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Abstract 

Development of a One-Dimensional Code for the Initial Design of a Micro 

Gas Turbine Compressor Stage 

H. van Eck

Department of Mechanical and Mechatronic Engineering, 

University of Stellenbosch, 

Private Bag X1, Matieland 7602, South Africa. 

Thesis: MEng (Mech) 

December 2020 

The use of micro gas turbines for once-off and often unique applications means 

that a generic, rapid turnaround design and performance evaluation process is 

required.  This thesis aims at developing an application based One Dimensional 

(1D) design and flow analysis program to be used as an initial design tool for radial 

and mixed flow compressors.  The application was developed in MATLAB®.  The 

code is primarily based on the mean line flow and loss models developed by 

Aungier (2000).  For verification, 18 test compressors were developed using the 

1D Application (App).  These test compressors cover a wide range of design 

velocities, mass flow rates, as well as meridional exit angles (mixed flow 

compressors).  Predicted performance results were validated using 

Numeca/FINE™ Turbo software.  Initial comparisons between 1D and CFD results 

did not match very well.  The 1D software generally over-predicted compressor 

performance, i.e. total-to-total efficiency and pressure ratio.  The 1D software 

further provided fairly poor compressor choke prediction.  Consequently, empirical 

models to correct these deviations were derived and implemented into the 1D 

software.  Following these corrections, the results predicted by the modified 1D 

application compared well with the CFD results obtained.  Initial 1D mean line 

results presented a mean choke prediction difference of 14.98% for the 18 test 

compressors, with a maximum difference of 39.88%.  In the updated 1D App code 

the mean difference was reduced to 1.59% with a maximum difference of 4.97%. 

Initial 1D mean line results presented a mean total-to-total pressure ratio prediction 

difference of 9.31%, with a maximum difference of 17.27%.  In the updated 1D App 

code the mean difference was reduced to 1.24% with a maximum difference of 

5.01%.  Total-to-total efficiency predicted by the initial 1D mean line code 

presented a mean difference of 11.23%, with a maximum difference of 15.09%.  In 

the updated 1D App code the mean difference was reduced to 0.74% with a 

maximum difference of 1.57%.  As a final means of validation, two more test 

compressors were designed using the 1D App.  Performance results compared 

well with the CFD results. 

Keywords:  micro gas turbine, mixed-flow impeller, crossover diffuser, 1D mean 

line code, 1D App. 
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Uittreksel 

Ontwikkeling van ‘n Een Dimensionele Kode vir die Aanvanklike Ontwerp 

van ‘n Mikro Gasturbine Kompressor Stadium 

(“Development of a One-Dimensional Code for the Initial Design of a Micro Gas 

Turbine Compressor Stage”) 

H. van Eck

Departement Meganiese en Megatroniese Ingenieurswese, 

Universiteit van Stellenbosch, 

Privaatsak X1, Matieland 7602, Suid Afrika. 

Tesis: MIng (Meg) 

Desember 2020 

Die eenmalige en soms unieke gebruik en aanwending van mikro gasturbine enjins 

vereis dikwels ‘n generiese en spoedige ontwerps en werkverrigting evaluasie 

proses.  Hierdie tesis beoog om ‘n toepassings gebaseerde Een Dimensionele 

(1D) ontwerps en vloei analise kode te ontwikkel wat sal dien as ‘n aanvanklike 

hulpmiddel vir die ontwerp van radiale en gemengde vloei kompressors.  Die 

toepassing is in MATLAB® ontwikkel.  Die kode is primêr gebaseer op Aungier 

(2000) se 1D vloei en verlies modelle.  Die 1D Toepassing (Toep) is gebruik om 

18 toets kompressors te ontwerp wat sou dien as bewys van konsep.  Hierdie 18 

toets kompressors is ontwikkel om ‘n wye verskeidenheid ontwerps snelhede, 

massavloeitempos en meridionale uitlaat hoeke (gemengde vloei kompressors) te 

dek.  Voorspelde resultate is geverifieer deur gebruik te maak van Numeca/FINE™ 

Turbo.  Aanvanklike vergelykings tussen die 1D en Berekenings Vloeimeganika 

(BVM) resultate het nie goed ooreengestem nie.  Die aanvanklike 1D sagteware 

het die kompressor werkverrigting (totaal-tot-totale isentropiese doeltreffendheid 

en drukverhouding) oor die algemeen te hoog voorspel.  Die aanvanklike 1D 

sagteware het verder gebrekkige wurging voorspelling verskaf.  Daarom is 

empiriese modelle afgelei om hierdie afwykings te kwantifiseer en korrigeer. 

Hierdie korreksies is in die 1D Toepassing kode geïmplimenteer.  Die 

opgedateerde 1D Toepassing kode het resultate tot gevolg gehad wat goed 

ooreengestem het met die BVM resultate.  Aanvanklike 1D kode wurgings resultate 

het ‘n gemiddelde afwyking met betrekking tot BVM resultate getoon van 14.98% 

vir die 18 toets kompressors, met ‘n maksimum afwyking van 39.88%.  Hierdie 

afwyking is met die opgedateerde 1D Toepassing verlaag tot ‘n gemiddelde van 

1.59% met ‘n maksimum afwyking van 4.97%.  Die aanvanklike 1D kode het verder 

‘n gemiddelde totaal-tot-totale drukverhouding afwyking getoon van 9.31% met ‘n 

maksimum afwyking van 17.27%.  Die opgedateerde 1D Toepassing kode het 

hiedie afwyking verlaag tot ‘n gemiddelde waarde van 1.24% met ‘n maksimum 

verskil van 5.01%.  Die aanvanklike 1D kode het ‘n gemiddelde totaal-tot-totale 

isentropiese doeltreffendheid afwyking getoon van 11.23% met ‘n maksimum 
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afwyking van 15.09%.  Die opgedateerde 1D Toepassing kode het hierdie afwyking 

verlaag tot ‘n gemiddelde waarde van 0.74% met ‘n maksimum verskil van 1.57%. 

As finale validasie is twee addisionele toets kompressors ontwerp met behulp van 

die 1D Toepassing.  Die werksverrigting resultate van hierdie twee kompressors 

het goed ooreengestem met die toepaslike BVM resultate. 

Sleutelwoorde:  mikro gasturbine, gemengde vloei rotor, oorgangsdiffusor, 1D vloei 

kode, 1D Toepassing. 
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1 
 

Chapter 1:  

Introduction 

 

 

1.1 Background 

 

The Gas Turbine engine has become the de facto powerplant used in the aviation 

industry today, with only the smaller and lighter general aviation aircraft still utilising 

reciprocating engines.  The majority of aircraft make use of some configuration of 

the gas turbine engine, be it in the form of a turbojet engine, a low or high bypass 

turbofan engine or a fixed or free turboprop engine. 

 

In the Radio-Controlled aircraft and Unmanned Aerial Vehicle (UAV) environments 

(both civilian and military), gas turbines have been making a significant contribution 

as propulsion systems in the form of Micro Gas Turbine (MGT) engines 

(Trebunskikh et al., 2012) (Figure 1.1).  MGTs are also extensively utilised as 

Auxiliary Power Systems (APUs) or Gas Turbine Starters (GTSs) on modern 

fighter and transport aircraft.  Additionally, MGTs have wide application in the 

military aeronautical sector, particularly in the propulsion of UAVs, target drone 

propulsion systems, as well as long range stand-off weapons (SOWs).  Marcellan 

et al. (2016) predicts the extensive future use of UAVs (and MGTs as propulsion 

systems) in areas of transport, telecommunication, search and rescue and disaster 

management. 

 

 

Figure 1.1:  Micro Gas Turbine Engine (Cape Aerospace Technologies) 

 

The general configuration and sizing parameters of Gas Turbine engines are 

determined by their operational envelope, purpose and platform parameters.  Axial 

flow engines in general provide higher mass flow rates with lower per stage 
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pressure ratios compared to similar radial flow compressor engines (Dixon and 

Hall, 2014).  Axial flow engines also tend to be longer and more slender, while 

centrifugal engines tend to be shorter and bulkier.  Small radial engines typically 

display higher efficiencies than comparable axial engines.  This is due to the short 

blade chord lengths of small axial compressors resulting in reduced Reynolds 

numbers and low flow deflection and blade efficiency.  For these reasons, radial 

and mixed flow compressors are generally preferred in MGT engines due to 

space/size and Centre of Gravity (CoG) restrictions. 

 

A disadvantage of a pure radial flow MGT is its relatively large frontal area.  Modern 

UAVs and Stand-off Weapons (SOWs) require smaller engines with ideally no 

reduction in power-to-weight ratios.  Large frontal areas increase overall drag 

which affects overall performance.  Mixed flow compressor MGTs could typically 

be utilised to reduce the frontal area of an engine while still meeting the 

performance requirements of the engine. 

 

 

1.2 Motivation 

 

With modern military focus moving more and more towards UAVs and SOWs, 

propulsion systems need to keep abreast with ever changing weapon systems 

(Harris et al., 2003).  Design and sizing parameters might vary drastically from one 

platform to the next, with associated propulsion systems having to be readily 

available. 

 

In many of these applications (i.e. target drone and SOW propulsion systems) very 

accurate and finely optimised design principles might not be a requirement, as the 

platform may require only a once-off use.  In many instances platforms also 

undergo regular structural modifications for specific testing and operational 

purposes.  Such modifications lead to alterations of the basic housing and thus 

geometric parameters of the propulsion system.  In such cases a generic, rapid 

turnaround design and performance evaluation process is required.  

 

The mean line, one dimensional flow analysis theory, based on the work of Aungier 

(2000), forms the ideal basis for such a rapid turnaround, first order design and 

performance evaluation tool.  Since 2012, numerous research projects at 

Stellenbosch University have focused on the development of an in-house 1D 

MATLAB® based code for exactly this purpose.   

 

De Wet (2012) developed a MATLAB® based 1D mean line code for the purpose 

of investigating the performance of a centrifugal turbocharger compressor.  Van 

der Merwe (2012) made use of the basic 1D code developed by De Wet (2012) as 

an initial design tool for the development of a centrifugal impeller for a 200 N MGT 

engine.  De Villiers (2014) designed a centrifugal compressor stage (impeller and 

diffuser) for an MGT engine.  De Villiers (2014) used the 1D code developed by 

Van der Merwe (2012) as an initial design tool for the impeller.  He added an 

adapted 1D code for the initial design of the diffuser, which was a conventional 
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radial vaned configuration with a vaneless bend and de-swirler vanes.  Burger 

(2016) designed a crossover diffuser to be matched to the impeller designed by 

Van der Merwe (2012).  This diffuser configuration featured single, continuous 

vanes aimed at replacing the conventional radial vane, vaneless bend and de-

swirler configuration.  The advantage of the crossover design was that the sharp, 

vaneless bend was eliminated, which minimised the typical recirculation pattern 

that often exist in vaneless bends.  Burger (2016) modified the 1D code used by 

Van der Merwe (2012) and De Villiers (2014) for the initial design of the crossover 

diffuser.  Diener (2016) developed a mixed flow compressor impeller for use in an 

MGT engine.  He attempted to adapt the already available 1D code to do the initial 

design of the mixed flow impeller.  This attempt was however discarded in favour 

of using the already available software of CFTurbo®.   Kock (2017) developed a 

crossover diffuser to be matched with the mixed flow impeller developed by Diener 

(2016).  He made use of the 1D code developed by Burger (2014) for the initial 

design of the crossover diffuser. 

 

Although significant effort has been spent on the development of the in-house 1D 

code, the code in its form towards the end of 2019 presented the following 

challenges: 

 

i. The MATLAB® based 1D code was only available in the form of basic 

script files, which limited its intuitive use for a new user. 

 

ii. The 1D code was developed and modified for very specific design 

purposes.  The code was thus not usable as a generic design tool. 

 

iii. Due to the 1D code being used for specific design requirements, it did 

not provide very good performance predictions across a wide range of 

compressor designs, rotational velocities and mass flows. 

 

 

1.3 Objectives and Methodology 

 

This project aimed to develop an application based One-Dimensional (1D) design 

and flow analysis program (1D App) to be used as an initial design tool for radial 

and mixed flow compressors used in MGT engines.  To overcome the challenges 

with the in-house code available at the time, the project firstly focused on 

developing a user-friendly, intuitive Graphical User Interface (GUI) for simple 

compressor design.  This was achieved by utilising the MATLAB® App Designer 

Environment.  This meant that the core of the 1D code developed by the previous 

research projects could still be used as background functions.   

 

The 1D App developed during this project caters for the initial design of 

compressors for use in MGT engines.  These compressors consist of a centrifugal 

or mixed flow impeller, with or without splitter blades, and a vaned crossover 

diffuser.  The 1D App does not cater for vaneless or conventional vaned diffusers.  
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It was tested for mixed flow compressors with a meridional exit angle as low as 

60°. 

 

In order to test and evaluate the accuracy of the performance predictions for the 

compressors designed with the 1D App, Numeca/FINE™ Turbo CFD software was 

used to conduct 3D flow analyses of these compressors.  Results for each 

compressor were compared to the 1D App performance prediction and the data 

was used to update the 1D code accordingly. 

 

Based on the above, the scope for the development of the 1D App is summarised 

as follows: 

 

i. The development of a user-friendly, intuitive, front-end GUI. 

 

ii. A baseline impeller design code had to be developed in the form of a 

function running in support of the front-end GUI. 

 

iii. Code for the generic design of a crossover diffuser was developed in 

the form of a function running in support of the front-end GUI. 

 

iv. The previously developed 1D performance prediction code for both the 

impeller and diffuser was modified to run as core functions in support 

of the front-end GUI. 

 

v. The 1D App includes a feature for the creation of a .geomTurbo file to 

be used by the Numeca/FINE™ Turbo CFD software. 

 

vi. To evaluate the validity of the 1D App, 18 test compressors, covering 

as wide a design range as possible, were designed in the 1D App.  The 

predicted performance for each were recorded and a .geomTurbo file 

for each were produced. 

 

vii. CFD analysis for each of the 18 test compressors was conducted using 

Numeca/FINE™ Turbo CFD software.  A suitable mesh was created in 

the AutoGrid5™ Environment and the flow analysis for each was 

conducted in the FINE™/Turbo Environment. 

 

viii. The CFD and 1D results for each of the 18 test compressors were 

compared at the various stations in the compressor.  Results were 

used to update the function code of the 1D App. 

 

ix. Once the 1D App code was updated using the results and analysis of 

the 18 test compressors, an additional 2 compressors were developed 

as a final verification.  CFD analyses of these compressors were also 

performed and the results compared to the results from the 1D App.  
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1.4 Thesis Outline 

 

Chapter 2 summarises the Literature Study that was performed.  The study 

focussed on the basic theory of centrifugal impellers and diffusers, specifically 

crossover diffusers.  Chapter 3 describes the development of the 1D App, 

focussing on the 1D mean line theory forming the basis of the code.  The 3D 

analysis of 18 test compressors using Numeca/FINE™ Turbo CFD software, is 

described in Chapter 4.  The comparison of the results and subsequent 

modification of the 1D App code forms the crux of Chapter 5, while the final results 

and discussions are summarised in Chapter 6. 
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Chapter 2:  

Literature Study 

 

 

2.1 Introduction 

 

The literature study focusses on compressor (impeller and diffuser) theory and 

includes pure radial (centrifugal) and mixed flow configurations.  The literature 

study is presented in such a manner that it supports the technical content of the 

1D App.  Users of the 1D App can therefore read the literature study if they require 

additional information on the theory applied in the App. 

 

 

2.2 Micro Gas Turbine 

 

A basic Micro Gas Turbine engine consists of three main components, namely the 

compressor stage, combustion chamber and turbine stage.  In the case of 

centrifugal or mixed flow compressor engines, the compressor stage incorporates 

both an impeller and diffuser. 

 

 

Figure 2.1:  Micro Gas Turbine Engine Main Components (Trebunskikh, et al., 

2012) 

 

Refer Figure 2.1.  The principle of operation of a jet engine is based on the increase 

in net axial momentum flux (Newton’s 2nd law) due to the increase in pressure and 

temperature of the working fluid and its subsequent acceleration through the 

exhaust nozzle (Phillips, 2004).  Kinetic energy is imparted on the air entering the 

engine intake through the impeller stage.  In the diffuser, this increase in energy 

and total pressure is diffused, which implies that a large amount of the impeller exit 
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kinetic energy is exchanged for an increase in static pressure.  This higher 

pressure, lower velocity air then enters the combustion chamber of the MGT 

engine.  The addition of heat in the combustion chamber allows for the rapid 

expansion of the working fluid, which accelerates through the turbine and exhaust 

nozzle.  The high temperature at the turbine inlet enables it to provide the work 

required by the compressor with a lower pressure drop than the compressor 

pressure rise.  The excess pressure causes a high velocity through the exhaust 

nozzle by accelerating the flow through a carefully designed exhaust nozzle.  This 

allows for an overall increase in momentum flux of the working fluid, which provides 

the thrust force generated by the engine. 

 

 

2.3 Compressors 

 

The compressor supplies compressed air to the combustion chamber.  Due to their 

inherent size constraints, MGTs utilise centrifugal or mixed flow compressors.  

Mixed flow compressors typically allowed higher mass flow rates, although at the 

expense of stage pressure ratio (Dixon and Hall, 2014).  In both a centrifugal and 

mixed flow compressor, air enters the impeller axially but exits the impeller 

perfectly radially (centrifugal compressor) or with a radial and axial component 

(mixed flow compressor) when viewed meridionally. 

 

 

2.3.1 Centrifugal Compressor Stage 

 

Air exits the impeller of a centrifugal compressor with a radial and tangential 

component.  The work done by the impeller on the air increases its total pressure 

and temperature.  A radial diffuser is typically matched with a centrifugal impeller.  

The main purpose of the diffuser is the transfer of kinetic energy to mechanical 

energy by increasing the static pressure of the fluid in the diffuser (Kock, 2017).  

Such a diffuser can either be vaned or vaneless, depending on the specific design 

or size requirements of the engine.  Figure 2.2 shows a centrifugal compressor as 

part of a typical MGT engine (Krige, 2013). 

 

The compressor depicted in Figure 2.2 is a pure radial compressor with no inlet 

guide vanes.  Air enters the impeller axially and is turned through 90° to exit it 

radially.  The impeller is matched with a conventional diffuser.  A small vaneless 

gap exists between the impeller exit and the diffuser radial vanes.  Once exiting 

the radial vaned section of the diffuser, the air is turned axially again through a 90° 

vaneless bend.  The air will still typically display a high tangential velocity 

component in this region, hence the need for axial de-swirl vanes, as depicted 

here. 
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Figure 2.2:  Centrifugal Compressor r-Z Plane (Krige, 2013) 

 

 

2.3.2 Mixed Flow Compressor Stage 

 

Figure 2.3 below indicates the definition of the meridional exit angle (𝛼𝐶2) relative 

to the r-Z plane of a mixed flow compressor. 

 

 

Figure 2.3:  Mixed Flow Impeller Meridional View (Adapted from Kano et al., 

1984) 
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A mixed flow compressor can be described as a transition between a centrifugal 

and an axial flow compressor.  The advantages of both configurations can 

therefore be combined, i.e. higher mass flow rates (axial flow compressors) and 

higher stage pressure ratios (centrifugal compressors) (Çevik and Uzol, 2011).  

Mixed flow compressors can handle higher mass flow rates over a wider operating 

range than comparable centrifugal compressors (Saravanamuttoo et al., 2001).  

Mixed flow compressors provide the additional advantage of smaller frontal areas 

while still producing relatively high single stage pressure ratios (Çevik, 2009).  The 

smaller frontal area leads to lower resultant drag values for the platform that is 

propelled by the gas turbine engine (Goldstein, 1948).   

 

Mixed flow compressors are favoured for use in MGT engines due to their smaller 

frontal area and higher thrust-to-weight ratio (Rajakumar et al., 2015).  Early 

research into the feasibility of using mixed flow compressors did however highlight 

various challenges, including structural limitations and diffuser matching problems 

(Musgrave and Plehn, 1987). 

