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Summary 
 

This study describes the development of simplified analytical methods for the analysis of trace 

quantities of selected naturally occurring target compounds in complex biological matrices by stir 

bar sorptive extraction (SBSE) and gas chromatography/mass spectrometry (GC/MS). SBSE 

facilitates the direct extraction of organic compounds from aqueous samples by allowing the 

solutes to partition between the aqueous phase and a glass stir bar that is coated with a layer of 

polydimethylsiloxane (PDMS). The partitioning of polar compounds into the PDMS coating was 

enhanced by using different derivatization techniques in combination with SBSE. The 

derivatization of polar functional groups was performed with ethyl chloroformate, acetic acid 

anhydride, and O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine directly in the aqueous samples. 

Headspace derivatization of compounds containing a secondary alcohol group was performed 

directly on the stir bar coating in the presence of acetic acid anhydride vapors. The derivatized 

compounds were thermally desorbed (TD) and analyzed on-line by GC/MS. A number of 

experimental parameters, including salt addition, temperature and time were optimized to 

improve the recovery of the derivatized compounds by SBSE. The optimized methods were 

validated in terms of linearity, precision, and detection and quantitation limits prior to performing 

the quantification. Trace levels of tuberculostearic acid, a marker of tuberculosis, was detected in 

sputum samples that were decontaminated and concentrated before being analyzed by SBSE-TD-

GC/MS. The method is sufficiently sensitive to detect the marker without the need to culture the 

organisms, namely M. Tuberculosis. The analysis of 4-hydroxynonenal has also been 

demonstrated by detecting trace levels of this oxidative stress marker in urine samples obtained 

from healthy volunteers. Furthermore, abnormally low testosterone/epitestosterone ratios were 

detected in a group of HIV positive patients by means of SBSE-TD-GC/MS. Further research is 

required to determine the clinical significance of this finding in the context of HIV infection. 

Finally, the excessive urinary excretion of estrone and 17β-estradiol following the administration 

of a high dose of the conjugated equine estrogens to a female volunteer has also been 

demonstrated.  
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Opsomming 
 
Hierdie studie beskryf die ontwikkeling van vereenvoudigde analitiese metodes vir die analise 

van spoorhoeveelhede geselekteerd-natuurlikvoorkomende teikenverbindings in komplekse 

biologiese matrikse deur roerstaaf sorptiewe ekstraksie (SBSE, ‘Stir bar sorptive extraction’) en 

gaschromatografie/massaspektrometrie (GC/MS). SBSE vergemaklik die direkte ekstraksie van 

organiese verbindings vanuit waterige monsters deur toe te laat dat opgeloste verbindings geskei 

word tussen die waterige fase en ‘n glasroerstaaf wat bedek is met ‘n laag polidimetielsiloksaan 

(PDMS). Die verdeling van polêre verbindings in die PDMS bedekking in, was verhoog deur 

gebruik te maak van verskillende derivatiseringstegnieke tesame met SBSE. Die derivatisering 

van polêre funksionele groepe is uitgevoer met etielchloroformaat, asynsuuranhidried, en O-

(2,3,4,5,6-pentafluorobensiel)hidroksielamien direk in die waterige monsters. Bo-

spasiederivatisering van verbindings wat ‘n sekondêre alkoholgroep bevat is uitgevoer direk op 

die roerstaafbedekking in die teenwoordigheid van asynsuuranhidrieddampe. Die 

gederivatiseerde verbindings is termies gedesorbeer (TD) en aanlyn geanaliseer deur GC/MS. ‘n 

Aantal eksperimentele parameters, insluitende souttoevoeging, temperatuur en tyd is 

geoptimaliseer om die herwinning van die gederivatiseerde verbindings deur SBSE te verbeter. 

Die geoptimaliseerde metodes is gevalideer in terme van lineariteit, akkuraatheid, en deteksie- en 

kwantifiseringslimiete voor die uitvoering van die kwantifisering. Spoorvlakke van 

tuberkulosteariensuur, ‘n merker van tuberkulose, is opgemerk in speekselmonsters wat ontsmet 

en gekonsentreer is voor hul analisering deur SBSE-TD-GC/MS. Die metode is genoegsaam 

sensitief om die merker te meet sonder die noodsaaklikheid om die organismes, naamlik M. 

Tuberculosis, te kweek. Die analise van 4-hidroksielnonenaal is ook aangetoon deur lae vlakke 

van hierdie oksidatiewe stresmerker te meet in uriene monsters wat verkry is van gesonde 

vrywilligers. Verder is abnormaal lae testosteroon/epitestosteroon verhoudings waargeneem in ‘n 

groep MIV positiewe pasiënte deur middel van SBSE-TD-GC/MS. Verdere navorsing word 

benodig om vas te stel wat die kliniese belang van hierdie bevinding is in die konteks van HIV 

infeksie. Om mee af te sluit, is die oormatige urinêre uitskeiding van estroon en 17β-estradiool 

ook aangedui na die toediening van ‘n hoë dosis van die gekonjugeerde ekwide estrogene aan ‘n 

vroulike vrywilliger. 
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Chapter 1:    Quantitative analysis in clinical chemistry                                                        PART  I 

1.1 Gas chromatography and mass spectrometry in clinical chemistry 

 

 A vast number of applications for gas chromatography (GC) and mass spectrometry (MS) 

have been reported in the literature in recent years. The versatility of GC as an analytical 

tool was first realized in the early 1950’s [1], where after scientists rapidly developed the 

technique to include the analysis of a wide variety of organic compounds. Initially it was 

believed that only volatile compounds could be analyzed by GC, but following the 

introduction of various chemical derivatizing reagents, which improved the volatility of 

polar, high molecular weight substances, it was possible to analyze an array of compounds 

that also had specific importance in the biochemical and medical fields.  

 

 In contrast to the range of analyses that could be performed by GC, the standalone 

applications of MS were limited by the fact that pure samples were required for analysis. 

To overcome this limitation, the combination of the two techniques was suggested in 1959 

[2, 3] which created a system that had superior analytical capabilities. GC/MS combines the 

high resolving power of GC with the unique identification capabilities of MS, which led to 

the widespread use of this technique in the fields of industry and agriculture, in 

environmental science and law enforcement, as well as in drug detection. Nowadays, 

GC/MS has also become an indispensable tool in the field of medical research and clinical 

chemistry.  

 

 Although GC/MS has steadily gained importance in the clinical chemistry laboratory, the 

routine application of this technique has been limited for a number of reasons. The majority 

of frequently ordered biochemical tests (e.g. glucose, urea, and bilirubin) are performed 

using fully automated electrochemical, immunochemical, and spectrophotometric methods 

[4]. This situation considerably improves sample throughput, with over 20 components that 

can be analyzed in more than 100 samples per hour [5].  However, there are a number of 

substances for which standard chemical procedures do not exist, or where more sensitive 

and specific assays are required. Compounds that are frequently analyzed by GC/MS 

include toxicologic agents, steroids, fatty acids and alcohols [6], while other procedures 

may need to be validated such as those utilized for creatinine [4, 7], cortisol [8], 
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triglycerides [9] and cholesterol [10]. Several reviews on the potential applications of 

GC/MS in clinical chemistry have been reported previously [11 - 13]. 

 

 Another reason that hampers the routine use of GC/MS in clinical laboratories is the fact 

that extensive sample preparation may be required prior to the analysis of biological 

specimens. These samples (e.g. blood and urine) are highly complex mixtures from which 

specific compounds, or classes of compounds, need to be isolated to ensure adequate 

separation by GC as well as proper identification by MS. A typical sample preparation 

scheme may consist of the initial extraction of the sample, followed by purification and 

concentration of the analytes, as well as a derivatization step to improve the volatility of the 

extracted compounds. Most of these actions are performed manually, and very often it is 

the most difficult and rate-limiting part of the whole analysis. Analytical chemists 

recognize these limitations and are constantly trying to develop faster and simpler 

analytical methods that will improve sample turnover. 

 

 The main part of this study involves the development of simplified analytical methods for 

the measurement of frequently (and less frequently) analyzed biochemical compounds. In 

each case, a novel sample enrichment technique known as stir bar sorptive extraction 

(SBSE) was utilized in conjunction with GC/MS to detect four distinct biomarkers in 

human bodily fluids. This work also demonstrates the value of utilizing GC/MS to identify 

potentially new diagnostic applications for already frequently monitored biochemical 

compounds. The individual methods are discussed in detail in Chapters 6, 7, 8 and 9.  

 

1.2 Sample preparation techniques 

 

 Biological fluids are some of the most complex mixtures currently recognized [6]. These 

samples are rarely suitable for direct analysis by GC or GC/MS. Therefore, some form of 

sample preparation will be required to remove the interfering substances and to isolate the 

compounds of interest. For liquid samples, the most popular extraction techniques include 

liquid-liquid extraction (LLE), solid phase extraction (SPE), solid phase microextraction 

(SPME) and stir bar sorptive extraction (SBSE). Each method will be discussed briefly 

within this section. 
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 LLE:   In spite of the availability of more modern extraction techniques, liquid-liquid 

extraction is still frequently used in environmental, clinical and industrial laboratories [14]. 

In its simplest form, it involves the partitioning of a solute between two immiscible phases, 

one being an aqueous phase and the other an organic solvent such as chloroform. The 

technique generally requires the use of a large amount of organic solvent, which is a major 

reason for the development of new miniaturized methods such as micro-LLE [15]. In spite 

of its simplicity, LLE requires several steps, lacks specificity and is fairly time consuming 

[16]. 

 

 SPE:   Solid phase extraction was developed in the late 1970’s and has to a large extent 

replaced LLE because it accomplishes faster extractions, requires less organic solvent and  

improves the ability to concentrate analytes [14]. This technique is a miniaturization of 

column chromatography, where an exhaustive, non-equilibrium extraction of the analytes is 

achieved by allowing an aqueous sample to percolate through a bed of adsorbent material 

contained in short polypropylene tubes. The speed of the extraction can be improved by 

applying pressure to the top, or a vacuum at the lower end of the tube. Different adsorbents 

based on silica or synthetic resins are available for the removal of analytes from liquid 

samples. The separation is optimized through careful consideration of the different 

physicochemical interactions that occur between the solute, the solvent and the adsorbent 

material. After the compounds have been retained on the adsorbent bed, the analytes are 

desorbed by passing a suitable organic solvent through the tube. Several companies have 

developed mechanized and robotic SPE systems for complete automation of the extraction 

process [16].  

 

 SPME:  Although SPE requires less organic solvent as compared to LLE, it still consumes 

large quantities in relation to the new sorptive extraction techniques that are essentially 

solvent-free. Solid phase microextraction is an example of such a technique that was 

initially developed to analyze micropollutants in water. Several new applications have been 

reported in the literature since it was first invented by Pawliszyn and coworkers in 1990 

[17]. Analytes are extracted from a sample by exposing a polymer-coated fiber to an 

aqueous solution. SPME is a non-exhaustive, equilibrium procedure where analytes diffuse 
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from the aqueous phase to the polymer layer when the sample is agitated (i.e. stirred). The 

amount of analytes extracted may be controlled accurately by optimizing the stirring rate, 

the extraction time, temperature, pH and ionic strength of the solution [18]. The equipment 

used in SPME, also known as the fiber assembly, consists of four major parts. The coated 

fiber is attached to a stainless steel plunger, which is housed inside a septum-piercing 

needle. The needle is joined to a modified syringe holder. A number of fiber coatings have 

been developed for SPME, including polydimethylsiloxane (PDMS), polyacrylate and 

mixed coatings of PDMS with Carbowax or divinylbenzene that are now commercially 

available. Once the analytes have been extracted, the SPME fiber is transferred directly to a 

GC instrument. Thermal desorption is accomplished after the fiber has been inserted into 

the heated injector port of the gas chromatograph. Some automated on-line applications for 

SPME have already been reported in the literature [18, 19].  

 

 SBSE: A disadvantage to using SPME is that the required detection limits for a wide 

range of analytes cannot be reached because of the small amount of extraction phase coated 

onto the SPME fiber (i.e. 0.5 μl). In 1999, Baltussen et al. [20] introduced a new technique 

known as stir bar sorptive extraction, which significantly improved the detection of various 

compounds because of the large amount of polydimethylsiloxane (PDMS) coated onto a 

glass stir bar. In SBSE, the sample is stirred for a predetermined time until equilibrium is 

reached. Thereafter, the stir bar is transferred to an empty glass tube and desorbed at high 

temperatures to release the compounds from the PDMS coating. A specially designed 

thermal desorption unit (TDU) is required to transfer the analytes from the stir bar to the 

injector of a GC instrument (see Section 4.4). PDMS is the only stationary phase currently 

used in SBSE, but this situation will probably not limit the applicability of the technique 

because several new derivatization methods have been developed to enhance the extraction 

of polar compounds by the stir bar coating. Furthermore, the newly developed composite 

extraction phases, such as those used in SPME, often result in competitive adsorption and 

matrix effects because the fibers no longer contain pure polymeric sorbents [21]. A more 

detailed discussion of the fundamental principles of SBSE is given in Chapter 2. 

 

 

 

 5



Chapter 1:    Quantitative analysis in clinical chemistry                                                        PART  I 

1.3 Quantitative analysis 

  

 1.3.1  Specificity 

 

   After separating the sample on a suitable GC column, the compounds are introduced 

into the MS ion source where they are fragmented and ionized (see Section 4.5.2). The 

fragments have a specific mass-to-charge ratio (m/z), and are recorded either by repetitive 

scanning of all the fragments to produce a total ion chromatogram, or by the recording of 

selected masses, which is known as selected ion monitoring (SIM).   

 

  SIM is particularly useful for the analysis of trace biological compounds in complex 

matrices because of the sensitivity that can be achieved by using this mode of detection. 

The selection of specific masses that are characteristic for the analyzed compounds assists 

in eliminating background interferences that are always part of complex matrices. In 

general, it is preferred to select ions in the higher mass range, as there is less chance of 

encountering a signal that originates from the background (i.e. from column bleed) or from 

the sample matrix. A disadvantage to using SIM however is the risk of lowering the 

specificity of the analysis, which may compromise the accuracy of the results obtained. 

 

 Specificity is lost when two to three ions are monitored as opposed to the recording of a full 

mass spectrum that provides a specific fragmentation pattern by which a compound can be 

identified. One option is to improve the specificity of the MS itself by using high resolution 

selected ion monitoring, selected reaction monitoring or different chemical ionization 

techniques [22]. However, these instruments are highly sophisticated and not always 

available to the clinical chemist. Therefore, non-mass spectrometric methods should be 

considered first when aiming to improve specificity.  

 

 As mentioned previously, the use of an appropriate sample preparation procedure should 

eliminate the majority of interferences, while optimization of the GC oven temperature 

program will further assist in resolving out impurities. One factor that needs to be 

considered when using the sorptive extraction techniques (i.e. SBSE or SPME), is that only 

partial sample clean-up is provided due to the large number of compounds extracted by the 
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polymer coating. Careful consideration should be given to the selection of ions that are 

characteristic for the compounds being measured, while ensuring that this selection does 

not affect the sensitivity of the method. Unfortunately, the ion that is most specific for a 

compound often occurs at low intensity and the use of such an ion will result in decreased 

sensitivity [12]. Therefore, it is often preferred to monitor ions of high intensity, although a 

loss in sensitivity can be offset by using an enrichment technique such as SBSE if the 

compound is amenable for extraction by this method. Thus in SBSE, it is often more 

important to optimize the specificity of the method because the use of this technique 

already leads to a significant improvement in analytical sensitivity. In general, a great deal 

of attention should be given to verifying the specificity of SIM analyses, because there is no 

purpose in quantifying a compound when there is little confidence in the accuracy of the 

results obtained.  

 

 1.3.2 Calibration  

 

   Internal standard calibration: The visual output of a mass spectrometer is similar to 

that of any single channel GC detector (e.g. flame ionization detector). The peaks 

correspond to the separated components of the sample that can be integrated to determine 

the concentration of each compound. The integration can be performed by using the 

interactive software that is usually part of the GC/MS system. A frequently used 

quantification method in mass spectrometry involves the use of an internal standard, which 

is often a chemical analogue or homologue of the compound being analyzed. A stable 

isotope labeled analogue results in the highest precision, but this type of standard may not 

always be available. An internal standard is often used to correct for variations that occur 

during the analysis. Sources of variation include the numerous manipulations that are 

required for the extraction and derivatization of the compounds, as well as alterations that 

may occur in the operating conditions of the GC/MS system. 

 

 To determine the relationship between the instrument’s signal (i.e. peak area) and the 

concentration of the analyte, a series of dilutions containing known amounts of the analyte 

and internal standard are analyzed. The resulting graph is obtained by plotting the ion 

abundance ratios of the analyte and the internal standard against the concentration of the 
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compounds. For linear data, the calibration curve is constructed by means of simple 

regression analysis that minimizes the sum of the squares of the distance between each data 

point and the straight line [23]. This method was used to determine the concentration of 

tuberculostearic acid (TBSA) in sputum samples (Chapter 6) and 4-hydroxynonenal 

(4HNE) in human urine samples (Chapter 7). The calibration curve obtained for 4HNE is 

shown in Figure 1.1. A correlation coefficient (r2) of 0.997 was obtained using the least 

squares method, demonstrating that 99% of the variation in the peak area can be explained 

by the linear equation [23].   
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Figure 1.1  Calibration curve used for the quantification of 4HNE by electron impact GC/MS in 

SIM mode. The internal standard was 2,5-dihydroxybenzaldehyde. 

 

 Standard addition: The standard addition technique was used in the latter part of this study 

for the quantification of the androgens (Chapter 8) and the estrogens (Chapter 9). In this 

technique, the calibration curve is obtained by analyzing a series of spiked samples 

containing increasing amounts of the analyte. The curve is constructed in the same way as 

described for the internal standard calibration method, except that a calibration curve is 

obtained for each sample. One of the main limitations in using standard addition is that 

each of the spiked levels should be analyzed in triplicate for the results to be statistically 

valid. For this reason, standard addition is not recommended for routine applications, 

particularly in laboratories where a quick turnaround time is required [14]. 
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 As mentioned previously, an internal standard can correct for errors that occur during 

sample work-up and analysis because the analyte and standard undergo similar variations 

during the procedure. If an internal standard is included during the standard addition 

method, the precision may improve to such an extent that a single analysis at each of the 

spiked levels may be sufficient. Furthermore, a manner of quality control is provided by the 

fact that each sample requires its own calibration curve. Therefore, the use of the standard 

addition technique may be considered during the development of a new method for the 

following reasons: 

 

 1. Standard addition is one of the most efficient ways of determining if the compound 

that one wants to analyze is in fact the compound being analyzed. The incremental 

increase in peak area that is observed following the addition of known amounts of the 

analyte provides confirmatory data that the selected ions (i.e. during SIM analysis) 

are specific for the compound being measured.  

 

 2. As demonstrated in Chapter 8 (Section 8.3.3), the standard addition method corrects 

for matrix effects that may affect the individual sorption of the compounds by the stir 

bar coating.  

 

3. By using this technique, the compound being determined is also the compound being 

added to the sample. Therefore, any variations in the ion abundance ratios that occur 

due to alterations in the operating conditions of the MS or changes in sensitivity that 

result from a build-up of contamination in the ion source [22], will automatically be 

corrected because the response factors remain the same. 

 

4. Standard addition may also correct for alterations occurring on the stir bar coating as 

a result of systematic degradation of the polymer surface. Degradation of the stir bar 

coating can alter the extraction of individual compounds. Therefore, frequent 

recalibration of the method may be required when the internal standard technique is 

used, especially when an isotopically labeled analog is not available. 
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1.4 Method evaluation 

 

 1.4.1 Accuracy and precision 

 

   Accuracy and precision measure the quality and efficacy of an analytical procedure. 

Accuracy determines the closeness of the mean result to the true value, which is usually 

unknown. Errors that produce inaccurate results lead to a systematic deviation from the true 

value [23]. In other words, all the results will either be too high or too low. For example, 

when there is a co-eluting compound that also gives a signal at the m/z value being 

monitored, then a net determinate error will be introduced which causes bias [22]. In this 

respect, accuracy is quite difficult to determine and a correct estimate can only be obtained 

if the sample is analyzed using a method that is known to produce accurate results [14]. In 

this study, however, no inter-laboratory comparisons were made and therefore the accuracy 

of the developed methods have not been determined.  

 

 Precision on the other hand, measures the scatter of individual measurements about their 

mean value, which is frequently expressed as the standard deviation, variance and 

coefficient of variation. In analytical chemistry, precision is usually reported as the relative 

standard deviation (RSD), which is calculated by dividing the standard deviation (s) by the 

average value ( x ) of the data set, expressed as a percentage [23]. 

     %100%RSD ×=
x
s     

 Repeatability and reproducibility are the two main components of precision. Repeatability 

is defined as the closeness of individual results obtained by the same analyst, using the 

same method during a single period of laboratory work [14], while reproducibility is 

defined as the closeness of individual results obtained by the same or a different analyst 

using the same method under different conditions. Errors that affect precision occur 

randomly during an experiment and cannot be eliminated, although their collective effect 

can be minimized. For example, if the analyte and internal standard have different sorption 

kinetics or different octanol-water distribution coefficients, then several factors can 

influence the precision of SBSE. Small changes in sample pH, temperature and ionic 

strength can alter the relative amount of analytes extracted by the stir bar coating. The 
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effect of these errors can be minimized by carefully controlling the aforementioned 

experimental conditions, or they might be entirely eliminated by using an isotopically 

labeled internal standard.     

   

 1.4.2 Sensitivity and detection limit 

  

   In SIM analysis, the sensitivity of the mass spectrometer is significantly increased 

due to the monitoring of a limited number of ions that allow a greater portion of the ion 

beam to reach the detector. For example, in a scanning experiment during total ion 

monitoring about one-thousandth of the total time is spent at any one mass, whereas half of 

the total time is available when only two ions are monitored [22]. The sensitivity of a 

procedure is often regarded as being equal to its detection limit, which is the lowest 

concentration that can be detected with a certain level of confidence [23]. In analytical 

chemistry, the sensitivity of an instrument can be defined as the magnitude of the response 

derived from a specific concentration. Thus, the sensitivity (S) can be estimated by dividing 

the strength of the signal (i.e. peak height (X)) by the concentration of the analyte (C), as 

determined by the entire analytical procedure, which includes sample preparation and 

analysis: 

 

      
C
X

=S  

 

 This estimate may be used to calculate the detection limit of the analyte. The detection limit 

is usually measured at three times the baseline variability (i.e. noise). In other words, the 

signal produced by the analyte should exceed the average baseline noise by this value, 

which is commonly referred to as the signal to noise (S/N). The following equation can be 

used to determine the limit of detection (LOD) by using the sensitivity (S) determination 

that was calculated in the previous equation:  

 

            
S

S/N3LOD ×
=  
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1.5  Conclusion 

 

 Today, GC/MS is used in almost every field of analytical chemistry due to its high 

resolving power and unique identification capabilities. Its use in the clinical chemistry 

laboratory is also steadily increasing because of its ability to detect trace amounts of 

biologically important compounds in complex matrices. A drawback to using GC/MS 

however is the fact that extensive sample preparation may be required prior to the analysis 

of complex biological samples. Multi-step sample preparation procedures are often required 

to isolate the compounds of interest, which add to the difficulty of applying GC/MS to 

routine clinical analyses. The use of a novel sample enrichment technique, namely stir bar 

sorptive extraction, has greatly simplified the isolation of target compounds from complex 

biological matrices. SBSE may be compared to liquid-liquid extraction except that the 

compounds partition into the polydimethylsiloxane layer covering the stir bar. A large 

number of compounds may be extracted by the stir bar coating; therefore the specificity of 

the method should be established before commencing with the actual quantification of the 

analytes. The quantification may be performed by internal standard or standard addition 

calibration. The use of the standard addition technique in combination with an internal 

standard often results in greater accuracy, especially when a suitable isotopically labeled 

standard is not available. Finally, the method should fulfill certain criteria in terms of 

accuracy, precision, sensitivity and detection limit in order to determine its applicability in 

the clinical setting.     
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2.1 Historical background 

 

 The current trend in analytical chemistry is to minimize the use of organic solvents that are 

potentially harmful to humans and the environment. In sorptive extraction, organic solvents 

are avoided because the analytes partition between the aqueous sample and a water-

immiscible polymeric phase such as polydimethylsiloxane. The polymer layer may be 

attached to the walls of an open tubular trap (OTT; [1]), to a silica fiber (SPME; [2]), or to 

a magnetic stir bar (SBSE; [3]). Also, particles containing 100 % of the polymer material 

may be packed into a short tube to enable the preconcentration of liquids and gases, which 

is currently known as gum-phase extraction [4, 5]. SBSE is the most recent addition to a 

number of existing sorptive extraction methods that have gained wide acceptance in various 

fields of analytical chemistry. SBSE is becoming more popular because it addresses several 

of the shortcomings associated with previously developed methods. Compared to OTT, 

SBSE has an improved sample capacity, provides greater sensitivity than can be achieved 

with SPME, and prevents the loss of volatile compounds encountered during gum-phase 

extraction. David and Sandra [21] have recently published a comprehensive review on the 

different applications of SBSE in analytical chemistry. The majority of SBSE methods 

involve the analysis of environmental contaminants in water [6-10], the measurement of 

aroma compounds and pesticides in food [11-15], as well as the detection of a wide range 

of compounds in wine samples [16-20]. In this study, the focus is solely on analyzing target 

compounds in biological specimens; therefore only recently developed SBSE applications 

in the biomedical field will be highlighted.  

 

 SBSE is frequently used in combination with gas chromatography because improved 

analytical sensitivities can be achieved when the entire extract on the stir bar coating is 

transferred to the capillary column by means of thermal desorption. For thermally labile or 

high molecular weight compounds, the combination of SBSE and liquid chromatography 

(LC) is also a possibility. Liquid desorption of the extracted analytes is accomplished by 

placing the stir bar in a vial or an insert containing a small amount of organic solvent. 

Following sonication, a portion of the solvent is transferred to the LC system. Detection 

can be accomplished by means of fluorescence or ultraviolet (UV) detectors or by mass 

spectroscopy (MS). Fernandes at al. recently reported the analysis of fluoxetine in plasma 
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samples using SBSE-liquid desorption (LD)-LC/MS [22]. A limit of quantitation (LOQ) of 

10 ng.ml-1 could be achieved, which allows the routine monitoring of this antidepressant 

drug directly in clinical samples. In a similar study reported by Chaves et al. [23], the 

measurement of a wide range of antidepressants, including fluoxetine, by SBSE-LD-

LC/UV has also been demonstrated. The authors showed that back extraction of the 

compounds by magnetic stirring resulted in higher desorbed amounts of the analytes as 

compared to using sonication. The achieved sensitivities were high enough to allow the 

routine therapeutic monitoring of various frequently administered antidepressant drugs 

directly in plasma. Almeida and Noguiera [24] recently developed the first method for the 

analysis of naturally occurring compounds by SBSE and liquid chromatography. A range of 

natural and synthetic estrogens were analyzed in urine samples using SBSE-LD-HPLC with 

diode array detection. The detection limits (LOD) obtained for estrone and 17β-estradiol 

were 50 ng.ml-1, in comparison to 0.02 ng.ml-1 and 0.03 ng.ml-1 obtained for the same 

compounds analyzed by SBSE-TD-GC/MS in SIM mode [25].   

 

 SBSE has mainly been used for the measurement of environmental contaminants (e.g. 

