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Abstract

X-ray computed tomography (XCT) is a non-destructive technique capable of producing 3D

mineralogical and textural information from drill cores. The discrimination between mineralogical information 

of the drill cores was optimised by using the developed linear attenuation coefficient data bank that can 

automatically provide linear attenuation coefficient information. The discrimination between the minerals 

was further optimised by using the determined optimal scanning parameters. XCT technique is most 

effective when scanning low density samples or minerals with low linear attenuation coefficients. However, 

when scanning high density samples, the technique suffers from the lack of X-ray penetration which results 

in beam hardening. Beam hardening affects the true representation of mineralogical and textural 

information and this leads to the misrepresentation of the mineralogical and textural information. Beam 

hardening is not easily quantifiable because its impact on the sample information is not uniform and can 

result in a loss of sample information. To address this, it was proposed to use an aluminium standard when 

scanning high density samples which acted as a standard in order to quantify the degree of beam 

hardening in each slice of the sample volume. The aluminium standard sample not only quantified the 

degree of beam hardening but also determined the optimal sample size for scanning where no sample 

information is lost. The optimal sample size for scanning was determined to be 4mm when scanning 

samples with SG > 3. Even though the impact of beam hardening was minimised when using the optimal 

sample size the degree of beam hardening still affected the discrimination between minerals. This lead to 

the development of a simplified dual energy method in order to optimise the discrimination between 

minerals that are affected by beam hardening and result in high levels of noise within the images. The 

developed simplified dual energy method uses a combination of scanned volume data volume together with 

the simulated image. This combination has an advantage over the traditional dual energy method that uses 

two scanned volume data which is more time consuming. The simplified dual energy method effectively 

discriminated mineralogical information with no artefacts as compared to the traditional dual energy method 

which result in edge artefacts. The utilisation of the aluminium standard and the simplified dual energy 

method resulted in the reliable quantification of porosity information and 3D chalcopyrite grain size 

distribution (GSD). The quantified porosity information was largely in agreement with QEMSCAN results 

which show the importance of using the aluminium standard when scanning high density ore samples. The 

quantified 3D chalcopyrite GSD had a similar trend to the 2D QEMSCAN data but with coarser GSD as 

expected. This shows the effectiveness of the developed simplified dual energy method to optimise the 

discrimination of chalcopyrite in dense ore mineral samples. The reliable quantification of porosity and 

chalcopyrite information is important in minerals processing. Porosity is a component of texture and it is of 

relevance to physical processing where chalcopyrite is important in terms of inherent rock strength, its 

breakage, liberation properties and establishing geometallurgical units. The reliable quantification of the 

textural information using XCT shows that the technique can be adopted and adapted to any ore type with 

even more complex textures or mineralogies. 
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Linear attenuation coefficient is a constant that describes the fraction of the attenuated incident photons in 

a monochromatic beam per unit thickness of a material. It is numerically 

expressed in units of cm
-1

 

Grey value: it is a unit that indicates the brightness of a pixel 
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spectrum relative to the count ratio for each photon energy of the spectrum  

Dual energy: X-ray computed tomography technique that uses two separate energy 
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Introduction 

In the last few decades, mining companies have shifted to mining and processing of lower grade, less 

accessible, more heterogeneous and complex ores in response to the general decline in ore grades over 

the last century as the high grade, accessible and easy to process ores have been mined out (Fig. 1; Prior 

et al., 2012). All ores generally require some form of processing to concentrate the valuable minerals to 

produce a saleable product, and particularly so for the lower grade, complex and heterogeneous ores (Wills 

and Napier-Munn, 2005). For these and other reasons, mines are now looking for a far more detailed 

understanding of the variation in ore mineralogy, valuable metal deportment and mineral grades as well as 

how these minerals are spatially distributed in the host ores. The best way to do this is by utilising analytical 

techniques that can statistically quantify these attributes for each defined ore type in order to provide a full 

mineralogical and textural characterisation of them (Johnson et al., 2007; Becker et al., 2016). 

For many years, mineralogical information was obtained through chemical assays which were used to 

calculate or infer a modal mineralogy for a bulk sample or through quantitative X-Ray diffraction analysis 

when quantitative modal mineralogy was required (Becker et al., 2016). These methods though were limited 

in their ability to provide statistically meaningful datasets of upfront ore mineralogy and particle and 

grainsize characteristics of processing streams. Quantitative mineralogical information proved to be 

extremely useful and this prompted further developments to produce information through automated 

measurements. Over time, the optical systems were replaced by scanning electron microscopes with 

energy dispersive X-Ray spectrometry (SEM-EDS) based systems – for example QEMSCAN (Quantitative 

Evaluation of Minerals by Scanning Electron Microscopy), MLA (Mineral Liberation Analyser) and TIMA-X 

(Tescan Integrated Mineral Analyser) and Mineralogic (Fandrich et al., 2007; Zhou and Gu, 2016; 

Wightman et al., 2016). These modern SEM based systems are able to provide detailed and quantitative 

information on the bulk mineralogy, grain size and shape distribution, liberation and association and provide 

statistically representative datasets on these parameters. However, the above techniques are limited to 2D 

information and require extensive sample preparation and also suffer from stereological error (Evans et al., 

2015; Spencer and Sutherland, 2000). More recently, the focus has turned to characterizing mineralogical 

and textural information in 3D using X-ray computed tomography (XCT) because it does not suffer from 

stereological error and captures the full mineralogical and textural variability of the ore, while requiring very 

little in the way of sample preparation. It is also ideally suited to the analysis of drill cores which are 

generated months prior to the processing and mining of any particular area of a mineral deposit (Becker et 

al., 2016).  

The successful application of XCT in the geosciences has attracted a lot of attention due to its ability to 

characterize minerals in-situ within the rock matrices and because it is non-destructive. The technique 
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generates a volume of the ore sample that allows visualisation of the mineralogical information in 3D to 

quantify the real distribution of grains or 

 

Fig 1.1. Declining ore grades for a variety of base and precious metals in Australia (Prior et al., 2012). 

particles including their size, shape and orientation. The technique identifies minerals based on the 

attenuation coefficient because each mineral has a unique attenuation coefficient that depends on their 

mineralogical composition, density and X-ray energy (Wang et al., 2011). This advantage allows a variety of 

mineralogical information to be quantified for different ore types based on attenuation coefficients. Through 

this, the technique has the potential to provide parameters relevant to process mineralogy (grain size 

distribution, spatial location, liberation and association, porosity etc). There are a number of examples 

where XCT has been used successfully including the quantification and characterisation of porosity in 

reservoir rocks (Van Geet et al., 2000), quantification of porosity and permeability in porous rocks in 

petroleum engineering (Akin and Kovscek, 2003), determination of the liberation efficiency of copper 

through heap leaching (Miller et al., 2003) and characterisation of iron ore pellets by quantifying porosity as 

part of downstream processing (Forsberg and Hjortsberg, 2012).  However, while XCT has been used to 

study different ore samples to better understand ore mineralogy, ore genesis and parameters required for 

minerals or metallurgical processing (Fonteneau et al., 2013; Kyle and Ketcham, 2003), the technique is 

more problematic when dealing with high density ore samples (Bam et al., 2016). 

XCT in high density ore samples has a number of challenges.  High density samples are defined here as 

those ores with a specific gravity greater than 3.5 that are typically comprised of high proportions of dense 

minerals such as the metal sulphides (e.g. pyrite, chalcopyrite, galena) and / or metal oxides (e.g. 

magnetite, chromite, hematite). The two most important of these challenges in XCT are the lack of exact 

compositional information and beam hardening (Bam et al., 2019; Cnudde and Boone, 2013). XCT provides 

grey-value information where the grey values correspond to mineral compositional information which is a 

function of the mineral’s linear attenuation coefficient. The assigning of grey values to different minerals 

relies on the user knowing the identity of the minerals present in the sample and which grey values 
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correspond to which minerals (Cnudde et al., 2006) since the XCT does not provide compositional 

information in the way that SEM-EDS type platforms do. The difficulties come when one has samples with 

different mineral assemblages. As an example, for a sample that contains the minerals quartz, plagioclase, 

biotite and garnet, each of these minerals has a specific grey value and a grey value ratio with respect to 

density. If however, another sample contains the mineral assemblage quartz, plagioclase and biotite with no 

garnet, the grey value ratio with respect to density for each mineral will stay the same but the grey values 

themselves will change. In this situation, so long as the user knew that garnet was missing, they would still 

be able to work out which mineral corresponded to which grey value. However, beam hardening results in 

changes to both the grey values and the grey value ratios, meaning that identification of minerals in XCT 

can be challenging where beam hardening is a factor.  

Beam hardening occurs when the lower X-ray energies of the polychromatic beam are more absorbed 

as they pass through the sample than the higher X-ray energies resulting in a more energetic X-ray beam 

hitting the detector (Alles and Mudde, 2007; Bucher et al., 2016; Van de Casteele et al., 2002). Beam 

hardening is most acute when dealing with high density ore samples. It creates artefacts that result in 

different grey values for the same minerals and this affects the quality of mineralogical information that can 

be extracted (Ketcham and Carlson, 2001). The problem becomes more pronounced as the sample size 

increases but this can, to some extent, be circumvented by increasing scanning times. However, longer 

scanning times would limit the possibility of the technique being employed routinely on a mining site to 

provide rapid mineralogical and textural information.  Scanning times could be decreased by decreasing the 

sample size in order to facilitate better X-ray penetration which reduces beam hardening. By doing so, it 

would also improve the resolution of the image information. The resolution capability of the system 

determines the level of details that can be analysed within the ore sample and in most cases it is a function 

of the sample size itself (Jerram and Higgins, 2007). However, when dealing with high density ore samples 

it is difficult to know the optimal sample size because the impact of beam hardening and its extent on 

mineralogical grey value change is also unknown. Due to this there is a need for new scanning protocols 

and analysis methods to optimize scanning parameters and the quality of the quantified mineralogical and 

textural information when dealing with high density ore samples. With continuous development of computer 

power, big data analysis, detector efficiencies as well as the development in optics to provide highly 

focused X-ray beams to improve spatial resolution, the XCT technique has the potential in the next few 

decades to find wide spread routine use in mineralogical analysis, and possibly ultimately even replace the 

2D techniques. 

This study addresses these issues by examining the need for development of such methods and 

protocols and focusses on three main issues. The first is the need for methods to determine optimal 

scanning parameters to obtain mineralogical and textural information rapidly of any ore type. The second is 

the need to evaluate optimal sample sizes for different ore types based on density to minimize the loss of 

mineralogical and textural information due to beam hardening. Thirdly, the need for a simplified approach to 

improving the discrimination of minerals with similar densities to optimize the quantification of grain size 

distribution particularly for sulphide ores. For this last issue, the focus of this study is on optimisation of dual 

energy scanning methods to facilitate mineral discrimination in higher density samples. The methodological 

developments presented here represent an important advance in the way in which XCT can be used to 

quantify mineralogical and textural characteristics of ore deposits. These developments represent important 
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steps towards the longer term goal of implementing XCT as a routine, rapid, reliable and, eventually, 

accurate analytical technique in the minerals processing industry. 

 

 Problem Statement 1.1.

With the increasing mineralogical complexity and variability of low grade ores and the technical 

challenges associated with the mining and processing of such ores, there is an increasing demand for 

upfront ore body knowledge of the mineralogy and texture of these ores.  To achieve this the mining and 

minerals industry needs the ability to obtain rapid and robust information on ore mineralogy and 3D texture 

and the variation thereof, for effective mine planning and optimisation of ore processing. XCT has potential 

to provide this 3D mineralogical and textural information. However, the application of XCT to different ore 

types has to be optimized in order to address the inherent limitations of the XCT technique when applied to 

high density ores. This includes the differentiation of minerals with similar attenuation behaviour, the impact 

of beam hardening, and the role of sample size and the use of dual energy scanning. Each of these issues 

requires the development of specific scanning protocols tailored to high density ores. 

 Aims of the Study 1.2.

This project aims to develop methods and protocols to improve the quantification of 3D sample 

information using XCT and to overcome beam hardening artefacts associated with high density ore 

samples. To do this a number of objectives and key questions have been developed. 

Chapter 2: Key Objective: 

To build an attenuation coefficient data bank in order to predict mineralogical discrimination in high-density 

ores using XCT.  

1.1. What is the minimum attenuation coefficient difference required in order to differentiate two 

minerals using XCT? 

1.2 What is the impact of density on the minimum attenuation coefficient difference between two 

minerals? 

Chapter 3: Key Objective: 

To determine the optimal scanning parameters to quantify mineralogical and textural information in high 

density ore samples. 

2.1. Which scanning parameter variables have the most impact on mineralogical and textural 

information obtained from XCT scanning? 

2.2. What is the interdependence of scanning parameter variables in order to generate optimal 

mineralogical and textural information? 

2.3. What is the relationship between optimal scanning parameters and rapid scanning parameters? 

Chapter 4: Key Objective 
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To develop a method that identifies the degree of loss of sample information due to beam hardening in high 

density ores. 

3.1. How can loss of sample information in high density samples be recognised? 

3.2. What is the impact of sample size on loss of information? 

3.3. By what mechanism can loss of sample information be quantified? 

Chapter 5: Key Objective 

To develop a new approach to the dual energy method that optimizes the discrimination of mineralogical 

information in high density ore samples. 

4.1. What are the factors that influence the application of dual energy to differentiate minerals of 

similar attenuation coefficient?  

4.2. What is the best method for routine application of dual energy to differentiate minerals with similar 

attenuation coefficients? 

4.3. Is there a limit to the ability of dual energy scanning to differentiate minerals with similar 

attenuations coefficients? 

Chapter 6: Key Objective 

To demonstrate the practical application of scanning methods and protocols developed in this study for high 

density ores and their relevance to the minerals processing industry.  

5.1. How reliable is the mineralogical and textural information generated by the scanning protocols 

developed in this study? 

5.2. What additional steps or developments would be needed to further improve the mineralogical and 

textural information obtained by XCT on high density samples?  

5.3. What is the long term feasibility of implementing XCT as a standard analysis technique for the 

minerals processing value chain? 

 

 Project Scope – Sample Selection 1.3.

Although this study discusses mineralogical and textural information in ore samples, all the samples 

used in this study are derived from drill core and are analysed as drill core with the exception of the 

Witwatersrand Basin samples in Chapter 5 which were extracted from drill core. Drill core is the most 

amenable sample type for XCT because it gives a regular shape. In contrast, “grab” samples have very 

irregular shapes and sizes and this would introduce an additional element of uncertainty into the scanning. 

Additionally whilst the project deals with high-density samples, the study uses only two different types of 

high-density ores: (1) iron ores and (2) base metals sulphides. These two types of ores though are probably 

representative of most high-density ores. The samples used in this study come dominantly from South 

Africa. However, iron ore samples from Brazil and Sweden were also examined. 
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 Thesis Outline 1.4.

This thesis is written as a series of papers, each one building on the previous. The papers have the 

common theme of optimizing the differentiation of minerals in order to optimally quantify mineralogical and 

textural information in high density samples.  

Chapter 2 discusses the importance of knowing the mineralogical makeup of samples prior to XCT 

scanning by determining the linear attenuation coefficient of each mineral in order to optimize the 

discrimination of minerals by selecting an appropriate X-ray energy for scanning. The importance of 

knowing the exact cation composition prior to scanning, as well as the limitations of single energy scanning 

and the advantages of the dual energy scanning approach is discussed. The goal is to determine which 

mineral pairs can and cannot be differentiated using XCT.  

