
Repairing Classical Ontologies using Defeasible Reasoning Techniques

by

Simone Coetzer

Thesis presented in fulfillment of the requirements for the degree of Master of Arts in the

Faculty of Socio-Informatics at Stellenbosch University

Supervisor: Prof. Katarina Britz

March 2021

i

Declaration

By submitting this thesis electronically, I declare that the entirety of the work contained

therein is my own, original work, that I am the sole author thereof (save to the extent

explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch

University will not infringe any third party rights and that I have not previously in its

entirety or in part submitted it for obtaining any qualification.

Date: 14 February 2021

Copyright c○ 2021 Stellenbosch University

All rights reserved.

Stellenbosch University https://scholar.sun.ac.za

ii

Abstract

Ontologies provide knowledge engineers with the ability to represent and encode knowledge

in a formal language so that it can be reasoned over by a computer. Notable benefits include

the ability to source new knowledge by making statements that are implicitly deduced

explicitly available to the end-user, to classify individuals or instances and to check the

addition of new knowledge for logical consistency.

Given the nature and goal of ontologies, a successful application of ontologies relies on

(1) representing as much accurate and relevant domain knowledge as possible, (2) while

maintaining logical consistency. As the successful implementation of a real-world ontology

is likely to contain many concepts and intricate relationships between the concepts, it is

necessary to follow a methodology for debugging and refining the ontology. A myriad of

ontology debugging approaches (some of them instantiated in tools) have been developed

to help the knowledge engineer pinpoint the cause of logical inconsistencies and rectify

them in a strategic way.

Rodler (2015) and Schekotihin et al. (2018) build out the ontology debugging basics

by introducing an interactive ontology debugging methodology: this interactive ontology

debugging framework, which has also been implemented as a Protégé plug-in, OntoDebug,

methodically and iteratively asks users queries to narrow down the inconsistency to just

one diagnosis, at which time the user can make a more informed decision about how to

repair the diagnosis.

This approach guides the user in the debugging process. We show however that this

approach can sometimes lead to unintuitive results, which may then lead the knowledge

engineer to opt for deleting potentially crucial and nuanced knowledge. This is due to

the focus of the interactive ontology debugging approach to be on classical, monotonic

knowledge bases – and indeed, in the classical/ monotonic sense, it is only by deletion,

not extension of the knowledge base, that coherence can be obtained. However, it may at

times be desirable to deal with the unintuitive results produced by weakening rather than

deleting faulty axioms.

We provide a methodological and design foundation for weakening faulty axioms in

a strategic way using defeasible reasoning tools. Our methodology draws from Rodler’s

Stellenbosch University https://scholar.sun.ac.za

iii

(2015) interactive ontology debugging approach which not only localises faulty axioms but

provides the knowledge engineer with a strategic way of resolving them by presenting the

root cause inconsistencies first. We extend this approach by creating a methodology to

systematically find conflict resolution recommendations. Importantly, our goal is not to

convert a classical ontology to a defeasible ontology – therefore we do not use defeasible

reasoning support through, for example, the computation of rational closure. Rather, we use

the definition of exceptionality of a concept, which is central to the semantics of defeasible

description logics, and the associated algorithm (as can be found in Britz et al. 2019) to

determine the extent of a concept’s exceptionality (their ranking); then, starting with the

statements containing the most general concepts (the least exceptional concepts) weakened

versions of the original statements are constructed; this is done until all inconsistencies

have been resolved.

Stellenbosch University https://scholar.sun.ac.za

iv

Opsomming

Ontologieë bied kennisingenieurs die vermoë om kennis in ’n formele taal voor te stel

en te kodeer sodat dit deur ’n rekenaar verwerk kan word. Opvallende voordele sluit in

die vermoë om nuwe kennis te verkry deur verklarings wat implisiet afgelei is vir die

eindverbruiker voor te stel, om individue of gevalle te klassifiseer en om die toevoeging van

nuwe kennis na te gaan vir logiese konsekwentheid.

Gegewe die aard en doel van ontologieë, berus ’n suksesvolle toepassing van ontolo-

gieë daarop dat (1) soveel akkurate en relevante domeinkennis as moontlik verteenwoordig

word, (2) met behoud van logiese konsekwentheid. Aangesien die suksesvolle implementer-

ing van ’n industrie-standaard ontologie waarskynlik baie konsepte en ingewikkelde ver-

houdings tussen die begrippe sal bevat, is dit nodig om ’n metodologie te volg vir die

ontfouting en verfyning van die ontologie. ’n Magdom ontologie-ontfoutingsbenaderings

(sommige van hulle reeds gëımplementeer) is ontwikkel om die kennisingenieur te help om

die oorsaak van logiese teenstrydighede op te spoor en op ’n strategiese manier reg te stel.

Rodler (2015) en Schekotihin et al. (2018) bou die basiese beginsels van ontologie-

ontfouting op deur ’n interaktiewe ontologie-ontfoutingsmetodiek in te stel: hierdie inter-

aktiewe ontologie-ontfoutingsraamwerk, wat ook gëımplementeer is as ’n Protégé plug-in,

OntoDebug, vra die gebruikers iteratiewe en metodiese vrae om die teenstrydigheid tot net

een diagnose te beperk, en dan kan die gebruiker ’n meer ingeligte besluit neem oor hoe

om die diagnose te herstel.

Hierdie benadering lei die gebruiker in die ontfoutingsproses. Ons toon egter aan dat

hierdie benadering soms tot onintüıtiewe resultate kan lei, wat dan kan lei tot die kennisin-

genieur om potensieel belangrike en genuanseerde kennis te verwyder. Dit is te wyte aan

die fokus van die interaktiewe ontologie-ontfoutingsbenadering om op klassieke, monotone

kennisbasis te val – en inderdaad, in die klassieke / monotone sin, is dit slegs deur skrap-

ping, nie uitbreiding van die kennisbasis nie, dat samehang verkry kan word. Ons wys egter

dat dit selfs in klassieke kennisbasisse soms wenslik kan wees om die foutiewe aksiomas in

onintüıtiewe resultate eerder deur verswakking as verwydering op te los.

Ons bied ’n metodologiese en ontwerpbasis om foutiewe aksiomas op ’n strategiese

manier te verswak deur sogenaamde defeasible redeneerinstrumente. Ons metodologie put

Stellenbosch University https://scholar.sun.ac.za

v

uit Rodler se (2015) interaktiewe ontologie-ontfoutingsbenadering wat nie net foutiewe ak-

siomas lokaliseer nie, maar die kennisingenieur ’n strategiese manier bied om dit op te los

deur eers die oorsaak-teenstrydighede aan te bied. Ons brei hierdie benadering uit deur ’n

metodologie te skep om stelselmatig aanbevelings oor konflikoplossing te vind. Wat belan-

grik is, is dat ons doel nie is om ’n klassieke ontologie na ’n defeasible ontologie te omskep

nie – daarom gebruik ons nie ’n defeasible redenasie-ondersteuning deur byvoorbeeld die

berekening van rasionele afsluiting nie. Ons gebruik eerder die definisie van uitsonderlikheid

van ’n begrip, wat sentraal staan in die semantiek van defeasible beskrywingslogika, en die

gepaardgaande algoritme (soos gevind in Britz et al. 2019) om die omvang van die konsep

se uitsonderlikheid te bepaal (hul rangorde); dan begin ons om verswakte weergawes van

die verklarings wat die mees algemene begrippe bevat (die minste uitsonderlike begrippe)

voor te stel; dit word gedoen totdat alle teenstrydighede opgelos is.

Stellenbosch University https://scholar.sun.ac.za

vi

Acknowledgements

Firstly, a huge thanks must be extended to Prof. Arina Britz – her inputs have played

a pivotal role in shaping raw thoughts into something tangible: she is truly a sculptor of

knowledge, and of students’ abilities and confidence. I am honoured to have worked with

you, and hope that we can work together on future research papers.

Secondly, I’d like to pay thanks to Amanda Viljoen and Jana Neethling. The memorable

times we had together make up part of the reason my student years were so fun, and thus

acted as a motivation for further study. I’d also like to thank my aunt and uncle Lizelle

Brundyn, Koos Brundyn – you have always provided me with humour, and seeing the

lighter side of life, which definitely helps especially in times like these.

Bringing a much-needed balance to the lighter side of life, many thanks should also be

extended to my brother, Neill Coetzer, the closest to a renaissance man I can think of –

always bringing up interesting conversations about art, science and philosophy, and always

offering a point of view to go back and think about.

Jev Prentice, my partner in crime (and in life!) – thank you for helping me distance

myself from the “all work and no play” mantra, and for all of the adventures we have along

the way!

Finally, this thesis would not have been possible without the tremendous support from

my mom and dad, Karen Brundyn and Wentzel Coetzer. You may not realise it, but both

of you are a great inspiration to me, and I cherish the life lessons you have taught me.

You are, each and all of you, exceptional in the very best sense of the word.

Stellenbosch University https://scholar.sun.ac.za

Contents

1 Introduction 1

1.1 Research Aims . 9

1.2 Thesis Layout . 10

2 Background 13

2.1 Ontologies . 13

2.2 Description logics . 14

2.3 Defeasible DLs . 18

2.4 Defeasible Inference Platform in Protégé . 26

2.5 Basic ontology debugging principles . 29

2.6 Interactive, test-driven ontology debugging 35

2.7 Interactive ontology debugging with OntoDebug in Protégé 40

3 Incorporating Systematic Weakening into Interactive Ontology Debug-

ging 47

3.1 Unintuitive results obtained by interactive ontology debugging 48

3.2 Outline of methodology . 52

3.3 Selecting minimal conflict sets and choosing repair axioms 59

3.3.1 Highlighting the most relevant minimal conflict sets: 60

3.3.2 Choosing repair axioms: . 62

3.4 Use of systematic weakening as a design pattern 64

3.4.1 Using axiomatic weakening in a heuristic approach to debugging: . 64

3.4.2 Using axiomatic weakening in a model-based diagnosis approach to

debugging: . 67

3.5 Integration with OntoDebug . 69

3.5.1 Integration with existing interactive ontology debugging workflow: . 69

3.5.2 Integration with initial repair-generation tasks: 72

3.6 Related work . 73

3.7 Summary . 74

Stellenbosch University https://scholar.sun.ac.za

4 Evaluation and Discussion 76

4.1 Testing behaviour with edge-cases . 76

4.1.1 Entangled inconsistencies/incoherence: 76

4.1.2 Infinity rankings: . 78

4.1.3 Context-bound exceptionality: . 79

4.2 Contributions to debugging and defeasible DL communities 81

5 Conclusion and Future Work 83

5.1 Future Work . 84

Stellenbosch University https://scholar.sun.ac.za

1

Chapter 1

Introduction

The benefit of ontologies lies in the fact that they serve as knowledge representation for-

malisms over which reasoning tasks can occur: by requiring knowledge to be represented,

domain experts’ implicit knowledge is made explicit; by formalising this knowledge in ax-

ioms that are machine-readable, processing can occur over the domain knowledge to source

new insights or to warn of inconsistencies (Baader et al. 2004). The success of ontologies

thus relies on (1) knowledge retention (so that as much domain knowledge as possible can

be accurately preserved) (2) without introducing undue logical inconsistencies.

Ontologies are continually growing in size and complexity. In the same way that the

data linked to an ontology’s structure is subject to the 3Vs of Big Data (volume, variety,

velocity – refer to Banik and Bandyopadhyay (2016)), ontologies too can be argued to

now be subject to these 3Vs. Firstly, the volume or size of ontologies is growing. Take for

example the popular SNOMED CT ontology which is a collection of medical terms used

in clinical documentation and reporting: this ontology currently consists of more than 300

000 concepts and over 1.5 million relations – refer to figure 1 for a visual representation of

the scale of concepts and relations within the SNOMED CT ontology.

As ontologies grow in size with multiple human and software agent inputs – as the volume

of ontologies increases – it becomes more probable for inconsistencies to arise. Although it

may be quite manageable to resolve inconsistencies in small-scale ontologies without the

use of any particular approach, a methodology for resolving inconsistencies becomes all the

more important with large-scale ontologies as the consequences of ‘fixing’ an axiom that

does not lie at the root cause of the inconsistency may reverberate through the ontology and

cause further inconsistencies. For a human to understand the consequences reverberating

through the ontology following a fix would be near-impossible and thus it is preferable

to follow a formal methodology for pinpointing inconsistencies – and not just pinpointing

inconsistencies, but suggesting which ones to solve first (as a root cause inconsistency could

be the cause for further inconsistencies further downstream).

Stellenbosch University https://scholar.sun.ac.za

2

Figure 1 Visualisation of the SNOMED CT ontology. Black nodes represent concepts; grey lines represent rela-

tionships between the concepts.

Secondly, the variety or variability of concepts is growing – this is especially the case

for ontologies capturing knowledge from the business and legal domains. With concept

definitions becoming more complex in nature, is it very likely that in order to solve an

inconsistent ontology, axioms would not necessarily need to be deleted, but would rather

need to be weakened.

As an example from the domain of business, one of my colleagues expressed his disgrace

to me as he was asked for his ID whilst paying for his non-alcoholic beer. If an ontology was

involved in product classification, the ontology is likely to have had the following structure:

T =


BeervAlcoholicBeverage

AlcoholicBeveragev∃requires.Identification

NonAlcoholicBeervBeer



From this ontology, it would be deduced that NonAlcoholicBeer requires.Identification as

it is an AlcoholicBeverage. In this case, rather than having the strict definition that Beer

is an AlcoholicBeverage we might want to weaken the statement to say Beer is usually an

AlcoholicBeverage – in a classical ontology, the equivalent of this would be to state that a

Beer that is not a NonAlcoholicBeer is an AlcoholicBeverage. This would have enabled us to

Stellenbosch University https://scholar.sun.ac.za

3

add an axiom that states that NonAlcoholicBeer does not require Identification. As a fur-

ther example, take the recent explosion of plant-based products – again, certain products

like patties or sausages were traditionally classified as meat-based products but now we

are forced to concede that they are usually meat-based products, thus axioms in product

catalogue ontologies would need to be weakened if, for instance, they would like to enable

a search for vegetarian products to include vegetarian patties and sausages. With the con-

stant rising trend of using e-commerce over procuring goods from a physical shop, product

catalogues would need to ensure the accuracy of online catalogues and buying processes.

The point here is that as businesses are evolving and consumer needs are developing, prod-

uct classification is branching out with the explosion of new products on the market (see

for instance Rosnizam et al. (2020) who note that a large part of Tesco’s success is due

to its variety of products which meet consumer needs; also refer to Tziva et al. (2019)

noting the complex product blends emerging especially from the food industry). This often

adds complexity (or variability) to initial product descriptions. This variability of concept

definitions forces traditional ways of classifying concepts in an ontology to be changed

more often: i.e. ontology debugging activities take place more often and having tools or

techniques to solve these inconsistencies in a manner that captures subtle nuances would

decrease the number of hours spent on debugging activities.

As a further case in point, in the legal realm, we see more and more emergent regulatory

frameworks like POPI (South Africa’s Protection of Personal Information act – inspired by

EU’s GDPR framework) cropping up. In these cases, it is often suggested that to exercise

sufficient control over the risk, ontologies should be utilised (Chan and Hankel 2019). To

take an example from this domain: as part of the POPI Act, the following subset of rules

are present in Section 72 point 1:

“A responsible party in the Republic may not transfer personal information about a

data subject to a third party who is in a foreign country unless –

1. the third party who is the recipient of the information is subject to a law, binding

corporate rules or binding agreement which provide an adequate level of protection

that –

• effectively upholds principles for reasonable processing of the information that

are substantially similar to the conditions for the lawful processing of personal

information relating to a data subject who is a natural person and, where

applicable, a juristic person; and

Stellenbosch University https://scholar.sun.ac.za

4

• includes provisions, that are substantially similar to this section, relating to

the further transfer of personal information from the recipient to third parties

who are in a foreign country.

• [...]”

Regulator (2013)

From this example, it is clear that legal statements are typically constructed so that

the general rule is stated first (in this case this is the first sentence). Then, exceptions

to the rule are stated (in this case, this would be the sub-statements). Even from these

sub-statements, further sub-statements (or further conditions/ exceptions to the rule) are

noted.

The domains of legal and business, as briefly expanded on above, are of course not do-

mains where ontology axioms represent a true, underlying, natural state of the world. They

are very much domains built from human interpretation of reality – domains where we do

not discover the underlying nature of the real world, but rather where we create the reality

we want to live in. Because of this, is more likely in these domains that certain concepts

would need to be more nuanced to allow certain critical axioms to hold whilst having ex-

ceptions to the rule. This idea that the knowledge we are uncovering does not reflect the

true nature of the world, and that the addition of new knowledge can change our existing

beliefs about the world, is in stark contrast with the traditional conception of ontologies

where they were thought to represent a model of real world phenomena pointing to the

underlying nature of reality (Studer et al. 1998). Despite the philosophical foundations

of non-monotonic logics seeming to clash with the initial philosophy of ontologies, it can

nonetheless extend the usefulness of ontologies: by developing methodologies for ontologies

whereby new knowledge (which is in contradiction to previous knowledge) can be easily

added, ontologies are enabled to be more flexible in nature. Furthermore, the nominalist

viewpoint can nonetheless resound with another widely-cited definition of ontology – that

it is a ‘formal, explicit specification of a shared conceptualisation’ (Studer et al. 1998, p.

184, italics added).

Finally, ontologies are also growing at a faster velocity, especially when one ontology is

merged with other ontologies. In industry, this is done to give data analysts and business

users easier access to a richer data set. When I first started working on ERP (Enterprise

Resource Planning) systems like SAP and Oracle, I was under the impression that these

Stellenbosch University https://scholar.sun.ac.za

5

types of systems were used to give a full, end-to-end view of business activities in one

consolidated data source. Although these systems were developed for this purpose, it is

often the case that over time, further extensions to these systems were acquired or built

in-house by the business to attain custom functionality (Behrens and Sedera 2004) – this

then means that again a fragmented view of the business is obtained and that data from

all sources is not readily available thus impeding on business-critical analysis. The aim of

ontologies will thus often be to make two or more data sources inter-operable with each

other so that a synthesised view of all system data can be obtained (Obrst 2003). To do

this, each source system will need an ontology to be developed for them; then the ontologies

will need to be merged – this often leads to inconsistencies which would, due to their scale,

require a methodological debugging approach or tool to be used to amend axioms to solve

inconsistencies.

The above arguments and examples highlight that ontologies are subject to the same

3Vs (volume, variety/variability and velocity) as big data and thus there is a need for a

methodical approach to ontology debugging that is also able to cater for the cases where

we want the asserted knowledge axioms to be nuanced. To conclude, a methodological

approach to ontology debugging is of great use in the following scenarios:

1. Where the volume of data or size of an ontology is too significant to

anticipate the consequences of a manual debugging fix. We find an example

of this in the established bio-medical ontologies like SNOMED CT medical ontology

where the number of concepts exceeds 300 000 and the number of relations exceeds

1.5 million.

2. Where the complexity (also referred to as the variability) of the definitions

becomes too nuanced to maintain manually. Especially in domains like business

or legal, where we are not dealing with discovering the underlying nature of reality,

but where we are creating our own social reality, it is especially likely that concepts

will become more nuanced over time. We can find an example of where this is

happening if we consider ontologies for businesses in the retail or manufacturing

sector. Where products, their properties and relationships are captured in ontologies,

the explosion of product development is likely to lead to new products – products

Stellenbosch University https://scholar.sun.ac.za

6

that break with traditional classification. This also becomes especially crucial where

legal and regulatory frameworks are involved as there are many exceptions that exist

to the base rules.

3. Where the velocity or dynamic nature at which new concepts are added to

an ontology increases to such an extent that finding all defects and fixing

them in a way so as to retain as much knowledge as possible becomes

difficult to achieve manually. We see an example of this in cases where the ontology

of a different system (or in the case of a merger – a different business) is acquired.

Along with the general ontology merging steps taken, ontology debugging would also

need to be one of the steps taken to resolve merging inconsistencies. Due to the scale of

the concepts and relationships present in these ontologies, and due to the addition of

concept definition complexity due to the new merger, a systematic ontology debugging

methodology would need to be used.

