 will speed up the spread. Increasing d 1 beyond this

hreshold however could potentially slow down the spread or

ven results in the extinction of the population especially when

he proportion of favourable habitat is low. High emigration from
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Fig. 5. The rate of spread as a function of the emigration probability d 1 from 

favourable habitats and the emigration probability d 2 from unfavourable habitats for 

(A) p = 0.25 and (B) 0.75. Other parameter values are R 1 = e 0.1 , R 2 = e −0.5 , σ 1 
2 = 1, 

σ 2 
2 = 1. The white area corresponds to parameter values for population extinction. 

Fig. 6. The maximal emigration probability from favourable habitats that will lead 

to successful invasion as a function of the proportion of favourable habitats and 

the growth rate in unfavourable habitats. Other parameter values are R 1 = e 0.1 , 

R 2 = e −0.5 , σ 1 
2 = 1, σ 2 

2 = 1 and d 2 = 1. The white area corresponds to parameter 

values for which the invasion will be successful regardless of the emigration from 

favourable habitats. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The rate of spread as a function of the periodic length of alternating 

favourable and unfavourable patches. In the simulation, the total length of the habi- 

tat is 150, and the periodic length L varies from 1/50 to 1/4 of the total length at a 

step of 0.02. Growth parameters are R 1 = e 2 and R 2 = e −0.5 . Black solid line: p = 0.5, 

d 1 = 0.5, d 2 = 1, σ 1 
2 = σ 2 

2 = 1. Dashed line: p = 0.5, d 1 = 0.5, d 2 = 1, σ 1 
2 = 2, σ 2 

2 = 1. 

Dotted line: p = 0.5, d 1 = 0.5, d 2 = 1, σ 1 
2 = σ 2 

2 = 2. Grey line: p = 0.75, d 1 = 0.75, 

d 2 = 1, σ 1 
2 = σ 2 

2 = 2. 
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unfavourable habitats plus a moderate level of emigration from

favourable habitats are the key to fast spread ( Fig. 5 ). 

The maximal emigration probability from favourable habitats

that will lead to a successful spread can be obtained by solving

Eq. (5 ) for d 1 . Fig. 6 suggests that emigration from favourable habi-

tats can lead of extinction of the population when the proportion

of favourable habitat and the growth rates in unfavourable habitats

are low. 

Using the algorithm of Fang and Tacher [17] for generating

landscapes with spatial autocorrelation ( I ) ranging from 0 and 1,

we examined how the spatial arrangement of these favourable

and unfavourable patches ( L 1 = L 2 = 0.1) for a given proportion of

favourable habitat p affected the rate of spread. The mean asymp-

totic rate of spread from 15 simulations for each pair of p and

I showed no sensitivity to the change of spatial autocorrelation.

However, the periodic length of the habitat ( L ) for regular spac-

ing did show a decline of spreading rate with increasing periodic

length ( Fig. 7 ). 

4. Discussion 

There have been different models that address the spread of

species in spatially heterogeneous environments. In the case of

continuous models using partial differential equations, Shigesada

et al. [9] and Kinezaki et al. [10] have shown that the asymp-

totic rate of spread in a periodic patchy environment depends only

on the space average growth rate and dispersal rate. Most spread
odels, in particular models in heterogeneous environments, have

ocused on different responses of growth and dispersal distances to

abitat quality [7,8] . The influence of dispersal (emigration) proba-

ility in turn has received only little attention. Here, we have de-

ived an approximation of the asymptotic rate of spread using the

DEs. Lower and upper bounds of the spreading rate ( Eq. 2 ), as

ell as its dependence on the growth and dispersal parameters,

re consistent with the results from [7] where only the growth

ate varies spatially. It also corroborates with the results from [8]

here both the growth rate and the dispersal kernel are location-

ependent but with the dispersal probability ( d ) being constant. 

Habitat destruction normally includes two components, namely

he overall loss of favourable habitats (p ↓ ) and the fragmentation

f habitat patches (L ↓ ) [12,18,19] . Previous studies suggest that the

ate of many species is more sensitive to habitat loss. Although

he habitat dependent emigration probability implies that part of

he local populations may remain sedentary during the dispersal

hase, these sedentary individuals can help to boost up the spread

f the population. Especially when only a small proportion of the

andscape is favourable for population growth ( Fig. 5 A), the rate

f spread will be accelerated by having small emigration probabil-

ty from favourable patches but decelerated by having a high em-

gration rate. When the proportion of favourable habitats is low,

he majority of local populations are open to extinction. Emigrants

rom the rare favourable habitats therefore act to rescue these pop-

lations from extinction and thus facilitate the range expansion

20,21] . 