Once it has been established that it is possible to differentiate two minerals, the next step is to determine 

what the optimal scanning parameters for doing this are, and this is the subject of Chapter 3. The chapter 

demonstrates that the optimal scanning conditions  for rapid scanning of high density ores can be identified 

by comparing different combinations of the scanning parameters (X-ray energy, current, number of images, 

exposure time) to produce an image with a high signal to noise ratio. This means that the ability of XCT to 

provide 3D mineralogical and textural information rapidly, positions the technique as a potential analytical 

tool for implementation on mining sites. This capability will also broaden the application of XCT from drill 

core logging, to ore characterisation, and through to minerals processing. 

Even with optimal scanning parameters determined though, it is important to recognise that some 

information can be lost from the scanned data due to beam hardening. Chapter 4 explores this issue and 

focusses on the fact that beam hardening can result in loss of sample information that cannot be identified 

and quantified because it is not known that it is lost. A method for assessing loss of information is proposed 

using an aluminium standard sample to determine a %Error associated with a loss of sample information 

based on sample size. Reliable results have important implications for minerals processing because a loss 

of sample information may bias ore characterisation, and consequently lead to incorrect interpretations of 

the efficiencies and deficiencies in minerals processing circuits. 

However, even when the attenuation coefficients of the minerals suggest they can be discriminated, and 

the optimal scanning parameters have been identified and the loss of information due to beam hardening 

has been quantified, it may still be challenging to differentiate particular mineral pairs because of similarities 

in their attenuation coefficients. In this situation, it may be necessary to utilise dual energy scanning to 

improve the differentiation and this is the focus of Chapter 5.  The approach uses both scanned information 

and simulated information to better discriminate minerals because a simulated image assumes a 

monochromatic X-ray beam which overcomes the impact of beam hardening. The method is illustrated by 

differentiating chalcopyrite from pyrite and magnetite.  

Chapter 6 presents two case studies where the above methods and protocols are used to quantify 

porosity in iron ore samples and chalcopyrite grain size distribution (GSD) in a base metal sulphide ore 

sample. The quantified porosity information in the iron ore samples were validated against the QEMSCAN 

(2D) data and the results are in agreement expect for one iron ore sample which has a non-uniform 

distribution of the porosity information which affects the representation of the 2D analysed data.  In the base 

metal sulphide sample, the chalcopyrite grains were first discriminated from pyrite grains using the 
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simplified dual energy method discussed in chapter 5, where after the chalcopyrite GSD was quantified.  

The case studies highlight both the advantages and limitations of the various methods being implemented.  

The thesis concludes with an assessment of the main findings of the study as well as an evaluation of 

the practicalities of implementing these on a mine site. 

 Statement of Novelty 1.5.

a) This thesis has developed an approach to select the optimal XCT scanning parameters in high density 

ores in order to obtain mineralogical and textural information rapidly by using the signal-to-noise ratio 

(SNR) as a guideline.  

b) A method to indirectly quantify the impact of beam hardening and resultant loss of sample information 

in high density ore samples was developed. The method allows the user to determine the optimal 

sample size that is not associated with loss of information by using an aluminium standard sample to 

quantify %Error that assess the impact of beam hardening. Without the use of a standard sample this 

loss of information cannot be effectively evaluated and hence cannot be effectively corrected.  

c) A modified approach for the dual energy method, tailored for high density ores, has been developed to 

differentiate minerals with similar attenuation coefficients. The method addresses the issue of beam 

hardening artefacts while still optimizing the discrimination of minerals using a time effective approach 

by combining scanned images with simulated images as compared to the traditional dual energy 

method which relies on two scanning conditions. 

 Fundamentals of X-ray Computed Tomography 1.6.

XCT is the core technique used in this study. Hence it is appropriate to given a review of the background 

to XCT to provide context for the later chapters. As the thesis has been written as a series of manuscripts, 

this information is not appropriate to include in subsequent chapters. 

 Overview 1.6.1.

X-rays were discovered in 1895 by Wilhelm Conrad Röntgen and this led to a successful development of 

imaging technologies (medical and technical). This discovery led to the first development of the X-ray 

imaging device that had X-ray tubes, X-ray films and later incorporated X-ray detectors. The advancement 

in computer technology in the 1960s and 1970s led to the development of X-ray computed tomography 

(XCT) techniques (Hampel, 2015). XCT is a non-destructive technique that acquires 2D projections in a 

360o angular rotation to reveal internal structures of any object of interest (Schuetz et al., 2013). The 2D 

projections or radiographs are made of pixels that record the average grey values of objects within the 

samples as the X-ray beam passes through. The analysis of objects in 2D radiographs has limitations due 

to overlap or a lack of contrast between objects (Stock, 2011). However, the utilisation of mathematical 

principles of tomography to reconstruct 2D projections produces a 3D digital volume where each voxel 

represents the X-ray attenuation or absorption at any given x, y and z position. This means that the 3D 

volume can be viewed from different 2D image slices (Landis and Keane, 2010) sometimes referred to as 

front, top and right view. Due to the relationship that exists between X-ray absorption and density, the 

technique provides accurate representation of different phases within the sample due to different responses 

in X-ray absorption (Stock, 2011). Phases with similar response in X-ray absorption will be difficult to 
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discriminate from each other. Initially XCT was used for medical applications (Landis and Keane, 2010; 

Wang et al., 2018) but the improvement of key components extended the technique to industrial application 

due to better imaging of material densities greater than that of human tissue (Sato et al., 2018; Landis and 

Keane, 2010). For industrial application there are two types of XCT systems, those focusing on high 

penetrating capability and those with high spatial resolution capability which are both referred to as micro-

focus XCT systems (Wang et al., 2018). The development of high spatial resolution systems led to the 

interrogation of material microstructures and this is complementary to 2D microscopy systems (Landis and 

Keane, 2010). 

 Different XCT Systems 1.6.2.

XCT imaging was initially considered as a reconstruction of a thin slice from line integrals in order to 

reveal material structures within an object. The line integrals in XCT are acquired through the 

measurements of X-ray beam intensities with a set X-ray beam voltage or energy. Such X-ray beams 

generate from a focal spot size on a target material of the tube and detected on the other side of an object 

by an active area of a detector. In order to have a full representation of an object the detector together with 

the line integrals must be positioned in different places. Figure 1.2 demonstrates improving technology and 

complexity of the medical XCT which classifies different generations of XCT scanners (Hampel, 2015). 

 

Fig 1.2. Different generations of X-ray computed tomography medical scanners with different designs. 

The first generation of the medical XCT scanners were referred to as pencil beams that belonged to a 

generation of devices that used a parallel X-ray beam. This type of scanner has two movements: a) a lateral 

movement responsible for a single projection and b) a circular movement responsible to gather all the 

projections needed to reconstruct an image. This type of scanner acquired projections either continuously 

or discretely. The advancement of detector technology in 1972 led to the second generation of scanners 

with multiple detector arrays. This generation of scanners had a detector ranging from 3 to 52 (detectors) in 

the array and were referred to as a partial fan beam. The fan beam allowed the projections to cover a wider 

area of an object which resulted to a fewer number of projections required to reconstruct an image 

(Cierniak, 2011). The introduction of the third generation of scanners was directed towards limiting the 

lateral movement of the detector system and the X-ray source. This was achieved in the mid 70’s by the 

XCT designers who managed to limit the movement only to rotational movement. This generation of 

scanners was called the fan beam scanner which refers to a beam with a fan shape and an angular spread 

ranging from 40 to 55 degrees which covers the whole test object. Introducing this scanner addressed the 

need to increase the number of detectors (up to 1000 detector elements) together with a rotating target (X-
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ray tube). The introduction of the fourth generation of XCT scanners in the late 70’s differed from the 

previous (third) generation with more detector elements (from 600 up to 5000). This scanner had a rotating 

target and a stationary detector (Cierniak, 2011). 

The development of the first medical XCT scanner led to the concept of cone beam computed 

tomography (CBCT) (Pauwels et al., 2015). CBCT was first dedicated for angiography but the application 

extended to radiotherapy planning, mammography and cardiology (Scarfe and Farman, 2008; Pauwels et 

al., 2012). It has been applied in medicine since the 1980s but the first commercial CBCT was introduced in 

1998 (Pauwels et al., 2012). The term cone beam refers to a cone geometrical shaped X-ray beam 

(Abramovitch and Rice, 2014). The system was developed as an alternative to the medical CT scanners 

using the fan beam as mentioned above. This was done to rapidly acquire object images filling up the whole 

field of view of (FOV) a detector with high level of details (Scarfe and Farman, 2008; Pauwels et al., 2012) 

which is one of the advantages of the CBCT systems. The other advantage of the systems is that it has a 

low-radiation X-ray source with a focused X-ray beam that delivers relative high spatial resolution and has 

less scattering as compared to the fan beam systems (Palomo et al., 2006). The high resolution capability is 

due to a smaller focal spot size of about 0.5mm while the total radiation of the source is about 20% of that 

of a medical XCT. The CBCT systems have two significant differences compared to the medical XCT 

scanners: a) it utilises a low-energy tube and b) the system rotates once around the area of interest to 

obtain the data. These differences allows the CBCT systems to be less expensive and smaller in size 

compared to the medical scanners (Palomo et al., 2006; Quereshy, Savell and Palomo, 2008). 

 XCT Configuration 1.6.3.

There are several significant differences between a medical XCT and a micro-XCT (μXCT). With the 

medical XCT systems an object is kept stationary whilst the detector and the X-ray tube moves around an 

object. The opposite is observed in a μXCT systems by allowing the object to rotate whilst the detector and 

the X-ray tube remain stationary. This configuration is optimal, especially for high resolution scanning, in 

order to achieve stability. The laboratory μXCT based systems generate X-ray beams from a finer focal spot 

size, which is a requirement for high resolution scanning, and consists of a detector that determines the 

dynamic range of an image. This setup has a cone beam shape (similar to CBCT) which allows 

magnification (geometrical) of an object under investigation (Fig. 1.3). Higher magnification is achieved by 

placing an object close to the X-ray tube which reveals finer structures within an object. The focal spot in 

this setup determines the highest achievable resolution (< 1 μm) but requires a lower X-ray flux which 

increases the acquisition time for lab-based setups.  These systems provide higher dynamic ranges due to 

a thick scintillator screen that comes with a flat panel detector. For high flux tubes, X-ray optics (lenses) are 

required in order to obtain high resolution (Cnudde and Boone, 2013). It is important to mention that recent 

developments in μXCT have adopted designs similar to medical XCT where a sample remains stationary 

whilst the detector and the X-ray tube rotate around the sample. These types of systems are designed to 

image dynamic processes where a sample is connected to different equipment to study processes like fluid 

flow (Bultreys et al., 2016). The sample is kept stationary to avoid any disturbance to the equipment 

connected to the sample. However, these types of systems are not common in most laboratories. 
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Fig 1.3. A schematic diagram of a common lab-based µXCT setup with a conical X-ray beam which allows a 

geometrical magnification. 

 X-ray Source 1.6.3.1.

The X-ray tube forms an important part of any XCT system and its operation depends on the X-ray 

interaction with the target material of interest (Cierniak, 2011) in order to produce X-rays. The important 

parameters of the X-ray source are the size of the focal spot, the energy spectrum of the generated X-rays 

and the intensity of the X-rays. The spot size determines the highest achievable spatial resolution of the 

XCT instrument or system. The energy spectrum determines the capability of the X-rays to penetrate 

through the sample of a given density. There is a high probability for high X-ray energies to penetrate high 

density samples compared to low density samples (Ketcham and Carlson, 2001). However, when the 

sample is larger or its density and attenuation coefficient are too high (e.g. iron ore, barite samples, etc) 

even the high X-ray energies struggle to penetrate the sample. This emphasises the importance of optimal 

sample size in such cases, and utilisation of higher X-ray intensities and appropriate filter materials to 

improve X-ray penetration. However, care should be considered when using higher X-ray intensities 

because they often require a larger focal spot size that can affect the scanning resolution especially for 

smaller dense or highly attenuating samples. 

When X-rays penetrate through the sample they are attenuated by scattering and absorption. During the 

process of X-ray beam attenuation three physical processes dominate: 1) photoelectric effect, 2) Compton 

scattering and 3) pair production. During the photoelectric effect process, an inner electron is ejected due to 

an incident photon transferring all its energy to it. During the Compton scattering process, the outer electron 

is ejected by the incoming X-ray photon. The incoming X-ray photon then loses part of its energy causing it 

to be deflected and change direction. In pair production, two electrons with opposite charges are produced 

due to an interaction of an X-ray photon with a nucleus. For geological samples, the dominant process in 

the photoelectric effect between 50 – 100keV X-ray energy. Compton scattering process dominates at 

higher X-ray energies (5 – 10MeV) and beyond this the pair production process takes over. Lab-based XCT 

systems only consider the photoelectric effect and Compton scattering process due to their low X-ray 

energy capability (Ketcham and Carlson, 2001). 
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 Detectors 1.6.3.2.

The current laboratory based XCT systems, with a flat panel detector, uses two main detection 

principles, direct and indirect sensors that convert X-rays to light. The flat panel detectors with indirect 

systems consists of layers of scintillators and photodiode matrices. X-rays in the keV energy range are 

converted to visible light within the layers of the scintillator and each X-ray photon is responsible for ~1000 

visible light photons being produced. The flat panel detector photodiodes can have up to 4000 x 4000 

matrices of pixels arrangement with the best technology (amorphous silicon technology). Different types of 

scintillator materials are used depending on the scanning parameters (resolution, X-ray energy range and 

current).  In a case where higher X-ray energies (50 and 200keV) are used, the thickness of the scintillator 

can affect the efficiency of detection due to the lower X-ray flux. The resolution on the other hand decreases 

with increasing thickness of the scintillator layer which requires an optimised photodiode and scintillator 

combination. This is why scintillators like caesium iodide are utilised because they prevent the degradation 

of the signal through the scintillator path. The flat panel detector pixel size can go down to 50 µm which 

defines the sample distance limit of the X-ray image projected on the detector plane. When a lower X-ray 

energy is required to scan smaller samples, detectors with smaller pixel sizes of about 6.5 µm with 

adequate spatial resolution and good efficiency are available on the market (Hanke et al., 2016). 

 Limitation of XCT to Study Methodology 1.6.3.3.

Despite the 3D capability of XCT, which is the main attraction compared to 2D techniques like SEM and 

QEMSCAN, it has disadvantages as well. One of the major disadvantage of XCT is the polychromatic 

nature of the beam which leads to beam hardening when scanning larger or denser samples (density > 

3g/cm3). To minimise this effect, the samples have to be scanned at higher X-ray energies. This is a 

problem when the sample contains a range of minerals that require a lower X-ray energy to optimise the 

discrimination between them. This is also a problem when larger samples have to be scanned to obtain 

meaningful representation of mineralogical and textural information (e.g. grain size distribution). In such a 

case the sample has to be cut to smaller sizes resulting to multiple scanning which is time consuming. 

However, smaller sample sizes allow sufficient X-ray penetration, which minimises loss of sample 

information, and the utilisation of lower X-ray energies, which optimises mineral discrimination or sample 

contrast. Another disadvantage of the beam is that the set voltage on the system is not equal to an effective 

X-ray energy of the beam. The effective energy can change depending on the filter material being used 

which makes it difficult to calculate the exact linear attenuation coefficient of the minerals within the sample. 