Multiple debugging tools have been developed precisely so that a better methodology

for pinpointing the root cause faulty axioms is established (see for instance Schlobach

et al. (2007), Kalyanpur et al. (2006) and Friedrich and Schekotykhin (2005)). Notably, the

aim of most debugging tools is to pinpoint the diagnoses, or different sets of axioms that

could be responsible for leading to the incoherence (refer to Section 2.5 for more detail).

Rodler et al. (2019) have suggested however that even though the knowledge engineer is

provided with multiple diagnoses based on the input ontology, knowledge engineers often

make errors: incorrect diagnoses are selected, and unnecessary deletion of statements en-

sues. Rodler et al. (2019) and Schekotihin et al. (2018) research how knowledge engineers

fare (a) without a debugging tool to guide them; (b) with a debugging tool which pro-

vides the diagnoses to the users, but does not interactively lead them through the process

of eliminating diagnoses, and (c) with a debugging tool which systematically leads the

knowledge engineer through the process of eliminating diagnoses. Firstly, they found that

with a debugging tool, the faults were more easily and more quickly found and understood

than without a debugging tool. Secondly they found that if the user is not interactively

guided through the process of eliminating diagnoses, the incorrect diagnosis is often se-

lected, thus leading to deletion of axioms which contained valuable knowledge. It is on this

Stellenbosch University https://scholar.sun.ac.za

7

basis that Rodler (2015), Rodler et al. (2019) and Schekotihin et al. (2018) could motivate

the use-case for an interactive ontology debugging methodology. This methodology has

been instantiated in a Protégé tool, OntoDebug, in which the queries are methodically, and

iteratively posed to the user until a single diagnosis is identified, at which point the user

can then make a repair.

This approach is a step in the right direction to guiding the user in the debugging process

– it aims to lead the knowledge engineer to only those statements which necessarily require

repair. We show however that in the case where what we call ‘multi-level exceptions’ occur

this approach can sometimes lead to unintuitive results (refer to Section 3.1). Furthermore,

it does not recommend in which way statements can be weakened in order to be more

nuanced. This is due to the focus of the interactive ontology debugging approach to be on

classical, monotonic knowledge bases – and indeed, in the classical/ monotonic sense, it is

only by deletion, not extension of the knowledge base, that coherence can be obtained.

Drawing from Rodler et al. (2019)’s research, these factors together make it highly likely

that a knowledge engineer will opt for deleting these seemingly faulty axioms rather than

modifying them to encompass knowledge that is more nuanced in nature. This could lead

to valuable domain knowledge being lost which would negatively impact on the knowledge

retention and thus usefulness of the ontology.

In classical knowledge bases, it may at times be desirable to weaken rather than delete

faulty axioms so that nuanced knowledge is maintained. For example, consider the following

axioms in an access-definition ontology, O:

O=


Userv¬∃accessTo.ConfidentialInfo

Staff vUser

Staff v∃accessTo.ConfidentialInfo


In this case, the ontology is incoherent as there is a concept, Staff, which cannot logically

have any individuals associated with it. This incoherence arises because an implicit deduc-

tion is that Staff do not have access to ConfidentialInfo (because they are users and a User

does not have access to ConfidentialInfo). However an explicit axiom is provided that Staff

represent a particular type of User and that this type of User has access to ConfidentialInfo.

Although logical incoherence is present according to classical logic, the ontology intuitively

makes sense.

Stellenbosch University https://scholar.sun.ac.za

8

Initially it might be easy for the knowledge engineer to modify the axiom in the fol-

lowing way so that the ontology is made consistent while still aligning with our intuitive

expectations:

Useru¬Staff v¬∃accessTo.ConfidentialInfo

In this case, the knowledge engineer is weakening the initial axiom: this is the classical

DL equivalent of weakening the initial axiom with the use of defeasible logic – i.e.: stating

that users usually do not have access to confidential information (Section 2.3 gives more

details on how the notion of exceptionality is used to rank concepts, and consequently

to weaken the LHS of the statements). Especially as the levels of exceptionality become

more complex, however, the human ability to infer consequences of ontology modification

becomes uncoordinated and inelegant. Consider for instance if two more axioms were added

to the access-definition ontology, O:

O=



Userv¬∃accessTo.ConfidentialInfo

Staff vUser

Staff v∃accessTo.ConfidentialInfo

BlackListedStaff v Staff

BlackListedStaff v¬∃accessTo.ConfidentialInfo


This example initially provided by Casini et al. (2013) gives us an idea of the complexity

of inconsistency resolution that would be required when multiple levels of exceptionality

exist. From the examples related to the 3Vs of Big Data, we know that more and more

ontologies are likely to have massive volumes, handle a variety of complex definitions and

have concepts added to it at a greater speed. And so, an example like this, especially in

an area as sensitive as access control, would need to undergo change via a formal ontology

debugging methodology that incorporates, specifically, repair of axioms by systematically

presenting weakened versions of axioms to the knowledge engineer (Chapter 3 presents our

proposed solution).

It ought to be noted that the automated weakening of the axiom based on a general

definition of syntactic or semantic minimal change may also introduce new faulty modelling.

Stellenbosch University https://scholar.sun.ac.za

9

I.e. it may be the case that an axiom that is flagged as faulty is not just exceptional, but

is actually a faulty axiom that ought to be deleted.

From this, it can be argued that this problem can be categorised as a so-called wicked

problem (Hevner et al. 2004), especially as it involves an IT artifact that has a critical

dependence on human interaction to produce accurate solutions, and thus is well-suited to

a design science approach. Therefore, we propose a design science artifact in the form of a

methodology for systematically generating recommendations given the inconsistency. Al-

though the methodology guides the knowledge engineer in systematically weakening faulty

axioms, the onus is still on the knowledge engineer to check whether the recommended

solution is truly what they require (refer to Chapter 4 where a discussion and evaluation

of our approach is performed). Our approach differs from repair strategies that remove

(parts of) axioms, possibly after computing smaller laconic or precise justifications (Hor-

ridge et al. 2008). Instead, our methodology aims to identify missing parts of axioms and

add them.

1.1. Research Aims

Existing investigations into ontology repair by syntactic weakening have presented impor-

tant theoretical results (Troquard et al. 2018), but there is no evidence that such results

offer practical guidance to ontology engineers in identifying and repairing real ontology

design errors. This research is grounded in the Information Systems sub-discipline of design

science. Design science views truth not only as something that is discoverable, but also as

something that is created to be of practical use (Hevner et al. 2004, Hevner and Chatterjee

2010). Throughout the course of this research, we will analyse current research in both the

debugging and defeasible DL communities thus discovering any gaps that may exist. We

then create a design science artifact – a methodology/tool design for obtaining recommen-

dations on rectifying multi-level exceptionality inconsistencies. To provide a methodology/

tool design for inconsistency resolution, two main objectives will need to be met:

1. Defeasible reasoning techniques will be explored to propose how classical axioms lead-

ing to multi-level exceptionality inconsistencies can be weakened in a methodical way.

Stellenbosch University https://scholar.sun.ac.za

10

2. An approach will be developed to explain how the methodical weakening of classical

statements (refer to point above) can be incorporated into existing ontology debugging

tools and methodologies.

The goal of this research is to provide a methodological foundation for the development

and implementation of an inconsistency resolution recommender tool that is fully inte-

grated with an ontology development environment. Importantly, such a methodology/tool

is not meant to replace the knowledge engineer’s judgement – there may be cases where an

axiom simply is redundant and should be deleted and there may also be cases where the

knowledge engineer would need to decide whether to switch to a different ontology design

methodology.

Once this methodology/ tool design is implemented, the vision is that the tool would

enable the knowledge engineer to keep as much relevant domain knowledge as possible

by suggesting how problematic axioms may be systematically weakened. The methodol-

ogy/tool would provide the knowledge engineer with a list of possible fixes showing how

problematic axioms have been weakened – the knowledge engineer would then be able to

choose which, if any, solution should be picked.

1.2. Thesis Layout

Chapter 2 will provide the reader with the necessary background by introducing them to

some foundational concepts necessary to understand the solution provided in Chapter 3.

Firstly, this chapter will provide the user with a background on Description Logics (DLs),

the logic used to formalise knowledge in an ontology. In this section on DLs, Defeasible DLs

will also be expanded upon as in later chapters it becomes imperative to understand the

importance of mimicking defeasibility in classical reasoning – it is in this section where it

will be explained how axioms can formally undergo weakening so that concepts are defined

in a more nuanced way. After this, the second leg of Chapter 2 will provide context and

background on core ontology debugging concepts. In this section, we will understand the

type of defects which may occur, along with the core steps, across debugging methodologies

that are performed to detect defects. Following this basic introduction, existing debugging

techniques will be expanded upon, specifically Rodler’s (2015) interactive methodology for

Stellenbosch University https://scholar.sun.ac.za

11

ontology debugging. We show that the advantage of Rodler’s (2015) approach is that it

does not simply just output all minimal conflict sets at once – rather, it iteratively presents

the user with queries, so that the potentially faulty axioms in the diagnosis are pruned

away.

After some background has been given on the two most important legs on which this

research stands – defeasible description logics and ontology debugging tools – Chapter 3

will then introduce our methodology for obtaining recommendations to resolve multi-level

exceptionality inconsistencies. In brief, the following will be illustrated:

1. Firstly, we show that by using the standard interactive ontology debugging method-

ology, unintuitive results are obtained when multi-level exceptionality inconsistencies

exist;

2. We then outline our methodology, which involves using ranking, and defeasible DL

postulates – both tools from the Defeasible DL community – to provide a consistent

way of weakening identified faulty axioms;

3. As part of our methodology, we then also outline how minimal conflict sets can be

selected to apply the weakening algorithm on.

4. The above two points lead us to reflect on formalising axiomatic weakening as a design

pattern.

5. Finally we then provide the reader with an end-to-end view of how this extension can

be incorporated with the current OntoDebug methodology.

Following a detailed view in Chapter 3 on the proposed extension to OntoDebug, in

Chapter 4, an evaluation and discussion of our approach ensues. Specifically, a section is

devoted to evaluating the extension’s behaviour with edge-cases – these are cases where the

inconsistencies/ incoherences are entangled with one another, where a specific concept has

a rank of∞, or where we have context-bound exceptionality. A discussion then shows what

contributions this thesis makes to the debugging and defeasible DL communities. The main

contribution noted is that the extension enables the usage of a debugging methodology that

applies the principle of minimal change in a more nuanced way, thus serving the ultimate

goal of knowledge retention in an ontology. Other spin-off successes include the definition

of a design pattern based on weakening rather than deleting axioms; furthermore the work

Stellenbosch University https://scholar.sun.ac.za

12

opens the floor for further ways in which the Defeasible DL and Debugging communities

can lend theory and tools from one another.

Finally, in Chapter 5 our work is summarised and concluded upon, and avenues for

future research are listed. This thesis puts forward an extension to interactive ontology

debugging that enables, through the use of defeasible reasoning tools, suggestions on how

axioms can be repaired by weakening, rather than deleting, the faulty axioms. This work

has been done at a design level and in future would need to be implemented as a Protégé

plug-in, as an extension to OntoDebug. From there, further user studies can ensue.

Stellenbosch University https://scholar.sun.ac.za

13

Chapter 2

Background

Two pillars on which the results of this research rest are (1) ontologies, description logics

(DLs) and in particular defeasible DLs and (2) ontology debugging tools. This chapter

aims to break down these two main areas of focus and to provide a background which

would be useful in understanding the topics covered in Chapter 3. In the first half of this

chapter, the following is covered: Section 2.1 provides a brief introduction on ontologies

as a knowledge representation tool. Section 2.2 provides an overview of Description logics

(DLs) as the formal language underlying ontologies. Specifically, this overview provides an

introduction on the basic building blocks of DLs, the formation rules of the ALC language,

concept constructors, the semantics of DLs and finally entailment. Section 2.3 provides

a brief introductory history on Defeasible DLs; then the defeasible concept constructor

is expanded on along with the semantics and entailment of defeasible DLs. Section 2.4

provides an introduction to Protégé, a tool used to model ontologies, and then proceeds

to provide a walkthrough of the Defeasible Inference Plugin (DIP) tool used to return a

concept’s rank given a defeasible knowledge base.

The second half of this chapter, which revolves around ontology debugging, then starts

with Section 2.5 to give an overview of the basic ontology debugging concepts and the

main steps that are followed. Section 2.6 provides a more detailed look at one specific

debugging approach, interactive ontology debugging. This section first provides the benefits

of interactive ontology debugging, and then proceeds to give an overview of the main steps

involved in this approach. Finally, Section 2.7 provides a walkthrough of the functionality

of the OntoDebug tool in Protégé, an interactive debugging tool.

2.1. Ontologies

Knowledge is a crucial resource in ensuring organisational success in contemporary society

(Carlile 2002). Specifically in the Knowledge Representation and Reasoning (KRR) com-

Stellenbosch University https://scholar.sun.ac.za

14

munity, the focus is on formally representing knowledge in the domain of interest so that

intelligent applications can use this knowledge (Nardi and Brachman 2003).

There are various ways in which knowledge can be represented – in frames, rule-based

systems, taxonomies and ontologies. Ontologies, in particular, are especially attractive be-

cause they are deemed to be more reusable and maintainable than rule-based systems. This

is mainly because they are created as “explicit specifications of shared conceptualisations”

(Studer et al. 1998). Thus they strive to formally capture the underlying nature or “truth”

of the real world as it is, independently of an agent’s perception of the world (Guarino

1995). Other KR systems like rule-based systems, on the other hand, are designed with a

particular functionality in mind. Furthermore, formal ontologies, being reliant on an un-

ambiguous, formal underlying language, provide the groundwork for rich knowledge to be

represented computationally – this allows for reasoning activities to be performed over an

ontological knowledge base so that new knowledge can be inferred or so that additional

knowledge can be checked for consistency (Roussey et al. 2011).

The most well-known framework where OWL ontologies are implemented so that they

can be reasoned over and used in practice is in Protégé, a Java-based ontology editor

with built-in functionality to allow for concepts to be explicitly described and processed

using built-in reasoners. In Protégé ontologies are implemented using OWL (Web Ontology

Language) which has its roots in description logics (DLs), discussed in the next section.

2.2. Description logics

A formal language is required to represent knowledge statements (further referred to as

‘axioms’) unambiguously. Apart from just representing axioms, we must also be able to

reason over the statements to classify individuals, infer new knowledge or check additional

knowledge for consistency. There are multiple formal languages – each formal language

has a different expressivity associated with it. The more expressive the language, the more

detailed and rich an expression can be; however, with more expressive languages, the

computational efficiency decreases – this means that a limit is placed on the reasoning

power associated with the ontology. For example, first order logic (FOL), is deemed to be

a highly expressive language – it has however been proven to be inherently undecidable

Stellenbosch University https://scholar.sun.ac.za

15

and so it is not an ideal candidate. On the other hand, less expressive formal logics also

exist – these logics would only capture IS-A relationships between concepts and thus rich

relationships between concepts cannot be captured. Nardi and Brachman (2003) argue that

although these logics are not as expressive, they allow for more complex computational

reasoning tasks to be performed over them. Therefore, a harmonious balance needs to be

found between the expressivity of a language and its computational power. DLs provide

this balance in expressivity – they are fragments of FOL carefully chosen so as to remain

decidable, while retaining desirable expressivity of FOL.

Another aspect that separates ontologies from other systems like Relational Database

Management Systems (RDMS) is that they operate under the Open-World Assumption

(OWA) rather than the Closed-World Assumption (CWA). In the CWA, if information is

not stated, then it is assumed that the information is false – in other words, an assumption

on completeness of the knowledge base is made. This makes sense for database systems

where we expect knowledge to be complete: for instance, if a company owns a purchasing

system – you would want to conclude that if an invoice for Dell laptops does not exist,

then no Dell laptops were purchased. In contrast to this, with ontologies, which operate

under the OWA, if an axiom is not stated or cannot be inferred, then it is simply the

case that that axiom is unknown. I.e. it is assumed that the knowledge that is asserted in

an ontology is incomplete and therefore only if something is asserted to be false, is that

statement false. For example, if we have a purchasing ontology, and it is stated that laptops

may be purchased, but nothing is stated on whether cell phones may be purchased, we

cannot conclude from this that cell phones may not be purchased – we can only infer that

it is unknown whether or not cell phones may be purchased. To use the OWA makes sense

in the sphere of ontologies, especially where we assume that we are not dealing with a full

knowledge base and that knowledge will, incrementally, be added and extended upon.

A description logic knowledge base consists of two main components – the Tbox and

the Abox. The Tbox is where axioms stating the terminology of the ontology are stored

– it is where subsumption statements and general concept inclusions (GCIs) are formed.

For example a statement like ‘Mother is a Parent’ would be defined in the Tbox. In the

Abox, assertional statements are provided to define which concept an individual belongs

to, or in which relationship an individual is involved in, in relation to another concept. For

Stellenbosch University https://scholar.sun.ac.za

16

example ‘Sally is a mother’ is an Abox statement; also the statement ‘Sally has a child,

Arnold’ is an Abox statement where the ‘has a’ relation is used.

Description logics are referred to in the plural because they are a family of logics, all

with different properties. In our research, we focus on the ALC language. This decision

is taken based off of two factors: firstly, ALC allows for concept negation, and complex

concept negation. Especially for the study of inconsistency resolution, it is imperative to

use a base language in the study which can cater for negation – the type of inconsistencies

we are studying do after all only arise because of the negation of a statement that was

previously asserted or inferred to be true.

Secondly, the theoretical foundation that has been created to enable defeasible definitions

in description logics has been based off of the ALC language – thus it makes most sense

to build this current research off of this description logic to avoid rework.

Formally, ALC has the following formation rules:

C ::=> |⊥ |C uD |C tD | ∃r.D | ∀r.D | ¬D

The above statements can be broken down as follows:

1. > is the top concept used to refer to all individuals within a model.

2. ⊥ is the bottom concept used to refer to the empty concept (i.e.: the concept with no

individuals associated with it);

3. C uD is the conjunction of C and D. It is used to refer to those individuals belonging

to both C and D. This is also referred to as concept intersection. For example, the

concept Mother, can be defined as the intersection between the concept Woman and

Parent.

4. C tD is the disjunction of C and D. It is used to refer to those individuals belonging

to either C or D. This is also referred to as concept union. For example, a Parent can

either be a Mother or a Father.

5. ∃r.D is the existential restriction of r to D. It refers to those individuals that are

related by r to some individual in D. For example, ∃hasChild.Female refers to those

individuals who have some hasChild relationship with some Female individual, i.e. to

everyone who has a daughter.

6. ∀r.D is the value restriction of r to D. It refers to those individuals that are related

by r to only individuals in D. For example, ∀hasChild.Male refers to those individuals

Stellenbosch University https://scholar.sun.ac.za

17

who have a hasChild relationship to only Male individuals, i.e. it refers to everyone

who has only sons.

7. ¬D is the negation of D. It refers to the complement of the individuals in D. For

example ¬Mother refers to those individuals who are not in the concept Mother.

The semantics of a DL language is given by assigning an interpretation, I, which consists

of a non-empty set ∆I (the domain of the interpretation), and an interpretation function

which assigns to every atomic concept A a set AI ⊆∆I and to every atomic role R a binary

relation RI ⊆∆I ×∆I (Baader and Nutt 2006). The interpretation function is extended to

concept descriptions by inductive definitions for each concept constructor in ALC, e.g.:

>I = ∆I

⊥I = ∅

(¬A)I = ∆I \AI

(C uD)I =CI ∩DI

(C tD)I =CI ∪DI

(∀r.C)I = {a∈∆I | ∀b.(a, b)∈ rI→ b∈CI}

(∃r.C)I = {a∈∆I | ∃b.(a, b)∈ rI}.
Along with the formation rules, subsumption and concept equivalence are used to define

concepts.

1. v is the subsumption of one concept by another. For example, Motherv Parent states

that Mother is subsumed by Parent. I.e.: Mother is the more specific concept and Parent

is the more general concept; Mother is any Parent. Importantly this subsumption does

not hold the other way around: the statement does not also by default imply that

Parent is any Mother as there are other classes of individuals who are also subsumed

by Parent but who are not subsumed by Mother – for example Father.

2. ≡ is the equivalence of one concept to another. For example, Mother≡ ParentuFemale.

