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Abstract 

In the wake of finding alternative sustainable and environmentally friendly products to conventional 

construction materials, geopolymers offer large potential as a low carbon footprint material. Their 

excellent properties and the ability to be synthesized from industrial waste make them promising 

alternative binders in wood-based composites where durability, environmental sustainability, 

structural integrity, and low cost of final products are of utmost importance. This study investigated 

the application of unary and binary precursor based geopolymers in the development of composite 

products for use in outdoor conditions. The unary geopolymer is based on 100% ground granulated 

blast slag, while the binary precursor is composed of 75% class F fly ash and 25% metakaolin. The 

precursors were activated with a combination of sodium hydroxide and sodium silicate solutions 

formulated at a weight ratio of 1:2.5. The lignocellulosic materials used include sugarcane bagasse 

(Saccharum officinarum) and forest biomass waste from the clearing of locally occurring invasive 

alien species including Long-leaved wattle (A. longifolia), Black wattle (A. mearnsii) and Port 

Jackson (A. saligna).  

The production process involved using a mixed factorial experimental design. The variables 

considered included precursor-activator ratio (PA), curing pattern (CP), amount of lignocellulosic 

material (LM) and alkali concentration (MCon). For the unary system, the variables were CP, LM 

and MCon. PA and CP were considered at 2 levels, while LM and MCon were considered at 3 levels. 

The effects of the main factors and their interactions on the observed composite properties were 

evaluated using analysis of variance (ANOVA). The boards have comparable physical properties to 

cement-bonded particleboard according to the EN 632-2: 2007 standard. However, for the unary 

system only A. saligna boards produced with 6M NaOH and cured at 40°C for 24 h met the 

mechanical strength requirements, while in the binary system, only A. longifolia boards produced 

with 12M NaOH, PA ratio of 2:1 and cured at 100°C for 6h met the mechanical strength requirements. 

The boards were also thermally stable as the residues retained at the end of thermal analysis was 

above 70%. 

There was a concern about the durability of the LM in the alkaline matrix. Scanning electron 

microscopy (SEM) micrographs indicated mineralization of the particles and a partial degradation of 

hemicellulose was confirmed by Fourier transform infrared (FTIR) spectroscopy and 

thermogravimetry analysis (TGA). Although the degraded products did not prevent geopolymer 
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setting, the degree of geopolymeric reaction was impeded. The lignocellulosic materials were 

subjected to alkalization, acetylation, and hot water extraction to remove the lower molecular 

components, which could impede geopolymerization kinetics and enhance their surface 

characteristics. This was aimed at improving the durability of LM in the matrix and the overall 

properties of the boards. The influence of each treatment on the lignocellulosic materials was 

evaluated using HPLC, SEM and FTIR, while the resulting boards were tested to specification and 

characterized using SEM and FTIR. The treatments improved the surface characteristics of the fibres 

and the fibre yield was not impacted significantly. FTIR indicated formation of more geopolymer 

products after fibre treatment, which was confirmed by SEM micrographs. The treated samples 

exhibited a compact and densely populated gel-like amorphous microstructure with fewer unreacted 

precursor particles. In the unary system, the mean modulus of rupture (MOR) increased by 3.25% for 

hot water extracted, 23.61% for acetylated and 23.94 % for alkalized AM boards. In the binary 

system, the mean MOR increased by 18.31% for hot water extracted, 6.03% for acetylated and 

18.22% for alkalized AM boards. The study concluded that South African woody invasive plants 

(IPs) and sugarcane bagasse are suitable to produce both unary- and binary precursor-based 

geopolymer wood composites of comparable properties to cement-bonded particleboards. 
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Opsomming 

In die nasleep van alternatiewe volhoubare en omgewingsvriendelike produkte as konvensionele 

konstruksiemateriaal, bied geopolimere 'n groot potensiaal as 'n lae koolstofvoetspoor. Die 

uitstekende eienskappe en die vermoë om deur industriële afval gesintetiseer te word, maak dit 

belowende alternatiewe bindmiddels in houtsaamgestelde produkte waar duursaamheid, 

volhoubaarheid in die omgewing, strukturele integriteit en lae koste van finale produkte van die 

uiterste belang is. Hierdie studie ondersoek die toepassing van eenvormige en binêre 

voorgangergebaseerde geopolimere in die ontwikkeling van saamgestelde produkte vir gebruik in 

buitelugtoestande. Die eenvormige geopolymeer is gebaseer op 100% gemaalde ontploffingslak, 

terwyl die binêre voorloper bestaan uit 75% klas F-vliegas en 25% metakaolien. Die voorlopers is 

geaktiveer met 'n kombinasie van natriumhidroksied- en natriumsilikaatoplossings wat met 'n 

gewigsverhouding van 1:2.5 geformuleer is. Die gebruikte lignocellulosemateriale sluit in suikerriet 

bagasse (Saccharum officinarum) en bosbiomassa-afval van die skoonmaak van plaaslik 

voorkomende uitheemse spesies, waaronder langblaarwattel (A. longifolia), swartwattel (A. mearnsii) 

en Port Jackson (A. saligna) deel was. 

Die produksieproses is met behulp van 'n gemengde faktorale eksperimentele ontwerp saamgestel. 

Die veranderlikes wat in ag geneem is, het die voorgang-aktivator-verhouding (PA), drogingspatroon 

(CP), die hoeveelheid lignocellulose materiaal (LM) en die alkalikonsentrasie (Mcon) ingesluit. Vir 

die eenvormige stelsel was die veranderlikes CP, LM en MCon. PA en CP is op 2 vlakke oorweeg, 

terwyl LM en MCon op 3 vlakke beskou is. Die effekte van die belangrikste faktore en hul interaksies 

op die waargenome saamgestelde eienskappe is geëvalueer met behulp van variansieanalise 

(ANOVA). Die borde het vergelykbare fisiese eienskappe met sementsaamgestelde veselbord 

volgens die EN 632-2: 2007-standaard. Vir die eenvormige stelsel het slegs A. saligna-borde wat met 

6M NaOH geproduseer is en 24 uur lank by 40 ° C gedroog is, aan die meganiese sterktevereistes 

voldoen, terwyl slegs A. longifolia-borde met 12M NaOH, PA-verhouding van 2:1 in die binêre 

stelsel  en gedurende 100 uur by 100 ° C gedroog, het aan die meganiese sterktevereistes voldoen. 

Die planke was ook termies stabiel, aangesien die afval wat aan die einde van die termiese analise 

behou is, bo 70% was. 

Daar was kommer oor die duursaamheid van die LM in die alkaliese matriks. Skandering-

elektronmikroskopie (SEM) mikrografieke het aangedui op mineralisering van die deeltjies en 'n 

Stellenbosch University https://scholar.sun.ac.za



vi 

 

 

gedeeltelike agteruitgang van hemisellulose is bevestig deur Fourier transvorm infrarooi (FTIR) 

spektroskopie en termogravimetrie-analise (TGA). Alhoewel die afgebreekte produkte nie die 

verharding van geopolymeer verhinder het nie, is die mate van geopolymeriese reaksie belemmer. 

Die lignocellulosemateriale is onderwerp aan alkalisering, asetilering en ekstraksie van warm water 

om die laer molekulêre komponente te verwyder, wat geopolymerisasie-kinetika kan belemmer en 

die oppervlakkenmerke daarvan kan verbeter. Dit was gerig op die verbetering van die duursaamheid 

van LM in die matriks en die algehele eienskappe van die borde. 

Die invloed van elke behandeling op die lignocellulosemateriaal is geëvalueer deur gebruik te maak 

van HPLC, SEM en FTIR, terwyl die saamgestelde borde volgens spesifikasie getoets is en 

gekarakteriseer is met behulp van SEM en FTIR. Die behandelings het die oppervlakkenmerke van 

die vesels verbeter en die veselopbrengs is nie beduidend beïnvloed nie. FTIR dui op die vorming 

van meer geopolymeerprodukte na veselbehandeling, wat deur SEM-mikrografieke bevestig is. Die 

behandelde monsters vertoon 'n kompakte en dig bevolkte gel-agtige amorfe mikrostruktuur met 

minder ongereageerde voorgangdeeltjies. In die eenvormige stelsel het die gemiddelde breukkrag 

(MOR) met 3,25% toegeneem vir warm water wat onttrek is, 23,61% vir geasetileerde en 23,94% vir 

alkaliseerde AM-borde. In die binêre stelsel het die gemiddelde MOR met 18,31% toegeneem vir 

warm water wat onttrek is, 6,03% vir geasetileerde en 18,22% vir alkaliseerde AM-borde. Die studie 

het tot die gevolgtrekking gekom dat Suid-Afrikaanse houtagtige IP's en suikerriet-bagasse geskik is 

om sowel eenvormige as binêre voorlopergebaseerde geopolymeer-houtsaamgestelde produkte te 

produseer, wat vergelykbaar is met sementvesel saamgestelde borde. 
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Chapter 1  

General introduction 

1.1 Background and motivation 

Application of synthetic polymeric resins has dominated wood-based panel industries for more than 

eight decades (Sarmin et al. 2014). They are used for reconstituting particle boards, oriented strand 

boards, chipboards, plywoods and fibreboards (Irle 2010), while Portland cement is the major 

inorganic binder used in cement-bonded  boards (Semple and Evans 2004). These composite products 

possess excellent properties, which make them suitable for different indoor and outdoor applications. 

However, recent studies have provided sufficient proof that volatile substances such as formaldehydes 

from formaldehyde-based polymeric resins are highly carcinogenic- causing leukemia, nasopharynx 

and sinonasal cancers in human (IARC 2012). Production of Portland cement, on the other hand, also 

contributes about 5% to 7% of the total greenhouse gas emission globally (Duan et al. 2016; Najimi 

et al. 2016; Sun et al. 2015). Production of 1 ton of cement releases about 1 ton of CO2 into the 

atmosphere. The emissions add to the global carbon emissions, which are responsible for increasing 

temperatures that lead to adverse climate changes (Hardjito and Rangan 2005). The frequent cases of 

fire in recent times have been attributed to the multiplier effects of the global warming (Archibald et 

al. 2010; FPASA 2017). The fire incidents in Knysna, South Africa and Grenfell Tower, London in 

2017 claimed many lives and loss of invaluable properties. Therefore, the continued growing global 

awareness of these pressing challenges has stimulated renewed interest in finding alternative low-

cost materials that exhibit excellent properties and zero to low impact on man and the environment.  

Geopolymer is an emerging alternative inorganic binder with an excellent potential to substitute 

conventional materials such as Portland cement in several applications. It is produced by geo-

synthesis of materials rich in aluminosilicate materials with an alkaline metal solution at ambient or 

slightly elevated temperatures (Alomayri et al., 2013). It does not only provide performance 

comparable to ordinary Portland cement (OPC) in many applications, but has many additional 

advantages, such as rapid curing, high acid and fire resistance, excellent adherence to aggregates, 

immobilization of toxic and hazardous materials and significantly reduced energy usage and 

greenhouse gas emissions (Alomayri et al., 2013; Chen, 2014; Duan et al., 2016). Durability, 

environmental sustainability, structural integrity and cost effectiveness of materials are important 

requirements in building construction and wood-based manufacturing. The excellent properties of 
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geopolymer and its ability to be synthesized from industrial waste an overall low impact on the 

environment make it a promising alternative binder in these sectors. 

However, it also exhibits brittle behaviour with low tensile strength, ductility, and fracture toughness 

common to most inorganic cementitious materials. Different synthetic materials have been used to 

reinforce geopolymer concrete to contain these weaknesses. These include polypropylene 

(Korniejenko et al. 2015), polyvinyl alcohol (PVA) (Yunsheng et al. 2008), steel and carbon fibres 

(Natali et al. 2011). Synthetic fibres are non-biodegradable and difficult to dispose of at the end of 

service life of the products (Herrmann et al. 1998; Pacheco-Torgal and Jalali 2011). High energy 

usage, cost, and serious concern about their disposal at the end-of-life cycle inarguably hinder the 

overall objective of developing sustainable eco-friendly and low-cost materials. Lignocellulosic 

fibres, such as cotton, bagasse, hemp, wood, bamboo, rattan, coir, jute, sisal, and others offer excellent 

properties, which make them promising alternatives to synthetic fibres. They are biodegradable with 

low density and adequate mechanical properties (Sarmin 2016). They have been successfully 

incorporated into different polymeric and inorganic matrices to produce lignocellulosic fibre 

composites (Evan 2000; Sudin et al. 2000; Jorge et al. 2004; Semple et al. 2004; Del Menezzi et al. 

2007; Sales et al. 2011; Omoniyi 2012; LIMA 2015; Onuaguluchi et al. 2016). Previous investigations 

have shown that lignocellulosic fibres can be incorporated into a geopolymeric binder to produce 

composite products, but their development and utilization have not yet been extensively studied.  

Sarmin et al. (2014) studied the properties of fly ash/metakaolin based geopolymer with 10% wood 

particles to make a lightweight composite. Addition of wood particles increased the magnitude of 

water absorption in the composite. Alomayri et al. (2014) studied the mechanical properties of a fly 

ash geopolymer reinforced with cotton fabric at elevated temperatures. The fly ash was activated with 

a combination of sodium silicate and sodium hydroxide at a ratio of 2.5:1. The molar concentration 

of sodium hydroxide was not indicated. Chen et al. (2014) reinforced fly ash-based geopolymers with 

sorghum fibres and concluded that the addition of fibres decreased the workability and unit weight of 

geopolymer pastes. It was reported that a fibre content up to 2% increased both tensile and flexural 

strength of the geopolymer composites. Duan et al. (2016) encapsulated a mixture of wood particles 

into a geopolymer matrix made of class F fly ash activated with sodium silicate and 10M NaOH at a 

ratio of 8:1. Addition of sawdusts up to 20 % improved the mechanical properties of the composites. 

The targeted application areas for the composite products were not mentioned in these previous 

investigations. Sarmin (2016), Sarmin and Welling (2016) and Sarmin and Welling (2015) added 

wood particles to a binary precursor made from FA and MK to produce a lightweight material. 
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Addition of wood particles improved the strength, but no mention was made about how the inherent 

wood properties influenced the performance of the geopolymer product.  

Biomass residues from the clearing of alien invasive wood species (AIWS) and the bulk of industrial 

waste generated in South Africa could serve as a huge deposit of raw materials to produce low-cost 

geopolymer bonded wood composites (GBWC). South Africa has a high proportion of invasive plants 

(IPs) in the world (Le Maitre et al. 2000; Moyo and Fatunbi 2010). The IPs have serious socio-

economic impact as about 30% of the South African grassland biome has been permanently modified 

(Mucina et al. 2006), posing a threat to the sustainable biodiversity of natural ecosystems; affecting 

both livestock and wildlife production (Shackleton et al. 2019). However, the prevailing approach to 

reduce the density of established, terrestrial, invasive alien plants is based on total clearing by 

mechanical and chemical means (DEA 2019).  The removal generates excessive waste and impacts 

the environment negatively (Amiandamhen et al. 2017). In a bid to add value to the cleared AIWS, 

previous studies have incorporated them into calcium and magnesium phosphate matrices to produce 

phosphate-bonded composite products for use in building applications (Amiandamhen et al. 2016; 

Amiandamhen et al. 2017). These composite products showed promising properties, but recent 

studies have revealed that the high cost of this particular binder could prohibit its eventual use in the 

production of board products (Chimphango 2020).  

Biomass waste, paper, slag and ash constitute about 80 million tonnes of waste annually in South 

Africa, out of which 74 million tonnes (or 93%) is landfilled (DEA, 2012). The development of 

geopolymer bonded composites is a promising alternative, which has a great potential to cause 

diversion of huge quantity of the generated waste from landfills. The current study investigated the 

properties of unary (slag) and binary (fly ash/metakaolin) precursor based geopolymers reinforced 

with wood particles from AIWS and sugarcane bagasse (SCB) targeted for use in outdoor conditions,  

such as wall cladding, roof and floor tiles. By reducing landfills, the innovation in this study will 

create opportunities for more effective and sustainable utilization of industrial waste in the 

development of eco-friendly building materials. 

1.2 Research aim and objectives 

The project was aimed at developing alternative eco-friendly, low-cost, and fire-resistant building 

components using AIWS and agricultural crop residues bonded with geopolymers derived from 

industrial waste, such as fly ash and blast furnace slag. 
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1.2.1 The specific objectives addressed in this study are as follows: 

Objective 1 

Investigate and characterize binary precursor-based geopolymer bonded wood and fibre composites 

from alien invasive wood species and bagasse 

To address this objective, crushed sugarcane bagasse (Saccharum officinarum) and wood particles 

from two alien invasive acacia species, namely Black wattle (Acacia mearnsii) and Long-leafed 

wattle (A. longifolia) were incorporated into a geopolymer matrix developed from a binary precursor 

system made up of fly ash and metakaolin at a fixed ratio of 3:1. The production parameters included 

curing temperature, molar concentration of the activator and precursor-to-activator ratio. The 

production process was established using a mixed factorial design based on 2 factors at 2 levels 

(precursor-activator ratio and curing pattern) and 2 factors at 3-level (lignocellulose type and alkali 

concentration). The physical, mechanical, and thermal properties of the geopolymer composites were 

evaluated and the results are presented in Chapter 5. 

Objective 2 

Investigate and characterize slag-based geopolymer bonded wood and fibre composites from alien 

invasive wood species and bagasse 

The geopolymer matrix was formulated using ground granulated blast slag activated with a mixture 

of sodium silicate and sodium hydroxide at a fixed ratio of 2.5:1. The precursor-to-activator ratio and 

lignocellulose content were kept constant at 2:1 and 25% respectively. The lignocellulosic materials 

used included A. mearnsii, Port Jackson (A. saligna) and crushed sugarcane bagasse. A factorial 

design based on one factor at two levels (curing pattern) and two factors at three levels (lignocellulose 

type and alkali concentration) was established for the production process. The properties of the 

resulting geopolymer bonded composites are presented in Chapter 6. 

Objective 3 

Evaluate the influence of lignocellulose pre-treatment and surface modification on the properties of 

both fly ash/metakaolin-based and slag-based geopolymer bonded composites.  
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To accomplish this objective, the pre-treatment methods included acetylation, hot water and mild 

alkalization with 1% sodium hydroxide. A. mearnsii, and crushed sugarcane bagasse fibres were used 

in this study. The fibres were characterized before and after treatment using FTIR, HPLC and SEM. 

A full factorial design based on two factors (treatment method and lignocellulose) at three levels with 

three replications was established for the fibre yield experiment. In order to evaluate the influence of 

fibre treatment on the properties of the boards, the experiment was established based on a completely 

randomized design with three replications. The boards were produced according to the best conditions 

derived from Objectives 1 and 2. The treatment methods are designated independent variables and 

the lignocellulose types investigated independently. The results were analysed using the one-way 

ANOVA in Statistica software (version 13). Separation of means for comparison was performed 

using Duncan’s multi-stage range test. The results are presented and discussed in Chapter 7. 

1.3 Structure of the dissertation 

This dissertation consists of an introduction, a chapter detailing the materials and experimental 

methods, followed by three chapters discussing the chemical characterization of lignocellulose and 

precursor materials, lignocellulose pre-treatments, fly ash/metakaolin-based geopolymer bonded 

wood composites and slag-based geopolymer bonded wood composites. 

Chapter 2 discusses the challenges associated with traditional inorganic wood binders and the 

development of geopolymer as an innovative alternative. 

Chapter 3 is about the materials, methods and the experimental designs 

Chapters 4 discusses the characterization of the materials  

Chapters 5 discussed the development of fly ash/metakaolin based geopolymer reinforced with 

invasive species and sugarcane bagasse. It has been published and available online (Publication I) 

Chapter 6 discussed development and characterization of slag-based geopolymer wood composites 

using untreated invasive wood species and sugarcane bagasse.  

Chapter 7 discussed the influence of fibre pre-treatment methods on the properties of the geopolymer 

composites, including the durability of fibres in the matrices 

Chapter 8 summarised the overall conclusions and recommendations for the study. 
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Chapter 2  

Literature review  

Geopolymer binders: innovative alternatives to the traditional 

inorganic wood binders 

2.1 Introduction 

Wood and wood fibres have been incorporated into polymeric resins and inorganic matrices to make 

composite materials for use in different applications. Wood composite panels were introduced to find 

use for wood waste and develop low cost building materials (Irle 2010). The application of synthetic 

polymeric resins has dominated wood-based panel industries for more than eight decades (Sarmin et 

al. 2014). They are used for reconstituted particle boards, oriented strand boards, chipboards, 

plywoods and fibreboard (Irle 2010), while Portland cement is the major inorganic binder used in 

wood-cement boards. Polymeric resins and cement possess excellent properties, which make them 

suitable for different indoor and outdoor applications, such as partitioning, roofing, sheathing, floor 

tiles and outdoor furniture. However, due to the growing concern about the effect of their manufacture 

and utilization on man and the environment, different alternative binders with similar or superior 

properties are being developed. Geopolymer binders are an emerging alternative inorganic binding 

system developed by dissolution and polycondensation of aluminosilicate materials in alkali solution. 

This section reviews the challenges associated with the traditional inorganic wood binders, the 

development of geopolymers and previous studies on geopolymer-bonded wood composite products. 

2.2 Challenges of early inorganic binders reinforced with lignocellulosic materials 

Magnesia, gypsum, and Portland cement are the traditional inorganic binders used for reconstituting 

comminuted wood and other lignocellulosic materials. Inorganic bonded composites are made with 

10–70% wood particles or fibres and 90–30% binder in reverse order (Youngquist 1999). The 

products exhibit excellent or superior properties when the individual fibres are fully encapsulated in 

the matrix (Simatupang and Geimer 1990). Consequently, to ensure full-encapsulation, more 

inorganic binder is usually required per unit volume of composite products than that of polymeric-

bonded composites. The leading challenges associated with their applications in recent times are 

factors related to their impacts on man and the environment. Calcination of starting materials is 

involved in their respective manufacturing process, which makes them highly energy-intensive and 
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environmentally unfriendly. Relatively high cost and disposal at the end of their service life are also 

important factors being considered in construction industries. 