Our results further confirmed Fahrig’s speculation [14] that a

igh emigration probability does not always have a positive influ-

nce on the population dynamics (see also [22–24] ). The rescue

ffect can sustain the range expansion only when the emigration

robabilities from the favourable as well as unfavourable habitats

re balanced [25,26] .When only a small proportion of the habitat is

avourable for the growth, low emigration from favourable patches

ay not suffice to rescue populations in unfavourable patches from

xtinction. High emigration from favourable patches alone, on the

ther hand, can lead to the decline of rescuing individuals and

ield a slower spread or even the extinction of the population fol-

owing a boom-and-bust phenomenon. A minimal proportion of

avourable habitat or maximal emigration from favourable habitats

an be derived from the invasion condition (Eq. (6)) to ensure the

ersistence of the population. This invasion condition depends, not

nly on the growth parameters, but also the emigration probabil-

ty of the population. The resulted boom-and-bust phenomenon is
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articularly important in invasion ecology, analogous to the con-

ept of the rescue effect and extinction debt in the metapopula-

ion literature [21,25] . Although local populations in unfavourable

atches are doomed to extinction, the invasion can be successful

s immigrants from favourable patches are likely to rescue popula-

ions in unfavourable patches from extinction (rescue effect). 

In addition to the dependence on the availability of favourable

abitats, the actual size of the favourable and unfavourable patches

lso affects the spread of a population [27,28] . Different studies

ave speculated a minimal patch size that constitutes an extinction

hreshold for an isolated population [29,30] . Our results further

uggest that the spread of a population can decelerate with habi-

at fragmentation, more notably in species with lower emigration

robability or dispersal distance ( Fig. 7 ) [12,31] . This effect of habi-

at fragmentation has potentially prevented the effective control of

est species by their natural enemies [32,33] . In this context, the

urrent study, in particular the approximation of the rate of spread

an be used as a baseline to find the optimal management strategy

f the level of habitat fragmentation as to promote the spread of

he natural enemy for effectively controlling the pest population. 

Finally, this work focused on the spread of a population in

wo types of habitats (which we referred to as favourable and un-

avourable habitats). It is worth to note that the rate of spread in

n environment with more habitat qualities could be derived by

sing the appropriate form of the matrix M( λ). Namely, if the en-

ironment consists of alternating habitats characterised by ( R i , d i ,

i ) with proportion p i with p 1 + p 2 + ��� + p n = 1, ( i = 1, 2, …, n ), the

atrix M ( λ) is given by 

(λ) = 

⎛ 

⎜ ⎜ ⎝ 

p 1 d 1 M 1 (λ) R 1 + (1 − d 1 ) R 1 p 1 d 2 M 2 (λ) R 2 

p 2 d 1 M 1 (λ) R 1 p 2 d 2 M 2 (λ) R 2 + (1 − d 2 ) R
. . . 

p n d 1 M 1 (λ) R 1 p n d 2 M 2 (λ) R 2 
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ppendix A. Derivation of the invasion condition and the 

symptotic rate of spread 

The asymptotic rate of spread is derived hereafter. The main re-

ults are given in Eq. (A7) and Eq. (A9) . First, we assume that the

opulation is small at the front of the invasion and consider the

inearisation of Eq. (1) : 

 (x ; t + 1) = 

∫ 
[ d(y ) k (x − y ; y ) + δ(x, y )(1 − d(y ))] 

×R (y ) u (y ; t) dy. (A1) 

We recall that g ( u ; x ) ≤ R ( x ) u ; i.e. the population size is

ounded by the linearisation. In what follows, we use heuristic
· · · p 1 d n M n (λ) R n 

. . . 

· · · p n d n M n (λ) R n + (1 − d n ) R n 

⎞ 

⎟ ⎟ ⎠ 

ethods to find an approximation of the rate of spread of the pop-

lation governed by Eq. (A1 ). 

Motivated by the periodicity of the growth and dispersal pa-

ameters on one hand, and numerical observations on the other,

e assume that when the population does not eventually become

xtinct, it evolves into a travelling periodic wave (Kinezaki et al.

006, See also Fig. 1 B). In other words, there exists a number t ′ >
such that u (x + L ; t + t ′ ) = u (x ; t) . The speed of the travelling peri-

dic wave is defined by 

 = 

L 

t ′ . (A2) 

Here, we seek solutions of the form 

 (x ; t) = e λ(x + c(λ) t) v (x ) , (A3)

or some λ > 0, where v is periodic in the space variable ( x ) with

he same period as the habitat ( v (x + L ) = v (x ) ) and v ( x ) ≥ 0. In-

erting Eq. (A3 ) into Eq. (A1 ) and using the fact that d, r and v are

eriodic, we have 

 

λc(λ) v (x ) = 

+ ∞ ∑ 

n = −∞ 

∫ L 

0 

d(y ) k (x − y − nL, y ) e λ(x −y −nL ) R (y ) v (y ) dy 

+(1 − d(x )) R (x ) v (x ) . 

For exponentially bounded dispersal kernel, we can invert the

rder of the summation and integration and obtain the following, 

 

λc(λ) v (x ) = 

∫ L 

0 

[ + ∞ ∑ 

n = −∞ 

k (x − y − nL, y ) e λ(x −y −nL ) 

]
×d(y ) v R (y )(y ) dy + (1 − d(x )) R (x ) v (x ) . 

