
Comparison of Old and New Algorithms for
s,t -Network Reliability

by

Simotwo Chepkirui Faith Zainabu

Thesis presented in partial fulfilment of the requirements
for the degree of Master of Science in Mathematics in the

Faculty of Science at Stellenbosch University

Supervisor: Prof. Marcel Wild

March 2020

Abstract

Comparison of Old and New Algorithms for
s,t -Network Reliability

Simotwo Zainabu
Department of Mathematical Sciences,

University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc

March 2020

Network reliability is the probability of an operative path connecting the
source s with the terminal t. s, t-network reliability problems have been
proven to be #P-complete. In this thesis we present some old techniques
which have existed since the 1950’s, as well as four new algorithms for cal-
culating the network reliability. Because these algorithms are all coded in
Mathematica as a common platform, they can be compared in a fair way.

We first c onsider t he e xhaustive e numeration m ethod. T hen w e explain
in detail the series-parallel reduction which is applied in the contraction-
deletion algorithm. Let ps[i] and cs[i] be the number of cardinality i pathsets
and cutsets respectively. It was long known that knowing these parameters
yields the network reliability at once. Two algorithms of Wild (which more
generally concern arbitrary set filters) can be used to calculate the numbers
ps[i] and cs[i] more efficiently than previous approaches.

The comparison is based on CPU time where several random networks have
been tested. The results are presented in the form of graphs and tables and
we demonstrate some of the algorithms by examples.

i

Stellenbosch University https://scholar.sun.ac.za

Uittreksel

Vergelyking van oue en nuwe algoritmes vir
netwerkbetroubaarheid

Simotwo Zainabu

Tesis: MSc

Maart 2020

Netwerkbetroubaarheid is die waarskynlikheid dat ’n operasionele pad die
bron s met die terminale t verbind. In praktiese gevalle was die meeste
probleme met netwerkbetroubaarheid #P-volledig. In hierdie tesis sal ons
’n aantal ou tegnieke wat sedert die vyftigerjare bestaan, sowel as nuwe
algoritmes vir die berekening van netwerkbetroubaarheid in Mathematica
kodeer. Op hierdie manier raak die algoritmes se werkverrigtings vergelyk-
baar.

Ons kyk eers na die uitputtende enumeratiewe metode. Vervolgens verdui-
delik ons die serie-parallelle reduksie wat toegepas word in die stelling vir
sametrekking-skrapping. Uiteindelik is ons ook in staat om vier nuwe me-
todes aan te bied.

Die vergelyking is gebaseer op die SVE-tyd wat deur netwerke benodig
word. Die resultate word aangebied in die vorm van grafieke e n tabelle
en ons demonstreer enkele voorbeelde van die algoritmes.

ii

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

I would like to express my very great appreciation to my supervisor Prof.
Marcel Wild (Stellenbosch University) for his support during the develop-
ment of this work and most importantly for making me discover the power
of Mathematica. His guidance, support and friendliness helped me to get
the best out of this thesis.

I would also like to thank the Mandela Rhodes Foundation for providing
me with a full scholarship funding and connecting me to my mentor and
friend Prof. Chet (Stellenbosch University) who inspired me throughout
my stay at Stellenbosch.

My special thanks are extended to the teaching staff, non-teaching staff
and fellow postgraduate students in the Mathematical Sciences Department
who have made this journey fascinating, encouraged me constantly and cre-
ated a conducive space during my research.

To my dear family, friends and office colleagues, my heart is full. I’m grate-
ful for your emotional support and love that I have received from you through-
out my studies.

iii

Stellenbosch University https://scholar.sun.ac.za

Dedications

For my late mother Amina for investing and giving me the best foundation
for something she didn’t have, education!

iv

Stellenbosch University https://scholar.sun.ac.za

Contents

Abstract i

Uittreksel ii

Acknowledgements iii

Dedications iv

Contents v

List of Figures vii

List of Tables x

Nomenclature xi

1 Introduction 1
1.1 Layout of the thesis . 2
1.2 Network model and basic concepts 2

2 Exhaustive state enumeration 4
2.1 Introduction . 4

2.1.1 Equal edge reliabilities 5
2.1.2 Individual edge reliabilities 5

2.2 Conclusion . 6

3 Series-parallel networks 7
3.1 Introduction . 7
3.2 Series reduction . 7
3.3 Parallel reduction . 8

v

Stellenbosch University https://scholar.sun.ac.za

CONTENTS vi

3.4 Illustration of the series-parallel reduction algorithm by ex-
ample . 9

3.5 Conclusion . 12

4 Computing nr(G) by contraction-deletion 13
4.1 Introduction . 13
4.2 The Last-In-First-Out (LIFO) Technique 14
4.3 How the graphs Gi arise . 15
4.4 Last but not least: The CDT of Moskowitz 26

5 Minpath and mincut methods 30
5.1 Introduction . 30
5.2 Computing all minpaths of a network 30
5.3 Computing all mincuts of a network 32
5.4 Naive inclusion-exclusion on the minpaths 33

5.4.1 Method 1 . 33
5.4.2 Method 2 . 35

5.5 Naive inclusion-exclusion on the mincuts 35
5.6 Two methods to count a set filter 36

5.6.1 MethodA . 37
5.6.2 MethodB . 38

5.7 Calculating nr(G) with Minpath-MethodA 38
5.8 Calculating nr(G) with Minpath-MethodB 39
5.9 Calculating nr(G) with Mincut-MethodA or Mincut-MethodB 43

6 Comparison of algorithms 44
6.1 Introduction . 44
6.2 Computational results of the Mathematica algorithms 45
6.3 Algorithm recommendation . 48

A Parameters for random networks used to test FindPath command
and SimpleMincut method 50

B Mincuts and Minpaths 52

C Random networks tested 53

List of References 59

Stellenbosch University https://scholar.sun.ac.za

List of Figures

1.1 Our running example network G0. 3

2.1 Undirected bridge network. 5

3.1 Series reduction of a network. 8
3.2 . 8
3.3 Graphical illustration of a complete series-parallel reduction with

ne=17 and nv=12. 9

4.1 The LIFO stack for processing G0. 15
4.2 Reduction of G0. 16
4.3 Reduction of G2. 17
4.4 Complete reduction of G4 yielding poly4. 18
4.5 Reduction of G3. 19
4.6 Complete reduction of G8 yielding poly8. 20
4.7 Reduction of G1. 21
4.8 Complete reduction of G12 yielding poly12. 22
4.9 Reduction of G11. 23
4.10 Reduction of G16. 24
4.11 Complete reduction of G18 yielding poly18. 25
4.12 Binary tree of the G0 subtasks . 26

5.1 Running example network G0 . 31
5.2 CPU time for generating all minpaths using Mathematica’s FindPath

command, using a logarithmic scale. 32
5.3 CPU time for generating mincuts using SimpleMincut algorithm,

again using a logarithmic scale. 33
5.4 . 34

6.1 Example of a 2-connected network. 44

vii

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES viii

6.2 Example of a tree-like network. 45
6.3 Graphical analysis of the CPU time (in seconds) against number

of edges for 2-connected networks. 46
6.4 Graphical analysis of the CPU time (in seconds) against number

of edges for tree-like networks. 47

C.1 G=([5],[8]). 53
C.2 G=([6],[9]). 53
C.3 G=([7],[11]). 53
C.4 G=([7],[13]). 53
C.5 G=([8],[14]). 54
C.6 G=([8],[15]). 54
C.7 G=([9],[16]). 54
C.8 G=([9],[18]). 54
C.9 G=([10],[20]). 54
C.10 G=([11],[22]). 54
C.11 G=([11],[23]). 55
C.12 G=([7],[25]). 55
C.13 G=([12],[27]). 55
C.14 G=([12],[28]). 55
C.15 G=([13],[30]). 55
C.16 G=([14],[32]). 55
C.17 G=([16],[35]). 56
C.18 G=([22],[45]). 56
C.19 G=([9],[12]). 56
C.20 G=([10],[16]). 56
C.21 G=([13],[18]). 56
C.22 G=([14],[20]). 56
C.23 G=([15],[22]). 57
C.24 G=([20],[28]). 57
C.25 G=([22],[31]). 57
C.26 G=([26],[35]). 57
C.27 G=([30],[38]). 57
C.28 G=([32],[43]). 57
C.29 G=([35],[46]). 58
C.30 G=([38],[49]). 58

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES ix

C.31 G=([42],[54]). 58
C.32 G=([47],[60]). 58

Stellenbosch University https://scholar.sun.ac.za

List of Tables

2.1 The sixteen operational states in G 6

5.1 Descriptive facets-to-faces algorithm 37
5.2 Bitstrings corresponding to subsets of r3 37

6.1 CPU time (in seconds) for the Mathematica programs on 2-connected
networks . 46

6.2 CPU time (in seconds) for the Mathematica programs on tree-like
networks . 47

6.3 CPU time (in seconds) for the Mathematica programs on series-
parallel network, ne=17 . 48

6.4 Method recommendation when calculating the network reliability 48

A.1 Parameters and CPU time of the random networks tested using
FindPath command . 50

A.2 Parameters and CPU time of the random networks tested using
SimpleMincut algorithm . 51

B.1 The transversal e-algorithm compact representation of the family
of all cutsets X as disjoint union of thirty two 012e-rows r1 to r32. 52

x

Stellenbosch University https://scholar.sun.ac.za

Nomenclature

Combinatorics

G = (V, E) A network with vertex set V and edge set E.

ne The number of edges of G.

nv The number of vertices of G.

s The source vertex of G.

t The terminal vertex of G.

nr(G) The network reliability of G.

n f (G) The network fallibility of G.

cs[i] The number of cutsets of cardinality i.

ps[i] The number of pathsets of cardinality i.

p(e) The edge reliability of an edge e of G.