 

Per definition, mixed flow compressors refer to compressors with meridional 

impeller exit angles (also referred to as cone angle) between 0° and 90°.  Intuitively, 

the feasibility of a mixed flow compressor below a certain meridional exit angle will 

be questionable due to a too low stage pressure ratio.  This will specifically be 

applicable if such a compressor is to be used in a single stage configuration, which 

is typically the case in MGT engines.  However, Giri et al. (2016) designed a high 

pressure ratio mixed flow compressor stage with a meridional impeller exit angle 

of 50°.  The higher pressure ratio was achieved by designing the mixed flow 

impeller with a higher specific speed, compared to that of an equivalent radial 

impeller.  In this case the impeller exit flow was transonic, which led to increased 

diffuser total pressure losses (Giri et al., 2016).  Çevik (2009) optimised the impeller 

for a mixed flow compressor.  His optimum design impeller yielded a meridional 

exit angle of 50°.  He achieved a pressure ratio of 4.34 with an isentropic efficiency 

of 0.718.  The achieved pressure ratio did require a comparably higher rotational 

speed and resulted in a relative tip Mach number of 1.2. 

 

 

2.3.3 Compressor Instabilities 

 

To maximise the operating range of a centrifugal compressor stage, it is important 

to understand and reduce the flow phenomena which can lead to instabilities in a 

compressor stage.  If unchecked, flow instabilities can lead to dramatic 

performance losses or even engine damage (Dixon and Hall, 2014).  Typical 

compressor flow instabilities include stall, surge and choke.   

 

Stall.  Stall in centrifugal compressors can be divided into static and dynamic stall 

(Japikse, 1996).  Static stall is associated with flow separation at stationary 

locations in the compressor.  These can include passage or channel separations 

in high aerodynamically loaded areas.  On the other hand, dynamic (or unsteady) 

stall is associated with the rotating parts of the compressor, e.g. rotating blade stall.   
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Japikse and Baines (1997) defined a stability criterion based on the slope of the 

pressure ratio characteristic between the operating and stall point:   

 

 

𝜕𝑃𝑅

𝜕�̇�
= 0            [Metastable conditions] 

 
𝜕𝑃𝑅

𝜕�̇�
< 0            [Stable conditions] 

 
𝜕𝑃𝑅

𝜕�̇�
> 0            [Unstable conditions] 

(2.1) 

 

with 𝑃𝑅 = 𝑝04/𝑝01, which represents the total-to-total pressure ratio between the 

diffuser exit and impeller inlet points. 

 

Using the following formula, the stall position on the characteristic curve can be 

determined: 

 

 𝑆𝑀 =
�̇�0 − �̇�𝑠

�̇�𝑠
 (2.2) 

 

where: 𝑆𝑀 - Stall Margin. 

 �̇�𝑠 - Mass flow rate at stall point. 

 �̇�𝑜 - Mass flow rate at operating point. 

 

A larger stall margin (SM) therefore allows a compressor to operate over a larger 

mass flow rate range.  In a compressor, the diffuser (vaned diffuser) is particularly 

prone to stall (Dixon, 1998).  Any flow diversion that leads to an excessive 

incidence flow angle onto the diffuser vane leading edge can lead to a stall 

situation.  Halawa et al. (2015) investigated the injection of air close to the diffuser 

blade leading edge on the shroud side as a means of controlling the stall in the 

diffuser at various mass flow rates.  Good results were observed, especially with 

higher injection mass flow rates. 

 

Surge 

 

Another form of compressor instability to consider is surge.  Dixon and Hall (2014) 

explains surge by means of the following theoretical curve. 
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Figure 2.4:  Compressor Characteristic Curve (Adapted from Dixon and Hall, 

2014) 

 

This theoretical curve would be obtained by controlling the mass flow through a 

compressor by means of a valve downstream of the compressor assembly.  The 

total-to-total pressure ratio between the diffuser outlet and impeller inlet is used as 

the vertical axis parameter, while a mass flow parameter is used on the horizontal 

axis.  With the valve closed (at point 1), no flow is established, and a specific, 

datum pressure ratio is present.  As the valve is slowly opened, the mass flow 

increases with an associated increase in the pressure ratio up to a maximum 

pressure ratio at point 2.  A further increase in mass flow result in a slight pressure 

ratio drop, but an increase in efficiency up to point 3 where maximum efficiency is 

reached.  This would typically be the design operating point of the compressor.  A 

further increase in mass flow result in a further decrease of the pressure ratio, 

eventually reaching a value of zero (point 4), which corresponds with a condition 

where all the input power is used to overcome friction.  This is however a theoretical 

value, as choke conditions will be reached at around point 5 on the curve.  No 

further increase in mass flow rate will therefore be possible past point 5. 

 

With the compressor operating on the negative slope side of the characteristic 

curve (around point 3), typical stable operating conditions will be experienced.  For 

example:  A slight decrease in mass flow will result in a slight increase in pressure 

ratio being exerted on the system, which in turn will lead to an increase in the mass 

flow back to point 3.  The situation is self-correcting and stable.  In the event that 

the mass flow (for instance due to blockage, mechanical damage, etc.) reduces to 

point 6, operating on the positive slope side of the curve will lead to unstable 

conditions.  The associated reduction in mass flow at point 6 would have resulted 

in a reduction in pressure ratio, which in turn will result in a further reduction in 

mass flow.  The mass flow may be reduced to zero or the situation might even lead 

to a reverse flow situation (Boyce, 2012).  Depending on the shape of the system 

curve, a further reduction in pressure ratio might lead to positive flow being 

established again, but only until the restricted mass flow is reached, after which 

the process will be repeated.  This positive and negative flow through the 

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2.  LITERATURE STUDY 12 
 

 
 
 

compressor is referred to as surge.  This is an unstable situation and may 

eventually lead to mechanical damage. 

 

Rotating Stall 

 

Japikse (1996) states that rotating stall can be induced by destabilised impeller or 

diffuser flow (vector quantity imbalance) or by unsteady interaction between the 

impeller and diffuser.  In the event of, for example, a partial blockage in the diffuser, 

the upstream blade in that vicinity may stall.  A stalled blade has the effect of 

increasing the angle of incidence on the following blade and decreasing the angle 

of incidence on the preceding blade.  This will result in the following blade stalling 

when reaching the point of disturbance, with the situation repeating itself.  The stall 

thus propagates in the opposite direction of rotation, having the effect that the 

stalled region remains in a specific area relative to the fixed casing, but moves 

approximately at the speed of rotation relative to the rotating blades (Boyce, 1993). 

 

Choke 

 

Choke is a condition where, for given upwind total conditions, the maximum mass 

flow through the compressor is reached due to the development of sonic conditions 

in the impeller or diffuser throat.  Any further reduction in back pressure will only 

have the effect of moving the normal shock downstream from the throat, but no 

increase in mass flow rate can be achieved due to the maximum achievable 

velocity (sonic) having been reached in the throat (Phillips, 2004). 

 

Figure 2.4 indicates a typical compressor characteristic curve at a specific speed.  

A compressor map at various speeds is indicated below in Figure 2.5, showing the 

respective surge and choke regions. 

 

 

Figure 2.5:  Typical Compressor Map (Adapted from Burger, 2016) 
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2.4 Impeller Theory 

 

As was the case with most fluid flow, flow through an impeller and diffuser is 

governed by the following fundamental physical laws: 

 

i. Conservation of Mass. 

ii. Conservation of Momentum. 

iii. Conservation of Energy (1st Law of Thermodynamics). 

iv. 𝑑𝑆 ≥ ∫
𝑑𝑄

𝑇
 (2nd Law of Thermodynamics). 

 

 

2.4.1 Impeller Velocity Triangles 

 

The applicable inlet (1) and outlet (2) velocity components and angles associated 

with a mixed flow impeller are illustrated in Figure 2.6.   

 

Air entering the inlet could be either purely axial (as illustrated) or pre-whirl can be 

achieved by adding inlet guide vanes.  Pre-whirl has the advantage that the 

operating mass flow can be altered without noticeable changes in pressure ratio 

(van der Merwe, 2012).  Pre-whirl can also assist in the reduction of the relative 

inlet velocity for high pressure ratio compressors (Dixon and Hall, 2014).  In the 

case of no inlet guide vanes, air enters the inlet at an absolute velocity of 𝐶1 =

𝐶𝑎𝑏𝑠.  At the design point, the magnitude of 𝐶1 = 𝐶𝑎𝑏𝑠 is controlled such that the 

vector sum of 𝐶1 and 𝑈1 (rotational velocity) results in the relative inlet velocity (𝑊1) 

to be closely aligned with the inlet blade angle (𝛽1).  In practice this cannot be 

achieved across the whole inlet.  Reasonable assumptions in this regard are 

therefore made, for instance that the relative inlet velocity is aligned with the inlet 

blade angle at the hub and at the shroud.  Angles of incidence can then be 

calculated for the rest of the inlet.  Pre-whirl was not further investigated, as the 

developed 1D App did not cater for this feature. 

 

Because of the work done by the impeller on the working fluid (air) between 

impeller inlet and outlet, the air experience an increase in total pressure and 

temperature.  The impeller tip speed (𝑈2) plays a major role in determining the 

achievable pressure ratio.  The tip speed is however limited by structural 

considerations, as the material stresses typically increase in proportion to the 

square of the tip speed (Sandberg, 2016). 
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Figure 2.6:  Mixed Flow Impeller Velocity Components (Adapted from Van der 

Merwe (2012)) 

 

Figure 2.6 above illustrates the velocity components present at the inlet (no inlet 

guide vanes) and exit of a mixed flow impeller.  It is important to note that the 

depicted velocity triangle at the impeller exit (station 2) in Figure 2.6 actually lies in 

the plane of the meridional velocity (𝐶𝑚2) and not on the vertical plane (refer 𝐶𝑚2 

in both schematics).   

 

 

2.4.2 Slip and Slip Factor 

 

In a mixed flow impeller, the absolute flow velocity vector (𝐶2) exiting the impeller 

(station 2) consists of three components, namely a radial component, a tangential 

component and an axial component.  The axial component is a function of the 

meridional exit angle (𝛼𝐶2).  In an ideal scenario, air will exit the impeller with a 

relative velocity angle (𝛽2′) equal to the blade exit angle (𝛽2).  In practice however, 

𝛽2 < 𝛽2′ due to a phenomenon called slip.  From a velocity point-of-view, slip 

manifests itself as a reduction in the outlet tangential component (𝐶𝑈2) by a 

magnitude of ∆𝐶𝑈2.  In the case of mixed flow impellers, slip is reduced with a 

reduction in the meridional exit angle due to the reduction in the Coriolis force 

(Diener, 2016). 
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For the purpose of predicting impeller performance, a suitable parameter to 

quantify the effect of slip is the slip factor.  The slip factor is defined as: 

 

 𝜎𝑠 =
𝐶𝑈2

𝐶𝑈2 + ∆𝐶𝑈2
 (2.3) 

 

From Equation 2.9 it is clear that 𝜎𝑠 < 1.  As mentioned earlier, a reduction in 

meridional exit angle of an impeller will result in a reduction of slip.  Applying this 

to Equation 2.9, it is clear that slip factor will increase with a decrease in meridional 

exit angle. 

 

The presence of slip also affects the power required to drive the impeller.   

 

 �̇� = ∑𝜏𝜔 = �̇�(𝑈2𝐶𝑈2 − 𝑈1𝐶𝑈1) (2.4) 

 

Slip has the effect of reducing 𝐶𝑈2.  Consequently, the energy transferred by the 

impeller is also reduced.  To regain the required pressure rise, the rotational 

velocity has to be increased, along with an increase in power transferred to the air.   

 

 

2.4.3 Tip Flow Coefficient 

 

Another dimensionless property which is used to characterise the impeller (or 

stage) is the tip (or stage) flow coefficient (Aungier, 2000).  The tip flow coefficient 

provides a dimensionless relationship, which includes flow rate, size and speed 

data.  This parameter can be used to compare various stages/impellers with each 

other. 

 

 𝜙2 =
�̇�

𝜌2𝐴2𝑈2
 (2.5) 

 

 

2.4.4 Mollier Diagram and Streamline Relationships 

 

The flow through a compressor stage can be analysed by means of a Mollier 

diagram (Dixon and Hall, 2014) (Figure 2.7), where the following positions are 

defined: 

 

i. Position 0 – Inlet to inducer section (inlet casing). 

ii. Position 1 – Inlet to impeller. 

iii. Position 2 – Impeller exit – vaneless space start. 

iv. Position 3 – Vaneless space exit – vaned diffuser inlet. 

v. Position 4 – Diffuser exit. 
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The whole compressor section encapsulates positions 0 to 4.  The static conditions 

are indicated by the single digit numbered positions 0 to 4 on the Mollier diagram.  

This path is indicated by the arrows.  The total (stagnation) conditions are indicated 

on the diagram by the double-digit positions (00 to 04) above their associated static 

positions, the kinetic energy term (𝐶𝑛
2/2) being the difference between these.   

 

The efficiency of the compressor is often expressed in terms of the ideal isentropic 

process that takes place between the inlet and outlet states.  The ideal isentropic 

process is indicated by the red line on the Mollier diagram.  The ideal isentropic 

conditions are indicated with a ‘s’ suffix. 

 

 

Figure 2.7:  Mollier Diagram (Kock, 2017) 

 

The stagnation enthalpy at any position in the compressor can be written as: 

 

 ℎ0𝑛 = ℎ𝑛 +
𝐶𝑛

2

2
 (2.6) 

 

which states that the total (stagnation) enthalpy at any point is equal to the static 

enthalpy at that point plus the specific kinetic energy at that point.   

 

Since no work is done on the fluid in the inlet casing and assuming adiabatic 

conditions, negligible friction and negligible change in potential energy, the steady 

flow energy equation between stations 0 and 1 reduces to: 

4𝑠 

3𝑠 

2𝑠 
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 ℎ00 = ℎ01 (2.7) 

 

In the case of the impeller however (between positions 1 and 2), work is done on 

the fluid in the impeller.  If this process is assumed to be adiabatic and with a 

negligible change in potential energy, then the work rate (power) imparted is: 

 

 �̇� = �̇�(ℎ02 − ℎ01) (2.8) 

 

Equating Equation 2.8 with Equation 2.4 and substituting Equation 2.6, the 

equation for rothalpy (𝐼𝑅) is derived: 

 

 𝐼𝑅 =  ℎ1 +
𝐶1

2

2
− 𝑈1𝐶𝑈1 = ℎ2 +

𝐶2
2

2
− 𝑈2𝐶𝑈2 (2.9) 

 

With no inlet swirl, 𝐶𝑈1 = 0.  From Equation 2.9 it is clear that (assuming adiabatic 

flow) rothalpy is conserved in the impeller.  From Equation 2.15, the static enthalpy 

change in the impeller can be derived as: 

 

 ℎ2 − ℎ1 =
𝑈2

2 − 𝑈1
2

2
−

𝑊2
2 − 𝑊1

2

2
 (2.10) 

 

It is important to note that these equations are applicable only along a mean 

streamline through the impeller.  This is because 𝑈1, 𝐶1 and 𝑊1 are not uniform 

along the inlet.  Depending on the impeller exit design, 𝑈2, 𝐶2 and 𝑊2 might also 

not be uniform along the impeller exit. 

 

The specific heat at constant pressure is given by: 

 

 𝑐𝑝 = (
𝜕ℎ

𝜕𝑇
)

𝑝
 (2.11) 

 

By assuming a constant 𝑐𝑝, integrating this equation relative to a reference value 

(Aungier, 2000) and substituting it into Equation 2.6, the equation for total 

temperature at any point along a streamline is derived: 

 

 𝑇0𝑛 = 𝑇𝑛 +
𝐶𝑛

2

2𝑐𝑝
 (2.12) 

 

Equation 2.11 shows that the specific heat at constant pressure is a function of 

temperature (𝑐𝑝 = 𝑓(𝑇)).  One example of an empirical formula which can be used 

to calculate 𝑐𝑝 = 𝑓(𝑇) is (Kröger, 2004): 
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𝑐𝑝 = 1.045356 × 103 − 3.161783 × 10−1𝑇 

+7.083814 × 10−4𝑇2 − 2.705209 × 10−7𝑇3 
(2.13) 

 

The relationship between enthalpy, temperature and pressure is quantified by the 

Gibbs equation. 

 

 𝑇𝑑𝑠 = 𝑑ℎ −
1

𝜌
𝑑𝑝 (2.14) 

 

Using Equation 2.14 and isentropic relationships, the ideal impeller exit 

temperature can be determined if the impeller pressure ratio is available.  Equation 

2.15 is used in the 1D mean line code of the compressor design process. 

 

 
𝑝02

𝑝01
= (

𝑇02𝑠

𝑇01
)

𝛾
𝛾−1

 (2.15) 

 

Another important equation that is used in the mean line code is the isentropic 

relationship between static and total conditions at any point in the flow. 

 

 
𝑝0𝑛

𝑝𝑛
= (

𝑇0𝑛

𝑇𝑛
)

𝛾
𝛾−1

 (2.16) 

 

 

2.5 Diffuser Theory 

 

The diffuser encompasses the space between the exit of the impeller and the inlet 

to the combustion chamber (positions 2 to 4).  In the case of a vaned diffuser, a 

vaneless gap exists between positions 2 and 3 (the start of the diffuser vanes).  For 

a combustion chamber to operate optimally it is required that the air enters at as 

low a velocity (kinetic energy) and as high static pressure as possible 

(Saravanamuttoo et al., 2001). 

 

 

2.5.1 Diffuser Purpose 

 

The flow exiting the impeller contains a large kinetic energy component, particularly 

in the tangential direction.  The primary objective of a diffuser is to achieve a large 

as possible static pressure recovery and to reduce the tangential velocity 

components.  The capability of a diffuser to achieve this objective is dependent on 

the sizing constraints that are imposed on it (Saravanamuttoo et al., 2001). 

 

Diffusers can either be vaned or vaneless, although the primary objective of static 

pressure recovery is achieved by means of an increasing flow area ratio from 

diffuser inlet to outlet.  For a radial diffuser, the increase in radius from diffuser inlet 
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to outlet results in an increase in cross-sectional area which in turn results in a 

decrease in velocity, regardless of whether it is a vaneless or vaned diffuser.  

Depending on the engine size constraints, the use of vanes assists significantly in 

reducing the tangential velocity prior to entering the combustion chamber.  A 

compressor with a vaned diffuser therefore usually has a higher efficiency but 

narrower operating range, compared to one with a vaneless diffuser (Dixon and 

Hall, 2014). 

 

As shown on the Mollier diagram (Figure 2.7), no work is done on the working fluid 

that passes through the vaneless space and diffuser.  If adiabatic conditions are 

assumed, the steady flow energy equation between positions 2 and 4 reduces to: 

 

 ℎ02 = ℎ03 = ℎ04 (2.17) 

 

From the Mollier diagram the increase in static pressure between positions 2 and 

4 is clearly observed (𝑝4 > 𝑝2) at the expense of the kinetic energy of the fluid 

(𝐶2
2/2 > 𝐶4

2/2). 

 

 

2.5.2 Diffuser Types and Design 

 

The primary purpose of a diffuser is to provide high static pressure and low swirl, 

uniform flow to the combustion chamber for optimum operation.  The size of an 

MGT engine and the associated sizing constraints on the diffuser section largely 

dictates how well a diffuser will be able to perform its primary task.  Diffuser designs 

thus vary from a mere extension of the vaneless space, to curved and leaned 

continuous vaned designs. 

 

One of the major design considerations which affects diffuser design is the state 

of the impeller exit flow (Kock, 2017).  The diffuser inlet vane angle (𝛽3) is typically 

designed to align with the impeller exit absolute flow angle (𝛼2) at a suitable 

incidence angle (𝑖3).  The impeller exit absolute flow angle (𝛼2) determines the 

absolute flow angle at the end of the vaneless gap (𝛼3).  Thus: 

 

 𝛽3 = 𝛼3 + 𝑖3 (2.18) 

 

 

2.5.3 Vaneless Gap 

 

In the case of a vaned diffuser, the distance between the impeller blades trailing 

edge (station 2) and the diffuser vane leading edge (station 3) comprises the 

vaneless gap section (see Figure 2.8).  The vaneless gap is typically defined as a 

radius ratio (𝑟3/𝑟2). 
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Figure 2.8:  Vaneless Gap (Adapted from Gaetani et al., 2012) 

 

Impeller exit absolute velocities may exceed sonic conditions, with the 

disadvantage of higher Mach numbers leading to early choke conditions in the 

diffuser throat (Ziegler et al., 2003).  The effect of the impeller exit Mach number 

can be reduced by increasing the size of the vaneless gap.  Aungier (1988) also 

notes that the distorted flow wake from the impeller can be mixed out in the 

vaneless gap before entering the diffuser inlet.  

 

Aungier (2000) recommends a vaneless gap size of 1.06 ≤ 𝑟3/𝑟2 ≤ 1.12.  The 

larger the vaneless gap, the higher the friction losses in the vaneless gap.  Aungier 

(2000) bases the higher limit on this limiting effect of the friction losses.  The lower 

limit is based on the requirement for sufficient space to mix out the exit flow wake. 

