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Summary 

 

 
The organoleptic and perceived quality characteristics of red wine are largely influenced by 

important phenolic compounds extracted throughout fermentation from the grape berry to the final 

wine matrix. These complex secondary metabolites have resulted in numerous equally complex 

analysis methods, the implementation of which are yet to form part of routine phenolic analysis 

during winemaking. In this study, front-face fluorescence spectroscopy was investigated for its 

suitability in quantifying phenolic parameters of unaltered samples and the subsequent 

implications for non-invasive analysis throughout fermentation.  

 

A front-face accessory and fluorescence spectrophotometer were successfully optimised in order 

to analyse samples directly, eliminating the need for sample dilution as with conventional 

fluorescence spectroscopy. A diverse dataset comprising 289 fermenting musts and wine were 

analysed using the optimised fluorescence protocol and the most commonly used UV-Vis 

spectrophotometric methods for the following phenolic parameters; total phenolics, total 

condensed tannins, total anthocyanins, colour density and polymeric pigments. Different 

statistical analysis methods were explored for their suitability in model development, specifically 

Parallel Factor Analysis (PARAFAC) and a gradient boosting machine learning algorithm 

(XGBoost). Subsequent to the investigation of the most optimal chemometric method, a machine 

learning pipeline was generated to develop accurate regression models per phenolic parameter. 

Successful models were obtained for total phenolics, total condensed tannins and total 

anthocyanins while polymeric pigments and colour density require further investigation and 

refinement. Following model development and optimisation, an external validation experiment 

monitoring a Cabernet Sauvignon fermentation was used to examine prediction accuracy under 

fermentation conditions, specifically investigating the effect of carbon dioxide and must turbidity. 

No effect of sample preparation treatment was found and the potential for analysing unaltered 

samples directly during fermentation was possible.  

  

Fluorescent properties of fermenting musts and wines were explored and the responsible spectral 

regions of interest tentatively identified. Differences in fluorescence between musts and wines 

were found and upon closer inspection, unique changes were monitored and identified throughout 

fermentation using the Cabernet Sauvignon experiment. The unique fluorescent profiles of wines 

is widely accepted, and the classification of South African red wine cultivars was successfully 

conducted using Neighbourhood Component Analysis (NCA). These results may have beneficial 

implications for authentication and quality control by industry bodies.  

 

Overall, front-face fluorescence spectroscopy holds several advantages including it being non-

invasive, user-friendly, relatively economical, rapid and accurate, and thus presents itself as a 
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promising alternative to the current phenolic analysis methods with the added benefit of direct 

phenolic analysis throughout red wine fermentation. The potential for implementation within on-

line automated systems or portable optical devices may be of interest to producers and allow for 

monitoring of phenolic content and extraction directly from the fermentation vessel throughout red 

wine production. 
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Preface 

 

This thesis is presented as a compilation of 5 chapters.  Each chapter is introduced separately 

and is written according to the style of Harvard citation. 

 

 

Chapter 1  General Introduction and project aims 

   

Chapter 2  Literature review 

  Red wine phenolics and their quantification methods 

   

Chapter 3  Research results 

  The  direct quantification of red wine phenolics using fluorescence 

spectroscopy with chemometrics 

   

Chapter 4  Research results 

Non-invasive fluorescence spectroscopy to quantify phenolic content under 

real-time fermentation conditions 

 

Chapter 5  General discussion and conclusions 
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1.1 INTRODUCTION 

 

Grape berry growth and development is characterised by a three stage, double sigmoidal 

curve, during which the evolution of numerous solutes and metabolites occurs (Kennedy, 

2002; Garrido and Borges, 2013).  While primary metabolites are essential for plant growth 

and survival, the roles secondary metabolites play in wine aroma and taste attributes are of 

great importance due to their influence on perceived quality by the consumer. Phenolic 

compounds are a diverse and complex group of secondary metabolites found in grapes and 

wine and can be categorised according to two groups; flavonoids and non-flavonoids (Garrido 

and Borges, 2013). These compounds influence colour and mouthfeel properties, such as 

astringency and bitterness, as well as the ageing potential of wines (Aleixandre-Tudo et al., 

2017) and an understanding of appropriate winemaking practices to implement at various 

stages or phenolic levels may hugely impact the final wine phenolic profile (Sacchi et al., 

2005).  

 

Currently, phenolic analysis methods do not form part of routine wine analysis as a result of 

several drawbacks, including the need for trained personnel, expensive reagents and 

equipment, and lengthy sample preparation and analysis time (Harbertson and Spayd, 2006). 

Due to the complexity of phenolic compounds, numerous analysis methods have been 

developed in order to extract the most relevant phenolic information by reducing complex 

phenolic chemistry to the measurement of a number of parameters, the focus of which having 

been on total phenolics, tannins, anthocyanins, polymeric pigments and colour density. The 

simple spectrophotometric methods most often used are UV-Vis based and rely on the 

spectral properties of the aromatic ring present in all phenolic compounds, allowing for 

differentiation between phenolic groups according to characteristic wavelength peaks 

(Harbertson and Spayd, 2006; Aleixandre-Tudo et al., 2017). Alternatives such as High-

performance liquid chromatography (HPLC) are extremely sensitive and accurate but are 

rarely implemented outside of research applications (Aleixandre-Tudo et al., 2018). As the 

need for rapid, accurate, user-friendly and cost effective methods increases, the applicability 

of spectroscopy coupled with multivariate statistical analysis (chemometrics) presents itself as 

a suitable option. UV-Visible and infrared spectroscopies with chemometrics have previously 

been studied and deemed suitable in the analysis of phenolic compounds (Romera-fernández 

et al., 2012; Dambergs et al., 2012; Daniel, 2015).   

 

Fluorescence spectroscopy is non-destructive, user-friendly, cost effective and highly 

sensitive when compared to other spectrophotometric methods and its benefits have deemed 

it a useful method of analysis in the authentication and quality control of many food science 
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disciplines (Strasburg and Ludescher, 1995; Airado-Rodríguez et al., 2011; Karoui and 

Blecker, 2011). Fluorescent properties of the wine matrix have been studied and both the 

qualitative and quantitative analysis of the responsible components is of increasing interest, 

with two general spectral regions having been identified within the wine excitation-emission 

matrix (Airado-Rodŕiguez et al., 2009; Airado-Rodríguez et al., 2011). Understanding the 

principles and limitations of the instrumentation for fluorescence spectroscopy is an important 

aspect in obtaining the highest quality data possible. Sample geometry is one of the most  

important considerations of fluorescence analysis, with the conventional right angle technique 

able to measure only clear or diluted samples and therefore unable to analyse samples in their 

truest form (Airado-Rodríguez et al., 2011). Front-face analysis developed by Parker (1968) 

overcomes this problem by changing the angle of incidence. As a result, the complex wine 

matrix is kept intact and the subsequent analysis of unaltered samples may be of significant 

benefit in non-invasive analysis during and throughout fermentation.  

 

Chemometrics allows for the interpretation and decomposition of complex datasets while 

analysing multiple variables simultaneously in a considerably reduced analysis time 

(Aleixandre-Tudo et al., 2017). Combining spectroscopy with chemometrics has the potential 

to create accurate and robust regression models capable of quantifying red wine phenolics for 

real-time winemaking decisions. Despite the research into wine fluorescence, gaps remain in 

the quantification of general parameters such as total condensed tannins, which may be of 

more use to producers compared to those of individual chemical compounds, such as the 

quantification of catechin or epicatechin by Cabrera-Bañegil et al. (2019). The majority of wine 

fluorescence research has focused on qualitative applications such as classification and 

discrimination according to cultivar, wine style or appellation (Letort et al., 2006; Airado-

Rodríguez et al., 2011), while non-invasive quantification of phenolic compounds requires 

more investigation. 

 

1.2 AIMS AND OBJECTIVES 

 

Considering the lack of phenolic analysis conducted within the South African wine industry, 

the main aim of this research was to determine the suitability of fluorescence spectroscopy for 

the quantification of phenolic content of unaltered red wine samples and the subsequent 

implications for non-invasive analysis during fermentation. The five phenolic parameters of 

interest included total phenolics, total condensed tannins, total anthocyanins, colour density 

and polymeric pigments. To successfully achieve this goal, several objectives had to be met, 

including: 
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I. The modification of conventional fluorescence spectroscopy to front-face fluorescence 

spectroscopy and the calibration and optimisation of this protocol. 

II. The analysis of red wine cultivars during fermentation and of finished wines using 

fluorescence spectroscopy and conventional UV-Vis spectrophotometric methods. 

III. The exploration of chemometrics and development of accurate prediction models.  

IV. Investigating the influence of sample composition on fluorescence analysis, specifically 

with regards to potential interference from turbidity and carbon dioxide produced during 

fermentation, and the subsequent implications for real-time and on-site applications. 
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2.1 INTRODUCTION   

 

The grapevine berry is a compartmentalised organ housing numerous phenolic compounds 

integral for red winemaking. The final wine phenolic composition is dependent on numerous 

factors including grape cultivar and chemical composition at harvest, viticultural factors 

influencing berry development and ripening (climate, soil, irrigation), and winemaking 

practices including fermentation and ageing (Garrido and Borges, 2013). The French Paradox, 

conceptualised in the late 1980s, stimulated interest in the health benefits and thus research 

of red wine phenolics (Guilford and Pezzuto, 2011). Today, the antioxidant properties of 

phenolic compounds are widely accepted. Additionally, phenolic compounds are known to 

play a crucial role in red wine organoleptic properties with regards to colour, both the intensity 

and stability thereof, as well as mouthfeel properties such as bitterness and astringency. 

Phenolic analysis is therefore of great importance during winemaking with regards to decision 

making and implementation of practices throughout processing in order to elevate the 

perceived quality of red wine. 

 

This literature review aims to discuss the phenolics present in grapes and wine, highlighting 

the current spectrophotometric analysis methods versus more advanced alternative methods, 

with a focus on fluorescence spectroscopy and chemometrics as well as their growing 

potential within the wine industry. 

 

2.2 PHENOLICS IN GRAPES AND WINE 

 

Phenolic compounds are a diverse group of secondary metabolites found in grapes and wine 

that can be classified into two families: flavonoids (flavonols, flavan-3-ols and anthocyanins) 

and non-flavonoids (phenolic acids and stilbenes) (Garrido and Borges, 2013; Aleixandre-

Tudo et al., 2018). Flavonoids are found in higher concentrations than non-flavonoids and 

therefore make a greater contribution to the final wine quality. Flavonoids, as depicted in 

Figure 1, are characterised by a C6-C3-C6 skeleton and two benzene rings connected to a 

heterocyclic pyran ring (Cheynier et al., 2006). The diversity of flavonoid subclasses arises 

from the rearrangement and oxidation state of this pyran ring (Garrido and Borges, 2013). The 

grape skin accumulates anthocyanins, tannins and hydroxycinnamates (Adams, 2006) while 

the phenolic compounds found within the seed include flavan-3-ols, catechin, epicatechin and 

epicatechin-gallate. These may be found in both monomeric and polymeric forms (Downey et 

al., 2003) while differing in their structure and complexity. 
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Figure 2.1. Basic flavonoid structure including carbon numbering. 

 

2.2.1 FLAVONOIDS 

 

Flavonols  

These phenolic compounds play an important role in the colour of red wine, enhancing 

extraction of anthocyanins and contributing to co-pigmentation reactions despite being the 

less abundant class of flavonoids (Schwarz et al., 2005). Kaempferol, quercetin and myricetin 

are the most common flavonols found in wine and are found in grapes as their corresponding 

glucoside, galactoside and glucuronide derivatives (Adams, 2006).  

 

Flavan-3-ols and condensed tannins 

Flavan-3-ols found in the grape skin and seeds include (+)-catechin, (−)-epicatechin, (+)-

gallocatechin, (−)-epigallocatechin, and (−)-epicatechin-3-O-gallate (Downey et al., 2003). 

Monomeric flavan-3-ols combine via 4-6 and 4-8 interflavan bonds to form high molecular 

weight polymers, commonly known as tannins (Adams, 2006). Tannins are the most abundant 

group of soluble polyphenols in grape berries and have a large influence on the final wine 

quality (Adams, 2006). Grape seed tannins have terminal subunits of catechin, epicatechin 

and epicatechin-gallate while skin tannin terminal subunits are primarily catechin (Downey et 

al., 2003). Catechin, epicatechin, epicatechin-gallate and epigallocatechin are all detected in 

grapes as extension subunits, however, epigallocatechin has only been detected in grape skin 

(Downey et al., 2003). Grape seeds have a significantly higher tannin content but possess 

smaller, less polymerised tannins while skin tannins are larger and have a greater mean 

degree of polymerisation (mDP) (Kennedy et al., 2001). Due to the negative correlation of 

mDP with bitterness and the positive correlation with astringency, seed tannins are perceived 

as more bitter while skin tannins are perceived as more astringent (Peleg et al., 1999; Pascual, 

et al., 2016). 

 

Tannins can be classified into two groups: condensed and hydrolysable tannins. Condensed 

tannins or “proanthocyanidins” are grape-derived, naturally occurring oligomers and polymers 

of flavan-3-ols as described above (Garrido and Borges, 2013). Hydrolysable tannins are oak 
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derived and comprise of basic gallic and ellagic acid units usually esterified with D-glucose, 

namely gallotannins and ellagitannins (Garrido and Borges, 2013). Barrel ageing promotes 

the extraction of these hydrolysable tannins which when hydrolysed, release their gallic and 

ellagic acid units into the wine to readily react with condensed tannins and anthocyanins, 

improving colour stability (Ribéreau-Gayon et al., 2006). 

 

Anthocyanins 

Anthocyanins are the pigments responsible for the red colour of grapes and wine (Garrido and 

Borges, 2013). Véraison initiates anthocyanin accumulation within only the thick-walled 

hypodermal cells in red grape varieties, while teinturier varieties store anthocyanins both in 

the skin and pulp (Adams, 2006). The five most common free anthocyanins found in red wines 

are cyanidin, peonidin, delphinidin, petunidin and malvidin (Garrido and Borges, 2013) with 

malvidin-3-glucoside being the most abundant form. This monomeric anthocyanin exists in a 

dynamic equilibrium influenced by factors such as temperature, sulphur dioxide, the presence 

of oxygen and most importantly, pH (Aleixandre-Tudo et al., 2017). As a result, four chemical 

states of the anthocyanin may be found including the flavylium cation (red colour), quinoidal 

base (blue-purple), carbinol pseudobase (colourless) and chalcone (pale yellow) (Ribéreau-

Gayon et al., 2006).  

 

Anthocyanins are highly reactive and participate in numerous chemical reactions and 

associations (Aleixandre-Tudo et al., 2017). During ageing, anthocyanins polymerise and form 

more complex, stable compounds such as pyranoanthocyanins and polymeric pigments 

(Ribéreau-Gayon et al., 2006). These compounds are more resistant to colour changes 

induced by pH shifts or bleaching by sulphur dioxide and therefore retain and enhance the 

wine colour (Garrido and Borges, 2013). Over time, monomeric anthocyanins possessing a 

red-purple hue evolve into tawny, brick-red pyranoanthocyanins and polymeric pigments 

(Quaglieri et al., 2017). These anthocyanin derived pigments are formed when tannins and 

anthocyanins bind via either direct condensation or acetaldehyde mediated reactions, such as 

the Baeyer reaction (Monagas et al., 2005).  

 

2.2.2 NON-FLAVONOIDS 

 

Phenolic acids 

Phenolic acids form the most abundant class of non-flavonoids and can be classified into two 

groups: hydroxycinnamic and hydroxybenzoic acids (Garrido and Borges, 2013). 

Hydroxycinnamic acids and their tartaric esters are the main class of non-flavonoids in red 

wine and the main acids include caftaric, p-coutaric and fertaric acids as both trans and cis 
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isomers (Garrido and Borges, 2013). Hydroxycinnamate accumulation occurs until véraison 

and declines during ripening which may be due to catabolism or its utilization in other phenolic 

compound biosynthesis (Adams, 2006). These compounds are involved in co-pigmentation 

reactions, contribute partial astringency and bitterness and act as precursors to volatile 

phenols (Kennedy, 2002; Garrido and Borges, 2013).  

 

The most abundant hydroxybenzoic acids include para-hydroxybenzoic, protocatechuic, 

vanillic, gallic, and syringic acids (Garrido and Borges, 2013). Gallic acid is of the greatest 

phenolic importance due to its presence and involvement in hydrolysable tannins (Garrido and 

Borges, 2013). 

 

Stilbenes  

Stilbenes consist of two aromatic rings linked via an ethene bridge and several stilbene-like 

compounds have been identified in grapes and wine, including resveratrol, astringin and 

viniferins (Garrido and Borges, 2013). Resveratrol is the most widely studied stilbene in grapes 

and wine due to its antioxidant health benefits, including positive effects on cardiovascular and 

neurological diseases as well as possessing anticancer properties (Garrido and Borges, 2013; 

Fabjanowicz et al., 2018). The trans- isomer of resveratrol occurs naturally in grapes and may 

transform into the cis- isomer during winemaking and ageing (Fabjanowicz et al., 2018). These 

compounds are often classified as phytoalexins due to their accumulation in response to 

fungal infection, however, accumulation may also be induced by mechanical vine stresses and 

excessive UV radiation exposure (Adams, 2006; Garrido and Borges, 2013; Fabjanowicz et 

al., 2018).    