With this construct, concepts on either side are equivalent and can be read both ways,

i.e.: a Mother is someone who is both a Parent and a Female; similarly, anyone who is

a Parent and a Female is a Mother.

A subsumption statement C vD is true in an interpretation I if CI ⊆DI . I is a model

of a TBox T if all its elements are true in I. An ABox assertion C(a) is true in an

Stellenbosch University https://scholar.sun.ac.za

18

interpretation I if aI ∈CI . An assertion r(a, b) is true in an interpretation I if (a, b)∈ rI .

I is a model of an ontology O if all its axioms and assertions are true in I.

Definition 1. Let O= (T ,A) be an ALC ontology, C, D, possibly compound ALC concepts,

and b an individual name. We say that

1. C is satisfiable with respect to T if there exists a model I of T and some d ∈∆I

with d∈CI;

2. O is consistent if there exists a model of O

[(Baader et al. 2017, p. 28)].

Following from the above, an ontology is inconsistent if no model can exist for the ontol-

ogy – i.e. if it contains contradictory facts. A specific concept in an ontology is unsatisfiable

if it cannot be instantiated without causing an inconsistency. Finally, an ontology is inco-

herent if it contains an unsatisfiable concept. These definitions will be further expanded

on, with examples, in Section 2.5.

ALC has a classical monotonic relation of entailment – this is indicated by |=. An ontology

O entails an axiom or assertion α, written O |= α, if α is true in every model of O.

2.3. Defeasible DLs

Classical DLs such as ALC provide expressivity (which can be further extended with very

expressive description logics such as SROIQ), which contributes to the complexity of

modelling. As argued in Chapter 1, an industrial need exists to enable ease of debugging

in large scale ontologies by returning recommendations on how exceptional concepts could

be weakened. A methodological approach to ontology debugging needs to be followed to

enable more widespread use of ontologies, especially when ontology merging activities are

being performed or when multiple additional concepts need to be added on a regular

basis. The reason that the exceptional concepts arise is due to the inability of classical

description logics to capture statements in a defeasible form, for example in the form of

Mother is usually subsumed by the intersection between the concepts Female and Parent.

Indeed, even in the social sphere with conceptions around gender evolving (and essentially

new knowledge being added to our social ontology) it may now be possible, in exceptional

Stellenbosch University https://scholar.sun.ac.za

19

cases, for a Male to assume the role of a Mother. Syntactic and semantic extensions of DLs

exist which enable us to translate defeasible logic into classical statements which can be

processed by monotonic reasoners.

The notion of defeasibility originates from non-monotonic logics. First described by Mc-

Dermott and Doyle (1980), the notion of non-monotonic logics were formed in contrast to

monotonic or classical logics. McDermott and Doyle (1980) argue that classical monotonic

logics do not take into account that our human knowledge is incomplete and thus, with

the addition of new facts, old facts may become invalidated or weakened. Indeed, with the

examples given up to this point (the SNOMED example that shows an ontology growing

in size, the access example showing that business rules become more nuanced, the systems-

merge example), it is clear that knowledge is evolutionary in nature. Therefore, rather than

uncovering the true structure of the world around us, we are building a Quinean ‘web of

belief’ where, with each new addition of knowledge, the web adjusts itself to reflect the

new structure.

Monotonic logics have the property of ‘extension’ meaning that the theorems of a set

of axioms are always a subset of the theorems of any extension of the set of axioms –

in other words, that whatever new knowledge is added would not invalidate old axioms

(McDermott and Doyle 1980, p. 5). Initially, non-monotonic logics were only defined in

the negative, i.e.: as not having the property of extension. Only later, Shoham (1987) and

Kraus et al. (1990) were able to define non-monotonic logics positively with the use of

preferential models on propositional logic – this is referred to as the KLM approach.

Several non-monotonic extensions of DLs exist (Knorr et al. (2012); Giordano et al.

(2013); Varzinczak (2018)). Britz et al. (2019, 2020) extended the work of Kraus et al.

(1990) beyond propositional logics to DLs, and their extension includes an implementation.

They provide a semantic account of both preferential and rational subsumption relations

based on the standard semantics of description logics. The same benefits that are obtained

by using the KLM approach on propositional logic are realised when using this approach

on DLs. In the context of ontology debugging, the main benefit of using the KLM ap-

proach lies in the fact that it allows for defeasible subsumption problems to be reduced to

classical entailment checking – this also has the effect that defeasibility can be introduced

without increasing the computational complexity associated with classical DL reasoning

Stellenbosch University https://scholar.sun.ac.za

20

tasks. Defeasible subsumption, also referred to as Defeasible Concept Inclusion, is defined

in the following way:

Definition 2. Let C,D ∈L. A defeasible concept inclusion axiom (DCI for short) is

a statement in the form C @∼D [Britz et al. (2019)].

Statements that are written in the form C@∼D should be read as ‘C is usually subsumed

by D’ or ‘individuals that are typical C’s are also elements of D’. The symbol denoting

defeasible subsumption @∼ can thus be used in the same way as a normal subsumption v

is used with the difference being that it refers to defeasible concept inclusion.

To continue with an example from earlier, we may rewrite some of the statements into

their defeasible forms in a defeasible T-box, in knowledge base O so that the ontology is

now coherent:

Definition 3. A defeasible T-box (dTbox for short) is a finite set of DCIs and GCIs

[Britz et al. (2019)].

O=



User@∼¬∃accessTo.ConfidentialInfo

Staff vUser

Staff @∼∃accessTo.ConfidentialInfo

BlackListedStaff v Staff

BlackListedStaff v¬∃accessTo.ConfidentialInfo


The first and third statements now read, respectively: a User usually/normally does not

have access to ConfidentialInfo and Staff usually/normally have access to ConfidentialInfo.

From this then, it is clear that @∼ is the defeasible counterpart of v as it also acts as a con-

nective positioned between the concept language (the object level) and the meta-language

(the level of entailment). The semantics of @∼ is defined w.r.t. preferential interpretations.

Definition 4. A preferential interpretation is a structure P :=
〈
∆P , ·P ,≺P

〉
where〈

∆P , ·P
〉

is a DL interpretation (which we denote by IP and refer to as the classical inter-

pretation associated with P), and ≺P is a strict partial order on ∆P (i.e., ≺P is irreflexive

Stellenbosch University https://scholar.sun.ac.za

21

and transitive) satisfying the smoothness condition (for every C ∈ L, if CP 6= ∅, then min

≺P
(
CP
)
6= ∅) [Britz et al. (2019)].

Definition 5. A defeasible subsumption relation @∼ is a preferential subsumption

relation if it satisfies the following set of properties, called the preferential KLM properties

for DLs [Britz et al. (2019)]:

(Ref) C @∼C (LLE)
C ≡D, C @∼E

D@∼E
(And)

C @∼D, C @∼E
C @∼DuE

(Or)
C @∼E, D@∼E
C tD@∼E

(RW)
C @∼D, DvE

C @∼E
(CM)

C @∼D, C @∼E
C uE@∼D

Along with the above properties, if the relation @∼ also satisfies rational monotonicity

(RM), then it is a rational subsumption relation (Britz et al. 2019):

(RM)
C @∼D, C 6@∼¬E
C uE@∼D

Definition 6. Given C,D ∈L, a statement of the form C@∼D is a defeasible subsumption

statement. A preferential interpretation P =
〈
∆P , ·P ,≺P

〉
satisfies a defeasible subsump-

tion statement C @∼D, if min≺P
(
CP
)
⊆DP [Britz et al. (2019)].

It is necessary for the defeasible entailments to adhere to rational monotonicity as it

is a prerequisite for the presumption of typicality to hold. The presumption of typicality

states that all individuals are considered to be most normal unless they are proven to be

exceptional. This is crucial to the concept of preferential ordering.

Preference orders allow individuals or objects (and, by extension, also concepts and

statements) to be ordered or ranked based on their level of exceptionality relative to other

individuals, concepts or statements in an ontology. In a propositional setting, this takes the

form of an ordering on worlds. McCarthy urges the reader to see the preferential models

as different ‘worlds’ that the reasoner uses – if an exception is encountered, the exception

is simply seen as less normal, or less preferred, ‘world’ in which reasoning is performed

(in Kraus et al. (1990)). An object’s normality or typicality is determined not by some

intrinsic characteristic that the object possesses, but rather it is determined in relation to

Stellenbosch University https://scholar.sun.ac.za

22

the other objects in the domain. This is referred to as the modular order of an object. The

assumption of rationality (RM) imposes a further restriction on preference orders, namely

that they are modular. This partitions the domain into layers which are linearly ordered.

Definition 7. Given a set X,≺⊆X×X is a modular order if it is a strict partial order,

and its associated incomparability relation ∼, defined by x∼ y if neither x≺ y nor y ≺ x,

is transitive [Britz et al. (2019)].

Definition 8. A modular interpretation is a preferential interpretation R =〈
∆R, ·R,≺R

〉
such that ≺R is modular [Britz et al. (2019)].

In the same way as classical DL interpretations are constrained by a classical DL knowl-

edge base to those subjectively deemed to be consistent with reality, preference orders are

also, in the words of Boutilier, ‘purely subjective’ (Boutilier 1994) – that is to say that

by following this methodology of ranking objects, we can “encode our expectations about

the objects corresponding to our perceived regularity or typicality” (Britz et al. 2017, p.

5). Furthermore, these rankings may also be constrained by empirical data (Britz et al.

2017, p. 5). Whereas classical ontologies then usually follow the philosophical ‘rationalist’

way of thinking about obtaining knowledge, this addition of subjectively ranking objects

according to their typicality bridges the rationalist roots of ontologies with empiricism by

imposing a preferential interpretation on objects.

It is evident that this represents a monotonic entailment relation, which thus reduces

defeasible reasoning to classical reasoning, and modular closure is not necessarily rational.

Definition 9. A statement α is modularly entailed by a defeasible knowledge base O,

written O |= modα if every modular model of O satisfies α [Britz et al. (2019)].

Importantly, the notion of exceptionality is central to computing a concept’s rank – the

more exceptional a concept is, the higher its rank is:

Definition 10. Let O be a defeasible knowledge base and C ∈L. We say C is exceptional

in O if O |=mod >@∼¬C. A DCI C @∼D is exceptional in O if C is exceptional in O [Britz

et al. (2019)].

Stellenbosch University https://scholar.sun.ac.za

23

To understand how the ranking algorithm works in practice, let’s continue to work with

the access example from earlier:

O=



Userv¬∃accessTo.ConfidentialInfo

Staff vUser

Staff v∃accessTo.ConfidentialInfo

BlackListedStaff v Staff

BlackListedStaff v¬∃accessTo.ConfidentialInfo


Rather than immediately noting the set of the above axioms in red as incoherent, a

ranking algorithm can be applied to rank statements according to their ‘typicality’ or

‘normality’ based on how exceptional they are. The ranking algorithm works as follows

(Britz et al. 2019):

1. First, the left-hand-side concept of all defeasible statements that are non-exceptional

(according to Definition 10) are given a ranking of 0. The DCIs with non-exceptional

left-hand side concepts are also given a rank of 0.

2. Then, a new knowledge base is created containing only the remaining exceptional state-

ments along with the classical General Concept Inclusions (GCIs) in the knowledge

base. For the left-hand side concepts of defeasible statements that are now deemed

to be non-exceptional, a ranking of 1 is given to left hand side concept contained in

the axiom. As before, the DCIs with a non-exceptional left-hand side concept are also

given a rank of 1

3. The above procedure from step 2 is repeated and with each iteration, the ranking of

the left hand side concept is increased by 1.

4. Once all the DCIs have been ranked, or there are no new non-exceptional concepts

in the last step, if there are any concepts that remain they are given a rank of ∞.

This means that the concept is, even when preferential ordering has been applied,

unsatisfiable.

If the above steps were applied to our example, the following would be the outcome:

1. Ranking of 0 – least exceptional. First we identify the concepts with a rank of 0.

In this case this would be User. Then, the statements with a rank of 0 are identified.

In accordance with Definition 10, the concept User is not exceptional w.r.t. O0, and

so the following statement is also not exceptional.

Stellenbosch University https://scholar.sun.ac.za

24

O0 =

{
User@∼¬∃accessTo.ConfidentialInfo

}
2. Ranking of 1 – concepts that are exceptional w.r.t. level 0 statements. Then,

a new knowledge base is created containing only the classical statements, together with

the remaining exceptional statements after the statements in O0 have been removed.

The new knowledge base would thus contain the following statements:

O=



Staff vUser

Staff @∼∃accessTo.ConfidentialInfo

BlackListedStaff v Staff

BlackListedStaff @∼¬∃accessTo.ConfidentialInfo


The following statements in the new knowledge base are now deemed to be ‘most

normal’ in this context:

O1 =

{
Staff @∼∃accessTo.ConfidentialInfo

}
Therefore, the concept Staff now has a ranking of 1.

3. Ranking of more than 1 – concepts that are exceptional to other exceptions.

The above step is iterated until all axioms have been assessed. In this case, again a new

knowledge base is created using only the remaining exceptional statements together

with the classical statements.

O=


Staff vUser

BlackListedStaff v Staff

BlackListedStaff @∼¬∃accessTo.ConfidentialInfo


In the context of this new knowledge base, the most normal concept is now

BlacklistedStaff and as the rank is increased by 1, this concept now gets a rank of 2.

O2 =

{
BlackListedStaff @∼∃¬accessTo.ConfidentialInfo

}
4. Ranking of∞ – concepts that are unsatisfiable in all ranks. Once the algorithm

does not reveal any new non-exceptional concepts of any ranking, if there are any

Stellenbosch University https://scholar.sun.ac.za

25

concepts that remain exceptional they are given a rank of ∞. In our case, there are

no further concepts. An example of what would result in a concept with an infinite

ranking is if we, either explicitly or implicitly stated that ‘BlackListedStaff have access

to confidential information’ – then, not only would the concept of BlackListedStaff

be exceptional when taken together with the other statements involving its parent

concepts, User and Staff, but it would be exceptional in relation to itself because it is

being asserted that they both have and do not have access to confidential information,

and this assertion is being made on the same concept level itself, not on the level of a

concept higher up in the hierarchy.

In summary, the following results would be obtained after the ranking formula is applied:

World order/ rank Concept

0 User

1 Staff

2 BlackListedStaff

Table 1 Example of ranking output.

In this table, the concept associated with a rank of 0 is the most normal/ most typical

concept – these can be seen as the concepts that could be instantiated even if all the

axioms were classical. The concepts associated with rank 1 are those that could only be

instantiated if there were at least 1 level of exceptionality. Finally, those with ranking 2

require at least 2 levels of exceptionality.

Semantically, classical subsumption statements of the form C vD can be rewritten to

defeasible statements:

Lemma 1. For every preferential interpretation, P, and every C,D ∈L,P |=C vD if and

only if P |=C u¬Dv⊥ [Britz et al. (2019)].

To understand how defeasible statements would be consumed by a classical reasoner, it

is also necessary to explore the notion of rational entailment. Rational closure provides

a proof-theoretic characterisation of rational entailment. Rational closure is an inferential

closure based on modular entailment, but it extends its inferential power.

Definition 11. Let O be a defeasible knowledge base and C,D ∈L.

Stellenbosch University https://scholar.sun.ac.za

26

1. C @∼D is in the rational closure of O if

rankO(C uD)< rankO(C u¬D) or rankOC =∞.

2. C vD is in the rational closure of O if rankO(C u¬D) =∞
[Britz et al. (2019)].

In a more colloquial manner, the above states that if an axiom is a defeasible axiom,

the defeasible axiom is in the rational closure of the knowledge base if, from assessing the

ranking of the statements, it is the case that C typically leads to D and only in exceptional

cases does C not lead to D. Classical subsumption statements are in the rational closure

of the knowledge base if it is never the case that C is not subsumed by D.

Although our work will not focus on converting classical statements into defeasible state-

ments, it will draw from some of the concepts mentioned in the above section. Specifically

in Chapter 3 we will refer to the ranking algorithm as this will help to systematically

determine which inconsistencies to solve. Furthermore, we will also be referring to the pos-

tulates noted in Definition 5, as these give us a way of rewriting classical statements into

their weakened form.

2.4. Defeasible Inference Platform in Protégé

The above theory has been implemented as a Protégé 5.0 plug-in by Meyer et al. (2014) as

the Defeasible Inference Platform (DIP) plug-in. The following sets out the purpose of the

plug-in and will briefly outline the functionality and user interface of the plug-in. This is

done as in Chapter 3, along with the foundational theory, we will provide an understanding

of the desired flow by building on this tool, and the OntoDebug tool discussed in Section

2.7.

For ontologies to be implemented in practice, the Web Ontology Language OWL is used.

OWL 2 DL is a family of fragments of OWL 2 corresponding to description logics, and

thus OWL 2 languages are also characterised by their use of formal semantics. In OWL,

ontologies are represented in RDF (Resource Description Framework) which is the XML

standard agreed upon by the World Wide Web consortium (W3C). The most popular

ontology editor is Protégé, the latest version (as at the date of writing) being version 5.5

(Aminu et al. 2020) 1.

1 https://Protege 5.0.stanford.edu/

Stellenbosch University https://scholar.sun.ac.za

27

In Protégé 5.0 we implemented the same ontology, O, as in previous examples. First, the

atomic class hierarchy was created – in this case, we have asserted that BlackListedStaff is

a subclass of Staff and that Staff is a subclass of User. The concept ConfidentialInfo was

also created.

Figure 2 Example of class hierarchy in Protégé.

Then, further subsumption statements were added for each relevant concept. To do this,

the role accessTo was first created in the object properties tab in Protégé 5.0. See below for

the subsumption statements that were created for User, Staff and BlackListedStaff. Note

that the keyword ‘some’ in Protégé denotes an existential restriction.

Figure 3 Subsumption statement associated with User.

Also note that the axioms that are explicitly added appear in the ‘SubClass Of’ box;

axioms that are inferred appear in the ‘SubClass Of (Anonymous Ancestor)’ box – from a

classical perspective, it is already evident in the Staff and BlacklistedStaff boxes that these

axioms would lead to an incoherence.

Stellenbosch University https://scholar.sun.ac.za

28

Figure 4 Subsumption statement associated with Staff.

Figure 5 Subsumption statement associated with BlackListedStaff.

Finally, in the Defeasible Inference Plugin (DIP) tab in Protégé, we can select the state-

ments that we would like to keep as classical axioms or make defeasible – this is done by

toggling the ‘d’ button to the right of the axiom. Note that all axioms can be toggled as

defeasible if a user is unsure which axioms are defeasible and the user would just like to

understand how the axioms rank one against the other. Importantly, if a concept does not

occur in any statement marked as defeasible, it will not appear in the ranking.

Figure 6 Axioms noted to be strict/ classical axioms.

When the ‘refresh’ button is clicked at the very bottom of the tab, the concepts are

ranked – we can see that the tool deduced that Staff has a ranking of 1 thus being more

Stellenbosch University https://scholar.sun.ac.za

29

Figure 7 Axioms noted to be defeasible axioms.

exceptional than concepts on level 0 (not shown as these concepts are on the classical level)

and that BlacklistedStaff has a ranking of 2 thus being more exceptional than Staff which

is on level 1.

Figure 8 Ranking in DIP in Protégé 5.0.

From this, and the preceding section, the reader should now have a good understanding of

the semantics of defeasible subsumption. In Chapter 3, the definitions used in the previous

section will be used to explain how interactive ontology debugging methodologies can

be extended and return more nuanced repairs by calling upon tools used in defeasible

semantics. In Section 3.5, the functionality of the DIP tool discussed in this chapter will be

referred to so that the practical usage of the suggested methodology becomes more clear.

The next three sections will follow a similar structure, whereby first the theoretical

aspects relating to debugging are explored in Sections 2.5 and 2.6. Then, an overview of

the functionality of the OntoDebug tool in Protégé will be given.

