
Neural Disturbance Rejection for a Multirotor

by

Henry Kotzé

Thesis presented in partial fulfilment of the requirements for
the degree of Master of Engineering (Electronic) in the

Faculty of Engineering at Stellenbosch University

Supervisor: Dr H. W. Jordaan

Co-supervisor: Dr H. Kamper

March 2021

Plagiaatverklaring / Plagiarism Declaration

1. Plagiaat is die oorneem en gebruik van die idees, materiaal en ander
intellektuele eiendom van ander persone asof dit jou eie werk is.
Plagiarism is the use of ideas, material and other intellectual property of
another’s work and to present is as my own.

2. Ek erken dat die pleeg van plagiaat ’n strafbare oortreding is aangesien
dit ’n vorm van diefstal is.
I agree that plagiarism is a punishable offence because it constitutes theft.

3. Ek verstaan ook dat direkte vertalings plagiaat is.
I also understand that direct translations are plagiarism.

4. Dienooreenkomstig is alle aanhalings en bydraes vanuit enige bron (inges-
luit die internet) volledig verwys (erken). Ek erken dat die woordelikse
aanhaal van teks sonder aanhalingstekens (selfs al word die bron volledig
erken) plagiaat is.
Accordingly all quotations and contributions from any source whatsoever
(including the internet) have been cited fully. I understand that the repro-
duction of text without quotation marks (even when the source is cited)
is plagiarism

5. Ek verklaar dat die werk in hierdie skryfstuk vervat, behalwe waar an-
ders aangedui, my eie oorspronklike werk is en dat ek dit nie vantevore
in die geheel of gedeeltelik ingehandig het vir bepunting in hierdie mod-
ule/werkstuk of ’n ander module/werkstuk nie.
I declare that the work contained in this assignment, except where oth-
erwise stated, is my original work and that I have not previously (in its
entirety or in part) submitted it for grading in this module/assignment
or another module/assignment.

Studentenommer / Student number Handtekening / Signature

Voorletters en van / Initials and surname Datum / Date

i

Copyright © 2021 Stellenbosch University
All rights reserved

Stellenbosch University https://scholar.sun.ac.za

Abstract

Neural Disturbance Rejection for a Multirotor

Henry Kotzé

Department of Electrical and Electronic Engineering,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MEng (Electronic)

March 2021

The thesis addresses the problem of multirotors experiencing various distur-
bances such as wind, payloads and ground effects. These disturbances in-
troduce challenges during specific application uses such as delivery, capturing
images and line following. The project models these disturbances as unknown
and attempts to implement a controller architecture which rejects them to
provide a general solution for all application uses.

The project has a particular focus on using neural networks as a solution to the
problem because of the recent advances the technique has made in fields which
share common attributes. Existing approaches mostly attempt to replace the
controller entirely with neural networks, because of its ability to learn non-
linear behaviour, which many classical controllers ignore. This project rather
focuses on augmenting the classical controller with neural networks to ac-
count for disturbances and nonlinear behaviour. Specifically, the project uses
a disturbance rejection architecture using a neural network as its observer for
disturbances. The neural network estimates the disturbances which are then
rejected by feeding it back into the classical controller output signal.

Synthetic labelled data is generated using the Gazebo simulation environment
wherein disturbances of a specific n ature o ccur w ith d omain randomisation

ii

Stellenbosch University https://scholar.sun.ac.za

ABSTRACT iii

applied for Sim2Real transfer. The flight controllers used is PX4 which pro-
vides the Software-in-the-Loop functionality to fly a multirotor along a spe-
cific trajectory. The neural network estimation for practical flights shows good
Sim2Real transfer with its ability to estimate payloads being carried by a mul-
tirotor and ground effects during landing. The neural network disturbance re-
jection is also compared to two other classical observers, namely the Extended
Kalman Filter (EKF) and the Extended State Observer (ESO). The neural
network shows superior disturbance rejection over the EKF and ESO when
the multirotor is experiencing force disturbances. For torque disturbances, the
ESO performed the best. From the disturbance rejection results, it is evident
that for torque disturbances which influence the faster dynamics of the multi-
rotor, observers should execute alongside the controllers such as the ESO. For
disturbances which influence the slower dynamics of the multirotor, algorithms
which execute on a companion board are sufficient and better. Specifically, the
use of a neural network as an observer in a disturbance rejection architecture
shows compelling evidence as the method for rejecting unknown disturbances
influencing a multirotor.

Stellenbosch University https://scholar.sun.ac.za

Uittreksel

Steurseinverwerping vir ’n Multirotor Hommeltuig deur
middel van Neural Netwerke

(“Neural Disturbance Rejection for a Multirotor”)

Henry Kotzé

Departement Elektroniese en Elektroniese Ingenieurswese,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MIng (Elektronies)

Maart 2021

Die tesis pak die probleem aan dat hommeltuie verskeie versteurings onder-
gaan tydens ’n vlug. Hierdie versteurings kan wind, grond effekte en vragte
insluit wat problematies is vir wanneer hommeltuie in verskeie praktiese toe-
passings gebruik word. Die projek benader hierdie versteurings as onbekend
en beplan om a beheer argitektuur te ontwikkel wat ’n algemene oplossing bied
vir hommeltuie wat versteurings ervaar tydens praktiese vlugte.

Die projek fokus om neurale netwerke te gebruik as deel van die oplossing as
gevolg van die onlangse vordering wat neurale netwerke gemaak het in velde
wat dieselfde eienskappe as die van beheerstelsels het. Bestaande tegnieke
benader die probleem deur om die klassieke beheerder heeltemal te vervang
met neurale netwerke weens die voordele wat neurale netwerke bied vir nie-
linieëre gedrag. Die projek benader die probleem deur die klassieke beheerder
saam met ’n neurale netwerk te werk om die versteurings en nie-linieëre gedrag
te beveg. Die projek gebruik ’n versteuring verwerping argitektuur wat ’n
neurale netwerk gebruik as sy versteuring afskatter. Die neurale netwerk skat

iv

Stellenbosch University https://scholar.sun.ac.za

UITTREKSEL v

die versteurings af wat dan in die terugvoer lus gebruik word met die klassieke
beheerder se uitree sein.

Die neurale netwerk word geleer deur gebruik te maak van die Gazebo simulasie
omgewing om sintetiese data te genereer. Die simulasie omgewing word verder
verryk deur om omgewings ewekansigheid toe te pas om sodoende die neurale
netwerk se simulasie-tot-werklikheid skakel te verbeter. Die PX4 vlugbeheer-
der word gebruik om die hommeltuig in simulasie te laat vlieg. Die neurale
netwerk se afskatting van versteurings op praktiese vlugtoetse wys dat die neu-
rale network goed oorgeskakel het na die werklikheid deurdat dit ’n vrag wat
deur die hommeltuig gedra word kan afskat asook grond effekte. Die neurale
netwerk word ook vergelyk teen twee ander klassieke tegnieke: die Uitgebreide
Kalman Filter (UKF) en die Uitgebreide Toestand Waarnemer (UTW). Die
neurale netwerk se versteuring verwerping is beter as die van UKF asook die
UTW wanneer die hommeltuig onderworpe is aan krag versteurings. Vir torsie
versteurings is die UTW beste. Die versteuring verwerping resultate toon aan
dat vir torsie versteuring is dit beter om waarnemers soos die UTW te gebruik
wat op die vlugbeheer stelsel uitgevoer word. Stadige versteurings soos die van
krag versteurings kan verwerp word deur gebruik te maak van algoritmes wat
meer kragtige verwerkingseenheid stelsels kort. Spesifiek toon die resultate
aan dat die gebruik van ’n neurale netwerk as ’n versteuring afskatter in ’n
versteuring verwerping argitektuur die voorkeur geniet.

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

I would like to express my sincere gratitude to the following people and organ-
isations:

• I lift up my eyes to the mountains - where does my help come from? My
help comes from the Lord, the Maker of heaven and earth.
- Psalm 121v1-2

• Dr Willem Jordaan & Dr Herman Kamper for the supervision during the
two years.

• Dr Japie Engelbrecht for organising funding.

• Reghard Grobler, Armand Scholts, Ruan Viljoen, Johan Ubbink, Fran-
cois Slabber, Daniel Jansen, Martin Babl, Victor Sciocatti

• Anton Erasmus for allowing me to use his Tikz drawings.

• The academic staff for asking questions during research group meetings.

• My suster, Liesl who helped with proof reading.

• Family and friends.

vi

Stellenbosch University https://scholar.sun.ac.za

Contents

Declaration i

Abstract ii

Uittreksel iv

Acknowledgements vi

Contents vii

List of Figures ix

List of Tables xiii

Nomenclature xiv

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Definition . 4
1.3 Approach . 5
1.4 Thesis Outline . 5

2 Background 7
2.1 Origin of Disturbances . 7
2.2 Literature Study . 8
2.3 Proposed Solution . 11
2.4 Multirotor Overview . 13
2.5 Successive Loop Closure Control 15
2.6 Quaternions . 16
2.7 Neural Networks . 17
2.8 Summary . 24

3 System Overview 25
3.1 PX4 Software Stack . 25
3.2 Gazebo Physics Simulation . 28

vii

Stellenbosch University https://scholar.sun.ac.za

CONTENTS viii

3.3 Robotic Operating System (ROS) 29
3.4 TensorFlow . 30
3.5 MATLAB . 30
3.6 Honeybee, the Multirotor . 31
3.7 Workflow of Project . 32
3.8 Summary . 32

4 Data Generation for Sim2Real 33
4.1 Generating Training Data . 33
4.2 Simulated Flight . 37
4.3 Dataset Creation . 38
4.4 Neural Network Architecture . 39
4.5 Summary . 41

5 Estimation Results of Observers 42
5.1 Extended Kalman Filter . 42
5.2 Extended State Observer . 45
5.3 Neural Network . 47
5.4 Summary . 53

6 Disturbance Rejection Results 54
6.1 Disturbance Rejection Architecture 54
6.2 Extended State Observer . 58
6.3 Extended Kalman Filter . 60
6.4 Neural Network . 62
6.5 Quantitative Comparisons Of Disturbance Rejection 64
6.6 Summary . 68

7 Conclusion 69
7.1 Summary of Project . 69
7.2 Future Work . 70
7.3 Recommendation . 71

Bibliography 72

Stellenbosch University https://scholar.sun.ac.za

List of Figures

1.1 A quadcopter, which is a subset of multirotors, hovering in the air. 1
1.2 A multirotor irrigating crops. 2
1.3 Multirotor inspecting a wall. 3
1.4 Multirotor being used in a sea rescue mission. 4

2.1 The airflow produced by the propeller is being washed up by the
surface onto the multirotor. This phenomenon is known as ground
effects. 8

2.2 Multirotor carrying a suspended payload1. 8
2.3 Summary of the different approaches to disturbance rejection for

multirotors. 10
2.4 The general disturbance rejection architecture used in various ap-

plications for the rejection of external disturbances. 12
2.5 Illustration of a multirotor. 13
2.6 The various manoeuvres that the multirotor is capable of doing

based on the increased and decreased thrust produced by the cor-
rect motors. 14

2.7 The succesive loop closure control architecture. 15
2.8 Euler angle representation between the fixed axis, I and the body

axis B. 16
2.9 Unit qauternion representation of a rotation. 16
2.10 Feedforward neural network with one hidden layer with a single

unit in a exploded view [1]. 17
2.11 A unrolled RNN. 18
2.12 A layer containing LSTM units with one of the units presented in

a exploded view [1]. 19
2.13 Various activation functions found in literature [1]. 20
2.14 The regions of underfitting and overfitting during training [1]. . . . 22
2.15 The result of dropout on the architecture of a neural network [1]. . 23

3.1 PX4 firmware consists out of various modules with arrows indicat-
ing communication direction. 25

3.2 PX4 control architecture used for controlling a multirotor. 27

ix

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES x

3.3 The PX4 angular rate control blockdiagram showing a PID con-
troller with additional elements for practical flight considerations. . 27

3.4 Gazebo simulating the IRIS multirotor alongside PX4 [2]. 28
3.5 The ROS architecture makes use of a centralised node, the ROS

master, which is responsible for all communications between nodes. 29
3.6 Honeybee, the multirotor which is simulated and used for test flights. 31
3.7 The workflow of the project containing the various components used

to implement the proposed solution. 32

4.1 A random setpoint generated by Equation 4.1 containing the ex-
pected properties produced by waypoint flying and manual control. 35

4.2 A random pulse train used as the disturbance effecting a multirotor. 36
4.3 Quadcopter being spawned in Gazebo just before take-off command

is given. 37
4.4 Pitch angle response of the multirotor under the influence of dis-

turbances only in the x̄B-axis. 38
4.5 Neural network architectures used for learning disturbances. 40

5.1 The EKF recursive algorithm used for estimating the disturbances
affecting the multirotor. 43

5.2 EKF estimating a sinusoidal force disturbance in the x̄B direction
of the multirotor. 44

5.3 EKF estimating a step torque disturbance in the ȳB direction of
the multirotor. 44

5.4 Process being emulated in MATLAB. 44
5.5 State space representation of a linear estimator. 45
5.6 ESO estimating sinusiodale torque disturbance affecting the multi-

rotor in the ȳB direction. 46
5.7 ESO estimating a step force disturbance affecting the multirotor in

the x̄B-axis. 46
5.8 Loss value during training of the neural network. 48
5.9 Neural network estimating the disturbance force affecting the mul-

tirotor in the x̄B-direction while being disturbed in the ȳB and z̄B
direction shown in Fig. (5.10) and Fig. (5.11). 49

5.10 Neural network estimating the disturbance force affecting the mul-
tirotor in the ȳB direction while being disturbed in the x̄B, and z̄B
direction shown in Fig. (5.9) and Fig. (5.11). 49

5.11 Neural network estimating the disturbance force affecting the mul-
tirotor in the z̄B direction while being disturbed in the x̄B and ȳB
direction shown in Fig. (5.9) and Fig. (5.10). 49

5.12 Neural network estimating a step force disturbance affecting the
multirotor in the x̄B-direction. 50

5.13 Neural network estimating a sinusoidal force disturbance affecting
the multirotor in the x̄B-direction. 50

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES xi

5.14 Neural network estimating the disturbances from a practical flight
test. 51

5.15 The position estimates of Honeybee from a practical test flight
which correspond to Fig. (5.14). 51

5.16 NN estimating disturbances from a practical flight test during which
Honeybee carried a payload. 51

5.17 The position estimates of Honeybee from a practical test flight
which correspond to Fig. (5.16). 51

5.18 NN estimating disturbances from a practical flight test during which
Honeybee carried a payload. 52

5.19 The position estimates of Honeybee from a practical test flight
which correspond to Fig. (5.18). 52

5.20 NN estimating disturbances from a practical flight test. The NN
estimates a payload of 0.18kg and then ground effects during landing. 52

5.21 The position estimates of Honeybee from a practical test flight
which correspond to the disturbances estimates of Fig. (5.20). . . . 52

6.1 The control architecture used for angular rate and velocity subsys-
tem to reject disturbances. 54

6.2 The free-body diagram of the multirotor flying at a constant longi-
tudinal velocity and height. 55

6.3 The PX4 control architecture adapted with disturbance observers
which provide disturbance rejection. 57

6.4 The pitch rate response of the multirotor being influenced by a step
torque disturbance being rejected with either PX4 or ESO. 58

6.5 Estimation of a step torque disturbance in the ȳB direction by a
ESO during which it is being used in feedback. 58

6.6 The response of the multirotor under the influence of a step force
disturbance being rejected with PX4 or the ESO. 59

6.7 Estimation of a step force disturbance in the x̄I direction by a ESO
during which it is being used in feedback. 59

6.8 The response of the multirotor under the influence of a sinusoidal
force disturbance being rejected with PX4 or the ESO. 60

6.9 Estimation of a sinusoidal force disturbance in the ȳB direction by
the ESO during which it is being used in feedback. 60

6.10 The response of the multirotor under the influence of a sinusoidal
torque disturbance being rejected with PX4 or the ESO. 60

6.11 Estimation of a sinusoidal torque disturbance in the ȳB direction
by a ESO during which it is being used in feedback. 60

6.12 The response of the multirotor under the influence of a step force
disturbance being rejected with PX4 or the EKF. 61

6.13 Estimation of a step force disturbance in the ȳB direction by a EKF
during which it is being used in feedback. 61

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES xii

6.14 The response of the multirotor under the influence of a step torque
disturbance being rejected with PX4 or the EKF. 62

6.15 Estimation of a step torque disturbance in the ȳB direction by a
EKF during which it is being used in feedback. 62

6.16 The response of the multirotor under the influence of a sinusoidal
force disturbance being rejected with PX4 or the EKF. 62

6.17 Estimation of a sinusoidal force disturbance in the x̄I direction by
a EKF during which it is being used in feedback. 62

6.18 The response of the multirotor under the influence of a sinusoidal
torque disturbance being rejected with PX4 or the EKF. 63

6.19 Estimation of a sinusoidal torque disturbance in the ȳB direction
by a EKF during which it is being used in feedback. 63