2.2.1 Magnesia-bonded wood composites 

The first commercial inorganic-bonded composite board was made with magnesite binder and wood 

shavings in the early 1900s in Austria (Van Elten 1999). Magnesite is a ternary-system binder made 

up of caustic magnesia (MgO), magnesium salt (MgCl2 or MgSO4) and water (Walling and Provis 

2016). The reaction yield both 5–phase and 3–phase crystals of 5Mg(OH)2–MgCl2–8H2O and 

3Mg(OH)2—MgCl2–8H2O at room temperature, respectively (Na et al. 2014; Tan et al 2014). 

Unreacted MgO may be present in varying quantity based on the thermal history and particle size of 

the starting caustic magnesia (Zhou and Li 2012). Several theories and propositions have been made 

on the hydration reactions. These include linkages between [Mg(H2O)n]
2+ and [Cl•(–O–Mg–OH)m]- 

ions (Ved et al. 1976), interactions between magnesium, hydroxide and chloride ions (Bilinski et al. 

1984) and the reaction between MgCl2 and caustic magnesia (MgO) (Zhang et al. 1991).  In the 1970s 

Ved et al (1976) proposed linkages between [Mg(H2O)n]
2+ and [Cl•(–O–Mg–OH)m]- ions as the 

major factor responsible. This position was cross-examined by Bilinski et al (1984). The authors 

assessed the similarities between MgO–MgCl2–H2O and NaOH–MgCl2–H2O systems and concluded 

that hydration reaction was based on the interactions between magnesium, hydroxide and chloride 

ions. Further thermodynamic studies of the reactions by Zhang et al (1991)  revealed that the 

hydration reaction of magnesite binder is due to the reaction between MgCl2 and caustic magnesia 

(MgO). 

These 5–phase and 3–phase crystals represent the matrix that binds the wood fibres. Although the 

hydration reactions responsible for their formation are not yet fully understood, it has been reported 

that the process is impaired by wood species and extractive content. Na et al. (2014) studied the 

hydration process of a magnesia-bonded wood wool panel using DSC, SEM, XRD and XPS analyses. 

The authors discovered that addition of poplar sawdust caused a drop in exothermic peak during DSC 

analysis, inhibiting the hydration reaction. This is in line with the findings of Simatupang and Geimer 

(1990) that the relative hydration time of magnesia cement is affected by wood species and certain 

extractives. The effect is however not as pronounced as with cement (Simatupang and Geimer 1990; 

Youngquist 1999). Zhou and Li (2012) produced lightweight magnesia-bonded wood products using 

perlite as a partial substitute for wood content and a mixture of polyvinyl acetate (PVA) and glass 

fibres as filler. Sawdust was incorporated as aggregate resulting in a product with a specific gravity 
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of approximately 1 and nailabillity similar to solid wood. The composites were, however, thermally 

unstable as the flexural strength decreased considerably at elevated temperatures. Substitution of 

wood content with 50% perlite improved the thermal resistance.   

Magnesia cement are highly hygroscopic in nature and hence exhibit prominent dimensional 

instability and loss of strength over prolonged exposure to water and moisture (Beaudoin and 

Ramachandran 1975; Misra and Mathur 2007; Plekhanova et al. 2007). This is why utilization of 

magnesia-bonded wood composite is restricted to indoor applications (Walling and Provis 2016). 

2.2.2 Gypsum-bonded wood composites 

Utilization of gypsum binder in wood composites dated back to the early 1900s (Aro 2008). α- and 

β- gypsums are the two major types of gypsum. α- gypsum is made through a wet process 

(autoclaving) while β- gypsum is produced by a dry process (calcination) (Abidoye and Bello 2010). 

α- gypsum forms a superstructure of excellent strength when mixed with water due to its prismatic 

crystals (Abidoye and Bello 2010). However, β-gypsum is preferable in composite production 

because of its low cost, ease of manufacturing (Simatupang and Geimer 1990) and rapid setting 

(Singh and Garg 1994). It is made up of gypsum hemihydrate (CaSO4 •1/2H2O) usually formed by 

heat treatment (at elevated temperature) of natural gypsum (CaSO4•2H2O) or waste chemical by-

products (phosphogypsum) (Mortensen 2007; Singh and Garg 1994).  

Gypsum boards, also known as drywall, wallboard, plasterboard or sheetrock (Jang and Townsend 

2001; Ndukwe and Yuan 2016) are made from gypsum mixed with water and lignocellulosic fibres 

(Youngquist 1999). Gypsum boards exhibit non-brittle behaviour with good working and fire 

resistance properties (Singh and Garg 1994) suitable for interior applications in both residential and 

commercial establishments (Jang and Townsend 2001). They are usually produced with about 93% 

gypsum (with 1% impurities and additives) and 7% paper fibre (Marvin 2000; Turley 1998). The 

formed composites cure readily as gypsum is less sensitive to wood species, water-soluble extractives 

and hydrolysable compounds in wood (Felton and DeGroot 1996). Araújo et al (2011) made gypsum-

bonded panels with bamboo fibres and reported that the addition of bamboo fibres did not affect the 

hydration process of gypsum. The inhibitory index was very low, about 1.2%, compared to 10.1% 

recorded for those made with Portland cement following cold water extraction of soluble extractives.  

According to Simatupang et al (1991), wood extractives retard the hydration of the inorganic binders 

and alter their crystalline structures. The effects of wood extractives on the formation and geometry 

of gypsum crystals depend on the wood source. Birch veneer-gypsum boards exhibited three different 
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crystals layers with no form of interlocking. On the contact layer, the gypsum crystals were 

considerably smaller than those found at the transition layers. Only two crystal layers were found in 

spruce-gypsum and interlocking crystals were observed in the contact layer. 

Gypsum board is an important interior component for building construction and remodelling in North 

America (Ndukwe and Yuan 2016). Apart from the fact that prolonged exposure to moisture and 

water can impair its performance and limit its use to interior applications, there is also a growing 

concern about its waste disposal.  Economic and population growth in North America has caused an 

exponential increase in the generation of gypsum waste in recent years (Ndukwe and Yuan 2016). 

According to U.S Census Bureau (2017), privately-owned housing completions in September 2017 

were at a seasonally adjusted annual rate of 1,109,000, which is 1.1 percent above the revised August 

2017 estimate of 1,097,000 and 10.3 percent above the September 2016 rate of 1,005,000. Single-

family housing completions also increased by about 4.6 %. Being the principal interior construction 

material in the United States, gypsum boards are used in virtually all newly built homes (Marvin 

2000). Construction of a single-family home of about 2000ft2 and office building of about 50,000ft2 

generate about 1 metric tonnes and 16 metric tonnes of gypsum waste respectively (Jang and 

Townsend 2001; Ndukwe and Yuan 2016; Turley 1998). It has been estimated that gypsum waste 

constitutes between 12 –27% of construction and demolition (C&D) debris in the United States and 

about 9% in Canada (Ndukwe and Yuan 2016). The bulk of these materials are usually landfilled or 

incinerated while only a fraction is recycled. These methods of disposal pose a serious challenge to 

human health and the environment. Apart from consuming a significant volume of landfill areas, the 

favourable anaerobic condition of landfills enables leaching of inorganic ions, most importantly 

sulphates and gases, such as H2S and CO2.  

2.2.3 Cement-bonded wood composites 

A more water-resistant form of inorganic bonded wood composites was made with Portland cement 

in the 1920s (Van Elten 2006). Cement is a mixture of different inorganic minerals, such as calcium 

silicates and aluminates (Ridi et al. 2010). Tri-calcium silicate (Ca3SiO5, C3S) and di-calcium silicate 

(Ca2SiO5, C2S) are the most important components as they constitute about 80% of the clinker 

composition (Van Oss and Padovani 2003). On contact with water, C3S and C2S form hydrates, which 

are responsible for initial and long-term strength development, respectively (Van Oss and Padovani 

2003; Ridi et al. 2010). The inclusion of wood fibres and other non-woody lignocellulosic materials 
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in cement matrix retard the formation of these hydrates- resulting in products of low structural 

integrity (Jorge et al. 2004).  

The global understanding of health risks of asbestos products following the World War II made 

cement-bonded wood composite products generally acceptable alternatives. Since then, different 

cement bonded products have been produced and named with respect to the geometry and source of 

the wood fibres or particles. These include wood wool cement bonded composite, cement bonded 

particle board, cement bonded oriented strand board, cement bonded fibre boards, etc. 

Unlike magnesia and gypsum bonded wood composites, the problems of cement-bonded composites 

are not based on structural integrity, but hydration reactions of cement are impaired due to the 

presence of extractives and hemicellulose components of wood. In order to deal with the compatibility 

issue, different approaches have been thoroughly studied. These included uses of chemical 

accelerators, such calcium chloride and magnesium chloride, hot water treatment of wood to remove 

the extractives as well as mild alkali treatment with sodium hydroxide to remove hemicelluloses.  

2.3 Innovative geopolymeric binders 

Due to the understanding of the challenges and setbacks associated with utilization of traditional 

inorganic binders in wood composite applications, hybrids and different innovative binders are being 

researched. Geopolymers have been touted to be a possible innovative alternative to traditional 

inorganic binders in different applications. They are described as a group of mineral binders with 

amorphous microstructure, but similar chemical composition to zeolites by Joseph Davidovits in 1978 

(Wallah and Rangan 2006). He introduced the concept of poly(sialate) units as a representation of the 

chemical classification of geopolymers. Sialate stands for silicon-oxo-aluminate (Komnitsas 2011), 

which has a 3-D aluminosilicate network structure. The empirical formula is given as follows: 

𝑀𝑛 = [−(𝑆𝑖𝑂2)𝑧 − 𝐴𝑙𝑂2]𝑛 . 𝑤𝐻2𝑂                 (1) 

Where z = Si/Al molar ratio (1, 2, 3 or more); M = Alkali cation (Na+ or K+); n = Degree of 

polymerization; and w = water content (Palomo et al. 1999).  

The network is composed of SiO4 and AlO4 tetrahedrons bonded by oxygen bridges. Chains or rings 

united by Si – O – Al bridges are formed (Komnitsas 2011; Škvára 2007). 
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Fig.  2-1  Chemical designation of geopolymer units by Davidovits (Source: Zhuang et al, 2016) 

 

2.4 Development of geopolymers 

Geopolymer is an inorganic polymer developed by alkali activation of amorphous aluminosilicate 

materials at room or slightly elevated temperatures (Alomayri et al. 2013). The structure of 

geopolymer is amorphous to semi-crystalline in nature (Mellado et al. 2014). Source materials for 

geopolymer include naturally occurring materials like Taftan pozzolan (pumice) and kaolinite (Duan 

et al. 2016). They can also be synthesized from industrial waste, such as fly ash (Najimi et al. 2016), 

blast furnace slags (Van Deventer et al. 2007) and silica fumes (Doan et al. 2010). The ability to 

synthesize them from industrial waste provides an alternative beneficial means of disposal. The 

common alkaline activators include sodium and potassium hydroxides (Hardjito and Rangan 2014; 

Petermann and Saeed 2012; Sedira et al. 2017), alkali silicates and carbonates (Provis and Van 

Deventer 2014). The processes involved in the development of geopolymer include the dissolution 

of source material into aluminosilicate species by alkali metal solutions, formation of oligomeric 

species, precipitation or polycondensation of the species to form an inorganic polymeric products, 

final hardening of the matrix and the growth of crystalline structures (Dimas et al. 2009; Petermann 

and Saeed 2012). The final strength of geopolymer concrete depends on many factors dependent on 

the source of starting materials, activator type, curing technique and production variables (Petermann 

and Saeed 2012). 

Stellenbosch University https://scholar.sun.ac.za



12 

 

 

Fig.  2-2  Development of fly ash-based geopolymer cement (Source: Zhuang et al. (2016) 

 

2.4.1 Dissolution of precursor in alkali solution 

On contact with the precursor material, the alkali metal solution causes the breakdown of Si–O–Si 

bonds to start a new phase with a mechanism of formation through synthesis via solution (Škvára 

2007). According to Petermann and Saeed (2012), the breakdown of covalent bonds between silicon, 

aluminium and oxygen generates rapid and intense heat similar to Portland cement hydration. The Al 

atoms penetrate the original Si–O–Si structure with the formation of alumino-silicate gels known as 

zeolite precursors. The rate of dissolution depends on pH of the activating medium (Hanzlíček and 

Steinerová-Vondráková 2002), solid to liquid ratio (Glid et al. 2017) and composition of the source 

material. Ogundiran and Kumar (2016) conducted isothermal conduction calorimetry of fly ash and 

calcined clay as geopolymer precursors. The authors discovered that at the dissolution stage, calcined 

clay had higher early reactivity. 

2.4.2 Polycondensation and hardening of dissolved species and minerals 

Following the hydrolysis and dissolution stage, dissociation of the –Si–O–Si– or –Si–O–Al– bond 

leads to the release of free Al3+ and Si4+ tetrahedral species into the solution (Arioz et al. 2013). The 

active species combine to form nuclei and aluminosilicate oligomers in form of polysialate –Al–O–

Si– chain, polysialate-siloxo –Al–O–Si–O–Si– and/or polysialate-disiloxo –Al–O–Si–O–Si–O–Si– 

chain based on the Si/Al ratio (Zhuang et al. 2016). The formed product contains cations from the 

activating medium (e.g. Na+ or K+), which compensate for the resultant negative charge due to partial 
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substitution of Si4+ by Al3+ (Palomo et al.1999; Petermann and Saeed 2012; Zhuang et al. 2016; Cui 

et al. 2017). 

 

Fig.  2-3  Geopolymerization mechanism and variation in FTIR bands 

(Source: Fernández-Jimenez et al. 2005) 

 

During polycondensation of the oligomers, an Al-rich phase precedes the formation of a more stable 

Si-rich 3–dimensional gel product designated by Q4(nAl) (Fernández-Jimenez et al. 2005). 

Formation of these phases, and most especially Si–rich gel product depends on the type of activator 

and the curing pattern. Palomo et al. (1999) studied the reaction mechanisms of Class F fly ash with 

four different alkaline activators (NaOH, KOH, NaOH + Na2SiO5 and KOH + K2SiO5) cured at 

elevated temperature of 65°C and 85°C. The reaction produced an amorphous aluminosilicate gel 

with a structure similar to that of zeolitic precursors. Similar reaction products have been reported in 

different independent studies (Natali et al. 2011). The authors concluded that temperature and 

activator type are significant factors affecting the strength properties. An increase in temperature 

accelerated the reaction, such that geopolymerization stages overlapped and could not be detected 

separately by calorimetry. Also, geopolymers made with NaOH and sodium silicate had better 

performance. Irrespective of the starting material, an increase in curing temperature seems to greatly 
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influence the rate of reaction. Mustafa Al Bakri et al (2012) investigated the possibility of making 

foam concrete using Class C fly ash based geopolymer. The author used a system of NaOH and 

sodium silicate as the activating medium and two different curing conditions (room temperature and 

60°C). Samples cured at 60°C had maximum compressive strength which was supported by SEM 

analysis which indicated compact microstructures. It was concluded that increase in curing 

temperature accelerated the geopolymerization process, which led to a denser matrix. According to 

Petermann and Saeed (2012) the fast rate of reaction between the alkali activator and the precursor 

does not provide sufficient timeframe for the growth of a well-structured product. 

2.5 Application areas of geopolymers 

The chemical structures in terms of the atomic Si:Al ratio of geopolymeric materials determine their 

application areas (Hardjito and Rangan 2014). The classification of application areas based on the 

Si:Al ratio is given by Davidovits (1994) and shown in Table 2-1. Geopolymer products synthesized 

from waste materials are desired in the construction industry because they are more durable and 

highly fire resistant. They also offer many advantages over conventional materials like OPC and 

gypsum cement (Van Deventer et al. 2007). Geopolymers offer comparable or superior performance 

to ordinary Portland cement in many different applications, such as fire protection (Zhang et al. 2014) 

and immobilization of heavy metals from industrial and residential wastes,  (Chen 2014; Van 

Deventer et al. 2007). Geopolymers are also applied in other sectors e.g., metallurgy, automobile, 

plastic, and civil engineering sectors. A low Si:Al ratio is suitable for many civil engineering 

applications (Davidovits, 1994 cited in: Hardjito and Rangan, 2014). 
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Table 2-1 Applications of geopolymeric materials based on Si:Al atomic ratio (Davidovits, 1994 

cited in: Hardjito and Rangan, 2014) 

Si:Al ratio Applications 

1 • Bricks 

• Ceramics 

• Fire protection 

2 • Low CO2 cements and concretes 

• Radioactive and toxic waste 

encapsulation 

3 • Fire Protection fibre glass composite 

• Foundry equipment 

• Heat resistant composites 200oC to 

1000oC 

• Tooling for aeronautics titanium 

process 

>3 • Sealants for industry, 200oC to 600oC 

• Tooling for aeronautics SPF aluminium 

20 – 35  • Fire resistant and heat resistant fibre 

composites 

 

2.6 Geopolymer starting materials 

Materials rich in aluminosilicate oxides in amorphous phase are potential precursors for geopolymer 

synthesis (Yang et al. 2012; Petermann and Saeed, 2012; Alomayri et al., 2013). These include 

naturally occurring materials, such as natural zeolite (clinoptilolite) (Nikolov et al. 2017), kaolinite, 

feldspar, albite, stilbite (Arioz et al. 2013), and industrial waste, such as fly ash, GGBS (Nikolov et 

al. 2017), mine tailings , waste glass, and rice husk-bark ash (Hardjito and Rangan 2014; Sedira et al. 

2017). 
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2.6.1 Natural material 

2.6.1.1 Kaolinite 

Kaolinite clays are directly mined from natural deposits, but they can also be found in the mine 

tailings or as a constituent of paper industry waste. Their reactivity in alkaline medium can be affected 

by properties such as particle size and degree of crystallinity, which are dependent on their source. 

However, the source does not inherently control its value in alkali-activated binder (Provis and Van 

Deventer 2014) 

2.6.1.2 Fly Ash 

Fly ash material can be categorized as either a low-calcium (Class F) or high-calcium fly ash (Class 

C). Fly ash is derived as a by-product from the burning of coal for power generation. It is regarded as 

one of the most desired precursor for geopolymer cement (Hardjito and Rangan 2005; Khale and 

Chaudhary 2007). Fly ash is composed majorly of acidic oxides such as alumina, silica and ferrite 

which provide potential for alkali activation (Williams et al. 2002). It is composed inhomogeneous 

mixture of amorphous aluminosilicates, silica glasses and crystalline materials like hematite, 

magnetite, mullite, and quartz in small quantities (Song et al. 2000). The inhomogeneity nature of the 

material should be considered in the mix design to ensure to ensure that the final product has a 

consistent property (Hardjito and Rangan 2005). 

2.6.1.3 Granulated blast furnace slag 

GGBFS is an industrial residue derived when molten steel is subjected to rapid water cooling. GGBFS 

is relatively inexpensive and has desirable properties such high resistance to chemical and thermal 

stability (Petermann and Saeed 2012). It is used as a supplementary material in cement industry due 

its advantageous pozzolanic properties. According to Pacheco-Torgal et al. (2008), a low-basic 

amorphous calcium silicate hydrate (C-S-H) gel with high aluminium content is produced when 

GGBFS is activated with alkali solution. 

2.6.2 Alkaline activators 

2.6.2.1 Sodium hydroxide (NaOH) 

Sodium hydroxide is the mostly preferred hydroxide activator for producing alkali-activated materials 

due to its high alkalinity (Nematollahi and Sanjayan 2014; Provis and Van Deventer 2009; Somna et 
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al. 2011). An 8.0 molar concentration of NaOH gives a pH value of 13.32 at 23oC (Nematollahi and 

Sanjayan 2014). According to Palomo et al. (1999), the activation of precursor materials such as fly 

ash with NaOH solution produces some hydroxysodalite and other minerals based on the composition 

of the fly ash. Higher concentrations of NaOH improve the compressive strength of alkali-activated 

materials due to their positive influence on the dissolution of silica and alumina from the starting 

material (Chindaprasirt et al. 2009; Somna et al. 2011; Chindaprasirt and Chalee 2014). According to 

the study of Chindaprasirt and Chalee (2014), high concentrations of NaOH also improved the degree 

of polycondensation, which enhanced the development of long-term compressive strength of alkali-

activated concrete. It was concluded that increasing the concentration of NaOH improved the 

resistance of the steel reinforcement to corrosion. Somna et al. (2011) also reported that the molar 

concentration of NaOH affected the compressive strength and microstructural development of alkali-

activated materials. 

2.6.2.2 Potassium hydroxide (KOH) 

Like NaOH, KOH is commercially available in pellets with purity in the range of 97% - 100%. The 

two hydroxides are usually used in solution form to activate the precursor materials. At the same 

molarity KOH is more alkaline than NaOH, and thus causes greater dissolution of the precursor 

materials (Khale and Chaudhary 2007; Raijiwala et al. 2012). However, NaOH offers a greater 

capacity to liberate silica and alumina species (Hardjito and Rangan 2005). 

2.6.2.3 Calcium hydroxide (Ca(OH)2) 

Calcium hydroxide is usually used to activate precursor materials through pozzolanic reaction. The 

activation of materials that do not exhibit pozzolanic properties with Ca(OH)2 results in poor strength 

development (Sedira et al. 2017). It is less expensive, and it has lower pH values compared to other 

hydroxides (Jeong et al., 2016). It therefore presents itself as a safer alternative to other hydroxides 

from practical application point of view. Similar to NaOH and KOH, increasing the concentration 

leads to greater dissolution of the reactants species which enhances the formation of reactant products 

(Alonso and Palomo 2001).  

2.6.2.4 Sodium silicate (Na2SiO3) 

Sodium silicates are available as colourless glassy solids or white powders, which are readily soluble 

in water. They are the mostly used water-soluble silicates in alkali-activated materials (Davidovits 
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2008). They are produced in larger quantities and less expensive than potassium silicates (Davidovits 

2008). Waterglass (Na2O·nSiO3) contains dissolved glass that has water-like properties. They have 

excellent properties which make them applicable as sealants and binders (Christensen et al. 1982). 

Their suitability for geopolymer synthesis depends on its mass ratio of SiO2 and Na2O which is 

usually in the range of 1.5 to 3.2. According to Fernández et al. (2005), a ratio of 3.2 is offers the best 

synthesis for geopolymer reactions. Different researchers have used a combination of sodium silicate 

with the hydroxides of sodium or potassium (Alomayri et al. 2013; Chuah et al. 2016; Duan et al. 

