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Summary 

Background: Breast cancer is one of the most common cancers diagnosed in women and 

approximately 60% of breast cancer related deaths are reported in low- and middle-income 

countries. Breast cancer is a highly heterogeneous disease, and molecular subtyping is paramount 

for effective treatment of patients. Therefore, it is important to validate new molecular methods 

for assessing cancer biomarkers for cost-effective use in resource-poor settings. 

Aim: A retrospective study was performed to determine the concordance between a 

Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR) CE-IVD assay 

(Xpert® Breast Cancer STRAT4*) and the current gold standard methods of 

immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) for determining 

estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 

(HER2) and proliferation index (KI-67) expression in breast carcinomas. 

Method: One hundred and one cases of breast carcinoma were retrieved from the archives of the 

Division of Anatomical Pathology, Tygerberg Academic Hospital. The original stained slides were 

reviewed and IHC expression of ER, PR, HER2 and KI-67 scored. Three-micron sections were 

cut from formalin-fixed paraffin embedded (FFPE) tissue blocks and processed according to the 

instructions of the manufacturer. The assay was run on the resultant lysates. 

Results: The overall percentage agreement between the Xpert® STRAT4 assay and IHC / FISH 

results were 85.15% for ESR, 89.90% for PGR, 91.09% for ERBB2, 90.72% for MKI67 (when 

using a cut off of 10%) and 84.54% for MKI67 (when using a cut-off of 20%). The positive 

percentage agreement for ESR, PGR, ERBB2, MKI67 with 10% cut-off and MKI67 with 20% cut-

off were 82.76%, 94.64%, 68.97%, 91.30% and 96.05%, respectively, and the negative percentage 

agreement were 100%, 84.09%, 91.67%, 80.00% and 42.86%, respectively.  

Conclusion: The study has shown that the Xpert® Breast Cancer STRAT4 assay shows good 

concordance with IHC and FISH in detecting breast cancer biomarkers, and may become a 

supplementary or alternative standard of care after validation studies are performed. 

*CE-IVD. In vitro diagnostic medical device.  Not available in all countries.  Not available in the

US. 
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Opsomming 

Agtergrond: Borskanker is een van die algemeenste kankers wat by vroue gediagnoseer word en 

ongeveer 60% van sterftes wat met borskanker verband hou, word in lande met lae en middle-

inkomste aangemeld. Borskanker is 'n hoogs heterogene siekte, en molekulêre subtipes is van 

uiterse belang vir die effektiewe behandeling van pasiënte. Daarom is dit belangrik om nuwe 

molekulêre metodes te evalueer vir die bepaling van kankerbio-merkers vir koste-effektiewe 

gebruik in hulpbron-arm instellings. 

Doel: 'n Terugwerkende studie is uitgevoer om die ooreenkoms tussen 'n RT-qPCR CE-IVD-toets 

(Xpert® Borskanker STRAT4*) en die huidige goudstandaardmetodes van immunohistochemie 

(IHC) en fluoresensie in situ-hibridisasie (FISH) om die uitdrukKIng van estrogeen reseptor (ER), 

progesteroon reseptor (PR), menslike epidermale groeifaktor reseptor 2 (HER2) en proliferasie 

indeks (KI-67) te bepaal in borskarsinoom.  

Metode: Honderd-en-een gevalle van borskarsinoom is uit die argiewe van die Afdeling 

Anatomiese Patologie, Tygerberg Akademiese Hospitaal, geselekteer. Die oorspronklike 

gekleurde skyfies is hersien om die IHC-uitdrukKIng van ER, PR, HER2 en KI-67 te bepaal. Drie-

mikron snitte is van die formalien vaste paraffien-ingebedde weefselblokke gesny en volgens die 

instruksies van die vervaardiger verwerk. Die toets is uitgevoer op die resulterende lisate.  

Resultate: Die algehele persentasie-ooreenkoms tussen die Xpert® STRAT4-toets en IHC / FISH-

resultate was 85,15% vir ESR, 89,90% vir PGR, 91,09% vir ERBB2, 90,72% vir MKI67 (wanneer 

'n afsnypunt van 10% gebruik is) en 84,54% vir MKI67 (met 'n afsnypunt van 20%). Die positiewe 

persentasieooreenkoms vir ESR, PGR, ERBB2, MKI67 met 10% afsnypunt en MKI67 met 20% 

afsnyspunt was onderskeidelik 82,76%, 94,64%, 68,97%, 91,30% en 96,05%, en die negatiewe 

persentasieooreenkoms was 100%, 84,09%, 91,67%, 80,00% en 42,86%, onderskeidelik.  

GevolgtrekKIng: Die studie het getoon dat Xpert® borskanker STRAT4-toetsing goeie 

ooreenstemming met IHC en FISH toon vir die opsporing van biomerkers in borskanker, en dit 

kan 'n aanvullende of alternatiewe standaard vir sorg word nadat meer valideringstudies gedoen 

is.  

* CE-IVD. In vitro diagnostiese mediese toerusting. Nie in alle lande besKIkbaar nie. Nie 

besKIkbaar in die VSA nie. 
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Chapter 1  

Introduction 

Cancer has become an epidemic with an increasing global burden (WHO, 2018). Research leading 

to the control of cancer prevalence and its resultant mortality and morbidity is critical to relieving 

the burden of this disease on the population of any nation (Rafiemanesh et al., 2018). Higher 

incidence rates of cancer in Asia and Africa, as reported by the World Health Organization (WHO), 

is a result of failure to diagnose cancer early and lack of resources for holistic treatment in these 

regions (Bray et al., 2018; WHO, 2018). However, it is noteworthy that breast cancer incidence is 

highest in high income countries (HIC) in comparison with low- to medium income countries 

(LMIC), predominantly in Africa (Boyle, 2012; Akarolo-Anthony et al., 2012). In contrast, the 

death rate from breast cancer in LMIC is higher as compared to HIC (Jedy-Agba et al., 2016). 

Reports from GLOBOCAN (2018) indicate that the top five most frequent cancers (excluding non-

melanoma skin cancer) are lung, breast, colorectal, prostate and stomach cancer. Cancer of these 

five organs accounted for 46% of cancer prevalence and 43% of cancer deaths in 2018. Breast 

cancer results in a high mortality rate amongst women globally (Jedy-Agba et al., 2016; Stefan, 

2015). Approximately 60% of breast cancer related deaths are reported in developing or LMIC, 

while 40% occur in developed countries (Rivera-Franco and Leon-Rodriguez, 2018; da Costa 

Vieira et al., 2017; Narod et al., 2015). This reduced mortality rate in developed countries is largely 

due to early diagnosis and treatment at state-of-the-art facilities specializing in the management of 

breast cancer (Jemal et al., 2011). 

Socio-economic factors and limited access to health care facilities may be contributing factors to 

the increased incidence of breast cancer in developing countries (Rivera-Franco and Leon-

Rodriguez, 2018; Akarolo-Anthony et al., 2010). In addition, urbanization, reproductive cycle 

alteration (from use of contraceptives, exposure to carcinogens etc.), environmental risk factors 

(pollution), lifestyle (alcohol use, smoking) and increasing life expectancy are associated with the 

increasing incidence of breast cancer occurring in LMIC (Hadgu et al., 2018; Akarolo-Anthony et 
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al., 2010;). Tefferi et al. (2015) in their study projected that two-thirds of new cancer diagnoses 

will occur in developing countries by 2035. 

Breast cancer management is a major challenge due to the heterogeneity of the disease. There are 

many different subtypes of carcinoma with diverse attributes, both biologically and clinically 

(Rivenbank et al., 2013). Classification of breast carcinoma according to the expression of 

estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 

(HER2) and proliferation index Ki-67 (proteins encoded by ESR1, PGR, ERRB2 and MKI-67 

genes, respectively) is an essential step in the treatment of the disease, prognostication and 

predicting the response to treatment (Dai et al., 2016). Breast carcinoma biomarker status 

assessment can be performed at various molecular levels using different laboratory techniques 

(Eswarachary et al., 2017). Currently, the clinical gold standard for measuring breast cancer 

biomarkers ER, PR and HER2 status is immunohistochemistry (IHC) on formalin-fixed paraffin 

embedded (FFPE) tissue (Müller et al., 2011).  Breast carcinomas reported to have an equivocal 

HER2 IHC score undergo fluorescence in situ hybridization (FISH) testing to determine the HER2 

status as recommended by the American Society of Clinical Oncology/College of American 

Pathologists (ASCO/CAP) (Eswarachary et al., 2017; Wolff et al., 2013).  

The evaluation of IHC and FISH is performed using light and fluorescent microscopy, respectively 

(Bogdanovska-Todorovska et al., 2018). It needs to be recognized, however, that there may be 

discrepancies due to many pre-analytical factors such as the technique of the tissue sample 

acquisition, fixation and preparation. This may lead to challenges in interpretation of results using 

these techniques as previous described by Grant et al (2015;2019) in the South African context. 

These authors used a microarray platform to explore different characteristics of tumors and to 

predict prognosis in specific groups of breast carcinoma patients, based on level 1A evidence for 

determination of chemotherapy benefit (Cardoso et al., 2016). Microarray testing lead to the 

discovery of four major intrinsic subtypes of breast cancer (Perou, et al., 2000). This resulted in 

the development of commercially available RNA-based gene profiling tests such as Mammaprint 

(70 genes) and BluePrint (80 genes). These tests which are currently only available in the private 

health care sector in South Africa, are used in combination with IHC/FISH to help inform effective 
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chemotherapy and anti-HER2 therapy using microarrays (Grant et al., 2019; Myburgh et al., 

2016).  

Recently, the above mentioned microarrays has been transferred onto a next generation sequencing 

platform (Mittempergher et al., 2019). High-throughput technologies assessing transcriptional 

profiling have ignited the ability of researchers to study breast cancer at the molecular level, with 

the ultimate objective of early detection and targeted treatment (Ho et al., 2020). However, the 

availability and affordability of high-quality diagnostic technologies is relatively limited in LMIC 

(Nelson et al., 2016). Exploring these technologies in LMIC depends on the incidence of the 

disease in the targeted population and availability of resources (Clifford, 2016) for analytical 

validation prior to implementation. 

There are three categories of test performance to be evaluated for new tests: analytic validity, 

clinical validity, and clinical utility (Holtzman and Watson, 1999). These categories are linked 

together and may overlap (Figure 1-1). A major goal of analytical validity is the ability of a test 

to accurately and reproducibly measure an analyte (Burke, 2014). Holtzman and Waston (1999) 

suggested that prior to use of a newly developed test, clinical validity and utility must be taken 

into consideration. Clinical validity refers to the accuracy with which the assay identifies a 

particular clinical outcome. There are important variables to consider for clinical validity, such as 

the type of assay used and its analytic validity. On the other hand, clinical utility would refer to 

the risks and benefits resulting from using a test. This aspect involves the medical and social 

outcomes associated with the test. The determination of clinical validity and utility was not part of 

the scope of this present study, which only focused on the analytical validity. 
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Figure 1-1: Evaluation process for genetic testing.  Source: Centers for Disease Control and 

Prevention (CDC). 

 

1.1 Rationale 

Introduction of advanced molecular technologies alongside standard pathology services faces a 

number of challenges in LMICs which may include the lack adequate infrastructure and skilled 

personnel at all levels (Patel et al., 2016). Although immunohistochemistry testing is readily 

available in academic and private histology laboratories in South Africa, at Tygerberg Hospital 

(TBH), FISH testing (required for equivocal HER2 results), is referred to another laboratory due 

to these complexities. This may generate inconsistencies between results produced with the use of 

the same samples at different laboratories. The optimization and standardization of tests along with 
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a high degree of human intervention (performing the test and interpretation of results) may all play 

a role in producing discrepant results (Wu et al., 2018; Wolff et al., 2013). Despite attempting to 

overcome these challenges associated with referral of samples, the risk of specimen loss during 

transit and long turn-around times for results can hamper appropriate patient care. Therefore, 

development and validation of rapid laboratory techniques that minimise human intervention and 

is easy to use for optimising patient management is a priority. In this study will evaluate a real 

time polymerase chain reaction (RT-qPCR) assay, the Xpert® Breast Cancer STRAT4 assay 

(STRAT4), in order to quantitatively assess mRNA of ESR1, PGR, ERBB2 and MKI67 in invasive 

breast carcinoma and compare these results to IHC and FISH biomarker assessment.  

1.2 Aim of study 

In this study ER, PR, HER2 and KI-67 status was evaluated in breast carcinomas of patients at 

TBH using the Xpert® Breast Cancer STRAT4 assay. The specific objectives were as follows: 

 To measure mRNA transcripts of ESR1, PGR, ERBB2 and MKI67 using the Gene Xpert® 

instrument in FPPE samples. 

 To correlate the results of different techniques to (IHC, FISH & RT-qPCR) used to assess 

breast carcinoma subtypes at the protein, DNA and mRNA levels.  
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Chapter 2  

Literature Review 

The International Agency for Research on Cancer (IARC) reported over 47 000 deaths from cancer 

in South Africa in 2012 (Ferlay et al., 2013). Several factors such as an ageing, demography, 

infectious diseases, abnormal weight gain and abuse of narcotics amongst the female population 

have been attributed to an increased incidence of breast cancer and resultant death from this disease 

(Torre et al., 2015). Similarly, Norman et al. (2007) had also listed the aforementioned factors to 

the cancer morbidity and mortality indices in the South African population. Previous studies have 

reported some decline in mortality rates for other forms of cancer, especially internal malignancies 

such as tracheal, bronchial and lung cancers between 2001 to 2006 (Dela Cruz et al., 2011; Mayosi 

et al., 2009). However, an increased mortality was recorded for breast cancer, cervical cancer and 

prostate cancer around the same period (Mayosi et al., 2009). According to the South African 

National Cancer Registry (NCR), increased incidence rates were observed for breast and cervical 

cancer in women, and lung and colorectal cancer in men (South African National Cancer Registry, 

2012). Cancers of these organs accounted for 46% of cancer prevalence and 43% of cancer deaths 

in 2018 (Bray et al., 2018). 

