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Abstract 

Alkane activation using whole-cell biocatalysts is an attractive technology that can be 

employed in alkane valorisation. However, since metabolically active cells involved in this 

process require oxygen, a failure to effectively supply the same can limit the process. This 

recognition has created a need for a fundamental understanding of oxygen transfer in such 

systems. Additionally, there has been a need for predictive tools that can be used in bioreactor 

design and scale up.   

This study proposes a fundamental predictive model of oxygen transfer based on 

Computational Fluid Dynamics that is applicable to alkane-based bioreactors. The model was 

built using a step-wise approach that considered an increasing number of phases – aqueous, 

air-aqueous, air-aqueous-alkane and air-aqueous-alkane-yeast. Model validation was also 

done using flow and oxygen transfer parameters. For the latter, overall volumetric mass 

transfer coefficients were predicted using a framework proposed to incorporate effects of the 

alkane phase such as possible enhancement from new mass transfer pathways and longer 

saturation times of the aqueous-alkane mixture.  

For the aqueous and air-aqueous stirred tank reactor, model-predicted power and pumping 

numbers were observed to agree with established literature values. Additionally, predicted gas 

hold up values were accurate to within 22%. Transient variation in the mean flow (macro-

instabilities) was also observed, this being a first in literature for simulations using the 

multiple reference frame technique. This finding implied that the latter technique can be 

employed in studies on macro-instabilities instead of the computationally intensive sliding 

mesh technique typically used. 

For the air-aqueous-alkane system, it was illustrated that the alkane phase influences the 

hydrodynamics through turbulence modification rather than through the effective fluid 

properties. An increase in turbulence due to interactions by the alkane droplets led to higher 

turbulence viscosity values and these served to dampen the mean flow velocities. 

Consequently, the gas phase experienced reduced drag/dispersion and it escaped the reactor 

quicker as evidenced by decreasing gas hold up values with increasing alkane concentration. 

This trend was similar to that observed experimentally (about 30% accurate) and was 

consistent irrespective of boundary condition treatment of the reactor’s top surface (velocity 

or pressure outlet boundary condition). 
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Oxygen transfer was investigated using two models representing possible mass transfer 

pathways introduced by the alkane phase – series mass transfer with and without shuttling. 

Minimal differences were, however, observed for these models. The mass transfer coefficients 

were more sensitive to changes in the gas hold up and turbulence levels. Furthermore, the 

predicted values were accurate to within 11% at low agitation rates and alkane concentrations. 

Poor predictions at other conditions suggested that the model needed improvement through, 

for example, the incorporation of population balance modelling.  

For the air-aqueous-alkane-yeast system, the Computational Fluid Dynamics model provided 

a reasonable first approximation with gas hold up values predicted to within 40%. Possible 

mechanisms by which the yeast phase influences the hydrodynamics were highlighted. These 

included coalescence hindrance and the promotion of cluster formation. Oxygen transfer was 

poorly predicted and several factors were suggested to account for this observation. 

Nevertheless, further experimental investigations are required.  
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Opsomming 

Alkaanaktivering deur heel-sel biokatalise is ’n aantreklike tegnologie wat gebruik kan word 

in alkaan valorisasie. Maar, siende dat die metaboliese aktiewe selle wat by die proses 

betrokke is, suurstof benodig, kan oneffektiewe voorsiening daarvan die proses beperk. 

Hierdie erkenning het ’n behoefte geskep vir ’n fundamentele verstaan van suurstofoordrag in 

sulke stelsels. Boonop is daar ’n behoefte vir voorspellende gereedskap wat gebruik kan word 

in bioreaktorontwerp en skaal vergroting. 

In hierdie studie is ’n fundamentele voorspellende model van suurstofoordrag toepaslik op 

alkaan-gebaseerde bioreaktors ontwikkel deur berekeningsvloeidinamika te gebruik. Die 

model is gebou deur ŉ stap-gewyse benadering wat ’n toenemende aantal fases beskou – 

waterig, lug-waterig, lug-waterig-alkaan en lug-waterig-alkaan-gis. Model validasie is ook 

gedoen deur vloei- en suurstofoordrag parameters te assesseer. Vir die laasgenoemde, was 

algehele volumetriese massa-oordragkoëffisiënte voorspel deur gebruik te maak van ’n 

raamwerk voorgestel om moontlike effekte van die alkaanfase te inkorporeer, soos 

verbetering deur nuwe massaoordrag meganismes en langer deurwekingstye van die waterige-

alkaan mengsel. 

Vir die waterige en lug-waterige stelsels het modelvoorspelde krag-en-pompsyfers 

ooreengestem met gevestigde literatuurwaardes. Boonop, voorgestelde gasvertragingswaardes 

was akkuraat tot binne 22%. Verbygaande variasie in die gemiddelde vloei (makro-

onstabiliteite) is ook waargeneem, met hierdie ’n eerste in literatuur vir simulasies gebaseer 

op die veelvoudige verwysingsraam tegniek. Hierdie bevinding impliseer dat die 

laasgenoemde tegniek gebruik kan word vir toekomstige studies op makro-onstabiliteite in 

plaas van die berekenings intensiewe skuiwende netwerk tegniek wat gewoonlik gebruik 

word. 

Vir die lug-waterige-alkaanstelsel, was dit gewys dat die alkaanfase die hidrodinamika deur 

turbulensie aanpassing eerder as deur die effektiewe vloei-eienskappe, beïnvloed. ŉ 

Verhoging in turbulensie agv interaksies met die alkaan druppels het gelei tot groter 

turbulensieviskositeit waardes wat gedien het om die gemiddelde vloeisnelhede te smoor. 

Gevolglik het die gasfase verminderde weerstand/verspreiding ervaar en kon vinniger uit die 

reaktor ontsnap, soos bewys deur die verminderde gasvertragingswaardes met toenemende 

alkaan konsentrasie. Hierdie verloop was soortgelyk aan dit wat eksperimenteel waargeneem 
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is (omtrent 30% akkuraat) en was konsekwent ongeag van die grenskondisies op die reaktor 

se boonste oppervlakte (snelheid of drukuitlaat grenskondisie). 

Suurstofoordrag was ondersoek deur twee modelle wat moontlike massaoordrag meganismes 

voorgestel het deur die alkaan fase – serie massaoordrag met en sonder spoeling. Minimale 

verskille was egter waargeneem vir die modelle. Die massaoordrag koëffisiënte was meer 

sensitief tot veranderinge in die gasvertragingswaardes en turbulensie vlakke. Verder, die 

voorspelde waardes was akkuraat binne 11% van die lae roertempos en alkaan konsentrasies. 

Swak voorspellings by ander toestande stel voor dat die model verbetering benodig deur, 

byvoorbeeld, die inkorporasie van populasie balans modelle. 

Vir die lug-waterige-alkaan-gis stelsel, het die berekeningsvloeidinamika model ŉ redelike 

eerste benadering vir die gasvertragingswaardes voorspel, binne 40%. Moontlike meganismes 

waardeur die gisfase die hidrodinamika kan beïnvloed is uitgelig. Hierdie sluit in 

samesmeltingshindernis en die vordering van groepsformasie. Suurstofoordrag was swak 

voorspel en verskeie faktore was voorgestel om verantwoording te doen vir die observasie. 

Nietemin, word verdere eksperimentele studies vereis. 
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phase) to that dissolved in aqueous phase at equilibrium. 

𝑝𝑜 Partial pressure of oxygen in gas phase (Pa). 

𝑟 Radial extent of impeller (m). 

𝑠 Fractional rate of surface renewal in Danckwert’s theory. 

𝑡𝑒 Surface exposure time of fluid elements in Higbie’s theory (s). 

𝜈𝑠 Superficial gas velocity (m/s). 

𝑥 Volume fraction of solid (or alkane) phase based on total volume of 

un-gassed reactor. 

𝑦𝑔
𝑜 Mole fraction of oxygen in gas phase. 

 

𝐶𝐷 Drag coefficient. 

𝐶𝐷,∞ Drag coefficient in stagnant liquid. 

Cj
i Interfacial oxygen concentration in phase 𝑗 (mol/m3). 

𝐶𝑗 Dissolved oxygen concentration in phase 𝑗 (mol/m3). 

C𝑗
∗ Dissolved oxygen saturation concentration in phase 𝑗 (mol/m3). 

𝐷 Oxygen’s diffusivity in the liquid phase (m2/s). 

𝐷𝑟 Ratio of oxygen’s diffusivity in alkane phase to that in aqueous phase. 

D𝑖𝑚𝑝 Impeller diameter (m). 

D̿𝑗𝑤 Fluid-particle dispersion tensor.  

𝐸, 𝐸 ′ Enhancement factor. 

�̅�𝑖 Force vector (N). 
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𝐺𝑘,𝑤 Production term associated with velocity gradients of aqueous phase 

in turbulence model. 

H Henry’s constant (Pa m3/kmol). 

𝐼 ̿ Identity tensor. 

𝐽�̅� Total diffusive flux of oxygen in phase 𝑖. 

𝐾𝑗𝑖 Interfacial exchange coefficient (between phases 𝑖 and 𝑗). 

𝐾𝐿𝑎 ′ Overall volumetric mass transfer coefficient in the presence of a 2nd 

liquid phase (such as the alkane phase) (s-1). 

𝐾𝐿𝑎𝛼𝑜=0 Overall volumetric mass transfer coefficient in the absence of a 2nd 

liquid phase (such as the alkane phase) (s-1). 

𝐾𝐿 Overall mass transfer coefficient (m/s).  

M Torque on impeller blades (N m). 

N Impeller speed (rps). 

𝑁𝑃 Power number. 

𝑁𝑞 Pumping number. 

𝑃𝑇 Total pressure of gas phase (Pa). 

𝑃 Power (W). 

𝑃𝑔 Gassed power (W). 

𝑅𝑒 Reynolds number. 

�̅�𝑗𝑖 Interphase interaction force vector (N). 

𝑆 Spreading coefficient (N/m). 

𝑉 Volume (m3). 

V̅ Velocity vector (m/s). 

V̅𝑠𝑙𝑖𝑝 Slip velocity vector (m/s). 

V̅𝑑𝑟 Drift velocity vector (m/s). 

 

𝛼𝑖 Volume fraction of phase 𝑖 based on total volume in a gassed reactor. 

𝜖𝑖 Turbulent kinetic energy dissipation rate in phase 𝑖 (m2/s3). 

𝜌𝑖 Density of phase 𝑖 (kg/m3). 

𝜎𝑖𝑗 Interfacial tension between phases 𝑖 and 𝑗 (N/m). 

𝜏̿ Stress tensor (Pa). 

𝜏𝑝, 𝜏𝑗𝑤
𝐹  Particle’s relaxation time (s). 

𝜏𝐿 Integral timescale of turbulence (s).  
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𝜏𝑗𝑤
𝑡  Eddy-particle interaction time (s). 

𝜇𝑖  Dynamic viscosity of phase 𝑖 (Pa s). 

𝜇𝑡,𝑖 Turbulent viscosity of phase 𝑖 (Pa s). 

𝜐𝑖  Kinematic viscosity of phase 𝑖 (m2/s). 

Ω Cells’ concentration (g/L dry weight). 

Π𝑘𝑤
 Production term associated with dispersed phases in turbulence model. 

Π𝜖𝑤
 Dissipation time-scale of turbulence energy produced by dispersed 

phases. 

𝛽, 𝛿, 𝜁, 𝜉, 𝜑, 𝜂, 𝛾 Exponents. 

Γ, Λ, ψ Constants (general). 

𝐶𝜇,𝐶1𝜖, 𝐶2𝜖 , 𝐶3𝜖   Constants of the turbulence model. 

𝐶𝐴𝑀, 𝜎𝑘, 𝜎𝜖 

 

Subscripts/superscripts 

 

𝑜 Alkane phase. 

𝑤 Aqueous phase. 

𝑔 Gas phase. 

𝑖, 𝑗 Phases 𝑖, 𝑗. 

𝑎𝑣𝑒 Average. 

𝑐𝑎𝑝 Spherical cap. 

𝑒𝑓𝑓 Effective. 

𝑒𝑙𝑙 Ellipse. 

𝑟𝑎𝑑 Radial. 

𝑠𝑝ℎ Spherical. 
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1.0 Introduction 

  

1.1 Background 

 

Alkanes are a part of the hydrocarbon feedstock derived from fossil fuels by industrial 

processes such as crude oil distillation and both gas- and solid-to-liquid fuel conversion. They 

are relatively inert in comparison to other derived hydrocarbon fractions and have as such 

been traditionally exploited for their fuel value [1]. However, greater value can be unlocked 

from these resources by exploring alkane valorisation processes to generate platform products 

such as alcohols that can be used as solvents, preservatives or reagents [1–3]. This potential 

has created impetus for research into alkane valorisation with the aim of introducing greater 

efficiency into the alkane value chain [1]. Such research has also been underpinned by the 

current and projected availability of alkane feedstock [1] given the place of fossil fuels and 

their derivatives in the world’s economy for the foreseeable future [4]. This is particularly 

relevant within the context of South Africa where alkanes are a by-product of coal-to-fuel 

conversion technologies [5,6]. 

 

Alkane activation or functionalisation is a valorisation process that involves the introduction 

of oxygen or other functional groups into an inert alkane backbone to generate products such 

as alcohols [1,7]. To accomplish this, both chemical and biological routes have been explored 

[1,3,7]. The former entails the activation of alkane in a reactor while using metallic 

compounds to catalyse the process. It is often done at elevated conditions such as temperature 

ranges of 200 – 800 °C [1,3] so as to provide the necessary dissociation energy for the bonds 

in the alkane structure [3]. The biological route or biocatalysis, on the other hand, entails the 

activation of alkane while using catalytic enzymes. This process, unlike the former, is 

normally done at mild conditions (ambient temperatures and pressures) [3,7].  

 

Biocatalysis has been viewed as the more attractive route to alkane activation due to a number 

of reasons. Firstly, biocatalysis is conducted at mild conditions thus demanding less energy in 

comparison to chemical catalysis [1,3,7]. Secondly, biocatalysis has been observed to exhibit 

greater selectivity, with selectivity defined as the ratio of the quantity of targeted products to 

the total quantity of products [3]. Finally, biocatalysis has been recognised for its versatility –  

a large number of organisms have been discovered that are able to assimilate a diverse pool of 

alkanes as substrate [3].  
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Biocatalysis, as previously mentioned, is achieved through the use of catalytic enzymes such 

as oxygenases. These enzymes can be used either in isolated form or in whole cells/organisms 

[3,7]. The use of whole cells has, however, been more readily adopted as it provides a stable 

environment for the enzymatic reaction among other reasons [3,7]. Consequently, biocatalysis 

setups are usually characterised as multiphasic systems whereby cells growing in an aqueous 

growth medium consume an (immiscible) alkane substrate to produce the desired products. 

As this multiphasic system is different from that obtained when chemical catalysis is 

employed, appropriate reactor design is required. To this end, both biocatalytic and process 

concerns have been identified that need to be addressed [7,8].  

 

Biocatalytic concerns stem from the fact that native/wild-type organisms are adapted to 

survive in their natural environment as opposed to meeting industrial requirements [1,7]. 

Consequently, issues such as the biocatalysts’ ability to sustain high throughputs as well as 

side-reactions leading to product degradation have arisen [3,7]. Such issues form the focus of 

ongoing research in enzyme/protein engineering [3,7].  

 

Process concerns, on the other hand, stem from the need to address issues such as mass 

transfer limitations in bioreactor design [3,7,8]. Mass transfer limitations touch on the 

provision of both the alkane substrate [8] and oxygen [9] to the cells given that both of these 

have low solubility in the aqueous growth medium where cells are normally located. In the 

case of the alkane substrate, however, low solubility is not necessarily a disadvantage as 

additional mechanisms of substrate uptake by cells have been hypothesised in literature. 

These include the pseudo-solubilisation of the substrate by extracellular surfactants and the 

modification of the hydrophobicity of the cell membrane to permit for binding and uptake of 

substrate droplets [10,11]. It has been further suggested that substrate transport across the cell 

membrane is the greater bottleneck in comparison to low substrate solubility [12].  

 

With regards to oxygen, its low solubility in the aqueous growth medium at mild conditions 

(ambient pressure and temperature) [13] presents a challenge as oxygen is necessary for cell 

growth. In addition, oxygen is required for the activation process by the oxygenase enzymes 

[7,8]. Thus, alkane activation processes using whole-cell biocatalysts need to be optimally 

designed lest they run the risk of becoming limited by oxygen transport rather than by 

intrinsic kinetics [9]. This realisation has informed the need for a fundamental understanding 

of the factors that impact oxygen transfer in such systems. Such an understanding would then 

lead to predictive models of oxygen transfer that can be used in the design and scale-up of 

Stellenbosch University https://scholar.sun.ac.za



3 

bioreactors given the expectation that oxygen transfer limitations scale with increasing reactor 

size [9].  

 

To address the above need, experimental investigations have been conducted on simplified 

alkane activation processes seeking to link the behavioural trends of the oxygen transfer rate 

(OTR) to process conditions (agitation and aeration rates, alkane and cell concentrations). The 

OTR, characterised by the overall volumetric mass transfer coefficient (𝐾𝐿𝑎 ′), has been 

investigated in both cell-free systems [14,15] and those with non-viable cells (or simulated 

systems) [16]. Moreover, both empirical [17–19] and theoretical [20] models have been 

proposed, with the latter preferred for predictive purposes as they are of a more fundamental 

nature.  

 

In seeking to bring the design process full circle, theoretical models can be coupled with 

simulation tools such as Computational Fluid Dynamics (CFD). Such a CFD-based approach 

to predicting oxygen transfer in alkane-based systems would offer several advantages. Firstly, 

CFD as a tool has been shown to be capable of providing good approximations to complex 

hydrodynamics in multiphase turbulent systems [21]. It is thus particularly suited to model 

alkane-based bioreactors wherein the hydrodynamics are expected to play an important role in 

determining the oxygen transfer [9]. Secondly, CFD provides spatially resolved data and  thus 

gives a closer representation of the heterogeneous conditions within a reactor as compared to 

empirical models that rely on volume-averaged variables [21]. Finally, CFD can be 

incorporated into bioreactor design at any scale given that it is a scale-independent tool. This 

would allow for the rapid yet rational evaluation of new bioreactor concepts in silico.  

 

The successful application of the CFD-based approach in the prediction of oxygen transfer in 

2-phase gas-liquid (air-aqueous) systems has been reported in literature [22–24]. What is 

lacking, however, is a systematic investigation of the application of this approach to alkane-

based bioreactors. This study addresses this gap by systematically developing and validating a 

predictive model of oxygen transfer based on CFD that is applicable to both 3-phase (cell-

free) and 4-phase alkane-based bioprocesses.  
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1.2 Aim and objectives 

 

The aim of this study was threefold. First was to identify the dominant mechanisms affecting 

the hydrodynamics and oxygen transfer in an alkane-based bioprocess. Thereafter, a CFD 

model of the system was to be developed and coupled to identified fundamental models of the 

overall volumetric mass transfer coefficient in order to predict oxygen transfer. Finally, the 

developed model was to be validated against existing experimental data.  

 

To achieve the stated aim, the following objectives were proposed; 

 

1. To identify fundamental models for 𝐾𝐿𝑎 ′ applicable to alkane-based bioprocesses and 

that can be coupled to CFD output.        

2. To set up a CFD model of a single phase stirred tank reactor and validate it based on 

relevant hydrodynamic parameters. 

3. To extend the model above to 2 phases (gas-liquid) and validate it based on relevant 

hydrodynamic and mass transfer parameters. 

4. To further extend the model above to 3 phases (gas-liquid-liquid) and investigate the 

effects of introducing the alkane phase on the hydrodynamics of the system. 

5. To predict oxygen transfer in the 3-phase cell-free system by coupling identified models 

for 𝐾𝐿𝑎 ′ to the CFD output.  

6. To validate the CFD-based approach to predicting oxygen transfer against experimental 

data. 

7. To extend the CFD model developed above to the 4-phase (gas-liquid-liquid-solid) 

system and investigate the effects of introducing the yeast phase on the hydrodynamics 

of the system.  

8. To predict oxygen transfer in the 4-phase system by coupling identified models for 

𝐾𝐿𝑎 ′ to the CFD output.  

9. To validate the CFD-based approach to predicting oxygen transfer against experimental 

data. 
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1.3 Scope 

 

This study has been performed as part of an ongoing project on alkane biocatalysis; the 

project having been spurred by a need to add value to alkane feedstock available from coal-to-

fuel conversion processes [5,6]. Previous work focused on providing experimental 

measurements of the oxygen transfer rate [14,16,25] whereas this study has focussed on the 

modelling aspects of the project. Given the need to validate the developed models, secondary 

data has been employed while cognisant of the potential limitations in various experimental 

methodologies. As and where necessary, the discussion presented in later chapters alludes to 

this.  

 

Further limitations arising from the use of secondary data included the following: 

 

1. Given that the focus of the project has been on oxygen transfer in 3-phase and 4-phase 

systems, there was a lack of experimental hydrodynamic (velocity) data to validate the 

simulations. To address this, validation in the single phase and 2-phase systems was 

done based on established hydrodynamic parameters in literature such as the power 

number [26] and pumping number [26,27]. Changes in these parameters were studied 

for the 3-phase and 4-phase systems. 

2. Given that experimental data was only available for a laboratory-scale stirred tank 

reactor, the efficacy of the CFD model was not investigated at larger scales (pilot and 

industrial). This notwithstanding, CFD is a scale-independent tool [21] and the 

methodology developed herein can be extended to larger scales.  

 

In terms of the model development, the CFD model was based on an Eulerian description of 

the simulated phases which involved treating these phases as interpenetrating continua with 

momentum exchange across them [24]. To keep the model tractable given the available 

computational resources, a number of limitations were imposed. Some of the significant 

limitations are listed below, with a more elaborate discussion on the same presented in 

Chapter 4.0. 

 

1. Turbulence was modelled on the basis of the Reynolds-averaged Navier-Stokes 

equations (RANS). The Boussinesq’s hypothesis was employed to approximate the 

Reynolds’ stresses in terms of the mean velocity gradients, with the arising turbulent 

viscosity defined in terms of the turbulent kinetic energy (𝑘) and the energy dissipation 
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rate (𝜖). In addition, it was assumed that the continuous phase dominated the turbulence 

according to the dispersed 𝑘–𝜖 model with the influence of the dispersed phases 

accounted for using Tchen’s theory on the dispersion of particles in turbulent flows [28–

31]. 

2. The multiple reference frame (MRF) technique was employed to resolve the impeller-

baffle interaction in the simulation of the stirred tank reactor considered. This technique 

has been shown to have comparable accuracy to the more involving sliding mesh 

technique [32].   

3. Constant particle sizes were specified for the dispersed phases (air and alkane) rather 

than model their size distributions using a population balance model (PBM). This 

simplification, though in line with practice in literature [33], was supported by the 

observation that coalescence and breakage kernels (terms) in PBMs have been 

investigated for 2-phase systems (gas-liquid or liquid-liquid) [34] with little work done 

for 3-phase systems. Furthermore, it was expected that the assumption of constant 

particle sizes would be accurate in the 4-phase system due to the non-coalescing effect 

of the cells/micro-organisms employed. 

4. In the specification of interphase interaction forces, only the drag force was considered 

despite the presence of other forces such as the virtual mass force and the lift force. This 

was based on previous research showing the drag force to be the most significant force 

in the bulk of a stirred tank reactor [33,35,36].    

 

1.4 Significance 

 

Alkane activation via whole-cell biocatalysts is an attractive route to alkane valorisation. 

However, the adoption of this bioprocess in industry requires that various concerns be 

addressed before the optimal use of this process. One such concern touches on the need to 

provide adequate amounts of oxygen since oxygen is necessary for both cell growth and the 

activation process. This underscores the need for a fundamental understanding of the factors 

that impact oxygen transfer in such alkane-based systems. Moreover, predictive models of 

oxygen transfer are needed that can be used in bioreactor design at any scale given the 

expectation that oxygen transfer limitations scale with increasing reactor size. 

  

In an attempt to address this gap, previous work has focused on experimental investigations of 

the oxygen transfer rate in simplified systems, that is, in cell-free systems and those with non-

viable cells (simulated bioprocesses). In addition, empirical and theoretical models have been 
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proposed in literature. This work seeks to bring the design process full circle by proposing a 

CFD-based approach to modelling oxygen transfer in such systems. Specifically, the novelty 

of this work may be enumerated as: 

 

1. The proposal of a theoretical framework for modelling the overall volumetric mass 

transfer coefficient in alkane activation bioprocesses based on CFD output. 

2. The identification and investigation of key changes introduced by the additional phases 

(alkane and yeast) on the hydrodynamics and oxygen transfer in the systems considered. 

3. The incorporation of the above changes into the development of a CFD model 

applicable to the 3-phase and the 4-phase alkane-based systems. 

4. The prediction of gas hold up and validation of the same in the 3-phase gas-liquid-liquid 

system.  

5. The prediction of the overall volumetric mass transfer coefficient and validation of the 

same in the 3-phase gas-liquid-liquid system.  

6. The prediction of gas hold up and validation of the same in the 4-phase gas-liquid-

liquid-solid system.  

7. The prediction of the overall volumetric mass transfer coefficient and validation of the 

same in the 4-phase gas-liquid-liquid-solid system.  

 

Though the case studies considered in this work emerged from the field of alkane 

biocatalysis, the findings reported are nevertheless relevant to a wider context. They can be 

applied to analogous multiphase bioprocesses such as fermentation with the organic phase 

simply added as an oxygen carrier (or reservoir) and the biological gas stripping of volatile 

organic compounds.  

 

1.5 Thesis overview 

 

Chapter 1.0 has introduced the alkane activation process illustrating its relevance to industry 

based on the variety of high value products that can be obtained. It has been further illustrated 

that the biological route, or biocatalysis, has been more readily adopted though several 

concerns need to be addressed. In particular, oxygen transport has been singled out as a 

potentially limiting factor that needs to be studied at a fundamental level. It has been shown 

how this work intends to contribute to the existing body of knowledge by proposing the use of 

Computational Fluid Dynamics in the predictive modelling of oxygen transfer in alkane 

activation bioprocesses.  
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 Chapter 2.0 presents the literature review. It begins with an introduction to mass transfer in 2-

phase gas-liquid systems, with consideration given to the modelling approaches employed in 

such systems. Consideration is also given to cases of gas-liquid mass transfer in the presence 

of a solid phase as well as the use of the CFD methodology in predictive studies. Thereafter, 

mass transfer in 3-phase alkane-based systems is introduced. A review of previous 

experimental and modelling efforts has been presented. Furthermore, current gaps in the 

modelling of mass transfer in such systems have been highlighted.  

 

Chapter 3.0 addresses the one of the gaps identified in Chapter 2.0 by proposing a modelling 

framework for the overall mass transfer coefficient in alkane-based systems. This sets the 

scene for the CFD-based modelling whereas Chapter 4.0 presents the actual development of 

the CFD model. Various aspects of the model development process have been discussed such 

as the generation and meshing of the domain, the specification of model equations plus their 

numerical implementation.  

 

Chapters 5.0 – 7.0 present the results of the modelling investigations. Chapter 5.0 focuses on 

the validation of the CFD model based on single phase and 2-phase (gas-liquid) results. 

Chapters 6.0 and 7.0, on the other hand, focus on the 3-phase (gas-liquid-liquid) and the 4-

phase (gas-liquid-liquid-solid) results respectively. In these chapters, a discussion of both the 

hydrodynamics and oxygen transfer has been presented.  

 

Chapter 8.0 concludes this study by presenting a summary of the key findings that have 

emerged from the research. In addition, recommendations for future work have been given.    

 

  

Stellenbosch University https://scholar.sun.ac.za



9 

2.0 Literature review 

 

This chapter begins with an overview of mass transfer in 2-phase gas-liquid systems with the 

focus being on its modelling, both empirically and theoretically. Also considered are the cases 

of gas-liquid mass transfer in the presence of a solid phase and the use of Computational Fluid 

Dynamics (CFD). Thereafter, an overview of mass transfer in alkane-based systems is given 

in which current gaps in modelling are highlighted.  

 

2.1 Gas-liquid mass transfer 

 

Gas-liquid systems in bioprocess setups can be typically characterised as air-aqueous systems 

in which an aqueous phase consisting of a solution of salts provides a growth medium to 

aerobic cells/organisms [37]. Dissolved oxygen in the aqueous phase is utilised by the cells 

for their metabolic functions while being replenished through mass transfer from sparged air. 

To quantify the oxygen transfer rate (OTR) from air, a two-film resistance model is usually 

employed [13] as given by equations (2.1) and (2.2). 