6.20 The response of the multirotor under the influence of a high fre-
quency sinusoidal force disturbance being rejected with PX4 or the
EKF. 63

6.21 Estimation of a high frequency sinusoidal force disturbance in the
x̄I direction by a EKF during which it is being used in feedback. . 63

6.22 The response of the multirotor under the influence of a step force
disturbance being rejected with PX4 or the NN. 64

6.23 Estimation of a step force disturbance in the x̄I direction by a NN
during which it is being used in feedback. 64

6.24 The response of the multirotor under the influence of a sinusoidal
force disturbance being rejected with PX4 or the NN. 64

6.25 Estimation of a sinusoidal force disturbance in the x̄I direction by
a NN during which it is being used in feedback. 64

6.26 The response of the multirotor under the influence of a step torque
disturbance being rejected with PX4 or the NN. 65

6.27 Estimation of a step torque disturbance in the x̄I direction by a
NN during which it is being used in feedback. 65

6.28 The response of the multirotor under the influence of a step sinu-
soidal disturbance being rejected with PX4 or the NN. 65

6.29 Estimation of a sinusoidal torque disturbance in the x̄I direction
by a NN during which it is being used in feedback. 65

Stellenbosch University https://scholar.sun.ac.za

List of Tables

3.1 The states being estimated by the PX4 EKF. 26
3.2 Mechanical properties of Honeybee. 31

4.1 Ranges of parameters randomised during each simulated flight. . . . 34
4.2 Functions used to represent a setpoint produced by a linear con-

troller or human. 36
4.3 Parameters of interest being stored during a simulated flight. 39

5.1 Gaussian distribution used for the physical properties of the multi-
rotor. 44

5.2 Hyperparameter values used for training. 47
5.3 Comparisons between different neural network architectures. 50

6.1 Gains used for disturbance rejection in feedback loop when using
ESO as estimator. 58

6.2 Comparison of the various estimators and standard PX4 controllers
being scored using the IAE and ITAE loss function for rejecting
torque disturbances. 66

6.3 Comparison of the various estimators and standard PX4 controllers
being scored using the IAE and ITAE loss function for rejecting
force disturbances. 67

xiii

Stellenbosch University https://scholar.sun.ac.za

Nomenclature

Constants

g = 9.81 m/s2

Variables

b Bias in a neural network []

m Mass . [kg]

n Batchsize . []

p Dropout probability . []

s Standard deviation . []

t Time . [s]

w Weight in a neural network []

F Force . [N]

M Moment . [N·m]

N Windowsize . []

W Mathematical operation of NN unit. See Equation 2.7 . []

Z Placeholder for X or q . []

xiv

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE xv

α Learning rate . []

β Number of ReLU units . []

γ Number of LSTM units . []

δ Virtual output of PX4 controllers. []

θ Rotation angle . [rad]

λ Weight regularisation coefficient []

µ Mean . []

σ Activation function . []

φ Rotation angle . [rad]

ψ Rotation angle . [rad]

Θ Neural network . []

N Gaussian distribution . []

Vectors

c The unit state of a RNN unit

f Output of forget gate of RNN unit

i Output of tanh layer of RNN unit

j Output of input gate layer of RNN unit

o The output state of a RNN unit

q Unit quaternion

x Input matrix for a neural network

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE xvi

y Output of neural network

z Input vector

F Discrete Jacobian matrix of nonlinear process model

H Discrete Jacobian matrix of nonlinear measurement model

I Moment of inertia matrix

K Normalising PX4 gain

L Estimator full state gain

Q Measurement noise matrix

R Process noise matrix

V Velocity vector

X Position vector

Ω Angular rate vector

x̄ Unit position vector

ȳ Unit position vector

z̄ Unit position vector

Subscripts

c The tanh layer of a RNN

f Forget gate of a RNN

i Placeholder for one of the unit position vectors

j The unit in the l layer of a neural network

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE xvii

k The unit in the l+1 layer of a neural network

o Output gate of a RNN

r Reference signal

x Input gate of a RNN

B Body frame axis

I Inertial frame axis

Superscripts

l The layer in a neural network

D Disturbances

G Gravity

T Thrust

+ Current timestep

− Previous timestep

Abbreviations

6DoF Six Degree of Freedom

CoG Center of Gravity

COTS Commercial Off The Shelve

DCM Direct Cosine Matrix

EKF Extended Kalman Filter

ESO Extended State Observer

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE xviii

GAP Gazebo Awesome Plugins

GPS Global Positioning System

GRU Gated Recurrent Unit

HPC High Performance Computer

IAE Integrated Absolute Error

IMU Inertial Measurement Unit

ITAE Integrated Time Absolute Error

LSTM Long Short Term Memory

LPF Low Pass Filter

MAE Mean Absolute Error

MSE Mean Squared Error

NaN Not a Number

NDI Nonlinear Dynamic Inversion

NED North-East-Down

NN Neural Network

PID Proportional Integrated Derivative

ReLU Rectified Linear Unit

RL Reinforcement Learning

ROS Robotic Operating System

RTOS Real Time Operating System

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE xix

RUAV Rotary Wing Unmanned Vehicle

SISO Single-Input-Single-Output

SITL Software in the Loop

UKF Unscented Kalman Filter

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

Aviation consists of many vehicles which are classified based on vehicle char-
acteristics and operating airspace. One of these vehicles, formerly known as
Rotary Wing Unmanned Aerial Vehicle (RUAV) is better known to the con-
sumer market as drones. RUAVs can be described by their primary method
of propulsion: rotating propellers and the use of differential thrust produced
by these propellers to translate and orient the vehicle, as shown in Fig. (1.1).
Collectively, drones are appropriately described as multirotors and can further
be categorised based on the number of propellers they use, i.e. quadcopter for
four propellers and octocopter for eight.

Figure 1.1: A quadcopter, which is a subset of multirotors, hovering in the air.

1

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

1.1 Motivation
A number of industries have started to incorporate multirotors into their work-
flow. Reasons why these industries are increasingly using this technology in-
cludes lower operation cost, faster deployment in comparison to the more tradi-
tional options, and improved decision making. The motivation and challenges
for using multirotors in each application area are described below.

1.1.1 Agriculture

The agriculture sector has mainly introduced multirotors in the area of crop
analysis. Various companies fly multirotors above the crops and with the use
of special sensors can estimate crop growth and crop stress [3]. These estimates
effectively lead to better decision making and accurate use of pesticides. Mul-
tirotors have been used to irrigate crops as shown in Fig. (1.2) which provides a
significant improvement in the response time of irrigation and operation costs
as opposed to the traditional alternative of fixed-wing aeroplanes.

Weather conditions pose a challenge for multirotors in these applications. Mul-
tirotors are sensitive to wind and this influences their flight time and accuracy,
which is essential to completing its mission successfully. For multirotors to en-
ter this market they must improve their ability to fly in unfavourable weather
conditions.

1.1.2 Pipe and Gas Industry

Multirotors have the advantage of reaching areas which are difficult for humans
to access. This is seen by multirotors inspecting large structures such as pipes

Figure 1.2: A multirotor irrigating crops.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

Figure 1.3: Multirotor inspecting a wall.

and walls, as shown in Fig. (1.3). The multirotor uses a camera to capture
the area of interest, and then a human is able to inspect it from the safety
of their office to determine whether repairs are needed. This greatly reduces
operational costs and improves worker safety [4].

Flying near walls and objects presents a challenge for multirotors since the
airflow produced by their propellers collide with the surface and flow back
towards the multirotor, causing unsteady motion. This unsteady motion near
surfaces makes sensor measurements and capturing images more difficult.

1.1.3 Search and Rescue

Multirotors are introduced into security and emergency services in which fast
reaction time is critical to successfully prevent disasters [5]. The use of mul-
tirotors in disaster relief is shown in Fig. (1.4) where a multirotor is used to
bring a life-saver to a human in distress.

For missions where human lives are at risk or too dangerous for humans to en-
ter, results in fault-tolerant and all-weather systems. Multirotors must be able
to absorb a motor failure and withstand severe weather conditions during times
of emergencies to provide the reliability when humans lives are endangered.

1.1.4 Consumer Market

Delivering consumer goods with the use of multirotors has been a near-future
prospect with the technology becoming more mature and reliable. Companies
such as Amazon have recently attained acceptance from regulators, allowing
them to operate multirotors autonomously [6]. Using multirotors in the deliv-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 4

Figure 1.4: Multirotor being used in a sea rescue mission.

ery of packages removes the barrier of traffic caused by cars and provides the
customer with an accurate time of delivery.

Delivering packages consists of flying with payloads which are suspended or
directly attached to the body of the vehicle and which vary in size and weight.
These varying parameters create challenges to the stability, performance and
flight time of the multirotors, all of which are important for safety and economies
of scale. Incremental improvements in these components lead to considerable
improvements for company margins.

1.1.5 Challenges

The increasing demand for multirotors has resulted in development to application-
specific challenges. These challenges include flying with a payload for deliver-
ing, flying near surfaces for inspection and flying in unfavourable weather to
attain a 24/7 availability. All of these challenges can be described as distur-
bances influencing the multirotor as they do not form part of the general flight
conditions in which these multirotors were initially designed. This points to
the following question: If disturbances in all the forms which it arises could
be rejected, would this provide feasible solutions to the various sectors?

1.2 Problem Definition
The project aims to design and implement a controller architecture for re-
jecting various unknown disturbances affecting a multirotor during a stable
flight. These unknown disturbances will be in the form of forces and torques
influencing the multirotor in all three body-axis directions.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 5

1.3 Approach
The problem is solved by dividing the project into the following steps:

1. There is a particular focus on using neural networks as part of the pro-
posed solution to the problem. The focus to use neural networks is driven
by the fact that this technique has made recent advances in numerous
fields [7]. These numerous fields share common attributes to the field
of control systems and therefore provide confidence that improvement is
probable. Thus, the use of neural networks in the control, state estima-
tion and disturbance rejection is investigated on an inverted pendulum.
The inverted pendulum was chosen as a testing ground for neural net-
works in a control system environment due to its intuitive dynamics.
The results generated during this work are not presented due to it be-
ing out of the scope of the project, however it guided many decisions
which were made during the project. These results were published in
a conference paper at the International Federation for Automatic
Control (IFAC) World Congress 2020. The conference paper was
titled "Training neural networks for estimation, control and disturbance
rejection" and is cited as Kotzé et al. [8].

2. Establish the current approaches of rejecting disturbances influencing a
multirotor by reviewing the literature.

3. Formulate a proposed solution using the literature study of disturbance
rejection for multirotors. The formulation of the proposed solution was
biased towards containing neural networks as mentioned.

4. Research and implement the required techniques and overall system to
demonstrate the proposed solution.

5. Compare the proposed solution to classical approaches.

1.4 Thesis Outline
Chapter 2 presents background on how disturbances arise in systems, which is
followed by a literature study of the current approaches of disturbance rejection
for multirotors. The chapter then presents the proposed solution and the
supporting technical background. The proposed solution is to use a neural
network in a disturbance rejection architecture.

Chapter 3 presents an overview of the system used to solve the problem. The
system contains many components which operate together in a specific order

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 6

to create the workflow of the project. These components fulfil specific roles to
ensure that the proposed solution is successfully implemented.

Chapter 4 elaborates on key components mentioned in Chapter 3, which con-
sist of features that are concerned with transferring a neural network trained
in simulation to practical tests.

Chapter 5 presents the estimation of various disturbances by the neural net-
work and by two other traditional solutions without integrating them into the
selected control architecture. These other two solutions are the Extended State
Observer (ESO) and the Extended Kalman Filter (EKF).

Chapter 6 presents the neural network, ESO, and EKF integrated into the
proposed controller architecture. The neural network, ESO, and EKF are com-
pared using a quantitative method to score their performance which enables
commentary to be given.

Chapter 7 concludes the project with a summary of what was achieved during
the project, a recommendation is given and commentary is provided for future
work to improve and build on the results presented.

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Background

This chapter will introduce how disturbances originate from a control sys-
tems perspective and is followed by a literature study focusing on how control
systems reject them. A tree diagram is included to summarise the various
branches of disturbance rejection approaches. Following the literature study,
which provides supporting evidence, the suggested solution to the problem
definition is introduced. The chapter then presents the required technical con-
cepts in order to understand how the solution will be implemented.

2.1 Origin of Disturbances
Disturbances originate during the modelling process when certain dynamics are
unknown, omitted, and assumptions and simplifications are made to create a
tractable problem. These omissions and assumptions result in a mathematical
model which deviates from experimental results. These deviations from the
mathematical model are an indication of disturbances and are categorised in
the following manner.

Disturbances can be categorised as either external or internal, and this cat-
egorisation is dependent on the modelling of the system. The modelling of
a multirotor involves assuming rigid body dynamics and no deformation in
the structural members of the multirotor. For small multirotors this is valid,
but as they increase in size, the vibration of the structural members becomes
significant and more structural reinforcement is required. The vibration of
structural members is a result of the control inputs exciting their natural
frequencies. These type of disturbances are seen as internal because they are
excited by the control system, which does not take these unmodelled dynamics
into account. These disturbances are not modelled in a simulation environ-
ment and can only be identified during an experimental flight and are removed
by the use of filters such as a band rejection filter.

7

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 8

Figure 2.1: The airflow produced
by the propeller is being washed
up by the surface onto the multi-
rotor. This phenomenon is known
as ground effects.

Figure 2.2: Multirotor carrying a
suspended payload1.

External disturbances are forces and moments affecting the multirotor from
the environment it is operating in. The most common disturbance is the ef-
fect of wind which is a stochastic process omitted during modelling. Other
external disturbances include ground effects which are upwash flow from the
propellers near walls, as shown in Fig. (2.1) or suspended payloads attached
to the multirotor shown in Fig. (2.2) which is omitted during modelling. The
influence of external disturbances can be tested before experiments in simula-
tion to provide limits on the disturbance rejection capabilities of the control
system.

2.2 Literature Study
Rejecting disturbances which influence a system is generally encapsulated in
two features: the estimation of the disturbance and how the estimated dis-
turbances are incorporated in a control law. There are exceptions where the
control law uses no estimated disturbance but incorporates features provid-
ing disturbance rejection indirectly. These three approaches for disturbance
rejections of a multirotor is found in the literature and is described below.

2.2.1 Indirect Disturbance Rejection

The most common method of providing disturbance rejection is to use integra-
tors in the control law. These integrators wind up to absorb any disturbance
or uncertainty in the system causing it not to maintain its steady-state condi-
tion. Integrators for disturbance rejection is typically used as the baseline to
compare more sophisticated techniques for disturbance rejection.

1Figure was created by Anton Erasmus, and is used with permission.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 9

Another method of rejecting disturbances without the use of an estimator is the
Nonlinear Dynamic Inversion (NDI) technique. NDI’s control law is designed
based on the assumption of fast sampling period from the Inertial Measure-
ment Unit (IMU) sensors. The NDI technique produces a high bandwidth
controller which enables quick response times from disturbances. It has been
tested practically for multirotors to reject wind gust, as shown by Smeur et al.
[9]. Other methods use adaptive control to adjust the gains of the controllers
according to an update-law which will view the disturbances as changes to the
physical model. These techniques require fast adaptation speed to adjust for
disturbances such as wind gusts as suggested by Fernandez et al. [10].

Data-driven techniques have risen in popularity for the use of disturbance
rejection due to the difficulty of modelling the various disturbances affecting a
multirotor. Using the measurement data from previous practical flights allow
these data-driven techniques to learn the nonlinear function describing these
disturbances. One of these data-driven techniques is the use of neural networks
with supervised learning. Supervised learning of neural networks is when the
input and output data is known, and the neural network learns the nonlinear
mapping using an optimiser. Celen and Oniz [11] and Al-Mahasneh et al. [12]
trains a neural network to act as a controller of the multirotor to account for the
nonlinear behaviour which the linear controller is unaware. A closely related
technique known as Reinforcement Learning (RL) also replaces the classical
controller entirely and learns to control the multirotor through thousands of
interactions in the simulation environment. During the optimisation of the RL
controller, it will start to learn how to behave when disturbances are affecting
the multirotor. This is shown by Koch et al. [13], Vankadari et al. [14] and
Hwangbo et al. [15] which uses the RL controller to control a multirotor.

2.2.2 Rejection for Specific Disturbances

Other control laws are designed with specific disturbance phenomena in mind.
Matus-Vargas et al. [29] developed an algorithm to switch between two different
controllers where one is specifically designed to reject ground effects if it is
detected by the algorithm. Bannwarth et al. [28] focus on wind disturbances
by adding a wind model during the modelling of the multirotor and allows
controller gains to be designed for specific weather conditions.