 

2.2.3 IMPORTANCE TO WINEMAKING 

 

The evolution of phenolics, from those present in the grapes to those found within the final 

wine matrix, is influenced by several factors and winemaking techniques. Different processing 

practices can alter the concentration and composition of phenolic compounds throughout the 

vinification process (Garrido and Borges, 2013) and thus, an understanding of phenolic 

composition within the berry may aid in decision-making for improved or reduced extraction. 

Monitoring this extraction of phenolic compounds during the winemaking process may 

therefore aid in the timely implementation of appropriate techniques, briefly discussed below, 

for their desired effect on the final wine phenolic profile. 

 

Winemaking Techniques 
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Phenolic extraction relies on adequate berry rupturing and occurs as a result of the 

subsequent contact between solid grape parts and must (Aleixandre-Tudo et al., 2018). The 

concentration of phenolic compounds increases throughout fermentation due to their greater 

solubility in ethanol (Sacchi et al., 2005). Anthocyanin extraction reaches a maximum peak 

earlier on in fermentation, followed by a noticeable decline thereafter (Sacchi et al., 2005; 

Aleixandre-Tudo et al., 2018) while tannin extraction continues with extended skin and seed 

contact (Sacchi et al., 2005). Skin tannins follow a sigmoidal extraction curve until reaching a 

saturation plateau while seed tannins follow a linear extraction, highlighting the need for seed 

coat hydration for extraction to occur (Cadot et al., 2006).  

 

Several different winemaking techniques have been studied for their influence on phenolic 

extraction. Pre-fermentative treatments include must or grape freezing for increased skin 

bursting and contact between solid grape parts and must, cold maceration for improved 

aqueous extraction, the addition of pectolytic enzymes for increased juice yield and cell wall 

breakdown as well as the removal of juice prior to fermentation, termed saignée, for an 

increased skin to juice ratio (Sacchi et al., 2005).  

 

Fermentative treatments include various pump-over and punch-down frequencies, as well as 

delestage (rack and return), for the dispersal of trapped heat within the fermentation cap and 

increased mixing between the juice and skins. Other practices include different yeast 

selections which may have implications for phenolic absorption, carbonic maceration for 

partial intracellular fermentation as well as thermovinification for increased cell membrane 

damage and an enhanced release of phenolic compounds (Sacchi et al., 2005). Fermentation 

temperature has also been studied as a factor in phenolic extraction, in which greater 

temperatures resulted in greater phenolic extraction (Sacchi et al., 2005).  

The post-fermentative technique of extended maceration is applied for increased phenolic 

extraction due to increased skin and seed to wine contact (Sacchi et al., 2005). Of these 

applied methods, cold maceration, carbonic maceration, yeast selection and skin and juice 

mixing practices have shown variable results with regards to the phenolic profiles of finished 

wine and may be particularly variable according to cultivar (Sacchi et al., 2005).  

 

Impact on Wine Attributes 

Phenolic compounds take part in numerous reactions throughout fermentation and ageing, 

including condensation, oxidation, adsorption and precipitation reactions (Pérez-Magariño and 

González-San José, 2004; Aleixandre-Tudo et al., 2018). These evolutionary changes of 

phenolics have implications for final wine traits, specifically with regards to colour and 

mouthfeel. By the end of alcoholic fermentation, 25% of monomeric anthocyanins have 
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polymerised and this increases to around 40% the following year (Monagas et al., 2005). 

These polymerised anthocyanins, together with other anthocyanin derivatives or polymeric 

pigments, have increased stability and resistance and therefore, play important roles in the 

visual aspect of wine colour.  

 

Astringency and bitterness are important sensorial attributes of red wine. The concentration, 

mDP and galloylation of proanthocyanidins affects the intensity of these attributes (Cliff et al., 

2007). Bitterness is a taste mediated by mouth receptors while astringency is a mouthfeel 

sensation commonly described as dry and rough due to the interaction between 

proanthocyanidins and salivary glycoproteins (Vidal et al., 2003).  Astringency tends to 

decrease during wine ageing, leading to “smoother, softer” wines. Currently, three potential 

mechanisms for this reduced sensation are proposed including cleavage reactions reducing 

tannin size, molecular rearrangement resulting in bulkier tannins unable to react with salivary 

proteins either due to steric hindrance or tannin-anthocyanin reactions and lastly, the formation 

of new polymeric pigments (Aleixandre-Tudo et al., 2017). Due to the sensorial importance of 

phenolic compounds, a greater understanding of their attributes and the techniques to modify 

them may result in improved red wine decision making.  Monitoring phenolic compounds and 

their evolution throughout the winemaking process may therefore be of great benefit to the 

producer. 

 

2.3 PHENOLIC ANALYSIS METHODS 

 

A top priority of phenolic analysis research has been to establish reliable, robust and sensitive 

methods. The complexity and diverse range of phenolic compounds has resulted in the 

development of numerous established analytical methods. However, due to the need for 

trained personnel and often expensive equipment and reagents, the routine analysis of 

phenolic measurements is not a widespread practice in winemaking. Of the limited wineries 

conducting phenolic analysis, few perform on-site measurements while most utilize external 

analytical laboratories (Harbertson and Spayd, 2006).   

 

Standard phenolic analysis currently conducted can therefore, in this case, be described as 

the simple spectrophotometric methods most often used in the analysis of phenolic 

compounds. UV-Vis spectroscopy, involving the absorption of light in the ultraviolet and 

adjacent visible spectra, has been reported to successfully analyse phenolic compounds by 

several authors due to the spectral properties of phenolics (Aleixandre-Tudo et al., 2018; 

Beaver and Harbertson, 2016; Dambergs et al., 2012, Harbertson and Spayd, 2006). The 

aromatic ring shared by all phenolic compounds allows for the absorption of light within the 
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ultraviolet region and the transitions occurring within the OH-groups allow for the differentiation 

of phenolic classes via characteristic peaks at various wavelengths (Harbertson and Spayd, 

2006; Aleixandre-Tudo et al., 2017). The benefits of UV-Vis spectroscopy (simple, reliable, 

rapid and cost effective) have allowed it to become a widespread application (Harbertson and 

Spayd, 2006; Aleixandre-Tudo et al., 2017).  

 

Due to the increasing need for rapid and accurate methods of analysis that are more cost-

effective and user-friendly, other alternatives such as spectroscopy combined with 

chemometrics are becoming increasingly investigated in both academic and industry domains. 

The advantages of being able to measure phenolic compounds throughout fermentation more 

frequently as well as on site include process control, monitoring and optimisation. On-line 

systems implemented for process control in wineries are becoming increasingly popular and 

therefore requires suitable technology with desirable features such as speed, accuracy and 

non-destructive analysis methods (Daniel, 2015; Aleixandre-Tudo et al., 2019). The 

spectrophotometric methods described below illustrate the current phenolic analysis 

techniques employed together with their benefits and drawbacks. 

 

2.3.1 SPECTROPHOTOMETRIC ANALYSIS 

 

Protocols for Tannin Analysis 

The most widely used tannin analysis protocols include the acid hydrolysis, BSA (bovine 

serum albumin) and MCP (methyl cellulose precipitable) tannin assays. Acid hydrolysis is 

based on the transformation of proanthocyanidins to carbocations, followed by a conversion 

to anthocyanins when heated in an acid medium (Ribéreau-Gayon and Stonestreet, 1965). 

The BSA tannin assay relies on tannin-protein interactions and their subsequent precipitation 

(Harbertson et al., 2002) while the MCP tannin assay is a precipitation-based method relying 

on polymer-tannin interactions, specifically between tannins and methyl cellulose (Sarneckis 

et al., 2006). 

 

Acid hydrolysis is the most simple and user-friendly method while the BSA and MCP assays 

have the benefit of estimating astringency due to positive correlations between the two 

(Kennedy et al., 2006; Mercurio and Smith, 2008; Harbertson et al., 2015). The MCP assay 

requires fewer and simpler reagents than its BSA counterpart and is therefore often preferred 

in the application of routine analysis.  Additional drawbacks of BSA include frequent over- or 

under-estimation of tannin levels (Harbertson et al., 2015; Jensen et al., 2008; Mercurio and 

Smith, 2008) while precipitation based methods have the overall disadvantage of being unable 

to be implemented within inline systems. 
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Protocols for Total Phenolic Analysis 

Total phenolics may be quantified using either the Folin-Ciocalteu assay (Singleton and Rossi, 

1965) which relies on the donation of electrons during redox reactions or the Total Phenolics 

Index (TPI) which relies on the characteristic absorption of UV light by phenolic compounds at 

280 nm (Somers and Evans, 1974). Both methods share the risk of over-estimation due to 

other non-selective compounds interfering with redox reactions or possessing light absorbing 

abilities at 280 nm (De Beer et al., 2004; Somers and Evans, 1974).  Of the two, TPI is 

considered a simpler and more user–friendly option. 

 

Protocols for Anthocyanin Analysis 

Anthocyanins are easily quantifiable using spectrophotometric methods due to their 

characteristic absorption peak between 490 nm and 550 nm (Giusti and Wrolstad, 2001), 

resulting in a sufficient standard measurement at 520 nm. Three commonly employed 

methods include bisulfite bleaching (Ribéreau-Gayon and Stonestreet, 1965), the hydrochloric 

acid method (Iland et al., 2000; Cliff et al., 2007) and the Modified Somers Assay (Mercurio et 

al, 2007). These methods rely on the equilibria of anthocyanins and the mechanisms activated 

and influenced by pH shifts as well as the bleaching effect of bisulfite. These methods have 

all shown reliability due to the sensitivity of anthocyanins to pH changes and free sulphur 

dioxide (SO2). The modification of the original Somers and Evans procedure by Mercurio et al. 

(2007), simplifies the protocol by incorporating a buffer solution (12% v/v ethanol, 0.5 g/L w/v 

tartaric acid at pH 3.4) thereby increasing ease of use. The Modified Somers Assay presents 

itself as an extensive analysis method that holistically evaluates the equilibria of anthocyanins 

via additions of bisulfite, acetaldehyde and hydrochloric acid in order to quantify anthocyanins 

in their original form, as sulphur resistant pigments, as liberated anthocyanins previously 

bound by sulphur and finally, in their coloured red flavylium form. 

 

Protocols for Colour Analysis 

Red wine colour experiences numerous transitions over time as a result of the interactions 

between anthocyanins and other phenolic compounds (Harbertson and Spayd, 2006). Colour 

density (Glories, 2016) and the CIELab Colour Space (CIE, 1978; Harbertson and Spayd, 

2006) are commonly used methods for colour analysis. Both methods have the advantage of 

analysing samples without requiring dilution. Colour density is the estimation of total colour  

using the sum of absorbances at three wavelengths, namely 420 nm (yellow colouration), 520 

nm (red colouration) and 620 nm (blue colouration). Wine hue (A420nm/A520nm) can be used as 

an indication of polymerisation during ageing due to the shift of monomeric anthocyanins in 

the red flavylium form to more stable, yellow/orange polymeric pigments. CIELab is a widely 

accepted tri-stimulus colour specification method developed by the Commission Internationale 
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de l’Eclairage which converts spectral results into tri-stimulus values of lightness and 

chromatic components. The sample’s colour can then be identified and matched to what is 

visually perceived. 

 

HPLC Analysis 

High-performance liquid chromatography (HPLC) is a selective and accurate analytical 

technique involving the separation of compounds within a column and the characterisation of 

these separated compounds over the UV-Vis region. The analysis of phenolic compounds is 

typically conducted by a reversed phase (RP-HPLC) C18 column with a binary elution system 

(Ibern-Gómez et al., 2002; Burin et al., 2011). The benefits of this method include highly 

selective and accurate qualitative and quantitative analyses, however, the requirement of 

sample preparation, expensive equipment and reagents, highly skilled personnel and lengthy 

analysis time create major drawbacks (Aleixandre-Tudo et al., 2018) and therefore, limits the 

use of HPLC for routine analysis outside of research applications. 

 

2.3.2 ABSORPTION SPECTROSCOPY ANALYSIS 

 

Absorption spectroscopy analysis has been widely studied for its applicability to grape and 

wine analysis. The combination of spectroscopy with chemometrics allows for the 

deconstruction and improved interpretation of complex data sets. Spectroscopy coupled with 

multivariate calibration holds several advantages over the numerous spectrophotometric 

methods currently used, including more rapid analysis, the simultaneous measurement of 

several analytes at once, non-destructive technique and requiring minimal sample preparation 

(Aleixandre-Tudo et al., 2018; Gishen et al., 2005). These advantages have presented the 

potential for automation and on-line systems as well as optical portable devices (Giovenzana 

et al., 2013). 

 

Infrared spectroscopy, involving the absorption of light in the infrared spectral region, is 

particular sensitive to the fundamental molecular vibrations of specific functional groups 

(Daniel, 2015). Both mid infrared (MIR) and near infrared (NIR) spectroscopies have been 

studied for their applicability to phenolic analysis while more recently, the combination of 

Fourier transform mid infrared spectroscopy (FT-MIR) with chemometrics has been deemed 

useful (Romera-fernández et al., 2012; Daniel, 2015).  

 

2.4 FLUORESCENCE SPECTROSCOPY 
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Fluorescence spectroscopy, a type of emission spectroscopy, has been used extensively in 

chemistry and biochemistry disciplines due to its success in analysing the structures, functions 

and reactivity’s of several compounds, ranging from small biological molecules to polymers 

and proteins (Strasburg and Ludescher, 1995). This success allowed fluorescence 

spectroscopy to branch out into food science disciplines to meet the growing demands for 

improved quality and food safety throughout increasingly industrialised food supply chains, 

while being used for the chemical characterisation of compounds as well as authenticity and 

quality control (Airado-Rodŕiguez et al., 2009; Karoui and Blecker, 2011). Several food science 

applications have been successful, including analysing the stability of cheese and yoghurt 

during storage (Christensen et al., 2003; Christensen et al., 2005) as well as discriminating 

between virgin and pure olive oils (Guimet et al., 2004). The advantages of fluorescence 

spectroscopy include it being non-destructive, easy to use, relatively inexpensive, rapid and 

highly sensitive when compared to other spectrophotometric methods, all of which highlight 

the potential for use within online systems and devices (Karoui and Blecker, 2011; Strasburg 

and Ludescher, 1995; Airado-Rodríguez et al., 2011).  

 

2.4.1 PRINCIPLES OF FLUORESCENCE 

 

Fluorescence spectroscopy typically involves the absorption of light (excitation) within the UV-

Visible spectrum which excites the fluorophore (fluorescent chemical compound or compound 

of interest) followed by energy redistribution and decay with accompanied emission of light 

(emission). Typically the entire fluorescence spectrum is measured as a function of the 

excitation wavelengths. The detected result is thus an excitation-emission matrix (EEM) or 

fluorescent landscape of the sample. The Jablonski diagram below (Figure 2.2) illustrates the 

electronic transitions taking place within a fluorescent molecule. The first stage including 

energy absorption and electron excitation, allows electron transitioning from the ground state 

(S0) to an excited state (Sn) (Albani, 2008). As the excited electrons return to a lower energy 

level (S1), energy is dissipated into the surrounding environment in a process known as 

internal conversion. The return of these electrons to ground state follows various processes 

including the emission of a photon (fluorescence), the dissipation of non-radiative heat into 

the medium, energy transfer to surrounding molecules (quenching) and the transition to an 

excited triplet state (T1). This triplet state forms part of an alternative de-excitation method 

known as phosphorescence. 
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Figure 2.2. Jablonski diagram adapted from literature (Albani, 2008). 

 

2.4.2 FACTORS AFFECTING FLUORESCENCE INTENSITY 

 

The intensity of fluorescence emission is directly proportional to the quantum yield, simply 

defined as the probability of photon emission by the excited fluorophore (Strasburg and 

Ludescher, 1995). Intensity is also related to the fluorescence lifetime of a molecule, defined 

as the time spent in the excited state of the fluorophore’s electrons before returning to ground 

state and can range from nano- to picoseconds (Albani, 2008). The three following factors 

have implications for fluorescence intensity, namely quenching, the local environment and 

scatter phenomena. 

 

Any process resulting in the deactivation of the excited molecule via intra- or intermolecular 

interactions is defined as quenching (Karoui and Blecker, 2011). Static quenching involves the 

formation of non-fluorescent complexes between electrons and quencher molecules in the 

ground state, thereby inhibiting excitation, while dynamic quenching involves deactivation of 

the electron post-excitation via collisions or inter-molecular interactions (Albani, 2008; Karoui 

and Blecker, 2011).  

 

Environmental factors such as temperature, pH and colour, impact fluorescence intensity due 

to the high sensitivity of fluorophores to their surrounding environments (Strasburg and 

Ludescher, 1995; Karoui and Blecker, 2011). Higher sample temperatures during analysis 

Stellenbosch University https://scholar.sun.ac.za



 

18 

 

may increase quenching due to greater velocities of collisions during fluorescence (Karoui and 

Blecker, 2011). Different fluorophores may fluoresce greater at certain pH levels, such as 

hydroxyl aromatic compounds, while sample colour influences absorption of the excitation 

beam, thereby influencing both the shape and the intensity of the fluorescence emission 

(Karoui and Blecker, 2011). These factors have numerous implications in the interference of 

obtaining true excitation-emission spectra and should be considered during sample 

preparation.  