2016; Hardjito and Rangan 2014). It has been reported that activating medium which contains high 

doses of soluble silicates produced mortars and concrete of superior strengths than a medium with 

little or no silicates (Feng et al. 2004). They also impart properties such as high resistance to acid and 

fire in the materials (Sedira et al. 2017). However, it has been observed that the utilization of sodium 

silicate to synthesise geopolymer has an impact on the environment apart from global warming 

(Habert et al. 2011; Habert and Ouellet-Plamondon 2016). The means of containing this has been 

highlighted by Habert and Ouellet-Plamondon (2016). These are (1) utilization of industrial wastes 

that have no allocation (2) reduction in the use of sodium silicate. 

2.6.3 Curing methods 

Geopolymers can be cured both at ambient conditions and slightly elevated temperatures. The curing 

conditions, such as temperature and duration of curing can significantly affect evolution of strength 

development of the final product (Hardjito and Rangan 2014). Geopolymers cured at elevated 

temperature have been reported to exhibit better strength properties. Arioz et al. (2013) investigated 

the effects of curing conditions on fly ash-based geopolymer. The samples were cured at 80oC for 6h, 

15h and 24 h and tested for compressive strength after 7days, 28days and 90days of aging. The 

compressive strength for all the samples increased with aging. The effect was more pronounced in 

samples cured for 6h. The strength increased by 1.6 times and 59% when tested at 28 and 90 days 

respectively. For samples cured for 15h and 24h, the increase in strength ranged between 16 - 28%. 

However, the curing conditions did not affect the microstructure of the samples as FTIR and XRD 

spectra were similar. FTIR spectra indicated that Al – O  and Si – O  asymmetric stretching vibrations 

increased with curing and the XRD diffractograms showed no significant difference in crystalline 

parts for curing durations. Wallah and Rangan (2006) also developed fly ash-based geopolymer 

concrete cured both at ambient and elevated temperature of 60oC. Although geopolymer cured at 

room temperature had lower initial strength, which later increased with age. Extended curing times 

increases the strength of alkali-activated materials. However, the strength gain occurs at slower rate 
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due to alkaline saturation and product densification (Petermann and Saeed 2012). Curing at elevated 

temperature substantially enhances the reaction kinetics during geopolymerization (Hardjito and 

Rangan 2014).Those cured at 60oC had better strength and lower creep behaviour. 

2.7 Enhancement of geopolymer with fibre reinforcement 

2.7.1 Reinforcement with synthetic fibres 

Like other inorganic binders, geopolymer also exhibits brittle behaviour with low tensile strength, 

ductility, and fracture toughness. In a bid to improve these structural deficiencies, different synthetic 

fibres, such as polypropylene (PPE), polyvinyl acetate (PVAc), steel and carbon fibres have been 

incorporated into the matrix. Korniejenko et al. (2015) used polypropylene fibres to improve the 

mechanical properties of fly ash based geopolymer composites. The addition of polypropylene to 

geopolymer matrix improves the flexural strength of these materials. Composites made with the 

addition of 15 % vol. of reinforcing fibres had the best flexural strength. Also, in a different study by 

Yunsheng et al. (2008), short polyvinyl alcohol (PVA) fibres with an optimum volume fraction of 

2.0%  decreased the brittle tendency of fly ash- based geopolymer (Yunsheng et al. 2008). The 

addition of PVA fibres changed the impact failure mode of the composite product from brittle pattern 

to ductile, resulting in a great increase in impact toughness. Natali et al. ( 2011) embedded high 

tenacity (HT) carbon, E-glass, polyvinyl alcohol (PVA) and polyvinyl chloride (PVC) into 

metakaolin based geopolymer matrix. The resulting composite materials exhibited increased pore 

radii, which led to reduction in intruded volume, except for those reinforced with PVC fibres. It was 

reported that the fibres generally enhanced the mechanical properties of the composites despite an 

increase in the pore radii. The flexural strength increased by 30 – 70% compared to unreinforced 

geopolymers. An increase in strength was attributed to the bridging effect induced by the dispersed 

fibres. In another study, Zhang et al. (2014) reinforced metakaolin based geopolymer with carbon 

fibre. The addition of carbon fibres prevented crack formation and propagation, and enhanced 

bending strength under high temperature. It was also observed that substitution of metakaolin with 

fly ash reduced water demand for geopolymerization, which ultimately enhanced the properties after 

exposure to elevated temperature.  

Although these synthetic fibres greatly improved the structural integrity of geopolymer, they are very 

expensive, highly energy-intensive and disposal at the end of their life cycle impact the environment 

negatively (Herrmann et al. 1998; Pacheco-Torgal and Jalali 2011). This has necessitated the need 
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for reinforcement with natural fibres from lignocellulose and industrial waste to improve its strength 

properties and make it ecologically sustainable.  

2.7.2 Reinforcement with lignocellulosic fibres 

Lignocellulosic fibres, both virgin and industrial residues, offer excellent properties, which make 

them better alternative to synthetic fibres. They are biodegradable with low density and adequate 

mechanical properties (Sarmin 2016). They have been extensively incorporated into different 

inorganic binders to improve the strength properties. However, their inclusion into geopolymer matrix 

is still being researched. Preliminary investigations have proven that they can be successfully 

incorporated into the matrix. The first wood-geopolymer product was a fire-resistant chipboard panel 

manufactured in a one-step process. It was prepared by sandwiching between two geopolymer 

nanocomposite coatings (Davidovits, 2008 cited in Sarmin et al., 2014). Alomayri et al. (2014) 

studied the mechanical properties of fly ash geopolymer reinforced with cotton fabric at elevated 

temperature. The addition of fibres prevented the matrix from cracking after exposure to a high 

temperature range of 200 – 1000oC. This was attributed to the induced additional porosity and 

formation of small channels as the cotton fibres degrade. The formed pores and channels provided 

beneficial pathways for water vapour to escape thereby preventing the build-up of pore pressures. 

The composite also exhibited a significant reduction in mechanical strength after exposure to a 

temperature beyond 800 - 1000oC, due to the formation of numerous voids following complete fibre 

degradation. Chen et al. (2014) reinforced fly ash-based geopolymer with sorghum fibre and 

concluded that addition of fibre decreased the workability and unit weight of geopolymer pastes. It 

was reported that fibre content up to 2% increased both tensile and flexural strengths of the 

geopolymer composites. The inclusion of fibres changed the failure mode of geopolymer from brittle 

to ductile. SEM characterization confirmed fibre pull-out and fracture as the main mechanisms 

responsible for the enhanced ductility, tensile and flexural strengths. Duan et al. (2016) observed a 

similar trend in a recent study. Fly ash-based geopolymer was reinforced with sawdust and fresh 

properties, mechanical strength and microstructure were evaluated. A combination of Na2SiO3 and 

NaOH with a mass ratio of 8:1 was used as an activator. Fly ash was partially replaced with 0 – 20% 

sawdust by mass at an interval of 5%. The inclusion of fibre, especially more than 5% affected the 

workability and setting time. Geopolymers without sawdust exhibit cracks and high porosity ratio 

after 28 days curing. 
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2.7.3 Influence of precursor materials on geopolymer-bonded composites 

Materials rich in aluminosilicate oxides in amorphous phases are potential precursors for geopolymer 

synthesis (Yang et al. 2012; Petermann and Saeed 2012; Alomayri et al. 2013). These include 

naturally occurring materials, such as natural zeolite (clinoptilolite) (Nikolov et al., 2017), kaolinite, 

feldspar, albite, stilbite (Arioz et al., 2013) clays, micas, andalousite, spinel  (Davidovits 1988), and 

industrial waste, such as fly ash, granulated blast furnace slag (Nikolov et al., 2017), mine tailings , 

waste glass, and rice husk-bark ash (Hardjito and Rangan 2014; Sedira et al. 2017). Fly ash and 

metakaolin, however, have been the principal precursor materials used in geopolymer-bonded 

lignocellulosic composites as observed in the following research works (Alomayri 2013; Alomayri et 

al. 2014; Chen 2014; Chen et al. 2014; Duan et al. 2016; Gouny et al. 2013; Gouny et al. 2012; Sarmin 

2016; Sarmin and Welling 2015). Metakaolin is the traditionally preferred precursor for making 

geopolymers because the high consistency in its production makes prediction of characteristics of the 

final product possible (Petermann and Saeed 2012). It is produced by heat treatment of kaolinite 

through a calcination process at a temperature range of 400 - 800°C. The optimum condition for 

producing metakaolin is calcination at 600°C for two hours (Chareerat et al. 2006). The production 

is energy intensive and leads to depletion of unrenewable natural resources. Fly ash on the other hand 

is an industrial by-product of coal burning for power generation. It is usually landfilled and pose 

serious impact on the environment. Its utilization fulfils the objectives of wood and fibre composites 

production, where environmental sustainability, low cost, durability, and structural integrity of final 

products are of utmost importance. Metakaolin and fly ash have different morphology, chemical 

composition, and physical properties, such as particle size distribution and Baine’s fineness. These 

unique characteristics and properties affects their reactivity, which in effect influence the mechanical 

strength of geopolymers (Petermann and Saeed 2012). 

Duan et al (2016) studied the properties of fly ash-based geopolymer reinforced with 5 – 20% sawdust 

content. The authors recorded comparative compressive strength for both the reference sample 

samples reinforced with sawdust, irrespective of sawdust content, until curing time of 14 days. As 

curing progressed, a pronounced increase in compressive strength was observed with the reinforced 

samples, about 9.6% and 12.1% higher after 28 day and 90 days curing ages. These observations 

contradict the findings of Sarmin (2016) where the compressive strength of reinforced geopolymer 

decreased with the addition of wood materials. In the study, fly ash was substituted by 30% 

metakaolin and the compressive strength decreased by about 50% when 10% wood flour was added: 

and 75% with the addition of 10% wood particle. In a separate study by Sarmin and Welling (2015) 

Stellenbosch University https://scholar.sun.ac.za



22 

 

where mixed softwood particles was incorporated into fly ash-based geopolymer substituted by 

metakaolin at 0 – 50 %, reduction was also observed in the compressive strength of the composite 

products. Maximum values were recorded for composites made with 100% fly ash cured at both room 

and elevated temperature of 80°C. The same trend was observed in the oven-dry density of 

composites cured at 80°C. The only exceptions occurred when metakaolin was substituted at 10%, 

20% and 40%, the composites had slightly higher values when cured under room conditions. The 

findings of Sarmin (2016) and Sarmin et al (2014) were in agreement with the observations of Chen 

et al (2014), where the inclusion of sorghum fibres caused reduction in the unconfined compressive 

strength of fly-ash based geopolymer. However, increase in splitting tensile and flexural strengths 

was observed with the addition of sorghum fibres up to 2%. From the foregoing it is evident that 

partial substitution of fly ash with metakaolin in the study led to reduction in strength properties of 

the final geopolymer-bonded composite. This is different from what is obtainable with geopolymer 

concrete where addition of metakaolin improves the strength of fly ash-based geopolymer concrete. 

Chareerat et al (2006) synthesized high calcium fly ash and metakaolin to make geopolymer mortar. 

Substituting fly ash with about 40% metakaolin increased the compressive strength. A maximum 

compressive strength of ± 45 MPa was observed when fly ash was substituted with 25% metakaolin. 

substitution with metakaolin Optimized value of 25% replacement yielded a maximum strength of ± 

45 MPa. The reduction in the strength of geopolymer-bonded composites upon partial substitution of 

fly ash with metakaolin could be due to inherent properties of the lignocellulosic materials as no 

information about the chemical composition was provided

2.7.4 Influence of lignocellulosic material, content, and particle geometry on geopolymer-bonded 

composites 

Lignocellulosic materials have low specific gravity and density, which lead to reduction in the density 

of the final inorganic-bonded products. The density of a material is an excellent predictor of its 

properties. Different studies have indicated that lignocellulosic content and particle geometry 

influence both physical and mechanical properties of inorganic-bonded wood composites. The extent 

of their influence differs for various lignocellulosic sources. Badejo (1980) reported that the strength 

properties of hardwood-cement board increased as the flake dimensions increase while Olorunnisola 

(2007) observed an inverse relationship between the compressive strength and particle size of rattan-

cement composites. This suggests that different lignocellulosic materials exhibit different behaviours 

when encapsulated in inorganic matrix. This is further corroborated by Ajayi and Badejo (2005). The 

authors investigated the effect of board density on the bending strength and internal bonding of 
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cement-bonded flakeboards made with two exotic hardwood species, Gmelina arborea and Leucaena 

leucocephala. The boards were made with particle size (l x t) of 50 × 2.5 mm and compressed to 

densities of 1000, 1100 and 1200 kgm-3. Board densities and wood species had significant effect on 

the MOR. The MOR increased with an increase in density for both species, but boards made with 

Gmelina arborea had higher values. Particle size of lignocellulosic materials also affect properties, 

such as density, water absorption and compressive strength of geopolymer-bonded composites. 

Sarmin (2016) studied the effects of wood aggregates on the physical and mechanical properties of 

fly ash-based geopolymer substituted with 30% metakaolin. Density and compressive strength 

decreased as the particle size increased. Boards made with wood particles also had higher sorption 

properties. It was deduced that as the wood particles increases uniform dispersion in the matrix 

becomes difficult as the particles agglomerated. Lignocellulosic content has also been reported to 

have significant effect on the properties of geopolymer-bonded composites. Chen et al. (2014) 

reported that the unit weight of geopolymer-bonded composites decreased as the sorghum fibre 

content increased. The optimum content was found to be 2% of geopolymer precursor. However, 

particle content as high as 20% have been incorporated in geopolymer matrix. Sarmin (2016) and 

Duan et al (2016) incorporated 10% and up to 20% wood particles in geopolymer binders, 

respectively. According to Duan et al (2016) sawdust possess positive effect on compressive strength 

of geopolymer, especially when more than 10% of is incorporated. The bottom line is that the 

proposed end use will determine the choice of particle size and content. Another important factor to 

consider are the inherent properties of the lignocellulosic material being incorporated in the different 

geopolymer matrices. These studies focussed more on the resultant products, as there was no mention 

of the chemical composition of the incorporated lignocellulose. Lignocellulose components interact 

with inorganic binders differently, based on their inherent properties and chemical compositions. Al 

Bakri et al.(2012) investigated the feasibility of making geopolymer bonded wood products using 

class C fly ash activated with a combination of 12M sodium hydroxide and sodium silicate. The 

incorporated wood particle was unnamed, and the chemical composition was determined using XRF 

analysis. This analysis could not quantify the lignocellulosic components, and it becomes impossible 

to understand how the components influence the final products. 
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Fig.  2-4  Variation of density and water absorption as a function of different wood aggregates 

content for geopolymer composites (Source: Sarmin (2016)) 

 

 

Fig.  2-5  Effects of wood aggregates on the compressive strength of geopolymer composites 

(Source: Sarmin (2016)) 
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2.7.5 Curing regimes/patterns 

Curing time and temperature are important factors upon, which the final strength gain of geopolymers 

depend. Geopolymer concretes can be cured both at room and slightly elevated temperature within 

the range of 50°C - 80°C. Curing beyond this threshold may lead to deterioration of strength 

properties (Petermann and Saeed 2012). The understanding of ambient curing technique for 

geopolymer production is not yet fully developed as there are discrepancies in the available research 

findings. For example Fernández-Jiménez and Puertas (2002) reported that fly ash based geopolymer 

did not set when cured at 23°C (conditioned environment) while other researchers (Albitar et al. 2015; 

Neupane et al. 2016; Rao 2015) have reported the possibility of curing fly ash based geopolymer 

under ambient conditions . According to Petermann and Saeed (2012), curing at room temperature 

require longer time while elevated temperature increases the reactivity and the formation of a more 

crystalline product with a considerable strength gain. 

2.8 Conclusion 

The global awareness of the challenges associated with the production of conventional wood binders 

has stimulated renewed interest in the search for sustainable alternatives with comparable properties.  

Geopolymer binders developed from different waste streams have the potential to substitute cement 

binder in wood composite manufacturing. The final strength of geopolymer concrete products 

depends on several factors dependent on the source of starting materials, activator type, curing 

technique and production variables. Previous investigations reviewed in this section had incorporated 

different biomass materials in geopolymeric matrices, but sufficient information about the 

performance and product characterization are not available. In order to fully harness the potential of 

geopolymer binder in wood composites it is imperative that more research focussed on understanding 

the interactions between chemical components of wood and geopolymer binder be encouraged. 

Understanding the interactions would help in the formulation of binders for products targeted at a 

specific end use.  
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Chapter 3  

Materials and methods 

3.1 Materials  

3.1.1 Lignocellulose samples 

The lignocellulosic materials used in this study included alien invasive wood species and industrial 

residue (sugarcane bagasse) from sugar processing plant. The wood species included Long-leaved 

wattle (A. longifolia), Black wattle (A. mearnsii) and Port Jackson (A. saligna). The Long-leaved 

wattle was supplied as remnants from processed logs by EC Biomass Fuel Pellets (Pty) Ltd, Port 

Elizabeth, South Africa. The tree was three years old at the time of harvest. The Black wattle and Port 

Jackson were harvested during the invasive clearing operations along the Berg river banks in Cape 

Town and supplied by Casidra, Paarl, Western Cape, South Africa. The trees had all the variabilities 

inherent in wild growing bush. The sugarcane bagasse (Saccharum officinarum) was sourced from 

TSB Sugars (Pty) Ltd, South Africa. 

3.1.2 Geopolymer precursors 

Three geopolymer starting materials used included Metakaolin (MK 40) supplied by Serina Trading, 

South Africa, Class F fly ash sourced from Ulula Ash, South Africa and ground granulated blast slag 

(GGBS) from Afrisam, South Africa. The chemical compositions of these materials are presented in 

Chapter 4. 

3.1.3 Chemical activators and other reagents 

A combination of sodium silicate and sodium hydroxide was used to activate the geopolymer 

materials. Sodium silicate, branded as Silchem 2008 with a silica modulus of two (29.05% SiO2 and 

14.17% Na2O) was supplied by PQ Silicas, SA. Analytical grade sodium hydroxide pellets of 98% 

purity were purchased from Merck Chemical (Pty) Ltd, S.A. Sulphuric acid (72% purity), acetic 

anhydride (98% purity) and acetic acid (98% purity) used in composition analysis of fibres and fibre 

treatment were supplied by Kimmix Chemicals, Cape Town, SA. 
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3.2 Methods 

3.2.1 Lignocellulose preparation  

Figure 3-1(a – c) shows the lignocellulosic materials as received from the suppliers. The samples 

were prepared according to Amiandamhen et al.  (2016) and the particles are shown in Figure 3-1(d 

– f) . The invasive wood logs were debarked manually and chipped in a woodchipper. The wood chips 

and the sugarcane bagasse were then milled using a hammer mill fitted with a 1mm sieve. The milled 

particles were conditioned at 20°C and 65% relative humidity for 96 h before use for boards and 

chemical characterization.  

 

Fig.  3-1  Lignocellulose materials as received and after milling (a) A. mearnsii (b) A. saligna (c) 

bagasse (d) A. longifolia particles (e) bagasse particles (f) A. mearnsii particles. 

3.2.2 Determination of moisture content 

The amount of moisture retained in the lignocellulose samples was determined before used for 

characterization and board production. It was determined according to the NREL/TP-510-

42621(Sluiter et al. 2008) where 2g of lignocellulose samples was placed in a pre-weighed crucible 

and oven-dried at 105 ± 3°C for 24 h. The crucible was transferred into a desiccator after removal 

from the oven and allowed to cool for 15 min before recording the oven-dry mass. The moisture 

content was calculated using the following equation:  
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𝑴𝑪 (%) =  
𝑴𝒘−𝑴𝒐

𝑴𝒘
× 𝟏𝟎𝟎             Eq. 3-1 

 

Where Mw (g) is the mass of wet lignocellulose and Mo (g) is the oven dry mass of the lignocellulose 

3.2.3 Bulk density 

The calculation of the bulk density was carried out in accordance with the procedures given by 

Miranda et al. (2012). Oven-dried samples were placed in a 25 ml cylindrical container and the bulk 

density is determined as the ratio of the mass to the volume of the container. The calculation was 

replicated 3 times for each lignocellulose and the results are shown in Chapter 4. 

 

𝑩𝒖𝒍𝒌 𝒅𝒆𝒏𝒔𝒊𝒕𝒚 =  
𝑴𝒐

𝑽𝒄
              Eq. 3-2 

 

Mo (g) is the oven dry mass of lignocellulose, Vc (cm3) is the volume of the container 

3.2.4 Determination of extractive content 

Lignocellulosic samples sufficiently small to pass through a 0.40 mm screen were prepared according 

to TAPPI standard method (T257 2012), while the moisture content was determined in accordance 

with TAPPI standard (T264 2007) . Water and ethanol soluble extractives present in the lignocellulose 

were determined using TAPPI procedure (T204 2007). Water extraction preceded the ethanol 

extraction. 2.0 g of air-dry lignocellulose samples were placed into a tarred extraction thimble and 

weighed to the nearest 1 mg. The extraction thimble containing the lignocellulosic sample was placed 

in a Soxhlet apparatus connected to a pre-weighed extraction flask filled with 195 ml of water. The 

extraction was allowed to run for 5-6 h, ensuring no fewer than 24 cycles according to the 

requirement. The solvent was evaporated and the flask containing the extracts was dried in an oven 

at 105 ± 3°C for 1 h. The flask was cooled in the desiccator and weighed to the nearest 0.1 mg. The 

lignocellulose residues obtained after the extraction was used for the ethanol extraction following the 

same procedure. 
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3.2.5 Klason lignin and monomer sugars 

Compositional analyses to determine the acid insoluble lignin, sugar contents (glucose, cellobiose, 

xylose and arabinose) were conducted according to the National Renewable Energy Laboratory 

(NREL) Analytical Procedure (LAP 013) (Ruiz and Ehrman 1996), where 3ml of 72% sulphuric acid 

was added to 0.3g of lignocellulose in a test tube, then placed in a water bath operating at 30°C. The 

solution was stirred after every 10min interval until 1h. The acid concentration was diluted to 4% by  

adding 84ml of distilled water, and then transferred into a flask. The solution was heated in an 

autoclave operating at 120°C for 90 min. The autoclaved sample was then transferred onto a filtrating 

crucible and washed with 250 ml boiling water. The residue in the filtrating crucible was oven-dried 

at 105 ± 3°C to determine the acid-insoluble lignin. Higher pressure liquid chromatography (HPLC) 

was used to determine the sugar contents i.e., glucose, arabinose, xylose and cellobiose. 10 ml of the 

hydrolysate was titrated with 1.2 ml 7N KOH, ensuring that the pH is in the range of 3 to 7. The 

HPLC equipment comprised of a UV1000 detector, spectra system P2000 pump, an auto-sampler 

(AS3000) and a Shodex RI-101 refractive index indicator.  