G− e The network obtained by deleting edge e of G.

G.e The network obtained by contracting edge e of G.

xi

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

Reliability analysis is a complex combinatorial study which has received
significant research due to its relevance in many practical areas such as data
communication networks, computer networks, electrical power transmis-
sion and distributions systems, etc [1, 5].

The edges and vertices of a network can take either failed or operative
states. Several techniques since the 1950’s [2, 3] have been used to calculate
the network reliability, i.e. the probability of an operative path connecting
the source s with the terminal t. There are no known algorithms which en-
sure polynomial running time. More specifically, the problem is known to
be #P-complete [1, 4, 6].

Several authors have proposed various algorithms coded in different pro-
gramming languages leaving a quandary as to which is the most efficient.
In order to achieve comparability we present a variety of old and new algo-
rithms freshly programmed in Mathematica.

Let us briefly glimpse the broader picture. Apart from our specific network
model (defined in Section 1.2) many other kinds of networks and various
notions of network reliability can be considered. In real life the networks
are much larger than the ones considered in this thesis, and therefore one
resorts to merely approximating the network reliability.

1

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

1.1 Layout of the thesis

The sequel of Chapter 1 introduces basic theoretic concepts and assump-
tions required throughout this thesis. Herein, we define the network model
to be used and other important definitions.

In Chapter 2 we explain the exhaustive state enumeration algorithm for
computing the network reliability.

In Chapter 3 we concentrate on the special case of series-parallel networks
which will show up repeatedly in chapter 4.

Chapter 4 is dedicated to the contraction-deletion method to compute the
network reliability. We illustrate this method meticulously by many pic-
tures.

In Chapter 5 we sketch two new algorithms that use the transversal e-algorithm
[8] and the facets-to-faces algorithm [7] respectively to compute the network
reliability.

In Chapter 6 we test 34 networks and provide computational results for the
methods presented in Chapter 2, Chapter 4 and Chapter 5.

1.2 Network model and basic concepts

In the literature ’network’ can mean a lot of things. Throughout the thesis
we shall adopt the definition below which also allows for parallel edges but
not loops.

Definition 1.2.1. A network G = (V, E) is a finite graph where V is the set of
nv vertices and E is the set of ne undirected edges. There are two distinct vertices,
the source s ∈ V and the terminal vertex t ∈ V. Parallel edges are allowed but not
loops.

Definition 1.2.2. The edge reliability p(e) of a particular edge e in a network
G is the probability that it operates at any given moment.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

Definition 1.2.3. The network reliability is the probability nr = nr(G) that s
and t are connected at any moment of inspection.

To fix ideas, suppose that when all edges are operating then travelling from
s to t on the longest (circle-free) path takes less than a day. Then we pos-
tulate that in intervals of 24 hours all edges e simultaneously, but indepen-
dently, change their state according to p(e), and keep it for the next 24 hours.

Throughout this Master’s Thesis, we shall consider the network G0 (Figure
1.1) to illustrate our various methods to compute nr(G). Thus nv=7 and
ne=11. Recall that s and t are the source and terminal respectively.

1

4

8

11

10

9

5

6

73

2s
t

Figure 1.1: Our running example network G0.

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Exhaustive state enumeration

2.1 Introduction

The exhaustive state enumeration method is the most simple and direct
method to compute the network reliability [1].

Definition 2.1.1. A state of a network G = (V, E) is just a subset X ⊆ E of
edges. We call X operational if X contains a path from s to t.

Notice that X is operational if and only if deleting the edges in E \ X yields
a graph which (is not necessarily itself connected but) has s and t appear-
ing in the same connected component. Using the Mathematica command
ConnectedComponents this is easily decided. By generating all 2ne states of
G = (V, E) and summing the probabilities coupled to the operational ones
the network reliability is simply, but not efficiently, computed.

Example 2.1.2. We illustrate this method using Figure 2.1.

4

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. EXHAUSTIVE STATE ENUMERATION 5

e2

e1

e3

e4

e5

s t

2

3

Figure 2.1: Undirected bridge network.

2.1.1 Equal edge reliabilities

Suppose first each edge e has the same edge reliability p (e) =: p. Then the
probability that exactly the edges in a fixed state X are working is pm.(1−
p)ne−m where m = |X|. Let am be the number of m-element states which are
operational. It follows that

nr(G) =
ne

∑
m=1

am pm(1− p)ne−m. (2.1.1)

A noteworthy special case arises when p = 0.5. Then pm(1 − p)ne−m =

(0.5)m.(0.5)ne−m = (0.5)ne, and so

nr(G) =
ne

∑
m=1

am(0.5)ne =
1

2ne

ne

∑
m=1

am =
number o f operational states

number o f all states
.

(2.1.2)

For the particular network G in Figure 2.1 one has 16 operational states (see
Table 2.1), and so nr(G) = 16

32 = 1
2 .

2.1.2 Individual edge reliabilities

Suppose now we have individual edge reliabilities p1, ..., p5. Putting qi =

1− pi in Table 2.1 shows the 16 operational states of G in Figure 2.1 (encoded
in the well known 0, 1 manner) and the probability for each. The network
reliability is then computed by adding up all the probabilities in the right
hand column of Table 2.1.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. EXHAUSTIVE STATE ENUMERATION 6

Table 2.1: The sixteen operational states in G

{e1, e2, e3, e4, e5} probability

{1, 1, 1, 1, 1} p1p2p3p4p5

{1, 1, 1, 0, 1} p1p2p3q4p5

{1, 1, 1, 1, 0} p1p2p3p4q5

{1, 1, 0, 1, 1} p1p2q3p4p5

{1, 0, 1, 1, 1} p1q2p3p4p5

{0, 1, 1, 1, 1} q1p2p3p4p5

{1, 1, 0, 1, 0} p1p2q3p4q5

{1, 1, 0, 0, 1} p1p2q3q4p5

{e1, e2, e3, e4, e5} probability

{1, 0, 1, 1, 0} p1q2p3p4q5

{1, 0, 0, 1, 1} p1q2q3p4p5

{1, 0, 1, 0, 1} p1q2p3q4p5

{1, 0, 0, 1, 0} p1q2q3p4q5

{0, 1, 1, 0, 1} q1p2p3q4p5

{0, 1, 1, 1, 0} q1p2p3p4q5

{0, 1, 0, 1, 1} q1p2q3p4p5

{0, 1, 0, 0, 1} q1p2q3q4p5

2.2 Conclusion

The advantage of the exhaustive state enumeration is that it works for both
equal and individual edge reliabilities. (We shall encounter methods which
only work for equal edge reliabilities). The main disadvantage of exhaustive
state enumeration is that its computational complexity is exponential in the
number of edges.

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Series-parallel networks

3.1 Introduction

’Reduction’ of a network G is any transformation method which allows the
simplification of G while preserving nr(G). Usually that involves reducing
the number of edges, or vertices, or both [1]. In this chapter we present an
algorithm that computes the network reliability of so-called series-parallel
networks. For the latter a particularly smooth kind of reduction will do.

3.2 Series reduction

Definition 3.2.1. Two edges e1 = (a, b) and e2 = (b, c) in a network G are in
series if b /∈ {s, t} and b is only incident with edges e1 and e2.

The following is evident: if p(e1) = p1 and p(e2) = p2 and G1 arises from
G by substituting e1 , e2 with e = (a, c) having p(e) := p1p2 then nr(G1) =

nr(G).

Example 3.2.2. Every edge in the graph on the left in (Figure 3.1) is of edge relia-
bility p.

7

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERIES-PARALLEL NETWORKS 8

series-reduction

s

t

s

t

v1

v2

v3

v4

v5
v1

v2

p2

p3

Figure 3.1: Series reduction of a network.

3.3 Parallel reduction

Definition 3.3.1. Two edges e1 and e2 in a network G are in parallel if they both
connect the same end vertices.

Suppose that two parallel edges in a network G have reliability p and k
respectively. Then the following possibilities can occur:

both p, k work only p works only k works both p, k fail

p

a b

k

p

a b

k

a b
1− k

1− p 1− p

1− k

a b

Figure 3.2

It follows that the probability that at least one edge works is

pk + p(1− k) + k(1− p) = p + k− pk.

If we thus replace the two edges by a single edge with edge reliability p +

k− pk, the new network G1 evidently satisfies nr(G1) = nr(G).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERIES-PARALLEL NETWORKS 9

3.4 Illustration of the series-parallel reduction
algorithm by example

Figure 3.3: Graphical illustration of a complete series-parallel reduction
with ne=17 and nv=12.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERIES-PARALLEL NETWORKS 10

The series-parallel reduction algorithm applies series-reduction and parallel-
reduction in turn until neither of them can be applied. Let us illustrate how
the algorithm works on G in Figure 3.3. Suppose initially the edge reliabili-
ties are these:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},



{1, 2} p2

{1, 3} p2

{1, 4} p
{1, 11} p
{2, 5} p3

{2, 6} p2

{2, 8} p
{3, 7} p4

{4, 7} p
{5, 8} p
{6, 8} p4

{7, 9} p
{7, 10} p
{8, 12} p4

{9, 11} p
{10, 11} p
{11, 12} p4





.