Sixty percent of breast cancer deaths and a half of new breast cancer diagnoses are observed in 

developing countries, while a noticeably lesser mortality rate is observed in developed countries 

(Bray et al., 2018; Jemal et al., 2011). The mortality rates for breast cancer ranged from 40% to 

60% in low- and middle-income countries (LMIC) compared to 40% in the United States of 

America (USA) (Rivera-Franco and Leon-Rodriguez, 2018; Narod et al., 2015). 

2.1 Breast Cancer Risk Factors  

Epidemiological findings revealed many risk factors for the increased incidences and death related 

to breast cancer in the South African population (Torre et al., 2015). Risk factors include genetic 

susceptibility, early menarche, lower parity, older age at first birth, reduced breastfeeding periods, 

use of contraceptives and hormone replacement therapy (HRT), obesity after menopause, lack of 

physical activity and narcotics/alcohol consumption (Shoemaker et al., 2018; Travis and Key, 

2003). Identification of factors associated with an increased incidence of breast carcinoma 
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development is important in general health screening for women. These risk factors may be divided 

into: (a) non-modifiable factors such as sex, a personal or family history of breast carcinoma, 

menopausal status, genetic risk and reproductive risk factors; and (b) modifiable factors which 

include lifestyle and exogenous hormone use (Nindrea et al., 2017; Majeed et al., 2014). 

2.1.1 Modifiable 

Lifestyle risk factors which include an increased dietary fat intake, smoKIng and excessive alcohol 

consumption are the most important modifiable risks for breast cancer (McDonald et al., 2013; 

Dumitrescu and Cotrla, 2005). Normally, pre-menopausal women produce most of their 

circulating estrogen in the ovaries and only a minute amount from fatty stores (Key et al., 2013). 

However, in overweight and post-menopausal women, higher circulating estrogen is produced 

from adipose tissue that can lead to an increased risk of breast cancer (Dumitrescu and Cotarla, 

2005).  Breast cancer risk is increased in obese women who do not use HRT, and for every 5kg of 

weight gained, the risk of breast cancer increases by 8% (Dumitrescu and Cotarla, 2005). Kori et 

al. (2018) also found that an important source of estrogen is synthesized from cholesterol in 

adipose tissue. 

Diet influences cancer in about 35% of cancer cases (Kotepui et al., 2016). Reducing red meat, 

high fat and elevating fiber and vitamin D intake are preventive dietary measures associated with 

breast cancer. Studies have reported that meat cooked at high temperatures is a risk factor for breast 

cancer (Zheng et al. 1998, Sinha et al., 2000; Fu et al., 2011). The cooking duration and 

temperature of red meat have been reported to be associated with the amount of meat derived 

mutagens which have been shown to induce mammary gland tumors (Fu et al., 2011). One study 

reported that women who had a consistent intake of well-done meat had a 4.6-fold increased risk 

of breast cancer (Sinha et al., 2000). Nonetheless, postmenopausal women who consistently eat 

red meat have higher risk of breast cancer as compared to premenopausal women (Fu et al., 2011). 

Diets high in polyunsaturated fat have been reported to increase the occurrence of mammary 

tumors in animal models (Kotepui, 2016). 

A meta-analysis of large prospective cohort studies showed that high dietary fiber intake is a 

protective factor for breast cancer (Dong et al., 2011). A study reported 7% reduction in risk of 
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breast cancer associated with every 10-g/d incremental increase in dietary fiber intake (Dong et al 

2011). Faecal fiber can inhibit absorption of estrogen in the gut which leads to reduction of 

increased estrogen circulation. Another proposed mechanism is the binding of unconjugated 

estrogen to fiber in the gut, thereby decreasing estrogen reabsorption (Moore et al., 1998) 

Isoflavones found in soy products have been reported to have a similar molecular structure to 

mammalian estrogen (Peeters et al., 2003). Therefore, isoflavones can competitively bind to ER 

resulting in blocking estrogen from binding to its receptor (Peeters et al., 2003). Moreover, 

isoflavones are the most potent inhibitors of aromatase, the enzyme that converts androgen to 

estrogen (Rice and Whitebread, 2008). It has been hypothesized that vitamin D can reduce the risk 

of breast cancer. Vitamin D can inhibit the estrogen pathway leading to the expression of the 

aromatase gene (Krishnan et al., 2012).  

An increased risk of breast cancer is also reported in women with a longstanding history of 

smoking (Hashemi et al., 2014). In a study by Bishop et al. (2014), it was found that women who 

smoke have a 6.7 times higher chance of developing recurrent breast carcinoma after partial 

mastectomy, than women who had never smoked. Active smoking and passive smoking are some 

of the most important risk factors for breast cancer and its recurrence (Bishop et al., 2014; Hashemi 

et al., 2014). 

Excessive alcohol consumption is linked to an approximately 30 to 50% increased risk for breast 

cancer (McDonald et al., 2013). Alcohol elevates the level of estrogen-related hormones in the 

blood which often leads to signaling of estrogen receptor pathways and increase breast density 

(Seitz et al., 2012; Boyd et al., 2011, Fernandez, 2011). Alcohol consumption of two to three units 

per day poses a 20% relative risk for breast cancer incidence, as compared to women who do not 

consume alcohol (Feng et al., 2018). Ethanol is metabolized by alcohol dehydrogenase (ADH) 

into acetaldehyde (Seitz et al., 2012). Acetaldehyde binds to proteins and DNA, thus interfering 

with DNA synthesis and repair (Seitz et al., 2012). In addition, alcohol increases circulating 

estrogen levels which are thought to induce hormone-receptor mediated cell proliferation and 

cause genetic alterations (Dumitrescu and Cotarla, 2005). Ethanol increase transcriptional activity 

of ERα, a key estrogen receptor, by down-regulating the tumor suppressor gene BRCA1, which in 

turn leads to increased cell proliferation (Fan et al., 2006). 
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Hormones circulating in the blood bind to receptors found on the surface of cells to facilitate cell 

proliferation. This is an important factor in ageing and development of cancer (Dehkhoda et al., 

2018). Kamińska et al. (2015) reported on risk factors of breast cancer in relation to different ages, 

and found that both endogenous and exogenous hormones are important factors associated with 

breast cancer. Normal breast epithelial cells express nuclear receptors for estrogen and 

progesterone. Progesterone receptors function as critical regulators of transcription, as well as 

activating signal transduction pathways which are necessary precursors for pro-proliferative 

signalling in the breast (Daniel et al., 2011).  

The cycles of endogenous estrogen levels play a role in either the development of breast cancer or 

protection from it (Rosato et al., 2014; Shah et al., 2014). An early menarche and late menopause 

expose a woman to a longer period of circulating estrogen, which in turn increase the risk for 

developing breast carcinoma (Shah et al., 2014). Dall and Britt (2017) found that every year 

menarche is delayed in a woman; the risk of developing breast carcinoma is reduced by 5%. In a 

similar vein, an early first, full-term birth was reported as an effective measure in breast cancer 

prevention, with a potential of halving a woman’s lifetime risk (Katz, 2016). Therefore, a first birth 

at a younger age or multiple pregnancies has an overall protective effect against breast cancer 

(Katz, 2016; Shah et al., 2014). Similarly, another factor worthy of consideration is breastfeeding. 

According to the Collaborative Group on Hormonal Factors in Breast Cancer (2002), breastfeeding 

has a protective effect against the development of breast carcinoma. Breastfeeding may delay the 

return of regular ovulatory cycles and decrease endogenous sex hormone levels. It has been 

estimated that there is a 4.3% reduction in breast cancer incidence for every one-year of 

breastfeeding (Collaborative Group on Hormonal Factors in Breast Cancer, 2002). 

Hormone replacement therapy (HRT) is known to relieve menopausal symptoms and may reduce 

osteoporosis, however, it is the main source of exogenous estrogen for post-menopausal women 

(Sun et al., 2017; Liu et al., 2016). Liu et al. (2016) in a cohort study of 22,929 women in Asia, 

demonstrated hazard ratios of 1.48 and 1.95 after HRT use for 4 and 8 years, respectively. 

However, this risk is decreased after cessation of HRT. Unfortunately, the risk is reported to 

increase and is irreversible for long term use (more than 15 years) (Feng et al., 2018). There was 

a decreased risk of developing breast carcinoma when HRT is stopped, i.e. breast carcinoma 
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development is positively correlated with HRT use (Katz, 2016). Furthermore, a study in USA 

reported that the incidence of breast cancer decreased by approximately 7% in 2003 as compared 

to 2002 due to the reduction in the use of HRT (Ravdin et al., 2007). The use of oral contraceptives 

has also been found to increase breast cancer risk by up to 24% when compared to women who 

have never used oral contraceptives (Ban and Godellas, 2014). 

2.1.2 Non-Modifiable 

Several studies have reported the incidence of breast cancer to gradually increase with age (Feng 

et al., 2018; Sun et al., 2017). Sun et al. (2017) reported that in all the cases of cancer incidences 

in their study, 99.3% were over the age of 40 years. Also, in the same report, 71.2% of mortality 

due to breast cancer occurred among women over the age of 60 years (Siegel et al., 2017). 

Furthermore, according to a study breast cancer and age-related mortality rate, Abdulkareem 

(2013) asserted that by the age of 90 years, one-fifth of woman have been affected by some form 

of breast cancer related disease. Even though breast cancer incidence is relatively low in Sub-

Saharan Africa, disease survival is generally poor on the African continent, which may largely be 

due to late diagnosis. There is generally a low cure rate due to late detection (Jedy-Agba et al., 

2016). A relatively low breast cancer incidence in parts of Africa, compared to other developed 

countries, is likely due to a lower life expectancy (Kantelhardt and Grosse 2016; Brinton et al., 

2014). 

Approximately 15% of women in the USA diagnosed with breast cancer have a family history of 

the disease (American Cancer Society, 2019). Women with close relatives who have been 

diagnosed with breast cancer have a high risk depending on the degree of relation (Colditz et al., 

2012). A study performed in the United KIngdom (UK) reported a 1.75-fold higher risk of 

developing breast cancer with one first degree relative with the disease (Brewer et al., 2017). 

Among women with a family history of breast cancer, the prevalence of benign breast disease was 

substantially higher (47.6%) than among women without a family history (37.9%) (Colditz et al., 

2012). Women with a family member who has been diagnosed with breast cancer before the age 

of 50 years, has an increased risk of developing breast cancer compared to women with family 

members diagnosed at older ages (Anders et al., 2009). Overall, 15.38% of women reported a 

family history of breast cancer diagnosed in either a mother or sister; 3.4% had a family member 
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with first diagnosis before age 50 and 11.94% had a family member with first diagnosis at age 50 

or older (Colditz et al., 2012).  

The most common cause of hereditary breast cancer is an autosomal dominant inherited mutation 

in the BRCA1/2 high penetrance genes (Halperin & Edward, 2008) which accounts for 20–25 % 

of all hereditary breast cancer tumors (Paulch-Shimon et al., 2016; Balmana et al., 2011). 

Approximately 5–10% of breast carcinomas are linked to patient germline mutation in tumor 

suppressor genes, BRCA1/2 (Paulch-Shimon et al., 2016; Majeed et al., 2014). The BRCA1 gene 

is located on chromosome 17q21 and the deficiency of its protein leads to the dysregulation of cell 

cycle checkpoints, abnormal centrosome duplication and genetic instability (Dine and Deng, 2013; 

Deng, 2006). The BRCA2 gene is located on chromosome 13q12 and its protein regulates 

recombination repair in DNA double-strand breaks (Wooster et al., 1994). Multiple high to 

moderate-penetrance mutations have also been identified in the TP53, CHEK2, ATM, BRIP1, 

PALB2, RAD51C RAD50 cancer susceptibility genes (Han et al., 2017). 

2.2. Pathophysiology of Breast Cancer 

Breast carcinoma consists of a group of biologically and molecularly heterogeneous diseases 

originating from breast epithelium (Feng et al., 2018; Rakha et al., 2010). Normal breast 

development and mammary stem cells are regulated by several signalling pathways which control 

stem cell proliferation, cell death, cell differentiation and cell motility (Feng et al., 2018). 

However, mutations which lead to activation of oncogenes and inactivation of tumor suppressor 

genes may lead to deregulation of these signalling pathways (Lee and Muller, 2010).  

Women with either of the BRCA1/2 mutations have about 70% chance of developing breast 

carcinoma by the age of 80 years (Feng et al., 2018; Majumder et al., 2017). BRCA1/2 mutation 

prevalence varies across populations and geographic distribution (Schlebusch et al., 2010; Ford et 

al., 1998). A study performed by the Breast Cancer Linkage Consortium (BCLC) in the United 

KIngdom on a total of 237 families reported that overall BRCA1 mutations account for 52% of all 

familial breast cancer cases and BRCA2 mutations for 32% (Ford et al., 1998). An increased 

frequency of at least eight BRCA1/2 mutations have been identified in South Africa due to a 

founder effect (van der Merwe et al., 2012). This resulted in the development of a cost effective 
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founder mutation test used as first line screening step to determine the need for extended germline 

genetic testing. Advanced next generations sequencing (NGS) technologies such as whole exome 

sequencing (WES) are increasingly used to distinguish between familial and lifestyle related causal 

pathways targeted for optimal treatment (van der Merwe et al., 2012).  

Emerging evidence has indicated that epigenetic alterations and non-coding RNAs may play 

important roles in breast carcinoma development and may contribute to the heterogeneity and 

metastatic potential of breast carcinoma (Feng et al., 2018).  

2.3 Diagnosis of Breast Cancer 

A total of 5% of all worldwide expenditure for breast cancer screening takes place in developing 

countries (da Costa Vieira et al., 2017). Therefore, imaging techniques used for screening, such as 

mammography, may be limited, yet its deployment has been reported to help in significantly 

reducing mortality from breast cancer (Sun et al., 2017). However, breast self-examination (BSE) 

and clinical breast examination (CBE) is key to the diagnosis in LMIC when mammographic 

screening is not feasible (da Costa Vieira et al., 2017). The purpose of mammography is to identify 

breast cancer at an early stage, prior to symptoms and while the cancer is still curable. In 

symptomatic patients, the sensitivity of mammography is 90% and the specificity is 94% (Joy et 

al., 200). The positive predictive value (PPV) is 84% for all screened patients (Harris et al., 2004). 