2.5. Basic ontology debugging principles

In Chapter 1, the need for formal ontology debugging methodologies/tools was expressed

by arguing that ontologies are subject to the same 3Vs that Big Data is subject to: volume

(size), variety (variability or complexity) and velocity. A number of well-known ontolo-

gies are large in size – concepts and relationships in a number of ontologies are already

Stellenbosch University https://scholar.sun.ac.za

30

hundreds of thousands with each concept being added giving rise to multiple additional

relationships. The variety (or complexity) encountered in ontology definitions is likely to

increase as concepts become more nuanced either because new knowledge is uncovered

about the concept (as would occur in the medical domain) or because new concepts are

developed (as is often the case in the business domain as innovation ensues). Finally, the

velocity of concept and relationship additions in an ontology can be high, with multiple

users and potentially even systems contributing to ontology development. The velocity at

which concepts and relationships are added becomes especially pronounced when ontolo-

gies are merged (as can happen when business mergers occur and systems between two

companies need to align). As discussed in Chapter 1, these factors require that there needs

to be a formal methodology (preferably instantiated in a tool) to deal with exceptions

systematically as the human ability to infer consequences that reverberate through the

system is limited.

In this section then, we will firstly lay down the basic principles associated with ontology

debugging – these concepts are the basic concepts present in further nuanced ontology

debugging approaches. Then, after these basic concepts are laid down, we will explore

specifically Rodler’s (2015) interactive ontology debugging tool.

First, it is important to understand different overarching approaches to debugging ontolo-

gies. The main approach used is model-based diagnosis: the observed state of the ontology

is compared to the desired state (Schekotihin et al. 2018, p. 16). Generally, the desired

state is to have a consistent, coherent ontology. If the current state of an ontology is not

consistent or coherent, then strategies are employed to identify what is causing the incon-

sistency or incoherence and how these can be addressed. The limitation with this approach

is that only if an inconsistency or incoherence occurs will the user be aware of it – there

are however some cases where a modelled ontology is not inconsistent or incoherent, but

nonetheless incorrect inferences are drawn. An example of this is where historically from

the SNOMED ontology it was inferred that every amputation of a finger was an amputation

of a hand (Peñaloza 2019) – this is clearly an unintuitive and incorrect result, even though

no logical incoherence is present. Although these faults will not be picked up on when first

running an ontology debugging tool based on model-based diagnosis, it is possible to flag

this inference as an unwanted inference once the fault is found – more in this in Section

2.7. A way that these faults can be proactively picked up on is via heuristic approaches

Stellenbosch University https://scholar.sun.ac.za

31

(refer to Rodler and Schmid (2018), Yamada and Fukuta (2016), Wang et al. (2005)) –

examples of heuristic approaches include finding design patterns that are often associated

with ontology faultiness, or even learning from the user’s previous faults to detect whether

another fault has been potentially made. For the purposes of this research, the main focus

is on a model-based diagnosis approach.

Within the context of model-based diagnosis, we can identify two types of defects (Lam-

brix 2019): syntactic defects are defects caused by incorrect formation of the description

logic language – these are usually picked up by a parser and are relatively easy to update.

As these are generally not caused by ill-formed logic, they will not have consequences that

reverberate through an ontology and thus our focus is not on these kinds of defects. Then

there are semantic defects which this research will focus on – these are generally thought

to have more severe impacts than syntactic defects and are generally more difficult to solve

and if solved incorrectly, will lead to other downstream logical problems, or will lead to

incorrect query results being returned.

There are three semantic defects which could occur: inconsistency, unsatisfiability and

incoherence (Soylu et al. 2013). An ontology is inconsistent if no model can exist for the

ontology – i.e. if it contains contradictory facts (refer to Definition 1). A specific concept

in an ontology is unsatisfiable if it cannot be instantiated without causing an inconsistency

(refer to Definition 1). Finally, an ontology is incoherent if it contains an unsatisfiable

concept (refer to Section 2.2).

Drawing from the user access example introduced earlier, we can say that the concept

Staff would have been unsatisfiable if, in addition to the Tbox axiom, we had an Abox

axiom where it was asserted that an individual, Gloria, is an element of the concept Staff

– thus the entire ontology would be inconsistent. This is due to Staff being subsumed by

User, so they do not have access to ConfidentialInfo, yet contradictory to this it is also

stated that they do have access to ConfidentialInfo.

TO =


Userv¬∃accessTo.ConfidentialInfo

Staff vUser

Staff v∃accessTo.ConfidentialInfo


AO =

{
Staff(Gloria)

}

Stellenbosch University https://scholar.sun.ac.za

32

Using the same example, we can note that even before adding the Abox axiom which

made the ontology as a whole inconsistent, the concept is unsatisfiable because it is not

logically possible for any individual to belong to a concept where they both do not have

access to ConfidentialInfo and have access to ConfidentialInfo. This means that before even

adding the Abox axiom which made the ontology inconsistent, the ontology as a whole

was incoherent because it contains an unsatisfiable concept, Staff.

We now turn to the main steps involved in ontology debugging: detecting defects and

repairing defects (Lambrix 2019). To detect defects, the justifications leading to the incon-

sistency need to be found.

Definition 12. Let T be a Tbox and T |= ψ. A set of axioms T ′ ⊆ T is a justification

for ψ in T if T ′ |=ψ and ∀T ′′ (T ′ : T ′′ 6|=ψ [(Lambrix 2019)].

Rodler (2015) notes that whereas the term ‘justification’ is usually used by the general

KRR community, the term does not necessarily have any direct link with only ontology

defects. That is, the term is mostly used to refer to finding a subset of axioms in an ontology

that leads to a specific conclusion – in the context it is used, it is mostly used to refer to

those statements which lead to a specific valid conclusion. For this reason, in the diagnosis

community, justifications for defects are referred to as conflict sets (also referred to as

Minimal Unsatisfiability Preserving Sub-Tboxes – MUPS).

Definition 13. Let T be a Tbox and P be an unsatisfiable concept in T . A set of axioms

T ′ ⊆T is a conflict set if P is unsatisfiable in T ′

The conflict set T is minimal if and only if there is no conflict set T ′ where T ′ ⊂T

[(Lambrix 2019) and (Schekotihin et al. 2018)].

A minimal conflict set is obtained to avoid computing justifications for purely derived

causes. For instance, it may be the case that one concept, B, is purely unsatisfiable because

it is a subset of another concept A, that is unsatisfiable. We would want to return the set

of axioms leading to the inconsistency in A first, as when the axioms leading to the defect

in A is solved, B may automatically be solved.

To illustrate these definitions with an example, let’s consider an extended version of the

access example we have been working with up until this point:

Stellenbosch University https://scholar.sun.ac.za

33

TO =



Userv¬∃accessTo.ConfidentialInfo

Userv∃accessTo.GeneralInfo

Staff vUser

Staff v∃accessTo.ConfidentialInfo

Staff v∃accessTo.GeneralInfo

Directorv Staff


AO =


Staff(Gloria)

User(Peter)

Director(Susan)



In this example, it is evident that it is not all the axioms that are leading to an inconsis-

tency – only a subset of axioms. In this case, the conflict set that leads to the entailment

that the concept of Staff is unsatisfiable and the conflict set that leads to the entailment

that the concept of Director is unsatisfiable consists of the following subset of statements,

respectively:

That Staff is unsatisfiable:

TO =


Userv¬∃accessTo.ConfidentialInfo

Staff vUser

Staff v∃accessTo.ConfidentialInfo


AO =

{
Staff(Gloria)

}

Stellenbosch University https://scholar.sun.ac.za

34

That Director is unsatisfiable:

TO =



Userv¬∃accessTo.ConfidentialInfo

Staff vUser

Staff v∃accessTo.ConfidentialInfo

Directorv Staff


AO =

{
Director(Susan)

}

From the above, it is evident that the only reason Director is part of the conflict set is

because it is subsumed by Staff which is at this stage an unsatisfiable concept. Therefore,

the minimal conflict set is the first three axioms above.

For ontology defect detection, we have now seen the main concepts at play. The second

step in ontology debugging is ontology repair. In the literature, there are definitions for

what would be deemed as a repair (something which, after making the repairs – usually

through deletion – the inconsistencies are resolved):

Definition 14. Let T be a Tbox and C be the set of all atomic concepts in T . Let M be a

finite set of missing axioms. Let W be a finite set of incorrect Tbox axioms. Let Or be an

oracle that given a Tbox axiom returns true or false. A repair for Complete-Debug-Problem

CDP (T,C,Or,M,W) is any pair of finite sets of Tbox axioms (A,D) such that

1. ∀p∈A :Or(p) = true;

2. ∀q ∈D :Or(q) = false;

3. (T ∪A) \D is consistent;

4. ∀m∈M : (T ∪A) \D |=m;

5. ∀w ∈W : (T ∪A) \D 6|=w

[(Lambrix 2019)].

Although there is a definition for what constitutes a repair and even (as we shall see in

the next section) pinpointing which axioms need repair, as stated in Chapter 1, in general

there are no methodologies, algorithms or tools that provide a recommendation on how

axioms can be systematically weakened to repair ontologies. There are however currently

Stellenbosch University https://scholar.sun.ac.za

35

ways to assess a manually implemented repair based on how much it changes the original

ontology: one way to measure a repair is to determine the extent of change the repair

brings into an ontology, with minimal change being sought after as this would preserve

the completeness of the ontology. In Chapter 3 we provide a methodology for weakening,

rather than deleting, faulty axioms.

2.6. Interactive, test-driven ontology debugging

The basic ontology debugging concepts have now been covered. Although the basic concepts

assist with fault identification in ontologies, an exponential number of minimal conflict

sets may exist for the exceptions in an ontology. Thus, there is a need for fault localisation

– i.e. not returning all axioms from all conflict sets, but presenting the user with only the

axiom(s) which represent the root cause of the problem. Consider the following example

faulty ontology, O:

O=



Staff vUser

Userv∃accessTo.PublicInformation

Staff v∃accessTo.PrivateInformation

>u∃accessTo.PublicInformationv PublicInfoConsumer

>u∃accessTo.PrivateInformationv PrivateInfoConsumer

PrivateInfoConsumerv¬PublicInfoConsumer

PrivateInformationv¬PublicInformation


AO =

{
Staff(Maggie)

}

In the above, all axioms except the final Tbox axiom are considered to be part of

the minimal conflict set. The reason for this is as follows: Because a User has access to

PublicInformation, a user is considered to be a PublicInfoConsumer. Because Staff have ac-

cess to PrivateInformation they are considered to be PrivateInfoConsumers. It is also an

inferred consequence that Staff are PublicInfoConsumers because Staff are Users. However,

Stellenbosch University https://scholar.sun.ac.za

36

it is asserted that a PrivateInfoConsumer is not a PublicInfoConsumer, and because Staff is

explicitly stated to be a PrivateInfoConsumer whilst being a PublicInfoConsumer, the con-

cept of Staff is unsatsifiable. Because this unsatisfiable concept is instantiated by Maggie,

the ontology is inconsistent.

The logic leading to this type of inconsistency is a mistake that can be made eas-

ily. Especially because it logically makes sense that PrivateInformation is disjoint from

PublicInformation, it may be easy to intuitively assert that therefore PrivateInfoConsumer is

disjoint from PublicInfoConsumer. From manual inspection, it is in fact only the second last

Tbox axiom that needs to be removed in order to effectuate a repair. Rodler (2015) notes

that generally, humans – even those with knowledge of the representation language being

worked with – find it hard to formulate correct logical axioms, or to understand what is

causing the problem. In user studies done on groups who were using Rodler’s OntoDebug

tool, subjects commented that without the guidance of the tool, they would have found

it very difficult to understand the nature of the incoherence/ inconsistency, even with the

minimal conflict set being returned (Rodler et al. 2019).

In the ontology debugging community, then, it has been suggested that background

knowledge, along with positive and negative test cases should be explicitly provided as

input by the user so that the test cases along with the background knowledge eliminate

some of the axioms that are returned in the minimal conflict set (Schekotihin et al. 2018,

p. 6-7).

Definition 15. Let O be a knowledge base, and let B ⊆O be the background knowledge to

O. Then all axioms in B are assumed to be correct. In the context of ontology debugging,

the remainder of axioms in O are considered potentially faulty [(Rodler 2015, p. 27)].

Background knowledge, then, constitutes axioms that the oracle or knowledge engineer

knows to be true before starting with testing. In the OntoDebug tool (fully introduced

in Section 2.7), the dialogue on background knowledge gets populated by the Abox state-

ments. In the absence of Abox statements, Abox statements are auto-generated for each

concept. This serves a two-fold purpose: firstly, it means that calls to the reasoner would

return back inconsistencies if an unsatisfiable concept exists as the unsatisfiable concept

would always have individuals associated with it. Secondly, it makes the reasonable and

Stellenbosch University https://scholar.sun.ac.za

37

generalisable assumption (that we would want to be captured in background knowledge

to an ontology) that all concepts in the ontology should be able to be instantiated by

individuals.

Positive and negative test cases then are usually formulated once the knowledge engineer

or oracle starts with their testing, and through the testing they uncover:

• axioms that they do not want to exist in future (negative test cases), or

• axioms that they do want to exist in future, but which were at a stage in testing not

present (positive test cases).

Axioms in positive or negative test cases can either be explicitly stated axioms that the

knowledge engineer now through their understanding knows is (in)correct, or implicitly

derived axioms that the knowledge engineer does (not) want to be entailed in future.

Definition 16. Positive test cases (aggregated in the set P) correspond to desired en-

tailments of the correct (repaired) ontology, O along with the background knowledge B.

Each test case p ∈ P is a set of axioms over language L. The meaning of a positive test

case p∈ P is that some axiom p (or the conjunction of axioms P in the case of a set of p)

must be entailed by the correct O integrated with B [(Rodler 2015, p.27)].

Definition 17. Negative test cases (aggregated in the set N) represent undesired entail-

ments of the correct (repaired) ontology O, along with the background knowledge B. Each

test case n ∈N is a set of axioms over language L. The meaning of a negative test case

n ∈N is that some axiom n (or the conjunction of axioms N in the case of a set of N)

must not be entailed by the correct O integrated with B [(Rodler 2015, p.27)].

To continue with our example – generally, the background knowledge would be the

knowledge asserted in the Abox axioms. In the case of our ontology, O, it would be the

following statement:

AO =

{
Staff(Maggie)

}

A positive test case, something that the knowledge engineer would want to be implicitly

entailed or explicitly asserted, could in this case be the following entailment from ontology

O:

Stellenbosch University https://scholar.sun.ac.za

38

Staff v∃accessTo.PublicInformation

If the knowledge engineer is confident that there are certain asserted axioms that must

hold, they can also add the following explicitly asserted statements to the set of positive

test cases:

Userv∃accessTo.PublicInformation

Staff v∃accessTo.PrivateInformation

A negative test case, something that the knowledge engineer would not want to be

implicitly entailed or explicitly asserted, could in this case be the following entailment from

ontology O:

Staff v¬User

Once background knowledge, and positive and negative test cases are provided for the

ontology, this is put together in a diagnosis problem instance (DPI) which gives the pa-

rameters in which the diagnosis should be calculated.

Definition 18. Let O be an ontology (including possibly faulty axioms) and B be back-

ground knowledge (including correct axioms) where O∩B= ∅, and let O∗ denote the (un-

known) intended ontology. Moreover, let P and N be sets of axioms where each p∈ P must

and each n ∈N must not be entailed by O∗ ∪B, respectively. Then, the tuple 〈O,B, P,N〉
is called a diagnosis problem instance (DPI) [(Schekotihin et al. 2018, p.6)].

Definition 19. Let 〈O,B, P,N〉 be a DPI. Then, a set of axioms D ⊆O is a diagnosis

if and only if both of the following conditions hold:

1. (O\D)∪P ∪B is consistent (coherent if required)

2. (O\D)∪P ∪B 6|= n for all n∈N
A diagnosis D is minimal iff there is no D′ ⊂D such that D′ is a diagnosis [(Schekotihin

et al. 2018, p.6)].

If background knowledge, positive and negative test cases are incorporated when di-

agnoses are determined, this will limit the number of potentially faulty axioms that are

output as explicit instructions are given as to which entailments and axioms can be deemed

correct or incorrect (Rodler 2015, p.6-7).

In the example ontology, a subset of axioms that constitute the diagnosis can now be

identified:

Stellenbosch University https://scholar.sun.ac.za

39

Od =


>u∃accessTo.PublicInformationv PublicInfoConsumer

>u∃accessTo.PrivateInformationv PrivateInfoConsumer

PrivateInfoConsumerv¬PublicInfoConsumer


From the now-limited output, it is easier for the knowledge engineer to identify the

required repair – in this case, the deletion of PrivateInfoConsumerv¬PublicInfoConsumer.

To prevent this axiom from being asserted in future, the knowledge engineer may then

wish to add this axiom as a negative test case.

The benefit of setting up positive and negative test cases, and adding background knowl-

edge, is twofold: Firstly, by setting up test cases test-driven ontology development is ad-

hered to. By adhering to test-driven ontology development, test cases act as preventative

controls to prevent bugs or previously discovered unwanted entailments or axioms from

again creeping into the ontology in later development iterations (Schekotihin et al. 2018).

Secondly, because wanted and unwanted entailments are explicitly stated, the scope of

possibly faulty axioms is limited, thus making it easier to find the axiom(s) that require

repair.

Generally, once test cases and background knowledge have been used to limit the number

of possibly faulty axioms, debugging tools then aim to determine the axioms which are

most probable to be faulty (Rodler 2015, p.7). The probability of a diagnosis to be faulty

is generally determined by external criteria (e.g. fault probabilities of logical formulas in

general or learning a user’s usual fault patterns) – it is no longer the case that the fault

is determined based on the content of the axioms in the ontology itself. Rodler argues

however that this approach, although it further limits the scope of search for axioms to

repair, could in fact introduce more faults in an ontology: selecting an incorrect diagnosis

for repair could lead to unexpected entailments, desired entailments that fall away or future

faults (2015, p. 7). Furthermore, he notes that in reality, ontologies with many axioms are

likely to have many minimal diagnoses – and these could take a long time to sift through,

set up test cases manually, and rerun the reasoner iteratively.

Rodler’s (2015) suggestion is to automate the process of finding test cases by developing

an algorithm which, targeting the most likely diagnoses first, iteratively asks the knowledge

engineer (in this case, someone who is referred to as the ‘Oracle’ – someone who has full

knowledge of a given domain) whether certain axioms should or should not be entailed.

Stellenbosch University https://scholar.sun.ac.za

40

Definition 20. Let Ax be a set of axioms and ans : Ax → P,N a function which assigns

axioms in Ax to either the positive or negative test cases. Then, we call ans an oracle

w.r.t. the intended ontology O∗, iff for each ax ∈ Ax both the following conditions hold:

1. ans(ax) = P →O∗ ∪B |= ax

2. ans(ax) =N →O∗ ∪B 6|= ax

[(Schekotihin et al. 2018, p.7)].

A query is a set of axioms which, once the knowledge engineer/ oracle provides an answer

as to whether the entailments should hold or not, sufficient information is obtained such

that at least one diagnosis can be eliminated.

Definition 21. Let 〈O,B, P,N〉 be a DPI, D be a set of diagnoses for this DPI, and Q

be a set of axioms. Then we call Q a query for D iff, for any classification QP
ans,Q

N
ans of

the axioms in Q of a domain expert oracle ans, at least one diagnosis in D is no longer a

diagnosis for the new DPI 〈O,B, P ∪QP
ans,N ∪QN

ans〉 [(Schekotihin et al. 2018, p.8)].

The knowledge engineer’s answers to these queries are added to the list of test cases. The

process of posing queries to the knowledge engineer, and feeding through the knowledge

engineer’s answer, and recomputing the new diagnoses is performed until only minimal

number faulty axioms remain for each DPI.

Rodler (2015) developed algorithms for computing which query to pose to the user first,

based on leading diagnoses, and his solution further provides the user with control to

change the parameter inputs to the algorithm. It is not within the scope of this thesis

to investigate this in more detail, as our extension focuses on designing a solution which

provides suggestions for repair with minimal impact after the query-generation module has

run – it is nonetheless important to briefly mention, as it shows rigour and flexibility in

the base theory from which we are working, which would allow for fast, scalable ontology

debugging.

2.7. Interactive ontology debugging with OntoDebug in Protégé

The above theory has already been implemented in a Protégé 5.0 plug-in by Rodler (2015)

as the OntoDebug plug-in. The following sets out the purpose of the plug-in and will briefly

Stellenbosch University https://scholar.sun.ac.za

41

outline the flow and user interface of the plug-in. This is done as in Chapter 3, along with

the foundational theory underlying our extension, we will provide an understanding of the

desired flow which is inspired by the OntoDebug and DIP (see Section 2.4) plugins.