After series reduction:

{1, 2, 7, 8, 11, 12},



{1, 2} p2

{1, 7} p2

{1, 7} p6

{1, 11} p
{2, 8} p
{2, 8} p4

{2, 8} p6

{7, 11} p2

{7, 11} p2

{8, 12} p4

{11, 12} p4





.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERIES-PARALLEL NETWORKS 11

After parallel reduction:
{1, 2, 7, 8, 11, 12},



{1, 2} p2

{1, 7} p2 + p6 − p8

{1, 11} p
{2, 8} p + p4 − p5 + p6 − p7 − p10 + p11

{7, 11} 2p2 − p4

{8, 12} p4

{11, 12} p4




.

After series reduction:{1, 11, 12},


{1, 11} p
{1, 11} 2p4 − p6 + 2p8 − 3p10 + p12

{1, 12} p7 + p10 − p11 + p12 − p13 − p16 + p17

{11, 12} p4


 .

After parallel reduction:{1, 11, 12},


{1, 11} p + 2p4 − 2p5 − p6 + p7 + 2p8−

2p9 − 3p10 + 3p11 + p12 − p13

{1, 12} p7 + p10 − p11 + p12 − p13 − p16 + p17

{11, 12} p4


 .

After series reduction:{1, 12},

 {1, 12} p7 + p10 − p11 + p12 − p13 − p16 + p17

{1, 12} p5 + 2p8 − 2p9 − p10 + p11 + 2p12

−2p13 − 3p14 + 3p15 + p16 − p17


 .

After parallel reduction:{1, 12},


{1, 12} p5 + p7 + 2p8 − 2p9 + 2p12 − 3p13 − 3p14

+3p16 − 2p18 + 2p19 − p20 + 6p21 − 6p22+

p23 + 3p24 − 6p25 + 4p26 − 2p27 + 2p28−
2p29 − 2p30 + 6p31 − 2p32 − 2p33 + p34


 .

Thus the single edge between {1, 12} with reliability x is obtained in Figure
3.3, where x = p5 + p7 + 2p8 − · · · − 2p33 + p34.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SERIES-PARALLEL NETWORKS 12

3.5 Conclusion

We illustrated how the series-parallel reduction Mathematica algorithm some-
times works to reduce a network G to a single edge. In this case its label x
equals nr(G). More precisely, "sometimes" happens if and only if G is a so-
called series-parallel network. The latter can be neatly defined recursively,
which we omit (see [1]). Even when G is not a series-parallel network, as in
Chapter 4, sp-reduction will continue to play an important role.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Computing nr(G) by
contraction-deletion

4.1 Introduction

For most networks, the parallel and series reductions as illustrated in Chap-
ter 3 do not immediately apply. Instead, suppose a network G has an edge
e incident with the vertices v1, v2. Then G can be reduced to a smaller net-
work G− e by deleting the edge e (while keeping v1, v2). A smaller network
G.e can also be obtained by contracting the edge e. This means shrinking
{v1, v2} into a sole vertex. Concrete examples follow soon.

The following contraction-deletion theorem (CDT) can be traced back to
Moskowitz [3]:

Theorem 4.1.1. If p is the edge-reliability of edge e then

nr(G) = p.nr(G.e) + (1− p).nr(G− e). (4.1.1)

The CDT gives rise to the contraction-deletion algorithm (CDA), yet in
quite intricate ways. In a nutshell, the network G is decomposed into many
smaller networks (Section 4.3). Then the CDT is applied repeatedly until
one arrives at nr(G) (Section 4.4). The book-keeping is done by a LIFO-stack
(Section 4.2).

13

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. COMPUTING NR(G) BY CONTRACTION-DELETION 14

Before we go on, it should be mentioned that the efficiency of the CDA
depends on the strategy of selecting edges e for factorisation. To keep things
simple, we pick these edges e at random.

4.2 The Last-In-First-Out (LIFO) Technique

The network G0 from Figure 1.1 will give rise (upon contraction respectively
deletion) to two smaller networks G1 and G2. Unfortunately they are too big
to be evaluated right away. In such situations it is common practice to put
one task aside (say G1) and fully concentrate on the other task (thus G2) and
its potential subtasks. In turn G2 gives rise to G3 (which is put aside) and
G4. Then G4 gives rise to G5 and G6, and so forth. More precisely, "so forth"
means that
This is the so-called Last-In-First-Out (LIFO) technique. Figure 4.1 matches
well the "physical" stack employed in our Mathematica implementation of
the contraction-deletion algorithm. Let us explain the details of Figure 4.1.
The numbering of the two subtasks of a task is such that the one with the
smaller index arises from contraction, and the one with the larger index
from deletion of an edge. For instance contracting a certain edge e of G3

yields a network G7 which by series and parallel reduction simplifies to a
network G7 with the same reliability polynomial. On the other hand, delet-
ing e gives rise to a network G8. The notation G7(3) and G8(3) in Figure 4.1
allows us to remember that both G7 and G8 arose from G3.

The eleven networks Gi ticked off in Figure 4.1 are the most simple kind as
they consist of a single edge between s, t which is labelled by a polynomial
that coincides with the reliability polynomial of Gi (as seen in Chapter 4).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. COMPUTING NR(G) BY CONTRACTION-DELETION 15

Figure 4.1: The LIFO stack for processing G0.

4.3 How the graphs Gi arise

This section is almost entirely pictures! They will be self-explanatory, and
make us understand how the LIFO-stack in Figure 4.1 came about. We men-
tion that the edges chosen for deletion/contraction are picked at random.
Choosing them in more thoughtful ways can well make a difference but we
don’t go into that.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. COMPUTING NR(G) BY CONTRACTION-DELETION 16

G2

G0

G1

G2

s
t

1

4
8

11

10

9

5 6

73

2=

delete 4
contract 4

s
t

s t
1

8

11

10

9

5
6

7
3

2
1

8

11

10

9

5 6

73

2

8

11

10

9

67

3

2s t

12(p2)

series reduction of
(1, 5)

Figure 4.2: Reduction of G0.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. COMPUTING NR(G) BY CONTRACTION-DELETION 17

G3 G4

G2

G3 G4

14(p2)

13(p2)

12(p2)

contract 7 delete 7

s t s t

12(p2) 9

6 8

10

2

3

11

2

3
9

6

12(p2)

8

11

10

12(p2)

15(2p− p2)

s t

3

9

6

11

2

2s t

9
11

parallel reduction
of (8, 10)

series reduction of (6, 8)
and (3, 10)

Figure 4.3: Reduction of G2.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. COMPUTING NR(G) BY CONTRACTION-DELETION 18

G4

contract 9 delete 9

2

(p2
+p− p3)
20

(p2
+p− p3)
19

18(2p3 − p6)

21(p6 − 2p5 − p4 + 2p3 + p2)

14(p2)

12(p2)

14(p2) 14(p2)

13(p2)

12(p2)

13(p2)

14(p2)

16(p3)

14(p2)

17(p3)

14(p2)

s

s

s

s

t

t

tt

11 11

2

s

t
s

t

s t

p8 − p6 − 2p5
+2p3

+p2

s t

2p2
+2p3 − 2p4 − 4p5

+2p6
+2p7 − p8

G5 G6

G5

G6

parallel reduction of
(2,12) and (11, 13)

series reduction of
(2, 13) and (11, 12)

series reduction of
(19, 20)

parallel reduction
of (16,17)

parallel reduction

parallel reduction

Figure 4.4: Complete reduction of G4 yielding poly4.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. COMPUTING NR(G) BY CONTRACTION-DELETION 19

G3

contract 2 delete 2

s

s s

s

s

tt

t

t

t

6

9

15(2p− p2)

12(p2) 11

3 3

1112(p2)

23(2p− p2)
15(2p− p2)

24(p2 + p− p3)

15(2p− p2)

22(p2)

12(p2)

11

15(2p− p2)

25(4p2 − 4p3 + p4)

26(p3 + p2 − p4)

3

11

s t
5p2 − 3p3 − 4p4 + 7p6 − 5p7 + p8

6

9

G7 G8

G7

G8

parallel reduction of
(3 , 6) and (9 , 12) series reduction of

(6 , 9)

series reduction of (15,23)
and (11 , 24)

parallel reduction

Figure 4.5: Reduction of G3.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. COMPUTING NR(G) BY CONTRACTION-DELETION 20

G8

G10G9

G10G9

29(2p2 − p4)

15(2p− p2)

t

t

s

s

22(p2)

11

15(2p− p2)

11

s

ts

t

contract 3 delete 3

parallel reduction
of (12, 22)

series reduction
parallel reduction

series reduction
of (11, 29)

12(p2)

15(2p− p2)

30(2p3 − p5)

2p− p2 + 2p3 − 4p4 + p5 + 2p6 − p7

s
t22(p2)

12(p2)

15(2p− p2)

11

s
t

11

27(2p3 − p4)
12(p2)

12(p2) 28(p+2p3 − 3p4
+p5)

p3 + 2p5 − 3p6 + p7
s t

s t

series reduction of
(15, 22)

parallel reduction of
(11, 27)

Figure 4.6: Complete reduction of G8 yielding poly8.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. COMPUTING NR(G) BY CONTRACTION-DELETION 21

s
t

s
t

s

1

t

s t

s t

G1

delete 9contract 9

parallel reduction
of (5, 6)

series reduction of
(5, 11) and (2 , 6)

parallel reduction
of (1 , 32) and (8, 31)

G11 G12

8

11

10

5
6

3

1

2
7

3
2

1

5

8

11
10

6

7

7 2

3

35(2p− p2)

8

11

10

1
31(p2)