The effective energy of the spectrum can also be affected by the dense sample matrix causing the minerals 

not to be discriminated due to resulting higher effective X-ray energy and noise within an image. High levels 

of noise affect the signal-to-noise ratio which is important for mineral discrimination. This is different from 

the synchrotron X-ray beam which is monochromatic in nature, provides optimal sample contrast, and does 

not suffer from beam hardening due to its high flux.  

In addition to the disadvantages or limitations mentioned above, the resolution is an issue as well which 

is inherent to the technique. Most laboratory based systems can go down to 3 – 5µm which makes it difficult 

to compare high resolution information provided by the 2D techniques with the XCT or μXCT techniques. 

This is a major set-back because to obtain high resolution information requires a smaller sample size. 

Despite the utilisation of smaller sample sizes, the XCT technique provides coarse grain information and the 

majority of the information is below the resolution capability making it difficult to quantify the full spectrum of 

the mineralogical information of the sample. The information below the resolution results in mineral or grey 
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value overlap which affects the true grey values of the minerals. This decreases or increases the actual 

grey values of the minerals of interest depending on the linear attenuation coefficient of those minerals. This 

affects the discrimination and quantification of minerals which can lead to misrepresentation of the actual 

mineralogical information. 

 Minerals Processing and Process Mineralogy 1.7.

The focus of this thesis is on the development and application of XCT methodologies and protocols for 

obtaining mineralogical and textural information on high-density ore samples. These applications also have 

relevance to the minerals processing industry. Minerals processing also known as ore dressing, or minerals 

engineering is the separation and concentration of valuable metallic and non-metallic minerals from waste 

material, also known as gangue (Willis and Napier-Nunn, 2005; Haldar, 2018). It follows after mining and 

prepares the ore for the hydro- or pyrometallurgical extraction of the valuable metals to produce a 

commercial end product. Process mineralogy on the other hand is the study of mineralogical characteristics 

that impact on minerals processing (Becker et al., 2016). This study looks at the application of XCT to 

process mineralogy. However, a brief review of minerals processing is also warranted to provide additional 

context to the study. There are three main activities in mineral processing: (1) liberation, (2) separation and 

concentration, and (3) extraction (Haldar, 2018). Liberation of the valuable minerals from the gangue is 

accomplished through comminution. This involves a series of crushing and or grinding stages to produce a 

particle size in which the valuable mineral is not encapsulated within the gangue, and is in an appropriate 

size range for the desired separation process (Evans and Morrison, 2016). Valuable minerals cannot be 

efficiently recovered by downstream separation processes if they are not adequately liberated. Separation 

entails the concentration of the valuable mineral to produce a concentrate and a discard or tailings product. 

Separation processes include flotation, gravity, magnetic, and optical separation. However, in some 

circumstances, the concentrate may not be of sufficiently high grade and additional fine grinding is needed 

to further liberate valuable minerals prior to concentration, or valuable minerals are lost to the tailings 

because they were not sufficiently liberated prior to processing. 
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Fig 1.4. Different analytical techniques to quantify mineralogical and textural information (Becker et al., 2016) 

Alternatively there may be some deleterious minerals or elements that interfere with the efficiency of the 

separation process and contaminate the concentrate (Cropp et al., 2013). Mineralogical and textural 

information is critical to the design of these mineral processing circuits, their optimisation, benchmarking 

and trouble-shooting (Lotter et al., 2018). There are a wide range of analytical techniques that are, and 

have been used, to do this (Fig. 1.4). These techniques can be divided between routine analytical methods 

such as QXRD (quantitative X-ray diffraction), chemical assays and automated SEM-EDS (scanning 

electron microscopes with energy dispersive X-Ray spectrometry) systems, and more specialised 

techniques such as XCT, synchrotron and EMPA (Electron microprobe analysis). The techniques in the 

routine methods group, are readily available and have routine protocols to enable personnel at mines to 

obtain and interpret the information. In contrast, the methods under specialised are not easily accessible for 

various reasons including logistics and funding (there is currently no synchrotron in Africa), and require the 

development of routine methods and protocols for a variety of ore types (QEMSCAN - Quantitative 

Evaluation of Minerals by Scanning Electron Microscopy). However, of these XCT probably shows the most 

promise to be applied as a routine technique because the instrument itself is relatively straightforward to 

use. However, it requires the development of routine methods and protocols to facilitate its implementation 

in mineral processing applications. As previously indicated, this is the focus of this thesis. 
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A B S T R A C T  

X-ray computed tomography (XCT) is becoming one of the most important techniques in 

the geosciences. The technique relies on attenuation coefficient and density differences 

in order to reveal the internal structure of the rocks. To properly discriminate between 

minerals using the developed data bank (a simple tool) to calculate linear attenuation 

coefficient not only depends on the density and X-ray energy but most importantly the 

specific chemical formula. The elements within the chemical formula determine how the 

X-ray beam is attenuated. Analysis of a variety of scanned mineral pairs with similar 

densities and attenuation coefficients indicates that an attenuation coefficient difference 

of greater than or equal to 6% at 45.5keV effective X-ray energy is required for the 

effective application of XCT with single energy scanning. This means that mineral pairs, 

such as quartz and pyrophyllite cannot be discriminated using the current XCT 

instruments due to the fact that the attenuation coefficient difference is less than 1.9% 

at 45.5keV effective X-ray energy. Garnet minerals were used as examples to illustrate 

the importance of knowing the actual chemical formula of the mineral to demonstrate 

that they can be partially or fully discriminated from each other. 

 

1. Introduction 

X-ray computed tomography (XCT) is a non-

destructive technique that utilizes X-rays to image the 

3D internal structure of a wide variety of materials 

(Ketcham and Carlson, 2001; Mees et al., 2003; 

Momose and Keiichi, 1999). Soon after its 

development in the medical sciences in the 1970’s 

(Kalender, 2006), it attracted considerable attention 

within the geosciences due to its potential to visualise 

the internal structure of rocks and minerals (Cnudde et 

al., 2006; Hamdani, 2015; Kyle and Ketcham, 2015). In 

particular, the ability of the technique to determine the 

mineral content, distribution of minerals, mineral 

texture, porosity and pore structure network, at a 

variety of scales, made it an attractive technique 

across diverse fields from petrology to palaeontology 

to minerals processing (Kaufhold et al., 2016; Mees et 

al., 2003; Miller et al., 2013; Panahi et al., 2012; 

Siddiqui et al., 2014). In particular, XCT has proven to 

be an important analytical technique for the analysis of 

drill cores, that lend themselves to XCT analysis 

because of their uniform sample geometry. Material 

density (Ashi, 1997; Tanaka et al., 2011) as well as ore 

grade (Le Roux et al., 2015) have been successfully 

calculated from drill core using advanced 

segmentation methods. More recently, it has been 

proposed to combine XCT with grey level co-

occurrence matrices (GLCM) to generate algorithms 

that will automatically interrogate texture in 3D 

applications using drill core (Jardine et al., 2018) 

XCT images record the difference in density by means 

of grey values that represent the linear attenuation 

coefficient of each and every mineral present within 

the specimen (Kyle and Ketcham, 2015; Mees et al., 

2003). The interaction of X-rays with minerals depends 

not only on the mineral density (a function of mineral 

chemistry and atomic structure) but also on the 

thickness (grain size) and effective atomic number of 

the mineral. This means that if the density variation 

between the minerals present is large, the X-ray beam 

is attenuated differently, resulting in distinct grey 

values. This makes the XCT technique attractive to 

different material science disciplines. However, if the 

density difference between minerals is small, then it is 

difficult for the XCT technique to differentiate them 
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because of similar attenuation response of the 

minerals resulting in similar grey values (Mees et al., 

2003). Because of this, different combinations of 

minerals or mineral assemblages are more amenable 

to interrogation by XCT than others. In particular, some 

combinations of minerals or mineral pairs cannot be 

differentiated from one another because of the 

similarity in attenuation response. In such cases, it is 

important to know up front, the limitations of the XCT 

system with respect to the mineral assemblage or 

problem being worked with.  

The objective of this paper is to present a simple way 

to evaluate whether different minerals can be 

differentiated on the basis of their linear attenuation 

coefficient through the development of an attenuation 

coefficient ‘data bank’. The ‘data bank’ has been 

developed in the form of a user-friendly excel 

spreadsheet that can calculate linear attenuation 

coefficients at any effective energy (with any increment 

of choice) between 41.7 and 72.6keV which is 

equivalent to an X-ray energy spectrum of between 60 

and 225keV. In comparison, the National Institute of 

Standards and Technology (NIST) online database 

calculates linear attenuation coefficients at specific 

energies (with predetermined increments up to 4 

significant digits) which can obscure subtle differences 

at various energies that can be exploited for mineral 

differentiation. The NIST database also requires an 

online connection. The application of the excel 

spreadsheet is demonstrated by looking at several 

examples including high density iron-ore minerals, 

some of which cannot be differentiated by XCT. 

2. Methodology 

The development of the data bank involves several 

steps. The first step was to collect different energy 

spectrums of a tungsten target under a high voltage 

(kV) and convert them 

into effective energies equivalent to a monochromatic 

beam of the X-Ray energy spectrum. This allows 

evaluation of how mineralogical grey value information 

is affected by scanning parameters, different filter 

materials, sample size and beam hardening by 

comparing the effective linear attenuation difference 

with the measured grey value difference. Tungsten is 

normally used as the target in these types of 

instruments because it has high flux and can withstand 

high temperatures. The second step was to determine 

the NIST database for attenuation and energy 

information for all elements from 41.7 to 72.6keV and 

compile this information into an excel spreadsheet. 

The third step was to develop the excel macros that 

take the compiled NIST elemental data and convert it 

to linear attenuation coefficients for any mineral. 

2.1. Tungsten Energy Spectrum 

Different energy spectrums of a tungsten target 

under a high voltage (kV) were collected using a 

germanium detector (Figure 2.1). The set voltage on 

the target is equivalent to the maximum energy of the 

produced spectrum. The spectrum consists of different 

proportions of various energies because of the 

polychromatic nature of the X-ray beam. The varying 

energy proportions interact differently with minerals 

thus making the associated linear attenuation 

coefficient calculations complex - minerals absorb 

more energy at the lower energy range compared to 

the higher energy range of the spectrum. To simplify 

the interpretation of the interaction of the X-ray 

spectrum with a mineral, an effective energy of the 

spectrum was calculated. An effective energy is a 

weighted average of an actual polychromatic beam. 

Although the effective energy has be assumed to be 

close to 30-40% of the peak energy (Sprawls, 1993), it 

is more accurate to calculate it for each spectrum.
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Fig 2.1. Different tungsten energy spectrums collected at different energies. 

One way to determine the effective energy is to use 

the aluminium half-value layer method (Matsubara et 

al., 2014; Mccullough, 1975; Yada and Onishi, 2016). 

To do this, the effective energy is calculated by 

converting the X-ray energy spectrum from 

polychromatic to monochromatic (Figure 2.2). This is 

done by combining all the photon energies (E) of the 

spectrum, relative to the count ratio for each photon 

energy of the spectrum, using Equations 1 and 2. 

Equation 1 combines all the counts with respect to 

each energy of the spectrum. The resultant effective 

energies (Figure 2.2) calculated using Equation 2 are 

similar to the ones reported by Yada and Onishi (2016) 

using the same method. The similarities in effective 

energies reflects similar X-ray energy spectrums 

between the XCT systems. 

Conversion of the spectrum into a single energy 

simplifies the linear attenuation coefficient calculations. 

In addition to this, it allows a direct comparison of 

theoretically calculated linear attenuation coefficients 

with the experimental ones. This means that the 

calculated linear attenuation coefficients can be used 

to predict how minerals will correlate with grey values 

on radiographs or 2D image slices taken from 3D 

image volumes. Grey values are a direct 

representation of the average linear attenuation 

coefficients of minerals (Akça and Erzeneoʇlu, 2014; 

Olarinoye, 2011). Where samples are high density or 

larger volume, it can be difficult to calculate accurate 

linear attenuation coefficients since the X-ray beam is 

hardened as it passes through the sample 

(McCullough et al., 1974) causing the effective energy 

to be higher (Tsuchiyama et al., 2000). This will affect 

the expected discrimination between the mineralogical 

information based on the initially calculated linear 

attenuation coefficients. Therefore, in such a case, a 

stepwise protocol should be used to determine what is 

affecting the discrimination between the minerals. 

𝐶𝑜𝑢𝑛𝑡𝑇𝑜𝑡𝑎𝑙 =  𝐶𝑜𝑢𝑛𝑡1(𝐸1) + 𝐶𝑜𝑢𝑛𝑡2(𝐸2) + ⋯ + 𝐶𝑜𝑢𝑛𝑡𝑛(𝐸𝑛) … Eqn1 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑘𝑒𝑉) =  
𝐶𝑜𝑢𝑛𝑡1(𝐸1 )

𝐶𝑜𝑢𝑛𝑡𝑇𝑜𝑡𝑎𝑙
× 𝐸1 +

𝐶𝑜𝑢𝑛𝑡2(𝐸2 )

𝐶𝑜𝑢𝑛𝑡𝑇𝑜𝑡𝑎𝑙
× 𝐸2 + ⋯ +

𝐶𝑜𝑢𝑛𝑡𝑛(𝐸𝑛 )

𝐶𝑜𝑢𝑛𝑡𝑇𝑜𝑡𝑎𝑙
× 𝐸𝑛 … Eqn2 
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Fig. 2.2. Correlation between the effective X-ray energy and the X-ray energy spectrum of the tungsten target. 

2.2. Development of the Attenuation Coefficient Databank 

The mass attenuation coefficient data from NIST 

represents the mass attenuation coefficients for all 

elements at different X-ray energies 

[http://physics.nist.gov/PhysRefData/XrayMassCoef/ta

b3.html]. In order to properly utilise the mass 

attenuation coefficient data for discrete X-ray energies 

or X-ray energies similar to the collected spectrums 

mentioned above, a set of linear and polynomial 

equations (equations 3-5) were fitted to represent the 

change of mass attenuation coefficient as the X-ray 

energy increases (Figure 2.3). Iron has been used as 

an example to illustrate the decreasing mass 

attenuation coefficient with increasing X-ray energy 

and the spike in mass attenuation coefficient at 7.112 

keV is due to a K-edge absorption. These equations 

were fitted for all elements in the periodic table taking 

into consideration the behaviour of mass attenuation 

coefficients with respect to energy. Fitting different 

equations was done to minimise deviations between 

the expected mass attenuation coefficients with the 

calculated ones. 

𝑦 = 𝑚𝑥 + 𝑐 Eqn3 

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 Eqn4 

𝑦 = 𝑎𝑥5 + 𝑏𝑥4 + 𝑐𝑥3 + 𝑑𝑥2 + 𝑒𝑥 + 𝑓 Eqn5 

The x and y-axis represent the X-ray energy and mass 

attenuation coefficient respectively. This method was 

repeated for all the elements including Li, B, C, O, Na, 

Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, 

Cu, Zn, As, Zr, Mo, Ag, Ba, Ta, W, Pb and Bi, which 

are more common in minerals. In cases where 

Equation 3 and 4 could not provide satisfactory mass 

attenuation coefficients, Equation 5 (high order 

polynomial) was used to minimize deviations between 

the mass attenuation coefficient calculated in this 

spreadsheet and that provided by NIST.  