 

Rayleigh and Raman scattering are light scatter phenomena most problematic to fluorescence 

spectroscopy. In Rayleigh scattering, light is scattered by particles much smaller than the 

wavelength of light and does not involve energy loss. Due to this elasticity, first-order Rayleigh 

scatter (λex = λem) is observed as the diagonal line running through the emission landscape 

(Figure 2.3) as excitation wavelength closely equals the emission wavelength (Karoui and 

Blecker, 2011). Second-order Rayleigh scattering occurs at twice the excitation wavelength 

(2λex = λem) and is generally an instrumental detector issue, which is an artefact from the 

second order diffraction of the grating used in the detector. Raman scattering is inelastic light 

scattering as a result of light interaction with specific vibrational states of a molecule. The 

influence of Raman scattering is often negligible due to its weaker contribution to the 

fluorescent landscape (Karoui and Blecker, 2011) . Pre-processing of spectral data involving 

the removal of scattered interference is essential for the success of fluorescence analysis and 

is often one of the first stages in the pre-treatment of such complex data sets (Airado-

Rodríguez et al., 2011; Cabrera-Bañegil et al., 2017).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. The scatter phenomena locations within a fluorescence EEM (Buhram et al., 2006). 

 

2.4.3 INSTRUMENTATION 
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Several considerations are highly important when looking at the instrumentation of 

spectrofluorometers due to their direct influence on the success of fluorescence analysis. 

Additionally, it is important to note that every spectrofluorometer is unique as a result of the 

non-uniform spectral output of light sources and the wavelength-dependency of 

monochromators and detectors (Lakowicz, 2013). An understanding of the numerous 

components and their effects on the instrument’s spectral output allows for improved control 

by the user. The basic setup of a spectrofluorometer includes a light source, motorised 

monochromators, sample chamber, a detector and appropriate quantification devices (Figure 

2.4). In recent times, there has been an increasing focus towards the development of smaller, 

more compact devices that allow all components to be encased within a single enclosure 

(Lakowicz, 2013; Bridgeman et al., 2015). 

 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
 
 
Figure 2.4. Basic instrumentation of a spectrofluorometer adapted from literature.  

 

Currently, the most ideal light sources are high-pressure xenon arc lamps (Lakowicz, 2013). 

These lamps are able to emit a relatively continuous spectrum of light between 250 nm and 

700 nm. As the need for more compact and user-friendly devices increases, a shift to pulsed 

xenon lamps has become common. These flash lamps hold several advantages other than 

their compact size, such as having a greater peak intensity, generating less heat while using 

less power and the potential for reducing photo-damage to samples due to their pulsed rather 

than continuous nature (Lakowicz, 2013). Additionally, the use of LED light sources is 

becoming increasingly popular due to their energy efficiency, lower cost and longer lifetime 

(Bridgeman et al., 2015). 

 

Monochromators are used to select for a specific wavelength from a multi-coloured or white 

light source. Slit widths of the excitation and emission monochromators can be fine-tuned to 
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allow for more or less light passage. Larger slit widths allow for increased light intensity but 

risk an increased signal to noise ratio while smaller slit widths may improve spectral resolution 

but risk losing light intensity (Lakowicz, 2013). The dispersion of light in a monochromator is 

achieved using either planar or concave diffraction gratings and important considerations 

include their effects on efficiency, dispersion and stray light levels. A higher efficiency allows 

for the detection of lower light levels while dispersion is greatly affected by the type of grating 

used. Stray light can be defined as any additional light passing through the monochromators 

other than the selected wavelength and is a key consideration for the success of fluorescence 

analysis due to its effect on fluorescent interference, specifically scatter phenomena and their 

effect on emission intensities (Lakowicz, 2013). Filters may be used to reduce light scattering 

as well as the analysis of control samples which is an important method for ruling out spectral 

noise from interfering compounds.  

 

Once the sample has been excited, the emitted light is captured by a highly sensitive light 

detector, typically photomultiplier tubes, consisting of a photocathode and a series of dynodes 

(Lakowicz, 2013). Photons from the fluorescence emission are detected by the sensitive 

photocathode and the subsequently generated electrons are amplified via each successive 

dynode. The detected signal is thereafter quantified, displayed and stored within the 

appropriate electronic device.   

 

2.4.4 FLUORESCENCE SPECTROSCOPY IN WINE 

 

The complex wine matrix consists of several naturally occurring fluorescent compounds. 

Polyphenols form the largest concentration while vitamins (specifically B-complex)  and amino 

acids also possess fluorescent properties (Airado-Rodríguez et al., 2011). Previous research 

has been conducted to determine the fluorescent capabilities of the wine matrix, including 

identifying spectral regions of interest, and to subsequently measure the responsible 

fluorescent compounds. The majority of wine fluorescence research has been qualitative, 

focusing on classification and discrimination tasks while more recently, quantitative 

applications have been explored. Airado-Rodríguez et al. (2011) revealed four fluorophores 

responsible for the main fluorescence of Spanish wines and determined the potential for 

discriminating according to appellation.  Cabrera-Bañegil et al. (2019) were able to distinguish 

between water-stressed and irrigated vines while quantifying catechin, epicatechin and 

resveratrol. Another study determined a good correlation for the quantification of vanillic acid, 

caffeic acid, epicatechin and resveratrol (Cabrera-Bañegil et al., 2017). Letort et al. (2006) 

illustrated the potential for wine authentication according to cultivar, region and vintage by 

means of distinguishing between French and German wines. Bottled white wines were 
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analysed by Coelho et al. (2015) and highlighted the potential of fluorescent fingerprints in 

revealing chemical signatures of oenological and vintage specific treatments, specifically with 

regards to various sulphur dioxide treatments applied to musts at pressing.  

 

Fluorescent properties of phenolic compounds naturally occurring in wine have been widely 

studied and the optimal excitation and emission wavelengths of these compounds have been 

reported throughout literature. Two general regions have been determined within the wine 

excitation-emission matrix, specifically, excitation between 250 and 290 nm resulting in 

emission between 300 and 430 nm, while excitation at wavelengths greater than 300 nm 

results in emission between 360 and 450 nm (Airado-Rodríguez et al., 2009; Airado-Rodríguez 

et al., 2011). Airado-Rodríguez et al. (2011) created an integrated depiction (Figure 2.5) of 

the fluorescent regions of polyphenols based on and in accordance with numerous studies. 

The above research studies all have two important factors in common, namely, sample 

geometry and the application of chemometrics. 

 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 2.5. Fluorescent landscape of a red wine sample depicting regions of polyphenol fluorescence 
(X = phenolic aldehydes; G = gentisic acid; T = tryptophan; B2 = vitamin B2). (Airado-Rodríguez et al., 
2011). 

 

Sample Geometry 

Within the sample chamber of spectrofluorometers, one of the most important considerations 

involves the geometric arrangement of the sample. Fluorescence spectroscopy has 

traditionally used the conventional right angle technique whereby the incident angle, defined 

as the angle formed between the excitation beam and the surface perpendicular, is 0° (Airado-

Rodríguez et al., 2011). Typically, clear or diluted samples may be analysed in this manner, 

however, dilution may interfere with the accuracy of results (Airado-Rodríguez et al., 2011) as 

well as reducing the applicability for food science disciplines due to the inability of analysing 
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viscous or turbid food samples (Karoui and Blecker, 2011). Owing to the complexity of the 

wine matrix and the interactions taking place within it, as well as the sensitivity of fluorophores 

to their surrounding environment, a new technique developed by Parker (1968) overcomes 

the need for dilution. This is achieved by changing the angle of incidence to around 30° 

(Figure 2.6), thereby reducing scattered light and unwanted spectral noise while analysing 

samples in their truest form (Lakowicz, 2013; Airado-Rodríguez et al., 2011).  

 

 
 

 
 
 
 
 
 
Figure 2.6. Right angle geometry (left) versus front-face geometry (right) of cuvettes adapted from 

literature (Lakowicz, 2013). 

 

2.5 CHEMOMETRICS 

 

Fluorescence spectroscopy generates a fluorescent landscape in the form of an excitation-

emission matrix (EEM). This complex three-dimensional fluorescent landscape requires the 

use of multivariate statistical analysis (chemometrics) to decompose and easily interpret the 

obtained  fluorescence signals (Airado-Rodríguez et al., 2011). Chemometrics may be defined 

as the extraction of chemically relevant information via mathematical and statistical tools 

(Varmuza and Filzmoser, 2016). The combination of spectroscopy with chemometrics holds 

several advantages including a considerable reduction in time of analysis as well as the 

simultaneous analysis of multiple analytes from a single spectral measurement (Aleixandre-

Tudo et al., 2017). The most commonly used multi-way analytical models for fluorescence 

spectroscopy include parallel factor analysis (PARAFAC) in addition to unfolded (U-PLS) and 

N-way partial least squares (N-PLS) (Andersen and Bro, 2003; Cabrera-Bañegil et al., 2017). 

As PARAFAC is most often the tool of choice, the following sections will compare it to modern 

techniques of machine learning that have previously not been investigated despite their 

success in complex data analysis.  

 

2.5.1 PARALLEL FACTOR ANALYSIS 

 

Parallel factor analysis (PARAFAC) is a trilinear decomposition model able to identify 

underlying chemical components within complex data sets (Murphy et al., 2013). It is 

successfully implemented for fluorescence data due to the fundamental three-way array of 
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sample x excitation wavelength x emission wavelength as depicted in the three-dimensional 

cubed data format below (Figure 2.7). Compared to bilinear principle component analysis 

(PCA) of one score and one loading vector, each PARAFAC component consists of a score 

vector and two or more loading vectors (Bro, 1997; Airado-Rodríguez et al., 2011). The 

PARAFAC model is considered to be a simpler and constrained version of bilinear PCA while 

overcoming the problem of rotational freedom (Bro, 1997). The three-way PARAFAC model 

formula can be written as: 

𝑥𝑖𝑗𝑘 =  ∑ 𝑎𝑖𝑓𝑏𝑗𝑓𝑐𝑘𝑓 + 𝑒𝑖𝑗𝑘

𝐹

𝑓=1

 

 

where X is the three-way data array, F is the number of components, a, b and c correspond 

to the three loading matrices and e represents the residual error (Airado-Rodríguez et al., 

2011; Murphy et al., 2013). Variables i , j and k represent the sample, excitation and emission 

modes, respectively.  

 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
Figure 2.7. A three-way array of EEM data decomposed into five PARAFAC components (Murphy et 
al., 2013). 

 

Data pre-processing is an important exploratory phase of PARAFAC modelling and involves 

correcting three main aspects namely instrumental, non-trilinear and intensity distortion. 

Instrumental distortion requires the removal of any systematic errors or interferences. Due to 

the uniqueness of each spectrofluorometer, instrumental fluctuations and optical effects may 

distort excitation and emission spectra. This may be removed by EEM multiplication with 

correction vectors identified for the particular instrument in use and may be implemented 

automatically during fluorescence analysis or applied during data pre-processing (Murphy et 

al., 2013). Non-trilinear distortion requires the removal of any signals unrelated to the 

fluorescence of the sample such as Rayleigh and Raman scattering, which may easily be 

removed by inserting missing values within the identified spectral bands (Andersen and Bro, 
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2003; Airado-Rodríguez et al., 2011; Murphy et al., 2013). Intensity distortion requires 

normalising datasets with large concentration gradients. Normalisation allocates similar 

weightings to both high and low concentration samples which may be hindering the 

discrimination between important chemical variations (Murphy et al., 2013). 

 

Model Exploration  

The exploratory phase following data pre-processing involves obtaining the best decomposed 

dataset for modelling and includes choosing the optimal number of components and the 

identification and potential removal of outliers (Murphy et al., 2013). Deciding on the optimal 

number of components may be achieved using the core consistency diagnostic 

(CORCONDIA) or explained variance which are able to determine the appropriateness of the 

model  (Andersen and Bro, 2003; Murphy et al., 2013). The core consistency is expressed as 

a percentage, with the most optimal number of components being the closest to 100%, after 

which the consistency tends to drop significantly once too many components have been 

selected. However, deciding on the number of components cannot be based solely on 

mathematical criteria such as CORCONDIA and explained variance. A combination of 

methods together with a good understanding of the dataset and logical reasoning are essential 

(Andersen and Bro, 2003; Murphy et al., 2013).  

 

Model Validation 

Several steps can be taken to validate the most optimal PARAFAC model. These include 

examining the visual characteristics of spectral loadings, validation techniques such as Jack-

knife or split-half analysis, as well as applying model constraints (Andersen and Bro, 2003; 

Murphy et al., 2013). Excitation and emission spectral loadings for each component represent 

the fluorescence activity of responsible analytes and visually examining these outputs may 

indicate model concerns. Characteristics such as abruptly sharp peaks, large regions of 

overlap between excitation and emission loadings (> 50 nm) and large negative regions 

indicate that the model is incorrectly identifying the responsible chemical components and 

should be refined (Andersen and Bro, 2003). Methods to determine the stability and 

robustness of the model, such as Jack-knife and split-half analysis, allow for several models 

to be produced either from a leave-one-out method or dividing the dataset into halves each 

time while applying model constraints such as non-negativity and unimodality (single peak 

spectra) may also be useful in improving unstable models (Andersen and Bro, 2003; Murphy 

et al., 2013).  

 

Once model validation is complete, the loadings and score values for each component may 

be used in different applications. In relation to wine research previously conducted, score 
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values for each component may be plotted against each other to determine the classification 

potential between wine appellations (Airado-Rodríguez et al., 2011), spectral loadings may be 

correlated with and identified according to those of pure standards and score values may be 

correlated with concentration calibration sets in order to quantify phenolic compounds 

(Cabrera-Bañegil et al., 2017). Calibration models such as those built for catechin and 

epicatechin as well as vanillic acid highlight the potential of creating regression models for 

quantitative analysis (Cabrera-Bañegil et al., 2017; 2019). 

 

2.5.2 MACHINE LEARNING 

 

Machine learning has allowed for new opportunities to emerge in multi-disciplinary agri-tech 

applications as a result of its high performance in data intensive scenarios (Liakos et al., 2018). 

The ability of computer based algorithms to learn from and make predictions on the data 

provided is known as machine learning (Elith, 2019). Machine learning can be distinguished 

between two broad categories, namely supervised and unsupervised learning. Supervised 

learning involves training the algorithm on a dataset and indicating the output response 

required while unsupervised learning aims to identify structure and similarities between inputs 

without a specified response or target (Elith, 2019). The appeal of machine learning therefore 

involves the ability for an algorithm to improve with experience over time. The growing success 

of machine learning has resulted in its multi-disciplinary use and can be seen today in almost 

every sector including economic use in banking systems, medical diagnosis in health care, in 

the control and optimisation of manufacturing processes as well as in internet search engines 

(Alpaydin, 2020). The process of applying machine learning involves data preparation followed 

by feature, algorithm and parameter selection, and lastly, training and evaluation. Gradient 

tree boosting is extensively used in the data science field and a new variation of this technique, 

known as eXtreme Gradient Boosting (XGBoost), has become well recognised in achieving 

highly effective results (Chen and Guestrin, 2016).  

 

XGBoost 

Boosting regression trees are an ensemble technique combining the capabilities of two 

algorithms; regression trees and boosting. Classification and regression trees experience 

repeated binary splits, hierarchically splitting the data into regions with the most homogenous 

response to predictors (Elith et al., 2008). Boosting is a sequential, stage-wise technique 

whereby sequential modelled trees are optimised by minimising the loss of predictive function 

from a previously sub-optimal model (Elith et al., 2008). This binary splitting occurs at each 

tree’s outputs, resulting in hundreds to thousands of possibilities, until specified stopping 

criteria have been reached. Instead of selecting a single “best fit” model as with more simple 
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regression techniques, the final output is a linear collection of numerous trees and models 

(Elith et al., 2008). Important parameters of the process include learning rate (the contribution 

of each tree to the final model), tree complexity (number of iterations fitted) and number of 

trees required for optimal prediction. Figure 2.8 illustrates the process of gradient boosting 

using a classification example, whereby incorrectly predicted features (red circles in the first 

iteration) are weighted higher in the subsequent tree (larger red circles) until all circles are 

accurately classified by the third iteration (Zhang et al., 2018). A new split is applied in the 

third iteration in order to correctly classify the remaining blue square and resulting in model F3 

as the sum of T1, T2 and T3.   

 
  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
Figure 2.8. A visual example of gradient boosting (Zhang et al., 2018). 

 

XGBoost is used for classification, regression and ranking applications. The advantages of 

this tree boosting algorithm include scalability in all scenarios, built-in handling of sparse data 

and parallel processing allowing the system to run ten times faster than other popular systems 

(Chen and Guestrin, 2016). Regularisation methods, shrinkage and scaling of weights as well 

as column sub-sampling helps to reduce over-fitting which is likely during additive 

accumulation of the models (Chen and Guestrin, 2016). XGBoost is a highly adaptable 
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machine learning algorithm, unaffected by dimensionality and non-linear interactions within 

datasets and presents itself as a novel, present day alternative for complex data analysis. 

These benefits may be beneficial in handling complex fluorescence matrices and potentially 

allow for the discrimination of previously unidentified correlations between spectral regions 

and polyphenols.  

 

Gradient boosting, random forest and ensemble techniques have shown success in predicting 

skin flavonoid content from red wine grape cultivars (Brillante et al., 2015) while Gupta (2018) 

explored the use of machine learning algorithms, such as neural networks and support vector 

machines (SVMs), in determining correlations between wine quality attributes and 

physicochemical characteristics.  Machine learning appears to be increasingly popular in wine 

applications and therefore presents itself as a state-of-the-art alternative for complex 

technologies (Brillante et al., 2015). 