Data-driven approaches have been used to combat specific disturbances affect-
ing a multirotor. This is shown by Shi et al. [26] who trains a neural network
from experimental data to estimate a model for the ground effects. They then
use this estimation in feedback to reject the ground effects. Allison et al. [27]
use a neural network to learn the wind velocity in which a multirotor is flying
using the measurement data. This estimation can now be used to improve the
flight controller.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 10

Multirotor with
Disturbances

No Disturbance
Estimation Used

Specific
Disturbances

General
Disturbances

Data Driven
Techniques

• Reinforcement
Learning [13],[14]

• Neural network
based [12],[11]

Nonlinear
Control Methods

• MRAC [10]

• INDI [9]

• Acceleration
Feedback [16]

Nonlinear
Control Methods

• ADRC
[17],[18],[19],[20]

• MPC [21]

Neural Network
Augmented

• Nonlinear Meth-
ods [22],[23],
[24],[25]

• Cascaded PID

Focus of project

Data Driven
Techniques

• Feedback
Linearisation [26]

• Wind Velocity
Estimation [27]

Nonlinear
Control Methods

• Wind Accomo-
dating [28]

• Ground Effects
[29]

Figure 2.3: Summary of the different approaches to disturbance rejection for
multirotors.

2.2.3 General Disturbances

The data-driven techniques have further been introduced to assist the nonlin-
ear controllers for the primary purpose of model uncertainty. Since dynamics
are omitted during the modelling process, which the classical controllers are
unaware, these data-driven techniques are used to combat them. The data-
driven techniques are mostly combined with the use of a linear controller and
as such is said to augment the classical controllers. The data driven techniques
once again make use of neural networks and augment them in the following
ways: by adapting the gains of the nonlinear controller shown by Bari et al.
[25] or adding an additional control signal to account for disturbances shown
by Jiang et al. [30], Verberne and Moncayo [22], Bisheban and Lee [24] and

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 11

Xiang et al. [23].

Similar methods exist in which the nonlinear controller is assisted by classical
estimation techniques. One of these classical estimators are the Extended State
Observer (ESO) and is mainly used to estimate the combined disturbances
influencing a multirotor. Zhang et al. [18], Suhail et al. [19] and Zhao et al.
[20] all use the ESO to estimate the disturbance and then uses the estimated
disturbance in a control law to reject its effect. Other estimators that have
been used are the Extended Kalman Filter (EKF) and Unscented Kalman
Filter (UKF) which was used by Hentzen et al. [21] to reject disturbances by
incorporating it into the control law. All of the previously mentioned authors
used the estimators in a disturbance rejection architecture which subtracts the
estimated disturbance from the control signal produced by the controller.

2.2.4 Summary of Literature Review

From this literature review, a tree diagram can be constructed which sum-
marises the different branches within disturbance rejection. The tree diagram
is shown in Fig. (2.3), where the project’s approach to the problem definition
is highlighted. This is done in order to clearly identify where the approach
to the problem definition fits in the literature. The supporting arguments for
arriving at the selected approach will be discussed next.

2.3 Proposed Solution
As shown in the previous section, most of the literature on disturbance re-
jection in multirotors focused on using mathematical models describing the
disturbances, designing controllers for specific disturbance phenomena, or us-
ing various estimators. It is also evident that current approaches use data-
driven techniques in which mathematical modelling appears non-tractable.
The project’s selected solution is based on past proposed solutions as well
as the fact that data-driven approaches are currently being explored. Consid-
ering the above-mentioned approach, the solution should be:

• easily implemented on existing flight controllers

• practically feasible

• general enough to be used in a wide range of applications

• make use of data-driven approaches

• does not replace the classical controller

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 12

The literature review revealed the following:

• The design of specific control laws for disturbance phenomena is lim-
ited to the specific disturbances which are designed for and do not cater
to all the various applications a multirotor could be used for: carry-
ing payloads, inspection of surfaces and flying in unfavourable weather
conditions.

• The estimators used for disturbance rejection have shown to have the
means to estimate a wide class of disturbances.

• Recently there have been attempts to use data-driven techniques to es-
timate specific disturbance phenomena influencing multirotors.

• There is little development in creating mathematical aerodynamic mod-
els for multirotors.

• There are control laws which displayed good practical disturbance rejec-
tion, but does not make use of commercial off the shelve (COTS) flight
controllers.

Taking into account these considerations, a data-driven technique which es-
timates the disturbance effecting a multirotor and integrating the estimated
disturbance in an existing flight controller law was adopted. The data-driven
technique selected makes use of neural networks to estimate the disturbance
affecting a multirotor. The selection is based on the fact that neural networks
have achieved numerous advancements in estimating disturbances in multi-
rotors and controlling robots [26], [27], [31]. The use of neural networks in
multirotor control systems is also relevant in the literature [30], [22], [24], [23],
[12].

ControllerΣr Σ Plant

Disturbance
Estimator

u Σ

Sensor Noise
Disturbances

Plant Output

Figure 2.4: The general disturbance rejection architecture used in various ap-
plications for the rejection of external disturbances.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 13

The estimated disturbance will be used in a disturbance rejection architecture
shown in Fig. (2.4) in which the estimated disturbance is subtracted by the
original control signal produced by the controller. This architecture was se-
lected as it has been used extensively as the method to reject disturbances
using an estimator [18], [19], [20].

2.4 Multirotor Overview
The multirotor is a six degree of freedom (6DoF) rigid body with four indepen-
dently controlled motors equally spaced around the centre of gravity (CoG)
shown in Fig. (2.5). These motors provide the forces to allow the multirotor to
translate and rotate in space. The forces and moments acting on the multiro-
tor with respect to its acceleration, velocity and position are called the kinetic
equations and are derived using Newton’s second law. This results in

FB = mV̇B + ΩB ×mVB
MB = IΩ̇B + ΩB × IΩB

(2.1)

where
FB = [FBx , FBy , FBz]

>

MB = [MBx ,MBy ,MBz]
> (2.2)

are the forces and moments in the various body directions on the multirotor.
The forces and moments acting on the multirotor are

FB = F T
B + FG

B

MB = MT
B +MG

B
(2.3)

Figure 2.5: Illustration of a multirotor.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 14

where the superscripts T and G refer to the thrust produced by the motors
and gravity respectively.

The linear velocity and angular velocity of the multirotor is given by

VB = [VBx , VBy , VBz]
>

ΩB = [ΩBx ,ΩBy ,ΩBz]
>.

(2.4)

The mass of the multirotor is given by m and

I =



Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Izy Izz


 (2.5)

is the moment of inertia matrix of the multirotor. The diagonal entries of the
matrix are known as the principal moment of inertia. The off-diagonal entries
are known as the products of inertia and assumed to be zero since the multiro-
tor is symmetric. The rotation of each motor creates a torque in the z̄B-axis,
and the combined torque is zero by rotating motor one and two in the oppo-
site direction of motor three and four. The multirotor hovers by producing
the same thrust by all four motors and changes its altitude by increasing or
decreasing the thrust produced by each motor equally. Translation is achieved
by performing a pitch or roll manoeuvre in the correct direction. Accelerat-
ing in the x̄B direction, the multirotor must pitch, which corresponds rotating
around the ȳB-axis. Rotation around this axis is achieved by increasing the
thrust produced by motor three and decreasing the thrust produced by mo-
tor 4. A roll manoeuvre is a rotation around the x̄B-axis and results in the
translation in the ȳB-axis and is achieved by increasing the thrust produced
by motor two by the amount motor one is decreased. Yawing corresponds to
the rotation around the z̄B-axis and is done by increasing the thrust of motors

Figure 2.6: The various manoeuvres that the multirotor is capable of doing
based on the increased and decreased thrust produced by the correct motors.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 15

Di(s)ΣDo(s)Σro
ri

G(s)

Ci

Co

u Plant Output

Inner Loop

Figure 2.7: The succesive loop closure control architecture.

three and four and decreasing the thrust of motors one and two by the same
amount. The above-mentioned manoeuvres are depicted in Fig. (2.6).

2.5 Successive Loop Closure Control
The control system responsible for stable translation and rotation of a multi-
rotor is designed using the linear model of the multirotor. The two equations
in 2.1 are both nonlinear equations and using taylor series expansions around
the hover condition results in the linear model of the multirotor. From the
linear model, a control system is designed responsible for stable translation
and rotation of the multirotor.

By analysing the eigenvalues of the set of linear equations, the multirotor dy-
namics are separated from fast to much slower dynamics. This time separation
in dynamics is intuitively understood by the fact that the multirotor must first
pitch or roll before it starts to translate in the desired direction. It follows that
the dynamics of the multirotor are ordered from fastest to slowest as: angular
rate, angular, velocity and then position.

The control systems designed for the multirotor exploit this phenomenon where
feedback control loop after feedback control loop is closed, with each loop
abstracting the multirotor dynamics from fastest to slowest as each loop is
closed. For multirotors, these feedback loops are called the angular rate, angle,
velocity, and position loops. Fig. (2.7) depicts the successive loop closure
control technique where the inner-most controller, Di(s) acts directly on the
multirotor and is designed using the linear model. The addition of the inner
controller results in the changing of the model’s dynamics. The model which
the outer controller observes is the model whose dynamics have been changed
by the inner controller and not the original plant. The outer controller acts on
the inner loop containing the inner-controller and the multirotor’s linear model.
Thus, the outer controller generates the reference for the inner controller to
follow. The C matrices extract the state of interest for the controller to control

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 16

and will be the angular rate for the inner controller and angle for the outer
controller.

2.6 Quaternions
Euler angles are most commonly used to describe the attitude of a vehicle
relative to a fixed axis shown in Fig. (2.8). This fixed axis is commonly known
as the North-East-Down (NED) axis where the x-axis points to North and y-
axis to East. There exists a matrix known as the Direct Cosine Matrix (DCM)
which converts between these two axes and is used extensively during a flight of
a multirotor. Using Euler Angles to represent the attitude of the vehicle leads
to singularities at specific attitudes and are cumbersome for controllers. To
overcome these singularities unit quaternions are used to represent the attitude
of the vehicle, which is shown in Fig. (2.9).

Unit quaternions are a four-dimensional description, q = [q0, q1, q2, q3], of
three-dimensional rotations. It is free of singularities and computationally
efficient. In the case of small angles the following relationships exist between
Euler angles and unit quaternions:

φ = −2q1,
θ = −2q2,
ψ = −2q3, and

|q| = 1 =
√
q20 + q21 + q22 + q23.

(2.6)

For an in-depth understanding of unit quaternions beyond small-angle approx-
imation, refer to [32].

Figure 2.8: Euler angle representa-
tion between the fixed axis, I and
the body axis B.

Figure 2.9: Unit qauternion
representation of a rotation.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 17

2.7 Neural Networks
Neural networks (NN) are a nonlinear modelling tool used to associate input
and output patterns with the use of learning algorithms. The neural network
thus learns a function which approximates this association between the input
and output. There are many different neural network architectures, and the
project will only be focusing on two different types: feedforward and recurrent
neural networks.

2.7.1 Feedforward Neural Network

Feedforward neural networks receive its name from the flow of data through
the network: the input data flows forward through the network undergoing
intermediate computations before being outputted. There are no feedback
loops which feeds the outputs of the network back [33].

The feedforward NN consists of an input layer, a hidden or multiple hidden
layers and an output layer. Each layer contains units which perform a compu-
tational operation. One of these units can be seen in Fig. (2.10), which is in
the exploded view. Each unit in a layer, l, is connected to all of the units in
the following layer where each connection has its own weight, w(l)

jk , and each
unit has its own bias, w(l)

j . jk refers to the connection between a unit j and
unit k whereby unit k is in the proceeding layer of unit j.

These units perform a nonlinear computational operation taking multiple in-
puts and output a single value. The computational operation sums all the
incoming connections, adds the unit’s bias value and then pushes this summa-

Σ σ

+1

x1

x2

x3

xn

w
0

w
1

w2

w3

w n

σ

(
w0 +

n∑
i=1

wixi

)

...

I1

I2

I3

Input
layer

Hidden
layer

Output
layer

O1

O2

Figure 2.10: Feedforward neural network with one hidden layer with a single
unit in a exploded view [1].

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 18

tion through an activation function as shown by

x
(l+1)
k = σ(w

(l)
j +

∑
w

(l)
jk ·x

(l)
j). (2.7)

Before the unit can perform its computational operation, the output of each
unit in the previous layer is multiplied by their corresponding connection’s
weight before arriving at the unit.

The ability to learn nonlinear behaviour is enabled by the fact that the ac-
tivation functions are nonlinear. By increasing the number of units through
additional layers or increasing the number of units in a layer increases the
ability of the neural network to learn more complex behaviour. The amount of
complexity that neural networks can learn refers to the capacity of the neural
network and is an open problem to find quantitative methods to estimate.

2.7.2 Long Short Term Memory (LSTM)

Challenges for feedforward NNs are time series based data where long term
dependencies exist and influence the next state of the system. To address this
short coming of feedforward NNs, recurrent neural networks (RNN) were im-
plemented, which contains loops to retain information as shown in Fig. (2.11).
An RNN can be imagined as multiple neural network architectures being re-
peated with each passing a message to its successor. However, in theory, RNN
is capable of learning long term dependencies, but in practice, they do not and
is explained in Bengio et al. [34]. Many improvements have been made with
RNNs, and one of these improvements is Long Short Term Memory (LSTM)
units develop by Hochreiter and Schmidhuber [35].

LSTM units are a type of recurrent neural network having three inputs and
two outputs. This is seen in Fig. (2.12) where a layer of multiple LSTM units
are shown with a single LSTM unit in the exploded view. The LSTM improves

RNN RNN RNN RNNRNN ≡

x x1 x2 x3 x4

y4y3y2y1y

h1 h2 h3

h

Figure 2.11: A unrolled RNN.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 19

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

σ σ tanh σ

⊗

⊗ ⊕

⊗

tanh

||

xt

yt−1

ct−1 ct

yt

yt

ft jt
it

ot

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

Figure 2.12: A layer containing LSTM units with one of the units presented
in a exploded view [1].

significantly on feedforward neural networks with time series based data which
contain long-term dependencies [33].

Within an LSTM unit, there are multiple operations occurring, executing like
a conveyor belt. The first step in the LSTM unit is the forget gate which
determines what information is going to be thrown away. This operation
corresponds to

ft = σ(Wf[yt−1,xt] + bf), (2.8)

which is a single feedforward layer with two inputs: the output of the previous
LSTM unit in the layer, yt−1, and the input to the current LSTM unit, xt.
The next step of the LSTM is to determine what information should be stored.
This is shown by the input gate layer and corresponds to

jt = σ(Wx[yt−1,xt] + bx), (2.9)

which again is a single feedforward layer using the sigmoid activation func-
tion. Following this operation, is the single feedforward layer using the tanh
activation function. This layer produces a list of possible states that could be
remembered. This operation corresponds to:

it = tanh(Wc[yt−1,xt] + bc). (2.10)

The LSTM unit state is ct, and this is updated by using the previous mentioned
results:

ct = ft × ct−1 + jt × it. (2.11)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 20

This operation can be described as updating the LSTM unit state by removing
the information that the LSTM believes should be forgotten and then adding
what the LSTM believes should be remembered from the current input.

The final step is the output and is based on the updated LSTM state and
inputs. This operation is described as:

ot = σ(Wo[yt−1,xt] + bo)

yt = ot tanh(ct).
(2.12)

This output is then fed to the following LSTM unit in the layer, where the
entire operation is repeated.

These multiple operations in a recurrent neural network come with the cost
of significantly increased training time. There are also multiple variants of
recurrent neural networks such as the Gated Recurrent Unit (GRU).

2.7.3 Activation Functions

The activation function is the operation the layers’ units perform after the
summation. There exists a number of different activation functions, and the
correct choice is based on the type of problem and type of neural network
architecture that is being used.

Activation functions are nonlinear functions which are generally continuous
everywhere. This characteristic of being smooth allows efficient and quick
calculation of the gradient. Fig. (2.13) shows some of the common activation
functions seen in the literature.

−2.0 −1.5 −1.0 −0.5 0.5 1.0 1.5 2.0

−1.0

−0.5

0.5

1.0

1.5

2.0

x

y
σ1(x) =

1
1+e−x

σ2(x) = tanh(x)

σ3(x) = max(0, x)

σ4(x) = log(ex + 1)

σ5(x) = max(x, ex − 1)

Figure 2.13: Various activation functions found in literature [1].

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 21

2.7.4 Loss Function

The loss function is the function by which the neural network is scored on
how well it is performing. There are different loss functions available to choose
from, depending on the type of problem. These are the mean squared error
(MSE) seen in Equation 2.13 and cross entropy seen in Equation 2.14.

J0 =
1

n

n∑

i=0

| ŷi − yi | (2.13)

J0 =
1

n

n∑

i=0

yi · log(ŷi) (2.14)

MSE is the most commonly used loss function for time series based data,
whereas cross entropy is more commonly used for classification.

2.7.5 Gradient-Based Learning

The nonlinearity of neural networks causes the loss function to become noncon-
vex, resulting in them being trained using iterative, gradient based optimisers.
These optimisers try to minimise the loss function to a very low value [33].
These optimisers are the algorithms that update the trainable variables in the
neural network based on the effect they had on the loss function. This effect
is determined by computing the gradient of the trainable variable with respect
to the loss function as shown by

∂J0
∂Wi,j

=
∂J0
∂ŷ

∂ŷ

∂Wi,j
. (2.15)

Choice of optimiser varies from problem to problem, and the decision is based
on literature, but common optimisers are Adam, Adagrad and Adadelta.