3.2.6 Determination of ash content 

TAPPI Standard (T211 2012) was used to calculate the ash content of the lignocellulosic samples. 2g 

of the oven-dried lignocellulosic material was placed in an oven at 575°C for 6 h and the weight of 

the residue was recorded.  

3.2.7 Lignocellulose pre-treatments 

The lignocellulosic samples were subjected to hot water, mild alkalization, and acetylation treatments. 

All treatments were carried out in a 5-L stainless steel digester equipped with a proportional integral 

derivative (PID) temperature regulator at a solid/liquid ratio of 1/10 (g/mL) according to 

Amiandamhen et al. (2018). The influence of each treatment on the fly ash/metakaolin- and slag-

based geopolymer wood composites was investigated and is discussed in Chapter 7. Hot water 

treatment was carried out as described by Ferraz et al ( 2016). The lignocellulose was heated up and 

kept at 100°C for 1 h. Alkalization treatment is supposed to be less severe than the actual 

delignification process observed in alkaline pulping, hence the lignocellulose was treated with 1% 

NaOH solution and heated only up to 60°C for 1 h as described by Oladele et al (2015). Acetylation 
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was carried out using 1% wt. solution of acetic anhydride with 0.1% wt. H2SO4 as buffer according 

to Bledzki et al. (2008). The weight ratio of acetic acid to acetic anhydride was kept at 1.5:1 for all 

lignocellulose. 

3.2.8 Formulation of activating medium 

A combination of sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solution at a ratio of 2.5:1 

was used, while the ratio of aluminosilicate to activator was varied between 2:1 and 3:1. The 

preparation of sodium hydroxide solution is an exothermic reaction; hence it was prepared a day prior 

to mixing with sodium silicate.  

3.2.9 Board formation  

The lignocellulosic material, precursors and the activators were measured according to the design of 

the experiment. The lignocellulose was mixed with precursor materials in a dry state for 3 min before 

a predetermined amount of activator was added and thoroughly mixed for another 5 min. Additional 

water was added to keep the water/binder ratio (W/B) at 28 and mixing was further extended until a 

homogenous mix was achieved. The mixture was transferred into a rectangular mould and cold-

pressed at 0.689 MPa for 5 min to obtain a final board dimension of 218 mm × 75 mm × 13mm. The 

boards were kept in a temperature and humidity-controlled room at 20 °C and 65 % RH until testing. 

3.2.10 Curing pattern 

The curing temperature was varied from room temperature to 100 °C based on the composition of the 

geopolymer starting material. The curing technique was carried out according to Chareerat et al. 

(2006). Prior to any required temperature according to the experimental design, the boards were left 

in a conditioning room for 1 h and then wrapped with aluminium foil to prevent excessive loss of 

water during heat treatment (Figure 3-2). The boards were later left in a temperature and humidity-

controlled environment for 27 days, after which they were tested for physical and mechanical 

properties. 
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Fig.  3-2  Geopolymer boards wrapped with aluminium foil prior to curing 

3.2.11 Board properties 

The mechanical and physical properties of the boards were tested according to ASTM D1037(ASTM 

2013) to evaluate the influence of the production variables on the GWC while the thermal property 

was evaluated using TGA. The flexural strength to determine the modulus of rupture (MOR) and 

modulus of elasticity (MOE) was conducted on an Instron machine using a 5-ton load cell at a load 

rate of 5 mm/min (Figure 3-3).  

The physical properties included apparent density, water absorption (WA), thickness and volumetric 

swelling (TS/VS). The samples for the sorption and dimensional stability were cut from the boards 

using an angle grinder fitted with a concrete blade into dimensions of 75 mm × 50 mm × 13± 1.2 mm. 

The mass and dimensions of each sample was measured and recorded before being submerged 

horizontally in distilled water for 24 h. After removal from water, the samples were suspended and 

allowed to drain for 10 min to get rid of excess water. The final mass and dimensions were measured, 

and the water absorption (WA) and thickness/volumetric swelling calculated as a percentage increase 

in initial mass and thickness/volume. 
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Fig.  3-3  Geopolymer boards being tested for flexural strength (3-point bending) 

 

3.3 Material and products characterization  

3.3.1 Particle size distribution of precursor materials 

The particle size analysis of fly ash, metakaolin and slag was carried out using Saturn DigiSizer 5200 

V 1.12 operated at a flow rate of 12.0 l/m and ultrasonic intensity of 60%.  

3.3.2 X-ray Fluorescence (XRF) analysis 

The chemical compositions of the fly ash, metakaolin and slag were determined by XRF spectrometry 

on a PANalytical Axios Wavelength Dispersive spectrometer fitted with a Rh tube and with the 

following analysing crystals: LIF200, LIF220, PE 002, Ge 111 and PX1. The analysis was carried 

out at the Central Analytical Facilities, Stellenbosch University, South Africa.  

3.3.3 Fourier Transform Infra-Red (FTIR) analysis 

Fourier Transform Infra-Red spectroscopy (FTIR) was performed using Thermo Scientific Nicolet 

iS10 Spectrometer equipped with a Smart iTR attenuated total reflectance (ATR) accessory to qualify 

the nature of bonding exhibited by the lignocellulose, precursors and the resulting geopolymer bonded 

composite products. Spectra were collected in ATR mode at a resolution of 4 cm-1 and 32 scans per 
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sample within the absorption bands in the region of 4000 – 650cm. The collected data was further 

processed using OMNIC Software v9.2.86 by Thermo Scientific.  

3.3.4 X-ray Diffraction (XRD) of precursors and geopolymer composite 

X-ray diffraction (XRD) was carried out using a Bruker D2 Phaser diffractometer, employing CuKα 

(λ = 1.5418 Å) at 30 kV and 10 mA. The diffraction intensities for the precursors and the resulting 

geopolymer composite products were captured with a Lynxeye detector with 2θ scans in the range 4 

-50° with a 0.020° step size. 

3.3.5 Thermogravimetric Analysis (TGA) 

The thermal stability of each lignocellulose sample and the resulting GBWC were evaluated using a 

TGA Q50 thermogravimetric equipment. About 5 mg of each grounded sample was placed on a 

balance fitted in the furnace compartment and heated at a rate of 20 °C/min from room temperature 

to 800 °C under nitrogen flow. The results were analysed using a TA Instruments Universal Analysis 

2000 software version 4.5A.  The software generated the derivatives of the weight loss against 

temperature thermograms to show the different decomposition stages.  

3.3.6 Scanning Electron Microscope (SEM) 

Images of the lignocellulose and resulting GBWCs were captured and analysed using a Zeiss EVO® 

MA15 Scanning Electron Microscope. SEM was carried out to examine the influence of chemical 

treatments on the surface morphology of the fibres and microstructural characteristics of the final 

products at a magnification of 1000x.  

3.4 Experimental design 

For the fly ash/metakaolin binding system, the major production variables considered were the curing 

pattern (CP), PA ratio, molar concentration of NaOH (MCon) and amount of lignocellulosic material 

(LM). A mixed factorial experiment based on two factors at 2 levels (CP and PA ratio) and two factors 

at 3 levels (MCon and LM) with three replicates each was laid out using Statistica 13.3 for the board 

production. The lignocellulose content was kept constant at 25% of the total precursor. For slag-based 

binder the considered variable were CP, MCon and LM. The factorial experiment was based on one 

2-level factor (CP) and two 3-level factors (MCon and LM) with three replicates and designed using 

Statistica 13.3. The PA and lignocellulose content were kept constant at 2:1 and 25% respectively.  
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The pre-treatment experiment was established based on a completely randomized design with 3 

replications. Three different methods (hot water, mild alkali, and acetic anhydride) were designated 

as independent variables and the lignocellulose types were investigated separately.  

Table 3-1 Mixed factorial design for fly ash/metakaolin and slag based geopolymer bonded wood 

composites 

Variables Description 
Levels 

Low    Mid High 

1. Concentration (Mcon) This is the molar concentration of sodium 
hydroxide 

   8(4)      10(6) 12(8) 

2. Curing pattern (CP) The curing temperature is in OC. Values 

in parentheses are the levels employed in 

slag-based geopolymer 

   60 (40)          - 100(60) 

3. Precursor/Activator 

ratio (PA)* 

This is the ratio of total precursors (fly 
ash + metakaolin) to the activator content. 

   2:1        - 3:1 

4. Lignocellulosic 

Materials (LM) 

Three LM samples were utilized. Their 

content was kept constant at 25% of the 

total precursor 

1. A. longifolia** 

2.  A. mearnsii and 

3. Bagasse 

*The PA ratio was kept constant at 2:1 for slag based geopolymer | ** A. longifolia was substituted with A. saligna in 

slag based geopolymer bonded wood composites. 

3.5 Data analysis 

The data analysis was conducted using Statistica v.13.3. Analysis of variance (ANOVA) was 

employed to determine if the variable(s) had a significant effect on the board properties. The effects 

of fibre treatments on the board properties were also evaluated using ANOVA, while the separation 

of means for comparison was carried out using Duncan’s multi-stage test.  
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Chapter 4  

Characterization of lignocellulosic materials and precursors 

4.1 Chemical compositions of untreated lignocellulosic materials (LM) 

The composition of untreated A. longifolia (AL), A. mearnsii (AM), A. saligna (AS) and sugarcane 

bagasse (SCB) particles is shown in Table 4-1. The acacia species had similar chemical compositions. 

Qin and Huang (2005) reported similarities in the chemical compositions of other acacia species, such 

as A. auriculaeformis (AA), A. crassicarpa (AC) and A. mangium (Ama). The only noticeable 

difference is the hemicellulose content of AS which is much lower than AL and AM samples. It is 

also much lower than the hemicellulose components of AA, AC and AMa (Qin and Huang 2005). 

The composition of SCB is quite different from the acacia species. It had higher ash, extractive 

contents and a considerably lower bulk density than the acacia species. 

Table 4-1 Compositional analyses of the untreated lignocellulosic material 

Parameters (%) 
 Lignocellulosic materials 

A. saligna A. longifolia A. mearnsii SCB 

Lignin 25.47(1.34) 24.41(2.52) 23.85(1.25) 26.84(2.18) 

Hemicellulose 13.13(1.14) 19.05(0.86) 20.29(0.11) 10.75(1.01) 

Cellulose 34.47(0.66) 31.54(0.48) 33.72(0.13) 23.78(0.46) 

Water Extractives 5.26(0.40) 5.51(0.17) 5.52(0.75) 9.72(0.10) 

EtOH Extractives 0.55(0.02) 0.54(0.04) 0.61(0.09) 1.72(0.02) 

Total Extractives 5.81(0.31) 6.08(0.11) 6.37(0.58) 11.49(0.07) 

Ash 0.88(0.02) 0.67(0.02) 0.71(0.03) 3.99(0.62) 

Moisture content 6.50(0.08) 6.94(0.09) 7.43(0.01) 5.90(0.04) 

Bulk density (kg/m3) 178.81(5.09) 181.43(5.48) 162.38(2.59) 119.66(3.48) 

-values in parentheses are the standard deviations 

4.2 Pre-treatment of lignocellulosic materials (LM) 

The chemical composition of wood and other lignocellulosic materials affects inorganic bonded 

composites differently. For example, the sugars and hemicelluloses promote the formation of 

impermeable layers around non-hydrated cement grains, depriving them access to water, leading to a 
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delayed setting or total incompatibility with cement (Quiroga et al., 2016). In phosphate composites 

they cause dimensional instability due to high affinity for moisture (Amiandamhen et al. 2018),  while 

they slow down reaction kinetics in geopolymer boards (Ye et al. 2018). The degree of inhibition or 

incompatibility is dependent on the type and concentration of the sugars present. Alien invasive trees 

are usually fast-growing species, which thrive without any silvicultural treatment. According to 

Quiroga et al. (2016) faster tree growth leads to a high concentration of sugars and hemicelluloses, 

which are responsible for the inhibition and incompatibility of wood and cement. The pre-treatment 

methods employed were aimed at reducing the inhibitory substances and modifying the fibres 

surfaces for better fibre-matrix compatibility. 

4.2.1 Influence of pre-treatment on fibre yield 

The lignocellulose yields for each treatment method are shown in Table 4-2. AS had the highest yield 

for both hot water and alkali pre-treatment with a fibre recovery of 94.65% and 90.12%, respectively. 

AM had the highest yield for acetylation treatment. Figure 4-1 (a) shows that there was a significant 

difference between the treatment methods. Hot water treatment had the highest mean yield while the 

alkalization had the lowest mean yield for all LM. These are in line with the findings reported by 

Amiandamhen et al. (2018) that the lower yield observed for alkalization method was due to partial 

removal of some lignocellulose components. Figure 4-1(b) shows that a significant difference in yield 

also existed between the LM. AS had the highest mean yield, while the SCB had the least. Figure 4-

1(c) indicates that significant differences existed between the treatment methods for each LM. The 

mean acetylation yield for AS was significantly lower than the alkalization yield. This indicates that 

the treatment affected the LM differently.  

Table 4-2  Lignocellulosic yield of pre-treatment method 

LM 
Treatments 

Hot water NaOH Acetic anhydride 

AM 89.54 (0.18) 86.98 (0.41) 90.31 (0.33) 

AS 94.65 (0.10) 90.12 (0.52) 90.20 (0.48) 

SCB 93.59 (0.26) 82.86 (0.63) 86.66 (0.02) 

AL 88.23 (0.03) 80.27(0.33) 90.94 (0.26) 

-values in parentheses are the standard deviations 
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(vertical lines denote the confidence intervals 0.95) 

Fig.  4-1  Lignocellulosic yield (%) for (a) each pre-treatment method and (b) each LM (c) effect 

of pre-treatment on yield for each LM 

4.2.2 Influence of pre-treatment on chemical compositions of samples 

The chemical compositions of the treated samples are presented in Table 4-3. It was noted that the 

reduction of one component caused a proportional increase in the other components. A similar 

observation was also reported by Amiandamhen et al. (2018) Compared to Table 4-1, all the 

treatments reduced the extractive content of the samples. Apart from the hot-water treated AL and 

alkalized AM samples, the treatments also reduced the lignin components of LM. Acetylation caused 

a reduction in the lignin, extractives, and ash contents of all samples. This is in line with the findings 

of Amiandamhen et al. (2018). According to Bledzki et al. (2008), the strong sulfuric acid used to 

speed up the acetylation process to prevent non-uniform results could hydrolyse the fibre structure. 
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This was supposed to cause an increase in the lignin content, but the reverse was observed. This 

suggest that the few drops of sulfuric acid added as a buffer was not sufficient to cause condensation 

of lignin. The alkalization treatment was less severe than what is applicable in kraft pulping since the 

aim was to remove inhibitory substances present in the samples. It proportionally increased the 

cellulose and ash contents of all samples, but reduced the lignin and hemicellulose components of 

SCB, AS and AL. The ash contents increased as a result of partial removal of the organic contents 

which caused a proportional increase in the inorganic content (Amiandamhen et al. 2018). The 

hemicellulose contents of AM and AL also reduced after alkalization. According to Garrote et al. 

(1999), hot water treatment breaks down the lignocellulose into monomers and oligomers, leading to 

partial removal of the lower molecular components. Hot water treatment reduced the hemicellulose 

and lignin components of AM and SCB which resulted in a proportional increase in the cellulose 

content. The reduction in the components was confirmed by the FTIR analysis discussed in Section 

4.3. The ANOVA of the effect of treatment methods on the chemical composition is presented in 

Table 4-4. 

 Table 4-3 Compositions of treated samples (%) 

-values in parentheses are the standard deviations. 

 

LM Treatment Lignin Cellulose Hemicellulose Extractives Ash 

A. mearnsii 

Hot water 23.59(2.55) 35.86(4.73) 12.93(1.51) 2.01(0.40) 0.28(0.06) 

Acetylation 23.12(0.54) 35.01(1.03) 19.39(0.09) 1.82(0.24) 0.21(0.02) 

Alkalization  24.05(0.86) 35.18(0.45) 13.24(0.07) 2.12(0.16) 3.22(0.19) 

Bagasse 

Hot water 26.26(0.91) 23.97(0.40) 9.22(0.64) 5.21(0.34) 1.81(0.32) 

Acetylation 24.79(0.65) 26.67(0.65) 11.46(0.44) 4.04(0.13) 1.90(0.14) 

Alkalization  15.28(2.18) 26.06(0.19) 11.55(0.33) 3.61(0.19) 4.10(0.25) 

A. saligna 

Hot water 25.37(1.24) 35.43(0.95) 13.54(0.21) 1.66(0.18) 0.30(0.02) 

Acetylation 24.44(0.71) 37.32(0.89) 13.39(0.44) 1.60(0.17) 0.27(0.01) 

Alkalization  23.71(0.22) 36.67(0.05) 13.28(0.07) 1.80(0.09) 3.38(0.12) 

A. longifolia 

Hot water 25.98(4.53) 33.61(1.91) 14.01(1.41) 2.02(0.17) 0.37(0.03) 

Acetylation 23.79(0.72) 32.94(0.80) 18.32(0.80) 1.98(0.20) 0.23(0.02) 

Alkalization  24.00(0.34) 32.95(1.40) 11.15(0.10) 2.71(0.31) 3.26(0.04) 
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Table 4-4 ANOVA of the effects of treatment on the chemical compositions of LM 

                        Chemical compositions (%) 

Effect Cellulose Lignin Extractives Hemicellulose 

Treatment 0.638412 0.001720* 0.000283* 0.000000* 

LM 0.000000* 0.075060 0000000* 0.000000* 

Treatment **LM 0.679698 0.001130* 0000000* 0.000000* 

    *- denotes significant values (p<0.05) | **- interaction between factors. 

Figure 4-2(a) indicates that acetylation yielded highest mean cellulose content, but not significantly 

different from the other treatments. In Figure 4-2(b), it had the highest mean hemicellulose content 

which is significantly different from the other methods. Acetylation essentially stabilizes the cell 

walls by plasticizing the cellulose fibres. It replaces the hydroxyl groups in the cellulose and 

hemicellulose chains with acetyl groups which have higher molecular weight. This could explain why 

it resulted in higher recovery of cellulose and hemicellulose. Figure 4-2(c) shows that hot water 

extraction had the highest mean lignin content, but not significantly different from acetylation. 

Alkalization, however, had a significant degradation effect on the lignin component. Figure 4-2(d) 

indicates that hot water had a significant effect on the recovery of extractives, but no significant 

difference existed between alkalization and acetylation. 
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 (vertical lines denote the confidence intervals 0.95) 

Fig.  4-2  The effects of pre-treatment methods on chemical composition of all samples (a) cellulose 

(b) hemicellulose (c) lignin and (d) extractives 

Figure 4-3 shows the difference between the treatment methods for each lignocellulose sample. The 

treatment methods did not have any significant effect on the chemical components of AS, but their 

effects on the lignin, hemicellulose and extractive contents of SCB were significant. Acetylation had 

significant effects on the hemicellulose contents of AM and AL, while alkalized AL is significantly 

different from acetylation and hot water treatment. The treatments are expected to have positive 

effects on the final properties of the board as they all caused a proportional increase in the cellulose 

contents of the LM.  
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Fig.  4-3  Effects of treatment methods of the chemical composition of each sample (a) cellulose 

(b) lignin (c) extractives and (d) hemicellulose 

4.3 FTIR of LM 

4.3.1 Untreated LM 

The lignocelluloses have similar IR spectra within same band numbers as shown in Figure 4-4. The 

strongest bands are found around 3360cm-1 and 1023cm-1 in all the samples. The band around 

3360cm-1 is assigned to axial vibration of the hydroxyl (-OH) group of cellulose (Ibraheem et al. 