32(p2)
8

3

7

10

34(p+p2 − p3)

33(p+p2 − p3)

3

7

10

G11

G12

Figure 4.7: Reduction of G1.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. COMPUTING NR(G) BY CONTRACTION-DELETION 22

G12

37(p+2p2 − 2p3 − p4
+p5)

p2
+3p3 − p4 − 5p5

+2p6
+2p7 − p8

33
34

34

7
s t

10

G14G13

36(p2)33
s

t

s

s t

t
33

G14G13

38(2p− 2p3 + p4)

34

s

t

s

t7 33

10

34

10

39(2p2 + 2p3 − 4p4 − p5 + 3p6 − p7)

10

s

ts

t
p+2p2 − 6p4

+3p5
+4p6 − 4p7

+p8

contract 3 delete 3

parallel reduction
of (7 , 33) series reduction of

(7, 10)

parallel reduction
of (34,36)

series reductionparallel reduction

series reduction of
(34 , 38)

Figure 4.8: Complete reduction of G12 yielding poly12.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. COMPUTING NR(G) BY CONTRACTION-DELETION 23

G11

2s t

35 8

7

3
10

G16

11

35

8

10

s

ts

t

7
2

11

3

41(3p− 3p2
+p3)

8

10
40(2p− p2)

G15

s t

t

43(2p2 − p3)

42(3p2 − 3p3
+p4)

11

8

s

s

t

44(p+3p2 − 6p3
+4p4 − p5)

43(2p2 − p3)

p + 5p2 − 9p3 − p4 + 14p5 − 14p6 + 6p7 − p8

G15

delete 1contract 1

parallel reductions of
(3 , 7) and (2 , 35)

parallel reduction of
(8, 42)

series reductions of (11, 41) and (10 , 40)

parallel reduction

Figure 4.9: Reduction of G11.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. COMPUTING NR(G) BY CONTRACTION-DELETION 24

G16

45(2p2 − p3)

3

10

2

s t

s t

10

11
7

delete 8contract 8

35

G18

G18

3

2 11

s t

3

2
11

7

35

10

46(3p− 3p2
+p3)2

3

s t

47(2p− p2)

48(3p2 − 3p3 + p4)s t

49(2p2 − p3)

5p2 − 4p3 − 5p4 + 9p5 − 5p6 + p7

G17

s t

G17

parallel reduction of
(11 , 35) and (10 , 7)

series reduction of
(7, 35)

series reduction of
(2 , 46) and (3 , 47)

parallel reduction

Figure 4.10: Reduction of G16.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. COMPUTING NR(G) BY CONTRACTION-DELETION 25

G18

contract 10 delete 10

G19

G19

s

t

453

s

t

s

t

s

t

s

s

s

s

t

t

t

t

t

52(p + 2p2 − 3p3 + p4)3

2

2

11

parallel reduction of (11, 45)

series reduction of (2, 52)

parallel reduction

3 53(p2
+2p3 − 3p4

+p5)

p + p2 + p3 − 5p4 + 4p5 − p6

2

3

112

50(2p3 − p4)

45

series reduction of
(3 , 45)

parallel redution of
(2, 50)

series reduction

p2 + 2p4 − 3p5 + p6

1151(p+2p3 − 3p4
+p5)

11

G20

G20

Figure 4.11: Complete reduction of G18 yielding poly18.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. COMPUTING NR(G) BY CONTRACTION-DELETION 26

4.4 Last but not least: The CDT of Moskowitz

In Section 4.3 we computed a lot of reliability polynomials. In order to com-
bine them and calculate nr(G0) (using CDT repeatedly), we must recall the
LIFO-stack in (Figure 4.1). In fact, it is more illuminating to render this stack
(a well-known equivalent view) as a binary tree:

G1

G0

G2

G3

G4

G5

G6

G7
G8

G9
G10

G11 G12

G14
G15 G16

G17 G18

G19
G20

G13

Figure 4.12: Binary tree of the G0 subtasks
.

We shall work our way upwards, starting with the leaves G5,G6 (any other
pair of leaves would also work) until we reach the root G0. The father G4 of
G5,G6 is completely reduced (Figure 4.4) to give poly5 and poly6. As argued
earlier, since the series or parallel reduction does not change the reliabil-
ity polynomial, the reliability polynomial poly5 of G5 equals the reliability
polynomial poly5 of G5. The latter is written in (Figure 4.4) on the sole re-
maining edge of G5. Similarly poly6 = poly6 and the latter is written on the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. COMPUTING NR(G) BY CONTRACTION-DELETION 27

sole edge of G6. It thus follows from the contraction-deletion theorem that

poly4 = p.poly5 + (1− p)poly6,

= p.poly5 + (1− p)poly6,

= p.(2p2 + 2p3 − 2p4 − 4p5 + 2p6 + 2p7 − p8)+

(1− p)(p2 + 2p3 − 2p5 − p6 + p8),

= p2 + 3p3 − 4p5 − 3p6 + 3p7 + 3p8 − 2p9.

Calculating the reliability polynomial of G8 (Figure 4.6) by applying the
CDT to poly9 and poly10 gives:

poly8 = p.poly9 + (1− p)poly10,

= p.poly9 + (1− p)poly10,

= p.(2p− p2 + 2p3 − 4p4 + p5 + 2p6 − p7) + (1− p)(p3 + 2p5 − 3p6 + p7),

= 2p2 + p4 − 2p5 − 4p6 + 6p7 − 2p8.

Similarly, we further calculate the reliability polynomial of network G3 (Fig-
ure 4.5) by applying the CDT to poly7 and poly8:

poly3 = p.poly7 + (1− p)poly8,

= p.poly7 + (1− p)poly8

= p.(5p2 − 3p3 − 4p4 + 7p6 − 5p7 + p8)+

(1− p)(2p2 + p4 − 2p5 − 4p6 + 6p7 − 2p8,

= 2p2 + 3p3 − 2p4 − 7p5 − 2p6 + 17p7 − 13p8 + 3p9.

We calculate the reliability polynomial of G2 (Figure 4.3) by applying the
CDT to poly3 and poly4:

poly2 = p.poly3 + (1− p)poly4,

= p.poly3 + (1− p)poly4,

= p.(2p2 + 3p3 − 2p4 − 7p5 − 2p6 + 17p7 − 13p8 + 3p9)+

(1− p)(p2 + 3p3 − 4p5 − 3p6 + 3p7 + 3p8 − 2p9,

= p2 + 4p3 − 6p5 − 6p6 + 4p7 + 17p8 − 18p9 + 5p10.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. COMPUTING NR(G) BY CONTRACTION-DELETION 28

Likewise (Figure 4.8):

poly12 = p.poly13 + (1− p)poly14,

= p.poly13 + (1− p)poly14,

= p.(p + 2p2 − 6p4 + 3p5 + 4p6 − 4p7 + p8)+

(1− p)(p2 + 3p3 − p4 − 5p5 + 2p6 + 2p7 − p8),

= 2p2 + 4p3 − 4p4 − 10p5 + 10p6 + 4p7 − 7p8 + 2p9.

We strive to combine poly12 with poly11 to get poly1. The latter can then be
combined with the already known poly2 to finally get the reliability polyno-
mial poly0 of G0. To get poly11, consider G18 which reduces to the networks
G19 and G20 by respectively contracting or deleting edge 10 (Figure 4.11) .
This yields poly19 and poly20 respectively. Hence:

poly18 = p.poly19 + (1− p)poly20,

= p.poly19 + (1− p)poly20,

= p.(p + p2 + p3 − 5p4 + 4p5 − p6) + (1− p)(p2 + 2p4 − 3p5 + p6),

= 2p2 + 3p4 − 10p5 + 8p6 − 2p7.

With the reliability polynomial poly18 and poly17, we calculate the reliability
polynomial of G16 (Figure 4.10) as usual:

poly16 = p.poly17 + (1− p)poly18,

= p.(5p2 − 4p3 − 5p4 + 9p5 − 5p6 + p7)+

(1− p)(2p2 + 3p4 − 10p5 + 8p6 − 2p7),

= 2p2 + 3p3 − p4 − 18p5 + 27p6 − 15p7 + 3p8.

By applying the CDT to poly16 and poly15, we calculate the reliability poly-
nomial of G11 (Figure 4.9):

poly11 = p.poly15 + (1− p)poly16,

= p.(p + 5p2 − 9p3 − p4 + 14p5 − 14p6 + 6p7 − p8)+

(1− p)(2p2 + 3p3 − p4 − 18p5 + 27p6 − 15p7 + 3p8),

= 3p2 + 6p3 − 13p4 − 18p5 + 59p6 − 56p7 + 24p8 − 4p9.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. COMPUTING NR(G) BY CONTRACTION-DELETION 29

With the reliability polynomials poly11 and poly12, we calculate the reliabil-
ity polynomial of G1 (Figure 4.7):

poly1 = p.poly11 + (1− p)poly12,

= p.(3p2 + 6p3 − 13p4 − 18p5 + 59p6 − 56p7 + 24p8 − 4p9)+

(1− p)(2p2 + 4p3 − 4p4 − 10p5 + 10p6 + 4p7 − 7p8 + 2p9),

= 2p2 + 5p3 − 2p4 − 19p5 + 2p6 + 53p7 − 67p8 + 33p9 − 6p10.