2.7.6 Underfitting And Overfitting

The goal of the neural network is to perform well on unseen data that was not
part of the training dataset, and this is tested by a validation dataset during
training. As the neural network trains on the training dataset, it should im-
prove on both validation and training dataset. In the region where the neural
network improves on both the validation and training dataset, the neural net-
work has underfit the dataset, and more training is required. However, there
is a point during training where the loss function on the validation dataset
increases signifying overfitting. Overfitting indicates that the neural network
has stopped learning the correlation in the data and has started to become
a lookup table for the training dataset and outputs uncorrelated answers for

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 22

anything outside of the training dataset. The ability of a neural network to
perform well on unseen data is characterised as generalisation [33].

Fig. (2.14) shows the different regimes during training. On the left, the gen-
eralisation error and training error is high, indicating the neural network still
requires training, however as the neural network converges it reaches an opti-
mal point before starting to overfit the training data. In the overfitting regime,
the training error is small; however, the neural network does not generalise well
and has overfitted the training data.

2.7.7 Hyperparameters

During the training of a neural network, there are untrainable variables which
are selected by the individual. The individual has complete control of these
parameters, and they influence the training results. They affect the generali-
sation of the model, training error and computational resources [33].

These hyperparameters are the learning rate, weight regularisation coefficient,
dropout and number of hidden units. These parameters are tuned iteratively
to determine which combinations result in the lowest loss function.

Learning Rate

The learning rate is commonly notated as α and refers to the step size the
optimiser may take in the direction which minimises the loss function. In-
creasing the learning rate too much could lead to increasing the loss function.
Decreasing it too much will lead to slower training, but may cause the sys-
tem to converge to an unacceptable large loss function [33]. The effect of the

10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

overfittingunderfitting

Epochs

Error
Training set
Validation set

Figure 2.14: The regions of underfitting and overfitting during training [1].

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 23

dropout ×
×

×

×

×

×

×

Figure 2.15: The result of dropout on the architecture of a neural network [1].

learning rate can be seen in the following equation,

wt = wt−1 − α
m̂√
v̂t − ε

, (2.16)

which uses the Adam optimiser where the variables m̂, v̂t and ε are all a
function of the gradient of the weight, w, with respect to the loss function.

Weight Regularisation

A method known for improving the generalisation of a trained model is forcing
the weights to be as small as possible [36]. This is achievable by adjusting the
loss function to include the size of the weights as shown

J(θ) = J0(θ) +
1

2
λ
∑

i

w2
i . (2.17)

J0 would be the original chosen loss function such as MSE and λ the weight
regularisation coefficient.

Increasing the weight regularisation coefficient will result in the optimiser to
punish larger weight values, and decreasing it would allow weights to be larger.

Dropout

Dropout is another method of improving the generalisation of a neural network.
It refers to temporary dropping out units from the neural network, as seen in
Fig. (2.15) during a single training sample. The units are selected from a fixed
probability, p, independent from the other units.

The selection of this probability, p, is advised to be between 0.4 and 0.5 [37].
Making this value too large will result in reduced training results, and making
it too small in possible overfitting of the training data.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 24

2.8 Summary
This chapter explained the origin of disturbances in systems and how they are
classified to provide the necessary understanding of why disturbances arise in
systems. This was followed by a literature study on methods which are used
to reject disturbances influencing a multirotor. The literature provided the
knowledge to support the proposed solution to the problem definition, which
was presented. Following the proposed solution, which is to reject disturbances
using a neural network in a disturbance rejection architecture, the necessary
technical background to understand the concepts and terminology used in the
project was presented. This technical background included concepts about
control systems and machine learning.

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

System Overview

This chapter describes the various components required for implementing a
neural network for rejection disturbances on a multirotor. The interdepen-
dency of the components is described as well as the workflow from start to
end. These components include the control system architecture and software
responsible for stable flight, the simulation environment for validation and data
generation, the neural network application programming interface (API) and
the communication layer for resolving interdependency between components.

3.1 PX4 Software Stack
PX41 is an open source flight control eco-system providing software from the
low level firmware up to the user interface for waypoint flying. The PX4
firmware comprises out of various modules that communicate with each other
using an asynchronous publish-subscribe architecture. PX4 runs on the NuttX

1https://px4.io/

Sensors Estimator

Translational
Controller

Navigator Attitude
Controller Mixer Actuators

Radio

Figure 3.1: PX4 firmware consists out of various modules with arrows indicat-
ing communication direction.

25

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM OVERVIEW 26

State

Quaternions
Velocity in NED-frame
Position in NED-frame
Gyroscope delta angles bias
Accelerometer bias
Earth Magnetic Field Vector
Magnetometer bias errors
Wind Velocity

Table 3.1: The states being estimated by the PX4 EKF.

real time operating system (RTOS) providing real time, deterministic and pri-
ority execution of services. This allows the PX4 source code to be built within
a Linux system which is emulating the NuttX RTOS and allows simulations to
run with the same code as on the embedded system. The project will mainly
be using the firmware of PX4, which is responsible for executing the control
laws allowing the multirotor to hover and fly as desired. A block diagram of
the various modules is shown in Fig. (3.1) with the arrows indicating communi-
cation directions, and it is only required to understand the following modules:
estimator, translational controller and the attitude controller.

3.1.1 Estimator

PX4 implements a kinematic EKF, receiving measurements from the various
sensors and combines them to provide an estimate of the multirotor states.
These states are shown in Table 3.1 and should be noted that the PX4 EKF
estimates sensor biases for the gyroscope, accelerometer and magnetometer.
The reasoning for highlighting this fact will become clearer in Chapter 5. The
update rate of the PX4 EKF is 1kHz and publishes the estimated states at
250Hz.

3.1.2 Translation and Attitude Controller

PX4 uses a cascaded control architecture containing an inner attitude and an
outer translation controller, as shown in Fig. (3.2). The attitude controller
consists of the angular rate controller, which uses a nonlinear Proportional-
Integrated-Derivative (PID) control law shown in Fig. (3.3) and a nonlinear
proportional control law for the angle controller. The translation controller
follows the same convention with a nonlinear PID controller for the velocity
loop and a proportional controller for the position. The nonlinear PID con-
troller can be simplified to the standard PID control law and is also used to

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM OVERVIEW 27

Position
Controller

P

Velocity
Controller

PID

Force and
Yaw to
Attitude

and Thrust
Conversion

Outer Translation Controller

Angle
Controller

P

Angular
Rate

Controller

PID

Mixer

Inner Attitude Controller

XIr VIr FIr

ψr

q̄r

δTr

ΩBr

δAr

δEr

δRr TAr

Figure 3.2: PX4 control architecture used for controlling a multirotor.

design the controller gains,

δvirtual = P (ΩBi,r − ΩBi)− I
∫

(ΩBi,r − ΩBi) +D
d

dt
(ΩBi,r − ΩBi) (3.1)

with ΩBi,r representing the desired body angular rate of the multirotor in the
i direction and ΩBi the measured angular rate of the multirotor. The angular
rate controller outputs a virtual control signal, δvirtual, which is represented by
three virtual surface deflections adopted by aeroplanes representing the desired
change in pitch, roll and yaw. The mixer block is responsible for translating
the virtual control signals to the desired thrust produced by each motor. The
same PID control law in Equation 3.1 is used for the velocity controller by
replacing ΩBi,r and ΩBi with VIi,r and VIi , respectively. The controller block
Force and Yaw to Attitude and Thrust Conversion convert the force setpoint
that the velocity controller produces to a quaternion and thrust setpoint. This
conversion can be read more at [38].

The linearised proportional controller for the angle and inertial position in the
various directions, is in the form

Żi,r = P (Zi,r − Zi), (3.2)

with Z representing a placeholder for either the inertial position, XI , or
quaternions, q, of the multirotor.

+
−

1
s

IΩi

LPF s DΩi

PΩi

+
+
−

ΩBi,r

ΩBi

δkr

Figure 3.3: The PX4 angular rate control blockdiagram showing a PID con-
troller with additional elements for practical flight considerations.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM OVERVIEW 28

Figure 3.4: Gazebo simulating the IRIS multirotor alongside PX4 [2].

The design of the P , I and D gains are determined using a Root Locus for
each of the different controllers in each direction. During the design process,
it is essential that each closed-loop system, starting from the inner-most loop,
is consecutively separated by sufficient bandwidth. This is to ensure that
the controllers do not compete with each other, resulting in an oscillatory re-
sponse. The design rule-of-thumb is between 5-10 times slower than the inner
closed-loop system’s cut-off frequency. The other components in Fig. (3.3)
are implemented for practical flight considerations such as the low pass filter
(LPF), saturation block and integral limiter. The reasons for their implemen-
tations and the design process of determining the gains can be read more at
[32].

3.2 Gazebo Physics Simulation
Gazebo is a 3D dynamic multi-robot environment capable of approximating
the real world in which robots operate. Fig. (3.4) shows the Gazebo simulation
environment in which a multirotor is spawned. Gazebo makes use of the Open
Dynamics Engine to simulate rigid body dynamics and include noise models
for the various sensors used on a multirotor such as IMU, Global Positioning
System (GPS), barometer, and magnetometer. These noise models include
sensor bias, random walk and high frequency noise which can be adjusted
to represent the physical multirotor noise profiles. Gazebo also includes the
nonlinear models for thrust produced by motors rotating a propeller.

Gazebo allows the simulation environment to be enriched with the use of so-
called plugins. Plugins can be written to provide additional functionality to the
simulation environment. This allows models to interact with their environment
or exhibit different behaviour or appearances. The specific plugin and its

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM OVERVIEW 29

purpose will be introduced in Chapter 4.

Gazebo is widely used as the preferred simulation environment for open source
projects with ample support for the PX4 development environment, and for
this reasons, it was selected as the simulation environment to be used.

3.3 Robotic Operating System (ROS)
Robotic Operating System (ROS) is used in various robotics applications as
the communication layer between various subsystems. ROS has branched into
two versions, known as ROS1 and ROS2. ROS1 is used throughout this project
and will be from now on referred to as ROS. ROS adopts a publish-subscribe
architecture with a centralised point known as the ROS Master as shown in
Fig. (3.5). A ROS node represents a subsystem typically fulfilling a single task.
Before any other ROS nodes are able to communicate with other nodes, it must
first register with the ROS master. Collectively, the ROS nodes cooperate with
each other in order to complete the larger task at hand.

ROS is used to provide setpoints for the multirotor to fly in Gazebo and change
the environment and physical properties of the multirotor given specific states
of the system. These ROS nodes are the trajectory generator and domain
randomisation ROS nodes, respectively.

3.3.1 Trajectory Generator ROS Node

A ROS node was required to provide position and velocity setpoints for the
multirotor to fly during the entire simulated flight. The ROS node generates
the take-off commands, then provides a random setpoint for the multirotor to
reach for a predetermined time and then command the landing of the vehicle.
The generation of the random setpoint is explained in detail in Chapter 4.

ROS
Master

Node 1 Node 2
Messages

Register Register

Figure 3.5: The ROS architecture makes use of a centralised node, the ROS
master, which is responsible for all communications between nodes.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM OVERVIEW 30

3.3.2 Domain Randomisation ROS Node

The multirotor flies a random trajectory in simulation and hence the landing
location of the multirotor will be unknown until the land command is given.
The Domain Randomisation ROS node is responsible for generating a large
landing area for the multirotor in the Gazebo environment to allow the simu-
lated flight test to be completed.

The ROS node is also responsible for randomising the Gazebo environment
and the multirotor’s physical parameters. This is done in the beginning before
take-off in each simulated flight test. The reason for the randomisation of the
environment and the multirotor is explained in more detail in Chapter 4.

3.4 TensorFlow
The training and the construction of various neural network architectures are
done using the TensorFlow API [39]. TensorFlow provides all the necessary
building blocks to train and validate the results from a neural network. This
includes the mathematical backend to compute the gradients from a selected
loss function, update the weights using a selected optimiser and viewing the
results graphically.

3.5 MATLAB
Executing a practical flight test consists out of smaller incremental tests which
become sequentially more rigours. The tests validate the selected solution in
different settings which is expected to arise during a practical flight test, and
the successful completion of these tests results in increased confidence when
the chosen solution is practically tested.

The first test is to implement the chosen solution in a simulated environment
which isolates the solution from external influences. These external influences
include, but are not limited to, uncertainty in system parameters, measurement
noise, computational delays and disturbances. If the chosen solution success-
fully meets the desired outcomes of this test, the follow-on test is known as
software-in-the-loop (SITL) testing. SITL testing validates the custom soft-
ware written to execute the chosen solution and contains external influences
such as measurement noise.

The selected solution and classical alternatives are tested in a MATLAB en-
vironment which simulates the PX4 controllers used on the hardware. This
acts as the first test of validating the selected solution towards practical flight
tests. Furthermore, the MATLAB environment enables objective comparisons

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM OVERVIEW 31

Figure 3.6: Honeybee, the multirotor which is simulated and used for test
flights.

Mechanical property Value
Mass 0.66 kg
Principle moment of inertia (Ixx, Iyy, Izz) (1.326, 0.93, 1.95)·10−3

Maximum thrust from single motor 6.47 N
Distance from CoG to motor 0.11 m
Virtual yaw moment arm 7.997 · 10−3 m
Motor time constant 0.002 s

Table 3.2: Mechanical properties of Honeybee.

to be done regarding specific characteristics and allows early identification of
future problems.

3.6 Honeybee, the Multirotor
The multirotor being used throughout the project is a quadcopter with the
name Honeybee and is shown in Fig. (3.6). It was built from off-the-shelves
components and used a multirotor racing frame. The mechanical properties
of Honeybee are shown in Table 3.2 and were calculated by a different project
which coincided. The methods used for finding these mechanical properties
can be found in [32]. These properties are used to simulate the multirotor and
design the controllers.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM OVERVIEW 32

Trajectory Generator

Domain Randomisation

Dataset Creation
Training

Neural Network

Verify results
in MATLAB

Generating Training Data

Figure 3.7: The workflow of the project containing the various components
used to implement the proposed solution.

3.7 Workflow of Project
The proposed workflow of the project is shown in Fig. (3.7), which contains the
components explained in this chapter and illustrates the interdependence of
the various subsystems. It begins by generating the training data required for
creating a dataset on which the neural networks trains. This training dataset
generation occurs in the Gazebo simulation, where both ROS nodes are used
to implement the mentioned techniques. The training data is processed, and a
dataset is generated with the correct input and output pairs which are further
elaborated in Chapter 5. Once the dataset is ready, the training of the neural
networks can start using the TensorFlow API. Finally, when a satisfactory re-
sult is achieved, it can be tested in a MATLAB environment. In the MATLAB
environment, results are generated, which shows the performance of the neural
network as well as other commonly used techniques in a disturbance rejection
architecture.

3.8 Summary
This chapter described the various components required to implement the
necessary techniques to successfully train and validate a neural network for
disturbance rejection on a multirotor. These components include the simula-
tion environment for data generation, the flight control architecture for stable
flight, the neural network programming interface and finally, the communica-
tion layer for components to communicate with each other. The chapter also
described the workflow, which uses each component to complete the task at
hand.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Data Generation for Sim2Real

This chapter describes how simulated data is generated for training a neural
network to estimate disturbances in reality. This process of data generation
begins by adapting the simulation environment and the activities within the
simulation such as the reference signal that the multirotor must follow and
the disturbances influencing the multirotor. This is followed by the dataset
generation and the neural network architecture for the successful training of a
neural network operating in reality.

4.1 Generating Training Data
The success of a trained neural network is determined by its performance on
unseen data. That is the data which the neural network has not been trained
on, but comes from the same distribution the training data is sampled from.
There are various techniques which impede the ability of a neural network to
overfit on the training dataset, such as weight regularisation, dropout and some
data manipulation techniques, but the best technique is to increase the size of
the dataset. However, data in robotics is scarce and creating an experimental
setup is expensive; thus, data generation does not scale well in robotics. This
has caused engineers to first test and verify their newly designed systems in
simulation first before, starting the process of manufacturing.

This simulation based design has birthed the idea of generating training data
in a simulation environment and testing whether the neural network still per-
forms to an acceptable level in reality. This process of generating a solution
from simulation and then taking it to reality is known as Sim2Real transfer
[40]. In this project, the generation of training data will occur in the Gazebo
simulation environment, in which the data will henceforth be used to train a
neural network using TensorFlow.

33

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DATA GENERATION FOR SIM2REAL 34

Parameter Scaling factor range Additive term range

mass uniform([0.95,1.05]) -
principles of inertia of multirotor uniform([0.95,1.05]) -
products of inertia of multirotor - uniform([0,0.0005])
gravity vector(x̄I ,ȳI ,z̄I) - N (0, 0.2)

Table 4.1: Ranges of parameters randomised during each simulated flight.

4.1.1 Domain Randomisation

A technique used for improving Sim2Real transfer is domain randomisation.
Domain randomisation is randomising the parameters describing the simu-
lation environment and by doing so, demands the neural network to learn
multiple environments. This leads to a neural network which is more robust in
different environments and not overfit on the simulation environment in which
it has been trained.

The randomisation is implemented in the Gazebo simulation using the Gazebo
Awesome Plugins (GAP) [41]. GAP provides the additional functionality to
randomise the Gazebo environment and is implemented as a ROS node.