 

 

2.5.4 Vaned Radial Diffusers 

 

Vaned diffusers are able to diffuse and remove the impeller exit fluid swirl at a 

higher rate, in a shorter flow path length and radius and at a higher efficiency than 

vaneless diffusers (Dixon and Hall, 2014).  For this reason, vaned diffusers are 

preferred in MGT engines due to their inherent size limitations. 

 

Diffuser vanes can vary from a simple wedge type profile to aerofoil shaped vanes 

(Kock, 2017).  According to Dixon and Hall (2014), the number of vanes used in 

the diffuser should be selected with the following in mind: 

 

i. More vanes will result in better diffusion and pressure recovery, but at 

the expense of higher frictional losses and a lower choke mass flow 

rate. 

 

ii. To prevent resonance or sympathetic vibration, the number of diffuser 

vanes should not be the same as or be a multiple of the number of 

impeller blades. 
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Conventional vaned diffuser designs typically include a vaned radial section with a 

90° vaneless bend and a set of axial de-swirler vanes (refer Figure 2.9a and b).  

This conventional configuration can also be replaced by a crossover diffuser 

(Figure 2.9c), which allows for a more gradual change in flow angle, while still 

achieving pressure recovery through increasing cross-sectional area. 

 

 

Figure 2.9:  a) and b) Examples of Conventional Vaned Diffuser c) Example of 

Crossover Diffuser (Burger, 2016) 

 

According to Aungier (2000), static pressure recovery in a conventional vaned 

diffuser is achieved by, firstly, the increase in effective passage area from diffuser 

inlet to outlet and, secondly, by what he refers to as the blade loading parameter 

(𝐿).  The effective increase in passage area, or the area ratio (𝐴𝑅) is defined as: 

 

 𝐴𝑅 =
𝐴4

𝐴3
 (2.19) 

 

The blade loading or fluid turning effect, which is the relationship between the 

average vane-to-vane pressure difference and the diffuser inlet-to-outlet pressure 

difference (Aungier, 2000), is quantified using the blade loading parameter (𝐿): 

 

 𝐿 =
∆𝐶

𝐶3 − 𝐶4
 (2.20) 

 

∆𝐶 is defined as the average blade-to-blade velocity difference.  At design 

operating conditions, the inlet and outlet flow angles are nearly equal to the blade 

angles, in which case simple potential flow yields (Aungier, 2000): 

 

 ∆𝐶 =
2𝜋(𝑟3𝐶𝑈3 − 𝑟4𝐶𝑈4)

𝑍𝐿𝐵
 (2.21) 
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2.5.5 De-swirler Vanes 

 

De-swirler axial blades are used to reduce the tangential flow (swirl) and thus the 

absolute flow velocity prior to entering the combustion chamber (Beér and Chigier, 

1972).   

 

Annular combustion chambers, as used on most MGT engines, may experience a 

marked alteration in exit temperature profile based on changes in the inlet velocity 

profile (Kock, 2017).  For this reason, de-swirler vanes play an important role in 

conventional radial diffusers.  They attempt to closely align the flow to axial, uniform 

conditions, contributing to an optimal combustion process.  This also has the 

advantage of effectively shortening the flow path through the combustion chamber 

and thus reducing the overall pressure loss as much as possible (Kock, 2017). 

 

 

2.5.6 Crossover Diffuser 

 

The term ‘crossover’ diffuser is used by Burger (2016) as a more descriptive and 

alternative name for a continuous vane diffuser. The crossover diffuser aims for a 

gradual and continuous connection of the radial (or nearly so) discharge of the 

impeller with the axial inlet of the combustor within the defined sizing restrictions.  

It has the advantage that the flow irregularities experienced in the 90° vaneless 

bend of a conventional diffuser are largely reduced (Kock, 2017).  It further allows 

for the control of the exit velocity vector.  A properly designed crossover diffuser 

can re-align the flow towards the axial direction upon diffuser exit.  This eliminates 

the need for axial de-swirlers. 

 

Jie and Guoping (2010) redesigned the diffuser for an 11 cm diameter MGT engine.  

The conventional wedge type radial diffuser with axial de-swirler vanes originally 

used in the engine was replaced with a continuous vane diffuser.  An 11% thrust 

increase was achieved.   

 

Continuous vane diffusers typically display better performance and pressure 

recovery when compared to similar conventional diffusers, but at the expense of 

operating range and sometimes also choke mass flow rate (Ling et al., 2007). 

 

 

2.6 Efficiency and Pressure Ratio 

 

Compressor efficiency is typically measured relative to an ideal isentropic case.  

Isentropic efficiency is an important performance indicator of a compressor and 

compares the energy increase of the working fluid relative to the work required to 

drive the compressor during reversible, adiabatic conditions (Kock, 2017).  Higher 

efficiencies would thus permit a lower power requirement to drive the compressor 

at the associated operating point (Orth et al., 2001). 

 

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2.  LITERATURE STUDY 23 
 

 
 
 

The efficiency of each of the individual compressor components is similarly 

determined.  The impeller total-to-total isentropic efficiency is defined as: 

 

 𝜂𝑇𝑇,1−2 =
ℎ02𝑠 − ℎ01

ℎ02 − ℎ01
 (2.22) 

 

The complete compressor total-to-total isentropic efficiency is a function of the inlet 

(position 0) and outlet (position 4) enthalpies, which relate to the inlet and outlet 

temperatures and pressures as follows: 

 

 𝜂𝑇𝑇,0−4 =
ℎ04𝑠 − ℎ00

ℎ04 − ℎ00
=

(
𝑝04

𝑝00
)

𝛾−1
𝛾

− 1

(
𝑇04

𝑇00
) − 1

 (2.23) 

 

The main purpose of a compressor is to provide compressed air to the combustion 

chamber.  Another important performance parameter of a compressor is therefore 

the pressure ratio (𝑃𝑅).  For the compressor, this is a ratio of the total pressure 

increase from compressor inlet (position 0) to compressor outlet (position 4). 

 

 𝑃𝑅𝑇𝑇,0−4 =
𝑝04

𝑝00
 (2.24) 

 

In a centrifugal compressor, pressure recovery is not just achieved because of 

velocity diffusion, but also because of radius increase.  For this reason centrifugal 

compressors deliver higher per-stage pressure ratios than comparable axial flow 

compressors (Dixon and Hall, 2014). 

 

In the case of the diffuser, being responsible for static pressure recovery, a 

measure of the static-to-static pressure recovery is appropriate (Kock, 2017): 

 

 𝑃𝑅𝑆𝑆,2−4 =
𝑝4

𝑝2
 (2.25) 

 

As the primary objective of a diffuser is to convert kinetic energy to static pressure, 

the performance parameter to measure this is the static pressure recovery 

coefficient (𝐶𝑝).  This coefficient provides a ratio of the static pressure gain in the 

diffuser relative to the diffuser inlet kinetic energy (dynamic pressure) (Krain, 

1981). 

 

 𝐶𝑝 =
𝑝4 − 𝑝2

𝑝02 − 𝑝2
 (2.26) 
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2.7 Conclusion 

 

The development of a rapid design 1D mean line flow tool is reliant on the basic 

turbomachinery and thermodynamic equations summarised in this chapter.  The 

basic theory is used to verify the performance and working range of a compressor.  

During this study the theory summarised in this chapter provided a baseline for the 

analysis of the various test compressors designed by the 1D App.  It was found 

that the initial results obtained from the 1D software were not satisfactory when 

compared to CFD results.  Performance prediction differences in excess of 15% 

and even 20% were observed.  Therefore, although the baseline 1D and 

turbomachinery theory provide the basis for the design and flow analysis prediction 

code, a need for wider performance validation was identified.  These are discussed 

in the next chapters. 
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Chapter 3:  

MATLAB® Application Development 

 

 

3.1 Introduction 

 

The foremost goal of this project is to develop a first order, rapid design (“quick 

turnaround”) application for the design of a radial or mixed flow compressor using 

mean line flow analysis.  To achieve this, it is essential to develop a user-friendly, 

simple and intuitive GUI as the front-end for the 1D Application.  The 1D App was 

developed using MATLAB® R2019b. 

 

This chapter covers the development process of the 1D App, with particular focus 

on the mean line code forming the backbone of the 1D App, which is primarily 

based on the theory of Aungier (2000). 

 

 

3.2 1D App Layout 

 

The front-end GUI layout was designed to follow a logical compressor design 

process.  The main window is therefore designed with Tab Groups (user inputs), 

with the Tabs arranged in the proposed order of design. 

 

Five main design processes are incorporated as user inputs.  These include Inlet 

Thermodynamic Conditions, Impeller Design, Diffuser Design, Overall 

Performance Analysis and CFD Output.  In the case of both Impeller and Diffuser 

Design, an additional Tab Group is included to cater for the more involved design 

processes of each. 

 

A schematic of the design process is presented in the flowchart in Figure 3.1.  A 

schematic of the main window of the 1D App is provided in Figure 3.2. 
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Figure 3.1:  1D App Design Logic Flowchart 

 

 

 

Figure 3.2:  1D App Main Window Layout 
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The 1D App also includes the ability to save the parameters of a designed 

compressor in the form of a text file.  A previously designed compressor can also 

be opened in the 1D App by opening a saved text file.   

 

 

3.3 Thermodynamic and Inlet Conditions 

 

The first step in the design of a compressor using the 1D App is to define the basic 

thermodynamic and inlet quantities (refer Figure 3.2).  Constant thermodynamic 

quantities include the specific heat ratio (𝛾) of air and the gas constant for air (𝑅).  

Although these values are editable, typical constant values of 1.4 and 287 J/kg∙K 

respectively are pre-populated. 

 

The value for specific heat at constant pressure (𝑐𝑝) is a function of static 

temperature.  Although this relationship is incorporated in the code, an initial value 

for 𝑐𝑝 need to be defined as part of the initial thermodynamic constants.  Even 

though the value is editable, a pre-populated value of 1004.5 J/kg∙K is provided. 

 

Finally, the total inlet temperature (𝑇00) and pressure (𝑝00) are defined.  Due to the 

fact that the 1D App does not cater for any pre-inlet arrangements (i.e. inlet guide 

vanes), the total conditions at station 0 and 1 are regarded as equal. 

 

 

3.4 Impeller Design 

 

The impeller design process comprises of four phases.  These include defining the 

basic geometric and design parameters, the basic hub and shroud curve design, 

the detail design, including the blade geometry, and impeller performance 

prediction.  Each of these phases are detailed below.  Flowcharts for the main 

design processes of the impeller are also provided in Appendix B. 

 

 

3.4.1 Basic Design Parameters of the Impeller 

 

During the initial phase of the impeller design, data needs to be provided in two 

sections.  The first section encapsulates the basic geometric data of the impeller.  

This includes the inlet hub radius (𝑟1ℎ), the impeller outlet radius (𝑟2), the 

meridional exit angle (𝛼𝐶2), the impeller exit blade angle (𝛽2), the impeller axial 

length (𝑧1−2), the number of impeller blades (𝑍𝑖𝑚𝑝), the blade tip clearance (𝑠𝐶𝐿) 

and the diffusion ratio (𝐷𝑅). 

 

The second section encapsulates data concerned with the design flow conditions 

of the compressor.  These include the design mass flow rate (�̇�), rotational speed 

(𝑁) and the desired impeller total-to-total pressure ratio (𝑃𝑅𝑇𝑇,1−2).  The data 

provided by the user is sufficient to complete important initial calculations for the 
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inlet and outlet geometry of the impeller, which is required for the next phase of 

defining the impeller hub and shroud curves. 

 

An important geometric parameter that needs to be calculated as part of the inlet 

profile is the inlet shroud radius (𝑟1𝑠).  This is done in an iterative manner, aiming 

to minimise the relative velocity (and thus relative Mach number) at the impeller 

inlet shroud.  The iterative process is started by selecting a suitable value for 𝑟1𝑠.  

The inlet area is then divided into a suitable number of increments (250 set as 

default).  Within the larger iteration, the inlet meridional velocity distribution is 

determined for each of the selected values of 𝑟1𝑠.  This is done iteratively.  Some 

assumptions are made regarding the inlet velocity distribution.   

 

i. The inlet meridional velocity follows a linear distribution from shroud to 

hub. 

 

ii. The shroud-to-hub velocity ratio is quantified as (adapted from Herbert 

(1980)): 

 

 𝜅 =
𝐶𝑚1𝑠

𝐶𝑚1ℎ
 (3.1) 

 

For the purpose of the 1D App, 𝜅 is selected as 1.45.  This value provides a good 

correlation with CFD results, as well as good mean inlet results. 

 

Aungier (2000) proposed a slightly different inlet velocity distribution based on an 

approximate stream surface curvature correction procedure.  This method provides 

a pseudo linear inlet velocity distribution, as it is linear from the hub to the mean 

position, and linear from the mean position to the shroud.  Herbert (1980) proposed 

a linear inlet velocity distribution from hub to shroud.  An evaluation of both these 

proposed methods found that both provided very similar results.  For this reason, 

the simpler linear distribution method is implemented. 

 

With the relationship between 𝐶𝑚1𝑠  and 𝐶𝑚1ℎ now determined, a suitable value 

for 𝐶𝑚1ℎ is chosen.  The suitability of the value for 𝐶𝑚1ℎ is tested by determining 

the mass flow rate across the inlet by summing the incremental mass flow rates.  

With the meridional inlet velocity distribution known, 𝐶𝑚1𝑖 for each increment is 

determined: 

 

 𝐶𝑚1𝑖 =
𝑟𝑖 − 𝑟1ℎ

𝑟1𝑠 − 𝑟1ℎ

(𝜅𝐶𝑚1ℎ − 𝐶𝑚1ℎ) + 𝐶𝑚1ℎ (3.2) 

 

In the absence of inlet guide vanes: 

 

 𝐶1𝑖 = 𝐶𝑚1𝑖 (3.3) 
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From Equation 2.12: 

 

 𝑇1𝑖 = 𝑇01 −
𝐶1𝑖

2

2𝑐𝑝
 (3.4) 

 

The initial value for 𝑐𝑝 is as defined as part of the Thermodynamics and Inlet 

Conditions input fields for the 1D App.  With 𝑇1𝑖 determined, 𝑐𝑝 can be determined 

more accurately using Equation 2.13.  Assuming isentropic conditions at any point, 

𝑝1𝑖 is subsequently determined using Equation 2.16.  The incremental area and 

mass flow rate values are now calculated: 

 

 𝐴1𝑖 = 2𝜋𝑟𝑖𝛿𝑟 (3.5) 

 

 �̇� = ∑ 𝐴1𝑖𝑝1𝑖𝐶𝑚1𝑖

𝑛

𝑖=1

 (3.6) 

 

The determined mass flow rate can be compared to the known mass flow rate as 

defined as part of the Thermodynamics and Inlet Conditions of the 1D App.  If the 

calculated mass flow rate is not equal to the defined mass flow rate (within a pre-

defined tolerance), the selected value for 𝐶𝑚1ℎ is updated and the process 

repeated.  Once the mass flow converges, the relative velocity at the inlet shroud 

is calculated knowing that 𝑈1𝑠 = 𝜔𝑟1𝑠:  

 

 𝑊1𝑠 = √(𝑈1𝑠 + 𝐶1𝑠𝑠𝑖𝑛𝛼𝐶1)2 + (𝐶1𝑠𝑐𝑜𝑠𝛼𝐶1)2 (3.7) 

 

With no inlet guide vanes, 𝛼𝐶1 = 0.  With the value of 𝑊1𝑠 known for the initially 

selected 𝑟1𝑠, a new 𝑟1𝑠 is selected and the entire process repeated until a minimum 

value for 𝑊1𝑠 is found. 

 

Once the inlet geometry has been determined, the impeller outlet geometry is 

calculated.  This is done by assuming that the rothalpy (𝐼𝑅) remains constant in the 

impeller (Equation 2.9).  The rothalpy at the inlet mean position is determined as 

follows, with 𝐶𝑈1 = 0: 

 

 𝐼𝑅 = 𝑐𝑝𝑇1 +
𝐶1

2

2
 (3.8) 

 

The values for 𝑇1 and 𝐶1 are taken as the mean position values as determined in 

the iterative process to determine 𝑊1𝑠. 

 

The process to solve the impeller outlet geometry is dictated by the meridional exit 

angle.  Two conditions are considered, namely 𝛼𝐶2 = 90° (𝑟2 = 𝑟2ℎ = 𝑟2𝑠) or 
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𝛼𝐶2 < 90° (𝑟2ℎ < 𝑟2𝑠).  For 𝛼𝐶2 < 90°, 𝑟2𝑠 is taken as the user-defined value for 

𝑟2, and 𝑟2ℎ is determined iteratively.  An initial guess for 𝑟2ℎ is 𝑟2ℎ = 𝑟2𝑠. 
 

The impeller outlet slip factor is determined using the Wiesner (1967) slip factor 

equation.  Although a more accurate slip approximation is used during the detail 

performance analysis of the impeller (see section 3.4.4), the Wiesner 

approximation is adequate for the initial impeller geometry creation. 

 

 𝜎𝑠 = 1 −
√𝑐𝑜𝑠𝛽2𝑠𝑖𝑛𝛼𝐶2

𝑍0.7
 (3.9) 

 

With 𝑟2ℎ and 𝑟2𝑠 known, the mean outlet radius (𝑟2) can be determined as the 

average of the two values.  Having calculated 𝑟2, the mean outlet rotational velocity 

(𝑈2 = 𝜔𝑟2) is determined. 

 

Another important impeller design parameter is the diffusion ratio (𝐷𝑅).  Cumpsty 

(2004) explained that the diffusion ratio provides an indication of the pressure rise 

in the impeller at the expense of relative fluid velocity. 

 

 𝑊2 =
𝑊1𝑠

𝐷𝑅
 (3.10) 

 

Cumpsty (2004) also noted that typical values for diffusion ratios varies between 

1.3 and 1.7.  A value that is too high can lead to an unusable design due to high 

impeller losses.  Although the 1D App allows for the user to define a specific 

diffusion ratio, a default value of 1.5 is proposed by the 1D App.  This value was 

used for all the test compressors. 

 

With 𝑊2 known, the relative mean flow exit angle (𝛽2
′ ) is determined by iteratively 

solving the following implicit equation: 

 

 𝑊2

𝑠𝑖𝑛(𝜋 + 𝛽2)
=

𝑈2

𝜎𝑠
−

𝑊2𝑠𝑖𝑛𝛽2
′

𝜎𝑠
− 𝑈2 + 𝑊2𝑠𝑖𝑛𝛽2

′

𝑠𝑖𝑛(𝛽2
′ − 𝛽2)

 
(3.11) 

 

The derivation of Equation 3.11 is presented in Appendix A. 

 

Using the impeller exit velocity triangle, 𝐶2 is determined.  The exit total enthalpy 

(ℎ02), total temperature (𝑇02), static temperature (𝑇2) and static pressure (𝑝2) are 

then determined by employing Equations 2.9, 2.12, 2.13 and 2.16.  The mean exit 

density is determined using the basic ideal gas equation of state: 

 

 𝜌2 =
𝑝2

𝑅𝑇2
 (3.12) 
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Depending on whether the impeller is a pure radial or mixed flow configuration, the 

exit area and width are determined.  In the case that 𝛼𝐶2 = 90°, the exit area is 

simply determined as: 

 

 𝐴2 =
�̇�

𝜌2𝐶𝑚2
 (3.13) 

 

after which the exit width is calculated: 

 

 𝑏2 =
𝐴2

2𝜋𝑟2
 (3.14) 

 

With 𝛼𝐶2 = 90°, the determination of the exit geometry is now complete.  In the 

event that 𝛼𝐶2 < 90°, the process is iterative, and the exit area is calculated as 

follows: 

 

 𝐴2 = 𝜋 (𝑟2𝑠

𝑟2𝑠

𝑐𝑜𝑠𝛼𝐶2
− 𝑟2ℎ

𝑟2ℎ

𝑐𝑜𝑠𝛼𝐶2
) (3.15) 

 

The exit mass flow rate is now determined and compared to the known mass flow 

rate: 

 

 �̇� = 𝜌2𝐶𝑚2𝐴2 (3.16) 

 

In the event that the calculated mass flow rate differs from the known mass flow 

rate, the initial guestimate for 𝑟2ℎ is updated and the process repeated until the 

mass flow rate converges. 