 

OTR =  
𝑑𝐶𝑤

𝑑𝑡
= 𝐾𝐿𝑎𝛼𝑜=0(𝐶𝑤

∗ − 𝐶𝑤) (2.1)  

𝑝𝑜 = 𝑃𝑇𝑦𝑔
𝑜 = H𝐶𝑤

∗  (2.2)  

 

In the above equations, 𝐶𝑤 represents the dissolved oxygen concentration in the aqueous 

phase (denoted by subscript 𝑤) whereas 𝐶𝑤
∗  represents the dissolved oxygen saturation 

concentration (oxygen’s solubility). The difference, (𝐶𝑤
∗ − 𝐶𝑤), represents the driving force 

behind oxygen transfer from the gas to the aqueous phase. This concentration driving force 

largely depends on oxygen’s solubility in the aqueous phase which is itself a function of the 

oxygen’s partial pressure (𝑝𝑜) and the Henry’s constant (H) as shown in equation (2.2) [13]. 

Changes to the partial pressure can occur as a result of changes in the mole fraction of oxygen 

in the gas phase (𝑦𝑔
𝑜) or as a result of local differences in the total pressure (P𝑇) as 

experienced within tall (industrial-scale) bioreactors [38]. To account for such changes, the 

gas phase dynamics are usually approximated based on assumptions such as plug flow or 

perfectly mixed gas phase [39]. The latter assumption is often used for laboratory-scale 
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bioreactors in which the solubility is defined based on the partial pressure of oxygen at the 

bioreactor’s outlet [40].   

 

In equation (2.1), 𝐾𝐿𝑎𝛼𝑜=0 represents the overall volumetric mass transfer coefficient with the 

subscript 𝛼𝑜 = 0 used to emphasise that the volume fraction of the alkane phase (𝛼𝑜) is zero. 

The latter is a measure of interfacial resistance to oxygen transfer and a key parameter in 

bioreactor design and scale-up [9,37]. It is a product of the overall mass transfer 

coefficient (𝐾𝐿) and the gas-liquid interfacial area per unit volume (𝑎) or interfacial area in 

short. The overall mass transfer coefficient (𝐾𝐿) considers the resistance to oxygen transfer 

from both the gas’ and the liquid’s interfacial boundary layers (see Figure 2.1).  

 

Figure 2.1: Gas-liquid concentration boundary layer illustrating bulk (𝐶𝑔, 𝐶𝑤) and interfacial 

(𝐶𝑔
𝑖 , 𝐶𝑤

𝑖 ) oxygen concentrations as well as the individual (𝑘𝑔, 𝑘𝑤) and overall (𝐾𝐿) mass 

transfer coefficients. 

 

2.1.1 Measurement of the overall volumetric mass transfer coefficient 

 

Various experimental methods have been proposed for the determination of  𝐾𝐿𝑎𝛼𝑜=0 [37]. 

These include the dynamic gassing-out method [41] and the pressure step method [42] among 

others. The dynamic gassing-out method is commonly employed and it involves the 

measurement of the dissolved oxygen tension in the aqueous phase following a step change in 

the partial pressure of oxygen at the gas inlet while keeping the agitation and aeration rates 

constant [37,43]. The measurements, reported as concentration profiles, are then fitted to 

𝐶𝑔
𝑖  

𝐶𝑤
𝑖  

𝐶𝑔 

𝐶𝑤 

Gas phase Aqueous phase 

𝑘𝑤 𝑘𝑔 

𝐾𝐿 
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models such as equation (2.1) from which 𝐾𝐿𝑎𝛼𝑜=0 values can be determined. Accuracy can 

be enhanced by considering the response time of the measurement probes and this leads to 

second order models from which 𝐾𝐿𝑎𝛼𝑜=0 is calculated by iteration [37,43].  

 

In seeking to resolve the trends in the individual components of 𝐾𝐿𝑎𝛼𝑜=0, the concurrent 

measurement of 𝐾𝐿𝑎𝛼𝑜=0 and the interfacial area (𝑎) has been proposed. Both direct and 

indirect methods have been proposed for the measurement of the latter [44,45]. Direct 

measurement of the interfacial area has been through methods such as the light attenuation 

technique illustrated by Calderbank (cited in [46]). On the other hand, indirect methods have 

involved the inference of the interfacial area from measurements of the gas hold up (𝛼𝑔) and 

the bubble size distribution (BSD). The gas hold up has been obtained through methods such 

as the dispersion height technique [14] whereas the BSD has been obtained through methods 

such as capillary suction [47] or high-speed photography coupled with image analysis [14,48]. 

Appropriate equations, such as equation (2.3), have then been used to relate the interfacial 

area to the gas hold up and moments of the BSD such as the Sauter mean diameter (𝑑32).  

 

𝑎 =
6𝛼𝑔

𝑑32
 (2.3)  

 

2.1.2 Empirical models 

 

The overall volumetric mass transfer coefficient (𝐾𝐿𝑎𝛼𝑜=0) has been traditionally reported as 

a composite parameter. This has informed its modelling, with empirical models such as those 

in equation (2.4) for stirred tank reactors (STR) [49] and equation (2.5) for bubble column 

reactors (BCR) [9] having been proposed. Such models correlate changes in 𝐾𝐿𝑎𝛼𝑜=0 to 

changes in the power input into the system. The latter can be by either mechanical means as 

characterised by the power input per unit volume (𝑃𝑔/𝑉) or pneumatic means as characterised 

by the superficial gas velocity of the sparged gas (𝜈𝑠). Changes in 𝐾𝐿𝑎𝛼𝑜=0 have also been 

correlated to factors such as the fluid properties [37,49], with differences in the systems 

investigated being captured through an adjustment of the constant Γ and the exponents 𝛽 and 

𝛿.  
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𝐾𝐿𝑎𝛼𝑜=0 = Γ ∙ (
𝑃𝑔

𝑉
)
𝛽

𝜈𝑠
𝛿  (2.4)  

𝐾𝐿𝑎𝛼𝑜=0 = Γ ∙ 𝜈𝑠
𝛿  (2.5)  

 

Where 𝐾𝐿𝑎𝛼𝑜=0 and the interfacial area have been measured concurrently, empirical 

correlations for the latter have been proposed as shown in equations (2.6) and (2.7) for STRs 

and BCRs respectively [9,50,51]. These have taken a structure similar to that of equations 

(2.4) and (2.5). Such equations correlate the changes in the interfacial area to measures of the 

power input into the system. However, other factors such as the fluid properties and the gas 

hold up have also been considered [52].  

 

𝑎 ∝  
𝑃𝑔

𝑉
,  𝜈𝑠 (2.6)  

𝑎 ∝ 𝜈𝑠 (2.7)  

 

Empirical models, such as those highlighted above, are useful as a starting point for bioreactor 

design. However, the presence of constants and exponents that need to be tuned to suit the 

system under consideration suggests a limitation in the description of the relevant mass 

transfer mechanisms. Consequently, there has been a need for models of a more fundamental 

nature. This need has paved the way for theoretical models and these are further discussed in 

the next section.  

 

2.1.3 Theoretical models 

 

Theoretical models entail a separate treatment of the individual components of 𝐾𝐿𝑎𝛼𝑜=0. They 

relate the changes in both 𝐾𝐿 and the interfacial area to the prevailing hydrodynamic 

conditions at the mass transfer interface. Considering the case of the interfacial area, the 

maximum stable bubble size in the presence of liquid flow has been related to the ratio of 

disruptive forces (inertia) to resistive forces (surface tension) [53]. Taking this a step further, 

BSDs have been modelled using population balance equations that take into account bubble-

bubble coalescence and bubble break up phenomena [34]. Such a knowledge of the bubble 

sizes has then been used to compute the residence times of bubbles in reactors (or conversely 
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their rise velocities) [54] thus giving an estimation of the gas hold up and the interfacial area 

(refer to equation 2.3).  

 

With regards to the overall mass transfer coefficient (𝐾𝐿), several theories have been proposed 

for its prediction such as the film and penetration theories. Whitman (cited in [55]), in 

proposing the film theory, assumed that thin films containing stagnant fluid exist on either 

side of the mass transfer interface (see Figure 2.1). Furthermore, he assumed that mass 

transfer across these films occurs by steady state molecular diffusion [55,56]. Consequently, 

he obtained an equation for 𝐾𝐿 as a function of oxygen’s diffusivity in the aqueous phase (𝐷) 

and the thickness of the liquid’s interfacial film (ℎ) as illustrated by equation (2.8).  

 

𝐾𝐿 = 𝐷/ℎ (2.8)  

 

The film theory has found use in systems where the time taken to establish concentration 

gradients is far smaller than the time available for mass transfer [55]. However, it does not 

provide an accurate description of mass transfer in agitated reactors due to the presence of 

turbulence. Consequently, other theories have been proposed such as the penetration theories. 

The term “penetration theories” is, in this case, used as a generic term to refer to Higbie’s 

penetration theory and its later modification by Danckwerts that yielded the surface renewal 

theory [57].  

 

Higbie, in his theory, assumed that fluid elements are brought from the bulk fluid to the 

interface by turbulent eddies. The fluid elements then remain at the interface for a fixed 

period of time during which mass transfer occurs by unsteady state molecular diffusion [56]. 

Thereafter, the fluid elements are removed by eddies and are returned to or mixed with the 

bulk fluid [55]. The resulting equation related 𝐾𝐿 to oxygen’s diffusivity raised to an exponent 

of 1/2 as illustrated in equation (2.9), with 𝑡𝑒 being the constant surface exposure time for 

fluid elements. As a modification to this, Danckwerts proposed that fluid elements near the 

interface would be renewed randomly independent of their age, that is, they would have a 

random exposure time [55]. This resulted in equation (2.10) with 𝑠 being the fractional rate of 

surface renewal  [55,56].  

 

Stellenbosch University https://scholar.sun.ac.za



14 

𝐾𝐿 = 2√𝐷/𝜋𝑡𝑒  (2.9)  

𝐾𝐿 = √𝐷𝑠 (2.10)  

 

The penetration theories, similar to the film theory, contain parameters that need to be 

approximated [56]. These include the thickness of the liquid’s interfacial film (ℎ), the 

exposure time (𝑡𝑒) and fractional rate of surface renewal (𝑠). Several approaches have been 

proposed to model these parameters. One such approach is the use of Kolmogoroff’s theory of 

isotropic turbulence to relate these unknown parameters to measures of turbulence [52]. As an 

example, the exposure time in Higbie’s penetration theory has been expanded in terms of the 

characteristic time of small-scale turbulent eddies thus resulting in equation (2.11) [52]. In 

this equation, 𝜐 represents the kinematic viscosity for a Newtonian fluid whereas 𝜖 represents 

the turbulent energy dissipation rate. The constant Λ, on the other hand, represents a value of 

2/√𝜋 .   

 

𝐾𝐿 = Λ ∙ √𝐷 (
𝜖

𝜐
)
1/4 

 (2.11)  

 

The structure of equation (2.11) has also been obtained from different modelling 

considerations. For example, it has been proposed that the exposure time can be considered as 

the average time between “periodic replacement of a viscous sublayer” at the interface [58]. A 

value of Λ = 0.301 was obtained for Newtonian fluids. Similarly, a value of Λ = 0.4 has been 

obtained for an eddy cell model based on Danckwerts’ surface renewal theory [59]. In this 

model, it was assumed that mass transfer would be governed by small and inertial scales of 

turbulence [59].   

 

Besides these considerations of turbulence, the exposure time in equation (2.9) has also been 

defined in terms of the time taken by a bubble to rise through a distance equivalent to its 

diameter [58]. Equation (2.12) was obtained with 𝑑𝑔 representing the bubble’s diameter and 

V̅𝑠𝑙𝑖𝑝 the bubble’s slip velocity. This equation has been typically applied to large bubbles (𝑑𝑔 

> 2.5 mm) thus necessitating an extra model, such as that based on the boundary layer theory 

(see equation (2.13)), to describe the mass transfer of small bubbles (𝑑𝑔 < 1 mm) [60–62]. 

Linek et al. [60,63] have, however, argued that this differentiation of mass transfer 
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characteristics according to bubble size is erroneous and arises due to the use of  inappropriate 

experimental techniques to measure 𝐾𝐿𝑎𝛼𝑜=0 in reactors characterised by a high level of 

turbulence (STRs). They have observed that an increase in the turbulence levels results in an 

increase in the mass transfer rate for both large and small bubbles. Consequently, they have 

suggested that equation (2.11) be applied to STRs with the value of the constant Λ being set to 

0.523 [63].  

 

𝐾𝐿 =
2

√𝜋
√𝐷 (

|V̅𝑠𝑙𝑖𝑝|

𝑑𝑔
)

1/2 

 (2.12)  

𝐾𝐿 = 0.6 (
|V̅𝑠𝑙𝑖𝑝|

𝑑𝑔
)

1/2

𝐷2/3𝜐−1/6 (2.13)  

 

With the theoretical models in the form of equations (2.11) – (2.13), values such as the slip 

velocities and turbulent energy dissipation rates still need to be specified. These can be 

derived in an averaged sense from the operating conditions as has been done by Garcia-Ochoa 

& Gomez [64]. However, this introduces a degree of empiricism thus making the models 

semi-theoretical. An alternative route would be to specify such values based on the output of a 

CFD model. This proposition is further reviewed in section 2.3. 

 

2.2 Gas-liquid mass transfer in the presence of a solid phase 

 

In gas-liquid systems, a solid phase is often present with its nature depending on the system 

under consideration. As an example, cells/organisms are present in bioprocesses whereas 

(solid-supported) catalysts are present in chemical processes. The presence of the solid phase 

or particle does impact mass transfer. However, the direction (increase or decrease in 

𝐾𝐿𝑎𝛼𝑜=0) and magnitude of impact largely depends on the characteristics of the solid phase. 

Such characteristics include the solid type (biological, non-biological), geometry, solid 

loading, physical properties as well as surface properties. Process conditions as well as the 

properties of the liquid phase have also been observed to moderate the impact of the solid 

phase [65–67]. Consequently, varying and often contradicting results have been reported in 

literature.  
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2.2.1 Mass transfer mechanisms in the presence of a solid phase 

 

Focussing on the effects of inactive solids, it has been proposed that gas-liquid mass transfer 

in the presence of a solid phase can be enhanced by a shuttling mechanism (see Figure 2.2) 

[68,69]. The latter involves the movement of the solid phase into and out of the liquid’s 

interfacial film while adsorbing the solute gas in the film and releasing it into the bulk liquid 

[68,69]. This mechanism requires that the solid phase be of a size smaller than the liquid’s 

interfacial film thickness in addition to having a high adsorption capacity for the solute gas 

[65,68]. However, this mechanism has been contested based on observations of mass transfer 

enhancement by particles with no affinity for the solute gas and of a size larger than the 

interfacial film thickness [70,71].    

 

Figure 2.2: Gas-liquid concentration boundary layer illustrating shuttle mechanism. Cut circle 

represents the solid phase with the increasing degree of shading illustrating an increasing 

amount of solute gas adsorbed. 

 

Kluytmans et al. [66] and Ruthiya et al. [65] have suggested that a solid phase can affect mass 

transfer through hydrodynamic effects. The latter can be through the collision of particles 

with the interfacial film (refer to film theory) or the enhancement of the degree of interfacial 

turbulence (refer to penetration theories) [65,66]. It has been suggested that such mechanisms 

lead to mass transfer enhancement at low agitation rates [66] and for particles with high 

inertia (density, size) [72]. Furthermore, it has been suggested that such mechanisms are only 

effective at low solid loadings since at high solid loadings a reduction in 𝐾𝐿𝑎𝛼𝑜=0 has been 

Gas phase Aqueous phase 

v 

v 
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observed [72,73]. The latter has been hypothesised to be due to an increase in the effective 

viscosity which reduces the interfacial turbulence thus reducing 𝐾𝐿 [65].  

 

With regards to bubble-bubble interactions, it has been observed that a solid phase can either 

promote or hinder coalescence [65]. This is largely influenced by the surface properties of the 

solid phase and affects the interfacial area available for mass transfer (see equation (2.5)). It 

has been observed that non-wettable (hydrophobic) particles accumulate at the gas-liquid 

interface and can inhibit coalescence. This can be through the formation of a steric 

(mechanical) barrier at the bubble surface or a bridging monolayer [74]. However, if the 

particles are highly hydrophobic, they can destabilise the thin liquid film between bubbles 

thus leading to its rupture and in this way promote coalescence [75]. The latter has been 

postulated to explain an observed decrease in gas hold up (hence 𝐾𝐿𝑎𝛼𝑜=0) on addition of 

non-wettable solids [76,77].  

 

With regards to particle-bubble interactions, it has been suggested that the solid phase can 

affect mass transfer through physical blocking [65]. This has been hypothesised to be through 

a reduction of either the effective interfacial area [78] or the effective diffusivity [79]. As 

pertains the interfacial area, it has been suggested that as a bubble’s surface gets covered by 

particles, the effective area available for mass transfer reduces. To model this, the concept of 

fractional bubble surface coverage has been employed based on adhesion isotherms that take 

into account the floatability of the particles under different conditions [80–82]. As pertains the 

effective diffusivity, it has been suggested that this parameter decreases due to the presence of 

particles with lower permeability to the solute gas at the interfacial film [79,83].  

 

It has also been proposed that a solid phase can affect the overall mass transfer 

coefficient (𝐾𝐿) by impacting the rigidity of the mass transfer interface. A mobile interface 

usually has its 𝐾𝐿 characterised by a 1/2 dependence on the diffusivity [84]. A rigid interface, 

on the other hand, has its 𝐾𝐿 characterised by a 2/3 dependence on the diffusivity and this is 

usually lower than that of a mobile interface [84]. A rigid interface can arise due to the 

presence of surfactants at the interface [84]. However, the introduction of a solid phase to a 

contaminated interface can result in its cleansing through the action of the surfactant being 

adsorbed onto the solid phase [71,85–87]. This re-introduces mobility at the interface thus 

leading to a recovery in 𝐾𝐿 [85–87].  
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Finally, mass transfer changes have also been observed to occur where active solid phases 

such as living cells/organisms (biologically active) and catalysts (chemically active) are 

involved. For example, reaction enhancement by catalysts at/near the interface has been 

observed to lead to greater concentration gradients and hence greater mass transfer [88,89]. 

On the other hand, both enhancement and depression of mass transfer has been observed for 

biologically active organisms. For the latter, various mechanisms have been proposed such as 

the direct uptake of oxygen at the mass transfer interface and the change in fluid viscosity of 

the medium. These mechanisms are reviewed in greater detail in section 2.5. 

 

2.2.2 Model extensions 

 

As pertains to modelling, both the film and penetration theories discussed earlier have been 

extended to incorporate the solid phase based on the hypothesised mechanisms of action. For 

example, Kawase & Moo-Young [90,91] have modelled mass transfer in gas-liquid-solid 

BCRs based on the penetration theory while employing non-Newtonian viscosity models to 

represent the solid-liquid mixture (𝜐 = 𝜐𝑒𝑓𝑓 in equation (2.11)). The resulting models 

predicted a decrease in 𝐾𝐿 with increase in solid loading due to an increase in effective 

viscosity [90,91]. Alternatively, Wenmakers et al. [92] have considered that the presence of 

the solid phase will lead to a decrease in the effective diffusivity (𝐷 = 𝐷𝑒𝑓𝑓  in equation 

(2.11)). Linek et al. [86], while keeping the diffusivity constant, have instead captured the 

impact of the solid phase by varying the exponent of diffusivity. They proposed that the 

exponent decreases from 2/3 to 1/2 as solid particles are introduced to a contaminated surface. 

This signified the transition of the bubble surface from fully rigid to fully mobile due to the 

removal of surface active contaminants by the solid particles [86].  

 

The shuttle mechanism has been also modelled. Based on the penetration theory, Holstvoogd 

et al. [93] showed that the enhancement would depend on both the adsorption rate and the 

adsorption capacity of the particles. For the case of rapid mass transfer between the liquid and 

the solid phases (high adsorption rate), the adsorption capacity governed the enhancement 

factor (𝐸) [88,93]. The latter was defined as the ratio of the mass transfer rate in the presence 

of the solid phase to that in its absence and was observed to increase with increase in solid 

loading. This is illustrated in equation (2.14) where 𝑥 represents the solid loading based on 

the total volume of an un-gassed solid-liquid mixture and 𝑚 represents the ratio of solute gas 

adsorbed on the solid phase to that dissolved in the aqueous phase at equilibrium.  
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𝐸 = √1 + 𝑚𝑥                (2.14)  

 

Finally, the effect of particle-bubble adhesion has been modelled based on the film theory 

[82,94–97]. Vinke et al. [82] proposed that the latter would lead to an enhancement in mass 

transfer through a decrease in the effective thickness of the interfacial film. This is illustrated 

in Figure 2.3 with the resulting enhancement factor given in equation (2.15) [82]. In this 

equation,  𝜁 represents the fractional bubble surface coverage whereas 𝐾𝐿𝑝 represents the 

overall mass transfer coefficient for the covered portion of the interface. The latter is defined 

in terms of the film theory (see equation (2.8)), with the effective thickness of the interfacial 

film approximated in terms of the particle radius (𝑟𝑝) [82,94]. The ratio 𝜏/𝜏𝑂, on the other 

hand, represents the ratio of the residence time of the solid particle at the mass transfer 

interface to its saturation time [82,94]. It has been observed that the fractional bubble surface 

coverage attains to a maximum value thereby imparting an asymptotic behaviour to the 

enhancement factor. This trend has been in agreement with experimental measurements 

[88,94] thus prompting the adoption of this model by other authors [98–100].  

 

𝐸 = 1 + 𝜁 {
𝐾𝐿𝑝

𝐾𝐿
(1 −

exp(−𝜏/𝜏𝑂)

𝜏/𝜏𝑂
) − 1} ;       𝐾𝐿𝑝 = 2𝐷/𝑟𝑝  (2.15)  

 

Figure 2.3: Mass transfer interfacial film with an adhered particle symbolised by cut circle 

(left side). Solid particle represented as a slab at a distance ℎ𝑒𝑓𝑓 from the interface (right 

side). Redrawn from Vinke et al. [82] with permission. 
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2.3 CFD for gas-liquid mass transfer 

 

As was concluded in section 2.1, the prediction of oxygen transfer in bioreactors on the basis 

of theoretical models requires an estimation of quantities such as the energy dissipation rate 

and the slip velocities. These values can be derived in an averaged sense from the operating 

conditions thus giving rise to semi-theoretical models. Garcia-Ochoa & Gomez [64] have 

used such models to estimate 𝐾𝐿𝑎𝛼𝑜=0 in reactors of varying sizes (2 – 1000 L STRs) to 

within ±15%. This success notwithstanding, the reliance of these models on volume-

averaged variables is contrary to the observed spatial heterogeneity within reactors [21]. Thus, 

for effective bioreactor design, one also needs to resolve this spatial heterogeneity. 

 

Computational Fluid Dynamics (CFD) can be employed to provide spatially resolved 

estimates of the values of interest. This is possible with CFD since the latter provides an 

approximate (numerical) solution to the fundamental equations governing fluid flow [101]. In 

addition, the CFD solutions are provided on a discretised mesh of the reactor (domain) and 

this allows for the capture of spatial heterogeneity [101]. CFD output such as the turbulent 

energy dissipation rate, velocities and phase hold ups can then be coupled to theoretical 

models so as to predict mass transfer. In addition, the bubble size distributions (BSD) and 

their moments (such as Sauter mean diameter) can be predicted based on a coupling of the 

CFD model with a population balance model (PBM) [34]. 

 

The CFD-PBM modelling approach has become increasingly popular in recent years due to 

several reasons. First, there has been an increase in the computational power available to 

researchers and industry practitioners thus supporting the use of CFD-PBM given that it is 

computationally intensive by nature [21]. Second, the CFD-PBM technique has been 

undergoing continuous research and development so as to improve its predictive accuracy vis-

à-vis experimental measurements in reactors [32,102–109]. Last but not least, the CFD-PBM 

technique has been viewed as an attractive option for scale-up studies since it is anchored on 

the solution of fundamental flow equations thus making it scale-independent. To this end, it 

has been suggested that this technique can replace pilot-scale experiments in the design cycle 

[21] thus leading to a speed-up and cost reduction of the design process.  

 

Table 2.1 gives an overview of some of the studies that have been conducted based on the 

CFD-PBM approach. Modelling at various scales (2 – 785 L) has been attempted for both 

STRs and BCRs [24,110]. In addition, different modelling techniques have been proposed to 
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capture different phenomena within the reactors. Such techniques include those aimed at 

resolving the impeller motion in STRs (sliding mesh – SM, multiple reference frame – MRF, 

snapshot approach) as well as those aimed at modelling turbulence in the reactors (dispersed 

and realizable 𝑘– 𝜖 models, 𝑘– 𝜔 model). Furthermore, whereas a number of studies have 

assumed a monodisperse bubble size within the reactors, BSDs have also been modelled 

based on PBMs. The latter have been solved through different algorithms such as the method 

of classes (MC), the quadrature method of moments (QMOM) and the multiple size group 

method (MUSIG). The bubble number density (BND) model has also been employed as a 

simplification to PBMs. 

 

The developed CFD-PBM models have been examined in terms of both global and local 

(spatially distributed) values of the gas hold up, the bubble sizes and 𝐾𝐿𝑎𝛼𝑜=0. Table 2.1 

illustrates that recent models have generally been within ±35% of experimental values, with 

the exception being a study on non-Newtonian flows where 𝐾𝐿𝑎𝛼𝑜=0 values were poorly 

predicted (±85%). The CFD-PBM models have also been able to capture spatial 

heterogeneity illustrating, as an example, that bubbles have a smaller size in the impeller 

discharge whereas in other areas of the reactor larger bubbles occur due to coalescence [111]. 

Similarly, it has been shown that 𝐾𝐿𝑎𝛼𝑜=0 (based on equation (2.11)) will be higher in the 

impeller discharge due to a higher value of the turbulent energy dissipation rate [22]. Such 

insight cannot be obtained based on empirical or semi-theoretical models thus underscoring 

the strength of the CFD-PBM approach.  

 

The CFD-PBM approach has also been extended to model gas-liquid-solid systems in both 

biological and non-biological processes. With regards to biological processes, systems such as 

wastewater treatment [112], cell cultivation [113] and enzyme production [114] have been 

modelled. For such processes, CFD-PBM models have been used to identify zones in reactors 

with low substrate (or oxygen) concentrations, with such insight leading to optimal reactor 

design and operation [113]. On the other hand, modelling efforts in non-biological processes 

such as mineral flotation have been aimed at capturing the hydrodynamics of the reactors 

[81,115,116]. In such systems, the hydrodynamics inform particle-bubble attachment and 

detachment processes thus dictating the efficiency of the flotation process [81,115,116]. The 

ability of the CFD-PBM approach to capture the complex hydrodynamics in such multiphase 

systems has been a key point of attraction.  
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2.4 Gas-liquid-liquid mass transfer  

 

The introduction of secondary immiscible liquids such as hydrocarbons, perfluorocarbons and 

ionic liquids into gas-liquid systems has been explored in both aerobic fermentation and 

biological waste gas treatment [9,121,122]. In such cases, the secondary liquid phase is 

introduced so as to act as a carrier or reservoir of the solute gas. However, in alkane 

biocatalysis, the primary role of the alkane phase as the secondary liquid phase is to provide 

the substrate for the cells/organisms. This notwithstanding, oxygen transfer in alkane 

biocatalysis is impacted by the secondary liquid phase in a manner similar to these gas-liquid-

liquid systems. Thus, it can be examined in the wider context of such systems.  

 

An analysis of literature reveals that, similar to gas-liquid-solid systems, gas-liquid-liquid 

systems have shown varying results where mass transfer is concerned. Clarke & Correia [9] 

summarised the reported results on the overall volumetric mass transfer coefficient into three 

trends. These included an initial increase to a maximum followed by a decrease, an initial 

increase that was sustained or plateaued at a peak value and finally a constant or decreasing 

value [9]. These trends were observed with respect to an increase in the volume fraction of the 

secondary liquid phase. In seeking to explain these trends, Clarke & Correia [9] focussed on 

the impact that addition of the secondary liquid phase would have on the effective fluid 

properties and the system’s turbulence. However, before delving into these factors, it is 

proposed that the variation in reported results can be partially explained by a re-examination 

of how the overall volumetric mass transfer coefficient is computed in such systems [123]. 

Central to this is the question of how changes in the solubility of the system on introduction 

of the secondary liquid phase are accounted for in the formulations employed [123–125]. This 

is discussed further in the next section. 