The simulation environment is randomised at the start of each new flight
according to Table 4.1. These distributions are based on the work from OpenAI
et al. [31] as a guideline. The product of inertia elements of the multirotor
are assumed zero during the controller design, but in reality this is not the
case because the multirotor is not perfectly symmetrical. The upper bound
was selected finding the lowest principle of inertia value of the multirotor
and reducing it by an order of magnitude. The gravity vector is added with
a Gaussian distribution, where the addition in the x̄I and ȳI direction is
simulated as additional uncertainty in the dynamics of the multirotor.

4.1.2 Generation of Trajectories Setpoints

Generating a large dataset for training neural networks leans itself to the
automation of generating and sending the setpoints to the flight controller.
This was accomplished by using a ROS node, sending the generated trajectory
to the flight controller during each simulated flight. The ROS node would also
command the multirotor to take-off and land.

The ROS node sends velocity or position setpoints to the multirotor to execute,
and the decision is based on the Bernoulli trial with a probability 0.5. The
reason for sending either position or velocity setpoints is to allow the neural
network to train on a flight envelope which is wide enough. If only velocity

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DATA GENERATION FOR SIM2REAL 35

0 200 400 600 800 1000
Time step [ms]

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

R
ef

er
en

ce
si

gn
al

[m
]

Figure 4.1: A random setpoint generated by Equation 4.1 containing the ex-
pected properties produced by waypoint flying and manual control.

setpoints were used, the neural network would never identify how a multirotor
hovers. Furthermore, angle and angular rate setpoints were not used because
it would result in the multirotor performing trajectories outside of the design
region: performing acrobatic manoeuvres such as flips.

The velocity and position setpoints should contain the expected properties
being produced by the controller, or a human and these were determined as
step, ramp and exponential functions. When observing waypoint flying, the
setpoint that the position controller receives is a step functions representing
the new location. The velocity loop receives ramp inputs when executing way-
point flying because as it is flying towards the next waypoint, the positional
error decreases with a given slope for any gain in Equation 3.2. The exponen-
tial and square functions were added as the additional waveforms required to
approximate human input through a remote control.

The generated trajectory is governed by the following equation,

u(t) =
4∑

q=1

Yq·hq(t, τq), (4.1)

where Yj is a random magnitude selected from a uniform distribution and hj
is functions of the form shown in Table 4.2. Each variable describing their

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DATA GENERATION FOR SIM2REAL 36

function is sampled from an uniform distribution over an appropriate interval.
Fig. (4.1) shows the generated setpoint which contains the expected properties.

Function Equation Description Random variable
h1 1(t− τ1)− 1(t− τ1 − τ2) Step τ1, τ2
h2 eτt Exponential τ
h3 m(t− τ) Ramp m, τ
h4 at2 + bt+ c Square a, b, c

Table 4.2: Functions used to represent a setpoint produced by a linear con-
troller or human.

The reason for characterising the setpoints using random variables is to pro-
tect the neural network from learning a correlation between the setpoints and
the disturbances. If this was the case, the neural network would overfit on
the training data and will not learn the underlying dynamics between the
disturbance and the response of the multirotor.

4.1.3 Generation of Disturbances

A Gazebo plugin was created to apply forces and moments to the multirotor
during the time of executing the random trajectories. The forces and moments
are applied in the body frame of the multirotor and are described by a random

0 200 400 600 800 1000
Time step [ms]

−4

−2

0

2

4

F
or

ce
or

T
or

q
u

e
[N

]
or

[N
/m

]

Figure 4.2: A random pulse train used as the disturbance effecting a multirotor.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DATA GENERATION FOR SIM2REAL 37

pulse train and shown in Fig. (4.2). The neural network is required to identify
any form of disturbance influencing the multirotor from its expected behaviour,
and thus the disturbance must maintain an autocorrelation of zero throughout.
If the disturbance has a non-zero autocorrelation, the neural network would
learn this correlation and then not generalise the underlying dynamics of the
response of the multirotor experiencing a disturbance. Previous work has
shown that using random pulse trains as disturbances affecting the multirotor
in simulation results in the trained neural network to generalise to unseen
disturbances such as step and sinusoidal disturbances [8]. The maximum and
minimum of the random pulse trains were limited to -2N and 2N to ensure a
stable flight and the maximum pulse length limited to 8 seconds. During flight,
the multirotor will be disturbed in each of the body directions with a unique
force and torque random pulse trains. The disturbance signal is discretised at
the same frequency at which the Gazebo simulation executes, which allows for
easy logging and dataset creation.

4.2 Simulated Flight
A simulated flight starts by spawning the multirotor in the Gazebo environ-
ment and starting the PX4 flight controller, as shown in Fig. (4.3). Once the
multirotor has spawned, the ROS node Domain Randomisation randomises
the parameters of interest. From there the Trajectory Generator ROS node
sends the take-off command, following the randomised trajectory. During the
execution of the randomised trajectory, the Gazebo disturbance plugin is acti-
vated to disturb the multirotor as it is trying to execute the given trajectory.
Once the disturbance has finished, the Trajectory Generator ROS node signals

Figure 4.3: Quadcopter being spawned in Gazebo just before take-off command
is given.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DATA GENERATION FOR SIM2REAL 38

the multirotor to land where the Domain Randomisation ROS node generates
the landing pad for the multirotor.

Fig. (4.4) shows a multirotor commanded to hover in place during which it is
experiencing force disturbances in the x̄B-axis. To counteract the disturbance,
the control systems commands the vehicle to angle the thrust produced by
the motors against the direction of the disturbance. During the response, the
position setpoint stayed constant, and it was expected that the multirotor
would remain at steady state if no disturbances occurred. It is the difference
between the expected behaviour, and the actual behaviour that results in the
identification of disturbances and Fig. (4.4) shows the correlation between the
disturbance and the multirotor response which the neural network must learn.

4.3 Dataset Creation
PX4 starts to log the various parameters of interest when the flight controller
receives the arm command and stops the recording when a landing has been
detected. The logged data of interest is summarised in Table 4.3 and is used
to estimate the disturbance effecting the multirotor.

0 1000 2000 3000 4000
Time step

−40

−20

0

20

40

P
it

ch
an

gl
e

[d
eg

re
es

]

Pitch Angle

Disturbance

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

F
or

ce
d

is
tu

rb
an

ce
in

x̄
B-

ax
is

[N
]

Figure 4.4: Pitch angle response of the multirotor under the influence of dis-
turbances only in the x̄B-axis.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DATA GENERATION FOR SIM2REAL 39

Parameter Number of elements Storing frequency

Inertial velocity 3 25
Inertial velocity setpoint 3 25
Quaternions 4 100
Quaternion setpoint 4 100
Angular Rates 3 250
Angular Rate setpoints 3 250
PWM signal to motors 4 250

Total 24 -

Table 4.3: Parameters of interest being stored during a simulated flight.

From Table 4.3, it is visible that each of the input and output pairs for the
various controllers was selected excluding the position controller. It is impor-
tant to provide these input and outputs pairs because the neural network is
required to learn how the multirotor aught to behave given the reference. Any
deviation from the expected behaviour is the manifestation of disturbances.
The various inputs are also not stored at the same frequency, and thus the
inputs at slower frequency are kept constant until it updates.

The dataset is standarised using,

Y
′
=
Y − µ
s

(4.2)

where µ and s refers to the mean and standard deviation respectively of the
corresponding vector in the dataset. The standardisation of the dataset was
based on [31] using the same preprocessing of the data.

4.4 Neural Network Architecture
The neural network used to estimate the disturbances affecting a multirotor
is based on the work done by [31]. They combined the fully connected dense
ReLU layer with a layer containing multiple LSTM units which then outputs
the corresponding action the robot hand should execute. The project requires
the estimated disturbance, and thus after the LSTM layer, a single layer with
linear activation functions are used, which represents the disturbance in each
direction and is shown in Fig. (4.5). β, γ refers to the number of units of the
respective type used in the layer. [31] experimented with different architectures
and suggested that initial interaction with the environment would reveal the
global constants of the environment, such as the weight of the multirotor. [31]
also experimented with other architectures and concluded that the LSTM is
superior with regards to Sim2Real transfer.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DATA GENERATION FOR SIM2REAL 40

Normalised Noisy Observation
[n,w,z]

Fully Connected ReLU
[n, β]

LSTM
[n, γ]

Estimated Disturbance
[n,y]

Figure 4.5: Neural network architectures used for learning disturbances.

The loss function used for training of the neural network is the mean absolute
error (MAE) with weight regularisation,

L =
1

n

n∑

i=0

| Θ(x)− y | +λ
∑

l∈L

∑

j∈J

∑

k∈K
| W (l)

jk | (4.3)

and is used to associate the same importance between large and smaller errors.
The optimiser used to update the trainable variables is Adam [42].

The input data to the neural network model is a vector of the form

x = [batchsize, windowsize, input vectors] := [n,N, z], (4.4)

where the input vector has a size of 24 and correspond to the parameters shown
in Table 4.3. The window size is the number of consecutive previous logged
timestamps for each input vector provided, and the batchsize correspond to
the number of corresponding groups of window size and input vectors. The
input to the neural network thus has a size of n ·N · sizeof(z) and undergoes
the nonlinear transformation to output the estimated disturbance in the form
of

Θ(x) = [batchsize, output vectors] := [n, ŷ], (4.5)

where ŷ is the estimated disturbance influencing the multirotor. During the
nonlinear transformation, dropout is applied to the first fully-connected layer
to improve the generalisation of the neural network.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DATA GENERATION FOR SIM2REAL 41

4.5 Summary
Simulated data is used to train the neural network, which will be operating in
reality, to estimate disturbances. This process is known as Sim2Real transfer.
This chapter thus describes how the data generation is done for successfully
training a neural network in simulation to operate in reality. This data gener-
ation refers to how the simulation environment is adapted, the generation of
the reference signal that the multirotor should execute, how the disturbances
are modelled and then how the dataset is generated. All of the previously
mentioned points focus on guarding the neural network against overfitting the
simulation environment and learning the correlation between the response of
the multirotor being influenced by a disturbance.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Estimation Results of Observers

This chapter will introduce the classical techniques used for estimating distur-
bances effecting a multirotor and provide results of their estimation ability for
various types of disturbances. These classical disturbance techniques are used
to provide a comparison against the performance of the neural network. It
follows with the neural network’s estimation of disturbances effecting a multi-
rotor from the validation dataset as well as unseen disturbances to confirm the
generalisation ability of the neural network. For each observer, commentary is
provided regarding their performance on estimating disturbances. Lastly, the
process of modelling the neural network in MATLAB is described to compare
the disturbance rejection ability to the other observers.

5.1 Extended Kalman Filter
The EKF is an estimator of nonlinear systems which takes inputs that are as-
sumed to be Gaussian distributed. It is a recursive algorithm containing two
steps: the model and the measurement update, as shown in Fig. (5.1). It is
used extensively as an estimator in robotic systems. Referring to Fig. (5.1),
Fk and Hk are the discrete Jacobian matrix of f(·) and h(·) which are the
nonlinear process and measurement model, respectively. The Jacobian ma-
trices are computed using the previous timestep estimate of the states and
covariance matrix. Finally, Rk and Qk are the process and measurement noise
matrices and Lk the Kalman gain, which is an optimally weighting matrix to
update the states based on the uncertainty between the measurement and the
states predicted by the model. For an in-depth mathematical derivation and
understanding from a control perspective, refer to [43].

The EKF is not limited to the multirotor states and can estimate the dis-
turbances of the environment affecting the multirotor. This was practically
demonstrated by [21] who added a disturbance model to the EKF to estimate

42

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ESTIMATION RESULTS OF OBSERVERS 43

Model Update

(1) Project the state ahead:
X̄−

k = f(X̄+
k−1,uk−1)

(2) Project the error covariance ahead:
P−

k = FkP
+
k−1F

T
k + Qk

Initial estimates for
X̄+

k−1 and P−
k

Measurement Update

(1) Compute the Kalman gain:
Lk = P−

k HT
k (HkP

−
k HT

k + Rk)−1

(2) Update estimate with measurement:
X̄+

k = X̄−
k + Lk

[
yk − h(X−

k)
]

(3) Update the error covariance:
P+

k = (I − LkHk)P−
k

Figure 5.1: The EKF recursive algorithm used for estimating the disturbances
affecting the multirotor.

force disturbances acting upon a multirotor. They modelled the disturbance
as a random walk process described by:

yt = yt−1 + dt (5.1)

where dt is assumed to be Gaussian white noise such that dt ∼ N (0, s2).
This model of disturbances will be used in the model-based EKF, and the
converging speed of the EKF to the estimated disturbance is tuned by adjusting
the variance of the random walk: increasing the variance results in a faster
convergence speed at the cost of a noisier estimate. The mathematical equation
governing the multirotor kinematics in Equation 2.1 is expanded to include the
force and moment disturbances and results in,

FB = F T
B + FG

B + FD
B

MB = MT
B +MG

B +MD
B

(5.2)

with the superscript D referring to the disturbances.

5.1.1 MATLAB Implementation

The EKF is implemented in a MATLAB environment, alongside the identical
PX4 controllers used in the SITL simulation, which was presented in Chapter
3. The model-based EKF would receive its measurements from the PX4 EKF
estimates, and for this reason, the effect of sensor drift is assumed negligible
and omitted. In the practical experiment of [21], the model-based EKF was

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ESTIMATION RESULTS OF OBSERVERS 44

2 4 6
-0.2

-0.1

0

0.1

0.2

Figure 5.2: EKF estimating a sinu-
soidal force disturbance in the x̄B di-
rection of the multirotor.

2 4 6
0

0.05

0.1

Figure 5.3: EKF estimating a step
torque disturbance in the ȳB direction
of the multirotor.

executing on a “offboard” computer [44] which receives the estimated states
across a communication layer and thus a communication delay of 50Hz is
included. Fig. (5.4) shows the architecture of this process and is similarly
used in [21] for disturbance rejection. The MATLAB environment is further
enhanced by sampling the mass and moment of inertia values from a Gaussian
distribution. Its mean is the calculated values of the multirotor in Table 3.2,
and the variance of the respective random variable is shown in Table 5.1. This
is done to simulate a more realistic performance from the EKF.

Fig. (5.3) shows the EKF estimating a torque disturbance simulated as a step
function. The variance of the random walk was tuned to provide a satisfactory
tradeoff between noise and bandwidth and simultaneously making the results
comparable to the other techniques implemented.

The EKF is likewise capable of estimating time-varying disturbance, as shown

PX4 EKF

Onboard

Sensors

Acceleratometer
Gyroscope

GPS
Magnetometer

Estimated States

Quaternions
Velocity NED
Position NED
Sensor Biases

Model-
based EKF

Offboard

Estimated
Disturbance

Force
Torque

Figure 5.4: Process being emulated in MATLAB.

Parameter Variance
Mass 0.01
Moment of inertia terms 0.00001

Table 5.1: Gaussian distribution used for the physical properties of the multi-
rotor.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ESTIMATION RESULTS OF OBSERVERS 45

in Fig. (5.2), which is simulated as a force disturbance. These results are
exclusively estimating the disturbance affecting the multirotor without it being
rejected. The introduction of the disturbance rejection will influence the EKF’s
estimation of the disturbance since any overshoot or error will introduce a
proportional disturbance to the error. From these results, it is evident that
the model-based EKF is capable of estimating the disturbance affecting the
multirotor.

5.2 Extended State Observer
Estimators of disturbances are generally the Extended State Observers (ESO)
when used in a disturbance rejection architecture in a variety of fields [45],
[46], [47]. They have also been used to estimate disturbances affecting a mul-
tirotor. The ESO is a linear current estimator which operates on Single-Input
Single-Output (SISO) systems and live in the state space domain, as shown in
Fig. (5.5). The ESO yields the matrix L, shown in Fig. (5.5), which causes the
estimates to converge on the actual values. Construction of the ESO starts by
the differential equation,

yn(t) = f(y(t), ẏ(t), ..., yn−1(t), d(t), t) + bu(t) (5.3)

where d(t) is the external disturbances, y(t) the controlled output, u(t) the
control input and b a system gain. Equation (5.3) can be rewritten to be
represented as 




ẋ1 = x2

ẋ2 = x3
...
ẋn−1 = xn

ẋn = f(x1, x2, . . . , xn, d(t), t) + bu

y = x1.

(5.4)

Nonlinear Process

ẋ = f(x, u)

Linear Model

˙̂x = Ax̂ + Bu + L(y − Cx̂)

1
s

1
s

C

C

A

B

L

∑

u

Figure 5.5: State space representation of a linear estimator.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ESTIMATION RESULTS OF OBSERVERS 46

In the framework of the ESO, an additional state is included which represents
the lumped disturbances in the system,

xn+1 = f(x1, x2, . . . , xn, d(t), t), (5.5)

and by combining Equation 5.5 and Equation 5.4 results in




ẋ1 = x2

ẋ2 = x3
...
ẋn−1 = xn

ẋn = xn+1 + bu

ẋn+1 = ḟ(x1, x2, . . . , xn, d(t), t)

y = x1.