 

2.6 CONCLUSION 

 

The importance of phenolic compounds in red wine due to health benefits as well as quality 

attributes is well known. To date, conventional analysis has not formed part of routine wine 

analysis, largely due to the need for numerous reagents, equipment, trained personnel, time 

of analysis and cost. The need for fast, simple, cost-effective and accurate phenolic analysis 

methods is steadily increasing. More routine analysis of phenolic compounds may have a 

positive effect on the decision-making of winemakers in order to maximise the quality of the 

final red wine product from the initial grape source. Fluorescence spectroscopy, together with 

chemometrics, shows promise for phenolic analysis and requires further research to 

determine its potential for phenolic quantification of South African wines. The potential for 

implementation into on-line systems or optical devices may allow for the monitoring of phenolic 

compounds and their extraction during winemaking, ultimately improving red wine production 

and the performance of local wines on the competitive global scene. 
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ABSTRACT 

Phenolic compounds are secondary metabolites known to play crucial roles in important 

chemical reactions impacting the mouthfeel, colour and ageing potential of red wine. Their 

complexity has resulted in numerous equally complex analytical methods with several 

drawbacks which often prevent routine phenolic analysis in winemaking. Fluorescence 

spectroscopy is a rapid, affordable and user-friendly alternative and the combination with 

chemometrics was investigated for its suitability in directly quantifying phenolic content of red 

wine and fermenting samples. Front-face fluorescence was optimised and used to build 

predictive models for total phenols, total condensed tannins, total anthocyanins, colour density 

and polymeric pigments. Machine learning algorithms were used for model development and 

the most successful models were built for total phenols, total condensed tannins and total 

anthocyanins with coefficient of correlation values (R2cal) of 0.81, 0.89 and 0.80, respectively. 

A novel approach for the classification of South African red wine cultivars based on unique 

fluorescent fingerprints was also successful.  

 

3.1 INTRODUCTION 

 

Phenolic compounds are a diverse group of secondary metabolites found in grapes and wine 

that can be classified into two families; flavonoids (flavonols, flavan-3-ols and anthocyanins) 

and non-flavonoids (phenolic acids and stilbenes) (Garrido and Borges, 2013; Aleixandre-

Tudo et al., 2018). The final phenolic composition of a wine is dependent on numerous factors 

including viticultural aspects influencing grape berry development and ripening, the grape 

cultivar and chemical composition at harvest, as well as the winemaking practices 

implemented throughout fermentation and ageing (Garrido and Borges, 2013). Phenolic 

compounds have been widely studied for their crucial roles in various chemical reactions that 

greatly impact important wine attributes, such as mouthfeel, colour and ageing potential (Vidal 

et al., 2003; Monagas et al., 2005; Aleixandre-Tudo et al., 2018).  

 

The complexity and diversity of red wine phenolic compounds has resulted in numerous 

analysis methods being developed in order to simplify complex phenolic chemistry into the 

most relevant phenolic information. Several drawbacks, including expensive equipment and 

reagent costs as well as the need for trained personnel, prevent the routine analysis of 

important phenolic parameters during winemaking. The basic spectrophotometric methods 

most often used are UV-Vis based and rely on the spectral properties of the aromatic ring 

present in all phenolic compounds, allowing for differentiation between phenolic groups 

according to characteristic wavelength peaks (Harbertson and Spayd, 2006; Aleixandre-Tudo 
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et al., 2017). Alternatives such as high performance liquid chromatography (HPLC) are highly 

sensitive but rarely used outside of research applications while infrared spectroscopies, 

specifically Fourier transform, have been reported as suitable in phenolic analysis (Romera-

fernández et al., 2012; Dambergs et al., 2012; Daniel, 2015; Aleixandre-Tudo et al., 2018). 

Spectroscopy combined with chemometrics is becoming increasingly investigated in both 

academic and industry domains to meet growing demands for rapid, accurate, cost-effective 

and user-friendly analysis techniques that may be applied on site as well as developed into 

process monitoring, optimisation and control systems. 

 

Fluorescence spectroscopy has been widely used in chemistry and biochemistry disciplines 

due to its success in analysing the structures, functions and reactivity’s of numerous 

compounds, thereby allowing it to become an important tool in the authentication and quality 

control of many food science disciplines (Strasburg and Ludescher, 1995). The advantages of 

fluorescence spectroscopy include being non-destructive, user-friendly, cost effective and 

highly sensitive when compared to other spectrophotometric methods (Strasburg and 

Ludescher, 1995; Airado-Rodríguez et al., 2011; Karoui and Blecker, 2011). The fluorescent 

capabilities of the complex wine matrix has been investigated with polyphenols being identified 

as the largest concentration of naturally occurring fluorophores (Airado-Rodríguez et al., 

2011). Previous research has been conducted to analyse these fluorescent compounds both 

qualitatively and quantitatively, with Cabrera-Bañegil et al. (2017, 2019) able to quantify pure 

compounds including catechin, epicatechin, vanillic acid, caffeic acid and resveratrol. 

Classification tasks have, however, been the focus in wine fluorescence research, with wine 

authentication according to cultivar, appellation and vintage having been successful (Letort et 

al., 2006; Airado-Rodríguez et al., 2011). Understanding the limitations and principles of 

fluorescence instrumentation is important when conducting analysis, with sample geometry 

being a major consideration. The conventional right-angled technique traditionally used in 

fluorescence spectroscopy is used in the analysis of clear or diluted samples. Owing to the 

complexity of the wine matrix and the chemical interactions taking place within it, as well as 

the sensitivity of fluorophores to their surrounding environment, a front-face technique 

developed by Parker (1968) overcomes the need for dilution and allows the analysis of 

unaltered samples (Airado-Rodríguez et al., 2009; Airado-Rodríguez et al., 2011; Karoui and 

Blecker, 2011). Front-face fluorescence therefore presents itself as a potential alternative for 

the direct and non-invasive analysis of samples during the winemaking process.     

 

Combining spectroscopy with chemometrics (multivariate statistical analysis) holds several 

advantages including the decomposition and interpretation of complex data sets in a 

considerably reduced analysis time, its non-destructive nature, and the simultaneous 
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quantification of several analytes from a single spectral measurement (Gishen et al., 2005; 

Aleixandre-Tudo et al., 2018). The most commonly used multi-way techniques in fluorescence 

analysis have included parallel factor analysis (PARAFAC) as well as unfolded and N-way 

partial least squares (U-PLS and N-PLS) (Andersen and Bro, 2003; Cabrera-Bañegil et al., 

2017). Modern machine learning techniques have previously not been investigated in this 

research area despite their success in complex data handling and ubiquitous use in current 

technologies.   

 

The need for real-time, rapid, cost-effective and accurate phenolic analysis methods is steadily 

increasing and routine implementation may aid in the decision-making of winemakers and 

producers during red wine production. The potential for automation and on-line systems as 

well as optical portable devices is possible due to the beneficial combination of spectroscopy 

and chemometrics (Giovenzana et al., 2013). The aim of this study was therefore to investigate 

the suitability of front-face fluorescence spectroscopy to quantify phenolic content of undiluted 

red wine samples. The five parameters of interest included total phenols, total condensed 

tannins, total anthocyanins, colour density and polymeric pigments. Previous wine 

fluorescence research has, to the best of our knowledge, not investigated the potential of 

fluorescence spectroscopy to quantify such broad phenolic parameters with a focus on the 

implications for real-time analysis during the winemaking process. Classification of South 

African red wine cultivars using fluorescent excitation-emission matrices was also explored for 

its potential in authentication and quality control.  

 

3.2 MATERIALS AND METHODS 

 

3.2.1 REAGENTS 

Ammonium sulphate, hydrochloric acid (HCl 1 M), methyl cellulose, sulphur dioxide (SO2), 

ethanol (96%) and sodium metabisulfite (2.5 %) were purchased from Sigma-Aldrich Chemie 

(Steinheim, Germany). (-)-Epicatechin and malvidin-3-glucoside were purchased from 

Extrasynthese (Genay, France). 

 

3.2.2 SAMPLES 

The collection of 200 fermenting red wine samples took place over the 2019 vintage, following 

a diverse range of cultivars, vinification practices and terroirs. Both commercial and 

experimental scale conditions were included, with 91 samples collected from commercial 

cellars (Stellenbosch University Welgevallen Wine Cellar, Thelema Mountain Vineyards and 

Kanonkop Wine Estate) and 109 samples collected from the JHN Neethling experimental 
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cellar at the Department of Viticulture and Oenology (Stellenbosch University). Samples were 

immediately frozen upon collection. During analysis, samples were thawed and immediately 

centrifuged at 5000 rpm for 2 min in an Eppendorf 5415D centrifuge (Hamburg, Germany). 

Additionally, 100 red wine samples from the Agricultural Research Council (ARC Infruitec-

Nietvoorbij, Stellenbosch) spanning several vintages (2007-2018) and cultivars were 

collected, stored at room temperature and centrifuged at 5000 rpm for 2 min on the day of 

analysis. The cultivars represented in the study, each with varying numbers of samples, 

included Shiraz (90), Pinotage (49), Cabernet Sauvignon (47), Merlot (36), Malbec (19), Petit 

Verdot (14), Grenache (9), Pinot noir (9), Tempranillo (5), Cinsaut (4), Arinarnoa (4), a blend 

(Pinotage, Shiraz and Malbec), Marselan (2), Mourvedre (1), Cabernet Franc (1) and 

Sangiovese (1). 

 

3.2.3 SPECTROPHOTOMETRIC ANALYSIS 

All analyses were conducted with UV-Vis spectroscopy using a Multiskan GO Microplate 

Spectrophotometer (Thermo Fisher Scientific, Inc., Waltham, MA, USA). The total phenolics 

index and total anthocyanin contents were quantified using the methodology reported by Iland 

et al. (2000). One hundred μl of sample supernatant was diluted 50 times with 1 M HCl, 

vortexed and stored for 1 hour in a dark cupboard before the absorbance between 200-700 

nm at 2 nm intervals was recorded. The total phenolics index was calculated as the 

absorbance at 280 nm multiplied with the dilution factor while total anthocyanin content was 

calculated in mg/L malvidin-3-glucoside using the absorbance at 520 nm. Total condensed 

tannin concentration was determined using the methyl cellulose precipitable tannin assay 

(MCP) protocol developed by Sarneckis (2006) and later modified by Mercurio (2007). In 2 ml 

microfuge tubes, the treatment involved 50 μl of wine diluted with 600 μl of MCP solution 

(0.04% w/v), vortexed and left for 2-3 min before 400 μl of ammonium sulphate and 950 μl of 

distilled water was added. The control tubes contained no MCP solution but rather a total of 

1.55 ml distilled water. Both control and treatment stood for 10 min before being centrifuged 

in an Eppendorf 5415D centrifuge (Hamburg, Germany) at 10 000 rpm for 5 min. The tannin 

content was then calculated using the difference between control and treatment samples at 

280 nm and converted to mg/L using a calibration curve in epicatechin equivalents and a 

dilution factor of 40. Colour density was determined using the method reported by Glories 

(1984) whereby 50 μl of wine was analysed against a blank of deionised water and the 

absorbance recorded at 420 nm, 520 nm and 620 nm. The sum of the three wavelengths was 

used to determine the colour density of the sample. Polymeric pigments were calculated using 

the modified Somers assay (Mercurio et al., 2007). In 2 ml microfuge tubes, 200 μl of sample 

supernatant was diluted with 1.8 ml buffer solution (12% v/v ethanol, 0.5 g/L w/v tartaric acid 
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at pH 3.4) containing 2.5 % sodium metabisulfite, and vortexed. The samples were stored for 

1 hour and then analysed at 520 nm. The polymeric or SO2 resistant pigments were then 

calculated in absorption units (AU) and a dilution factor of 10.  

 

3.2.4 FLUORESCENCE INSTRUMENTATION  

Parameters of a Perkin Elmer LS50B Spectrophotometer were investigated with regards to 

the intensity, excitation and emission ranges appropriate for wine analysis using diluted 

samples and conventional fluorescence analysis. A front-face accessory was thereafter 

investigated to ensure similarly appropriate parameters were obtained, and the optimal angle 

of incidence was determined as 30 degrees. This calibration from conventional to front-face 

fluorescence was conducted using a Cabernet Sauvignon wine sample (2018) and validated 

with a Merlot wine sample (2018) (data not shown).  

 

3.2.5 FLUORESCENCE SPECTROSCOPY 

Front-face fluorescence analysis was conducted on all samples at room temperature in a 700 

μl quartz cuvette (2 mm width) (Hellma Analytics, Germany) with a 2 cm in diameter aperture 

fitted in the emission path in order to provide additional filtering of Rayleigh scattering. The 

excitation-emission matrix (EEM) per sample was recorded as emission spectra between 245 

nm and 500 nm at 0.5 nm intervals for excitation wavelengths between 245 nm and 400 nm 

at 5 nm intervals. Scanning speed was set at 500 nm/min and the excitation and emission slit 

widths were set at 3 nm and 5 nm, respectively. The UV Winlab instrument software was used 

for data acquisition.  

 

3.2.6 DATA PRE-PROCESSING 

A single, complete dataset containing the combined 289 EEMs was created (11 samples were 

excluded due to unexplained oversaturation during fluorescence analysis). Once combined, 

spectral interferences were removed from the EEMs as described by Airado-Rodríguez et al. 

(2011). First and second order Rayleigh scatter were removed by excluding the excitation 

peaks on the identity line (λex = λem) and at (2λex = λem), respectively. The triangular non-

chemical region below the identity line (λex > λem) was set to zero. The software used for data 

and image processing throughout the study include the open-source web-based user interface 

JupyterLab (Project Jupyter, USA) using the Python 3 language library scikit-learn (Pedregosa 

et al., 2011) and Matlab version 9.5 (The Mathworks Inc., MA, USA). 

 

3.2.7 CHEMOMETRICS 
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3.2.7.1 PARALLEL FACTOR ANALYSIS (PARAFAC) 

PARAFAC was performed in Matlab using the PLS_Toolbox (The Mathworks Inc., MA, USA) 

as described in literature (Bro, 1997; Airado-Rodríguez et al., 2011; Cabrera-Bañegil et al., 

2019). The pre-treated EEMs of the 289 samples were stacked in a trilinear arrangement of I 

x J x K vectors (samples x excitation wavelengths x emission wavelengths) resulting in an 

initial 289 x 32 x 480 three-dimensional array. Spectral artifacts led to a reduction in EEM size 

from excitation and emission wavelengths between 245-400 nm and 260-500 nm, to 245-340 

nm and 265-500 nm, respectively. The final three-way array of 289 x 20 x 470 was obtained. 

The appropriate number of components was chosen based on the core consistency diagnostic 

(CORCONDIA) and explained variance for non-negativity constrained models. Split-half 

analysis was conducted for model validation. Linear regression was then performed in 

JupyterLab on the resulting score values to determine univariate calibration models. 

 

3.2.7.2 MACHINE LEARNING  

Conventional linear regression in the form of principal component regression and partial least 

squares regression (PCR and PLSR) were investigated in JupyterLab. The exploration of 

linear regression included specific region selection based on phenolic fluorescence as found 

in literature (Airado-Rodríguez et al., 2011), data scaling and outlier removal. Machine learning 

was investigated as a data modelling alternative and an exploration of the optimal pre-

processing parameters focused on variance selection, data scaling, spectral region selection 

and choice of modelling technique. A machine learning pipeline was built in Python  consisting 

of five consecutive steps namely, a column selector used to select for specific columns within 

the data and allow for spectral region selection between excitation 245-400 nm and emission 

245-500 nm, a savgol transform used to apply a Savitzky-Golay filter for data smoothing 

(Savitzky and Golay, 1964), a pre-processing selector used to find the optimal scaling 

technique, principal component analysis (PCA) for data decomposition, and the XGBoost 

regressor to build a tree-based gradient boosted model (Chen and Guestrin, 2016). Bayesian 

optimisation was used as the framework for automatically tuning the hyper-parameters of the 

pipeline (Swersky et al., 2013; Pelikan et al., 1999) and explored over 2 000 iterations and 

over 160 model configurations per model.  

 

Figure 3.1 is a graphical representation of the machine learning pipeline procedure. Briefly, 

the data was split into train and test sub datasets, of which 20 samples were retained for model 

validation. Following this train and test split, a (Synthetic Minority Over-Sampling Technique 

for Regression) SMOTER algorithm was applied to the training set data. SMOTER makes use 

of interpolation of target samples identified as extreme cases or within the minority in order to 
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create synthetic samples that improve upon model training (Torgo et al., 2013). A 99% 

threshold was used, identifying cases within the rare extreme and a k=3 value for k- Nearest 

Neighbours (KNN) was defined as the interpolation parameter to create the synthetic samples. 

The training data was thereafter passed through each consecutive step of the pipeline per 

phenolic parameter, with Bayesian optimisation automatically identifying the best hyper-

parameters required for optimal prediction accuracy. Evaluation metrics including coefficient 

of determination (R2cal and R2val), root mean square error (RMSE) and mean absolute error 

(MAE) were reported for 10-fold cross validation, whereby 10 randomly and equally sized sub 

datasets were partitioned, retaining 2 samples per sub dataset for internal test validation. 

RMSE was the key metric used by the Bayesian optimisation algorithm in order to improve 

upon each new hyper-parameter configuration it explored. The pipeline was repeated a finite 

number of times and the parameters that resulted in the best cross validated RMSE over all 

the fits was then used to save a final model configuration. Lastly, the retained 20 sample test 

dataset was used to evaluate the final model’s performance on unseen data. 