 

2.4.1 Measurement of the overall volumetric mass transfer coefficient 

 

The dynamic gassing-out method, an experimental method initially designed for gas-liquid 

systems, is commonly used in gas-liquid-liquid systems to obtain a measure of the overall 

volumetric mass transfer coefficient [15,17,126]. Its use is made possible by the fact that 

dissolved oxygen probes measure oxygen tension which is the same in all phases at 

equilibrium [127]. The obtained measurements, reported as concentration profiles, are then 

fitted to models such as equations (2.16) – (2.17) so as to compute the overall volumetric 

mass transfer coefficient in the presence of a secondary liquid phase (𝐾𝐿𝑎 ′) [15,17,126]. In 
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these equations, the solubility of the solute gas in the liquid-liquid mixture (𝐶∗) is defined as 

the volumetric average of the solubility in the aqueous phase (𝐶𝑤
∗ ) and that in the secondary 

liquid phase (𝐶𝑜
∗) [9,40,128,129]. The volume fraction of the secondary liquid phase based on 

the total liquid volume is represented by 𝑥. It is to be noted that this equation is a direct 

extension of equation (2.1) based on the assumption that the liquid-liquid mixture can be 

represented as a pseudo-homogenous liquid with a higher solubility (usually 𝐶𝑜
∗ > 𝐶𝑤

∗ ).  

 

𝑑𝐶

𝑑𝑡
= 𝐾𝐿𝑎 ′(𝐶∗ − 𝐶) (2.16)  

𝐶∗ = (1 − 𝑥)𝐶𝑤
∗ + 𝑥𝐶𝑜

∗.      (2.17)  

 

An alternative model to the above equations can be derived by considering the heterogeneity 

of the liquid-liquid system. For such a system, mass balance equations can be posed as given 

by equations (2.18) – (2.19) [128].  

 

OTR =  𝐸 ∙ 𝐾𝐿𝑎 (𝐶𝑤
∗ − 𝐶𝑤 ) (2.18)  

OTR = (1 − 𝑥)
𝑑𝐶𝑤

𝑑𝑡
+ 𝑥

𝑑𝐶𝑂

𝑑𝑡
   (2.19)  

 

Equation (2.18) above defines the mass transfer flux based on the changes at the gas-liquid 

interfacial film. The enhancement factor (𝐸) accounts for new mass transfer pathways that can 

be introduced by the secondary liquid phase (discussed later). Equation (2.19), on the other 

hand, considers the changes in the bulk. Based on this equation, it can be observed that for a 

fixed OTR, the rate of change in solute gas concentration dissolved in the aqueous phase 

(𝑑𝐶𝑤 𝑑𝑡⁄ ) decreases with an increase in volume fraction of the secondary liquid phase. 

Alternatively, the system takes longer to saturate on introduction of the secondary liquid 

phase due to a higher absorption capacity (solubility) [70,123].    

 

Substituting equation (2.19) into equation (2.18) results in equation (2.20) [123]. In this 

equation, 𝐸 ′ represents a modified enhancement factor whereas 𝑚 represents the solubility 

ratio. This equation is simplified based on an assumption of equilibrium in concentrations of 

the solute gas dissolved in both liquid phases (𝐶𝑜
∗ = 𝑚𝐶𝑤

∗ ). The equilibrium assumption is 
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justifiable given that the secondary liquid phase is usually dispersed within the primary liquid 

phase resulting in a high interfacial area that permits for rapid partitioning of the dissolved 

solute gas [130].  

  

𝑑𝐶𝑤

𝑑𝑡
=  𝐸 ′ ∙ 𝐾𝐿𝑎 (𝐶𝑤

∗ − 𝐶𝑤 ) ;     𝐸 ′ =  
𝐸

1 + 𝑥(𝑚 − 1)
 (2.20)  

 

Equations (2.16) and (2.20) are equivalent since both can be expressed in terms of partial 

pressure (see equation (2.2)) with Henry’s constants arising on both the right- and left-hand 

sides of the equations cancelling out. In addition, since the dynamic gassing-out method 

measures oxygen tension rather than actual concentrations, both equations can be equally 

applied to describe the system. However, different measures of the overall volumetric mass 

transfer coefficient emerge. These different measures have been reported in literature as 

highlighted in Table 2.2 and Table 2.3. It is to be noted that whereas the equations described 

above are derived for a liquid-phase analysis of mass transfer, complementary equations have 

been derived for gas-phase analysis [131,132]. This has been taken into consideration in 

populating Table 2.2 and Table 2.3. 
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Table 2.2: 𝐾𝐿𝑎 ′ values for gas-liquid-liquid systems focussing on oxygen transfer 

Reactor type 

 [Reference] 

Primary 

liquid phase 

Secondary liquid 

phase  

[Concentration] 

𝐾𝐿𝑎 ′ trend with increasing volume 

fraction of secondary liquid phase 

STR 

[129] 
Water 

PFC-40 

[0 – 10%] 
Constant. 

STR 

[126] 
Water 

Silicone oil 

[0 – 50%] 

Initial increase (up to 𝑥 = 10%) 

followed by decrease at 400 rpm. 

 

Opposite trend at 600 rpm. 

STR 

[15] 
Water 

n-C12-13 

[0 – 20%] 

Initial increase (up to 𝑥 = 10%) then 

decrease for ≥ 800 rpm. 

 

Decrease for < 800 rpm. 

STR 

[19] 
Water 

PFC 

[0 – 30%] 

Varied behaviour depending on 

impeller type, agitation and aeration 

rate. 

Olive oil 

[0 – 20 %] 
Decrease. 

STR 

[17] 

Aqueous 

growth 

medium  

n-Hexadecane 

[0 – 33%] 
Decrease. 

STR 

[132] 
Water 

n-Heptane 

[0 – 100%] 

Increase up to 𝑥 = 15% and again 

from 𝑥 = 40% up to phase inversion 

(𝑥 ≈ 60%). 

n-Dodecane 

[0 – 100%] 

Initial increase (up to 𝑥 ≈ 1%) 

followed by decrease in oil-in-water 

emulsions (𝑥 < 60%). 

n-Hexadecane 

[0 – 100%] 

Initial increase (up to 𝑥 ≈ 2%) 

followed by decrease in oil-in-water 

emulsions (𝑥 < 60%). 
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Table 2.3: 𝐾𝐿𝑎 values for gas-liquid-liquid systems focussing on oxygen transfer 

Reactor type 

 [Reference] 

Primary 

liquid phase 

Secondary liquid 

phase  

[Concentration] 

𝐾𝐿𝑎 trend with increasing volume 

fraction of secondary liquid phase 

STR 

[128] 

 

Water 
n-C11-18 

 [0 – 100%] 

Constant 𝐾𝐿 for oil-in-water emulsion 

(𝑥 < 18%).  

STR 

[133] 
Water 

n-Heptane 

[0 – 5%] 

Initial decrease (up to 𝑥 ≈ 1%) 

followed by an increase. 

n-Dodecane 

[0 – 5%] 

Initial increase (up to 𝑥 ≈ 1%) 

followed by a decrease towards air-

water value. 

BCR 

[134] 
Water 

Toluene 

[0 – 10%] 

Slightly increasing but lower than air-

water case. 

Anisole 

[0 – 10%] 

Slightly increasing but lower than air-

water case. 

2-ethyl-1-hexanol 

[0 – 10%] 

Slightly increasing but lower than air-

water case. 

Decyl alcohol 

[0 – 10%] 

Increase but only slightly higher than 

air-water case. 

Dodecane 

[0 – 10%] 
Increase (initially rapid then steady). 

n-Decane 

[0 – 10%] 
Increase (initially rapid then steady). 

n-Heptane 

[0 – 10%] 
Increase (initially rapid then steady). 

BCR 

[135] 
Water 

Silicone oils 

[0 – 10%] 

Initial decrease (𝑥 < 2%) followed by 

an increase.  

BCR 

[131] 
Water 

PFC-40 

[0 – 4%] 
Constant. 

Silicone oils 

[0 – 10%] 

Initial decrease followed by a 

recovery beyond 5%. 

n-Dodecane 

[0 – 10%] 
Constant. 

n-Hexadecane 

[0 – 10%] 
Constant. 
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It can be observed from Table 2.2 and Table 2.3 that even within the different measures of the 

overall volumetric mass transfer coefficient various trends of the latter have been reported. To 

explain these observations, numerous hypotheses have been put forth. For example, Dumont 

& Delmas [20] reviewed previous work and illustrated the potential effects of new mass 

transfer pathways that can be introduced by the secondary liquid phase. Clarke & Correia [9], 

on the other hand, have illustrated the potential impact of the secondary liquid phase on the 

effective fluid properties and the system’s turbulence. These hypotheses are reviewed in 

greater detail in the next section. 

 

2.4.2 Mass transfer mechanisms in the presence of a secondary liquid phase 

 

The enhancement factor (𝐸) in equation (2.18) has been previously employed to capture new 

mass transfer pathways that can be introduced by the secondary liquid phase [128]. Such 

pathways include parallel mass transfer and series mass transfer with or without shuttling (see 

Figure 2.4). To assess which of the pathways is most likely, the concept of the spreading 

coefficient (𝑆) has been traditionally employed [128,133,136]. The latter is defined by 

equation (2.21), with 𝜎 representing the interfacial tension while the subscripts 𝑤𝑔, 𝑜𝑔 and 

𝑜𝑤 represent the aqueous-gas, alkane-gas and alkane-aqueous interfaces respectively. 

 

𝑆 =  𝜎𝑤𝑔 − (𝜎𝑜𝑔 + 𝜎𝑜𝑤)  (2.21)  

Figure 2.4: Gas-liquid boundary layer showing possible mass transfer pathways – parallel (A), 

series (B) and series with shuttling (C). Secondary liquid phase represented by filled symbols 

with degree of shading representing oxygen concentration.  

 

Gas 

phase Aqueous phase 
Gas 

phase Aqueous phase 
Gas 

phase Aqueous phase 

(A) (B) (C) 
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For 𝑆 > 0, the secondary liquid phase is likely to form a film on a bubble surface thus giving 

rise to parallel mass transfer (Figure 2.4 (A)). Experimental evidence for this has been 

provided based on “static interactions” of air bubbles and hydrocarbon droplets [130]. This 

notwithstanding, the parallel mass transfer pathway has been critiqued on various grounds. 

First, whereas a positive spreading coefficient may computed based on static measurements, 

the hydrodynamics and average coalescence time in agitated reactors may not provide 

sufficient time for film formation [130,137]. Second, the consideration of interfacial tension 

measurements of mutually saturated liquids (as opposed to pure liquids) has been shown by 

Brilman (cited in [20]) to give rise to negative values of the spreading coefficient. This has 

been noted to be the case even for systems with initially positive spreading coefficient values 

[20]. Such observations have led to the conclusion that the parallel mass transfer pathway 

remains unlikely.  

 

Series mass transfer, on the other hand, has often been assumed to be the more likely pathway 

[20]. It has been traditionally associated with a negative spreading coefficient (𝑆 < 0). 

Furthermore, this pathway can be enhanced by a shuttle effect similar to that hypothesised for 

gas-liquid-solid systems. In this mechanism, droplets of the secondary liquid phase would 

have to be a size smaller than the gas-liquid interfacial film thickness (contrast Figure 2.4 (B) 

and (C)). This would allow them to penetrate the mass transfer film and take up the solute 

gas. The droplets would then be returned to the bulk fluid where they would release the solute 

gas due to a concentration gradient [138].  

 

Besides the above changes, it has also been suggested that a secondary liquid phase can 

impact the hydrodynamics of a reactor through a change in the effective fluid properties as 

well as a reactor’s turbulence levels [9]. For example, the effective viscosity (assuming a 

pseudo-homogenous liquid) has been observed to increase with increasing volume fraction of 

the secondary liquid phase [14]. This has been proposed to lead to a decrease in mass transfer 

through a decrease in turbulence and the associated decrease in renewal frequency of fluid 

elements at the mass transfer interface [9,14]. In addition, secondary liquid phases with high 

viscosities (hence low values of diffusivity) have been observed to lead to low values of 

effective permeability of the solute gas (√𝐷𝑒𝑓𝑓 ∙ 𝐶∗) despite an increase in solubility (𝐶∗) 

[137].   

 

The surface tension has also been observed to change as a result of the secondary liquid 

phase. Though secondary liquids used in gas-liquid-liquid systems typically have low 
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solubility in the primary aqueous phase, mutually saturated values of the surface tension have 

been observed to be lower than those of the pure aqueous phase in certain cases [132,134]. 

Alternatively, it has been suggested that the film formation process (for cases with 𝑆 > 0) 

tends to lower the surface tension. Either of these mechanisms can result in smaller-sized 

bubbles and hence an increase in interfacial area. Concomitantly, a decrease in 𝐾𝐿 can occur 

due to a surfactant effect [128].   

 

With regards to the reactor’s turbulence, it has been observed that droplets of a secondary 

liquid phase can either increase or decrease the turbulence levels in the primary liquid phase 

[139–141]. This interaction depends on the droplet size, its inertia, the volume fraction of the 

secondary liquid phase and the prevailing turbulence intensity among other factors [142–146]. 

Such changes in the turbulence levels can lead to corresponding changes in surface renewal 

frequency at the gas-liquid interface or changes in the bubble coalescence and breakup 

phenomena [9]. Consequently, both 𝐾𝐿 and the interfacial area would be affected [9]. Such 

interactions are not easy to approximate a priori, hence they are often ignored when using the 

modelling approaches reviewed below. However, the modelling of particle-turbulence 

interaction based on CFD techniques [109,147] can provide an approximation of the influence 

of such effects. 

 

2.4.3 Model extensions 

 

Attempts at incorporating the mechanisms reviewed above into 2-phase gas-liquid models 

have been made. This has been done by proposing models that estimate the possible 

enhancement in mass transfer. Equations (2.22) and (2.23) provide examples of such models. 

Equation (2.22) has been proposed for the parallel mass transfer pathway [148] whereas 

equation (2.23) has been proposed for the series mass transfer pathway with shuttling [138]. 

In these equations, 𝐷𝑟 represents the ratio of solute gas’ diffusivity in the secondary liquid 

phase to that in the primary liquid phase. Additionally, 𝑚 and 𝑥 represent the solubility ratio 

and the volume fraction of the secondary liquid phase respectively.  

  

𝐸 = 1 + 𝑥(𝑚√𝐷𝑟 − 1) (2.22)  

𝐸 =  √1 + 𝑥(𝑚 − 1) (2.23)  
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Models such as those given above offer a first approximation to possible mass transfer 

enhancement. They have been shown to approximate mass transfer phenomena in equipment 

with fixed interfacial area such as a stirred cell [138] and a laminar film absorber [149]. 

Furthermore, these models have been improved upon by taking into account greater detail 

such as the spatial distribution of droplets near the interface [148,150–153]. However, an 

underlying criticism of these models has been that they only predict continuous enhancement 

whereas experimental results show varied behaviour (see Table 2.2 and Table 2.3). Pinho & 

Alves [154] have recently commented on this arguing that the enhancement factor should be 

formulated so as to contain both enhancing and retarding factors as competing parameters. 

These same remarks can be extended to empirical models that have been proposed based on 

single trends, such as that in equation (2.24) [17].  

 

𝐾𝐿𝑎
 ′ = Γ ∙ (

𝑃𝑔

𝑉
)
𝛽

𝜈𝑠
𝛿(1 − 𝑥)𝜁 (2.24)  

 

In seeking to address the above, Pinho & Alves [154] have proposed semi-empirical models 

for the enhancement factor that contain both enhancing and retarding factors. For a spreading 

phase (𝑆 > 0), they suggested that film formation on the gas bubble at low interfacial hold up 

of the secondary liquid phase would lead to an increase in mass transfer resistance [154]. 

However, at high interfacial hold up, the shedding of saturated (or near saturated) droplets of 

the secondary liquid phase from the film would enhance mass transfer [154]. For a non-

spreading phase (𝑆 < 0), they suggested that the shuttle effect would lead to enhancement at 

low interfacial hold up [154]. At high interfacial hold up, however, mass transfer would be 

retarded due to increased resistance in a manner similar to cases with 𝑆 > 0 [154]. 

 

Zhang, Cai et al. [155], on the other hand, have considered a hydrodynamic effect in addition 

to the shuttle effect. Their model, based on the penetration theory, resulted in an equation 

similar to equation (2.11). In their equation, an effective diffusivity employed that 

incorporated the shuttle effect (𝐷 = 𝐷𝑒𝑓𝑓) [155]. In addition, effective values of the viscosity 

and density were employed based on the assumption that the liquid-liquid mixture could be 

treated as a pseudo-homogeneous liquid [155]. This use of effective fluid properties together 

with the consideration of changes in the energy dissipation rate constituted the hydrodynamic 

effect. It was suggested that this effect would dominate at high loadings of the secondary 

liquid phase [155]. At these conditions, an increase in the effective viscosity would lead to a 

decrease in mass transfer for a constant energy dissipation rate [155].  
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2.5 Gas-liquid-liquid mass transfer in the presence of a solid phase 

 

A complete analysis of gas-liquid-liquid systems requires the consideration of the 

cells/organisms introduced to carry out the relevant bioprocesses such as fermentation or 

alkane biocatalysis. These cells form a separate solid phase and are usually of a smaller 

dimension relative to the gas bubbles and droplets of the secondary liquid phase. As an 

example of this, diameters of 1 – 20 µm have been reported for S. cerevisiae cells in 

comparison to bubble diameters of about 1 mm [16].  

 

The presence of cells/organisms in a system can introduce changes to the mass transfer 

behaviour of the reactor. This is highlighted in the examples enumerated in Table 2.4. The 

table provides a summary of experimental work that has been done with the focus of 

quantifying the effects of both the secondary liquid phase and the solid phase (cells) on 

oxygen transfer. It excludes studies done in similar gas-liquid-liquid-solid systems whose 

objectives were not in line with those of this work. For example, it excludes studies whose 

focus was on the promotion of maximum growth and productivity of the cells [156–159]. In 

addition, it excludes studies whose focus was on the mass transfer of volatile organic 

compounds (for example, methane or benzene) as applied to the abatement of air pollution 

[121,160].   

 

2.5.1 Mass transfer mechanisms in the presence of a solid phase 

 

It can be observed from Table 2.4 that the solid phase has been predominantly observed to 

lead to a decrease in 𝐾𝐿𝑎 ′. As these results are based on deactivated (non-viable) cells, 

similar mechanisms to those reviewed in section 2.2 may be suggested. Active cells, on the 

other hand, can introduce extra mechanisms through which oxygen transfer is impacted. For 

example, the latter are known to enhance oxygen transfer due to direct oxygen uptake at the 

gas-liquid interface [161]. This interaction of the cells with the gas-liquid interface is 

dependent on their hydrophobicity, a property that has been observed to change depending on 

the cell type and the cell’s growth phase [160,162].  

 

It has also been observed that extra-cellular secretions by active cells can have surface active 

effects. This can lead to an increase in interfacial area [163] and a concomitant decrease in 𝐾𝐿. 

The overall effect of these competing factors on 𝐾𝐿𝑎 ′ depends on their magnitude. Finally, 

morphological changes in growing cells (pellets versus filamentous mycelia) have been 
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observed to result in changes to the effective viscosity thus impacting the mass transfer 

process [114].   

 

Table 2.4: 𝐾𝐿𝑎 ′ values for gas-liquid-liquid-solid systems focussing on oxygen transfer 

Reactor 

type 

[Reference] 

Primary liquid 

phase 

Secondary liquid 

phase/ Cell type  

[Concentrations] 

𝐾𝐿𝑎 ′ trend with introduction of 

cells and secondary liquid phase 

STR 

[16,164] 
Water 

n-C13-C21/ S. 

cerevisiae 

[2 – 20%] 

[1 – 10 g/L] 

The agitation rate, cells’ 

concentration and n-C13-C21 volume 

fraction observed to have statistically 

significant effects on 𝐾𝐿𝑎 ′ (80% 

confidence level). 

 

The addition of n-C13-C21 resulted in 

an initial increase in 𝐾𝐿𝑎 ′ followed 

by a decrease (peak at around 11% 

volume fraction). 

 

At high agitation rates, a negative 

effect of cells’ concentration was 

observed whereas at low agitation 

rate a slightly positive effect was 

observed. 

STR 

[19] 

Growth 

medium 

 

PFC/ Y. lipolytica 

[0 – 30 %] 

[0 – 10 g/L] 

PFC addition resulted in a positive 

effect on 𝐾𝐿𝑎 ′. 
 

Addition of the cells resulted in a 

slight decrease in 𝐾𝐿𝑎 ′.  

STR 

[165] 
Broth 

n-Dodecane/ P. 

shermanii 

[0 – 20%] 

[30.5 – 120.5 g/L] 

n-Dodecane addition resulted in an 

increase in 𝐾𝐿𝑎 ′. 
 

Addition of the cells resulted in a 

decrease in 𝐾𝐿𝑎 ′.  

STR 

[166] 
Broth 

n-Dodecane/ P. 

shermanii 

[0 – 20%] 

[30.5 – 120.5 g/L] 
n-Dodecane addition resulted in an 

increase in 𝐾𝐿𝑎 ′. 
 

Addition of the cells resulted in a 

decrease in 𝐾𝐿𝑎 ′. 

n-Dodecane/ S. 

cerevisiae 

[0 – 20%] 

[43 – 150 g/L] 
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2.5.2 Model extensions 

 

In terms of modelling, the empirical approach has been adopted due to the complexity of such 

systems. Equation (2.25) by Amaral et al. [19] and equation (2.26) by Galaction et al. 

[165,166] are examples of models that have been proposed. In these equations, Ω represents 

the cells’ concentration by dry weight with its effect captured through exponent 𝜉 whereas 𝑥 

represents the volume fraction of the secondary liquid phase. Other terms are as previously 

defined. It can be observed that though the basic structure of equation (2.4) for gas-liquid 

systems has been maintained, differences have emerged in terms of how to capture the effects 

of both the secondary liquid phase and the solid phase.  

 

𝐾𝐿𝑎
 ′ = Γ ∙ (

𝑃𝑔

𝑉
)
𝛽

𝜈𝑠
𝛿(1 − 𝑥)𝜁Ω𝜉  (2.25)  

𝐾𝐿𝑎
 ′ = Γ ∙ ((

𝑃𝑔

𝑉
)
𝛽

𝜈𝑠
𝛿Ω𝜉)

𝑥

 (2.26)  

 

2.6 CFD for gas-liquid-liquid mass transfer 

 

In comparison to gas-liquid systems, the addition of a secondary liquid phase and a solid 

phase (cells) complicates the hydrodynamics in a reactor. As noted before, the prevailing 

hydrodynamics can change through multiple mechanisms such as changes to the effective 

fluid properties or turbulence modification. Such changes have an effect on mass transfer. 

Consequently, these need to be accounted for by the CFD techniques employed.   

 

To the best of the author’s knowledge, few studies have been undertaken on the CFD-based 

modelling of gas-liquid-liquid systems. Such studies have been in diverse fields such as the 

flow in mini-channels [167], the flow on inclined plates for distillation column packings [168] 

and the flow in annular centrifugal separators [169]. With regards to gas-liquid-liquid STRs, 

there has been some work done on macro-mixing as characterised by the mixing time 

[170,171]. These studies, however, fell short of investigating mass transfer. Moradkhani et al. 

[172], on the other hand,  have studied oxygen transfer and phenol biodegradation in a gas-

liquid-liquid STR. However, the details given on their experimental setup suggest that the 

primary and secondary liquid phases remained stratified (flat interface) while only the gas 

phase was dispersed [172,173]. This setup is quintessentially different from that investigated 
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in this work in which both the gas phase and the secondary liquid phase are dispersed within 

the primary liquid phase (aqueous phase). Besides this, a more systematic and detailed 

numerical investigation of the hydrodynamics and mass transfer in alkane-based stirred 

bioreactors is presented herein.  

 

2.7 Summary 

 

The foregoing discussion has illustrated that mass transfer in 2-phase gas-liquid systems is a 

fairly well understood topic that has seen the development of predictive models based on 

fundamental considerations. Research has also been conducted into the case of gas-liquid 

mass transfer in the presence of a solid phase with the results showing varying trends. Various 

hypotheses have been suggested to explain the latter and these hypotheses have guided 

attempts at extending the 2-phase fundamental predictive models. Recent work, however, has 

been focused on the prediction of mass transfer based on Computational Fluid Dynamics 

(CFD). This involves the use of CFD models to capture the hydrodynamics of reactors, with 

the CFD output coupled to fundamental models of the overall volumetric mass transfer 

coefficient. The end result of this approach has been the development of scale-independent 

design tools that are able to resolve spatial heterogeneity within reactors.  

 

With the aim of developing similar CFD-based tools for use in alkane-based systems, the 

foregoing discussion has identified several gaps that need to be addressed with regards to such 

systems. First, it has been shown that there is a lack of consistency in literature on the 

reporting of the overall volumetric mass transfer coefficient. Different measures of the latter 

have been reported. This has partly served to hinder the consistent extension of 2-phase 

fundamental mass transfer theories to alkane-based systems and consequently, various 

modelling approaches have been proposed. This observation served as the basis of the first 

research question of this study which asked, “What are the appropriate fundamental models 

that can be employed to predict oxygen transfer in alkane-based bioprocesses based on CFD 

output?” Chapter 3.0 addresses this gap by proposing a consistent modelling framework for 

the overall mass transfer coefficient. 

 

A second gap noted from the foregoing discussion was the lack of clarity on the effect of the 

additional phases (liquid and cells/organisms) on the hydrodynamics and oxygen transfer. 

Various mechanisms of action have been proposed such as a change in the fluid properties 

(viscosity, surface tension) or a change in the turbulence levels. However, what remains 
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unclear is which of these mechanisms are dominant and which should be accounted for in 

modelling. This observation led to the second research question of this study which asked 

“What are the main differences in the hydrodynamics and oxygen transfer of an alkane-based 

bioprocess in comparison to a 2-phase gas-liquid system? Can these be captured based on 

CFD modelling?” Chapter 6.0 addresses this question with reference to the 3-phase (cell-free) 

system whereas Chapter 7.0 extends the work to incorporate the effects of the solid phase 

(non-viable yeast cells).   

 

A final gap noted in the discussion was the scarcity of literature on CFD-based modelling of 

alkane-based systems. This inspired the last two research questions asked in this study that 

touched on the accuracy of the proposed CFD modelling. In particular, it was asked, “How 

does CFD-based prediction of oxygen transfer in a 3-phase cell-free alkane-based bioprocess 

compare with experimental data?” Similarly, the question was posed for the 4-phase system, 

“How does CFD-based prediction of oxygen transfer in a 4-phase alkane-based bioprocess 

with non-viable yeast cells compare with experimental data?” These questions have been 

respectively addressed in Chapters 6.0 and 7.0.   
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3.0 Modelling framework for the overall mass transfer coefficient in 

alkane-based systems 

 

This chapter addresses the first gap identified in the literature review by proposing a 

theoretically consistent modelling framework for the overall mass transfer coefficient in 

alkane-based systems. The framework has been tested against experimental data to illustrate 

its applicability. Furthermore, it has been proposed that CFD-based modelling of oxygen 

transfer in alkane-based systems can be performed on the basis of this framework. Thus, the 

first objective of this study was tackled in this chapter.  

 

The  results based on this chapter were presented at the 2017 Heat Transfer, Fluid Mechanics 

and Thermodynamics conference and subsequently published in the conference proceedings 

[123]. 

 

3.1  Modelling rationale 

 

From Chapter 2.0, it has been established that theoretical models have been proposed to 

account for possible effects introduced by a secondary liquid phase on the overall volumetric 

mass transfer coefficient. These include, as an example, the model proposed for the shuttling 

effect (see equation (2.23)). However, such models predict continuous enhancement in mass 

transfer with increasing volume fraction of the secondary liquid phase whereas experimental 

results illustrate both enhancement and depression. Thus, it has been suggested that 

enhancement factors should be formulated so as to contain both enhancing and retarding 

factors [154]. While this may be true, there is also need to consider that different measures of 

the overall volumetric mass transfer coefficient have been reported in literature. These differ 

in terms of the details captured in the equations from which they were derived. The question 

thus arises whether this lack of consistency may have resulted in a failure to account for 

certain enhancing or retarding effects. This idea is further explored in this chapter.    

 

3.2  Model equations 

 

Experimental studies of oxygen transfer in alkane-based systems are typically done using the 

dynamic gassing-out method based on equation (2.16) (repeated on next page). This equation 

employs the assumption that the liquid-liquid mixture can be treated as a pseudo-homogenous 
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liquid characterised by volume-averaged values of the oxygen concentration (𝐶) and its 

saturation value (𝐶∗). The 𝐾𝐿𝑎 ′ values obtained from this equation do not reveal much about 

possible changes at the mass transfer interface.  