(5.6)

The ESO is then designed to estimate the states of the system where xn+1

represent the lumped disturbances.

5.2.1 MATLAB Implementation

Similar to the EKF, the ESO is implemented in MATLAB alongside the PX4
controllers. The discrete equivalent ESO’s are designed for the angular rate
and velocity SISO plants of the multirotor for estimating torque and force
disturbances respectively. The mass and moment of inertia elements are also
sampled from a Gaussian distribution using the variance from Table 5.1.

Fig. (5.6) shows the ESO estimating a sinusoidal torque disturbance affecting
the multirotor in the ȳB-axis. It can be seen that the ESO is capable of

2 4 6 8
-0.2

-0.1

0

0.1

0.2

Figure 5.6: ESO estimating sinusio-
dale torque disturbance affecting the
multirotor in the ȳB direction.

2 4 6 8
0

0.05

0.1

0.15

0.2

Figure 5.7: ESO estimating a step
force disturbance affecting the multi-
rotor in the x̄B-axis.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ESTIMATION RESULTS OF OBSERVERS 47

Hyperparameters Value
Hardware configuraion Nvidia Titan Xp
Optimiser Adam [42]
Learning rate (α) 3 · 10−4

Weight regularisation (λ) 7 · 10−4

Batchsize (n) 128
Dropout ratio (p) 0.4
LSTM size (γ) 64
ReLU layer size (β) 128
Time window size (N) 300

Table 5.2: Hyperparameter values used for training.

estimating the disturbance rather quickly. This quick response is due to the
low model uncertainty in the linear angular rate model. Fig. (5.7) shows the
ESO estimating a step force in the x̄B-direction, and exhibits rather poor
characteristics such as large overshoot and a long settling time. This response
is attributed to the fact that the velocity plant contains more uncertainty in
the plant dynamics as the angular rate plant.

5.3 Neural Network
The neural network is trained on a dataset containing 775 independent flight
logs with an average flight time of 80 seconds which includes landing and
takeoff. The training dataset was generated by randomly selecting 90% of the
775 independent flight logs and stitching them together. The remaining 10%
is used for validation to examine whether overfitting has occurred. The tuning
of the hyperparameters occurred using only 5% of the training dataset and
was done for faster identification of the appropriate ranges to use on the full
dataset. The final values for the hyperparameters are shown in Table 5.2.

The training1 occurred for 168 hours and resulted in the MAE of 0.13. The
loss value over this period is shown in Fig. (5.8), and it is visible that the loss
value has not converged yet due to interruption by the HPC scheduler. The
use of the LSTM in the neural network dramatically increases the training
time but is crucial for the Sim2Real transfer. It is suggested by [31] that the
LSTM is capable of identifying the environmental parameters from the time
window and results in improved generalising of the neural network. Two other
architectures were trained to examine whether they provide improvements over
the OpenAI architecture. These two architectures replaced the LSTM layer

1Computations were performed using the University of Stellenbosch’s HPC1 (Rhasat-
sha): http://www.sun.ac.za/hpc

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ESTIMATION RESULTS OF OBSERVERS 48

0 10 20 30 40
Epoch

0.14

0.16

0.18

0.20

0.22

L
os

s
va

lu
e

Training Dataset

Validation Dataset

Figure 5.8: Loss value during training of the neural network.

with either a fully-connected layer using ReLU activation functions or with an
alternative recurrent layer known as the Gated Recurrent Unit (GRU). Their
performance is summarised in Table 5.3, but neither architectures are able to
reach similar accuracy as the LSTM, though they do train significantly faster.
These results confirm the findings of [31].

Even though the neural network has converged to an acceptable MAE value
on the training dataset, it must perform to a similar degree on data it has not
been trained on and tested on other types of disturbances. Fig. (5.9), (5.10)
and Fig. (5.11) visually verifies that the neural network has not overfitted by
estimating the disturbances contained in the validation dataset. It is visible
that the neural network is able to estimate the disturbances; however, there
are regions where the neural network overestimate the disturbance. There are
also cases in the validation dataset which the neural network falsely identifies a
disturbance when, in fact, there is none. This behaviour is a direct consequence
of the neural network underfitting the training data, and with further training,
the neural network is expected to perform better. It should be noted that
during this estimation, the multirotor is experiencing disturbances from all
three directions, which is unrealistic but will improve the ability of the neural
network to estimate disturbances in reality.

The generalisation of the neural network is established by estimating distur-
bances of a different nature. Fig. (5.13) shows the neural network estimating
a time-varying disturbance only present in the x̄B-direction and Fig. (5.12)
shows the neural network estimating a step disturbance. From these results,
the neural network shows to have learned the underlying dynamics to a certain
degree. Though the neural network does not perfectly estimate these unseen
disturbances, it shows promising results for an under fitted neural network,
and as mentioned, with further training, improved results are expected.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ESTIMATION RESULTS OF OBSERVERS 49

0 2000 4000 6000
Timestep

−1

0

1

2

D
is

tu
rb

an
ce

fo
rc

e
in

x̄
B-

ax
is

[N
]

Estimated

Groundtruth

Figure 5.9: Neural network estimat-
ing the disturbance force affecting the
multirotor in the x̄B-direction while
being disturbed in the ȳB and z̄B
direction shown in Fig. (5.10) and
Fig. (5.11).

0 2000 4000 6000
Timestep

−1

0

1

2

D
is

tu
rb

an
ce

fo
rc

e
in

ȳ
B-

ax
is

[N
]

Estimated

Groundtruth

Figure 5.10: Neural network esti-
mating the disturbance force affect-
ing the multirotor in the ȳB direction
while being disturbed in the x̄B, and
z̄B direction shown in Fig. (5.9) and
Fig. (5.11).

0 1000 2000 3000 4000 5000
Timestep

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

D
is

tu
rb

an
ce

fo
rc

e
in

z̄ B
-a

x
is

[N
]

Estimated

Groundtruth

Figure 5.11: Neural network estimating the disturbance force affecting the
multirotor in the z̄B direction while being disturbed in the x̄B and ȳB direction
shown in Fig. (5.9) and Fig. (5.10).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ESTIMATION RESULTS OF OBSERVERS 50

0 2500 5000 7500
Timestep

0

2

4

6
D

is
tu

rb
an

ce
fo

rc
e

in
x̄
B-

ax
is

[N
]

Estimated

Groundtruth

Figure 5.12: Neural network estimat-
ing a step force disturbance affecting
the multirotor in the x̄B-direction.

0 2000 4000 6000
Timestep

−4

−2

0

2

4

D
is

tu
rb

an
ce

fo
rc

e
in

x̄
B-

ax
is

[N
]

Estimated

Groundtruth

Figure 5.13: Neural network esti-
mating a sinusoidal force disturbance
affecting the multirotor in the x̄B-
direction.

5.3.1 Estimation during Practical Flight Test

Fig. (5.14) shows the estimates of the neural network on a practical flight for
the multirotor, Honeybee and Fig. (5.15) shows the position estimates during
which the multirotor takes-off and then fly to a specific altitude. From these re-
sults, the neural network seems to transfer well to reality since no disturbance
is estimated throughout the flight. The neural network uses a time window
of 300 timesteps and thus does not predict anything initially during this time
window. During the flight, the flight controller mode was changed to a mode
which is not contained in the simulation resulting in the neural network to
output zero near the end of Fig. (5.14). This flight mode causes certain set-
points to be set to not-a-number (NaN), and thus the neural network would
not have previously seen this combination of setpoints.

To ensure that the previously shown practical flight test result was not a
coincidence, Fig. (5.16) shows the estimation of the neural network from a
different practical flight test with the estimated position of the multirotor
in Fig. (5.17). During this flight test, the multirotor carried an additional
payload and would require more thrust to stay in the air. This additional thrust

Model (number of units) Validation MAE Training time (hours)
Dense ReLU + LSTM(64) 0.13 168
Dense ReLU + GRU(64) 0.2 48
Dense ReLU + Dense ReLU(128) 0.28 48

Table 5.3: Comparisons between different neural network architectures.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ESTIMATION RESULTS OF OBSERVERS 51

0 500 1000 1500
Timestep

−0.02

0.00

0.02
F

or
ce

[N
]

ŷx̄B

ŷȳB

ŷz̄B

Figure 5.14: Neural network estimat-
ing the disturbances from a practical
flight test.

0 500 1000 1500
Timestep

−4

−2

0

2

P
os

it
io

n
[m

]

x̄I
ȳI
z̄I

Figure 5.15: The position estimates of
Honeybee from a practical test flight
which correspond to Fig. (5.14).

0 500 1000
Timestep

−1.5

−1.0

−0.5

0.0

F
or

ce
[N

]

ŷx̄B

ŷȳB

ŷz̄B

Figure 5.16: NN estimating distur-
bances from a practical flight test dur-
ing which Honeybee carried a payload.

0 500 1000
Timestep

−7.5

−5.0

−2.5

0.0

2.5
P

os
it

io
n

[m
]

x̄I
ȳI
z̄I

Figure 5.17: The position estimates of
Honeybee from a practical test flight
which correspond to Fig. (5.16).

translates to a disturbance influencing the multirotor in the z̄I direction. It is
visible from Fig. (5.16) that the neural network estimates a payload of 0.18kg
in the z̄I direction. During this practical flight test, the multirotor carried a
payload of 0.14kg which practically verifies the estimation ability of the neural
network. A similar practical flight test was conducted with the multirotor
carrying again a 0.14kg payload shown in Fig. (5.19) with the estimation from
the neural network shown in Fig. (5.18). The neural network estimates of the
payload are satisfactory, and it is stable throughout the flight and shows that
the methods used to improve the Sim2Real transfer were successful. With
further training, these estimates are expected to improve since the trained
neural network has underfitted the training dataset.

Fig. (5.20) again shows the neural network estimating a payload of 0.18kg

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ESTIMATION RESULTS OF OBSERVERS 52

0 500 1000
Timestep

−1.5

−1.0

−0.5

0.0
F

or
ce

[N
]

ŷx̄B

ŷȳB

ŷz̄B

Figure 5.18: NN estimating distur-
bances from a practical flight test dur-
ing which Honeybee carried a payload.

0 500 1000
Timestep

−5.0

−2.5

0.0

2.5

P
os

it
io

n
[m

]

x̄I
ȳI
z̄I

Figure 5.19: The position estimates of
Honeybee from a practical test flight
which correspond to Fig. (5.18).

0 500 1000 1500
Timestep

−2

−1

0

1

2

F
or

ce
[N

]

ŷx̄B

ŷȳB

ŷz̄B

Figure 5.20: NN estimating distur-
bances from a practical flight test. The
NN estimates a payload of 0.18kg and
then ground effects during landing.

0 500 1000 1500
Timestep

−7.5

−5.0

−2.5

0.0

2.5

P
os

it
io

n
[m

]

x̄I
ȳI
z̄I

Figure 5.21: The position estimates of
Honeybee from a practical test flight
which correspond to the disturbances
estimates of Fig. (5.20).

throughout the flight test with the position estimates in Fig. (5.21). During
this flight test, the flight mode did not changed before landing and Fig. (5.20)
shows the neural network estimating the ground effects at timestep 1500. Dur-
ing the practical flight tests, there were no measurements taken to estimate
the ground effects and thus there are no ground truth to compare this result.
However, it is promising that the neural network identifies disturbances during
landing.

5.3.2 MATLAB Implementation

The neural network must be modelled in some way to be able to compare its
disturbance rejection capabilities against the classical disturbance observers

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ESTIMATION RESULTS OF OBSERVERS 53

since it will be tested in a MATLAB environment. It was decided to model
the neural network as three independent Gaussian random variables with each
random variable being the disturbances in each respective direction. The mean
of the random variables are the ground truth disturbance, and the variance was
selected as a linear function based on the ground truth value of the disturbance
and the MSE that the neural network achieved on the validation dataset. The
MSE is the variance for an unbiased estimator as shown in Zheng [48] and
was the best metric available to choose from to model the neural network as
a Gaussian random variable. The neural network is thus modelled as,

ŷt = yt + N (yt,yt·0.1), (5.7)

with the gain of 0.1 in Equation 5.7 scaling the standard deviation from 0
to 0.4 across the total range of 4N which the neural network was trained on.
Modelling the neural network as a Gaussian random variable ignores effects
which could be expected during estimation, which are: large absolute errors
from the ground truth values and sudden spikes in the estimation. It is also
assumed that the introduction of rejection does not affect the estimation of the
neural network, and this was observed in previous work [8]. The results pre-
sented should thus be seen as the best-case scenarios until the neural network
is validated by using the actual trained model.

The results and discussion of the disturbance rejection performance of a neural
network modelled by a Gaussian distribution is presented in the following
chapter along the with the other observers.

5.4 Summary
This chapter presented the three observers which will be used in a disturbance
rejection architecture which are the ESO, EKF and neural network. Each
of their estimation of various disturbances was provided without the estima-
tion being used in feedback because the introduction of feedback would affect
their estimation. Both the ESO and EKF were able to estimate step and time-
varying disturbance for both torque and force disturbances. The training of the
neural network showed that the neural network has underfitted the training
dataset, but is able to estimate unseen disturbances such as step and time-
varying disturbances. It is expected with further training that these results
will improve. The estimation of practical flight data shows that the neural
network is capable of estimating ground effects and payloads. This confirms
the Sim2Real transfer of the neural network. To test the neural network esti-
mation in feedback, the method of modelling the neural network as a Gaussian
random variable was explained. Next, the estimation of the disturbance will
be introduced into feedback to provide rejection to the various disturbances.

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Disturbance Rejection Results

This chapter describes how the various estimators are incorporated into the
PX4 control architecture in order to reject disturbances of various forms. The
different estimators’ disturbance rejection performance is then provided and
discussed, which is followed by a comparison of the estimators. The compar-
isons make use of a quantitative method to score their disturbance rejection in
a controlled environment. Commentary is provided in light of the estimators’
scores.

6.1 Disturbance Rejection Architecture
The disturbance affecting the multirotor will be rejected by subtracting the
estimated disturbance from the pseudo control signal generated by the PX4
controller, as shown in Fig. (6.1). Mathematically this can be expressed as

δ́ = δPX4 −Kŷ. (6.1)

The PX4 controllers are designed using normalised gains, which implies that
the controller outputs a value in the range of [−1; 1]. Refer to [32] for a
derivation for how it is incorporated into the PX4 controllers. The estimated
disturbance thus needs to be normalised, to ensure the disturbance is rejected.

DPX4(s)

Disturbance
Observer K

Σ−
+

r
G(s)

δPX4

Kŷ

δ́ Plant Output

Figure 6.1: The control architecture used for angular rate and velocity subsys-
tem to reject disturbances.

54

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DISTURBANCE REJECTION RESULTS 55

Figure 6.2: The free-body diagram of the multirotor flying at a constant lon-
gitudinal velocity and height.

This normalised gain is indicated by the K gain. The subtraction occurs in
the subsystem which the disturbance manifests itself directly. This can be
identified by examining the free-body diagram of the multirotor in Fig. (6.2)
flying at a constant longitudinal velocity and height. In Fig. (6.2) Fq is the
force produced by the propellers, Fd is the disturbance force in the x̄B direction,
m is the mass of the multirotor and g is the gravitational acceleration constant.
Since the multirotor is flying at a constant velocity in the x̄I direction the
forces in all directions are in equilibrium. The sum of all the forces in the z̄I
direction results in

−Fq cos(−θ)− Fd sin(−θ)−mg cos(θ) = 0. (6.2)

Assuming, for now, that there are no disturbances and applying the small
angle approximation yields the following

Fq ≈ mg. (6.3)

The force in the x̄I direction acting on the multirotor is,

FIN = Fq sin(−θ), (6.4)

and by substituting Equation 6.3 and assuming the small angle approximation
results in,

FIN = −mgθ. (6.5)

Remembering the relationship between Euler angles and quaternions discussed
in Chapter 2, and by obtaining the longitudinal dynamics using Newton’s
second law which is,

FIN = mV̇N = 2mgq2, (6.6)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DISTURBANCE REJECTION RESULTS 56

the linear plant can be calculated using the Laplace Transform as:

GVN (s) =
VN(s)

q2(s)
=

2g

s
. (6.7)

The velocity controller for the plant shown in Equation 6.7 will output a force
which is translated into a reference angle for the angle controller. Thus, if a
force disturbance is present, it will be rejected by subtracting the estimated
disturbance force by the force generated by the velocity controller as shown

Fd − F̂d + Fc = mV̇N , (6.8)

where F̂d is the estimated disturbance force and Fc the force produced by the
velocity controller. This is similarly identified in the sum of moment equation
for the multirotor with a disturbance torque.

Thus, the estimated force disturbance will be subtracted in the velocity sub-
system and the estimated torque disturbance in the angular rate subsystem.
From a high-level perspective, Fig. (6.3) shows how the estimators for forces
and torques are incorporated into the cascaded control architecture to reject
the effect of the disturbances. Fig. (6.3) separates the force and torque ob-
servers however, this is not the case for the model-based EKF and neural
network which combines them.

