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Abstract—Epidemic is considered as one of the primary causes of 
species extinction, especially it also can induce populations 
suffering from Allee effect. Using ordinary differential equation 
and lattice model, we here explored the epidemic transmission in 
a predator-prey system. Numerical simulation indicated that the 
Allee effect can both destabilize and stabilize the system: a 
moderate Allee effect will destabilize the dynamics, but it is not 
true for the extreme Allee effect (weak or strong). Moreover, we 
have pointed out that the infection rate was key to determine the 
temporal transmission of disease. Through the join-count 
statistics method, results showed that the spatial structure of 
disease is influenced dramatically by the Allee effect and 
ecological neighborhood. These results are new to eco-
epidemiology and imply a possibility of restricting disease 
diffusion range to control the spread of epidemics in the 
ecological system. 
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I.  INTRODUCTION 
Eco-epidemiology is a new branch in mathematical biology 

which considers both the ecological and epidemiological issues 
simultaneously [1]. Since [2] modeled firstly a disease 
spreading among interacting populations, scientists are paying 
increasing interests to this new field due to its theoretical and 
empirical importance [1-7]. As a result, the study of diseases in 
a predator-prey system has also become a very popular topic in 
eco-epidemiology and made a significant progress in 
understanding different scenarios for disease transmission [1-
6]. Among these studies, most considered the transmission of 
disease in prey populations. However, epidemic diseases can 
attack predators through various means, such as food, mating 
and parasites, then infectious diseases in predator species has 
need to be explored. 

Among the most widely used ecological process in 
theoretical ecology, the Allee effect plays a special role in view 
of the interesting dynamics it possesses [5, 7-9]. Allee effect is 
considered as a destabilizing factor in the dynamics of 
predator-prey systems [9] but can play two roles (stabilizing 
and destabilizing force) in the dynamics of an eco-
epidemiological system with standard incidence [5]. However, 
in eco-epidemiological models, horizontal incidence (the 
infection rate of susceptible individuals through contact with 

infected ones) is usually of the type SIβ  (mass action 
incidence) or ( )SI S Iβ +  (standard incidence), and which 
may result different dynamics [10]. Thus, it is necessary to 
understand the role of this epidemic induced Allee effect in an 
eco-epidemiological context with mass action incidence.  

In general, the classical approach to study the dynamic of 
eco-epidemiological systems is based on the ordinary 
differential equations, which indicate that the population is 
homogeneously mixed [1, 2]. However, there is likely to be 
some degree of local interaction whether spatially or socially in 
all host species [11]. As such, there is now a well developed 
theory that examines the role of spatial structure in a number of 
classical ecological scenarios [11, 12]. The most popular 
method to elucidate the role of the spatial structure of 
individual hosts within populations is by using lattice/cellular 
automaton models, where local interactions are particularly 
strong [5, 11]. 

Here, we will set up two eco-epidemiological models: the 
ordinary differential equation model and lattice model to study 
the above issues. First, through mathematical analysis of the 
non-spatial model, we will present the dynamic behavior 
corresponding to different intensity of the Allee effect and 
infection rate. Second, using the lattice model, we will firstly 
discuss the local transmission factor (neighborhood structure) 
and Allee effect that influences the spatial spread of an 
epidemic. Furthermore, to express the spatial structure of the 
disease, we will adopt the spatial autocorrelation index, join-
count statistics (JCS) [12, 13]. 

II. THE MODEL 

A. Ordinary differential equation  model 
According to the susceptible-infected model [2] and the 

classical predator-prey system [14], we can make the following 
assumptions for incorporating a transmissible disease in the 
predator species: (A1) In absence of predator, the prey 
population grows logistically; (A2) The predators are divided 
into two categories, i.e., those susceptible to the disease, S , 
and those infected by the disease, I ; (A3) Disease is 
transmitted through the contact between the susceptible and 
infected individuals. The transmission rate follows the law of 
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mass action. Once infected population have recovered (at rate 
δ ), they rejoin the susceptible class; (A4) Infected individuals 
are not active enough to forage; (A5) Susceptible predators are 
inefficient in hunting when their abundance is low, i.e., an 
Allee effect. 