Finally we apply the CDT to poly1 and poly2 to calculate the reliability poly-
nomial of G0 (Figure 4.2) as follows:

poly0 = p.poly1 + (1− p)poly2,

= p.(2p2 + 5p3 − 2p4 − 19p5 + 2p6 + 53p7 − 67p8 + 33p9 − 6p10)+

(1− p)(p2 + 4p3 − 6p5 − 6p6 + 4p7 + 17p8 − 18p9 + 5p10),

= p2 + 5p3 + p4 − 8p5 − 19p6 + 12p7 + 66p8 − 102p9 + 56p10 − 11p11.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Minpath and mincut methods

5.1 Introduction

In Subsections 5.2 to 5.5 we present algorithms to compute all minpaths or
all mincuts of a network G, and apply (naive) inclusion-exclusion in both
cases to calculate nr(G). Subsection 5.6 presents two crucial algorithms of
Wild [7, 8] that concern arbitrary set filters. These algorithms will enable
us in Subsections 5.7 to 5.9 to process all minpaths (or all mincuts) in more
efficient ways to get nr(G).

Definition 5.1.1. A minpath is any minimal edge-configuration M ⊆ E that
connects s and t in a network G.

One concludes that M is a minpath if and only if M is a path without cycles.
It also follows that a state X is operational (Definition 2.1.1) if and only if it
contains a minpath.

Definition 5.1.2. A pathset is a set that contains at least one minpath.

Definition 5.1.3. A cutset of a network G = (V, E) is a set X ⊆ E that intersects
all minpaths. X is referred to as a mincut (minimal cutset) if each proper subset is
no longer a cutset.

5.2 Computing all minpaths of a network

Generating all minpaths in a network has been widely studied [1]. In this
section we simply compute minpaths using the hardwired Mathematica
command FindPath that generates all minpaths between s and t in G.

30

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINPATH AND MINCUT METHODS 31

Example 5.2.1. Our running example network G0 (Figure 5.1) has these 16 min-
paths:

{3, 10}, {3, 7, 8}, {2, 9, 11}, {2, 6, 8}, {1, 5, 11}, {1, 4, 8}, {2, 6, 7, 10},
{1, 4, 7, 10}, {3, 7, 6, 9, 11}, {3, 7, 4, 5, 11}, {2, 9, 5, 4, 8}, {2, 6, 4, 5, 11},
{1, 5, 9, 6, 8}, {1, 4, 6, 9, 11}, {2, 9, 5, 4, 7, 10}, {1, 5, 9, 6, 7, 10}.

1

4

8

11

10

9

5

6

73

2s
t

Figure 5.1: Running example network G0 .

We have tested ten random examples in Figure 5.2 to compare the CPU time.
For instance, it takes approximately 21.92 seconds to generate all 17′020′105
minpaths in some random graph with 49 vertices and 86 edges. (See the
other parameters in Appendix A.1).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINPATH AND MINCUT METHODS 32

Figure 5.2: CPU time for generating all minpaths using Mathematica’s
FindPath command, using a logarithmic scale.

5.3 Computing all mincuts of a network

The mincuts are exactly the minimal transversals of the minpaths. Hence
any algorithm for finding all minimal transversals of a set system will do.
Many algorithms for this important problem have been proposed. It is how-
ever more efficient to generate the mincuts "directly", thus leaving aside the
minpaths.

Again, several algorithms for this purpose exists. The simplest one works
as follows. If X ⊆ E is any mincut then the graph with edge set E \ X has
exactly two connected components S and T, where s ∈ S and t ∈ T. Con-
versely, if removal of an edge set X yields such a graph then X must have
been a mincut. Hence one can find a mincut by processing as follows all
subsets of vertices S ⊆ V that contain s. If both the sub-graph induced by S
and the sub-graph induced by T := V \ S are connected, one gets a mincut,
otherwise not. This algorithm, implemented in Mathematica will be called
SimpleMincut.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINPATH AND MINCUT METHODS 33

We have tested eight random examples in Figure 5.3 and we e.g. observe
that it takes 14.372 seconds to generate all 17’390 mincuts in a random graph
with 19 vertices and 41 edges. (See the other parameters in Appendix A.2).

Figure 5.3: CPU time for generating mincuts using SimpleMincut algorithm,
again using a logarithmic scale.

5.4 Naive inclusion-exclusion on the minpaths

We illustrate two ways in which inclusion-exclusion can be used to calcu-
late the network reliability using minpaths.

5.4.1 Method 1

Suppose that each edge has edge reliability p = 0.5, and hence failure prob-
ability q = 0.5. Then at each fixed moment for any two edge-sets (=states)
X, Y ⊆ E it is equally likely that exactly the edges in X (respectively the
edges in Y) are the working edges. For instance, if X = {1, 2, 3, 4} and Y =

{2, 5, 6} then the corresponding probabilities are: Pr(X) = p4q2 = (0.5)6

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINPATH AND MINCUT METHODS 34

and Pr(Y) = p3q3 = (0.5)6. Thus if we put

N := number of pathsets of G

then
nr(G) =

N
2ne (5.4.1)

Example 5.4.1. Consider this network G:

s

t1

2

3

4

5

6

Figure 5.4

One verifies ad hoc that there are exactly four minpaths mp1 to mp4. In
order to calculate N, we first define four properties of subsets X ⊆ E= [6]:

property a1 : X contains mp1 = {2, 6},
property a2 : X contains mp2 = {1, 4, 6},
property a3 : X contains mp3 = {1, 3, 5},
property a4 : X contains mp4 = {2, 4, 3, 5}.

If say N(a2a4) is the number of X satisyfying both a2 and a4 then the princi-
ple of inclusion-exclusion gives

N = N(a1 or a2 or a3 or a4),

= N(a1) + N(a2) + N(a3) + N(a4)− N(a1a2)− N(a1a3)− N(a1a4)

− N(a2a3)− N(a2a4)− N(a3a4) + N(a1a2a3) + N(a1a2a4) + N(a1a3a4)

+ N(a2a3a4)− N(a1a2a3a4),

= 24 + 23 + 23 + 22 − 22 − 21 − 21 − 21 − 20 − 21 + 20 + 20 + 20 + 20 − 20 = 26.

Therefore by (5.4.1) the network reliability is

nr(G) =
26
64

= 0.40625.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINPATH AND MINCUT METHODS 35

5.4.2 Method 2

More generally we can apply the probability version of the principle of inclusion-
exclusion, which applies no matter what the reliabilities (=probabilities) p1

to p6 of the individual edges 1 to 6 are. For instance, putting qi = 1− pi,
the probability that at any given moment the set of working edges X equals
{2, 6} is p2p6q1q3q4q5. If X must only contain {2, 6} the probability is simply
p2p6 (since the behaviour of e1, e3, e4, e5 is irrelevant). It follows that

nr(G) := Pr (the set X of working edges connects s and t)

= Pr(mp1 ⊆ X or mp2 ⊆ X or mp3 ⊆ X or mp4 ⊆ X),

= Pr(mp1 ⊆ X) + · · · − Pr(mp1 ∪mp2 ∪mp3 ∪mp4 ⊆ X).

When we apply inclusion-exclusion to the expression above we get:

= p2p6 + p1p4p6 + p1p3p5 + p2p3p4p5− p1p2p4p6− p1p2p3p5p6− p2p3p4p5p6−
p1p3p4p5p6− p1p2p3p4p5p6− p1p2p3p4p5 + p1p2p3p4p5p6 + p1p2p3p4p5p6 +

p1p2p3p4p5p6 + p1p2p3p4p5p6 − p1p2p3p4p5p6.

If all edges have the same edge reliability pi = p then the reliability polyno-
mial becomes

RelPol(p) = p2 + 2p3 − 4p5 + 2p6.

In particular p = 1
2 yields as before

RelPol(
1
2
) =

16 + 16− 8 + 2
64

=
26
64

= 0.40625.

5.5 Naive inclusion-exclusion on the mincuts

Let n f (G) := 1− nr(G) be the network f allibility. Let Y be the set of failing
edges of G (for a brief period of time). Then s, t are disconnected in G(E \Y)
iff Y contains a cutset, hence iff Y contains a mincut. Our network G (Figure
5.4) has the following 6 mincuts:

mc1 = {1, 2}, mc2 = {3, 6}, mc3 = {5, 6},
mc4 = {1, 4, 6}, mc5 = {2, 3, 4}, mc6 = {2, 4, 5}.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINPATH AND MINCUT METHODS 36

It follows that

n f (G) = Pr (the set Y of failing edges contains a mincut),

= Pr(mc1 ⊆ Y or mc2 ⊆ Y or · · · or mc6 ⊆ Y),

= Pr(mc1 ⊆ Y) + · · ·+ Pr(mc6 ⊆ Y)− Pr(mc1 ∪mc2 ⊆ Y)− · · ·
− Pr(mc5 ∪mc6 ⊆ Y) + Pr(mc1 ∪mc2 ∪mc3 ⊆ Y + · · ·
− Pr(mc1 ∪mc2 ∪mc3 ∪mc4 ∪mc5 ∪mc6 ⊆ Y),

= q1q2 + q3q6 + · · ·+ q2q4q5 − q1q2q3q6 · · · − q1q2q3q4q5q6,

and therefore

nr(G) = 1− n f (G) = 1− (1− p1)(1− p2)− (1− p3)(1− p6)− · · ·
= p2p6 + p1p4p6 + · · · − p1p2p3p4p5p6,

which matches network reliability in Section 5.4. If there are fewer mincuts
than minpaths this algorithm beats its companion in Section 5.4.2.

5.6 Two methods to count a set filter

Definition 5.6.1. A set ideal (also known as simplicial complex) is a family S of
sets such that from A ∈ S and B ⊆ A follows B ∈ S .