PAHs, PCBs, pesticides, and phenols) in water samples. The detection of these substances 

in the environment is of great importance because most chemicals find their way back to 

the food chain where they are ingested, metabolized and excreted in the form of 

glucuronide and sulfate conjugates. The measurement of specific metabolites in biological 

fluids may be used as indicators of human exposure to potentially harmful chemicals. For 

the analysis of urinary metabolites by SBSE, a deconjugation step is often required that 

may be accomplished by adding β-glucuronidase to the sample matrix. Furthermore, a 

derivatization step may also be necessary since the conjugation process renders the 

compounds hydrophilic and therefore less amenable to gas chromatographic separation.     

 

Desmet et al. [26] reported the exposure of firefighters to polyaromatic hydrocarbons 

(PAHs) by measuring 1-hydroxypyrene in the urine of a healthy volunteer. Following 

enzymatic hydrolysis with β-glucuronidase and derivatization of the liberated compounds 

with acetic acid anhydride, the acetate derivatives were extracted by SBSE and analyzed 

on-line by TD-GC/MS. Three reference urine samples (Clin-CheckTM) containing known 

amounts of 1-hydroxypyrene were analyzed to assess the accuracy of the developed 
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method. The SBSE results were in excellent agreement with the approved concentrations. 

Polychlorinated biphenyls (PCBs) are another class of potentially toxic compounds that 

may be linked to various reproductive problems. Benijts et al. [27] developed an SBSE 

method for the analysis of PCBs in human sperm, and also demonstrated the advantage of 

adding small amounts of organic solvent (i.e. methanol) to the sample matrix to prevent the 

adsorption of highly apolar compounds to glass surfaces in the sample container. A variety 

of environmental contaminants, including the PCBs, also act as endocrine disrupting 

chemicals (EDCs) that have been shown to affect the growth and development of humans 

and wildlife [28]. The alkylphenolethoxylates (APEs) are well known xenoestrogens for 

which a large number of breakdown products, including 4-nonylphenol have been detected 

in the environment. Kawaguchi et al. recently developed a number of methods for the 

detection of different APEs by SBSE in various biological matrices, including urine [29], 

plasma and saliva [30]. Trace levels of these contaminants were detected using different 

derivatization techniques, namely in situ derivatization with acetic acid anhydride [31] and 

in-tube silylation with BSTFA [32]. In addition, the detection of pesticides (another class of 

EDCs) in breast milk using SBSE-TD-GC/MS has also recently been demonstrated [33]. 

 

Apart from measuring environmental contaminants in biological fluids, the detection of 

pharmaceutical drugs and other biochemical compounds in forensic and clinical samples by 

SBSE is also becoming more important. Measurement of biological substances may be 

used to detect therapeutic or lethal drug doses in blood or plasma, or to monitor specific 

biomarkers during health and disease. Various methods have been developed for the 

detection of theophylline [34], drugs of abuse [35] and different pharmaceuticals [36] by 

SBSE in conjunction with GC/MS. Tienpont el al. recently demonstrated the possibility of 

extracting several compounds containing phenolic and acidic functional groups following 

derivatization with ethyl chloroformate [36]. Furthermore, a number of specially designed 

extraction devices based on SBSE have recently been developed to detect target analytes in 

sample matrices that are difficult to analyze. The analysis of plasma by SBSE for example, 

results in fouling of the sorbent layer due to the high protein content of these samples. 

Protein fouling shortens the life of the stir bar and limits the number of reproducible 

extractions that can be performed by SBSE. Lambert et al. [37] demonstrated the coating of 

a glass stir bar with restricted access materials to allow low molecular weight compounds 
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to partition into the phase’s interior, while excluding macromolecules with a molecular 

weight in excess of 15 000 (i.e. proteins). This device was used to extract caffeine and its 

metabolites directly from plasma, allowing more than 50 analyses to be performed with a 

single stir bar when used in combination with HPLC/UV. In a study reported by Buettner 

and Welle [38], certain odors were also detected intra-orally using a modified SBSE device. 

The stir bars were placed inside small perforated glass containers to allow the penetration 

of air and saliva into the holder shortly after swallowing food and beverages. Extractions 

were performed directly in the oral cavity, after which the stir bars were removed from the 

holders and analyzed by TD-GC-olfactometry.  

 

Of the numerous SBSE applications reported in the literature thus far, less than one fifth 

involves the analysis of biological matrices, and only a handful of these biological 

applications include the detection of trace amounts of naturally occurring organic 

compounds in bodily fluids. Soini and coworkers [39-41] recently reported the analysis of 

volatile and semi-volatile components in animal urine and glandular tissues using SBSE. 

The obtained chromatographic profiles showed that quantitative differences detected for 

certain compounds may be associated with individual or gender recognition. These authors 

also introduced a new SBSE sampling device that may be rolled over biological surfaces to 

detect a variety of volatile organic compounds [42].   

 

Currently, only a limited number of SBSE methods address the analysis of naturally 

occurring compounds in human bodily fluids. The detection of selected steroids in urine 

samples by SBSE has previously been demonstrated by Almeida and Noguiera [24] and by 

Tienpont et al. [36]. More recently, the trace analysis of different biological markers by 

SBSE have been reported by Stopforth et al. who demonstrated the analysis of 

tuberculostearic acid in sputum samples [43]; the detection of 4-hydroxynonenal as an 

oxidative stress marker in urine [44]; measurement of the testosterone/epitestosterone ratio 

in HIV infection [45], as well as the measurement of a high urinary excretion of estrone and 

17β-estradiol during hormone replacement therapy [46]. The low detection limits achieved 

in these studies were due to the development of a new headspace derivatization technique 

[44] that was used in conjunction with SBSE. Several potentially useful developments in 

SBSE, particularly in the biomedical field, have been hampered by the lack of a suitable 
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derivatization method for compounds containing polar functional groups that are difficult to 

derivatize in aqueous samples. This limitation has been overcome by the development of 

two new headspace derivatization procedures that were recently reported by Kawaguchi et 

al. [32] and Stopforth et al. [44]. A variety of polar compounds that previously lacked 

sufficient volatility and thermal stability may now be analyzed by SBSE-TD-GC/MS. 

Consequently, the potential to develop several new SBSE methods for application in the 

clinical and biomedical fields now exists. 
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2.2 Fundamental principles of SBSE 

  

 Stir bar sorptive extraction was developed as a means to enhance the low extraction 

efficiencies of compounds analyzed by SPME. The volume of extraction phase coated onto 

a 100 μm SPME fiber corresponds to approximately 0.5 μl PDMS, whereas a stir bar (1 cm 

x 0.5 mm df) contains at least 25 μl of the stationary phase. Although both techniques 

follow the same principles, the amount of stationary phase used accounts for the majority of 

differences observed between the two techniques. The main differences are the rate at 

which equilibrium is achieved within the stationary phase coating, as well as the total 

amount of analytes extracted by the sorbent phase. Although SPME achieves faster 

extractions, it suffers from low sensitivity because of the small amount of stationary phase 

used.  

 

 In sorptive extraction, the compounds diffuse from the aqueous sample to the PDMS 

coating and migrate through the sorbent phase. The rate of diffusion is determined by the 

coating thickness and the distribution constant of a particular analyte. The amount of 

analytes sorbed by the stationary phase coating increases rapidly after the device (i.e. stir 

bar) is placed in the sample matrix and then slows as the system reaches equilibrium. This 

relationship is demonstrated by the extraction-time profile obtained for estrone and 17β-

estradiol as shown in Figure 2.1. Generally, the shortest equilibration time that corresponds 

to the extraction of approximately 95 % of the equilibrium amount of the analyte is selected 

for routine analysis (i.e. 60 minutes for the estrogens as shown in Figure 2.1). Non-

equilibrium extraction conditions may also be used, providing that the sorption procedure is 

precisely time-controlled [47].  
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 Figure 2.1 Effect of extraction time on the recovery of estrone (E1) and 17β-estradiol (E2) by 

SBSE-TD-GC/MS. The experimental conditions are given in Chapter 9. 

  

 The total equilibrium amount of analytes extracted by the PDMS coating also depends on 

the amount of analytes present in other phases of the sample system. The headspace above 

the sample solution, as well as the sample matrix may have a capacity to retain the analytes. 

Under ambient conditions, semi-volatile compounds do not readily partition into the gas 

phase that is present above the sample solution, therefore the amount extracted by the stir 

bar coating will not be affected. The analytes may, however, be retained by suspended 

particles and organic solvents present in the sample matrix. This situation lowers the mass 

transfer of analytes to other phases in the system and decreases the overall kinetics of the 

extraction process [47].  

 

 The kinetics of sorptive extraction are mainly affected by the affinity of the analytes for the 

stationary phase coating. Affinity of the compounds for the PDMS layer is estimated from 

the distribution constant (KPDMS/W) of an analyte which is proportional to its octanol-water 

partitioning coefficient (KO/W). The distribution constant is used to predict the sensitivity of 

SBSE and estimates the total amount of analytes extracted by the stir bar coating. A 

characteristic feature that differentiates sorptive extraction from adsorptive methods (e.g. 

SPE) is that the analytes partition into the bulk of the polymer where they diffuse 

 22



Chapter 2:    Stir bar sorptive extraction                                                       PART  I 

throughout the sorbent layer. Consequently, the total recovery of analytes is affected also 

by the phase ratio (β) between the aqueous sample and the amount of PDMS used [48]. The 

relationship between KPDMS/W and β is demonstrated in Eq. 1: 
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 The distribution constant between PDMS and water (KPDMS/W) is defined as the ratio 

between the concentration of the analyte in the PDMS phase (CPDMS) over its concentration 

in water (CW) under equilibrium conditions. This ratio is equal to the ratio of the mass of 

the analyte in the PDMS phase (mPDMS) over the mass of the analyte in water (mW) 

multiplied by the phase ratio β, where β =VW/VPDMS [48]. The theoretical recovery can 

therefore be calculated based on the distribution constant of the analyte and a known phase 

ratio, which is expressed as the ratio of the extracted amount of analyte (mPDMS) over the 

original amount of analyte in the sample matrix (m0 = mPDMS + mW) as shown in Eq. 2. 
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 Eq. 2 demonstrates that the extraction efficiency will increase with increasing KPDMS/W and 

decreasing β. The phase ratio is basically a fixed parameter because a specific sample 

volume and coating thickness can be selected. The distribution constant on the other hand, 

is influenced by a variety of conditions, including changes in temperature and pH, salt 

addition, derivatization of polar functional groups, as well as the presence of organic 

solvents in the aqueous sample.  

  

 Temperature has a significant effect on the extraction equilibrium. If the temperature is 

raised, two opposing effects will be observed. Firstly, the diffusion coefficients of the 

analytes are increased so that the time required to reach equilibrium is decreased [49]. 

Secondly, the distribution constants are decreased so that potentially lower amounts of the 

compounds will be extracted. The ideal extraction temperature ranges from 40°C – 50°C 

for most semi-volatile compounds. However, the optimal extraction temperature should be 
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determined experimentally, which is usually accomplished by constructing a temperature 

profile for the extracted analytes. 

 

 Natural sample matrices, such as urine, are influenced by variations in pH and ionic 

strength due to the homeostatic concentration effects produced by the kidneys. The addition 

of salt not only improves the extraction efficiency of compounds analyzed by SBSE, but 

also normalizes these random salt concentrations that may affect the reproducibility of the 

method. Depending on the amount of salt added, the extracted quantity may either increase 

or decrease [47]. Lower salt concentrations generally result in higher extractions due to the 

salting out effect, whereas high salt concentrations lead to lower extractions caused by 

electrostatic interactions at the molecular level [48]. Sample pH is an important parameter 

for compounds that possess a pH-dependent functional group. The extraction efficiency 

will increase at a pH level that produces more of the undissociated form of the compound, 

since it is this form that will partition into the stir bar coating.  

 

 Other parameters that may lead to an improved extraction efficiency for the compounds 

include, stirring speed which increases the rate of diffusion by decreasing the static aqueous 

layer surrounding the stir bar (i.e. Prandlt boundary layer), and derivatization which 

replaces polar functional groups with less polar units to enhance the compound’s affinity 

for the sorbent layer. Reproducible extractions can only be obtained when each parameter 

that affects KPDMS/W, namely stirring speed, temperature, pH, ionic strength etc., is held 

constant to ensure equal distribution constants in all experiments.  
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2.3 Surface characteristics of polydimethylsiloxane 

 

 Polymers have become indispensable in daily life. They are essentially made up of 

macromolecular structures that are formed by linking a large number of smaller molecules 

together through strong covalent bonds. Polymers are commonly referred to as plastics, but 

this term is slightly misleading because it refers to a class of polymers known as 

thermoplastics. As their name suggests, they have the ability to melt when exposed to heat. 

Thermoplastics consist of linear or branched polymer chains which allow the material to 

change shape when heated. Thermosets on the other hand, do not have this ability, but 

rather have a tendency to decompose when exposed to high temperatures. Thermosets are 

cross-linked, and this rigid structure prevents them from melting [49]. Some cross-linked 

polymers are soft and flexible and these are known as elastomers. The best well-known 

silicon elastomer is polydimethylsiloxane (PDMS).   

 

 PDMS is extensively used as a stationary phase in analytical chemistry because of its 

unique properties. It is thermally stable and allows the diffusion of compounds into the bulk 

of the material as opposed to being bonded to active sites on the surface. PDMS also has 

excellent water-repellent properties owing to its structure, which consists of repeat units of 

silicon and oxygen that are 100% covered and end-capped with non-polar methyl groups 

(Figure 2.1). Although PDMS is durable, this polymer is not completely resistant to 

degradation. The polymer layer degrades in the presence of oxygen and water, or from 

deposits of impurities and organic material on the surface [50].  

  
CH3 CH3 CH3 CH3 CH3  

 

 

 
 Figure 2.1 Structure of PDMS 

  

  Thermal oxidation of PDMS results in the formation of cyclic oligomers that are vaporized 

into the carrier gas stream and are carried through to the mass spectrometer [50, 51]. 

Specific masses can be detected in full scan mode that correspond to the breakdown 

Si O Si O Si O Si O Si O

CH3 CH3 CH3 CH3 CH3
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products of these volatile components, namely m/z 207 for hexamethylcyclotrisiloxane 

(HCTS), m/z 281 for octamethylcyclotetrasiloxane and m/z 267 and 355 for 

decamethylcyclopentasiloxane. HCTS is the smallest of the cyclic dimethylsiloxanes that 

may be released from the surface of the stir bar coating or from the stationary phase in the 

GC column (i.e. column bleed). A schematic illustration of the breakdown process of 

PDMS is shown in Figure 2.2. 
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 Figure 2.2  Formation of hexamethylcyclotrisiloxane during PDMS degradation [51]. 

   

  An additional degradation step that occurs at high temperatures is the onset of a free radical 

mechanism that leads to cross-linking of the polymer [52]. This oxidative reaction 

stabilizes the surface of the polymer by preventing further volatilization of cyclic 

oligomers. Cross-linking of the PDMS surface leads to the formation of a brittle silica layer 

that is hydrophilic, and the systematic build-up of this layer over time prevents the recovery 

of the polymer surface [50, 53].  

 

  PDMS has a remarkable ability to repair initial damage caused by thermal or oxidative 

degradation. If the damaged surface is left to age in ambient air, the surface hydrophobicity 

is recovered [54, 55]. Two mechanisms have been proposed by which this process occurs, 

namely reorientation of newly formed hydroxyl groups into the bulk of the material, and 

migration of low-molecular-weight siloxanes from the bulk to the surface [56]. Tóth et al. 

suggested that about one third of this recovery is due to the reorientation of the main chain, 

whereas two thirds results from diffusion of hydrophobic groups to the surface [57]. As 

mentioned previously, the oxidation of the polymer surface greatly impedes this recovery 

process.  
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  Several analytical techniques can be used to study the surface properties of different 

polymers. In this study, 3 techniques were used to characterize the surface of the PDMS-

coated stir bars, namely atomic force microscopy (AFM), scanning electron microscopy 

(SEM) and contact angle measurements.  

 

  Contact angles: Contact angles provide a measure of the hydrophobic recovery of a 

polymer layer. The measurements are obtained by recording digital images of small drops 

of deionized water (i.e. ± 20 μl) placed on the surface of a PDMS sample. In this study, the 

reported values were obtained from an average of four measurements made on different 

parts of the stir bar coating. A static contact angle instrument, which consisted of a Nikon 

SMZ-2T optical microscope combined with a camera attachment, was used to perform the 

different measurements. Figure 2.3 illustrates the shape of a water droplet placed on one of 

the stir bar samples.  

 

 

 

 

 

 
  Figure 2.3 A 20 μl water drop placed on the PDMS coating of a stir bar.  

  

  SEM: Scanning electron microscopy produces an image of a polymer sample that has 

greater depth than that obtained by an optical microscope. A three-dimensional image is 

obtained from which the surface roughness of the polymer can be assessed. A fine electron 

beam is scanned across the polymer surface which is coated with a thin layer of conducting 

material. In this study, the stir bars were sputtered with a 10 nm pure gold layer and placed 

in a Leo 1430VP scanning electron microscope. The images were acquired using a 

magnification of 68 and 500, respectively.  
 

  AFM: Atomic force microscopy provides an image of the polymer surface at the angstrom 

level, thus allowing the topography of the surface to be studied. The recorded images in this 

study were obtained using an Explorer atomic force microscope (TopoMetrix, Darmstadt, 
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Germany) that was operated in the non-contact mode. The cantilevers used for image 

acquisition were terminated with silicon tips (NanoSensors, Santa Clara, CA, U.S.A.) and 

had a resonance frequency of ~ 160 kHz. Recording of the images was performed at a scan 

rate of 1 – 3 Hz with a 100 μm scanner.     

   

The surface characteristics of four different stir bars (Gerstel GmbH, Müllheim a/d Ruhr, 

Germany) were determined using the abovementioned techniques. A summary of the 

contact angle measurements, scanning electron micrographs and AFM images are shown in 

Table 2.1. The imaging data indicate that: 

 

1. The stir bars are systematically degraded during routine use. The AFM and SEM 

images show that progressive smoothing of the polymer surface takes place following 

exposure of the stir bars to a number of unfavorable conditions such as water, high 

thermal desorption temperatures (stir bars 2, 3 and 4), and derivatizing reagents such as 

trifluoroacetic acid anhydride (stir bar 2) and ethyl chloroformate (stir bars 3 and 4). 

 

2. The contact angle measurements obtained for the different stir bars demonstrate that 

their surface hydrophobicity is maintained, in spite of the extreme conditions the stir 

bars are exposed to. However, the stir bars never regain their initial surface 

hydrophobicity as shown by the contact angle measurements obtained for the different 

stir bars.   

 

3.  Eventually the surface layer decomposes to such an extent (i.e. stir bar 4) that the stir 

bar is no longer suitable to be used. The contact angle, scanning electron micrograph 

and AFM image obtained for stir bar 4, show that after prolonged use the stationary 

phase becomes hydrophilic. Generally, up to 40 extractions can be performed with a 

single stir bar before the reproducibility of the experiment is compromised. The 

number of extractions performed usually depends on the conditions the stir bar is 

exposed to.  
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Table 2.1 Summary of surface data obtained by SEM, AFM and contact angle measurements 

Stir bar no. SEM:             X   68                                               X  500 AFM 

   

Stir bar 1: 

A new, unused stir bar. 

Contact angle: 95.1° 

 

 

 

 

   

Stir bar 2: 

A new, unused stir bar 

exposed to trifluoro-

acetic anhydride at 70°C 

for 20 minutes; and 

desorbed under helium at 

300°C for 10 minutes. 

Contact angle: 93.2° 
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Table 2.1 Cont. 

Stir bar no. SEM:            X  68                                               X  500 AFM 

 

Stir bar 3: 

Used for ± 20 extractions 

in aqueous media contai-

ning ethyl chloroformate. 

Contact angle: 94.1° 

 

 

 

 

 

  

  

Used for > 40 extractions 

in aqueous media contai-

ning ethyl chloroformate. 

Contact angle: 90.6° 

Stir bar 4: 
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3.1 Introduction 

 

 Most biological samples are not suitable for direct analysis by GC/MS even after an 

extraction step has been performed. The target compounds often contain one or more polar 

functional groups that limit their volatility and thermal stability. One way to improve the 

chromatography of polar analytes is to include a derivatization step during the sample 

work-up procedure. Derivatization is basically a micro-scale synthetic reaction that replaces 

active hydrogens in functional groups such as –COOH, –OH and –NH2 with less polar, 

thermally stable groups. These reactions are frequently employed to prevent hydrogen 

bonding between different molecules, thereby decreasing their interaction with active sites 

in the GC system. Therefore, derivatized compounds often demonstrate improved 

chromatographic behavior because peak tailing or broadening is minimized, the compounds 

are better resolved and more symmetrical, which in turn enhances their detectability.  

 

 Chemical reactions that are frequently used to modify polar compounds in gas 

chromatography include silylation, alkylation, acylation and different condensation 

reactions. Silylation is probably the most frequently used technique, which involves the use 

of highly reactive trimethylsilylating reagents (e.g. bistrimethylsilyltrifluoracetamide -

BSTFA) that are capable of derivatizing most functional groups. A drawback of using this 

method, however, is that the reagents are sensitive to moisture, and in SBSE it is often 

necessary to perform the derivatization step directly in the aqueous sample. One way to 

overcome this limitation is to derivatize the compounds directly in the PDMS coating by 

exposing the stir bar [1] or SPME fiber [2] to vapors of the reagent in a sealed container 

(i.e. vial). In SBSE, a technique known as in-tube silylation has been developed where a 

small drop of reagent is placed on a piece of glass wool next to the stir bar inside the 

thermal desorption tube [3]. The compounds are derivatized during the thermal desorption 

step, which involves heating the tube to a desired temperature to release the compounds 

from the PDMS coating. This mode of derivatization is very efficient, but the tubes utilized 

in SBSE are not entirely sealed off, which means that the reagent will be released into the 

atmosphere when the stir bar is transferred to the thermal desorption unit (TDU). Silylation 

reagents are known to be hazardous and potentially harmful; therefore one of the objectives 
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in this study was to investigate the use of a more environmentally friendly reagent for the 

headspace derivatization of compounds enriched by SBSE (see section 3.3). 

 

 Not all compounds are suitable for extraction by SBSE due to their high polarity. It is often 

necessary to perform an in situ derivatization step to improve the recovery of polar analytes 

by the stir bar. Currently, only a small number of chemical reactions can be used 

successfully in aqueous matrices. One such reaction involves the replacement of an acidic 

proton (i.e. –COOH) with an aliphatic group, also known as alkylation. Ethyl 

chloroformate (ECF) is a well known alkylating reagent that is frequently used to derivatize 

free fatty acids in biological samples [4]. The synthesized ethyl esters are sufficiently stable 

to be extracted directly from an aqueous sample using SBSE [5]. Another reagent that is 

frequently used for direct derivatization purposes is acetic acid anhydride. This versatile 

reagent replaces even non-acidic protons (e.g. –OH) with stable acetate groups. The target 

analytes can be derivatized directly in the aqueous phase prior to SBSE, and/or in the 

headspace after the extraction step has been performed [6]. The resulting acyl derivatives 

demonstrate improved chromatographic behavior as well as enhanced recovery by the stir 

bar coating.  

 

 The amount of analytes extracted by the stir bar is determined by the affinity of the 

compounds for the various phases in the sample [7]. Polar analytes have a greater affinity 

for the aqueous phase as compared to the relatively non-polar PDMS extraction phase. For 

this reason, the extraction of highly hydrophilic compounds by SBSE will be poor, unless a 

hydrophobic entity is attached to the analyte. O-(2,3,4,5,6,-pentafluorobenzyl) 

hydroxylamine (PFBHA) is a highly reactive chemical reagent that converts polar, low 

molecular weight carbonyl compounds (e.g. aldehydes) to their corresponding oxime 

derivatives directly in aqueous matrices. The reaction involves the replacement of two 

protons between the analyte and the reagent to form a double bond by means of 

condensation [8]. The partition coefficient or log Ko/w value of the derivatives is markedly 

higher than that of the parent compounds, which favors the distribution of the derivatives 

into the PDMS coating and enhances the total amount of analytes extracted by the stir bar 

[1].  
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  In this chapter, the chemical reactions used to improve the gas chromatography of various 

polar analytes in biological samples will be discussed. Several factors affecting the yield of 

the individual reactions will also be highlighted. 

 

3.2 Ethyl chloroformate 

 

 In 1990, it was discovered that the chloroformates are potent esterification reagents of 

carboxylic acids in aqueous samples [9]. A range of organic acids can be converted to their 

corresponding esters within minutes when the reagent is added directly to an aqueous 

medium [10]. If the reaction is performed in a mixture that combines the reagent together 

with pyridine and an alcohol, then two products are formed, namely a major product that 

results from the reaction of the alcohol and a mixed anhydride, and a minor product that is 

formed by decarboxylation of the mixed anhydride [8]. A single derivative can be obtained 

in high yield, however, if the chloroformate is combined with its corresponding alcohol; 

that is, if ethyl chloroformate (ECF) is used together with ethanol. The reaction scheme for 

the derivatization of organic acids with the alkyl chloroformates is shown in Fig. 3.1. 
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Figure 3.1  Reaction pathways for the alkylation of acids with chloroformates (reproduced from 

Ref. 8) 

 

 It is known that free fatty acids can be converted to their corresponding ethyl esters by 

adding ECF directly to an aqueous sample. However, the final yield of the derivatives 

depends on the composition of the aqueous medium [10] and the reactivity of ECF is 

greatly determined by the amount of ethanol added. [11]. Therefore, initial experiments 

were performed to investigate whether the composition of the reaction medium would 

affect the final yield of the derivatized compounds. The studied samples included a number 
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of free fatty acids ranging from decanoic acid (C10) to octadecanoic acid (C18), and special 

attention was given to optimizing the yield of the longer chain fatty acids such as 

hexadecanoic acid (C16) and C18. The objective was to establish the optimal ratios between 

the different components in the sample, namely ECF, pyridine, ethanol and water to 

improve the recovery of C16 and C18 by SBSE. The optimized method would then be used 

to detect trace amounts of tuberculostearic acid in sputum samples as described in Chapter 

6.  

 

 At first, it was found that by decreasing the water to ethanol ratio, a much higher yield of 

the long chain fatty acids could be achieved (results not shown). Large quantities of water 

delay the reaction kinetics of the reagent and this situation is avoided by increasing the 

amount of ethanol added to the sample. In subsequent experiments it was found that by 

decreasing the ratio between the reagent and the catalyst (i.e. pyridine), the yield of C16 and 

C18 was significantly increased. ECF starts to decompose when it is added to the reaction 

medium producing carbon dioxide, alcohol and hydrochloric acid that block the catalytic 

effect of pyridine [12]. Therefore, pyridine should always be present in molar excess as 

demonstrated in Figure 3.2. 
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Figure 3.2  SIM chromatograms (m/z 88) of 1) C16 and 2) C18 following the addition of different 

quantities of ECF to 1 ml aqueous samples containing 0.33 ml ethanol and 0.17 ml pyridine. The 

extraction and instrumental conditions are described in Chapter 6. 
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 Apart from decreasing the sensitivity of the analysis, a major disadvantage to using larger 

quantities of ECF is that an excess amount of reagent will be absorbed by the stir bar 

coating. This situation affects the reproducibility of the method because ECF is corrosive, 

and its presence in the stir bar coating may alter the surface characteristics of the PDMS 

layer. At high temperatures (e.g. during thermal desorption) an excess amount of reagent 

leads to varying peak ratios, decreased sensitivity (e.g. for the longer chain fatty acids) and 

variations in the retention times of the analytes as demonstrated in Figure 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.3  Total ion chromatograms of A) of a urine sample containing 500 μl ECF and B) 50 μl 

ECF. The upper trace (A) demonstrates a shift in retention time for the early eluting compounds 

due to the presence of an ECF reagent peak. The compounds are 1) ECF; 2) dimethylcarbamic 

acid; 3) 2-chloro-1,1-diethoxyethane; 4) octamethylcyclotetrasiloxane; 5) hexachloroethane; 6) 

decamethylcyclopentasiloxane; 7) benzoic acid. The extraction and instrumental conditions are 

given in Chapter 6.  
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 It has previously been reported that the conversion of organic acids to their corresponding 

alkyl esters occurs instantaneously [10]. However, in our experience it is advantageous to 

prolong the ECF reaction time in order to increase the derivatization yield of the longer 

chain fatty acids. In this study, the samples were routinely sonicated for 15 minutes after 

the addition of the catalyst, reagent and solvent to the sample matrix. The effect of time on 

the derivatization yield of the fatty acids was investigated by sonicating the samples for 

various lengths of time. The optimal yield was obtained when the samples were sonicated 

for 15 minutes, whereas shorter reaction times significantly decreased the recovery of C16 

and C18 (Figure 3.4). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4  SIM chromatograms (m/z 88) of 1) C16 and 2) C18 in 1 ml aqueous samples containing 

0.33 ml ethanol, 0.17 ml pyridine and 0.05 ml ECF that were sonicated for 5 min and 15 min, 

respectively. The extraction and instrumental conditions are given in Chapter 6. 