Next, the three observers’ disturbance rejection performance is discussed. They
are placed in the disturbance rejection architecture, with the estimated dis-
turbance being used in feedback in the manner described above.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DISTURBANCE REJECTION RESULTS 57

Po
si

tio
n

C
on

tr
ol

le
r

P

V
el

oc
ity

C
on

tr
ol

le
r

PI
D

Fo
rc

e
D

is
tu

rb
an

ce
O

bs
er

ve
r

Σ
Fo

rc
e

an
d

Y
aw

to
A

tti
tu

de
an

d
T

hr
us

t
C

on
ve

rs
io

n

A
ng

le
C

on
tr

ol
le

r

P

A
ng

ul
ar

R
at

e
C

on
tr

ol
le

r

PI
D

To
rq

ue
D

is
tu

rb
an

ce
O

bs
er

ve
r

Σ
Σ

Σ

Σ

M
ix

er

X
I r

V
I r

F
I r

F
′ I r

ψ
r

q̄
r

δ T
r

Ω
B r

δ A
r

δ E
r

δ R
r

F
I d

δ A
d δ E

d δ R
d δ R

d

T

Figure 6.3: The PX4 control architecture adapted with disturbance observers
which provide disturbance rejection.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DISTURBANCE REJECTION RESULTS 58

2 4 6 8
-20

0

20

40

60

Figure 6.4: The pitch rate response of
the multirotor being influenced by a
step torque disturbance being rejected
with either PX4 or ESO.

2 3 4 5
-0.05

0

0.05

0.1

0.15

Figure 6.5: Estimation of a step torque
disturbance in the ȳB direction by a
ESO during which it is being used in
feedback.

6.2 Extended State Observer
In addition to normalising the estimated disturbance, it was required to re-
duce the value being subtracted to the pseudo control signal with a gain. If
this was not done, the multirotor would become unstable. These gains are
shown in Table 6.1 and were determined iteratively using step functions as the
disturbance.

Fig. (6.4) shows the response of the multirotor being influenced by a torque
disturbance simulated as a step function. As mentioned in Chapter 4, the high
gains of the ESO and the low uncertainty in the linear model results in fast con-
vergence to the estimated disturbance. Fig. (6.5) shows how the ESO estimates
the disturbances. It is visible that the ESO overshoots the ground truth dis-
turbance, and thus will introduce more disturbances. However, because of the
fast dynamics of the angular rate controller, these overshoots are counteracted
by the PX4 controller itself. Fig. (6.4) shows that the ESO provides significant
improvements over the standard PX4 controllers, with some undesirably high
frequency oscillation, before the ESO estimate reaches steady-state.

Fig. (6.6) shows the disturbance rejection of a step force disturbance influenc-

Control Loop Gain
Angular Rate 0.4

Velocity 0.2

Table 6.1: Gains used for disturbance rejection in feedback loop when using
ESO as estimator.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DISTURBANCE REJECTION RESULTS 59

ing the multirotor. The slow converging speed to the ground truth disturbance
and high overshoot of the estimated disturbance shown in Fig. (6.7) results
in small improvements over the standard PX4 controllers. This poor perfor-
mance is the result of the higher uncertainty in the linear velocity model of
the multirotor. The high overshoot during estimation is not very prominent
during feedback, because of the gain reducing its effect.

The poor performance of the ESO during the estimation of a step force dis-
turbance provides little confidence for rejecting sinusoidal force disturbances.
The estimation of sinusoidal force disturbances is shown in Fig. (6.9) with the
response in Fig. (6.8). As expected, the ESO introduces more disturbances
due to the poor estimation, but due to the gain reducing this effect, there is
little to none improvement over the PX4 controller.

The ESO is capable of estimating torque sinusoidal disturbances, as shown in
Fig. (6.11) with the response of the multirotor in Fig. (6.10). Even though
the ESO estimates the sinusoidal disturbance accurately, it is not capable of
rejecting it completely; however, it provides significant improvements over the
PX4 controllers.

Since the ESO operates on SISO systems which lumps all the disturbances
into one term, they cannot be used simultaneously for torque and force dis-
turbances. Using them in both controller-loops will result in both ESO’s esti-
mating a disturbance, whether it is exclusively force or torque. This combined
estimation results in the ESO’s competing with each other and results in pos-
sible instability.

5 10 15 20
-0.02

0

0.02

0.04

0.06

0.08

Figure 6.6: The response of the mul-
tirotor under the influence of a step
force disturbance being rejected with
PX4 or the ESO.

2 4 6 8 10
0

0.05

0.1

0.15

0.2

Figure 6.7: Estimation of a step force
disturbance in the x̄I direction by a
ESO during which it is being used in
feedback.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DISTURBANCE REJECTION RESULTS 60

2 4 6 8 10
-0.2

-0.1

0

0.1

0.2

Figure 6.8: The response of the mul-
tirotor under the influence of a sinu-
soidal force disturbance being rejected
with PX4 or the ESO.

2 4 6 8 10
-0.4

-0.2

0

0.2

0.4

Figure 6.9: Estimation of a sinusoidal
force disturbance in the ȳB direction
by the ESO during which it is being
used in feedback.

6.3 Extended Kalman Filter
Fig. (6.13) displays the EKF estimating a force step disturbance and Fig. (6.12)
the response of the multirotor. The EKF provides fast and little overshoot in
its convergence towards the ground truth disturbance, and this translates to
fast rejection of the disturbance with improvements over the standard PX4
controller. Fig. (6.16) shows that the use of the EKF provides small improve-
ments when the multirotor is disturbed by a sinusoidal force disturbance, even
though the estimation is closely matched to the ground truth disturbance as
shown in Fig. (6.17).

2 4 6 8 10
-100

-50

0

50

100

Figure 6.10: The response of the mul-
tirotor under the influence of a si-
nusoidal torque disturbance being re-
jected with PX4 or the ESO.

2 4 6
-0.2

-0.1

0

0.1

0.2

Figure 6.11: Estimation of a sinusoidal
torque disturbance in the ȳB direction
by a ESO during which it is being used
in feedback.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DISTURBANCE REJECTION RESULTS 61

Fig. (6.14) shows the response of the multirotor experiencing a step torque dis-
turbance and the estimation in Fig. (6.15). From the response, it is clear the
EKF is capable of rejecting torque disturbances and the effect of the communi-
cation delay does not pose problems to the faster dynamics of the multirotor.
The EKF proofs to show improvements over the PX4 controllers.

The estimation of a sinusoidal torque disturbance is shown in Fig. (6.18) with
the response of the multirotor in Fig. (6.19). Though the EKF estimates the
torque disturbance accurately, it does not reject the time-varying nature of
the disturbance completely. It does again provide improvements over the PX4
controllers.

The EKF is capable of estimating all three force and torque disturbances in
each respective direction and thus is more robust to disturbances in the var-
ious translation and attitude subsystems. However, as shown in Fig. (6.20),
if the frequency of the sinusoidal disturbance passes some threshold, the EKF
will start to perform worse than the PX4 controllers. This phenomenon is
expected because the EKF can be viewed as an adaptive low pass filter which
adapts based on the measurement and control updates as previously shown
in Fig. (5.1) and explained in [43]. In Fig. (6.21) the estimation has a phase
delay and a reduced magnitude from the ground truth, confirming this phe-
nomenon. This threshold can be increased by increasing the variance of the
disturbance model in Equation 5.1, but the effect of a noisier estimate might
be underestimated.

2 4 6 8 10 12
-0.02

0

0.02

0.04

0.06

Figure 6.12: The response of the mul-
tirotor under the influence of a step
force disturbance being rejected with
PX4 or the EKF.

2 4 6 8

0

0.05

0.1

Figure 6.13: Estimation of a step force
disturbance in the ȳB direction by a
EKF during which it is being used in
feedback.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DISTURBANCE REJECTION RESULTS 62

2 4 6
-40

-20

0

20

40

60

Figure 6.14: The response of the mul-
tirotor under the influence of a step
torque disturbance being rejected with
PX4 or the EKF.

2.8 3 3.2 3.4
0

0.05

0.1

0.15

Figure 6.15: Estimation of a step
torque disturbance in the ȳB direction
by a EKF during which it is being used
in feedback.

6.4 Neural Network
Fig. (6.22) shows the response of the multirotor being influenced by a force
disturbance. The use of the neural network shows improvements over the stan-
dard PX4 controller with the fast convergence speed and little to no overshoot
for the estimation, as shown in Fig. (6.23).

The neural network provides improvements over the PX4 controller as shown in
Fig. (6.24) with the estimation of the disturbance in Fig. (6.25) when rejecting
sinusoidal force disturbances. Even though the neural network estimates the
sinusoidal disturbance very closely with little offset, it does not reject the

2 4 6 8 10 12
-0.2

-0.1

0

0.1

0.2

Figure 6.16: The response of the mul-
tirotor under the influence of a sinu-
soidal force disturbance being rejected
with PX4 or the EKF.

2 4 6 8
-0.2

-0.1

0

0.1

0.2

Figure 6.17: Estimation of a sinusoidal
force disturbance in the x̄I direction
by a EKF during which it is being used
in feedback.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DISTURBANCE REJECTION RESULTS 63

4 6 8
-100

-50

0

50

100

Figure 6.18: The response of the mul-
tirotor under the influence of a si-
nusoidal torque disturbance being re-
jected with PX4 or the EKF.

4 6 8
-0.2

-0.1

0

0.1

0.2

Figure 6.19: Estimation of a sinusoidal
torque disturbance in the ȳB direction
by a EKF during which it is being used
in feedback.

3 4 5 6
-0.05

0

0.05

Figure 6.20: The response of the mul-
tirotor under the influence of a high
frequency sinusoidal force disturbance
being rejected with PX4 or the EKF.

3 4 5 6
-0.2

-0.1

0

0.1

0.2

Figure 6.21: Estimation of a high fre-
quency sinusoidal force disturbance in
the x̄I direction by a EKF during
which it is being used in feedback.

disturbance entirely as would be expected, which was also seen with the EKF.

The dataset used to train the neural network only contained force disturbances
and torque disturbances was not included. This was because of the required
time taken to create such a dataset and the additional time required to train.
The following results of torque disturbance rejection from a neural network
is presented with the assumption that the neural network would perform to
the same accuracy as that of force disturbances to represent some comparison
to the other observers. Similar to the EKF, the neural network is capable
of rejecting torque disturbance, as shown in Fig. (6.26) with the estimation
in Fig. (6.27). The time delay does not cause any problems, and the use of
the NN improves over the standard PX4 controllers. Again, similarly as the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DISTURBANCE REJECTION RESULTS 64

2 4 6 8 10 12
-0.02

0

0.02

0.04

0.06

Figure 6.22: The response of the mul-
tirotor under the influence of a step
force disturbance being rejected with
PX4 or the NN.

2 4 6 8
0

0.05

0.1

0.15

Figure 6.23: Estimation of a step force
disturbance in the x̄I direction by a
NN during which it is being used in
feedback.

2 4 6 8 10 12
-0.2

-0.1

0

0.1

0.2

Figure 6.24: The response of the mul-
tirotor under the influence of a sinu-
soidal force disturbance being rejected
with PX4 or the NN.

2 4 6 8

-0.2

-0.1

0

0.1

0.2

Figure 6.25: Estimation of a sinusoidal
force disturbance in the x̄I direction
by a NN during which it is being used
in feedback.

EKF, the NN is capable of estimating a torque sinusoidal disturbance shown
in Fig. (6.29) with the response shown in Fig. (6.28).

6.5 Quantitative Comparisons Of Disturbance
Rejection

The simulation environment in which the estimators will be compared is a
multirotor at hover in steady-state. The multirotor must try to remain in this
position during which force or torque disturbances described by step, ramp
and sinusoidal signals is disturbing the multirotor. If the disturbance is a

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DISTURBANCE REJECTION RESULTS 65

2 3 4 5 6
-20

0

20

40

60

Figure 6.26: The response of the mul-
tirotor under the influence of a step
torque disturbance being rejected with
PX4 or the NN.

2.8 3 3.2 3.4
0

0.05

0.1

0.15

Figure 6.27: Estimation of a step
torque disturbance in the x̄I direction
by a NN during which it is being used
in feedback.

2 4 6 8 10
-150

-100

-50

0

50

100

150

Figure 6.28: The response of the mul-
tirotor under the influence of a step
sinusoidal disturbance being rejected
with PX4 or the NN.

4 6 8

-0.2

-0.1

0

0.1

0.2

Figure 6.29: Estimation of a sinusoidal
torque disturbance in the x̄I direction
by a NN during which it is being used
in feedback.

force, it will influence the multirotor in the x̄I direction and if it is a torque
disturbance in the ȳB direction. The decision to examine the behaviour of the
multirotor from these two directions are based on the fact that the response
from the ȳI or x̄B will yield the same results because of the symmetry of the
multirotor. Furthermore, the disturbance is isolated to only one direction at a
time and was chosen as such to provide certainty to the root causes of specific
behaviour.

The performance of the estimators will be investigated using the following loss

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DISTURBANCE REJECTION RESULTS 66

functions,

IAE =

∫ t2

t1

|e|dt (6.9)

ITAE =

∫ t2

t1

t|e|dt (6.10)

where e is the error signal and is defined as either the deviation from the
steady-state x̄I or ȳB direction, depending on whether the disturbance is a
force or torque. The two loss functions in Equations 6.9 and 6.10 penalises
different characteristics of the response of the multirotor and is known as the
Integrated Absolute Error (IAE) and Integrated Time Absolute Error (ITAE)
respectively. IAE penalises both small and large errors equally, and if two
scores are provided; the lower one is better. However, the IAE does not in-
corporate the time it takes to achieve steady-state, and ITAE implements this
with the time variable, t in the integral. By using these two loss functions
to compare different responses enable the designer to differentiate between
estimators and to provide tangible commentary.

Tables 6.2 and 6.3 compares the various estimators and standard PX4 con-
trollers using the IAE and ITAE loss functions during which disturbance of
various forms are being rejected.

From Table 6.2, it is visible that the ESO performs the best to reject torque
disturbances. This is mainly due to the reason of the ESO being designed
as part of the controllers with no additional time-delay. However, the ESO
performs the worst for rejecting force disturbance in comparison to the EKF
and neural network for reasons previously discussed. The EKF and neural
network performs the best for rejecting force disturbances with the neural net-
work performing slightly better than the EKF. Since a communication delay
is simulated, the EKF and neural network will perform better for estimating
slower dynamics which manifest itself in the velocity plant. The EKF and neu-

Torque Disturbance Step Ramp Sinusoidal

IAE ITAE IAE ITAE IAE ITAE
PX4 0.466 1.881 0.392 2.510 23.38 333.2
ESO 0.185 0.734 0.053 0.319 7.078 100.7
EKF 0.333 1.807 0.142 1.245 13.91 198.9
NN 0.664 7.891 0.754 10.93 10.06 143.8

Table 6.2: Comparison of the various estimators and standard PX4 controllers
being scored using the IAE and ITAE loss function for rejecting torque distur-
bances.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DISTURBANCE REJECTION RESULTS 67

ral network performs better than the standard PX4 controllers rejecting torque
disturbances and is perhaps a better overall implementation since the ESO can
only be implemented in either velocity or angular rate control loops. Table 6.3
shows that the neural network performs worse than the PX4 controllers on step
and ramp disturbance, but for sinusoidal disturbances, it performs the second
best. The reason for performing worse on step and ramp disturbances is be-
cause during steady state, the neural network is still outputting noise around
the ground truth value of the disturbance resulting in very small vibrations.
These vibrations are penalised by the loss functions and is not a very good
representation of its performance with respect to the other observers regarding
torque disturbances.

As previously shown, the performance of the EKF reduces as the frequency of
the disturbance increases. This should not be the case for the neural network
if the dataset contained high frequency disturbances. The limitation would be
the time delay due to the computation execution time of the neural network
on the compute board.

From these results, it is evident that estimators being planned to execute
on offboard devices should focus on rejecting disturbances which manifest in
the slower dynamics of the system. In the multirotor case, this will be force
disturbances. Rejecting torque disturbances in multirotors should occur on the
flight control firmware running along the flight controller providing the high
bandwidth required to compensate for the faster dynamics.

Force Disturbance Step Ramp Sinusoidal

IAE ITAE IAE ITAE IAE ITAE
PX4 0.177 1.371 0.246 2.288 2.018 28.63
ESO 0.133 1.043 0.191 1.780 2.052 29.30
EKF 0.073 0.396 0.066 0.485 1.928 27.64
NN 0.065 0.368 0.059 0.471 1.742 25.00

Table 6.3: Comparison of the various estimators and standard PX4 controllers
being scored using the IAE and ITAE loss function for rejecting force distur-
bances.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DISTURBANCE REJECTION RESULTS 68

6.6 Summary
The estimation of disturbances by the three observers was introduced into the
disturbance rejection architecture to provide rejection of various types of dis-
turbances. The disturbance rejection, which was provided by the ESO, EKF
and neural network was presented and discussed. This was followed by com-
paring each of the three observers’ disturbance rejection using a quantitative
manner. From the results, it is evident that for torque disturbances acting
on the multirotor, the ESO is much more suited to providing rejection. This
is mainly due to the ESO executing at the same frequency as the inner con-
troller providing the bandwidth required to reject the faster dynamics. The
EKF and neural network are better suited to provide disturbance rejection to
force disturbances acting on the velocity plant of the multirotor. The EKF
and neural network is expected to be executing on a offboard device resulting
in additional time delays which prefers the slower dynamics of the multirotor.