The categories of the Breast Imaging Reporting and Data System (BI-RADS) is shown below 

(Table 2-1). 
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Table 2-1: The BI-RADS scoring system (Magny et al., 2020) 

BI-RADS Score 

Category Assessment Recommendation 

0 Incomplete study 

Need additional imaging 

or prior studies 

1 

Negative: no masses, suspicious calcifications or areas of 

architectural distortion. Routine screening 

2 

Benign: include secretory calcifications, simple cysts, fat-

containing lesions, calcified fibroadenomas, implants and 

intramammary lymph nodes Routine screening 

3 

Probably benign: a non-palpable, circumscribed mass on a 

baseline mammogram; a focal asymmetry, which becomes 

less dense on spot compression images, or a solitary group of 

punctate calcifications 

Short-term follow-up 

establish stability 

4 

Suspicious abnormality: subdivided into a, b, and c. The 

subcategory of (a) has a low probability of malignancy with 

a 2% to 10% chance of malignancy. The subcategory of (b) 

has an intermediate change of malignancy ranging from 10% 

to 50%. The subcategory of (c) has a high probability of 

malignancy ranging from 50% to 95%. 

Biopsy should be 

considered 

5 Highly suggestive of malignancy Surgical consultation 

6 Known malignancy 

Appropriate action should 

be taken 
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2.4 Classification of Breast Cancer 

Breast cancer, by definition, refers to any malignant neoplasm of the breast (American Cancer 

Society, 2019). Vinay et al. (2010) reported that most malignancies are adenocarcinomas which 

account for over 95% of breast malignancies. Other malignancies, although rare, that may 

primarily involve the breast are lymphomas or sarcomas (Acevedo et al., 2019) Carcinoma 

originates from epithelial cells lining the lobules and ducts. Furthermore, breast carcinoma may be 

classified as in situ or invasive carcinoma. Non-invasive breast carcinoma, also referred to as in 

situ carcinoma, is a malignant neoplasm which is confined to the ductal-lobular system and which 

does not invade beyond the surrounding myoepithelial cells and basement membrane into the 

connective tissue of the breast (American Cancer Society, 2019). Non-invasive breast carcinoma 

accounts for 15–20 % of all breast cancers. Ductal carcinoma in situ (DCIS) accounts for 90% of 

the non-invasive breast carcinoma cases (Sharma et al., 2010). In lobular carcinoma in situ (LCIS), 

the malignant cells are usually contained within the acini of lobules, but pagetoid spread into distal 

ducts may occur. LCIS is a relatively uncommon carcinoma type which accounts for 1–4.3% cases 

of breast carcinoma (Mo et al., 2018; Karakas, 2011).  

Invasive carcinomas are morphologically subdivided into histological subtypes according to their 

growth patterns and cytological features (Rakha et al., 2010). Although, histological subtype 

provides useful prognostic information, the majority (60%–75%) of breast carcinomas have no 

specific morphological characteristics and are called invasive breast carcinoma of no special type 

(IBC-NST), also referred to previously as infiltrating ductal carcinoma (Makki, 2015). Carcinomas 

with “special” morphological characteristics, and which have differing prognostic significance, 

are relatively uncommon (Rakha et al., 2010). As a consequence, the role of histological typing in 

clinical management decision making is limited (Pereira et al., 1995). The second most frequent 

invasive carcinoma is invasive lobular carcinoma (ILC), which accounts for approximately 10-

15% of carcinoma cases, and are prevalent in postmenopausal women, likely due to HRT (Makki, 

2015; Sharma et al., 2010). Other histological subtypes of carcinomas which have been reported 

to have a better prognosis, and which account for a small proportion of all breast carcinomas, 

include tubular carcinoma (2%) and mucinous carcinoma. A study in Kenya reported 2.6% of 

carcinomas to be of the mucinous type (Sayed et al., 2014).  
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2.4.1 Grading  

Histological grading is based on the pattern of growth and degree of differentiation, relative to 

normal breast epithelium (Rakha et al., 2010). In breast carcinoma, histological grading refers to 

the semi-quantitative assessment of morphological features. Currently, histologic grading is done 

according to the Nottingham combined histologic grading system. Grading is one of the best-

established prognostic factors in breast cancer (Rakha et al., 2010). In the Nottingham combined 

histologic grading system, three morphological characteristics are appraised: (a) degree of tubule 

or gland formation, (b) nuclear pleomorphism and (c) mitotic count. Grade 1: A well-differentiated 

tumor that demonstrates homology to the normal breast terminal duct lobular unit, tubule 

formation (>75%), a mild degree of nuclear pleomorphism, and low mitotic count.  Grade 2:  A 

moderately differentiated tumor and Grade 3: A poorly differentiated tumor with a marked degree 

of cellular pleomorphism, frequent mitoses and no tubule formation (<10%) (Rakha et al., 2010) 

(Figure 2-1).  

 

Figure 2-1: Schematic representation of the Nottingham combined histologic grading system. 

(Rakha et al., 2010). 

2.5 Breast Cancer Biomarkers 

From the 1980s onwards, several strides have been made in researching breast carcinoma 

biomarkers and the correlation of biomarker expression and therapeutic response (Nomura et al., 

1984). The histopathological assessment of biomarkers ER, PR, HER2 and KI-67 have been 

widely adopted in the past few decades for subtyping breast carcinoma, prognostication and 
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prediction of therapeutic responses (Ulaner et al., 2016; Spitale et al., 2009). Light microscopy is 

still the foundation of pathological diagnosis, but in the era of modern personalized medicine, a 

number of molecular classification systems have been developed and introduced. American 

Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) recommends 

routinely testing hormone receptors (ER and PR) and HER2 status on all primary invasive breast 

carcinomas and on recurrent or metastatic tumors (Hammond et al., 2010; Harris et al., 2007). 

2.5.1 Estrogen Receptor (ER) 

Estrogen is implicated in the development or progression of numerous diseases including breast 

carcinoma (Deroo and Korach, 2006). Binding of estrogen to the ER stimulates cell division and 

DNA synthesis. An increased rate of DNA synthesis leads to a higher risk of replication errors 

(mutations) that may disrupt normal cellular processes. Furthermore, estrogen metabolism leads 

to the production of genotoxic by-products that can directly damage DNA (Yue et al., 2005). 

Estrogen receptor expression in breast carcinoma is a favourable prognostic factor and strongly 

predictive of a response to hormonal therapy (Colomer et al., 2017;  Nicolini et al., 2017). For ER 

expression to be regarded as positive, at least 1% of tumor cells must show nuclear staining of any 

intensity (Hammond et al., 2010). Up to 75% of breast carcinomas are ER-positive, and the 

majority occurs in postmenopausal women (Anderson et al., 2014). This is similar to high 

proportions of ER-positive breast carcinoma as reported in Nigeria, where 50% of tumors from a 

study were ER-positive (McCormac et al., 2013; Adebamowo et al., 2008). However, another 

study from Nigeria reported only 25% ER-positive cases (Hou et al., 2009).  

The two independent studies showed significantly different results, and raise the possibility of 

variation in the disease due to social attributes and geographical location. ER-positive tumors are 

generally well-differentiated, less aggressive, and associated with a better outcome after surgery 

(Dunnwald et al., 2007). However, ER simultaneously down regulates epidermal growth factor 

receptor (EGFR) and HER2 while inducing IGF1R (Paplomata and O’Regan, 2013). In swift 

response, activation of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-KInase 

(PI3K) pathways by growth factor receptors down regulates estrogen receptor signalling (Osborne 

and Schiff, 2011). Recent gene expression profiling (GEP) studies have shown that ER expression 
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status is a major clue to the molecular “portrait” of breast carcinoma (Dai et al., 2014). Carcinomas 

with differing ER expression are fundamentally different at the transcriptional level (Dai et al., 

2014).  

2.5.2 Progesterone Receptor (PR) 

Understanding progesterone receptor (PR) action is of critical relevance in breast cancer study, as 

demonstrated by large-scale clinical trials conducted for over 10 years which findings reported 

that PR actions fuel breast cancer development (Hagan and Lange, 2014). Studies have shown that 

both ER and PR are important as predictors of response to adjuvant hormonal therapy (Sawe et 

al., 2016; Mirza et al., 2002). PRs are activated once the naturally occurring ovarian steroid 

hormone, progesterone or synthetic ligands (progestins) bind to it (Lange and Yee, 2008).  

PR-positive tumors are almost never ER-negative (0.2% to 10%), and tumors with this 

immunophenotype may indicate a technical laboratory error (Allred, 2008; Olivotto et al., 2002). 

PR-positive tumors comprise 60% to 65% of breast carcinomas as reported in literature for Asian 

breast cancer incidences (Shah et al., 2014). These findings are in line with several African studies. 

Basro and Apffelstaedt, (2010) reported 60% PR-positive carcinomas in South Africa and Sayed 

et al. (2014) reported 64.8% positivity in Kenya. Approximately 40% of ER-positive carcinomas 

are PR-negative (Dai et a., 2016). Fohlin et al. (2020) identified novel prognostic factors for 

patients with ER-positive breast cancers and investigated if these factors have prognostic value in 

subgroups categorized by PR status. The results of their study therefore contributed to the 

understanding of biological heterogeneity within ER+/PR− tumors. Adjuvant tamoxifen or 

aromatase inhibitors (AIs) are the widely used anti-hormonal therapy with a strongly associated 

survival benefit for ER-positive tumors (Tremont and Cole, 2017).  

2.5.3 Human Epidermal Growth Factor Receptor 2 (HER2) 

Human epidermal growth factor receptor 2 (HER2) is an oncogene located on chromosome 17q12 

(Iqbal and Iqbal, 2014). The HER2 protein is a member of the epidermal growth factor receptor 

family with tyrosine KInase activity. Dimerization of the receptor with other members of the 

family results in the autophosphorylation of tyrosine residues which stimulates a variety of 
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signaling pathways leading to cell proliferation and tumorigenesis (Harbeck and Gnant, 2017). 

The clinical implications of HER2 amplification have been recognized since 1987 (Slamon et al., 

1987). HER2 gene amplification or protein over-expression is associated with a poor prognosis, 

but predicts a good clinical outcome with systemic chemotherapy treatment (Dauda et al., 2011; 

Ikpat et al., 2002). 

The protein over-expression and gene amplification of HER2 occur in 15% to 30% of all primary 

breast carcinomas. Eng et al. (2014), reported that the proportion of HER2-positive tumors varied 

markedly between studies, ranging between 40% and 80% in North Africa and between 20% and 

70% in sub-Saharan Africa. This was attributed to the variation in number of women with breast 

cancer (over 12,000) in North Africa (Egypt and Tunisia) which was more than those with breast 

cancer in mainly sub-Saharan Africa (Nigeria and South Africa) (4,737) (Eng et al., 2014). With 

the above inference, it therefore appears that there are lower frequencies of HER2-positive 

carcinomas in West African countries (Sayed et al., 2014; Basro and Apffelstaedt, 2010; Bird et 

al., 2008).  

Assigning HER2 status in breast cancer patients is imperative, and has been established as routine 

clinical practice before treating advanced tumors with trastuzumab or using adjuvant treatment for 

HER2-positive early stage patients (Mirza et al., 2002). In addition, HER2 is an important target 

of a variety of novel cancer therapies including vaccines and a drug, lapatinib, which is directed at 

the internal tyrosine KInase portion of the HER2 protein (Jiang et al., 2018). The prognostic value 

of HER2-positivity is higher in node-positive than node-negative patients. For example, in the 

retrospective study of Dovnik et al. (2016) in Slovenia, the results showed that anti-HER2 

treatment changed the natural course of breast cancer in the targeted node positive patients as well 

as in the adjuvant setting in node-negative patients. HER2-positive patients who did not receive 

adjuvant trastuzumab had significantly worse disease-free survival (DFS) than HER2-negative 

patients (Dovnik et al., 2016). 

2.5.4 Proliferation Index (KI-67) 

Cell cycle analysis in cell nuclei has revealed the presence of KI-67 protein during the G1, S and 

G2 phases of the cell cycle and not in the quiescent G0 phase, indicative of its role as cell 
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proliferation marker in many cancers (Urruticoechea et al., 2005). KI-67 protein has been widely 

used as a proliferation marker for human tumor cells for several decades (Sun and Kaufman, 2018). 

During mitosis, KI-67 is essential for formation of the perichromosomal layer (PCL), a 

ribonucleoprotein sheath coating the condensed chromosomes (Urruticoechea et al., 2005; 

Scholzen and Gerdes, 2000). KI-67 is reportedly active against aggregation of mitotic 

chromosomes (Sun and Kaufman, 2018). A high KI-67 index generally portends a poor prognosis 

(Ács et al., 2017). KI-67 expression has been found to be a prognostic and predictive marker and 

its assessment is used to determine the proliferation index of tumor cells (Li et al., 2014, Scholzen 

and Gerdes, 2000). When the KI-67 level is above 14% breast cancer patients are defined as being 

high-risk for aggressive and quick spread (Soliman and Yussif, 2016). KI-67 expression is an 

additional independent prognostic parameter for disease free survival (DFS) and overall survival 

(OS) in breast cancer patients in clinical trials of breast cancer treatments (Inwald et al., 2013). 

2.6  Breast Cancer Subtype Classification 

A combination of various IHC markers including ER, PR and HER2 with or without additional 

markers such as basal and proliferation markers, have been used to define breast carcinoma 

subtypes. Several gene expression profiling studies have classified breast cancer into molecular 

subtypes (Jiang et al., 2018; Kondov et al., 2018; Vasconcelos et al., 2016). According to the St. 

Gallen Classification System, the four breast cancer subtypes approximated by IHC/FISH are: 

luminal A = (ER+ and/or PR+, HER2-, KI-67 < 14%); luminal B = with HER2-negativity (ER+ 

and/or PR+, HER2-, KI-67 ≥ 14%), Luminal B with HER2-positivity (ER+ and/or PR+, HER2+, 

any KI-67), HER2-enriched (ER-, PR-, HER2+), and basal-like (ER-, PR-, HER2-) (Kondov et 

al., 2018; Vasconcelos et al., 2016). This classification system uses IHC expression as a surrogate 

for molecular subtyping. Several studies have shown trends in the risk of recurrence, prognosis 

and response to therapy between the different molecular subtypes (Guler, 2017; Ribelles et al., 

2013; Blows et al., 2010). The luminal A subtype accounts for approximately 40% of all breast 

carcinomas (Guler, 2017). They are low-grade, slow growing and tend to have the best prognosis 

(Feng et al., 2018). Treatment typically involves hormonal therapy (Feng et al., 2018). Luminal A 

carcinomas have been reported to have a better prognosis and are more sensitive to hormonal 
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therapy when compared to luminal B carcinomas, which require addition of chemotherapy (Guler, 

2017; Blows et al., 2010).  