2016), while the band at 1023cm-1 indicates a C-C bond of β-glucosidic linkages between sugar units 

in hemicelluloses and cellulose (Hajiha et al. 2014). The peak at 2916cm-1 represents a symmetrical 

vibration of C-H bond (Liu et al., 2004; Amiandamhen et al. 2018). Since the bagasse fibre has been 

processed, which could have altered the position of the absorption bands, this peak could also be 

attributed to a C-H aliphatic axial deformation in CH2 and CH3 groups from cellulose, lignin and 

hemicellulose as it is only 4cm-1 less than the absorption band reported by Cristina et al. (2012). The 

peak around 1737cm-1 is attributed to the carbonyl (C=O) stretching of acetyl groups of hemicellulose 

(Cristina et al. 2012; Liu et al. 2004). The peaks around 1235 – 1254 cm-1 are assigned to the C -O 
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stretch of the acetyl group of lignin (Hajiha et al. 2014; Liu et al. 2004), while the peak at 1422cm-1 

indicates the CH2 symmetric bending of cellulose (Hajiha et al. 2014; Sawpan et al. 2011) 

 

Fig.  4-4  FTIR spectra of untreated lignocellulosic materials 

4.3.2 Treated LM 

The FTIR spectra of the treated samples are presented in Figures 4-5 to 4-8. The spectra of untreated 

samples were higher than those of the treated samples. This supported the HPLC results that some 

components were removed after pre-treatment. Levelling of the band between 3000 to 3600 cm-1 in 

alkali and hot water treated SCB and AL indicated partial removal of OH groups. The intensity 

decreased in treated AM and AS, but the broadness was almost unchanged. The intensity of peak 

around 2916 cm-1 attributed to C-H symmetrical stretching also reduced for the treated sample, but 

the reduction was more pronounced in alkalized and hot water treated SCB and AL. The peak at 1731 

cm-1 can be attributed to C = O stretching of acetyl groups of hemicelluloses reduced in intensity for 

acetylated and alkalized AS. This was also observed in hot water and acetylated AL. The peak was 

non-existent for all alkalized samples. This confirms the removal of hydrolysed hemicellulose 

components. Similar observations were also made by Pelaez-Samaniego et al. (2014) and 

Amiandamhen et al. (2018). The C= O stretch of the acetyl group of lignin found around 1235 – 1254 

cm-1 disappeared in the alkalized SCB while the intensity reduced for other samples. The intensity 

was almost unchanged for acetylated and hot water treated samples. This supported the HPLC results 

that alkalization had the lowest mean lignin for SCB.  
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Fig.  4-5  FTIR spectra of untreated and treated SCB

 

Fig.  4-6  FTIR spectra of untreated and treated AS

 

Fig.  4-7  FTIR spectra of untreated and treated AM 
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Fig.  4-8  FTIR spectra of untreated and treated AL 

4.4 Surface morphology 

4.4.1 SEM 

The surface morphology of the samples was examined before and after treatment using Scanning 

Electron Microscopy and energy dispersive spectroscopy (SEM/EDS). The micrographs of the 

samples before and after the treatments are shown in Figures 4-9 to 4-12. It was observed that all the 

treatments caused defibrillation of the fibres, which could improve the fibre-matrix bond and 

therefore influence the strength development. Alkalization generally removed wax and lignin from 

the samples leading to cleaner surfaces. Similar observations have been reported in other studies 

(Amiandamhen et al. 2018; Hajiha et al. 2014). Acetylation makes the sample less hydrophilic by 

replacing the hydroxy groups on the surface with acetyl groups (Hajiha et al. 2014; Li et al. 2007), 

while hot water extraction causes fractionation of easily accessible sugars and hemicelluloses (Pelaez-

Samaniego et al. 2014; Pereira Ferraz et al. 2016). Figure 4-9 shows that acetylation and hot water 

treatments removed some waxy substances from AM samples, but some protruding parts are still 

visible. In Figure 4-10, it was observed that alkalized and acetylated samples had a smoother surface, 

while minimal difference existed between untreated and hot water extracted AS samples. Figure 4-

11 shows that alkalized SCB had smoother surfaces while little difference was observed in hot water 

extracted and acetylated samples. The highest degree of fibrillation was observed in AL samples 

(Figure 4-12). The cell wall looks somewhat exploded with the removal of pectin in all treated 

samples. The alkalized sample appeared to be pulped and was distinctly different from other treated 

samples. It is expected that these treatments will affect the fibre-matrix bond differently.  
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Fig.  4-9  SEM micrographs of AM (a) untreated (b) acetylated (c) alkalized  (d) hot water treated 

 

Fig.  4-10 SEM micrographs of AS (a) untreated (b) acetylated (c) alkalized (d) hot water treated 
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Fig.  4-11 SEM micrographs of SCB (a) untreated (b) acetylated (c) alkalized (d) hot water treated 

 

Fig.  4-12 SEM micrographs of AL (a) untreated (b) acetylated (c) alkalized (d) hot water treated 
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4.4.2 Energy Dispersive Spectroscopy (EDS) 

The elemental composition of the surfaces of the samples before and after treatments were analysed 

using EDS. A minimum of two spectra was selected at random and the average was calculated to 

determine the composition. The surface composition of the samples is presented in Tables 4-5 to 4-

8.  The hydrophobicity of the sample depends on the C/O ratio. Samples with a higher C/O ratio are 

less hydrophilic (Amiandamhen et al. 2018). Pre-treatment increased the C/O ratios in all samples. 

This confirmed the removal of the more hydrophilic lower components indicated by the FTIR and 

HPLC results. As expected, the treatment methods affected the distribution of the elemental 

compositions and the C/O ratio of all the samples differently. Apart from AS, acetylation had the 

highest C/O ratio while hot water extraction had lowest ratio except for AL. The C/O ratio of all the 

samples was greater than 1.21, indicating that some waxy substances are still present on the surfaces 

(Amiandamhen et al. 2018). 

 

Table 4-5 Elemental characterization of treated and untreated AL 

Sample Elements 

Treatments C O Na Mg Al Si K Ca Ti Fe C/O 

Untreated 57.93 41.22 0.05 0.00 0.19 0.12 0.18 0.09 0.14 0.07 1.41 

Acetylated 65.70 34.02 0.02 0.03 0.04 0.05 0.04 0.07 0.01 0.02 1.93 

Alkalized 62.38 36.66 0.33 0.16 0.02 0.06 0.07 0.22 0.00 0.11 1.70 

Hot water 63.68 35.96 0.00 0.05 0.02 0.02 0.01 0.11 0.05 0.10 1.77 

Table 4-6  Elemental surface composition (%) of treated and untreated AM 

Sample Elements 

Treatments C O Na Mg Al Si K Ca Ti Fe C/O 

Untreated 61.83 37.70 0.05 0.04 0.03 0.02 0.21 0.03 0.03 0.04 1.64 

Acetylated 66.17 33.62 0.00 0.03 0.04 0.04 0.00 0.00 0.00 0.10 1.97 

Alkalized 65.00 34.71 0.06 0.04 0.05 0.01 0.02 0.09 0.03 0.00 1.87 

Hot water 62.44 36.87 0.01 0.00 0.05 0.00 0.00 0.60 0.00 0.02 1.69 
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Table 4-7  Elemental surface composition (%) of treated and untreated SCB 

Sample Elements 

Treatments C O Na Mg Al Si K Ca Ti Fe C/O 

Untreated 60.12 32.96 0.04 0.11 0.10 0.94 0.09 0.07 0.01 5.57 1.82 

Acetylated 65.21 33.10 0.00 0.06 0.46 0.81 0.06 0.06 0.02 0.22 1.97 

Alkalized 63.92 32.98 0.52 0.14 0.07 1.92 0.02 0.30 0.03 0.12 1.94 

Hot water 65.53 34.23 0.02 0.02 0.03 0.06 0.01 0.03 0.01 0.06 1.91 

 

Table 4-8  Elemental surface composition (%) of treated and untreated AS 

Sample Elements 

Treatments C O Na Mg Al Si K Ca Ti Fe C/O 

Untreated 56.70 43.01 0.08 0.02 0.02 0.01 0.09 0.02 0.00 0.05 1.32 

Acetylated 64.44 35.50 0.01 0.00 0.02 0.00 0.01 0.03 0.00 0.00 1.82 

Alkalized 64.73 34.57 0.47 0.02 0.02 0.01 0.03 0.09 0.04 0.02 1.87 

Hot water 61.36 38.40 0.03 0.07 0.04 0.01 0.01 0.07 0.00 0.01 1.60 

4.5 TGA  

The thermal stability of the lignocellulosic materials (LM) was investigated by Thermogravimetric 

analysis (TGA) under nitrogen flow. The derivative thermographs (DTG) of the LM are shown in 

Figure 4-13.  The LMs exhibited similar thermal behaviour with a presence of peak/shoulders below 

the main degradation peak. The shoulders appeared at 274.03 °C, 275.43℃, 293.49℃ and 274.70 °C 

for AS, AM, SCB and AL, respectively. The shoulder may be attributed to the degradation of 

hemicelluloses partially overlapping with cellulose and lignin (Pelaez-samaniego et al. 2013; Sebio-

pun and Lo 2012). AM has another shoulder at 225.12℃, which could indicate the decomposition of 

some volatile components and hemicelluloses of lower molecular weight. This could be attributed to 

the prior industrial process, which might have removed certain impurities and hence improve the 

thermal stability of the components.  
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4.6 Characterization of precursor materials 

4.6.1 Particle size distribution and chemical composition 

The particle sizes of fly ash, metakaolin and slag are shown in Table 4-9. Fly ash had finer particles 

than metakaolin and slag. About 50% of the fly ash particles had sizes less than 14.404µm. Figure 4-

14 shows the volume frequency and particle size distributions of the precursors. Most of the particles 

are within 10 – 40µm for fly ash, 40 – 55 µm for metakaolin and 10 – 45 µm for slag. Precursors with 

finer particles are more reactive in the activating medium partly due to their larger surface area 

(Petermann and Saeed 2012) and produce products of superior properties (Chen and Brouwers 2007). 

The chemical compositions of the precursor materials are presented in Table 4-10. The FA can be 

classified as low calcium ash according to the ASTM C618 (ASTM 2019), since the sum of its SiO2 

and Al2O3 contents exceeded 70% and the CaO content was less than 20%. The Si/Al ratios of the 

precursors were 1.31, 1.75 and 2.46 for metakaolin, fly ash and slag, respectively. The precursors 

meet the preferred properties for the production of geopolymer of optimum binding properties 

outlined in Fernandez-Jimenez et al (2008). The LOI was less than 5%, less than 10% Fe2O3, about 

40 – 50 % SiO2 and 80 – 90 % of their particles less than or equal to 45µm.  
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Fig.  4-13  Thermographs (TG) and derivative thermographs (DTG) of lignocellulosic materials (a) AS 

(b) AM (c) SCB and (d) AL 
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Table 4-9 Particle size distribution of precursors 

Precursors 
Particle size (µm) 

d10 d50 d90 

Fly Ash 1.383 14.404 59.804 

Metakaolin 2.775 28.052 103.736 

Slag 2.361 16.554 52.742 

 

Table 4-10  Chemical compositions of the precursor materials 

Precursor (%) Al2O3 CaO Cr2O3 Fe2O3 K2O MgO MnO Na2O P2O5 SiO2 TiO2 L.O.I. 

Metakaolin 42.24 0.08 0.01 0.39 0.08 -_ 0.01 0.05 0.07 55.18 1.33 1.02 

Slag 15.76 33.92 _ 0.15 1.01 8.64 0.87 0.24 0.01 38.90 0.72 -1.15 

Fly Ash 31.05 5.56 0.01 2.66 0.95 1.18 0.04 0.18 0.44 54.24 1.62 2.00 

 

 

Fig.  4-14 Cumulative frequency distribution of the precursors (a) fly ash (b) metakaolin and (c) 

slag  

a. 

c. b. 
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4.6.2 Phase identification and analysis 

The XRD diffractograms of the precursor materials are shown in Figure 4-15. The crystalline phases 

present in the precursors were identified using the Qualx V2 and X ’Pert Highscore Plus software. 

Quartz and mullite are the principal crystalline phases present in both fly ash and metakaolin, but 

their intensities are higher in fly ash. The high peak observed in the diffractograms in Figure 4-15(a), 

between 15 – 35° 2θ, indicates a high quantity of amorphous contents which could be silica or alumina 

(Figure 4-15(a)). Figure 4-15(b) shows the diffractogram of slag material. Fewer crystalline phases 

were present in the slag. The majority of the components are amorphous as indicated by the wide 

peak present between 20 – 40° 2θ. The minor crystalline phases included quartz, alumina, calcite 

(CaCO3), magnoan (MgCO3), corundum and magnesite. These support the XRF results presented in 

Section 4.6.1. 

 

Fig.  4-15 XRD patterns of the precursors (a) fly ash and metakaolin (b) slag 

4.6.3 IR spectroscopy 

The IR spectra of the precursor materials are shown in Figure 4-16. Fly ash had more peaks than 

metakaolin, but it is important to note that the peaks fall within same band areas. The band between 

950 – 1250cm-1 is assigned to internal vibrations of Si-O-Si (Davidovits 2008). They also have peaks 

in the band 500 – 800cm-1, which is characteristic of symmetric stretching of the Si-O-Si and Al-O-

Si bonds of amorphous or semi-crystalline alumino-silicates (Barbosa et al. 2000; Fauzi et al. 2016). 

The IR spectrum of the slag material has 3 major broad bands at 680 cm-1, 873 cm-1, and 1473 cm-1 

wavenumbers. The peaks at 680 cm-1 can be attributed to the stretching vibration of Al – O (Mohassab 

and Sohn, 2015). According to Barbosa et al. (2000) and Fauzi et al. (2016) peaks found in the range 
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of 500 – 800cm-1 are characteristic symmetric stretching of the Si – O – Si and Al – O – Si bonds of 

amorphous or semi-crystalline alumino-silicates. The peak at 873 cm-1 can also be assigned to the 

stretching vibrations of Al – O and Si – O (Mohassab and Sohn 2015). The presence of CaCO3 is 

indicated by the peak at 1474 cm-1 (Nasrazadani and Springfield 2014; Ylmén and Jäglid 2013). These 

prominent peaks support the XRF analysis, which indicated that the main components of the slag 

material composed of alumina, silica and calcium carbonate.  

 

Fig.  4-16 IR Spectra of the precursor materials 

4.7 Conclusions 

This chapter provided information about the properties of the materials using different 

characterization techniques. The chemical compositions of the LM were characterized using the 

TAPPI and NREL standard methods. The LM were subjected to alkalization, acetylation and hot-

water treatments to remove substances that could inhibit bonding with geopolymer matrix and modify 

the fibres surfaces for better fibre-matrix compatibility. The major findings about LM characterization 

are summarized as follows:  

1 Acacia species had higher bulk density than bagasse fibres. The acacia species had similar 

chemical compositions which were different than bagasse fibres. 

2 Significant difference existed between the fibre yield of pre-treated samples. Hot water treated 

samples had the highest mean yield, while alkalized samples had the lowest. The treatments 

had significant effects on the chemical compositions of the samples. The HPLC results  

indicated partial removal of lower molecular components in the LM. Pre-treatment caused a 

reduction on the extractive components of all samples. Apart from the alkalized AM, 
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reduction was also observed in lignin content for all samples. The reduction resulted in a 

proportional increase in the cellulose content. FTIR confirmed the HPLC results. It indicated 

partial degradation of lignin and confirmed the removal of hydrolysed hemicellulose after pre-

treatment.  

3 SEM/EDS analyses confirmed that fibre pre-treatment improved the surface property and 

hydrophobicity of the samples. It is expected that cleaner surfaces free from waxy substances 

would influence better fibre-binder bonds. 

The geopolymer precursor materials were characterized to ensure that they meet the requirements 

suggested in the literature for optimum binding properties. The particle distributions of the 

precursors were determined using PSD technique. The chemical bonds and metallic oxides 

present in the precursors were determined using FTIR and XRF analyses, respectively. XRD was 

employed to determine the crystalline phases contained in the precursor materials. The major 

findings are summarized as follows: 

1 Fly ash had finer particles than metakaolin and slag. The volume frequency and particle 

distributions indicated that the precursors had most of their particles ≤ 45µm.  

2 The XRD analysis confirmed that the precursors were composed of high quantity of 

amorphous contents. The few crystalline phases present in fly ash and metakaolin were 

identified as Mullite and Quartz. The crystalline phases contained in the slag included quartz, 

alumina, calcite, magnoan, corundum and magnesite. 

3 The XRF results indicated that the fly ash can be classified as Class F fly ash according to the 

ASTM standards. The ferric oxide, silica and Si/Al ratios of the precursors suggested that they 

were suitable materials for geopolymerization reactions. 

4 The prominent peaks in the IR spectra of the precursor materials indicated the presence of Si 

– O – Si and Al – O – Si bonds of amorphous alumino-silicates. The slag had an additional 

peak which confirmed the presence of calcium carbonate. The results supported the XRF 

analysis. 
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Chapter 5  

Investigating the suitability of fly ash/metakaolin-based geopolymer 

reinforced with South African alien invasive wood and sugarcane 

bagasse residues for use in outdoor conditions 

5.1 Board formation  

The overview of the design of the experiments for board formation is presented in Table 5-1. 

Table 5-1 Overview of the mix design for board formation 

Runs Fly Ash 

(g) 

Metakaolin 

(g) 

LM (g) Na
2
SiO

3
 (g) NaOH (g) Water (g) Conc. (M) Curing Pattern (°C, h) 

1 120 40 40 57.14 22.86 14 8 60, 24 

3 120 40 40 57.14 22.86 15 10 60, 24 

5 120 40 40 57.14 22.86 16 12 60, 24 

2 135 45 45 42.86 17.14 24 8 60, 24 

4 135 45 45 42.86 17.14 26 10 60, 24 

6 135 45 45 42.86 17.14 28 12 60, 24 

7 120 40 40 57.14 22.86 14 8 100, 6 

8 120 40 40 57.14 22.86 15 10 100, 6 

9 120  40 40 57.14 22.86 16 12 100, 6 

10 135 45 45 42.86 17.14 24 8 100, 6 

11 135 45 45 42.86 17.14 26 10 100, 6 

12 135 45 45 42.86 17.14 28 12 100, 6 

Control 142.50 47.50 - 67.86 27.14 - 10 60, 24 

 

5.2 Physical and mechanical properties of geopolymer bonded boards 

The apparent density, water absorption (WA), thickness and volumetric swelling (TS/VS) of the 

boards are shown in Table 5-2. The samples had comparable densities ranging from 1.12 – 1.28 g/cm3, 

1.15 – 1.29 g/cm3 and 1.00 – 1.39 g/cm3 for A. mearnsii, A. longifolia, and SCB boards, respectively. 

The boards were categorized as high-density boards, as they were above 1.00 g/cm3 (ANSI, 1999). 

The addition of LM caused a reduction of about 35% in the unit weight of the pure geopolymer boards 
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(Table 5-2). The unit weights of the boards were lower than the range reported for fly ash-based 

geopolymer in the literature, i.e.  14.5 – 15.5 kN/m3 (Chen et al. 2014), 14.50 – 17.10 kN/m3 (Andini 

et al. 2008) and 11.8 – 15.7 kN/m3 (Cioffi et al 2003). The low unit weight was attributed to the low 

bulk density of the incorporated LM (Chen et al 2014). 

Following 24 h immersion in water, the WA ranged from 20.33 – 31.53%, 22.37 – 35.99%, and 23.23 

– 40.82% for A. longifolia, A. mearnsii, and SCB boards, respectively; while the TS ranged from 0.10 

– 1.08%, 0.51 – 1.08%, and 0.21 – 2.42% for A. longifolia, A. mearnsii, and SCB boards, respectively. 

Unreinforced geopolymer boards absorbed less water than the reinforced geopolymers due to the 

hydrophilic nature of LM. According to the British standard (EN 634-2 2007) for cement-bonded 

particleboards, all boards met the TS and VS requirements. However, only a few of the boards from 

each LM met the WA requirement (Table 5-2).  

Flexural strength, as indicated by the static MOE and bending MOR, is an important requirement for 

boards used for structural applications in outdoor applications. The MOE and MOR ranged from 2293 

– 6408 MPa and 3.17 – 7.18 MPa, respectively for A. mearnsii boards, 2296 – 7986 MPa and 2.77 – 

9.228 MPa for A. longifolia boards and 1512 – 4686 MPa and 1.68 – 4.95 MPa for SCB boards. The 

addition of acacia particles improved the flexural strength of the boards. The boards had comparable 

flexural properties with fly ash and steel slag-based geopolymer reinforced with synthetic fibres 

reported by Guo and Pan (2018). SCB fibres only slightly improved the MOE and caused a reduction 

in the MOR of the boards compared to the control. This is due to the low bulk density of the SCB and 

the high volume included in the matrix. However, the boards had better flexural strength than those 

reported by Amiandamhen et al. (2018b) using similar wood species in phosphate matrix. The boards 

produced also performed better than those reported by Chen et al. (2014) using sorghum fibres in fly 

ash-based geopolymer. The flexural strength compares well with the results of Duan et al. (2016), 

where a sawdust content of 20% showed maximum flexural strength of about 10 MPa and 12 MPa 

after 28 and 90 days curing, respectively. According to EN 634-2:2007, there are two classes of 

boards based on the static MOE (Class 1 & Class 2) and a minimum MOR of 9 MPa is required for 

each class (Table 5-2). Within the experimental conditions in this study, only a few boards of A. 

longifolia boards met all the minimum requirements.   
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(vertical lines denote confidence interval 0.95) 

Fig. 5-1 The mechanical properties of all boards (a) MOR of AL (b) MOE of AL (c) MOR of SCB 

(d) MOE of SCB (e) MOR of AM and (f) MOE of AM 
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 Table 5-2 Physical and mechanical properties of the boards and EN 634-2:2007 requirements of 

cement-bonded particleboards for outside applications 

* Grade 1-L-1 low density particleboard 

5.3 Effect of curing pattern and LM on physical properties 

Increasing the curing temperature up to 100 °C has been reported to have positive effects on the 

properties of geopolymer products (Yuan et al. 2016). Figure 5-2 (a) shows that there is a significant 

difference between the curing patterns employed in this study. Boards cured at 60 °C had a higher 

mean density than those cured at 100 °C. This observation is in agreement with findings in the 

literature (Sarmin and Welling 2015; Tran et al. 2009). The authors reported a reduction in the density 

of geopolymers as the curing temperature increased. Curing beyond 100 °C caused the formation of 

numerous cavities, resulting in decreased density and strength.  However, Figure 5-2(b) shows that 

the trend varied with different LM. Curing at 100 °C for 6 h resulted in a slightly higher mean density 

than 60 °C curing for both A. longifolia and A. mearnsii boards. Statistical analysis (p<0.05) revealed 

that the curing pattern had no significant effect on the density of boards for both species, which 

indicates that the two curing conditions employed in this study did not deteriorate the internal 

structure of the acacia boards. In contrast, curing at 100 °C for 6 h caused a reduction in the density 

of SCB boards by about 15.59%. SCB has a low bulk density, which implies that more particles and 

embodied moisture were incorporated in SCB boards than the other board types. Higher curing 

temperature causes the formation of microcracks (Görhan et al. 2016), increases the extent of 

dehydroxylation between T – OH (T: Si or Al)  and rate of removal of both free water and pore water 

resulting in the formation of large voids (Yuan et al. 2016). The formation of large voids was further 

accentuated by the reduced compressibility (due to high volume), which caused the board volume to 

Properties Units 
Boards Standards 

A. mearnsii A. longifolia SCB Control EN 634-2:2007 ANSI* 

MOE  MPa 2293 – 6408 2296 – 7986 1512 – 4686  3790 – 4096 Class 1: ≥ 4500 1034 

      Class 2:    4000  

MOR MPa 3.17 – 7.18 2.77 – 9.28 1.68 – 4.95  5.14 – 5.20 ≥ 9.0 ≥5.50 

Density  g/cm3 1.12 – 1.28 1.15 – 1.29 1.00 – 1.39 1.55 – 1.58 ≥ 1.0 <0.64 

Unit weight  kN/m3 10.98 – 12.54 11.27– 12.64 9.80 – 13.62 15.19 – 15.48 - - 

Water 

Absorption % 22.37 – 35.99 20.33– 31.53 23.23 – 40.82 10.11 – 10.82 ≤ 25 - 

Thickness 

Swelling % 0.51 – 1.08 0.10 – 1.08 0.21 – 2.42 0.079 – 0.085 ≤ 15 - 

Volumetric 

swelling % 0.80 – 1.68 0.15 – 1.64 0.21 – 2.61 0.094 – 0.132 ≤ 15 - 
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expand, leading to a reduction in board density. An increase in composite volume due to the formation 

of cavities, as a result of rapid moisture removal at higher temperatures was also reported by Tran et 

al. (2009). Statistical analysis (p<0.05) revealed a significant effect of curing conditions on the density 

of SCB boards (Figure 5-3(b)).  