Definition 5.6.2. A transversal of a set system H := {Y1, Y2, · · · , Yt} is any
set X that satisfies X ∩Yi 6= ∅ for all 1 ≤ i ≤ t.

Whenever S is finite, the only case of interest to us, then S ⊆ P(E) for
same finite (base) set E. Moreover, there are inclusion-maximal members
F1, F2, · · · , Fh ∈ S , called the f acets of S . If we write X ↓ for P(X) then
S = F1 ↓ ∪ F2 ↓ ∪ · · · ∪ Fh ↓ . Trouble is, except for trivial cases, this union
is not disjoint.

Example 5.6.3. If say h = 4 and F1 = {1, 3, 4, 7}, F2 = {3, 5, 7}, F3 = {2, 3, 4, 6, 8}
and F4 = {1, 6, 8}, then brute-force calculation shows that S := F1 ↓ ∪ F2 ↓
∪ F3 ↓ ∪ F4 ↓ has 51 members (also called faces). We can obtain the 51 faces using
Wild’s [7] facets-to-faces algorithm that represents S in a more compact way, as a
disjoint union

S = r1] ...] r5.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINPATH AND MINCUT METHODS 37

Table 5.1: Descriptive facets-to-faces algorithm

1 2 3 4 5 6 7 8
r1 = 1 0 e e 0 0 e 0 → 7
r2 = 0 0 2 1 0 0 1 0 → 2
r3 = 0 0 2 0 e 0 e 0 → 6
r4 = 0 e e e 0 2 0 2 → 28
r5 = 2 0 0 0 0 2 0 2 → 8

= 51

The compressed output (012e-rows) in Table 5.1 consists of either 0′s , 1′s ,
2′s or e-bubbles. The 2′s (also called the "don’t care symbols") in each set are
translated into either 0′s or 1′s while the set of e′s means "at least one 1 here".
(One can have several e-wildcards, provided that they are distinguished by
subscripts). For instance r3 in Table 5.1 allows to code the following subsets.

Table 5.2: Bitstrings corresponding to subsets of r3

1 2 3 4 5 6 7 8
0 0 2 0 e 0 e 0

:=

1 2 3 4 5 6 7 8
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 1 0
0 0 1 0 1 0 0 0
0 0 1 0 0 0 1 0
0 0 1 0 1 0 1 0

5.6.1 MethodA

A set f ilter is a family F of sets such that from A ∈ F and B ⊇ A follows
B ∈ F . Fix a finite base set E. For any X ⊆ E put

X ↑:= {Y : X ⊆ Y ⊆ E}. (5.6.1)

If F ⊆ P(E) is a set filter then its inclusion-minimal members H1, · · · , Hh ∈
F are the generators of F . Obviously F = H1 ↑ ∪ · · · ∪ Hh ↑. It is not
surprising that the facets-to-faces algorithm readily adapts to make such
unions disjoint.

Example 5.6.4. Let E = {1, · · · , 8} and H1 := {2, 5, 6, 8}, H2 := {1, 2, 4, 6, 8},
H3 := {1, 5, 7}, H4 := {2, 3, 4, 5, 7}. If F := H1 ↑ ∪ · · · ∪ H4 ↑ and Fi := Hc

i
(= E \ Hi) then for all A ⊆ E it holds that

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINPATH AND MINCUT METHODS 38

A ⊇ H1 or · · · or A ⊇ H4 ⇐⇒ Ac ⊆ F1 or · · · or Ac ⊆ F4.

Now the sets F1 to F4 happen to be the facets of the set ideal S in Example 5.6.3.
Hence A ∈ F ⇐⇒ Ac ∈ S . For instance, one verifies ad hoc that there are exactly
16 sets B ∈ S with |B| = 3 (i.e. 3 + 1 + 1 + 10 + 1 in r1, · · · , r5 respectively).
Their complements are exactly the 16 sets A ∈ F with |A| = 5.

By lack of imagination we call MethodA the algorithm sketched above which,
given the generators of a set filter F , calculates for each k = 1, 2, · · · the
number of k-element sets in F .

5.6.2 MethodB

If X is a transversal ofH then a fortiori each superset X′ ⊇ X is a transversal
of H. In other words, the family of all transversals of H is a set filter. Ac-
tually, we will not be interested in all infinitely many transversals but only
admit X’s with X ⊆ E.

Here E is a suitable finite set that in particular contains all sets Yi. In this
set-up the set F of admissible transversals satisfies F ⊆ P(E), akin to Sec-
tion 5.6.1. However, now F is not obtained by processing its generators Hi

but rather the sets Yi. Specifically, the transversal e-algorithm of [8], for sys-
tematic reasons we henceforth call it MethodB, manages to represent F as
a disjoint union of 012e-rows. (However, the technicalities of MethodA and
MethodB differ quite a bit).

5.7 Calculating nr(G) with Minpath-MethodA

When p1 = p2 = · · · = pw =: p, then the reliability polynomial RelPol[p]
can be calculated without the time-consuming inclusion-exclusion in Sec-
tions 5.4 and 5.5. Namely, let X be any one of the 2ne edge subsets, say
|X| = i. Then the probability that exactly the edges in X work and the oth-
ers fail is pi(1− p)ne−i. This expression does not depend on the particular
X , but only on the cardinality i of X. Consider all (ne

i) possible i-element
states X. Some of these X′s are pathsets while others are not. Let ps[i] be the
number of the former X′s. It then follows [1] that

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINPATH AND MINCUT METHODS 39

RelPol[p] =
ne

∑
i=0

ps[i]pi(1− p)ne−i. (5.7.1)

Evidently N = ∑ne
i=0 ps[i] is the number N of all pathsets (as defined in

5.4.1). As is to be expected one verifies that

RelPol[
1
2
] =

ne

∑
i=0

ps[i](
1
2
)i(

1
2
)(ne−i) =

ne

∑
i=0

ps[i](
1
2
)ne = (

1
2
)ne

ne

∑
i=0

ps[i] =
N

2ne .

In view of (5.7.1) it is desirable to calculate the numbers ps[i] efficiently.
One way of doing so, call it Minpath-MethodA, is illustrated in the example
below.

Example 5.7.1. Our running network G0 in Figure 1.1 has 16 minpaths, which we
view as the generators H1 to H16 of F := H1 ↑ ∪ · · · ∪ H16 ↑⊆ P [ne] = P [16].

Hence F is the set filter of all pathsets, and so applying MethodA from Section
5.6.1 yields the required numbers ps[0], ps[1], · · · , ps[16].

5.8 Calculating nr(G) with Minpath-MethodB

According to Colbourn [1], similar to equation (5.7.1) one can argue that

RelPol[p] = 1−
ne

∑
i=0

cs[i](1− p)i pne−i, (5.8.1)

where cs[i] is the number of cutsets of cardinality i for any network G.

Let Y1, Y2, · · · , Yt ⊆ E be the minpaths of some network G = (V, E). It is
well known and easy to see that the induced set filter F of transversals con-
sists of all cutsets of G. Hence MethodB from Section 5.6.2 yields the num-
bers cs[0], · · · , cs[ne] required in Formula 5.8.1. The overall algorithm, thus
including the calculation of the minpaths, will be called Minpath-MethodB.
In the example below we also replace the previous ad hoc argumentation by
a systematic technique for cardinality-wise counting the transversals within
a 012e-row.

Example 5.8.1. Consider our running example G0 (Figure 1.1) and its 16 min-
paths (5.2) computed using the Mathematica FindPath command. Feeding these

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINPATH AND MINCUT METHODS 40

16 minpaths to MethodB yields the family F of all cutsets X as a disjoint union of
32 012e-rows r1 to r32. (Check Appendix (B). In other words

F = r1] r2] · · ·] r32.

The cardinalities |ri| (the number of cutsets X ∈ ri) are easily determined,
check for instance |r27| = 9, and say {2, 3, 5, 7, 8, 9} ∈ r27 but {2, 3, 5, 6, 9} 6∈
r27 and |r32| = 28 = 256.

Generally, if

r = {0, · · · , 0}︸ ︷︷ ︸
α many

, {1, · · · , 1}︸ ︷︷ ︸
β many

, {2, · · · , 2}︸ ︷︷ ︸
γ many

, {e1, · · · , e1}︸ ︷︷ ︸
ε1 many

, · · · , {et, · · · , et}︸ ︷︷ ︸
εt many

(5.8.2)

then [7]

|r| = 2γ.(2ε1 − 1).(2ε2 − 1)...(2εt − 1). (5.8.3)

Using the formula (5.8.3) one can calculate

|F | = |r1|+ · · ·+ |r32|.

To calculate RelPol[p], we need the numbers (5.8.1)

cs[k] := |{X ∈ F : |X| = k}| (0 ≤ k ≤ 11).

Evidently, if we define

card(ri, k) := |{X ∈ ri : |X| = k}|,

then we have

cs[k] =
32

∑
i=1

card(ri, k). (5.8.4)

Fortunately one can obtain the numbers card(ri, k) as the coefficients of a
suitable polynomial

poly(y) = poly(r, y)

which is dependent on the particular shape of the 012e-row r. Namely, if r
is as in (Equation 5.8.2) then its associated polynomial is

poly(r, y) := yβ.(y + 1)γ.[(y + 1)ε1 − 1]...[(y + 1)εt − 1]. (5.8.5)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINPATH AND MINCUT METHODS 41

Implementing (Equation 5.8.5) on r1 to r32 as detailed in appendix (B), yields

1. poly(r1, y) = y6.