A study done by Ribelles et al. (2013) showed a low risk of recurrence in the first three years of 

therapy of luminal A carcinomas, while luminal B carcinomas, demonstrated a high frequency of 

relapse in the first five years of therapy. Luminal B carcinomas grow slightly faster than luminal 

A carcinomas, and their prognosis is worse (Feng et al., 2018). According Somalin and Yussif, 

(2016) the luminal B subtype accounts for approximately 10% of all breast cancers. This subtype 

has also shown a higher index of proliferation compared to luminal A carcinomas (Bustreo et al., 

2016).  

HER2-enriched carcinomas have a poor prognosis (Al-Mahmood et al., 2018; Guler, 2017), 

although, it is highly responsive to anti-HER2 therapies (Huszno and Nowara et al., 2016). This 

subtype accounts for 10% to 15% of breast carcinomas (Feng et al., 2018). HER2-enriched 

carcinomas grow faster than both types of luminal carcinomas and have a generally worse 

prognosis (Fragomeni et al., 2018). However, they can be successfully treated with targeted 

therapies aimed at the HER2 protein such as trastuzumab. While about 50% of clinical HER2-

positive breast carcinomas are HER2-enriched and hormone receptor negative, the remaining 50% 

may include luminal carcinomas with HER2 overexpression (Feng et al., 2018). 

Triple negative breast cancer (TNBC) is a highly heterogeneous group (which includes the basal-

like breast cancer subtype) and is the most aggressive, with limited treatment options (Hubalek et 

al., 2017; Prodehl and Benn, 2017; Lehmann and Pietenpol, 2014). In addition, it is associated 

with a poor prognosis, high risk of recurrence and a high proliferation index (Guler, 2017; Shim 

et al., 2014; Ribelles et al., 2013). TNBCs account for 12–20% of all breast carcinomas (Hubalek 

et al., 2017). By definition, TNBCs lack expression of hormone receptors and do not demonstrate 

HER2 overexpression (Lehmann and Pietenpol, 2014). A higher prevalence of TNBCs is found in 

Africa (Lebert et al., 2018; Anders and Carey, 2009; Anyanwu, 2008). TNBC is associated with 

advanced stage at presentation, aggressive tumor biology and poor outcomes in a study by Prodehl 

and Benn (2017). Fourteen percent of the patients in their study had TNBC (Prodehl and Benn, 

2017). 
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2.7 Treatment 

Breast cancer treatment should follow a multidisciplinary approach (Eustachi et al., 2009). In 

South Africa, widely used, conventional methods for breast cancer treatment involve surgical 

excision, chemotherapy, radiotherapy and/or hormonal therapy (Govender, 2014). Hormonal 

therapy is an attractive modality which halts or slows tumor growth, reduces the risk of recurrence 

and decreases mortality in breast cancer patients (Govender, 2014; Rampurwala et al., 2014). 

Tamoxifen and aromatase inhibitors (AIs) are the most commonly used drugs for ER-positive and 

early stage breast carcinoma (Martei et al., 2017). The type of hormonal therapy depends on the 

patient’s ovarian function. Tamoxifen may be administered as primary treatment in premenopausal 

women. Tamoxifen, a selective estrogen receptor modulator (SERM), when administered for 10 

years, shows a greater reduction in recurrence of ER-positive breast carcinoma than when it is 

given for five years (Davis et al., 2011). Treatment for postmenopausal patients with ER-positive 

carcinomas consists of aromatase inhibitors (AIs), except where contraindications or intractable 

side effects are found (Younus and Kligman, 2010). Burstein et al. (2010) in their work suggested 

the use of tamoxifen alongside AIs in ER-positive postmenopausal patients. AIs decrease the levels 

of estrogen by blocKIng the enzyme aromatase (Scharl and Salterber, 2016; Hadji et al., 2011). 

Furthermore, a study by Huiart et al. (2011) reported that among older women, the use of AIs 

showed high rates of compliance. 

However, these two hormonal therapies (tamoxifen and AIs) have different side-effect profiles 

(Fleming et al., 2018; Colleoni and Giobbie-Hurder.2010). A meta-analysis of tamoxifen therapy 

trials has shown an increase in the risk of developing endometrial cancers (Fleming et al., 2018). 

On the other hand, AIs have been reported to increase bone loss (Perez and Weilbaecher, 2006) in 

contrast to tamoxifen which protects against bone loss (Ding and Field, 2007). Genetic variation 

has been considered as one of the most important non-modifiable risk factors of bone loss with use 

of AIs in South African breast cancer patients (Baatjes et al., 2018; 2019).  

2.8 Diagnostic Techniques in Breast Cancer 

The most widely used Food and Drug Administration (FDA) approved diagnostic techniques for 

analysis of breast carcinoma biomarkers in the South African public sector are IHC and FISH 
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(Nasrazadani et al., 2018; Moelans et al., 2011). IHC assesses ER, PR, HER2 and KI-67 protein 

expression using different antibodies, while FISH identifies ERBB2 on chromosome 17q21 and 

polysomes using a DNA dual probe (Moelans et al., 2011). A novel platform for the assessment 

of ER, PR, HER2 and KI-67 has recently been developed which involves quantification of mRNA 

transcripts using real-time RT-qPCR techniques (Xpert® Breast Cancer STRAT4 assay). RT-

qPCR is a laboratory technique based on amplifying and simultaneously quantifying a targeted 

DNA molecule. Xpert® Breast Cancer STRAT4 assay (STRAT4) is an assay for detection and 

quantification of ESR1, PGR, ERBB2, MKI67 mRNA transcripts isolated from formalin-fixed 

embedded (FFPE) invasive breast carcinoma tissue. The Xpert® Breast Cancer STRAT4 assay is 

a one-step assay in a self-contained, single-use, disposable cartridge which combine the RT-qPCR 

reagents and host the RT-qPCR process.  There are two phases involved in RT-qPCR. Firstly, in 

the reverse transcription phase, mRNA is used as a template to synthesize complimentary DNA 

(Mo, et al., 2012). The second phase involves amplification of the cDNA and analysis of the 

products generated during the reaction (Mo et al., 2018). During the extension step, the enzyme 

Taq polymerase synthesizes two new strands of DNA, using the cDNA as template (Garibyan and 

Avashia, 2013). The STRAT4 assay is 80% automated and has a run-time of less than two hours. 

Studies have demonstrated correlation between the mRNA and protein expression (Wu et al., 

2018; Wasserman et al., 2017). There is a high correlation between results obtained with 

IHC/FISH and RT-qPCR. A study done in USA reported a concordance between RT-qPCR and 

IHC/FISH to be 91.25% with a sensitivity of 0.87, specificity of 0.94, a positive predictive value 

(PPV) of 0.89 and a negative predictive value (NPV) = 0.92 (Wasserman et al., 2017). Similarly, 

Wu et al. (2018) reported an overall concordance between STRAT4 and IHC/FISH of ER=97.8%, 

PR=90 – 91%, HER2=95% and 93.3% (IHC and FISH, respectively) and KI-67=73%. 

2.8.1 Immunohistochemistry 

Semi-quantitative IHC is a technique based on the principle that antibodies bind to antigens. 

Proteins of interest are identified via labelled conjugates. When a primary antibody has a label 

attached, it is directed to an antigen epitope of the protein of interest and allowed to bind (Quintero-

Ronderos et al., 2013). This is referred to as direct IHC. Indirect IHC is when the primary antibody 
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is not labelled, but a labelled secondary antibody is added which triggers the signal (Greenwood 

et al., 2015; KIm et al., 2016) (Figure 2-2). 

 

 

Figure 2-2: Schematic representation of the indirect IHC method using secondary antibodies 

tagged with various labels of  immunostaining in the process of detecting specific antigen-antibody 

interactions  (Kim et al., 2016). 

The immunohistochemical evaluation of ER, PR and HER2 is reported as recommended by 

ASCO/CAP guidelines (Wolff et al., 2013). For interpretation of ER and PR, the Allred scoring 

system is employed, which combines the percentage of positive cells and intensity as shown in 

Table 2-2 (Hammond et al., 2010), for a final score with 8 possible values Scores 0 and 2 are 

considered negative and 3 – 8 are considered positive.  HER2 results are scored from 0 to 3+, 

visually assessing the amount of HER2 protein. This system evaluates the intensity of staining on 

the tumour cell membrane (Table 2-3). 
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Table 2-2: Reporting of ER and PR testing by IHC assessment (Fitzgibbons et al., 2018). 

Proportion Score  Positive Cells, % Intensity Intensity Score 

0 0 None 0 

1 <1 Weak 1 

2 1 to 10 Intermediate 2 

3 11 to 33 Strong 3 

4 34 to 66  

5 ≥67 

Table 2-3: Reporting results of HER2 testing by Immunohistochemistry (IHC) (Fitzgibbons  et 

al., 2018). 

Result Criteria 

Negative 

(Score 0) 

No staining observed  

or  

Membrane stating that is incomplete and is faint/barely perceptible and within 

≤10% of tumor cells 

Negative 

(Score 1+) 

Incomplete membrane staining that is faint/barely perceptible and within >10% 

of tumor cells 

Equivocal 

(Score 2+) 

Weak to moderate complete membrane staining in >10% of tumor cells 

or  

Complete membrane staining that is intense but within ≤10% of tumor cells 

Positive 

(Score 3+) 

Complete membrane staining that is intense and >10% of tumor cells 
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KI-67 scoring is performed using the hot spot method as described by Penault-Llorca and 

Radosevic-Robin, 2017. The hot spot method is defined as the percentage of invasive tumor cells 

positively stained in the field with the highest number of positive nuclei (Leung et al., 2016; 

Penault-Llorca and Radosevic-Robin, 2017). Only nuclear staining is considered positive, and was 

defined as any brown stain in the nucleus. Staining intensity is irrelevant during KI-67 scoring 

according to Leung et al., 2016. According to Penault-Llorca and Radosevic-Robin (2017) aat 

least three high power fields (HPFs) including a hot spot are selected to represent the spectrum of 

staining as observed on the initial overview of the entire section (Figure 2-3 B). The St Gallen 

consensus proposed three categories: low (15%), intermediate (16–30%) and high (>30) (Nguyen 

et al., 2019) 

 

Figure 2-3: KI-67 scoring. (A) Hot spot fields with the highest number of positive nuclei. (B) 

Three high power fields (HPFs) including a hot spot. At least three HPFs should be selected to 

represent the scale of staining seen across the whole field of the invasive carcinoma (Penault-

Llorca and Radosevic-Robin, 2017). 
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2.8.2 Fluorescence In Situ Hybridization  

Fluorescence in situ Hybridization (FISH) is a procedure that uses a probe to identify a target gene 

or DNA sequence. The probe is an oligonucleotide incorporated with fluorophore-coupled 

nucleotides that is complementary to a target gene or DNA sequence (Cui et al., 2016). The 

labelling of the probe can be direct (i.e. it produces a signal immediately after binding to the 

targeted DNA sequence) or indirect (i.e. a trigger is required to produce a signal). The target 

sequence is denatured using high temperatures which break the hydrogen bonds between the 

nucleotides (Jensen, 2014). Combining the labelled probe and the denatured targeted DNA 

sequence or gene allows the annealing of the complimentary strands, therefore producing a signal 

that is brighter compared with background levels (Ratan et al., 2017). 

There are two types of HER2 assays that can be used: a single probe assay and a dual probe assay 

which have different interpreting guidelines (Figure 2-4 and 2-5). A single probe only identifies 

the HER2 gene, whereas the dual probe identifies the HER2 gene and the centromere of 

chromosome 17 (Furrer et al., 2015). The main advantage with the dual probe is that it singles out 

the polysomes and these aids in the identification of heterogeneity of the tumour (Hu et al., 2017). 
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Figure 2-4: Schematic diagram for evaluation of human epidermal growth factor receptor 2 

(HER2) by in situ hybridization (ISH) assay using a single-signal (HER2 gene) assay (single-probe 

ISH) (Wolff et al., 2018). 

 

 

Figure 2-5: Schematic diagram for evaluation of human epidermal growth factor receptor 2 

(HER2) gene amplification by in situ hybridization (ISH) assay using a dual-signal (HER2 gene) 

assay (dual-probe ISH) (Wolff et al., 2018). 
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Chapter 3  

Methodology 

3.1 Ethical consideration  

Ethical approval was obtained from the Human Research Ethics Committee (HREC) at the Faculty 

of Health Sciences, University of Stellenbosch (Ethics Reference Number: S19/05/095) before the 

study commenced. 

The study followed the Declaration of Helsinki code of conduct developed in 1964 by the World 

Medical Association. This code serves to protect the rights of participants and ensure they are not 

exposed to unnecessary harm, and ensure that methodological approaches are appropriate to the 

study aims. The Helsinki code of conduct provides principles for which medical research involving 

humans is to be managed. 

3.2 Study design 

This study included 101 retrospective cases of adult (>18 years) breast carcinoma that had been 

diagnosed at the Division of Anatomical Pathology, TBH. TBH is affiliated with the Faculty of 

Medicine and Health Sciences of Stellenbosch University.   

A SNOMED search of the laboratory information system, TRAKCare was conducted from 

01/01/2018 to 01/06/2018 (Table 3-1). Excel spreadsheets were generated, and sequential breast 

carcinoma cases which met the inclusion criteria were selected (Table 3-2).  
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Table 3-1: SNOMED codes and corresponding descriptions. 