 

 

3.4.2 Impeller Shape Design 

 

The impeller meridional shape is designed using a 7-point Bezier curve for both 

the hub and shroud curves.  Choosing 𝑈 intervals along the curves and with 𝑛 = 7: 

 

 [𝑧𝑈   𝑟𝑈] = ∑[𝑧𝑘  𝑟𝑘]

𝑛−1

𝑘=0

(
𝑛

𝑘
) 𝑈𝑘(1 − 𝑈)𝑛−𝑘 (3.17) 

 

The 7 points defining the hub and shroud Bezier curves are defined by the user 

under the Impeller Curve Design input field in the 1D App (see Figure 3.3).  To 

simplify the process, the provided curve values are normalised (0 – 1) between the 

maximum and minimum radius and axial length.  The z-parameter of point 6 of the 

hub curve is automatically calculated such that the hub meridional exit angle is 

equal to the defined meridional exit angle.   
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Figure 3.3:  Impeller Curve Design Tab 

 

With the geometric data for both the hub and shroud curves known, these are 

divided into equal parts and connected along quasi-normal lines. 

 

 

3.4.3 Impeller Detail Design 

 

Once the impeller hub and shroud curves are defined, the impeller detail design is 

performed.  Under the Detail Design input field, the user specifies details regarding 

the impeller blade thicknesses, splitter blade length ratio and blade lean (rake) 

angle distribution parameters. 

 

The 1D App allows for automatic determination of main blade and splitter blade 

thicknesses, but the user have the ability to specify these at the leading and trailing 

edge hub and shroud positions. 

 

The user can specify an impeller design with or without splitter blades.  If splitter 

blades are selected, the user specifies a length ratio of the splitter blade relative to 

the full blade length (a value between 0 and 1).  Aungier (2000) defined an effective 

blade number (𝑍𝑒𝑓𝑓) based on this ratio, which is used during the impeller design 

process: 

 

 𝑍𝑒𝑓𝑓 = 𝑍𝐹𝐵 + 𝑍𝑆𝐵

𝐿𝑆𝐵

𝐿𝐹𝐵
 (3.18) 
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Inlet Conditions and Inlet Blade Angle 

 

The detail design of the impeller commences by determining the inlet conditions 

as per section 3.4.1.  Additionally, the inlet blade angle (𝛽1) distribution is 

determined.  Certain assumptions are made regarding the inlet blade angle 

distribution: 

 

i. The inlet blade angle distribution is linear from hub to shroud. 

 

ii. The incidence angles at the hub and shroud are zero:  𝑖1𝑠 = 𝑖1ℎ = 0. 

 

From the inlet velocity triangle (Figure 2.6): 

 

 𝛽1ℎ = 𝛽1ℎ
′ = 𝑎𝑐𝑜𝑠 (

𝐶𝑚1ℎ

𝑊1ℎ
) (3.19) 

 

𝛽1𝑠 is calculated in a similar fashion.  The complete inlet blade angle distribution 

can subsequently be determined. 

 

Aungier (2000) proposed that the mean stream surface position along the inlet be 

determined where equal amounts of mass flow passes above and below the mean 

stream surface.  Once this point is established, all the required geometric and 

thermodynamic mean parameters are determined and saved as mean inlet values. 

 

Outlet Geometry 

 

The core of the detail impeller design process is to determine the outlet geometric 

parameters in conjunction with the design of the main and splitter blades (if 

selected).  The process followed to calculate the outlet geometric parameters is 

similar to the process described in section 3.4.1.  The presence of the blades at 

the exit have to be considered, however.  As explained in section 3.4.1, two outlet 

calculation procedures exist, depending on the meridional exit angle.  In the event 

that 𝛼𝐶2 = 90°, Equation 3.14 changes as follows: 

 

 
𝑏2 =

𝐴2

2𝜋𝑟2 −
𝑍𝑡𝐵2

𝑐𝑜𝑠𝛽2𝑐𝑜𝑠𝜃𝑅2

 
(3.20) 

 

In the event that 𝛼𝐶2 < 90°, Equation 3.16 changes as follows: 

 

 �̇� = 𝜌2𝐶𝑚2 [𝜋 (𝑟2𝑠

𝑟2𝑠

𝑐𝑜𝑠𝛼𝐶2
− 𝑟2ℎ

𝑟2ℎ

𝑐𝑜𝑠𝛼𝐶2
) −

𝑍𝑡𝐵2𝑏2

𝑐𝑜𝑠𝛽2𝑐𝑜𝑠𝜃𝑅2

] (3.21) 
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In both these cases, blade thicknesses and rake angles are not available yet and 

are only calculated in the detail design process.  As a first iteration, these values 

are taken as zero and are updated after completion of each full design cycle. 

 

Blade Angle Distribution Along Hub and Shroud Curves 

 

Aungier (2000) proposed a numerical process for calculation of the blade angle 

distribution along the hub and the shroud curves (see Appendix A).  These blade 

angle distributions are reliant on the rake angle parameter (𝐾).  This value, as well 

as the inlet blade rake angle, can be edited by the user under the Detail Design 

input field.  Once the blade angle distribution is calculated along both the hub and 

shroud curves, the blade angle at any point in the impeller is determined based on 

the design criteria that the blade angle varies linearly from hub to shroud along a 

quasi-normal.   

 

Hub and Shroud 3D Camber Lines 

 

With the blade angle distribution along the hub and shroud known, the 3D camber 

line of the blades is determined along the hub and shroud.  The Cartesian 

coordinate system defined in the 1D App is schematically displayed in Figure 3.4 

below. 

 

 

Figure 3.4:  Coordinate System 

 

The 3D camber line of the main blade along the hub is calculated as follows: 
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𝑍𝐹𝐵ℎ𝑖
= 𝑧ℎ𝑖 

𝑋𝐹𝐵ℎ𝑖
= 𝑟ℎ𝑖𝑠𝑖𝑛 (∑ 𝛿𝜃𝑖

𝑛

𝑖=1

) 

𝑌𝐹𝐵ℎ𝑖
= 𝑟ℎ𝑖𝑐𝑜𝑠 (∑ 𝛿𝜃𝑖

𝑛

𝑖=1

) 

with: 

𝛿𝜃𝑖 = 𝑡𝑎𝑛 (
𝛽ℎ𝑖

+ 𝛽ℎ𝑖+1

2
)

∆𝑚ℎ

�̅�𝑖
 

(3.22) 

 

where ∆𝑚ℎ is the incremental meridional length between quasi-normals along the 

hub curve and �̅�𝑖 is the mean radius between consecutive quasi-normals on the 

hub curve.  The same formulas are used for the splitter blade camber line along 

the hub curve, albeit commencing further along the hub curve.  The 3D camber 

line of the main and splitter blades along the shroud curve is calculated in a similar 

manner. 

 

Rake Angle Distribution 

 

With the blade camber line 3D coordinates along both the hub and shroud known, 

the blade rake angle (𝜃𝑅) distribution is determined.  The rake angle is the angle 

between the blade hub-to-shroud line and the line normal to the meridional surface 

(refer Figure 3.5). 

 

 

Figure 3.5:  Rake Angle (adapted from Schiff (2013)) 

 

Along the hub blade camber line, at each quasi-normal, the normal vector from the 

hub point (�̅�), as well as the vector between the hub point and shroud point (�̅�) are 

determined as follows: 
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�̅� = (𝑥𝑠 − 𝑥ℎ)𝐢 + (𝑦𝑠 − 𝑦ℎ)𝐣 + (𝑧𝑠 − 𝑧ℎ)𝐤 

�̅� = (𝑥𝑛 − 𝑥ℎ)𝐢 + (𝑦𝑛 − 𝑦ℎ)𝐣 + (𝑧𝑛 − 𝑧ℎ)𝐤 
(3.23) 

 

From vector formulations, the rake angle at each quasi-normal are determined: 

 

 𝜃𝑅 = 𝑎𝑐𝑜𝑠 (
�̅� ∙ �̅�

|�̅�||�̅�|
) (3.24) 

 

The rake angle for each quasi-normal is calculated accordingly. 

 

Blade Thickness Distribution 

 

As part of the blade design, the user has the ability to select blade thickness 

parameters or allow the 1D App to automatically calculate suitable blade thickness 

parameters.  The blade thickness is defined by four parameters, namely the 

thickness of the blade at the inlet hub (𝑡𝐵1ℎ), inlet shroud (𝑡𝐵1𝑠), outlet hub (𝑡𝐵2ℎ) 

and outlet shroud (𝑡𝐵2𝑠).  The inlet blade thickness parameter is a slight misnomer, 

as the blade actually has a zero thickness at the inlet.  The inlet parameter actually 

refers to the maximum thickness of the blade, which is reached some distance 

behind the leading edge along the camber line.  The blade thickness distribution 

used in the 1D App is based on the procedure as proposed by Verstraete, et al. 

(2010).  A schematic of this procedure is provided in Figure 3.6. 

 

 

Figure 3.6:  Blade Thickness Distribution Along Camber Line (not to scale) 

(Verstraete et al., 2010) 

 

The values for 𝑢1 and 𝑢2 are defined as 0.1 and 0.9 respectively in the 1D App 

code.  In the event that the user selects the option for the blade thickness 

distribution to be calculated automatically, the thickness parameters are 

determined as a function of the outlet width (𝑏2), subject to certain maximum 

values: 

 

 
𝑡𝐵1ℎ = 0.3𝑏2;   𝑡𝐵1ℎ ≤ 0.0025 𝑚 

𝑡𝐵1𝑠 = 𝑡𝐵2ℎ = 𝑡𝐵2𝑠 = 0.2𝑏2;  𝑡𝐵1𝑠 = 𝑡𝐵2ℎ = 𝑡𝐵2𝑠 ≤ 0.002 𝑚 
(3.25) 
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Appendix A presents the detail blade thickness calculations.  The thickness 

distribution used for the main blade is also incorporated for the splitter blade.  The 

splitter blade thickness distribution also commences with a similar elliptical section.  

The parabolic trailing edge section of the splitter blade commences at the same 

point as the main blade trailing edge section along the meridional curve.  Blade 

thickness distribution between the hub and shroud vary linearly along the 

applicable quasi-normal. 

 

Blade 3D Suction and Pressure Coordinates 

 

With the blade camber line 3D coordinates known, as well as the blade thickness 

distribution available, the 3D coordinates of the suction and pressure sides of the 

blades are determined.  The calculations for the 3D coordinates for the main blade 

suction side along the hub curve follows: 

 

 

𝑍𝐹𝐵ℎ 𝑠𝑢𝑐 𝑖
= 𝑍𝐹𝐵ℎ𝑖

 

𝑋𝐹𝐵ℎ 𝑠𝑢𝑐 𝑖
= 𝑋𝐹𝐵ℎ𝑖

+
1

2
(

𝑡𝐵ℎ𝑖

𝑐𝑜𝑠𝜃𝐿𝑖𝑐𝑜𝑠𝛽ℎ𝑖
) 𝑐𝑜𝑠 (∑ 𝛿𝜃𝑖

𝑛

𝑖=1

) 

𝑌𝐹𝐵ℎ 𝑠𝑢𝑐 𝑖
= 𝑌𝐹𝐵ℎ𝑖

−
1

2
(

𝑡𝐵ℎ𝑖

𝑐𝑜𝑠𝜃𝐿𝑖𝑐𝑜𝑠𝛽ℎ𝑖
) 𝑠𝑖𝑛 (∑ 𝛿𝜃𝑖

𝑛

𝑖=1

) 

(3.26) 

 

For the pressure side of the blade along the hub: 

 

 

𝑍𝐹𝐵ℎ 𝑝𝑟𝑒𝑠 𝑖
= 𝑍𝐹𝐵ℎ𝑖

 

𝑋𝐹𝐵ℎ 𝑝𝑟𝑒𝑠 𝑖
= 𝑋𝐹𝐵ℎ𝑖

−
1

2
(

𝑡𝐵ℎ𝑖

𝑐𝑜𝑠𝜃𝐿𝑖𝑐𝑜𝑠𝛽ℎ𝑖
) 𝑐𝑜𝑠 (∑ 𝛿𝜃𝑖

𝑛

𝑖=1

) 

𝑌𝐹𝐵ℎ 𝑝𝑟𝑒𝑠 𝑖
= 𝑌𝐹𝐵ℎ𝑖

+
1

2
(

𝑡𝐵ℎ𝑖

𝑐𝑜𝑠𝜃𝐿𝑖𝑐𝑜𝑠𝛽ℎ𝑖
) 𝑠𝑖𝑛 (∑ 𝛿𝜃𝑖

𝑛

𝑖=1

) 

(3.27) 

 

The same calculations are used for determining the suction and pressure side 3D 

coordinates of the blades on the shroud curve. 

 

Passage Area 

 

The calculation of the passage area also requires an iterative procedure.  For each 

quasi-normal, the corresponding total passage area (𝐴𝑝𝑎𝑠𝑠𝑖
) is guessed.  The 

guessed passage area is used to incrementally determine the quasi-normal length 

and compare it to the known length of the quasi-normal (see Figure 3.7). 
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Figure 3.7:  Incremental Calculation of Quasi Normal Line Length 

 

The guessed area is divided into n increments: 

 

 𝛿𝐴𝑝𝑎𝑠𝑠𝑖
=

𝐴𝑝𝑎𝑠𝑠𝑖

𝑛
 (3.28) 

 

Starting from the hub, the length of each increment along the quasi-normal is 

determined: 

 

 

𝑋𝑗+1 = 𝑋𝑗 +
𝛿𝐴𝑝𝑎𝑠𝑠𝑖

𝑐𝑜𝑠𝜖𝑗𝑐𝑜𝑠𝛽𝑗 (2𝜋𝑟𝑗 −
𝑍𝑡𝐵𝑗

𝑐𝑜𝑠𝛽𝑗𝑐𝑜𝑠𝜃𝑅𝑗
)

 

where: 

𝛽𝑗 =
𝑋𝑗

𝐿𝑄𝑁𝑖

(𝛽𝑠𝑖 − 𝛽ℎ𝑖) + 𝛽ℎ𝑖 

𝑡𝐵𝑗 =
𝑋𝑗

𝐿𝑄𝑁𝑖

(𝑡𝐵𝑠𝑖 − 𝑡𝐵ℎ𝑖) + 𝑡𝐵ℎ𝑖 

(3.29) 

 

Once the last increment along the quasi-normal is reached (𝑋𝑛), this value is 

compared to the known quasi-normal length (𝐿𝑄𝑁𝑖
).  If these values do not 

correspond, the guesstimate of the passage area is updated, and the process 

repeated until the quasi-normal length converges.  This process is repeated for 

each quasi-normal.  It is important to note that the number of blades (𝑍) in the 

above equation includes the splitter blades once the applicable quasi-normals are 

reached.   
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Meridional Mean Streamline and 3D Blade Length 

 

The next phase in the impeller detail design process entails the calculation of the 

full and splitter blade lengths along the mean streamline.  This line is formed by 

the locus of mean radii points of all the quasi-normals along the stream path and 

not along the meridional length.  The mean blade angle and rake angle at each 

quasi-normal are therefore important parameters used in the calculation process 

in order to determine the tangential direction and distance shift of the mean point 

at each consecutive quasi-normal.  With the mean radius, blade angle and rake 

angle known at each mean point on a quasi-normal, the 3D blade and streamline 

lengths are calculated.   

 

The meridional mean streamline position and length are determined first.  With the 

mean positions at both the inlet and outlet known, the mean position along each 

quasi-normal is linearly interpolated between these two end positions. 

 

The mean position along each quasi-normal is determined by firstly calculating the 

mean increment position along the quasi-normal.  Again, selecting 𝑛 increments 

along each quasi-normal: 

 

 �̅�𝑄𝑁𝑖
=

𝑛

2
+ 1 + (�̅�𝑄𝑁1

− (
𝑛

2
+ 1)) 𝑠𝑖𝑛 (𝑎𝑡𝑎𝑛 |

𝑑𝑟

𝑑𝑧
|

𝑖
) (3.30) 

 

Using this result, the actual length along each quasi-normal to the mean position 

on that quasi-normal is calculated: 

 

 �̅�𝑖 = 𝐿𝑄𝑁𝑖

�̅�𝑄𝑁𝑖

𝑛
 (3.31) 

 

In terms of the meridional coordinate system, the mean streamline coordinates are 

determined as follows: 

 

 

�̅�𝑖 = 𝑟ℎ𝑖
+ �̅�𝑖𝑠𝑖𝑛 [𝜋 + 𝑎𝑡𝑎𝑛 (

𝑑𝑟

𝑑𝑧
)

𝑖
] 

𝑧�̅� = 𝑧ℎ𝑖
+ �̅�𝑖𝑐𝑜𝑠 [𝜋 + 𝑎𝑡𝑎𝑛 (

𝑑𝑟

𝑑𝑧
)

𝑖
] 

(3.32) 
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Figure 3.8:  Meridional Mean Streamline Position 

 

With the mean meridional distribution available (see Figure 3.8), both the mean 

meridional length and mean 3D blade length can be determined.  Having divided 

the impeller into 𝑘 quasi-normals: 

 

 

𝐿𝑀𝑆𝐿 = ∑ √(𝑧�̅� − 𝑧�̅�−1)2 + (�̅�𝑖 − �̅�𝑖−1)2

𝑘

𝑖=1

 

𝐿𝐵 = ∑
√(𝑧�̅� − 𝑧�̅�−1)2 + (�̅�𝑖 − �̅�𝑖−1)2

𝑐𝑜𝑠�̅�𝑖

𝑘

𝑖=1

 

(3.33) 

 

Throat Position 

 

As an initial estimate, the passage area distribution along the impeller is used to 

determine the throat position.  This is achieved by determining where the passage 

area reaches a minimum after the inlet.  Once this position is determined, the throat 

position is refined utilising the procedure to determine the throat width as proposed 

by Aungier (2000) (see Appendix A). 

 

Re-calculation of Outlet Geometry 

 

With the first main impeller design iteration complete and with the exit rake angle 

and blade thickness known, the main design loop is restarted, and the outlet 

geometry recalculated with these known values.  The main design loop is run for 

only 5 iterations in the 1D App, as the exit geometric values converges rapidly. 
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User Controlled Rake Angle Distribution 

 

The entire impeller design process is based on a user-defined leading-edge rake 

angle (𝜃𝑅1) and rake angle distribution parameter (𝐾).  Aungier (2000) proposed 

that the rake angle distribution is maintained below a maximum absolute value of 

15° as far as possible, especially at the leading and trailing edges.   

 

On completion of the impeller design process, the 1D App provides feedback in 

terms of the maximum calculated absolute rake angle along the blade as well as a 

graphical representation of the entire rake angle distribution (see Figure 3.9).  It 

often happens during the design process that the rake angle exceeds 15° at some 

point along the blade.  In such a case the user has to re-select the leading-edge 

rake angle and/or the rake angle distribution parameter.  The leading-edge rake 

angle is typically chosen between 0° and 15°.  The rake angle distribution 

parameter (𝐾) was typically found to be between 0.4 and 0.6, although its hard 

limits are between 0 and 1.  The selection of 𝜃𝑅1 and 𝐾 therefore is a manual 

iterative process aimed at choosing values for 𝜃𝑅1 and 𝐾 such that the rake angle 

distribution remains within 15°. 

 

 

Figure 3.9:  Impeller Detail Design Tab – Rake Angle Distribution 
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3.4.4 Impeller Performance 

 

Once the impeller is designed, the mean line performance prediction of the impeller 

at design conditions is performed.  The performance prediction utilised in the 1D 

App is primarily based on the work of Aungier (2000) and MATLAB ® coding initially 

developed by De Wet (2012).  Three significant alterations to the available in-

house mean line code for impeller performance prediction are however 

incorporated in the 1D App. 

 

Slip Factor 

 

Various slip factor prediction models have been developed for radial and mixed 

flow compressor performance analysis.  These include the models of Stodola 

(1945), Wiesner (1967) and Eck (1973) as summarised by von Backström (2006).  

These models were found to not necessarily perform well across a wide range of 

impeller types (Qiu et al., 2011).  The in-house mean line code (as originally 

developed by De Wet (2012)), has been using the Wiesner (1967) slip factor.  