 

 Using the optimized reaction conditions, the ideal ratio between ethanol and pyridine were 

investigated as a way of increasing the recovery of tuberculostearic acid (TBSA) and 17-

methyloctadecanoic acid (MODA) from aqueous samples. The investigated ratios are 

presented in Table 3.1. The optimal ethanol:pyridine ratio was obtained for sample 

composition C (Figure 3.5), which consisted of 1 ml water, 0.88 ml ethanol, 0.16 ml 

pyridine and 0.08 ml ECF. These reaction conditions were applied to accomplish the trace 

analysis of TBSA in decontaminated sputum samples (Chapter 6).  
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  Table 3.1 Optimization of the ethanol:pyridine ratio 

 Ethanol : Pyridine Ratio (Volume) ECF (μl) 
 A)   4 : 1        (0.5 ml) 50 
 B)   10 : 1      (1.1 ml) 50 
 C)   5.5 : 1     (1.04 ml)     80 

 D)   6.25 : 1   (1.16 ml) 160 

 E)   8.33 : 1   (2.24 ml) 160 

 F)   6.25 : 1   (2.32 ml) 160 
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Figure 3.5  Graphic representation of the derivatization yields obtained for TBSA and MODA (IS) 

using the ethanol:pyridine ratios presented in Table 3.1. The extraction and instrumental conditions 

are given in Chapter 6. 

 

3.3 Acetic acid anhydride 

  

 Acetic acid anhydride is frequently used as a derivatizing reagent in analytical chemistry 

because of its low cost and ease of use. It hydrolyzes slowly in water and can therefore be 

used to derivatize compounds directly in aqueous matrices. Several methods have been 

reported where acetic acid anhydride was used in combination with SBSE to improve the 
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extraction and gas chromatographic separation of phenols [13], hydroxylated-PAHs, [14] 

and estrogens [6] in environmental and biological samples. The versatility of this reagent is 

due to the fact that both phenolic and aliphatic hydroxyl groups can be derivatized using 

either direct (i.e. in situ) derivatization or headspace (i.e. post-extraction) derivatization.  

The in situ derivatization step proceeds rapidly in an aqueous medium in the presence of a 

base such as NaHCO3, which is often added to drive the reaction to completion. The 

acylation of hydroxyl-containing compounds with acetic acid anhydride is illustrated in 

Figure 3.6. 

 

 

 

OO O
  

Figure 3.6 Reaction pathway for the acylation of hydroxyl-containing compounds  

 

 

 Derivatization of phenolic hydroxyl groups: Phenolic hydroxyl groups can be derivatized 

directly in an aqueous medium following the addition of acetic acid anhydride to the 

sample matrix. The reaction rate is increased when a base, such as K2CO3, NaHCO3, 

Na2CO3 or pyridine, is added to the sample. The appropriate base should be selected 

because the yield of the derivatives is determined by the final pH of the reaction medium. 

Phenolic hydroxyl groups dissociate at higher pH levels and it is this anionic form of the 

compound that is able to react with the reagent in aqueous media. The pKa value of the 

phenolic functional group is approximately 9.8, which means that at neutral pH the 

majority of the compound will exist in its non-ionic form [15]. Higher pH levels, however, 

produce the phenolate anion which increases the rate of the reaction due to its high 

solubility in water. Thus, the overall yield of the derivatives can be improved when 

increased amounts of the phenolate anion are made available. The reaction should be 

performed at a pH that is high enough to increase the available amount of the phenolate 

anion, but low enough to avoid destruction of the reagent before the reaction is completed 

[15]. The pH of the sample matrix can be adjusted to a suitable level by selecting an 

appropriate base to catalyze the reaction. For acylation of the estrogens in urine samples, 

+ +CH3 C O C CH3CH3 R OH R O C AcOH

 42



Chapter 3:    Derivatization         PART   I 

the use of Na2CO3 resulted in higher yields as compared to K2CO3 and NaHCO3 (results not 

shown). The analysis of estrone and 17β-estradiol is described in detail in Chapter 9. 

 

 Derivatization of aliphatic hydroxyl groups: Most of the reagents available for the 

derivatization of aliphatic hydroxyl groups are sensitive to moisture. To overcome this 

limitation, Okeyo et al. [16] developed a novel SPME method which involves the direct 

derivatization of compounds in the fiber coating. The analytes are first enriched from the 

aqueous sample, where after the fiber is exposed to vapors of the reagent in a sealed vial to 

allow the chemical conversion of the compounds directly in the polymer coating. A 

modification of this technique involves the simultaneous derivatization and extraction of 

the compounds in the fiber coating. In this technique, the fiber is first doped with the 

reagent by exposing the SPME device to vapors of the reagent in a sealed container, where 

after the fiber is placed in the sample matrix to extract and derivatize the compounds [17]. 

For the analysis of polar compounds by SBSE, a slightly different approach has been used 

as demonstrated by two recently developed derivatization techniques that were reported by 

Kawaguchi et al. [3] and Stopforth et al. [1]. The first method involves the in-tube silylation 

of polar compounds by BSTFA, whereas the second method involves exposure of the stir 

bars to acetic acid anhydride vapors in modified headspace vials. This last approach has 

been used to derivatize the hydroxyl-containing compounds investigated in this study, 

namely 4-hydroxynonenal (Chapter 7), testosterone and epitestosterone (Chapter 8), as well 

as estrone and 17β-estradiol (Chapter 9). 

 

 The in-vial headspace derivatization technique was developed by investigating the 

acylation of two long chain fatty alcohols, namely 1-eiconsanol and 1-docosanol. In a 

preliminary experiment, the fatty alcohols were derivatized directly in a 1 ml aqueous 

sample containing 50 μl acetic acid anhydride and 100 μl pyridine. The sample was spiked 

with 2 μg ml-1 of each compound and was sonicated for 15 minutes. Extraction of the 

derivatized compounds was performed by SBSE at 1000 rpm for 1 hour, and thermal 

desorption and GC/MS was performed using the instrumental conditions described in 

Chapter 9. Figure 3.7-A demonstrates that only a small amount of the compounds were 

converted to their corresponding acetates using the direct derivatization approach. In 

subsequent experiments the post-extraction derivatization of the fatty alcohols was 
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investigated using the two techniques mentioned previously, namely doping of the PDMS 

stationary phase with the reagent prior to extracting the compounds (i.e. simultaneous 

extraction and derivatization), and conversion of the fatty alcohols to their corresponding 

acetates in the PDMS coating after the compounds have been extracted from the sample 

(i.e. headspace derivatization). For the simultaneous extraction and derivatization of the 

compounds, the stir bar was first placed in a 2 ml modified autosampler vial containing 50 

μl acetic acid anhydride and 50 μl pyridine. A detailed description of the vial used for the 

headspace derivatization of the extracted compounds is given in Chapter 7 (Section 7.2.5). 

The vial was heated at 90°C for 30 minutes to load the reagent onto the stir bar coating. 

Thereafter, the extraction was performed as described for the direct derivatization 

procedure. Figure 3.7-B shows that the stir bar doping method resulted in low yields of the 

fatty alcohol derivatives due to the poor diffusion coefficient of acetic acid anhydride into 

the PDMS coating (log Ko/w = -0.12). Thus, the stir bar cannot be loaded successfully using 

this reagent. Finally, headspace derivatization of the fatty alcohols was investigated by 

exposing the stir bar to acetic acid anhydride vapors in a modified headspace vial after the 

compounds were extracted from the aqueous sample. Almost complete derivatization of the 

fatty alcohols was obtained using the headspace derivatization method. Approximately 

98.8% of 1-eicosanol and 97.8% of 1-docosanol were converted to their corresponding 

acetates as shown in Figure 3.7-C. The estimated detection limits for the compounds were 

0.2 ng mL-1 for 1-eicosanol and 0.37 ng mL-1 for 1-docosanol.  

 

3.4  Pentafluorobenzyl hydroxylamine 

  

  The oximation of 4-hydroxynonenal (4HNE) can be accomplished by adding PFBHA 

directly to an aqueous sample in the presence of a catalyst such as pyridine. The reaction is 

straightforward and proceeds rapidly following the addition of the reagent to the sample 

matrix. However, each step of the reaction should be optimized to improve the yield of the 

oxime derivatives and this process is described in detail in Chapter 7 (Section 7.3.2). 
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 Figure 3.7  Total ion chromatograms of 1a) eicosanol; 1b) eicosanol-acetate; 2a) docosanol; and 

2b) docosanol-acetate as obtained by SBSE-TD-GC/MS. The upper trace (A) corresponds to the in 

situ derivatization of the compounds; the center trace (B) to the simultaneous derivatization and 

extraction of the compounds; and the lower trace (C) to the headspace derivatization of the 

extracted alcohols. The instrumental conditions are described in Chapter 9. 
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4.1   Introduction 

 

  In this chapter, the analytical instrumentation used to detect trace amounts of various 

biological markers in human bodily fluids is presented. The system is made up of four main 

components, namely a gas chromatograph (GC), a thermal desorption system (TDS), a 

cooled injection system (CIS), and a mass selective detector (MSD). The specifications of 

the system, including instrument model and make, column dimensions and operating 

conditions are described in detail in Part II of this study (i.e. Chapters 6 – 9). The different 

components of the system have been constructed of various parts, and the function and 

operation of these units is discussed in detail in the following section.  
 

4.2  Gas chromatograph 

   

   The fundamental principles of gas chromatography are based on the partitioning of a 

vaporized sample between a gaseous mobile phase and a liquid or solid stationary phase. 

The sample is first introduced into the inlet of the instrument, where after the vaporized 

compounds are carried through a capillary column by a stream of inert gas (i.e. helium). 

The compounds diffuse between the carrier gas and the stationary phase that is immobilized 

on the inner walls of the capillary tubing. The stationary phase retains the compounds to 

varying degrees, depending on the chemical and physical properties of each compound. 

Separation of the different sample components can be optimized by carefully selecting the 

carrier gas velocity, oven temperature program, and type of stationary phase used. The 

compounds that elute at the end of the column are recorded electronically using different 

detectors, such as a single channel detector (i.e. flame ionization detector), or a multi-

channel detector such as a mass spectrometer [1].  

 

4.3  Cooled injection system 

 

  Conventional injectors are operated at high temperatures to aid the immediate volatilization 

of sample constituents introduced into the injector body. The entire sample (i.e. splitless 

injection) or a portion of the sample (i.e. split injection) can be transferred to the head of 

the capillary column. In trace analysis however, it is often necessary to inject the entire 
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sample to improve analytical sensitivity. Classical hot split/splitless injection involves the 

injection of only a few microliters of the sample to avoid overloading the column and 

detector. To allow the injection of much larger sample volumes (i.e. up to 250 μl), Vogt et 

al. [2, 3] developed a programmed temperature vaporization (PTV) inlet in 1979, which 

improved the detection of trace amounts of analytes in biomedical and environmental 

samples. During temperature-programmed sample introduction, the sample is deposited in 

the inlet at a temperature slightly below the boiling point of the solvent. The solvent is 

continuously evaporated through the split vent, while the analytes remain in the liner. After 

a certain time, the split vent is closed and the analytes are transferred to the column in 

splitless mode by rapidly increasing the temperature of the PTV liner (i.e. at 12 °C.s-1). This 

procedure has several advantages, in that sample degradation is decreased, fewer 

contaminants are transferred to the column, and the vaporization of higher boiling 

compounds is significantly improved [4]. In SBSE, the PTV inlet may also be used as a 

cryogenic trap to focus the desorbed compounds in the injector liner prior to being 

transferred to the capillary column. The temperature of the liner may be lowered to sub-

ambient temperatures using CO2 or liquid nitrogen. A schematic drawing of the cooled 

injection system (CIS) developed by Gerstel is shown in Figure 4.1 [5].  

  

 Injection head 

 Carrier gas inlet 

 Split vent 

 Heating coils 
 

Injector liner  

 
Cooling chamber  

 Inlet for cooling gas 

 Capillary column connector 

 
Figure 4.1  The Gerstel CIS-4 PTV injector [5]. 
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4.4  Thermal desorption system 

 

  The CIS injector is connected to a thermal desorption system (TDS) by means of a short 

temperature controlled capillary column. The transfer capillary is maintained at a constant 

high temperature that facilitates the transfer of vaporized compounds to the PTV liner. Prior 

to performing the thermal desorption step, the oven chamber is cooled to ambient 

temperature, the GC column head pressure is reduced to zero, and the column temperature 

is lowered to below 90°C to prevent oxidative damage of the stationary phase in the 

capillary column. A glass tube containing the stir bar is transferred to the TDS desorption 

chamber and the air is purged out of the system. The TDS oven is heated to 300°C using a 

preset temperature program, and the vaporized compounds are swept toward the PTV liner 

by a constant flow of carrier gas that is maintained through the tube. The thermal 

desorption step may be performed in split, splitless or solvent vent mode. Traces of 

moisture in the TDS can be removed in the solvent venting mode, which prevents potential 

water damage to the GC column. Figure 4.2 illustrates the different components of the 

Gerstel thermal desorption system [6]. 

 

   

 

   

 

 

 

 

 

 

 

  
Figure 4.2  The Gerstel Thermal desorption system (TDS 2) linked with a CIS-3 

PTV injector [6]. 
 

 

 

 

 50



Chapter 4:    Instrumentation         PART   I 

4.5 The mass spectrometer 

 

 The mass spectrometer (MS) consists of 5 main components, namely a) an inlet system that 

interfaces the MS with the gas chromatograph; b) an ion source, which generates the 

electrons required to ionize and fragment the different sample components; c) a mass 

analyzer that separates the ions according to their mass-to-charge ratio; d) a detector and e) 

a vacuum system that maintains the low pressure environments required for mass 

spectrometric measurements.  

  

 4.5.1 MS inlet 

 

   A mass spectrometer can be interfaced directly to a GC instrument when high 

capacity pumping systems are utilized to remove the constant inflow of carrier gas into the 

MS ion source [7]. Helium is usually chosen as the carrier gas for GC/MS analysis because 

of its low molecular weight and negligible ionization potential. Helium is therefore easily 

removed from the system without producing ions that will interfere with the ionization of 

other materials. The flow rate of the carrier gas that is maintained through the GC capillary 

column is usually in the order of 1 – 25 ml min-1 [8]. In GC/MS, however, this flow rate is 

restricted to 1 – 2 ml min-1 to facilitate the direct coupling of the capillary column to the 

MS ion source and to ensure that the sensitivity of the analysis is maintained. The main 

advantage of direct coupling is that the entire sample deposited into the GC column is 

transferred to the mass spectrometer, which avoids any losses due to the presence of dead 

volumes.  

 

 4.5.2 Ion source 

 

   A schematic diagram of an electron impact ion source is shown in Figure 4.3 [9]. 

The compounds that elute from the GC column are bombarded with a stream of electrons 

emitted by a metal filament. The electrons pass through a slit in the ionization chamber and 

are accelerated toward an anode using a specific energy potential (i.e. 5 - 100 V) [7]. Two 

permanent magnets, placed on either side of the ion source, focus the emitted electrons into 

a narrow beam before it collides with the neutral gas molecules eluting from the GC 

 51



Chapter 4:    Instrumentation         PART   I 

column. The energy acquired by the electron beam allows a certain percentage of molecules 

to be ionized, and also determines the fragmentation pattern of the ionized compounds. 

Most electron impact mass spectra are recorded using 70 eV electrons. All positive ions 

formed by collision with the electron beam are drawn out of the ion source by applying a 

small accelerating voltage (i.e. 20 V) to the repeller plate [10]. Electron impact ionization 

leads to substantial fragmentation of the analyzed compounds, which provide considerable 

information about the structure of the analytes. In addition, the fragmentation patterns and 

mass spectra obtained are highly reproducible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 4.3 A schematic diagram of an electron impact ion source [9]. 

 

 4.5.3 Mass analyzer 

 

   Mass analyzers are categorized into 3 main groups, namely magnetic, quadrupole 

and time-of-flight mass analyzers. The quadrupole mass filter used in this study consists of 

four symmetrically aligned metal rods to which different combinations of dc and ac 

voltages are applied. The rods are diagonally paired and this arrangement creates an 

oscillating field along the axis of the rods that affects the flight path of ions entering the 
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quadrupole. At certain combinations of the applied voltages, ions of a specific m/z value 

maintain stable oscillations between the rods which allow them to reach the detector. All 

other ions undergo unstable oscillations and collide with the rod assembly [11]. A complete 

mass spectrum can be scanned by continuously varying the dc and ac voltages between the 

rods, while keeping their ratio constant (e.g. full scan mode). In contrast, selected ions are 

monitored by applying preset voltages to the rods, which allows more ions of a specific m/z 

value to pass through the quadrupole and to be detected (e.g. SIM) [12]. A schematic 

overview of the quadrupole mass spectrometer is given in Figure 4.4 [13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 4.4 Schematic overview of the quadrupole mass spectrometer. 

 

 4.5.4 Detector 

 

   Electron multipliers are the most frequently used detector devices in mass 

spectrometers. Ions that pass through the quadrupole filter are accelerated and strike a 

conversion dynode which releases secondary electrons. These electrons are focused onto a 

second dynode, which again releases a greater number of electrons. Many stages are used in 

these instruments to produce a gain in the order of 106. The final current is connected to a 

pre-amplifier that converts it to a digital signal [10, 13]. 

 

 53



Chapter 4:    Instrumentation         PART   I 

4.6 Ways to improve sample throughput during SBSE analysis 

 

  One factor that limits the application of GC/MS in clinical chemistry is the elaborate 

sample preparation steps required to analyze complex matrices. The new sorptive extraction 

methods (e.g. SBSE) are becoming increasingly popular because they limit the time 

required to prepare samples. A significant amount of analyst time can be saved by using an 

enrichment technique that combines the extraction, concentration and purification of a 

sample in a single step. However, in SBSE it is still not possible to automate the entire 

analytical procedure, therefore a number of techniques may be used to improve sample 

throughput. One way to increase the rate of analysis is to use an automated sample tray 

(Figure 4.5) which facilitates the on-line analysis of samples enriched by SBSE. The tray 

transfers each desorption tube to the TDU by mechanical means. In addition, other 

techniques are available that may improve sample throughput and these have been 

illustrated in more detail in the following section. 

 

   

  

 

 

 

 

 

 

 

 

 

 
 Figure 4.5 The TDS on-line rack 
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 Sonication:  A number of derivatization reactions were used in this study to prepare 

thermally stable, volatile derivatives for GC/MS analysis. A sonication step was often 

included in the derivatization procedure to increase the overall yield of the derivatives. A 

specially designed sample holder (Figure 4.6) was constructed by J Blom and coworkers at 

the Department of Mechanical Engineering (University of Stellenbosch). The holder is 

lowered into the sonicator bath, which allows up to 10 samples to be sonicated 

simultaneously.  

 

 

 

 

  

 

 

 

 

 

 

 

 
 Figure 4.6 Sample holder used during sonication 
 

 

 Stir bar conditioning: All stir bars were thermally conditioned prior to being used for 

SBSE. The stir bars were placed in a modified glass desorption tube and heated at 280°C 

for 15 minutes under a constant flow of carrier gas (i.e. 50 ml min-1). A schematic drawing 

of the conditioning tube is shown in Figure 4.7-A. Instead of placing one stir bar in the 

tube, four stir bars were routinely conditioned during a single run (Figure 4.7-B). 

 

  

 
 Figure 4.7-A Schematic drawing of a glass conditioning tube. 
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 Figure 4.7-B Experimental set up for the conditioning of the stir bars. 
 

 

 Magnetic stirring: Magnetic stirring in SBSE is required to enhance the partitioning of 

solutes between the aqueous sample phase and the stir bar coating. The magnetic stirrer 

shown in Figure 4.8-A and -B was constructed by J Blom and coworkers (Department of 

Mechanical Engineering, University of Stellenbosch). The stirrer essentially consists of a 

base plate that is combined with a convection oven. The base plate (Figure 4.8-A) houses 

an electrical motor, a digital display device, and 10 magnets that are connected and rotated 

by means of a chain system. The sample vials are held in place by a stainless steel plate 

holder. Prior to extracting the samples, the oven (Figure 4.8-B) is placed on top of the base 

plate and heated to temperatures ranging between 40°C and 100°C. The oven provides 

precise temperature control (e.g. up to 0.2°C).  
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 Figure 4.8-A Magnetic stirrer used during SBSE (without the oven). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 4.8-B Magnetic stirrer with the oven placed on top of the base plate. 
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Abstract 

 

A comprehensive approach of capillary GC/MS data handling and mapping of specific target 

analytes is presented and illustrated with the detection of drugs of abuse in biological fluids. The 

word “comprehensive” is used here in sensu stricto i.e. that includes everything one wants to 

detect. Enrichment of the target solutes is performed by stir bar sorptive extraction (SBSE) 

followed by thermal desorption-capillary gas chromatography/mass spectrometry (TD-CGC/MS) 

analysis. The high sensitivity that can be reached with the SBSE-TD-CGC/MS technique allows 

the use of the MS in the scan mode. The GC/MS data are plotted in a contour plot with locked 

retention times in the x-axis and the ion traces in the y-axis. Target solutes are detected as a spot 

at specific positions in the plot and the color of the spots is related to the peak abundances. Semi-

quantitative information can readily be obtained from the contour plots while precise quantitation 

needs the conventional calibration procedures. The graphical representation of CGC/MS data 

provides an easy way to elucidate samples positive on drugs of abuse by non-skilled personnel in 

forensic and medical laboratories. 

 

Key words:  

Drugs of abuse, biological fluids, stir bar sorptive extraction, thermal desorption, capillary gas 

chromatography-mass spectrometry, comprehensive profiling. 
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5.1 Introduction 

 

 The increasing availability of drugs of abuse [1] results in a growing demand for rapid and 

‘universal’ screening methods for their determination in biological fluids in combination 

with fast and easily accessible data interpretation procedures. Immunoassay tests suffer 

from a limited range of substances detectable at low concentrations [2]. In recent years, 

several groups made efforts to develop chromatographic methods that cover a wide range 

of target drug solutes [3-6]. Liquid chromatography (LC) especially in combination with 

atmospheric pressure ionization mass spectrometry (API-MS) [7, 8] became increasingly 

important in clinical and forensic sciences. Still, capillary gas chromatography (CGC) is the 

method of choice [9], preferentially in combination with mass selective detection.  

 

 Despite the development of analytical methodologies, interpretation of the data is mostly 

performed manually which is a time-consuming process, especially when a large amount of 

compounds has to be screened. Data interpretation can be automated using chemometric 

interpretation or principal component analysis (PCA) of LC, GC and GC/MS data [10]. 

However, these tools are less useful when specific target drug compounds and their 

metabolites have to be elucidated in the complex matrix of biological fluids. For multi-

target analysis by CGC/MS important improvements have been made in recent years. 

Through the features of electronic pneumatic control (EPC), retention time locked libraries 

(RTL) can be constructed and by linking the locked retention times to the mass spectral 

data obtained in the scan mode, hardly any target that is in the library can escape detection 

and elucidation [11]. An RTL-MS method has recently been described to monitor GC-

amenable pesticides in different matrices [12].  

 

 In this contribution, a “comprehensive profiling” method is described for the interpretation 

of CGC/MS data. The method is based on graphical presentation of the locked retention 

times and mass spectral data in a three-dimensional plot. The method is generally 

applicable and will be illustrated by the multi-component screening of drugs of abuse in 

biological fluids. Enrichment of the target analytes from the biological fluids is performed 

by stir bar sorptive extraction (SBSE) [13]. The features of SBSE for drug analysis have 

recently been described [14, 15]. 
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5.2 Experimental 

 

 5.2.1 Sample Preparation 

 

  The sample preparation procedures using SBSE for different biological fluids are 

detailed in ref . 14 and 15. An overview is presented in Figure 5.1. Five mL urine sample is 

transferred into a 20 mL headspace vial and 1 mL ammonium acetate buffer (1M, pH 6.5) 

is added. Ten µL β-glucuronidase of Escherichia coli K12 (Roche Molecular Biochemical, 

Mannheim, Germany) is added and the mixture is thermostated at 37°C during 90 min for 

enzymatic hydrolysis. A Twister™ (Gerstel GmbH, Müllheim a/d Ruhr, Germany) of 1 cm 

x 0.5 mm df (25 µL) PDMS is stirred in the sample for 60 min at 1000 rpm. After sampling, 

the stir bar is taken out of the vial with tweezers, rinsed with a few mL pure water and 

dipped on clean paper tissue to remove residual water droplets. The Twister is placed in an 

empty glass thermal desorption tube of 187 mm L, 6 mm O.D. and 4 mm I.D. for thermal 

desorption.  

 

 
Urine 5 mL 

Acetylation:  
0.5 g K2CO3 + 0.5 mL AA 

1mL NH4OAc + 10 µL β-glucuronidase, 90 min @ 37°C 

Ethylchloroformate*:  
2.5 mL EtOH/PYR (2:1) + 0.1 mL ECF 

+ 10 mL water

SBSE: 60 min 

TD-CGC-MS 

+ 1 mL MeOH 
+ 10 mL water

Blood/bile 1 mL  1g Stomach content 
 

 

 

 

 

 

 

 

 

 
 Figure 5.1  SBSE sample preparation procedure for biological fluids. (*) Other alkylchloroformates 

may be used. Abbreviations: AA, acetic acid anhydride; ECF, ethylchloroformate. 
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 In situ acylation of urine samples is performed as follows. After hydrolysis with β-

glucuronidase, 0.75 g potassium carbonate (Sigma-Aldrich, Bornem, Belgium) and 0.5 mL 

acetic acid anhydride (Sigma-Aldrich) are added. SBSE sampling followed immediately as 

described above. One mL blood or bile fluid sample is placed into a 20 mL headspace vial 

and 1 mL of ammonium acetate buffer (1M, pH 6.5) is added. Ten µL β-glucuronidase of 

Escherichia coli K12 is added and the mixture is equilibrated at 37°C for 90 min.  One mL 

of methanol is added and the mixture is placed in an ultrasonic bath for 15 min. The 

mixture is diluted with 10 mL of bi-distilled water and SBSE sampling is performed as for 

the urine samples. One g stomach content is mixed with 1 mL methanol and 10 mL water 

and SBSE is carried out as described above. 