For this section, we will continue working with the example ontology that we were

working with in Section 2.6. (For a primer on Protégé 5.0, please refer to Section 2.4):

O=



Staff vUser

Userv∃accessTo.PublicInformation

Staff v∃accessTo.PrivateInformation

>u∃accessTo.PublicInformationv PublicInfoConsumer

>u∃accessTo.PrivateInformationv PrivateInfoConsumer

PrivateInfoConsumerv¬PublicInfoConsumer

PrivateInformationv¬PublicInformation


AO =

{
Staff(Maggie)

}

Figure 9 shows the input ontology, which is the above set of axioms, together with some

more classificatory axioms, implemented in a test ontology.

At this stage, certain axioms which the user knows to be background knowledge can be

added. Figure 10 shows that in our example, we have added Abox axioms as background

knowledge (if these are not explicitly added, OntoDebug will automatically generate in-

stances associated with the concepts).

When the tool is run, a list of repairs (axioms which, when deleted, could effectuate a

repair) is provided (refer to figure 11). At this stage, the list of possible repairs is quite

extensive.

To limit the amount of possibly faulty axioms that the knowledge engineer needs to sift

through, queries are systematically presented to the knowledge engineer where they need

to confirm whether the axioms are true (+) or false (-) (refer to figure 12). The knowledge

Stellenbosch University https://scholar.sun.ac.za

42

Figure 9 Input ontology used for illustration of OntoDebug.

Figure 10 Setting background knowledge in OntoDebug.

engineer as the oracle has to answer which axioms they would like to be entailed (+) or

not (-).

Once answers are submitted, these form part of the test cases within the session. When

answers are submitted, the list of repairs will also grow smaller. Until a minimal number

of repairs exist, further queries will be asked to the knowledge engineer.

Importantly, throughout this process, the reasoner runs to allow queries to be presented

to the user iteratively all the while identifying incoherence in the knowledge base (refer to

figure 14). It is this aspect of it that makes this tool’s approach interactive in nature. It is

by presenting queries to the user systematically, from which test cases are built, that allows

Stellenbosch University https://scholar.sun.ac.za

43

Figure 11 OntoDebug repair candidates – axioms which would, when deleted, effectuate a repair.

Figure 12 OntoDebug queries (first iteration).

for the list of faults, and therefore repairs, to grow smaller thus making the knowledge base

repair process more manageable.

Stellenbosch University https://scholar.sun.ac.za

44

Figure 13 In OntoDebug submitted answers become test cases; for each query answered at least one repair can-

didate is eliminated; if more than one repair still exists, further queries are posed to the knowledge

engineer.

Figure 14 Iterative nature of OntoDebug.

The process of presenting queries, adding these queries to the test cases, and then sys-

tematically re-calculating which queries to present to the user is iterated until the minimal

Stellenbosch University https://scholar.sun.ac.za

45

repair is found. For each query that is answered, one DPI is eliminated. As there can only

be a finite number of DPIs, the procedure will always terminate.

Figure 15 Following a process of iteration, a minimal repair candidate has been identified.

In this case, we see that it has correctly identified the disjointness condition between

PrivateInfoConsumer and PublicInfoConsumer as the faulty axiom. It is then possible to

select this axiom, and show explanations (justifications) which lead to this being the faulty

axiom; from here the user can also edit or delete the axiom. To resolve this particular

inconsistency, the disjointness axiom needs to be deleted.

Figure 16 OntoDebug’s repair screen.

Stellenbosch University https://scholar.sun.ac.za

46

At this stage, the reasoner is still running. Once the axiom is deleted or modified, again

a call will be made to the reasoner to determine whether the ontology is now coherent and

consistent. In this case, coherency and consistency has been reached.

Figure 17 OntoDebug – repair success screen.

Through iteratively and systematically presenting the oracle/ knowledge engineer with

queries that feed in to define positive and negative test cases, the scope of the search for the

faulty axioms, along with the possible repairs, has been successfully narrowed down, and

the knowledge engineer is able to fix the issue by deleting the disjointness axiom between

two concepts.

Stellenbosch University https://scholar.sun.ac.za

47

Chapter 3

Incorporating Systematic Weakening
into Interactive Ontology Debugging

In the first section of this chapter we will show that in some cases, particularly where we

are dealing with faulty modelling due to axioms that are not necessarily incorrect, but

that need to be weakened, OntoDebug returns unexpected results. Through example, we

will show that this is likely to lead the knowledge engineer to delete valuable axioms –

this results not only in a loss of valuable, nuanced knowledge, but can also cause further

structural problems for the ontology as other axioms that depended on the axiom being

deleted would also be affected.

In the following sections, we propose an extension to the the existing interactive ontol-

ogy debugging methodology to enable the user to, at the click of a button, run further

reasoning tasks that would systematically return suggestions for axiomatic weakening. In

these sections we will thus provide the theoretical foundation for how the existing inter-

active ontology debugging methodology can be extended to allow the knowledge engineer

to perform additional reasoning on the identified repair, and its related justifications, to

obtain a recommendation on how the ontology can be repaired by weakening an existing

axiom – this is done by lending from concepts in the Defeasible DL community discussed in

the previous chapter. To follow this methodology, a minimal conflict set from the array of

potential minimal conflict sets must be selected – we will provide the algorithm by which

this can be done.

Through creating this extended methodology a new design pattern has been created, and

can be used to suggest potential repairs to the knowledge engineer before the knowledge

engineer starts with the interactive ontology debugging exercise – this will potentially

reduce the time to find and rectify inconsistencies of the type where weakening of an axiom

is required. Furthermore, we will assess how well the proposed extension to the OntoDebug

tool works in practice with the existing interactive ontology debugging methodology – this

will be done by assessing the way in which the methodology will flow if inconsistencies of

different sorts are encountered alongside inconsistencies for which weakening is necessary.

Stellenbosch University https://scholar.sun.ac.za

48

Finally, we will also produce a user interaction roadmap, showcasing how the proposed

methodology would be incorporated with the existing OntoDebug tool.

3.1. Unintuitive results obtained by interactive ontology debug-

ging

For all its merits, using the interactive ontology debugging methodology, implemented in

the OntoDebug tool, can at times lead to unintuitive results. This is due to the assump-

tion that due to monotonicity of entailment in (classical) description logics, only deletion

(and not expansion) of the KB can effectuate a repair of inconsistencies, incoherences and

unwanted entailments (Rodler 2015, p. 30). In the original interactive ontology debugging

approach, expansion can only ever be used when the knowledge engineer would like axioms

in the positive test case to hold if they do not already hold. However, we have seen that

there can often be (especially in the business, regulatory and legal domains) cases where

rather than deleting an axiom to repair inconsistencies, we would want to modify the axiom

and weaken it so that important, albeit nuanced or complicated, logic is maintained.

Let’s revert back to the example we worked with in Section 2.3 to understand which

unintuitive results are obtained when this is run through OntoDebug:

O=



Userv¬∃accessTo.ConfidentialInfo

Staff vUser

Staff v∃accessTo.ConfidentialInfo

BlackListedStaff v Staff

BlackListedStaff v¬∃accessTo.ConfidentialInfo


First, we create this ontology in Protégé 5.0:

Figure 18 Ontology producing unintuitive result is created in Protégé 5.0.

Stellenbosch University https://scholar.sun.ac.za

49

Next, we start the interactive ontology debugging tool, OntoDebug. When it starts, we

get a breakdown of all axioms which could possibly need repair (traditionally by deletion).

Figure 19 Iteration 1 of list of repair candidates is given for ontology producing unintuitive result.

As is customary of OntoDebug, the tool then presents the knowledge engineer with

queries that need to be answered. The answers of these queries are fed through as test

cases which trigger a new diagnosis to be calculated following the new DPI. In this case, we

do want it to always be entailed that BlacklistedStaff do not have access to ConfidentialInfo

and we do want it to be entailed that Staff is a particular type of user.

Figure 20 Iteration 1 queries generated of the ontology producing the unintuitive result.

Stellenbosch University https://scholar.sun.ac.za

50

When these queries are put through as positive test cases, the list of possible ontology

repairs grows smaller due to the queries that have been answered.

Figure 21 Iteration 2 possible repair candidates to the ontology producing the unintuitive result.

Again, a query is posed, as we have not yet reached a point where a minimal repair

has been identified. To this query, we answer that we do not want it to be entailed

that BlacklistedStaff is disjoint with Staff, as it is intuitive that a member of staff who is

blacklisted is nonetheless a member of staff.

Figure 22 Iteration 2 query answering to the ontology producing unintuitive results.

Again, the possible repairs are calculated and this time OntoDebug completes its run as

a minimal repair is found – the suggested repair is that a change should be made to Staff

to say that they do not have access to ConfidentialInfo.

From a classical ontology perspective, the suggestion of this repair makes sense – we have

asserted that a User (the concept subsuming Staff) does not have access to ConfidentialInfo,

Stellenbosch University https://scholar.sun.ac.za

51

Figure 23 Unintuitive repair candidate is provided.

and we have also asserted that BlacklistedStaff (the concept subsumed by Staff) does not

have access to ConfidentialInfo.

Yet, intuitively we know that there are exceptions to the rule, and that Staff is an

exception to the more general concept of User, and that BlacklistedStaff is the exception to

the concept of Staff. We know, therefore, that a more accurate repair would be to weaken

axioms where the concept of User appears on the left hand side and to after that, weaken

axioms where the concept of Staff appears on the left hand side. This ideal repair that

we’d want to make to capture the nuances of user access would be as follows:

O=



Useru¬Staff v¬∃accessTo.ConfidentialInfo

Staff vUser

Staff u¬BlackListedStaff v∃accessTo.ConfidentialInfo

BlackListedStaff v Staff

BlackListedStaff v¬∃accessTo.ConfidentialInfo


By weakening the concepts of User and Staff we are enabling the reading of the problem-

atic axioms to be transformed to: ‘a User usually does not have access to ConfidentialInfo’

and ‘Staff usually do have access to ConfidentialInfo’ thus giving semantic structure to the

underlying intuition causing us to believe this set of axioms to be coherent.

Ideally then, in the scenario where these sorts of bugs are picked up on, it should be

possible to dig further for a result in OntoDebug should the initial result be unintuitive. It

should be possible for the knowledge engineer to perform further debugging tasks on this

specific axiom that is noted as a candidate for repair so that it can be determined how

axioms related to this repair can instead be systematically weakened. The next section

delves into the detail of how, from a design and high-level methodology perspective, this

can be done.

Stellenbosch University https://scholar.sun.ac.za

52

3.2. Outline of methodology

We propose that Rodler’s (2015) original interactive ontology debugging methodology be

followed until an untintuitive result, as per Section 3.1, is obtained. This is done so that,

should other types of inconsistencies – inconsistencies not requiring weakening as part of

their repair – be identified, Rodler’s original interactive ontology debugging methodology

can be followed as is. This ensures that the existing functionality of the OntoDebug tool

will remain unaffected by our proposed extension, but that we add capability to it that

allows for more nuanced repair suggestions to be returned (for more details on how the

existing OntoDebug functionality is affected by this extension, please refer to Section 3.5).

If the interactive ontology debugging methodology is followed, and we get to an unintu-

itive suggestion for an axiom to repair, the following methodology is followed:

1. Isolate the issue: Create a separate sub-ontology, O′
containing the axiom listed

for repair, along with axioms that, together, lead to this axiom being identified as a

potentially faulty axiom. Convert all axioms to defeasible axioms.

2. Determine a candidate axiom to weaken and a candidate concept with

which to weaken it: Use the ranking algorithm (refer to Section 2.3) to identify an

axiom to weaken at level 0, and to identify a concept at level 1 with which to weaken

the selected axiom.

3. Weaken the relevant axiom: Apply Cautious Monotonicity (CM) to weaken the

selected axiom at level 0. This weakened result is what is then displayed to the knowl-

edge engineer as a repair recommendation.

4. Choose to accept or reject solution: If the knowledge engineer accepts the repair

recommendation which involves a more nuanced approach to repair (weakening axioms

instead of deleting them), then the relevant axiom is weakened. If the knowledge

engineer does not accept the repair recommendation, they can, as per the normal

interactive ontology debugging route, exit and delete the faulty axiom.

5. Repeat until done: Whatever the knowledge engineer’s choice, once they have made

the choice, new faulty axioms will be calculated, and queries will be systematically

presented to the user until again one faulty axioms are identified. This process is

repeated until no faulty axioms are identified at which point the ontology is coherent

Stellenbosch University https://scholar.sun.ac.za

53

and consistent; or until the knowledge engineer exits the program at which point the

reasoner is stopped and the ontology still remains incoherent/ inconsistent.

Let’s apply the above methodology to the unintuitive repair result obtained in Section

3.1: in this section, the following ontology was considered:

O=



Userv¬∃accessTo.ConfidentialInfo

Staff vUser

Staff v∃accessTo.ConfidentialInfo

BlackListedStaff v Staff

BlackListedStaff v¬∃accessTo.ConfidentialInfo


This ontology is incoherent (and, if individuals were added to the Staff or BlackListedStaff

classes, inconsistent) because we are claiming that a User does not have access to

ConfidentialInfo. Yet, we are also claiming that Staff, a type of User, has access to

ConfidentialInfo. So, we are claiming that Staff both have and do not have access to

ConfidentialInfo, which gives rise to the incoherence. To make matters more complicated,

we are also claiming that Staff have access to ConfidentialInfo, but that BlackListedStaff

(a type of Staff) do not have access to ConfidentialInfo. This means that BlackListedStaff

both do and do not have access to ConfidentialInfo – this gives rise to an exception to the

existing exception, Staff.

Following the interactive ontology debugging methodology as implemented in OntoDe-

bug, the conclusion is reached that the following axiom is the axiom requiring repair (in

this case deletion):

Staff v∃accessTo.ConfidentialInfo

However, as discussed in the previous section, we know that intuitively we do not want

this axiom to be deleted. It is from this point onwards that the methodology described

above is applied. Specifically applied to this case:

1. Isolate the issue: Create a separate sub-ontology, O′
containing the axiom listed

for repair, along with axioms that, from the minimal conflict sets, lead to this axiom

being identified as a potentially faulty axiom. Convert all axioms to defeasible axioms

so that the ranking algorithm can be applied in the next step.

Stellenbosch University https://scholar.sun.ac.za

54

*Note: It is possible that many different minimal conflict sets exist for one iden-

tified conflict. For more information on how the minimal conflict sets leading to the

inconsistency should be chosen for processing, please refer to Section 3.3.

The following ontology is created:

O′
=


User@∼¬∃accessTo.ConfidentialInfo

Staff @∼User

Staff @∼∃accessTo.ConfidentialInfo


2. Determine a candidate axiom to weaken, and a candidate weakening con-

cept with which to weaken the candidate axiom: To determine this, the ranking

algorithm (explained in Section 2.3) is used on the above ontology O′
: central to the

ranking formula is the notion of exceptionality (see Definition 10 in Section 2.3).

(a) Ranking of 0 – least exceptional: First we identify the concepts with a rank of 0.

In this case this would be User. Then, the statements with a rank of 0 are identified.

In accordance with Definition 10, the concept User is not exceptional w.r.t. O′
,

and so the following statement is also not exceptional.

O′0 =

{
User@∼¬∃accessTo.ConfidentialInfo

}
This axiom is removed from O′

with the remainder renamed O′′
, and the ranking

of the axiom is saved.

(b) Ranking of 1 – concepts that are exceptional w.r.t. level 0 statements: O′′
now

contains only the remaining exceptional statements after the axioms that now have

an associated ranking have been removed.

The new knowledge base would thus contain the following statements:

O′′
=


Staff @∼User

Staff @∼∃accessTo.ConfidentialInfo


Staff is now deemed to be unexceptional w.r.t. O′′

(see Definition 10), and thus

this concept gets a ranking of 1. Consequently, both the above axioms get a ranking

of 1.

For the temporary ontology O′, there are no further statements to assess. Per the

ranking algorithm, concepts now have the following ranking:

Stellenbosch University https://scholar.sun.ac.za

55

World order/ rank Concept

0 User

1 Staff

Table 2 First iteration concept ranking output.

And axioms have the following ranking:

World order/ rank Axiom

0 User@∼¬∃accessTo.ConfidentialInfo

1 Staff @∼User

1 Staff @∼∃accessTo.ConfidentialInfo

Table 3 First iteration axiom ranking output.

It should be noted that even though in a minimal conflict set there may be concepts

that are ranked at a level higher than 1, only concepts (and axioms) at levels 0 and 1

will be used in the next step. Furthermore, it is only ever necessary to work on these

two levels to systematically resolve multi-level exceptions: in the next iteration of this

solution, we will see that whereas in this iteration User has a rank of 0, and Staff has

a rank of 1, in the next iteration Staff will have a rank of 0 and BlackListedStaff will

have a rank of 1. This is because at the stage when we are dealing with the second

level of exceptionality between Staff and BlackListedStaff the conflict between User

and Staff has already been resolved through weakening (explained in next step).

3. Weaken the relevant axiom: Next, the postulate of Cautious Monotonicity is

applied to weaken the axiom at level 0. As referenced in Definition 5:

(CM)
C @∼D, C @∼E
C uE@∼D

This reads: if C is defeasibly subsumed by D and C is defeasibly subsumed by E then

C and E are defeasibly subsumed by D. We know that the weakened result we would

like to get to has a format similar to that of the axiom below the line: C uE@∼D. In

our case, the weakened result would be User u ¬Staff @∼ ¬∃accessTo.ConfidentialInfo.

Thus we find that in the postulate of Cautious Monotonicity, C can represent User,

Stellenbosch University https://scholar.sun.ac.za

56

D can represent ¬∃accessTo.ConfidentialInfo and E can represent ¬Staff:

(CM)
User@∼¬∃accessTo.ConfidentialInfo, User@∼¬Staff

Useru¬Staff @∼¬∃accessTo.ConfidentialInfo

The rule that is extrapolated here is thus that when using Cautious Monotonicity

to apply weakening to the axiom at level 0, use the axiom as is for the first premise

(top left axiom) in the postulate; for the second premise (top right axiom), use the

subsumed (left hand) concept at level 0 subsumed by the negation of the concept

at level 1; the resultant conclusion (bottom axiom) is then the axiom showing the

weakened result.

For the above rule to hold, the following proof is necessary to show that the concept

at level 0 (User) is defeasibly subsumed by the negation of the concept at level 1

(Staff):

Lemma 2. Let O be a defeasible knowledge base, and let C and E be concepts with

rank(C) = 0 and rank(E) = 1. It then follows that C @∼¬E is in the rational closure

of O.

Proof. Since rank(C) = 0, it follows that either rank(CuE) = 0 or rank(Cu¬E) = 0.

But since rank(E) = 1, rank(C u E) ≥ 1. Therefore, rank(C u ¬E) = 0, and hence

rank(C u ¬E) < rank(C u E). It follows from Definition 11 that C u ¬E is in the

rational closure of O.

This lemma shows that the Cautious Monotonicity (CM) rule is applicable to an

axiom with subsumed (lefthand) concept C at rank 0 by left strengthening with the

negation of any concept at rank 1. The result can be generalised to concepts with ranks

of more than 1, but the case considering an axiom at rank 0 and left strengthening

concepts at rank 1 is the most interesting because throughout the execution of the

suggested methodology, it is only concepts at rank 0 and rank 1 that are considered.

4. Choose to accept or reject solution: The classical counterpart of the de-

feasible axiom obtained by applying Cautious Monotonicity (User u ¬Staff v

¬∃accessTo.ConfidentialInfo) is what is then displayed to the knowledge engineer as

a repair recommendation. This axiom is a weakening of the original classical axiom

Userv¬∃accessTo.ConfidentialInfo.

Stellenbosch University https://scholar.sun.ac.za

57

Let us assume the knowledge engineer accepts the above solution, and the original

ontology is updated to read as follows:

O′
=


Useru¬Staff v¬∃accessTo.ConfidentialInfo

Staff vUser

Staff v∃accessTo.ConfidentialInfo


5. Repeat until done: This process is repeated.

We find that in the main ontology there is still an inconsistency present – that we are

asserting that BlackListedStaff, being a specialised case of Staff both do and do not have

access to ConfidentialInfo.