Bindeman (2019) specifically investigated the effect of various slip models on the 

accuracy and usability of the in-house mean line code.  He concluded that the Ji 

et al. (2011) slip formulation was preferable due to its reliable results for both radial 

and mixed flow impellers.  For this reason the 1D App impeller performance 

prediction code was updated to incorporate the Ji et al. (2011) slip formulation: 

 

 

𝜎𝑠 = 1 − (
𝐹𝑍

2𝑍 + 𝐹𝜋𝑠𝑖𝑛𝛼𝐶2
) [(2 + 𝜙2𝑡𝑎𝑛𝛽2)𝑠𝑖𝑛𝛼𝐶2

+
𝜙2𝑟2

𝑐𝑜𝑠2𝛽2

𝑑𝛽

𝑑𝑚
|

2
] 

 
where: 

 

𝐹 =
𝑍

𝜋
𝑠𝑖𝑛 (

𝜋

𝑍
) 𝑐𝑜𝑠 (|𝛽2| −

𝜋

𝑍
) −

𝑍𝑡𝐵2

2𝜋𝑟2𝑐𝑜𝑠𝛽2
 

(3.34) 

 

Impeller Choke Prediction 

 

As verification, 18 test compressors were developed using the 1D application 

(details are provided in Appendix C).  These test compressors covered a wide 

range of design velocities, mass flow rates, as well as meridional exit angles (mixed 

flow compressors).  Predicted performance results were verified using 

Numeca/FINE™ Turbo CFD software.  Initial comparisons between 1D and CFD 

results did not correspond well for the majority of the test compressors.  In 

particular, it was found that the 1D software provided poor impeller choke 

prediction.  Both Klausner and Gampe (2014) and Sundström et al. (2017) found 

deviations between 1D performance predictions and experimental/CFD results in 

the choke region.  After further investigation it was found that there exists a 

relationship between choke mass flow prediction in the impeller and impeller exit 

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3.  MATLAB® APPLICATION DEVELOPMENT 43 
 

 
 
 

slip factor for higher flow compressors (𝜙2 > 0.34).  For lower flow impellers (𝜙2 <

0.34) it was found that the choke mass flow prediction is related to the flow itself.  

Details of these findings are provided in Chapter 5.  Once these relationships were 

quantified, the 1D App impeller performance prediction code was updated 

accordingly.  This update provided much better choke correlation across all 18 test 

compressors. 

 

General Performance Over-prediction 

 

Further comparison of the 1D results versus the CFD results indicated that the 1D 

software generally over-predicted compressor performance, i.e. total-to-total 

efficiency and pressure ratio.  Further investigation into the over-prediction of 

compressor performance by the 1D software revealed three contributing factors.  

One of these factors entailed a general over-prediction in impeller performance 

(details are provided in Chapter 5).  Once the impeller performance prediction 

anomaly was quantified, the 1D App impeller performance prediction code was 

updated accordingly.   

 

 

3.5 Diffuser Design 

 

The 1D App only caters for one diffuser type and configuration, namely a vaned 

crossover diffuser.  The diffuser comprises of two sections, namely an initial 

vaneless gap and a continuous crossover vaned section.  The diffuser design 

process comprises of three phases.  These include the basic design parameters 

and curve design, the detail design of the diffuser, including the blade geometry, 

and performance prediction of the diffuser and compressor.  Each of these phases 

are detailed below.  Flowcharts for the main design processes of the diffuser are 

provided in Appendix B. 

 

 

3.5.1 Diffuser Basic Design Parameters and Curve Design 

 

In the basic design phase, the user defines basic geometric data of the diffuser 

(see Figure 3.10).  This includes the hub and shroud exit radii (𝑟4ℎ and 𝑟4𝑠), the 

diffuser axial length (𝑧4), a Bezier Curve Curvature Constant, the required diffuser 

blade mean inlet incidence angle (𝑖3) and the vaneless gap radius ratio (𝑟3/𝑟2). 

 

As is the case with the impeller hub and shroud curves, the diffuser meridional 

curve is also designed using a 7-point Bezier Curve.  The difference however is 

that in the case of the diffuser, the user does not have the option to design both 

the hub and shroud curves independently.  Only a diffuser centreline curve is 

designed with the diffuser meridional width being equally spaced around the 

centreline.  The user does not have full control over the 7 Bezier Curve points and 

can only specify a curvature control parameter. 
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Figure 3.10:  Diffuser Basic Design Parameters and Curve Design Tab 

 

The diffuser curve design process also includes the definition of equally spaced 

quasi-normals in the meridional direction. 

 

 

3.5.2 Diffuser Detail Design 

 

A major part of the detail diffuser design process involves the design of the diffuser 

blades.  Under the diffuser Detail Design input, the user can specify various 

parameters related to the diffuser blade.  This includes the number of diffuser 

blades.  Aungier (2000) proposed that the number of diffuser blades (𝑍𝑑𝑖𝑓𝑓) should 

either be 1 more or 1 less than the number of impeller blades (𝑍𝑑𝑖𝑓𝑓).  To improve 

the stall incidence range, 10 ≤ 𝑍𝑑𝑖𝑓𝑓 ≤ 20 is additionally recommended.   

 

The 1D App allows the user to specify the maximum and trailing edge diffuser blade 

thicknesses.  The user can further select for this parameter to be automatically 

calculated by the 1D App.  In this case the 1D App simply uses default values of 

2 mm for maximum blade thickness and 1 mm for trailing edge blade thickness. 

 

The 1D App bases the design of the diffuser blades on the process proposed by 

Aungier (2000).  This process requires two blade design parameters (𝐾3 and 𝐾4) 

as well as the diffuser blade trailing edge angle (𝛽4) to be specified.  The user has 

the ability to manually enter these three values or the user can select the option for 

the 1D App to optimise these values. 
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Vaneless Gap Performance 

 

In order to fix the blade leading edge design parameters of the vaned section of 

the diffuser, the flow conditions at the exit of the vaneless gap need to be 

determined.  The location of the leading edge of the diffuser vanes (exit of the 

vaneless gap) is dictated by the user-defined vaneless gap ratio (𝑟3/𝑟2).  With the 

geometric parameters of the vaneless gap available and the impeller exit flow 

conditions (at station 2) available, the flow through the vaneless gap can be 

modelled. 

 

The mean flow analysis for the vaneless gap incorporated in the 1D App is based 

on vaneless space performance theory as proposed by Aungier (2000) and initially 

incorporated in the in-house mean line code by De Wet (2012).  The approach is 

to discretise the vaneless gap into control volumes and to follow an incremental 

flow analysis procedure.  The model aims at predicting the losses through the 

vaneless gap.  These losses include surface friction losses, diffusion losses and 

passage curvature losses.  This process enables the determination of the mean 

flow conditions at the exit of the vaneless gap (station 3). 

 

Blade Design 

 

Aungier (2000) recommended low inlet blade angles, preferably in the range 16° ≤

𝛽3 ≤ 22° (measured from the tangential).  This is however largely dictated by 

impeller exit flow conditions and not always attainable. 

 

The 1D App allows the user to specify the required diffuser blade leading edge 

incidence angle.  Aungier (2000) recommends an incidence angle in the order of  

-1°, which is set as the 1D App default value.  Based on Equation 2.18, 𝛽3 is 

calculated using the absolute flow angle at the exit of the vaneless gap (𝛼3). 

 

The next step in the diffuser vane design process is to define the shape of the vane 

itself.  Aungier (1988) proposes a mean camber line method, around which a 

thickness distribution is defined.  Defining the parameter 𝜂 = 𝑟/𝑟3, the camber line 

is determined by: 

 

 𝜃(𝜂) = 𝐴𝑙𝑛(𝜂) + 𝐵(𝜂 − 1) + 𝐶(𝜂2 − 1) + 𝐷(𝜂3 − 1) (3.35) 

 

To determine the values of 𝐴, 𝐵, 𝐶 and 𝐷, four boundary conditions are required.  

Two are determined from the blade angle leading edge and trailing edge angles 

while the other two are selected such that the blade loading distribution remains 

within controlled limits.  It can be shown that: 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3.  MATLAB® APPLICATION DEVELOPMENT 46 
 

 
 
 

 

𝐷 =
(𝑐𝑜𝑡𝛽4 − 𝑐𝑜𝑡𝛽3)(𝐾3 + 𝐾4 − 2)

3(𝑅 − 1)3
 

 

𝐶 =
(𝑐𝑜𝑡𝛽4 − 𝑐𝑜𝑡𝛽3)(𝐾4 − 𝐾3)

4(𝑅 − 1)2
−

9𝐷(𝑅 + 1)

4
 

 

𝐵 =
𝐾3(𝑐𝑜𝑡𝛽4 − 𝑐𝑜𝑡𝛽3)

𝑅 − 1
− 4𝐶 − 9𝐷 

 

𝐴 = 𝑐𝑜𝑡𝛽3 − 𝐵 − 2𝐶 − 3𝐷 

 
where: 

 

𝐾(𝑛) =
𝑅 − 1

𝑐𝑜𝑡𝛽4 − 𝑐𝑜𝑡𝛽3

𝑑𝑐𝑜𝑡𝛽(𝑛)

𝑑𝜂
 

 

(3.36) 

 

Two options for specifying the blade thickness distribution are proposed by Aungier 

(2000): 

 

i. A constant thickness vane with the option of tapering it towards the 

leading edge. 

 

ii. An aerofoil shape closely resembling the NACA 66-006 profile. 

 

The choice between these two options might not be performance driven, but rather 

influenced by cost, ease of manufacturing, stress and vibration.  The 1D App 

incorporates the NACA 66-006 option.  The following approximations are used: 

 

 

𝑡𝑏

𝑡𝑏 𝑚𝑎𝑥
= 𝑡0 + (1 − 𝑡0) (

2𝑥

𝑐
)

𝑛

               𝑓𝑜𝑟
𝑥

𝑐
≤ 0.5 

 

𝑡𝑏

𝑡𝑏 𝑚𝑎𝑥
= 𝑡0 + (1 − 𝑡0) (2 −

2𝑥

𝑐
)

𝑛

       𝑓𝑜𝑟
𝑥

𝑐
> 0.5 

 

𝑡0 =
[𝑡𝑏3 + (𝑡𝑏3 − 𝑡𝑏4)

𝑥
𝑐]

𝑡𝑏 𝑚𝑎𝑥
 

(3.37) 

 

and: 
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𝑛 = 0.755 (0.57 −
𝑥

𝑐
)           𝑓𝑜𝑟

𝑥

𝑐
≤ 0.539 

 

𝑛 = 1.225 (
𝑥

𝑐
− 0.52)           𝑓𝑜𝑟

𝑥

𝑐
> 0.539 

(3.38) 

 

Part of the 1D App diffuser blade design process is to ensure that the overall 

diffuser stays within certain size limits.  Aungier (2000) recommended the following 

limits in terms of the Equivalent Divergence Angle (2𝜃𝑐) and Blade Loading 

parameter (𝐿): 

 

 10° ≤ 2𝜃𝑐 ≤ 11° (3.39) 

 

 0.3 ≤ 𝐿 ≤
1

3
 (3.40) 

 

In the event that design parameters specified by the user leads to a diffuser design 

which results in an Equivalent Divergence Angle or a Blade Loading parameter 

falling outside of the specified limits, the 1D App will warn the user accordingly. 

 

Throat Position 

 

The diffuser throat position and area are determined in a similar fashion as for the 

impeller throat. 

 

Design Optimisation 

 

The 1D App provides the user the ability to automatically determine the best values 

for 𝐾3, 𝐾4 and 𝛽4.  In the case of 𝐾3 and 𝐾4, the 1D App searches for optimum 

values within the ranges of 1.5 and 3.5, and 1 and 3 respectively (as proposed by 

Aungier (2000)).  𝛽4 is optimised within the range 0° to 40° relative to the axial 

direction.  These optimum values are chosen such that 𝑃𝑅𝑇𝑆,14 is a maximum. 

 

During the optimisation process, the 1D App ensures that all possible outcomes 

conforms to the size limits as specified in Equations 3.39 and 3.40.  The 1D App 

further selects possible outcomes within the stall limit as proposed by Aungier 

(2000).  The stall limit (𝛼3𝑠) is determined as follows: 

 

 

𝛼3𝑠 = 𝑎𝑠𝑖𝑛 [𝑠𝑖𝑛𝛼𝑡ℎ (
𝐾𝑠ℎ𝑡ℎ

𝑟3
+ 1)] 

where: 

𝐾𝑠 = 0.39 − 𝐾0 
and: 

𝐾0 =
𝑀3

2𝑐𝑜𝑠2𝛽3𝑠𝑖𝑛𝛽3

1 − 𝑀3
2𝑐𝑜𝑠2𝛽3

 

(3.41) 
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3.5.3 Diffuser Performance 

 

As part of the detail design process of the diffuser, a complete performance 

prediction is completed for every design iteration.  This ensures that the diffuser 

design remains within the size and stall limits.  Consequently, once the detail 

design process is complete, the full mean line performance prediction results for 

the design point are available.  These results are subsequently recalled for display 

under the Diffuser Performance tab in the 1D App.   

 

The diffuser performance prediction utilised in the 1D App is based on the work of 

Aungier (2000) and Japikse (1996).  The applicable MATLAB® coding was initially 

developed by De Wet (2012).  De Wet (2012) developed the diffuser performance 

code for a conventional radially vaned diffuser.  Burger (2016) adapted this code 

for a crossover diffuser.  This forms the basis of the diffuser performance prediction 

code for the 1D App. 

 

Two significant alterations to this code are however incorporated in the 1D App.  

As explained in section 3.4.4, initial comparisons between the 1D and CFD results 

showed that the results did not correlate well for the majority of the 18 test 

compressors.  Anomalies observed (amongst others) included a general over-

prediction in compressor performance results.  Additional investigation into the 

over-prediction of compressor performance by the 1D software revealed three 

contributing factors.  The first one of these is impeller related and is explained in 

section 3.4.4.   

 

The other two factors that contributed to the general over-prediction of the 

compressor performance are specifically connected to the diffuser performance 

prediction code.  These include an under-prediction of the total diffuser exit 

temperature (𝑇04) (which affects the total-to-total isentropic efficiency), as well as 

an over-prediction in diffuser performance (due to an under-prediction of diffuser 

losses).  In the case of the over-predicted diffuser performance, it was found that 

the original 1D code only determined the skin friction loss model for one channel 

(between two blades).  Once the diffuser skin friction loss model was corrected to 

calculate �̅�𝑆𝐹 for all the channels, diffuser performance was better aligned with 

CFD results.  In terms of the under-predicted diffuser exit total temperature, it was 

found that a relationship between these errors and the impeller exit slip factor 

existed.  Once these were quantified and implemented into the 1D App code, the 

results predicted by the modified 1D App compared well with the CFD results 

obtained.  These anomalies are covered in detail in Chapter 5. 

 

 

3.6 Overall Performance Analysis 

 

Once the complete compressor design process is complete, the 1D App provides 

the user with the ability to create performance curves.  These include curves for 

total-to-total isentropic efficiency (𝜂𝑇𝑇), total-to-total pressure ratio (𝑃𝑅𝑇𝑇) and 
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total-to-static pressure ratio (𝑃𝑅𝑇𝑆) (see Figure 3.11).  The 1D App further allows 

the user to plot these performance curves for the entire compressor (1-4) or only 

for the impeller (1-2). 

 

The 1D App allows the user to specify the range of mass flow rates (in kg/s) and 

rotational velocities (in RPM) to plot the performance curves.  In such a case, the 

1D App also displays the full performance data as text, but only for the original 

design point.  In the event that the user requires a performance data plot at any 

other specific point (�̇� and 𝑁), this option can be selected accordingly. 

 

 

 

Figure 3.11:  1D App Performance Curves – PRTT,1-4 

 

Finally, under the Overall Performance Analysis section, the 1D App allows the 

user schematic views of the full compressor meridional curves (2D Compressor) 

and a 3D plot of the whole compressor (3D Compressor) (see Figure 3.12). 
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Figure 3.12:  1D App 3D Compressor Plot 

 

 

3.7 CFD Output 

 

The last stage of the 1D App compressor design process is to create a .geomTurbo 

file from the geometry of the designed compressor (see Figure 3.13).  This 

.geomTurbo file can be used for a 3D CFD analysis using Numeca/FINE™ Turbo 

(AutoGrid5™ for mesh generation).  When creating the .geomTurbo file under the 

CFD Output tab of the 1D App, some basic impeller radius and axial geometric 

data is provided to the user.  This data is required in FINE™/Turbo when defining 

the Solid Boundary Condition Definition. 
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Figure 3.13:  1D App CFD Output Tab 
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Chapter 4:  

CFD Numerical Analysis 

 

 

4.1 Introduction 

 

To verify the validity and accuracy of the 1D App, 18 (+2) test compressors (see 

Appendix C for details) were designed using the 1D App.  One of the 1D App 

features is the ability to create a .geomTurbo file from the geometry of the designed 

compressor.  This .geomTurbo file can then be used for a 3D CFD analysis using 

Numeca/FINE™ Turbo.  A CFD analysis was therefore completed for each of the 

18 test compressors as a means of verifying the accuracy of the 1D App.  

Subsequent to updating the 1D App code, 2 more compressors were designed as 

final verification of the 1D App accuracy.  These final 2 compressors were also fully 

analysed using Numeca/FINE™ Turbo.  This chapter focusses on the generic 

procedure followed to conduct the full CFD analysis on a typical compressor 

designed using the 1D App. 

 

 

4.2 Mesh Creation Using AutoGrid5™ 

 

Numeca/AutoGrid5™ is an automatic mesh generation tool used to generate 

meshes for a wide array of turbomachines, i.e. fans, axial compressors, centrifugal 

compressors and various turbine types.  AutoGrid5™ allows various geometric file 

formats to be imported as an initial geometry definition.  One such file format is a 

.geomTurbo file, which is a text file programmed with the required geometric data 

of the turbomachine for which a mesh needs to be generated.  AutoGrid5™ 

requires the .geomTurbo file to be in a very specific format.  Data include 2D arrays 

for the definition of the hub and shroud meridional curves, 3D arrays for the 

definition of the blade shapes (main and splitter), and the number of blades.  The 

meshing process consists of three phases, namely the initial meridional mesh 

setup, blade-to-blade mesh setup and finally the complete 3D mesh definition.  The 

.geomTurbo file created by the 1D App defines the impeller and diffuser separately.  

During the meshing process the impeller and diffuser mesh are created separately 

for the meridional setup and blade-to-blade setup phases.  Once these are 

completed, the final 3D mesh creation is done for the complete compressor 

(impeller and diffuser). 

 

 

4.2.1 Meridional Mesh Setup 

 

AutoGrid5™ provides a ‘Row Wizard’ function which is used to import the geometry 

file, and also provides some default meshes for the various supported 

turbomachinery configurations.  The default ‘Centrifugal Impeller’ and ‘Centrifugal 

Diffuser’ configurations were selected.  At this point it was confirmed that the 
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number of blades for the impeller and diffuser, as well as the design rotational 

speed were imported correctly.  Next it was verified that the tip gap, as designed 

in the 1D App for the specific compressor, was entered correctly.  The required 

number of flow paths through the impeller and diffuser, which are basically the 

number of meridional stream surfaces stacked from hub to shroud between the 

blades were set to 73 and 59 for the impeller and diffuser respectively.  The flow 

paths are illustrated by the red lines in Figure 4.1.  It is clear from the figure that 

the flow paths (red lines) become denser towards the hub and shroud walls.  This 

is to accurately capture the boundary layer effect. 

 

 

Figure 4.1:  Meridional Mesh Flow Paths – Test Compressor 5a 

 

The cell width at the walls were set to ensure that the correct y+-values were 

obtained during the flow simulation.  The Spalart-Allmaras turbulence model was 

used for flow simulation.  This model typically requires 1 < y+ < 10.  The required 

wall cell centre height (𝑦𝑤𝑎𝑙𝑙) is determined as follows: 

 

 𝑦𝑤𝑎𝑙𝑙 = 6 (
𝑉𝑟𝑒𝑓

𝜈
)

−7
8⁄

(
𝐿𝑟𝑒𝑓

2
)

1
8⁄

𝑦+ (4.1) 

 

where reference values are taken at the mean impeller outlet.  As an example, the 

wall cell width for Test Compressor 8 was calculated as 6.9 x 10-6 m, using a y+ 

value of 6.  The attained y+ values for Compressor 8 for both the impeller and 

diffuser section are displayed in Figure 4.2 below.  Note that these y+ values were 

attained using the medium grid level.  The effect of the grid level on the attained y+ 

values are explained later in this chapter. 