An ordinary differential equation (ODE) model that obeys 
the above assumptions could be rewritten as: 

1dN NrN NS
dt K

ε⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 

                     1
dS SNS d S SI I
dt S a

η β δ= − − +
+

            (1) 

2
dI SI d I I
dt

β δ= − −  

where ε , η  ( 0ε η≥ > ) are, respectively, the maximum and 
effective predation rate; 1d , 2d  ( 2 1 0d d≥ > ) are, respectively, 
the death rate of susceptible and infected predator; β is the 
infection rate which represents the force of infection; δ is the 
removal rate from infected class to susceptible class. The term 

( )S S a+  is for the Allee effect, and a  can be defined as the 
Allee effect constant [9]. Higher value of a  implies a lower 
per capita growth rate of the predator, especially when S  is 
small. When the predators do not suffer from the Allee effect, 
the positive equilibrium of (1) can be solved easily: 

( )* *1N K S rε= − , ( )*
2S d δ β= + , ( )* * *

1 2I S N d dη= −  
and this equilibrium is asymptotically stable if  it exists, i.e., 

( ) ( )1 20 1r d K dε β η δ< < − +  (Proof is omitted). 

B. Lattice model 
To examine how the local interactions affect the eco-

epidemic dynamics, a prey-predator with disease model was 
constructed in a lattice landscape. The local dynamics and 
interactions of an infected predator-prey system were then 
incorporated into a patch-occupant lattice (individual-based) 
model. The synchronous updating and Periodic boundaries 
were adopted [5, 13].  

TABLE I.  PROBABILITIES OF STATE TRANSITION IN LATTICE MODEL 

( ) ( )1, ,t tp i j p i j+→  Probability 

N S→  ( )( ) ( )1 1 SN
S SN N aε− − +  

S I→  ( )1 1 INβ− −  

S E→  1d  

I S→  δ  
0I →  2d  

E N→  ( )1 1 NNr− −  

Table footnote: , ,N S IN N N  are, respectively, the sum of patches occupied by prey, susceptible 

predator and infected ones in the neighborhood. ( )S SN N a+ represents the Allee effect.  

Considering a disease that infects the predator populations, 
we thus have four possible states for each patch ( ),tp i j : 
empty ( E ), occupied by a prey ( N ), occupied by an 
susceptible predator ( S ), or occupied by a infected one ( I ). 
Detailed rules governing the dynamics of this eco-
epidemiological model are listed in Table I. To reveal the effect 
of neighboring structures on the epidemic spreading, we chose 
three kinds of neighborhood: von Neumann neighborhood 
( 4Z = ), Moore neighborhood ( 8Z = ) and 24-neighborhood 
( 24Z = ). Simulations were all run on a two-dimensional 
lattice network of 50 50×  patches. 

To describe the spatial structure of the simulation results 
from the above model, we selected a simple spatial-
autocorrelation index, namely the join-count statistics (JCS) 
[12, 13]. Through counting the occupancy and spatial 
correlation (i.e. the clumping degree), we used JCS to classify 
the distributions as spatially aggregated, segregated or random 
[12, 13]. Occupancy Pσ  is the proportion of patches being 
occupied by population σ  ( , ,N S Iσ = ). The local density 

/Qσ σ  is the conditional probability that a randomly chosen 
nearest neighbor of a patch in state σ  is found in state σ . 
Therefore, spatial explicit aggregation distribution can be 
described by the JCS as / 0C Q Pσ σ σ σ= − > , which implying 
the positive first-order spatial correlation between two adjacent 
occupied patches. The spatial random distribution has 0Cσ =  
and indicates the independence of two adjacent, occupied 
patches. The spatial segregated distribution has 0Cσ <  and 
indicates a negative spatial correlation between two adjacent 
patches [13]. 

III. RESULTS 
Using ODE model, we can study the stability of (1) 

impacted by Allee effect. Through Numerical simulation, a 
more intriguing behavior of the eco-epidemiological system 
with change of the Allee effect constant was revealed. First, we 
found two kinds of attractor depending on the Allee effect 
constant: the point attractor and the limit cycle (Fig. 1). 
Second, a weak Allee effect (e.g., 0a = , 1 ) and a strong Allee 
effect ( 28a > ) can stabilize the dynamics of the eco-
epidemiological system (Fig. 1). The Allee effect at a moderate 
intensity (1 28a< < ) will make the steady state undergo Hopf 
bifurcation and induce a periodic oscillation. 
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Figure 1.  The attractors of (1) under various intensity of Allee effect. 
0.8r = , 0.23ε = , 0.18η = , 60K = , 0.08β = , 1 0.1d = , 2 0.15d = , 0.05δ = . 
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Figure 2.  Dynamical behaviors of (1) under different infection rate. Other 
parameter values are the same as Figure 1. 