Generally, boards cured at 100 °C for 6 h absorbed more water and there was no significant difference 

between curing conditions and TS/VS. However, the influence was different for different LM 

(Figures 5-2 and 5-3). The effects on the sorption properties of SCB boards followed the same trend 

as density. Boards cured at 60 °C for 24 h absorbed less water and had better dimensional stability 

than those cured at 100 °C for 6 h. This can be explained by the fact that the porous morphology due 

to high-temperature curing exposed more sorption sites on the SCB fibre and the matrix was not 

compact enough (due to lower compressibility at high fibre loading) to resist the dimensional changes 

associated with water uptake. The curing pattern had significant effects (p<0.05) on the WA, TS, and 

VS of SCB boards. A. longifolia boards cured at 60 °C for 24 h had a lower mean WA but were less 

dimensionally stable compared with those cured at 100 °C for 6 h, as they had higher mean TS/VS 

values. The formation of micro cracks and cavities at elevated temperatures provided more channels 

for water molecules to penetrate the boards (See Figures 5-4(a)). However, the lower TS/VS at 100 

°C curing is evidence that the water was only absorbed into the open cracks and the matrix was 

compact enough to uphold the dimensional integrity of the boards. Curing patterns had a significant 

effect on TS and VS for A. longifolia boards but their influence on WA was insignificant (p>0.05).  

A. mearnsii boards behaved differently: boards cured at 60 °C for 24 h absorbed more water and had 

higher mean TS but lower VS values than those cured at 100 °C for 6 h. The disparity could be as a 

result of the difference in the cellular and chemical composition of the species. Statistical analysis 

revealed no significant influence of curing pattern on the sorption properties of A. mearnsii boards.  
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Fig. 5-2 Effects of curing pattern on (a) density for all boards (b) density for each LM (c) WA for 

all boards (d) WA for each LM 

Stellenbosch University https://scholar.sun.ac.za



60 

 

 

Fig. 5-3 Effects of curing pattern on TS - (a) for all boards (b) for each LM; - and VS (c) for all 

boards, (d) for each LM 

 

Fig. 5-4 SEM images showing (a) formation of micro-cracks and channels at high temperature 

curing in AL board (b) densified pore structure (c) fractured surface of SCB board (d) mineralized 

fibres of AM boards 
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5.4 Effect of PA ratio and activator concentration on board properties 

The effects of PA ratio and activator concentration on the physical and mechanical properties of the 

boards are presented in Figures 5-5 and 5-6, respectively. The PA ratio and activator concentration 

are critical factors, which greatly influence the formation and evolution of the overall strength of 

geopolymer products (Petermann and Saeed 2012). While keeping the weight ratio of Na2SiO3 and 

NaOH fixed at 2.5:1, the PA ratio of 2:1 produced alkali dosage (%Na2O/binder) of 10.19, 10.98 and 

11.72% with 8M, 10M and 12M NaOH, respectively; compared to the dosages of 6.79, 7.32 and 

7.81% recorded for PA ratio of 3:1. Irrespective of LM type and activator concentration, a PA ratio 

of 2:1 had higher mean density, MOE, MOR and lower WA than a PA ratio of 3:1.  The improved 

properties are due to the higher alkali dosage, which enhanced the dissolution stage of the 

geopolymerization kinetics and subsequently aided the densification of the pore structure as seen in 

Figure 5-4(b). 

The effect of alkali dosage on the strength development of geopolymers has been reported in the 

literature. According to Soutsos et al. (2016), increasing the alkali dosage affected the properties of 

fly ash-based geopolymers until an optimum value of 12.5%, beyond, which the strength decreased. 

The alkali dosages used in this experiment were below this optimum value. The MOE and MOR of 

acacia boards improved as the molar concentration of the activator increased. There is an exception 

with SCB boards where the strength properties decreased when the molar concentration increased 

from 10M to 12M. This could be explained by the presence of high extractive content and lignin in 

SCB, which leached and retarded the dissolution of both silica and alumina species and delayed the 

nucleation stage of geopolymer synthesis. This might have caused the migration of excess alkali 

anions into the fibre bundles leading to degradation of the holocellulose. This is in line with the result 

of Ye et al. (2018) that higher lignin content caused reduction in the strength of metakaolin-based 

geopolymer. 
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Fig. 5-5 Effects of PA ratio and molar concentration on (a) board density (b) WA (c) TS (d) VS 

 

Fig. 5-6 Effects of PA ratio and activator concentration on MOE and MOR 

5.5 Effects of curing pattern and LM on mechanical properties of boards 

Figure 5-7 shows the effect of the curing pattern on the strength properties of the boards. The effects 

followed the same trend as was observed with the board density for all LM. SCB boards cured at 60 

°C for 24 h had higher mean MOE and MOR than those cured at 100 °C for 6 h, while the reverse 

was observed with acacia boards. Figure 5-8 shows weak positive correlations observed between 
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board density and the strength properties. Amiandamhen et al. (2018b) reported a similar observation 

in phosphate bonded composites where invasive acacia wood was incorporated in the matrix as 

reinforcement. Irrespective of LM, the curing pattern had significant effects (p<0.05) on the strength 

properties of the boards with the exception of the MOE of SCB boards. Curing at 100 °C for 6 h 

accelerated the geopolymer kinetics and improved the strength properties of acacia boards. Increasing 

the curing temperature up to 100 °C has been reported to improve the strength development of low-

calcium fly ash (Class F) geopolymers, regardless of the curing duration (Hardjito and Rangan 2005). 

 

Fig. 5-7 Effects of curing pattern on (a) MOE (b) MOR 

A. mearnsii boards cured at 60 °C for 24 h had a higher mean MOE and MOR than A. longifolia 

boards cured at the same temperature, which could be due to its slightly higher cellulose content. 

Higher cellulose content improves the strength properties of geopolymers as the bridging mechanism 

of the fibres impedes crack propagation (Ye et al. 2018). However, the trend was reversed when the 

curing temperature was raised to 100 °C for 6 h. A. longifolia boards recorded a significant strength 

gain compared to A. mearnsii boards (Figure 5-7). This could be due to the slightly higher 

hemicellulose content in A. mearnsii, which can degrade in an alkaline environment at higher 

temperature curing. The SEM image (Figure 5-4(d)) shows that the fibres in A. mearnsii boards were 

mineralized, as the geopolymer matrix can be seen absorbed into the fibre bundles. This caused 

degradation of hemicelluloses, which was further confirmed by FTIR results. The degraded 
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hemicelluloses in the alkaline matrix, together with the high extractive content, could cause a 

reduction in the geopolymerization kinetics.  

 

Fig. 5-8 Relationship between density and (a) MOE, (b) MOR 

5.6 Characterization of the geopolymer product 

5.6.1 FTIR 

The infrared (IR) spectra of the precursor materials are shown in Figure 5-9. Fly ash has more peaks 

than metakaolin, but it is important to note that the peaks fall within the same band areas. The band 

between 950 – 1250 cm-1 is assigned to the internal vibrations of Si-O-Si (Davidovits 2008). They 

also have peaks in the band 500 – 800 cm-1, which is characteristic of symmetric stretching of the Si-

O-Si and Al-O-Si bonds of amorphous or semi-crystalline alumino-silicates (Barbosa et al. 2000; 

Fauzi et al. 2016). The LM types have similar IR spectra within the same band numbers as shown in 

Figure 5-10(a).  The strongest bands are found around 3360 cm-1 and 1023 cm-1 in all LM samples. 

The band around 3360 cm-1 is assigned to the axial vibration of the hydroxyl (-OH) group of cellulose 

(Ibraheem et al. 2016), while the band at 1023 cm-1 indicates a C-C bond of β-glucosidic linkages 

between sugar units in hemicelluloses and cellulose (Hajiha et al. 2014). The peak at 2916 cm-1 

represents a symmetrical vibration of C-H bond (Liu et al. 2004; Amiandamhen et al. 2018a). Since 

the SCB fibre has been processed, it could have altered the position of the absorption bands. This 

peak could also be attributed to a C-H aliphatic axial deformation in CH2 and CH3 groups from 

cellulose, lignin and hemicellulose as it is only 4 cm-1 less than the absorption band reported by 

Corrales et al. (2012). The peak around 1737 cm-1 is attributed to the carbonyl (C=O) stretching of 

acetyl groups of hemicellulose (Liu et al. 2004; Corrales et al. 2012). These peaks disappeared in the 

IR spectra of their respective boards (Figure 5-10(b)), indicating the degradation of hemicelluloses in 
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the matrix. SCB has peaks at 1603 cm-1 and 1633 cm-1, which could be assigned to C-Ph vibration at 

peak and C = C bonds found in lignin aromatic structures (Corrales et al. 2012). The C-Ph peak 

disappeared in SCB boards.  

The peak at 1422 cm-1 is present in both SCB and the acacia species, indicating CH2 symmetric 

bending of cellulose (Hajiha et al. 2014; Sawpan et al. 2011). The peak shifted to around 1416 cm-1 

and the intensity decreased in the geopolymer products, indicating the partial degradation of lower 

molecular cellulose components. The C–O stretch of the acetyl group of lignin assigned to the peaks 

found around 1235 – 1254 cm-1 (Hajiha et al. 2014; Liu et al. 2004) also disappeared in the composite 

products. This indicates a partial breakdown of lignin in the alkaline matrix. The major peak found 

in the geopolymer products is due to the convolution shifts of the Si-O-Si band of the precursor 

materials (Figure 5-10) and the C-C peak of the LM towards the low wavenumber (Figure 5-10(b)).  

The shift in the Si-O-Si and Al-O bands towards lower wavenumber indicates that geopolymerization 

has occurred through partial replacement of silica species by alumina, resulting in a change in the 

local chemical environment of the bonds (Criado et al. 2005; Davidovits 2008). 

 

Fig. 5-9 FTIR spectra of precursor materials 

Fly ash 

Metakaolin 
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Fig. 5-10 FTIR spectra of (a) LMs (b) composite products after 28 days 

5.6.2 TGA 

The thermal stability of the LM and composite products was investigated by thermogravimetric 

analysis (TGA) under nitrogen flow. The derivative thermograms (DTG) of the LM are shown in 

Figure 5-11. The LMs exhibited similar thermal behaviour to the presence of peak/shoulders below 

the main degradation peak. The shoulders appeared at 272.43 ℃, 274.70 ℃ and 293.49 ℃ for A. 

mearnsii, A. longifolia and SCB, respectively. The shoulder may be attributed to the degradation of 

hemicelluloses partially overlapping with cellulose and lignin (Sebio-Puñal et al. 2012). A. mearnsii 

has another shoulder at 225.12 ℃, which could indicate the decomposition of some volatile 

components and hemicelluloses of lower molecular weights. The DTG plot of the boards is shown in 

Figure 5-12. The peak-shoulder disappeared in all boards, which corroborates the FTIR results that 

the hemicellulose components have degraded in the alkaline matrix. 
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Fig. 5-11 Thermograms (TG) and derivative thermograms (DTG) of LM: (a) A. mearnsii, (b) SCB, 

(c) A. longifolia 

The shift in the main degradation peaks towards the lower end of the cellulose degradation range of 

275 – 500 ℃ also confirms the partial degradation of cellulose and lignin (Machado et al. 2018). 

Other broad peaks found around 425 – 525 ℃ for A. mearnsii and A. longifolia could indicate an 

overlap of lignin degradation and transformation of the amorphous matrix contents into a more 

crystalline structure. This peak is absent in the SCB board, but its weight loss was increasing until it 

became steady around 540 ℃. The products are thermally stable as the residues are all above 70. 
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Fig. 5-12 Derivative and weight loss thermograms of (a) control sample, (b) SCB boards, (c) A. 

longifolia boards, (d) A. mearnsii boards 

5.6.3 XRD 

The XRD diffractograms of fly ash and metakaolin are shown in Figure 5-13 (a). The high peak 

observed between 15 – 35° 2θ indicates a high level of amorphous content, which could be silica or 

alumina. Quartz (00-901-0145) and mullite (00-900-5502) are the principal crystalline phases present 

in both materials, but their intensities are higher in fly ash than metakaolin. No formation of new 

crystalline phases was observed in the diffractograms of the composite products shown in Figure 5-

13(b), but the intensity of the identified crystalline phases reduced, and the peak shifted towards 

higher 2θ values. The shift confirms the FTIR results that geopolymerization has taken place (Yuan 

et al. 2016), and the reduction in intensity indicates that some parts of the crystalline material took 

part in the reaction (Alomayri 2017). Fewer crystalline phases participated in the geopolymerization 

reaction of A. mearnsii boards as they exhibit higher intensities than those found in the other boards 

(Figure 5-13(b)). A. longifolia and A. mearnsii had comparable chemical composition (see Table 4-

1), but the difference in the intensities of the crystalline phases in SCB and A. longifolia boards are 

not noticeable, which could mean that A. mearnsii contains components that inhibited 

geopolymerization kinetics.  
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Fig. 5-13 XRD patterns of (a) precursor materials (b) geopolymer composites 

5.7 Conclusion 

This study has demonstrated the possibility of producing high-density geopolymer panels reinforced 

with untreated wood particles from South African invasive species and SCB for use in outdoor 

conditions. The following conclusions can be drawn based on this study: 

1 Curing pattern, molar concentration of activator and PA ratio have significant effects on 

the properties of the geopolymer boards. 

2 Increasing the molar concentration of activator and curing temperature results in a denser 

pore structure and improves the properties of acacia boards. The internal structure of SCB 

boards deteriorated at higher curing temperature causing low strength development. 

3 All geopolymer boards met the sorption requirements of EN 634-2: 2007 for cement-

bonded particleboards for outdoor applications. However, only A. longifolia boards 

produced with 12M NaOH, PA ratio of 2:1 and cured at 100 °C for 6 h met the mechanical 

strength requirements. 

4 The boards are thermally stable, as the residue retained at the end of thermal analysis was 

above 70%. 

5 The products have comparable properties to other natural fibre reinforced composites and 

can be used as alternative materials in similar applications. The development of 

geopolymer products utilizing industrial residues presents both economic and 

environmental advantages when compared to conventional composite products. However, 

there is a concern about the durability of the LM in alkaline matrix. Mineralization of LM 

due to high dosage of alkali activator was revealed by SEM, while degradation of 
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hemicellulose and lower molecular wood components was confirmed by FTIR analysis. 

The degraded products do not prevent geopolymer setting but lower the degree of 

geopolymerization. Hence, the durability of the product over time needs to be further 

investigated. 

 

Stellenbosch University https://scholar.sun.ac.za



71 

 

Chapter 6  

Characterization of unary precursor-based geopolymer bonded 

composites developed from ground granulated blast slag and forest 

biomass residues 

6.1 Board formation 

The overview of the mix design for board production is shown in Table 6-1. 

Table 6-1 Overview of board production 

No Slag(g) LM (g) Na
2
SiO

3
(g) NaOH (g) H2O (g) Conc. (M) Curing 

1 160 40 57.14 22.86 14 4 25°C, 24h 

3 160 40 57.14 22.86 14 6 25°C, 24h 

5 160 40 57.14 22.86 14 8 25°C, 24h 

2 160 40 57.14 22.86 14 4 40°C, 6h 

4 160 40 57.14 22.86 14 6 40°C, 6h 

6 160 40 57.14 22.86 14 8 40°C, 6h 

Control 190 - 67.86 27.14 - 6 25oC , 24h 
 

 

6.2 Physical properties of the boards 

The physical and mechanical properties of slag-bonded geopolymer boards are shown in Table 6-2. 

The boards had densities above 1.0 g/cm3 and were hence classified as high-density boards according 

to the American National Standard for composite panels ANSI (1999). The unit weights of the control 

samples ranged from 14.53 – 15.02 kN/m3. The incorporation of biomass caused a considerable 

reduction in the unit weights. The unit weights of the reinforced boards ranged from 11.59 – 14.53 

kN/m3, 11.78 – 14.33 kN/m3 and 12.47 – 14.44 kN/m3 for A. mearnsii (AM), A. saligna (AS) and 

sugarcane bagasse (SCB) boards, respectively. These values are in the range observed with fly 

ash/metakaolin based geopolymer in the previous Chapter, and also lower than the range reported for 

geopolymers in the literature (Andini et al. 2008; Chen et al 2014; Cioffi et al 2003).  

The sorption properties were indicated by water absorption (WA), thickness and volumetric swelling 

(TS/VS). The WA, TS and VS of the control samples ranged from 10.56 – 12.85 %, 0.04 – 0.07 % 

and 0.10 – 0.13 %, respectively. The acacia boards had WA of 13.69 – 14.46 % for AS, 17.16 – 17.28 
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% for AM, while WA of SCB boards ranged from 17.69 – 21.48%. The TS/VS for AS boards ranged 

from 0.12 – 0.27% and 0.18 – 0.51% respectively. The TS/VS were higher for AM and SCB boards. 

The ranges were 0.14 – 0.72% and 0.22 – 1.87% for AM; and 0.74 – 2.60% and 0.98 – 3.45% for 

SCB boards, respectively. The boards were less dimensionally stable compared to the control, but 

they met the sorption requirements for particleboards according to the British Standard (EN 634-2 

2007) and the Indian Standards (IS 1985). 

6.3 Mechanical board properties  

As shown in Table 6-1 the MOE of AM, AS and SCB boards ranged from 1720 – 5078 MPa, 3410 – 

7212 MPa and 1175 – 2934 MPa, respectively. The MOR ranged from 5.79 – 7.17 MPa, 6.75 – 9.40 

MPa and 5.24 – 7.90 MPa for AM, AS and SCB boards, respectively. According to the British 

standard (EN 634-2 2007) the minimum MOE and MOR of high-density particleboards are 4000MPa 

and 9.0MPa respectively, but only AS boards satisfied these requirements (Figure 6-1). The strength 

properties of AM and SCB were not adequate compared to the EN 634 requirements, but they 

compared well with the requirements for low-density particleboards grade 1&2, bonded with 

synthetic resin (ANSI 1999). Hence, AM and SCB boards may be suitable for non-load bearing 

applications.  

 

(vertical lines denote the confidence interval at 0.95) 

Fig. 6-1 The mechanical properties of all boards (a) MOE (b) MOR 
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Table 6-2 Physical and mechanical properties of the boards 

*Class 1: ≥ 4500  MPa  | Class 2: 4000 MPa.  | ** Grade 1-L-1 low density particleboard 

6.4 Influence of production variables on physical properties 

The effects of all production variables on the physical properties are shown in Figure 6-2. The LM, 

MCon and curing temperature had significant effects on the density, WA, and TS/VS of the boards. 

Figure 6-2(a – b) show that only the interaction between MCon and LM had significant effects on the 

density and the WA of all boards. The interactions between MCon – LM and MCon – Temp had a 

significant effect on the TS, while the interaction between the variables had no significant effects on 

the VS. 

 

(1-Mcon, 2-LM, 3- Curing temperature, L- Linear effect, Q-Quadratic effect. Bars that cross the p-line are significant) 

Fig. 6-2 Pareto charts (ANOVA) showing the effects of production variables and their interactions 

on the physical properties (a) density (b) WA (c) TS (d) VS 

Boards Board Properties 

MOE (MPa) MOR (MPa) Density 
(g/cm3) 

Unit weight 
(kNm-3) 

WA (%) TS (%) VS (%) 

A. mearnsii 1720 – 5078 5.79 – 7.17 1.18 – 1.48 11.59– 14.53 17.16– 17.28 0.14 – 0.72 0.22 – 1.87 

A. saligna 3410 – 7212 6.75 – 9.40 1.20 – 1.46 11.78– 14.33 13.69– 14.46 0.12 – 0.27 0.18 – 0.51 
SCB 1175 – 2934  5.24 – 7.90  1.27 – 1.47 12.47– 14.44 17.69– 21.48 0.74 – 2.60 0.98 – 3.45 

Control 2926 – 3691  4.83 – 5.96 1.48 – 1.53 14.53– 15.02 10.56– 12.85  0.04 – 0.07 0.10 – 0.13 

BS EN 634*  ≥ 4000** ≥ 9.0 ≥ 1.0 - ≤ 25 ≤ 15 ≤ 15 

ANSI** 1034 5.5 < 0.64 - - - - 
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6.4.1 Effect of lignocellulosic material on board density 

Similar to fly ash/metakaolin based geopolymer composites in Chapter 5, lignocellulosic materials 

(LM) affected the boards differently. The influence of lignocellulosic material (LM) on the board 

density is shown in Figure 6-3. AS boards had the highest mean density, which could be attributed to 

their higher bulk density. Higher bulk density lowered the volume of incorporated particles. This 

enabled the particles to be fully encapsulated in the matrix and lowered the possibility of 

compressibility issues at high fibre loading. According to Simatupang and Geimer (1990), and as 

observed by Amiandamhen et al. (2017) improved properties of mineral bonded composites require 

full encapsulation of wood/fibres in the matrix. Statistical analysis (p ≤ 0.05) revealed that LM had a 

significant effect on the board density. AM had a higher bulk density than SCB (see Table 4-1), but 

the mean density of their respective boards was not significantly different. The main reaction product 

of alkali activated slag is C – A – S – H (Calcium alumino silicate hydrates). Slag-based geopolymer 

contains C – S – H (calcium silicate hydrates) (Song et al. 2000) and some wood species contain 

chemicals that inhibit the formation of C – S – H (Quiroga et al. 2016). It was observed in the previous 

chapter that AM contained some components, which retarded the geopolymerization kinetics of fly 

ash/metakaolin. These inhibitory components could have delayed the formation of C – S – H, leading 

to compromised microstructures, thus lowering the board density. 