 

𝑟 

𝑧 
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Figure 4.2:  y+ Values for Impeller and Diffuser – Compressor 8 

 

 

4.2.2 Blade-to-blade Mesh Setup 

 

Impeller 

 

Most of the blade-to-blade meshing settings are pre-set due to the selection of the 

default ‘Centrifugal Impeller’ mesh under the ‘Row Wizard’.  The pre-set ‘H&I’ 

topology for both main and splitter blades, as well as ‘H Topology’ for the outlet for 

both main and splitter blades were used.  To ensure proper capturing of the 

boundary layer, ‘High Staggered Blade Optimisation’ was selected for both main 

and splitter blades.  A generic inlet and outlet angle for both the main and splitter 

blades are defined by the ‘Inlet Type’ and ‘Outlet Type’ setting.  These were set to 

‘High Angle’ and ‘Normal’ respectively for the main blade, and ‘Normal’ and 

‘Normal’ respectively for the splitter blade.  The biggest effort in creating a suitable 

blade-to-blade mesh is to select the appropriate number of grid points in the blade-

to-blade domain.  This process is typically a balance between having as few cells 

as possible to allow for shorter solver times, but still have enough cells to ensure 

proper mesh quality.  As an example, the grid blocks for Compressor 8 are 

provided in Figure 4.3 below. 
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Figure 4.3:  Impeller Main Blade and Splitter Blade Grid Points – Compressor 8 

 

After generation of the 3D mesh, the Angular Deviation occasionally exceeded the 

maximum recommended value of 40° in a few cells.  In such a case, the 

‘Intersection Quality’ can be set to ‘High’ and the 3D mesh generation be re-started.  

This mode uses a more precise (albeit more time consuming) algorithm to 

determine the intersections between the blade and any axisymmetric flow path 

surface (Numeca International, 2018b). 

 

Diffuser 

 

The diffuser blade-to-blade topology was selected as “default”.  To ensure blade-

to-blade mesh similarity, ‘Matching Periodicity’ was selected.  As with the impeller, 

‘High Staggered Blade Optimisation’ was selected to ensure proper boundary layer 

capture.  The inlet and outlet blade angle type were set to ‘Low Angle’ and ‘High 

Angle’ respectively.  Contrary to what was experienced during the blade-to-blade 

mesh setup for the impeller, the default diffuser grid point values were found to be 

suitable in most cases.  The diffuser grid block for Compressor 8 is illustrated in 

Figure 4.4 below. 

 

 

Figure 4.4:  Diffuser Blade-to-Blade Grid Points – Compressor 8 
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4.2.3 3D Mesh Setup 

 

Before the creation of the final 3D mesh for both the impeller and diffuser, the Mesh 

Optimisation Properties were set.  De Villiers (2013) recommended values of 400 

and 250 for the ‘Optimisation Steps on Fine Grid’ and ‘Gaps and/or CHT 

Optimisation Steps’ respectively.  These values worked well for both the impeller 

and diffuser meshes.  Under the ‘Expert’ option, the ‘Skewness Control’ and 

‘Skewness Control in Gaps’ were set to ‘Medium’ and ‘Full’ respectively.  These 

settings had a great impact on the general orthogonality of the mesh.  ‘Multigrid 

Acceleration’ was enabled for both the impeller and the diffuser.  This setting 

assisted in reducing the expansion ratios.  Additionally, ‘Multisplitter Control’ was 

enabled for the impeller.  An illustration of the final 3D mesh of Compressor 8 is 

provided in Figure 4.5. 

 

 

Figure 4.5:  3D Mesh – Compressor 8 

 

 

4.2.4 Mesh Quality 

 

Mesh quality is based on four parameters, namely Orthogonality (or Skewness), 

Aspect Ratio, Expansion Ratio and Angular Deviation (Numeca International, 

2018b).  These mesh quality parameters are defined as follows: 

 

i. Orthogonality (or Skewness – which is more descriptive) give an 

indication of the skewness of a cell.  It is determined as the minimum 

2D internal angle between adjacent edges of a cell in a range of 0° to 

90°.  The recommended minimum value is 18°. 

 

ii. The Aspect Ratio of a cell is the ratio of the length to width of a cell in 

the range 1 to 50000.  The recommended maximum value is 2000. 
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iii. Expansion Ratio provides an indication of the rate at which the cell 

width of adjacent cells increases in a specific direction in the range 1 

to 100.  The recommended maximum value is 2.5. 

 

iv. Angular Deviation is a 3D criterion and is an indication of the angular 

variation between two adjacent cells in all three cardinal directions in 

the range 0° to 180°.  The recommended maximum value is 40°. 

 

A summary of the mesh quality for Compressor 8 is given in Table 4.1 below.  A 

small number of ‘bad’ cells were present in the test compressor meshes.  These 

were negligibly small and had no negative effect on the convergence of any of the 

test compressor simulation points. 

 

Table 4.1:  Mesh Quality – Compressor 8 
 

Quality Parameter Requirement Max Cells Cells Outside % ‘Bad’ Cells 

Orthogonality >18° 

8307968 

54 0.00065% 

Aspect Ratio <2000 0 0 

Expansion Ratio <2.5 144 0.00347% 

Angular Deviation <40° 0 0 

 

 

4.2.5 Mesh Independence 

 

Meshes were created in three grid levels using AutoGrid5™.  These three grid 

levels were 000, 111 and 222 and increased in coarseness, with 000 being the 

finest and 222 being the coarsest.  The 18 (+2) test compressors were all run on a 

medium (111) mesh.  A mesh independence check was conducted on Compressor 

1a by conducting a full FINE™/Turbo simulation on both medium (111) and fine 

(000) grid levels.  The results of the compressor total-to-total isentropic efficiency 

(𝜂𝑇𝑇,1−4) and compressor total-to-total pressure ratio (𝑃𝑅𝑇𝑇,1−4) are graphically 

illustrated in Figure 4.6. 

 

 

Figure 4.6:  Medium vs Fine Mesh Comparison – Compressor 1a 
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The performance prediction difference at design conditions, as well as the choke 

prediction difference are provided in Table 4.2. 

 

Table 4.2:  Medium vs Fine Mesh Comparison – Compressor 1a 
 

Fine Mesh 

# Cells 
Medium Mesh 

# Cells 

∆Choke 

[%] 
∆𝜼𝑻𝑻,𝟏−𝟒 

[%] 

∆𝑷𝑹𝑻𝑻,𝟏−𝟒 

[%] 

2 697 306 361 350 0.52 0.65 0.47 

 

The primary objective of this thesis is to develop a first order, quick turnaround 

application for the design of a radial or mixed flow compressor over a wide range 

of design operating conditions.  The intention is therefore not to achieve a high 

level of accuracy in terms of performance prediction, but rather to achieve an initial 

approximation of the feasibility of a specific design.  The differences encountered 

between the medium and fine meshes were deemed small enough to justify the 

use of the medium mesh for all the test compressors.   

 

As mentioned earlier, the grid level used influenced the attained y+ values.  In the 

case of the medium grid level, the wall cell width was proportionally increased in 

comparison to the fine grid level.  This had a direct impact on the attained y+ values.  

Figure 4.7 below illustrates the difference in y+ values for the impeller of 

Compressor 1a at medium and fine grid. 

 

 

Figure 4.7:  y+ Distribution for Medium (left) and Fine (right) Grid Levels – 

Compressor 1a impeller 
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From Figure 4.7 it is clear that, in the case of the medium grid, a small area towards 

the blade trailing edge of the impeller presented y+ values above the recommended 

maximum value of 10 (refer Spalart-Allmaras turbulence model).  In the case of the 

fine mesh all the y+ values are well inside the recommended maximum value.  

Having already ascertained that the performance prediction difference between the 

medium and fine grid levels were negligible, it was also deduced from the 

compared y+ distributions that a slight overshoot in the small area as indicated also 

had a negligible effect on the final results. 

 

 

4.3 FINE™/Turbo Setup 

 

Numeca/FINE™ Turbo was used as the 3D flow simulation tool.  The mesh 

generated in AutoGrid5™ was imported into FINE™/Turbo as the flow domain.  

Details regarding the flow simulation setup are discussed here. 

 

 

4.3.1 Fluid and Flow Model 

 

Air as a calorically perfect gas was selected as the fluid for all simulations.  Various 

previous studies (including Krige (2013), Kock (2017)) compared results of air as 

a real gas to air as a prefect gas.  They all found negligible differences in results.  

This is also supported by general compressibility charts.  Selecting air as a real 

gas also increased computational time by 20 to 25% compared to air as a perfect 

gas (Numeca International, 2018b).  For these reasons, other fluid options were 

not investigated.  Viscosity was based on the Sutherland approximation, and the 

heat conduction was based on the Prandtl approximation.  The fluid properties of 

air as a perfect gas are depicted in Table 4.3.  

 

Table 4.3:  Properties of Air as a Perfect Gas 
 

Fluid Property Value 

Specific Heat (𝑐𝑝) 1006 J/kg∙K 

Specific Heat Ratio (𝛾) 1.4 

Prandtl Number 0.708 

Dynamic Viscosity (𝜇) at 293.11K 1.716 x 10-5 Pa∙s 

Sutherland Temperature 110.555 K 

 

The Time Configuration of the flow model was selected as ‘Steady’ state.  

‘Turbulent Navier-Stokes’ was selected as the mathematical model, with ‘Spalart-

Allmaras’ being selected as the turbulence model.  This model is a one-equation 

model and provides economical computations in boundary layers, especially for 

external aerodynamic scenarios where adverse pressure gradients are typically 

present (Versteeg and Malalasekera, 2007).  Kock (2017) compared the Spalart-
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Allmaras turbulence model with the SST and k- models.  He found that all three 

these models provided similar results.  The Spalart-Allmaras model was selected 

due to its smaller computational time and memory requirement and due to its 

preference for use with aerofoil type applications, i.e. turbomachinery (Versteeg 

and Malalasekera, 2007; Spalart and Allmaras, 1992).  The model is a one-

equation model (hence the lower memory requirement) with the model constants 

selected to provide good performance in boundary layers with adverse pressure 

gradients present.   

 

 

4.3.2 Boundary Conditions 

 

The general methodology followed for all the test compressors was to create a 

performance curve by completing simulation runs at the design speed and at 

various mass flow rates.  This was done by fixing the inlet conditions and varying 

the outlet mass flow rate throughout the operating range. 

 

Inlet 

 

To ensure standard environmental test conditions for all the test compressors, the 

inlet conditions were kept constant at ISA values.  This was achieved by selecting 

the ‘Total Quantities Imposed’ option under the ‘INLET’ tab.  The ‘Velocity direction 

(V extrapolated)’ option was selected, and the values were entered as presented 

in Table 4.4. 

 

Table 4.4:  Inlet Boundary Conditions 
 

𝑉𝑟/|𝑉| 0 

𝑉𝑡/|𝑉| 0 

𝑉𝑧/|𝑉| 1 

Absolute Total Pressure [Pa] 101325 

Absolute Total Temperature [K] 288 

Turbulent Viscosity [m2/s] 0.0001 

 

Outlet 

 

The various operating points of each compressor were determined by altering the 

mass flow rate at the outlet.  A locus of these operating points formed the operating 

curve for the specific compressor at its design speed.  ‘Mass Flow Imposed’ was 

selected under the ‘OUTLET’ boundary condition tab.  The ‘Pressure Adaptation’ 

option was selected, with the ‘mass-flow’ selected per run.  A generic ‘Initial 

Pressure’ of 160000 Pa was selected for all the runs, with the ‘Backflow Control’ 

also activated.  This selection was made to control the exit stagnation temperature 

distribution, especially in the event that some flow re-enter through the outlet 

boundary (Numeca International, 2018a).  The choke mass flow rate was achieved 
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at the last point where inlet and outlet mass flow rate converged.  Beyond this mass 

flow rate, the inlet and outlet mass flow rate maintained a constant difference, while 

the overall efficiency and pressure ratio continued a steady decrease. 

 

Solid 

 

The Solid boundary condition defines the rotation of the various compressor parts, 

namely the impeller hub, shroud and blades, as well as the diffuser hub, shroud 

and blades.  For the impeller hub, the ‘Adiabatic’, ‘Area Defined Rotation Speed’ 

was selected.  This option allows the selection of a specific area zone of the hub 

to be defined for rotation in the meridional sense, irrespective of the mesh structure 

(Numeca International, 2018a).  It is however important for this zone to be defined 

correctly in terms of its geometric extremities.  For this reason, the 1D App provides 

the values for this zone when the .geomTurbo file is created under the ‘CFD Output’ 

tab (see Figure 3.13).  These values were separately defined for each test 

compressor.  An example is provided in Table 4.5 below. 

 

Table 4.5:  Solid Impeller Hub Boundary Conditions – Compressor 8 
 

Rotation Speed 1 [RPM] 0 

Rotation Speed 2 [RPM] 60000 

Lower Radius Limit [m] 0.015 

Higher Radius Limit [m] 0.06938 

Lower Axial Limit [m] -0.018 

Higher Axial Limit [m] 0.047 

 

The rest of the solid groups were all defined as ‘Adiabatic’, ‘Constant Rotation 

Speed’.  With the exception of the impeller blade group, which was set to the design 

rotation speed, the other solid groups (impeller shroud, diffuser shroud, hub and 

blades) were set to 0 RPM. 

 

 

4.3.3 Computational settings 

 

Numerical Model 

 

Grid level 111 was used for the simulation of all the test compressors.  ‘Coarse 

Grid Initialisation’ was selected, which allowed the solution to run the first 100 

iterations on the coarser grid level and use this result as an initial solution for the 

next grid level. 

 

Initial Solution 

 

The initial solution option specifically dedicated to turbomachinery were selected.  

A constant estimated static pressure for both impeller inlet and rotor-stator 
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boundary (between impeller and diffuser) were defined.  Generic values of 95000 

Pa and 160000 Pa were used respectively. 

 

Control Variables 

 

The maximum number of iterations were set to 10000, with a convergence criterion 

of -6 specified.  The solution often reached the conversion criteria well before 

10000 iterations, in which case the solution terminated automatically.  Solutions 

were saved to the output file every 200 iterations.  The solver was set to double 

precision for grid level 111.  The memory requirements typically varied between 

370 and 420 MB. 

 

Convergence 

 

FINE™/Turbo provides the option to monitor various variables during the 

simulation process.  The variables monitored were the global residual, inlet and 

outlet mass flow, efficiency and pressure ratio.  Convergence were achieved when: 

 

i. The global residual decreased by more than three orders of magnitude. 

 

ii. The inlet and outlet mass flow rate converged to within at least 0.5% of 

each other. 

 

iii. The efficiency and pressure ratio results have stabilised. 

 

As an example, the global residual and mass flow convergence for Compressor 8 

at 60000 RPM and 0.4 kg/s are provided in Figures 4.8 and 4.9 below. 

 

 

 

Figure 4.8:  Global Residual – Compressor 8 (60000 RPM / 0.4 kg/s) 
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Figure 4.9:  Mass Flow Convergence – Compressor 8 (60000 RPM / 0.4 kg/s) 

 

 

4.4 Post Processing 

 

Post processing was conducted using Numeca CFView™.  CFView™ provides 

various methods to visualise the performance and results of each individual 

FINE™/Turbo run by analysing the .run file created after each simulation.  

CFView™ was used to determine mean pressures (total and static) and 

temperatures (total and static) in order to predict performance of the various 

compressor components and compare it to the 1D mean line code results.  Colour 

schematics (e.g. y+ schematic) are also produced in CFView™. 

 

 

4.5 Summary 

 

3D CFD analysis of all the test compressors were conducted using 

Numeca/FINE™ Turbo CFD software.  This was done to validate the results 

obtained by the 1D App.  The setup explained in this chapter was used for all the 

test points of all the test compressors. 
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Chapter 5:  

Results Discussion 

 

 

5.1 Introduction 

 

As mentioned before, the primary objective of this thesis is to develop a first order, 

quick turnaround application for the design of a micro gas turbine compressor.  The 

intention is to achieve an initial approximation of the feasibility of a specific design.  

Design optimisation would typically still have to be conducted by another means. 

 

The 1D App was developed with these basic requirements in mind.  However, after 

comparison of the initial performance prediction results of the 18 test compressors, 

it was clear that the accuracy of the initial 1D code was unsatisfactory when 

compared to CFD results, even as a first order design tool.  Choke prediction and 

isentropic efficiency prediction were especially unsatisfactory.  Performance 

prediction differences in excess of 20% were observed.  These performance 

prediction anomalies necessitated deeper investigation and scrutinization of 

specific performance parameters at the various compressor stations.  This was 

done in an attempt to narrow down the anomalies to specific components and 

regions inside the compressor.  Details about these findings are discussed in this 

chapter. 

 

 

5.2 Alternative Flow Parameter 

 

The 18 test compressors designed using the 1D App and verified by CFD analysis 

covered a wide range of rotational velocities, mass flow rates and impeller 

meridional exit angles (see Appendix C).  These 18 test compressors were 

arranged from largest (geometrically) and slowest (rotational velocity) to smallest 

and fastest.  It was further observed that the design tip flow coefficient (𝜙2) roughly 

increased in the same order, while the impeller exit slip factor (𝜎𝑠) roughly 

decreased in the same order. 

 

The various performance prediction anomalies observed were compared against 

the design tip flow coefficient (𝜙2) and the impeller exit slip factor (𝜎𝑠).  Although, 

in certain flow regimes, relationships between some of the anomalies and these 

two parameters were observed (details to follow in the next sections), all the 

observed anomalies could not be linked to these two parameters alone.  During 

the analysis process it became clear that an alternative flow parameter needed to 

be defined that could better quantify the test compressor design points.  The 

intention was for this alternative flow parameter to be used to compare the various 

test compressors and then analyse the observed performance anomalies between 

the 1D code and CFD against this alternative flow parameter. 
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During the analysis process of the various performance anomalies, it became clear 

that four main compressor parameters influenced the observed performance 

anomalies.  These were the design mass flow rate (�̇�), the design rotational 

velocity (𝜔), the meridional exit angle (𝛼𝐶2) and the impeller exit slip factor (𝜎𝑠).  

Due to this observation, it was decided to investigate an alternative flow parameter 

which incorporate these four parameters.  As was observed with the impeller exit 

slip factor (𝜎𝑠) it was expected that the alternative flow parameter would decrease 

from the slower, larger compressors to the faster, smaller compressors.  With this 

in mind, by considering dimensional analysis it was anticipated that the alternative 

flow parameter would take the form: 

 

 𝜓 = 𝑓 (𝜎𝑠
𝑎 , �̇�𝑏 , (𝑠𝑖𝑛𝛼𝐶2)𝑐,

1

𝜔𝑑
) (5.1) 

 

The power values (𝑎, 𝑏, 𝑐, and 𝑑) were determined by analysing the alternate flow 

parameter for the 18 test compressors against the observed performance 

prediction anomalies.  During this analysis process, the large numerical values of 

𝜔 relative to the other parameters were problematic.  For this reason, a logarithmic 

function of 𝜔 was introduced into the formula for the alternative flow parameter.  

The analysis yielded the following formula: 

 

 𝜓 =
𝜎𝑠(�̇�/�̇�𝑟𝑒𝑓)

𝜎𝑠
2

(𝑠𝑖𝑛𝛼𝐶2)3.5

𝑙𝑛(𝜔/𝜔𝑟𝑒𝑓)
 (5.2) 

 

where:  𝜓 Alternative flow parameter 

  𝜎𝑠 Impeller exit slip factor 

  �̇� Design mass flow rate [kg/s] 

  �̇�𝑟𝑒𝑓 Reference mass flow rate = 1 kg/s 

  𝛼𝐶2 Impeller meridional exit angle [rad] 

  𝜔 Rotational velocity [rad/s] 

  𝜔𝑟𝑒𝑓 Reference rotational velocity = 1 rad/s 

 

Due to the fact that �̇� and 𝜔 were not dimensionless quantities, these values had 

to be divided by reference values to ensure that the alternative flow parameter was 

a dimensionless quantity.  In both cases a value of 1 was selected as reference 

value.  The application and use of the alternate flow parameter is explained later 

in this chapter. 
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5.3 Choke Prediction Anomaly 

 

Appendix D shows the performance prediction comparison plots of the original 1D 

code, the CFD results and the updated 1D code.  From these plots it is clear that 

the choke mass flow rate is over-predicted for the slower, larger compressors, 

while the choke mass flow rate is under-predicted for the faster, smaller 

compressors.  Initial observations indicated that there might be a relationship 

between choke prediction and the tip flow coefficient and impeller exit slip factor. 

 

 

5.3.1 Choke Anomaly Analysis 

 

The 1D code choke mass flow prediction was initially only compared to the impeller 

exit slip factor.  Although a clear relationship was observed for smaller, faster 

compressors, this comparison did not provide good results throughout the test 

compressor range.  Prior to conducting further analysis, it was prudent to firstly 

ascertain which component (impeller or diffuser) contributed to the choke 

prediction anomaly.  The CFD analysis of the test compressors assisted in this 

regard.  It was observed that the under-prediction of choke for the smaller, faster 

compressors was due to the impeller 1D code not predicting choke correctly.  On 

the other hand, in the case of the slower, larger compressors it was observed that 

the CFD analysis indicated choke in the diffuser throat section which was not 

predicted early enough by the 1D code.   