The mass attenuation coefficient for minerals, 

µ/ρ (cm
2
/g), was calculated using Equation 6 where ωi 

is the weight fraction of ith element (Akça and 

Erzeneoʇlu, 2014; Olarinoye, 2011). The linear 

attenuation coefficient, µ (cm
−1

), was then obtained by 

rearranging Equation 6 to give Equation 7. 

𝜇

𝜌
=  ∑ (

𝜇

𝜌
)

𝑖𝑖

ω𝑖  Eqn6 

𝜇 =  [∑ (
𝜇

𝜌
)

𝑖𝑖

ω𝑖] ρ Eqn7 

2.3. Development of User Spreadsheet 

The databank spreadsheet calculates the linear 

attenuation coefficient as an output using Equation 7 

(Table 2.1). The spreadsheet is designed to be user-
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friendly with minimal inputs required to immediately 

calculate the linear attenuation coefficient for any 

mineral and can accommodate complex mineral 

compositions. Calculating the linear attenuation 

coefficient of different minerals requires a user to insert 

the actual number of elements (both cations and 

anions) present within a mineral (ie the exact mineral 

composition), the mineral density and the relevant 

effective energy under the appropriate columns 

(indicated in Table 2.1 which is a representation of the 

spreadsheet interface). The spreadsheet can calculate 

the linear attenuation coefficient of the same or 

different mineral at two different energies 

simultaneously.  

This allows a direct comparison of the linear 

attenuation coefficient of minerals to better understand 

the impact of grey value variation on image slices in 

order to optimize mineralogical discrimination prior to 

scanning. The voltage is equivalent to the energy 

spectrum indicated in the column for the tungsten 

spectrum. The effective energy is converted from the 

tungsten spectrum and is utilized to calculate the linear 

attenuation coefficient as an output under the X-ray 

attenuation coefficient cell. It is important to mention 

that there is another spreadsheet that exist called the 

MuCalculator which can also calculate the linear 

attenuation coefficient for any mineral 

https://utexas.app.box.com/v/MuCalc. However, the 

spreadsheet calculates the linear attenuation 

coefficient at specific X-ray energies. 

2.4. Validation of Linear Attenuation Coefficients 

To validate the ability of the excel spreadsheet to 

predict mineral discrimination using linear attenuation 

coefficients, thirteen minerals were scanned using a 

Micro-focus X-ray computed tomography system 

(Nikon XTH 225 ST) and their grey values compared. 

Prior to scanning the minerals were grouped as follows 

based on linear attenuation coefficient and mineral 

density: a) almandine, andradite and grossular; b) 

quartz, kaolinite, dolomite, calcite; c) fluorite, apatite; 

and d) goethite, chromite, magnetite and hematite. The 

density information for all the minerals was obtained 

from (https://www.mindat.org/). All the minerals were 

scanned at 70kV (45.5keV effective energy) using 

different filter materials as well as having no filter 

(Table 2.2). The set voltage on the target represents 

the collected energy spectrum with a maximum energy 

of 70keV. The samples were scanned at a 20µm 

resolution with 3000 projections and 4 seconds 

exposure time. The scanned data was reconstructed 

using CT Pro 3D software by applying various built-in 

beam hardening correction factors within the software. 

All the samples were analysed using VG Studio Max 

3.2 software. The region growing tool was used to 

remove background information from all the minerals 

in order to deal only with the mineral grey values 

themselves. It was important to define the mineral 
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Fig. 2.3. The representation of iron mass attenuation coefficient by different equations (linear, second and fifth order 

polynomial). The black lines represent linear equations (equation 1) and the red and green curves represent the second and 

fifth order polynomial equations (equation 2 and 3). 

 

grey value range because it was used to assign a false 

colour to the individual minerals in order to determine 

how grey values of different minerals overlap with each 

other. The mineral identities, compositions, as well as 

compositional homogeneity were confirmed using 

standardized scanning electron microscopy (SEM) and 

quantitative evaluation of materials by scanning 

electron microscopy (QEMSCAN). Individual minerals 

were prepared into polished sections and running 

using a FEI QEMSCAN 650F instrument on the field 

image analysis routine at the University of Cape Town. 

Measurements were run at 25 kV, 10nA using 100 

micron pixel spacing. Then same sections were then 

used for SEM-EDS analysis conducted at the Electron 

Microscopy Unit of the Central Analytical Facility 

(Stellenbosch University, South Africa) using Zeiss 

EVO MA15VP Scanning Electron Microscope. The 

measurements were carried out in a nitrogen 

atmosphere at pressures from 65 to 96 Pa, voltages 

from 20 kV to 30 kV, working distance for EDS 

analyses of 8.5 mm and magnifications ranging 

between 1000x and 5000х. The 

validation process also provided information about 

possible inclusions that may: a) affect expected 

discrimination between minerals; and b) provide a 

false assumption that a mineral can be discriminated 

from another mineral due to the presence of uniformly 

distributed inclusions that cannot be easily detected by 

the XCT scanning resolution. 

3. Results 

Here we present the results of this study in two 

parts. In the first part, we calculate linear attenuation 

coefficients for a variety of minerals of varying 

compositional complexity using the compiled 

spreadsheet. These values are compared to those that 

can be generated using the NIST database to assess 

the accuracy of the spreadsheet. Thereafter, mineral 

linear attenuation coefficients, calculated using the 

databank, are compared with the mineral grey values, 

generated using XCT, to evaluate the minimum 

difference in attenuation coefficient needed to be able 

to discriminate two minerals using XCT.  

 

Table 2.2. 

Scanning parameters to optimize discrimination between minerals. 

Exposure time 
(sec) 

No of projections 
Voltage (kV)/ 

Effective energy (keV) 
Filter material  

4 3000 70/45.5 No filter 

4 3000 70/45.5 0.25mm Cu 

4 3000 70/45.5 
1mm Al + 1mm 

Cu 
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Table 2.3. 

Comparison of the NIST and spreadsheet attenuation coefficient for different types of minerals. 

Mineral Chemical formula 
Density 
(g/cm

3
) 

Energy 
(keV)  

NIST 
Attenuation 
coefficient 

(cm
−1

) 

Spreadsheet 
Attenuation 
coefficient 

(cm
−1

) 

%Error 
Energy 
(keV)  

NIST 
Attenuation 
coefficient 

(cm
−1

) 

Spreadsheet 
Attenuation 
coefficient 

(cm
−1

) 

%Error 

Acanthite Ag2S 7.24 44.79 79.68 80.6 1.14 62.53 32.43 32.7 0.83 

Almandine Fe3Al2Si3O12 4.32 44.79 4.77 4.55 4.56 62.53 2.21 2.19 0.53 

Andradite Ca3Fe
3+

2Si3O12  3.86 44.79 4.09 3.91 4.44 62.53 1.91 1.9 0.35 

Ankerite CaFe(CO3)2 3.2 44.79 3.33 3.19 4.2 62.53 1.56 1.56 0.00 

Apatite Ca5(PO4)3OH 3.19 44.79 2.36 2.28 3.39 62.53 1.19 1.19 0.00 

Arsenopyrite FeAsS 6.18 44.79 20.23 20.4 0.83 62.53 8.26 8.51 2.94 

Barite BaSO4 4.48 44.79 48.67 48.1 1.17 62.53 20.31 21 3.29 

Borax Na2B4O5(OH)4·8H2O 1.7 44.79 0.42 0.41 3.02 62.53 0.34 0.33 2.94 

Calcite CaCO3 2.71 44.79 1.8 1.73 4.09 62.53 0.94 0.94 0.54 

Carnotite K2(UO2)2(VO4)2·3H2O 4.91 44.79 38.9 40.6 4.19 62.53 17.83 17.2 3.53 

Chalcocite Cu2S 5.6 44.79 16.48 17.2 4.19 62.53 6.72 6.49 3.42 

Chalcopyrite CuFeS2 4.2 44.79 9.48 9.58 1.04 62.53 3.95 3.89 1.52 

Chlorite (Mg)5Al2Si3O10(OH)8 3.2 44.79 1.09 1.04 4.44 62.53 0.73 0.72 1.30 

Chromite FeCr2O4 4.79 44.79 7.93 8.03 1.21 62.53 3.42 3.4 0.55 

Corundum Al2O3 4.02 44.79 1.41 1.34 4.96 62.53 0.92 0.91 1.09 

Dolomite CaMg(CO3)2 2.85 44.79 1.39 1.33 4.32 62.53 0.8 0.8 0.00 

Fluorite CaF2 3.13 44.79 2.5 2.41 3.76 62.53 1.23 1.23 0.38 

Gibbsite Al(OH)3 2.34 44.79 0.74 0.7 4.89 62.53 0.52 0.51 2.16 

Goethite FeO(OH) 4.28 44.79 7.34 7.01 4.49 62.53 3.17 3.16 0.22 

Grossular Ca3Al2Si3O12 3.65 44.79 2.22 2.12 4.45 62.53 1.19 1.18 0.77 

Hematite Fe2O3 5.26 44.79 9.89 9.45 4.48 62.53 4.21 4.2 0.16 

Ilmenite FeTiO3 4.76 44.79 7.26 6.95 4.34 62.53 3.17 3.13 1.05 

Kaolinite Al2Si2O5(OH)4 2.6 44.79 0.91 0.87 4.9 62.53 0.6 0.59 1.95 

K-feldspar KAlSi3O8 2.56 44.79 1.22 1.16 4.65 62.53 0.71 0.71 0.00 

Lepidolite KLi2AlSi4O10(OH)2 2.83 44.79 1.21 1.16 4.45 62.53 0.74 0.73 1.35 

Magnetite Fe3O4 5.18 44.79 10.03 9.58 4.48 62.53 4.25 4.25 0.14 

Molybdenite MoS2 5.00 44.79 29.65 30.5 2.79 62.53 12.03 12.5 3.76 

Olivine Fe2SiO4 3.32 44.79 5.2 4.97 4.42 62.53 2.27 2.26 0.44 

Pecoraite Ni3S2O5(OH4) 3.47 44.79 6.65 6.92 3.87 62.53 2.57 2.7 4.81 

Pyrite FeS2 5.01 44.79 8.02 7.81 2.52 62.53 3.48 3.5 0.63 

Pyrope Mg3Al2Si3O12 3.75 44.79 1.34 1.28 4.51 62.53 0.87 0.86 1.30 

Quartz SiO2 2.65 44.79 1.01 0.96 4.95 62.53 0.64 0.63 1.68 

Rynersonite CaTa2O6 6.39 44.79 35.64 36 0.99 62.53 15.13 15.2 0.46 

Safflorite CoAs2 7.47 44.79 32.11 31.1 3.13 62.53 12.91 13.4 3.66 

Siderite FeCO3 3.96 44.79 5.41 5.17 4.47 62.53 2.41 2.404 0.35 

Spessartine Mn3Al2Si3O12 4.29 44.79 4.22 4.33 2.51 62.53 2 1.98 0.94 

Sphalerite ZnS 4.1 44.79 11.68 11.9 1.82 62.53 4.78 4.8 0.42 

Talc Mg3Si4O10(OH)2 2.75 44.79 0.99 0.94 4.85 62.53 0.64 0.64 0.00 

Uvarovite Ca3Cr2Si3O12 3.85 44.79 3.55 3.55 0.15 62.53 1.7 1.69 0.69 

Wolframite FeWO4 7.30 44.79 38.12 38.7 1.5 62.53 16.16 16.3 0.86 

Zircon ZrSiO4 4.71 44.79 20.06 21.1 4.94 62.53 8.26 8.4 1.67 
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Fig. 2.4. Variation of linear attenuation coefficients for different mineral densities calculated with the developed spreadsheet 

and NIST at: A) 44.79keV and B) 62.53keV X-ray energy 

 

3.1. Calculated Linear Attenuation Coefficients  

Table 2.3 lists a wide range of minerals (40 in total) 

with different densities and chemical compositions. 

The 40 minerals were picked to evaluate different 

mineral compositional complexity in terms of both the 

range of elements present in the mineral as well as the 

mineral structure. It includes minerals regarded as ore 

minerals (e.g. chalcopyrite, hematite and sphalerite), 

clay minerals (e.g. kaolinite), carbonates (e.g. calcite 

and dolomite) and end-member varieties of the same 

mineral (e.g. pyrope, almandine, grossular, andradite 

and spessartine garnets). The maximum % error 

difference between the calculated linear attenuation 

coefficients using the spreadsheet and those given by 

the NIST database is 4.96% at 44.79keV and 4.81% at 

62.53keV. At 44.79keV nine minerals have a % error 

less than 2%, whilst at 62.53keV, 22 minerals have a 

% error less than 2% (Table 2.3). The calculated 

mineral linear attenuation coefficients increase with 

increasing density but the trend is not linear and the 

mineral attenuation is lower at 62.53keV as expected 

(Fig. 2.4). Interrogation of the data indicates that it is 

not possible to predict the linear attenuation coefficient 

based on mineral density alone. Comparison of 

sphalerite and corundum for example, shows similar 

densities (4.1 g/cm
3
 and 4.02 g/cm

3
 respectively) but 

large differences in linear attenuation coefficient (11.9 

cm
-1

 and 1.34 cm
-1

 respectively). Because the minerals 

have similar densities, the logical assumption would be 

that these minerals cannot be differentiated using 

XCT, which is not true, based on the difference in their 

linear attenuation coefficients. In contrast, dolomite 

and corundum have similar attenuation coefficients 

(1.33 cm
-1

 and 1.34 cm
-1

 respectively) suggesting they 

cannot be differentiated using XCT, but these two 

minerals have significant differences in density (2.85 

g/cm
3
 and 4.02 g/cm

3
 respectively). In this case, the 

difference in density would suggest these minerals can 

be differentiated using XCT, which is not true, based 

on the linear attenuation coefficient information. The 

above examples illustrate the complexity of trying to 

evaluate whether XCT is useful for different mineral 

pairs, although the likelihood of dolomite and 

corundum naturally occurring in the same rock is low. 

A more likely combination is dolomite and calcite. In 

this case, the density of calcite is 2.71 g/cm
3
 in 

comparison to the 2.85 g/cm
3
 of dolomite and the 

linear attenuation of calcite is 1.73 cm
-1

 in comparison 

to the 1.33 cm
-1

 of dolomite. In this example, it is 

unclear if these differences are large enough to be 

able to differentiate these minerals using XCT. 

Therefore, the second part of the results presented 

here, uses the attenuation spreadsheet to evaluate the 

minimum difference in linear attenuation coefficient 

needed to differentiate two minerals. 

3.2. Minimum Attenuation Coefficient Difference to 

Determine Discrimination 

XCT, SEM-EDS and QEMSCAN analysis was 

undertaken on 31 minerals from Table 2.3 but of these 

only 13 provided data that could be properly 

interrogated for grey level variation (Fig. 2.5 and Table 

2.4). Table 2.5 shows comparison of different mineral 

pairs from these 13 minerals. The pairs are based on 

minerals occurring in the same QEMSCAN polished 

mount so that the grey values are comparable and 

reflect the linear attenuation coefficient (Fig. 2.5). 

Minerals with a linear attenuation coefficient less than 

2cm
-1

 did not require the utilisation of any filters to 

optimize grey value variation. This is demonstrated by 

quartz, kaolinite, dolomite and calcite (Fig.2.5 d,e,f,g) 

respectively. However, minerals with a linear 

attenuation coefficient more than 3cm
-1

 required  
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Table 2.4.  