SNOMED CODE DESCRIPTION 

 T-04000 

 T-04030 

 T-04020 

 T-04007 

 M-85003 

 M-85213 

 M-85202 

 D0-F0357 

 D0-F0367 

 

 Breast structure 

 Left breast 

 Right breast 

 Breast NEC 

 Infiltrating duct carcinoma 

 Infiltrating ductular carcinoma 

 Lobular carcinoma 

 Carcinoma of breast 

 Carcinoma of breast, NOS 

 

 

 

Table 3-2: Inclusion and exclusion criteria for study cases. 

Inclusion Exclusion 

1. Core needle biopsy or excision specimens 

of breast carcinoma 

2. Cases have available FFPE tissue blocks 

and more than 1 x 5mm2 area of residual 

carcinoma  

3. The following data is available for each 

case: 

• Sex and age  

• Tumor histology (invasive breast 

carcinoma, NST, invasive lobular 

carcinoma, etc.) 

• Tumor stage at diagnosis (TNM) 

• Tumor grade 

• Tumor section for study contains less 

than ~1 x 5 mm2 invasive breast 

carcinoma area 

• Post-neoadjuvant therapy residual 

tumor (surgical) specimens  

• The specimen was fixed in fixative 

other than 10% neutral buffered 

formalin (NBF) or was known to be 

fixed in NBF for < 6 or >72 hours. 
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3.3 Study population: 

There were 473 cases found using the SNOMED search and 101 were reviewed and matched the 

inclusion and exclusion criteria. 

3.4 Analysis 

Each of the 101 cases had haematoxylin and eosin (H&E) and immunohistochemistry-stained 

slides (ER, PR, HER2 and KI-67) retrieved from the archives of the Division of Anatomical 

Pathology, and reviewed with the help of the study supervisor. The morphology of these tumors 

was reviewed, and a histological subtype of each carcinoma was determined. Histological grading 

was done and immunohistochemical stains were re-scored according to ASCO/CAP guidelines. 

Cases with a HER2 immunohistochemistry score of 2+ (equivocal), were previously sent for HER2 

fluorescence in situ hybridization (FISH), and these results were documented. The FFPE tissue 

blocks were retrieved from archives and sections were cut at 3μm and placed on glass slides. H&E 

staining was performed on one section, and two other sections were left unstained on slides. 

3.4.1 Immunohistochemistry (IHC) 

Immunohistochemical staining was performed previously at the time of reporting the core needle 

biopsy or surgical excision specimens. The Leica BOND III machine was used for 

immunohistochemical staining. 

3.4.1.1 Slide Preparation: Three-micron FFPE sections were fixed to Super Frost slides (Thermo 

Scientific, USA), and baked for 30 min at 70 °C. 

3.4.1.2 Slide Staining:  The slides were stained using the Leica BOND III staining program (Table 

3-3). The primary antibodies used were diluted as follows: ER: Novocastra Estrogen Receptor 

diluted 1:250, PR: Novocastra Progesterone Receptor diluted 1:500; HER2 Novocastra HER2 

oncoprotein diluted 1:250, KI-67: Dako KI-67 diluted 1:100. Unbound primary antibodies were 

removed with wash buffer which is prepared by adding 100 ml of BOND Wash concentration to 

900ml of deionised water. 
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3.4.1.3 Antigen retrieval: For ER, PR & KI-67 EDTA buffer base was used at pH 8.9-9.1 and for 

HER2 citrate base was used at pH 5.9-6.1. 

 

Table 3-3: Leica BOND III staining program. 

  Cycles (Ce) Time (min) Temperature (°C) 

Dewax 3  72 

100% Alcohol 3   

Bond wash 3   

Retrieval  ER, PR & KI-

67  

2 20 100 

Retrieval HER2 2 20 100 

Bond wash 4    

Bond wash 1 3   

Antibodies 1 15   

Bond wash 1 2   

Bond wash 2 1   

Post primary 1 8   

Wash 3    

Polymer 1 8   
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Wash 2 2   

Deionized water 1    

Perioxide block 1 5   

Wash 1 1   

Wash 2    

Distilled water 1    

Mixed DAB refined 1    

Mixed DAB refined 1 10   

Deionized water 3   

Haematoxylin 1 5  

Deionized water 1   

Wash 1   

Deionized water 1   

 

Interpretation: For ER and PR, the Allred scoring system was employed, which combines the 

percentage of positive cells and intensity as shown in Table 2-2 of Chapter 2 (Hammond et al., 

2010). 
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3.4.2 Fluorescence in situ hybridization HER2 Analysis 

All cases which had an immunohistochemical score of 2+ for HER2 were sent to the cytogenetics 

laboratory at Charlotte Maxeke Academic Hospital for FISH analysis. FISH was performed with 

a Path-Vysion HER2 DNA KIt (Abbott Pharmaceutical Co., Ltd., Lake Bluff, IL, USA). 

3.4.2.1 Deparaffinising Slide: 

Slides were immersed twice in new Hemo-De for 10 minutes at room temperature. Slides were 

dehydrated in 100% ethanol for five minutes at room temperature. Repeated and air-dried slides 

or placed slides on a 45 to 50°C slide warmer. 

3.4.2.2 Pre-treating Slides:  

 

Table 3-4: Slide pre-treatment procedure (Abbott Path-Vysion HER2 DNA Kit 30-608377/R7). 

Immersed in  Reagents Cycles Time (min) Temperature (°C) 

0.2N HCl 1 20 RT 

Purified water 1 3 RT 

Wash Buffer 1 3 RT 

Pre-treatment 

solution 

1 30 80 

Purified water 1 1 RT 

Wash Buffer 2 5 RT 

*RT: Room Temperature 
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3.4.2.3 Protease treatment 

Firstly, excess buffer was removed by blotting edges of the slides on a paper towel. Protease 

treatment was done by immersing slides in protease solution at 37± 1°C for 10 to 60 minutes, then 

in wash buffer for 5 minutes. The slides were dried on a 45 to 50°C slide warmer for 2 to 5 minutes. 

3.4.2.4 Fixing the specimen 

The slides were immersed in neutral buffered formalin at room temperature for 10 minutes. 

Thereafter, the slides were placed in wash buffer for five minutes. This procedure was repeated. 

Thereafter slides were dried on a 45 to 50°C slide warmer for two to five minutes.  

Probe Preparation: The probe was allowed to warm at room temperature so that the viscosity 

could decrease sufficiently to allow accurate pipetting. Afterwards, it was vortexed to create a 

homogenous mix. Each tube was centrifuged for two to three seconds in a bench‑top micro-

centrifuge to bring the contents to the bottom of the tube. Lastly the probes were gently vortexed. 

Note: Denaturation of specimen DNA. The timing for preparing the probe solutions was carefully 

coordinated with denaturing the specimen DNA so that both would be ready for the hybridization 

step at the same time. 

3.4.2.5  Hybridization 

Following drying, 10μL of probe mixture was applied to the target area of the slide. A coverslip 

was immediately placed over the probe to allow for even spread under the coverslip. The coverslip 

was sealed with rubber cement using a 5ml syringe. Slides were placed in the pre-warmed 

humidified hybridization chamber. The chamber was covered with a tight lid and incubated at 37 

±1°C overnight (14 to 18 hours). 

3.4.2.6 Post-hybridization washes and counterstaining  

The rubber cement seal was removed from the first slide by gently pulling up on the sealant with 

forceps. The coverslip was removed by immersing the slide in a Coplin jar with post-hybridization 

(2X SSC/0.3% NP-40) wash buffer at room temperature allowing the clover slip to float off. After 
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the coverslip had been carefully removed, excess liquid was removed by wicking off the edge of 

the slide and immersing the slide in post‑hybridization wash buffer at 72°C for two minutes (six 

slides/jar). 

The slide was counterstained by applying 10μL of DAPI to the target area of the slide and applying 

a glass coverslip. The slides were stored in the dark prior to signal enumeration. 

Interpretation of FISH status was done using the ASCO/CAP guidelines (Table 3-5). 

Table 3-5: Reporting of HER2 testing by FISH assessment using dual probe (Wolff et al., 2018). 

Group Ratio HER2 copy number Status 

1 > 2.0 > 4.0 Positive 

2 > 2.0 < 4.0 Positive 

3 < 2.0 > 6.0 Positive 

4 < 2.0 > 4.0 < 6.0 Equivocal 

5 < 2.0 < 4.0 Negative 

3.4.3 Xpert®  Breast Cancer STRAT4 Assay 

3.4.3.1 Materials:  

The Xpert® STRAT 4 assay kit consists of: 

 Cartridges (10 units)
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 Lysis 

 Protein kinase 

 15 ml tubes (10 units) 

 1.5 ml eppendorf (10 units) 

 

 

All reagents required for sample preparation and RT-qPCR analysis are preloaded in the cartridge. 

However, other additional equipment was required (Table 3-6). Nucleic acids in the lysate are 

captured on a filter, washed, and eluted by sonication. The purified nucleic acid is mixed with dry 

RT-qPCR reagents, and the solution is transferred to the reaction tube for RT-qPCR and detection.  

 

 

Table 3-6: List of extra equipment required for the STRAT4 assay. 

Equipment Units per batch ( 4 samples) 

Gloves 1 pair 

Razor blade 4 

Ethanol (>95%) 2 ml 

Pre-heated block (80°C) - 

Pipettes  (1000 ul and 20ul) - 

Pipette tips  20  
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Quantification and Detection of mRNA transcripts 

Quantification: Changes in sample gene expression are measured based on a reference gene, also 

known as control 2 (sample adequacy control): Reference gene (CYFIP1) PCR cycles are 

characterized by the point in time (or PCR cycle) where the amplification curve crosses a signal 

threshold (an arbitrary level of fluorescence chosen on the basis of the baseline variability) during 

the reaction. This point is usually referred to as cycle threshold (Ct), the time at which fluorescence 

intensity is greater than baseline. Baseline is the background fluorescence which accumulates, but 

is beneath the limit of detection of the instrument. Cycle threshold (Ct) values are available to 

calculate the mean normalized gene expression from relative reference gene that determine 

“positive” (POS) vs “negative” (NEG) results from a given target (Equation 1), based on pre-

defined dCt cut-offs (Table 3-7). A lower cycle threshold (Ct) value means a large amount of 

template (in sample) at the beginning of the reaction, therefore less cycles will be required to 

amplify the target genes. Conversely, a smaller amount of template generates larger Ct values. The 

Gene Xpert® software automatically reviews the signal from both the CYFIP1 endogenous control 

and the transcripts for acceptability, and calculates the difference in cycle threshold (Ct) between 

the 2 signals, yielding a delta Ct (dCt) result.  

Equation 1:   𝜟𝑪𝒕 = 𝑪𝒕 𝒐𝒇 𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒈𝒆𝒏𝒆 (𝑪𝒀𝑭𝑰𝑷𝟏) − 𝑪𝒕 𝒐𝒇 𝒕𝒉𝒆 𝒕𝒂𝒓𝒈𝒆𝒕 𝒈𝒆𝒏𝒆 

 

 

Table 3-7: STRAT4 assay targets dCt cut-off values. 

Gene Negatives Positive 

ESR1 < -1 ≥ -1 

PGR < -3.5 ≥ -3.5 

ERBB2 < -1 ≥ -1 
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MKI67  < -4 ≥ -4 

 

Delta Ct values for each assay target was displayed by using a software program (ONCore 

Software) provided by Cepheid. The software yielded a report with a semi-quantitative result 

(sliding scale) for each analyte (Figure 3-1). 
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Figure 3-1: An illustration of results displayed on ONCore software. 
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Figure 3-2: The PCR curve for one patient showing the Ct values of each target mRNA transcript. 

 

 

Detection: This was achieved using a variety of different fluorescent chemistries that correlate 

PCR product concentration to fluorescence intensity.  

3.4.3.1 Gene Xpert® Work flow 

Regarding and microdissection: Haematoxylin and eosin (H&E) stained slides were examined 

under supervision of the study supervisor and carcinomas were regraded. 

Slide Preparation (2X unstained slides):  A 4-5μm thick section was cut using a microtome. 

Afterward sections were floated in a water bath at 40 °C. Sections were mounted on positively 

charged glass microscopic slides. The slides were air dried overnight. 

Stellenbosch University https://scholar.sun.ac.za



53 

 

Tissue removal from the slides: The invasive tumor tissue was scraped from the slide and 

transferred of to a labelled 1.5ML lysis tube using a fresh razor blade for every scraping.  

Tissue Processing: Five hundred microliters of FFPE lysis reagent was added to a 1.5mL lysis 

tube containing the FFPE section. Afterwards 20µL of Proteinase K (Cepheid) was added to the 

same 1.5mL lysis tube to de-crosslink and release nucleic acids from the tumor cells. The lid was 

closed and the mixture vortexed continuously at a maximum setting of five seconds. Lastly the 

sample was micro-centrifuged to remove any liquid from the lid. Using a pre-heated block (80°C) 

the 1.5ml lysis tube containing a sample lysis reagent was incubated for 30 minutes. The sample 

was vortexed at a maximum setting of five seconds and lastly micro-centrifuged to remove liquid 

from the lid. Five hundred microliters of ≥ 95% ethanol was added to the same 1.5 mL lysis tube. 

The lid was closed and the sample was vortexed at a maximum setting for 15 seconds. Thereafter 

the sample was briefly centrifuged to remove any liquid from the lid.  

Preparing cartridge: The cartridge was removed from the cardboard packaging. The lysate was 

vortexed again for 15 seconds prior to use. The lid of the cartridge was opened and 520 µL of 

lysate was transferred to the sample chamber of the cartridge. The cartridge lid was closed by 

firmly snapping the lid into place (Figure 3-4)  

The cartridge was inserted into a module of the Gene Xpert® instrument (Figure 3-4) where 

nucleic acid purification, amplification and real-time detection would take place.  
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Figure 3-3: The cartridge and the module of the Gene Xpert®  instrument. 