 

A clear distinction in choke prediction was thus observed between the smaller, 

faster and the bigger, slower compressors.  To quantify this distinction, the choke 

prediction results were firstly compared to the design tip flow coefficient (𝜙2) of 

each compressor.  It was observed that all compressors with 𝜙2 > 0.34 presented 

an under-prediction of the choke mass flow rate by the original 1D code.  On the 

other hand, compressors with 𝜙2 < 0.34 presented an over-prediction in choke 

mass flow rate.  The compressors in these two regions were subsequently 

analysed separately. 

 

 

5.3.2 Choke Prediction for Higher Flow Compressors 

 

The under-prediction of the choke mass flow rate for the smaller, faster 

compressors was attributed to the prediction of choke for the impeller in the 1D 

code.  Due to the specific choice of compressor sequencing (large and slow to 

small and fast – see Appendix C), a very interesting phenomenon was observed.  

In the range 𝜙2 > 0.34, the choke prediction roughly moved from a lower limit to 

an upper limit.  After further analysis, it became apparent that the impeller exit slip 

factor of these test compressors also seem to generally decrease in the same 

order.  It thus seemed that there existed a relationship between impeller exit slip 

factor and choke prediction in this flow range.   
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In order to explore this relationship further, it is first important to understand the 

mechanism of choke prediction in the 1D code.  Choke prediction in the mean line 

code is based on the following formula (Aungier, 2000):  

 

 𝑋 = 11 − 10
𝐶𝑟𝐴𝑡ℎ

𝐴∗
 (5.3) 

 

In Equation 5.3, 𝑋 provides an indication of how close the critical area comes to 

the actual throat area.  Choke losses are incurred if the flow critical area 

approaches the throat area.  It was found that if the numerical value of the first term 

of Equation 5.3 is changed, the position of choke (the mass flow where choke 

occurred) can be controlled.  For each of the test compressors in the range 𝜙2 >

0.34  the first term in this equation was adjusted until the occurrence of choke was 

comparable with what was observed in the CFD analysis.  These updated choke 

formula first terms were then subsequently compared to the impeller exit slip 

factors of the same compressors to establish the relationship between these 

factors.  The graphical results are provided in Figure 5.1 below: 

 

 

Figure 5.1:  Choke Prediction Relationship – 2 > 0.34 

 

From the above plot it is evident that a relationship between slip factor and choke 

prediction existed for the test compressors with a design tip flow coefficient 𝜙2 >

0.34.  A 3rd order polynomial trend line was added to the data and this formula was 

implemented in the 1D App code to improve choke prediction.  Apart from 

Compressor 4b, significantly better choke prediction was observed after 

implementation of the updated choke prediction formula.  For all the test 

compressors, choke mass flow was predicted to within 3.5% of the choke mass 
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flow rate predicted by CFD.  Details of this are provided in Table 5.1.  Detailed 

performance curves are also provided in Appendix D.   

 

Table 5.1:  Choke Prediction Results – 2 > 0.34 
 

Compressor Name Initial 1D Code 

Choke Prediction 

difference [%] 

Updated 1D Code 

Choke Prediction 

difference [%] 

Compressor 4a -3.06 -1.02 

Compressor 4b 0.00 1.49 

Compressor 4c -1.47 -1.03 

Compressor 5a -10.98 0.41 

Compressor 5b -10.82 -0.41 

Compressor 5c -10.66 -3.48 

Compressor 6a -30.20 0.20 

Compressor 6b -26.98 1.22 

Compressor 6c -13.18 2.33 

Compressor 7 -39.88 -0.61 

 

 

5.3.3 Choke Prediction for Lower Flow Compressors 

 

For the test compressors with a tip flow coefficient 𝜙2 < 0.34, the CFD analysis 

indicated choke in the diffuser throat section which was not predicted early enough 

by the 1D code.  Figure 5.2 shows the absolute and relative Mach number 

meridional distribution for Compressor 2c at a mass flow rate of 0.515 kg/s.  By 

studying these absolute and relative Mach number schematics it is clear that choke 

was developing in the diffuser throat section. 

 

 

Figure 5.2:  Diffuser Choke Development – Compressor 2c at 0.515 kg/s 

 

With the choke prediction anomalies for the larger, slower compressors being 

attributed to the diffuser, it was anticipated that choke prediction for these 
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compressors were probably not linked to the impeller exit slip factor.  In this case 

the choke prediction anomaly was compared to the alternative flow parameter (𝜓) 

(see Section 5.2). 

For each of the test compressors in the range 𝜙2 < 0.34  the first term in the 1D 

code choke prediction equation (Equation 5.3) was again edited until the onset of 

choke was comparable to what was observed in the CFD analysis.  These updated 

choke formula terms were compared with the alternative flow parameter (𝜓) to 

establish the relationship between these factors.  The graphical results are 

provided in Figure 5.3 below: 

 

 

Figure 5.3:  Choke Prediction Comparison – 2 < 0.34 

 

From the above plot there seems to be a linear relationship between the alternative 

flow parameter (𝜓) and choke prediction for the test compressors with a tip flow 

coefficient 𝜙2 < 0.34.  A linear trend line was added to the data and this formula 

was implemented in the 1D App.  Significantly better choke prediction was 

observed after implementation of the updated choke prediction formula.  The choke 

mass flow rate was predicted to within 5% of the actual choke mass flow rate for 

all the test compressors in this range.  Details of this are provided in Table 5.2.  

Detailed performance curves are also provided in Appendix D.   
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Table 5.2:  Choke Prediction Results – 2 < 0.34 
 

Compressor Name Initial 1D Code 

Choke Prediction 

difference [%] 

Updated 1D Code 

Choke Prediction 

difference [%] 

Compressor 1a -4.54 -3.25 

Compressor 1b 6.88 4.97 

Compressor 1c 7.85 -1.82 

Compressor 2a 12.87 -1.47 

Compressor 2b 18.04 -0.97 

Compressor 2c 26.23 1.90 

Compressor 3a 28.72 0.74 

Compressor 3b 17.24 -1.30 

 

 

5.4 Compressor Performance Prediction Anomaly 

 

Comparison of the initial 1D performance prediction results against the CFD results 

for the range of 18 test compressors indicated a consistent over-prediction of 

compressor performance (𝜂𝑇𝑇,1−4 and 𝑃𝑅𝑇𝑇,1−4) at design point.  To narrow down 

these potential anomalies, predicted performance parameters were compared at 

the various stations inside the test compressors (i.e. impeller exit (station 2) and 

diffuser exit (station 4)).  Three factors were identified that contributed to the overall 

compressor over-prediction anomaly.  These are discussed in the following 

sections. 

 

 

5.4.1 Impeller Performance Prediction Anomaly 

 

During analysis and comparison of the test compressors it was found that impeller 

exit static pressures were consistently over-predicted by the 1D code.  This over-

prediction did not have a major influence on the total performance over-prediction 

of the various test compressors (this was mainly attributed to the diffuser – see 

next section) but was still analysed and implemented. 

 

As was the case with choke prediction (see previous section), it was found that the 

impeller exit static pressure (𝑝2) over-prediction anomaly needed to be analysed 

separately for 𝜙2 < 0.34 and 𝜙2 > 0.34. 

 

Impeller Exit Static Pressure Prediction for Lower Flow Compressors 

 

As was the case with choke prediction, the impeller exit static pressure anomaly 

for the lower flow test compressors (𝜙2 < 0.34) was found to be a function of the 

alternative flow parameter defined in Equation 5.2.  For each of the test 
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compressors in the range 𝜙2 < 0.34, the impeller exit static pressure over-

prediction ratio (𝑝21𝐷
/𝑝2𝐶𝐹𝐷

) was plotted against the flow parameter (𝜓). 

 

 

Figure 5.4:  p2 Prediction Comparison – 2 < 0.34 

 

From Figure 5.4 it is clear that 𝑝2 was over-predicted for all the test compressors 

considered (over-prediction ratio > 1).  Although the data points were somewhat 

scattered, there seemed to be a linear relationship between the alternative flow 

parameter (𝜓) and the impeller exit static pressure over-prediction ratio 

(𝑝21𝐷
/𝑝2𝐶𝐹𝐷

) for the test compressors with a tip flow coefficient 𝜙2 < 0.34.  The 

contribution of the 𝑝2 over-prediction anomaly was however small in comparison 

to other factors.  The effect was however still considered and implemented.  A 

linear trend line was added to the data and implemented in the 1D App code.  The 

effect of this update was not analysed in isolation but is presented later in this 

chapter as part of the combined performance update results. 

 

Impeller Exit Static Pressure Prediction for Higher Flow Compressors 

 

As was the case with choke prediction, the impeller exit static pressure deviation 

for the higher flow test compressors (𝜙2 > 0.34) was found to be a function of the 

impeller exit slip factor (𝜎𝑠).  For each of the test compressors in the range 𝜙2 >
0.34, the impeller exit static pressure over-prediction ratio (𝑝21𝐷

/𝑝2𝐶𝐹𝐷
) was plotted 

against the impeller exit slip factor (𝜎𝑠). 
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Figure 5.5:  p2 Prediction Comparison – 2 > 0.34 

 

From Figure 5.5 it is clear that 𝑝2 is either correctly predicted or over-predicted for 

all the test compressors considered (over-prediction ratio ≥ 1).  Although the data 

points were scattered, there seemed to be a linear relationship between the 

impeller exit slip factor (𝜎𝑠) and the impeller exit static pressure over-prediction 

ratio (𝑝21𝐷
/𝑝2𝐶𝐹𝐷

) for the test compressors with a tip flow coefficient 𝜙2 > 0.34.  

Although the effect was small, it was still considered and implemented.  A linear 

trend line was added to the data and implemented in the 1D App code.  The effect 

of this update was again not analysed in isolation but are presented later in this 

chapter as part of the combined performance update results. 

 

 

5.4.2 Diffuser Performance Prediction Anomaly 

 

The general performance over-prediction by the original 1D code necessitated the 

analysis of performance parameters of the individual compressor components.  

The contribution of the impeller 1D code towards the total performance anomalies 

was discussed in the previous section.  Analysis of the diffuser exit parameters 

(station 4) indicated that the predicted performance of the diffuser in the 1D code 

differed significantly from the CFD results for all 18 test compressors.  Two main 

problem areas were identified, namely an under-prediction of the skin friction loss 

(�̅�𝑆𝐹) inside the diffuser, as well as an under-prediction of the diffuser total exit 

temperature (𝑇04).  These are explained individually in the following paragraphs. 
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Diffuser Skin Friction Loss Anomaly 

 

The 1D mean line code performance prediction used in the 1D App consists of 

empirical loss models in both the impeller and diffuser.  One of the losses being 

predicted in the diffuser is the skin friction loss (�̅�𝑆𝐹).  The formulas used in the 1D 

code for this loss prediction was originally inherited from a previously developed 

1D MATLAB® code for crossover diffusers.   

 

Analysis of the CFD data at the various compressor stations (impeller inlet and 

exit, vaneless gap, diffuser blade inlet and diffuser exit) indicated that the 1D code 

consistently over-predicted the overall performance of the crossover diffuser.  The 

1D code thus consistently under-predicted the losses arising in the diffuser.  After 

some deeper analysis of the various loss coefficients, it was observed that the skin 

friction loss was only calculated for a single channel in the diffuser.  Once the skin 

friction loss was multiplied by the number of channels (number of blades) the 

diffuser performance in general compared considerably better with the CFD 

results.  This correction was therefore introduced in the updated 1D App code. 

 

Diffuser Exit Total Temperature Under-Prediction Anomaly 

 

Analysis of the CFD results at the various compressor stations further indicated 

that the 1D code consistently under-predicted the diffuser (and compressor) exit 

total temperature (𝑇04).  This had a major influence on the compressor total-to-total 

efficiency (𝜂𝑇𝑇,1−4) prediction.  The under-predicted exit total temperature resulted 

in a significantly over-predicted total-to-total efficiency (refer Equation 2.23) across 

the entire test compressor range.  It was found that the under-prediction seemed 

to be a function of impeller exit slip factor (𝜎𝑠), albeit for the entire compressor 

range, regardless of tip flow coefficient.  For each of the test compressors the 

diffuser exit total temperature under-prediction ratio (𝑇041𝐷
/𝑇04𝐶𝐹𝐷

) was plotted 

against the impeller exit slip factor (𝜎𝑠). 
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Figure 5.6:  T04 Prediction Comparison 

 

From Figure 5.6 it is clear that 𝑇04 was either correctly predicted or under-predicted 

for all the test compressors considered (under-prediction ratio ≤ 1).  Although the 

data points were scattered, there seems to be a linear relationship between the 

impeller exit slip factor (𝜎𝑠) and the compressor exit total temperature under-

prediction ratio (𝑇041𝐷
/𝑇04𝐶𝐹𝐷

) for the full range of test compressors.  A linear trend 

line was added to the data and this formula was implemented in the 1D App code.  

The effect of this update was not analysed in isolation but is presented in the next 

section as part of the combined performance update results. 

 

 

5.4.3 Updated Performance Prediction Results 

 

Significantly better performance prediction results were observed after 

implementation of the 1D code performance updates.  Performance prediction 

results were evaluated at the design mass flow rate and design rotational velocity.  

The only exception to this was Compressor 7, where the original 1D code already 

predicted the onset of choke at the design mass flow rate.  Therefore, performance 

results for Compressor 7 were evaluated at 95.4% (the next lower analysed CFD 

test point) of design mass flow rate.  Details of these performance results are 

provided in Table 5.3.  Detailed performance curves are also provided in Appendix 

D.   
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Table 5.3:  Performance Prediction Results for 18 Test Compressors 
 

Compressor 

Name 

Initial 1D Code Updated 1D Code 

𝜼𝑻𝑻,𝟏−𝟒 

difference 

[%] 

𝑷𝑹𝑻𝑻,𝟏−𝟒 

difference 

[%] 

𝜼𝑻𝑻,𝟏−𝟒 

difference 

[%] 

𝑷𝑹𝑻𝑻,𝟏−𝟒 

difference 

[%] 

Compressor 1a 11.64 6.62 0.81 -0.72 

Compressor 1b 12.49 8.62 1.40 0.75 

Compressor 1c 13.02 10.33 1.57 1.37 

Compressor 2a 12.36 9.97 0.25 0.29 

Compressor 2b 11.32 10.13 -0.92 -0.05 

Compressor 2c 13.07 14.22 1.03 3.52 

Compressor 3a 11.68 11.62 -1.44 -2.11 

Compressor 3b 15.09 16.78 0.35 -0.34 

Compressor 4a 10.92 10.81 -0.91 0.73 

Compressor 4b 11.31 12.35 -0.51 2.14 

Compressor 4c 12.82 17.27 0.15 5.01 

Compressor 5a 9.46 5.90 -0.05 0.56 

Compressor 5b 9.07 6.35 -0.49 1.00 

Compressor 5c 8.89 6.56 -1.38 -0.17 

Compressor 6a 10.26 5.54 0.76 1.08 

Compressor 6b 9.74 4.85 -0.31 -0.49 

Compressor 6c 9.87 7.03 -0.63 0.64 

Compressor 7 9.15 2.59 0.38 -1.35 

 

From Table 5.3 it is clear that both total-to-total efficiency (𝜂𝑇𝑇,1−4) and total-to-

total pressure ratio (𝑃𝑅𝑇𝑇,1−4) predictions are significantly enhanced after 

implementation of the 1D code updates.  For all the test compressors, total-to-total 

efficiency (𝜂𝑇𝑇,1−4) predictions are within 1.6% of the CFD values, with 13 of the 

18 test compressors' results being within 1% of the CFD values.  In the case of 

total-to-total pressure ratio (𝑃𝑅𝑇𝑇,1−4) prediction, all 18 compressors show results 

that are within 5.5% of the CFD results, with 14 of the 18 test compressors 

exhibiting results that are within 2% of the CFD results.  Across the 18 test 

compressors, the mean total-to-total efficiency (𝜂𝑇𝑇,1−4) prediction difference for 

the initial 1D code is 11.23%, while the mean difference for the updated 1D code 

is 0.74%.  The mean total-to-total pressure ratio (𝑃𝑅𝑇𝑇,1−4) prediction difference 

for the initial 1D code is 9.31%, while the mean difference for the updated 1D code 

is 1.24%.  It is therefore clear that the updates incorporated in the 1D App code 

provides superior results compared to the original 1D code. 
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5.5 Velocity Triangle Comparison 

 

The 1D App provides data regarding the predicted velocity components at the 

impeller and diffuser exit.  These values were also compared to the CFD results.  

As an initial disclaimer, it is important to realise that the mean line theory inherently 

applies the notion of the flow through the compressor following a mean line or 

mean surface.  In the mean line code, velocity components are therefore always 

determined to be in the plane of the mean line.  At any point along the compressor, 

the mean line code is therefore not able to determine the true 3D velocity effects.  

To illustrate this, consider the flow exiting the compressor/diffuser at station 4 (see 

Figure 5.7).  Due to the orientation of the mean flow line being purely horizontal at 

this point (Figure 5.7 left), the mean line code is unable to predict any vertical 

component of velocity.  Realistically, of course, there will be a vertical component 

of velocity still present at this point (Figure 5.7 right).  The presence of the vertical 

exit velocity component was correctly predicted by the CFD results for all the test 

compressors. 

 

 

Figure 5.7:  Velocity Prediction at Station 4 – 1D (left) and CFD (right) 

 

Therefore, it is clear that the mean line theory may not provide accurate velocity 

results at the various compressor stations.  The 1D App do however provide 

reasonable results.  As an example, velocity triangle results for Compressor 1c are 

provided in Table 5.4: 
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Table 5.4:  Velocity Triangle Comparison 
 

Parameter 1D App Results CFD Results 

𝑉𝑥2 [m/s] -275 -288 

𝑉𝑦2 [m/s] 101 50 

𝑉𝑧2 [m/s] 37 47 

𝑀2  0.787 0.792 

𝑉𝑥4 [m/s] -59.8 -44 

𝑉𝑦4 [m/s] 0 45 

𝑉𝑧4 [m/s] 108.7 80 

𝑀4  0.316 0.308 

 

 

5.6 Final Test Compressor Results 

 

As a final validation of the 1D App code, two more test compressors (Compressors 

8 and 9 – see Appendix C) were designed using the 1D App and verified using 

Numeca/FINE™ Turbo.  These two test compressors were designed subsequent 

to the various updates being incorporated in the 1D App code.  Their performance 

results did therefore not influence the 1D App code updates.  The purpose of 

designing and analysing these additional two compressors was to evaluate the 

maturity of the 1D App in terms of compressor design and CFD comparable 

performance prediction. 

 

 

Figure 5.8:  Compressor 8 Performance Curves 
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Figure 5.9:  Compressor 9 Performance Curves 

 

Detailed performance curves for Compressors 8 and 9 are provided in Figure 5.8 

and 5.9 respectively.  (see also Appendix D).  Performance prediction results are 

provided in Table 5.5.   

 

Table 5.5:  Performance Prediction Results for Final Two Test Compressors 
 

Compressor 

Name 

Updated 1D Code 

Choke 

difference 

[%] 

𝜼𝑻𝑻,𝟏−𝟒 

difference 

[%] 

𝑷𝑹𝑻𝑻,𝟏−𝟒 

difference 

[%] 

Compressor 8 0.34 0.53 3.21 

Compressor 9 -0.13 -2.00 0.18 

 

From the performance graphs (Figure 5.8 and 5.9) and performance prediction 

results (Table 5.5), it was concluded that the updated 1D App provided good results 

for these two test compressors. 

 

 

5.7 Summary 

 

The developed 1D App aimed at providing a preliminary MGT engine compressor 

design tool.  The performance prediction results achieved by the updated 1D App 

provide sufficient evidence that the developed 1D App achieved the primary 

objective. 
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Chapter 6:  

Conclusions and Recommendations 

 

 

A MATLAB® based application (1D App) is developed as a first-order, quick turn-

around tool for the design and performance prediction of a MGT compressor stage.  