Grey value variation of different minerals with their corresponding density [https://www.mindat.org/] and linear attenuation 

coefficients. 

Mineral Chemical formula Density g/cm
3
 

Attenuation 
coefficient cm

-1
 

Mean Grey value 

Almandine Fe3Al2Si3O12 4.32 4.36 28084.49 

Andradite Ca3Fe
3+

2Si3O12 3.86 3.74 34569.42 

Grossular Ca3Al2Si3O12 3.65 2.05 22971.93 

Quartz SiO2 2.65 0.93 10540.60 

Kaolinite Al2Si2O5(OH)4 2.60 0.85 11014.87 

Dolomite CaMg(CO3)2 2.85 1.29 15047.84 

Calcite CaCO3 2.71 1.66 18285.01 

Fluorite CaF2 3.13 2.31 23955.95 

Apatite Ca5(PO4)3OH 3.15 2.15 21737.91 

Goethite FeO(OH) 4.28 6.70 36097.60 

Chromite FeCr2O4 4.79 7.70 38856.87 

Magnetite Fe3O4 5.18 9.15 54895.83 

Hematite Fe2O3 5.26 9.02 57344.77 

 

application of a filter in order to optimise X-ray 

penetration and minimise beam hardening. In the case 

of magnetite and hematite (Fig. 2.5 l,m), the highest 

density minerals examined, a combination of filter 

materials and high beam hardening correction factor 

was used to minimise the impact of beam hardening.  

Evaluating the required linear attenuation coefficient 

difference to determine discrimination between 

minerals is not trivial. This is due to grey value overlap 

between minerals which cannot be avoided in most 

cases, when using XCT. Partly this is because most 

naturally occurring minerals have inclusions of other 

minerals in them to some extent. This is well 

demonstrated by the quartz and kaolinite samples 

used here. The calculated linear attenuation coefficient 

difference between these minerals is 9.42%. However, 

the measured grey value difference between these two 

minerals was determined to be 4.31%, resulting in only 

partial discrimination (Fig. 2.5 d,e.). The grey value 

overlap is due to the presence of small inclusions of 

quartz and k-feldspar in the kaolinite (Fig. 2.6). A 

similar situation exists between goethite and chromite 

(Fig. 2.5 j,k) where the linear attenuation coefficient 

difference is higher (12.99%) but the grey value 

difference is lower (7.1%), resulting in only partial 

discrimination of the two minerals. In this case, the 

grey value overlap is due to different Fe-

concentrations within the goethite matrix. In some 

cases, the presence of mineral inclusion does not 

affect the mineral discrimination but still affects the 

mean grey value that is supposed to represent the true 

linear attenuation coefficient. This is a case with 

almandine, which has a higher linear attenuation 

coefficient than andradite, but has a lower mean grey 

value (Table 2.4 and Figure 2.6) due to the presence 

of uniformly distributed pyrope and minor grossular as 

inclusions. Despite the presence of these mineral 

inclusions in almandine, almandine 

 

Fig. 2.5. Grey value variation of different minerals with 

their corresponding false colour to illustrate discrimination 

between minerals at 45.5keV effective energy: A) 
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almandine, B) andradite, C) grossular, D) quartz, E) 

kaolinite, F) dolomite, G) calcite, H) apatite, I) fluorite, J) 

goethite, K) chromite, L) magnetite and M) hematite. 

Table 2.5.  

Mineral discrimination using linear attenuation coefficient difference in conjunction with grey value and density difference. BH 

= beam hardening 

Mineral comparison 
Filter material/BH 
correction factor 

% Grey value 
difference 

% Attenuation 
coefficient 
difference 

% Density 
difference 

Discrimination 

Almandine vs Andradite 

0.25mm Cu/2 

18.76 14.22 10.65 yes 

Almandine vs Grossular 18.20 52.98 15.51 yes 

Grossular vs Andradite 33.55 45.19 5.44 yes 

Quartz vs Kaolinite 

No Filter/2 

4.31 9.42 1.89 Partial 

Quartz vs Dolomite 29.95 27.60 7.02 yes 

Quartz vs Calcite 42.35 43.73 2.21 yes 

Kaolinite vs Dolomite 26.80 34.42 8.77 yes 

Kaolinite vs Calcite 39.76 49.04 4.06 yes 

Dolomite vs Calcite 17.70 22.29 4.91 yes 

Fluorite vs Apatite 0.25mm Cu/1 9.26 6.06 0.63 Yes 

Goethite vs Chromite 0.25mm Cu/2 7.10 12.99 10.65 Partial 

Goethite vs Magnetite 

1mm Cu + 1mm 
Al/3 

34.24 26.78 17.37 yes 

Goethite vs Hematite 37.05 25.72 18.63 yes 

Chromite vs Magnetite 29.22 15.85 7.53 yes 

Chromite vs Hematite 32.24 14.63 8.94 yes 

Magnetite vs Hematite 4.27 1.42 1.52 no 

 

was clearly discriminated from andradite with a grey 

value difference of 18.76% and a linear attenuation 

coefficient difference of 14.22% (Table 2.5 and Figure 

2.5). Similarly, apatite and fluorite (Fig. 2.5 h,i) are 

completely discriminated from one another in terms of 

their grey value levels (9.26%) but have a lower linear 

attenuation coefficient difference (6.06%). This is 

attributed to the fact that there are no inclusions within 

the minerals. This shows that a minimum linear 

attenuation coefficient difference of 6% is enough to 

discriminate between minerals. Minerals with linear 

attenuation coefficient difference less than this may be 

difficult to discriminate. Hematite and magnetite have a 

linear attenuation coefficient difference of 1.42% with a 

density difference of 1.54%, resulting in a grey value 

difference of 4.27%. Therefore, hematite and 

magnetite cannot be discriminated from each other 

according to Fig. 2.5. Thus, it would seem that 

minerals with a linear attenuation coefficient difference 

of less than ~4.3% cannot be differentiated using XCT, 

whereas minerals with a linear attenuation coefficient 

difference above ~6% can be differentiated. However, 

this assumes that the minerals are pure and free of 

inclusions. If the minerals are not compositionally pure 

then the presences of inclusions complicate 

discrimination as in the case of the quartz and kaolinite 

samples used here. 

4. Discussion 

The linear attenuation coefficient database 

developed above is a practical, user friendly tool for 

calculating linear attenuation coefficients. It is also very 

flexible in that it allows the user to calculate 

attenuation coefficients at any effective X-ray energy 

between 41.7keV and 74.6 keV and this can be done 

offline. Comparison of the spreadsheet database with 

that of the NIST online calculation tool indicates that 

the difference between the two is less than 5%. The 

spreadsheet highlights the importance of knowing the 

exact mineral composition (in terms of specific cation 

and anion numbers) and density in order to predict 

which minerals can be discriminated and which can’t. 

In the following discussion, several examples of where 

this spreadsheet can be used to better set up XCT 

experiments are demonstrated.  

4.1. Mineral Composition and Linear Attenuation Coefficient 

For minerals with no solid solution, such as quartz, 

the calculation of the linear attenuation coefficient is 

straight forward as the chemical formula is fixed. In the 
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case of quartz, which is SiO2, the linear attenuation 

coefficient is 0.93 cm−1 at 45.5keV. However, for 

minerals with solid solution 

 

Table 2.6.  

Summary of common minerals in iron ores, alongside their formulae and density https://www.mindat.org/. 

Iron mineral Formula 
Density 

g/cm
3
 

 Gangue 

mineral 
Formula 

Density 

g/cm
3
 

Hematite Fe2O3 5.26  Quartz SiO2 2.65 

Magnetite Fe3O4 5.18  Kaolinite Al2Si2O5(OH)4 2.60 

Goethite FeO(OH) 4.28  Fluorite CaF2 3.13 

Siderite FeCO3 3.96  Barite BaSO4 4.48 

Chlorite (Mg)5Al2Si3O10(OH)8 3.20  Apatite Ca5(PO4)3OH 3.19 

Pyrite FeS2 5.01  Gibbsite Al(OH)3 2.34 

Ilmenite FeTiO3 4.76  Ankerite CaFe(CO3)2 3.20 

 

substitution, it is necessary to know the exact 

composition of the mineral in the sample being 

analyzed. Garnet which is a common mineral in a 

variety of rocks elegantly illustrates this. The generic 

formula for garnet is X3Y2(SiO4)3 with X representing 

Mg, Fe, Mn or Ca and Y representing Al or Cr (Deer et 

al., 1992). The example shown in Table 2.1 is of a 

pyrope garnet, with the composition Mg3Al2Si3O12 and 

density 3.75 g/cm
3
 and has the linear attenuation 

coefficient of 1.25 cm
−1

 at 45.5keV effective energy. 

This is distinct from garnet with different compositions 

such as almandine Fe3Al2Si3O12 (4.32 g/cm
3
, 4.36 

cm
−1

), spessartine Mn3Al2Si3O12 (4.29 g/cm
3
, 4.16 

cm
−1

), andradite Ca3Fe
3+

2Si3O12 (3.86 g/cm
3
, 3.74 

cm
−1

), uvarovite Ca3Cr2Si3O12 (3.85 g/cm
3
, 3.41 cm

−1
), 

and grossular Ca3Al2Si3O12 (3.65 g/cm
3
, 2.05cm

−1
) 

calculated at the same X-ray energy. The difference in 

the linear attenuation coefficients is a result of 

differences in the densities and chemical compositions 

of these minerals even though the structural formula 

remains constant and the physical properties of all the 

garnet varieties remains very similar. As a 

consequence of the differences in linear attenuation 

coefficient, these minerals will appear differently on a 

2D image slice except for almandine and spessartine 

due to a lower attenuation coefficient difference of 

4.6%.  

The example given above assumes that garnet exists 

as one of the end-member compositions, but this is not 

usually the case, with garnet exhibiting solid solution 

substitution within both the X and Y cation sites. What 

this means in practice is that garnet in any given rock 

will have a linear attenuation coefficient of between 

4.36 cm
−1

 and 1.25 cm
−1

 at 45.5keV depending in its 

exact composition. For example, a garnet that is 

dominantly Fe-rich but also containing appreciable 

amounts of Mg as well as minor amounts of Mn and 

Ca in the cation proportions 

Fe2.1Mg0.7Mn0.15Ca0.05Al2Si3O12 would have an 

approximate composite density of 4.16 g/cm
3
 and a 

linear attenuation coefficient of 3.60 cm
-1

 at 45.5 keV. 

This is significantly different from the linear attenuation 

coefficient values for either end-member almandine or 

pyrope. Assuming a linear attenuation coefficient of 

either of these end-members 
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Fig. 2.6. Mineral classification using QEMSCAN in 

order to understand the discrimination between the 

minerals: A) almandine, B) andradite, C) grossular, D) 

quartz, E) Kaolinite, F) dolomite, G) calcite, H) apatite, 

I) fluorite, J) goethite, K) chromite, L) magnetite and M) 

hematite. 

would result in significant error associated with the 

differentiation of this garnet composition from other 

minerals with linear attenuation coefficients in this 

range at 45.5keV. Similarly, using the density of one 

garnet composition, when in fact a different 

composition is present, will also result in the 

calculation of an incorrect linear attenuation coefficient. 

4.2. Mineral Density and Attenuation 

The linear attenuation coefficient spreadsheet can 

also be used to illustrate the importance of upfront 

mineral density and compositional information when 

differentiating minerals using XCT. To evaluate this 

issue, iron ore is considered where iron ore 

mineralisation involves both iron ore minerals 

themselves (hematite, magnetite and goethite) as well 

as commonly associated gangue minerals may be 

present (quartz, kaolinite, gibbsite, chlorite, siderite, 

ankerite, fluorite, barite and apatite). The theoretically 

calculated linear attenuation coefficients for these 

minerals (Table 2.6) were compared in order to 

evaluate the impact of different densities on the 

attenuation coefficient. This is well illustrated by barite 

(BaSO4), which has a lower density (4.48 g/cm
3
) than 

hematite and magnetite (5.26 and 5.18 g/cm
3
). These 

minerals have a minimum density difference 14.83% 

which suggest that barite should appear darker or with 

lower grey values than hematite and magnetite. But 

this is not the case because barite has a higher linear 

attenuation coefficient of 46.1 cm
-1

 at 45.5keV effective 

X-ray energy which would make it to appear brighter. 

In contrast, magnetite has a linear attenuation 

coefficient of 9.15 cm
-1

 while hematite is 9.02 cm
-1

. The 

linear attenuation coefficients of hematite and 

magnetite are similar because their densities and 

chemical composition are similar, Table 2.6. In addition 

to this the majority of the minerals with a density 

difference < 5% presented in Table 2.5 were partially 

and full distinguishable from each other except for 

hematite and magnetite. This further emphasizes the 

need to use linear attenuation coefficient information to 

predict if minerals can be discriminated or not as 

compared to using the density information alone. 

4.3. Influence of Mineral Composition vs Density on 

Attenuation Coefficient 

Linear attenuation coefficients are much more 

strongly impacted by mineral composition than they 

are by density. This would suggest that it is much more 

important to obtain an accurate composition in order to 

optimize the discrimination between the minerals than 

it is to obtain an accurate density. This is illustrated 

using the example of olivine, which has a general 

structural formula of (Mg,Fe)2SiO4, and an average 

density of 3.3g/cm
3
. Olivine of this composition and 

density, has a linear attenuation coefficient of 4.20 cm
-

1
 at an arbitrary effective energy of 41.7keV, which is 

distinct from olivine of composition Mg1.6Fe0.4SiO4 with 

an attenuation coefficient of 2.6 cm
-1

 at the same 

energy and density. Swapping the ratio of magnesium 

and iron (ie. Mg0.4Fe1.6SiO4) results in an attenuation 

coefficient of 5.49 cm
-1

, yielding a attenuation 

coefficient difference of 52.64% from the 

Mg1.6Fe0.4SiO4 composition when the same density is 

used for the calculations. When the same scenario is 

considered for Mg0.4Fe1.6SiO4 with a density reduction 

of 52.64% to 1.74g/cm
-3

 from its average density of 

3.3g/cm
3
, its attenuation coefficient is 2.9 cm

-1
 which is 

35.41% less than when the density is 3.3g/cm
3
. This 

means that a 52.64% reduction in density only resulted 

in a 32.42% reduction in attenuation coefficient for the 

same composition. Similarly, andradite and uvarovite 

garnets have almost identical densities (3.86 vs 3.85 

g/cm
-1

) but linear attenuation coefficients of 4.88 and 

4.31 cm
-1

 with a percentage attenuation coefficient 

difference of 11.68% at 41.7keV. Using density 

information alone would suggest that these two 

minerals cannot be discriminated even though their 
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linear attenuation coefficients suggest that they can 

be. Thus, a change in composition has more effect on 

the attenuation coefficient than a change in density 

and hence knowing the exact composition of the 

minerals to be interrogated with XCT is critical to 

evaluate whether XCT is an appropriate tool to use.  

5. Conclusions 

Theoretically calculated linear attenuation 

coefficients form an important basis for planning XCT 

scans with optimal image contrast. These attenuation 

coefficients can be utilised to optimise the X-ray 

scanning energy to discriminate minerals according to 

exact mineral compositions as well as density for 

proper quantification. The data bank presented here is 

designed not only to be user friendly and compare 

attenuation coefficient information of two different 

minerals at the same time but also to be easily 

available. The discrimination between minerals with an 

attenuation coefficient difference of less than 6% will 

be challenging. This will depend on the complexity of 

the minerals especially if they have inclusions as 

observed between quartz and kaolinite with grey 

values difference of 4.31% even though their 

attenuation coefficient difference is > 9%. Optimal 

discrimination using attenuation coefficients depends 

more on the composition but also on scanning 

parameters including appropriate filter material being. 