 

In order to optimise the pipeline for each phenolic parameter (total phenols, total condensed 

tannins, total anthocyanins, colour density and polymeric pigments), four main tests were 

conducted including running the complete pipeline, the pipeline without synthetic samples, the 

pipeline with synthetic samples but without region selection and lastly, the pipeline without 

region selection nor synthetic samples. The optimal pipeline parameters were chosen unique 

to each phenolic model. Each of the four tests were run several times in order to evaluate the 

optimal number of components in principal component analysis (PCA). The average train and 

test scores per number of PCA components were evaluated with a focus on optimal 

decomposition coupled with model stability. Six components were chosen due to this being 

consistently optimal for all phenolic models and was thereafter inserted into the pipeline as a 

fixed hyper-parameter (Figure 3.1).  Once the optimal parameters were obtained, further 

model development involved adjusting the phenolic ranges to eliminate minority sample 

groups from negatively impacting model accuracy, as well as outlier identification and removal.  
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Figure 3.1. Schematic diagram of the machine learning pipeline. 

 

3.2.8 CLASSIFICATION 

 

PARAFAC performed in Matlab, and PCA and neighbourhood component analysis (NCA) 

performed in Python were the techniques used to evaluate the classification and discrimination 

abilities of fluorescence spectroscopy. PARAFAC scores obtained per component were 

plotted against each other (Airado-Rodríguez et al., 2011) focusing on the four main cultivar 

Stellenbosch University https://scholar.sun.ac.za



 

41 

 

types included in this study (Cabernet Sauvignon, Merlot, Pinotage and Shiraz) as well the 

sample state of either fermenting must or wine. PCA was conducted in a similar manner to 

PARAFAC. NCA was conducted using linear discriminant analysis (LDA) as the linear 

transformation initialisation method and due to the large variation in number of samples per 

cultivar, classification was conducted on cultivars with more than or equal to 5, 8, 14 and 20 

samples, respectively. NCA was repeated with a focus on classifying according to the sample 

state of either fermenting must or wine as well as on fermenting musts and wine separately. 

Leave-one-out cross validation was conducted per set of NCA with score values used to 

determine classification accuracy. 

 

3.3 RESULTS AND DISCUSSION 

 

3.3.1 WINE EXCITATION-EMISSION MATRICES (EEMS) 

Figure 3.2 is an example of a pre-processed EEM belonging to a randomly chosen fermenting 

Cabernet Sauvignon sample from this study. Two different spectral regions can be observed 

as a result of the fluorescent properties of wine previously reported in literature (Airado-

Rodríguez et al., 2009; Airado-Rodríguez et al., 2011).  Excitation between the more energetic 

wavelengths of 250 and 290 nm results in emission between 300 and 430 nm, while excitation 

at wavelengths longer than 300 nm result in emission between 360 and 450 nm (Airado-

Rodríguez et al., 2009; Airado-Rodríguez et al., 2011). Figure 3.3 is an integrated depiction 

adapted from literature indicating the characteristic excitation and emission wavelengths of 

important phenolic compounds (Airado-Rodríguez et al., 2011). The non-flavonoid family 

including phenolic acids (cinnamic-like and benzoic-like), phenolic aldehydes and stilbene-like 

compounds extends between the ranges of excitation 260-330 nm and emission 320-440 nm. 

Gentisic acid possesses a unique fluorescence in that it deviates further right of the EEM 

compared to the rest of the non-flavonoids. The flavonoid family is split into two unique regions 

with flavonols extending between excitation 260-268 nm and emission 370-422 nm, and 

flavan-3-ols occurring within excitation 278-290 nm and emission 310-360 nm. Apart from 

polyphenols, other naturally occurring fluorescent compounds occurring within fermenting 

musts and wine, such as vitamins and amino acids, have previously been reported (Hoenicke 

et al., 2001; Airado-Rodríguez et al., 2009). The fluorescent properties of the amino acid 

tryptophan, as reported by Christensen et al. (2006), have been included. Figure 3.3 is merely 

an approximate representation as the excitation-emission regions illustrated below are 

reported for compounds in dilution measured using the conventional right-angled technique, 

and spectral shifts, band fluctuations and quantum yield changes may occur when measured 

within the unaltered wine matrix (Airado-Rodríguez et al., 2011). 
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Figure 3.2. Excitation-emission matrix of a fermenting Cabernet Sauvignon sample included in this 

study (Sample 1) with the scale bar representing fluorescence intensity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Excitation-emission matrix of a fermenting Cabernet Sauvignon sample included in this 
study (Sample 1) indicating the fluorescent properties of wine fluorophores adapted from literature 

(Airado-Rodríguez et al., 2011). G and T represent gentisic acid and tryptophan, respectively. 
 

Anthocyanins have been reported as weakly fluorescent (quantum yield of 4.1 × 10−3 for 

malvidin) attributed to their efficient water proton transfer while in the excited state (Agati et 

al., 2013). Research into anthocyanin fluorescence in red wine has resulted in exponential 

models being developed for their quantification based on emission ratios of F700/F560 as well 

as identifying an emission peak of malvidin occurring around 550 nm under excitation 500 nm 

(Agati et al., 2013). A pure malvidin-3-glucoside standard was tested in a model wine dilution 

series to evaluate the presence of fluorescence within the excitation-emission range chosen 
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for this study and Figure 3.4 represents the three-dimensional EEM of pure malvidin-3-

glucoside at the highest concentration level (1000 mg/L). The weakly fluorescent intensity 

below 45 units illustrates the sensitivity of fluorescence spectroscopy but also successfully 

identifies a potentially overlooked fluorescent region of anthocyanins between excitation 280-

300 nm and emission 330-380 nm. It is unclear why this region may not have been explicitly 

reported in literature, however, it may be a result of limited research into quantitative red wine 

fluorescence compared to classification and qualitative applications. Alternatively, the UV-

Visible absorption properties of anthocyanins involving a characteristic peak between 490 nm 

and 550 nm (Giusti and Wrolstad, 2001) as well as the accepted grape berry fluorescence 

indices FERARI (fluorescence excitation ratio anthocyanin relative index) and ANTH_RG 

(anthocyanin fluorescence index), which involve far red chlorophyll fluorescence (700-780 nm) 

excited by red light as well as the excitation ratio of red and green light, respectively (Baluja 

et al., 2012; Pinelli et al., 2018), may not have demanded exploration outside of these 

accepted wavelengths. Interestingly, Le Moigne et al. (2007) obtained good anthocyanin 

correlations using front-face fluorescence spectroscopy by measuring red grape skins 

between excitation 250-310 nm at emission 350 nm which correlates well with the 

fluorescence region identified in Figure 3.4.    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Pre-processed excitation-emission matrix mesh plot of pure malvidin-3-glucoside in model 
wine (1000 mg/L). 
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Table 3.1. Maximum, minimum, standard deviation and average values per spectrophotometric 
analysis reference method. 

 

Table 3.1 illustrates the phenolic variability achieved during sample collection of both 

fermenting musts and wine samples. All spectrophotometric methods were performed within 

a coefficient of variation less than 5%, considered acceptable for reproducibility. The final wine 

phenolic profile is the result of complex chemical interactions influenced by numerous factors 

such as those influencing the chemical composition of the grape berry as well as the viticultural 

and oenological practices implemented throughout processing (Garrido and Borges, 2013). 

This naturally high variability obtained illustrates the importance of including an extensive 

dataset during model development in order to sufficiently challenge and train the model on 

diverse ranges of phenolic levels. Introducing high sample variability aids in building robust 

calibration models able to make accurate predictions on future samples. 

 

3.3.2. PARALLEL FACTOR ANALYSIS (PARAFAC) 

PARAFAC is a trilinear decomposition modelling technique resulting in components (score 

and loading vectors) that are representative of signals from individual fluorophores. The 

optimal number of components was chosen to be four, based on the core consistency 

diagnostic (CORCONDIA) and explained variance for non-negativity constrained models 

(Table 3.2) (Andersen and Bro, 2003) as well as corresponding with results from previous red 

wine PARAFAC analyses in which components were tentatively correlated with phenolic 

compounds (Airado-Rodŕiguez et al., 2009; Schueuermann et al., 2018). Visual inspection of 

the loadings was performed to confirm the optimal number of components as well as to remove 

spectral artifacts interfering with the model stability, resulting in a reduced spectral region of 

245-340 nm excitation and 265-500 nm emission with a final three-way array of 289 x 20 x 

470 (samples x excitation wavelengths x emission wavelengths). Split-half analysis was 

conducted to validate the uniqueness and stability of the final model.  

 

 

Total 

Phenols 

Index 

Total 

Condensed 

Tannins 

(mg/L) 

Total 

Anthocyanins 

(mg/L) 

Colour 

Density 

(AU) 

Polymeric 

Pigments 

(AU) 

Maximum 126.10 2912.08 1306.44 42.52 8.09 

Minimum 5.11 731.44 9.26 1.89 0.24 

Average 44.50 1474.22 350.98 14.01 1.80 

Standard 

deviation 
18.02 425.74 194.71 6.06 1.13 
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Table 3.2. Explained variance (%) and core consistency (%) for non-negativity constrained PARAFAC 
models with one to six components. 

 

 

Figure 3.5 shows the final model scores (Mode 1) obtained per sample as well as the 

excitation and emission loadings per PARAFAC component. Score values are estimates of 

the relative concentrations of the responsible fluorophore and can be used to build univariate 

calibration models or determine relationships contained within the fluorescence information 

for potential clustering (Andersen and Bro, 2003; Airado-Rodŕiguez et al., 2009). Components 

1 to 4 have been tentatively assigned to their responsible fluorophores in literature by 

correlating the resulting PARAFAC component excitation and emission peaks with HPLC 

measurements and bibliographic information (Airado-Rodríguez et al., 2011; Schueuermann 

et al., 2018).  Component 1 is characterised by an excitation peak around 260 nm with an 

emission shoulder at 370 nm and peak at 390 nm, and has been suggested as representing 

phenolic aldehydes, benzoic-like acids, myricetin and trans-resveratrol (Airado-Rodríguez et 

al., 2011) and caffeic acid (Schueuermann et al., 2018). Component 2 is characterised by an 

excitation peak around 280 nm and emission peak around 320 nm. This second component 

has been consistently matched with monomeric flavan-3-ols, catechin and epicatechin, with 

high correlations achieved for catechin (R2 = 0.9221) and epicatechin (R2 = 0.8761) (Airado-

Rodŕiguez et al., 2009) as well as the sum of both (R2 = 0.8468) (Cabrera-Bañegil et al., 2017). 

Component 3 consists of an excitation peak between 320-330 nm and an emission peak 

around 420 nm, while component 4 is characterised by an excitation shoulder at 270 nm and 

peak at 280 nm with an emission peak at 370 nm. Schueuermann et al. (2018) proposed 

cinnamic-like acids, caffeic and p-coumaric, responsible for component 3 while p-coumaric 

acid, gentisic acid and stilbene-like non-flavonoids were proposed by Airado-Rodŕiguez et al. 

(2009). Component 4 has been suggested as benzoic-like acids as well as tryptophan (Airado-

Rodríguez et al., 2011; Schueuermann et al., 2018). The complexity of the wine matrix results 

in PARAFAC components most likely corresponding to several different fluorophores or those 

within the same chemical group rather than individual compounds. No correlations were found 

between the obtained score values and the reference data per phenolic parameter (Appendix 

Figure 3.1). Despite the potential for component 2 to be well correlated with total condensed 

Number of Components 

 1 2 3 4 5 6 

Explained 

Variance (%) 
100 95.46 97.74 99.03 99.32 99.44 

Core 

Consistency 

(%) 

87.34 95.39 37.67 88.47 43.70 34.18 
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tannins, the best R2 value obtained after linear regression was 0.21. In the context of this 

study, PARAFAC was unsuccessful in building calibrations for such broad phenolic 

parameters such as total condensed tannins versus the successful correlations achieved for 

pure compounds of catechin or epicatechin (Airado-Rodŕiguez et al., 2009; Cabrera-Bañegil 

et al., 2017). The structural similarity of the phenolic classes and difficulty in separating them 

into their singular structures based on their PARAFAC components may be hindering the 

predictive ability of regression modelling. Conducting PARAFAC on fermenting musts and 

wine separately did not improve upon results.   
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Figure 3.5. Score values per sample (Mode 1), excitation loadings and emission loadings for the four component, non-negativity constrained PARAFAC model.
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3.3.3 MACHINE LEARNING 

Conventional linear regression in the form of principal component regression (PCR) and partial 

least squares regression (PLSR) was performed on the fluorescence and reference data. 

These methods proved unsuccessful despite exploring fluorescent region selection, phenolic 

range manipulation and outlier removal, with poor calibration and validation scores (data not 

shown). This suggested a complex dataset requiring more intensive data handling and the 

exploration of machine learning algorithms. The decision behind using a boosting modelling 

technique, such as XGBoost, involved the beneficial linear collection of numerous sequentially 

modelled regression trees rather than a single model of best fit as with simpler regression 

methods (Chen and Guestrin, 2016). Each successive tree optimises on the residuals of the 

previous tree’s predictions and thereby minimises the loss of predictive ability from previously 

sub-optimal models (Elith et al., 2008; Brillante et al., 2015) Gradient boosting is a highly 

effective technique for classification and regression problems and a favoured option 

throughout the data science community. This can be seen in the preferred choice of machine 

learning algorithms used on Kaggle, the largest data science community platform and machine 

learning competitive scene (Nielsen, 2016). 

 

Briefly, a five-step machine learning pipeline was built consisting of fluorescent region 

selection, data smoothing and scaling, data decomposition with PCA and lastly, the XGBoost 

regressor (Figure 3.1).  The minority over-sampling technique in the form of a SMOTER 

algorithm applied to the training sub dataset following the train/test split, proved useful in 

creating a more balanced training model for a widely variable input dataset of fermenting 

musts and wines. Six principal components showed the most optimal model stability and 

highest prediction accuracy for all phenolic parameters and was thereafter inserted as a set 

feature for further model development. Generally, calibration models should be cautiously 

considered with regards to overly optimistic results. Internal validation in the form of 10-fold 

cross validation as well as the evaluation of the final model on a retained validation dataset 

was therefore performed in order to reduce these risks. Each phenolic parameter was 

individually explored to determine the most optimal pipeline resulting in the highest prediction 

accuracy and model stability. Table 3.3 shows the prediction accuracy metrics and 

characteristics of the best models per phenolic parameter. Once the most optimal pipeline 

parameters were determined, the pipeline was re-run several times to allow for outlier removal 

and refinement.  

 

The best total phenols model depicted in Figure 3.6 (R2 = 0.81; RMSEV = 7.16; MAEV = 5.39) 

made use of region selection between 260-360 nm excitation and 370-400 nm emission which 

overlaps the flavonols and stilbene-like regions as represented above in Figure 3.3. Poor 
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prediction accuracy and unstable models were found when trying to incorporate the entire 

phenolic region as referenced in literature. Due to a minority of samples with high phenolic 

values, samples above 80 index units were removed as the model struggled to predict above 

this threshold.  

 

The best total condensed tannins model (Figure 3.7) made use of region selection between 

285-340 nm excitation and 290-350 nm emission, overlapping with the flavan-3-ols region 

depicted in Figure 3.3. Samples with tannin levels above 2300 mg/L were removed as the 

model struggled to predict above this minority group of samples. An R2 of 0.89, RMSEV of 

172.37 and MAEV of 129.14 were obtained. The best total anthocyanins model (Figure 3.8) 

required removing samples with levels above 800 mg/L and made use of region selection 

between 280-300 nm excitation and 330-380 nm emission which correlates well with the 

fluorescence of malvidin-3-glucoside identified above (Figure 3.4). Prediction scores of R2 = 

0.8, RMSEV = 76.57 and MAEV = 61.57 were obtained. Poorer but stable models were built 

for colour density (Figure 3.9) and polymeric pigments (Figure 3.10), the metrics of which are 

reported in Table 3.3. No ideal region could be selected for both models and little improvement 

was observed with outlier removal and range manipulation. Due to a minority of samples in 

the higher ranges, samples above 25 absorption units and above 4 absorption units were 

removed for colour density and polymeric pigments, respectively. The inability to develop a 

promising regression model for colour density may be due to the characteristics of colour 

density as a metric. Red wine colour experiences numerous transitions over time as a result 

of chemical reactions between anthocyanins and other phenolic compounds (Harbertson and 

Spayd, 2006). The widely used Glories method (1984) is an estimation of total colour by using 

the sum of absorbances at three wavelengths, namely 420 nm (yellow colouration), 520 nm 

(red colouration) and 620 nm (blue colouration). The excitation-emission matrix chosen for 

this study therefore may not have encompassed all responsible compounds provided they 

possess fluorescent abilities. The poorer prediction accuracy metrics obtained for the 

polymeric pigments model may also be due to the chosen excitation-emission matrix not 

encompassing the fluorescent regions of such pigments, as has been identified by the novel 

fluorescence approach developed using a fluorescence ratio of F700/F560 (Agati et al., 2013). 

However, the unbalanced dataset of 190 fermenting musts and 110 wines may most likely be 

affecting model calibration due to a minority group of samples with higher polymeric pigment 

levels (only 40 wine samples with levels above 3 absorption units), the resulting gaps indicated 

in the regression plot may therefore be negatively affecting the prediction accuracy metrics of 

an otherwise promising model.  
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Figure 3.6. Total phenols regression plots, calibration model (left) and validation set (right).  
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
Figure 3.7. Total condensed tannins (mg/L) regression plots, calibration model (left) and validation set 
(right). 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
Figure 3.8. Total anthocyanins (mg/L) regression plots, calibration model (left) and validation set (right). 
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Figure 3.9. Colour density (AU) regression plots, calibration model (left) and validation set (right).  
 