 

Equation (2.20), on the other hand, provides a more elaborate description of the mass transfer 

process. It takes into account the heterogeneity of the mixture. In this equation, the oxygen 

concentration (𝐶𝑤 ) and its saturation value (𝐶𝑤
∗ ) are described based on the aqueous phase. In 

addition, the equation describes two competing factors that a secondary liquid phase can 

introduce – an enhancement due to new mass transfer pathways (𝐸) and an apparent decrease 

in the mass transfer rate due to a greater absorption capacity (solubility) of the mixture. This 

latter effect is represented by the denominator in equation (2.20) and can be observed to be a 

function of the volume fraction of the secondary liquid phase (𝑥) as well as the solubility ratio 

(𝑚).   

 

Both equations (2.16) and (2.20) can be equally applied to describe alkane-based systems. 

Their equivalence arises from the fact that both can be expressed in terms of partial pressure 

(see equation (2.2)) with Henry’s constants arising on both the right- and left-hand sides of 

the equations cancelling out. In addition, the dynamic gassing-out method measures oxygen 

tension rather than actual concentrations. Thus, a definition for 𝐾𝐿𝑎 ′ emerges as given in 

equation (3.1). This can be further re-written as equation (3.2) based on experimental 

observations that the 𝐾𝐿𝑎 values from equation (2.20) or its variants tend to be equal to that in 

primary liquid phase (𝐾𝐿𝑎𝛼𝑜=0) for low volume fractions of the secondary phase 

[123,128,131]. Since this proposition does not always hold (see Table 2.3), an approximation 

(≈) is employed in equation (3.2) [123].  

 

𝑑𝐶

𝑑𝑡
= 𝐾𝐿𝑎 ′(𝐶∗ − 𝐶) (2.16)  

𝑑𝐶𝑤

𝑑𝑡
=  𝐸 ′ ∙ 𝐾𝐿𝑎 (𝐶𝑤

∗ − 𝐶𝑤 ) ;     𝐸 ′ =  
𝐸

1 + 𝑥(𝑚 − 1)
 (2.20)  

𝐾𝐿𝑎 ′ =  𝐸 ′ ∙ 𝐾𝐿𝑎   (3.1)  

𝐾𝐿𝑎 ′

𝐾𝐿𝑎𝛼𝑜=0
= 𝐸 ′ ∙

𝐾𝐿𝑎 

𝐾𝐿𝑎𝛼𝑜=0
≈  𝐸 ′ (3.2)  
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The above modelling approach is appealing in that it allows for 𝐾𝐿𝑎 ′ values to be 

approximated based on fundamental mass transfer equations specified for gas-liquid systems. 

In addition, changes to the reactor’s hydrodynamics (as described by an appropriate CFD 

model) can be captured through predicted values of the energy dissipation rate, the gas hold 

up and the bubble diameter. This represents a relaxation of the common assumption of 

constant energy dissipation rate (or hydrodynamics) employed in models such as those by 

Zhang, Cai et al. [155].  

 

The specification of the modified enhancement factor (𝐸 ′) in equation (3.2) would depend on 

the prior assumptions concerning the governing mass transfer pathway. Various enhancement 

factor models can be obtained as given in equations (3.3) and (3.4) [123]. These equations 

respectively represent parallel and series mass transfer, both scaled down by a factor 

capturing the apparent decrease in oxygen transfer rate due to an increase in mixture’s 

solubility [123]. The exponent 𝜑 in equation (3.4) takes on a value of 0.5 for series mass 

transfer with shuttling and a value of 1 for series mass transfer without shuttling [123]. The 

predictions by these equations are contrasted with the respective unmodified/original models 

in Figure 3.1 and Figure 3.2.   

 

𝐸 ′ =
1 +  𝑥(𝑚√𝐷𝑟 − 1)

1 +  𝑥(𝑚 − 1)
  (3.3)  

𝐸 ′ =
1 

(1 +  𝑥(𝑚 − 1))𝜑
 (3.4)  
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Figure 3.1: Enhancement factor versus volume fraction of secondary liquid phase for mass 

transfer in parallel (solubility ratio, 𝑚 =  10). Right side – equation (3.3). Left side – equation 

(2.22). 

Figure 3.2: Enhancement factor versus volume fraction of secondary liquid phase for mass 

transfer in series with shuttling. Right side – equation (3.4). Left side – equation (2.23). 
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The left-side images of Figure 3.1 and Figure 3.2 illustrate enhancement in mass transfer as 

predicted by the original models (equations (2.22) and (2.23) respectively). The exception to 

this is when the parameters 𝑚√𝐷𝑟 and 𝑚 are less than unity. Since the secondary liquid phase 

is typically characterised by a greater solubility of oxygen (𝑚 > 1), the predicted decrease in 

mass transfer based on equation (2.23) (left image of Figure 3.2) rarely occurs.  On the other 

hand, a decrease in mass transfer can occur for the parallel case when the diffusivity ratio is 

rather small (𝐷𝑟 = 0.001 for 𝑚√𝐷𝑟 = 0.1 whereas 𝐷𝑟 = 0.01 for 𝑚√𝐷𝑟 = 1 on Figure 3.1).  

 

The right-side images of Figure 3.1 and Figure 3.2 illustrate both enhancement and depression 

of mass transfer based on the modified models (equations (3.3) and (3.4) respectively). The 

cases of 𝑚√𝐷𝑟 and 𝑚 being less than unity have already been highlighted as rare 

occurrences. Consequently, the parallel mass transfer model predicts a nil or an asymptotic 

increase in mass transfer once the solubility effect is accounted for whereas the series mass 

transfer model with shuttling predicts a nil or an asymptotic decrease of the same. For series 

mass transfer without shuttling, similar results to those displayed on the right-side image of 

Figure 3.2 were obtained. 

 

3.3  Case study 

  

To test the hypothesised model represented by equation (3.2), an initial examination of 

oxygen transfer measurements in a cell-free system mimicking alkane biocatalysis was 

performed [123]. The experimental work by Correia et al. [14,25] was considered in which 

the overall volumetric mass transfer coefficient was measured based on two methodologies – 

the pressure step method and the dynamic gassing out method. The latter method, commonly 

employed in literature, is known to under-predict values of 𝐾𝐿𝑎 ′ in non-coalescing media due 

to its assumption of uniform gas-phase concentration in the dispersed gas bubbles 

[25,42,174]. The pressure step method, on the other hand, addresses this shortcoming. 

However, it has been rarely used in studies on gas-liquid-liquid systems [25,133] probably 

due to its more involving computations. Nevertheless, Correia et al. [25] illustrated that at 

agitation rates of 600 and 800 rpm both methods gave 𝐾𝐿𝑎 ′ values within 18% of each other 

as the medium was still sufficiently coalescing (sufficient mixing in gas phase). Thus, the 

𝐾𝐿𝑎 ′ values at these agitations rates were considered as illustrated in Figure 3.3 

. 
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Figure 3.3: Predicted and experimental enhancement factors versus volume fraction of 

alkanes. PSP – pressure step method, DM – dynamic gassing-out method. See also Gakingo et 

al. [123]. 

 

It can be observed that there was a general decrease in the measured 𝐾𝐿𝑎 ′ values. This was in 

line with the predicted trend based on equation (3.4), that is, series mass transfer (with or 

without shuttling). The case of parallel mass transfer was deemed as not appropriate given 

that the oxygen diffusion coefficients in water and alkane (n-C10-C13) were expected to be of 

the same order of magnitude. This, in addition to the fact the solubility ratio was greater than 

1, implied that an enhancement in 𝐾𝐿𝑎 ′ values would occur for parallel mass transfer (see 

right-side of Figure 3.1 with 𝑚√𝐷𝑟 ≥ 1) [175].  

 

As previously noted, the experimental results were more closely approximated by equation 

(3.4). This was particularly true for the case with the exponent 𝜑 set to 0.5 (series mass 

transfer with shuttling). For results by the pressure step method, deviations from the predicted 

trend were within 7% with the exception of the data points at 2.5% and 20% alkane volume 

fractions (≈ 25% deviation). For results by the dynamic gassing-out method, on the other 

hand, deviations were within 10% of the predicted trend with the exception of the data point 

at 10% alkane volume fraction (25% deviation).  

 

The above results supported the hypothesised model (equation (3.2)). Furthermore, noted 

differences between the experimental and predicted values were probably due to factors not 
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accounted for at this stage. These included probable changes to, for example, the interfacial 

area and energy dissipation rate. These changes can be investigated based on the CFD 

technique and this is shown in later chapters.  

 

3.4  Summary 

 

The work done in this chapter contributes to current knowledge by highlighting the 

importance of accounting for the solubility effect in the modelling of the overall volumetric 

mass transfer coefficient (𝐾𝐿𝑎 ′). This effect arises from an increase in the absorption capacity 

of a liquid-liquid mixture which leads to longer saturation times. This effect can be registered 

as an apparent decrease in the measured 𝐾𝐿𝑎 ′ values and it can mask the influence of other 

effects of the secondary liquid phase (shuttling for example). The consideration of a case 

study of oxygen transfer in a cell-free alkane-based reactor has shown that this effect can 

explain the deviation between observed experimental trends and traditional theoretical 

models. However, the applicability of this proposition should be generalised by the 

consideration of other experimental data available in literature. This has not been done at 

present since the scope of this work was limited to modelling oxygen transfer for alkane 

biocatalysis. 

  

Stellenbosch University https://scholar.sun.ac.za



45 

4.0 CFD model for alkane-based systems 

 

This chapter presents the development of the Computational Fluid Dynamics (CFD) model 

for the systems considered. As the model was developed in a multi-stage approach in line 

with objectives 2, 3, 4 and 7, the presentation herein has followed a similar structure. The 

initial focus of the chapter is on the modelling rationale as well as the governing equations of 

multiphase flow. Thereafter, the specifics of the 2-phase gas-liquid, 3-phase gas-liquid-liquid 

and 4-phase gas-liquid-liquid-solid systems are given. Also included is a presentation on the 

modelling of oxygen transfer as well as the numerical implementation of the CFD model.  

 

4.1 Modelling rationale 

 

Computational Fluid Dynamics (CFD) as a simulation tool can be utilised to resolve spatial 

heterogeneity in features of interest within a bioreactor at any given scale. Such features of 

interest could include the distribution of bubble or droplet sizes [111], the distribution of the 

overall volumetric mass transfer coefficient [22] and the identification of oxygen (or 

substrate) dead-zones within a bioreactor [113]. This is made possible by the fact that CFD 

provides an approximate solution to the fundamental equations governing fluid flow, that is, 

the Navier-Stokes equations [101]. In addition, the CFD solutions are provided on a 

discretised mesh of the bioreactor (domain) and this allows for the capture of spatial 

heterogeneity [101].  

 

As the CFD simulation of multiphase bioreactors is an area of active research [32,102–109], 

various techniques/frameworks have emerged to capture the governing physics in the 

bioreactors. Such frameworks touch on the choice of continuum (or mathematical)  

description of the phases, the resolution of turbulence in the reactors as well as the resolution 

of impeller motion among other issues. These frameworks differ in terms of the amount of 

detail (or physics) captured, with an associated penalty of increasing computational cost for 

greater detail. This implies a need to make prior selection of an appropriate framework 

depending on the objectives of the simulation and this process entails a trade-off between the 

amount of detail captured versus the computational cost depending on resources available.  

 

The continuum (or mathematical) description of a multiphase system can be based on either 

an Eulerian or Lagrangian framework. The Eulerian framework treats the phases as 

interpenetrating continua with the assumption that the phases can occupy the same space 
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relative to their volume fractions [24]. The averaging of the governing equations for flow 

(Navier-Stokes equations) results in the introduction of interphase momentum exchange terms 

that need to be modelled as a closure problem [176,177]. Examples of these exchange terms 

include the drag force, the lift force and the virtual mass force. The Lagrangian framework, on 

the other hand, involves tracking individual particles (bubbles, droplets, solids) of a phase 

through a velocity field [176,177]. The velocity field can be specified independently or 

computed alongside the motion of the particles if there is coupling between the two [177].  

 

The Eulerian framework is normally employed for the continuous aqueous phase whereas for 

the dispersed phases (air and alkane), either an Eulerian or a Lagrangian description can be 

utillised [177]. This results in a mixture of frameworks such as the Euler-Euler or the Euler-

Lagrangian frameworks for a 2-phase system. The computational cost of the Lagrangian 

framework scales with the number of particles being tracked [105,177]. Consequently, its 

application tends to be limited to flows with a small number of particles [105,177]. For a 

bioreactor with a large number of particles such as that under consideration, this approach 

quickly becomes unfeasible. Thus, an Eulerian description of the phases involved (air, 

aqueous, alkane) was adopted in this study. 

 

With the choice of continuum description made, a second consideration was the description of 

turbulence. Previous experimental work on alkane-based systems has been done in the 

turbulent regime which is characterised by a tank’s Reynolds number, 𝑅𝑒 > 104 

[14,164,178]. As turbulent flow involves velocity fluctuations on a wide range of length and 

time scales, a complete description of the same would involve the use of the Direct Numerical 

Simulation (DNS) technique. This technique solves for flow while taking into account 

fluctuations at all length and times scales. It has a high computational cost that scales with the 

cube of the Reynolds number thus leading to its restricted application to low Reynolds 

number flows [32].  

 

In place of the DNS technique, the Large Eddy Simulation (LES) and the Reynolds-averaged 

Navier-Stokes (RANS) techniques have been proposed. The former entails a spatial filtering 

of fluctuations, with the fluctuations above a given grid-scale resolved whereas those at a 

smaller (sub-grid) scale are approximated [32,177]. The RANS technique, on the other hand, 

involves the averaging out of the fluctuations to remain with equations for the mean flow 

[32,177]. While both these techniques represent a simplification to DNS, the LES technique is 

still able to resolve a great amount of detail. Consequently, it has been advocated for as the 
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tool of choice for studies in single-phase modelling of stirred reactors [32]. However, in 

multiphase reactors, the RANS technique remains the practical tool of choice given its lower 

computational burden (see Table 2.1). 

 

The RANS technique, involving the averaging of the instantaneous Navier-Stokes equations, 

is usually employed to simulate the mean flow patterns. Fluctuation terms left behind from 

the averaging procedure (Reynolds’ stresses) are either modelled as done with eddy viscosity 

models or directly solved for as done in the Reynolds stress model (RSM) [32]. The eddy 

viscosity models approximates the Reynolds’ stresses in terms of gradients of the mean 

velocities. A proportionality constant, the eddy viscosity, arises in this approximation and it is 

specified in terms of various models such as the standard 𝑘–𝜖 model (𝑘 – turbulent kinetic 

energy and 𝜖 – dissipation rate) [32,177]. The Reynolds stress model (RSM), on the other 

hand, solves directly for the Reynolds’ stresses [32].  

 

The RSM, in comparison to eddy viscosity models, is able to better capture complex features 

of turbulence such as anisotropy which has been observed near the impellers of stirred 

reactors [32,177,179]. In addition, it is able to better deal with swirl or rotational flows that 

are characteristic of the vortices that form behind impeller blades [32,177]. This 

notwithstanding, the RSM is more computationally demanding (seven extra equations in 

comparison to two for the standard 𝑘–𝜖 model) [32]. Furthermore, it is known to suffer from 

convergence (or solution) difficulties [32]. Consequently, though the RSM holds the promise 

of more accurate simulations, its use needs to be justified based on the aim of the simulations. 

Given that the aim in this study was to perform an exploratory investigation into the CFD-

based modelling of alkane-based systems, the eddy viscosity approach was employed as a 

first approximation. This was in line with practice in literature [23,24,33,111]. 

 

With the turbulence modelling framework chosen, a third consideration was the resolution of 

the impeller-baffle interaction. The latter is unique to stirred tank reactors since the rotating 

impellers generate flow that interacts with the stationary baffles (and walls) resulting in 

complex flow patterns. Several approaches have been proposed to model this interaction such 

as the black-box or impeller boundary condition approach and the inner-outer approach [32]. 

More recently, the multiple reference frames (MRF) approach and the sliding mesh (SM) 

approach have been proposed. The latter have been observed to have good predictive 

capability and comparable accuracy [32].  
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The MRF approach is an essentially steady state approach [32] that provides a “snapshot of 

the flow with the impeller fixed in one position” [103]. Cylindrical sub-domains are defined 

around the impellers, with the governing flow equations in these sub-domains specified based 

on a rotating frame of reference. Flow in the remainder of the tank is specified based on a 

stationary frame of reference [32]. The SM approach, on the other hand, is a transient 

approach [32]. In it, flow in the whole tank is defined based on a single frame of reference – 

the stationary frame of reference. However, the cylindrical sub-domains around the impellers 

are allowed to rotate with the impeller thus mimicking the cyclical passage of impeller blades 

[32,103]. This rotation is tracked through sliding-grid algorithms thus introducing extra 

computational cost [32]. Given that both these approaches have been observed to predict the 

mean flow with similar accuracy [102,103], the MRF approach was adopted for this study due 

its lower computational cost.  

 

A fourth and final consideration was the treatment of the size distribution of both air bubbles 

and alkane droplets. This could ideally be done through the use of population balance models 

(PBM) (see Table 2.1). However, constant particle sizes were employed for the dispersed 

phases (air and alkane) as a first approximation. This was warranted by the observation that 

coalescence and breakage kernels (terms) in PBM have been investigated for 2-phase systems 

(gas-liquid or liquid-liquid) [34] with little work done on testing their accuracy in 3-phase 

systems. Furthermore, the use of a constant particle size in the 4-phase system was expected 

to be accurate based on the hypothesis that the presence of the solid phase (cells/organisms) 

hindered coalescence.  

 

In summary, the above-mentioned considerations/decisions on the modelling approach 

represented significant but necessary simplifications to the system. With each simplification, 

there was a general loss of detail in the physics captured. Though this loss of detail was 

supplemented by the use of appropriate models, the resulting CFD model represented a first 

approximation to the system. Similarly, oxygen transfer results derived from the CFD model 

were taken as a first approximation. Though the latter were observed to be reasonable as 

noted in the subsequent chapters, future studies should look into the relaxation of these 

simplifications.   
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4.2 Model equations for the hydrodynamics 

 

An Eulerian framework was employed to describe the simulated phases based on phase-

weighted averaging [180]. The equations of conservation of mass and momentum (Navier-

Stokes equations) for the multiphase system were as given in equations (4.1) and (4.2) 

respectively. Equations of flow for the single phase system could be recovered from these 

equations [180]. 

 

𝐷

𝐷𝑡
(𝛼𝑖𝜌𝑖) = 0 (4.1)  

𝐷

𝐷𝑡
(𝛼𝑖𝜌𝑖V�̅�) = −𝛼𝑖∇𝑝 + ∇ ∙ �̿�𝑖 + 𝛼𝑖𝜌𝑖�̅� + ∑ �̅�𝑗𝑖

𝑛

𝑗=1

+ �̅�𝑖 (4.2)  

    

In the above equations, subscripts 𝑖 and 𝑗 represented individual phases (air, aqueous, alkane). 

The phase volume fraction was represented by 𝛼𝑖, with the sum of the volume fractions of all 

phases being unity. The density and the mean velocity specific to the phase of interest were 

represented by 𝜌𝑖 and V�̅� respectively. The gravitational acceleration vector, with a magnitude 

of 9.81 m/s2, was represented by �̅� whereas the shared pressure field was represented by 𝑝. 

The Coriolis and centrifugal forces arising from the description of flow using a rotating frame 

of reference in the MRF approach were represented by �̅�𝑖 [180]. On the other hand, the stress 

tensor accounting for both viscous and turbulent contributions was represented by 𝜏�̿� whereas 

the interphase interaction forces were represented by �̅�𝑗𝑖. 

 

In this study, interphase interaction was assumed to only occur between the continuous 

aqueous phase and the dispersed phases as would be the case for dilute multiphase flow. This 

simplification was in line with practice in literature [23,24,33,111]. Furthermore, only the 

drag force was considered though other interaction forces occur such as the virtual mass and 

the lift force. It has been previously shown that the drag force is the most significant in terms 

of magnitude and that the gas hold up in the bulk of a stirred reactor is dictated by a balance 

between the drag and the buoyancy forces [33,35,36]. Consequently, the drag force between 

phases 𝑖 and 𝑗 was modelled by equation (4.3), with the interfacial exchange coefficient (𝐾𝑗𝑖) 

expanded in terms of the drag coefficient (𝐶𝐷) and the diameter of the dispersed phase (𝑑𝑗) 

(see equation (4.4)).  
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�̅�𝑗𝑖 = −�̅�𝑖𝑗 = 𝐾𝑗𝑖(V�̅� − V�̅�) (4.3)  

𝐾𝑗𝑖 =
3

4
𝛼𝑖𝛼𝑗𝜌𝑖

𝐶𝐷

𝑑𝑗
|V�̅� − V�̅�| (4.4)  

 

The stress tensor in equation (4.2) was expanded in terms of the Boussinesq’s hypothesis as 

given in equation (4.5). In this equation, 𝜇𝑖, 𝜇𝑡,𝑖 and 𝑘𝑖  were respectively the molecular 

viscosity, turbulent viscosity and turbulent kinetic energy (TKE) for phase 𝑖 while 𝐼 ̿

represented the identity tensor. The turbulent viscosity of the continuous aqueous phase 

(denoted by subscript 𝑤) was defined in terms of the turbulent kinetic energy (𝑘𝑤) and its 

dissipation rate (𝜖𝑤) as given in equation (4.6). To model the latter parameters, an extension 

of the single-phase standard 𝑘–𝜖 turbulence model was employed, that is, the dispersed 𝑘–𝜖 

model (see equations (4.7) – (4.8)). In this model, the standard 𝑘–𝜖 model equations for the 

transport, production and dissipation of TKE were used to account for turbulence in the 

continuous aqueous phase. Additionally, extra terms were introduced to capture the effect of 

the dispersed phases (Π𝑘𝑤
 and Π𝜖𝑤

) [28–31].  

 

𝜏�̿� = 𝛼𝑖(𝜇𝑖 + 𝜇𝑡,𝑖) (∇V�̅� + ∇V�̅�
𝑇
) −

2

3
𝛼𝑖((𝜇𝑖 + 𝜇𝑡,𝑖)∇ ∙ V�̅� + 𝜌𝑖𝑘𝑖)𝐼 ̿ (4.5)  

𝜇𝑡,𝑤 = 𝐶𝜇𝜌𝑤

𝑘𝑤
2

𝜖𝑤
 (4.6)  

𝐷

𝐷𝑡
(𝛼𝑤𝜌𝑤𝑘𝑤)  =  ∇ ∙ (𝛼𝑤 (𝜇𝑤 +

𝜇𝑡,𝑤

𝜎𝑘
) ∇𝑘𝑤) + 𝛼𝑤𝐺𝑘,𝑤 − 𝛼𝑤𝜌𝑤𝜖𝑤 + 𝛼𝑤𝜌𝑤Π𝑘𝑤

 (4.7)  

𝐷

𝐷𝑡
(𝛼𝑤𝜌𝑤𝜖𝑤) =  ∇ ∙ (𝛼𝑤 (𝜇𝑤 +

𝜇𝑡,𝑤

𝜎𝜖
)∇𝜖𝑤) + 𝛼𝑤

𝜖𝑤

𝑘𝑤
(𝐶1𝜖𝐺𝑘,𝑤 − 𝐶2𝜖𝜌𝑤𝜖𝑤)

+ 𝛼𝑤𝜌𝑤Π𝜖𝑤
 

(4.8)  

 

In equations (4.7) and (4.8) above, the production of TKE from gradients of the mean velocity 

in the continuous phase was captured by 𝐺𝑘,𝑤. This term is expanded in equation (4.9) 

wherein the colon symbol (:) represented the double contraction of the velocity gradient 

tensors [180]. The generation of TKE by the motion of the dispersed phases, on the other 

hand, was captured by Π𝑘𝑤
. This was expanded in terms of the model by Simonin et al. [28–
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30,180] which considers both the mean and the turbulent motion of the dispersed phases in 

defining the work done due to interfacial forces (see equation (4.10)). It was also assumed 

that the TKE due to the dispersed phases would be dissipated at a time-scale similar to that of 

the TKE generated from gradients of the mean velocity [181]. This time-scale of dissipation 

was captured by Π𝜖𝑤
 as given in equation (4.11) [181].  

 

𝐺𝑘,𝑤 = 𝜇𝑡,𝑤 (∇V𝑤
̅̅̅̅ + ∇V𝑤

̅̅̅̅ 𝑇
) : ∇V𝑤

̅̅̅̅  (4.9)  

Π𝑘𝑤
= 

𝜌𝑗

𝜌𝑗 + 𝐶𝐴𝑀𝜌𝑤
∙

𝐾𝑗𝑤

𝛼𝑤𝜌𝑤
[𝑘𝑗𝑤 − 2𝑘𝑤 + V̅𝑑𝑟 ∙ (V�̅� − V̅𝑤)] (4.10)  

Π𝜖𝑤
= 𝐶3𝜖

𝜖𝑤

𝑘𝑤
Π𝑘𝑤

 (4.11)  

 

In the equations above, the interfacial exchange coefficient between the dispersed and 

aqueous phases (𝐾𝑗𝑤) was as previously defined (see equation (4.4)). On the other hand, V̅𝑑𝑟 

represented the drift velocity or in other words, the diffusion of the dispersed phases due to 

turbulence. This parameter has been expanded in terms of the gradients of the phases and 

dispersion tensor (D̿𝑗𝑤) as illustrated in equation (4.12) [180]. The covariance of fluctuating 

velocities (𝑘𝑗𝑤) appearing both in equations (4.10) and (4.12) was specified in terms of the 

TKE in the aqueous phase (𝑘𝑤) and time-scales of turbulence (𝜏𝑗𝑤
𝑡 , 𝜏𝑗𝑤

𝐹 ) as specified in 

equation (4.14) [28–31]. Finally, the constants  𝐶𝜇 , 𝐶1𝜖 , 𝐶2𝜖 , 𝜎𝑘, 𝜎𝜖, 𝐶𝐴𝑀 and 𝐶3𝜖 took on 

values as specified in Table 4.1 [180]. 

 

V̅𝑑𝑟 = −D̿𝑗𝑤 ∙ (
∇𝛼𝑗

𝛼𝑗

−
∇𝛼𝑤

𝛼𝑤

) (4.12)  

D̿𝑗𝑤 =
1

3
𝑘𝑗𝑤𝜏𝑗𝑤

𝑡  (4.13)  

𝑘𝑗𝑤 = 2𝑘𝑤 (
𝑏+𝜃𝑗𝑤

1+𝜃𝑗𝑤
);   𝑏 = (1 + 𝐶𝐴𝑀) (

𝜌𝑗

𝜌𝑤
+ 1)

−1

 and   𝜃𝑗𝑤 =
𝜏𝑗𝑤
𝑡

𝜏𝑗𝑤
𝐹  (4.14)  

 

Table 4.1: Constants for model equations [180] 

Constants 𝐶𝜇 𝐶1𝜖 𝐶2𝜖 𝜎𝑘 𝜎𝜖 𝐶𝐴𝑀 𝐶3𝜖 

Value 0.09 1.44 1.92 1 1.3 0.5 1.2 
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The turbulence quantities of the dispersed phases were not computed based on equations such 

as those described above. Rather, they were derived from turbulence quantities of the 

continuous phase [180]. An extension to Tchen’s theory of particle dispersion in homogenous 

turbulent flows was employed to achieve this [28–31]. In this approach, the turbulence 

quantities of the particles were computed from the TKE of the continuous aqueous phase (𝑘𝑤) 

and time-scales of turbulence [28–31]. An example of this is given in equation (4.15) for the 

TKE of the dispersed phase (𝑘𝑗) [28–31]. It is to be noted that this approach was adopted as a 

first approximation given that this theory was defined for dilute multiphase flows [182].  

 

𝑘𝑗 = 𝑘𝑤 (
𝑏2+𝜃𝑗𝑤

1+𝜃𝑗𝑤
);   𝑏 = (1 + 𝐶𝐴𝑀) (

𝜌𝑗

𝜌𝑤
+ 1)

−1

 and   𝜃𝑗𝑤 =
𝜏𝑗𝑤
𝑡

𝜏𝑗𝑤
𝐹  (4.15)  

 

4.2.1  Gas-liquid system 

 

An estimation of the drag force required the specification of the diameter of the dispersed 

phase in addition to the drag coefficient (see equations (4.3) and (4.4)). For the 2-phase air-

aqueous system, a semi-theoretical correlation was used to obtain the bubble diameter (𝑑𝑔) as 

this was not measured experimentally [14]. The correlation given by equation (4.16) was 

adopted [64,183]. In this correlation, 𝜎𝑔𝑤 represented the surface tension with a value of 72 

mN/m [132], 𝜖𝑤,𝑎𝑣𝑒 represented the volume-averaged energy dissipation rate and other terms 

were as previously defined. Bubble diameters of 3.4 mm (600rpm) and 2.4 mm (800rpm) 

were obtained from this correlation. Given the close range of predicted bubble diameters, a 

constant value of 3 mm was employed.  