Different minerals respond differently on the type of 

filter material being used, especially those with a 

density greater than 3 g/cm
3
. Minerals with a density 

less than 3 g/cm3 might not require any application of 

filter materials in order to optimize discrimination. 

However, this will depend on the sample size and 

complexity of the sample being scanned (mineral 

inclusion). This means that minerals of interest should 

be well defined and understood prior to scanning so 

that the limitations associated with discriminating 

minerals using linear attenuation coefficients can be 

evaluated before XCT scanning. This will allow 

effective utilization or application of the XCT technique 

to the geological samples. Most importantly 

understanding the limitations of XCT will lead to further 

refinements of the XCT technique that may in the 

future overcome these limitations. 
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X-Ray Computed Tomography – 
Determination of Rapid Scanning 
Parameters for Geometallurgical 
Analysis of Iron Ore 
L C Bam1,2, J A Miller3, M Becker4, F C De Beer5 and I Basson6,7 

ABSTRACT 

Geometallurgy brings together geologists, mine planners and process engineers to extract 
meaningful mineralogical and textural information from an ore body, with a view to predicting its 
metallurgical response. Preferably, automated analytical techniques, which provide 
mineralogical and textural information should process a large number of samples quickly, 
relatively inexpensively and reliably. Micro-focus X-ray Computed Tomography (µXCT) is 

capable of producing 3D volumetric information on texture and mineralogy that satisfies some of 
these criteria.  µXCT has been used extensively to study the porosity and internal pore structure 

of iron ore pellets as part of downstream processing.  It has not been widely applied to earlier 
mineralogical and textural analysis of unprocessed ore, due to the limited ability of X-rays to 
penetrate high density samples. In this contribution, we propose scanning methods to overcome 
this limitation, thereby facilitating a broader application of µXCT to iron ore resource 

management. 

 

INTRODUCTION 

In the past, iron ore mines have typically exploited high-
grade ores, which are characterized as having on the 
order of 60-67 wt% Fe (Beukes, Gutzmer and 
Mukhopadhyay, 2002). Because of this high grade, the 
ore usually requires minimal upfront processing before it 
is sent for further processing and smelting. Typical 
contaminants of ore, which cause downstream 
complications and penalties, thereby requiring further 
processing, include Al2O3 >5 wt. %, SiO2 >10 wt. %  
(Rao et al, 2009; Nayak, 2014), clay minerals, Mn, P and 
base metals (Vatandoost et al, 2013). In contrast, new 
discoveries of iron ore and expansion of existing iron ore 
mines focus increasingly on higher tonnage (Aasly and 
Ellefmo, 2014) but poorer-quality ores, which are 
typically <60 wt per cent Fe, although in some cases 
extending to <40% wt% Fe (Das et al, 2007). In these 
instances, bulk quality criteria need to be met and 
mineralogical and textural variability of ore needs to be 
characterized to enable full exploitation of the deposit.  
These parameters are determined  

 

by geometallurgical models, which require geologists, 
mine planners and process engineers to extract 
meaningful mineralogical and textural information (Lund, 
2013) in order to represent the full variability of the ore 
body and to predict its metallurgical response 
(Newcombe, 2011). Such models tend to be ore deposit-
dependent or -specific (Newcombe, 2011; Lund, 2013; 
Williams, 2013). 

The complex and often variable mineralogical 
characteristics of low-grade ore make it difficult to 
accurately predict its true processing behavior.  This is 
due to textural variability (e.g. hard, microcrystalline, 
massive, laminated, conglomeratic) as well as gangue 
minerals and elements (e.g. Al2O3, SiO2, Mn, clays, 
base metals). Hapugoda et al, (2011) emphasize mineral 
characterization to better understand the relationship 
between minerals of interest and gangue minerals and 
the way this determines grind size for liberation and 
beneficiation process performance.  Ores with similar Fe 
grades may show variable processing behavior and 
product quality, due to differences in gangue texture and 
mineralogy (Vatandoost et al, 2013; Sinha et  
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al, 2015). As such, it is critical that information 
concerning these often subtle mineralogical and textual 
changes is incorporated into the geometallurgical block 
model, which represents the 3D spatial variability of 
these parameters. 

Characterization of ore texture and mineralogy relies 
on a suite of analytical techniques to provide robust, 
reliable and accurate information. Common techniques 
include scanning electron microscopy (SEM), auto-SEM-
EDS techniques (MLA, QEMSCAN, TIMA), optical 
microscopy and hyperspectral imaging (Hapugoda et al, 
2011; Murphy and Monteiro, 2013; Lund, 2013; Jeong 
and Nousiainen, 2014; Donskoi et al, 2016). Each of 
these techniques have ‘fit for purpose’ applications in ore 
characterization across the minerals beneficiation 
flowsheet depending on the sample size, particle size, 
mineralogy, turnaround time and other necessary 
information required to inform associated decisions 
(Hapugoda et al, 2011). However, all of the above 
mentioned techniques provide measurements in 2D and 
do not capture the full mineralogical and textural 
variability of the ore in 3D.  For successful 
geometallurgical models, mineralogical and textural 
measurements must characterize the variability of a large 
number of samples quickly, relatively inexpensively, 
reliably, preferably automatically and with minimal 
sample preparation. Crucially these measurements also 
need to be linked to beneficiation response so that the 
geometallurgical block model provides information on 
feed grade, ore hardness, recovery, product quality and 
throughput (Lund, 2013). In recent years, 3D micro-focus 
X-ray computed tomography (µXCT) has been 

continuously developing as a technology for a wide 
range of applications. As such there has been a 
concerted effort in the geosciences and minerals 
engineering fields to understand the benefits that can be 
achieved using this technology (Ketcham and Carlson, 
2001; Cnudde and Boone, 2013; Hamdani, 2015; Kyle 
and Ketcham, 2015). One such opportunity is the 
application of µXCT the geometallurgical characterization 

of iron ore.  

The capability of µXCT to produce 3D volumetric 

information on texture and mineralogy establishes it as a 
potential technique for the logging of drill core, analogous 
to its application in forestry. Here, routine on-line 
scanning of logs determines density and moisture 
content, as these parameters are used to optimize the 
drying process (Wei, Leblon and Racque, 2011). The 
technique has also been used extensively to study 
porosity and internal pore structures of iron ore pellets as 
part of downstream processing (Forsberg and 
Hjortsberg, 2012; Khozyainov and Yakushina, 2012; 
Hjortsberg et al, 2013; Yang et al, 2014). However, µXCT 

has not been widely applied to upstream mineralogical 
and textural analysis of original or unprocessed iron ore 
due to limitations in the ability of the X-rays to penetrate 
high-density samples. In addition, mineralogical 
characterization is not as straightforward as that applied 
in automated SEM-EDS techniques, due to the complex 
nature of the X-ray beam and its sample interaction. 
Therefore, a more detailed understanding of original 
sample is required. Comparison of µXCT image slices 

with auto-SEM-EDS techniques is one means which this 
can be acquired to develop a working knowledge of the 

ore mineralogy and characteristics (Cnudde and Boone, 
2013; Nwaila et al, 2013).  

In this contribution we outline scanning methods to 
overcome some of these limitations and consequently to 
facilitate the broader application of µXCT as a 

geometallurgical tool.  Different µXCT parameters (X-ray 

energy, exposure time and number of projections) were 
applied to evaluate image quality. This contribution aims 
to:  

 identify problems associated with scanning high 
density samples; 

 present a procedure to select suitable scanning 
parameters 

 suggests optimal image contrasts for selected 
scanning parameters.  

A complimentary paper by Becker et al, (2016) 
discusses the potential for XCT as a geometallurgical 
tool for the analysis of drill core, and proposes an 
approach for quantification of ore texture in 3D.  

MICRO-FOCUS X-RAY COMPUTED 

TOMOGRAPHY 

Micro-focus X-ray computed tomography (µXCT) or X-
ray computed tomography (XCT) is a non-destructive 
technique that uses an X-ray beam to probe objects or 
samples in order to visualize the 3D internal structures 
(Momose and Hirano, 1999; Mees et al, 2003; Davis and 
Elliott, 2006; Malcolm and Liu, 2011; Tanaka, Nakano 
and Ikehara, 2011). The principle of XCT is shown in 
Figure 3.1. Essentially an XCT system consists of an X-
Ray source, a sample stage and a flat panel detector. 
The sample is placed between the source and the 
detector (Lin and Miller, 2002), and the sample rotates 
whilst the X-ray source and the detector remain 
stationary (Cnudde and Boone, 2013). A series of 
radiographs are obtained during 360o of rotation. This 
set-up provides stability which is particularly important for 
high resolution scans, although the quality of output 
radiographs depends on the set-up of scanning 
parameters. Radiographs are then reconstructed to form 
a virtual 3D volume. 

 

FIG 3.1 – Components and the principle of X-ray computed 
tomography. 
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Scanning Parameters 

The quality of the reconstructed volume depends 
principally on the resolution (voxel size) and image 
contrast. The resolution is dependent on sample size 
(Jerram and Higgins, 2007), detector pixel size and X-ray 
focal spot. The latter two are fixed by the system being 
used and cannot be modified whilst the sample size can 
sometimes be reduced to improve resolution. However, 
the image contrast varies significantly depending on 
different scanning parameters. Important scanning 
parameters are X-Ray energy, exposure time, beam 
current, and number of projections. Different 
combinations of these parameters provide different 
image contrasts and determine the quality of the 
information obtained and acquisition time, however, 
optimal data acquisition requires proper selection of 
scanning parameters. Due to recent developments in the 
capability of XCT, such as increased resolution, high X-
Ray beam intensity, energy and decreased scan time, it 
has also become possible to investigate time-dependent 
or dynamic processes such as fluid flow that require real-
time tomography (Panahi et al, 2012; Myers et al, 2014). 

X-ray Source and Energy 

The most important parameter of the X-ray source is the 
focal spot size which determines the maximum energy 
and beam of the X-Ray beam (Paulus et al, 2000). The 
X-Ray beam interacts with the sample and is scattered 
and absorbed by the sample resulting in an attenuated 
beam that is collected by the detector. The three main 
processes responsible for attenuation are:  

1. photoelectric absorption 

2. Compton scattering 

3. pair production.  

The photoelectric effect is dominant, for 
geological/mineralogical samples, at low X-ray energies 
(50 – 100keV). At higher energies (5 – 10MeV) Compton 
scattering is dominant and beyond this range, pair 
production attenuation prevails. Unless high X-ray 
energy sources are used, only photoelectric effects and 
Compton scattering processes need to be considered 
(Ketcham and Carlson, 2001). High energy X-rays are 
much more effective than lower energy ones but are not 

ideal to obtain high image contrast. To achieve good 
image contrast a lower X-Ray energy is often used 
together with high current to optimize image quality and 
signal to noise ratio. High current provides high X-ray 
beam intensity, which is required to improve the 
underlying counting statistics. In turn, higher intensities 
require larger focal spots or longer exposure time 
(Ketcham and Carlson, 2001).  

Common laboratory X-ray source produces a 
polychromatic and continuous spectrums (Baker et al, 
2012) with a wide range of energies (Figure 3.2). Due to 
the nature of the X-ray spectrum, quantitative 
measurements become complicated through the creation 
of artefacts in XCT images due to stronger attenuation of 
X-rays with lower energies (Panahi et al, 2012). In 
addition, because of the complex nature of the spectrum, 
the attenuation coefficients of minerals are not easily 
obtained. To effectively predict the attenuation 
coefficients of minerals, the effective energy of the 
spectrum is calculated using the weighted average 
method. The correlation of the X-ray energy spectrum 
with its effective energy is shown in Figure 3.3. The 
weighted average method considers the percentage 
contribution of each X-ray energy bin of the spectrum 
relative to the counts. This allows for the improvement of 
X-ray energy selection to maximize sample contrast and 
penetration. Prior knowledge on the sample composition 
and mineralogy is imperative to predict the X-ray energy 
required for scanning, for a given sample. This allows 
contrast enhancement by using theoretical attenuation 
coefficients to select the energy that clearly discriminates 
the minerals within the sample.  

Reconstruction 

Reconstruction software currently provides a pre-
reconstruction transformation of radiographs. This allows 
the optimization of contrast and minimization of noise by 
applying digital filters available within the software. To 
perform a reconstruction of a specimen, the specimen 
should be within the field of view during full rotation 
(3600). For optimized and reconstructed quality images, 
several common types of artefacts, which are inherent to 
the XCT technique, needs to be minimized.  
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FIG 3.2 – Tungsten X-ray energy beam spectrums measured at different energies of 60, 80, 100, 120, 140, 160 and 180keV. 

 

FIG 3.3 – Correlation between X-ray energy spectrums to their effective X-ray energy. 
 

This includes optimizing acquisition conditions and 
during reconstruction, further reduction of artefacts, such 
as:  

 misalignment artefact due to sample movement, 
misaligned X-ray source, axis of rotation and 
misaligned detector 

 ring artefacts due to unresponsive or dead pixels of 
the detector as depicted on Figure 3.4 

 line artefacts during reconstruction which are due to 
minimum number of projections. 

The most important artefact in XCT images is beam 
hardening, particularly when scanning very dense 
specimens (Figure 3.4). Beam hardening refers to the 
preferential attenuation of low-energy X-rays when a 
polychromatic X-ray beam passes through an object 
(Tsuchiyama et al, 2005; Wildenschild et al, 2002; 
Malcolm and Liu, 2011). There are several ways to 
reduce beam hardening effect: 

 use of a high energy X-ray beam 

 utilization of filter materials which hardens the X-ray 
beam 
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 utilization of a beam hardening correction factor 
which is normally incorporated within many 
reconstruction software packages (Mees et al, 2003).  

Beam hardening artefacts, which prevent quantitative 
measurement due to poor contrast between two 
materials of different densities, appear mainly as bright 
sample borders in the reconstructed slices as depicted in 
Figure 3.4 (Baker et al, 2012).  

Signal to noise ratio 

To quantify image quality in tomography, common 
measures like signal-to-noise (SNR) ratio and contrast 
are normally used (Dalehaug, 2013; Kraemer, 
Kovacheva and Lanza, 2015). Noise is one of the main 
factors that decreases image quality (Kong, 2008; 
Olubamiji, 2011). Noise usually comes from X-ray photon 
fluctuation and also from the digital hardware 
characteristics such as reading out noise (Boas and 
Fleischmann, 2012). The ultimate source of noise is the 
random, statistical noise arising from the detection of a 
finite number of X-ray quanta in the projection 
measurements (Hanson, 1981). The final image quality 
of a reconstructed image slice is influenced by all 
tomographic processes (hardware, scanning parameters, 
reconstruction and filtering). To minimize noise, the 
combination of the current with the voltage should meet 
the proposed standards for penetration, which is 
between 10 and 20 per cent to reach optimal SNR 
(Kraemer, Kovacheva and Lanza, 2015). The SNR, 
effectively a measure of the detectability of an object 
within a noisy image, describes the ratio between the 
signal (mean grey value) and the noise (standard 
deviation of the mean) (Schmidt, 2009) within the region 
of interest (ROI) (Kraemer, Kovacheva and Lanza, 2015; 
Kong, 2008).  