1. Isolate the issue: After each iteration, the sub-ontology that was created is deleted.

Therefore, we can again create a separate sub-ontology, O′
containing the axiom listed

for repair, along with axioms that, from the minimal conflict sets, lead to this axiom

being identified as a potentially faulty axiom.

The following ontology is created:

O′
=


Staff v∃accessTo.ConfidentialInfo

BlackListedStaff v Staff

BlackListedStaff v¬∃accessTo.ConfidentialInfo


2. Determine a candidate axiom to weaken, and a candidate weakening con-

cept with which to weaken the candidate axiom: To determine this, the ranking

algorithm (explained in Section 2.3) is used on the above ontology O′
: central to the

ranking formula is the notion of exceptionality (see Definition 10 in Section 2.3).

(a) Ranking of 0 – least exceptional: First we identify the concepts with a rank of 0. In

this case this would be Staff. Then, the statements with a rank of 0 are identified.

In accordance with Definition 10, the concept Staff is not exceptional w.r.t. O′
,

and so the following statement is also not exceptional.

O′0 =

{
Staff @∼∃accessTo.ConfidentialInfo

}
This axiom is removed from O′

with the remainder renamed O′′
, and the ranking

of the axiom is saved.

Stellenbosch University https://scholar.sun.ac.za

58

(b) Ranking of 1 – concepts that are exceptional w.r.t. level 0 statements: O′′
now

contains only the remaining exceptional statements after the axioms that now have

an associated ranking have been removed.

The new knowledge base would thus contain the following statements:

O′′
=


BlackListedStaff @∼Staff

BlackListedStaff @∼¬∃accessTo.ConfidentialInfo


BlackListedStaff is now deemed to be unexceptional w.r.t. O′′

(see Definition 10),

and thus this concept gets a ranking of 1. Consequently, both the above axioms

get a ranking of 1.

For the temporary ontology O′, there are no further statements to assess. Per the

ranking algorithm, concepts now have the following ranking:

World order/ rank Concept

0 Staff

1 BlackListedStaff

Table 4 Second iteration concept ranking output.

And axioms have the following ranking:

World order/ rank Axiom

0 Staff @∼∃accessTo.ConfidentialInfo

1 BlackListedStaff @∼Staff

1 BlackListedStaff @∼¬∃accessTo.ConfidentialInfo

Table 5 Second iteration axiom ranking output.

3. Weaken the relevant axiom: Next, the postulate of Cautious Monotonicity is

applied to weaken the axiom at level 0. As referenced in Definition 5:

(CM)
C @∼D, C @∼E
C uE@∼D

Stellenbosch University https://scholar.sun.ac.za

59

We apply the rule stipulated in the previous iteration: when using Cautious Mono-

tonicity to apply weakening to the axiom at level 0, use the axiom as is for the first

premise in the postulate; for the second premise, use the subsumed concept at level 0

subsumed by the negation of the concept at level 1; the resultant conclusion is then

the axiom showing the weakened result.

By applying CM to our example specifically, we find that C represents Staff, D

represents ∃accessTo.ConfidentialInfo and E represents ¬BlackListedStaff:

(CM)
Staff @∼∃accessTo.ConfidentialInfo, Staff @∼¬BlackListedStaff

Staff u¬BlackListedStaff @∼∃accessTo.ConfidentialInfo

4. Choose to accept or reject solution: Let us assume the knowledge engineer accepts

the classical counterpart of the above solution, and the ontology is updated to read

as follows:

O′
=


Staff u¬BlackListedStaff v∃accessTo.ConfidentialInfo

BlackListedStaff v Staff

BlackListedStaff v¬∃accessTo.ConfidentialInfo


5. Repeat until done: Again it is checked whether all inconsistencies are resolved, and

as they are, the debugging process stops running.

3.3. Selecting minimal conflict sets and choosing repair axioms

An important step during the above process is the selection of an axiom to repair, along

with the selection of a minimal conflict set on which to apply the ranking algorithm on,

and generate the weakened axiom from. First we explore how suggestions for selecting the

correct minimal conflict set can be provided to the knowledge engineer once a repair has

been identified. Up until this point, we have worked with an example where the suggested

repair contains only one axiom – a repair can however contain more than one axiom, and

therefore we explore how repairs themselves can be presented to the knowledge engineer

so that axioms leading to root cause inconsistencies are resolved first.

Stellenbosch University https://scholar.sun.ac.za

60

3.3.1. Highlighting the most relevant minimal conflict sets: Let’s continue to work

with the example provided in the previous section:

O=



Userv¬∃accessTo.ConfidentialInfo

Staff vUser

Staff v∃accessTo.ConfidentialInfo

BlackListedStaff v Staff

BlackListedStaff v¬∃accessTo.ConfidentialInfo


As explained in Section 3.1, when following the standard OntoDebug methodology for

the above example, the following axiom is provided as the axiom that requires repair:

Figure 24 Unintuitive axiom to repair.

When the knowledge engineer clicks on the ‘Repair’ button, the option is provided to

show the justifications leading to the result that certain classes are a subclass of Nothing

(i.e. incoherent; in the debugging context, these are also known as minimal conflict sets).

With reference to figure 25, three minimal conflict sets are returned. At this stage of the

debugging process, our extension does not automatically pick a justification to work from

– this needs to remain up to the knowledge engineer as it is not necessarily the case that

all inconsistencies should always be solved through weakening.

We do however propose that, it would be useful to highlight the minimal conflict set to

the knowledge engineer which would be best to apply the ranking and weakening on. In

this case, the first minimal conflict set is the minimal conflict set that would be most apt

to apply weakening to, for the following reasons:

1. Comparing the first and the second minimal conflict sets, we find that the first minimal

conflict set would allow for concepts at the root of the issue to be weakened first –

i.e. applying the ranking algorithm and then weakening the axiom at level 0 (refer to

Stellenbosch University https://scholar.sun.ac.za

61

Figure 25 List of justifications associated with unintuitive repair candidate.

Section 3.2), the axiom with left hand User is weakened, rather than the axiom with

left hand Staff.

This aligns with Rodler’s (2015) overall aim of first fixing those axioms which lie

at the root of the problem first. His motivation for this is that more specific concepts

might be unsatisfiable due to more general concepts which they are subsumed by

being unsatisfiable. Thus, by solving the root cause inconsistencies first, it may be

that the more specific concepts that were reliant on the more general concepts may

then become satisfiable simultaneously.

2. Comparing the first and the third minimal conflict sets, we find that the first minimal

conflict set contains only Staff and User on the left hand side, whereas the third

minimal conflict set also contains BlacklistedStaff on the left hand side. Because our

algorithm would rank it as rank 2, this concept would not be of use to the rest of our

algorithm, as the algorithm only uses concepts on level 0 and level 1.

Stellenbosch University https://scholar.sun.ac.za

62

For both the second and the third conflict sets above, the proposed methodology ex-

plained in Section 3.2 would still ultimately yield the correct results. However from a user

experience perspective, the results may be confusing to the knowledge engineer, as it would

mean that axioms are not weakened in a systematic fashion: more exceptional axioms (like

those containing Staff or BlacklistedStaff) would be weakened first, rather than axioms

associated with the root cause first. I.e. rather than going in an ordered fashion through

the least exceptional axioms (those containing User on the left hand side), to the more

exceptional axioms (those containing Staff and BlacklistedStaff on the left hand side), the

knowledge engineer may trail through the path of exceptionality in a haphazard manner.

Therefore, the minimal conflict sets most suited to weakening should be highlighted to

the knowledge engineer, and should be displayed first. To achieve this aim, the following

two rules can be applied:

1. Once a user selects a specific axiom to investigate further, the minimal conflict set(s)

that have an individual or generated individual belonging to a more general type (in

this case, Staff) should be displayed first, and highlighted as suitable for weakening. If

OntoDebug finds a concept to be unsatisfiable, it will automatically create a dummy

individual associated with the concept (if an individual does not already exist) so that

an ontology inconsistency is flagged.

2. If more than one minimal conflict set is present for a given individual or generated

individual, then the conflict set with fewer concepts on the left hand side should

be displayed first. Research has shown that smaller justification sets are easier for

knowledge engineers to digest and interpret (Horridge et al. (2011, 2013), Kalyanpur

et al. (2006)), thus facilitating greater understanding and engagement throughout

the debugging lifecycle. Furthermore, having fewer axioms ensures that the ranking

algorithm operates more efficiently (as fewer concepts need to be ranked).

If the knowledge engineer adheres to the prompts indicating which minimal conflict set

is most apt to solve first, the benefits are that (a) root cause inconsistencies will be solved

first, and (b) fewer concepts will be fed to the ranking algorithm, which may show some

performance-related improvements in addition to being easier to interpret.

3.3.2. Choosing repair axioms: Up until now, the example that we have worked with

will provide only one axiom as an axiom to repair. When adding the below additional

Stellenbosch University https://scholar.sun.ac.za

63

Figure 26 OntoDebug behaviour when adding additional level of exceptionality.

axiom to our working example, OntoDebug returns two axioms as the axioms requiring

reparation:

Figure 27 OntoDebug behaviour when adding additional level of exceptionality: two repair candidates are listed.

This happens for the following reason: OntoDebug, being originally created as a de-

bugging environment catering for monotonic exceptions only, does not rank concepts by

nature. Therefore, when we ran OntoDebug on our initial example (with only User, Staff

and BlacklistedStaff), it found the axiom with Staff to be the ‘odd one out’, so to speak, as

it is the only concept in the concept hierarchy chain that allowed for individuals to have

accessTo.ConfidentialInfo. The other two concepts, User and BlacklistedStaff, cohere more

with each other as they are in the same concept hierarchy chain, and do not allow for any

of their individuals to have accessTo.ConfidentialInfo.

However, when the above axiom defining BlacklistedStaffCleared is added to the concept

hierarchy chain, and now coheres with the concept of Staff, Staff is now no longer the ‘odd

one out’, and so OntoDebug searches for the root cause inconsistencies – now being the

axioms in figure 27.

This means that for every second level of exceptionality that is added, the list of re-

pair axioms relating to the chain of exceptionality will grow by one further repair axiom.

Therefore, it is necessary to order the repair axioms so that the repair axioms at the root

Stellenbosch University https://scholar.sun.ac.za

64

cause of the problem are solved first. The motivation for this follows the same pattern of

thought that Rodler (Rodler 2015) adhered to when creating his querying algorithm, and

provides more order when the user is traversing through multi-level exceptions.

The answer we propose to this is simple: for each repair, sort the axioms based on the

generality of the left hand side concept – the more general the concept on the left hand

side, the higher on the list the axiom will be.

3.4. Use of systematic weakening as a design pattern

Rodler’s (2015) OntoDebug supports many different debugging activities: arguably, the

main functionality of it lies in guiding the user throughout the debugging process by posing

queries to the user which, when answered, narrows down the list of repairs. Even before

the interactive ontology debugging methodology is followed, however, the tool also presents

the user with the list of potential candidates for repair. By listing out the repairs at the

very beginning of the ontology debugging process – before the full interactive ontology

debugging methodology is followed – users can find and correct faults sooner than if they

were to go through the interactive ontology debugging methodology.

In this section, we show that where multi-level exceptions are concerned, either the

model-based diagnosis approach or a more heuristic approach can be followed to pre-

generate potential repairs at the outset. The repairs can be viewed as a design pattern

that is employed to resolve inconsistencies in both cases.

3.4.1. Using axiomatic weakening in a heuristic approach to debugging: Thus far,

we have worked with model-based diagnosis (refer to Section 2.5) for debugging the on-

tology. That is, we have identified that the ontology is in an undesirable state (it is in-

consistent/ incoherent), and we are aiming to get to the root of the issue to solve the

inconsistency/ incoherence so that the ontology is again in the desired state (coherent and

consistent). The heuristic approach to debugging tries to find common patterns of faulty

ontology modelling and presents suggestions for repairs based on this (Rodler et al. 2019).

The benefit of using the heuristic approach is that, especially with large ontologies, com-

putation of repairs is more efficient as minimal conflict sets do not need to be computed for

Stellenbosch University https://scholar.sun.ac.za

65

each inconsistency before returning a result. The drawback of using only the heuristic ap-

proach is that the repair suggestions may be incomplete, as it will only flag inconsistencies

following a certain pattern (Rodler 2015).

The idea of using ontology design patterns goes hand-in-hand with the heuristic

approach to debugging: Gangemi and Presutti (2009) describe an ontology design pattern

as a “modelling solution to solve a recurrent ontology design problem”. In this case the

recurrent ontology design problem is unintuitive exceptionality due to axioms that are

stated too strongly. Abstracting away from the User, Staff, BlacklistedStaff example that

we have been using up until now, we may define this kind of exception as follows:

Definition 22. An exceptionality pattern is a recurrent ontology design problem that

occurs when, in an ontology O, a concept, H which intuitively must be subsumed by the

parent concept, G, causes an inconsistency due to having a relationship r with another

concept, I, which is in direct opposition to the relationship that the parent concept G has

with the other concept, I. That is:

O=


Gv I

H vG

H v¬I


and intuitively the knowledge engineer would like to still maintain that all of the above

axioms are true.

The modelling solution to this recurrent ontology design problem is to weaken the ax-

iom with the most general concept (with the lowest rank) on the left hand side by left-

strengthening the most general concept on the left hand side by adding a conjunction with

the exceptional concept, as follows: Gu¬H v I.

Gangemi and Presutti (2009) list different categories of design patterns (logical, archi-

tectural, transformation, reasoning, correspondence, refactoring, mapping, presentation).

From their listing, the above can be described as a logical ontology design pattern (OP)

as logical OPs solve problems of expressivity. They help to solve design problems where

“the primitives of the representation language do not directly support certain logical con-

structs” (2009, 5). In this case, the primitives of classical DLs do not support the notion

of a concept being usually subsumed by another concept – classical DLs do not allow for

defeasible subsumption, @∼ .

Stellenbosch University https://scholar.sun.ac.za

66

Gangemi and Presutti (2009) argue that it is vital to maintain a modular catalogue and

repository of design patterns, and they show that this repository of design patterns can be

incorporated into the ontology design environment to enable more standard design, thus

enabling reusability and readability of an ontology. We posit that this ontology design

pattern repository can be equally valuable in the debugging environment, especially as

design patterns often stem from modelling problems. In such a repository, the above design

pattern would have the following properties:

• Name: Axiomatic weakening

• Intent: To weaken the axiom with the most general concept (with the lowest rank)

on the left hand side by left-strengthening the concept on the left hand side by adding

a conjunction with the negation of the exceptional concept, as follows: G u ¬H v I.

This enables concepts that are intuitively subsumed by other concepts to remain in

that subsumption relation, while also allowing for subsumed concepts to have a more

specific relation to another concept which is exceptional had the weakening not taken

place.

• Diagram – recurrent ontology design problem:

Figure 28 Recurrent ontology design problem.

• Diagram – ontology design pattern/solution:

Stellenbosch University https://scholar.sun.ac.za

67

Figure 29 Ontology design pattern/ solution.

• Elements:

—Parent concept – anything that subsumes another object. May be a complex

concept.

—Child concept – anything that is subsumed by another object. May be a complex

concept.

—Discordant concept – The concept that the Parent concept is subsumed by,

but the Child concept is not subsumed by, thus leading to a direct contradiction

in the Child concept. May be a complex concept.

A heuristic approach to debugging is beneficial in the case where the knowledge engineer

is dealing with a large ontology and where debugging needs to be performed swiftly, as

minimal conflict sets do not need to be computed for each inconsistency.

The axiomatic weakening design pattern can only deal with simple cases of axiomatic

weakening – more complex cases will be examined in the next chapter where these ap-

proaches are evaluated. Furthermore, as mentioned previously, the heuristic approach can

return incomplete results due to only looking for a specific faulty modelling pattern.

3.4.2. Using axiomatic weakening in a model-based diagnosis approach to debug-

ging: Whereas a heuristic approach, as explained above, can be used to quickly highlight

how inconsistencies can be resolved, whilst retaining as much knowledge as possible, the

same design pattern can also be employed when using the model-based diagnosis approach.

Figure 30 shows an example of the different axioms listed for repair, before the knowledge

engineer answers all relevant queries to eventually get to a single repair/ diagnosis.

Stellenbosch University https://scholar.sun.ac.za

68

Figure 30 Iteration 1 of list of repairs is given for ontology producing unintuitive result.

Currently, the output only shows which candidate axioms are in need of repair, but it

does not show how the axiom could be repaired.

Each of these repairs have a set of minimal conflict sets associated with them. We propose

that for each repair candidate, the same logic can be followed as in Section 3.3 to identify

a minimal conflict set suitable for weakening. Then, the algorithm explained in Section 3.2

can be used to obtain the weakened axiom which is then displayed to the user.

The benefit of following the model-based diagnosis approach to debugging is that it

will return more complete results, as it evaluates the entire ontology for inconsistencies/

incoherences. Because the entire ontology is evaluated, and because minimal conflict sets

need to be computed for each inconsistency/ incoherence, the approach is however less

efficient and especially for larger ontologies can take more time to execute.

We recommend using the heuristic approach alongside a model-based diagnosis approach:

this has the benefit that the user can view repair suggestions quickly via the heuristic

Stellenbosch University https://scholar.sun.ac.za

69

approach’s output. For more extensive debugging, the model-based diagnosis approach can

then be used to compute repair suggestions for each axiom listed as a repair candidate.

3.5. Integration with OntoDebug

From our above recommendations, there are two implications that our proposals have on

the OntoDebug tool: firstly, the interactive ontology debugging workflow will need to be

extended so that a knowledge engineer can run further reasoning tasks to understand how a

specific repair candidate can be weakened; secondly, before the interactive ontology debug-

ging workflow is followed by the knowledge engineer, the initial reasoning tasks performed

to show the repair candidates will need to be amended to incorporate the proposed design

pattern.

3.5.1. Integration with existing interactive ontology debugging workflow: Our rec-

ommendation fits in as an extension: the bulk of the initial workflow stays the same; it

is only at the point where the knowledge engineer would like to investigate why a spe-

cific axiom is listed as a repair candidate, and how the axiom can be weakened, that our

extension kicks in.

Figure 31 shows the worklfow that is followed. The boxes and lines in blue represent the

original OntoDebug steps, and the boxes and lines in green represent our extension.

The original workflow elements are as follows:

1. The knowledge engineer starts running OntoDebug – HermiT is used as the reasoner, as

it continues running even when inconsistencies are detected, thus enabling interactive

debugging to take place.

2. The reasoner checks whether there are any inconsistencies or incoherences – for con-

cepts that are unsatisfiable and have no instances associated with them, OntoDebug

will generate an instance for that concept.

3. If no inconsistencies or incoherences are detected, the workflow ends. If inconsistencies

or incoherences are detected, the workflow calculates the diagnoses (also referred to as

repair candidates) using the faulty ontology, positive test cases, negative test cases and

background knowledge (refer to Section 2.6 for more information on these concepts).

Stellenbosch University https://scholar.sun.ac.za

70

Figure 31 Activity diagram: extension to OntoDebug – green boxes and lines represent proposed OntoDebug

extension.

Stellenbosch University https://scholar.sun.ac.za

71

4. Once the diagnoses are calculated, the knowledge engineer can at any stage investi-

gate the diagnoses to understand why inconsistencies are occurring, and to fix them.

The next subsection explains how our methodology integrates with the initial repair-

generation tasks.

5. Diagnoses are gradually trimmed down as OntoDebug will pose a query to the user

to build up test cases and eliminate diagnoses. Queries are explicit axioms already

captured in the ontology that are systematically proposed to users, based on their

being linked to a leading diagnosis, and the user needs to confirm whether the axiom

holds (in which case it automatically becomes a positive test case) or not (in which

case it automatically becomes a negative test case). Refer to Chapter 2.6 for more

information on these concepts. With each query that is posed, at least one diagnosis

will be eliminated thus making the number of diagnoses more digestible for the knowl-

edge engineer. Queries are continually asked and answered until the results have been

narrowed down sufficiently.