3.5 Reliability and Validity 

Reliability of the study was considered by using inclusion and exclusion criteria in the selection 

of cases, as well as using a standard operating procedure for specimen preparation and analysis. A 

consistent naming convention was used for sample testing in the assay, so that re-testing on the 

same patient ID could be easily differentiated from the original test results. Therefore, in cases 

where the same patient sample was re-tested (either another aliquot from the original lysate, or as 

a concentrated lysate from a new tissue section or additional tissue sections), the repeat sample 

was designated as such by using the following naming convention: 

 “Sample No” for all initial tests run using lysate  

 “Sample No_R” for a re-test run using another aliquot from the original lysate  

 “Sample No_4xR” for the re-tests run using the “4x” concentrated lysate  

 

The assay was repeated by either preparing a fresh lysate using an additional tissue section(s) or 

following the concentrated lysate procedure per the Xpert®  FFPE Lysis kit Package (Figure 3-4 
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in the following circumstances: (1) an “INVALID” result which indicated that the CYFIP1 gene 

had failed due to the sample not being properly processed, PCR was inhibited or RNA quality of 

the tumor was inadequate (2) an “INDETERMINATE” result  which indicated that the CYFIP1 

reference gene had a Ct that was not within the valid range ( above Ct of 35.1) or the endpoint was 

below the threshold setting required for PGR or MKI67 status determination.  

 

Figure 3-4: The concentrated lysate procedure as per the Xpert®  FFPE Lysis KIt Package for 

INVALID and INDERTEMINATE results. 

3.6 External Control Testing 

FFPE controls were tested along with specimens once every batch and when a new lot of cartridges 

or FFPE lysis reagents were used. External controls were treated as specimens and processed 

according to the STRAT4 protocol.  

If any of the control results were invalid (INVALID, ERROR, NO RESULT), or incorrect (e.g., a 

positive control produced a negative result), a repeat was conducted using a new aliquot of the 

same external control, or a fresh lysate prepared from the external control and new Xpert® 

cartridge used. 

1. Control 1 (Reagent control): Probe Check Control (PCC) 

 Missing Target Specific Reagent (TSR) and/or Enzyme Reagents beads, which 

contain all primers, probes and internal control templates 

•Scrape tissue and transfer into 
1.5 mL tube

•Add 260 µL FFPE lysis

•Add 5µL Protease K

•Votex at max for 5 seconds

•Briefly microcentrifuge 

•Incubate 30 mins

•Votex at max for 5 seconds

•Briefly micrcentrifuge
Transfer entire 

content to 5mL vial

•Add 260 µL  of 95% 
ethanol

•Votex at max for 
15 seconds

Tranfer 520 uL sample 
to GeneXpert®  

cartridge
•Scan cartridge

•Put sample ID

Load cartridge 
Gene Xpert®  
Instrument 
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 Incomplete reagent reconstitution

 Incomplete reaction tube filler

 Probe degradation

2. Control 2 (Sample Adequacy control): Reference Gene (CYFIP1)

 Verifies human cells and mRNA have been added into the sample chamber

 To normalize the expression levels

 To ensure that the sample contains sufficient mRNA

3. Control 3 (Cepheid Internal Control): Armored RNA (CIC)

 Ensures that the sample was processed correctly

 Verifies that the RT-PCR reaction proceeded with minimal inhibition

3.7 Data collection: 

Laboratory data were collected in excel spreadsheets, updated by the researcher and controlled by 

the principal investigator (PI) from the records of the hospital information system. Cepheid was 

the sole provider of the platform. 

3.8 Data analysis 

The sample size calculations for the study primary objective (concordance between STRAT4 and 

IHC and/or FISH methods) are based on the performance goals for the study, which are the lower 

95% 2-sided confidence interval (LCI) for positive percentage agreement (PPA) and negative 

percentage agreement (NPA) for each of the four assay targets. The performance goals are listed 

in Table 3-8. 

Table 3-8: Performance goals for Gene Xpert®  Breast Cancer biomarker assay. 

IHC H0 HA 

ER – PPA < 80% ≥ 80% 
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ER – NPA < 80% ≥ 80% 

PR – PPA < 70% ≥ 70% 

PR – NPA < 65% ≥ 65% 

HER2 – PPA < 75% ≥ 75% 

HER2 – NPA < 80% ≥ 80% 

KI-67  – PPA < 65% ≥ 65% 

KI-67  – NPA < 65% ≥ 65% 

FISH H0 HA 

HER2 – PPA < 75% ≥ 75% 

HER2 – NPA < 80% ≥ 80% 

The hypothesis testing framework above was only used to estimate the sample size and conditional 

probabilities of passing acceptance criteria given designed performance as truth. The estimated 

total number of cases needed to be at least 100 cases with true positive (TP), true negative (TN), 

false negative (FN), and false positive (FP) targets as estimated in Table 3-9, based on product 

performance characteristics as specified in the Xpert® Breast Cancer STRAT4 CE-IVD package 

insert. With an estimated total sample size of 100, there is some risk for under-representation of 

some biomarkers. In the event of under-representation, performance assessment would focus on 

the point estimate of performance. Data from this evaluation would be compared to the pre-clinical 

data used to establish the assay cut-offs.   
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Table 3-9: Sample size testing framework for Xpert®  Breast Cancer STRAT4 assay. 

ER PR HER2 KI-67  

 (IHC) (IHC) (IHC & 

FISH) 

(IHC) 

PPA NPA PPA NPA PPA NPA PPA NPA 

Total SS 100 100 100 100 100 100 100 100 

Probability of 

Passing 

56.80% 43.10% 95.30% 40.00% 41.10% 56.40% 30% 54.20% 

Point Estimate 

Required 

90.00% 90.00% 80.00% 75.00% 85.00% 90.00% 75.00% 75.00% 

LCI 

Requirement 

80.00% 80.00% 70.00% 65.00% 75.00% 80.00% 65.00% 65.00% 

Type I error 

(Alpha) 

0.10% 1.80% 0.70% 2.80% 1.10% 0.03% 3.00% 0.40% 

Required Pos / 

Neg 

75 25 65 35 15 85 20 80 

Required Min 

TP/TN 

68 23 52 22 14 77 16 60 

Required Max 

FN/FP 

8 2 13 8 1 9 4 20 

Point Estimate 90.00% 92.00% 80.00% 77.10% 93.30% 90.00% 80.00% 75.00% 

Lower 95%CI 84.20% 81.20% 70.30% 66.00% 78.70% 84.60% 65.20% 67.80% 

Upper 95%CI 93.90% 96.90% 86.00% 85.40% 98.20% 93.70% 89.50% 81.10% 

3.9 Statistical Method 

For assessment of agreement with the reference method(s) (IHC or FISH, as applicable), standard 

2x2 tables were utilized along with calculation of the PPA, NPA, positive predictive value (PPV), 

negative predictive value (NPV) (Table 3-10). Receiver operator characteristic curves (ROC) was 

also used to plot the data for each analyte (ESR1, PGR, ERBB2, MKI-67) and includes the area 

under the curve (AUC), the standard error, 95% confidence interval. 
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Table 3-10: Standard two by two table. 

 

    IHC 

    POSITIVE NEGATIVE 

S
T

R
A

T
4
 

a
ss

a
y

 POSITIVE a = True Positive b = False Positive 

NEGATIVE c = False Negative d = True Negative 

 

 

Equation 2: Formulas of calculating sensitivity, specificity and the predictive values (Trevethan, 

2017). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑎

𝑎 + 𝑐
× 100 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑑

𝑏 + 𝑑
× 100 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 (𝑃𝑃𝑉) =
𝑎

(𝑎 + 𝑏)
 × 100  

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 =
𝑑

𝑐 + 𝑑
× 100 
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Chapter 4  

Results 

A total of 101 specimens from January to June 2018 fulfilling the study’s inclusion criteria were 

included in the study. Table 4-1 depicts the age distribution and grades of carcinomas. The 

majority of the samples belonged to the age group of 35-65 years, followed by the group above 65 

years. The mean age was 53.69 years (range 22–90 years). More than half (70.3%) of the 

carcinomas were grade 2; 13.9% and 15.8% were grade 1 and 3, respectively. 

 

Table 4-1: Age group distribution and grade of carcinomas. 

Characteristics N Percentage (%) 

Age (years) < 35 3 3.0 

35 – 65 75 74.3 

> 65 23 22.8 

Carcinoma Grade I 14 13.9 

II 71 70.3 

III 16 15.8 

 

All 101 samples yielded valid test results (“POSITIVE” or “NEGATIVE”) for at least three assay 

targets. Five specimens had no or insufficient PCR amplification signal for the reference RNA 

CYFIP1 (CYFIP1 Ct > 35) “INDETERMINATE’’ in one of the target assays. Out of the total 101 

samples, 87 (86.10%) and 72 (71.28%) were positive for estrogen receptor status on IHC and 

STRAT4, respectively. Fourteen samples were negative for ER on IHC and 29 (28.71%) samples 
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negative for ER on STRAT4. Fifty-six (55.44%) samples were positive for PR and 45 (44.55%) 

samples negative for PR on IHC. Sixty (59.40%) samples were positive for PR on STRAT4, while 

40 (39.60%) were negative and 1 (0.99%) indeterminate on STRAT4. Twenty-nine (28.71%) 

specimens were HER2-positive while 72 (71.28%) were negative for HER2 on IHC. Twenty-six 

(25.74%) of samples were positive for HER2 while 75 (74.25%) were negative for HER2 on 

STRAT4. Twenty-three samples (22.77%) were positive for HER2 on FISH while 78 (77.22%) 

were negative for HER2 on FISH. KI-67 expression > 10% was present in 95 cases (94.05%) on 

IHC of which 85 (84.15%) were positive on STRAT4. Eighty-five cases (84.15%) were positive 

for MKI-67 status on STRAT4 of which 79 (78.21%) were positive using 20% cut off on IHC. 

These findings are summarized in Table 4-2. 

  

 

Table 4-2: ER, PR, HER2 and KI-67 status determined by IHC, FISH and STRAT4 assays. 

 Assay IHC STRAT4 FISH 

 Biomarkers   N % N % N % 

ER Positive 87 86.13 72 71.28     

Negative 14 13.86 29 28.71     

PR Positive 56 55.44 60 59.40     

Negative 45 44.55 40 39.60     

Indeterminate   0 1 0.99     

HER2 Positive 29 28.71 26 25.74 23 22.77 

Negative 72 71.28 75 74.25 78 77.22 
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KI-67 _1 Positive 95 94.05 85 84.15     

Negative 6 5.94 12 11.88     

Indeterminate   0 4 3.96     

KI-67 _2 Positive 79 78.21 85 84.15     

Negative 22 21.78 12 11.88     

Indeterminate   0 4 3.96     

 

4.1 Estrogen Receptor (ER) 

More than two thirds of the samples were true positives, 72 (71.28%) and 14 (13.86%) were true 

negatives. There were no false positives recorded, whereas 15 were false negatives (Table 4-3). 

Table 4-3: Two by two table for ER status. 

 IHC  

STRAT4 Positive Negative Total 

Positive 72 0 72 

Negative 15 14 29 

Total 87 14 101 
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The specificity and PPV were both 100.00% and the sensitivity 82.76%. However, the NPV was 

48.28%. The overall percentage agreement (OPA) between IHC and STRAT4 in determining ER 

status was 85.15% (Table 4-4). 

Table 4-4: Concordance between IHC and STRAT4 for ER status. 

Statistic Value 95% CI 

Sensitivity 82.76% 73.16% to 90.02% 

Specificity 100.00% 76.84% to 100.00% 

Positive Likelihood Ratio 48.3%  

Negative Likelihood Ratio 0.17 0.11 to 0.27 

Positive Predictive Value  100.00%  

Negative Predictive Value  48.28% 37.07% to 59.66% 

Overall Percent Agreement 85.15% 76.69% to 91.44% 

 

Receiver operating characteristic (ROC) curve for STRAT4 ESR1 AUC = 0.91 (Figure 4-1). 

Comparison of STRAT4 ESR1 dCt values with -1 cut off as positive ≥ 1 or as negative < -1 vs ER 

status determined by immunohistochemistry (IHC) categorized according to Allred Score defined 

as the sum of the percentage of positive cells (X/5) and the intensity of staining (X/3) with possible 

values from 0 – 8, as negative ≤ 2 or positive >2 (Figure 4-2).  
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Figure 4-1: ROC curve for STRAT4 ESR1 AUC = 0.91.
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Figure 4-2: Graph of STRAT4 ESR1 dCt values by ER IHC Allred score.    
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4.2 Progesterone Receptor (PR) 

Fifty-three cases (52.47%) were true positives for PR, while 37 (36.63%) were true negatives. 

There were three false negatives and seven false positives (Table 4-5). 

Table 4-5: Two by two table for PR status. 

 IHC 

STRAT4 Positive Negative Total 

Positive 53 7 60 

Negative 3 37 40 

Indeterminate 0 1 1 

Total 56 45 101 

 

The OPA between STRAT4 PGR and PR IHC was 90.00%. STRAT4 showed a 94.64% sensitivity 

and 84.09% specificity for PR. The PPV recorded was 88.33% and the NPV was 92.50% (Table 

4-6). 

Table 4-6: Concordance between IHC and STRAT4 for PR status. 

Statistic Value 95% CI 

Sensitivity 94.64% 85.13% to 98.88% 

Specificity 84.09% 69.93% to 93.36% 

Positive Likelihood Ratio 5.95 3.01 to 11.77 

Negative Likelihood Ratio 0.06 0.02 to 0.19 
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Positive Predictive Value  88.33% 79.29% to 93.74% 

Negative Predictive Value  92.50% 80.28% to 97.39% 

Overall Percent Agreement 90.00% 82.38% to 95.10% 

 

Receiver operating characteristic (ROC) curve for STRAT4 PGR AUC = 0.89 (Figure 4-3). 

Comparison of STRAT4 PGR dCt values with -3.5 cut off as positive ≥ -3.5 or < -3.5 as negative 

vs PR status determined by immunohistochemistry (IHC) categorized according to Allred Score 

defined as the sum of the percentage of positive cells (X/5) and the intensity of staining (X/3) with 

possible values from 0 – 8, as negative ≤ 2 or > 2 as positive (Figure 4-4). 
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Figure 4-3: ROC curve for STRAT4 PGR AUC = 0.89.
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Figure 4-4: Graph of STRAT4 PGR dCt values by PR IHC Allred score.

Stellenbosch University https://scholar.sun.ac.za



70 

 

4.3 Human Epidermal Growth Factor Receptor 2 (HER2) 

4.3.1 HER2 IHC 

Twenty samples (19.80%) were true positives and 66 (65.35%) were true negatives. There were 

nine false negatives (8.91%) and six (5.94%) false positives (Table 4-7). 