 

 
FIG 3.4 – Ring and beam hardening artefacts on an XCT 
image slice. 

 

MATERIALS AND METHODS 

Sample Selection and Characterization 

The iron ore sample used in this study is a banded iron 
ore formation containing 45 wt% Fe2O3. The mineralogy 
of the sample was initially characterized using an FEI 
QEMSCAN 650F at the University of Cape Town on 
coarse iron ore particles ~ 30 mm in size to characterize 
unbroken ore textures (field images). Figure 3.5 shows 
an example of a false colour image of a 2D section 
analyzed by QEMSCAN. The mineralogy is relatively 
simple with hematite and quartz in equal proportions 
(other minor phases detected in the QEMSCAN 
characterization of various ore particles included mica, 
feldspar, apatite and chlorite). Although the bulk 
mineralogy is simple, the sample is texturally 
heterogeneous principally in the variable distribution and 
form of hematite. This makes scanning rather difficult 
because hematite has a high average density which 
hinders X-ray penetration through the sample along the 
thicker regions of hematite. The iron ore sample was a 
half cylinder (6 x 13 cm) and to minimize problems due to 
high density and thickness the sample was cut into two 
quarter samples. The quarter sample design allows more 
penetration of X-rays through the sample as it rotates 
during the acquisition of radiographs, especially along 
the thinner part of the sample.  

Experimental Approach 

A series of experiments were developed to determine the 
optimal scanning conditions for maximum contrast and 
signal to noise ratio when scanning high density iron 
ores. Scans were conducted using a NIKON XTH 225 ST 
system based at NECSA (South Africa Nuclear Energy 
Corporation) in the MIXRAD (Micro-focus X-ray 
Radiography/Tomography) facility (Hoffman and Beer, 
2012). This system is a high resolution system consisting 
of a tungsten target with a 3.7 µm spot size with the 

ability to scan between 0 and 220 keV. The maximum 
resolution achievable at the detector is 200 µm which is 
equal to the detector pixel size. For the optimization of 
the scanning parameters the experiments were designed 
in two phases. 

Phase One 

Phase one involved determining the optimal X-ray 
energy to scan the iron ore quarter core, to optimize 
exposure time and number of projections in phase two. 
The sample was subjected to different X-ray energies (60 
to 180 keV) with an increment of 20 keV to determine the 
required minimum or maximum X-ray energy. The 
selected X-ray energy was paired with a current high 
enough to give 10 per cent X-ray penetration. To 
minimize experimental error the sample was not moved 
from the X-ray system for the duration of scanning. A 
similar grey value range was used to calculate the 10 per 
cent X-ray penetration to minimize analysis error. The 
selected exposure time for this phase was kept constant 
at 0.354 sec and this is the minimum exposure time that 
produces the minimum image contrast required for the 
reconstruction. The number of projections were 
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determined using the Nyquist sampling theorem (Lange 
and Hentschel, 2007). This was performed by measuring 
the number of pixels on a radiograph covering the 
longest x-axis of the sample and multiplying with π/2. 
The resulting number of 773 is the minimum number of 
projections to represent information at a 68 µm scanning 
resolution. This also means that information at 68 µm 

resolution would not be quantifiable by using fewer 
projections than are suggested by the theorem unless all 
particles/grains within the sample are >68 µm. The 

number of projections are also resolution dependent due 
to the sample size. To minimize noise and artefacts the 
number of projections was increased by a third to 1030 

and all scans were conducted with this number of 
projections to determine optimal X-ray energy.  

Phase Two 

Phase two was used to determine the optimal exposure 
time and number of projections using the optimal X-Ray 
energy determined in phase one. The exposure time was 
varied between 0.354 and 4 sec to determine the 
required exposure time for optimal contrast and SNR 
ratio. The number of projections were varied between 
258 and 1030, in order to evaluate the required number 
of projections that produce a reconstructed image slice  

 

FIG 3.5 – (a) QEMSCAN false colour image and (b) backscattered electron (BSE) image illustrating the heterogenous iron ore 
texture. The darker and lighter grey values on the BSE image represent quartz and hematite respectively. 
with the least noise. The number of projections less than 
773 (which is also referred to as undersampling) were 
used to determine the effect of a larger angle of rotation 
to image contrast. Due to the longer time required to 
conduct these scans, 1030 was used as a maximum 
number of projections. This also allowed enough time in 
between the scans to remove the afterglow effect on the 
detector due to excessive use of the detector. During 
radiograph acquisition using different parameters, the 
sample was not removed from the sample stage to allow 
direct measurements of contrast and SNR at the same 
position on the image slice. 

Image Reconstruction 

The acquired radiographs were reconstructed using the 
CT Pro 3D reconstruction software. This applies a 
mathematical back-projection procedure to transform 2D 
radiographs into a virtual 3D volumetric data 
(Tsuchiyama et al, 2005). The reconstruction software 
provides an open window to assess the automatic 
reconstruction process. The window displays a slice at a 
specific position of the sample and this slice can be 
changed by the user to assess the default reconstruction 
value on other slices. All scans were reconstructed at the 
same slice position and using the automated 
reconstruction option to minimize human error. The 
reconstruction was performed in two ways: (a) 
reconstruction without beam hardening correction and (b) 
reconstruction with beam hardening correction. The 

sample was cropped to minimize image and volume size, 
whilst the same axes dimensions were applied to all the 
scans to obtain the same image and volume size. 

Volume Analysis 

The reconstructed data was analyzed using VGStudio 
rendering software version 2.2, which allows rendering of 
the sample in 3D. Upon loading of the volume data, a 
calibration method was used to maintain a similar grey 
value range for all the samples. This required defining 
the sample background and the grey value of the mineral 
of interest in 2D. Image slices appear in three views:  

1. top view 

2. right view 

3. front view. 

Only top view image slices were saved and used for 
further image analysis in the open-source software 
imageJ. To minimize false image contrasts, no contrast 
enhancement was performed on the image histogram. 
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RESULTS 

X-ray Attenuation  

Figure 3.6 shows a plot of the linear attenuation 
coefficient of hematite and quartz as a function of X-ray 
effective energy. The hematite attenuation coefficient 
decreases as the X-ray energy is increased. However, 
there is little change in the attenuation coefficient of 
quartz as the X-ray energy is increased. Attenuation 
coefficients were calculated using an in-house 

spreadsheet, compiled from information on the NIST 
website 
(http://physics.nist.gov/PhysRefData/XrayMassCoef/tab3
.html).  The spreadsheet requires inputs of X-ray energy, 
density of a compound and number of elements within 
the compound.  The output is an attenuation coefficient 
of the selected mineral or compound.  From the 
attenuation coefficient plot, it is evident that theoretical 
discrimination between hematite and quartz is 
pronounced.  In practice, the required X-ray energy for 
scanning depends on sample thickness and geometry as 
well as the distribution of dense minerals.  

 

 

FIG 3.6 – Attenuation coefficient for hematite and quartz as a function of effective energy. 

X-ray Penetration and Contrast  

There is no contrast and no quantification without X-ray 
penetration. Different X-ray energies were varied from 60 
to 180 keV and are demonstrated in Figure 3.7. Visual 
image contrast improvement is observable between 60 
the 80keV image slices; beyond the 80keV, visual 
inspection to determine optimal contrast is limited. A 
subjective visual assessment by the user is not a reliable 
means to judge the image quality correctly (Kraemer, 
Kovacheva and Lanza, 2015) and a more quantified 
approach is necessary. From Figure 3.8, it is clear that 
poor image contrast is associated with low X-ray energy, 
whilst an increase in X-ray energy improves image 
quality for a specific X-ray energy range. Hematite and 

quartz contrast were calculated based on the yellow 
boxes drawn on Figure 3.7 on the 100 and 120keV 
image slices. The boxes were drawn on the same 
position across all image slices. The optimal image 
contrast was achieved between 140 and 180keV. By 
referring to Figure 3.3; 140, 160 and 180keV are 
equivalent to 63.1, 66.54 and 69.5keV which are 
effective energies of the applied X-ray energy spectrum. 
For optimal image contrast 140keV (63.1keV) was 
selected due to high contrast, Figure 3.8. The 
theoretically calculated attenuation coefficient is also 
higher at 63.10 (4.24 cm

-1
) compared to 66.54 (3.97 cm

-

1
) and 69.50keV (3.72 cm

-1
), Figure 3.6. The attenuation 

coefficient difference for both hematite and quartz is also 
larger at 63.10 compared to 66.54 and 69.50keV which 
provides improved image contrast. 
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FIG 3.7 – Shows the effect on increasing X-ray energy to image contrast at (a) 60keV, (b) 80keV, (c) 100keV, (d) 120keV, (e) 140keV, 
(f) 160keV and (g) 180keV. Detectable contrast difference is only visual between 60 and 80keV, beyond 100keV it is rather difficult 
to differentiate contrast between the image slices. 
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FIG 3.8 – Contrast distribution as a function of energy for hematite and quartz. 

 

Beam Hardening Correction 

The applied beam hardening correction is built into the 
CT Pro 3D reconstruction software. Such a correction 
removes the difference in grey values that represent the 
same mineral/material. The degree of the correction 
varies between 1 and 6. Samples with overall lower 
density are usually reconstructed using the value of 1 (no 
effect or correction). Depending on the attenuation of the 
X-ray beam through the sample, the value is gradually 
increased until the white lines on the edges of the 
sample are removed.  For the quarter sample the 
correction value used to minimize beam hardening was 
3. The plastic, cylindrical sample container was used to 
monitor the effect of beam hardening correction on the 
sample. Values greater than 3 are too aggressive and 
affect the distinction between plastic, background and 
quartz grey values. For instance, quartz regions on 
Figure 3.9(a) are not clearly visible for discriminative 
quantification measurements, compared to Figure 3.9(d) 
after a beam hardening correction has been applied. 
Both line and histogram profiles on Figure 3.9(e) and (f) 
show major improvements after beam hardening 
correction, which is vital when scanning hematitic ore 
samples. Note that both the histogram and line profile 
were drawn on the same region of the image slices 
before and after beam hardening correction, for the 
purpose of direct comparison. 

Signal to Noise Ratio 

The SNR and sample contrast (hematite and quartz 
contrast) were quantified within the yellow boxes drawn 
on Figure 3.10(a) and (e). The SNR of hematite on figure 
3.10(b) increases with the number of projections beyond 
258. No increase in SNR beyond 515 projections 
occurred and only fluctuations were observed. The beam 
hardening correction improves hematite SNR. Increasing 

the number of projections also increases SNR and it is 
highest for 1030 projections as depicted on Figure 
3.10(f). Quartz SNR on Figure 3.10(c) also shows many 
fluctuations between 258 and 1030 projections 
regardless of increasing number of projections. However, 
the beam hardening correction removes this fluctuation 
and a slight increase in SNR is observed above 258, 
Figure 3.10(g). The sample contrast also showed a major 
increase after beam hardening correction was applied, 
Figure 3.10(h). The contrast doubled which 
demonstrates the effect beam hardening has on the 
image information. The hematite SNR and sample 
contrast on Figure 3.10(b), (d), (f) and (h) show a 
decrease at 2 sec exposure time and 773 projections. 
This was attributed to the ring artefact. The exposure 
time shows minimal effect on the SNR as it is increased 
for all number of projections. Due to this 0.354 sec was 
selected as the optimal exposure time to scan the 
quarter sample coupled with 1030 projections due to 
higher SNR.  

DISCUSSION 

The developed method can be applied to any iron ore 
samples with similar sample dimensions, resolution and 
hematite content. It is unbiased to XCT systems and 
sample geometry, however a minimum of 10 per cent 
penetration is a requirement for scanning. If penetration 
is less than 10% due to different sample geometry and 
hematite content, the entire procedure of phase one and 
two should be repeated to determine the optimal 
parameters for scanning. XCT system geometries 
(distance from the X-ray source to a detector), focal spot 
and detector sizes differ from system to system. Due to 
this reason the sample scanning resolution and number 
of projections would change. The number of projections 
can then be re-calculated by applying Nyquist sampling 
theorem as mentioned under phase one.  
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The determined scanning parameters resulted in high 
quality images by using SNR and image contrast as 
indicators for rapid scanning. These images can 
thereafter be used for  

 

 

 

FIG 3.9 - (a) Image slice with no beam hardening correction applied, (b) and (c) line and histogram profile distribution for grey 
values for both hematite and quartz before beam hardening correction, (d) image slice with beam hardening correction applied, 
(e) and (f) line and histogram profile distribution of hematite and quartz grey values after beam hardening correction. 

3D visualization, and more importantly - quantification. 
This quantification may include parameters such as: 
porosity, permeability, ‘simple’ bulk mineralogy, grain 
shape and grain size distribution, mineral association 
and texture (Kyle and Ketcham, 2015). These output 
parameters can be considered key inputs to 
geometallurgical models (Hoal, Woodhead and Smith, 
2013). In the context of iron ore, the recent paper by 
Donskoi et al, (2016), emphasised the importance of 
textural information for the understanding, prediction and 
optimization of downstream processing performance. A 
number of case studies were used to illustrate this using 
a 2D optical image analysis system for automated 
textural characterisation developed by CSIRO (Donskoi 
et al, 2016). In an accompanying paper to this study, a 
method for 3D quantification of texture from XCT 

volumes has been proposed (Becker et al, 2016). The 
method is based on 3D grey level co-occurrence 
matrices and showcased for a nickel sulfide ore.  

The ability of XCT to rapidly provide 3D mineralogical 
and textural information positions the technique as a 
potential analytical tool for implementation on mining 
sites. This capability broadens the application of XCT 
into geometallurgy, from drill core logging through to 
minerals processing. The concept of XCT logging would 
ideally be paired with other ‘sensors’ to provide 
complimentary information to develop robust knowledge 
(Mutina and Bruyndonckx, 2013) of the ore 
characteristics and the variability thereof. This will 
improve the accuracy of ore body block modelling and its 
ability to predict the distribution of minerals of interest 
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and their association with gangue minerals. Accurate 
block models result in reduced mining costs and allow 
better management of ore variability. Rapid scanning 

facilitates large numbers of samples being processed for 
proper ore characterization on mine operational time 
frames. 

 

FIG 10 – (a) Image slice before beam hardening correction; (b, c and d) hematite signal to noise ratio (SNR), quartz SNR, and 
sample contrast (hematite and quartz contrast) before beam hardening correction; (e) image slice after beam hardening; (f, g and 
h) hematite SNR, quartz SNR and sample contrast after beam hardening corrections has been applied. 
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CONCLUSION 

 A robust methodology has been developed to scan 
the hematite ore. Further work is recommended to 
validate on different iron ore mineralogy and 
geometry including cylindrical geometry. 

 The availability of rapid 3D mineralogical and textural 
information for the characterization of the ore meets 
the requirements of a geometallurgical test (quick 
scanning and analysis, easily accessible data and 
minimal sample preparation). Ultimately this 
information needs to be coupled with the minerals 
processing response.  

 With the constant development of XCT systems and 
continuously improving scanning methods, the XCT is 
seen as one of the most influential techniques within 
the near future for the characterization of ores to aid 
minerals processing for the production of high quality 
products.  