6.4.2 Effects of LM on sorption properties 

Figure 6-4 shows how the LM affected the sorption properties of the boards. SCB boards were the 

least dimensionally stable with the highest WA, and TS/VS. SCB had low bulk density, therefore 

more volume per unit was used to produce the boards. It was observed that some SCB boards 

experienced ‘spring back’ effect after removal from the press. This caused the boards to expand and 

hence lowered their densities. High density indicates sufficient interlocking between the fibre and the 

matrix, forming a less porous microstructure (Amiandamhen et al. 2018), which explains why AS 

boards had the best properties. Statistical analyses (p ≤0.05) revealed that WA, TS/VS are 

significantly different for each LM.                                                                                           
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Fig. 6-3 Effects of LM on (a) density (b) WA (c) TS and (d) VS 

     
 (vertical lines denote standard deviations, series with same letters are not significantly different) 

Fig. 6-4 Effects of LM on WA, TS and VS 

6.4.3 The effects of molar concentration on board density and sorption properties 

The rate of hydration of slag is dependent on its composition and concentration of alkali activator 

(Song et al. 2000). The effect of molar concentration of the activator (MCon) on board density and 

sorption is presented in Figure 6-5. Generally, there was a significant difference between the MCon, 

with 6M having the highest mean density. The mean board density increased by about 7.6% when the 

MCon was increased to 6M. The increase was due to higher alkali dosage, which enhanced the 

reactions at the dissolution stage. Improvement in board composite properties was also observed in 

fly ash/ metakaolin (FA/MK) geopolymer when the molar concentration was increased (Chapter 5). 

However, unlike the FA/MK a reduction in mean board density by about 2.86% was observed when 
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the MCon was increased to 8M. The reduction is attributed to the excess alkali ions, which 

deteriorated the microstructure of the composite. As seen in Figure 6-5(b) this observation was 

consistent for SCB and AM boards only, because the density of AS boards slightly increased when 

the MCon was increased to 8M. However, there was no significant difference between 6M and 8M 

for AS boards.  

(vertical lines denote standard deviations, series with same letters are not significantly different) 

Fig. 6-5 Effect of molar concentration on (a) density of all boards (b) density of each LM 

Figure 6-6 shows the influence of MCon on the WA, and TS/VS of the boards. The dimensional 

stability of the boards followed a similar trend with density. The TS/VS decreased when the MCon 

increased to 6M and then increased when MCon was increased to 8M. This indicates that the 

microstructure of the 8M board was not compact enough to withstand the water uptake. The 

mineralized wood particles at higher alkali dosage (8M NaOH) left large pores, which provided 

additional channels and exposed more sorption sites for water molecules. The boards produced with 

8M absorbed more water and were the least dimensionally stable. A variation however existed in the 

trend due to differences in the chemical composition of the LM.  

Figure 6-6(b) shows the mean WA for each LM. The mean WA for AM boards produced with 6M 

was higher than those made with 4M and 8M, but their mean TS/VS were lower. The higher WA of 

AM could be due to its high cellulose and hemicellulose contents, which provided numerous sorption 

sites for water molecules. However, 6M produced boards with sufficient compact structure to resist 

the impact of water uptake. A slight but significant difference (p ≤ 0.5) in WA was observed in AS 

boards at all MCon levels. 8M boards had slightly higher mean WA and TS than 6M boards, but the 

VS was lower. Figure 6-6 (c & d) show that there was no significant difference (p ≤ 0.05) between 

the mean TS/VS for AS boards made with 6M and 8M MCon. 
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(vertical lines denote standard deviations, series with same letters are not significantly different) 

Fig. 6-6 Effects of MCon on sorption properties (a) WA, TS/VS of all boards (b) WA of each LM 

(c) TS of each LM (d) VS of each LM 

6.4.4 The effects of curing pattern on density and sorption properties 

Increasing the curing temperature enhances the reactivity and rate of dissolution of the precursor 

materials (Petermann and Saeed 2012) . Figure 6-7(a) shows that the curing temperature had a 

significant effect (p ≤ 0.05) on the board density. The mean density of the boards increased by about 

8.5% when the temperature was increased to 40°C. However, the board density of FK/MK boards in 

the previous Chapter was reduced when the curing temperature was increased to 100°C. The elevated 

temperature induced rapid moisture removal causing the formation of numerous micropores. Figure 

6-7(b) shows that boards cured at 40°C absorbed more water but were more dimensionally stable than 

those cured at room temperature. The WA increased by about 44% while the TS and VS decreased 

by 49% and 58% respectively. The higher temperature improved dissolution of Ca2+, Al3+ and 

Si2+species and enhanced the polycondensation process to form a compact product. Water, which is 

a by-product of the condensation stage was driven off quicker at 40°C than 25°C. This created more 

micropores (not excessive as in the case of FK/MK), which provided more channels for water uptake. 
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A similar phenomenon was reported by Tran et al. (2009). Reduction in TS/VS showed that the fibre-

matrix bond was compact enough to resist dimensional changes associated with an increase in WA.  

 
 (vertical lines denote standard deviations, series with same letters are not significantly different) 

Fig. 6-7 Effects of curing pattern on physical properties (a) board density (b) sorption properties 

Figure 6-8 shows how the curing temperature affected the density and sorption properties of each 

LM. The density and WA of each LM increased as the temperature increased, while the TS/VS 

decreased. There was a significant difference (p ≤ 0.05) in the mean density, WA, TS/VS between 

the curing temperatures for each LM. 

 

Fig. 6-8 Effects of curing temperature on (a) density (b) WA (c) TS and (d) VS of each LM 
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6.5 Influence of production variables on the mechanical properties 

The pareto chart in Figure 6-9 shows that all the production variables had significant effects on the 

mechanical properties of the boards. The LM had significant interaction with MCon and curing 

temperature for MOE (Figure 6-9(a)), but the interaction between MCon and curing temperature was 

not significant. Figure 6-9(b) shows that only the interaction between LM and MCon had significant 

effect on the MOR, the other interactions had no significant effects.  

(1-Mcon, 2-LM, 3- Curing temperature, L- Linear effect, Q-Quadratic effect. Bars that cross the p-line are significant) 

Fig. 6-9 Pareto charts (ANOVA) showing the effects of production variables and their interactions 

on (a) MOE (b) MOR 

6.5.1 Effect of LM on MOE and MOR 

Figure 6-10(a & b) show that there were significant differences in the strength properties between the 

LMs. The MOE and MOR followed similar pattern with density for acacia species - AS boards had 

the highest mean MOE and MOR. This can be ascribed to its higher cellulose and lignin content. 

Higher lignin and cellulose content improve the strength of composite products by forming strong 

interfacial adhesion between the particles and the matrix (Bledzki et al. 1998; Bledzki. and Gassan 

1999). Figure 6-11 shows a positive correlation between the density and the observed strength 

properties. The observation was in line with the findings reported in the previous chapter and for 

phosphate bonded composites (Amiandamhen et al. 2017). However, there was a change in the trend 

between SCB and AM boards. Although AM boards had a slightly higher mean density than SCB 

(the difference was not significant), there were significant differences in their mean MOE and MOR. 

AM boards had a higher mean MOE but lower mean MOR than SCB boards. This could be due to 

the difference in their chemical compositions. AM contained higher hemicellulose and cellulose, but 
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lower lignin than SCB. Interaction between these components and binding systems at the different 

stages of the geopolymerization process could affect the strength properties differently.  

(vertical lines denote standard deviations, series with same letters are not significantly different) 

Fig. 6-10 Effects of LM on mechanical properties (a) MOE (b) MOR 

 

Fig. 6-11 Relationships between density and (a) MOE and (b) MOR 

6.5.2 Effects of MCon on strength properties 

The rate of hydration of slag depends on its composition and the concentration of the alkali activator 

(Song et al. 2000). Figure 6-12 shows how MCon affected the mechanical properties of all boards. 

There was a significant difference (p ≤ 0.05) between the alkali concentration with 6M having the 

higher mean MOE and MOR Figure 6-12 (a & b). The MOE and MOR increased by about 46% and 

16% respectively, when the MCon was increased to 6M. Bilim et al. (2013) also reported an increase 

in the compressive strength of alkali activated slag with an increase in NaOH concentration. Sufficient 

dissolution of the anions of slag by the cations in the alkaline activator improved the microstructural 
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development of the product, leading to enhanced mechanical properties. However, there was a 

reduction in the MOE and MOR when MCon was increased to 8M. This is attributed to the excessive 

alkali ions, which mineralized the wood particles, leading to a reduction in the stress-bearing capacity 

of the particles in the matrix. Efflorescence was noticed on the boards, and the SEM image in Figure 

6-13 shows formation of bicarbonate indicating excessive alkali ions. Provis and Van Deventer 

(2014) posited that efflorescence is not always harmful to the structural integrity of the products, but 

in this case, it is evident that the excess alkali ions compromised the microstructure of the composites.  

  
 (vertical lines denote standard deviations, series with same letters are not significantly different) 

Fig. 6-12 The effects of (a) MCon on MOE (b) MCon on MOR (c) MCon and LM on MOE and (d) MCon and LM 

on MOR 

Figure 6-12 (c & d) indicates that the trend was consistent for the MOE and MOR of each LM. Boards 

produced with 4M NaOH had the least MOE and MOR, but there was no significant difference in the 

MOE of SCB boards made with 4M and 8M NaOH. The MOR of SCB and AS boards also exhibited 

no significant difference between 4M and 8M. Although 6M had a higher mean MOR, there was no 

significant difference between 6M and 8M for AM boards. The variation is due to difference in their 

chemical composition. 
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Fig. 6-13 Formation of bicarbonate in SCB board due to excessive alkali ions 

6.5.3 Effects of curing temperature on strength properties 

Curing technique has a significant influence on the strength development of activated slag materials. 

Figure 6-14 shows that there is significant difference between the curing temperature for both MOE 

and MOR of all boards. Boards cured at 40°C had higher mean MOE and MOR. The MOE and MOR 

increased by about 45% and 14% respectively when the temperature was increased to 40°C. Bilim et 

al. (2013) studied alkali activated slag mortars subjected to different curing conditions and reported 

that heat curing considerably accelerated the early strength development and reduced the high 

shrinkage of AAS mortar. However, the strength decreased at later age due to dry curing at 50% RH 

after heat treatment. The SCB and acacia boards were wrapped with aluminium foil prior to curing 

and left to cool down to room temperature in the oven. This prevented rapid water removal and 

excessive drying shrinkage, which has been reported to be the main cause of crack development and 

expansion. Apart from the MOR of AM boards, the mechanical properties of the boards improved at 

40°C. AM boards cured at 25°C had a slightly higher mean MOR than those cured at 40°C but the 

difference was not significant (p > 0.05). AS boards cured at 25°C had higher MOE than SCB boards 

cured at 40°C and not significantly different from AM boards cured at 40°C.  
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  (vertical lines denote standard deviations, series with same letters are not significantly different) 

Fig. 6-14 Effects of curing temp on (a) MOE (b) MOR (c) curing temp and LM on MOE (d) 

curing temp and LM on MOR 

6.5.4 Effects of interaction between MCon and curing temperature on the strength properties 

Figure 6-15 shows the influence of the interactions between MCon and the curing temperature on the 

MOE.  Figure 6-15 (a) shows that boards cured at 40°C had higher mean MOE than those cured at 

25°C at all levels of MCon. Statistical analyses also revealed that there is significant difference (p ≤ 

0.05) in the MOE between the curing temperature at each MCon level. Boards made with 6M and 

cured at 40°C had the highest MOE. However, there is no significant difference between 6M and 8M 

for boards cured at 25 °C (p > 0.05). Figure 6-15(b) shows the influence of MCon and curing 

temperature on each LM. For SCB and AS bords there were no significant difference between 4M, 

6M and 8M for boards cured at 25°C. AM boards produced with 4M and cured at 25°C had the lowest 

mean MOE and was significantly different from those made with 6M and 8M MCon. Curing at 40°C 

exhibited similar trend for each LM. The highest mean MOE was recorded for each LM produced 

with 6M MCon.  
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(vertical lines denote standard deviations, series with same letters are not significantly different) 

Fig. 6-15 Effects of MCon and Temp on MOE (a) all boards (b) each LM 

The influence of the interaction between MCon and curing temperature on MOR is shown in Figure 

6-16. Figure 6-16 (a) shows that the mean MOR increased as the curing temperature at each MCon 

level. However, statistics revealed that the curing temperature had no significant effects on the mean 

MOR at 8M MCon. It was also observed that the mean MOR of boards made with 4M and cured at 

40°C is not significantly different from those produced with 8M.  

Figure 6-16 (b) shows that the interactions between MCon and curing temperature affected the MOR 

of the boards for each LM differently. The mean MOR of SCB and AS boards increased as the curing 

temperature increased at each level of MCon. For AM boards there was no significant difference in 

mean MOR at 4M MCon and increasing the curing temperature significantly caused reduction in the 

mean MOR at 8M MCon.  

 
 (vertical lines denote standard deviations, series with same letters are not significantly different) 

Fig. 6-16 Effects of MCon and curing temperature on MOR (a) all boards (b) each LM 
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6.6 Characterization of products 

6.6.1 FTIR analysis 

The IR spectra of the LM has been discussed in Chapter 4. Figure 6-17 shows the IR spectra of the 

boards. The peak found around 1737 cm-1 and 2916 cm-1 in the spectra of the LM disappeared in the 

boards. The peak at 1737 cm-1 assigned to the carbonyl (C = O) stretching of acetyl groups of 

hemicellulose disappeared in the boards for all LM. Likewise, peak around 2916 cm-1 attributed to 

the symmetric vibration of C – H and aliphatic axial decomposition in CH2 and CH3 groups from 

cellulose, lignin and hemicellulose was not found in the boards of all LM. The peaks in the band 1235 

– 1254 cm-1, which was attributed to the C – O stretch of the acetyl group of lignin also disappeared. 

The peaks 1603 cm-1 and 1633 cm-1 assigned to the C – Ph vibration and C = C bonds of lignin 

aromatic structure were present only in SCB. These peaks convoluted and shifted to 1636 cm-1 in the 

SCB boards. CH2 symmetric bending of cellulose also shifted from 1422 cm-1 to around 1411 cm-1 

and its intensity decreased in the panels. The shift in this peak and absence of other peaks in the panel 

indicates partial degradation of lower molecular components of the LM in the alkaline matrix. Similar 

observations were reported for FA/MK based geopolymer products discussed in Chapter 5. This 

confirms the assumption that the degraded components of the LM could have interfered with the 

geopolymer reactions, and thus affect the properties of the composite products. The two prominent 

bands corresponding to the stretching vibrations of Al – O and Si – O in the precursor material (873 

cm-1 and 680 cm-1) shifted towards the lower wavenumbers. This indicates partial replacement of 

silica species by alumina as a result of geopolymerization reactions (Criado et al., 2005; Davidovits, 

2008).  

 

Fig. 6-17 IR Spectra of slag-based geopolymer bonded boards 
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6.6.2 TGA 

TGA operated under nitrogen gas was employed to study the thermal stability of the lignocellulosic 

materials (LM) and the geopolymer bonded composite products. The behaviour of the LM has been 

discussed in Chapter 4. Figure 6-18 shows the derivative thermographs (DTG) and weight loss of the 

boards. The DTG peak below 200 °C is attributed to loss of evaporable water. The main degradation 

peaks in the LM shifted to 276.36 °C, 266.19 °C and 276.48 °C for AS, SCB and AM boards, 

respectively. These peaks were about 20 °C lower than the main degradation peaks in FA/MK 

geopolymer bonded boards. The peaks fall within the lower end of cellulose degradation range  of 

275℃ – 500℃ (Machado et al. 2018). Similar to the FA/MK boards, the peak-shoulders found in the 

DTG of LM, which were attributed to the degradation of hemicellulose convoluting with cellulose 

and lignin component were absent in the DTG of the boards. These corroborate the FTIR results that 

lower molecular cellulose, lignin and hemicellulose components degraded in the alkaline matrix. 

Other broad peaks between 350 °C – 475 °C were noticeable in the boards. This could be attributed 

to the overlap of degradation of crystalline components of LM and change of phases in the 

microstructure of the matrix at high temperature. These peaks appeared about 100 °C later in FA/MK 

geopolymer boards. According to Pereira Ferraz et al. (2016), certain impurities, such as inorganic 

salts could cause degradation of cellulose at lower temperatures. The disparity may be due to the 

difference in the components of the precursor materials and the geopolymerization products. A peak 

around 550 °C was present in SCB boards and another peak was building up shortly before the end 

of the thermal test. This could be attributed to the onset of thermal decomposition of the 

microstructure of the matrix. The rate of degradation of AM and AS boards were constant at this stage 

and no peak seemed to be building up. The SCB boards contained higher volume per unit area due to 

its low bulk density. This could be responsible for the observed early decomposition of the 

microstructure. However, the products are thermally stable as the residues are all above 75%, a little 

more than what remained after thermal analysis of FA/MK-based boards. 
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Fig. 6-18 Derivative and weight loss thermographs of (a) AS boards (b) SCB boards and (c) AM 

boards 

6.6.3 SEM 

SEM was employed to study the morphology and internal structure of the boards under different 

production conditions. Figure 6-19 shows the micrograph of boards produced with 6M NaOH. The 

images indicate the formation of amorphous phases with a dense-gel-like matrix. The boards have 

uniform structures of condensed products believed to be calcium alumino-silicate hydrate (C – A – S 

– H) surrounded with micro crystals of calcium silicate hydrate (C – S – H ). There are also numerous 

unreacted slag particles within the dense matrix. The unreacted particles could serve as fillers and 

improve the board properties.  Boards cured at 40°C had a more compact structure with fewer cracks 

than those cured at 25°C. This was due to the increased reactivity and dissolution of Ca2+, Al3+ and 

Si2+species at elevated temperature. These results support the physical and strength properties 

mentioned previously.  
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Fig. 6-19 SEM images of boards made with 6M NaOH and cured at 40°C: (a) AS (b) AM (c) 

SCB. Cured at 25°C: (d) AS (e) AM (f) SCB 

6.7 Conclusion 

This chapter has demonstrated the feasibility of producing high-density slag-based geopolymer 

panels using South African alien invasive species and SCB. The proposed product could be used in 

outside conditions for applications, such as exterior walls, flooring and siding.  The major findings in 

this chapter are summarized as follows:  

1 Curing pattern and molar concentration of activator have significant effects on the 

properties of the slag-based geopolymer boards. And addition of lignocellulosic material 

improved the flexural properties of the products. 

2 Curing at 40°C influenced the reaction kinetics, enhanced microstructural properties, and 

produced dense geopolymeric matrix, which resulted in improved physical and 

mechanical properties. Boards cured at 25°C had better strength than phosphate bonded 

wood composites reported in the literature. 

3 Increasing the molar concentration of activator beyond 6M caused formation of 

bicarbonate and deteriorated the internal structure of AM and SCB boards due to excess 
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alkali ions. 8M NaOH slightly increased the strength properties of AS boards but the effect 

was not significantly different than 6M NaOH. 

4 FTIR and TGA results confirmed the degradation of lower molecular lignocellulose 

components in the alkaline matrix. Degraded products could lower geopolymeric 

reactions, but FTIR confirmed that geopolymerization took place. SEM images also 

revealed the formation of geopolymer and hydration products, which indicated that the 

degraded components did not prevent geopolymer setting.  

5 All the boards met the sorption requirements for particleboards according to the British 

and the Indian Standards. The strength properties of the boards were not adequate 

compared to the British Standard, but they compared well with the requirements for low 

density particleboards grade 1&2, bonded with synthetic resin (ANSI 1999). Hence, the 

boards may be suitable for non-load bearing applications in outdoor conditions. 

6 The boards are thermally stable, as the residue retained at the end of thermal analysis is 

almost 80%. 
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Chapter 7  

The influence of chemical pre-treatment of fibres on the properties 

and durability of unary and binary precursor based geopolymer 

bonded wood and fibre composites 

7.1 Production conditions 

In the unary and binary precursor-based geopolymer bonded composites detailed in chapters 5 and 6, 

the bending strength of AM and SCB boards were not sufficient according to the BS EN standard. 

Board characterization also revealed a concern about the durability of products for the intended use 

due to degradation of the fibres indicated by SEM and the FTIR analyses. In order to improve the 

properties of the inadequate boards and enhance the durability of the final products, the 

lignocellulosic materials were subjected to pre-treatment prior to board formation. The pre-treatment 

techniques and characterization of the lignocellulosic materials before and after treatments are 

detailed in chapter 4. The conditions for the best performing boards for each lignocellulosic material 

in chapters 5 and 6 were adopted for this study. The conditions are presented in Tables 7-1 and 7-2.  

Table 7-1  Production conditions for FA/MK-based boards 

Lignocellulose MCon (Molar) Curing Condition PA ratio 

A.mearnsii 12 100°C, 6h 2:1 

SCB 10 60°C, 24h 2:1 

Table 7-2  Production parameters for slag-based boards 

Lignocellulose MCon (Molar) Curing Condition PA ratio 

A.mearnsii 6 40°C, 24h 2:1 

SCB 6 40°C, 24h 2:1 

 

7.2 FA/MK-based boards: Influence of treatment on properties 

A one-way ANOVA using Statistca V.13 was employed to analyse the data for the board properties. 

The analysis presented in Table 7-3 shows that the treatment methods had a significant effect on the 

sorption properties of all the boards (p < 0.05), while the effect on the flexural strength varied for 

each lignocellulosic material in FA/MK-based geopolymer. The treatments had a significant effect 
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on the MOE of AM board, but the effects on density and MOR were not significant. In the slag-based 

AM boards, the treatment had significant effects on all properties apart from the density. The pattern 

is a bit different for the SCB boards in both systems. Apart from the density of slag-based SCB boards, 

the treatment had significant effect on all measured properties. Although the effect of treatment was 

not significant on the MOR of FA/MK-based AM boards, Duncan’s multi-stage range test in Table 

7-4 indicated that differences existed between the means. Duncan’s multi-stage test shown in Table 

7-5 revealed that no difference existed between the mean values of properties not significantly 

affected by the treatment in slag-based boards.   