Table 4-7: Two by two table for HER2 status. 

 IHC  

STRAT4 Positive Negative Total 

Positive 20 6 26 

Negative 9 66 75 

Total 29 72 101 

 

 

The sensitivity (68.97%) was lower than the specificity (91.67%). The NPV was 88.00% and the 

PPV 76.92%. The OPA between STRAT4 and IHC was 85.15% (Table 4-8). 

Table 4-8: Concordance between IHC and STRAT4 assay for HER2 status. 

Statistic Value 95% CI 

Sensitivity 68.97% 49.17% to 84.72% 

Specificity 91.67% 82.74% to 96.88% 

Positive Likelihood Ratio 8.28 3.70 to 18.49 

Negative Likelihood Ratio 0.34 0.20 to 0.59 
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Positive Predictive Value  76.92% 59.87% to 88.16% 

Negative Predictive Value  88.00% 80.93% to 92.69% 

Overall Percent Agreement 85.15% 76.69% to 91.44%- 

 

4.3.2 HER2 IHC/FISH  

The study showed 72 (71.28%) true negative and 20 (19.80%) true positive cases. Six samples 

(5.94%) were false positive and three (2.97%) samples were false negative (Table 4-9). 

Table 4-9: Two by two table for human epidermal receptor 2 (HER2). 

. IHC/FISH  

STRAT4 Positive Negative Total 

Positive 20 6 26 

Negative 3 72 75 

Total 23 78 101 

 

 

The specificity, NPV and the OPA were all above 90% (96.00, 92.31% and 91.09, respectively). 

However, the sensitivity was lower at 76.92%, while the PPV was 86.96% (Table 4-10). 

 

 

Table 4-10: Concordance between IHC/FISH and STRAT4 for HER2 status. 

Statistic Value 95% CI 
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Sensitivity 86.96% 66.41% to 97.22% 

Specificity 92.31% 84.01% to 97.12% 

Positive Likelihood Ratio 11.30 5.16 to 24.78 

Negative Likelihood Ratio 0.14 0.05 to 0.41 

Positive Predictive Value  76.92% 60.33% to 87.96% 

Negative Predictive Value  96.00% 89.29% to 98.57% 

Overall Percent Agreement 91.09% 83.76% to 95.84% 

 

Receiver operating characteristic (ROC) curve ROC curve for STRAT4 ERBB2 AUC = 0.80 

(Figure 4-5). Comparison of STRAT4 ERBB2 dCt values with -1 cut off as postive ≥ -1 or ≤ -1 as 

negative vs progesterone receptor status (ER) determined by immunohistochemistry (IHC) 

categorized according to +1 as negative, +2 as equivocal (positive) and +3 as positive (Figure 4-

6). 
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Figure 4-5: ROC curve for STRAT4 ERBB2 AUC = 0.80. 

 

Stellenbosch University https://scholar.sun.ac.za



74 

 

 

 

Figure 4-6:  Graph of STRAT4 ERBB2  dCt values by HER2  IHC Allred score 
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4.4 Proliferation Index (KI-67) 

4.4.1 KI-67 at 10% cut-off 

True negatives and the indeterminate (excluded) results were four (3.96%) and the false negatives 

were eight (7.92%). The true positives were 84 (83.16%) with only one false positive (Table 4-

11). 

Table 4-11: Two by two table for proliferation index (KI-67) at 10% cut-off. 

 IHC 

STRAT4 Positive Negative Total 

Positive 84 1 85 

Negative 8 4 12 

Indeterminate 3 1 4 

Total 85 12 101 

 

The OPA between STRAT4 and IHC was 90.72%, sensitivity 91.30%, specificity 80.00%, PPV 

98.82% and NPV 33.33% using a pre-defined IHC cut-off of 10% (Table 4-12).  

 

Table 4-12: Concordance between IHC and STRAT4 for proliferation index status (KI-67_1) at 

10% cut-off. 

Statistic Value 95% CI 

Sensitivity 91.30% 83.58% to 96.17% 

Specificity 80.00% 28.36% to 99.49% 
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Positive Likelihood Ratio 4.57 0.79 to 26.38 

Negative Likelihood Ratio 0.11 0.05 to 0.24 

Positive Predictive Value  98.82% 93.56% to 99.79% 

Negative Predictive Value  33.33% 18.43% to 52.52% 

Overall Percent Agreement 90.72% 83.12% to 95.67% 

 

4.4.2 KI-67 at 20% cut-off 

When using a pre-defined cut-off of 20% for KI-67 positivity on IHC, 73 of the samples were true 

positive and only nine were true negative (Table 4.13). Twelve samples were false positive and 

only three were false negative. Four samples were excluded as they were indeterminate by 

STRAT4 (Table 4-13). 

Table 4-13: Two by two table for proliferation index (KI-67) at a 20% cut-off. 

 IHC 

STRAT4 Positive Negative Total 

Positive 73 12 85 

Negative 3 9 12 

Indeterminate 3 1 4 

Total 79 22 101 
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The sensitivity recorded for KI-67 at 20% cut-off was high at 96.05%. However, the specificity 

was very low at 42.86%. The PPV and the NPV were 85.88% and 75.00%, respectively. The OPA 

between IHC and STRAT4 was 84.54% (Table 4-14). 

  

Table 4-14:  Concordance between IHC and STRAT4 for proliferation index status (KI-67_2) at 

20% cut-off. 

Statistic Value 95% CI 

Sensitivity 96.05% 88.89% to 99.18% 

Specificity 42.86% 21.82% to 65.98% 

Positive Likelihood Ratio 1.68 1.16 to 2.44 

Negative Likelihood Ratio 0.09 0.03 to 0.31 

Positive Predictive Value  85.88% 80.73% to 89.83% 

Negative Predictive Value  75.00% 47.12% to 90.99% 

Overall Percent Agreement 84.54% 75.78% to 91.08% 

 

 

Comparison of STRAT4 MKI67  dCt values with - 4 cut off, ≥ - 4 as postive or <- 4 as negative 

vs poliferation index (KI-67 ) determined by immunohistochemistry (IHC) at cut offs 10% and 

20%  of positive cells (Figure 4-7). 
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Figure 4-7: Graph of STRAT4 MK167 dCt values by KI67  IHC at 10% and 20% cut off.
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4.5 Breast cancer subtyping 

From the luminal A carcinomas, four were classified as different subtypes after analysis on 

STRAT4. Three were classified as luminal B and one as HER2-enriched. Nine of the luminal B 

carcinomas were classified as triple negative, two as HER2-enriched and six as luminal A (Table 

4-15).

Table 4-15: Different breast cancer molecular subtypes according to IHC vs STRAT4 assay. 

STRAT4 

IHC LUMINAL A LUMINAL B HER2-

ENRICHED 

TRIPLE NEG 

LUMINAL A 3 1 

LUMINAL B 6 2 9 

HER2 RICH 

TRIPLE NEG 

4.6 Turnaround Time 

The TAT of STRAT4, from the time the sections are cut and ready for processing, to the 

availability of results, was approximately two hours for one batch (i.e. four samples). The average 

time taken on sample preparation per batch ranges from 45 to 50 minutes including 30 minutes of 

incubation. There is no loading of reagents as it is a preloaded cartridge. The Gene Xpert® 

instrument runs for 1 hour 5 minutes per run, and the results are available immediately.  The Leica 

BOND III machine for IHC takes approximately two hours 10 minutes per run. This excluded time 

taken to load slides, load different reagents for different tests, and applying coverslips. In addition, 

afterwards, slides are taken to the pathologist for slide analysis under the microscope.  
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Chapter 5  

5.1 Discussion 

Health service providers, researchers and especially clinicians are faced with the important task of 

breast cancer diagnosis and subtyping, to allow for directed treatment (Adebamowo et al., 2014; 

Schwartz and William, 1998). This challenge has therefore necessitated the embrace of all 

available scientific techniques that could ease the process by evaluating biomarkers in an efficient 

way with a shorter turnaround time. In this study we evaluated the analytical validity of the new 

RT-qPCR CE-IVD assay (Xpert® Breast Cancer STRAT4*) against the standard-of-care, IHC and 

FISH techniques.  

The most important reason for analytical validity is to build confidence in using a test. The 

important parameters in evaluating evidence about analytical validity include specificity and 

sensitivity (Lavanya et al 2013). However, several technical challenges may arise in evaluation of 

analytical validity, from sample requisition to the complexity of result interpretation (Burke et al 

2002). A suitable test for clinical use is one that meets acceptable standards for analytical validity 

(Burke, 2014). The delta Ct cut-offs used for all four biomarkers (ESR1, PGR, ERBB2, MKI67) 

for the STRAT4 assay were pre-specified based on prior testing in small datasets. This study 

provides the parameters of analytic validity for the STRAT4 assay, specificity and sensitivity in 

measuring the four breast cancer biomarkers (ER, PR, HER2 and KI-67). 

Sensitivity was an important consideration in the study as it indicates the ability of a test to detect 

a true positive (Lavanya et al 2013; Trevethan, 2017). This informs us on whether the foundations 

of the test are satisfactory (Trevethan, 2017). Positive predictive value (PPV) measures the true 

positive rate among the positive results on the STRAT4 assay. This parameter assesses the 

practical usefulness of the test in clinical practice. According to Trevethan (2017) specificity 

measures the ability of a test to detect a true negative. Negative predictive value (NPV) is defined 

as the rate of true negatives among negative results of the STRAT4 assay.  
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5.1.1 Turnaround time  

During the study, the turn-around time recorded for the STRAT4 assay was on average two hours 

(i.e. from the time the sectioning of tissue is available on the bench to the availability of the results) 

for the analysis of four samples per run. One main advantage of the STRAT4 assay is that it is 

only dedicated to breast carcinoma and there is no loading of reagents, as the reagents are 

prepacked in the cartridge. On the other hand, IHC takes approximately two hours on the Leica 

BOND III machine (in addition to 30 minutes of baking slides prior to running the test). This 

reported turnaround time excludes the time taken to load slides into the Leica BOND III machine, 

load different reagents for different tests, setting up the system to recognise the position of slides 

as per test and lastly covering of slides with a coverslip before taking it to the pathologist for 

analysis under the microscope. Furthermore, availability of results is highly dependent on the 

laboratory workload. as other more urgent tests may take precedence. Interpretation of IHC 

staining by the pathologist may also take longer in certain cases. In context these factors can 

increase the turnaround time significantly.  

5.1.2 Estrogen Receptor (ER/ESR1) 

Sensitivity in our study for ER status is 82.76% which was similar to that of Denkert et al. (2019 

(83.7%) while the study of Wu et al., (2018) recorded a higher sensitivity of 98.3%. The lower 

sensitivity recorded in this present study is attributed to the number of cases which tested negative 

on the STRAT4 assay, but were reported as positive on the IHC (i.e. false negatives). The Allred 

scoring used to interpret ER and PR for IHC was done manually by a pathologist, and therefore 

contains a degree of subjectivity. Occasionally, a very low percentage of tumor cells (<1%) 

showed moderate or strong staining, and the case was scored as three (or more) out of eight, 

classifying it as ER-positive. There are no clear guidelines by ASCO/CAP on the response of these 

tumors from hormonal therapies. We recorded a PPV of 100%, meaning that there were no false 

positives in our study. 

The results of this study showed that STRAT4 recorded the highest specificity (100%) for ER, as 

there were no false positive results recorded. This is comparable to the findings of Erber et al., 

(2020) where their specificity was 100%. Wu et al. and Denkert et al. reported lower specificities 
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of 98% and 95.9%, respectively. However, it is worth noting that the sample sizes differ between 

studies. The sample size of our study is 101 cases, while that of Wu et al. was 523, and that of 

Denkert et al. and Erber et al. was 80 and 10, respectively. In context, this shows that the STRAT4 

test is satisfactory in determining a true negative rate. However, we recorded a low NPV (48.2%), 

which means that false negatives were present. The OPA recorded in this study for ER status was 

85.15%. Meanwhile, Denkert et al. recorded a slightly higher OPA of 89.7%, while, Wu et al. 

recorded 97.8% and Erber et al. recorded 100%. The concordance rate recorded in our study was 

supported by the ROC AUC value of 0.91.  

5.1.3 Progesterone receptor (PR/PGR) 

We recorded a sensitivity of 94.64% for PR, due to the few false negative cases. The sensitivity 

recorded in our study is in line with that of Wu et al. (93.5%), while Denkert et al. reported a lower 

sensitivity of 82.7%. Our study showed that STRAT4 was satisfactory to determine the true 

positive rate. In our study, specificity for PR was 84.09%, which is similar to that reported by 

Denkert et al. (83.7%) while Wu et al. reported a lower specificity of 81.1%. The low specificity 

recorded for PR in our study is due to seven cases with false positive results. In the case of low 

specificities or sensitivities, the predictive values (i.e. NPV or PPV) may be used in determining 

the treatment for breast cancer patients (Trevethan, 2017). In context, the low specificity recorded 

for PR status (despite the high sensitivity), may be ignored/overlooked in decision maKIng, due 

to a high NPV (92.50%) which equates to very few false negative cases. NPV is defined as the 

true negatives among negative cases, and because it is close to 100%, suggest that STRAT4 is 

essentially as good as IHC. Furthermore, Trevethan (2017) suggested that NPV may be used under 

certain circumstances such as in disease that require treatment early in course or particularly if the 

condition can be treated effectively and likely progresses quicker than expected such as in breast 

cancer cases. The overall percentage agreement (OPA) of PR in the present study was 90% which 

is similar to Wu et al.  who recorded 90.4%. However, Denkert et al. reported a higher OPA of 

97.8%. The results therefore suggest high levels of concordance between STRAT4 and IHC for 

PR, and was supported by ROC AUC value of 0.89.  
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5.1.4 Human Epidermal Growth Factor Receptor 2 (HER2/ERBB2) 

Our study showed that the sensitivity of STRAT4 compared to IHC for HER2 (including equivocal 

cases as positive) was 68%. However, when STRAT4 was compared with IHC, including FISH 

for resolution of equivocal cases to either negative or positive, our results were within the 

sensitivity range reported by Wu et al. (2018) of 86% – 98.4%. It is not surprising that less false 

positive cases were recorded when equivocal IHC results were categorized by FISH, resulting in 

a higher sensitivity of 86.96%. In context, several studies have demonstrated that FISH has more 

accurate results as compared to IHC, because with dual probe FISH testing, a chromosome count 

can be done while this is not possible on IHC. However, FISH does not necessarily reflect protein 

expression, but only demonstrates the amplification, or lack thereof, of the ERBB2 gene (Bahreini 

et al., 2015; Wolff et al., 2007). Wasserman et al. (2017) reported a sensitivity of 87% between 

STRAT4 assay and IHC. In addition, Wasserman et al. also reported a sensitivity of 90% between 

STRAT4 assay and quantification of the immunofluorescent (QIF) staining performed using the 

method of Automated Quantitative Analysis (AQUA) which have been suggested by previous 

findings to be more analytically accurate than the IHC standard of care. However, our HER2 

sensitivity was a little lower than that reported by Wu et al. and Denkert et al. of 94.3% and 97.3% 

respectively. Erber et al. reported a higher sensitivity of 100% in their study. Aberrant cytoplasmic 

IHC staining of tumor cells by HER2 may have hampered accurate interpretation of membrane 

staining (Allison, 2018). The HER2 antibody clone used to score these cases originally, at time of 

diagnosis, was detecting the intracytoplasmic domain of HER2. Since December 2019, the 

antibody clone was changed to one recognizing the external domain of HER2. This change in our 

laboratory appeared to have reduced the amount of cytoplasmic staining. Increased cytoplasmic 

staining, interpreted as negative, could have been responsible for false negative results. A lower 

sensitivity can also suggest reviewing the cuts-off for ERBB2 mRNA transcripts on the STRAT4 

assay. There was a moderate PPV of 76.92% which could be acceptable.  