 

 
 
 

 
 
 
 
 
 
 

 
 
 
Figure 3.10. Polymeric pigments (AU) regression plots, calibration model (left) and validation set (right). 
 

Cultivar based models were explored per phenolic parameter for the four main cultivars, 

Cabernet Sauvignon, Shiraz, Merlot and Pinotage. The only model with promising results was 

built for Cabernet Sauvignon and total condensed tannins with average R2 train and test 

scores of 0.78 and 0.81, respectively. This may be a result of high tannin levels characteristic 

of the cultivar as well as an equally balanced dataset of fermenting musts and wine. Only 45 

samples were used in the model and therefore only show promise as to the potential of building 

a cultivar-based model.  

 

Due to differences in fluorescence between fermenting musts and wine suggested in PCA 

(Figure 3.11), age-based models were explored and the prediction accuracy metrics reported 

in Table 3.4. Overall, models built using only fermenting musts for total phenols, total 

condensed tannins and polymeric pigments performed slightly better than those built with only 

finished wines. This could be a result of too few wine samples with too much variability creating 

large gaps unable to be adequately trained on despite implementing the SMOTER algorithm. 

The models built using finished wine samples also appear to be more unstable, specifically 
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with regards to large differences in coefficient of correlation (R2) between calibration and 

validation, as seen with total phenols and total condensed tannins (Table 3.4). The fermenting-

based models for total condensed tannins and polymeric pigments in Table 3.4 possess 

slightly better prediction accuracy metrics than the models built using all samples and show 

potential for classifying other fermenting samples more accurately. Interestingly, the wine-

based models built for total anthocyanins and colour density seemed to perform slightly better 

when looking at RMSE and MAE, however the differences in R2 should indicate further 

validation is required. Differences in performance when modelling on fermenting musts and 

wine separately when compared to the best phenolic models reported in Table 3.3 may be a 

result of the random sampling technique used within the machine learning pipeline or the 

unique behaviour of specialised models built for a specific sub dataset. Overall, the best 

phenolic parameter models built using all samples may be more promising in terms of 

generalisability and the ability to predict any sample, regardless of the stage in red wine 

production, as opposed to more specialised models built for a specific task, such as fermenting 

or wine based models, which may become over-fitted and perform poorly on unseen data. 

 

Several considerations are important for optimal model development and the acceptance of 

the subsequently obtained models. Including more samples per cultivar as well as a more 

balanced dataset of fermenting musts and wine may help in model development. Model 

considerations include over-fitting and over-validating. Cross validation is incorporated to 

reduce these risks, however, unidentified noise or influences from the fluorescence 

spectrophotometer may be fitted on during calibration. Additionally, the retained validation set 

may potentially be from the same cultivar, the same day of analysis or the same level of 

fermentation and therefore over confidently validate the model. 
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Table 3.3. Prediction accuracy metrics (R2, RMSE and MAE) and pipeline parameters for the best calibration model per phenolic parameter.  
 

 R2cal R2val RMSEC RMSEV MAEV Excitation/Emission Region (nm) 

Total Phenols 0.81 0.77 5.71 7.16 5.39 260-360/370-400 

Total Condensed 
Tannins (mg/L) 

0.89 0.80 104.03 172.37 129.14 285-340/290-350 

Total Anthocyanins 
(mg/L) 

0.80 0.77 60.67 76.57 61.57 280-300/330-380 

Colour Density (AU) 0.68 0.64 2.46 3.10 2.28 - 

Polymeric Pigments 
(AU) 

0.64 0.66 0.63 0.49 0.39 - 

R2cal: coefficient of correlation in calibration; R2val: coefficient of correlation in validation; RMSEC: root mean square error of calibration; RMSEV: root mean 
square error of validation; MAEV: mean absolute error of validation. 
 

 
Table 3.4. Prediction accuracy metrics (R2, RMSE and MAE) for fermenting musts and finished wine calibration models per phenolic parameter.  
 

R2cal: coefficient of correlation in calibration; R2val: coefficient of correlation in validation; RMSEC: root mean square error of calibration; RMSEV: root mean 
square error of validation; MAEV: mean absolute error of validation. 

 R2cal R2val RMSEC RMSEV MAEV 

Total Phenols 

Fermenting 0.70 0.66 6.56 7.45 5.74 

Wine 0.74 0.37 3.81 7.77 6.17 

Total Condensed Tannins (mg/L) 

Fermenting 0.82 0.78 95.81 128.24 103.20 

Wine 0.69 0.34 122.85 241.13 190.09 
Total Anthocyanins (mg/L) 

Fermenting 0.72 0.77 75.22 89.89 72.18 

Wine 0.71 0.55 36.51 60.06 51.28 

Colour Density (AU) 

Fermenting 0.78 0.53 2.65 4.20 3.34 

Wine 0.72 0.61 2.03 2.38 2.25 

Polymeric Pigments (AU) 

Fermenting 0.62 0.57 0.27 0.33 0.22 

Wine 0.60 0.79 0.49 0.42 0.35 
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3.3.4 CLASSIFICATION  

Unique fluorescent fingerprints of wine have been identified for their potential to classify 

samples based on cultivar type, wine style or appellation (Coelho et al., 2015; Airado-

Rodríguez et al., 2011; Letort et al., 2006). The three methods explored in this study for the 

classification of cultivar type and sample state (fermenting must or wine) included PARAFAC, 

PCA and NCA. Despite the success of classification in literature, PARAFAC scores in this 

study were unsuccessful in distinguishing between cultivar or sample state. PCA did not 

clearly distinguish between cultivars but showed clear distinction between fermenting musts 

and wine (Figure 3.11). NCA was explored due to its success in achieving better classification 

results compared to other dimensionality reduction techniques, such as PCA and linear 

discriminant analysis (LDA), as a result of its explicit encouragement of local separation 

between classes (Goldberger et al., 2015). Due to large variation in the number of samples 

per cultivar, classification was conducted on cultivars with more than or equal to 5, 8, 14 and 

20 samples, respectively. Leave-one-out cross validation was conducted per set of NCA 

analysis with scores reported in Table 3.5.  

 

The two best cultivar classification scores were achieved for 9 different cultivars (Figure 3.12) 

and the four main cultivars (Figure 3.13). When distinguishing between fermenting musts and 

wine, the highest cross validation score of 0.82 was achieved for the four main cultivars 

(Figure 3.14), most likely due to a higher number of both sample states compared to other 

cultivars included in the study. Figure 3.14 shows wine samples clustered within the lower 

right-hand side of the plot while the corresponding fermenting musts tend to radiate outwards 

from this centralised zone. Due to the difference in fluorescence suggested in the stretched 

appearance of the cultivar classes (Figure 3.13) and confirmed with PCA, NCA was 

conducted on fermenting musts and wines separately. Overall, the cultivar classification ability 

was stronger for fermenting musts compared to wine (Table 3.5). Figures 3.15 and 3.16 show 

the best clustering and classification achieved by analysing only fermenting musts. This 

improved classification for fermenting musts compared to wines highlights the uniqueness of 

cultivar types before undergoing processing. The final phenolic composition of a wine is a 

complex chemical matrix influenced by several factors including viticultural practices, different 

terroirs and various winemaking techniques implemented throughout fermentation and ageing, 

and therefore clarifies the poorer results for classifying wines purely based on cultivar (Garrido 

and Borges, 2013; Airado-Rodŕiguez et al., 2009). Additionally, the initial composition of grape 

must may possess higher levels of fluorescent compounds such as vitamins and amino acids 

before being metabolised by yeast cells during fermentation, while the phenolic composition 

changes occurring throughout fermentation may also suggest greater fluorescence of 

monomeric compounds compared to the polymerised compounds found later in wine. Spectral 
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considerations include a reduced fluorescence intensity from darker samples, the result of 

which is obtained following increased anthocyanin extraction during fermentation (Hoenicke 

et al., 2001; Airado-Rodríguez et al., 2009). Interestingly, the Petit Verdot, Malbec and Shiraz 

blend (PMS) in Figure 3.15 is situated relatively central to each of the corresponding pure 

cultivars included in the fermenting blend and suggests the potential of fluorescence 

spectroscopy in determining the constituents of blends which may be helpful in authentication 

and quality control by industry bodies. 

 

Figure 3.16 is an integrated depiction of the highest cross validated cultivar classification for 

the four main cultivars combined with three-dimensional EEMs of each cultivar. Each sample 

depicted was chosen based on their phenolic levels to illustrate the unique fluorescent 

fingerprint per cultivar despite possessing similar phenolic levels (Table 3.6). Although 

showing a similar general three-dimensional fluorescent shape, each cultivar has their own 

characteristic peak within the EEM and level of fluorescence intensity, with Pinotage having 

the lowest of the four. Pinotage also exhibits tighter clustering in Figures 3.12 to 3.16 

compared to other cultivars. This may be a result of a particularly unique phenolic composition 

compared to other cultivars. When investigating the fluorescent intensities of Pinotage 

samples, more stable fluorescent levels between fermenting musts and wines were observed 

compared to other cultivars which experienced more extreme variations in fluorescent 

intensities, the cause of which has not been clearly identified and requires further investigation. 

 

 

 

 

 

 

 

Figure 3.11. Principal Component Analysis (PCA) plot showing fermenting musts (red) and finished 

wines (grey). 
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Table 3.5. Leave-one-out cross validation scores per neighbourhood component analysis (NCA) 
conducted for cultivar classification, sample state classification, fermenting musts and wine 
classification. 
 

 

 

Number of samples per cultivar Cross Validation Score 

Cross validation scores for cultivar classification using all samples 

≥ 5 0.84 

≥ 8 0.80 

≥ 14 0.72 

≥ 20 0.86 

Cross validation scores for sample state classification (fermenting musts and wine) 

≥ 5 0.79 

≥ 8 0.78 

≥ 14 0.77 

≥ 20 0.82 

Cross validation scores for cultivar classification of fermenting musts only 

≥ 5 0.87 

≥ 20 0.93 

Cross validation scores for cultivar classification of wine only 

≥ 5 0.76 

≥ 20 0.79 
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Figure 3.12. Cultivar classification using NCA for cultivars with 5 or more 
samples (fermenting musts and wine) with a cross validation score of 0.84. 

 

Figure 3.13. Cultivar classification using NCA for cultivars with 20 or more samples 
(fermenting musts and wine) with a cross validation score of 0.86. 
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Figure 3.14. Cultivar classification using NCA for the four main cultivars (≥ 20 samples)  
distinguishing between fermenting musts and wine with a cross validation score of 0.82. 

 

Figure 3.15. Cultivar classification using NCA for cultivars with 5 or more samples 
on only fermenting musts with a cross validation score of 0.87. 
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Figure 3.16. Cultivar classification using NCA for the four main cultivars (≥ 20 samples) on only fermenting musts with a cross validation score of 0.93. Three-
dimensional excitation-emission matrices of phenolically similar samples corresponding to each cultivar.
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Table 3.6. Spectrophotometric analysis measurements showing the phenolic similarity between wines 
made from different cultivars namely, Merlot, Shiraz, Cabernet Sauvignon and Pinotage (samples 293, 
209, 292 and 227). 

 

 

3.4 CONCLUSION 

 

Monitoring phenolic extraction throughout fermentation and ageing may aid in decision-

making during red wine production. This study showed the potential of front-face fluorescence 

spectroscopy coupled with chemometrics to quantify important phenolic parameters in 

fermenting musts and wine. Calibration models built using a gradient boosting technique, 

XGboost, were successful for the quantification of total phenols, total condensed tannins and 

total anthocyanins. However, the incorporation of more samples within minority sample groups 

as well as obtaining a more balanced dataset of different cultivar types, fermenting musts and 

wines may improve upon model development and therefore the reported results. Additionally, 

the wide field of chemometrics allows for the use of other statistical analysis methods not 

explored in this study which may yield better results. The identification of fluorescent regions 

for each of the phenolic parameters optimises fluorescence analysis for a reduced analysis 

time and the development of accurate predictive models using front-face fluorescence 

spectroscopy may allow for their incorporation into future optical portable devices or 

automated systems, able to analyse samples directly from their fermentation vessels or 

barrels. Additionally, this study provides a novel approach using NCA for the classification of 

South African red wine cultivars as well as proposing the potential for analysing and possibly 

determining the constituents of red wine blends, both of which may be useful in authentication 

and quality control.  

 
Total 

Phenols 

Total 

Condensed 

Tannins 

(mg/L) 

Total 

Anthocyanins 

(mg/L) 

Colour 

Density 

(AU) 

Polymeric 

Pigments 

(AU) 

Merlot 59.95 1902.66 304.93 11.02 2.01 

Shiraz 59.50 1974.06 324.30 16.50 2.25 

Pinotage 59.15 1908.30 313.43 10.71 2.03 

Cabernet 

Sauvignon 
60.10 1901.09 231.44 16.67 3.14 

Average 59.53 1928.34 314.22 12.74 
 

2.10 

Standard 

deviation 
0.33 32.41 7.93 2.66 

 

0.18 
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spectroscopy to quantify phenolic content 

under real-time fermentation conditions 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



 

64 

 

ABSTRACT 

Phenolic compounds play important roles in wine quality attributes such as colour, mouthfeel 

and ageing potential. The ability to monitor their extraction and implement appropriate 

vinification techniques relies on accurate phenolic analysis methods. Front-face fluorescence 

spectroscopy presents itself as a user-friendly, rapid and cost-effective alternative to other 

spectrophotometric methods and was therefore investigated for its potential in directly 

measuring phenolic content of red wine samples throughout fermentation. A Cabernet 

Sauvignon fermentation was monitored using both fluorescence and UV-Vis spectroscopies. 

Fermentation conditions were explored for their influence on the prediction accuracy of 

fluorescence based regression models, specifically total phenols, total condensed tannins, 

total anthocyanins, colour density and polymeric pigments. The stage of fermentation 

appeared to influence sample fluorescence greater than sample preparation treatment, 

specifically clean, degassed and unaltered fermenting samples. The coefficient of correlation 

(R2cal) for models built using only unaltered samples were above 0.86 for all except colour 

density. Overall, the ability to analyse unaltered samples directly from the fermentation vessel 

was possible and holds potential for automated systems or portable device applications. The 

evolution of fluorescence for Cabernet Sauvignon grape must to final wine was investigated 

and notable spectral regions identified.  

 

4.1 INTRODUCTION 

 

Red wine production involves alcoholic fermentation taking place in the presence of both solid 

and liquid phases of the must, resulting in the suspension of grape solids, yeast and various 

colloidal particles. Phenolic extraction relies on adequate skin-juice contact and various 

winemaking techniques implemented pre-, post- or during fermentation have been studied for 

their influence on the resulting red wine phenolic profile (Sacchi et al., 2005; Casassa and 

Harbertson, 2014; Smith et al., 2015). These vinification techniques may include the addition 

of pectolytic enzymes, cap management in the form of pump-overs or punch-downs as well 

as extended maceration, among others (Sacchi et al., 2005). Anthocyanins, flavonols and their 

subsequently polymerised forms are considered to have the greatest sensory impact on red 

wine, specifically with regards to important attributes such as mouthfeel, colour and ageing 

potential (Sacchi et al., 2005). 

 

Anthocyanin extraction reaches a maximum early on in fermentation followed by a decline 

thereafter as a result of co-pigmentation and polymerisation reactions, while condensed 

tannins experience continued skin-juice extraction with seed tannins increasing linearly 
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compared to the earlier plateau reached by skin tannins (Canals et al., 2005; Sacchi et al., 

2005; Cadot, et al., 2006). Understanding the extraction dynamics of phenolic compounds 

may aid in implementing timely winemaking practices for the desired effect and therefore 

requires the routine analysis of these important compounds throughout fermentation. The 

benefits of fluorescence spectroscopy, including its non-invasive technique, increased 

sensitivity, rapid and user-friendly action as well as its relative cost-effectiveness when 

compared to other spectrophotometric methods, have allowed it to become an increasingly 

popular alternative in various food science disciplines (Karoui and Blecker, 2011; Strasburg 

and Ludescher, 1995; Airado-Rodríguez et al., 2011). Front-face fluorescence spectroscopy 

is explored in this study as an alternative to the current spectrophotometric analysis methods 

used for phenolic analysis.  

 

Understanding fluorescence spectroscopy instrumentation and the factors affecting optimal 

analysis are essential for collecting accurate and representative spectral information. The 

electronic transitions taking place during fluorescence analysis, namely the absorption of UV-

Visible light, the subsequent redistribution of energy by excited molecules within fluorescent 

compounds and their detected emitted light, are influenced by several factors such as 

quenching, the local environment and light scatter phenomena (Strasburg and Ludescher, 

1995; Karoui and Blecker, 2011). Higher temperatures during analysis may increase 

collisional velocity and therefore collisional quenching, resulting in a decreased fluorescence 

intensity. The local environment including pH changes and sample colour influence the highly 

sensitive fluorophores, thereby influencing the shape and intensity of the captured 

fluorescence spectra, and light scatter phenomena such as Rayleigh scattering can be 

considerably affected in turbid or opaque samples with regards to the optical sampling depth 

as well as the captured fluorescence signal. The results from analysing diluted samples are 

not always comparable with those of the original sample, specifically with the matrix of food 

products significantly affecting intrinsic fluorescent compounds (Airado-Rodríguez et al., 

2011). The sample geometry of front-face fluorescence eliminates the need for sample dilution 

as with conventional right-angle fluorescence and allows for the analysis of native samples 

(turbid, concentrated or solid) owing to the signal captured being independent of the light 

penetration through the sample (Airado-Rodríguez et al., 2011; Karoui and Blecker, 2011). 