Next, we will discuss how the infection rate, β , affect the 
dynamics of eco-epidemiological system with the Allee effect 
(Fig. 2). Results showed that there exist three distinct and 
typical dynamics of epidemic, namely, outbreak but last 
disappearance ( 0.05β = , Fig. 2a), endemic and periodic 
oscillation ( 0.1β = , Fig. 2b), and burst-like ( 0.8β = , Fig. 2c). 
Comparing Fig. 2b and c, we can find that variation in the time 
period of oscillation with increasing infection rate. It is clear 
that the oscillating period with low infection rate is smaller 
than the one with high infection rate. This can be explained by 
the rapid depletion of the susceptible predators with too high 
infection rate, which effectively reduces the transmission of the 
disease. Seeing from Fig. 2c, we can also find that the 
population of the infected predator peaks almost immediately 
after the susceptible predator peaks. And the prey decreases 
very rapidly with the growth of the predator species inducing a 
sharp decline in population of the preys. 

In order to explore the effects of Allee effect and local 
transmission process on the spreading dynamic of the epidemic 
disease, we compared the difference with three different 
intensities of Allee effect ( 0, 4,8a = ) and neighboring 
structures (Von Neumann 4Z = ; Moore neighbourhood 

8Z = ; twenty-four neighbourhood 24Z = ) under lattice 
model. First, the occupancy of infected predator populations 
decreases dramatically as the Allee effect increases (Fig. 3a) 
and neighborhood size decreases (Fig. 3b). Second, The JCS of 

the disease (infected predator) was increasing with the intensity 
of Allee effect (Fig. 3c). Moreover, with the increasing of 
neighborhood, the spatial correlation of infected predator 
declined obviously, which except at 4Z =  induced by the 
extinction of infected predators (Fig. 3d). The above results 
indicate a high clustering degree of infected predators will be 
under strong Allee effect and low neighborhood. 

IV. DISCUSSION 
The ordinary differential equation revealed two key results. 

Firstly, the Allee effect is a stabilizing or a destabilizing force 
in eco-ecological system could be determined by its intensity. 
This result is agreement with our previous eco-ecological 
model following the standard incidence [5], which confirms 
that the impacts of Allee effect on eco-ecological systems are 
robust. Secondly, the infection rate plays a key role in the 
dynamics of eco-epidemiological system. Very low infection 
rate may induce predator being extinct. The biological reasons 
could be due to as follows: very low infection rate makes the 
infected predators rarely, and then the susceptible ones have a 
higher chance to increase, which induces the prey population at 
very low level. As a consequence, the resource shortage and the 
Allee effect may cause the predators to decline dramatically 
and be extinct lastly. Too high infection rate induces the 
susceptible predators and infected ones both show large 
amplitude “burst” type of oscillatory dynamics. Thus, the 
disease is not only increases the oscillatory period in the 
populations, it also can increase the maximum population size 
of both the susceptible and infected predators.  

 

 

Figure 3.  The temporal dynamics of infected predator response to different 
Allee effect and number of neighborhood patches under lattice model. 

Parameter values: 8Z =  (a, c); 4a =  (b, d). Other parameter are: 

1 20.15, 0.1, 0.15, 0.05, 0.1, 0.1.r d dε β δ= = = = = =  

The decline in the number of neighboring patches indicates 
the drop of patch connectivity, which markedly reduces the 
abilities for colonization, predation and infection. So the 
decrease of the number of neighbors will have the same effect 
as habitat loss [12, 13]. As obtained from our results, the 
decreasing number of neighbors can contribute to the control of 

0.05β =  

0 .1β =  

0.8β =  
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the epidemic. The biological reason for this phenomenon may 
be that fewer neighbors make the local susceptible predator 
deplete rapidly due to Allee effect, which further reduces the 
transmission of the disease. Moreover, result from JCS showed 
that the spatial clumping degrees of the epidemic will increase 
with Allee effect and decline in response to neighborhood. The 
results confirm that a highly aggregated distribution of species 
is a common behavioral strategy when dealing with the 
environmental stresses.  

The aim of mathematical epidemiology is possibly to obtain 
the dynamics of disease transmission and devise reasonable 
vaccination policies according to the spreading trend. 
Consulting the temporal dynamics of the infected predator, we 
know that the disease control could be implemented by 
restricting the range of disease diffusion and (or) increase the 
intrinsic biological mechanism (e.g., Allee effect). As such, all 
the results presented in this paper are only a starting point for 
understanding the spreading of eco-epidemiology, which surly 
requires further exploitations. 
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