The 1D App caters for the design of pure radial, as well as mixed-flow compressor 

configurations in the subsonic flow regime.  The 1D App further caters for the 

design of a crossover diffuser to be matched to the impeller.  The 1D App design 

code is based on the mean line theory presented by Aungier (2000).  The accuracy 

of the 1D App was evaluated by designing 18 test compressors and exporting the 

geometric data for 3D flow analysis and comparison using Numeca/FINE™ Turbo 

CFD software.  Various performance prediction anomalies were identified in the 

original 1D mean line code.  These anomalies were investigated, quantified, 

addressed and the subsequent improvements incorporated into the updated mean 

line code of the 1D App. 

 

 

6.1 Project Summary 

 

MATLAB® App Designer was used as the application development environment 

for the purpose of developing the front-end Graphical User Interface (GUI) of the 

1D App.  The App Designer environment provides the ability to call basic 

MATLAB® script files (.m files) as functions from the App Designer code.  This 

allowed the in-house developed MATLAB® mean line code to be used as the basis 

for the 1D App.  Specifically, the code used for the performance prediction of the 

impeller and crossover diffuser was primarily incorporated from the existing in-

house code.  New code was developed for the initial and detail design of the 

impeller and diffuser. 

 

The 1D App provides the user with the ability to export the geometric parameters 

of a designed compressor in the form of a .geomTurbo file for specific use by 

Numeca/FINE™ Turbo.  For the purpose of this project, 18 test compressors were 

designed by the 1D App.  These test compressors covered a wide range of mass 

flows, rotational velocities and impeller meridional exit angles.  The purpose of the 

18 test compressors was to validate the accuracy of the compressor performance 

prediction of the 1D App mean line code. 

 

Initial comparison of the 1D code and the CFD results indicated poor choke 

prediction across the test compressor range, as well as a general over-prediction 

in overall compressor performance.  An initial investigation into the compressor 

performance over-prediction anomaly highlighted three main contributing factors: 

 

i. An over-prediction of impeller exit static pressure (𝑝2). 
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ii. An under-prediction of diffuser skin friction losses (�̅�𝑆𝐹). 

 

iii. An under-prediction of diffuser exit total temperature (𝑇04). 

 

A further investigation into the choke anomaly revealed an over-prediction in the 

choke mass flow rate for compressors with a tip flow coefficient below 0.34.  In 

contrast, an under-prediction in choke mass flow rate was observed for 

compressors with a design tip flow coefficient above 0.34.  In the mean line code, 

choke is predicted by the choke loss model.  For a specific compressor, the choke 

mass flow rate could be varied by varying the numerical value of the first term of 

Equation 5.3.  It was observed that there was a relationship between the corrected 

term and the impeller exit slip factor for compressors with a design tip flow 

coefficient above 0.34.  For compressors with a design tip flow coefficient below 

0.34, it was found that the required term varied as a function of not just the impeller 

exit slip factor, but also as a function of mass flow rate, rotational velocity and 

impeller meridional exit angle.  An alternative flow parameter (𝜓) was developed 

that incorporated these parameters.  The required choke equation term was 

compared to this alternative flow parameter for compressors with a design tip flow 

coefficient below 0.34.  It was found that there was a linear relationship between 

these parameters.  These choke relationships were consequently quantified and 

incorporated into the mean line code of the 1D App.  Much better choke prediction 

results were achieved.  Initial 1D mean line results presented a mean choke 

prediction difference of 14.98% for the 18 test compressors, with a maximum 

difference of 39.88%.  In the updated 1D App code the mean difference was 

reduced to 1.59% with a maximum difference of 4.97%. 

 

The initial 1D code over-prediction of the impeller exit static pressure was also 

investigated in relation to the impeller exit slip factor and the alternative flow 

parameter (𝜓).  It was found that there was a relationship between the static 

pressure over-prediction and impeller exit slip factor for compressors with a tip flow 

coefficient above 0.34, while a relationship existed between the static pressure 

over-prediction and the alternative flow parameter for compressors with a design 

tip flow coefficient below 0.34. 

 

The compressor performance over-prediction initially produced by the 1D code 

was primarily attributed to the under-prediction in diffuser skin friction losses (�̅�𝑆𝐹).  

It was found that the inherited crossover diffuser 1D code only calculated diffuser 

skin friction losses in one channel in the diffuser vaned section.  The 1D App code 

was updated to ensure skin friction losses were calculated for all the flow channels 

inside the diffuser vaned section. 

 

The under-prediction in diffuser exit total temperature (𝑇04) had a marked influence 

on the overall compressor isentropic efficiency prediction.  Deeper investigation 

revealed that the exit total temperature under-prediction values changed in relation 

to the impeller exit slip factor.   
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All three contributing performance prediction anomalies were quantified and 

incorporated in the updated 1D App code.  Considerably better performance 

prediction results were achieved after these code modifications.  Initial 1D mean 

line results presented a mean 𝑃𝑅𝑇𝑇,1−4 prediction difference of 9.31% for the 18 

test compressors, with a maximum difference of 17.27%.  In the updated 1D App 

code the mean difference was reduced to 1.24% with a maximum difference of 

5.01%.  In the case of total-to-total efficiency, the initial 1D mean line results 

presented a mean 𝜂𝑇𝑇,1−4 prediction difference of 11.23% for the 18 test 

compressors, with a maximum difference of 15.09%.  In the updated 1D App code 

the mean difference was reduced to 0.74% with a maximum difference of 1.57%.   

 

 

6.2 Conclusion 

 

The primary intention of this study is to develop a preliminary design tool for the 

purpose of designing a compressor for a MGT engine.  The 1D App developed 

during this study provides a user-friendly, intuitive platform for this purpose.  The 

performance analysis of 20 test compressors (18 initial and 2 final validation test 

compressors – see Appendix C) demonstrates the capability of the 1D App in 

providing good performance prediction results across a wide range of compressor 

designs.  1D App code modifications include better choke prediction, as well as 

improved overall performance prediction results.  Following these code 

modifications, performance results are comparable to CFD results. 

 

The 1D App allows the designer an early verdict on the feasibility of a compressor 

design.  Once a design is selected, further design optimisation and accurate 

performance prediction results can be conducted by further CFD analysis and the 

use of optimisation techniques.   

 

 

6.3 Recommendations 

 

The compressor stall prediction models incorporated in the 1D App code is 

unmodified from the in-house developed 1D code.  Compared to the observed CFD 

results, the 1D App stall prediction seems adequate, although comprehensive stall 

investigation was not conducted to the level that choke prediction was done.  

Future studies could focus in more detail on accurate stall prediction characteristics 

of the 1D App. 

 

Kim et al. (2001) highlighted the importance of a proper compressor inlet design, 

which could seriously reduce the performance of a compressor due to inlet flow 

distortions.  A future upgrade to the 1D App should investigate an inlet design code, 

including the option of inlet guide vanes. 

 

The 1D App developed in this study only catered for the design of a vaned 

crossover diffuser.  A future upgrade to the 1D App could be to include other 
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diffuser types, e.g. vaneless diffuser and conventional vaned diffuser with or 

without de-swirler vanes.  Future studies could also investigate the inclusion of 

tandem diffuser vane arrangements in lieu of a continuous vane (crossover) 

arrangement.  This should alleviate the typical larger boundary layers associated 

with longer passages. 

 

The 1D App in its current form does not cater for any lean/rake angle distribution 

of the crossover diffuser blades.  Previous studies have shown that slight lean in 

the direction of rotation, especially at the leading edge of the diffuser blade, could 

provide much better flow alignment with the flow pattern emerging from the impeller 

(Krige, 2013).  A future upgrade to the 1D App could incorporate this feature. 

 

The updates to the 1D App proposed in this study are primarily semi-empirical 

methods incorporated to correct for the anomalies observed.  A future study could 

explore a physical and theoretical approach to verify the empirical methods 

developed in this study. 
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APPENDIX A:  

Impeller Design Calculations 
 

 

A.1 Derivation of Impeller Relative Exit Blade Angle Formula 

 

From the impeller velocity exit triangle (Figure 2.6) it follows that: 

 

 
∆𝐶𝑈2

𝑠𝑖𝑛(𝛽2
′ − 𝛽2)

=
𝑊2

𝑠𝑖𝑛(𝜋 + 𝛽2)
 (A1.1) 

 

Also: 

 

 𝐶𝑈2 = 𝑈2 − 𝑊2𝑠𝑖𝑛𝛽2
′  (A1.2) 

 

Now substituting Equation A1.2 into Equation 2.3: 

 

 𝜎𝑠 =
𝑈2 − 𝑊2𝑠𝑖𝑛𝛽2

′

𝑈2 − 𝑊2𝑠𝑖𝑛𝛽2
′ + ∆𝐶𝑈2

 (A1.3) 

 

Rewriting Equation A1.3: 

 

 ∆𝐶𝑈2 =
𝑈2 − 𝑊2𝑠𝑖𝑛𝛽2

′

𝜎𝑠
− 𝑈2 + 𝑊2𝑠𝑖𝑛𝛽2

′  (A1.4) 

 

Now substituting Equation A1.4 into Equation A1.1: 

 

 𝑊2

𝑠𝑖𝑛(𝜋 + 𝛽2)
=

𝑈2

𝜎𝑠
−

𝑊2𝑠𝑖𝑛𝛽2
′

𝜎𝑠
− 𝑈2 + 𝑊2𝑠𝑖𝑛𝛽2

′

𝑠𝑖𝑛(𝛽2
′ − 𝛽2)

 
(3.11) 

 

 

A.2 Impeller Hub and Shroud Blade Angle Distribution 

 

Aungier (1995) proposed generalised hub and shroud blade distribution equations.  

These are expressed as a function of the normalised meridional length (𝜁) of the 

hub and shroud curves.  The shape of the hub blade angle distribution is also 

heavily dependent on the rake angle parameter (𝐾) as well as the inlet rake angle.  

Both these values are user defined in the 1D App under the Impeller Detail Design 

section. 

 

For the hub blade angle distribution, the following set of equations are applicable: 
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𝛽ℎ(𝜁) = 𝛽1ℎ + 𝐴𝜁 + 𝐵𝜁2 + 𝐶𝜁3 
where: 

𝐴 = −4(𝛽2 − 2�̅�ℎ + 𝛽1ℎ) 

𝐵 = 11𝛽2 − 16�̅�ℎ + 5𝛽1ℎ 

𝐶 = −6𝛽2 + 8�̅�ℎ − 2𝛽1ℎ 
and: 

�̅�ℎ = 90𝐾 − (1 − 𝐾)
1

2
(𝛽2 + 𝛽1ℎ) 

(A1.5) 

 

In the case of the blade angle distribution along the shroud curve: 

 

 𝛽𝑠(𝜁) = 𝛽1𝑠 + (𝛽2 − 𝛽1𝑠)(3𝜁2 − 2𝜁3) (A1.6) 

 

 

A.3 Blade Thickness Distribution 

 

The blade thickness distribution procedure employed in the 1D App is based on 

the proposal by Verstraete et al. (2010).  The distribution follows an elliptical 

distribution along the first section of the blade and a parabolic distribution towards 

the trailing edge (refer Figure 3.4).  The calculations for the thickness distributions 

along the hub are provided below.  These are used for the distributions along the 

shroud as well. 

 

With 0 ≤ 𝜁 < 𝑢1(elliptical section): 

 

 𝑡𝐵ℎ(𝜁) = 2√(
1

2
𝑡𝐵ℎ1)

2

(1 − (
𝜁 − 𝑢1

𝑢1
)

2

) (A1.7) 

 

With 𝑢1 ≤ 𝜁 ≤ 𝑢2(straight section): 

 

 𝑡𝐵ℎ(𝜁) = 𝑡𝐵ℎ1 (A1.8) 

 

With 𝑢2 < 𝜁 ≤ 1(parabolic section): 

 

 

𝑡𝐵ℎ(𝜁) = 2[𝑎𝜁2 + 𝑏𝜁 + 𝑐] 
where: 

𝑎 =
(𝑡𝐵ℎ1 − 𝑡𝐵ℎ2)

2(−𝑢2
2 + 2𝑢2 − 1)

 

𝑏 = −2𝑎𝑢2 

𝑐 =
1

2
𝑡𝐵ℎ1 + 2𝑎𝑢2 − 𝑎 

(A1.9) 
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A.4 Throat Geometry Calculations 

 

The throat width along any blade-to-blade surface (i.e. hub) describes a 3D locus, 

as the line describing the width, varied in the 𝜃, 𝑟 and 𝑧 directions.  Aungier (2000) 

suggested a conformal transformation of the blade coordinates.  Firstly, the 𝑟 and 

𝑧 coordinates are transformed into a meridional coordinate (𝑚).  The (𝑚, 𝜃) plane 

are then transformed into a 2D (𝑋, 𝑌) plane. 

 

 
𝑋 = ∫

𝑑𝑚

𝑟

𝑚𝑖

𝑚1

 

𝑌 = 𝜃 

(A1.10) 

 

In the transformed (𝑋, 𝑌) plane, the throat width has a constant angle (refer Figure 

A.1).  This angle is expressed as: 

 

 
𝜕𝑌

𝜕𝑋
=

𝑟𝜕𝜃

𝜕𝑚
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (A1.11) 

 

 

 

Figure A.1:  Throat Width in (X,Y) Plane 

 

 

The throat width is then calculated as: 
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 ℎ𝑡ℎ = ∫ √1 + (
𝑟𝜕𝜃

𝜕𝑚
)

2
𝑚𝑖

𝑚1

𝑑𝑚 = √1 + (
∆𝜃

𝑋
)

2

∆𝑚 (A1.12) 

 

where ∆𝜃 and ∆𝑚 are determined between points on the opposing blades and 𝑋 

are evaluated only on the suction blade surface.  Since ℎ𝑡ℎ can theoretically be 

calculated between any two points on opposing blades, the 1D App calculates ℎ𝑡ℎ 

for all the points on the suction side of the passage from a number of points around 

the initially determined (see section 3.4.3) throat position on the pressure side.  

This is done in an attempt to refine the throat position by searching for a minimum 

ℎ𝑡ℎ value.  The same procedure is repeated for a pre-defined number of stream 

surfaces from hub to shroud, each time calculating the minimum ℎ𝑡ℎ for the 

consecutive stream surfaces.  This creates a 3D throat area inside the blade-to-

blade passage area.  With ℎ𝑡ℎ available for each stream surface from hub to 

shroud and with the gap between stream surfaces known, the throat area is 

determined in an incremental fashion. 
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APPENDIX B:  

1D App Design Process Flowcharts 
 

 

The flowcharts for the four primary iterative design processes used in the 1D App 

code are provided here.  These include: 

 

i. Initial impeller design process. 

 

ii. Detail impeller design process. 

 

iii. Diffuser curve design process.   

 

iv. Diffuser detail design. 
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B.1 Initial Impeller Design 

 

The routine to determine the initial impeller inlet and outlet geometry and flow 

conditions is executed once the Impeller ‘Basic Design Parameters’ tab is 

completed and accepted.  

 

 

Figure B.1:  Initial Impeller Design Flowchart 
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B.2 Detail Impeller Design 

 

The routine to complete the detail design of the impeller is executed once the 

impeller ‘Detail Design’ tab is completed. 

 

 

Figure B.2:  Detail Impeller Design Flowchart 
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B.3 Diffuser Curve Design 

 

The diffuser curve design routine, as well as the initial performance evaluation of 

the vaneless gap is performed on completion and acceptance of the diffuser ‘Basic 

Design Parameters & Curve Design’ tab in the 1D App. 

 

 

Figure B.3:  Diffuser Curve Design Flowchart 
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B.4 Diffuser Detail Design 

 

The routine to complete the detail design of the impeller is executed once the user 

completes and initiates the design process under the diffuser ‘Detail Design’ tab in 

the 1D App.  The user can specify values for 𝐾3, 𝐾4 and/or 𝛽4, or these values can 

be optimised by the routine. 

 

 

Figure B.4:  Diffuser Detail Design Flowchart 
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APPENDIX C:  

Test Compressor Details 
 

 

The basic design parameters of the 18 test compressors were chosen to cover a 

wide range of rotational velocities, mass flows and impeller meridional exit angles 

(for the purpose of mixed flow configurations).  Details of the 18 test compressors 

are provided below. 

 

Table C.1:  Test Compressor Details 
 

# Name Design 

N  

[RPM] 

Design 

�̇� 

[kg/s] 

𝝓𝟐 𝝈𝒔 Impeller  

Meridional 

Exit Angle 

[°] 

Schematic 

1 Comp1a 30000 0.8 0.2615 0.8737 90 

 

2 Comp1b 30000 0.8 0.2658 0.8754 80 

 

3 Comp1c 30000 0.8 0.2706 0.8807 70 

 

4 Comp2a 45000 0.5 0.2903 0.8714 90 
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# Name Design 

N  

[RPM] 

Design 

�̇� 

[kg/s] 

𝝓𝟐 𝝈𝒔 Impeller  

Meridional 

Exit Angle 

[°] 

Schematic 

5 Comp2b 45000 0.5 0.2984 0.8754 75 

 

6 Comp2c 45000 0.5 0.3014 0.8785 70 

 

7 Comp3a 50000 0.5 0.2675 0.8717 90 

 

8 Comp3b 50000 0.5 0.2772 0.874 78 

 

9 Comp4a 75000 0.4 0.3728 0.8572 90 

 

10 Comp4b 75000 0.4 0.3845 0.8598 78 

 

11 Comp4c 75000 0.4 0.3978 0.8691 65 
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# Name Design 

N  

[RPM] 

Design 

�̇� 

[kg/s] 

𝝓𝟐 𝝈𝒔 Impeller  

Meridional 

Exit Angle 

[°] 

Schematic 

12 Comp5a 100000 0.3 0.3454 0.8212 90 

 

13 Comp5b 100000 0.3 0.3553 0.8238 80 

 

14 Comp5c 100000 0.3 0.3649 0.8309 70 

 

15 Comp6a 115000 0.25 0.3409 0.7967 90 

 

16 Comp6b 115000 0.25 0.3537 0.8001 78 

 

17 Comp6c 115000 0.25 0.361 0.807 70 

 
18 Comp7 121000 0.325 0.3586 0.7993 90 
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# Name Design 

N  

[RPM] 

Design 

�̇� 

[kg/s] 

𝝓𝟐 𝝈𝒔 Impeller  

Meridional 

Exit Angle 

[°] 

Schematic 

FT1 Comp8 60000 0.4 0.295 0.8599 80 

 
FT2 Comp9 90000 0.35 0.3449 0.8425 90 
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APPENDIX D:  

Test Compressor Performance Results 
 

 

The performance prediction accuracy of the 1D App was evaluated by designing 

18 test compressors using the 1D App.  These test compressors covered a wide 

range of design velocities, mass flow rates, and meridional exit angles (mixed flow 

compressors).  The geometry files (.geomTurbo) of these 18 test compressors 

were imported into Numeca/FINE™ Turbo CFD software.  These results were 

compared to the performance prediction results obtained by the 1D App.   

 

Initial 1D App results were unsatisfactory.  After quantifying the various 

performance prediction anomalies, the 1D App code was updated accordingly.  

The overall compressor performance prediction plots (total-to-total isentropic 

efficiency (𝜂𝑇𝑇,1−4) and total-to-total pressure ratio (𝑃𝑅𝑇𝑇,1−4)) of the initial 1D 

code, the CFD results and the updated 1D App code are provided here for the 18 

test compressors. 

 

After the 1D App code was updated, 2 more compressors were designed and 

validated using Numeca/FINE™ Turbo CFD software.  The comparative 

performance results for these two additional compressors are also provided. 
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Figure D.1:  Compressor 1a Performance Comparison 
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Figure D.2:  Compressor 1b Performance Comparison 
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Figure D.3:  Compressor 1c Performance Comparison 
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Figure D.4:  Compressor 2a Performance Comparison 
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Figure D.5:  Compressor 2b Performance Comparison 
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Figure D.6:  Compressor 2c Performance Comparison 
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Figure D.7:  Compressor 3a Performance Comparison 
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Figure D.8:  Compressor 3b Performance Comparison 
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Figure D.9:  Compressor 4a Performance Comparison 
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Figure D.10:  Compressor 4b Performance Comparison 
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Figure D.11:  Compressor 4c Performance Comparison 
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Figure D.12:  Compressor 5a Performance Comparison 
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Figure D.13:  Compressor 5b Performance Comparison 
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Figure D.14:  Compressor 5c Performance Comparison 
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Figure D.15:  Compressor 6a Performance Comparison 
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Figure D.16:  Compressor 6b Performance Comparison 
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Figure D.17:  Compressor 6c Performance Comparison 
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Figure D.18:  Compressor 7 Performance Comparison 
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Figure D.19:  Compressor 8 Performance Comparison 
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Figure D.20:  Compressor 9 Performance Comparison 
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