A specificity of 92.31% was recorded for HER2 in our study between STRAT4 and IHC/FISH, 

which was higher than the specificity between STRAT4 and IHC including equivocal as positives 

(86.96%). Erber et al. reported the highest specificity of 100% followed by 94% reported by both 

Wassermann et al. and Denkert et al., and lastly Wu et al. reported 93.1%. The results of our study 

suggest that STRAT4 is a very effective test in identifying biopsies with no overexpression of 
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ERBB2 (NPV of 96%). The OPA recorded in this study between STRAT4 and IHC/FISH results 

was 91.09%. 

5.1.5 Proliferation Index (KI-67/MKI67) 

Concordance between STRAT4 and IHC for determination of the proliferation index (MKI67/KI-

67), was variable depending on a cut-off of 10% and 20%. There has been considerable debate 

over the performance and interpretation of proliferative markers (Hashmi et al., 2019). No optimal 

cut-off point for the KI-67 proliferative index has been standardized, and this may be responsible 

for the difficulty in choosing a standard threshold for daily practice (Ahmed et al., 2018). 

Furthermore, currently the ASCO guidelines do not recommend the use of KI-67 routinely on all 

breast carcinoma cases (Harris et al., 2016). In our study, the cut-off points for KI-67 status were 

10% and 20% of positively stained cells, which was similar to that of Wu et al. Our results showed 

that STRAT4 had the highest sensitivities of KI-67 status when compared to other biomarkers. 

MKI67 at a cut-off of 20% recorded a higher sensitivity than the 10% cut-off, with a sensitivity of 

96.05% and 91.00% respectively. Hence, raising the IHC cut-off for determination of the 

proliferation index has an impact on the sensitivity. For a 10% cut-off, there were more false 

negatives and less false positives than for the 20% cut-off. To put it another way, cases were over 

scored by STRAT4 using a cut-off of 10% on IHC scoring. Our study recorded one of the highest 

sensitives of MKI67 at 20% cut-off after Denkert et al., who had a value of 97.6% at 20% cut-off. 

However, Wu et al. (2018) reported a lower sensitivity for both MKI67 cut-off at 10% (80.7%) 

and 20% (88.6%) than our study. In addition, we recorded a PPV of 98.82% and 85.88% for 10% 

and 20% cut-off values, respectively.  

We had a specificity of 80% for a 10% cut-off and 42.86% for a 20% cut-off in our study. Unlike 

the sensitivity, the specificity of the 20% cut-off was strikingly lower (42.85%) than that of the 

10% cut-off (80.00%). This observation was similar to that of Denkert et al. who reported a far 

lesser specificity of 30.5% using a 20% cut-off. Wu et al. reported a higher specificity of 59.9%. 

It is evident from our study that even though the 20% cut-off recorded a lower specificity, it seemed 

the better cut-off due to the higher sensitivity which could infer that very few cases were missed 

(false negatives). Furthermore, in relation to the low specificity at 20% cut-off, a moderate 

negative predictive value (NPV) was recorded and would be tolerable if breast cancer was not a 
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progressing disease or one which does benefit from early treatment. These findings suggest a re-

adjustment of the STRAT4 assay cut-off for determining the MKI67 status. Using 10% and 20% 

cut-offs resulted in OPAs of 90.72% and 84.54% respectively. This is the second highest OPA 

which has been recorded after Denkert et al. (86.7%) for detection of MKI67 at a 20% cut-off.  

5.1.6 Breast cancer subtypes 

We recorded twenty cases that had one discordant result in one of the four targeted biomarkers 

between the STRAT4 assay and the IHC which resulted in a change of subtype. More than half of 

the discordant results was due to discordant ER results. According to Grant et al., 2015 there is a 

significant variation between mRNA expression and receptor protein levels on the ER gene. In the 

case of false positives, ER variation could be due to splicing, which may produce a non-functional 

variant of the ESR1 gene that express epitopes recognised by IHC antibodies. Another factor to be 

taken into consideration, would be decreased antigens for antibodies to bind to, during the antigen 

retrieval stage of IHC leading to false negative results.   

Tumors were re-classified as luminal A, luminal B and triple negative subtypes, with the majority 

changed to luminal B (17 cases). There was only one triple negative which had been changed to a 

HER2-enriched tumor, due to discordance in HER2 status. In this scenario, the patient may miss 

the benefits of trastuzumab, because it is not administered to triple negative breast carcinomas. On 

the other hand, the patient would be spared from the side effects of chemotherapy. Furthermore, 

three luminal A carcinomas were re-classified to luminal B, due to variability of the HER2 status 

(false positive cases). In these cases, the patients would not benefit from chemotherapy if classified 

as luminal A but would still benefit from hormonal therapy. These findings suggest that patient 

treatment may have been different, depending on the detection method. In terms of the luminal B 

cases, out of 17 changed subtypes, six were changed to luminal A therefore would not secure the 

benefits of chemotherapy; two into HER2–enriched and would respond better to trastuzumab, 

however, no evidence has been reported on the response of luminal A to trastuzumab. Lastly nine 

luminal A carcinomas were reclassified to TNBC; with both IHC and STRAT4 classification 

chemotherapy would be beneficial, however hormonal therapy would not be beneficial to TNBC.   
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5.1.7 Ethics consideration 

Ethical, legal and social implications were important considerations in the study. Only 

retrospective cases were used in this study, and according to Stellenbosch University “Guidance 

on applying for a waiver of consent when conducting retrospective record reviews”, the following 

had to be included which were strictly adhered to during experimentation: justification regarding 

why participant consent cannot be obtained, whether the data will be anonymized at the point of 

data collection and whether the data will be aggregated and anonymized in the reporting of 

findings. These guidelines are in line with the University of Kansas, School of Medicine-Wichita 

campus (KUSM-W, USA) Human Subjects Committee 2 guidelines implemented from the 14 

April 2003. 

In addition to the University guidelines, the Protection of Personal Information Act (POPI Act) 

was published in the South Africa Government Gazette on 26 November 2013. The purpose of the 

POPI Act is to ensure all South African institutions conduct themselves in an accountable manner 

when collecting, processing, storing and sharing (local or international) another entity's personal 

information by holding them responsible.  

In this study careful consideration was given to the POPI Act. Previously the South Africa’s 

research ethics framework, allowed a broad consent model for secondary data purposes (National 

Department of Health. Ethics in Health Research Principles, Processes and Structures. 2015.). The 

use of biological material with clinical data and diagnostic results for secondary research purposes 

goes against POPI Act.  Informed consent may be required especially since the biological material 

and data was not collected for research purposes initially. According to the POPI Act section (15), 

a waiver of consent was requested based on anonymization (de-identifying) of cases and that 

contacting all patients would not be feasible. Furthermore, the study was exempt from the POPI 

Act because performing the STRAT4 assay on the residual tissue, which is the same test done on 

IHC, but is on a different molecular level, would not have any implications for future treatment of 

the particular patient. 

 

Previously samples could be shared with research institutions, both locally and internationally, 

while subjected to certain approvals (Staunton, 2019). In this study coded data was to be shared 
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with the provider of the STRAT4 assay for in-house validation and calibration. According to the 

POPI Act, data can only be transferred to countries that have similar data protection, for example 

countries under the European General Data Protection Regulation (GDPR). In this study a Material 

Transfer Agreement (MTA) was signed between the university and the provider of the KIts. 

Staunton (2019) reported that the MTAs could include a legally binding agreement. However, it 

remains to be seen whether MTAs will be deemed to provide sufficient safeguards.  

 

In context, LMIC and poorly resourced countries are prone to ethical challenges that are related to 

commercialization. Validation of high through-put technologies that are fully sponsored will have 

ethical concerns which may bring some inevitable association of commercial interest. One, highly 

likely scenario is that in order to protect commercial interests, some may seek to assert intellectual 

property rights over various aspects of translational research. Consenting for such research puts 

one at a risk of public expectation and may outpace the reality of the research. These complexies 

suggest a possible impact by the POPI Act on health research in South Africa.  

5.2 Limitations 

The sample size was small, which may lead in increasing the probability of defining a true positive 

result as false positive. Furthermore, this would pose the STRAT4 assay test to have no limitations 

as compared to the IHC. Furthermore, small sample size may not estimate the overall percentage 

agreements precisely. 

5.3 Conclusion 

Evaluation of the Xpert® STRAT4 breast cancer assay in the detection of breast cancer biomarkers 

(ESR, PGR, ERBB2 and MK167) indicated a significantly good performance. The overall 

percentage agreement between the STRAT4 and the gold standard was comparable. Furthermore, 

the STRAT4 assay showed a good turnaround time and confirmed its efficiency for rapid 

subtyping of breast cancers, which can be beneficial in countries with limited healthcare resources. 

Nonetheless, at this stage, it is advised to use STRAT4 as a supplementary method to the standard 

of care. In future the STRAT4 assay may facilitate breast cancer subtyping in resource poor 

settings. 
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Chapter 7  

Appendix 

Table 7-1: Cases with discordant results between STRAT4 assay and IHC/FISH used to approximate breast cancer molecular 

subtype. 

 

GX_No IHC ER IHC PR IHC HER2 
IHC 
KI67 
(%) 

Subtype  
STRAT4 
ER 

STRAT4 PR 
STRAT4 
HER2 

STRA4 KI67 
Subtype 

P5 0 0 0 60 LUMINAL B 0 0 1 0 LUMINAL A 

P14 0 0 0 5 LUMINAL B 0 0 1 INDET LUMINAL A 

P29 0 0 0 20 LUMINAL B 0 0 1 0 LUMINAL A 

P51 0 0 0 0 LUMINAL B 0 0 1 1 LUMINAL A 

P67 0 0 0 14 LUMINAL B 0 0 1 0 LUMINAL A 

P74 0 0 0 50 LUMINAL B 0 0 1 1 LUMINAL A 

P1 0 0 1 15 LUMINAL A 0 0 0 0 LUMINAL B 

P77 0 0 1 14 LUMINAL A 0 0 0 0 LUMINAL B 

P84 0 0 1 15 LUMINAL A 0 0 0 0 LUMINAL B 

P91 0 1 0 70 LUMINAL B 1 1 0 0 HER2RICH 

P95 0 1 0 30 LUMINAL B 1 1 0 0 HER2RICH 

P6 0 1 1 70 LUMINAL B 1 1 1 0 TRIPLE - 
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P9 0 1 1 90 LUMINAL B 1 1 1 0 TRIPLE - 

P26 0 1 1 25 LUMINAL B 1 1 1 0 TRIPLE - 

P42 0 1 1 50 LUMINAL B 1 1 1 0 TRIPLE - 

P45 0 1 1 60 LUMINAL B 1 1 1 0 TRIPLE - 

P54 0 1 1 50 LUMINAL B 1 1 1 0 TRIPLE - 

P59 0 1 1 70 LUMINAL B 1 1 1 0 TRIPLE - 

P89 0 1 1 85 LUMINAL B 1 1 1 0 TRIPLE - 

P90 0 1 1 60 LUMINAL B 1 1 1 0 TRIPLE - 

P55 1 1 1 20 TRIPLE - 1 1 0 0 HER2RICH 

0 = Positive   1 = Negative 
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Figure-7-1: Comparison of sensitivity for all four biomakers (ER, PR, HER2 and KI-67) between STRAT4and IHC across different 

studies. 

 

 

98.3

83.7

100

82.7

93.5

82.7

94.6494.3

87

97.4
100

86.96

80.7

91.3
88.6

97.6 96.05

0

20

40

60

80

100

120

Wu et al. Wasserman et al. Danket et al. Erber et al. Our Study

P
ER

C
EN

TA
G

E 
(%

)
Sensitivity

ER PR HER2IHC/FISH KI67 (10%) KI67 (20%)

Stellenbosch University https://scholar.sun.ac.za



111 

 

 

 

Figure 7-2: Specificity of all four biomakers (ER, PR, HER2 and KI-67) between STRAT4 assay and IHC across different studies. 
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Figure 7-3: OPA of all four biomakers (ER, PR, HER2 and KI-67) between STRAT4 assay and IHC in different studies. 
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Figure 7-4: Copyright licence for figure 1-1. 
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Figure 7-5: Copyright licence for figure 3-3. 

 

Stellenbosch University https://scholar.sun.ac.za



115 

 

 

Figure 7-6: Copyright licence for figure 3-4 and 3-5. 
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Figure 7-7: Copyright licence for figure 3-2. 
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