6. Once the diagnoses have been trimmed down sufficiently, the knowledge engineer can

view them, along with their minimal conflict sets, and can choose to repair that specific

axiom

At this stage, the original OntoDebug workflow does not suggest how an axiom can

be repaired by weakening. This is where the original OntoDebug worklfow stops – after

the knowledge engineer has deleted or modified the repair candidate, again OntoDebug

checks for inconsistencies. If none are present, the workflow ends. If inconsistencies are

present, again the workflow starts.

Our extension covers the following steps, to show the knowledge engineer how the

relevant axiom leading to repair candidate(s) can be weakened.

7. The knowledge engineer decides to investigate the repair candidate further. This hap-

pens when the knowledge engineer selects the repair candidate and is taken to the

screen where they can view the minimal conflict sets associated with the repair (refer

to Section 2.6 for more information on minimal conflict sets).

8. To isolate the issue, a specific minimal conflict set needs to be selected to apply the

next computations on. The extension highlights to the knowledge engineer the minimal

conflict set most suited for weakening. It selects the minimal conflict set with the

individual or generated individual that is more general/ higher up in the hierarchy

Stellenbosch University https://scholar.sun.ac.za

72

than the other individuals; if there is more than one conflict set which meets this

criteria, it selects the minimal conflict sets that contains the fewest concepts. For a

more detailed explanation of this algorithm, refer to Section 3.3. Importantly, the

user will be able to override this choice of minimal conflict set, and select a different

minimal conflict set to perform the next steps on.

9. Next, the extension computes the rank of all concepts, and an axiom is selected for

weakening (refer to Section 3.2 for more details).

10. Then, the extension obtains the weakened axiom form (refer to Section 3.2 for more

details).

11. This weakened result is presented to the knowledge engineer, and if they accept the

weakened result, the ontology is updated, and again OntoDebug checks for inconsis-

tencies or incoherences. If any are present, the process is repeated.

With the design of our solution being in the form of an extension, this means that

inconsistencies or incoherences not caused by the exceptionality pattern this thesis is in-

vestigating can still be repaired as normal. For a detailed examination of the benefits and

challenges of this approach, along with an evaluation of how the extension performs with

a range of different situations, please refer to the next chapter.

3.5.2. Integration with initial repair-generation tasks: Not only does the OntoDebug

tool lead the knowledge engineer through an interactive process to minimise the number of

diagnoses returned, but it also gives the knowledge engineer the diagnoses (or repair candi-

dates) up-front. If the diagnoses are not too extensive, the knowledge engineer may be able

to more quickly pinpoint the fault. So there is a trade-off between systematically finding

the repair candidates, and finding the repair candidates easily/quickly – the knowledge

engineer chooses which to follow.

From the above, we’ve already seen how our extension slots into the interactive ontology

debugging workflow. With reference to the more detailed investigation in Section 3.4, there

are two ways in which weakened results can be posed as repairs for repair candidates:

1. Following a model-based diagnosis approach, at the time when the diagnoses are

computed (see point 2 above), for each diagnosis, the relevant minimal conflict set

can be selected by the extension (refer to Section 3.3). Then an axiom for weakening

can be selected, and the weakened result (refer to Section 3.2) can be displayed to

Stellenbosch University https://scholar.sun.ac.za

73

the knowledge engineer. Chapter 5 discusses how future work could investigate the

computation effort required for this.

2. Following a heuristic approach, exceptionality patterns (see Definition 22) can be

identified, without running the reasoner, and axiomatic weakening as a design pattern

can be followed to show repair suggestions to the user. Chapter 5 discusses how fu-

ture work could investigate tighter integration between the model-based and heuristic

approaches to ontology debugging.

We propose that a separate window be available in OntoDebug to accommodate sug-

gestions from heuristic approaches to ontology debugging. Potentially in the OntoDebug

configuration settings, users can also set whether they would want heuristic and model-

based suggestions to be generated – please refer to Chapter 5 for further discussion on

this.

3.6. Related work

Closely related our our work on effectuating a repair that is as minimal as possible is

the work of Horridge et al. (2008): they argue that often in real-world ontologies, axioms

are not in their minimal form, and contain ‘long’ axioms which can be broken down into

smaller pieces. Let’s continue with a different variant of our running example ontology:

O=


Userv¬∃accessTo.ConfidentialInfo

Staff vUser

Staff v∃accessTo.ConfidentialInfou∃accessTo.CanteenMenu


It is clear that the fact that Staff have access to the CanteenMenu does not directly

contribute to the incoherence in the above ontology. However, when justifications are com-

puted, the third axiom as a whole will be returned in the justification. For this reason,

Horridge et al. (2008) have developed a way of breaking down longer axioms into their

short form, and then computing the justifications from there. The effect of this is that only

the relevant parts of axioms leading to the incoherence are identified, and then only those

parts are removed.

Stellenbosch University https://scholar.sun.ac.za

74

Our approach differs from repair strategies that remove (parts of) axioms, possibly af-

ter computing smaller laconic or precise justifications. Instead, our methodology aims to

identify missing parts of axioms and add them.

3.7. Summary

In this chapter, we have shown the following:

1. For all its merits, the OntoDebug methodology and tool can lead to unintuitive results

particularly where we are dealing with faulty modelling due to axioms that are not

necessarily incorrect, but that need to be weakened. This acts as a motivation for an

extension to the OntoDebug tool, which can when prompted provide suggestions on

how an axiom in the minimal conflict set can be weakened rather than deleted.

2. We have provided a methodological outline which describes how suggestions can be

generated for weakening, rather than deleting, axioms. In the methodology, the issue

is first isolated by selecting the minimal conflict leading to the diagnosis; then through

using the ranking algorithm, we determine a candidate axiom to weaken and a can-

didate concept with which to weaken it. Weakening is applied using the postulate of

Cautious Monotonicity. The weakened result is shown to the knowledge engineer and

the knowledge engineer can choose to accept or reject the solution.

3. Through constructing the methodological outline, it became apparent that not only

could our methodology be used as part of a model-based diagnosis approach to on-

tology debugging, but that it can be combined with a heuristic approach to ontology

debugging as well. Especially for large ontologies where reasoning tasks may be ex-

pensive, this may assist with debugging tasks. This also shows that there is scope for

combining model-based diagnosis and heuristic approaches in the debugging commu-

nity.

4. Finally we described how this extension fits in with the larger OntoDebug workflow. In

essence, it does not detract from the standard OntoDebug workflow, but does provide

a way to query results further and to weaken (rather than delete) the faulty axiom.

We also discuss how, during the task of initial repair-generation, we can apply our

methodology either by following a model-based diagnosis or heuristic approach.

Stellenbosch University https://scholar.sun.ac.za

75

Our extension enables the usage of a debugging methodology that applies the principle

of minimal change in a more nuanced way, thus serving the ultimate goal of knowledge

retention in an ontology.

Stellenbosch University https://scholar.sun.ac.za

76

Chapter 4

Evaluation and Discussion

In this chapter, debugging via weakening is critically assessed. First, an evaluation of

edge-cases ensues and we investigate the behaviour of the debugging methodology in each

of these cases. This first section gives a more technical discussion, and is intended to

conceptually stress-test debugging via weakening, and provide insight on where future work

may originate from.

Secondly, we assess debugging via weakening from a more high-level view. This section is

intended to evaluate the debugging approach from a general view, and how it contributes

to the debugging and defeasible DL communities.

4.1. Testing behaviour with edge-cases

By assessing the behaviour of debugging via weakening at edge-cases, prompts for future

research may emerge, along with identifying where the boundaries of the methodology lie.

Specifically, we look at the behaviour of the methodology in the following cases:

• Cases where multi-level exceptionality inconsistencies are entangled alongside incon-

sistencies/ incoherences caused by a different issue;

• Cases where, during ranking, a concept is assigned a rank of ∞;

• Cases where a concept is exceptional in one context, but not in another2.

4.1.1. Entangled inconsistencies/incoherence: Entangled inconsistencies/ incoher-

ence refer to instances where one concept is unsatisfiable due to more than one reason.

For our purposes, we want to investigate where one of the inconsistencies/ incoherences is

caused by an axiom that has been asserted too strongly, and that needs to be weakened.

When inconsistencies are not entangled – that is to say when a multi-level exceptionality

inconsistency appears, and the concepts in this conflict set are not entangled with other

2 In this case we are not referring to formal reasoning with context as in Britz and Varzinczak (2019); we are rather
referring to context in the general sense of the word.

Stellenbosch University https://scholar.sun.ac.za

77

conflict sets – it is plain to see that the debugging via weakening methodology would return

the expected results as our methodology is simply an extension of the original OntoDebug

methodology: there would simply be more than one diagnosis returned as the exceptions

are unrelated.

It is not immediately intuitively clear whether this same posit holds for entangled in-

consistencies/ incoherence. Let’s investigate with an amalgamation of the examples used

throughout Sections 2.7 and 3.2:

O=



Staff vUser

Userv∃accessTo.PublicInfo

Userv¬∃accessTo.ConfidentialInfo

Staff v∃accessTo.ConfidentialInfo

>u∃accessTo.PublicInfov PublicInfoConsumer

>u∃accessTo.ConfidentialInfov PrivateInfoConsumer

PrivateInfoConsumerv¬PublicInfoConsumer

ConfidentialInfov¬PublicInfo


Let us assume that Staff has an individual associated with it. Staff is an unsatisfiable con-

cept for two reasons in the above ontology: firstly, Staff is unsatisfiable because it is asserted

that Staff have accessTo.ConfidentialInfo, yet at the same time, because Staff is subsumed by

User, it is also inferred that Staff do not have accessTo.ConfidentialInfo. Secondly, Staff is an

unsatisfiable concept because it is inferred that Staff is subsumed by PrivateInfoConsumer

because Staff have accessTo.ConfidentialInfo and anything that has accessTo.ConfidentialInfo

is considered a PrivateInfoConsumer. Yet, Staff is also subsumed by User, and it is inferred

that User is subsumed by PublicInfoConsumer because a User has accessTo.PublicInfo and

anything that has accessTo.PublicInfo is considered a PublicInfoConsumer. The incoherence

occurs because the concepts PrivateInfoConsumer and PublicInfoConsumer are asserted as

being disjoint, yet the concept of Staff has been identified as both a PrivateInfoConsumer

and a PublicInfoConsumer.

When following through with the OntoDebug methodology, we see that for the above

example, two axioms are suggested as needing to be repaired, due to two minimal conflict

sets being involved in causing the incoherence:

Stellenbosch University https://scholar.sun.ac.za

78

Figure 32 Running entangled concepts through OntoDebug returns separate axioms for repair.

Thus, each repair axiom can be examined individually. Simply removing the axiom as-

serting disjointness between PrivateInfoConsumer and PublicInfoConsumer solves the first

axiom to be repaired – this is also a good example of where it may at times be necessary

to simply remove an axiom, rather than attempting to weaken it, as it does make logical

sense that someone who is a PublicInfoConsumer can also be a PrivateInfoConsumer (indi-

viduals, for instance, who are Staff should have access to ConfidentialInfo in addition to

having access to PublicInfo). The minimal conflict set related to the second axiom returned

as an axiom to repair can be solved following the methodology proposed in this thesis by

weakening this statement: Userv∃accessTo.PublicInfo – refer to Section 3.2 for a detailed

breakdown of this methodology. In whichever order these are assessed and fixed, the results

remain the same, and so we can assert that our extended debugging methodology works

in cases where a concept is entangled in more than one conflict set.

4.1.2. Infinity rankings: Where we discuss our weakening methodology in Section 3.2,

it is clear that ranking of the concepts by their level of exceptionality plays an important

role. In Section 2.3, we also saw that at times the ranking of a concept can be ∞, which

means that even when ordering concepts by their level of exceptionality, a concept is

exceptional on its same level of exceptionality – ultimately, it is entirely unsatisfiable. Let’s

assess this with the following example:

O=



Userv¬∃accessTo.ConfidentialInfo

Staff vUser

Staff v∃accessTo.ConfidentialInfo

Staff v¬∃accessTo.ConfidentialInfo


In this example, the concept of Staff is not only exceptional to User, the level 0 concept,

but also to itself, which leads it to have a ranking of ∞. In this case, the methodology

Stellenbosch University https://scholar.sun.ac.za

79

would give an error, as it only works with concepts at levels 0 and 1 and the user would

need to manually investigate.

An important part of the debugging process is that it is interactive: it ought to be

remembered that the debugging methodology is in place to guide the user, and that it likely

can never be fully automated as human interpretation is required for domain knowledge

that aligns with our view of the world to be accurately captured.

4.1.3. Context-bound exceptionality: Certain forms of reasoning (for instance Ra-

tional Closure) cannot deal with the presumption of independence. The presumption of

independence states that if a concept is exceptional in one context, then it is not nec-

essarily the case that it is exceptional in other contexts, and therefore inferences related

to that concept should still assume that the concept is a ‘normal’ concept at level 0. We

investigate whether our current solution can deal with the presumption of independence.

Let’s first take the following ontology as a test case:

O=



Userv¬∃accessTo.ConfidentialInfo

Staff vUser

Staff v∃accessTo.ConfidentialInfo

Userv∃accessTo.PublicInfo


In this example, after our solution is applied, the first axiom in the above ontology is

changed to the following:

Useru¬Staff v¬∃accessTo.ConfidentialInfo

When this change is made, and the reasoner is run to find inferences, we find that

although it is the case that in the context of having accessTo.ConfidentialInfo, Staff acts

in a different way to its parent, User, in the context of having accessTo.PublicInfo, it is

correctly inferred that the concept of Staff behaves in the same way as its parent, User,

as this is an independent context. In this case then, the presumption of independence is

maintained using this debugging methodology.

There are other examples, however, where the presumption of independence would not

hold. Take for instance:

Stellenbosch University https://scholar.sun.ac.za

80

O=



Userv¬∃accessTo.ConfidentialInfo

Staff vUser

Staff v∃accessTo.ConfidentialInfo

>u¬∃accessTo.ConfidentialInfovHuman


The knowledge engineer might want to assert the above to capture what sorts of users

are system users/ bots vs normal human users. We would want the reasoner to infer that

the concept Staff, being subsumed by User, and User not having accessTo.ConfidentialInfo

is therefore subsumed by Human.

Using our repair strategy, again the repair would be the following:

Useru¬Staff v¬∃accessTo.ConfidentialInfo

In this case, however, the reasoner would not be able to infer that Staff is subsumed by

Human, and thus a potentially valuable piece of knowledge is missed out on.

Currently, this thesis focuses on one of the postulates in formulating a repair strategy,

namely Cautious Monotonicity (CM). Other postulates may also provide the user with

guidelines on possible repairs/ debugging. In this case, for instance, the Right Weakening

(RW) postulate can be used:

(RW)
C @∼D, DvE

C @∼E

When we substitute the first premise with the axiom related to the concept at level 0,

and the second premise with the axiom using the first premise axiom (but that is outside

the minimal conflict set), this postulate reads:

(RW)
User@∼¬∃accessTo.ConfidentialInfo, >u¬∃accessTo.ConfidentialInfovHuman

User@∼Human

In this case, more work will need to be done to establish the impact this postulate will

have on the debugging methodology, and particular attention will need to be paid on how

to identify the second premise which is outside of the minimal conflict set.

Stellenbosch University https://scholar.sun.ac.za

81

4.2. Contributions to debugging and defeasible DL communities

Carlile (2002) notes that innovation is defined as sourcing new knowledge at the intersection

between two disciplines. This work has investigated how defeasible DL tools and concepts

– such as ranking and the usage of postulates – can contribute to the ontology debugging

community by providing the knowledge engineer with recommendations on how axioms

can be weakened rather than deleted. For the defeasible DL community, this provides an

immediately applicable use of defeasible DL tools and concepts to other sub-communities

in the overarching ontology community. For the ontology debugging community, this pro-

vides a way of extending existing interactive ontology debugging tools so that not only

axioms at the heart of the fault (diagnoses) are presented to the user, but so that concrete

recommendations for fixing these faulty axioms is also provided. The next Chapter fur-

ther explains how the ties between these two communities can be strengthened as a result

of future research in this area. Suffice it to say that a new area for investigation at the

intersection between the debugging and defeasible DL communities has been successfully

opened.

The main contribution of this work is to enable the usage of a debugging methodology

that applies the principle of minimal change in a more nuanced way, thus serving the ul-

timate goal of knowledge retention in an ontology. Our extension to interactive ontology

debugging enables the knowledge engineer not only to see which axioms need to be fixed,

but how these axioms can be fixed. The extension follows on from the traditional OntoDe-

bug methodology from the point where the diagnoses are presented to the user: for each

diagnosis, the concepts in the minimal conflict set are ranked; after the ranking, the axiom

relevant for weakening is identified; finally the ranking is then used in conjunction with the

postulate of Cautious Monotonocity to weaken the relevant axiom and present this result

to the user.

From this main contribution, there have also been spin-off successes: firstly, in Section

3.4 we saw that the same principle as what is applied in the main methodology can be

translated to a design pattern and used in conjunction with a heuristic rather than model-

based approach. The design pattern has been defined, and it is suggested that this is added

to a catalogue of design patterns available to the user in their debugging environment.

Secondly, as noted in Section 4.1, in certain circumstances, our extension can cater for

Stellenbosch University https://scholar.sun.ac.za

82

the presumption of independence so that if a concept is exceptional in one context, it is

not necessarily inferred that this concept is exceptional in all contexts. The next chapter

will outline how future research on this front can progress to be of benefit to the ontology

debugging and defeasible DL communities by further investigating postulates as design

patterns.

Of course, our extension covers only a certain scope of debugging activities. There are

some limitations even when combining our approach with the traditional interactive ontol-

ogy debugging approach: firstly, and as mentioned in Section 4.1, with our extension if a

ranking of ∞ is encountered, the concept is ultimately unsatisfiable, and a suggestion will

not be generated. It is important to note that the onus of decision-making still lies with

the knowledge engineer, and the methodology should only be used to guide the knowledge

engineer in their understanding of the problem and the solution. Secondly, the core of our

approach is based on a model-based diagnosis approach, with only a hint of using heuris-

tics to find fault patterns that may represent multi-level inconsistencies. A model-based

diagnosis approach will only pick up on inaccuracies in a knowledge base when there is an

incoherence or inconsistency – even without any inconsistencies or incoherence there may

still be a modelling inaccuracy leading to unfavourable results.

Stellenbosch University https://scholar.sun.ac.za

83

Chapter 5

Conclusion and Future Work

The benefit of ontologies lies in the fact that they serve as knowledge representation for-

malisms over which reasoning tasks can occur. In a vast array of domains, they can be used

to formalise knowledge so that axioms are machine-readable and can be reasoned over thus

sourcing new knowledge and identifying domain inconsistencies. The success of ontologies

thus lies in (1) knowledge retention (2) without introducing undue logical inconsistencies.

As noted in Chapter 1, ontologies are likely to be subjected to the same 3Vs as big data:

volume, velocity and variety. With ontologies constantly growing in size (volume), either

by human or system users adding more concepts and relationships, inconsistencies arise

more often. As the rate at which new concepts and relationships are added to an ontology

(velocity) increases, either by multiple human and system users adding new concepts

and relationships, or by merging two or more ontologies, these inconsistencies arise faster

than previously. As ontologies are being used in more domains, and especially in domains

such as business or legal where there are often exceptions to the rules, the axiomatic

intricacy (variety) increases, meaning that inconsistencies arise more unexpectedly and

evade understanding of how they came about. As inconsistencies arise more often, faster

and more frequently evade understanding, the human ability to find adequate solutions for

these inconsistencies becomes impaired.

It has been argued that this presents a so-called wicked problem, and thus this problem is

interesting to investigate from a design science perspective. This involved analysing current

approaches to debugging, and creating a design artifact in the form of a methodology and

design plans to suggest how, through the use of defeasible reasoning tools, suggestions

of axiomatic weakening could be systematically presented to the user. In the same way

that Rodler (2015), Rodler et al. (2019) and Schekotihin et al. (2018) could motivate the

necessity of an interactive ontology debugging methodology by arguing that without it,

valuable axioms are often deleted thus leading to a loss of knowledge, our extension can

also be motivated: without a feature showing how axioms could be weakened rather than

deleted, valuable knowledge may be lost.