 

 5.2.2 Instrumentation 

 

  Analyses were performed on a TDS-A thermodesorption unit (Gerstel) mounted on 

a 6890 Agilent GC (Agilent Technologies, Little Falls, DE, USA). The thermally desorbed 

analytes were cryo-focused in a programmed temperature vaporization injector (PTV, CIS-

4, Gerstel) at -100 °C with liquid nitrogen prior to injection. An empty baffled liner was 

used. The TDS was operated in the splitless mode and ramped from 30 °C to 300 °C at a 

rate of 60 °C.min-1 and the upper temperature was held for 10 min. After splitless thermal 

desorption, splitless injection (2 min) was performed by ramping the PTV injector from -

100 to 300 °C at a rate of 600 °C.min-1. Capillary GC analyses were performed on a 30 m L 

x 0.25 mm I.D., 0.25 µm df HP-5MS column (Agilent Technologies). The oven was 

programmed from 50 °C (1 min) to 320 °C at a rate of 10 °C.min-1. Helium was used as 

carrier gas and the head pressure was calculated using the retention time locking (RTL) 

software [11]. Ethyl palmitate was used as RT locking standard (retention time of 17.68 

min). The Agilent 5973 mass spectrometric detector was operated in the scan mode (m/z 

50-500).  

 
  5.2.3 Comprehensive presentation of GC-MS data 

 

  For GC/MS data acquisition and analysis the Enhanced Chemstation G1701CA 

software, Version C.00.00 (Agilent Technologies) was used. Three-dimensional GC/MS 
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data were automatically exported into ‘comma separated values’ (csv) files using the 

‘export 3D data’ option. The procedure was repeated twice exporting from m/z 50 to 300 

firstly, followed by the export from m/z 301 to 500. This double procedure is necessary 

because of limited data space in the csv files. The exported files were opened in 

Microsoft®Excel™ resulting in spreadsheets with the GC/MS data file header in the first 

four rows. The fifth row contained the m/z values and the scan numbers were in the first 

column. The remaining data were the abundances at every scan number and at all ion 

traces. The latter data were copied and pasted into a matrix in MicroCal® Origin™ software 

(Originlab, Northhampton, MA, USA). The matrix coordinates were adjusted and a three-

dimensional or contour plot was created. 

 

5.3 Results and discussion 

 

 Stir bar sorptive extraction (SBSE) results in strong enrichment for solutes with octanol-

water distribution coefficients higher than 100 from aqueous samples. A typical profile of 

the SBSE-TD-CGC/MS analysis of a urine sample of a drug addict is shown in Figure 5.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 5.2  Total ion chromatogram of the SBSE-TD-CGC/MS analysis of 5 mL urine of a drug 

addict; peak 22: methadone; peak *: androst-16-en-3-ol. 
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 The chromatogram represents a collection of more than 200 compounds illustrating the 

versatility and sensitivity of the technique. Most of the major peaks originate from food 

and/or or biological processes [14]. In the profile the drug methadone (19.72 min), a potent 

analgesic and sedative widely used in the treatment of heroin addiction [16], could be 

readily identified through its mass spectrum. Methadone and its catabolic metabolites show 

very high affinity for PDMS (log Ko/w > 4.2) and are quantitatively extracted with SBSE. 

Screening of other drugs or metabolites out of the complex matrix in Figure 5.2 is very time 

consuming. This can be drastically simplified using a retention time locked (RTL) CGC 

method in combination with the automatic analyte search software program ‘RTL result 

screener’ from Agilent Technologies [11]. The GC method was locked using ethyl 

palmitate (RTL 17.68 min) and a RTL library was created by the import of the retention 

times and mass spectral data of several groups of compounds: cocaine and metabolites, 

opiates, methadone and analogues, cannabinoids, amphetamines, benzodiazepines and 

barbiturates (Table 5.1).  
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 Table 5.1  Locked retention times (tR), target ions (Tion) and qualifier ions (Q1-Q3) of drugs 

introduced in the library. Other drugs can easily be incorporated in the library; Chromatographic 

conditions see text. 

 

Number Compound Name  tR (min) Tion Q1 Q2 Q3
1 3-monoacetylmorphine 23.08 327 285 162 215
2 7-hydroxycannabidiol 21.78 312 244 284 187
3 alprazolam 26.67 279 308 204 273
4 amobarbital 14.93 156 141 157 142
5 beta-codeine 22.52 299 285 291 300
6 bromazepam 22.08 315 58 317 236
7 brotizolam 24.73 394 392 207 393
8 cannabichromene 17.67 231 174 232 246
9 cannabidiol 21.85 231 238 223 195
10 cannabielsoin 22.45 205 247 147 148
11 cannabielsoin isomer 22.62 205 247 147 148
12 cannabinol 23.23 295 296 238 310
13 clonazepam 25.92 280 314 315 288
14 cocaine 20.27 182 303 304 198
15 delorazepam 22.25 275 304 303 305
16 diazepam 22.53 283 256 284 285
17 ethylbenzoylecgonine (cocaethylene) 20.77 196 82 96 317
18 flunitrazepam 24.00 312 285 313 286
19 flurazepam 25.20 86 99 87 387
20 heroin 24.15 327 369 310 268
21 hexobarbital 16.68 221 157 155 79
22 methadone 19.72 72 73 57 91
23 methadone impurity 20.17 72 73 193 165
24 methadone metabolite I 18.55 277 276 262 220
25 methadone metabolite  19.82 273 196 197 230

(1,4-diphenyl-6-methyl-1,4-dihydropyrimidine-5-
carbonitrile)       

26 methylenedioxymetamphetamine (MDMA,XTC) 12.82 177 58 186 - 
27 N-1-methylclonazepam, IS 25.25 329 328 302 294
28 N-acetyl-p-methoxyamphetamine 15.38 121 148 105 86
29 nordazepam 23.13 242 241 270 269
30 papaverine 25.62 338 324 339 308
31 pentobarbital 15.23 156 141 157 155
32 secobarbital 15.80 168 167 195 97
33 temazepam 23.83 271 273 272 300
34 triazolam 27.42 313 315 342 238
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 The library can easily be extended if there is a need to. During the screening procedure, the 

GC/MS data are automatically monitored to elucidate similarities in retention and mass 

spectral information between the library and the detected compounds. As an example, 

Figure 5.3 shows a positive elucidation of the result screener in the profile of Figure 5.2 

confirming the presence of 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine, a metabolite 

of methadone.  

 

  

A 

B C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 5.3  Result screener windows for the detection of methadone metabolite I. Window A: 

Extracted ion chromatograms at m/z 277 (Tion), 276 (Q1), 262 (Q2) and 220 (Q3); window B: mass 

spectrum; window C: retention time data, peak response and expected (Exp%) and measured 

(Act%) ion ratios of the mass spectrum. 
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 Based on all data of the result screener, specific ions of target solutes can be extracted to 

show the presence of those solutes in a biological fluid under investigation.  The selective 

ion traces at m/z 72, 273 and 277 for methadone (peak 22), the primary metabolite 2-

ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (2-EDDP, peak 24), 1,4-diphenyl-6-

methyl-1,4-dihydropyrimidine-5-carbonitrile (peak 25), and a methadone impurity (peak 

23) are shown in Figure 5.4-A for the blood sample and in Figure 5.4-B for the urine 

sample of the same person.  
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 Figure 5.4  Extracted ion chromatograms at m/z 72, 273, 277 of the SBSE-TD-CGC/MS analysis 

of methadone (22), 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine  (metabolite I, 24), 1,4-

diphenyl-6-methyl-1,4-dihydropyrimidine-5-carbonitrile (25) and a methadone impurity (23), 

respectively  in the blood (A) and urine (B) of a drug addict. 
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 In the blood sample mainly methadone and a small fraction of 2-EDDP are detected while, 

as expected, more methadone related compounds are found in the urine sample. Like most 

drug compounds, a distinctive fraction of methadone is phase II metabolized to its 

glucuronic acid conjugate and should be liberated before analysis. All samples are therefore 

enzymatically hydrolysed by β-glucuronidase from Escherichia coli K12. Note that the 

enzyme does not interfere in the SBSE-TD-CGC/MS analysis since it is not absorbed into 

the PDMS coating. 

 

 Several samples were analyzed applying the same methodology and some representative 

examples are given. Figure 5.5-B shows the detection of cannabis related compounds and 

metabolites in the urine sample of a drug addict by extracted ion chromatography (EIC) 

selecting m/z 205, 231 and 295 for cannabichromene (peak 8), cannabidiol (peak 9), 

cannabielsoin (peak 10) and cannabinol (peak 12), respectively. All detected compounds 

possess high log Ko/w (>5) values and consequently show high affinity for the PDMS 

coated stir bar. Theoretical recoveries can be calculated from the solute specific log Ko/w 

values using the Twister Calculator software package (Gerstel), that is based on the 

software program KowWIN [17] and are all higher than 99 %. The versatility of SBSE-TD-

CGC/MS is demonstrated by detection of two of the cannabinoids in the bile fluid of the 

same person (Figure 5.5-A). Next to cannabidiol, which is one of the primary substances of 

the marijuana plant, cannabichromene is detected. Turbid biological fluids like bile fluid or 

blood samples are mixed with methanol and placed in an ultrasonic bath for 15 min before 

SBSE. This causes lyses of the cells and better release of the drug compounds from the 

matrix. The mixture is then diluted with 10 mL water to increase the extraction efficiencies 

of SBSE. 
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 Figure 5.5  Extracted ion chromatograms at m/z 205, 231, 295 of the SBSE-TD-CGC/MS analysis 

of cannabichromene (8), cannabidiol (9), cannabielsoin (10) and cannabinol (12), respectively in the 

bile (A) and urine (B) of a cannabis user. 

 

 Also polar compounds showing less affinity for the PDMS phase can be properly enriched. 

Cocaine (benzoylecgonine methyl ester, log Ko/w = 2.2) is enriched for ca. 40 % from an 

aqueous sample of 5 mL while the ethylbenzoylecgonine analogue (cocaethylene, log Ko/w 

= 2.7) is recovered for ca. 65%. The latter compound is formed in the human body when 

cocaine is administered in combination with alcoholic (ethanol) drinks [18, 19]. Both 

compounds could easily and automatically be detected in the urine of a cocaine addict 

(Figure 5.6).  
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 Figure 5.6  Extracted ion chromatograms at m/z 182 and 196 of the SBSE-TD-CGC/MS analysis 

of cocaine (14) and ethylbenzoylecgonine (cocaethylene, 17) in a urine sample. 
 

 Another example concerns the determination of methylenedioxymetamphetamine (MDMA, 

ecstasy) in the urine sample of a recreational drug user. This relative polar compound (log 

Ko/w = 2.3) was traced in EIC at m/z 177 (Figure 5.7). 

 

 

 

 

 

 

 

 

 

 

 

 

  
 Figure 5.7 Extracted ion chromatogram at m/z 177 of the SBSE-TD-CGC/MS analysis of 

methylenedioxymethamphetamine (MDMA, ecstasy) in the urine of a recreational drug user. 
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 SBSE in combination with TD-CGC/MS has shown its good performance in terms of 

quantitation for biological markers [14], pharmaceutical drug compounds [15], pollutants 

like PCBs [20] and PAH metabolites [21] in biological fluids. Precise and accurate 

quantification using SBSE-TD-CGC/MS is illustrated with the analysis of benzodiazepines 

and p-methoxyamphetamine (PMA). Semi-quantitation which often is sufficient for 

diagnostic purposes will be discussed in the comprehensive profiling.  

 

 Benzodiazepines are prescribed in treatment of stress, anxiety, sleep disorders and seizures 

but are often abused by drug addicts [22]. This group of drugs is therefore frequently 

present in forensic cases. Diazepam, flunitrazepam and flurazepam were spiked from 

methanol standard solutions (10 µL) into blank urine samples (5 mL) to individual 

concentrations between 5 and 500 µg.L-1. N-methylclonazepam was added as internal 

standard (IS) to every sample at a constant level of 50 µg.L-1. Similar to the real samples, 1 

mL of ammonium acetate buffer solution (pH 6.5) was added and incubation with β-

glucuronidase was performed. Figure 5.8-A shows the EIC at m/z 86, 283, 312, and 329 of 

a blank urine sample spiked to individual concentrations of 50 µg.L-1. Quantitation was 

performed at these selected ion traces. Because of the relative differences in SBSE 

recoveries and the MS ionization process, equal concentrations of the solutes result in 

diverse abundances. Table 5.2 shows the log Ko/w, the calculated theoretical recoveries and 

the relative response factors (RRF) for several benzodiazepines. The last values are 

calculated as the ratios of the peak areas of the analyte over the IS at equal concentrations. 

Linear regression was performed on the relative peak areas (AX/AIS) versus the spiked 

concentrations (Figure 5.8-B) and correlation coefficients all exceeded 0.99, independent of 

the analyte recoveries. In a urine sample of a drug user diazepam was detected in a 

concentration of 21 µg.L-1. Nordazepam and temazepam, which are diazepam metabolites, 

were also elucidated in concentrations of 61 and 17 µg.L-1, respectively.  
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 Figure 5.8-A  Extracted ion chromatograms at m/z 86, 283, 312, 329 of the SBSE-TD-CGC/MS 

analysis of diazepam (16), flunitrazepam (18), flurazepam (19) and N-methylclonazepam (IS, 27) 

spiked into a blank urine sample (5 mL) at a concentration level of 50 µg.L-1.  
 

 Table 5.2  Log Ko/w values, theoretical SBSE recoveries (Twister™ with 24 µL PDMS, 5 mL sample) 

and relative response factors (RRF) with N-methylclonazepam as I.S. 

 
 

 

 

 

 

 

 

   (*) Estimated from diazepam 

Compound Log Ko/w SBSE recovery (%) RRF 

Diazepam 2.7 71 2.4 

Flunitrazepam 1.9 28 0.7 

Flurazepam 3.0 83 1.7 

2.7 (*) Nordazepam 2.9 80 

1.4 (*) Temazepam 2.2 43 

N-methylclonazepam (IS) 2.4 52 - 
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 Figure 5.8-B Individual calibrations curves between concentrations of 5 and 500 µg.L-1. For 

calibration, the internal standard was spiked to 50 µg.L-1 in all cases.     

 

 p-Methoxyamphetamine (PMA) is a relative new amphetamine-like ‘designer’ drug that is 

often sold as ecstasy or MDMA [23]. Since hallucinating effects are retarded in comparison 

with ecstasy and the compound is more toxic, intake of several tablets has led to several 

lethal intoxications. For CGC/MS analysis, the amphetamine is preferentially reacted with 

an anhydride to obtain the N-acetyl derivative [24, 25], which shows improved 

chromatographic behavior on apolar capillary columns. In the case of SBSE enrichment, 

acylation also drastically increases the enrichment. Blank urine samples (5 mL) were 

spiked to concentration levels between 5 and 500 µg.L-1, enzymatically hydrolyzed and 

0.75 g potassium carbonate was added. After addition of 0.5 mL acetic anhydride, the 

mixture was immediately stirred with a Twister™. N-acetyl-p-methoxyamphetamine was 

recovered for ca. 32% and could be selectively extracted at m/z 121. Figure 5.9-A shows a 

urine sample spiked to a concentration of 50 µg.L-1. Linear regression of the N-acetyl PMA 

peak area versus the spiked PMA concentrations revealed good linearity (correlation 

coefficient > 0.99) of the in-situ derivatisation-SBSE-TD-CGC/MS procedure (Figure 5.9-

B).  
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 Figure 5.9  Extracted ion chromatogram at m/z 121 (A) for N-acetyl-p-methoxyamphetamine (N-

acetyl PMA) of the in situ-derivatisation-SBSE-TD-CGC/MS analysis of PMA spiked into a blank 

urine sample (5 mL) at a concentration level of 50 µg.L-1; calibration curve of PMA (B) spiked in 

urine between concentrations of 5 and 500 µg.L-1. 
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 In medical and forensic laboratories, the main question is “what kind of drugs are present in 

a given biological sample and in what order of magnitude”. The faster the data are provided 

in a simple format, the faster actions can be taken. From an analytical point of view, this 

means a fast multi-residue method with semi-quantitative features and presentation of data 

in a simple format. An alternative to the RTL result screener method that still is to be 

interpreted by specialized personnel is comprehensive mapping of GC/MS data.  

 

 Comprehensive profiling implies the graphical presentation of all acquired or pre-selected 

m/z traces in a three-dimensional (3D) plot. This is performed by exporting the scan data 

into a graphical interface like the MicroCal® Origin™ software. Figure 5.10-A shows a 

simplified plot of a SBSE-TD-CGC/MS analysis of a urine profile of a drug addict. 

Presenting all extracted ion chromatograms in a 3D plot results in an extremely complex 

figure and for reasons of clarity, only a selected amount of ion traces are presented. From 

this graph, a contour plot is created at a pre-selected specific cut-off abundance. This gives 

a graph in which the x-axis represents the retention times, the y-axis the mass spectral data 

(m/z) and the color intensity reflects the quantity. The latter strongly depends on the 

selected cut-off. Figure 5.10-B and 5.10-C show the total ion contour plot (all extracted ion 

chromatograms are presented) of the SBSE-TD-CGC/MS analysis of the urine profile 

shown in Figure 5.2 at two different cut-offs. In both cases, the presence of a compound 

can be verified locating a spot at its specific elution time (e.g. methadone at 19.72 min) and 

at one (e.g. methadone at m/z 72) or more of its solute specific m/z values. The analyses are 

performed under retention time locked conditions allowing direct comparison of contour 

plots originating from different samples. 
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 Figure 5.10-A and -B  3D-CGC/MS (A) and a CGC/MS contour plot at a cut-off of 2.5E5 (B) of the 

urine of a drug addict. For experimental and graphical conditions see text. 
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 Figure 5.10-C  CGC/MS contour plot at a cut-off of 2.5E6 of the urine of a drug addict. 

Experimental and graphical conditions see text. 

 

 For the compounds in the home-made RTL drug library (Table 5.1) and selecting the Tion, 

the contour plot shown in Figure 5.11 is obtained.   

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 5.11 Expected spots in the CGC/MS contour plot of drugs analysed by SBSE-RTL-CGC/MS. 

The numbered spots refer to the compounds listed in Table 5.1. 
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 This target compound contour plot is drastically simplified compared to the plot in Figure 

5.10-B and 5.10-C. Fine-tuning can thus be done by restricting the data import into the 

graphical interface through selection of target compound specific ion(s) and through 

focusing on specific retention time windows. Moreover, the height at which the contour 

plot is taken can be varied hereby choosing the amount of details one wants to obtain. This 

is illustrated by the selective CGC/MS contour plots at a retention window between 17 and 

30 min and an ion window between m/z 180 and 400 of a urine (Figure 5.12-A), blood 

(Figure 5.12-B) and stomach content sample (Figure 5.12-C) of the same drug addict. The 

main ion traces of cannabinoids, the methadone group and the benzodiazepines were 

selected. Cannabichromene (spot 8), 7-hydroxycannabidiol (spot 2), cannabidiol (spot 9), 

α-cannabielsoin (spot 10), an α-cannabielsoin analogue (spot 11), methadone metabolite I 

(spot 24), diazepam (spot 16) and temazepam (spot 33) are easily elucidated in the urine 

contour plot (Figure 5.12-A). The presence of these compounds was verified by checking 

the mass spectra at the given retention times in the RTL ‘conventional’ chromatogram. The 

presence of several of the spots was also confirmed in the blood sample (spots 2,8,9,10,16) 

(Figure 5.12-B). The series of spots at 27.3 min (spots a) indicate the presence of a large 

amount of cholesterol in the blood sample. α-Cannabielsoin (spot 10) and diazepam (spot 

16) were also found in the stomach content (Figure 5.12-C) which is also characterized by 

high amounts of co-eluting free fatty acids like linoleic and oleic acids (spots b). Note that 

in the cases of the blood and stomach content samples, the contour plots were taken at 

lower cut-off abundances (abundance = 2E4) than for the urine sample (abundance = 1E5). 

This allowed detection of lower concentrations of the selected compounds.  
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 Figure 5.12-A and -B  Ion selective contour plots of urine (A) and blood (B) of a drug addict; 

Compounds: cannabichromene (8), 7-hydroxycannabidiol (2), cannabidiol (9), α-cannabielsoin (10), 

α-cannabielsoin analogue (11), methadone metabolite I (24), diazepam (16), temazepam (33). The 

numbers refer to Table 5.1.  
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 Figure 5.12-C Ion selective contour plot of bile fluid of a drug addict; Compounds: 

cannabichromene (8), 7-hydroxycannabidiol (2), cannabidiol (9), α-cannabielsoin (10), α-

cannabielsoin analogue (11), methadone metabolite I (24), diazepam (16), temazepam (33). The 

numbers refer to Table 5.1 

 

 Apart from this example, in which only a selected amount of analytes is targeted, the 

procedure can easily be expanded to a wider variety of solutes. Moreover, if needed, 

comprehensive GC/MS profiling can be simplified by using the MS in the chemical 

ionization mode instead of electron impact ionization. Application of the soft chemical 

ionization technique resulting in no or less fragmentation, often provides simpler contour 

plots.  

 

 GC/MS contour maps can also be semi-quantitatively interpreted since the colors of the 

spots refer to specific peak height intervals and give a rough estimate of the solute 

concentration. The screening of street drugs in biological fluids in most cases involves 

detection of a specific compound around or above a pre-defined cut-off concentration. The 

SBSE-TD-GC/MS technique therefore suits well for this purpose. However, some critical 

aspects regarding quantitation should be discussed. Firstly, when calibrating MSD signals, 

the response factors of different compounds, even within the same classes of analytes, 
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should be encountered. For the same compounds, responses can shift between MSD tunes. 

Secondly, SBSE is based on the equilibrium distribution of the analyte between the PDMS 

extraction phase and the sample matrix and responses of specific analytes are highly 

influenced by their PDMS-sample distribution coefficient (KPDMS/sample). In the case of e.g. 

cannabinoids, recoveries are all around 100% and quantitation is relatively easy. However, 

Table 5.2 shows that benzodiazepines give different relative response factors in SBSE-TD-

CGC/MS analysis and quantitative estimates should therefore encounter these values. As an 

example, Figure 5.13 shows the detailed ion-selective GC/MS contour plot of the urine 

sample of a drug user. The same ion traces as in Figure 5.12 were selected. N-

methylclonazepam was added as internal standard to a cut-off concentration of 50 µg.L-1 

and the contour plot was created at the peak height of this solute giving a small red colored 

spot (spot 27). Diazepam (spot 16) has a similar spot, but because of its RRF of 2.4, the 

concentration is estimated at ca. 20 µg.L-1. Temazepam (spot 33) is detected as a dark green 

colored spot, indicating a peak height of between 18750 and 25000 (average 21875). The 

RRF of the solute (1.44) was estimated from the theoretical recovery taking diazepam as a 

reference (both compounds result in similar MSD responses). This corresponds to an 

estimated average concentration of approximately 18 µg.L-1. The concentration of 

nordazepam largely exceeds the cut-off concentration of 50 µg.L-1. These values are similar 

to those reported earlier for the same sample with in depth quantitation (Figure 5.8-B). 

When isotope-labeled standards are available, the comprehensive profiling gives exact 

quantitative data.  
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 Figure 5.13 Semi-quantitation of benzodiazepines in the ion selective CGC/MS contour plot of a 

urine sample. Compounds: diazepam (16), temazepam (33), nordazepam (29) and N-

methylclonazepam (IS, 27). The numbers refer to Table 5.1. 

 

5.4 Conclusion 

 

 Stir bar sorptive extraction-thermal desorption-capillary gas chromatography/mass 

spectrometry (SBSE-TD-CGC/MS) provides a versatile tool for the analysis of drugs of 

abuse in biological fluids. The high sensitivity of SBSE allows to use the mass 

spectrometer in the scan mode. In combination with retention time locking (RTL), 

identification of the analytes is accurate. Interpretation of CGC/MS data is simplified by 

comprehensive profiling. The contour plots representing retention times in the x-axis and 

solute specific m/z-traces in the y-axis are easily interpretable, also by non-skilled 

personnel, and provide semi-quantitative information. 
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Abstract 

 

A fast method for detection of tuberculostearic acid (TBSA) in sputum samples is described. The 

samples obtained from patients with known or suspected pulmonary tuberculosis, were 

decontaminated and concentrated before being analyzed by stir bar sorptive extraction – thermal 

desorption – gas chromatography/mass spectrometry (SBSE-TD-GC/MS). Prior to extraction, the 

mycobacterial lipids were hydrolyzed and then derivatized with ethyl chloroformate to increase 

the sorption of the compounds by the polydimethylsiloxane (PDMS) stir bar coating. The limit of 

detection (LOD) is 0.2 ng.mL-1. Four sputum samples that were classified by direct microscopy 

as smear-positive or negative were analyzed by GC/MS. TBSA was detected at concentrations 

ranging from 0.47 – 2.2 ng.mL-1. The method is sufficiently sensitive to detect TBSA directly in 

clinical samples without the need to culture the organisms. 

 

Key words:  

Stir bar sorptive extraction (SBSE), capillary GC/MS, tuberculostearic acid, pulmonary 

tuberculosis, sputum samples. 
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6.1  Introduction 

 

   There is an increased demand for the rapid detection and identification of Mycobacterium 

tuberculosis due to the re-emergence of diseases associated with this organism. M 

tuberculosis indeed is frequently associated with the human immunodeficiency virus (HIV) 

and acquired immunodeficiency syndrome (AIDS), which has led to the increased 

prevalence of pulmonary tuberculosis (TB) globally, but particularly in sub-Saharan Africa 

[1].  

 

  Traditional methods used for the identification of mycobacteria include direct microscopy 

and culturing, which form the basis of present-day laboratory diagnosis of TB. Culturing is 

often the only decisive test of mycobacterial disease, but since the organisms are slow-

growing it may take up to 8 weeks to obtain results [2]. More recently, new diagnostic 

methods such as the BACTEC radiometric system and the polymerase chain reaction (PCR) 

have decreased the time required to diagnose tuberculous infections (i.e. 10 - 14 days) [3]. 

However, most laboratories in developing countries are ill equipped to successfully utilize 

these techniques because of inadequate facilities and lack of funding [4]. 

 

 Gas chromatography was first used as a tool in diagnosing TB in the late 1970’s [5]. 

However, the use of chromatographic methods for the identification of mycobacteria has 

been restricted to larger reference and research laboratories [6]. Reasons include the cost 

and maintenance of equipment, the time required to prepare samples, and the fact that most 

gas chromatographic methods require a culture-step prior to the analysis of clinical samples 

[7-10].  

  

 Stir bar sorptive extraction (SBSE) was developed to facilitate the direct extraction of 

organic trace compounds from aqueous samples [11]. Rapid, solventless extraction is 

achieved by using a stir bar coated with a layer of polydimethylsiloxane (PDMS). Target 

analytes are enriched in a reproducible way by a partitioning mechanism based on the 

water-octanol distribution constants (Ko/w) of the solutes [12] when extrinsic factors such as 

time, pH, temperature, and magnetic stirring speed are held constant. For polar solutes, the 

introduction of a derivatization-step prior to extraction enhances their sorption by the stir 
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bar coating. Finally, the stir bar is desorbed using a thermal desorption (TD) device and 

analyzed by gas chromatography/mass spectrometry (GC/MS). The aim of this 

investigation was to demonstrate the direct measurement of a chemical marker of 

tuberculosis, namely tuberculostearic acid (TBSA), in sputum samples using SBSE-thermal 

desorption-GC/MS.  