 

To estimate the drag coefficient, the model by Ishii and Zuber [184] was employed (see 

equations (4.17) – (4.19)). This model specified the drag coefficient based on the size (thus 

shape) of the bubbles. For small bubbles of diameter (𝑑𝑔 ≤ 1 mm) with a typically spherical 

shape, the drag coefficient (𝐶𝐷,𝑠𝑝ℎ) was given by equation (4.17) [180]. In this case, 𝑅𝑒 

represented the bubble’s Reynolds number. For slightly larger bubbles (1 < 𝑑𝑔 ≤ 15 mm) 

with a typically ellipsoidal shape, the drag coefficient (𝐶𝐷,𝑒𝑙𝑙) was given by equation (4.18) 

[180]. Finally, for bubbles with diameter, 𝑑𝑔 > 15 mm, and a typically spherical cap shape, 

the drag coefficient (𝐶𝐷,𝑐𝑎𝑝) was given by equation (4.19) [180].  
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𝑑𝑔 = 0.7(
𝜎𝑔𝑤

0.6

𝜌𝑤
0.6𝜖𝑤,𝑎𝑣𝑒

0.4 )(
𝜇𝑤

𝜇𝑔
)

0.1

 (4.16)  

𝐶𝐷,𝑠𝑝ℎ =  
24

𝑅𝑒
(1 + 0.1𝑅𝑒0.75);     𝑅𝑒 =  

𝜌𝑤|V̅𝑔−V̅𝑤|𝑑𝑔

𝜇𝑒𝑓𝑓
   and   𝜇𝑒𝑓𝑓 = 

𝜇𝑤

1−𝛼𝑔
 (4.17)  

𝐶𝐷,𝑒𝑙𝑙 =  
2

3
𝑑𝑔 (

|�̅�| ∆𝜌

𝜎𝑔𝑤
)
0.5

(
1+17.67(1−𝛼𝑔)

1.29

18.67(1−𝛼𝑔)
1.5 )

2

 (4.18)  

𝐶𝐷,𝑐𝑎𝑝 =  
8

3
(1 − 𝛼𝑔)

2
 (4.19)  

 

The model by Ishii and Zuber [184] also accounted for the effect of high volume fraction of  

the air bubbles on the effective drag. This was particularly relevant for the stirred tank reactor 

since the gas phase is known to accumulate behind the impeller blades resulting regions of 

high volume fraction [110]. A higher drag value has been typically observed for the 

ellipsoidal regime due to a hindrance effect of multiple bubbles (see equation (4.18)) whereas 

a lower drag value has been typically observed in the spherical cap regime due to the 

acceleration of bubbles in the wake of preceding bubbles (see equation (4.19)) [184]. The 

correction terms for these effects in the equations above were expressed in terms of the 

volume fraction of the gas phase (𝛼𝑔). 

 

Finally, the impact of freestream turbulence on the effective drag was also considered. This 

involved the accounting for observations that turbulent eddies interact with particles thus 

perturbing their motion. This has often been reported to result in a higher drag value [185–

189] and various models have been proposed to account for this effect. Such models typically 

propose correction factors that are related to different measures of turbulence such as the 

turbulence viscosity, the Kolmogoroff’s length scale and turbulence time-scales 

[33,35,110,185,190]. The model by Lane et al. [110] was adopted as it represented the current 

state-of-art. This model proposes a correction for the effective drag in terms of the particle’s 

relaxation time (𝜏𝑝) and the integral timescale of turbulence (𝜏𝐿). This is given in equation 

(4.20) [110].  

 

𝐶𝐷

𝐶𝐷,∞
= ψ ∙ [1 − 1.4 (

𝜏𝑝

𝜏𝐿
)
0.7

exp (−0.6 
𝜏𝑝

𝜏𝐿
)]

−2

 (4.20)  
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In the equation above, 𝐶𝐷,∞ represented the drag coefficient in a stagnant liquid (equations 

(4.17) – (4.19)). Furthermore, a tuning constant, ψ, with a value 0 < ψ ≤ 1 was introduced to 

moderate the effect of this correction factor. This was necessary due to the uncertainty 

involved in the application of this correlation to the case of large bubbles (𝑑𝑔 = 3 mm) 

whereas the correlation was derived based on data for small particles (≤ 1 mm) [33,110]. The 

impact of this tuning constant has been reported in later chapters.  

 

4.2.2  Gas-liquid-liquid system 

 

Two modelling approaches were investigated in the extension of the CFD model from the 2-

phase gas-liquid system to the 3-phase gas-liquid-liquid system. The first approach was based 

on the hypothesis that the alkane phase acts through a change in the effective fluid properties 

of the system such as density and viscosity [9,170]. Thus, the alkane-aqueous mixture was 

assumed to be a pseudo-homogeneous liquid. This resulted in an essentially 2-phase system 

and was referred to as the pseudo-homogeneous Euler-Euler (PH-EE) approach (see Figure 

4.1). The second approach, on the other hand, involved the simulation of the three individual 

phases using the Eulerian framework (see Figure 4.1). This allowed for the assessment of the 

importance of interfacial interaction terms between the continuous aqueous phase and the 

dispersed phases (air and alkane). This approach was referred to as the Euler-Euler-Euler 

approach (EEE). 

 

 

Figure 4.1 (A) The pseudo-homogenous Euler-Euler (PH-EE) modelling approach with empty 

circles representing the gas phase and the gridded background representing the alkane-

aqueous mixture. (B) The Euler-Euler-Euler (EEE) modelling approach with empty circles 

representing the gas phase, filled circles representing the alkane phase and the grey 

background representing the aqueous phase. Adapted from Gakingo et al. [191].  
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For both the PH-EE and the EEE modelling approaches, the interfacial drag was specified 

based on equations (4.3) and (4.4). For the air-aqueous interfacial drag, the bubble diameter 

was retained as 3 mm. This represented a slight over-prediction given that Correia at al. [14] 

measured diameters between 2.9 mm (2.5% alkane) and 2.6mm (20% alkane) at 600 rpm and 

between 2.5 mm (2.5% alkane) and 2.1 mm (20% alkane) at 800 rpm. The influence of this 

assumption has been reported on in Chapter 6.0. 

 

With regards to the drag coefficient, equations (4.17) – (4.20) were employed for the air-

aqueous interface. Values of the effective density and viscosity were used with these 

equations for the simulations based on the PH-EE approach. However, for simulations based 

on the EEE approach, the density and viscosity of water were employed.  

 

Interfacial drag between the aqueous phase and the alkane phase was also considered for 

simulations based on the EEE approach. In this case, estimates of the diameters of alkane 

droplets (𝑑𝑜) were obtained based on equation (4.21) [53]. In this equation, 𝜎𝑜𝑤 represented 

the interfacial tension between the aqueous and the alkane phase with the latter denoted by 

subscript 𝑜. The interfacial tension was assumed to be equal to 40 mN/m [132]. Other 

parameters considered by this equation included the diameter of the impeller (D𝑖𝑚𝑝), the 

rotational speed (N) and the average volume fraction of the alkane phase (𝛼𝑜,𝑎𝑣𝑒). Diameters 

in the range of 50 – 100 µm were obtained. These could not be validated since the diameters 

of the alkane droplets have not been previously measured [14,164].   

 

The drag coefficient for the alkane-aqueous interface was given by the Schiller-Naumann 

model that is applicable for small spherical particles with a rigid interface [54]. The model 

equations were as specified by equations (4.22) and (4.23), with 𝑅𝑒 being the droplet’s 

Reynolds number. Furthermore, the influence of turbulence on drag was neglected due to the 

small size of the alkane droplets. This was justified based on experimental observations that 

the drag force is minimally impacted by turbulence for particles with a diameter < 10𝜆, 

where 𝜆 is the Kolmogoroff’s length scale [185,186]. A value of 30 µm was computed for the 

latter based on volume-averaged variables in comparison with a maximum droplet diameter of 

100 µm. Thus, the alkane droplet size was lower than the set criteria (10𝜆) and the impact of 

turbulence on drag could be neglected. 
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𝑑𝑜

D𝑖𝑚𝑝
= 0.047(1 + 2.5𝛼𝑜,𝑎𝑣𝑒) (

𝜎𝑜𝑤

𝜌𝑤N2D𝑖𝑚𝑝
3 )

0.6

 (4.21)  

𝐶𝐷,∞ = {
24

𝑅𝑒
(1 + 0.15𝑅𝑒0.687)           𝑅𝑒 ≤ 1000

0.44                                          𝑅𝑒 > 1000

  (4.22)  

𝑅𝑒 =  
𝜌𝑤|V̅𝑜 − V̅𝑤|𝑑𝑜

𝜇𝑤
 (4.23)  

   

4.2.3  Gas-liquid-liquid-solid system 

 

For the 4-phase system, the previously developed 3-phase CFD model was employed with 

properties modified so as to account for the presence of the yeast cells. Such modifications 

included, for example, considering a possible change in the effective fluid properties. Given 

that the alkane phase, similar to the yeast cells, had been previously proposed to affect these 

properties, it was necessary to examine which of the additional phases had the primary 

influence.  

 

With regards to the effective viscosity, it was noted that the addition of the alkane phase to the 

aqueous phase resulted in values of between 1 mPa s (0% alkane) and 1.95 mPa s (20% 

alkane) [14]. In contrast, the addition of non-viable yeast cells in the range 0 – 3.25 g/L 

resulted in an insignificant change [192]. This trend was expected to remain valid at yeast 

concentrations of up to 10 g/L as employed in the validation case studies [164]. Furthermore, 

investigations into the appropriate modelling approach in the 3-phase system illustrated that 

the reactor’s hydrodynamics were more sensitive to turbulence than to the effective viscosity 

(see Chapter 6.0). Thus, the influence of the yeast phase on the effective viscosity could be 

neglected. 

 

With regards to the coalescing behaviour of the medium, the yeast cells were observed to 

have a greater effect than the alkane phase. Whereas bubble diameters in the gas-liquid-liquid 

system remained in the range of 2 – 3 mm [14], the bubble diameters in the gas-liquid-liquid-

solid system were of the order of  ≤ 1 mm (see Figure 4.2). It was further observed that the 

bubble diameters in the 4-phase system could be fitted by an empirical correlation suggested 

for a 2-phase gas-liquid system with a non-coalescing medium [46] as illustrated in Figure 

4.2. The empirical correlation was as given in equation (4.24), with the constant Γ set to 

0.0109 instead of 0.014 as originally proposed [46] based on a minimization of the sum of 
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squared errors. The exponent 𝛽, on the other hand, was retained as -0.37 [46]. The relatively 

good fit of this correlation derived for a 2-phase gas-liquid system suggested that the yeast 

cells made the medium non-coalescing.  

 

𝑑𝑔 = Γ ∙ (
𝑃𝑔

𝑉
)
𝛽

 (4.24)  

 

 

Figure 4.2: Predicted versus experimental bubble diameters. The experimental values (in 

symbols) represent values averaged over the alkane concentration and yeast loading, with the 

error bars representing the maximum and minimum values. Adapted from Gakingo et al. 

[193] 

 

The good fit of bubble diameters to equation (4.24) also suggested that this correlation could 

be used as a first approximation in the modelling of such 4-phase systems. Such a use of this 

equation would be advantageous in that it would preclude the need for a prior knowledge of 

the bubble diameters. Consequently, equation (4.24) was adopted for further simulations. It 

must be noted, however, that this equation was only sensitive to changes in the agitation rate 

(through the 𝑃𝑔 𝑉⁄  term). It did not account for the changes in the yeast loading or the alkane 

concentration. Given that the impact of the alkane concentration on the bubble diameter was 

expected to be minimal (as reviewed above), this did not present a challenge. However, the 

inability of the equation to resolve changes in the yeast loading meant that the CFD model 

would be similarly limited. This has been considered in the analysis presented in Chapter 7.0. 
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With the bubble diameters for the 4-phase system specified, the next step was to specify the 

drag coefficient at the air-aqueous interface. The latter was given as shown in equation (4.25). 

In this equation, 𝐶𝐷,∞ was given by Schiller Naumann model due to the small size of the air 

bubbles. This model has been previously specified in equations (4.22) and (4.23). However, in 

these equations, the values of the alkane phase diameter (𝑑𝑜) and velocity (V̅𝑜) were replaced 

with those of the gas phase.  

 

𝐶𝐷

𝐶𝐷,∞
= 𝑓 (

𝜏𝑝

𝜏𝐿
) ∙ 𝑔(𝛼𝑔) (4.25)  

𝑔(𝛼𝑔) = exp (3.64𝛼𝑔) + 𝛼𝑔
0.864 (4.26)  

 

The drag coefficient was also modified to account for the effect of turbulence and high gas 

volume fraction. As pertains the effect of turbulence, the model by Lane et al. [110] was 

employed as represented by function 𝑓(𝜏𝑝/𝜏𝐿) (see equation (4.20)). It is to be noted that the 

constant ψ introduced into equation (4.20) in section 4.2.1 was set to unity since the 

prevailing bubble sizes were in the order of 1 mm. This was in agreement with the size range 

for which this model was derived [110]. 

 

The effect of high gas volume fraction (𝛼𝑔) or particle-particle interaction was captured by the 

function 𝑔(𝛼𝑔) as expanded in equation (4.26) [182,194]. This correlation predicted an 

increase in effective drag with increase in gas volume fraction. This was based on 

observations in literature that the motion of small particles tends to be hindered by 

neighbouring particles [182,194,195] since they (unlike large particles) do not exert a 

dominating stress field in their immediate neighbourhood [196].  

 

Finally, the droplet diameter and drag coefficient for the alkane-aqueous pair were specified 

based on the equations given in the previous section (see equations (4.21) – (4.23)). As 

pertains the droplet size, a lack of experimental measurements [16,164] prevented a proper 

assessment of the possible influence of the yeast cells at the alkane-aqueous interface. Thus, 

as a first approximation, equation (4.21) was employed with the interfacial tension retained as 

40 mN/m [132]. This gave droplets in the size range of 45 – 120 µm in line with the agitation 

rates considered. For the drag coefficient, on the other hand, the Schiller-Naumann model 

[54] was employed given the small size of the alkane droplets.  
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4.3 Model equations for oxygen transfer 

 

In the modelling of oxygen transfer, a number of simplifying assumptions were made. The 

first assumption entailed the treatment of the hydrodynamics of the reactor and the oxygen 

transfer within the reactor as decoupled/independent problems. This was in line with standard 

experimental procedure where time is allowed for the establishment of hydrodynamics and 

the equilibrating of the bubble break up and coalescence phenomenon prior to measurements 

[14]. This assumption allowed for a solution of the spatially distributed phase hold ups and 

velocity fields in the reactor followed by a solution of the oxygen transfer equations based on 

the generated information.  

 

The second assumption touched on partitioning of the dissolved oxygen concentration 

between the alkane phase and aqueous phase in the bulk of the reactor. It was assumed that 

equilibrium would exist and this could be justified based on the small size of alkane droplets 

that leads to a high interfacial area and consequently fast mass transfer across these phases 

[130]. This assumption implied that for a full description of the oxygen transfer problem in 

the bulk of the reactor, it was sufficient to consider oxygen transfer in only two phases – the 

gas phase and the aqueous phase. Accordingly, species equations for oxygen transfer were 

posed as given in equations (4.27) and (4.28). 

 

𝐷

𝐷𝑡
(𝛼𝑤𝐶𝑤) = − ∇ ∙ (𝛼𝑤𝐽�̅�) + 𝐾𝐿𝑎

 ′(𝐶𝑤
∗ − 𝐶𝑤) (4.27)  

𝐷

𝐷𝑡
(𝛼𝑔𝐶𝑔) = − ∇ ∙ (𝛼𝑔𝐽�̅�) − 𝐾𝐿𝑎

 ′(𝐶𝑤
∗ − 𝐶𝑤) (4.28)  

 

In these equations, 𝐶 represented the molar concentration of oxygen with subscripts 𝑤 and 𝑔 

representing the aqueous and gas phases respectively. The total diffusive flux of oxygen 

comprising of both molecular and turbulent fluxes was represented by  𝐽.̅ The oxygen transfer 

rate across the gas phase and the aqueous phase was a product of the overall volumetric mass 

transfer coefficient (𝐾𝐿𝑎
 ′) and the concentration driving force (𝐶𝑤

∗ − 𝐶𝑤). The overall 

volumetric mass transfer coefficient was defined based on an assumption of negligible mass 

transfer resistance in the gas phase (refer to Figure 2.1). This assumption, commonly used in 

experimental studies, has been recently investigated by Laakkonen et al. [197] for a stirred 

tank operating at similar power inputs to those used in this work (0.3 – 4.4 W/kg). Laakkonen 

et al. [197] reported that the gas phase offered minimal resistance to the mass transfer process 
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despite considering the cases of evaporation of water into the gas bubbles and nitrogen 

counter-diffusion.  

 

The overall volumetric mass transfer coefficient was also modified to reflect the conditions at 

the gas-aqueous interface in the presence of additional phases. Possible effects of the 

additional phases have already been reviewed in Chapter 2.0. In addition, proposed 

formulations for 𝐾𝐿𝑎
 ′ were given in Chapter 3.0 as illustrated in equation (4.29). In the next 

sections, a further discussion on modelling of the mass transfer process at the interface is 

given for 2-phase, 3-phase and 4-phase systems respectively.   

 

𝐾𝐿𝑎
 ′ ≈ 𝐸′ ∙ 𝐾𝐿𝑎 𝛼𝑜=0 = 𝐸′ ∙ Λ ∙  𝐷𝜂 (

𝜖

𝜐
)
𝛾

∙ (
6𝛼𝑔

𝑑𝑔
) ;              𝛼𝑔 < 0.3 (4.29)  

 

4.3.1 Gas-liquid system 

 

In the absence of both the alkane phase and the solid phase, equation (4.29) reduced to the 

eddy cell model [59]. In this case, the enhancement factor (𝐸′) took on a value of unity while 

the exponents 𝜂 and 𝛾 took on the values 0.5 and 0.25 respectively. The diffusivity of oxygen 

in the aqueous phase, represented by 𝐷, took on the value 2.1 x 10-9 m2/s [175] whereas the 

constant Λ was set to 0.523 [63].  

 

The definition of the interfacial area (hence 𝐾𝐿𝑎
 ′) in equation (4.29) was limited to the bulk 

of the reactor. This is a region characterised by low volume fraction of the gas phase. Regions 

of high gas volume fraction (𝛼𝑔 → 1) also exist and these include areas behind the impeller 

blades where gas accumulates due to pressure differences [198]. Such regions tend to be 

characterised by large air bubbles due to increased coalescence [110]. However, the use of a 

constant bubble diameter (𝑑𝑔 = 3 mm) in the simulations implied that the interfacial area 

(hence 𝐾𝐿𝑎
 ′) would be over-predicted in these regions. To minimise this error, the interfacial 

area was delineated to regions with 𝛼𝑔 < 0.3. This value, chosen in line with a previous study 

[110], was higher than the measured average gas hold up values [14]. Thus, it was expected to 

represent the larger portion or the bulk of the reactor. This notwithstanding, the impact of this 

definition has been investigated and is commented on in later chapters.   
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4.3.2 Gas-liquid-liquid system 

 

The enhancement factor (𝐸′) in equation (4.29) was employed to capture two competing 

factors that the alkane phase can introduce – an enhancement due to new mass transfer 

pathways and an apparent decrease in the mass transfer rate due to a greater absorption 

capacity (solubility) of the liquid-liquid mixture. The various possible mass transfer pathways 

were introduced in Chapter 2.0 and these included parallel mass transfer and series mass 

transfer (with or without shuttling). Based on an initial examination of experimental data 

(refer to Chapter 3.0), series mass transfer with shuttling (MT-SS) or without shuttling (MT-

S) was seen to be the most likely mass transfer pathway. Consequently, mass transfer at the 

interface was modelled based on these two scenarios as reflected in equation (4.30). In this 

equation, the volume fraction of the alkane phase based on the total volume in a gassed 

reactor (𝛼𝑜) as opposed to that based on the total volume in an un-gassed reactor as specified 

in the definition in Chapter 3.0. 

 

𝐸′ =
1

(1 + 𝛼𝑜(𝑚 − 1))𝜑
 (4.30)  

 

It is to be noted that the choosing between either parallel or series mass transfer pathways 

represented the choosing of idealised models of what happens at the interface. A more 

fundamental methodology would have been to numerically solve an advective-diffusion 

equation at the scale of the gas-liquid interface as has been done by Wenmakers et al. [92]. 

However, the CFD methodology employed in this study did not resolve the spatial details of 

the tank down to the scales of the bubbles, droplets and gas-liquid interfaces. This would have 

been unfeasible given that the objective was to model oxygen transfer in the entire tank. Thus, 

it was necessary to use idealised models of what happens at the interface.  

 

4.3.3 Gas-liquid-liquid-solid system 

 

For this system, various possible effects of the non-viable yeast cells on the mass transfer 

process were considered. These included the possible impact of the yeast cells on the effective 

fluid properties plus the possible interaction of the latter with gas-liquid interface (collision, 

attachment and detachment). With regards to the effective fluid properties, minimal changes 

in the effective viscosity (refer to section 4.2.3) and effective diffusivity [83] were observed 
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given the low cell concentrations used. However, particle-bubble interaction could still have a 

dominant effect on the mass transfer process. This has been commented on in Chapter 7.0.  

 

4.4 Bioreactor specifications and experimental design 

 

4.4.1 Bioreactor specifications 

 

Three-dimensional simulations of a New Brunswick Bioflo bioreactor were set up and run. 

Figure 4.3 illustrates a 2D cross-section of this bioreactor and highlights the major 

components modelled such as the baffles, a ring sparger and two Rushton turbine impellers. 

Figure 4.3 also illustrates the dimensions of the components considered such as a tank 

diameter of 177 mm and a tank height of 220 mm. The dimensions and positioning of the 

impellers have also been given. With regards to the baffles, the latter extended along the 

vertical walls of the reactor and had a width of 22 mm and a thickness of 1.5 mm. The ring 

sparger, on the other hand, had an inner and outer diameter of 38 mm and 50 mm respectively 

and was placed 18 mm above the base of the reactor. It provided aeration at a rate of 0.8 vvm 

through seven openings of diameter 1 mm each (five on top, two on the bottom side).  

Figure 4.3: Schematic of reactor illustrating cross-sectional details (centre image) plus details 

of impeller (right-side image).  Numbered symbols on cross-section (1 – 5) represent probe 

points where oxygen concentration was tracked in the simulation. Adapted from Gakingo et 

al. [193] 

1 2 3 
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4.4.2 Materials 

 

The multiphase medium employed for the gas-liquid-liquid simulations comprised of water 

(𝜌𝑤 = 998 kg/m3, 𝜇𝑤 = 1 mPa s), air (𝜌𝑔 = 1.23 kg/m3, 𝜇𝑔 = 0.02 mPa s) and an n-C10–13 

alkane cut (𝜌𝑜 = 743 kg/m3, 𝜇𝑜 = 1.4 mPa s) [14]. For the gas-liquid-liquid-solid simulations, 

an n-C13–21 alkane cut with an estimated density of 752 kg/m3 and viscosity of 2.74 mPa s 

[199,200] was employed in addition to the non-viable yeast cells [164]. The diffusivity of 

oxygen in these alkane cuts was expected to be of the same order of magnitude as that in 

water [175]. However, oxygen was more soluble in the alkane cuts with the solubility ratio 

(𝑚 = 𝐶𝑜
∗/𝐶𝑤

∗ ) estimated to have a value of about 8 [40,175]. 

 

Simulations of the 3-phase system by the PH-EE approach necessitated the specification of 

effective fluid properties. The effective densities (𝜌𝑒𝑓𝑓) of the alkane-aqueous mixture were 

obtained by volume-averaging based on the total liquid volume in an un-gassed reactor (see 

equation (4.31)). On the other hand, the effective viscosities were obtained from 

measurements performed by Correia et al. [14]. The latter measured the viscosity of pressure-

homogenised samples of the mixture using an Anton Paar rheometer [14]. The variation of 

these fluid properties with alkane concentration is illustrated in Figure 4.4.  

 

𝜌𝑒𝑓𝑓 = (1 − 𝑥)𝜌𝑤 + 𝑥𝜌𝑜 (4.31)  

 

 

Figure 4.4: Variation of effective fluid properties with alkane concentration [14]. 
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4.4.3 Experimental design 

 

Simulations were run at process conditions similar to those employed in the case studies 

considered [14,16,164]. For the 3-phase system, the alkane concentration was varied between 

0% and 20%, with two agitation rates modelled as illustrated in Table 4.2. Though higher 

agitation rates were experimentally investigated [14], only those indicated in Table 4.2 were 

considered since measurements of 𝐾𝐿𝑎 ′ by the pressure step method and the dynamic 

gassing-out method at these conditions gave values that were within 18% of each other [25]. 

Given that the 𝐾𝐿𝑎 ′ results by the dynamic gassing-out method are prone to under-prediction 

[25], the values by this method were used as lower bound estimates in the validation of CFD-

predicted values. On the other hand, the 𝐾𝐿𝑎 ′ results by the pressure step method were used 

as upper bound estimates.  

 

For the 4-phase system, Hollis & Clarke [16,164] employed a central composite design to 

investigate the influence of process conditions on oxygen transfer. Their experimental 

conditions were as listed in Table 4.3. Given that these authors [16,164] used the dynamic 

gassing-out method, their results have been employed as lower bound estimates in the 

validation of the CFD results as noted in Chapter 7.0.  

 

Table 4.2: Experimental conditions for the 3-phase system [14]   

Agitation rate (rpm) Alkane volume fraction (%) 

600 

0.0 

2.5 

5.0 

10.0 

20.0 

800 

0.0 

2.5 

5.0 

10.0 

20.0 
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Table 4.3: Experimental conditions for the 4-phase system [16,164] 

Agitation rate (rpm) 
Alkane volume 

fraction (%) 

Yeast loading 

(g/L) 

450 11.0 5.5 

561 

5.7 
2.8 

8.2 

16.4 
2.8 

8.2 

725 

2.0 5.5 

11.0 

1.0 

5.5 

10.0 

20.0 5.5 

888 

5.7 
2.8 

8.2 

16.4 
2.8 

8.2 

1000 11.0 5.5 

 

4.5 Numerical implementation and model validation 

 

4.5.1 Geometry and meshing 

  

The solution domain of the CFD model consisted of the 3D bioreactor with no symmetry 

assumed. The geometry of the tank was set up using ANSYS DesignModeler package [180]. 

As illustrated in Figure 4.3, only the major internal components of the reactor were captured. 

In addition, two cylindrical sub-domains were defined around the impellers (see Figure 4.5). 

These sub-domains had a radius and thickness that were 1.5 times the respective dimensions 

of the impellers. In these sub-domains, the equations of flow were defined (and solved for) in 

a rotating frame of reference. In other regions of the reactor, however, a stationary frame of 

reference was employed. This was in accordance with the MRF approach to resolving the 

impeller-baffle interaction.  
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Figure 4.5: Cross-sectional plane illustrating mixed mesh employed (tetrahedrals and 

hexahedrals). The demarcations with red boundaries illustrate subdomains for the multiple 

reference frame model.  

 

Once the tank geometry was set up, it was transferred to the ANSYS Meshing package [180] 

to be discretised or meshed. The objective of this step was to obtain computational cells in 

which the approximate (numerical) equations of flow would be solved for. The meshing 

procedure was carried out with a few guiding principles. First, the computational cells were 

concentrated in the regions of the tank where the highest gradients in velocity were expected. 

Such regions included the areas near the impellers as illustrated in Figure 4.5. Second, the 

quality of the computational cells generated was considered since poor quality meshes can 

contribute to error in the solution process [180]. Metrics such as the cell skewness were 

employed to assess quality. For the meshes generated (see Chapter 5.0), mean cell skewness 

values of 0.34 – 0.36 were obtained with an average standard deviation of 0.17 and maximum 

values of 0.79 – 0.85.  These were deemed to be of sufficiently good quality (skewness < 1) 

[180].  
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4.5.2 Solver set up and boundary conditions 

 

With the geometry and meshing done, the next step was to set up the solver in the ANSYS 

Fluent package [180]. This involved the specification of the model equations given in sections 

4.2 (for the hydrodynamics) and 4.3 (for oxygen transfer). In addition, the material properties 

of the phases being simulated as well as the boundary conditions of the domain were 

specified. With regards to the latter, the solid surfaces of the reactor were treated using the no-

slip wall boundary condition. Furthermore, the scalable wall function model was employed to 

approximate turbulence parameters near these walls.  