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

Conclusion

This chapter will conclude the project by providing a summary of the project,
which contains what has been achieved. This is followed by future work which
originates from the results presented and finally the recommendation for work
using this project as a foundation.

7.1 Summary of Project
Multirotors are being introduced in various industries, each with their own
application-specific challenges to overcome for the multirotors to be of value
in these sectors. These specific challenges can be described as disturbances
influencing the multirotor due to the fact that these multirotors are required
to operate outside of their original flight envelope.

The problem definition was formulated based on the following premise: if gen-
eral disturbances can be rejected, it would provide a general solution towards
all application-specific challenges. The proposed solution was formulated from
the literature study on disturbance rejection for multirotors. It was selected
as using neural networks to estimate these disturbances and reject them using
a disturbance rejection architecture.

The system overview was presented, which explained the workflow of the
project at a high level. The system overview contained the simulation envi-
ronment namely Gazebo, the flight controllers used which is PX4, ROS which
is used for the communication between system components and then software
such as MATLAB and Tensorflow used for testing and implementation.

Sim2Real techniques were implemented in the simulation environment to im-
prove the neural network’s ability to perform well on real data and not only
the simulated data on which it was trained. This technique influenced the

69

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. CONCLUSION 70

following: simulation environment, the neural network architecture, the flight
path which the multirotor attempts to follow, the construction of the dataset
and how the disturbances occur in simulation.

Two other classical methods used for disturbance estimation were presented
and their estimation of various disturbances discussed. These two classical
estimation techniques are the Extended Kalman Filter and the Extended State
Observer. The results showed that the EKF and ESO are both capable of
estimating torque and force disturbances which are of a time-varying nature
and not.

The estimation of the trained neural network was presented on the valida-
tion dataset and then was followed by the estimation of practical flight tests.
The estimation of disturbances of practical flight tests showed that the neural
network had transferred acceptably to reality. This is showed by the neural
network estimating little to no disturbance during a practical flight which the
multirotor was carrying no payload. In the other practical flight tests pre-
sented during which the multirotor carried a payload of 0.14kg, the neural
network predicted a payload of 0.18kg. These results verify that the neural
network successfully transferred from simulation to reality.

The project was concluded by comparing the rejection of disturbances the
three observers provide in a MATLAB environment. The three observers were
scored based on the IAE and ITAE loss functions. It showed the Extended
State Observer performs the best for torque disturbances whereas the Extended
Kalman Filter and the neural network perform better on slower dynamics such
as force disturbances. Specifically, the use of a neural network as an observer
in a disturbance rejection architecture shows compelling evidence as oppose
to the classical observers as the method for rejecting unknown disturbances
influencing a multirotor.

7.2 Future Work
The loss function during training of the neural network showed that the neural
network has underfitted the training dataset. Further training is thus required
and would improve the estimation of the neural network. The results of the
validation dataset showed some large errors made by the neural network and
using the MSE loss function to punish larger errors might improve its results.

The disturbance rejection of torque disturbances from a neural network was
presented although the training of the neural network only contained force
disturbances. This was done to provide comparison to the other observers
with the assumption that the neural network would achieve similar accuracy.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. CONCLUSION 71

Thus, to verify the results shown torque disturbance should be contained in
the dataset.

The neural network showed promising results when the estimated disturbances
was used in feedback, but this was tested in a MATLAB environment without
the possible side-effects that the neural network portrayed. To verify the dis-
turbance rejection results, the neural network must be tested practically. This
will entail that the neural network must be executing on a companion board
alongside the flight controllers during which controlled disturbances must be
induce onto the multirotor to compare the estimation and the effects of it being
used in feedback.

7.3 Recommendation
For practical testing of using a trained neural network alongside the PX4 flight
controllers for providing disturbance rejection the ROS2 communication solu-
tion should be used. ROS2 uses a Real Time Publish Subscribe (RTPS) com-
munication protocol which provides timing guarantees for the critical control
loops.

Tensorflow is one of many software packages used to train and validate neu-
ral networks, however during the project another machine learning software
namely, PyTorch, has increased in popularity. There were challenges to us-
ing Tensorflow which caused delays during training, thus to investigate what
machine learning software provides the best support is advised.

Stellenbosch University https://scholar.sun.ac.za

Bibliography

[1] Veličković, P.: Complete collection of my PGF/TikZ figures. 2016.
Available at: https://github.com/PetarV-/TikZ

[2] Gazebo simulation. https://dev.px4.io/v1.9.0/en/simulation/gazebo.html,
2020. Accessed: 2020-09-30.

[3] Aerobotics | Press. 2020.
Available at: https://www.aerobotics.com/press/aerobotics-introduces-
latest-yield-estimation-technology-for-growers

[4] Oil and Gas | Airborne Drones. .
Available at: https://www.airbornedrones.co/oil-and-gas/

[5] Benefits of using drones in disasters | Airborne Drones. .
Available at: https://www.airbornedrones.co/airborne-drones-reports-
on-in-depth-study-reveals-how-drones-can-help-in-all-phases-of-a-
disaster/

[6] First U.S. FAA-approved ’beyond-line-of-sight’ drone flight completed |
Reuters. 2020.
Available at: https://www.reuters.com/article/us-usa-faa-drones-
idUSKCN1US2LR

[7] Sharma, P. and Singh, A.: Era of deep neural networks: A review. In: 2017
8th International Conference on Computing, Communication and Networking
Technologies (ICCCNT), pp. 1–5. 2017.

[8] Kotzé, H., Jordaan, W. and Kamper, H.: Training neural networks for control,
estimation and disturbance rejection. Elsevier, IFAC Papers Online, 2020.

[9] Smeur, E.J.J., de Croon, G.C.H.E. and Chu, Q.: Cascaded Incremental Non-
linear Dynamic Inversion Control for MAV Disturbance Rejection. jan 2017.
1701.07254.
Available at: http://arxiv.org/abs/1701.07254

[10] Fernandez, R.A.S., Dominguez, S. and Campoy, P.: L1 adaptive control for
Wind gust rejection in quad-rotor UAV wind turbine inspection. In: 2017

72

Stellenbosch University https://scholar.sun.ac.za

BIBLIOGRAPHY 73

International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1840–
1849. IEEE, jun 2017. ISBN 978-1-5090-4495-5.
Available at: http://ieeexplore.ieee.org/document/7991485/

[11] Celen, B. and Oniz, Y.: Trajectory Tracking of a Quadcopter Using Fuzzy
Logic and Neural Network Controllers. In: 2018 6th International Conference
on Control Engineering & Information Technology (CEIT), pp. 1–6. IEEE, oct
2018. ISBN 978-1-5386-7641-7.
Available at: https://ieeexplore.ieee.org/document/8751810/

[12] Al-Mahasneh, A.J., Anavatti, S.G., Ferdaus, M. and Garratt, M.A.: Adaptive
Neural Altitude Control and Attitude Stabilization of a Hexacopter with Un-
certain Dynamics. In: 2019 IEEE International Conference on Industry 4.0,
Artificial Intelligence, and Communications Technology (IAICT), pp. 44–49.
IEEE, jul 2019. ISBN 978-1-7281-3745-2.
Available at: https://ieeexplore.ieee.org/document/8784844/

[13] Koch, W., Mancuso, R., West, R. and Bestavros, A.: Reinforcement Learn-
ing for UAV Attitude Control. ACM Transactions on Cyber-Physical Systems,
vol. 3, no. 2, pp. 1–21, feb 2019. ISSN 2378962X.
Available at: http://dl.acm.org/citation.cfm?doid=3284746.3301273

[14] Vankadari, M.B., Das, K., Shinde, C. and Kumar, S.: A Reinforcement Learning
Approach for Autonomous Control and Landing of a Quadrotor. In: 2018
International Conference on Unmanned Aircraft Systems (ICUAS), pp. 676–
683. IEEE, jun 2018. ISBN 978-1-5386-1354-2.
Available at: https://ieeexplore.ieee.org/document/8453468/

[15] Hwangbo, J., Sa, I., Siegwart, R. and Hutter, M.: Control of a Quadrotor With
Reinforcement Learning. IEEE Robotics and Automation Letters, vol. 2, no. 4,
pp. 2096–2103, oct 2017. ISSN 2377-3766.
Available at: http://ieeexplore.ieee.org/document/7961277/

[16] Dai, B., He, Y., Zhang, G., Gu, F., Yang, L. and Xu, W.: Wind Disturbance Re-
jection for Unmanned Aerial Vehicle Based on Acceleration Feedback Method.
In: 2018 IEEE Conference on Decision and Control (CDC), pp. 4680–4686.
IEEE, dec 2018. ISBN 978-1-5386-1395-5.
Available at: https://ieeexplore.ieee.org/document/8619798/

[17] Bin Qiu, Hejin Xiong and Jian Fu: The position control of micro quad-rotor
UAV based on ADRC. In: 2015 Chinese Automation Congress (CAC), pp. 422–
426. IEEE, nov 2015. ISBN 978-1-4673-7189-6.
Available at: http://ieeexplore.ieee.org/document/7382537/

[18] Zhang, R., Quan, Q. and Cai, K.Y.: Attitude control of a quadrotor aircraft
subject to a class of time-varying disturbances. IET Control Theory and Appli-
cations, 2011. ISSN 17518644.

Stellenbosch University https://scholar.sun.ac.za

BIBLIOGRAPHY 74

[19] Suhail, S.A., Bazaz, M.A. and Hussain, S.: Altitude and attitude control of a
quadcopter using linear active disturbance rejection control. In: 2019 Inter-
national Conference on Computing, Power and Communication Technologies
(GUCON), pp. 281–286. Sep 2019. ISSN null.

[20] Zhao, Y., Cao, Y. and Fan, Y.: Disturbance observer-based attitude control for
a quadrotor. In: 2017 4th International Conference on Information, Cybernetics
and Computational Social Systems (ICCSS), pp. 355–360. July 2017. ISSN null.

[21] Hentzen, D., Stastny, T., Siegwart, R. and Brockers, R.: Disturbance estimation
and rejection for high-precision multirotor position control. 2019. 1908.03166.

[22] Verberne, J. and Moncayo, H.: Robust Control Architecture for Wind Rejec-
tion in Quadrotors. In: 2019 International Conference on Unmanned Aircraft
Systems (ICUAS), pp. 152–161. IEEE, jun 2019. ISBN 978-1-7281-0333-4.
Available at: https://ieeexplore.ieee.org/document/8798039/

[23] Xiang, T., Jiang, F., Hao, Q. and Cong, W.: Adaptive flight control for quadro-
tor UAVs with dynamic inversion and neural networks. In: 2016 IEEE Interna-
tional Conference on Multisensor Fusion and Integration for Intelligent Systems
(MFI), pp. 174–179. IEEE, sep 2016. ISBN 978-1-4673-9708-7.
Available at: http://ieeexplore.ieee.org/document/7849485/

[24] Bisheban, M. and Lee, T.: Geometric Adaptive Control for a Quadrotor UAV
with Wind Disturbance Rejection. In: 2018 IEEE Conference on Decision and
Control (CDC), pp. 2816–2821. IEEE, dec 2018. ISBN 978-1-5386-1395-5.
Available at: https://ieeexplore.ieee.org/document/8619390/

[25] Bari, S., Zehra Hamdani, S.S., Khan, H.U., ur Rehman, M. and Khan, H.:
Artificial Neural Network Based Self-Tuned PID Controller for Flight Control
of Quadcopter. In: 2019 International Conference on Engineering and Emerging
Technologies (ICEET), pp. 1–5. IEEE, feb 2019. ISBN 978-1-7281-0278-8.
Available at: https://ieeexplore.ieee.org/document/8711864/

[26] Shi, G., Shi, X., O’Connell, M., Yu, R., Azizzadenesheli, K., Anandkumar,
A., Yue, Y. and Chung, S.-J.: Neural Lander: Stable Drone Landing Control
Using Learned Dynamics. In: 2019 International Conference on Robotics and
Automation (ICRA), pp. 9784–9790. IEEE, may 2019. ISBN 978-1-5386-6027-0.
Available at: https://ieeexplore.ieee.org/document/8794351/

[27] Allison, S., Bai, H. and Jayaraman, B.: Wind Estimation Using Quadcopter
Motion: A Machine Learning Approach. jul 2019. 1907.05720.
Available at: http://arxiv.org/abs/1907.05720

[28] Bannwarth, J.X.J., Chen, Z.J., Stol, K.A. and MacDonald, B.A.: Disturbance
accomodation control for wind rejection of a quadcopter. In: 2016 International
Conference on Unmanned Aircraft Systems (ICUAS), pp. 695–701. IEEE, jun
2016. ISBN 978-1-4673-9334-8.
Available at: http://ieeexplore.ieee.org/document/7502632/

Stellenbosch University https://scholar.sun.ac.za

BIBLIOGRAPHY 75

[29] Matus-Vargas, A., Rodriguez-Gomez, G. and Martinez-Carranza, J.: Aerody-
namic disturbance rejection acting on a quadcopter near ground. In: 2019 6th
International Conference on Control, Decision and Information Technologies,
CoDIT 2019. 2019. ISBN 9781728105215.

[30] Jiang, F., Pourpanah, F. and Hao, Q.: Design, Implementation and Evaluation
of a Neural Network Based Quadcopter UAV System. IEEE Transactions on
Industrial Electronics, pp. 1–1, 2019. ISSN 0278-0046.
Available at: https://ieeexplore.ieee.org/document/8676108/

[31] OpenAI, Andrychowicz, M., Baker, B., Chociej, M., Jozefowicz, R., McGrew,
B., Pachocki, J., Petron, A., Plappert, M., Powell, G., Ray, A., Schneider,
J., Sidor, S., Tobin, J., Welinder, P., Weng, L. and Zaremba, W.: Learning
dexterous in-hand manipulation. 2018. 1808.00177.

[32] Erasmus, A.: Stabilization of a rotary wing unmanned aerial vehicle with an
unknown suspended payload. Master’s thesis, Stellenbosch University, 2020.

[33] Goodfellow, I., Bengio, Y. and Courville, A.: Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[34] Bengio, Y., Simard, P. and Frasconi, P.: Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, vol. 5,
no. 2, pp. 157–166, 1994.

[35] Hochreiter, S. and Schmidhuber, J.: Long short-term memory. Neural Compu-
tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[36] Krogh, A. and Hertz, J.A.: A Simple Weight Decay Can Improve Generaliza-
tion. 1992.
Available at: https://papers.nips.cc/paper/563-a-simple-weight-decay-
can-improve-generalization

[37] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R.:
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal
of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.
Available at: http://jmlr.org/papers/v15/srivastava14a.html

[38] Brescianini, D., Hehn, M. and D’Andrea, R.: Nonlinear quadrocopter attitude
control. technical report. 2013.

[39] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens,
J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y.
and Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous
systems. 2015. Software available from tensorflow.org.
Available at: https://www.tensorflow.org/

Stellenbosch University https://scholar.sun.ac.za

BIBLIOGRAPHY 76

[40] Kaspar, M., Osorio, J.D.M. and Bock, J.: Sim2real transfer for reinforcement
learning without dynamics randomization. 2020. 2002.11635.

[41] Borrego, J., Figueiredo, R., Dehban, A., Moreno, P., Bernardino, A. and Santos-
Victor, J.: A generic visual perception domain randomisation framework for
gazebo. In: 2018 IEEE International Conference on Autonomous Robot Systems
and Competitions (ICARSC), pp. 237–242. April 2018.

[42] Kingma, D.P. and Ba, J.: Adam: A method for stochastic optimization. 2014.
1412.6980.

[43] van Daalen, C. and Jones, T.: Advance estimation 813: Course notes v(0.4).
February 2019.

[44] Offboard px4 v1.9.0 user guide. 2020.
Available at: https://docs.px4.io/v1.9.0/en/flight_modes/offboard.html

[45] Yang, M., Lang, X., Long, J. and Xu, D.: Flux immunity robust predictive
current control with incremental model and extended state observer for pmsm
drive. IEEE Transactions on Power Electronics, vol. 32, no. 12, pp. 9267–9279,
2017.

[46] Yao, J. and Deng, W.: Active disturbance rejection adaptive control of hydraulic
servo systems. IEEE Transactions on Industrial Electronics, vol. 64, no. 10, pp.
8023–8032, 2017.

[47] Yang, L., Zhang, M., Tian, L. and Wang, P.: Improved phase plane attitude
control of space vehicles with extended state observer considering disturbance
and thruster dynamics. In: 2020 Chinese Control And Decision Conference
(CCDC), pp. 4417–4422. 2020.

[48] Zheng, S.: Topic 14: Unbiased Estimation *. Tech. Rep., Missouri State Uni-
versity, 2011.
Available at: http://people.missouristate.edu/songfengzheng/Teaching/
MTH541/Lecturenotes/evaluation.pdf

Stellenbosch University https://scholar.sun.ac.za