 

6.2  Experimental 

 

 6.2.1  Chemicals and materials 

  

   Ethyl chloroformate, pyridine, sodium hydroxide, 17-methyloctadecanoic acid 

(MODA – internal standard) and 10-methyloctadecanoic acid (tuberculostearic acid - 

TBSA) were purchased from Sigma-Aldrich (Johannesburg, South Africa). Ethanol and 

chloroform were obtained from Merck (Darmstadt, Germany). Hydrochloric acid was 

supplied by Acros (Geel, Belgium). The sonicator was a Branson model 3510 obtained 

from LASEC (Cape Town, South Africa). The 15 ml screw cap vials were from Supelco 

(Sigma-Aldrich, Johannesburg, South Africa). Stir bars (10 mm × 0.5 mm) with a 25 µl 

PDMS coating were purchased from Gerstel GmbH (Müllheim a/d Ruhr, Germany). 

 

 6.2.2  Sputum samples 

 

   Sputum samples were obtained from routine clinical specimens that were sent to the 

National Health Laboratory Service (NHLS, Cape Town, South Africa). Approximately 5 

to 10 ml of a first-morning sputum specimen was collected from patients with known or 

suspected pulmonary tuberculosis. Each sample was classified as 1+, 2+, or 3+ positive 

based on the results obtained by direct microscopy. One sample was analyzed in each 

category, including a sample that was smear-negative. Five samples, obtained from patients 

with nonmycobacterial pneumonia that had no previous history of pulmonary tuberculosis, 

were used as controls. All samples were concentrated and decontaminated according to a 

standard procedure used by the NHLS [13]. The procedure was carried out with slight 

modification to the approved WHO method. Briefly, an equal volume of Sputagest was 

added to each sample and placed in an orbital shaker/incubator at 37°C for 10 min at 330 
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rpm. One ml aliquots were removed and reserved as spare samples. The remainder of the 

specimens was decontaminated with equal volumes of 1 M sodium hydroxide and 0.1 M 

sodium citrate, such that the final volume was twice that of the sample volume. The 

samples were again placed in the orbital shaker/incubator for 20 min using the same 

settings. Two volumes of phosphate buffer (pH 6.8) were added and the samples were 

concentrated by centrifugation at 3000 rpm for 20 min. After removal of the supernatant, 

the sample pellets were re-suspended in 1.5 ml phosphate buffered saline and mixed gently. 

A 0.5 ml aliquot was used for culturing and direct microscopy while the remainder was 

concentrated by centrifugation and re-suspended in 0.5 ml phosphate buffered saline for 

GC/MS analysis. The samples were autoclaved at 180ºC for 20 min before being 

dispatched to the Chemistry Department at Stellenbosch University. All samples were 

stored at -20ºC until analyzed.  

 

 6.2.3  Sample preparation and SBSE procedure 

 

   The samples were transferred to 2 ml autosampler vials and 120 μl of concentrated 

hydrochloric acid (36%) was added to hydrolyze the bacterial lipids. The vials were capped 

and heated at 80ºC for 30 min. After cooling to room temperature, 0.5 ml of a 0.5 M 

sodium hydroxide solution was added to the vial and vortexed gently. The content was 

transferred to 15 ml glass vials with Teflon-lined screw caps and spiked with 2.6 ng of the 

internal standard, namely 17-methyloctadecanoic acid. The fatty acids were derivatized 

using ethyl chloroformate according to a previously described procedure [12]: 1.04 ml of a 

mixture of ethanol and pyridine (5.5:1) were added to the vial followed by 80 µl of ethyl 

chloroformate (ECF) that was added under sonication in a fume hood. The open vial was 

sonicated for 15 min before placing a conditioned stir bar in the sample. The stir bars were 

conditioned at 280ºC under a nitrogen flow in a separate GC oven prior to SBSE. The 

samples were stirred at 1000 rpm for 30 min and extraction took place at 40°C. After 

extraction of the analytes, the stir bar was removed from the sample, washed with distilled 

water and briefly dried with lint-free tissue paper to remove residual water droplets. The 

stir bars were the placed in a glass TDS tube for thermal desorption and analysis by 

GC/MS.  
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 6.2.4  Instrumental conditions 

 

   The stir bars were thermally desorbed using a TDS-2 thermal desorption unit 

(Gerstel) operated in the solvent-venting mode. Thermal desorption was accomplished by 

increasing the temperature from 50 to 150°C (held for 1 min) at 60°C.min-1 using a helium 

flow-rate of 60 ml.min-1. After 2 min, the TDS split-valve was closed followed by a final 

temperature increase to 300°C (held for 10 min) at 60°C.min-1. The desorbed compounds 

were transferred to a programmable temperature vaporization (PTV) inlet (CIS 4, Gerstel) 

through a heated transfer line (325°C). Cryofocussing of the compounds took place at 40°C 

in a baffled liner using liquid nitrogen. Sample injection was performed in the splitless 

mode by programming the CIS 4 from 40 to 300°C (held for 5 min) at 12°C.s-1. The split-

valve was opened after 2.5 min. GC/MS analyses were performed on a Hewlett-Packard 

5890 gas chromatograph interfaced with a model 5972 mass spectrometric detector (MSD). 

Chromatographic separations were carried out on a HP-5MS fused-silica capillary column 

(Agilent Technologies; 30 m x 0.25 mm I.D. x 0.5 μm film thickness) using helium as the 

carrier gas at a flow rate of 1.4 ml.min-1. The oven temperature was programmed from 

90°C (held for 6 min) to 300°C at 15°C.min-1. The final temperature was held for 10 min. 

The transfer line temperature was at 280°C. The MSD was operated in both the scan and 

the selected ion monitoring (SIM) modes with an electron ionization voltage of 70 V. For 

SIM, two ions characteristic for the fatty acid-ethyl esters (m/z 88, 101) were monitored at 

100 m/s for both ions. 

 

 6.2.5  Figures of merit 

 

   The linearity of the method was evaluated by setting up an internal standard 

calibration curve in control sputum samples that were obtained from patients with 

nonmycobacterial pulmonary infections. Standard stock solutions were prepared in 

chloroform at a final concentration of 0.7 μg.mL-1 for TBSA and 1 μg.mL-1 for the internal 

standard MODA. The samples were spiked with different concentrations of TBSA at 0.4, 

0.7, 1.5 and 2.2 ng.mL-1 to construct the calibration curve. 
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6.3 Results and discussion 

 

 Preliminary experiments performed on aqueous solutions of TBSA and the internal standard 

MODA, showed that extraction recoveries of ca. 90% were obtained using the conditions 

described in the experimental part. Moreover, because of the structural similarity between 

TBSA and the internal standard MODA, no differences in recovery between both solutes 

were noted. Calibration was performed in control sputum samples to determine the effect of 

the sample matrix on the limit of detection of TBSA.  A four point calibration curve using 

internal standard calibration (0.4 – 2.2 ng.mL-1) showed good linearity over this range with 

a correlation coefficient of 0.9965. The LOD for TBSA was calculated at a signal to noise 

level of 3 and was determined at 0.2 ng.mL-1 for the control sputum samples. The spiked 

sputum sample at 1.5 ng.mL-1 was analyzed 3 times and the RSD% was 4.8.  

 

 Five sputum samples containing different bacterial loads were analyzed by SBSE-TD-

GC/MS, after the decontamination/concentration procedure was carried out by the NHLS. 

One sample was from a patient being treated for pulmonary infection caused by 

Streptococcus pneumoniae (Sample A) while the other samples were classified by direct 

microscopy as 1+ (Sample B), 2+ (Sample C), 3+ (Sample D) and one negative for the 

mycobacteria (Sample E).  

 

 In sample A, no TBSA was detected by SBSE-TD-GC/MS. Sample B was classified as 1+ 

by direct microscopy. Smears stained for acid-fast bacilli (AFB) provide important 

preliminary information in the diagnosis of TB. It is also the least expensive method used 

in the detection of the mycobacteria, but the technique is known to lack specificity, which 

ranges from 25 to 80% [14]. No culture results were available for sample B but no TBSA 

was detected by GC/MS. The result obtained is therefore inconclusive because of the 

outstanding culture results and the fact that no other clinical information with regard to the 

patient’s condition was provided.  

 

 Sample C was categorized as 2+ by direct microscopy and a clinical diagnosis of 

pulmonary TB was previously documented. At the time of the study, the patient was being 

re-treated for a previously acquired TB infection. The amount of TBSA detected by GC/MS 
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was 0.47 ng.mL-1 (Figure 6.1 – Sample C). No information with regard to the type of 

medication used or the duration of treatment was available. The result was accepted as a 

‘true positive’ because a diagnosis of pulmonary TB had previously been established and 

the results obtained by direct microscopy and GC/MS were both positive for the presence 

of the mycobacteria. Sample D was obtained from a patient diagnosed with disseminated 

tuberculosis. This is a severe form of the disease, which spreads to other parts of the body. 

The sample was classified as 3+ by direct microscopy and the microbial culture result was 

also positive. The concentration of TBSA determined by GC/MS was 2.3 ng.mL-1
 (Figure 

6.1 – Sample D). This sample is definitely a ‘true positive’ because all three tests 

performed were positive for the mycobacteria. Note that the two main peaks eluting before 

TBSA namely octadecenoic and octadecanoic acid are strongly fluctuating. The reason for 

this phenomenon is unclear, although it may be attributed to the clinical course of the 

disease that is still not well understood.  

 

 For sample E, a diagnosis of pulmonary TB was documented following clinical assessment 

of the patient’s condition. However, the AFB smear result was negative and no TBSA was 

detected by GC/MS (Figure 6.1E). Also, the culture result obtained from the MGIT system 

was still negative after a 6 week incubation period. The results obtained for direct 

microscopy, culturing and GC/MS are summarized in Table 6.1. 

 
 Table 6.1 Comparison of data for GC/MS, direct microscopy and culturing.  

Number Diagnosis Direct 

microscopy 

Mycobacterial 

culture 

GC-MS     

(ng mL-1) 

A Sample (Streptococcus pneumoniae) np np nd 

B New case (diagnosis to be confirmed) 1+ positive np nd 

C Pulmonary tuberculosis (retreatment) 2+ positive – 0.47 

D Disseminated tuberculosis 3+ positive + 2.27 

E Pulmonary tuberculosis (?) Negative – nd 

 np: not performed; nd: not detected. 
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Figure 6.1  SIM chromatograms (m/z 88,101) of sputum samples obtained by SBSE-TD-GC/MS. 

Sample C. 2+ positive, TBSA detected at 0.47 ng.mL-1 (pulmonary TB);  

Sample D. 3+positive, TBSA detected at 2.3 ng.mL-1 (disseminated TB);  

Sample E. Smear negative, culture negative, no TBSA detected by GC/MS. 
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  From the results obtained, it is clear that the GC/MS data follow the same trend as the 

conclusions derived from the direct microscopy and microbacterial culture tests. However, 

more samples have to be analyzed to be able to determine the diagnostic sensitivity and 

specificity of the method. The results should also be compared to the clinical diagnosis 

given to each patient as well as the results obtained by standard culturing techniques to 

establish the positive and negative predictive values of the method. The type and duration 

of drug treatment should be considered and how it affects the detectable levels of TBSA.  

There is a significant advantage in being able to quantify the amount of TBSA in sputum 

samples. It may be used for example, to determine the progression of treatment and to 

establish whether a correlation exists between the concentration of TBSA and the extent of 

the disease.  Moreover, the rapidity with which the method can be performed significantly 

reduces the time required to obtain clinically useful results without the need to culture the 

samples prior to analysis.  

 

 The use of TBSA alone for the diagnosis of pulmonary TB has been criticized in the past. 

TBSA is regarded as not specific enough due to its presence in other organisms such as the 

Actinomycetes, Nocardia and Rhodococcus species. However, the incidence of infections 

caused by these organisms as opposed to the mycobacteria should be considered. A study 

by Jones et al. [15] estimated that one case of pulmonary Nocardial infection occurred to 90 

cases of pulmonary TB in a population of HIV infected patients. On the other hand, it 

would also be possible to increase the specificity of the TBSA method by identifying other 

markers that are specific for M tuberculosis. A recent report by Alugupalli S et al. [16] 

showed that certain 3-hydroxy fatty acids may be used to distinguish M tuberculosis from 

other organisms. The interesting possibility that these compounds also provide a measure of 

the virulence of the mycobacteria deserves further investigation.  

 

6.4 Conclusion 

 

 A rapid technique for the detection of TBSA in sputum samples was developed. Traditional 

decontamination and concentration methods were combined with SBSE-TD-GC/MS for the 

detection of TBSA at trace levels in clinical samples. The technique was sufficiently 
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sensitive to detect TBSA without the need to culture the samples, thereby reducing the time 

required to obtain results. The future application of the method in the routine identification 

of the mycobacteria should be established by comparing the diagnostic accuracy of the 

technique against standard biochemical tests used to detect pulmonary tuberculosis.   
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Abstract 

 

A simple and fast method for the measurement of 4-hydroxynonenal (4HNE), a highly toxic end 

product of lipid peroxidation, in urine samples is described. The method combines stir bar 

sorptive extraction (SBSE) with two derivatization steps, followed by thermal desorption and 

GC/MS. 4HNE is derivatized in-situ with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine and the 

oxime is extracted from the aqueous phase with SBSE. The 4HNE-oxime is further acylated by 

headspace derivatization prior to thermal desorption. Derivatization reactions and extraction were 

optimized in terms of reagent quantities, temperature and time. The method is linear over a 

concentration range of 0.5 – 5 ng.mL-1 with a correlation coefficient of 0.997. The limit of 

detection and limit of quantitation are 22 pg.mL-1 and 75 pg.mL-1 urine, respectively. The high 

sensitivity of the method allows the measurement of physiological concentrations of 4HNE in 

urine samples 

 

Keywords: 

Stir bar sorptive extraction, gas chromatography – mass spectrometry, 4-hydroxynonenal, 

oxidative stress, urine samples. 
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7.1 Introduction 

 

 The measurement of aldehydes in biological samples has become increasingly important 

due to their significance as markers of oxidant injury. Aldehydes are primarily formed in 

vivo by a free radical-mediated mechanism that is initiated when reactive oxygen species 

(ROS) such as O2
- and H2O2 interact with cellular membranes [1]. Oxidation of the 

phospholipid components of these membranes results in the formation of hydroperoxide 

intermediates that rapidly breakdown to a variety of stable aldehydes, including alkanals, 2-

alkenals, 2,4-alkadienals and 4-hydroxyalkenals [2]. One of the most important end-

products formed following the oxidation of lipid membranes is the α,β-unsaturated 

aldehyde, 4-hydroxynonenal (4HNE) [3, 4].   

 

 4HNE has been studied intensively for many years and found to be highly toxic to 

mammalian cells [3]. Several adverse effects have been observed in biological tissues when 

this compound increases above physiological concentrations (i.e. > 1 μM).  4HNE has been 

shown to inhibit DNA, RNA and protein synthesis [5, 6], initiate lipid peroxidation [7], 

rapidly deplete intracellular glutathione [8], and inhibit respiration and glycolysis [9]. 

These harmful effects have been attributed to the chemical structure of 4HNE, which may 

explain its high reactivity toward biological substrates [10]. This aldehyde readily reacts 

with target proteins in biological membranes, forming toxic substances that may lead to the 

development of chronic diseases. For this reason, 4HNE has been implicated in the 

pathogenesis of diseases such as atherosclerosis [11], Alzheimer’s disease [12], and cancer 

[13].   

 

 Due to the difficulty of measuring ROS directly in vivo, most estimates of oxidative stress 

rely on the measurement of the breakdown products of lipid peroxidation (e.g. 4HNE). 

Several analytical methods have been developed for the measurement of 4HNE in 

biological tissues and fluids, most of which rely on spectrophotometric detection of stable 

chromophore derivatives. One of the most widely used methods involves the derivatization 

of 4HNE with 2,4-dinitrophenylhydrazine prior to analysis by HPLC [14, 15]. This method 

offers relatively facile measurement of a number of aldehydes, but its selectivity has been 
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questioned, especially when analyzing complex biological matrices where 4HNE occurs at 

trace levels [16].  

 

 The most sensitive analytical methods currently available for the measurement of 4HNE are 

based on the formation of an oxime derivative using O-(2,3,4,5,6-pentafluorobenzyl) 

hydroxylamine (PFBHA) followed by silylation of the hydroxyl group prior to GC/MS 

analysis [17, 18, 19]. The method recently developed by Meagher et al. [20] is sufficiently 

sensitive to measure physiological concentrations of 4HNE in urine samples. This method 

was adapted from a procedure that was previously developed for the measurement of 4-

hydroxyalkenals in oxidized LDL [21]. All of the previously mentioned methods, however, 

share a common disadvantage, namely that they require tedious sample preparation 

procedures which involve several extraction and cleanup steps before the derivatives can be 

analyzed. 

 

 New solventless sample-enrichment techniques that allow the direct extraction of solutes 

from aqueous matrices have recently been introduced such as stir bar sorptive extraction 

(SBSE) and solid-phase microextraction (SPME) [22, 23]. Both techniques combine 

extraction and concentration of the analytes in a single step, thereby reducing the time 

required to prepare the samples. A number of reports have already been published for the 

analysis of carbonyl compounds using SBSE [24] and SPME [25, 26]. SBSE has the 

advantage that higher analytical sensitivities (i.e. > 100 fold) can be reached as compared to 

SPME [22, 27], thus favoring this technique for the analysis of trace solutes such as 4HNE.  

No reports have so far been published on the analysis of hydroxylated-carbonyl compounds 

using either of these techniques. 

 

 One of the limitations in the analysis of compounds containing hydroxyl groups by aqueous 

SBSE has been the lack of a suitable derivatization method for these analytes. A headspace 

derivatization technique was recently described by Kawaguchi et al. [28], where BSTFA 

was added in the thermal desorption tube for in-situ silylation of 17β-estradiol.  This 

method has been based on a concept originally developed by Okeyo et al. [29], in which 

SPME fibers were exposed to BSTFA vapors to derivatize steroids that were extracted from 

urine samples. Shao et al. [30] later extended this technique by replacing BSTFA with 
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acetic acid anhydride for the headspace derivatization of trans-resveratrol in wine. In this 

contribution, a new SBSE derivatization technique is presented that utilizes acetic acid 

anhydride catalyzed by pyridine for the headspace derivatization of extracted hydroxy-

carbonyl-oximes. The developed method has been applied for the measurement of 4HNE in 

urine samples. 

 

7.2 Experimental  

 

 7.2.1 Chemicals and materials 

 

  Potassium hydrogen phthalate, butylated hydroxytoluene (BHT), O-(2,3,4,5,6-

pentafluorobenzyl) hydroxylamine hydrochloride (PFBHA), pyridine and 2,5-

dihydroxybenzaldehyde (2,5-DHBA) were purchased from Sigma Aldrich (Johannesburg, 

South Africa). Acetic acid anhydride and concentrated sulfuric acid were obtained from 

Merck (Darmstadt, Germany). 4-hydroxynonenal (4HNE) was supplied by Cayman 

Chemical (Kat Medical, Cape Town, South Africa). Methanol was obtained from Riedel-de 

Haën (Sigma Aldrich, Johannesburg, South Africa). Five mL glass screw-cap vials (34 mm 

× 20 mm) and 2 mL glass headspace vials were prepared by E. Ward (University of 

Stellenbosch). The 5 mL vials were modified from 15 mL screw cap vials obtained from 

Supelco (Sigma Aldrich, Johannesburg, South Africa). The 2 mL headspace vials were 

adapted from 2 mL autosampler vials purchased from Agilent Technologies (Chemetrix, 

Johannesburg, South Africa). A 10 position magnetic stirrer combined with a convection 

oven was designed and built by J. Blom and colleagues (Department of Mechanical 

Engineering, University of Stellenbosch). Twister stir bars (10 mm × 0.5 mm df PDMS) 

were purchased from Gerstel GmbH (Müllheim a/d Ruhr, Germany). The stir bars were 

pre-conditioned by sonication in a 1:1 mixture of dichloromethane:methanol for 5 min after 

which they were heated at 280°C for 15 min under a nitrogen flow of 50 mL.min-1. The 

sonicator (Branson 3510) and sterile 50 mL centrifuge tubes were from LASEC (Cape 

Town, South Africa).  
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 7.2.2 Solutions 

  

  Concentrated solutions of 4HNE (0.1 mg.mL-1) and of the internal standard 2,5-

DHBA (1 mg. mL-1) were prepared in methanol. The solutions were stored at -80°C and 

dilutions were made weekly.  Standard working solutions were prepared in methanol at 

concentrations of 1 µg.mL-1 and 10 µg.mL-1 for both compounds. Each solution contained 

100 μM BHT and was stored at -20°C. PFBHA was prepared in pyridine at a concentration 

of 10 mg.mL-1. A fresh solution was prepared weekly that was stored at -20°C.  

 

 7.2.3  Urine samples 

 

  Spot urine samples were obtained from 10 volunteers (7 males and 3 females) that 

were recruited from students and staff at the University of Stellenbosch. The samples were 

collected between 9h00 and 12h00 each day using 50 mL sterile centrifuge tubes that were 

immediately placed on dry ice before being stored at -80°C. The volunteers were asked to 

fill out a short questionnaire to obtain information about their general health and to record 

their demographic data. Some of the questions that were asked included whether they 

smoked; were using anti-oxidants; or suffered from any chronic diseases such as asthma or 

diabetes. The creatinine content in each urine sample was determined by a modification of 

the Jaffé method [31, 32] and the specific gravity (SG) measurements were estimated using 

an Abbe refractometer (Atago, USA).  

 

 The measured 4HNE concentrations were normalized using the corresponding creatinine 

levels in each sample, and the adjusted concentrations were compared with normalized 

values that were calculated using a modification of the method of Vij and Howell [33].  

These authors recently introduced a new equation for normalizing the excretion of 

xenobiotic biomarkers in spot urine samples [34]. Using a slight modification of their 

method the SG-normalized concentrations of 4HNE were calculated as follows:  

 

[ ] [ ]
( ) ( )Z
HNE4

=HNE4
1-SG
1-020.1sz                 (1) 
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 where [4HNE]sz was the SG-and Z-normalized urine samples. The value 1.020 was defined 

as the mean SG of normal human urine and the respective Z-values were calculated by 

plotting the log[4HNE] values against the log(SG-1) of the individual samples as shown 

below:  

 

[ ]
( )1-SG log Δ
4HNE log Δ

=Z                   (2)  

 

 where Z corresponded to the slope of the graph. The SG-normalized values of 4HNE were 

adjusted using the corresponding creatinine concentration in each sample (Eq. 3): 

  

[ ] [ ]
[ ] ( )12.113

   Creat
HNE4

=Creat-HNE4 sz
sz               (3)   

 

 where [4HNE-Creat]sz was the creatinine, SG and Z-normalized urine samples. The symbol 

[Creat] corresponded to the creatinine concentration (mmol.L-1) in the sample and the value 

113.12 is the molecular weight of creatinine. 

 

 7.2.4  Sample preparation, in-situ derivatization and SBSE procedure 

 

  Urine samples were allowed to thaw overnight at 4°C after which 1 mL aliquots 

were transferred to 5 mL glass screw-cap vials containing 1 ml 1 M potassium hydrogen 

phthalate and 0.52 mL 1 μM BHT in methanol.  The BHT was added to the samples to 

prevent artificial formation of 4HNE during the sample work-up procedure. Each sample 

was spiked with 1 ng of the internal standard 2,5-DHBA, corresponding to a final 

concentration of 0.18 ng.mL-1 in the sample mixture. The pentafluorobenzyl-oxime 

derivatives of 4HNE and of the IS were synthesized by adding 150 µL of 40 mM PFBHA 

in pyridine. The vials were capped, vortexed gently for 10 s and placed in a sonicator bath 

for 15 min. Following sonication, 3 mL de-ionized water and 20 µl concentrated sulfuric 

acid was added before placing a conditioned stir bar in the sample solution. The pH of the 

solution was ca. 5.5 prior to the extraction of the oxime derivatives. The samples were 
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stirred at 1100 rpm for 50 min using a home-built magnetic stirrer/oven that was heated up 

to 42°C. 

 

 7.2.5  Headspace derivatization 

 

  Following SBSE extraction of the pentafluorobenzyl (PFB)-oxime derivatives, the 

stir bars were removed from the sample vials, washed with distilled water and dried with 

tissue paper. The stir bars were transferred to cups attached inside 2 mL headspace vials 

(Figure 7.1) and 20 μL acetic acid anhydride and 20 μL pyridine were added. The vials 

were incubated at 70°C for 20 min to form the acetate derivatives of the extracted 

compounds. 

 

 

       
Stir bar 

Reagents 
 

 

 
 

 Figure 7.1  Modified autosampler vial (2 mL) used for headspace acylation of the SBSE extracted 

4HNE-oxime derivatives.  

 

 7.2.6  Thermal desorption – gas chromatography – mass spectrometry 

 

  The stir bars were removed from the headspace vials, washed and dried, and placed 

in glass desorption tubes of a TDS A2 autosampler (Gerstel). Thermal desorption was 

accomplished in the solvent-venting mode using helium at a flow rate of 60 mL.min-1. The 

temperature of the TDS 2 was increased from 50°C to 270°C (held for 10 min) at a rate of 

60°C.min-1. The split-valve was closed after 2 min. The desorbed compounds were 

transferred to a programmable temperature vaporization (PTV) inlet (CIS 4, Gerstel), and 

were cryofocussed at 5°C using liquid nitrogen. The TDS transfer line was held at 280°C. 

Sample injection onto the capillary column was accomplished by programming the PTV 

from 5°C to 280°C (held for 5 min) at a rate of 12°C.s-1.  
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 GC/MS analyses were carried out on a Agilent 6890 gas chromatograph that was interfaced 

with a 5973N mass selective detector (Agilent Technologies, Little Falls, DE, USA). The 

derivatives were separated on a HP-5MS fused silica capillary column (30 m × 0.25 mm × 

0.25 μm, Agilent) using helium as carrier gas at a flow rate of 1 mL.min-1. The oven 

temperature was programmed from 70°C (held for 1 min) to 145°C at 20°C.min-1, and from 

145°C to 300°C at 8°C.min-1. The solvent delay was 9.5 min and the transfer line 

temperature was maintained at 280°C. Mass spectra of the derivatized compounds were 

first recorded in full scan, whereas quantification was performed in the selected ion 

monitoring (SIM) mode. The electron ionization voltage was 70 V. For SIM, three ions 

characteristic for the analytes were monitored at 100 m.s-1 each, namely m/z 322, 351 and 

393 for 4HNE and m/z 316, 333 and 375 for 2,5-DHBA (internal standard). The underlined 

values are the ions used for quantification. 

 

7.3 Results and discussion  

 

 7.3.1 SBSE-HD-TD-GC/MS determination of 4HNE  

  

  The presented method is based on the analysis of 4HNE in urine samples using 

SBSE – headspace derivatization – thermal desorption – GC/MS (SBSE-HD-TD-GC/MS). 

The 4HNE-oxime derivatives were prepared by a reaction with PFBHA in the aqueous 

sample matrix, followed by extraction of the derivatives using SBSE. Thereafter, the 

acetate derivatives of the extracted compounds were formed in the polydimethylsiloxane 

phase by exposing the stir bars to acetic acid anhydride vapors at 70°C. Pyridine was used 

as a catalyst in both reaction steps as shown in Figure 7.2. The PFB-oxime-acetate 

derivatives were thermally desorbed and analyzed on-line by GC/MS. 
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 Figure 7.2  Reaction scheme of the two-step derivatization method for 4HNE using a) PFBHA in 

the aqueous sample matrix and b) acetic acid anhydride in the headspace to form the 4HNE-oxime-

acetate derivatives. Conditions are given in the experimental section. 