For a sufficiently small L , we can use the approximation 

+ ∞ ∑ 

 = −∞ 

k (x − y − nL, y ) e λ(x −y −nL ) = 

1 

L 
M(λ, y ) 

hen x and y are fixed, where M is the moment generating func-

ion of the dispersal kernel at the location y and is given by 

(λ, y ) = 

∫ 
k (z, y ) e λz dz. 

We deduce that 

 

λc(λ) v (x ) = 

1 

L 

∫ L 

0 

M(λ, y ) d(y ) R (y ) v (y ) dy + (1 − d(x )) R (x ) v (x ) 

(A4) 

or 0 ≤ x ≤ L . 

Integrating Eq. (A4 ) with respect to x from 0 to pL and from pL

o L respectively we have 

 

λc(λ) 

∫ pL 

0 

v (x ) dx = pL 
1 

L 

[
d 1 M 1 (λ) R 1 

∫ pL 

0 

v (y ) dy + d 2 M 2 (λ) R 2 

∫ L 

pL 

v (y ) dy 

]

+(1 − d 1 ) R 1 

∫ pL 

0 

v (x ) dx 

e λc(λ) 

∫ L 

pL 

v (x ) dx = (1 − p) L 
1 

L 

[
d 1 M 1 (λ) R 1 

∫ pL 

0 

v (y ) dy + d 2 M 2 (λ) R 2 

∫ L 

pL 

v (y ) dy 

]

+(1 − d 2 ) R 2 

∫ L 

pL 

v (x ) dx 

http://dx.doi.org/10.13039/501100001321
http://dx.doi.org/10.13039/501100000923
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By setting 

 1 = 

∫ pL 

0 

v (x ) dx and V 2 = 

∫ L 

pL 

v (x ) dx 

We have 

e λc(λ) V 1 = p [ d 1 M 1 (λ) R 1 V 1 + d 2 M 2 (λ) R 2 V 2 ] + (1 − d 1 ) R 1 V 1 

e λc(λ) V 2 = (1 − p) [ d 1 M 1 (λ) R 1 V 1 + d 2 M 2 (λ) R 2 V 2 ] + (1 − d 2 ) R 2 V 2 . (A5)

From Eq. (A5 ), we deduce that e λc( λ) is an eigenvalue of the ma-

trix 

M = 

(
p d 1 M 1 (λ) R 1 + (1 − d 1 ) R 1 p d 2 M 2 (λ) R 2 

(1 − p) d 1 M 1 (λ) R 1 (1 − p) d 2 M 2 (λ) R 2 + (1 − d 2 ) R 2 

)
, 

(A6)

associated with the positive eigenvector ( V 1 , V 2 ) 
T . By definition

of the moment generating functions, the matrix M is positive

whenever the vital parameters are positive. We deduce using the

Perron–Frobenius theorem and by noting that Tr ( M ) 2 – 4 Det ( M ) > 0,

that e λc ( λ) is the largest eigenvalue of the matrix M , that is 

e λc(λ) = ρ(λ) , with ρ(λ) = 

1 

2 

(
T r(M) + 

√ 

T r (M) 
2 − 4 Det(M) 

)
and 

c(λ) = 

1 

λ
Log [ ρ(λ) ] . 

Each wave shape λ is associated with a solution of the form in

Eq. (A3 ). The spread of the periodic travelling wave is given by 

c ∗ = min 

λ
c(λ) . (A7)

For different dispersal kernels, the rate of spread can be ob-

tained by solving the nonlinear system 

c ∗ = 

1 

λ∗ Log [ ρ( λ∗) ] and c ∗ = 

ρ ′ ( λ∗) 
ρ( λ∗) 

for the wave shape λ∗ and the corresponding wave speed c ∗. 

However, to have a more explicit dependence of the rate of

spread on the vital rates , we consider the second order expansion

of ρ( λ) around 0, and use the approximation of c ( λ) 

c 2 (λ) = 

1 

λ

( 

Log( ̄R ) + 

C̄ + 

˜ C 

2 ̃ R 

2 ̄R 

λ2 

) 

(A8)

with 

ˆ R = p d 1 R 1 + (1 − p) d 2 R 2 + (1 − d 1 ) R 1 + (1 − d 2 ) R 2 

˜ R = 

√ 

ˆ R 

2 − 4 ( 1 − (1 − p) d 1 − p d 2 ) R 1 R 2 

R̄ = 

1 

2 

(
ˆ R + 

˜ R 

)
¯
 

2 = 

1 

2 

(
p d 1 R 1 σ

2 
1 + (1 − p) d 2 R 2 σ

2 
2 

)
ˆ 
 

2 = 2 

(
p(1 − d 2 ) d 1 σ

2 
1 + (1 − p)(1 − d 1 ) d 2 σ

2 
2 

)
R 1 R 2 

˜ 
 

2 = 2 ̂

 R ̄C 2 + 

ˆ C 2 

From Eq. (A8 ), the rate of spread can be approximated by 

c ∗ ≈ min 

λ
c 2 (λ) = 

√ 

2 ̄C 2 + 

˜ C 2 

˜ R 

√ 

Log( ̄R ) 

R̄ 

. (A9)
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