Table 7-3  p – values for the effects of treatment on board properties 

 FA/MK-based boards Slag-based boards 

Property A. mearnsii SCB A. mearnsii SCB 

Density 0.977048 0.020677* 0.811232 0.540663 

MOE 0.003051* 0.023891* 0.000003* 0.000046* 

MOR 0.054587 0.000763* 0.000105* 0.000009* 

WA 0.000213* 0.000210* 0.016649* 0.000035* 

TS 0.000095* 0.000001* 0.001814* 0.000000* 

* - significant values (p < 0.05) 

Table 7-4  Mean comparison using Duncan’s multi-stage range test for FA/MK - based boards  

Properties 

Boards Density (g/cm3) MOE (MPa) MOR (MPa) WA (%) TS (%) 

SCB:      

HWA 1.284a 4911.029ab 8.058a 20.959b 0.215b 

ALK 1.308a 4425.215c 6.979a 20.370b 0.151c 

ACE 1.238ab 5081.385a 7.439a 19.513b 0.138c 

UNT 1.179b 4521.944cb 4.679b 26.096a 0.490a 

AM:      

HWA 1.291a 6691.328b 8.495a 21.403b 0.217b 

ALK 1.294a 7385.601a 8.488a 19.554c 0.227b 

ACE 1.290a 7472.389a 7.613ab 19.403c 0.148b 

UNT 1.278a 6408.201b 7.180b 22.369a 0.508a 

a,b,c  Means in the same column for each board type with similar letters are not significantly different (p<0.05) (SCB = Sugarcane 

bagasse; AM = A.mearnsii; HWA=  Hot water treated; ALK = Alkalized; ACE = Acetylated; UNT = Untreated) 
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Table 7-5  Mean comparison using Duncan’s multi-stage range test for slag-based boards 

 

a,b,c  Means in the same column for each board type with similar letters are not significantly different (p<0.05) 

(SCB = Sugarcane bagasse; AM = A.mearnsii; HWA=  Hot water treated; ALK = Alkalized; ACE = Acetylated; 

UNT = Untreated) 

7.2.1 Density 

Figure 7-1 shows the trend in the density of FA/MK-based boards for each treatment method. It was 

observed that there was no significant difference in the mean density of treated boards for each 

lignocellulose, but treatment improved the density of the boards. Alkalization had the highest mean 

density for SCB and AM boards. Apart from hot water extracted AM boards, treatments also 

increased the density of slag-based boards shown in Figure 7-2. The increase in the density could be 

due to the improvement in surface properties of the fibres, which influenced better adhesion between 

fibre and the geopolymer matrix. A similar observation was reported for Mg2+ and Ca2+ based 

phosphate bonded panels (Amiandamhen et al. 2018). This observation is expected to impact the 

strength properties of the boards since there is a positive correlation between density and flexural 

strength.  

 Properties 

Boards Density (g/cm3) MOE (MPa) MOR (MPa) WA (%) TS (%) 

SCB:      

HWA 1.433a 4399.314a 8.116a 14.730b 0.252b 

ALK 1.461a 3780.044b 8.336a 14.593b 0.235b 

ACE 1.451a 4369.195a 8.009a 13.796b 0.228b 

UNT 1.437a 2962.100c 4.731b 19.730a 0.767a 

AM:      

HWA 1.446a 5143.923bc 7.254b 13.278ab 0.145a 

ALK 1.460a 5341.540b 8.708a 11.767b 0.151a 

ACE 1.459a 7111.606a 8.685a 12.075b 0.079b 

UNT 1.453a 4891.048c 7.026b 14.527a 0.147a 
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Fig.  7-1  Trends in density of treated FA/MK- based (a) SCB (b) AM 

 

Fig.  7-2  Trends in density of treated slag- based (a) SCB (b) AM 

 

7.2.2 Flexural properties 

The trends in the MOE of SCB boards are shown in Figure 7-3. Apart from alkalized SCB boards, 

the MOE of the boards increased after treatment. Acetylated boards had the highest mean MOE in 

the FA/MK system, while hot water extracted had the highest mean in the slag system. However, 

there was no significant difference between acetylation and hot water extraction in both systems. The 

trend is a bit different for AM boards. In Figure 7-4, treated AM boards had higher mean MOE than 

the untreated in the two precursor systems. Acetylated boards had the highest mean MOE in both 

systems, but there was no difference between alkalized and acetylated FA/MK-based AM boards.  
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Fig.  7-3  Trends in MOE of SCB boards (a) FA/MK – based (b) slag-based 

 

Fig.  7-4  Trends in MOE of AM boards (a) FA/MK-based (b) slag-based 

Figure 7-5 shows the effects of treatments on the MOR of SCB boards. There was no significant 

difference in the mean MOR for the treated samples for both precursor systems, but alkalized boards 

had the lowest mean MOR in the FA/MK-based boards. It is important to note that alkalized board 

also had the lowest MOE for both precursor systems. The decline in the strength properties observed 

in alkalized SCB board compared to others could be due to the extensive removal of lignin (Chapter 

4), which affected the rigidity and lowered the load-bearing capacity of the fibre under stress transfer. 

Alkalization also resulted in a decrease in MOR of Mg2+-based phosphate bonded panels 

(Amiandamhen et al. 2018).  In Figure 7-6, similar to SCB boards, treatment increased the MOR of 

AM boards in both precursor systems. There was no difference in the mean MOR for treated boards 

in FA/MK-based system, but the impact was higher in hot water extracted and alkalized boards. In 

the slag-based system, there was no difference in the mean MOR between alkalized and acetylated 

boards. However, both are significantly different from untreated and hot water extracted boards. 
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Fig.  7-5  Trends in MOR of SCB boards (a) FA/MK – based (b) slag-based 

 

Fig.  7-6  Trends in MOR of AM boards (a) FA/MK – based (b) slag-based 

 

7.2.3 Sorption properties and dimensional stability 

The WA and TS of SCB boards are shown in Figures 7-7 and 7-8.  A decreasing trend in WA and TS 

can be observed in both slag and FA/MK-based boards. Although there was no difference in the mean 

WA of treated SCB boards in both systems, acetylated boards had the lowest WA and TS. In Figures 

7-9 and 7-10 a similar decreasing trend can be observed in WA and TS of AM boards, apart from the 

TS of slag-based boards, which exhibited an irregular pattern. Acetylated AM boards had the lowest 

WA in FA/MK system, while alkalized boards had the lowest WA in slag based. Similar to SCB 

boards, there was no significant difference in WA between acetylated and alkalized AM boards for 

both slag and FA/MK matrices. Acetylated AM boards also had the lowest TS in both systems. This 
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proved that the hydrophilic OH-groups on the fibre surfaces were sufficiently substituted with acetyl 

groups thereby reducing the available sorption sites. It was also observed that FA/MK-based SCB 

and AM boards had higher WA than slag-based, but they were more dimensionally stable. This could 

be attributed to a difference in the production variables. FA/MK-boards were cured at a slightly higher 

temperature than slag-based. Higher curing temperature increases the rate of geopolymerization, and 

during polycondensation stage rapid discharge of water (bye-product) leads to formation of numerous 

micropores and microcracks. It is evident that the higher WA in FA/MK-based boards was due to 

migration of moisture into the micropores, but not moisture uptake by the incorporated fibres.  

 

 

Fig.  7-7  Trends in WA of SCB boards (a) FA/MK – based (b) slag-based 

 

Fig.  7-8  Trends in TS of SCB boards (a) FA/MK – based (b) slag-based 
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Fig.  7-9  Trends in WA of AM boards (a) FA/MK – based (b) slag-based 

 

Fig.  7-10  Trends in TS of AM boards (a) FA/MK – based (b) slag-based 

 

7.3 Board characterization 

7.3.1 FTIR analysis 

Figure 7-11 shows the IR-spectra of treated and untreated SCB boards in slag and FA/MK-based 

matrices. The spectra of acetylated boards in FA/MK and slag-based matrices are presented in Figure 

7-11(a). Untreated and acetylated SCB boards in FA/MK matrix had similar peaks, but the intensities 

of the peaks are higher in acetylated boards. Same can be observed for slag-based boards, the peaks 

in acetylated SCB boards had higher intensities than untreated slag-based SCB boards.  The trend is 

similar in hot water extracted and alkalized boards in both systems as shown in Figure 7-11 (b – c). 

Peaks corresponding to the lower molecular components were absent in the treated and untreated 
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boards, but the higher intensities of peaks in the treated samples indicated lower degree of degradation 

of the lignocellulosic material in the matrices. This resulted in increased geopolymerization kinetics, 

as evident in the shift of Si – O and Al – O bands towards lower wavenumbers and formation of new 

peaks within the range of 500 – 800 cm-1 (Barbosa et al. 2000; Fauzi et al. 2016). In the untreated 

slag-based SCB boards, the peaks were 958 cm-1, 869 cm-1 and 670 cm-1. In the acetylated slag-based 

SCB boards only 670 cm-1 shifted to lower wavenumber (653 cm-1), 869 cm-1 remain unchanged while 

peak 958 cm-1 shifted to 966 cm-1. The peaks changed to 970 cm-1, 872 cm-1 and 653 cm-1 in hot water 

extracted board, with the formation of new peak around 602 cm-1. In the alkalized SCB boards the 

peaks were found at 973 cm-1, 867 cm-1 and 657 cm-1, with new peaks found around 688 cm-1 and 

622 cm-1. The geopolymeric products peaks are found around 985 cm-1 and 722 cm-1 in the untreated 

FA/MK-based SCB boards. After acetylation, the peaks changed to 978 cm-1 and 726 cm-1, with the 

formation of new peak at 603 cm-1. The peaks changed to 981 cm-1 and 724 cm-1 in alkalized boards, 

and new peaks formed at 603 cm-1, 595 cm-1, 587 cm-1 and 568 cm-1. In the hot water extracted 

samples the peaks shifted to 985 cm-1 and 720 cm-1. New peaks were found at 692 cm-1, 622 cm-1, 

599 cm-1, 587 cm-1 and 566 cm-1. 

In the IR-spectra shown in Figure 7-12, similar trends were observed for the AM boards in both 

precursor systems. The peaks in treated samples had higher intensities, peaks corresponding to the 

presence of geopolymeric products shifted towards lower wavenumbers, and the formation of more 

geopolymeric products was indicated by presence of new peaks in the range of 500 – 800 cm-1. 

Although, the alkalized AM boards in FA/MK matrix behaved differently. The geopolymer peaks 

also shifted towards the lower wavenumbers, but the intensities are higher in untreated samples. 

However, the formation of new peaks could explain the improvement in the properties of the boards 

observed after alkalization. 
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Fig.  7-11 IR-spectra of treated and untreated SCB boards in slag and FA/MK-based system (a) 

acetylated (b) hot water extracted (c) alkalized 

 

Fig.  7-12 IR-spectra of treated and untreated AM boards in slag and FA/MK-based system (a) 

acetylated (b) hot water extracted (c) alkalized 
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7.3.2 SEM 

The SEM images of untreated slag and FA/MK-based AM and SCB boards are shown in Figure 7-

13, while Figure 7-14 shows the SEM images of the treated boards. The untreated FA/MK-based 

boards appeared to be less compact than the treated boards. The image of untreated AM board 

indicated evidence of fibre mineralization with the accumulation of the matrix components in the 

fibre bundles. These were not observed in the treated AM and SCB boards. Instead, the micrographs 

indicated formation of densely populated gel-like amorphous phases. 

 

Fig.  7-13 SEM images of boards (a) SCB in FA/MK matrix (b) AM in FA/MK matrix (c) AM in 

slag matrix (d) SCB in slag matrix 

 

 

Fig.  7-14 SEM images of treated FA/MK-based boards (a) hot water extracted AM (b) alkalized 

AM (c) acetylated AM (d) hot water extracted SCB (e) alkalized SCB (f) acetylated SCB 

Since a Class F fly ash was used (low calcium content), the uniform compacted structures are believed 

to be sodium alumino-silicate hydrates (NASH) surrounded with partly reacted and unreacted fly ash 
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particles. The compacted microstructure and fewer unreacted particles support the FTIR results, 

which indicated increased geopolymerization reactions and formation of more geopolymeric products 

after fibre treatment. Images of the slag-based SCB and AM boards are shown in Figure 7-15. The 

images of alkalized boards depict better interface conditions than other treated boards for both AM 

and SCB. Formation of more hydrated grains, calcium silicate hydrates (CSH) and gel-like structure 

believed to be calcium alumino silicate hydrates (CASH) are more evident. There were no signs of 

efflorescence and the microstructure seem to contain less unreacted particles. The unreacted and 

partially reacted particles in the acetylated and hot water extracted boards appeared to be strongly 

fused in the compact microstructure. These are particles from the crystalline phase of the precursor 

material. They do not take part in geopolymer reaction, but they can contribute to improve product 

properties by serving as inactive fillers (Alomayri 2017).  

 

 

Fig.  7-15 SEM images of treated slag-based boards (a) hot water extracted SCB (b) alkalized 

SCB (c) acetylated SCB (d) hot water extracted AM (e) alkalized AM (f) acetylated AM 
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7.4 Conclusions 

This chapter investigated the effects of fibre modification on the properties of slag and FA/MK based 

geopolymer bonded wood composites, and degradation of fibres in the alkaline matrices. Based on 

the observations and findings discussed the following conclusions can be drawn: 

1 The treatment improved the surface properties of the fibres, which resulted in better adhesion 

between fibre and geopolymer matrices.  

2 Treatments had significant effects on all measured properties of SCB boards, apart from the 

density of slag-based boards. The influence of treatment varied for AM boards in both 

matrices. In slag-based matrix only the density was not significantly affected, while in FA/MK 

based matrix the effect was not significant for both density and MOE. 

3 Acetylation had the best overall effect on the mechanical properties of FA/MK based boards, 

while hot water extraction had the best influence of the slag-based boards. 

4 FTIR revealed increased concentration and formation of more geopolymer products in the 

treated boards. SEM images indicated densely populated pore structures with formation of 

new products, which confirmed the FTIR results. The images revealed no signs of fibre 

mineralization and efflorescence, which suggest that the fibres would be relatively stable in 

the matrices.  

5 Despite the improvement, the bending strengths of bagasse and A. mearnsii boards were not 

adequate compared to the British Standard, but they compared well with the requirements for 

low density particleboards (Grade 1-L-1) bonded with synthetic resin (ANSI 1999). 
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Chapter 8 : Conclusions and suggestions for future studies 

8.1 Introduction 

In the wake of finding alternative sustainable and environmentally friendly products to the 

conventional construction materials, geopolymer offers a wide range of potentials as a low carbon 

footprint product. The application of geopolymer in the construction industry is gaining 

unprecedented attention in recent years, but its utilization in wood composite manufacturing has not 

been extensively studied. Previous investigations have indicated possibility of incorporating 

lignocellulosic materials in geopolymer matrix, but there are knowledge gaps due to insufficient 

information on key parameters, which could derail its intended use. This study investigated the 

potentials of using unary and binary precursor based geopolymer bonded wood products in outdoor 

applications. In the first phase, the precursor materials were characterized to determine their 

compositions and inherent properties to ensure that they meet the requirements outlined in the 

literature for optimum geopolymer strength development. The physical and chemical composition of 

the lignocellulosic materials were also determined using the NREL procedures. This was particularly 

important so that we could understand how the variation in lignocellulose components affect the 

properties of the final products. In the second phase, the geopolymer matrix was formulated using a 

combination of fly ash and metakaolin at a weight ratio of 3:1, while in the third phase, the 

geopolymer was formulated using a 100% ground granulated blast slag. The precursors were 

activated using a combination of sodium silicate and sodium hydroxide at a weight ratio of 2.5:1. 

Lignocellulosic materials from the clearing of South African invasive wood species and sugarcane 

bagasse were incorporated into the geopolymer matrices to produce high-density boards targeted for 

use as replacements for cement-bonded particleboards in outdoor conditions. The properties of the 

geopolymer boards were tested to technical specifications of the British standard EN 634-2 (2007). 

The sections that follow discuss the conclusions from this study and recommend research areas for 

future works. 

8.2 Conclusions 

This study has demonstrated the possibility of producing high-density geopolymer boards reinforced 

with untreated wood particles from South African invasive species and sugarcane bagasse for outdoor 

applications. We have provided information about the development, the interactions of the 

lignocellulose components with the matrix, fibre modification to the improve properties and 

durability of the fibres in the geopolymer matrices. At every stage, the properties of the products were 

tested to technical specifications for cement bonded particleboards since a standard is not yet 
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available for geopolymer bonded products. To the best of our knowledge, this is the first time an 

attempt has been made to provide technical information about the performance of geopolymer boards 

against a standard specification for a targeted application.  

Based on the objectives of this study, the following conclusions can be drawn: 

• In the first phase, the precursor materials were characterized using XRF, PDF and XRD 

techniques. XRF revealed that the materials had less than 5% LOI, 10% Fe2O3 and about 40 

– 50% SiO2. PSD analysis indicated that about 80 – 90% of their particle sizes are less than 

or equal to 45µm. XRD confirmed that the materials are composed of a high quantity of 

amorphous content with few crystalline phases identified as quartz and mullite in fly ash and 

metakaolin. A few more crystalline phases, such as calcite, corundum, alumina, magnesite 

and magnoan in very low concentration were detected in the slag. The precursors meet the 

requirements for optimum bonding properties of geopolymer. NREL analysis revealed that 

the acacia species had similar compositions, which were different from sugarcane bagasse. 

The difference in composition affected the interaction with the geopolymer matrices.  

• In the second phase, sugarcane bagasse and woody residues from the clearing of AIWS 

including long-leaved wattle (A. longifolia) and black wattle (A. mearnsii) were incorporated 

into a binary precursor geopolymer formulated using fly ash and metakaolin. The variables 

considered were curing pattern, precursor to activator ratio and the alkali concentration of the 

activator. Statistical analyses indicated that all variables had significant effects on the 

measured properties. For the acacia species, the same production conditions produced the best 

properties in their respective boards. These are the precursor-activator ratio of 2:1, curing 

temperature of 100°C for 6h and alkali concentration of 12M. For bagasse boards the 

conditions for the best-performed boards are curing temperature of 60°C (24h), alkali 

concentration of 10M and precursor-activator ratio of 2:1. All the boards had comparable 

sorption properties but only A. longifolia boards met the technical specifications (EN 634-2 

2007) for cement bonded particleboards in outdoor applications.  

• In the unary precursor system, Black wattle (A. mearnsii), Port Jackson (A. saligna) and 

sugarcane bagasse particles were encapsulated in geopolymer formulated using 100% slag 

material. Based on slag characterization and results from the first phase, the production 

conditions were a bit different. The precursor-activator ratio was fixed at 2:1, maximum 

curing temperature and alkali concentration set to 40°C and 8M, respectively. Similar to the 

binary precursor formulated geopolymer, all the production variables had significant effects 
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on the measured properties. The properties were tested against technical specification for 

cement bonded particleboards, only A. saligna boards produced with 6M alkali concentration 

and cured at 40°C met the technical requirements. 

• Generally, increasing the curing temperature and alkali concentration increases the 

geopolymerization reaction, which enhances microstructural development. In the binary 

precursor system, this was observed in the acacia boards, but the internal structure of the SCB 

boards deteriorated at higher curing temperature leading to low strength development. 

Increasing the alkali concentration beyond 10M also affected the pore structure of A. mearnsii 

boards due to fibre mineralization revealed by SEM analysis. In the slag-based geopolymer, 

increasing the alkali concentration beyond 6M had a negative effect on the microstructure of 

the boards.  

• FTIR and TGA analyses revealed partial degradation of lower molecular lignocellulose 

components in both formulated geopolymer matrices. The degraded components do not 

prevent geopolymer setting and FTIR analysis confirmed that geopolymerization had 

occurred. Concerns about durability of fibre in the matrices could derail the application of the 

products for the intended use. In order to enhance the durability and improve the final 

properties, the lignocellulosic materials were subjected to alkalization, hot water extraction 

and acetylation before being incorporated into geopolymer matrices. Bagasse and A. mearnsii 

were incorporated into geopolymer matrices developed using the best conditions from the 

previous investigations. The effects of the treatments on the fibre properties were evaluated 

using HPLC, SEM and FTIR, while the final composite products were characterized using 

SEM/EDS and FTIR.  

• FTIR revealed that some peaks, which were attributed to the lower molecular components still 

disappeared in the spectra of treated boards, but the SEM images indicated densely populated 

pore structures with no sign of fibre mineralization. It was evident that the treatment improved 

the geopolymerization kinetics in both binders as FTIR and SEM analyses indicated high 

concentration and formation of new geopolymer products, which suggests that the fibres 

would be relatively stable in the matrices. The increased reaction kinetics influenced the 

physical and mechanical properties of the boards significantly. Despite the improvement, the 

bending strengths of bagasse and A. mearnsii boards were not adequate compared to the 

British Standard, but they compared well with the requirements for low density particleboards 

grade 1&2, bonded with synthetic resin (ANSI 1999). Hence, A. longifolia and A. saligna 
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boards can substitute cement bonded particleboards in outdoor conditions, while bagasse and 

A. mearnsii boards may be suitable for non-load bearing applications in outdoor conditions. 

• All the boards are thermally stable, as the residue retained at the end of thermal analysis was 

above 70% for FA/MK boards and about 80% for slag formulated geopolymer boards. 

8.3 Suggestion for future studies 

The development of geopolymer bonded wood composite is still relatively new, such that concerns 

about its durability and production cost could affect its choice as a potential substitute to other 

inorganic bonded wood composites. This study has shown that geopolymer wood composites could 

substitute cement bonded particleboard in outside conditions, but further research is required to 

investigate the durability of the products over time.  

The performance of geopolymer product is dependent on a number of factors related to the inherent 

properties of its precursor material and factors associated with the activating solutions. The bulk of 

materials for geopolymer wood composites could be derived from industrial residues and side 

streams, which could be assigned zero to low economic value. However, the production conditions, 

such as high temperature curing could affect its economic viability. Therefore, further study in the 

formulation of geopolymer binder, which requires low energy profile in production should be 

investigated.  
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