 

 Initial experiments were performed with pure water samples containing 4HNE and the 

internal standard at a concentration of 0.5 μg.mL-1 to determine the retention times and 

mass spectra of the respective PFB-oxime-acetate derivatives. Electron impact mass spectra 

of 4HNE and 2,5-DHBA (Figure 7.3) show the molecular ion of 4HNE (m/z 393), and that 

of the IS (m/z 417). The spectra of both compounds are characterized by the initial loss of 

[CH2=C=O], resulting in m/z 351 for 4HNE and m/z 375 for 2,5-DHBA. The loss of a 

second [CH2=C=O] group from 2,5-DHBA results in ion m/z 333, which is the base peak of 

this derivative. The peak of highest intensity for 4HNE is ion m/z 181, which is 

characteristic for PFB-derivatized compounds analyzed by electron impact mass 

spectrometry. Using this ion for SIM analyses of aldehyde-oxime derivatives is believed to 

lack specificity because many other compounds, including ketones, are present in 

biological fluids [16]. Ions were selected that are highly characteristic for 4HNE to ensure 

adequate separation and specific detection of this aldehyde in complex matrices such as 

urine. Figure 7.4 shows the SIM chromatograms of the derivatized compounds in water (A) 

and in a urine sample (B). For the water sample 1 ng.mL-1 of 4HNE and IS were added 

while only 1 ng.mL-1 IS was added to the urine sample. The figures indicate that the 

selected ions are highly specific and that the urine matrix does not disturb the 

quantification. Note that 4HNE consists of a syn and anti-isomer peak while a single peak 

is observed for the IS [18]. Quantification of 4HNE was performed using the second isomer 

peak, as the first peak was not always separated when different urine samples were 

analyzed. 
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 Figure 7.3 Mass spectra of the PFB-oxime-acetate derivatives of A) 4HNE and B) 2,5-DHBA (IS). 

The selected ions used to construct the chromatograms in Figure 7.4 were m/z 322, 351 and 393 

for 4HNE and m/z 316, 333 and 375 for 2,5-DHBA. 
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 Figure 7.4 SIM chromatograms by SBSE-HD-TD-GC/MS of the PFB-oxime-acetate derivatives of 

1a,1b) the syn- and anti-isomers of 4HNE and 2) 2,5-DHBA (IS). The upper trace (A) corresponds 

to the analysis of a 1 mL water sample containing 1 ng of 4HNE and 1 ng of the IS; and the lower 

trace (B) corresponds to the analysis of a 1 mL urine sample spiked with 1 ng of the IS. Extraction, 

derivatization and chromatographic conditions are described in the experimental section. 

 

 The sorption of compounds by the stir bar depends largely on the partition coefficient of the 

solutes between the polydimethylsiloxane (PDMS) layer covering the stir bar and the 

aqueous phase. By using the octanol-water distribution coefficient (Ko/w), which is 

comparable to the partition coefficient (KPDMS/w), it is possible to predict the enrichment 

factor for a given compound from an aqueous solution [35]. The log Ko/w values of 4HNE 

(non-oximated and oximated) were calculated using the Log P predictor which is available 

from Interactive Analysis Inc. (Bedford, MA, USA) and are 1.35 and 2.48, respectively. 

The enrichment factors at equilibrium estimated with the TwisterCalculator available from 

RIC (Kortrijk, Belgium) are 8.6 and 56 %, respectively for the 0.5 mm PDMS layer. 

Enrichment of 4HNE from aqueous matrices is thus significantly enhanced when the 

4HNE-oxime derivative is formed prior to performing SBSE.   
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 7.3.2  Method optimization 

 

  The different steps of the derivatization reactions and SBSE extraction were 

optimized in order to obtain the highest yields and this combined with good reproducibility. 

All experiments were conducted in urine samples to which an extra 1 ng.mL-1 of 4HNE and 

1 ng.mL-1 of the IS standard were spiked. The samples were analyzed by SBSE-HD-TD-

GC/MS using the conditions described in the experimental section. 

 

 Firstly, the PFBHA reaction was optimized and compared with two PFBHA derivatization 

methods that were recently published [20, 26]. Different amounts of the reagent were added 

to the sample matrix, namely 0.35, 0.56, 0.70 and 1.05 mM PFBHA and the reaction was 

allowed to proceed as described in the experimental section. SBSE was performed at 42°C 

during 50 min. The results are shown in Figure 7.5.  
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 Figure 7.5  Amount of PFBHA used to form the oxime-derivatives of 4HNE and the IS. A 1 mL 

urine sample spiked with 1 ng of both compounds was analyzed by SBSE-HD-TD-GC/MS. 

Conditions are given in the experimental section.   

 

 The use of 0.35 mM PFBHA resulted in higher yields of the PFB-oxime derivatives as 

compared to using 1.05 mM PFBHA. Using lower amounts of the reagent seemed 
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advantageous because fewer by-products of the PFBHA reaction were extracted by the stir 

bar. However, it was noticed that the reproducibility of the method was influenced by the 

amount of reagent used.  Repeatability (n=3) was improved at higher concentrations of 

PFBHA (3 % for 1.05 mM PFBHA vs. 8 % for 0.35 mM PFBHA). Therefore, 1.05 mM 

PFBHA was chosen for the derivatization of 4HNE. Using these conditions, the effect of 

time on the reaction yield of the PFB-oxime derivatives was assessed. Samples were 

sonicated for 15 min, placed in the dark for 30 min and left in the dark for 2 h. Comparable 

yields of the 4HNE-oxime derivatives were obtained using the three methods.  

 

 The time required for the PFB-oxime derivatives to reach extraction equilibrium was 

studied by varying the extraction time from 30 – 120 min. The peak areas for 4HNE and the 

IS reached an optimum at ca. 50-60 min. While the peak area of the IS slightly declined in 

the time interval 60 to 120 min, a sharp rise was observed in the extracted amounts of 

4HNE between 90 and 120 min, indicating that 4HNE could be artificially formed in the 

urine sample. This was further investigated by varying the extraction temperature from 40-

70°C. This experiment was also performed using pure water samples to control for the 

surplus formation of 4HNE in urine samples. The extraction of the IS followed the same 

decreasing trend in both sample matrices, but an increased amount of 4HNE was extracted 

from the urine sample in the temperature interval 50 to 70°C. Therefore it was concluded 

that higher extraction temperatures, as well as prolonged extraction times, may result in 

artificial formation of 4HNE. For this reason, an extraction temperature of 42°C and a 

stirring time of 50 min were chosen to prevent the artificial increase of 4HNE during the 

extraction process.  

 

 Secondly, parameters that affect the headspace acylation of the extracted PFB-oxime 

derivatives namely temperature and time were evaluated. The stir bars were exposed to 

acetic acid anhydride vapors at various temperatures (i.e. 60 to 90°C) to determine the 

efficiency of the derivatization reaction at 20 min exposure time. Figure 7.6 illustrates that 

70°C resulted in the highest conversion of the oxime derivatives to the corresponding 

oxime-acetates. The optimum time required to form the acetate derivatives of the extracted 

compounds was investigated by exposing the stir bars to the acetic acid anhydride vapors 

for various lengths of time i.e. 10 to 60 min. An optimal yield was obtained at 20 min. 
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 Figure 7.6 Headspace derivatization temperature. A 1 mL urine sample containing 1 ng of 4HNE 

was analyzed by SBSE-HD-TD-GC/MS. Conditions are given in the experimental section.   

 

 7.3.3  Figures of merit 
 

  The optimized SBSE-HD-TD-GC/MS procedure was validated with regard to 

linearity, detection and quantitation limit, precision and relative (versus IS) recovery. 

Calibration curves were obtained by spiking 1 mL urine samples with increasing amounts 

of 4HNE, namely 0.5, 1, 3 and 5 ng.mL-1. A fixed amount of the internal standard was 

added (i.e. 1 ng.mL-1). The slope of the curve was obtained by plotting the peak area ratios 

of 4HNE corrected for the IS against the concentration of the analytes. The method was 

linear over the chosen concentration range with a correlation coefficient (r2) of 0.997. The 

detection and quantitation limits were calculated using the peak areas of 4HNE in urine 

samples of known concentration. The LOD corresponded to 22 pg.mL-1 urine at a signal-to-

noise level (S/N) of 3, whereas the LOQ was estimated at 75 pg.mL-1 urine (S/N = 10). The 

precision of the SBSE method was determined by calculating the relative standard 

deviation (RSD %) of 5 replicate analyses that were made on 3 different days in urine 

samples containing 1 ng.mL-1 4HNE. The intra-day repeatability was 3.3% and the inter-

day repeatability was 2.8%, 5.6% and 7.2%, respectively. The recovery was calculated by 

adding 4HNE to urine samples at two different concentration levels namely 0.8 ng.mL-1 

and 2 ng.mL-1. The results were obtained by subtracting the peak areas obtained for the 
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spiked urine samples from those obtained for the non-spiked samples. The calculated 

recoveries were 95% and 104% for each of the spiked levels. A summary of the figures of 

merit is shown in Table 7.1. 

 
 Table 7.1 Figures of merit obtained for 4HNE analyzed by SBSE-HD-TD-GC/MS. 

Parameter Result 

22.5 aLOD (pg.mL-1)  
bLOQ (pg.mL-1)  75 

Correlation coefficient (r2) 0.997 

Recovery (%)  

• 0.8 ng.mL-1 95 

• 2 ng.mL-1 104 

Intra-day repeatability (RSD%) 3.3 

Inter-day repeatability (RSD%) 7.2 
    a Limit of detection; b Limit of quantitation 
 
  7.3.4  Measurement of 4HNE in urine samples 

 

   Urine samples obtained from 10 volunteers were analyzed by the developed SBSE-

HD-TD-GC/MS method. The measured 4HNE concentrations in most of the samples were 

below 1 ng.mg-1 creatinine, but two samples showed highly elevated levels of 4HNE (Table 

7.2). One of the volunteers suffered from asthma, whereas the other had smoked heavily for 

a number of years. Both conditions have previously been associated with increased levels 

of oxidative stress [36, 37]. However, it is not known whether these specific concentrations 

could be attributed to asthma or smoking alone. More in-depth and broader investigations 

are required. No apparent agreement could be made between the use of antioxidants and the 

reported 4HNE concentrations, but no information was given regarding the type of 

antioxidants used or the frequency of their use. The mean ± SD for the seemingly healthy 

volunteers (i.e. those that had 4HNE levels below 1 ng) were 0.39 ± 0.11 ng.mg-1 

creatinine. These concentrations are in agreement with previously published results 

obtained for healthy controls [20].  
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  This study describes the analysis of 4HNE in random-collected spot urine samples. The 

measured amounts were normalized to reflect the overall 24 h excretion of 4HNE and to 

control for possible urine concentration effects. A number of normalization techniques were 

considered. The most commonly used method involves adjustment of the measured 

concentration against the creatinine content in the sample. However, this method has been 

criticized because creatinine excretion has been shown to vary considerably over short 

intervals [38].  The modified specific gravity (SG) normalization technique of Vij and 

Howell [33] appeared to be the most promising method. This technique incorporates SG 

and creatinine, and has been shown to result in the lowest between-subject variability for 

xenobiotic biomarkers measured in spot urine samples of smokers [34]. However, the 

values calculated by this method did not always compare well with 4HNE values obtained 

by the creatinine normalization technique (results not shown). Therefore, we investigated 

using a modification of the equation introduced by Vij and Howell (Section 7.2.3), which 

gave much improved results. It was also observed that the values calculated by this 

modified equation were highly correlated with the actual measured concentrations of 

4HNE, as compared to values that were obtained by the creatinine normalization technique 

(see Table 7.2). Nevertheless, the application of this equation for the normalization of 

4HNE in spot urine samples should be validated. 
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  Table 7.2 Summary of data obtained for the analysis of urine samples by SBSE-HD-TD-GC/MS. 

Some of the responses to the questionnaires are included. 

  aActual 4HNE concentrations measured by SBSE-HD-TD-GC/MS; b4HNE normalized for the 

creatinine concentration in each sample (ng.mg-1 creatinine); c4HNE normalized for urine specific 

gravity using Eq. 1 and 2  in Section 7.2.3. These values were then corrected for the creatinine 

content in the samples using Eq. 3 (ng.mg-1 creatinine); dSmoked occasionally; ePerson suffering 

from asthma; fDaily smoker. 

 

7.4  Conclusion 

 

  4HNE is one of the most cytotoxic end-products of lipid peroxidation. Reliable, non-

invasive measurements of this aldehyde are required to further elucidate the role of free 

radicals in the pathophysiology of human diseases. In this investigation, a highly sensitive 

analytical method was developed for the trace measurement of 4HNE in urine samples. The 

method combines a solventless sample enrichment technique, namely SBSE, with two 

derivatization steps, followed by thermal desorption and GC/MS. Detection limits of 22 

pg.mL-1 urine could be achieved, which is much lower than the physiological quantities of 

4HNE excreted daily. Furthermore, the measurement of 4HNE in random-collected spot 

urine samples has several advantages, such as convenience, preservation of sample integrity 

and greater compliance among participants. These advantages and the simplicity of the 

analytical technique highlight the potential that this method could be applied to larger 

clinical trials.  

 

No. Age Gender 4HNE (ng.mL-1)a 4HNE-Creatb 4HNE-SG-Creatc Antioxidants 

1. 19 M 0.31 0.20 0.31 + 

0.41d 2. 20 F 0.39 0.29 - 

3. 19 M 0.35 1.08 0.46 + 

1.37e 4. 21 M 1.41 1.07 + 

5. 19 M 0.62 0.35 0.52 - 

6. 19 M 0.25 0.14 0.25 + 

7. 23 F 0.32 0.19 0.30 - 

8. 28 M 0.36 0.52 0.33 + 

2.45f 9. 39 M 2.48 1.73 + 

10. 20 F 0.68 0.42 0.54 - 
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Abstract 

 

A simple method is described for the measurement of testosterone (T) and epitestosterone (ET) in 

human urine samples. The deconjugated steroids were extracted directly from the samples by stir 

bar sorptive extraction (SBSE) and derivatized in situ on the stir bar by headspace acylation prior 

to thermal desorption and gas chromatography/mass spectrometry (GC/MS). Extraction and 

derivatization parameters, namely salt addition, temperature and time, were optimized to improve 

the recovery of T and ET by SBSE. The limits of quantification (S/N 10) were 0.9 ng.mL-1 for T 

and 2.8 ng.mL-1 for ET. Quantification of the steroids in urine samples was performed using 

standard addition to avoid the influence of matrix effects. The method was applied for the 

measurement of urinary T and ET in a group of healthy volunteers and HIV+ patients. Decreased 

levels of T were detected in the HIV+ group, whereas the excretion of ET was comparable for the 

two groups. Further clinical research is required to elucidate the biomarker significance of the 

T/ET ratio in HIV infection.  

 

Keywords: 

Gas chromatography/mass spectrometry, stir bar sorptive extraction, urine samples, testosterone, 

epitestosterone, human immunodeficiency virus. 
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8.1  Introduction 

 

 Testosterone is the main androgenic hormone in humans. The detection of this steroid in 

biological samples is commonly employed to identify hypogonadism in men, 

hyperandrogenic disorders in women, and virilizing adrenocortical conditions in children 

[1]. Testosterone (T) is frequently measured in blood, but analysis of the glucuronide-

conjugate in urine samples has been preferred due to the daily cyclic secretion of T. Urine 

levels of T are commonly utilized as an index of androgen production, since it is essentially 

free of the short-term fluctuations observed in blood samples [2].  

 

 The measurement of T has gained a lot of interest over the past few years due to the illicit 

use of synthetic T in competitive sport. The official method approved by the World Anti-

Doping Agency to detect the misuse of this substance by athletes, is based on the 

measurement of the testosterone:epitestosterone ratio. Epitestosterone (ET) is the 17α-

epimer of T that was first reported by Clark and Kochakian [3] in 1947. Compared to T, 

little is known about the metabolism and physiological significance of ET. It has been 

reported that the production rate of ET is only 3% of T, but that the urinary excretion rate is 

about 1/3 of that of T in adult males [4].  ET is also not metabolized to or from T [5]. 

Furthermore, it has been demonstrated that ET may have some antiandrogenic effects [6, 7] 

and that it could be a regulator of androgenic hormone action [8].  

 

 So far, a large number of analytical methods have been developed for the measurement of 

natural steroids in biological samples. An extensive review on this subject was recently 

published by Shimada et al. [9]. The most frequently used techniques include liquid 

chromatography (LC) with UV detection and gas chromatography combined with mass 

spectrometry (GC/MS). Both techniques require extensive sample preparation procedures 

before the compounds can be analyzed. A typical sample preparation scheme for the 

analysis of T and ET by GC/MS includes: concentration of the analytes by solid-phase 

extraction (SPE); enzymatic hydrolysis with β-glucuronidase; and extraction with diethyl 

ether [10, 11]. A derivatization step is also included to improve the volatility and thermal 

stability of the extracted analytes. Several derivatization reagents have been used [12]. N-

methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) in combination with a catalyst is 
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most frequently used to form the O-trimethylsilyl ethers of the deconjugated steroids [13, 

14].  

 

 Recently, there has been an increased interest in the development of simple, cost-effective 

and solvent-free sample preparation procedures. Sorptive extraction techniques, such as stir 

bar sorptive extraction (SBSE) and solid phase microextraction (SPME), have been 

developed for the direct extraction of solutes from aqueous matrices [15, 16]. By using 

these techniques, organic solvents that are often toxic and harmful to the environment can 

be avoided. The principle of sorptive extraction is based on the diffusion of analytes 

between an aqueous sample phase and a polymeric partitioning phase such as 

polydimethylsiloxane (PDMS). Enrichment of the analytes by the PDMS layer is 

determined by the PDMS-water partition coefficient (KPDMS/w) or the octanol-water 

distribution coefficient (Ko/w) of the analytes. High recoveries (i.e. nearly 100%) can be 

achieved from aqueous solutions when the log Ko/w value exceeds 2.7 [17]. Therefore, 

androgenic hormones are highly suitable for extraction by SBSE or SPME (i.e. log Ko/w 

values > 3; Kowwin [18]).  

 

 Only a few analytical methods that include sorptive extraction techniques have been 

developed for the detection of T in humans [19, 20]. To date, no reports have been 

published on the measurement of the T/ET ratio using SBSE or SPME. Okeyo and Snow 

[19] developed the first SPME method for the detection of T in urine. These authors also 

introduced a headspace derivatization technique in which silylation of the extracted steroids 

was performed in situ on the SPME fiber [21]. Different variations of this technique have 

been used for the headspace derivatization of compounds extracted by SBSE. For example, 

17β-estradiol was derivatized by in-tube silylation using BSTFA [22], whereas 4-

hydroxynonenal was derivatized directly on the stir bar in a specially modified headspace 

vial with acetic acid anhydride [23]. This contribution describes the development of a 

SBSE method to determine the T/ET ratio in human urine samples. The extraction of T and 

ET is accomplished by aqueous SBSE, followed by headspace acylation of the extracted 

steroids directly on the stir bar coating. The method has been applied for investigation of 

the T/ET ratio in patients infected with the human immunodeficiency virus (HIV). 
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8.2 Experimental 

 

 8.2.1 Chemicals and materials 

 

  Anhydrous sodium acetate, glacial acetic acid, sodium chloride, testosterone, 

epitestosterone, progesterone, β-glucuronidase from Helix Pomatia (Type H-2), and 

pyridine were purchased from Sigma Aldrich (Johannesburg, South Africa). Acetic acid 

anhydride and dichloromethane were obtained from Merck (Darmstadt, Germany). 

Methanol was supplied by Riedel-de Haën (Sigma Aldrich, Johannesburg, South Africa). 

Fifteen mL screw cap vials were obtained from Supelco (Sigma Aldrich, Johannesburg, 

South Africa). The 2 mL headspace vials were prepared by E Ward (University of 

Stellenbosch) from 2 mL autosampler vials that were purchased from Agilent Technologies 

(Chemetrix, Johannesburg, South Africa) [23]. Sterile 50 mL centrifuge tubes were 

supplied by LASEC (Cape Town, South Africa). A 10 position magnetic stirrer combined 

with a convection oven was designed and built by J. Blom and colleagues (Department of 

Mechanical Engineering, University of Stellenbosch). Twister stir bars (10 mm × 0.5 mm df 

PDMS) were purchased from Gerstel GmbH (Müllheim a/d Ruhr, Germany). The stir bars 

were pre-conditioned by sonication in a 1:1 mixture of dichloromethane/methanol for 5 min 

after which they were heated at 280°C for 10 min under a nitrogen flow of 50 mL.min-1.  

 

 8.2.2 Solutions 

 

  Concentrated solutions of T and ET (4 mg.mL-1) were prepared in methanol. The 

solutions were diluted to prepare the quality control standards at concentrations of 5 µg.mL-

1 and 50 µg.mL-1, respectively. Progesterone was used as internal standard and a solution of 

10 µg.mL-1 was prepared in methanol. All solutions were stored at -20°C until used. 

 

 8.2.3   Urine samples 

 

  Urine samples were obtained from 7 HIV positive patients (3 females and 4 males) 

who attended an HIV Clinic at a local Day Hospital in Stellenbosch (South Africa). The 

patients were previously diagnosed as HIV+ and had CD4+ T lymphocyte counts ranging 
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from 66 – 283 cells.mm-3. All CD4+ measurements were obtained > 1 month prior to the 

study. The control samples were obtained from 7 healthy volunteers (3 females and 4 

males) who were not asked to reveal their HIV status. Written consent was obtained from 

all the participants before enrollment in the study. The urine samples were randomly 

collected between 9h00 and 12h00 each day and were immediately placed on dry ice before 

being stored at -25°C. Urine osmolality and creatinine levels were determined by Pathcare 

(Cape Town, South Africa). Approval for the study was obtained from the Committee for 

Human Research at the University of Stellenbosch.   

 

 8.2.4   Enzymatic hydrolysis, SBSE and headspace derivatization procedure 

 

  The urine samples were thawed overnight at 4°C and 1.4 mL aliquots were 

transferred to 15 mL screw cap vials containing 1.4 mL 2 M sodium acetate buffer (pH 

4.6). Twenty μL of a crude solution of Helix Pomatia was added to the sample mixtures and 

the vials were incubated at 55°C for 3 hours [24]. Following hydrolysis of the conjugated 

steroids, the vials were briefly vortexed and allowed to cool to room temperature. Two mL 

of the sample mixture corresponding to 1 mL urine were transferred to clean 15 mL vials, 

and 0.2 mL methanol and 4 mL 5.2 M sodium chloride were added. The pH of the solution 

was ca. 4.5 prior to the extraction of the deconjugated steroids. A conditioned stir bar was 

placed in each vial and the samples were stirred at 1100 rpm for 60 min using a home-built 

multiposition magnetic stirrer/oven that was heated to 50°C. After SBSE, the stir bars were 

removed from the sample vials, washed with distilled water and dried with tissue paper. 

The stir bars were placed inside 2 mL headspace vials as described previously [23], and 20 

μL acetic acid anhydride and 20 μL pyridine were added. The vials were incubated at 90°C 

for 30 min to form the acetate derivatives of the extracted compounds. The stir bars were 

removed from the headspace vials, washed and dried, and placed in the glass desorption 

tubes of a TDS A2 autosampler (Gerstel). 
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 8.2.5 Thermal desorption – gas chromatography/mass spectrometry 

 

  Thermal desorption was accomplished in the solvent-venting mode using helium at 

a flow rate of 60 mL.min-1. The temperature of the TDS 2 was increased from 50°C to 

150°C (held for 1 min), and from 150°C to 300°C (held for 10 min) at a rate of 60°C.min-1. 

The split-valve was closed after 2 min. The desorbed compounds were transferred to a 

programmable temperature vaporization (PTV) inlet (CIS 4, Gerstel), and were 

cryofocussed at 10°C using liquid nitrogen. The TDS transfer line was held at 320°C. 

Sample injection onto the capillary column was accomplished by programming the PTV 

from 10°C to 300°C (held for 2 min), and from 300°C to 320°C (held for 3 min) at a rate of 

12°C.s-1. The splitless time was 2.5 min. 

 

 GC/MS analyses were carried out on an Agilent 6890 gas chromatograph that was 

interfaced with a 5973N mass selective detector (Agilent Technologies, Little Falls, DE, 

USA). The derivatives were separated on a HP-5MS fused silica capillary column (30 m × 

0.25 mm ID × 0.25 μm, Agilent) using helium as carrier gas at a flow rate of 1.25 mL.min-

1. The oven temperature was programmed from 70°C (held for 2 min) to 240°C (held for 10 

min) at 10° C.min-1, and from 240°C to 300°C (held for 8 min) at 20°C.min-1. The total run 

time was 40 min. Mass spectra of the derivatized compounds were recorded in full scan, 

whereas quantification was performed in the selected ion monitoring (SIM) mode. For SIM, 

two or three ions characteristic for the analytes were monitored at 100 ms each, namely m/z 

228 and 288 for T, m/z 270 and 330 for ET and m/z 229, 272 and 314 for progesterone 

(PG), the internal standard. The underlined values are the ions used for quantification.  

 

8.3 Results and discussion 

 

 8.3.1 Analysis of T and ET by SBSE-HD-TD-GC/MS 

 

  The mass spectra of T and ET were obtained in full scan by analyzing pure water 

samples spiked at a concentration of 0.5 μg.mL-1. The compounds were extracted directly 

from the aqueous samples by SBSE, after which the stir bars were placed inside modified 

autosampler vials [23] to prepare the acetate derivatives of the extracted compounds.  
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Headspace derivatization (HD) of T and ET was accomplished by exposing the PDMS 

stationary phase to acetic acid anhydride and pyridine vapors at 90°C. The derivatives were 

thermally desorbed (TD) and finally analyzed on-line by GC/MS.  

 

 The mass spectra of the derivatives (Figure 8.1) show that most of the fragment ion peaks 

in the higher mass range are formed by the loss of different combinations of [CH3COOH], 

[CH2=C=O] and [CH3].  The formation of ions in the low mass range was reported 

previously [25]. For SIM analysis, two characteristic ions were selected for each 

compound, namely m/z 228 and 288 for T, and m/z 270 and 330 for ET. The first ion was 

used to identify the presence of co-eluting compounds during the analysis, whereas the 

second ion was used for the quantification of T and ET. Some representative SIM 

chromatograms are shown in Figure 8.2.  
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Figure 8.1 Mass spectra of the acetate derivatives of A) testosterone and B) epitestosterone. 
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Figure 8.2  SIM chromatograms of the acetate derivatives of 1) ET, 2) T and 3) the internal 

standard PG. The upper trace (A) corresponds to the analysis of a water sample spiked with 10 

ng.mL-1 of T, ET and PG; the center trace (B) and the lower trace (C) correspond to the analyses of 

urine samples obtained from a female and a male volunteer, respectively. Both (B) and (C) contain 

10 ng.mL-1 of the IS. The SIM ions were m/z 330 for ET, m/z 288 for T and m/z 314 for PG. 

Analytical conditions are given in the experimental section. 
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 Accurate identification of the compounds was based on the retention times of the respective 

analytes as well as on the compound-specific ions. Figure 8.2-A was obtained after 

analyzing a water sample spiked with 10 ng of T and ET, and 10 ng of the internal standard 

(PG) per mL. The retention times are 27.6, 28.5, and 29.8 min for ET, T and PG, 

respectively. Further experiments performed in urine samples containing only 10 ng.mL-1 

of the internal standard (PG), show that the selected ions are specific for the detection of T 

and ET in complex biological matrices. The samples were obtained from a female (Figure 

8.2-B) and from a male (Figure 8.2-C) volunteer.   