Stellenbosch University https://scholar.sun.ac.za

84

For each diagnosis, our extension suggests a way to fix the inconsistency/ incoherence

by weakening rather than deleting a relevant axiom in the minimal conflict set of that

diagnosis. From the point where the knowledge engineer decides to investigate a particular

diagnosis returned by OntoDebug in more detail, this is done by:

1. Isolating the issue by pulling through only the selected minimal conflict set (our

methodology provides recommendations on which minimal conflict sets would be more

apt to address first, though the onus still lies with the knowledge engineer);

2. Determining a candidate axiom to weaken and a candidate concept with which to

weaken it by obtaining the ranking of concepts within the minimal conflict set.

3. Weakening the relevant axiom by applying Cautious Monotonicity.

The weakened axioms are returned to the knowledge engineer and they choose to accept

or reject the solutions. The full OntoDebug methodology, together with our extension, is

followed until all inconsistencies and incoherence are resolved. This same logic can also be

applied using a more heuristic approach, which involves identifying multi-level exception-

ality patterns, and applying systematic weakening as a design pattern.

Of the OntoDebug tool, (Rodler 2015, p. 30) states: “Note that, due to monotonicity

of L, only deletion (and not expansion) of the knowledge base can effectuate a repair of

inconsistencies.” With our extension, we update the above statement: “due to monotonicity

of L, deletion or weakening of an axiom (but not expansion) of the knowledge based can

effectuate a repair of inconsistencies”. It is in this way that our extension enables the

usage of a debugging methodology that applies the principle of minimal change in a more

nuanced way, thus serving the ultimate goal of knowledge retention in an ontology. This is

the main contribution of our work along with the contribution of unearthing rich areas for

investigation at the intersection between the defeasible DL and debugging communities.

5.1. Future Work

This thesis has put forward an extension to interactive ontology debugging that enables,

through the use of defeasible reasoning tools, a way to suggest how faulty axioms can be

repaired by weakening, rather than deleting, the faulty axioms. This work has been done

at the design level, and in future would need to be implemented as a Protégé plug-in, as

an extension to OntoDebug.

Stellenbosch University https://scholar.sun.ac.za

85

Certain algorithms playing a significant role in the development of this extension have

already been implemented: Meyer et al. (2014) have, for instance, created the Defeasible

Inference Platform (DIP) Protégé plug-in. This plug-in has the ability to rank concepts

appearing in defeasible axioms. Furthermore, interactive ontology debugging has been im-

plemented in the OntoDebug Protégé plug-in. Implementing the extension as a Protégé

plug-in would therefore involve:

• Determining how the OntoDebug and DIP plugins would integrate with

each other. Either a new, standalone plug-in, incorporating aspects from both would

need to be created; or a plug-in which makes calls to each independent one of these

plug-ins could be created. The former approach may be easier for the end-user to

install and navigate, but the latter approach would mean that minimal rework would

need to be done – i.e. if any bug fixes or enhancements need to be done, these are done

in the original OntoDebug and DIP plug-ins, and these fixes/ enhancements would

not need to be duplicated in the plug-in integrating the two. Another consideration

would be to incorporate DIP directly in OntoDebug itself.

• In the new plug-in, pull through the existing OntoDebug/ DIP algorithms

required for the new extension. From OntoDebug, all modules will be necessary to

pull through (this could be a motivation for incorporating DIP directly into OntoDe-

bug itself, rather than creating a separate extension). From DIP, get the algorithm

that gets a concept’s ranking.

• Incorporate algorithms. Using figure 31, apply new logic for when the user selects

‘Investigate more’ on a specific faulty axiom in a diagnosis. OntoDebug functionality

would be followed up until this point; after this point, use the DIP algorithm for

obtaining a concept’s rank; then logic will need to be written to weaken the faulty

classical axiom using Cautious Monotonicity. The program will then need to be able

to replace the original axiom with the weakened axiom and to call back to the original

OntoDebug tool again to perform a check for inconsistencies. This process is repeated

as per the original OntoDebug logic.

Once implemented, computational analyses and user studies ought to be performed:

computational analyses will evaluate how well, computationally, the tool performs; i.e. they

investigate how well the tool scales along with the accuracy of the outputs. User studies

would focus on whether a typical user with the relevant ontology building background has

Stellenbosch University https://scholar.sun.ac.za

86

the ability to use their judgement effectively in deciding whether a weakened axiom presents

more accurately the domain they are modelling, or whether the faulty axiom should rather

be deleted; user studies could also focus on the extent to which the OntoDebug extension

helps a user to identify the correct repair in less time, and thus more efficiently, than if

the extension were not present. A good starting point for a user study would be to follow

a smiliar format as what is followed in Schekotihin et al. (2018): that is, given a faulty

ontology a control group consisting of a statistically adequate number of users with relevant

background in building ontologies use the previous ontology debugging tool (in this case,

just OntoDebug without the extension), and metrics are captured on how effectively and

efficiently the faults in the ontology are resolved. Meanwhile, the test group use the latest

ontology debugging tool (in this case, OntoDebug, along with the extension), and the same

metrics are captured for this group. The results are then compared, and it is determined

whether the performance of users whilst using the OntoDebug along with its extension

provides a statistically significant improvement in comparison to using just the OntoDebug

tool.

Once it has been shown that the extension boosts users’ efficiency and effectiveness when

debugging ontologies, further work can be done to investigate how tools, algorithms and

methodologies from the defeasible DL community can be used in the ontology debugging

community, and vice versa. For example, more research can be performed to determine

whether other postulates provide useful design patterns for heuristic ontology debugging:

in this thesis, we have seen that Cautious Monotonicity and Right Weakening represent

design patterns that crop up when debugging ontologies, yet there are a myriad other

postulates (see Definition 5) which could also be inspected for similar gains. There are also

some even more nuanced forms of defeasible reasoning that are being investigated: contex-

tual defeasibility, for instance, as put forward by Britz and Varzinczak (2019). Emerging

forms of defeasible reasoning may further assist the ontology debugging community with

providing users with concrete, yet nuanced ways of solving conflicts.

Through a more ontology debugging focused lens, future work could also investigate how

the model-based diagnosis and the heuristics approaches to ontology debugging could be

more seamlessly combined. In this thesis, we have touched upon it, with our suggestion

of building in the capability to recognise a design pattern that leads to multi-level excep-

tionality, and combining this with the model-based approach in OntoDebug. Future work

Stellenbosch University https://scholar.sun.ac.za

87

could focus on how other exceptionality patterns could be formalised as design patterns to

be used in a heuristic approach alongside a model-based diagnosis approach. Especially for

large ontologies, the benefit of a heuristic approach is that the reasoner does not need to be

run to pick up on these design patterns – a design pattern could even be picked up on whilst

the knowledge engineer is creating or modifying an ontology. Of course, a model-based

approach which finds the faulty axioms first, and then suggest a repair, will return more

accurate results. It may be possible that performance gains – both in terms of system and

user performance – may improve if, whilst modifying a large ontology, a heuristic approach

is followed to pinpoint any potential faults as they arise, and then to follow a model-based

diagnosis approach when running the reasoner and checking for inconsistencies.

Finally, future work could also focus on how OntoDebug and the extension put forward

in this thesis can form part of a larger ontology management tool. For instance, whether

it can form part of the Optique tool proposed by Haase et al. (2013), which extracts an

initial ontology and mappings from data sources, performs mapping and alignment, checks

ontologies for defects, and provides versioning support. The purpose of this full package

of tools is to enable access to relevant ‘big’ data by bringing together data from different

sources through using an ontology and mappings. It is in the checking and corrections of

defects that OntoDebug and its extension can be of use.

Stellenbosch University https://scholar.sun.ac.za

88

List of Figures

1 Visualisation of the SNOMED CT ontology. Black nodes represent concepts;

grey lines represent relationships between the concepts. 2

2 Example of class hierarchy in Protégé. 27

3 Subsumption statement associated with User. 27

4 Subsumption statement associated with Staff. 28

5 Subsumption statement associated with BlackListedStaff. 28

6 Axioms noted to be strict/ classical axioms. 28

7 Axioms noted to be defeasible axioms. 29

8 Ranking in DIP in Protégé 5.0. 29

9 Input ontology used for illustration of OntoDebug. 42

10 Setting background knowledge in OntoDebug. 42

11 OntoDebug repair candidates – axioms which would, when deleted, effectu-

ate a repair. 43

12 OntoDebug queries (first iteration). 43

13 In OntoDebug submitted answers become test cases; for each query answered

at least one repair candidate is eliminated; if more than one repair still

exists, further queries are posed to the knowledge engineer. 44

14 Iterative nature of OntoDebug. 44

15 Following a process of iteration, a minimal repair candidate has been identified. 45

16 OntoDebug’s repair screen. 45

17 OntoDebug – repair success screen. 46

18 Ontology producing unintuitive result is created in Protégé 5.0. 48

19 Iteration 1 of list of repair candidates is given for ontology producing unin-

tuitive result. 49

20 Iteration 1 queries generated of the ontology producing the unintuitive result. 49

21 Iteration 2 possible repair candidates to the ontology producing the unin-

tuitive result. 50

22 Iteration 2 query answering to the ontology producing unintuitive results. . 50

23 Unintuitive repair candidate is provided. 51

Stellenbosch University https://scholar.sun.ac.za

89

24 Unintuitive axiom to repair. 60

25 List of justifications associated with unintuitive repair candidate. 61

26 OntoDebug behaviour when adding additional level of exceptionality. 63

27 OntoDebug behaviour when adding additional level of exceptionality: two

repair candidates are listed. 63

28 Recurrent ontology design problem. 66

29 Ontology design pattern/ solution. 67

30 Iteration 1 of list of repairs is given for ontology producing unintuitive result. 68

31 Activity diagram: extension to OntoDebug – green boxes and lines represent

proposed OntoDebug extension. 70

32 Running entangled concepts through OntoDebug returns separate axioms

for repair. 78

List of Tables

1 Example of ranking output. 25

2 First iteration concept ranking output. 55

3 First iteration axiom ranking output. 55

4 Second iteration concept ranking output. 58

5 Second iteration axiom ranking output. 58

Stellenbosch University https://scholar.sun.ac.za

90

References

Aminu, E. F., Oyefolahan, I. O., Abdullahi, M. B. and Salaudeen, M. T. (2020), ‘A review on ontology

development methodologies for developing ontological knowledge representation systems for various

domains.’, International Journal of Information Engineering & Electronic Business 12(2), 28–39.

Baader, F., Horrocks, I., Lutz, C. and Sattler, U. (2017), Introduction to description logic, Cambridge Uni-

versity Press.

Baader, F., Horrocks, I. and Sattler, U. (2004), Description logics, in S. Staab and R. Studer, eds, ‘Handbook

On Ontologies’, Springer-Verlag, Berlin, chapter 1, pp. 3–28.

Baader, F. and Nutt, W. (2006), Basic description logics, in D. Nardi and R. Brachman, eds, ‘Description

Logic Handbook’, Springer-Verlag, Berlin, chapter 2, pp. 47–100.

Banik, A. and Bandyopadhyay, S. (2016), ‘Big data - a review on analysing 3Vs’, Journal of Scientific and

Engineering Research 3(1), 2394–2630.

Behrens, S. and Sedera, W. (2004), ‘Why do shadow systems exist after an ERP implementation? Lessons

from a case study’, PACIS 2004 Proceedings p. 136.

Boutilier, C. (1994), ‘Conditional logics of normality: A modal approach’, Artificial Intelligence 68, 87–154.

Britz, K., Casini, G., Meyer, T., Moodley, K. and Sattler, U. (2017), Rational defeasible reasoning for

description logics, Technical report, University of Cape Town, South Africa.

Britz, K., Casini, G., Meyer, T., Moodley, K., Sattler, U. and Varzinczak, I. (2020), ‘Principles of KLM-style

defeasible description logics’, ACM Transactions on Computational Logic (TOCL) 22(1), 1–46.

Britz, K., Casini, G., Meyer, T. and Varzinczak, I. (2019), A KLM perspective on defeasible reasoning for

description logics, in C. Lutz, U. Sattler, C. Tinelli, A. Turhan and F. Wolter, eds, ‘Description Logic,

Theory Combination, and All That: Essays Dedicated to Franz Baader on the Occasion of His 60th

Birthday’, Springer International Publishing, Cham, pp. 147–173.

URL: https://doi.org/10.1007/978-3-030-22102-77

Britz, K. and Varzinczak, I. (2019), ‘Contextual rational closure for defeasible ALC’, Annals of Mathematics

and Artificial Intelligence 87(1-2), 83–108.

Carlile, P. R. (2002), ‘A pragmatic view of knowledge and boundaries: Boundary objects in new product

development’, Organization Science 13, 442–455.

Casini, G., Meyer, T., Moodley, K. and I.Varzinczak (2013), Towards practical defeasible reasoning for

description logics, 26th International Workshop on Description Logics.

Chan, P. and Hankel, L. (2019), System for detecting data protection violations, in ‘ICCWS 2019 14th

International Conference on Cyber Warfare and Security: ICCWS 2019’, Academic Conferences and

publishing limited, p. 30.

Stellenbosch University https://scholar.sun.ac.za

91

Friedrich, G. and Schekotykhin, K. (2005), A general diagnosis method for ontologies, Proceedings of the

4th International Semantic Web Conference (ISWC 2005).

Gangemi, A. and Presutti, V. (2009), Ontology design patterns, in ‘Handbook on ontologies’, Springer,

pp. 221–243.

Giordano, L., Gliozzi, V., Olivetti, N. and Pozzato, G. L. (2013), ‘A non-monotonic description logic for

reasoning about typicality’, Artificial Intelligence 195, 165–202.

Guarino, N. (1995), ‘Formal ontology, conceptual analysis and knowledge representation’, Knowledge Acqui-

sition 2(3), 241–258.

Haase, P., Horrocks, I., Hovland, D., Hubauer, T., Jiménez, E., Kharlamov, E., Klüwer, J., Pinkel, C.,

Rosati, R., Santarelli, V., Soylu, A. and Zheleznyakov, D. (2013), ‘Optique system: towards ontology

and mapping management in OBDA solutions’.

Hevner, A. and Chatterjee, S. (2010), Design science research in information systems, in ‘Design research in

information systems’, Springer, pp. 9–22.

Hevner, A. R., March, S. T., Park, J. and Ram, S. (2004), ‘Design science in information systems research’,

MIS quarterly pp. 75–105.

Horridge, M., Bail, S., Parsia, B. and Sattler, U. (2011), The cognitive complexity of OWL justifications, in

‘International Semantic Web Conference’, Springer, pp. 241–256.

Horridge, M., Bail, S., Parsia, B. and Sattler, U. (2013), ‘Toward cognitive support for OWL justifications’,

Knowledge-Based Systems 53, 66–79.

Horridge, M., Parsia, B. and Sattler, U. (2008), Laconic and precise justifications in OWL, in A. Sheth,

S. Staab, M. Dean, M. Paolucci, D. Maynard, T. Finin and K. Thirunarayan, eds, ‘The Semantic Web

- ISWC 2008’, Springer Berlin Heidelberg.

Kalyanpur, A., Parsia, B., Sirin, E. and Cuenca-Grau, B. (2006), Repairing unsatisfiable concepts in OWL

ontologies, in ‘European Semantic Web Conference’, Springer, pp. 170–184.

Knorr, M., Hitzler, P. and Maier, F. (2012), ‘Reconciling OWL and non-monotonic rules for the semantic

web’.

Kraus, S., Lehmann, D. and Magidor, M. (1990), ‘Nonmonotonic reasoning, preferential models and cumu-

lative logics’, Artificial Intelligence 44, 167–207.

Lambrix, P. (2019), ‘Completing and debugging ontologies: state of the art and challenges’, ArXiv

abs/1908.03171.

McDermott, D. and Doyle, J. (1980), ‘Non-monotonic logic I’, Artificial intelligence 13(1-2), 41–72.

Meyer, T., Moodley, K. and Sattler, U. (2014), DIP: A defeasible-inference platform for owl ontologies,

CEUR Workshop Proceedings.

Stellenbosch University https://scholar.sun.ac.za

92

Nardi, D. and Brachman, R. J. (2003), An introduction to description logics, in F. Baader, D. McGuinness,

D. Nardi and P. Patel-Schneider, eds, ‘The Description Logic Handbook: Theory, Implementation and

Applications’, Cambridge University Press, London, chapter 1, pp. 1–43.

Obrst, L. (2003), Ontologies for semantically interoperable systems, in ‘Proceedings of the twelfth interna-

tional conference on information and knowledge management’, pp. 366–369.

Peñaloza, R. (2019), Explaining axiom pinpointing, in ‘Description Logic, Theory Combination, and All

That’, Springer, pp. 475–496.

Regulator, S. I. (2013), ‘Protection of personal information act’.

Rodler, P. (2015), Interactive Debugging of Knowledge Bases, PhD thesis, Alpen-Adria University Klagen-

furt.

Rodler, P., Jannach, D., Schekotihin, K. and Fleiss, P. (2019), ‘Are query-based ontology debuggers really

helping knowledge engineers?’, Knowledge-Based Systems 179, 92–107.

Rodler, P. and Schmid, W. (2018), On the impact and proper use of heuristics in test-driven ontology

debugging, in ‘International Joint Conference on Rules and Reasoning’, Springer, pp. 164–184.

Rosnizam, M. R. A. B., Kee, D. M. H., Akhir, M. E. H. B. M., Shahqira, M., Yusoff, M. A. H. B. M.,

Budiman, R. S. and Alajmi, A. M. (2020), ‘Market opportunities and challenges: A case study of Tesco’,

Journal of the community development in Asia 3(2), 18–27.

Roussey, C., Pinet, F., Kang, M. and Corcho, O. (2011), An introduction to ontologies and ontology en-

gineering, in G. Falquet, C. Metral, J. Teller and C. Tweed, eds, ‘Ontologies in Urban Development

Projects’, Springer, London, chapter 2, pp. 9–38.

Schekotihin, K., Rodler, P. and Schmid, W. (2018), Ontodebug: interactive ontology debugging plug-in

for Protégé, in ‘International Symposium on Foundations of Information and Knowledge Systems’,

Springer, pp. 340–359.

Schlobach, S., Huang, Z., R.Cornet and Harmelen, F. (2007), ‘Debugging incoherent terminologies’, Journal

of automated reasoning 39, 317–349.

Shoham, Y. (1987), Nonmonotonic logics: Meaning and utility., in ‘IJCAI’, Vol. 10, Citeseer, pp. 388–393.

Soylu, A., Giese, M., Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D. and Horrocks, I. (2013), Op-

tiqueVQS: Towards an ontology-based visual query system for big data, in ‘Proceedings of the Fifth

International Conference on Management of Emergent Digital EcoSystems’, MEDES ’13, Association

for Computing Machinery, New York, NY, USA, p. 119–126.

URL: https://doi.org/10.1145/2536146.2536149

Studer, R., Benjamins, V. R. and Fensel, D. (1998), ‘Knowledge engineering: Principles and methods’, Data

and Knowledge Engineering 25, 161–197.

Troquard, N., Confalonieri, R., Galliani, P., Penaloza, R., Porello, D. and Kutz, O. (2018), Repairing ontolo-

gies via axiom weakening, in ‘Proceedings of the AAAI Conference on Artificial Intelligence’, Vol. 32.

Stellenbosch University https://scholar.sun.ac.za

93

Tziva, M., Negro, S., Kalfagianni, A. and Hekkert, M. (2019), ‘Understanding the protein transition: the rise

of plant-based meat substitutes’, Environmental Innovation and Societal Transitions .

Varzinczak, I. (2018), ‘A note on a description logic of concept and role typicality for defeasible reasoning

over ontologies’, Logica Universalis 12(3-4), 297–325.

Wang, H., Horridge, M., Rector, A., Drummond, N. and Seidenberg, J. (2005), Debugging OWL-DL ontolo-

gies: A heuristic approach, in ‘International Semantic Web Conference’, Springer, pp. 745–757.

Yamada, N. and Fukuta, N. (2016), Toward performance-oriented ontology debugging support using heuristic

approaches and dl reasoning, in ‘2016 IEEE/WIC/ACM International Conference on Web Intelligence

Workshops (WIW)’, IEEE, pp. 88–91.

Stellenbosch University https://scholar.sun.ac.za