2. poly(r2, y) =y5 + 2y6 + y7.

3. poly(r3, y) = 2y6 + y7.

4. poly(r4, y) = y5 + 3y6 + 3y7 + y8.

5. poly(r5, y) = 2y6 + y7.

6. poly(r6, y) = y5 + 3y6 + 3y7 + y8.

7. poly(r7, y) = y4 + 5y5 + 10y6 + 10y7 + 5y8 + y9.

8. poly(r8, y) = y6.

9. poly(r9, y) = y5 + 2y6 + y7.

10. poly(r10, y) = 2y6 + y7.

11. poly(r11, y) = y5 + 3y6 + 3y7 + y8.

12. poly(r12, y) = 2y6 + y7.

13. poly(r13, y) = y5 + 3y6 + 3y7 + y8.

14. poly(r14, y) = y4 + 5y5 + 10y6 + 10y7 + 5y8 + y9.

15. poly(r15, y) = y3 + 7y4 + 21y5 + 35y6 + 35y7 + 21y8 + 7y9 + y10.

16. poly(r16, y) = y5 + 2y6 + y7.

17. poly(r17, y) = y4 + 4y5 + 6y6 + 4y7 + y8.

18. poly(r18, y) = y6.

19. poly(r19, y) = 2y5 + 5y6 + 4y7 + y8.

20. poly(r20, y) = 4y6 + 4y7 + y8.

21. poly(r21, y) = y5 + 4y6 + 6y7 + 4y8 + y9.

22. poly(r22, y) = 2y5 + 5y6 + 4y7 + y8.

23. poly(r23, y) = y4 + 5y5 + 10y6 + 10y7 + 5y8 + y9.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINPATH AND MINCUT METHODS 42

24. poly(r24, y) = 2y6 + y7.

25. poly(r25, y) = y5 + 3y6 + 3y7 + y8.

26. poly(r26, y) = 2y4 + 11y5 + 25y6 + 30y7 + 20y8 + 7y9 + y10.

27. poly(r27, y) = 4y6 + 4y7 + y8.

28. poly(r28, y) = 2y5 + 7y6 + 9y7 + 5y8 + y9.

29. poly(r29, y) = 2y6 + y7.

30. poly(r30, y) = 2y5 + 7y6 + 9y7 + 5y8 + y9.

31. poly(r31, y) = y4 + 6y5 + 15y6 + 20y7 + 15y8 + 6y9 + y10.

32. poly(r32, y) = y3 + 8y4 + 28y5 + 56y6 + 70y7 + 56y8 + 28y9 + 8y10 + y11.

Applying formula (5.8.4) one can check that indeed

card(r27, 6) = 4

since the 6-element cutsets in r27 are

T ∪ {6, 7}, T ∪ {6, 10}, T ∪ {9, 7}, T ∪ {9, 10}, where T = {2, 3, 5, 8}.

To compute the number cs[k] of cutsets of cardinality k, we add the coeffi-
cients a[i, k] of the yk terms in the polynomials poly(ri, y).

As an illustration in (Equation 5.8.4) we begin by counting cutsets of car-
dinality 9. The non-zero coefficients a[i, 9] are a[7, 9], a[14, 9], and so on.
Adding them up yields cs[9] = 1 + 1 + 7 + 1 + 1 + 7 + 1 + 1 + 6 + 28 = 54.

For our running example (Figure 1.1), we have the following

1. cs[0] = 0 (cutsets of cardinality 0).

2. cs[1] = 0 (cutsets of cardinality 1).

3. cs[2] = 0 (cutsets of cardinality 2).

4. cs[3] = 2 (cutsets of cardinality 3).

5. cs[4] = 22 (cutsets of cardinality 4).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINPATH AND MINCUT METHODS 43

6. cs[5] = 102 (cutsets of cardinality 5).

7. cs[6] = 239 (cutsets of cardinality 6).

8. cs[7] = 253 (cutsets of cardinality 7).

9. cs[8] = 151 (cutsets of cardinality 8).

10. cs[9] = 54 (cutsets of cardinality 9).

11. cs[10] = 11 (cutsets of cardinality 10).

12. cs[11] = 1 (cutsets of cardinality 11).

Using the formula in Equation (5.8.1)) we obtain

RelPol[p] = 1− ((54(1− p)9p2) + · · ·+ ((1− p)11)).

The computed network reliability is hence

= p2 + 5p3 + p4 − 8p5 − 19p6 + 12p7 + 66p8 − 102p9 + 56p10 − 11p11

which coincides with the result derived from contraction-deletion in Chap-
ter 4.

5.9 Calculating nr(G) with Mincut-MethodA or
Mincut-MethodB

Recall how RelPol[p] can be computed by virtue of (5.7.1) and (5.8.1). In
Sections 5.7 and 5.8 we first calculated all minpaths (using Mathematica’s
FindPath command) and then employed MethodA and MethodB to evalu-
ate (5.7.1) and (5.8.1) respectively.

Recall that MethodA and MethodB apply to arbitrary set filters. So Minpath-
MethodA was just a shorthand for applying MethodA to the set filter gen-
erated by the minpaths (in order to evaluate (5.7.1)). Similarly we shall use
the shorthand Mincut-MethodA for applying MethodA to the set filter gen-
erated by the mincuts (in order to evaluate (5.8.1)). Likewise the Minpath-
MethodB (which evaluates 5.8.1) translates to an obvious Mincut-MethodB
which evaluates (5.7.1).

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Comparison of algorithms

6.1 Introduction

All the algorithms in the previous chapters have been programmed in high
level Wolfram Mathematica 11.2 and our results are implemented on a Linux
16.04 operating system. The algorithms are compared according to the CPU
time (in seconds). Altogether 34 random networks, see Appendix C, will be
tested.

When a random graph is defined, the output can either be a 2-connected
network or a tree-like network. Recall that ’2-connected’ mean that any two
vertices are part of at least one cycle.

2 3

4

5

6

s
t

Figure 6.1: Example of a 2-connected network.

44

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. COMPARISON OF ALGORITHMS 45

s

2

3

4

5

6

7

8

9

10

11

12

13

14

1516

17

18

19

20

21

t

Figure 6.2: Example of a tree-like network.

6.2 Computational results of the Mathematica
algorithms

Table 6.1 and 6.2 show the parameters of the networks analysed and the
CPU times (indicated in the column of the method). NF means ’not feasible’
in 24 hours. For instance, with respect to the number of edges exhaustive
state enumeration is not doable in reasonable time if ne > 20. Similarly
the naive inclusion-exclusion on minpaths is only feasible for at most 20
minpaths i.e. nmp ≤ 20 which is very rare for random instances.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. COMPARISON OF ALGORITHMS 46

Table 6.1: CPU time (in seconds) for the Mathematica programs
on 2-connected networks

ne nv mpi mci
State

enumeration
Inclusion-
exclusion

Minpath-
MethodA

Minpath-
MethodB

Mincut-
MethodA

Mincut-
MethodB

Contraction-
deletion

8 5 8 6 0.024 0.008 0.004 0.004 0.004 0.004 0.008

9 6 13 9 0.044 0.356 0.004 0.008 0.004 0.004 0.008

11 7 16 23 0.172 3.468 0.012 0.016 0.016 0.032 0.016

13 7 26 22 0.788 5654.47 0.016 0.064 0.02 0.04 0.032

14 8 37 29 1.324 NF 0.036 0.172 0.036 0.092 0.044

15 8 38 32 3.204 NF 0.04 0.224 0.04 0.112 0.052

16 9 47 38 5.732 NF 0.068 0.448 0.052 0.224 0.08

18 9 59 44 27.192 NF 0.12 1.144 0.128 0.272 0.208

20 10 95 60 111.292 NF 0.39 6.625 0.236 1.406 0.64

22 11 197 166 500.532 NF 1.968 49.244 2.196 16.412 2.836

23 11 176 133 973.356 NF 1.46 40.54 1.004 8.188 1.776

25 11 408 225 4506.4 NF 11.692 766.732 8.112 49.696 12.32

27 12 642 245 NF NF 26.46 2971.22 9.528 78.264 21.168

28 12 738 242 NF NF 63.3125 3195.34 9.734 73.125 31.375

30 13 1637 402 NF NF 249.144 NF 45.828 419.108 272.612

32 14 1397 759 NF NF 340.578 NF 139.609 3614.28 363.18

35 16 2226 1450 NF NF 1256.06 NF 574.332 NF 912.188

37 17 7552 1534 NF NF NF NF 2250.13 NF NF

45 22 27894 8924 NF NF NF NF 23233.2 NF NF

Figure 6.3: Graphical analysis of the CPU time (in seconds) against number
of edges for 2-connected networks.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. COMPARISON OF ALGORITHMS 47

Table 6.2: CPU time (in seconds) for the Mathematica programs on tree-like
networks

ne nv mpi mci
State

enumeration
Inclusion-
exclusion

Minpath-
MethodA

Minpath-
MethodB

Mincut-
MethodA

Mincut-
MethodB

Contraction-
deletion

12 9 7 10 0.368 0.004 0.004 0.004 0.004 0.004 0.008

16 10 26 29 6.192 4474.06 0.024 0.072 0.036 0.076 0.032

18 13 32 23 20.568 NF 0.032 0.092 0.024 0.084 0.132

20 14 33 48 110.12 NF 0.044 0.08 0.096 0.332 0.52

22 15 70 93 365.032 NF 0.148 1.332 0.248 3.012 1.544

28 20 67 352 NF NF 0.252 1.448 3.972 60.128 489.664

31 22 103 359 NF NF 0.476 4.988 5.524 76.792 49983.6

35 26 142 249 NF NF 0.888 11.872 2.648 25.66 44312.7

38 30 178 11395 NF NF 6.776 57.052 NF NF NF

43 32 581 6970 NF NF 43.316 1672.4 NF NF NF

46 35 573 3488 NF NF 48.36 1634.06 1202.21 NF NF

49 38 593 8765 NF NF 43.748 1249.23 NF NF NF

54 42 868 20990 NF NF 102.808 5203.04 NF NF NF

60 47 1356 > 150000 NF NF 500.624 NF NF NF NF

Figure 6.4: Graphical analysis of the CPU time (in seconds) against number
of edges for tree-like networks.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. COMPARISON OF ALGORITHMS 48

We have tested the series-parallel network (Figure 3.3) from Chapter 3 to
compare the results with other methods.