 

 8.3.2 Method optimization 

 

  Experimental parameters that affect the sensitivity of the SBSE procedure were 

investigated to increase the overall yield of the developed method. Urine samples (female), 

spiked with 50 ng.mL-1 of T and ET and 50 ng.mL-1 of the IS were used for method 

optimization. It is well known that the extraction efficiencies for a large number of 

compounds can be enhanced by increasing the ionic strength of the sample solution [26]. 

Figure 8.3 demonstrates that the addition of 2.5 M and 5.2 M NaCl to the samples increased 

the sorptive extraction of T and ET due to the decreased solubility of the compounds in 

aqueous solution (i.e. the ‘salting out’ effect).  
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 Figure 8.3  SBSE optimization. Effect of salt concentration on the extraction efficiency of T and ET.  

Urine samples spiked with 50 ng.mL-1 of both compounds were analyzed by SBSE-HD-TD-GC/MS.  
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 Other parameters that may affect the amount of analytes extracted by the stir bar include 

the time of extraction and the temperature of the sample solution. The effect of temperature 

on the extraction of T and ET was investigated at 40, 50, 60, 70 and 80°C while the 

extraction time was held constant at 60 min (Figure 8.4-A). The peak areas of T increased 

slightly up to 80°C, whereas the peak areas of ET started to decline after 50°C. Therefore, 

50°C was chosen as the optimal temperature for the extraction of the compounds. The 

extraction-time profiles of T and ET were obtained by stirring the samples for various 

lengths of time which ranged from 30 – 120 min (Figure 8.4-B). The compounds appeared 

to reach extraction equilibrium after approximately 45 min, but further evaluation of the 

method using different extraction times showed that the repeatability (n = 4) of T and ET 

improved when the samples were stirred for a longer period (i.e. 11.8% for T and 15% for 

ET at 45 min versus 2% for T and 5.3% for ET at 60 min). Therefore, 60 min was chosen 

for the extraction of the compounds.  

 

 

 

 

 

 

 

 

 

 

  
  Figure 8.4  SBSE optimization. A. Effect of temperature; B. Effect of time on the extraction 

efficiency of T and ET.  Urine samples spiked with 50 ng.mL-1 of both compounds were analyzed by 

SBSE-HD-TD-GC/MS.  
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  Lastly, parameters that affect the headspace acylation of the extracted compounds, namely 

temperature and time were evaluated. The stir bars were exposed to acetic anhydride and 

pyridine vapors for 30 min at various temperatures ranging from 60°C to 90°C. Figure 8.5-

A demonstrates that the extracted compounds were almost completely derivatized at 80°C. 

A small increase in the peak areas of T and ET was observed when the stir bars were 

incubated at a higher temperature (i.e. 90°C). In order to select the most efficient headspace 

derivatization temperature, the reproducibility of the method was evaluated at 80°C and 

90°C, respectively. Repeatability (n = 4) for ET was slightly improved when a higher 

headspace derivatization temperature was used (i.e. 2.8% for T and 5.8% for ET at 80°C 

versus 3.2% for T and 4% for ET at 90°C). Therefore, 90°C was selected as the optimal 

temperature for the formation of the acetate derivatives of T and ET. The optimum time 

required for acylation of the extracted compounds was investigated by exposing the stir 

bars to acetic anhydride and pyridine vapors for various lengths of time (i.e. 15-60 min) at 

90°C. As shown in Figure 8.5-B, the optimal yield of the acetate derivatives was obtained 

after 30 min.  

 

 

 

 

 

 

 

 

 

 

 
 
Figure 8.5  SBSE headspace derivatization optimization. A. Temperature; B. Time. For other 

experimental conditions see Figure 8.3. 
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 8.3.3 Figures of merit 

 

  The linearity of the SBSE-HD-TD-GC/MS method was determined by internal 

standard calibration using blank steroid-free urine samples that were spiked at 4 different 

concentration levels of T and ET, namely 2.5, 7.5, 15 and 30 ng.mL-1 for females and 25, 

75, 150 and 300 ng.mL-1 for males. A fixed amount of the internal standard (PG) was added 

(i.e. 10 ng.mL-1 urine). Steroid-free urine was obtained by passing three 5 mL portions of a 

urine sample through a C18-SPE cartridge. The fractions were combined and used as a 

sample matrix to construct the calibration curves. The curves were obtained by plotting the 

abundance of m/z 288 (T) and m/z 330 (ET) corrected for the IS (m/z 314) against the 

concentration of the analytes. The correlation coefficients (r2) obtained for T and ET were > 

0.99. 

 

 To investigate if the sample matrix would have an effect on the extraction efficiency of the 

compounds from authentic urine, the calibration curves were set up in samples donated by a 

male and a female volunteer. The samples were spiked at the same concentration levels as 

described for the steroid-free urine samples. To construct the curves, the background 

concentrations of T and ET were subtracted before the peak area ratios of the compounds 

were plotted against the concentration of the analytes. Although the calibration curves were 

linear over the measured concentration range (r2 > 0.99), the slopes of the curves differed 

significantly from those obtained for the steroid-free urine matrix (Figure 8.6). Dissolved 

compounds in biological samples may interfere with the sorptive extraction of analytes, 

either by direct binding of the compounds or by competitive interaction with the PDMS 

extraction phase. Furthermore, the composition of urine samples may vary due to the 

concentrating ability of the kidneys. Thus, it would be difficult to ensure reproducible 

extractions for T and ET when different urine samples were analyzed.  
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Figure 8.6  Effect of sample matrix on the extraction efficiency of T and ET. The samples were 

spiked with different concentrations of A) T and B) ET to construct the curves. A fixed amount of IS 

(10 ng.mL-1) was added to the samples. The extraction, derivatization and chromatographic 

conditions are described in the experimental section.  

 

 To improve the accuracy of the results, the quantification of T and ET in urine samples was 

performed using the standard addition method. The samples were spiked at two 

concentration levels, namely 5 ng.mL-1 and 10 ng.mL-1 for female samples and 50 ng.mL-1 

and 100 ng.mL-1 for male urine samples. The linear plots that were obtained after analyzing 

the spiked and non-spiked samples were extrapolated to the negative axis to calculate the 

original steroid concentrations. The detection and quantitation limits of T and ET were 

calculated in a female urine sample containing known amounts of the compounds. The 

limits of detection for T (m/z 288) and ET (m/z 330) were calculated at a signal to noise 

level (S/N) of 3 and were 0.3 ng.mL-1 and 0.9 ng.mL-1 urine, respectively. The limits of 

quantitation were calculated at a S/N of 10 and were 0.9 ng.mL-1 for T and 2.8 ng.mL-1 for 

ET. The precision of the SBSE method was estimated from the relative standard deviation 

of 12 replicate analyses (4 replicates were analyzed on 3 different days). The intra-day 

repeatability was 2.3% for T and 4.6% for ET, whereas the inter-day repeatability was 

2.1%, 5.8% and 6.0% for T and 3.2%, 4.4% and 7.6% for ET. 
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 8.3.4 Analysis of urine samples 

 

  To assess the performance of the technique, the SBSE-HD-TD-GC/MS method was 

used to detect low levels of urinary T and ET in a group of healthy volunteers and HIV+ 

patients (Table 8.1). T and ET for the healthy controls were within normal range [27], but 

decreased levels of T were found in most of the HIV+ patients. Significant differences in 

the T/ET ratios were observed between the two groups.  

 
Table 8.1 Summary of data obtained for the controls and the HIV+ patients after analyzing the 

urine samples by SBSE-HD-TD-GC/MS.  

T     
(ng.mOsm.kg-1)b 

ET     
(ng.mL-1) 

ET      
(ng.mOsm.kg-1) 

Age 
(years) 

T     
(ng.mL-1) a T/ET No. 

  Females      

      Controls: 
1. 20 13.5 17.2 21.4 27.3 0.63 
2. 23 6.5 7.0 8.6 9.3 0.75 
3. 20 11.2 12.8 6.4 7.3 1.75 

      HIV+: 
4. 25 0.58 1.1 2.48 4.8 0.23 
5. 29 0.47 2.8 5.5 33.0 0.08 
6. 37 5.0 7.2 8.2 11.8 0.61 

  Males      

      Controls: 
1. 28 25.0 56.1 11.7 26.2 2.14 
2. 19 86.0 92.2 43.7 46.8 1.97 
3. 19 38.1 39.7 65.8 68.5 0.58 
4. 19 65.3 53.1 36.1 29.3 1.81 

      HIV+: 
5. 32 40.0 74.1 143.2 224.2 0.33 
6. 26 3.0 7.8 23.7 61.6 0.13 
7. 43 3.8 6.0 13.0 20.6 0.29 
8. 32 2.1 6.1 14.7 43.0 0.14 

aActual concentrations of T and ET. 
bConcentrations of T and ET were corrected for urine osmolality. 
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 Hypogonadism is frequently encountered in patients with HIV/AIDS, although the clinical 

significance of this abnormality is still unknown [28]. In a study by Dobbs et al. [29], it was 

shown that the incidence of hypogonadism is associated with the stage of the disease. The 

number of patients shown to be hypogonadal was 6% of asymptomatic HIV+ men, 44% of 

symptomatic HIV+ men and 50% of men with AIDS.    

 

 Apart from these endocrine abnormalities, other complications of HIV infection such as 

glomerular disease and renal failure may occur [30, 31]. The results obtained from urinary 

measurements should be interpreted cautiously due to the fact that impaired renal function 

may be present in these patients. We noticed that a lower amount of creatinine was excreted 

in 3 out of 7 patients in the HIV+ group (i.e. ≤ 5.4 mmol.L-1). Factors such as malnutrition 

and low body mass may also contribute to the low amount of creatinine excreted [32]. To 

correct for any variations in the concentration/dilution of the samples, urine osmolality (see 

Table 8.1) was selected as a reference to bypass the problems associated with urine 

creatinine measurements [32-34].  

 

 8.3.5 Considerations on the measurement of the T/ET ratio in patients with HIV 

 infection 

 

  Many severe illnesses are associated with a significant decrease in the circulating 

levels of T, i.e. a condition that is also known as hypogonadotropic hypogonadism [35-37]. 

This temporary change in endocrine function results from altered functioning of the 

hypothalamic-pituitary-gonadal (HPG) axis during critical illness [38]. Similar, but more 

lasting endocrine changes have been observed in patients with HIV/AIDS, which may 

occur due to direct infection of the adrenal glands with the virus [39] or as a result of 

nonspecific dysfunction of the HPG axis [40] as seen in other acute illnesses such as burns 

[41], myocardial infarction [42], brain injury [43] and major surgery [44]. Low levels of T 

in HIV+ patients can lead to a wide range of symptoms such as fatigue, depression, anemia, 

impaired sexual function [45] and muscle wasting [46]. Due to the considerable variation of 

T levels between individuals, a number of screening questionnaires have been developed to 

assist clinicians in diagnosing androgen deficiency [47]. In contrast, the problem of varying 

T levels in athletes has been overcome by measuring the T/ET ratio, which is based on the 
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nearly constant urinary excretion of T relative to ET in healthy individuals [48]. The T/ET 

ratio is widely used as an anti-doping control measure, but it has found relatively few 

applications in the clinical setting. Furthermore, very little scientific information is 

available regarding the excretion of T and ET during hypogonadism [49]. In one study by 

Hubl et al. [50], it was shown that patients with hypogonadism excreted submolar amounts 

of both T and ET. They also demonstrated that following the administration of human 

chorionic gonadotropin (hCG) it was possible to distinguish between patients with primary 

or secondary hypogonadism using the T/ET ratio.  

 

 In this study, the male and female HIV+ patients excreted much lower concentrations of T 

in comparison to levels obtained for the controls (Table 8.1). The results also demonstrate 

that the excretion of ET in the HIV+ group is comparable to concentrations obtained for the 

control subjects. Therefore, in this study population it appears that the urinary excretion of 

ET remained relatively unchanged during HIV infection. To illustrate, the excretion of T 

and ET for a healthy male volunteer (Males, No. 1 in Table 8.1) and for an HIV+ male 

patient (Males, No. 7 in Table 8.1) is shown in Figure 8.7.  It should be mentioned that 

none of the patients in the study group received antiretroviral therapy or any other 

medications known to influence steroid production. Furthermore, it is not known whether 

these patients experienced hypogonadism because they were not specifically tested for this 

abnormality and the presence of symptoms usually associated with low T levels was not 

recorded. Only one other study reported the measurement of the T/ET ratio during HIV 

infection. Strawford et al. [51] showed that, for a group of eugonadal HIV+ men (n = 24) 

who received anti-retroviral therapy for at least 3 months, the baseline T/ET ratios were 

similar to published normal values (i.e. median, 1.1). More research is required to establish 

the clinical significance of the T/ET ratio in the context of HIV/AIDS. 
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 Figure 8.7 The excretion of 1) ET and 2) T in the urine of two males. The upper trace (A) 

corresponds to the analysis of a urine sample obtained from a healthy male volunteer (Males, No.1, 

Table 8.1); and the lower trace (B) corresponds to the analysis of a urine sample obtained from an 

HIV+ male patient (Males, No.7, Table 8.1). Conditions are given in the experimental section.  

 

8.4 Conclusion 

  

 The method described for the measurement of T and ET in human urine samples is simple, 

rapid and avoids the use of organic solvents due to the direct extraction of the deconjugated 

steroids by aqueous SBSE. Headspace derivatization of the extracted compounds was 

performed to improve the volatility and thermal stability of the steroids prior to analysis by 

TD-GC/MS. The method was optimized, validated and specifically applied for the 
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measurement of the T/ET ratio in a group of healthy controls and HIV+ patients. 

Significant differences in the T/ET ratios between the two groups were detected. Decreases 

in the T/ET ratios were mainly due to the lower excretion of T in the HIV+ group, as 

compared to the excretion of ET that was comparable to levels obtained for the controls. 

Future work in this area should aim to clarify the clinical significance of the T/ET ratio in 

HIV infection and determine if the ratio can be used to detect hypogonadism during 

HIV/AIDS.    
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Abstract 

 

The development of a sensitive and solvent-free method for the measurement of estrone (E1) and 

17β-estradiol (17β-E2) in human urine samples is described. The deconjugated estrogens were 

derivatized in situ with acetic acid anhydride and the derivatives were extracted directly from the 

aqueous samples using stir bar sorptive extraction (SBSE). The compounds containing a 

secondary alcohol function are further derivatized by headspace acylation prior to thermal 

desorption and gas chromatography/mass spectrometry (GC/MS). A number of experimental 

parameters, including salt addition, temperature and time, were optimized to increase the 

recovery of E1 and 17β-E2 by SBSE. The derivatization reactions were also optimized to obtain 

the highest yields of the acylated estrogens. Detection limits of 0.02 ng.mL-1 and 0.03 ng.mL-1 

were obtained for E1 and 17β-E2, respectively. The method was applied to determine the effect of 

conjugated equine estrogen intake on the excretion of E1 and 17β-E2 in human urine samples. 

Increased levels of the endogenous estrogens were detected after administering a standard dose of 

Premarin to a female volunteer. Routine monitoring of estrogen levels is recommended to avoid a 

high urinary excretion of E1 and 17β-E2, nowadays enlisted as endocrine disrupting chemicals 

(EDCs), during hormone replacement therapy.  

 

Keywords: 

Stir bar sorptive extraction, gas chromatography/mass spectrometry, estrone, 17β-estradiol, 

conjugated equine estrogens, urine samples. 
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9.1   Introduction 

 

 The accurate and sensitive measurement of various estrogenic hormones is becoming more 

and more important due to an increased understanding of the significance of these steroids 

in health and disease. Not only are the estrogens essential for maintenance of the female 

reproductive system, they are also important regulators of growth and bone metabolism [1]. 

Measurement of the main biologically active estrogens, namely estrone (E1) and 17β-

estradiol (17β-E2) in blood and urine can be used to identify inborn errors of steroid 

metabolism; to monitor hormone replacement therapy; and to detect early puberty [2, 3, 4]. 

Highly sensitive assays are also required to study the role of these hormones in Alzheimer’s 

disease and breast cancer [5, 6].  

 

 Evidence that estrogens may promote breast and ovarian cancer has recently received 

considerable attention. Epidemiological studies have indicated that women exposed to high 

serum and urinary levels of the estrogens are at increased risk of developing cancer [7, 8]. 

Postmenopausal women who receive hormone replacement therapy (HRT) are also at risk, 

especially when the combined estrogen-progestogen formulations are used [9]. HRT 

preparations that contain endogenous estrogens or a mixture of the conjugated equine 

estrogens are frequently prescribed to treat menopausal symptoms such as hot flashes and 

excessive sweating. The most frequently used drug is a formulation obtained from pregnant 

mares’ urine called Premarin (Wyeth) [9]. It has been estimated that during 1998 more than 

46 million prescriptions for Premarin were issued in the United States alone [10]. The high 

use of this and other types of estrogen formulations (including the oral contraceptives) are 

regarded as possible sources for levels of estrogenic chemicals found in the discharges of 

sewage-treatment plants (STP) [11].  

  

 STP effluents have been shown to be estrogenic to fish [12]. Therefore, there has been 

growing concern over the release of various endocrine disrupting chemicals into the aquatic 

environment. The estrogenic component of domestic STP effluents has been shown to 

consist mainly of E1, 17β-E2 and the synthetic contraceptive steroid 17α-ethinylestradiol 

(EE) [13, 14]. Under normal circumstances, non-pregnant premenopausal women excrete 

approximately 7.4 μg of urinary E1 and 3.1 μg of urinary 17β-E2 per day [15]. These values 

 142



Chapter 9:    Estrone and 17β-Estradiol       PART  I I 

are considerably lower than the quantities excreted by most postmenopausal women who 

receive various formulations of HRT [16]. It has been shown that serum and urine estrogen 

levels in postmenopausal women who receive estradiol supplementation for example, are 

far greater than those obtained for their premenopausal counterparts [16, 17]. Standard 

HRT doses and/or dose guidelines may be too high for a lot of women, therefore frequent 

monitoring of estrogen levels during HRT has been recommended [10, 17].  

 

 In the clinical setting, urinary estrogen levels are frequently determined by means of 

biological assay, including enzyme immunoassay (EIA) and radioimmunoassay (RIA). 

These methods are often selected because of their affordability, ease of implementation, 

and high throughput which make them amenable to large scale investigations [18]. 

However, a number of limitations such as cross reactivity owing to a wide range of 

structurally similar compounds, and poor inter-laboratory reproducibility caused by batch-

to-batch variation of the antibodies, may complicate the interpretation of results [20, 21]. 

 

 Gas chromatography in combination with mass spectrometry (GC/MS) has addressed many 

of the shortcomings associated with immunoassays. The technique is highly specific and 

accurate, and has been used as a reference method to validate EIA [19, 21] or RIA methods 

[20, 21]. Unfortunately, the routine application of GC/MS for the detection of the estrogens 

has been hampered by the need to perform extensive sample preparation, which in turn has 

led to rather slow turnaround times. One of the ways to improve sample throughput, is to 

combine the extraction, concentration and purification of the compounds in a single step. 

Several investigators have already reported a significant reduction in analysis time by using 

solventless sample preparation techniques such as stir bar sorptive extraction (SBSE) [22, 

24] and solid phase microextraction (SPME) [23, 24]. 

 

 One of the main advantages of using sorptive extraction methods is the ability to analyze 

organic compounds, such as the estrogens, directly from an aqueous sample. The 

compounds are enriched by a polymeric phase that is coated onto a solid support, such as a 

glass stir bar (i.e. SBSE) [25] or an optical silica fiber (i.e. SPME) [26]. Affinity of the 

estrogens for the polymer layer can be enhanced by optimizing the stirring speed, 

temperature, pH and ionic strength of the sample solution. Furthermore, the phenolic 
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hydroxyl groups of the estrogens can be derivatized in situ with acetic acid anhydride to 

increase the affinity of the compounds for the polymeric phase coating [27, 28]. The 

aliphatic hydroxyl groups on the other hand, are more difficult to derivatize and this step 

can only be accomplished after the compounds have been extracted from the sample. Two 

headspace derivatization methods for SBSE have recently been described to improve the 

gas chromatographic properties of hydroxyl containing compounds that cannot be 

derivatized in aqueous solution. The first approach involves the in-tube silylation of the 

extracted compounds by BSTFA [29], whereas the second approach is based on the 

formation of the acetate derivatives of the extracted compounds by exposing the stir bars to 

acetic acid anhydride vapors in modified headspace vials [30]. 

 

 In this investigation, the development of a new method for the analysis of E1 and 17β-E2 in 

human urine samples is described. The method is based on the in situ derivatization of the 

estrogens with acetic acid anhydride; extraction of the derivatives by aqueous SBSE; and 

final exposure of the stir bars to acetic acid anhydride vapors before thermal desorption and 

GC/MS. The method has been applied to determine the effect of conjugated equine 

estrogens intake (i.e. Premarin) on the excretion of E1 and 17β-E2 in human urine samples. 

 

9.2 Experimental  

 

 9.2.1 Materials, standard solutions and urine samples 

 

  Estrone (E1), 17β-estradiol (17β-E2) and equilin (Eq) were purchased from Sigma-

Aldrich (Johannesburg, South Africa). Equilenin (Eqn), used as internal standard, was 

supplied as a 200 μg.2mL-1 standard solution in acetonitrile by Riedel-de Haën (Sigma-

Aldrich, Johannesburg, South Africa). 17α-dihydroequilin (17α-Eq) and 17α-

dihydroequilenin (17α-Eqn) were obtained from Steraloids (Newport, RI, USA). The 

chemical structures of the compounds are shown in Figure 9.1. Concentrated solutions of 

the individual estrogens (80 μg.mL-1) and Eqn (20 μg.mL-1) were prepared in methanol. 

From these solutions, a combined working solution was prepared for E1 and 17β-E2 at a 

concentration of 1 μg.mL-1. A separate solution was prepared for the internal standard 

(Eqn) at the same concentration. All solutions were stored at -20°C until used.  

 144



Chapter 9:    Estrone and 17β-Estradiol       PART  I I 

 

 

Estrone 17β-Estradiol Equilenin 

Equilin 17α-Dihydroequilin 17α-Dihydroequilenin 

O

OH OH

OH

OH

O

 

 

 

 

 

 
O

OH OH

OH

OH

OH
 

 

 

 

 

 
 Figure 9.1 Chemical structures of the human and equine estrogens analyzed by SBSE-HD-TD-

GC/MS. 

 

 Premarin tablets (0.625 mg; Wyeth, Johannesburg, South Africa) were purchased from a 

local pharmacy. A solution of the conjugated equine estrogens (62.5 μg.mL-1) in methanol 

was prepared according to a modification of the procedure described by Seibert et al. [31]. 

The outer coating of one tablet was removed using a piece of damp, lint-free tissue paper 

until the shellac layer was exposed. The tablet was crushed to a powder using a mortar and 

pestle. The conjugated equine estrogens were extracted by vortexing with two 6 mL 

portions of methanol. The fractions were combined, evaporated under nitrogen, and 

reconstituted in 10 mL methanol.    

 

 Sodium hydroxide pellets (NaOH), β-glucuronidase/sulfatase from Helix Pomatia (Type H-

2), anhydrous sodium carbonate (Na2CO3) and pyridine were obtained from Sigma-Aldrich 

(Johannesburg, South Africa). Acetic acid anhydride and dichloromethane were supplied by 

Merck (Darmstadt, Germany). Ammonium sulfate ((NH4)2SO4) and vitamin C were 

obtained from Fluka (Sigma-Aldrich, Johannesburg, South Africa). The 15 mL screw cap 

vials were from Supelco (Sigma-Aldrich, Johannesburg, South Africa) and the headspace 
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derivatization vials [30] were prepared from 2 mL autosampler vials that were obtained 

from Agilent Technologies (Chemetrix, Johannesburg, South Africa). A 10 position 

magnetic stirrer combined with a convection oven was designed and built by J. Blom and 

colleagues (Department of Mechanical Engineering, University of Stellenbosch). Twister 

stir bars (10 mm × 0.5 mm df PDMS) were purchased from Gerstel GmbH (Müllheim a/d 

Ruhr, Germany). The stir bars were pre-conditioned by sonication in a 1:1 mixture of 

dichloromethane:methanol for 5 min after which they were heated at 280°C for 10 min 

under a nitrogen flow of 50 mL.min-1.  

 

 First morning urine samples were obtained from two postmenopausal women aged 54 and 

57 years, respectively. At the time of the study, the 57 year old woman received a 

formulation of conjugated equine estrogens as a hormone replacement (i.e. 0.625 mg 

Premarin per day). Control urine samples were obtained from 3 non-pregnant, 

premenopausal women and two male volunteers that were collected at random between 

9h00 and 12h00. All urine samples were stored at -25°C prior to analysis. Urine creatinine 

levels were determined by Pathcare (Cape Town, South Africa). 

 

 9.2.2 Enzymatic hydrolysis, SBSE and derivatization procedure 

 

  After allowing the urine samples to thaw to room temperature, 1 mL aliquots were 

transferred to 15 mL screw cap vials containing 2 mL of a buffer solution (pH 4.6) that 

consisted of 1 M (NH4)2SO4, 5.7 mM vitamin C and 2 mM NaOH. Twenty μL of a crude 

solution of Helix Pomatia was added to the sample mixtures and the vials were incubated at 

40°C for 16 hours [32]. The samples were spiked with 2 ng.mL-1 of the internal standard 

(Eqn), and 500 mg Na2CO3 and 50 μL pyridine were added. The vials were vortexed gently 

until the salt was dissolved. Using a stop-watch, the in situ derivatization step was 

performed in a fume hood as follows. After adding 500 μL of acetic acid anhydride, 6 s 

elapsed before the open vials were vortexed for 5 s; another 9 s elapsed until the samples 

were vortexed for a further 20 s. Three mL of the derivatized samples were transferred to 

clean 15 mL vials prior to performing SBSE. 
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 A conditioned stir bar was placed in each vial and the samples were stirred at 1100 rpm for 

60 min using a home-built multiposition magnetic stirrer/oven that was heated to 40°C. 

After SBSE extraction, the stir bars were removed from the sample vials, washed with 

distilled water and dried with tissue paper. A second derivatization step was performed by 

placing the stir bars inside 2 mL headspace vials as previously described [30] and 20 μL 

acetic acid anhydride and 20 μL pyridine were added. The vials were incubated at 80°C for 

30 min to form the acetate derivatives of the extracted compounds. Urine samples that were 

obtained from two postmenopausal women and water samples spiked with different 

concentrations of the Premarin solution (Section 9.2.1) were prepared as described above, 

except that the internal standard Eqn was not added. 