The minimal to no sample preparation required for this technique therefore holds potential for 

analysing red wine throughout fermentation directly from the fermentation vessel, an 

application which may be of benefit to the producer in on-line systems or portable devices.  

The aim of this study was to investigate the prediction accuracy of the five phenolic regression 

models built using front-face fluorescence spectroscopy previously in Chapter 3, while 

exploring the effects of fermentation conditions, specifically the influence of carbon dioxide 
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and grape solid turbidity, and therefore the required sample preparation in order to 

successfully analyse red wine samples throughout fermentation directly from the fermentation 

vessel.  

 

4.2 MATERIALS AND METHODS 

 

4.2.1 REAGENTS 

Ammonium sulphate, hydrochloric acid (HCl 1 M), methyl cellulose, sulphur dioxide (SO2), 

ethanol (96%) and sodium metabisulfite (2.5 %) were purchased from Sigma-Aldrich Chemie 

(Steinheim, Germany).  

 

4.2.2 EXPERIMENTAL DESIGN 

This study was performed using Cabernet Sauvignon grapes harvested from the 2020 vintage 

and frozen until processing in the experimental cellar at the Department of Viticulture and 

Oenology (Stellenbosch University). One crate of grapes was crushed and destemmed into a 

20 L plastic bucket and received 50 mg/L sulphur dioxide (SO2). The must was inoculated with 

20 g/hL Zymaflore RX60 (Saccharomyces cerevisiae, Laffort, Bordeaux, France) and 

fermentation took place in a 25 °C temperature controlled room. Two punch-downs were 

performed per day. Sample collection and analysis took place from the first day of fermentation 

until the wine had fermented dry (residual sugar < 4 g/L) 12 days later. Although sampled on 

consecutive fermentation days and UV-Vis spectrophotometric methods conducted daily, 

fluorescence analysis was performed only on 9 of those days due to logistical reasons.  

 

Following the morning punch-down and homogenous mixing, a representative sample was 

collected and separated into three 15 ml test tubes. Figure 4.1 shows the three sample 

preparation treatments investigated in triplicate, namely clean samples (Treatment A), 

degassed samples (Treatment B) and unaltered samples (Treatment C). Treatment A involved 

degassing by vacuum followed by centrifuging at 5000 rpm for 2 min in an Eppendorf 5415D 

centrifuge (Hamburg, Germany) and subsequently removing the supernatant to inhibit 

interference of fermentation sediment such as yeast and grape solids. Treatment B involved 

degassing the samples by vacuum to remove the carbon dioxide (CO2) within the sample while 

remaining turbid, and Treatment C experienced no sample preparation, representing sample 

analysis directly from the fermentation vessel. 
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Figure 4.1. Schematic experimental design of sample preparation treatments performed in triplicate. 

Clean (A), degassed (B) and unaltered (C) samples.   

 

4.2.3 ANALYSIS 

 

4.2.3.1 SPECTROPHOTOMETRIC ANALYSIS 

All reference data analysis was performed with UV-Vis spectroscopy using a Multiskan GO 

Microplate Spectrophotometer (Thermo Fisher Scientific, Inc., Waltham, MA, USA). The 

methodology reported by Iland et al. (2000) was used to quantify total phenolics and total 

anthocyanins. One hundred μl of sample supernatant was diluted 50 times with 1 M 

hydrochloric acid, vortexed and stored in the dark for 1 hour before recording the absorbance 

at 280 nm and 520 nm, respectively. Total phenolic content was calculated as the absorbance 

at 280 nm multiplied by the dilution factor while total anthocyanins was calculated in malvidin-

3-glucoside equivalents using the absorbance at 520 nm.  

 

The methyl cellulose precipitable tannin assay (MCP) protocol modified by Mercurio (2007) 

was used to calculate total condensed tannins. The tannin content is calculated using the 

difference between control and treatment samples and converted into epicatechin equivalents 

(mg/L) using a calibration curve and dilution factor of 40. The 2 ml microfuge treatment tubes 

consist of adding 600 μl of MCP solution (0.04% w/v) to 50 μl of wine. After being vortexed 

and standing for 2-3 min, 400 μl of ammonium sulphate and 950 μl of distilled water are added. 

The control tubes contain no MCP solution and therefore a total of 1.55 ml distilled water is 

added. Both control and treatment stand for 10 min before being centrifuged at 10 000 rpm for 

5 min and recording the absorbance at 280 nm.   
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Colour density was calculated as the sum of absorbance at 420 nm, 520 nm and 620 nm 

wavelengths for a 50 μl sample volume (Glories, 1984). Polymeric pigments were calculated 

using the modified Somers assay whereby 200 μl of sample supernatant is diluted with 1.8 ml 

buffer solution (12% v/v ethanol, 0.5 g/L w/v tartaric acid at pH 3.4) containing 2.5 % sodium 

metabisulfite (Mercurio et al., 2007). The samples were stored for an hour before calculating 

the polymeric pigment content in absorption units (AU) using a dilution factor of 10 and the 

absorbance at 520 nm. 

 

4.2.3.2 FLUORESCENCE ANALYSIS 

Front-face fluorescence analysis of all samples was conducted at room temperature in a 700 

μl quartz cuvette (2 mm width) (Hellma Analytics, Germany) using a Perkin Elmer LS50B 

spectrophotometer. Excitation wavelengths between 245 nm and 400 nm at 5 nm intervals 

were used to capture emission spectra between 245 nm and 500 nm at 0.5 nm intervals. A 2 

cm in diameter aperture was fitted in the emission path for reducing excess light scattering. A 

scanning speed of 500 nm/min was used and the excitation and emission slit widths were set 

at 3 nm and 5 nm, respectively. The instrument control and data manipulation software, UV 

Winlab, was used for data acquisition.  

 

4.2.4 CHEMOMETRICS 

 

4.2.4.1 DATA PRE-PROCESSING 

Unwanted spectral signatures were removed using the method described by Airado-

Rodríguez et al. (2011) whereby first and second order Rayleigh scattering are excluded as 

the excitation peaks centred on the identity bands (λex = λem) and (2λex = λem), respectively. 

The triangular region below the identity line (λex > λem) possesses no chemical information and 

values were therefore inserted as zero. Data and image processing were performed with 

JupyterLab (Project Jupyter, USA) using the Python 3 language library scikit-learn (Pedregosa 

et al., 2011) and Matlab ver 9.5 (The Mathworks Inc., MA, USA). 

 

4.2.4.2 MODEL VALIDATION 

Principal component analysis (PCA) was performed on the dataset to evaluate for differences 

between sample preparation treatments as well as to determine differences based on the 

stage of fermentation (early versus late). The regression models built in Python with clean 

samples and a more extensive sample set for the five phenolic parameters, namely total 

phenolics, total condensed tannins, total anthocyanins, colour density and polymeric pigments 

(Chapter 3), were validated using the 81 samples obtained from the above fermentation 
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experiment. Overall, models built using a well-balanced dataset and large number of both 

fermenting musts and finished wines may be generally better suited for all applications 

compared to those built for specific tasks, in this case fermentation-based analysis, which may 

become over-fitted and predict poorly on new data. Additionally, models built using a more 

variable dataset may be able to handle the complexity from complex environments such as 

with degassed or unaltered samples. The data was passed into each phenolic model to 

determine the prediction accuracy for several different dataset configurations. These sub 

datasets investigated day of fermentation (all treatment samples for the entire fermentation, 

day 1-3 treatment samples and day 5-12 treatment samples) and subsequently the three 

treatments (clean (A), degassed (B) and unaltered (C)). The metrics used to determine 

prediction accuracy included root mean square error (RMSE) and mean absolute error (MAE). 

MAE weights all errors equally while RMSE gives errors with larger absolute values more 

weight than errors with smaller absolute values. Both metrics are regularly used in model 

evaluation and there is often little consensus when deciding on the most suitable metric, 

therefore the combination of both allows for improved understanding of different data 

projections and characteristics of model performance (Chai and Oceanic, 2014).  

 

In order to evaluate the suitability of the hyper-parameters chosen during initial model 

development as well as the effect of sample preparation on future modelling, the fermentation 

data was separately passed through the machine learning pipeline and modelled using the 

previously optimised parameters identified per phenolic parameter model. Briefly, the 

fermentation data was split into train and test sub datasets, of which 10 samples were retained 

as the test validation set. Thereafter, the training data was passed through the five consecutive 

steps of the pipeline including a column selector for optimised spectral region selection, a 

savgol transform used to apply a Savitzky-Golay filter for data smoothing (Savitzky and Golay, 

1964), a pre-processing selector for optimal data scaling, six-component PCA for data 

decomposition, and lastly, the XGBoost regressor to build a tree-based gradient boosted 

model (Chen and Guestrin, 2016). The total phenolics model consisted of region selection 

between 260-360 nm excitation and 370-400 nm emission, the total condensed tannins model 

made use of region selection between 285-340 nm excitation and 290-350 nm emission and 

the total anthocyanins model involved region selection between 280-300 nm excitation and 

330-380 nm emission, all of which were previously identified as optimal spectral regions 

(Chapter 3). The metrics used to determine prediction accuracy included coefficient of 

determination (R2cal and R2val), root mean square error (RMSE) and mean absolute error 

(MAE).  Bayesian optimisation was the framework used for the automatic tuning of the other 

pipeline hyper-parameters such as data scaling and smoothing (Swersky et al., 2013; Pelikan 

et al., 1999). Once passed through the pipeline, 2-fold cross-validation was performed due to 
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the smaller input dataset, with the reported RMSE used as the key metric for Bayesian 

optimisation and the sequential improvement on previously chosen hyper-parameters. The 

best final model was evaluated using the previously retained 10 sample test set as a form of 

external validation.   

  

4.3 RESULTS AND DISCUSSION 

  

4.3.1 PRINCIPAL COMPONENT ANALYSIS (PCA) 

PCA was conducted on the excitation-emission matrices (EEMs) of the 81 samples collected 

throughout fermentation. Figure 4.2 shows the evolution of fluorescence within the fermenting 

must as the fermentation proceeds, with early fermenting samples (days 1-3) being clustered 

separately to those of later fermenting samples (days 5-12). This confirms previous findings 

involving the difference in fluorescence between fermenting musts and wine, while further 

highlighting the unique fluorescent changes taking place within a single fermentation vessel. 

Without having fluorescent information for day 4 of the fermentation, the exact moment in 

which the fluorescence evolves from characteristically being early on versus later in 

fermentation is unknown. The clear separation between classes, however, may indicate a 

threshold, potentially the result of maximum plateaued anthocyanin extraction and the 

subsequent reabsorption of light from a darker sample matrix reached early on in fermentation.  

Figure 4.3 shows PCA based on sample preparation treatment, however, no clear distinction 

between the treatments is found and may indicate that the stage of fermentation has a greater 

effect on the fluorescent information obtained than sample preparation.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 4.2. PCA plot showing fermenting samples based on day of fermentation.  
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Figure 4.3 can be considered a visual representation of the benefits of front-face fluorescence 

spectroscopy, whereby the changed sample geometry allows for the analysis of samples in 

their natural state in order to retain the influence of the surrounding matrix on highly sensitive 

fluorophores (Airado-Rodríguez et al., 2011; Karoui and Blecker, 2011). The scattered 

appearance of the samples analysed in triplicate may indicate the heightened sensitivity of 

fluorescence as a spectrophotometric method (Strasburg and Ludescher, 1995). Although all 

samples were analysed at room temperature and pipetted into the cuvette as homogenous 

solutions, other influencing factors must be considered such as the varying rates at which the 

turbidity settles out in the cuvette over a 25 minute analysis time, the occurrence of which may 

mimic the turbidity changes occurring naturally during fermentation, as well as the time taken 

for the analysis of all samples thereby influencing potential instrumental drift or changes in 

lamp intensity and heating (Andersen and Bro, 2003; Airado-Rodŕiguez et al., 2009).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3. PCA plot showing fermenting samples based on sample preparation treatment. 
 

4.3.2 FERMENTATION EXCITATION-EMISSION MATRICES  

The three-dimensional EEMs of treatments A, B and C on the first and last day of fermentation 

are shown in Figure 4.4. The fluorescent intensity of the clean sample on day 1 is greater 

than those of the degassed and unaltered samples which may be attributed to the reduction 

in fluorescence as a result of turbidity, however, the effect on scattered light is increased for 

the turbid samples as can be seen in the elevated spectra alongside the removed identity 

bands (λex = λem) and (2λex = λem) of first and second order Rayleigh scattering, respectively. 

As fermentation is completed, all treatments experience a reduced fluorescence intensity with 

treatment A decreasing by roughly 300 units and treatments B and C by roughly 200 units. 
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This may be a result of the greater fluorescent abilities of monomeric pigments compared to 

their polymerised counterparts as suggested previously (Chapter 3) as well as colour changes 

occurring by means of anthocyanin extraction. Darker samples are known to reduce 

fluorescence intensity due to their increased reabsorption of light (Karoui and Blecker, 2011).   

Treatments B and C show no major differences between each other and the effect of carbon 

dioxide (CO2) during fermentation may not substantially influence fluorescence spectra. The 

EEMs of treatments B and C in Figure 4.4 indicate a shouldered peak compared to treatment 

A, roughly determined as the region 275-295 nm excitation and 320-360 nm emission (Figure 

4.5, region 1). Treatment A indicates a slightly more prominent fluorescence determined 

between 255-265 nm excitation and 360-400 nm emission (Figure 4.5, region 2). As 

fermentation proceeds, these regions become more pronounced specifically with region 2 

fluorescing more intensely between 320 and 340 nm emission.  

 

The fluorescence in region 2 correlates well with the regions identified as flavan-3-ols, namely 

catechin, epicatechin and epigallocatechin, as well as polymeric proanthocyanidins (Airado-

Rodríguez et al., 2011) and may represent the extraction of condensed tannins during 

fermentation and their subsequent polymerisation. Although region 1 does not correlate with 

any phenolic spectral regions previously identified in literature, it does fall within the optimal 

region previously selected by the machine learning pipeline for the total phenolics model and 

will be elaborated on below. It can also be seen that the second main fluorescent region 

identified in wine (excitation greater than 300 nm and resulting emission between 360 and 450 

nm) becomes more pronounced by the end of fermentation. Additionally, treatments B and C 

have slightly greater fluorescent intensities at the end of fermentation which may be a result 

of light scattering.  
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Figure 4.4. Three-dimensional excitation-emission matrices (EEMs) of each sample preparation 
treatment (clean, degassed and unaltered) on the first and last day of fermentation. 
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Figure 4.5. Excitation-emission matrices of a clean and unaltered sample on the first and last day of fermentation showing spectral regions of interest. 
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4.3.3 MODEL VALIDATION 

 

The best models per phenolic parameter obtained through the machine learning pipeline in 

Chapter 3 were validated using the 81 samples collected throughout fermentation. This model 

validation involved obtaining the prediction accuracy, by means of root mean square error 

(RMSE) and mean absolute error (MAE), for various sub datasets (Appendix Table 4.1). Each 

phenolic model has its own unique set of parameters, with the column selector having 

identified optimal spectral regions for total phenolics (excitation 260-360 nm and emission 

370-400 nm), total condensed tannins (excitation 285-340 nm and emission 290-350 nm) and 

total anthocyanins (excitation 280-300 nm and emission 330-380 nm). The colour density and 

polymeric pigments models cover the entire EEM obtained during fluorescence analysis. 

During model development, ten-fold cross validation was incorporated to prevent over-fitting 

and better understand model stability and performance while internally validating the model. 

The use of this external validation set of fermenting samples aids in investigating the suitability 

of the chosen parameters per phenolic model, explores model performance when predicting 

on unseen data and investigates the influence of sample preparation on prediction accuracy. 

Due to the differences in fluorescence according to the day of fermentation, three sub datasets 

were explored including the entire fermentation from day 1 to 12, early fermentation from day 

1 to 3 and later fermentation from day 5 to 12. Although PCA did not clearly distinguish 

between sample preparation treatments, these were included as sub datasets to determine 

model performance under fermentation conditions, including potential effects from CO2 and 

turbidity. The spectrophotometric reference data per phenolic parameter is reported in Table 

4.1 below. 

 

Table 4.1. Maximum, minimum, standard deviation and average values per spectrophotometric 
analysis reference method. 

 

 

 Total 

Phenols 

Index 

Total 

Condensed 

Tannins 

(mg/L) 

Total 

Anthocyanins 

(mg/L) 

Colour 

Density 

(AU) 

Polymeric 

Pigments 

(AU) 

Minimum 31.63 1002.18 378.03 14.54 1.09 

Maximum 52.35 1524.55 549.34 25.65 1.92 

Average 42.78 1255.46 479.96 19.82 1.47 

Standard 

deviation 

6.40 164.42 56.13 3.26 0.30 
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Figure 4.6 shows the performance of the total phenols model possessing a calibration RMSE 

and MAE of 5.71 index values. The model performed better during early fermentation and 

generally had the greatest prediction accuracy with degassed and unaltered samples 

(treatments B and C) with the lowest overall RMSE and MAE for treatment C. On average, the 

model was able to predict the validation samples within 9.55 and 8.68 index units for RMSE 

and MAE, respectively (Appendix Table 4.1). The optimal total phenolic region identified 

during model development slightly overlaps region 1 as identified in Figure 4.5 and could 

potentially be influencing the model’s prediction abilities. Unaltered samples seemed to have 

less intense fluorescence in this region and perhaps building the model on clean samples 

allowed for over-fitting on regional spectral properties and was therefore able to better predict 

on samples with greater turbidity.  