 

The top surface of the reactor was modelled differently according to the phases being 

simulated. For the single phase simulations, it was treated with a free-slip wall boundary 

condition so as to mimic the interaction of the liquid in the reactor with the air above it. For 

the multiphase simulations, on the other hand, two approaches were employed to mimic the 

escape of air through this surface. In the first approach, a velocity-inlet boundary condition 

was assumed with the normal velocities of the phases fixed. For the gas phase, the normal 

velocity was approximated by the terminal velocity in a stagnant liquid computed based on 

the prevailing bubble size [27,33]. This could be justified based on the assumption of low 

volume fractions of the dispersed phases (air and alkane) near the top surface plus quiescent 

conditions in these regions that allow for gas bubbles to attain to their terminal velocities [33]. 

On the other hand, the normal velocity for the aqueous and alkane phases was set to zero 

given that they did not ideally exit the reactor. This approach was denoted as BC1. 

 

In the second approach, an additional headspace was included at the top of the reactor 

geometry and this served as a degassing zone. The height of this headspace was fixed at 100 

mm and at its top end, a pressure-outlet boundary condition was specified. This was a more 

accurate representation of gas exit through the top and was denoted as BC2. However, the 

extra headspace increased the computational expense thus making BC1 more attractive. 

Differences in terms of the predictions of these two approaches have been assessed and are 

presented in Chapter 6.0. 

 

As pertains to the gas inlet through the sparger holes, a velocity-inlet boundary condition was 

employed. In this case, the volume fraction of the gas phase was set to unity. On the other 

hand, the velocity of the gas phase was computed so as to maintain at total gas flow rate of 

0.8 vvm. For the remaining phases, the volume fraction was set to zero.  
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Finally, the MRF approach was employed to resolve the impeller-baffle interaction. Steady 

state values (of the mean velocity) were expected based on this approach. However, transient 

motion was observed to occur. This was characterised by low frequency cyclic motion that 

was super-imposed on the mean velocity patterns (see Chapter 5.0). The cyclic motion 

represented transient macro-instabilities that can be generated due to, among other reasons, 

the configuration of impellers in multi-impeller stirred tank reactors [201–203]. As a result of 

these observations, time-stepping algorithms were used in conjunction with the MRF 

approach. This necessitated the specification of initial conditions. The latter included zero 

velocities for the respective phases with the exception of the gas phase at the inlet, an even 

distribution of the alkane phase within the reactor and the absence of the gas phase from the 

reactor. The turbulence equations, on the other hand, were initialized with low values of the 

turbulent kinetic energy (0.01 m2/s2) and its dissipation rate (0.001 m2/s3) [204].  

 

4.5.3 Solution procedure 

 

With the solver set up as previously specified, it was necessary to select the discretisation 

technique for the spatial and temporal terms in the equations of flow. With regards to the 

single phase simulations, the convective spatial terms were resolved with a second order 

upwind scheme [180] for the momentum equations whereas a power law scheme [180] was 

used for the turbulence equations. For the multiphase simulations, on the other hand, a first 

order upwind scheme [180] was employed. The gave greater stability to the solution process 

though it was not as accurate as second order schemes. As pertains the diffusive spatial terms, 

a Green-Gauss node based scheme was employed for all simulations thus giving second order 

accuracy [180].  

 

With regards to time-stepping, a bounded second order implicit scheme [180] was employed 

for the single phase simulations. However, for the multiphase simulations, a first order 

implicit scheme was employed giving greater stability [180]. Time-steps of 0.001s and 0.01s 

were employed for the hydrodynamics and oxygen transfer equations respectively. A larger 

time-step was employed for the oxygen transfer problem since its simulations ran for a longer 

duration (250 seconds in comparison to 10 – 30 seconds for the hydrodynamics). It is to be 

noted that the hydrodynamics and oxygen transfer problems were treated as 

independent/decoupled problems. Consequently, different time-steps could be employed for 

the two problems without affecting the overall solution.   
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The discretised systems of equations were solved on the Stellenbosch University High 

Performance Computing cluster [205]. The SIMPLE (single phase) and PC-SIMPLE 

(multiphase) algorithms were employed [180]. Convergence of the solution process was 

examined based on the residuals, an overall balance of the gas inlet and outlet and the time 

evolution of volume-averaged variables such as the gas hold up.  

 

As pertains the residuals, convergence was generally assumed to occur when the residuals 

dropped to less than 10−3. However, for single phase simulations, the residuals dropped 

quickly after the initial time steps and could attain values as low as 10−6. Thus, to permit for 

greater convergence in single phase simulations, the residuals’ check was turned off and a 

maximum of 15 iterations/timestep was enforced. For the multiphase simulations, on the other 

hand, the residuals of the continuity (mass) equations remained in the order 𝑂(10−4) after the 

initial time-steps whereas the residuals for other equations were at least an order of magnitude 

lower. For the oxygen transfer equations, the residuals were observed to attain values as low 

as or lower than 10−6. 

  

4.5.4 Validation 

 

The implemented model was validated by assessing it against both hydrodynamic and oxygen 

transfer parameters. In the single phase and 2-phase systems, the hydrodynamics were 

assessed based on the non-dimensionalised power and pumping numbers for which 

established values could be obtained from literature. The power number (𝑁𝑃) represented the 

power input through the impeller action whereas the pumping number (𝑁𝑞) represented the 

pumping capacity of the impellers. The computation of these numbers was as given in 

equations (4.32) and (4.33). In these equations, the impeller diameter and rotational speed 

were represented by D𝑖𝑚𝑝 and N respectively. Furthermore, the torque on the impellers and 

the radial mean velocity of the aqueous phase were represented by M and �⃗� 𝑤,𝑟𝑎𝑑 respectively. 

The integration in equation (4.33) was performed over height of the impeller (ℎ), with 𝑟 

referring to its radial dimensions. Other terms were as previously defined. 

 

𝑁𝑃 =
P

𝜌𝑤N3D𝑖𝑚𝑝
5  ;    P = 2𝜋NM (4.32)  
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𝑁𝑞 =
∫ 𝛼𝑤2𝜋𝑟V̅𝑤,𝑟𝑎𝑑𝑑𝑧

ℎ/2

−ℎ/2

ND𝑖𝑚𝑝
3  

(4.33)  

 

With regards to oxygen transfer in the multiphase systems, validation was done by 

considering the gas hold up and 𝐾𝐿𝑎
 ′ values. Experimental measurements of these values had 

been previously obtained by the dispersion height technique (gas hold up) and either the 

dynamic gassing-out method or the pressure step method (𝐾𝐿𝑎
 ′) [14,16,164]. These 

experimental values represented global (or volume-averaged) values. The CFD model, on the 

other hand, predicted local or spatially distributed values. Thus, to enable comparison, there 

was a need to generate global values from the CFD-predicted local values.  

 

A volume-averaging approach was employed to generate global gas hold up values from the 

CFD-predicted local values. For 𝐾𝐿𝑎
 ′ values, this approach could be similarly adopted. 

However, Gimbun et al. [22] have argued that this approach does not take into account the 

impact of local concentration gradients on the average 𝐾𝐿𝑎
 ′ values. These authors 

recommend the tracking of oxygen concentration in the aqueous phase and the use of a 

volume-averaged oxygen concentration in conjunction with equation (2.20) (repeated below) 

to compute the average 𝐾𝐿𝑎
 ′ [22]. This is analogous to the analysis performed in experiments 

employing dissolved oxygen probes (the dynamic gassing-out method).  

 

𝑑𝐶𝑤

𝑑𝑡
= 𝐾𝐿𝑎

 ′(𝐶𝑤
∗ − 𝐶𝑤) 

(2.20)  

 

The approach proposed by Gimbun et al. [22] was adopted for this study. The oxygen 

concentration in the aqueous phase was tracked at several points as illustrated by Figure 4.3 

(centre image). Both regions of the impeller discharge and the bulk of the reactor were 

considered. It was observed that the oxygen concentration was similar at these various points 

due to rapid oxygen transport across the reactor given its scale. In addition, the oxygen 

concentration data obtained from these points corresponded to the volume-averaged oxygen 

concentration of the entire tank. Consequently, the analysis of oxygen concentration data from 

an individual point (point 4 on Figure 4.3 (centre image)) was considered to give a 

representative/global 𝐾𝐿𝑎
 ′ value for the tank. This approach was similar to that employed in 

the experiments [14,16,164].  
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5.0 CFD model validation 

 

This chapter presents the results of the development and validation of the CFD model 

proposed for the single phase and 2-phase gas-liquid systems in line with objectives 2 and 3 

of this study. Validation has been carried out by comparing CFD-predicted hydrodynamic and 

mass transfer parameters to established values in literature. Furthermore, the discussion has 

highlighted the presence of macro-instabilities (MI) in the flow patterns that were observed 

based on the use of time-stepping with the MRF technique. The simulation/capture of MIs 

based on this technique has not been previously reported in literature.  

 

A portion of the results presented in this chapter were communicated in a 2020 paper 

published in the Biochemical Engineering Journal [191].  

 

5.1 Mesh independence study  

 

As a starting point to the validation process, the CFD model for the single phase system was 

run on several meshes of consecutively smaller sizes to test whether the results predicted were 

independent of the mesh size. The meshes generated varied in total cell count from about 

400,000 to about 1,200,000 computational cells (see Table 5.1). An increase in cell count 

represented an increase in accuracy though this was associated with an increase in 

computational cost. Thus, a secondary objective of this investigation was to identify a mesh 

that would give reasonable accuracy at reasonable cost. This was necessary given that more 

computationally intensive multiphase simulations would need to be carried out.   

 

To assess mesh independence, two parameters were monitored. These were the power number 

(see equation (4.32)) and the volume-averaged energy dissipation rate. The power number 

was taken as representative of the mean flow in the reactor whereas the energy dissipation rate 

was taken as a representative of the turbulence. The variation of these parameters with the 

mesh density is illustrated in Figure 5.1. 

 

Table 5.1: Computational meshes employed during mesh independence study. 

Mesh label M1 M2 M3 M4 

Total cell count 400,413 552,700 770,054 1,233,722 
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Figure 5.1: Variation of the power number and volume-averaged energy dissipation rate with 

the mesh density at 600 rpm. Adapted from Gakingo et al. [191]. 

 

Figure 5.1 shows that the power number was essentially constant over the range of the mesh 

densities. A slight drop (3% change) was noted between meshes M2 and M3 but this was 

considered to be insignificant. The volume-averaged energy dissipation rate (𝜖𝑤,𝑎𝑣𝑒), on the 

other hand, showed greater sensitivity to the variation in mesh density. It was observed that 

𝜖𝑤,𝑎𝑣𝑒 increased with an increase in the total cell count. In particular, 𝜖𝑤,𝑎𝑣𝑒 increased by 

14%, 10% and 10% between meshes M1 and M2, meshes M2 and M3 and meshes M3 and 

M4 respectively. The change in total cell count between these meshes was approximately 

40%, with the exception being between meshes M3 and M4 (60% change in cell count). Thus, 

it could be concluded that though 𝜖𝑤,𝑎𝑣𝑒 was increasing with increase in total cell count, the 

rate of increase was reducing. This implied that at higher mesh densities than those tested, the 

curve of 𝜖𝑤,𝑎𝑣𝑒 would flatten out thus achieving true mesh independence.   

 

The above observations were in line with findings in literature. It has been previously 

reported that the mean flow velocities in a stirred tank can be adequately captured on a coarse 

mesh [102,103,206]. This explained the observed mesh-independence of the power number. 

However, 𝜖𝑤,𝑎𝑣𝑒 was not truly mesh-independent. Rather, finer meshes with total cell counts 

in the order 𝑂(106) and above would be required to fully resolve turbulence [102,103,206]. It 

should be noted, all the same, that the decreasing rate of increase in 𝜖𝑤,𝑎𝑣𝑒 with increase in 
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mesh density suggested that the value of 𝜖𝑤,𝑎𝑣𝑒 as simulated above was approaching its 

asymptotic limit and therefore this value was reasonably accurate.  

 

To arrive at a compromise between accuracy and computational cost, mesh M3 was adopted. 

With this mesh, hydrodynamic simulations of the 3-phase system would take on average 2 

weeks (real time) for 10 seconds (simulation time) on a 48-core, 40 GB RAM machine [205]. 

For single phase and 2-phase simulations, shorter time periods were required.   

 

5.2 Single-phase system 

 

The mean velocities obtained for the single phase system illustrated periodic variation that 

was indicative of macro-instabilities (MI) in the flow pattern. Figure 5.2 and Figure 5.3 

illustrate this variation as tracked in the axial velocity at several points in the reactor (refer to 

Figure 4.3 (centre image)). Figure 5.2 compares the variation in the upper impeller discharge 

jet (point 1) and in the bulk (point 4) on a plane at a non-dimensional radius of 0.45. On the 

other hand, Figure 5.3 compares the variation in the upper impeller discharge jet (point 3) and 

the bulk (point 5) but on a plane at a non-dimensional radius of 0.90. In both these cases, the 

radii of the planes were non-dimensionalised with respect to the radius of the tank.  

 

 

Figure 5.2: Mean axial velocity at 600 rpm. Monitor points are on a mid-baffle plane at a non-

dimensionalised radius of 0.45. 
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Figure 5.3: Mean axial velocity at 600 rpm. Monitor points are on a mid-baffle at a non-

dimensionalised radius of 0.90. 

 

It can be observed from Figure 5.2 and Figure 5.3 that the periodic variation in axial velocity 

had its highest amplitude near the impeller (point 1) and in the bulk near the wall (point 5). 

The periodic flow cycles at these points were largely in phase illustrating that the motion was 

connected, that is, that the MI extended from the impeller region to the bulk of the reactor. 

Moreover, the cyclic variation near the impeller (point 1) was indicative of “flapping” of the 

impeller discharge jet, that is, a continuous change in the discharge angle. This could be 

visually observed in the transient simulations.  

 

The variation at monitor points 3 and 4 had a lower amplitude in comparison to other points. 

In addition, the variation was out of phase with that of points 5 and 1 respectively. This 

suggested that the motion at points 3 and 4 consisted of short-lived eddies that sheared off 

from the main MI motion. In particular, the lack of a clear dominant frequency at point 3 was 

likely due to a super-position of several of these eddies.  

 

In order to better interpret the observed variation, the axial velocity data was transformed into 

frequency spectrums using the Fast Fourier transform (FFT) tool in ANSYS Fluent [180]. 

Figure 5.4 illustrates a sample of the results obtained for monitor points 1 and 4 at 600 rpm. 

The results obtained indicated that the periodic variation had dominant frequencies of 0.11 Hz 

(600 rpm) and 0.15 Hz (800 rpm), with dominance judged based on the amplitude as shown in 

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30 35 40

A
x

ia
l 

v
el

o
ci

ty
 (

m
/s

)

Time (s)

 Point 3  Point 5

Stellenbosch University https://scholar.sun.ac.za



75 

Figure 5.4. These frequencies corresponded to a non-dimensionalised frequency of 0.011 

when non-dimensionalised with respect to the agitation speeds. This value was in line with 

literature observations where various dominant non-dimensional frequencies have been 

observed for MIs such as 0.015 – 0.02 [201], 0.02 – 0.06 [207,208] and 0.186 [209,210].  

 

 
Figure 5.4: Frequency spectrum of axial velocity. 

 

It was interesting to note that MIs were captured based on the MRF technique coupled with 

time-stepping. This is a first in literature, with previous simulations capturing MIs having 

employed the sliding mesh technique coupled to either LES [208,210] or RANS [208] for 

turbulence. The MRF technique, in contrast to the sliding mesh technique, is usually taken as 

a steady state approach as it provides a “snapshot of the flow with the impellers fixed in one 

position” [103]. Thus, the capture of MIs by this technique suggested that the latter arose not 

so much due to the impeller rotation but due to the interaction of the impeller discharge jet 

with the tank walls as has been suggested by Roussinova et al. [202,210]. These authors have 

observed that as the impeller discharge jet impinges on the wall, pressure waves are generated 

and reflected backwards which serve to excite/amplify instabilities in the flow [202,210]. 

Furthermore, the authors have noted that such a mechanism is geometry-dependent and hence 

instabilities can be generated at a variety of frequencies [202,210].  

 

For stirred tanks with dual Rushton impellers, it has been observed that both stable (steady) 

and unstable (transient) mean flow patterns can be obtained depending on the inter-impeller 

spacing and the value of the off-bottom clearance of the lower impeller [26]. As an example, a  
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diverging flow pattern has been observed for tanks with a low value of the off-bottom 

clearance [26]. This flow pattern is characterised by the generation of two circulation loops by 

the upper impeller whereas the lower impeller generates a single major circulation loop [26]. 

Such a pattern was observed in the time-averaged (steady) mean velocity as shown in Figure 

5.5. Thus, the transient instabilities (MIs) were super-imposed on this time-averaged (steady) 

flow pattern.  

 

 

Figure 5.5: Time-averaged mean velocity vectors (right) and streamlines (left) at 600 rpm on 

a mid-baffle plane.  

 

The presence of MIs was also observed to result in the periodic variation of variables of 

interest such as the power number and the pumping number. For example, the total power 

number at both 600 rpm and 800 rpm was observed to oscillate between 10.7 and 11.4, with a 

time-averaged value of 11.2. This latter value could be compared against a literature value of 

9.5 that has been measured for a stable diverging flow pattern in a stirred tank with dual 

Rushton turbines [26]. In terms of the individual impellers, the upper impeller was observed 

to have a higher time-averaged power number (7.0) than the lower impeller (4.2) and this 

trend was in line with observations in literature [211]. However, the  power number of the 

upper impeller (7.0) was greater than that normally cited in literature for Rushton turbines 

(5.0) [211]. This was probably a result of differences in the size of the impellers modelled. In 

particular, the impellers had a greater disc thickness-to-impeller diameter ratio (0.17) than is 

typically reported (≤ 0.05) [211,212].  
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As noted previously, the pumping number was also observed to oscillate due to the MIs. For 

the upper impeller; maximum, minimum and time-averaged values of 0.92, 0.88 and 0.91 

were respectively obtained. The latter value was in line with what has been reported in 

literature, that is a value of 0.75 ±0.15 [26,27]. For the lower impeller, on the other hand, low 

values of the pumping number (0.12 – 0.15) were obtained because the impeller primarily 

gave an axial discharge (directed towards tank bottom) as opposed to a radial discharge (see 

Figure 5.5). In the definition of the pumping number according to equation (4.33), only the 

radial discharge was considered. 

  

5.3 Gas-liquid system 

 

Figure 5.6 presents a comparison of the time-averaged (steady) velocity vectors of the 

aqueous phase in the single phase and 2-phase system. It can be observed that these profiles 

were different. In particular, there was a dampening of velocities in the lower impeller region. 

The lower impeller’s discharge jet, which was directed towards the bottom of the tank in the 

single phase system, now encountered the gas phase which was introduced with an upwards 

momentum. The interaction of these two phases resulted in a dampening of the associated 

velocities. Moreover, the angle of the lower impeller’s discharge jet as referenced from plane 

A-A in Figure 5.6 was reduced.  

 

Changes to the upper impeller region were also observed. The discharge jet by the upper 

impeller was tilted upwards albeit slightly suggesting a lower influence of the gas phase. 

However, the circulation loops associated with this impeller were more substantially 

modified. The lower circulation loop was greater in size as demarcated in Figure 5.6 and this 

was probably the result of reduced interaction with the lower impeller’s discharge stream. 

Additionally, smaller values of velocity were observed near the top surface of the tank. This 

was probably due to a lower proportion of the upper impeller’s discharge stream being 

directed into the upper circulation loop as compared to the single phase case.  
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Figure 5.6: Comparison of time-averaged aqueous phase velocities in single phase (left) and 

2-phase (right) simulations. Velocity vectors drawn on a mid-baffle plane and capture 

conditions at 600 rpm. Adapted from Gakingo et al. [191]. 

 

The above changes were observed to translate to the associated flow parameters such as the 

power number and the pumping number. At both 600 rpm and 800 rpm, a time-averaged 

power number of 5.7 was obtained in comparison to the value of 11.2 reported for the single 

phase system. This represented a 49% drop in the power drawn. It has been reported in 

literature that the formation of gas cavities or regions of high gas volume fraction behind the 

impeller blades (see Figure 5.7) leads to lower power consumption by the impellers 

[213,214]. Furthermore, empirical correlations have been proposed to predict this decrease in 

the power drawn. For the setup considered, the correlation by Hughmark [214] predicted a 

decrease in power of 33% and 35% for 600 rpm and 800 rpm respectively. These values were 

lower than the CFD-predicted value of 49% but still in the same order of magnitude.  
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Figure 5.7: Contours of local gas hold up at 600 rpm on horizontal planes passing through the 

centres of the upper (left) and lower (right) impellers.  

 

With regards to the pumping number, lower values were obtained for the upper impeller. At 

600 rpm and 800 rpm, time-averaged values of 0.53 and 0.47 were respectively obtained. 

These represented a 42% and 48% drop in the pumping number in comparison to that of the 

single phase system (0.91). As the pumping number was indicative of the pumping capacity, 

these results illustrated a decrease in the pumping efficiency due to the formation of gas 

cavities as has been reported in literature [33]. For the lower impeller, however, a slight 

recovery in the radially-directed portion of the discharge stream (see Figure 5.6) resulted in a 

recovery of the pumping number (refer to equation (4.33)). Time-averaged values of 0.22 and 

0.25 were respectively obtained at 600 rpm and 800 rpm in comparison to a time-averaged 

value of 0.13 in the single phase case.    

 

For the 2-phase simulations, it was of interest to examine what effects, if any, the previously 

observed MIs had on mass transfer parameters such as the gas hold up. Figure 5.8 illustrates 

that the MIs resulted in periodic variation of the gas hold up once pseudo-steady state was 

achieved. This oscillation was more clearly defined at 800 rpm with the period of oscillation 

being about 3 seconds (frequency ≅ 0.33 Hz). The amplitude of oscillation of the overall gas 

hold up was about 7% of the steady state gas hold up suggesting an insignificant change. 

However, fluctuations in the local or spatially distributed gas hold up could have been more 

significant (see Figure 5.9). The observation of a shorter oscillation period than that observed 

for velocity oscillations in the single phase case (dominant frequency of 0.15 Hz at 800 rpm) 
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suggested that flow field modification arising from the presence of an additional phase could 

alter the MIs. This was further confirmed by the observations of no periodic variation (MIs) in 

3-phase simulations by the Euler-Euler-Euler (EEE) approach. In this case, the MIs were 

dissipated due to a higher turbulent viscosity in the system. 

 

 

Figure 5.8: Accumulation of volume-averaged gas hold up in tank.  

 

 

Figure 5.9: Time snapshots of contours of the local gas hold up at 600 rpm. Sequence: top, 

left then right; bottom, left then right.   
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The time-averaged gas hold up values were validated by comparing them to experimentally 

measured values [14]. This is illustrated in Figure 5.10. In this figure, the effect of turbulence 

on the effective drag and consequently the gas hold up is also included. The figure illustrates 

that when the effective drag was based on the value in a stagnant liquid (𝐶𝐷 = 𝐶𝐷,∞), an 

under-prediction in gas hold up occurred in line with observations in literature [35,110]. At 

600 rpm, the gas hold up was under-predicted by 25% whereas at 800 rpm a greater margin 

was observed, that is, a 40% under-prediction.  

 

The accounting for the effect of turbulence on the effective drag, on the other hand, led to an 

over-prediction in gas hold up. The use of equation (4.20) with constant ψ set to unity led to 

an over-prediction of 60% and 26% at 600 rpm and 800 rpm respectively. Given that equation 

(4.20) was derived based on data for particles with size ≤ 1 mm, it was hypothesised that the 

observed over-prediction arose due to the use of this equation on particles with a larger 

characteristic size (𝑑𝑔 = 3 mm) [33,110]. Consequently, the magnitude of the corrective effect 

captured by equation (4.20) was reduced by tuning the constant ψ. It was observed that a 

value of 0.5 gave sufficient results as illustrated in Figure 5.10. This value was retained for 

subsequent simulations of the 3-phase gas-liquid-liquid system since a similar bubble size was 

employed (refer to section 4.2.2). However, for the 4-phase gas-liquid-liquid-solid system the 

prevailing bubble sizes were in the range of 1 mm and thus the constant ψ was set to unity.  

Figure 5.10: Experimental versus CFD-predicted values of the volume-averaged gas hold-up. 

Adapted from Gakingo et al. [191]. 
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5.4 Summary 

 

The development and validation of CFD model for the single phase and 2-phase systems has 

revealed several insights that can be applied to future bioreactor design. Foremost, it has been 

shown that the main features of flow in a stirred tank reactor can be captured based on a CFD 

model employing a RANS-based approach for turbulence and the MRF technique for 

impeller-baffle interaction among other simplifying assumptions. The predicted time-

averaged flow and its characteristic parameters were observed to be in agreement with 

findings in literature. For example, a time-averaged power number of 11.2 was obtained for 

the single phase system in comparison to an experimentally measured value of 9.5. 

Furthermore, this number dropped to 5.7 in the 2-phase system representing a 49% drop in the 

power drawn which compared well with empirical modelling of the same (33% – 35% drop in 

power). In similar fashion, a time-averaged pumping number of 0.91 was obtained for the 

upper impeller in the single phase and this compared well with experimentally reported values 

of 0.75 ±0.15. However, for the 2-phase case, this number dropped to values of 0.53 (600 

rpm) and 0.47 (800 rpm) representing a drop in the pumping capacity in agreement with 

findings in literature. 

 

In connection with above, it has also been shown that the gas hold up in a 2-phase system can 

be adequately predicted by a CFD model using the above-mentioned simplifying assumptions 

in addition to the assumption of a constant bubble size. However, in this case, it was 

necessary to adequately account for the effect of turbulence on the effective drag experienced 

by the gas phase. A failure to consider this effect led to under-predicted gas hold up values 

whereas accounting for the same based on a correlation representing the current state-of-art 

resulted in gas hold up values that were accurate to within 22%. 

 

Finally, it has been shown that macro-instabilities (MI) in the flow of stirred tank reactors can 

be captured using the multiple reference frame (MRF) technique with time-stepping. This 

represented a first in literature given that previous simulations on MIs have relied on using the 

sliding mesh (SM) technique [208,210]. Besides this, the observation of capture of MIs by the 

MRF technique was significant since the latter technique offers a lower computational burden 

in comparison to the SM technique. Thus, future studies on MIs in stirred reactors can be 

conducted based on the MRF technique instead.  
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The presence of MIs also raised the interesting question of whether mass transfer would be 

affected by their presence. Figure 5.8 illustrated that the overall gas hold up oscillated as a 

result of the MIs. Though the amplitude of oscillation was small for the overall gas hold up, a 

look at the temporal changes in the local (spatially distributed) gas hold up values suggested 

that more significant fluctuations could occur locally (see Figure 5.9). This was significant 

since it implied that micro-organisms in a reactor experiencing MIs could be exposed to 

fluctuating concentrations of oxygen or substrate thus impacting their productivity. 
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6.0 Gas-liquid-liquid system 

 

This chapter presents a discussion of both the hydrodynamics and oxygen transfer in the 3-

phase alkane-based bioreactor and in so doing addresses itself to objectives 4, 5 and 6 of the 

study. These objectives included; the identification of the hydrodynamic changes introduced 

by the alkane phase and their incorporation into a 2-phase CFD model, the prediction of 

oxygen transfer in the 3-phase system and the validation of the same against experimental 

measurements.  

 

The findings of this chapter were communicated in a 2020 paper published in the Biochemical 

Engineering Journal [191].   

 

6.1 Hydrodynamics and gas hold up trends 

 

The influence of the alkane phase on the hydrodynamics of the bioreactor was modelled and 

investigated on the basis of two hypotheses. The first hypothesis was that the alkane phase 

would act through a change in the effective fluid properties of the system [9,170]. This 

resulted in the pseudo-homogeneous Euler-Euler (PH-EE) approach based on treating the 

alkane-aqueous mixture as a pseudo-homogeneous liquid. The second hypothesis was that the 

influence of the alkane phase would be through interphase interactions terms. This resulted in 

the Euler-Euler-Euler (EEE) approach in which the three phases (air, water, alkane) were 

individually simulated (see Figure 4.1). To assess these hypotheses, the variation in predicted 

gas hold up was compared to that obtained through experimental measurements. Figure 6.1 

and Figure 6.2 illustrate these results. 