 

 9.2.3  Thermal desorption – gas chromatography/mass spectrometry (TD-GC/MS) 

 

  TD-GC/MS analyses of the derivatized estrogens were performed with an Agilent 

6890 gas chromatograph that was equipped with a TDS 2 thermodesorption system and a 

TDS A autosampler (Gerstel). Thermal desorption of the compounds was accomplished in 

the solvent-venting mode using helium at a flow rate of 100 mL.min-1. The temperature of 

the TDS 2 was ramped from 50°C to 150°C (held for 1 min), and from 150°C to 300°C 

(held for 10 min) at a rate of 60°C.min-1. The split-valve was closed after 2 min. The 

desorbed compounds were transferred through a heated transfer line (320°C) to a 

programmable vaporization (PTV) inlet (CIS 4, Gerstel) that was cooled to 10°C using 

liquid nitrogen. The sample was injected by increasing the PTV inlet temperature to 300°C 

(held for 5 min) at a rate of 12°C.s-1. The splitless time was 2.5 min. Chromatographic 

separation of the derivatives was performed on an HP5MS capillary column (30 m L × 0.25 

mm ID × 0.25 μm df; Agilent) using helium at a flow rate of 1.25 mL.min-1. The oven 

temperature was programmed from 70°C (held for 2 min) to 220°C at 10° C.min-1, and 

from 220°C to 300°C (held for 2 min) at 3.2°C.min-1. The total run time was 44 min.  

 

 The gas chromatograph was interfaced with a 5973N mass selective detector (Agilent 

Technologies, Little Falls, DE, USA) that was operated in the full scan and selected ion 

monitoring (SIM) modes. The GC/MS interface, ion source and quadrupole temperatures 

were maintained at 280°C, 230°C and 150°C, respectively. Mass spectra of the acetate 
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derivatives were recorded in the electron impact mode by scanning over a mass range of 50 

– 550 amu (ionization voltage 70 eV). For SIM, two to three ions were selected from each 

spectrum to detect trace amounts of the compounds in human urine. The monitored ions 

included the base peak and one or two other target ions of each derivative, i.e.: E1 (m/z 270; 

312), 17β-E2 (m/z 225; 314), Eq (m/z 268; 310), Eqn (m/z 266; 308), 17α-Eq (m/z 237; 252; 

294) and 17α-Eqn (m/z 235; 250; 277). The underlined values are the base peaks of the 

acetate derivatives.  

 

9.3 Results and discussion 

 

 9.3.1 Mass spectrometry 

 

  The mass spectra of the derivatized estrogens are shown in Figure 9.2. Pure water 

samples, spiked at a concentration of 0.48 μg.mL-1 of each estrogen were analyzed as 

described in the experimental section. The most intense fragment ions for the acetate 

derivatives of E1 and 17β-E2 (Figure 9.2-A and 9.2-B) were formed by the loss of 

[CH2=C=O] from the C3-acetyl groups of the compounds.  The loss of [CH3COOH] from 

the base peak of 17β-E2 (m/z 314) and subsequent fragmentation of the D rings in both 

compounds, resulted in complex spectra containing several low intensity fragment-ions 

[33]. Similar fragmentation patterns to that of E1 acetate were observed for the equine 

estrogens, namely Eq and Eqn (Figure 9.2-C and 9.2-D). The ions at m/z 268 and m/z 266 

were formed by the loss of [CH2=C=O] from the molecular ions of Eq acetate (m/z 310) 

and Eqn acetate (m/z 308). Further decompositions corresponded to that of E1 acetate as 

reported previously [34]. 
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 Figure 9.2 Electron impact mass spectra of the acetate derivatives of A) Estrone (E1); B) 17β-

Estradiol (17β-E2); C) Equilenin (Eqn); D) Equilin (Eq); E) 17α-Dihydroequilin (17α-Eq); F) 17α-

Dihydroequilenin (17α-Eqn). 

 

 The mass spectra of the acetate derivatives of 17α-Eq and 17α-Eqn differed significantly 

from those obtained for the simple estrogens (Figure 9.2-E and 9.2-F). Ions corresponding 

to the loss of [CH2=C=O] and [CH3COOH] from the C3- and C17-acetyl substituents were 

present in the spectra of both compounds, namely m/z 312 and 294 for 17α-Eq and m/z 310 

and 292 for 17α-Eqn. The base peak (m/z 252) of the diacetate derivative of 17α-Eq was 

formed by the loss of 42 mass units from the ion at m/z 294. An additional loss of 57 mass 

units from this ion (i.e. m/z 294) resulted in the formation of the ion at m/z 237. The 

fragmentation of 17α-Eqn appeared to follow the same pattern, except that a complete 

reversal in the intensity of the ions at m/z 235 and m/z 250 was demonstrated. A summary 

of the monitored ions is presented in Table 9.1.  
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Table 9.1  Summary of the ions monitored by GC/MS in SIM mode. 
  MaCompound (Abbreviation)  Monitored ions  
 

 

 

 

 

    

 
 aMolecular mass of the acetate derivatives.  
 bUnderlined values are the base peaks of each derivative. 

 

 9.3.2 Method optimization 

 

  A number of experimental conditions that affect the sensitivity of the SBSE – 

headspace derivatization (HD) – TD –GC/MS procedure were optimized to improve the 

recovery of the estrogens from the urine samples. Prior to performing SBSE, the 

deconjugated estrogens were derivatized in the aqueous sample to enhance the extraction of 

the compounds by the stir bar coating. The aqueous derivatization step is performed with 

acetic acid anhydride in the presence of Na2CO3 and pyridine within a few seconds. During 

the reaction, the polar phenolic hydroxyl groups of the estrogens are replaced with less 

polar acetate groups, thus increasing the affinity of the compounds for the non-polar, 

polydimethylsiloxane coating of the stir bar. The efficiency of the reaction was optimized 

by adding different amounts of acetic acid anhydride and Na2CO3 to the samples.  

 

 Urine samples that were obtained from two male volunteers were spiked with 2 ng.mL-1 of 

E1, 17β-E2 and Eqn. The samples were analyzed as described in the experimental section. 

Firstly, the amount of Na2CO3 used was optimized by adding different quantities of the 

carbonate (i.e. 200 mg – 600 mg) and a fixed volume of the reagent to the samples (i.e. 0.5 

mL acetic acid anhydride). Thereafter, the amount of reagent used was optimized by adding 

different volumes of acetic acid anhydride to the samples (i.e. 0.2 mL – 0.6 mL), while 

keeping the amount of Na2CO3 constant (i.e. 500 mg). In both experiments the estrogen 

derivatives were extracted at 50°C during 60 min. Figure 9.3 shows the results of the mean 

values for n = 3. The R.S.D.s were less than 5% for all points.  

1.  Estrone (E1) 312  m/z 270b, 312 

2.  17β-Estradiol (17β-E2) 356 m/z 225, 314  

3.  Equilin (Eq) 310  268 m/z , 310 

4.  Equilenin (Eqn) 308  266 m/z , 308 

5.  17α -Dihydroequilin (17α-Eq) 354 m/z 237, 252 , 294 

6.  17α -Dihydroequilenin (17α-Eqn) 352  235 m/z , 250, 277 
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 Figure 9.3 The amount of Na2CO3 (A) and acetic acid anhydride (B) added to prepare the 

monoacetate derivatives of E1, 17β-E2 and the IS. One mL urine samples were spiked with 2 ng.mL-

1 of each compound and were analyzed by SBSE-TD-GC/MS. Conditions are given in the 

experimental section.  

 

 The peak areas of the derivatives increased gradually and reached a maximum after 500 mg 

of Na2CO3 and 0.5 mL of acetic acid anhydride (0.4 mL for 17β-E2) were added to the 

samples. Further increases in the volume of the reagent and the quantity of the catalyst 

resulted in decreased amounts of the compounds being extracted. As well as improving the 

efficiency of the derivatization reaction, the amount of acetic acid anhydride and Na2CO3 
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added to the samples also influenced the pH and ionic strength of the solutions. It is known 

that to achieve optimal extractions by SBSE, the compounds should be present in their 

neutral form [35]. Since the estrogens are ionizable compounds, the pH and ionic strength 

of the sample will affect the overall amount of estrogens extracted by the stir bar. Under the 

optimized derivatization conditions, a final pH of ca. 5.5 was obtained prior to the 

extraction of the estrogen derivatives. The efficiency of the extraction at different pH levels 

was not investigated because of the buffering effect produced by the reagent and carbonate. 

However, Figure 9.3-A demonstrates that by increasing the ionic strength of the sample 

solution, increased amounts of the estrogens are recovered by the stir bar. Therefore, an 

amount of 500 mg Na2CO3 and a volume of 0.5 mL acetic acid anhydride were selected as 

optimal to prepare the monoacetate derivatives of the estrogens prior to extraction by 

SBSE. 

 

 Further improvements in the recovery of the estrogens were accomplished by optimizing 

the temperature and the time of extraction. By increasing the temperature of the sample 

solution, the diffusion coefficients of the analytes will increase, but at the same time their 

partition coefficients may decrease [35]. Therefore, the optimal extraction temperature for 

E1, 17β-E2 and Eqn was determined by performing a series of experiments at 40, 50, 60, 70 

and 80°C, while the extraction time was held constant at 60 min. The recovery of the 

estrogens decreased slightly at extraction temperatures of 60°C and higher. The initial peak 

areas of E1 and Eqn remained unchanged between the temperature interval 40°C to 50°C, 

whereas the peak areas of 17β-E2 increased slightly up to 50°C and then leveled off 

between 50°C and 60°C. To select the most appropriate extraction temperature for the 

compounds, the repeatability of the method was evaluated at 40°C and 50°C, respectively. 

The repeatability (n = 4) for E1 and 17β-E2 improved when a lower extraction temperature 

was used (i.e. 2.3% for E1 and 3.3% for 17β-E2 at 40°C versus 3.9% for E1 and 6.2% for 

17β-E2 at 50°C). Therefore, 40°C was chosen as the optimal extraction temperature for the 

compounds. Thereafter, the extraction-time profiles of E1, 17β-E2 and Eqn were obtained 

by stirring the samples for various lengths of time which ranged from 30 – 120 min. Sixty 

minutes was sufficient to achieve equilibrium extraction for the studied estrogens. 
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 Lastly, the headspace acylation of 17β-E2 was optimized by exposing the stir bars to acetic 

acid anhydride and pyridine vapors for 30 min at temperatures ranging from 60°C to 90°C. 

The peak areas obtained for 17β-E2 remained relatively unchanged within the selected 

temperature range. To determine the most efficient headspace derivatization temperature, 

the repeatability of the method was evaluated at 70°C and 80°C, respectively. Repeatability 

(n = 4) for 17β-E2 improved significantly when a higher headspace derivatization 

temperature was used (i.e. 1.3% for E1 and 6.3% for 17β-E2 at 70°C versus 1.3% for E1 and 

3.5% for 17β-E2 at 80°C). Therefore, 80°C was selected as the optimal temperature to 

derivatize the extracted compounds. The optimum time required to form the diacetate 

derivative of 17β-E2 was investigated by exposing the stir bars to acetic acid anhydride and 

pyridine vapors for various lengths of time i.e. 15-60 min. An optimal yield was obtained 

after 30 min.  

 

 9.3.3 Quantification of E1 and 17β-E2 in human urine samples 

 

  The efficiency of the optimized SBSE-TD-HD-GC/MS method was demonstrated 

by measuring trace levels of E1 and 17β-E2 in urine samples that were obtained from 3 

healthy, non-pregnant, premenopausal women. The levels were determined by the standard 

addition method in samples that were spiked at two concentration levels, namely 2 ng.mL-1 

and 4 ng.mL-1 of each compound. A fixed amount of the internal standard (Eqn) was added 

(i.e. 2 ng.mL-1) prior to analyzing the spiked and non-spiked samples. The slopes of the 

curves were obtained by plotting the peak area ratios of E1 (m/z 270) and 17β-E2 (m/z 314) 

corrected for the IS (m/z 266) against the concentration of the analytes. The correlation 

coefficients (r2) of both compounds ranged between 0.995 – 0.999. To determine the 

original steroid concentrations, the linear curves were extrapolated to the negative axis, 

whereby levels of 3.6, 4.4 and 2.9 ng.mL-1 were obtained for E1 and 1.1, 1.4 and 0.96 

ng.mL-1 were obtained for 17β-E2. The levels were corrected for the amount of creatinine 

measured in each sample as shown in Table 9.2. The limits of detection for the method 

were calculated at a signal to noise (S/N) level of 3 and were 0.02 ng.mL-1 for E1 and 0.03 

ng.mL-1 for 17β-E2. The limits of quantitation were calculated at a S/N of 10 and were 0.05 

ng.mL-1 and 0.1 ng.mL-1 for E1 and 17β-E2, respectively. The precision of the SBSE 

method was estimated from the relative standard deviation of 12 replicate analyses (i.e. 4 
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replicates that were analyzed on 3 different days). The intra-day repeatability was 1.8% for 

E1 and 4.2% for 17β-E2, whereas the inter-day repeatability was 1.6%, 1.8% and 1.9% for 

E1 and 2.7%, 3.9% and 4.5% for 17β-E2.  

 
 Table 9.2 Levels of urinary E1 and 17β-E2 obtained for 3 healthy, premenopausal women. One mL 

urine samples spiked with 2 ng.mL-1 of the IS (Eqn) were analyzed by SBSE-TD-GC/MS. 

Quantification was performed by the standard addition method. 

 *Correlation coefficients 
#Levels corrected for creatinine content (ng.mg creatinine-1) 

 

 9.3.4 Increased urinary excretion of E1 and 17β-E2 following the oral administration 

 of Premarin. 

 

  The estrogenic components of Premarin were identified by analyzing a pure water 

sample spiked at a concentration of 0.19 μg.mL-1 of the conjugated equine estrogens 

(Section 9.2.1). Accurate identification of the steroids was made by comparing the GC/MS 

scan results of each compound with the retention times and mass spectra of the 

corresponding standards. All the samples were analyzed by SBSE-TD-GC/MS as described 

in the experimental section. SIM chromatograms of the target compounds, namely E1, Eq, 

Eqn, 17β-E2, 17α-Eq and 17α-Eqn were obtained by analyzing a pure water sample spiked 

at a concentration of 31.3 ng.mL-1 of the Premarin solution. Figure 9.4A-i illustrates that a 

number of the estrogens co-eluted under the present gas chromatographic conditions, i.e. E1 

(m/z 270) co-eluted with Eq (m/z 268), and 17β-E2 (m/z 314) co-eluted with 17α-Eq (m/z 

252). However, it was possible to detect the individual compounds by using the extracted-

ion SIM chromatograms of each estrogen as shown in Figure 9.4A-ii and Figure 9.4A-iii.  

 

 Significant differences were observed between the GC/MS profiles of Premarin and those 

obtained for the postmenopausal urine samples. Figure 9.4B-i shows that the peaks 

identified in sample A  (i.e. peak 1 – 4) were also detected in a urine sample obtained from 

a 57 year old postmenopausal woman who received a preparation containing conjugated 

No. Age r2 * E1 (ng.mL-1) E1
#
  r2 * 17β-E2 (ng.mL-1) 17β-E2

# 

1 20 0.995 3.6 2.2 0.999 1.1 0.68 
2 23 0.999 4.4 2.6 0.998 1.4 0.84 
3 20 0.998 2.9 2.2 0.999 0.96 0.72 
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equine estrogens (i.e. 0.625 mg Premarin per day). A significant amount of E1 was excreted 

by this volunteer, whereas only trace amounts of Eq and 17α-Eq were detected in the 

sample (Figure 9.4B-ii and -iii). The main components of Premarin have been identified as 

the sulfate conjugates of E1 (50-60%), Eq (20-30%) and 17α-Eq (14-20%) [36]. Possible 

metabolic pathways for the equine estrogens have previously been reported by Bhavnani et 

al [37]. These authors demonstrated that the equine estrogens, including Eq and 17α-Eq are 

extensively metabolized in vivo [38, 39]. Given that low quantities of Eq and 17α-Eq are 

excreted in human urine, it is expected that these estrogens will have a negligible impact on 

the quantification of E1 and 17β-E2 during conjugated equine estrogen supplementation.  
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Figure 9.4 SIM chromatograms of A) a water sample spiked with 31.3 ng.mL-1 of the Premarin 

solution; B) the non-spiked urine sample of a postmenopausal woman who received Premarin; and 

C) a postmenopausal urine sample without Premarin. The peak identities are 1) E1 and Eq; 2) Eqn; 

3) 17β-E2 and 17α-Eq; and 4) 17α-Eqn. Additional chromatograms represent (i) magnified sections 

of the corresponding chromatograms; (ii) extracted-ion SIM chromatograms of peak 1; and (iii) 

extracted-ion SIM chromatograms of peak 3. Conditions are given in the experimental section. 
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 Reference levels for E1 and 17β-E2 were obtained by analyzing a urine sample that was 

donated by a 54 year old postmenopausal woman who did not receive any form of HRT 

(Figure 9.4C-i). This volunteer excreted much lower levels of the endogenous estrogens as 

compared to the postmenopausal woman who received daily estrogen supplementation 

(Figure 9.4B-i). To investigate this finding further, the results were compared against 

normal levels of the estrogens found in healthy premenopausal women. Figure 9.5 

demonstrates that the excretion of E1 and 17β-E2 in a urine sample of a 23 year old 

premenopausal woman (A; E1: 2.6 ng.mg creatinine-1, 17β-E2: 0.84 ng.mg creatinine-1) 

were substantially lower than the levels detected in a 57 year old postmenopausal woman 

who received a formulation containing conjugated equine estrogens (B; E1: 56.9 ng.mg 

creatinine-1, 17β-E2: 11.6 ng.mg creatinine-1). 
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 Figure 9.5  SIM chromatograms of A) a 1 mL urine sample of a 23 year old premenopausal woman 

(E1: 2.6 ng.mg creatinine-1; 17β-E2: 0.84 ng.mg creatinine-1); and B) a 1 mL urine sample of a 57 

year old postmenopausal woman who received Premarin (E1: 56.9 ng.mg creatinine-1; 17β-E2: 11.6 

ng.mg creatinine-1). The extraction, derivatization and chromatographic conditions are described in 

the experimental section. 

 

 Similar findings to those observed in this study have been reported by other investigators. 

Tepper et al. demonstrated that approximately 57% of postmenopausal women who 

received 2 mg of an oral estradiol formulation, experienced serum estrogen levels 5 times in 

excess of what was required to manage their menopausal symptoms [17]. They concluded 

that it may be inappropriate to treat all women with the same steroid dosage. In a similar 

study, Friel et al. reported that after studying hundreds of women who received various 

formulations of HRT, they noticed that some women excreted higher quantities of E1 and 

17β-E2 as compared to those seen in healthy premenopausal women [16]. Both studies 
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concluded that currently marketed pharmaceutical preparations contain doses of the 

estrogens in excess of what are required to manage the symptoms of a large number of 

postmenopausal women. Doses containing as little as 0.3 mg.day-1 of the conjugated equine 

estrogens have been shown to be as effective in controlling menopausal symptoms as the 

standard doses that are currently prescribed (i.e. 0.625 mg.day-1) [10,40]. Estrogen 

replacement therapy is based on fixed-dose regimens, which are infrequently monitored 

during long periods of treatment [17]. The short-term risks of exposure to high estrogen 

levels are still unknown [41], although recent findings from a large scale clinical trial 

provided convincing evidence that the long-term use of HRT is associated with an 

increased risk of breast and endometrial cancer [42].  

  

 Another important consideration is the fact that surplus estrogens will be excreted into 

domestic waste removal systems. It is currently estimated that 20 – 50% of women in the 

western world use some form of HRT (i.e. those aged 45 to 70 years) [43]. In view of the 

frequent use of these products and the fact that standard HRT doses may be too high for 

many women, it is likely that the use of HRT formulations will make a significant 

contribution to the levels of estrogens found in STP effluents. The presence of these 

chemicals in wastewater discharges have been attributed to the widespread intersexuality 

detected in fish [44], although the overall threat to fish populations from this source is still 

unknown [45]. In light of the potential health risks to women who use various formulations 

of HRT, as well as the potential harmful effects of these compounds in the environment, it 

seems reasonable to recommend that urinary estrogen levels be frequently monitored 

during HRT. Future work should aim to establish the usefulness of these measurements in 

determining the dose-response relationships of HRT preparations.  

 

9.4 Conclusion 

 

 Regulatory authorities have become increasingly concerned about the presence of 

estrogenic chemicals in the aquatic environment. Possible sources for these compounds in 

wastewater discharges have been attributed to the frequent use of pharmaceutical products 

that may contain endogenous, chemically modified or conjugated equine estrogens. 

Estrogen replacement therapy is currently based on fixed-dose regimens that are seldom 
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tailored to meet individual requirements. Therefore, excessive amounts of the estrogens 

may be excreted by postmenopausal women who receive conventional doses of various 

HRT preparations. In the present study it was demonstrated that increased amounts of E1 

and 17β-E2 were excreted by a postmenopausal volunteer who received a standard oral dose 

of the conjugated equine estrogens (i.e. 0.625 mg.day-1). Urine levels of the estrogens were 

determined by aqueous SBSE that was combined with two derivatization steps to form the 

mono- and diacetate derivatives of the extracted compounds. The derivatives were 

thermally desorbed and analyzed on-line by GC/MS. The sensitivity of the method was 

improved by optimizing a number of experimental conditions which enhanced the recovery 

of the compounds by the stir bar coating. Detection limits of 0.02 ng.mL-1 and 0.03 ng.mL-1 

were obtained for E1 and 17β-E2, respectively. The developed SBSE procedure is highly 

sensitive and easy to perform, which are important considerations for the routine clinical 

monitoring of urinary estrogen levels by GC/MS.   
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Chapter 10:    Conclusion        PART  I I 

 The main part of this study focuses on the development of simplified analytical methods for 

the analysis of target compounds in biological samples by stir bar sorptive extraction and 

gas chromatography/mass spectrometry. GC/MS is often used to analyze complex matrices 

because of its ability to separate different sample constituents as well as providing accurate 

structural information for the resolved compounds. Due to the complexity of most 

biological samples, direct analysis by GC/MS is rarely performed. Very often, highly 

laborious and time consuming sample preparation steps are required to isolate the 

compounds of interest. Current trends in analytical chemistry are aimed at simplifying 

standard sample preparation procedures, as well as minimizing the use of organic solvents 

that are potentially harmful to humans and the environment. In sorptive extraction, the use 

of organic solvents is avoided because the analytes partition between the aqueous sample 

and a polymeric extraction phase based on their octanol-water distribution constants. Stir 

bar sorptive extraction (SBSE) and solid phase microextraction are the two most frequently 

used sorptive extraction methods. Both techniques utilize polydimethylsiloxane (PDMS) as 

the stationary phase to extract volatile and semi-volatile components from aqueous and 

gaseous samples. In SBSE, the PDMS layer is attached to a glass stir bar. Several analyses 

can be performed using a single stir bar due to the remarkable hydrophobic recovery of the 

polymer surface (Chapter 2). A wide range of analytes can be extracted by the PDMS layer; 

therefore the specificity of the analysis should be verified before proceeding with the actual 

quantification of the compounds. In Chapter 5, the versatility of the SBSE technique is 

highlighted by demonstrating the detection of a wide range of drugs of abuse in different 

biological fluids. The SBSE-TD-GC/MS technique is highly sensitive, which allows the 

mass spectrometer to be used in the scan mode. Further improvements in the specificity and 

sensitivity of the analysis are accomplished by using the MS in the selected ion monitoring 

(SIM) mode. Both specificity and sensitivity are essential to achieving the trace detection of 

biological compounds in complex matrices. Specificity is optimized by monitoring a few 

ions that are characteristic for the compounds being analyzed, whereas sensitivity is 

improved by controlling several external and instrumental parameters. Apart from ensuring 

the optimal operation of the analytical instrument, sensitivity is mainly determined by the 

affinity of the analytes for the stir bar coating. Several parameters may be optimized to 

improve the extraction of various compounds by the polymer layer, namely stirring speed, 

temperature, pH, salt addition, as well as the derivatization of polar functional groups. 
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These parameters should be held constant at all times to ensure the reproducibility of the 

extraction. Once the compounds can be detected with a certain level of confidence (i.e. as 

measured by precision, sensitivity and detection limit), quantification is performed using 

the internal standard or standard addition technique. In this study, standard addition proved 

to be quite valuable for the quantification of compounds analyzed by SBSE, because it 

corrects for matrix effects, controls for changes taking place on the stir bar surface, and 

minimizes alterations occurring in the operating conditions of the GC/MS system. 

Furthermore, it is probably one of the most efficient ways of validating the selection of ions 

used for SIM analysis. To enable the extraction of polar analytes by the stir bar coating, a 

derivatization step will be required that may be performed directly in the aqueous sample 

prior to performing SBSE, or in the headspace of a vial containing vapors of the reagent 

after the compounds have been extracted from the sample. This study describes the analysis 

of four distinct biomarkers in human bodily fluids by SBSE-TD-GC/MS, using different 

derivatization techniques. Until recently, one of the limitations in the analysis of 

compounds containing polar functional groups by aqueous SBSE has been the lack of a 

suitable derivatization method for these analytes. This limitation has recently been 

overcome by the development of two new headspace derivatization procedures, one of 

which has been presented in this study. Chapter 6 describes the direct measurement of a 

chemical marker of tuberculosis, namely tuberculostearic acid (TBSA) in sputum samples. 

The clinical samples were decontaminated and concentrated before being analyzed by 

SBSE-TD-GC/MS. Prior to performing SBSE, the mycobacterial lipids were hydrolyzed 

and then derivatized with ethyl chloroformate to increase the sorption of the compounds by 

the stir bar coating.  The method is sufficiently sensitive to detect TBSA directly in sputum 

samples without the need to culture the organisms. Future work should focus on 

establishing the diagnostic accuracy of the method, as well as measuring other markers for 

M. Tuberculosis that will increase the specificity of the TBSA method. In Chapter 7, the 

detection of 4-hydroxynonenal (4HNE) by SBSE and GC/MS has been demonstrated. 

4HNE is a highly toxic end-product of lipid peroxidation that may be used as a marker of 

oxidant injury. The measurement of 4HNE is based on the formation of an oxime derivative 

using O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine, followed by acylation of the 

hydroxyl group by means of headspace derivatization prior to thermal desorption. The high 

sensitivity of the method allows the detection of physiological quantities of 4HNE excreted 
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daily. Future measurements of 4HNE, particularly in larger clinical trials, will enable 

clinicians to clarify the role of free radicals in the pathophysiology of human diseases, as 

well as providing certain end-points for various therapeutic interventions. Chapter 8 

describes the measurement of the T/ET ratio in a group of healthy volunteers and HIV+ 

patients. The extraction of T and ET was accomplished by aqueous SBSE, followed by 

headspace acylation and TD-GC/MS. Decreased levels of T were detected in the HIV+ 

group, whereas the excretion of ET was comparable to levels obtained for the control 

group. This finding has not previously been reported in the literature. Therefore, further 

clinical research will be required to elucidate the clinical significance of the T/ET ratio in 

HIV infection. Lastly, Chapter 9 demonstrates the increased urinary excretion of E1 and 

17β-E2 following the administration of a standard dose of Premarin to a female volunteer. 

Current estrogen replacement therapies are based on fixed-dose regimens that are seldom 

tailored to meet individual requirements. Therefore, surplus estrogens may be released into 

the aquatic environment due to inadequate removal by sewage treatment plants. The routine 

monitoring of estrogen levels is recommended to avoid the high urinary excretion of E1 and 

17β-E2 during hormone replacement therapy. Analysis of the estrogens is accomplished by 

in situ acylation and aqueous SBSE, followed by headspace acylation and TD-GC/MS. The 

method is simple to perform, which is an important consideration for the routine clinical 

monitoring of urinary estrogen levels by GC/MS. 

 In conclusion, the work presented in this study illustrates the versatility of SBSE to enrich 

various classes of biological compounds directly from aqueous samples. The successful 

application of SBSE in combination with GC/MS for the analysis of complex biological 

matrices has also been demonstrated. Furthermore, new derivatization possibilities create 

the exciting possibility of developing additional SBSE methods for application in the 

clinical and biomedical fields.  
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