 

The total condensed tannins model performance is seen in Figure 4.7 with no clear effect 

based on the day of fermentation but rather predicting better on clean samples (treatment A).  

On average, the model was able to predict the validation samples within 196.41 and 172.43 

mg/L when compared with the calibration model’s RMSE and MAE of 104.03 mg/L (Appendix 

Table 4.1). When looking at region 2 identified in Figure 4.5, the inverse effect of region 1 and 

total phenols may be occurring, with potential spectral interferences caused by the turbidity of 

samples reducing the prediction accuracy. The total anthocyanins model was able to predict 

the fermenting samples on average within 123.13 and 114.21 mg/L when looking at RMSE 

and MAE, respectively (Appendix Table 4.1). The model seemed to perform best during early 

fermentation (days 1 to 3) and on clean samples as seen in Figure 4.8. The optimal spectral 

region identified during model development slightly overlaps region 2 identified in Figure 4.5 

and may be influenced by the shouldered peak of the turbid samples as described for total 

condensed tannins.  

 

The colour density model performed most poorly of all the models, showing no clear 

preference for day of fermentation or sample preparation and on average predicting within 

7.419 and 6.810 AU compared to the calibration model’s RMSE of 2.46 AU (Figure 4.9, 

Appendix Table 4.1). This may be a result of an optimistically cross-validated model as well 

as the metric of colour density itself. Colour density is an estimation of responsible yellow, red 

and blue colouring pigments at three UV-Visible spectral regions (Glories, 1984) and therefore 

the translation of these into the fluorescence EEM may not have been adequately achieved 

during model development.  The polymeric pigments model performed the best, on average 

predicting within 0.371 and 0.307 AU when compared to the calibration model’s RMSE of 0.63 

AU (Appendix Table 4.1). The best model performance can be seen in Figure 4.10 during 

later fermentation (days 5 to 12) and for degassed and unaltered samples (treatments B and 
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C). This improved prediction accuracy of the external validation set may be a result of cultivar 

specific benefits or the polymeric pigments range developing throughout fermentation falling 

within a region of the calibration model better able to predict. Although possessing seemingly 

poorer accuracy metrics reported previously (Chapter 3), the model as seen in Figure 4.11 

shows a relatively accurate prediction ability when analysing samples below 2 AU and 

incorporating more samples within the minority group above this threshold may improve upon 

the model’s predictive ability. This illustrates the importance of balanced datasets in modelling.  

 

Prediction models are known to perform better on data used to construct them than new and 

unseen data, resulting in some expected model depreciation during validation. However, 

internal validation techniques such as cross-validation or bootstrapping are often 

optimistically accepted without validating on external data (Bleeker et al., 2003). Within the 

five best phenolic models previously developed and herein validated, an important 

consideration includes the variability and balance of the dataset used for model calibration. 

Certain regions within the models may predict better than others as can be seen with 

polymeric pigments and although a synthetic dataset was created during model development 

to offset any data imbalances using a synthetic minority over-sampling technique for 

regression (SMOTER), gaps may still remain and have implications for prediction accuracy. 

The results of this external validation also follow a single fermentation of a single cultivar and 

should therefore be further investigated to determine the prediction accuracy on other 

cultivars and fermentations.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Prediction accuracy metrics (RMSE and MAE) for the externally validated total phenolics 
model. 
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Figure 4.7. Prediction accuracy metrics (RMSE and MAE) for the externally validated total condensed 
tannins model.   
 

 

Figure 4.8. Prediction accuracy metrics (RMSE and MAE) for the externally validated total anthocyanins 
model. 
 

 
 

Figure 4.9. Prediction accuracy metrics (RMSE and MAE) for the externally validated colour density 

model. 
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Figure 4.10. Prediction accuracy metrics (RMSE and MAE) for the externally validated polymeric 
pigments model. 
 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 4.11. The polymeric pigments external validation set (left) against the polymeric pigments model 

calibration set (right) highlighting the fermentation range being predicted. 

 

4.3.4 INFLUENCE OF SAMPLE PREPARATION ON QUANTIFYING PHENOLIC CONTENT 

 

The fermenting samples were passed through the machine learning pipeline in order to 

validate the stability and suitability of the model parameters chosen during model development 

while most importantly determining the influence of sample preparation and the implications 

for real-time analysis during fermentation. All models passed through the same pipeline steps 

as in Chapter 3, excluding the SMOTER algorithm due to analysis taking place in triplicate 

and thereby creating an already well-balanced dataset eliminating the need for synthetic 

samples. The total anthocyanins and polymeric pigments models required the removal of 

outliers, specifically samples A1 and B3 and samples B4-B6, respectively. As no other 

phenolic model possessed outliers from the second day of analysis (B4-B6), it is difficult to 

identify the cause of such significant difference.  
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Table 4.2 below shows the predication accuracy metrics obtained per phenolic parameter 

model throughout fermentation for each sample preparation treatment. The triplicate analysis 

format conducted on consecutive fermentation days is most likely the cause of such successful 

results compared to the previously developed calibration models (Chapter 3), however an 

important consideration is that the effect of sample preparation may not noticeably influence 

front-face fluorescence spectroscopy, confirming the findings of Figure 4.3 above. No clear 

differences can be identified between treatments, except perhaps for colour density where 

treatment A may have produced slightly better results. However the use of three prediction 

accuracy metrics, namely R2, RMSE and MAE, allows for a more holistic evaluation of model 

performance as in the case of treatments B and C of colour density. Although the data is poorly 

fitted as reported by R2, the RMSE and MAE values are not noticeably different to treatment 

A.  

 

Overall, the obtained models resulted in high correlations and validate the chosen pipeline 

parameters as well as highlight the potential for building models using unaltered samples, the 

benefit of which involves the application in analysing samples directly from fermentation 

vessels. Analysing in triplicate aided in obtaining a well-balanced dataset and should be a 

consideration in further modelling. Due to only a small number of samples being passed 

through the pipeline per treatment, the results should primarily be considered as a proof of 

concept highlighting the potential for building fermentation-based models. The colour density 

model, although producing promising results in Table 4.2, should be approached with caution 

as model development and external validation performed the most poorly of all the phenolic 

parameters models and should therefore be further explored with regards to optimal model 

parameter selection and development. As previously discussed, the characteristics of colour 

density as a metric may potentially limit the success of modelling in this study due to the 

fluorescent EEM not encompassing the responsible regions or fluorescence spectral 

characteristics having not been adequately identified.  

 

When comparing the above models with literature, it was found that the total condensed 

tannins model performed the best and presents itself as a promising alternative to other 

spectrophotometric analysis methods such as UV-Vis and infrared spectroscopies. UV-Vis 

models developed by Aleixandre-Tudo et al. (2018a) obtained RMSE scores of 239 and 209 

mg/L for calibration and prediction, respectively, and can be compared to the fluorescence 

model developed previously with a RMSE of 104.03 mg/L and externally validated above to 

predict on average within 196.409 mg/L. Infrared calibration models built using Fourier 

transform near infrared (FT-NIR), attenuated total reflectance mid infrared (ATR-MIR) and 

Fourier transform infrared (FT-IR) spectroscopies show the same trend (Aleixandre-Tudo et 
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al., 2018b). The total condensed tannins model built using unaltered samples possessing 

R2cal 0.86, R2val 0.94, and RMSEC 48.42 mg/L (Table 4.2) is also able to compete while 

showcasing the potential for building models using fermenting samples analysed directly from 

the tank, eliminating the need for sample preparation. Although producing slightly less 

competitive results, the total phenols and total anthocyanins models built in this study show 

promise and may too present themselves as successful alternatives. When looking at 

fluorescence spectroscopy in literature, models have previously been built on pure 

compounds such as catechin and epicatechin rather than broader phenolic metrics such as 

total condensed tannins (Airado-Rodŕiguez et al., 2009; Cabrera-Bañegil et al., 2017). Raman 

spectroscopy calibrations for Cabernet Sauvignon wine phenolics have been successfully 

investigated and although based on competing phenomena, the fermentation models 

described in Table 4.2 can be considered comparatively successful in their prediction 

accuracies (Gallego et al., 2011).  

 

Table 4.2. Prediction accuracy metrics (R2, RMSE and MAE) of the external validation models obtained 
per phenolic parameter for sample preparation treatments A (clean), B (degassed) and C (unaltered). 
 

 Treatment R2cal R2val RMSEC RMSEV MAEV 

Total Phenols 

Index 

A 0.90 0.97 1.53 1.22 0.96 

B 0.89 0.87 1.72 2.27 1.73 

C 0.94 0.96 1.26 1.38 1.12 

Total 

Condensed 

Tannins (mg/L) 

A 0.89 0.94 51.70 41.30 34.89 

B 0.86 0.96 57.36 34.44 27.55 

C 0.86 0.94 48.42 42.84 35.95 

Total 
Anthocyanins 

(mg/L) 

A 0.85 0.87 16.35 19.19 14.66 

B 0.89 0.91 13.90 18.40 15.09 

C 0.93 0.89 14.34 20.53 15.17 

Colour Density 

(AU) 

A 0.79 0.52 1.28 2.32 1.84 

B -0.24 0.36 2.41 2.21 2.04 

C -0.14 -0.24 1.70 1.87 1.64 

Polymeric 

Pigments (AU) 

A 0.81 0.61 0.09 0.18 0.12 

B 0.95 0.13 0.04 0.26 0.13 

C 0.95 0.82 0.05 0.14 0.10 

 

R2cal: coefficient of correlation in calibration; R2val: coefficient of correlation in validation; RMSEC: root 
mean square error of calibration; RMSEV: root mean square error of validation; MAEV: mean absolute 
error of validation. 
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4.4 CONCLUSION 

 

Monitoring phenolic content during winemaking may aid in the decision making and 

implementation of vinification practices thereby improving process control and fermentation 

management. This study validated the potential for phenolic models built using fluorescence 

spectroscopy and chemometrics as well as the suitability of front-face geometry to quantify 

phenolics of fermenting musts under fermentation conditions. This may aid in the rapid, cost-

effective and accurate monitoring of phenolic extraction throughout fermentation and the 

implementation of appropriate winemaking practices. Following a Cabernet Sauvignon 

fermentation allowed for improved understanding of the evolution of fluorescence spectra from 

juice to wine. The performance of each phenolic parameter model under different conditions, 

including stage of fermentation as well as sample preparation, was determined and should be 

considered unique and model specific. The models were adequately validated and show the 

potential for analysing directly from the fermentation vessel which may allow for phenolic 

analysis using portable optical devices or on-line automated systems. The potential for 

building fermentation-based models appears promising and may be beneficial to winemakers 

in creating cellar specific software able to be expanded on each vintage and used as a tool for 

optimal red wine production. 
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5.1 GENERAL CONCLUSIONS 

 

Phenolic compounds are important secondary metabolites playing crucial roles in red wine 

characteristics such as colour, mouthfeel and ageing potential, thus largely influencing 

consumer-perceived quality. The ability to analyse these compounds and their extraction 

throughout winemaking and ageing may aid in the implementation of appropriate and judicious 

practices in order to improve upon the final product. To date, the array of spectrophotometric 

analysis methods available are often as equally complex as their phenolic compounds of 

interest, resulting in time-consuming, elaborate protocols unable to be easily conducted by 

inexperienced personnel. As a result, phenolic analysis is not a widespread and routine 

practice during red wine production. The main aim of this study was therefore to investigate 

the suitability of fluorescence spectroscopy for the direct quantification of five phenolic 

parameters, namely total phenolics, total anthocyanins, total condensed tannins, colour 

density and polymeric pigments, and to subsequently determine the potential for accurate non-

invasive analysis during fermentation.  

 

The optimisation of front-face fluorescence spectroscopy in order to analyse undiluted 

samples was successful. Fluorescence and UV-Vis spectroscopies were conducted on 289 

samples, incorporating a diverse range of cultivars for both fermenting and finished wines, and 

the most optimal chemometric method for developing accurate regression models per 

phenolic parameter was investigated with a focus on PARAFAC and machine learning 

algorithms. PARAFAC, although successfully decomposing complex fluorescence data into 

the responsible components and correlating with results found in literature, was not suitable 

in developing accurate predictive models for the broader phenolic parameters included in this 

study. A machine learning pipeline was subsequently built and successfully developed models 

for total phenolics, total anthocyanins and total condensed tannins which may present 

themselves as promising alternatives to other spectrophotometric methods such as UV-Vis 

and infrared spectroscopies. The polymeric pigments model was found to accurately predict 

below 2 AU and the incorporation of more samples in the minority group above this level may 

aid in developing a more robust model. The colour density model requires further investigation 

and does not lend itself as a promising alternative compared to the current analysis methods 

used.  

 

The validation of these models under different fermentation conditions was performed in order 

to investigate the potential for analysing unaltered samples directly from the fermentation 

vessel. The results showed that prediction accuracy of the models was not negatively affected 
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according to sample matrix conditions throughout fermentation, including the effects of carbon 

dioxide or turbidity, and therefore demonstrates the suitability of front-face fluorescence in 

analysing samples in their truest forms. The implications for measuring phenolic content non-

invasively throughout fermentation may be beneficial to winemakers in the form of 

fluorescence based portable devices or in-line systems. Additionally, the validation of the 

phenolic parameter models under fermentation conditions allowed for external validation and 

the subsequent inference that, with the exception of colour density, model development and 

optimisation was successful. 

 

The classification abilities of fluorescent excitation-emission matrices have been widely 

accepted in food science and agricultural disciplines, and this study investigated NCA as a 

novel approach for the classification of South African cultivars based on unique, cultivar-

specific fluorescent characteristics. Overall, the results from this study illustrate fluorescent 

differences between fermenting musts and wine, and subsequently the unique fluorescent 

changes occurring throughout fermentation. These changes may be a result of fluorescent 

differences between monomeric and polymeric pigments, the metabolism of fluorescent 

compounds by yeast during fermentation as well as spectral interferences as a result of 

increased anthocyanin extraction and developing red wine colour. Following a single Cabernet 

Sauvignon fermentation allowed for a novel understanding of the fluorescent changes and 

their corresponding spectral regions occurring from grape must to wine. This identified 

potential influences on the performance of the phenolic parameter models, suggesting that 

prediction accuracy may be slightly affected by the stage of fermentation and should be a 

consideration throughout fermentation. Additionally, the potential for developing fermentation-

based models was suggested and may present itself as an opportunity for creating cellar 

specific phenolic parameter models and the ability for expansion with each subsequent 

vintage.  

 

5.2 FUTURE RECOMMENDATIONS 

 

The high natural variability of wine as a result of cultivar type, viticultural factors and different 

winemaking practices implemented throughout production, presents itself as a major 

consideration in the development of accurate regression models. The incorporation of a more 

balanced dataset of fermenting musts and wines as well as increasing the number of samples 

for minority sample groups, is recommended in order to prevent gaps in model development 

and therefore prediction accuracy. Additionally, the analysis of samples in duplicate or 

Stellenbosch University https://scholar.sun.ac.za



 

87 

 

triplicate may allow for the current gaps to be filled, which was not possible as a result of 

fluorescence analysis time per sample and the large number of samples aiming to be included. 

 

Model validation using different cultivars and fermentations is recommended in order to 

evaluate model performance against different phenolic compositions. The fluorescent 

changes reported on throughout the externally validated fermentation are unique to Cabernet 

Sauvignon and should be further investigated in order to understand the unique fluorescence 

of other cultivars.  

 

The further development of potential portable devices or in-line automated systems should 

repeat model validation, as the findings reported in this study are unique to the front-face 

geometry and the fluorescence spectrophotometer optimised in this study and model 

modification may be necessary when altering sensitive instrumentation.  
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Appendix Chapter 3 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix Figure 3.1. Exploratory analysis of the PARAFAC scores against phenolic UV-Vis reference data. 
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Appendix Chapter 4 
 

Appendix Table 4.1. Average predication accuracy scores per phenolic parameter model for model validation using a Cabernet Sauvignon fermentation. 

 

 

 

 

 

 

 

  Model Average  All Day 1-3 Day 1-5 A B C 

TP 

(AU) 

RMSE 5.71 9.545  10.292 7.536 11.146 14.474 7.332 6.490 

MAE 5.71 8.678  9.152 6.307 10.574 13.982 6.328 5.723 

MCP 

(mg/L) 

RMSE 104.03 196.409  186.563 216.315 193.455 101.862 243.914 236.346 

MAE 104.03 172.426  170.533 181.893 164.852 88.332 228.055 200.891 

Anth 

(mg/L) 

RMSE 60.67 123.133  121.032 104.246 138.921 114.877 123.449 136.271 

MAE 60.67 114.207  108.339 94.013 134.077 101.827 117.910 129.075 

CD 

(AU) 

RMSE 2.46 7.419  7.435 7.515 7.329 7.077 7.372 7.786 

MAE 2.46 6.810  6.851 6.605 6.974 6.414 6.812 7.203 

PP 

(AU) 

RMSE 0.63 0.371  0.359 0.522 0.237 0.484 0.344 0.282 

MAE 0.63 0.307  0.277 0.454 0.188 0.432 0.282 0.206 
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