 

It can be observed from these figures that the experimental gas hold up values generally 

decreased with an increase in the volume fraction of the alkane phase. This trend was 

approximated by the CFD model based on the EEE approach. However, the CFD model based 

on the PH-EE approach predicted rather constant gas hold-up values. This latter observation 

suggested that the reactor’s hydrodynamics were insensitive to changes in the effective fluid 

properties (refer to Figure 4.4). This was likely the case since the flow within the bioreactor 

remained turbulent as evidenced by a volume-averaged viscosity ratio (𝜇𝑡/𝜇𝑒𝑓𝑓) of the order 

𝑂(10 − 100). Though this ratio decreased with an increase in alkane volume fraction 

(increase in the effective viscosity, 𝜇𝑒𝑓𝑓), the observation that 𝜇𝑡/𝜇𝑒𝑓𝑓 was always greater 
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than unity confirmed that the hydrodynamics of the reactor were dominated by the turbulence 

levels (as represented by the turbulent viscosity, 𝜇𝑡). Thus, it was concluded that the PH-EE 

approach (and its underlying hypothesis) was inadequate at capturing the changes in 

hydrodynamics introduced by the alkane phase.   

 

 

Figure 6.1: Experimental versus CFD-based volume-averaged gas hold-up values at 600 rpm. 

Reproduced from Gakingo et al. [191].  

 

 

Figure 6.2: Experimental versus CFD-based volume-averaged gas hold-up values at 800 rpm. 

Reproduced from Gakingo et al. [191].  
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As already noted, gas hold up values predicted based on the EEE approach approximated the 

experimentally observed trend. Figure 6.1 and Figure 6.2 illustrate that between 0% and 10% 

alkane volume fraction, the CFD model predicted a decrease in gas hold up. However, 

between 10% and 20% alkane volume fraction, the predicted gas hold up remained constant. 

This trend was replicated for both boundary conditions employed to model gas exit from the 

top surface of the reactor, that is BC1 (velocity-inlet boundary condition) and BC2 (pressure-

outlet boundary condition). Higher gas hold up values were predicted based on BC2 in 

comparison to BC1, with a maximum difference of 16% observed. This could be attributed to 

the action of the headspace included at the top surface of the reactor in the BC2 setup serving 

as a secondary source of the gas phase. Gas was ingested from this headspace in addition to 

that supplied from the sparger and this led to higher gas hold up values especially at lower 

alkane concentrations. Given that simulations based on BC1 avoided this effect (due to the 

absence of the headspace), the subsequent presentation and discussion of results was based on 

simulations employing this approach.  

 

Gas hold up predictions by the EEE-BC1 approach were generally within 30% of the 

experimental values. This was especially so in the 0% – 10% alkane volume fraction range 

where a decrease in the global or volume-averaged gas hold up was predicted (see Figure 6.1 

and Figure 6.2). In order to better understand this trend, the changes in the local or spatially 

distributed gas hold up were assessed. Figure 6.3 gives an example of such an assessment 

where the local gas hold up in the 2-phase case was compared to that in the 3-phase case at 

5% alkane volume fraction. It can be observed from this figure that there were changes to the 

size of gas cavities formed in the impeller regions (smaller in the 3-phase case). Additionally, 

there were changes to the degree of gas dispersion within the bulk of the reactor (lower in the 

3-phase case).   

 

The lower degree in gas dispersion illustrated in Figure 6.3 could be attributed to changes in 

the mean velocities of the flow and hence the drag force experienced by the gas phase. Since 

the drag force was the only modelled means of momentum exchange across the phases (see 

equations (4.3) and (4.4)), this force was responsible for the dispersing the gas phase within 

the reactor. In the 3-phase simulations, a lower value of the effective drag was experienced. 

This arose from reduced mean velocities as illustrated in Figure 6.4.  
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Figure 6.3: Contours of time-averaged local gas hold-up on a mid-baffle plane at 600 rpm. 

Mesh outlines of the baffles and the impellers are also included. Left – 2-phase case. Right – 

3-phase case with 5% alkane volume fraction.   

 

 

Figure 6.4: Vectors of the time-averaged mean velocities in the aqueous phase on a mid-baffle 

plane 600 rpm. Left – 2-phase case. Right – 3-phase case with 5% alkane volume fraction. 

Reproduced from Gakingo et al. [191].  
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Figure 6.4 illustrates that the discharge jet associated with the upper impeller dissipated 

quicker for the 3-phase case than for the 2-phase case. Consequently, the circulation loops 

associated with the upper impeller in the 3-phase case were characterised by smaller velocity 

magnitudes. This translated to lower gas entrainment (through the drag force) as evidenced by 

a lack of gas accumulation in the near-wall regions traversed by these circulation loops (see 

Figure 6.4). In a similar manner, smaller mean velocities associated with the discharge jet of 

the lower impeller resulted in reduced gas entrainment towards the tank bottom (see Figure 

6.4).  

 

The lower degree of gas dispersion could explain the predicted decrease in global gas hold up 

values between 0% and 10% alkane volume fractions (see Figure 6.1 and Figure 6.2). 

However, the CFD model predicted an insignificant change in the gas hold up beyond 10% 

alkane volume fraction. Consequently, over-predictions of 83% and 17% were observed at 

20% alkane volume fraction for 600 rpm and 800 rpm respectively. This observation 

suggested that an additional mechanism was necessary to account for changes in the gas hold 

up beyond 10% alkane volume fraction.  

 

To address the above, it was hypothesised that the mechanism unaccounted for in the 

simulations was that of coalescing of air bubbles. This would lead to bubbles of a larger size 

than that specified (3 mm) and a typically lower residence time [14]. Conditions for such 

coalescing behaviour were created by the rise of the gas phase through a central core of the 

reactor due to lower dispersion. The enhanced volume fraction of the gas phase in this region 

would lead to a higher collision frequency of air bubbles thus promoting the formation of 

larger bubbles. Furthermore, it was reasoned that such an effect would only be dominant at 

comparatively low agitation rates whereas at high agitation rates, intensified bubble break up 

would counter-act this effect. This could account for the higher degree of over-prediction 

observed at 600 rpm (83%) in comparison to that at 800 rpm (17%).  

 

The rise of the gas phase through the central core of the reactor was also observed to lead to 

flooding of the impellers by the gas phase. This implied a reduction in the pumping capacity 

as illustrated in Figure 6.5. This observation was in line with previous reports in literature 

[171,215]. It should be noted, however, that there was a slight recovery in the pumping 

number between 2.5% and 5% alkane volume fractions as illustrated in Figure 6.5. This was 

considered to be due to an initial decrease in the size of the gas cavities behind the impeller 
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blades (see upper impeller in Figure 6.4). However, at higher values of the alkane volume 

fraction, flooding began to occur with the subsequent loss of pumping capacity.   

 

Figure 6.5: Variation of the time-averaged pumping number with the alkane volume fraction 

for the upper impeller. Reproduced from Gakingo et al. [191]. 

 

As a final observation on the hydrodynamics of the system, the influence of the alkane phase 

on the power drawn by the impellers was investigated. Figure 6.6 illustrates that the power 

was predicted to increase as the alkane volume fraction increased. A similar trend has been 

previously reported for a 2-phase liquid-solid system [216]. In the latter study, the authors 

measured an increase in the power drawn as the solid loading increased and they attributed 

this to enhanced dissipation by the solid phase [216]. This could be similarly stated for the 

alkane-based system considered herein. However, it is important to note that observations to 

the contrary have also been reported in literature [170,217]. In particular, a reduction in the 

power drawn has been observed for liquid-liquid systems and this was attributed to a 

reduction in the effective density of the resulting mixture [170,217]. Such contradicting 

results in literature suggest that this is a point needing further experimental investigations.    
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Figure 6.6: Variation of the power drawn by the impellers with the alkane volume fraction. 

 

6.2 Impact of the secondary liquid phase on hydrodynamics 

 

As has been already noted, the lower degree of gas dispersion within the reactor was due to a 

reduced amount of the effective drag experienced. The latter was itself a consequence of a 

reduction of mean velocities. This reduction in mean velocities arose due to an increase in 

turbulent viscosity which is known to have a dampening effect [29]. The turbulence viscosity 

(𝜇𝑡,𝑤) increased with an increase in alkane volume fraction giving a volume-averaged 

turbulence viscosity ratio (𝜇𝑡,𝑤/𝜇𝑤) of order 𝑂(100 − 1000). This was an indication that the 

alkane phase had an impact on the turbulence levels in the reactor. The mechanism through 

which this happened is discussed in further detail below. 

 

Momentum exchange across the phases was captured through the consideration of the drag 

force. This was modelled by appropriate terms in both the momentum equations (see 

equations (4.3) and (4.4)) and the turbulent kinetic energy (TKE) equations (see equations 

(4.7) and (4.8)). The latter were a description of turbulence in the continuous aqueous phase, 

with the generation and dissipation of TKE by the dispersed phases introduced into these 

equations through additional terms (see equations (4.10) and (4.11)) [28–30,180]. These terms 

represented the work done by the drag force and considered both its mean and 

fluctuating/turbulent components [28–30,180].  
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Given that the above terms associated with the dispersed phases could be turned on and off in 

the simulation software, their effects could be isolated and investigated independently. From 

such an analysis, it was observed that the turbulence levels in the reactor were insignificantly 

impacted by the gas phase. This was hypothesised to be due to the small density (hence 

inertia) of the air bubbles. The alkane phase, on the other hand, was found to have an 

appreciable effect on turbulence. This was chiefly through the fluctuating component of the 

work done by the drag force. The mean component of this work was expected to be negligible 

given the small size of the alkane droplets. Small-sized particles have been noted to follow the 

mean flow of the continuous phase with a relative velocity approaching zero and thus the 

mean component of the work done by the drag force tends to be negligible [147].  

 

The above consideration of the interaction of the alkane phase with the turbulence of the 

continuous phase led to higher values of the TKE and its dissipation rate. Consequently, 

higher values of the turbulent viscosity were obtained (see equation (4.6)). Higher values of 

the latter led to a greater dampening of the mean velocities with the subsequent effects on the 

drag and residence time of the gas phase. In addition, there was a dissipation of the macro-

instabilities noted in the single phase and 2-phase simulations.  

 

6.3 Oxygen transfer 

 

Oxygen transport within the reactor was modelled on the basis of equations (4.27) and (4.28) 

(see section 4.3). In addition, the oxygen concentration in the aqueous phase was tracked at 

several points in the reactor (see Figure 4.3 (centre image)). The values obtained from these 

points were similar due to rapid convective transport hence only data from a single point in 

the bulk (point 4) was employed for subsequent analysis. Samples of the oxygen 

concentration profiles obtained are illustrated in Figure 6.7.  

 

Figure 6.7 presents oxygen transfer results from both the series model (MT-S) and the series 

model with shuttling (MT-SS). In addition, it contrasts the simulated profiles to experimental 

oxygen concentration profiles obtained from the dynamic gassing-out method [25]. It can be 

observed that there was generally good agreement between the simulated and experimental 

oxygen concentration profiles at 2.5% alkane volume fraction. However, the simulated 

profiles deviated from their experimental counterparts at 20% alkane volume fraction. This 

suggested a dependence of the CFD-based oxygen transfer results on the alkane volume 

fraction. A clearer picture of this is given Figure 6.8 and Figure 6.9 which contrast the 
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experimental versus predicted 𝐾𝐿𝑎
 ′ values for the 600 rpm case and the 800 rpm case 

respectively.  

 

Figure 6.7: Variation of non-dimensionless oxygen concentration profiles with time at 600 

rpm and 2.5% (left) or 20% (right) alkane volume fractions. Simulated values based on series 

mass transfer model (MT-S) and series mass transfer model with shuttling (MT-SS). Adapted 

from Gakingo et al. [191]. 

 

 

Figure 6.8: Comparison of predicted versus experimental values of 𝐾𝐿𝑎
 ′ at 600 rpm. The 

latter measured by either the pressure step method (PSP) or the dynamic gassing-out method 

(DM). Adapted from Gakingo et al. [191]. 
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Figure 6.9: Comparison of predicted versus experimental values of 𝐾𝐿𝑎
 ′ at 800 rpm. The 

latter measured by either the pressure step method (PSP) or the dynamic gassing-out method 

(DM). Adapted from Gakingo et al. [191]. 

 

Figure 6.8 and Figure 6.9 compare the predicted KLa
 ′ values to experimental values obtained 

by two methodologies – the pressure step method (PSP) and the dynamic gassing-out method 

(DM). The difference between these two methodologies has been previously alluded to where 

it was noted that the DM tends to under-predict 𝐾𝐿𝑎 ′ values in non-coalescing media 

[25,42,174] whereas the PSP does not [25,133]. Thus, the DM values were used as the lower-

bound estimates in validating the CFD-based values whereas the PSP values were used as 

upper-bound estimates. A maximum difference of 18% was noted between these experimental 

values for the agitation rates considered [25].  

 

It can be observed from Figure 6.8 and Figure 6.9 that both the MT-S and the MT-SS models 

predicted similar 𝐾𝐿𝑎
 ′ values, with a maximum difference of 8% noted at 800 rpm and 5% 

alkane volume fraction (see Figure 6.9). This was contrary to the initial expectation of an 

increasing difference in the two models with increase in the alkane volume fraction (see  

Figure 3.3). This observation could be attributed to the computation of global 𝐾𝐿𝑎
 ′ values 

based on a consideration of the concentration driving force (see equation (2.20) in section 

4.5.4). The latter served to average out the differences between the two models. 
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Besides a consideration of the possible changes in oxygen transfer as captured by the MT-S or 

MT-SS models, the predicted 𝐾𝐿𝑎
 ′ values in Figure 6.8 and Figure 6.9 also considered 

possible changes due to the hydrodynamics. Figure 6.10 illustrates this for the 600 rpm case 

by contrasting the enhancement factor based on the MT-S model at constant versus varying 

hydrodynamic conditions. It can be observed that at constant hydrodynamic conditions (no 

CFD input), a continuously decreasing trend in mass transfer was predicted (see also Figure 

3.3). However, incorporation of the changes in hydrodynamics as captured by CFD led to a 

change in the trend. As the energy dissipation rate increased due to the action of the alkane 

phase, the 𝐾𝐿𝑎
 ′ values increased (see equation (4.29) in section 4.3). On the other hand, a 

decrease in gas hold up (hence interfacial area) counteracted this effect. 

      

 

Figure 6.10: Enhancement factor based on MT-S model at 600 rpm with experimental values 

by the pressure step method (PSP) and the dynamic gassing-out method (DM). 

 

With regards to the accuracy of predicted 𝐾𝐿𝑎
 ′ values, it was observed that the predictions at 

600 rpm were within 11% of the values measured by the PSP (see Figure 6.8). The exception 

to this was at 20% alkane volume fraction where over-predictions of 72% and 83% were 

observed for the MT-S and the MT-SS models respectively (see Figure 6.8 and Figure 6.10). 

These over-predictions were of a similar order of magnitude as the over-prediction in gas hold 

up at this experimental point (83%). This suggested that the over-prediction in gas hold up 

(hence interfacial area) was responsible for the over-prediction in 𝐾𝐿𝑎
 ′.  
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With regards to the 800 rpm case (see Figure 6.9), simulated 𝐾𝐿𝑎
 ′ values were within 10% of 

the values measured by the PSP at only two experimental points – 2.5% and 20% alkane 

volume fractions. At all other experimental points, under-predictions were observed with the 

margins being as high as 48% in some cases (5% alkane volume fraction). Taking into 

account the observation that the gas hold-up values had been generally well predicted (see 

Figure 6.2), these results implied a need to re-asses the specification of the interfacial area in 

the model. In particular, the modelling assumptions employed in sections 4.2 and 4.3 were re-

examined by modifying them and re-running the oxygen transport equations. The latter 

included the assumption of a single bubble size for all simulations as well as the assumption 

that the interfacial area in the bulk region of the reactor could be demarcated based on a gas 

phase volume fraction of 𝛼𝑔 < 0.3. It must be highlighted that these assumptions were 

employed for the 600 rpm case with reasonable success.  

 

Figure 6.11 illustrates the results from the re-examination of the first modelling assumption. 

In this case, the use of the initially computed bubble diameter of 2.4 mm was compared to the 

assumed diameter of 3 mm (refer to section 4.2.1). Improvement in the predicted interfacial 

area (hence 𝐾𝐿𝑎
 ′) was noted at low alkane volume fractions (≤5%) with insignificant 

changes at higher concentrations. The largest improvement was at 0% alkane volume fraction 

where the 𝐾𝐿𝑎
 ′ value with respect to PSP was now under-predicted by 29% in comparison to 

40% when a diameter of 3 mm was assumed. However, the 𝐾𝐿𝑎
 ′ value at 2.5% alkane 

volume fraction was now worse off – a 22% over-prediction in comparison to an initial 3%. 

This notwithstanding, the latter result was deemed to be more accurate and in line with the 

23% over-prediction in gas hold up at this point (see Figure 6.2). 

  

With regards to the second assumption, the definition of the interfacial area was extended 

from regions in the reactor with a gas phase volume fraction of 𝛼𝑔 < 0.3 to include any 

regions with 𝛼𝑔 < 0.8. In addition, the diameter of the air bubbles was maintained at 2.4 mm. 

Given the arbitrariness in the definition of what constituted the bulk region of the reactor, 

only a single simulation was run. This was done at 0% alkane volume fraction where the 

largest sensitivity to changes in bubble diameter had been observed (see Figure 6.11). It was 

anticipated that this simulation would give a sense of the largest possible improvement.  

 

The results obtained did indeed indicate an improvement. The experimental 𝐾𝐿𝑎
 ′ values 

based on the PSP were now under-predicted by 16% in comparison to 40% (𝑑𝑔 = 3 mm, 
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𝛼𝑔 < 0.3) or 29% (𝑑𝑔 = 2.4 mm, 𝛼𝑔 < 0.3). These results showed that more accurate 𝐾𝐿𝑎
 ′ 

values could indeed be obtained by a more rigorous specification of the interfacial area. It is 

proposed that this can be done through the incorporation of a population balance model.  

 

 

Figure 6.11: Comparison of the impact of modelling assumptions in values of 𝐾𝐿𝑎
 ′ at 800 

rpm. Case A represents a bubble size of 3 mm whereas case B represents a bubble size of 2.4 

mm. Adapted from Gakingo et al. [191]. 

 

6.4 Summary 

 

The investigations into the 3-phase (cell-free) alkane-based system done in this chapter have 

revealed several significant findings that can aid in the design of bioreactors for such or 

similar systems. Foremost, a validated approach to the CFD-based modelling of cell-free 

alkane-based stirred reactors has been presented. It has been shown that the alkane phase 

should be modelled as an independent phase and its interaction with the turbulence of the 

system considered. This was done on the basis of the Euler-Euler-Euler (EEE) approach 

leading to predicted gas hold up values that were generally within 30% of the experimental 

values. Furthermore, it has been shown that use of either a velocity-inlet boundary condition 

(BC1) or a pressure-outlet boundary condition (BC2) to represent the exit of the gas phase 

from the top surface of the reactor will result in a similar trend of the predicted gas hold up 

values. A maximum difference of 16% was observed between the results of simulations 

employing these two boundary conditions and this was attributed to the ingestion of air from 

the headspace included at the top of the reactor during the set up of BC2.  
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Secondly, clarity has been provided on the mechanisms by which the alkane phase affects the 

hydrodynamics of a stirred tank reactor. It has been shown that for a stirred tank reactor 

operating in the turbulent regime, the alkane phase will not affect the hydrodynamics through 

a change in the effective fluid properties (viscosity). This is because the hydrodynamics of 

such a reactor are dominated by turbulence as evidenced by a larger value of turbulence 

viscosity in comparison to the fluid’s effective viscosity (𝜇𝑡/𝜇𝑒𝑓𝑓 of the order 𝑂(10 − 100)). 

Modelling based on the pseudo-homogenous treatment of the liquid-liquid mixture (PH-EE 

approach) resulted in constant gas hold up values that were not in agreement with the 

experimental trend of a decrease in gas hold up with increase in alkane concentration (see 

Figure 6.1 and Figure 6.2). 

 

In connection with the above, it has been shown that changes in the hydrodynamics due to the 

alkane phase should rather be attributed to the influence of the latter on the turbulence of the 

system. In particular, the turbulent motion of the alkane droplets contributed to higher values 

of the turbulent kinetic energy and its dissipation rate thus leading to an increase in the 

turbulence viscosity. The latter, in turn, acted to reduce the mean velocities of the continuous 

phase thereby resulting in reduced drag experienced by the gas phase. The end result of this 

was a reduction in gas hold up which was in agreement with the experimental trend. The CFD 

model based on the EEE approach was observed to predict gas hold up values that were 

generally within 30% of the experimental values.  

  

Secondary effects of the alkane phase have also been shown with regards to its impact on 

other features of the flow such as the pumping capacity, the power drawn as well as temporal 

flow variations. As pertains the pumping capacity, a reduction in the same was observed and 

this was attributed to flooding of the impellers by the gas phase due to its reduced dispersion 

within the reactor. The power drawn by impellers, on the other hand, increased with increase 

in alkane concentration and this was attributed to the increased dissipation rate by the alkane 

phase. Finally, temporal flow variations (macro-instabilities) were dampened due to the 

increase in turbulence viscosity as explained above.  

 

As pertains to oxygen transfer, it has been shown that a CFD-based approach can predict 

𝐾𝐿𝑎
 ′ values with reasonable accuracy. This was illustrated by good predictions obtained at 

600 rpm where 𝐾𝐿𝑎
 ′ values were within 11% of experimental values for alkane 

concentrations 𝛼𝑜 ≤ 10%. However, improvements to this modelling approach are needed 
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through, for example, the inclusion of a population balance model for the bubble size 

distribution.  

 

Besides the above, possible mechanisms through which the alkane phase can impact oxygen 

transfer have been highlighted. In particular, the 𝐾𝐿𝑎
 ′ values were shown to be quite sensitive 

to changes in the gas hold up and the turbulence levels. On the other hand, minimal sensitivity 

was observed in the specification of different possible mass transfer pathways (8% maximum 

difference). As only the cases of series mass transfer with or without shuttling have been 

considered, it would be interesting to investigate whether similar observations can be obtained 

if the assumptions underpinning the mass transfer model were changed. For example, parallel 

mass transfer can be considered. This is recommended as future work.  
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7.0 Gas-liquid-liquid-solid system 

 

This chapter presents a discussion on both the hydrodynamics and oxygen transfer in the 4-

phase alkane-based bioreactor. It addresses itself to objectives 7, 8 and 9 of the study. The 

latter included the extension of the CFD-based modelling approach to the 4-phase system as 

well as the prediction and validation of oxygen transfer in the system.   

 

7.1 Hydrodynamics and gas hold up trends 

 

Similar to Chapter 6.0, the ability of the extended CFD model to represent the 4-phase system 

was assessed by comparing the predicted gas hold up values to the experimental values. 

Figure 7.1 and Figure 7.2 present the results of this analysis. It is to be noted that the CFD 

simulations were run at fewer data points (9) as compared to the experimentally measured 

data points (15). This difference was a result of the CFD modelling approach adopted. In 

particular, the CFD modelling approach could be able to directly account for changes in the 

agitation rate and the alkane concentration. However, the use of average bubble diameters 

based on equation (4.24) to capture the non-coalescing effect of the yeast phase meant that 

changes due to different yeast loadings could not be resolved (refer to section 4.2.3). Equation 

(4.24) could predict an average bubble diameter at a given agitation rate but could not 

distinguish between different yeast loadings at the same agitation rate. Consequently, fewer 

CFD simulations had to be run. 

 

As an illustrative example of the above, entries 2, 4 and 5 in Figure 7.1 represented three 

experimental data points with different yeast loadings but fixed values of the alkane 

concentration and the agitation rate. For these points, however, only a single CFD simulation 

was run based on an average bubble diameter (equation (4.24)). Consequently, repeated 

entries of the CFD output had to be employed to populate the parity plot. All such entries in 

Figure 7.1 have appeared in a horizontal plane parallel to the x-axis.  

 

Figure 7.2, on the other hand, provides a different perspective on the data. In this figure, 

changes in the gas hold up data due to changes in either the alkane concentration or the yeast 

loading were averaged out. Instead, error bars were employed to capture the spread in gas 

hold up data due to these factors. Thus, the figure provides a direct comparison of the 

experimental and predicted values with reference to changes in the agitation rate. 
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Figure 7.1: Comparison of experimental versus predicted gas hold up values. Left – predicted 

gas hold up values based on initial equations of the drag force. Right – predicted gas hold up 

values based on modified equations of the drag force (equation (7.1)). Reproduced from 

Gakingo et al. [193]. 

 

 

Figure 7.2: Experimental versus predicted gas hold up values, with the latter based on the 

initial equations of the drag force. The gas hold up values have been averaged over the alkane 

concentration and yeast loading. Adapted from Gakingo et al. [193]. 
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It can be observed from Figure 7.1 (left image) and Figure 7.2 that the CFD model based on 

the initial equations of the drag force (refer to section 4.2.3) predicted reasonable gas hold up 

values. This could be quantified to within 20% and 40% accuracy bands, with the majority of 

predicted values being within 40% accuracy as illustrated in Figure 7.1 (left image). This 

compared well with the results generated for the 3-phase gas-liquid-liquid system where a 

general accuracy of 30% was reported (see Figure 6.1 and Figure 6.2). It is to be noted, 

however, that a number of points lay outside the 40% accuracy range. Such points included 

point 15 (1000 rpm, 11% alkane volume fraction) where the CFD model over-predicted the 

gas hold up by 77%. This represented the maximum over-prediction by the CFD model 

occurring at the highest agitation rate as illustrated in Figure 7.2.  

 

The CFD model was also noted to predict a continuous increase in gas hold up with increase 

in agitation rate (see Figure 7.2). Contrary to this, the experimental values peaked at around 

725 rpm and slightly declined thereafter. This suggested that there was an extra mechanism, 

not accounted for in the CFD model, that counteracted the predicted continuous increase in 

gas hold up. Furthermore, this mechanism became significant at higher agitation rates.  

 

To explain the above observation, it was hypothesised that clusters of individual air bubbles 

bridged by the yeast cells were forming. Moreover, these clusters escaped the reactor faster 

than individual bubbles thus reducing the gas hold up. This was in line with previous 

observations in mineral flotation studies where clusters of air bubbles bridged by mineral 

particles have been reported [218–220]. Additionally, clusters of air bubbles and oil droplets 

bridged by yeast cells have been observed in a previous study on hydrocarbon fermentation 

[162]. However, in the particular study [162], live yeast with an affinity for the oil phase was 

employed in contrast to the non-viable (dead) yeast cells used in the case study under 

consideration [16,164].  

 

It is to be noted that the seemingly greater effect of cluster formation at higher agitation rates 

could be linked to observations of improved floatability of small particles at high agitation 

rates [221–223]. This has been observed in mineral flotation studies [221,222] and was 

reasonably expected to apply in this case since the yeast cells had a size distribution in the 

range of 1 – 20 µm [16,164]. The mechanism behind this was that of increased particle-

bubble collision rates as, among other reasons, the local or spatially distributed gas hold up 

increased with increase in agitation rate (see Figure 7.3).  
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Figure 7.3: Cumulative frequency of computational cells containing a given gas phase volume 

fraction. Simulations done at 11% alkane volume fraction and varying agitation rates. 

Reproduced from Gakingo et al. [193]. 

 

To test the hypothesis on cluster formation, it was assumed that the bubble clusters would 

bring about reduced gas hold up through a reduction in the effective drag. This implied a need 

to correct the drag terms specified in equations (4.25) and (4.26) (repeated below). Given that 

the likelihood of cluster formation increased with increase in the local gas hold up (higher 

particle-bubble collision rates), a correction term based on the local gas hold up (𝛼𝑔) was 

introduced as illustrated in equation (7.1). In this equation, the hindrance effect arising from 

bubble-bubble interaction was limited to 𝛼𝑔 < 0.1. This was in line with the observation that 

the changes in the local gas hold up were largely confined to the range 0 < 𝛼𝑔 < 0.4 (see 

Figure 7.3). Consequently, the clustering phenomenon was expected to occur within this 

range. For 𝛼𝑔 ≥ 0.1, on the other hand, it was assumed that the drag force would decrease 

with increase in local gas hold up in a manner similar to that observed in bubble swarms 

[110]. Finally, a constant Θ = 2.4 was introduced into the equation to enforce continuity at 

𝛼𝑔 = 0.1. Results from the simulations employing equation (7.1) are presented in Figure 7.1 

(right image). 
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𝑔(𝛼𝑔) = exp (3.64𝛼𝑔) + 𝛼𝑔
0.864 

(4.26)  

𝑔(𝛼𝑔) = {
exp (3.64𝛼𝑔) + 𝛼𝑔

0.864                     𝛼𝑔 < 0.1

  Θ ∙ (1 − 𝛼𝑔)
4                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(7.1)  

 

A comparison the gas hold up values predicted prior to and after the consideration of cluster 

formation illustrated that improved predictions were obtained based on the latter (see Figure 

7.1). In particular, the degree of over-prediction at agitation rates higher than 725 rpm was 

reduced. As an example of this, the over-prediction error at point 15 (1000 rpm) was now 

41%, down from 77% initially. It was also observed that the predicted gas hold up values for 

agitation rates lower than 725 rpm decreased albeit slightly. As an example of this, an under-

prediction error of 42% was now observed at point 9 (562 rpm, 16.4% alkane volume 

fraction) in comparison to 38% initially.  