Table 6.3: CPU time (in seconds) for the Mathematica programs on series-
parallel network, ne=17

ne nv mpi mci
State

enumeration
Inclusion-
exclusion

Minpath-
MethodA

Minpath-
MethodB

Mincut-
MethodA

Mincut-
MethodB

Contraction-
deletion

s,p-
reduction

17 12 8 54 11.672 0.024 0.012 0.004 0.084 0.032 0.024 0.004

6.3 Algorithm recommendation

Following the detailed comparison of the techniques corresponding to the
CPU time we now provide Table 6.4 that shows our recommendation. The
entries in the columns are in decreasing order of preference.

Table 6.4: Method recommendation when calculating the network reliability

2-connected networks Tree-like networks Series-parallel network

Mincut-MethodA

Contraction-deletion

Minpath-MethodA

Minpath-MethodA

Minpath-MethodB

Minpath-MethodB /
Series-parallel reduction

Minpath-MethodA

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. COMPARISON OF ALGORITHMS 49

==== Appendices ==

Stellenbosch University https://scholar.sun.ac.za

Appendix A

Parameters for random networks
used to test FindPath command
and SimpleMincut method

Table A.1: Parameters and CPU time of the random networks tested using
FindPath command

ne nv mpi FindPath command

38 17 30,727 0.024

40 20 17,901 0.016

45 20 138,307 0.108

46 25 40,409 0.036

57 29 362,849 0.344

58 30 1,007,504 1.036

63 30 1,880,656 2.208

71 39 4,562,374 5.70313

75 40 10,671,339 12.125

86 49 17,020,105 21.9219

50

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. PARAMETERS FOR RANDOM NETWORKS USED TO TEST
FINDPATH COMMAND AND SIMPLEMINCUT METHOD 51

Table A.2: Parameters and CPU time of the random networks tested using
SimpleMincut algorithm

ne nv mci SimpleMincut

11 7 23 0.004

20 10 140 0.046875

25 13 500 0.276

32 14 1,089 0.671875

35 17 6,074 4.96875

36 16 3,038 1.89063

36 18 8,380 8.875

41 19 17,390 14.372

Stellenbosch University https://scholar.sun.ac.za

Appendix B

Mincuts and Minpaths

Table B.1: The transversal e-algorithm compact representation of the family
of all cutsets X as disjoint union of thirty two 012e-rows r1 to r32.

1 2 3 4 5 6 7 8 9 10 11
r1 0 0 0 1 1 1 1 0 1 1 0
r2 1 0 0 2 2 1 1 0 1 1 0
r3 1 0 0 0 e1 1 1 0 e1 1 1
r4 2 0 0 1 2 1 1 0 2 1 1
r5 0 1 0 1 0 e1 1 0 e1 1 1
r6 0 1 0 1 1 2 1 0 2 1 2
r7 1 1 0 2 2 2 1 0 2 1 2
r8 1 1 0 1 0 1 0 1 0 1 0
r9 1 1 0 2 0 2 1 1 0 1 0
r10 e1 1 0 e1 1 0 1 1 0 1 0
r11 2 1 0 2 1 1 2 1 0 1 0
r12 1 e1 0 0 0 e1 1 1 1 1 0
r13 1 2 0 1 0 2 2 1 1 1 0
r14 2 2 0 2 1 2 2 1 1 1 0
r15 2 2 0 2 2 2 2 1 2 1 1
r16 0 0 1 1 1 1 2 0 1 2 0
r17 1 0 1 2 2 1 2 0 1 2 0
r18 0 0 1 1 1 1 0 1 1 0 0
r19 0 0 1 2 1 2 e1 1 1 e1 0
r20 1 0 1 e2 e2 0 e1 1 1 e1 0
r21 1 0 1 2 2 1 2 1 1 2 0
r22 1 0 1 0 e2 1 e1 0 e2 e1 1
r23 2 0 1 1 2 1 2 0 2 2 1
r24 1 0 1 0 e1 1 0 1 e1 0 1
r25 2 0 1 1 2 1 0 1 2 0 1
r26 2 0 1 2 2 2 e1 1 2 e1 1
r27 0 1 1 0 1 e2 e1 1 e2 e1 0
r28 0 1 1 0 2 2 e1 1 2 e1 1
r29 0 1 1 1 0 0 e1 1 0 e1 1
r30 0 1 1 1 0 e1 2 2 e1 2 1
r31 0 1 1 1 1 2 2 2 2 2 2
r32 1 1 1 2 2 2 2 2 2 2 2

52

Stellenbosch University https://scholar.sun.ac.za

Appendix C

Random networks tested

Figure C.1: G=([5],[8]).
Figure C.2: G=([6],[9]).

Figure C.3: G=([7],[11]). Figure C.4: G=([7],[13]).

53

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. RANDOM NETWORKS TESTED 54

Figure C.5: G=([8],[14]).
Figure C.6: G=([8],[15]).

Figure C.7: G=([9],[16]).
Figure C.8: G=([9],[18]).

Figure C.9: G=([10],[20]).
Figure C.10: G=([11],[22]).

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. RANDOM NETWORKS TESTED 55

Figure C.11: G=([11],[23]).

Figure C.12: G=([7],[25]).

Figure C.13: G=([12],[27]). Figure C.14: G=([12],[28]).

Figure C.15: G=([13],[30]). Figure C.16: G=([14],[32]).

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. RANDOM NETWORKS TESTED 56

Figure C.17: G=([16],[35]). Figure C.18: G=([22],[45]).

Figure C.19: G=([9],[12]).
Figure C.20: G=([10],[16]).

Figure C.21: G=([13],[18]).

Figure C.22: G=([14],[20]).

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. RANDOM NETWORKS TESTED 57

Figure C.23: G=([15],[22]).

Figure C.24: G=([20],[28]).

Figure C.25: G=([22],[31]).
Figure C.26: G=([26],[35]).

Figure C.27: G=([30],[38]).
Figure C.28: G=([32],[43]).

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. RANDOM NETWORKS TESTED 58

Figure C.29: G=([35],[46]).

Figure C.30: G=([38],[49]).

Figure C.31: G=([42],[54]). Figure C.32: G=([47],[60]).

Stellenbosch University https://scholar.sun.ac.za

List of References

[1] C. J. Colbourn. The combinatorics of network reliability, International Series of Mono-
graphs on Computer Science, volume 198. The Clarendon Press Oxford University
Press, New York, 1987.

[2] E. F. Moore and C. E. Shannon. Reliable circuits using less reliable relays. Jour-
nal of the Franklin Institute, 262(3):191–208, 1956.

[3] F. Moskowitz. The analysis of redundancy networks. Transactions of the Ameri-
can institute of electrical engineers, part i: communication and electronics, 77(5):627–
632, 1958.

[4] J. S. Provan and M. O. Ball. The complexity of counting cuts and of computing
the probability that a graph is connected. SIAM Journal on Computing, 12(4):777–
788, 1983.

[5] D. R. Shier. Network reliability and algebraic structures. Clarendon Press, 1991.

[6] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM
Journal on Computing, 8(3):410–421, 1979.

[7] M. Wild. Allsat compressed with wildcards: Partitionings and face-numbers of
simplicial complexes. arXiv:1812.02570.

[8] M. Wild. Counting or producing all fixed cardinality transversals. Algorithmica,
69(1):117–129, 2014.

59

Stellenbosch University https://scholar.sun.ac.za

	Abstract
	Uittreksel
	Acknowledgements
	Dedications
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Layout of the thesis
	Network model and basic concepts

	Exhaustive state enumeration
	Introduction
	Equal edge reliabilities
	Individual edge reliabilities

	Conclusion

	Series-parallel networks
	Introduction
	Series reduction
	Parallel reduction
	Illustration of the series-parallel reduction algorithm by example
	Conclusion

	Computing nr(G) by contraction-deletion
	Introduction
	The Last-In-First-Out (LIFO) Technique
	How the graphs Gi arise
	Last but not least: The CDT of Moskowitz

	Minpath and mincut methods
	Introduction
	Computing all minpaths of a network
	Computing all mincuts of a network
	Naive inclusion-exclusion on the minpaths
	Method 1
	Method 2

	Naive inclusion-exclusion on the mincuts
	Two methods to count a set filter
	MethodA
	MethodB

	Calculating nr(G) with Minpath-MethodA
	Calculating nr(G) with Minpath-MethodB
	Calculating nr(G) with Mincut-MethodA or Mincut-MethodB

	Comparison of algorithms
	Introduction
	Computational results of the Mathematica algorithms
	Algorithm recommendation

	Parameters for random networks used to test FindPath command and SimpleMincut method
	Mincuts and Minpaths
	Random networks tested
	List of References