 

7.2 Impact of the additional phases on hydrodynamics 

 

Building on the above results, the possible individual and interacting influences of both the 

alkane and the yeast phases on the hydrodynamics of the reactor could be examined. With 

regards to the alkane phase, similar influences to those reported in the 3-phase case were 

observed. In particular, the CFD model predicted a decrease in gas hold up with an increase in 

alkane concentration (see Figure 7.4). The mechanism behind this was that of a higher 

turbulence viscosity that led to dampened mean velocities and hence reduced drag (see 

Chapter 6.0).  

 

The yeast phase, on the other hand, mainly served to make the medium non-coalescing thus 

resulting in small air bubbles. Though the yeast phase could also promote the formation of 

clusters as previously hypothesised, the influence of small bubbles was expected to remain 

dominant. Moreover, such small bubbles could effectively follow the mean flow of the 

aqueous phase despite a reduction in its magnitude due to an increase in the alkane 

concentration. Thus, the gas phase remained effectively dispersed within the reactor. This is 

illustrated in Figure 7.5 which contrasts the spatially distributed gas hold up values for two 3-

phase cases (bubble diameter of 3 mm) and one 4-phase case (bubble diameter of 0.7 mm). It 

can be observed that there was greater gas dispersion (hence gas hold up) in the 4-phase case 
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despite a comparison of slightly different operating conditions which was a reflection of the 

different experimental designs previously used (see section 4.4.3).  

 

 

Figure 7.4: Predicted versus experimental gas hold up values at 562 rpm (left) and 888 rpm 

(right). Experimental values have been averaged over the yeast loading, with the error bars 

representing the maximum and minimum values. Adapted from Gakingo et al. [193]. 

 

 

Figure 7.5: Contours of gas hold up on a mid-baffle plane. Left: 3-phase case with 600 rpm 

and 10% alkane volume fraction. Centre: 3-phase case with 800 rpm and 10% alkane volume 

fraction. Right: 4-phase case with 725 rpm and 11% alkane concentration. Reproduced from 

Gakingo et al. [193]. 
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It is to be noted that the experimental trends in Figure 7.4 did not agree with the CFD-

predicted trend of a decrease in gas hold up with increase in alkane concentration. Rather, an 

increase in gas hold up was observed at 562 rpm whereas an insignificant change in the gas 

hold up was observed at 888 rpm. In light of the CFD results in the same figure, these 

experimental observations suggested an increase in the residence time of the gas phase with 

increase in the alkane concentration. This led to the hypothesis that there could have been a 

hindrance of the motion of air bubbles by the alkane droplets themselves. This was besides 

the dampening effect of the alkane droplets on the mean velocities of flow as already 

discussed. The hindrance of motion by the alkane droplets could have been more significant 

in the 4-phase reactor as compared to the 3-phase reactor since the air bubbles now had a size 

that was comparable to that of the alkane droplets. This would especially be the case if 

clusters of the alkane droplets also formed as has been previously observed in a different 

study [162].  

 

Baltussen et al. [224,225] have recently published findings that support the above hypothesis. 

Their work entailed the direct numerical simulations of a representative gas-liquid-solid 

system with particles of a comparable size (air bubble diameter – 2 mm, solid particle 

diameter – 1 mm) [224,225]. The authors illustrated that the effective drag on gas bubbles 

was comprised of two components; one arising from bubble-bubble interactions and the other 

arising from bubble-particle interactions [224,225]. As pertains the latter, they observed that 

the effective drag increased with increase in volume fraction of the solid phase [224,225]. 

Thus, it would be reasonable to expect similar occurrences between the alkane droplets and 

the air bubbles in the system under consideration if these particles were of a comparable size.  

 

7.3 Oxygen transfer 

 

Oxygen transport within the reactor was modelled on the basis of equations (4.27) and (4.28) 

(refer to section 4.3). In addition, several of the findings from Chapter 6.0 were incorporated 

into the modelling. For example, only mass transfer by the series model (MT-S) was 

considered since both this model and the series model with shuttling (MT-SS) were observed 

to predict similar 𝐾𝐿𝑎
 ′ values in the 3-phase reactor. Moreover, the definition of the 

interfacial area in equation (4.29) (repeated on next page) was set to include regions in the 

reactor with a gas phase volume fraction of 𝛼𝑔 ≤ 0.8. This was in line with the findings of 

better 𝐾𝐿𝑎
 ′ predictions based on this value in the 3-phase reactor (800 rpm case). 
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𝐾𝐿𝑎
 ′ ≈ 𝐸′ ∙ 𝐾𝐿𝑎 𝛼𝑜=0 = 𝐸′ ∙ Λ ∙  𝐷0.5 ∙ (

𝜖

𝜐
)
0.25

∙ (
6𝛼𝑔

𝑑𝑔
) ;              𝛼𝑔 ≤ 0.8 (4.29)  

 

The use of equation (4.29) was based on previous studies in gas-liquid-solid systems [90,91], 

with the difference in this work being the incorporation of the alkane phase and its effects 

through the enhancement factor (𝐸′). To account for the solid phase, Kawase & Moo-Young 

[90,91] considered a possible increase in effective viscosity (𝜐 = 𝜐𝑒𝑓𝑓) whereas Wenmakers 

et al. [92] considered a possible decrease in the effective diffusivity (𝐷 = 𝐷𝑒𝑓𝑓). Minimal 

change, however, was expected in both these properties given the yeast concentrations 

employed in this study [83]. This notwithstanding, particle-bubble interaction (collision, 

attachment and detachment) could occur thus impacting the mass transfer process. 

 

Figure 7.6 presents a comparison of the experimental [164] and predicted 𝐾𝐿𝑎
 ′ values with 

respect to the agitation rates. These values have been averaged over the alkane concentration 

and the yeast loading. Furthermore, error bars have been employed to capture the spread in 

𝐾𝐿𝑎
 ′ data due to changes in these factors.  

 

 

Figure 7.6: Experimental versus CFD-based 𝐾𝐿𝑎
 ′ values. These values have been averaged 

over the alkane concentration and the yeast loading, with the error bars representing the 

maximum and minimum values. Adapted from Gakingo et al. [193]. 

 

 

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

450 562 725 888 1000

K
L
a
 '
 (

s-1
)

Agitation rate (rpm)

Experiments CFD

Stellenbosch University https://scholar.sun.ac.za



107 

It can be observed from Figure 7.6 that the CFD-based 𝐾𝐿𝑎
 ′ values were higher than the 

experimental values at agitations rates of 725 rpm and below. Differences as high as 250% 

were noted at 450 rpm. The CFD-based 𝐾𝐿𝑎
 ′ values also showed a greater variation about the 

mean (average) thus suggesting a greater impact of the alkane concentration on 𝐾𝐿𝑎
 ′ than 

was experimentally observed. This is better resolved in Figure 7.7 and Figure 7.8 which 

capture the changes in 𝐾𝐿𝑎
 ′ due to changes in the alkane concentration at different agitation 

rates.  

Figure 7.7 and Figure 7.8 confirm the observation that the CFD-based 𝐾𝐿𝑎
 ′ values were over-

predicted at agitations rates of 725 rpm and below. Furthermore, the figures show that over-

prediction largely occurred at low concentrations of the alkane phase. For example, over-

predictions of 232% and 170% were observed at 562 rpm (5.7% alkane volume fraction) and 

725 rpm (2% alkane volume fraction) respectively. This was despite the gas hold up values at 

these points being predicted to within 2% and 35% of the experimental values respectively. 

At other data points in the figures, however, more reasonable predictions of 𝐾𝐿𝑎
 ′ were 

observed. For example, at 888 rpm the predicted 𝐾𝐿𝑎
 ′ value at 5.7% alkane volume fraction 

was within 11% of the experimental value. Similarly, at 725 rpm, the predicted 𝐾𝐿𝑎
 ′ values at 

11% and 20% alkane volume fractions were within 20% of the experimental values. 

 

 

Figure 7.7: Experimental versus CFD-based 𝐾𝐿𝑎
 ′ values at 562 rpm (left) and 888 rpm 

(right). Experimental values have been averaged over the yeast loading, with the error bars 

representing the maximum and minimum values. Adapted from Gakingo et al. [193]. 
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Figure 7.8: Experimental versus CFD-based 𝐾𝐿𝑎
 ′ values at 725 rpm. Experimental values 

have been averaged over the yeast loading, with the error bars representing the maximum and 

minimum values. Adapted from Gakingo et al. [193]. 

 

In seeking to explain the above observations, consideration was given to two factors. First 

was the possible under-estimation of experimental 𝐾𝐿𝑎
 ′ values due to their measurement 

using the dynamic gassing-out method (DM) in a medium that was non-coalescing [25]. As 

has been previously pointed out, this method is frequently used in mass transfer literature. 

However, it tends to under-predict 𝐾𝐿𝑎
 ′ values in non-coalescing media [25,42,174]. The 
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 ′ values 

could not, however, solely explain the margins of over-prediction noted in Figure 7.6 – Figure 
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effective interfacial area (hence 𝐾𝐿𝑎
 ′ values) through physical blocking [65]. Moreover, a 

further reduction in the interfacial area could have occurred once cluster formation became 

significant (at high agitation rates). The mechanism behind the latter would have been the 

presence of air bubble clusters in the reactor with larger characteristic diameters than the 

individual bubbles.  

 

In an attempt to estimate the potential reduction in interfacial area due to the above factors, 

reference was made to observations in mineral flotation studies. In such studies, maximum 

bubble surface coverage ratios of 10% to 50% have been suggested in the absence of the 

clustering phenomenon [80,81,226,227]. This implied that the interfacial area computed based 

on the CFD model could have been over-predicted by a similar magnitude or greater if the 

clustering phenomenon was considered.  

 

If, for illustrative purposes, a 50% over-prediction in the interfacial area was assumed, then 

the predicted 𝐾𝐿𝑎
 ′ value at 450 rpm as an example would be 0.029 s-1 in comparison to an 

experimental value of 0.017 s-1. This would represent an over-prediction of 75%, down from 

the initial 250% over-prediction captured in Figure 7.6. If, in addition, the experimental value 

was assumed to be under-predicted by 35% as an example, the predicted 𝐾𝐿𝑎
 ′ value (0.029 s-

1) would now be compared against a corrected experimental value of 0.022 s-1. This would 

represent an over-prediction in 𝐾𝐿𝑎
 ′ of 30% by the CFD model which was comparable to the 

accuracy obtained for the predicted gas hold up values (~ 40%). Thus, accounting for these 

two factors provided sufficient grounds to explain the over-predictions noted in Figure 7.6 – 

Figure 7.8.  

 

7.4 Summary 

 

Despite the poor prediction of 𝐾𝐿𝑎
 ′ values, the investigations into the 4-phase alkane-based 

system done in this chapter have revealed several insights applicable to bioreactor design. 

Foremost, it has been shown that a model based on an Eulerian description of the air, aqueous 

and alkane phases but indirectly accounting for the presence of the yeast cells can give a 

reasonable first approximation to the hydrodynamics. The developed model was able to 

predict gas hold up values with an accuracy of about 40%. It has been suggested, however, 

that further improvement in the 4-phase model can be obtained by considering the interaction 

between the air bubbles and the alkane droplets and the influence of this on the total drag 

experienced.   
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Secondly, the investigations have highlighted possible mechanisms by which the additional 

phases can impact the hydrodynamics of the system. For example, addition of the alkane 

phase was predicted to lead to a decrease in magnitude of the mean flow similar to the 

observations in the 3-phase system. On the other hand, the yeast phase with its non-coalescing 

effect led to the formation of small bubbles that were effectively able to follow the mean flow 

despite a reduction in its magnitude. Consequently, higher gas hold up values were obtained 

in the 4-phase system in comparison to 3-phase system due to greater gas dispersion within 

the reactor (see Figure 7.5). These findings, though seemingly reasonable, call for more 

definitive studies in terms of experimental measurements. 

 

Finally, the possible influence of particle-bubble interaction on oxygen transfer in the system 

has been highlighted. In particular, it has been shown that the latter can lead to a possible 

decrease in the interfacial area. The mechanisms behind this would be either physical 

blocking arising from the attachment of yeast cells to air bubbles or the presence of clusters in 

the reactor with characteristically larger diameters than individual bubbles. These effects have 

been hypothesised to be partly responsible for the over-predictions noted in the CFD-based 

𝐾𝐿𝑎
 ′ values. However, further studies in terms of experimental measurements are required to 

validate these hypotheses.  
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8.0 Conclusions and recommendations 

 

A threefold aim was set at the beginning of this study, the achievement of which was geared 

towards a deeper understanding of oxygen transfer in alkane-based bioprocesses as well the 

development of a validated CFD-based methodology that can enhance bioreactor design in 

such processes. The aim was underpinned by several research questions that emerged from a 

review of literature. These questions included: 

 

1. What are the appropriate fundamental models that can be employed to predict oxygen 

transfer in alkane-based bioprocesses based on CFD output? 

2. What are the main differences in the hydrodynamics and oxygen transfer of an alkane-

based bioprocess in comparison to a 2-phase gas-liquid system? Can these be captured 

based on CFD modelling? 

3. How does CFD-based prediction of oxygen transfer in a 3-phase cell-free alkane-based 

bioprocess compare with experimental data? 

4. How does CFD-based prediction of oxygen transfer in a 4-phase alkane-based 

bioprocess with non-viable yeast cells compare with experimental data? 

 

The above research questions were investigated and answered in the previous chapters. 

Herein, a summary of the key findings and their implications is presented. In addition, 

recommendations for future work have been given.   

 

8.1 Model development and validation 

 

Prior to the investigations carried out on the alkane-based systems, it was necessary to 

identify fundamental models of the overall volumetric mass transfer coefficient (𝐾𝐿𝑎 ′) that 

were applicable to alkane-based bioprocesses and that could be coupled to CFD-based output. 

Additionally, it was necessary to develop and validate CFD models capable of describing the 

hydrodynamics and oxygen transfer in a stirred reactor operating with both a single phase 

(water) and two phases (air, water). These models served as the baseline from which studies 

on the alkane-based systems were to be conducted. The key findings that arose from this work 

are enumerated on the next page.  

 

1. It has been shown that models of 𝐾𝐿𝑎 ′ applicable to alkane-based systems can be 

derived by considering two counteracting effects that the alkane phase introduces. 
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These include possible enhancement due to new mass transfer pathways and an 

apparent decrease in 𝐾𝐿𝑎 ′ due to longer saturation times (higher absorption capacity of 

liquid-liquid mixture). Modelling of 𝐾𝐿𝑎
 ′ based on these considerations permitted for 

the consistent extension of fundamental 2-phase mass transfer theories to the alkane-

based systems and paved way for the use of methodologies such as CFD. This 

represents a novel extension to mass transfer studies in alkane-based or analogous 

systems that would allow for the assessment of bioreactor concepts in silico. 

2. A validated CFD-based methodology for single phase stirred tank reactors has been 

provided that can be used in future studies. It has been shown that the main features of 

flow can be adequately simulated by employing a RANS-based approach for turbulence 

and the MRF technique for impeller-baffle interaction. Time-averaged diverging flow 

patterns were observed and these were shown to be in agreement with previous findings 

in literature based on a comparison of several flow parameters. For example, a time-

averaged power number of 11.2 was obtained in comparison to an experimentally 

measured value of 9.5. Additionally, a time-averaged pumping number of 0.91 was 

obtained for the upper impeller in comparison to experimentally reported values of 0.75 

±0.15.  

3. A validated CFD-based methodology for 2-phase gas-liquid stirred tank reactors has 

been provided that can be used in future studies. It has been shown that the main flow 

features can be adequately simulated by employing a RANS-based approach 

(turbulence), the MRF technique (impeller-baffle interaction) as well as a constant 

bubble size assumption. For this case, however, it was shown that the effect of 

turbulence on drag needs to be considered for a correct prediction of the gas hold up 

values. It was observed that the CFD model predicted the formation of gas cavities or 

regions of high gas volume fraction behind the impeller blades in line with findings in 

literature. This led to a decrease of about 49% in the power drawn which compared well 

with empirically predicted reductions of 33% – 35%. In addition, the overall (volume-

averaged) gas hold up values were predicted to within 22% of the experimental values.  

4. It has been shown for the first time that transient periodic variation in the mean flow 

patterns (macro-instabilities, MI) can be captured based on the use of the MRF 

technique with time-stepping. The observed MIs were noted to have a non-dimensional 

frequency of 0.011 which was in line with previously reported values (0.015 – 0.186). 

This finding was significant since previous simulations capturing MIs have relied on the 

sliding mesh technique. Given that the MRF technique offers a lower computational 
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burden than the sliding mesh technique, futures studies on MIs can be based on the 

former.  

5. It has been shown that MIs can potentially impact mass transfer in a 2-phase gas-liquid 

reactor. The overall gas hold up was observed to oscillate about a mean value and this 

was driven by temporal fluctuations in the local (spatially distributed) gas hold up 

values. The latter can translate to fluctuating local concentrations of oxygen or substrate 

and this can potentially impact the productivity of micro-organisms present in a reactor 

experiencing MIs. 

 

8.2 Gas-liquid-liquid system 

 

The investigations into the 3-phase cell-free alkane-based system involved the 

identification/investigation of the mechanisms by which the alkane phase impacts the 

hydrodynamics of a stirred reactor. In addition, a CFD model of the alkane-based system was 

developed and coupled to identified models of 𝐾𝐿𝑎
 ′ so as to predict oxygen transfer. Finally, 

the predicted values were validated against experimental data. The key findings arising from 

the work done are enumerated below. 

 

1. A validated CFD-based methodology for cell-free alkane-based stirred reactors has been 

presented and this can be used in future studies. It has been shown that it is necessary to 

model all the phases independently as well as to consider the interphase interactions 

amongst them. For the alkane phase, modelling of its interaction with the turbulence of 

the continuous phase has been shown to be necessary for the appropriate description of 

the hydrodynamics. The developed CFD model, based on the Euler-Euler-Euler (EEE) 

approach, was observed to predict gas hold up values that were generally accurate to 

within 30%. Furthermore, it was shown that the predicted gas hold up trend was not 

influenced by the choice of boundary condition employed to model escape of the gas 

phase from the top surface of the reactor. In particular, a maximum difference of 16% 

was observed between simulations based on the velocity-inlet boundary condition 

(BC1) and the pressure-outlet boundary condition (BC2). 

2. It has been clearly shown that changes in the effective fluid properties (viscosity) by the 

alkane phase are not sufficient to alter the hydrodynamics of an alkane-based stirred 

reactor operating in the turbulent regime. Simulations based on the hypothesis that the 

liquid-liquid mixture could be treated as a pseudo-homogeneous liquid were observed to 

predict constant gas hold up values in contrast to the experimental trend. This was due 
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to the hydrodynamics of the system being governed by the turbulence levels as 

evidenced by larger values of the turbulence viscosity in comparison to the fluid’s 

effective viscosity (𝜇𝑡/𝜇𝑒𝑓𝑓 of the order 𝑂(10 − 100)). The significance of this finding 

lay in the fact that this is a commonly hypothesised mechanism in literature. 

3. In connection with point 2 above, the mechanism by which the alkane phase impacts the 

hydrodynamics and hence gas hold up has been clearly illustrated for the first time. It 

has been shown that the alkane phase primarily acts through the interaction of its 

droplets with the turbulence of the continuous phase. It was observed, based on 

simulations using the Euler-Euler-Euler approach, that the presence of the alkane phase 

resulted in higher values of the turbulent kinetic energy and its dissipation rate. This led 

to increased values of the turbulence viscosity which had a dampening effect on the 

mean velocities of the continuous aqueous phase. Consequently, the gas phase 

experienced reduced drag and dispersion within the reactor. This led to a quicker escape 

of the gas phase as evidenced by a reduction in the predicted overall gas hold up. The 

CFD-based gas hold up values generally agreed with the experimental trend to within 

30%.  

4. It has been shown that the alkane phase can have secondary effects on the 

hydrodynamics of a stirred reactor. These included a loss of pumping capacity due to 

the poorly dispersed gas phase flooding the impellers as well as a dampening of the 

macro-instabilities due to a higher turbulent viscosity. It was also observed that the 3-

phase system had a higher power demand than a 2-phase system and this was attributed 

to the increased dissipation rate by the alkane phase. However, further investigations are 

recommended on the influence of the alkane phase on the power drawn since conflicting 

literature reports have been reported.   

5. It has been shown that CFD-based prediction of oxygen transfer in a 3-phase alkane-

based system can give results that are comparable with experimental measurements of 

the same. This was observed in the good accuracy (~11%) of predicted 𝐾𝐿𝑎
 ′ values 

obtained at 600 rpm and for alkane volume fractions, 𝛼𝑜 ≤ 10%. There is, however, 

room for improvement in the CFD-based modelling approach. This can be done 

achieved through the incorporation of population balance models so as to capture the 

dynamic changes in the bubble size distributions. The failure to model the latter was 

reasoned to be behind the over-prediction in gas hold up and 𝐾𝐿𝑎
 ′ at 600 rpm (20% 

alkane volume fraction) as well as the under-predictions in 𝐾𝐿𝑎
 ′ at 800 rpm.   

6. It has been shown that oxygen transfer in alkane-based stirred reactors can be modelled, 

with reasonable accuracy, based on an assumption of series mass transfer. Minimal 
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sensitivity in the predicted 𝐾𝐿𝑎
 ′ values was observed for the different models of the 

gas-liquid interface tested (series mass transfer with or without shuttling). Rather, the 

predicted 𝐾𝐿𝑎
 ′ values were more sensitive to changes in the gas hold up and the 

turbulence levels. It would be interesting to investigate whether similar results would be 

observed if different assumptions were taken for the mass transfer model. These can 

include, for example, a lack of equilibrium in the dissolved oxygen concentration 

between the aqueous and alkane phases as well as parallel mass transfer. This is taken 

up as a recommendation for future work.  

 

8.3 Gas-liquid-liquid-solid system 

 

The investigations into the 4-phase alkane-based system involved the extension of the 

previously developed CFD model by incorporating hypothesised effects of the yeast phase. In 

addition, appropriate models of 𝐾𝐿𝑎
 ′ were employed in the prediction of oxygen transfer. 

Finally, the predicted values were validated against experimental data. The key findings 

arising from the work undertaken have been enumerated below. 

 

1. A CFD-based methodology has been proposed for the 4-phase alkane-based system. It 

has been shown that a reasonable first approximation to the hydrodynamics can be 

obtained based on a model similar to that proposed for the 3-phase cell-free system. In 

this case, however, the effects of the yeast phase such as a change in the bubble 

diameters and a modification to the effective drag due to possible cluster formation 

would have to be included. It was observed that the developed CFD model had an 

accuracy of about 40% with regards to the gas hold up values. Proposals for the 

improvement of this model have also been given and these included a consideration of 

mutual hindrance of motion between air bubbles and alkane droplets given that they 

may be of a comparable size in the non-coalescing 4-phase system.   

2. Possible influences of the additional phases on the hydrodynamics of the reactor have 

been highlighted though these require further experimental investigations. For example, 

addition of the alkane phase was predicted to lead to a reduction in the mean velocities 

of flow. However, the yeast phase with its non-coalescing effect led to the formation of 

small air bubbles that are able to follow the mean flow despite a reduction in its 

magnitude. This resulted in effective dispersion of the gas phase within the reactor of 4-

phase system and consequently higher gas hold up values than those observed in the 3-

phase system. 

Stellenbosch University https://scholar.sun.ac.za



116 

3. In connection with the above, it has also been suggested that the yeast phase can lead to 

secondary effects such as the formation of clusters of air bubbles arising from particle-

bubble interactions. The formation of these clusters plus their subsequent escape was 

hypothesised to be behind the decrease in gas hold up values as the agitation rates 

increased beyond 725 rpm. At these agitation rates, an improvement in the floatability 

of the yeast cells by the air bubbles was expected. An attempt to incorporate this effect 

into the modelling was observed to lead to better predictions of the gas hold up values 

with an accuracy of about 40% achieved. All the same, further experimental 

investigations of this effect are recommended.     

4. It has been shown that oxygen transfer in the 4-phase system is probably impacted by 

particle-bubble interaction. In particular, a decrease in the interfacial area is likely to 

occur due to physical blocking of the bubbles’ surfaces by attached yeast cells or the 

formation of bubble clusters. These mechanisms were hypothesised to be behind the 

poor prediction of 𝐾𝐿𝑎
 ′ values by the CFD model. However, further experimental 

investigations are recommended to quantify their contributions. 

 

8.4 Recommendations 

 

Based on the findings of this research, the following recommendations for future work have 

been proposed: 

 

1. The development of the CFD model for the considered systems relied on a number of 

significant assumptions/limitations to keep the model tractable. The resulting model was 

reasonably accurate as seen in the prediction of gas hold up and 𝐾𝐿𝑎
 ′ values. However, 

future investigations should look into relaxing some of the assumptions/limitations 

employed. These included: 

a. The treatment of turbulence in the system based on the Reynolds-averaged 

Navier-Stokes (RANS) equations and an eddy viscosity approach (dispersed 

𝑘–𝜖 model) to the exclusion of other approaches such as the Reynolds’ stress 

model (RSM). The latter is known to better capture anisotropic effects of 

turbulence that exist in stirred tank reactors. 

b. The treatment of air bubbles as particles with a constant size. It has been 

suggested based on the 3-phase results that a modelling of the bubble size 

distributions with a population balance model can lead to an improvement in 

the oxygen transfer predictions.  
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c. The consideration of interphase interaction forces as primarily occurring 

between the continuous aqueous phase and the dispersed phases (air-aqueous 

or alkane-aqueous). It has been suggested based on the 4-phase results that 

consideration should also be given to the mutual hindrance of motion between 

the dispersed phases (alkane droplets and air bubbles).  

d. The assumption that equilibrium in the dissolved oxygen concentration will 

always be maintained between the aqueous and the alkane phase as well as the 

prescription of the series mass transfer pathway (with or without shuttling). An 

investigation of different mass transfer models/scenarios would give more 

conclusive proof as to the exact mechanism of mass transfer in alkane-based 

systems.  

2. The development of the CFD model also required validation at various stages such as 

the mesh independence study done in the single phase system. Though the validation 

was done based on the availability of data, future studies should look into adopting a 

more robust validation approach. This could entail, for example, an examination of 

velocity data as well as mesh independence studies using representative conditions in 

the 3-phase and 4-phase systems. In connection with this, oxygen transfer data used for 

validation should be rather obtained based on the pressure step method. This is 

particularly important for the non-coalescing 4-phase system.  

3. The interaction of the alkane phase with the turbulence of the continuous phase has 

been observed to have a significant effect on the hydrodynamics of the stirred tank 

reactor. Though this was supported based on the trends in gas hold up, future 

investigations should look into making direct measurements of these effects. This 

should include the measurement of velocities and turbulence quantities in alkane-based 

systems through techniques such as particle image velocimetry that have been used for 

2-phase liquid-liquid systems [139–141]. In addition, the trends in the power drawn as 

the alkane concentration changes should be measured. 

4. The presence of the non-viable yeast cells was hypothesised to lead to physical blocking 

as well as to the formation of bubble clusters. Future investigations should look into 

experimentally quantifying these effects at different process conditions. In addition, the 

presence of these effects should be investigated for viable (live) yeast cells as well as 

for different organisms/cells. Literature studies indicate that the hydrophobicity of 

organisms/cells changes with the cell type and the growth phase thus suggesting a 

change in the degree of particle-bubble interaction.    
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5. Whereas this study focused on exploring the hydrodynamics and oxygen transfer in a 

stirred tank operating in the turbulent regime, future work should investigate whether 

the observations made hold true in equipment with different flow regimes such as 

bubble column reactors.  
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