ACKNOWLEDGEMENTS 

The authors would like to thank NECSA and the 
management team for funding and access to the Micro-
Focus system in the MIXRAD Lab, which is a DST-NRF 
(Department of Science and Technology – National 
Research Funding) funded facility through the NEP-RISP 
(National Equipment Programme – Research 
Infrastructure Support Programme) program. The project 
is generously supported through the South African 
Minerals to Metals Research Initiative. This work is 
based on the research supported in part by the National 
Research Foundation of South Africa (Grant Numbers 
86054, 85533).  Any opinions, findings and conclusions 
or recommendations expressed in any publication 
generated by the NRF supported research is that of the 
author(s), and that the NRF accepts no liability 
whatsoever in this regard. 

REFERENCES  

Aasly, K and Ellefmo, S, 2014. Geometallurgy applied to 
industrial minerals operations. Mineralproduksjon, 
1170(5), pp.21–34. 

Baker, D R, Mancini, L, Polacci, M, Higgins, M D, Gualda, G 
A R and Hill, R J, 2012. An introduction to the application 
of X-ray microtomography to the three-dimensional study 
of igneous rocks. Lithos, 148, pp.262–276.  

Becker, M, Jardine, M A, Miller, J A and Harris, M, 2016. X-
ray Computed Tomography: A geometallurgical tool for 
3D textural analysis of drill core? In 3nd AusIMM 
International Geometallurgy Conference. 

Beukes, N J, Gutzmer, J and Mukhopadhyay, J, 2002. The 
geology and genesis of high-grade hematite iron ore 
deposits. In Australian Institute of Mining and Metallurgy 
Publication Series. pp. 23 – 29. 

Boas, F E, and Fleischmann, D, 2012. CT artifacts : Causes 

and reduction techniques. Imaging Med, 4, pp.229–240. 

Cnudde, V and Boone, M N, 2013. High-resolution X-ray 
computed tomography in geosciences: a review of the 
current technology and applications. Earth Science 
Reviews, 123, pp.1–17. 

Dalehaug, I, 2013. Optimization in CT. Norwegian University 
of Science and Technology. 

Das, B, Prakash, S, Das, S K and Reddy, P S R, 2007. 
Effective Beneficiation of Low Grade Iron Ore Through 
Jigging Operation. Journal of Minerals & Materials 
Characterization & Engineering, 7, pp.27–37. 

Davis, G R, and Elliott, J C, 2006. Artefacts in X-ray 
microtomography of materials. Materials Science and 
Technology, 22(9). 

Donskoi, E, Poliakov, A, Holmes, R, Suthers, S, Ware, N, 
Manuel, J and Clout, J, 2016. Iron ore textural 
information is the key for prediction of downstream 
process performance. Minerals Engineering, 86, pp.10–

23.  

Forsberg, F and Hjortsberg, E, 2012. X-ray 
microtomography for sequential imaging and analysis of 
iron ore pellets under reduction. In 6th International 
Congress on the Science and Technology of Ironmaking. 
pp. 1744–1753. 

Hamdani, A H, 2015. X-Ray Computed Tomography 
Analysis of Sajau Coal , Berau Basin , Indonesia : 3D 

Imaging of Cleat and Microcleat Characteristics. 
Internationa Journal of Geophysics, 2015. 

Hanson, K M, 1981. Noise and contrast discrimination in 
computed tomography. In T. H. Newton & D. G. Potts, 
eds. Technical Aspects of Computed Tomography. St. 
Louis Missouri: C.V. Mosby, pp. 3941–3955. 

Hapugoda, S, Manuel, J R, Peterson, M J and Donskoi, E, 
2011. Determination of Iron Ore and Gangue Mineral 
Associations using Optical and Backscattered Electron 
Images with Electron Probe Microanalysis. In IRON ORE 
CONFERENCE. 

Hjortsberg, E, Forsberg, F, Gustafsson, G and Rutqvist, E, 
2013. X-ray microtomography for characterisation of 
cracks in iron ore pellets after reduction. Ironmaking and 
Steelmaking: Processes, Products and Application, 

40(6), pp.399–406. 

Hoal, K O, Woodhead, J and Smith, K S, 2013. The 
Importance of Mineralogical Input into Geometallurgy 
Programs. In The second AUSIMM international 
geometallurgy conference. pp. 17–25. 

Hoffman, J W and Beer, F C, 2012. Characteristics of the 
Micro-Focus X-ray Tomography Facility (MIXRAD) at 
Necsa in South Africa. In 18th World Conference on 
Nondestructive Testing. pp. 1–12. 

Jeong, G Y and Nousiainen, T, 2014. TEM analysis of the 
internal structures and mineralogy of Asian dust particles 
and the implications for optical modeling. Atmospheric 
Chemistry and Physics, 14(14), pp.7233–7254.  

Jerram, D A and Higgins, M D, 2007. 3D Analysis of Rock 
Textures : Quantifying Igneous Microstructures. 

ELEMENTS, 3(4), pp.239–245. 

Ketcham, R A and Carlson, W D, 2001. Acquisition , 
optimization and interpretation of X-ray computed 
tomographic imagery: applications to the geosciences. 
Computers & Geosciences, 27, pp.381–400. 

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3: Rapid Scanning Parameters 

 46 

Khozyainov, M S and Yakushina, O A, 2012. Х -ray 
Computed Tomography Analysis of Geomaterials. In 
Advanced Research in Scientific Areas. pp. 1490–1494.  

Kong, F, 2008. Quality Evaluation for Digital Radiography 
Inspection Based on Imaging Parameters. In 17th World 
Conference on Nondestructive Testing. Shangai, pp. 1–
5. 

Kraemer, A, Kovacheva, E and Lanza, G, 2015. Projection 
based evaluation of CT image quality in dimensional 
metrology. In Digital Industrial Radiology and Computed 
Tomography. pp. 1–10. 

Kyle, J R and Ketcham, R A, 2015. Application of high 
resolution X-ray computed tomography to mineral 
deposit origin, evaluation, and processing. Ore Geology 
Reviews, 65, pp.821–839.  

Lange, A and Hentschel, M P, 2007. Direct Iterative 
Reconstruction of Computed Tomography Trajectories 
(DIRECTT). In International Symposium on Digital 
industrial Radiology and Computed Tomography. Lyon, 
pp. 1–10. 

Lin, C and Miller, J D, 2002. Cone beam X-ray 
microtomography - a new facility for three-dimensional 
analysis of multiphase materials. MINERALS & 
METALLURGICAL PROCESSING, 19(2), pp.65–71. 

Lund, C, 2013. Mineralogical, Chemical and Textural 
Characterisation of the Malmberget Iron Ore Deposit for 
a Geometallurgical Model. Lulea University of 
Technology. 

Malcolm, A A and Liu, T, 2011. Case Studies in the Use of 
Computed Tomography for Non-Destructive Testing , 
Failure Analysis and Performance Evaluation. In 
Singapore International NDT Conference & Exhibition. 
pp. 1–15. 

Mees, F, Swennen, R, Van Geet, M and Jacobs, P, 2003. 
Applications of X-ray Computed Tomography in the 
Geosciences 215th (ed: F. Mees et al), (The Geological 
Society London: London). 

Momose, A and Hirano, K, 1999. The Possibility of Phase-
Contrast X-Ray Microtomography. Japanese Journal of 
Applied Physisc, 38(1), pp.625–629. 

Murphy, R J and Monteiro, S T, 2013. Mapping the 
distribution of ferric iron minerals on a vertical mine face 
using derivative analysis of hyperspectral imagery (430-
970nm). ISPRS Journal of Photogrammetry and Remote 
Sensing, 75, pp.29–39.  

Mutina, A and Bruyndonckx, P, 2013. Combined micro-X-
ray tomography and micro-X-ray fluorescence study of 
reservoir rocks: applicability to core analysis. Microscopy 
and Analysis - Compositional Analysis Supplement, 
27(4), pp.4–6. 

Myers, G R, Geleta, M, Kingston, A M, Recur, B, and 
Adrian, P, 2014. Improving dynamic tomography , 
through Maximum a Posteriori estimation. In 
Proceedings of SPIE. pp. 1–9. 

Nayak, N P, 2014. Mineralogical Characterization of 
Goethite- Lateritic Ore & its Implication on Beneficiation. 
International Journal of Engineering Sciences & 
Research Technology, 3(11), pp.288–291. 

Newcombe, B, 2011. Lessons Learned from 
Geometallurgical Investigations Carried Out on a Nickel 
Sulfi de Flotation Plant. In S. Dominy, ed. The First 
AusIMM International Geometallurgy Conference. 

Australasian Institute of Mining and Metallurgy, pp. 139–
150. 

Nwaila, G, Becker, M, Ghorbani, Y, Petersen, J, Reid, D L, 
Bam, L C, de Beer, F C and Franzidis, J-P, 2013. A 
geometallurgical study of the Witwatersrand gold ore at 
Carletonville, South Africa. In The Second AusIMM 
International Geometallurgy Conference. The 
Australasian Institute of Mining and Metallurgy: 
Melbourne, pp. 75–84. 

Olubamiji, A, 2011. The Influence of Filtration , Tube Current 
and Number of Projections on CBCT Image quality. 
Tempere University of Technology. 

Panahi, H, Kobchenko, M, Renard, F, Mazzini, A, Scheibert, 
J, Dysthe, D, Jamtveit, B, Malthe-Sorensses, A and 
Meakin, P, 2012. A 4D Synchrotron X-Ray-Tomography 
Study of the Formation of Hydrocarbon- Migration 
Pathways in Heated Organic-Rich Shale. SPE Journal of 
Petroleum Engineers, 18(2), pp.366–377. 

Paulus, M J, Gleason, S S, Kennel, S J, Hunsicker, P R and 
Johnson, D K, 2000. High Resolution X-ray Computed 
Tomography : An Emerging Tool for Small Animal 

Cancer Research. Neoplasia, 2(1-2), pp.62–70. 

Rao, D S, Kumar, T V V, Rao, S S, Prabhakar, S and Raju, 
G B, 2009. Mineralogy and Geochemistry of A Low 
Grade Iron Ore Sample from Bellary-Hospet Sector , 
India and Their Implications on Beneficiation. Journal of 
Minerals & Materials Characterization & Engineering, 
8(2), pp.115–132. 

Schmidt, T G, 2009. Optimal “image-based” weighting for 
energy-resolved CT. Medical Physics, 36(7), pp.3018–
3027. 

Sinha, M, Nistala, S H, Chandra, S and Mankhand, T R, 
2015. Mineralogy of Iron Ores of Different Alumina 
Levels from Singhbhum Belt and Their Implication on 
Sintering Process. Journal of Minerals and Materials 
Characterization and Engineering, 3, pp.180–193. 

Tanaka, A, Nakano, T and Ikehara, K, 2011. X-ray 
computerized tomography analysis and density 
estimation using a sediment core from the Challenger 
Mound area in the Porcupine Seabight , off Western 
Ireland. Earth Planets and Space, 63(2), pp.103–110. 

Tsuchiyama, A, Uesugi, K, Nakano, T and Ikeda, S, 2005. 
Quantitative evaluation of attenuation contrast of X-ray 
computed tomography images using monochromatized 
beams. American Mineralogist, 90, pp.132–142. 

Vatandoost, A, Beven, B J, Campbell-Hardwick, S and 
Young, J, 2013. A Geometallurgical Approach for Iron 
Ore Product Evaluation. In The Second AusIMM 
International Geometallurgy Conference. Melbourne, pp. 

259–266. 

Wei, Q, Leblon, B and La Rocque, A, 2011. On the use of X-
ray computed tomography for determining wood 
properties: a review. Canadian Journal of Forest 
Research, 41, pp.2120–2140.  

Wildenschild, D, Hopmans, J W, Vaz, C M P, Rivers, M L, 
Rikard, D and Christensen, B S B, 2002. Using X-ray 
computed tomography in hydrology : systems , 

resolutions , and limitations. Journal of Hydrology, 267, 
pp.285–297. 

Williams, S R, 2013. A Historical Perspective of the 
Application and Success of Geometallurgical 
Methodologies. In The Second AUSIMM International 

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3: Rapid Scanning Parameters 

 47 

Geometallurgy Conference. Brisbane: The Australasian 

Institute of Mining and Metallurgy, pp. 37–47. 

Yang, B H, Wu, A X, Miao, X X, Liu, J Z, 2014. 3D 
characterization and analysis of pore structure of packed 

ore particle beds based on computed tomography 
images. Transactions of Nonferrous Metals Society of 
China (English Edition), 24(3), pp.833–838. 

 

 

Stellenbosch University https://scholar.sun.ac.za



 

 48 

Supplementary notes on scanning parameters 

Provided below are supplementary notes outlining additional information on the determination of rapid scanning 

parameters on dense samples as undertaken in Chapter 3. The supplementary notes have been added to give better 

context to the scanning parameters that were being optimized. The determination of rapid scanning parameters 

depends on the sample being scanned and the scanning parameters (exposure time, number of projections, current, 

and X-ray energy or voltage) required to represent the true sample information. Samples with high density or high 

attenuating phases will require different scanning parameters as compared to the ones with less attenuating phases.  

Focal Spot size 

The focal spot size of a XCT system should be maintained in order to minimise errors associated with an increased 

spot size. This is important because the focal spot size determines the X-ray flux and resolution capability of the XCT 

system. To maintain the focal spot size the combination of the voltage (kV) and current (µm) of the X-ray beam should 

not have a resulting power (W) greater than the scanning resolution. The XCT system used in this study does allow 

the resulting power to be well controlled or locked such that an increase in the voltage does not change the focal spot 

size to be larger than the required scanning resolution. However, the system does allow the power to be increased 

slightly beyond the scanning resolution but there is a limit, (e.g. the scanning resolution of 3µm should not have a 

power greater than 7W in order to minimise errors associated with an increased spot size). The scanning resolution for 

the samples in this case was 68µm due to the larger sample size. Because of this, the current was increased to make 

sure that a 10% X-ray penetration was achieved. The increased spot size was not an issue in this case because the 

power of the X-ray beam was not more than 68W which did not affect the scanning resolution and sample information. 

Although not the case in this study, an overly increased spot size gives a false scanning resolution, which can affect 

the true dimensions of the particle or grain sizes at that resolution. More information about the system (NIKON XTH 

225 ST system) can be found in this website https://www.nikonmetrology.com/en-us/product/xt-h-225-st. 

X-ray Energy 

The X-ray energy spectrum of the XCT system determines the penetrating capability through the sample. To 

determine the optimal X-ray energy the sample was exposed to different X-ray spectrum energies (60 to 180keV). This 

was done to obtain a minimum of 10% X-ray penetration and optimal sample contrast when paired with the current.  

The X-ray energy spectrum that provided optimal and similar sample contrast was between 140keV and 180keV which 

led to the selection of a 140keV X-ray energy spectrum with an effective energy of 63.1keV. This X-ray energy was 

then used to scan the sample and evaluate other scanning parameters such as the number or projections and 

exposure time. Sample contrast was determined by dividing the mean grey value of hematite with that of quartz. 

Number of Projections 

The number of projections when scanning high density samples are very important because they determine the 

quality of the sample information at the scanning resolution. To determine the required number of projections for any 

scanning resolution, the Nyquist theorem method was used. The method determined the number of projections to be 

773. This means is that the Nyquist method determined the required number of projections given the resolution (68 

µm) and sample width as discussed under Phase One section in the published manuscript. The resolution was 

determined by the sample height in order to capture the full sample. The hematite and quartz grains are very large as 

shown in Figure 3.7 of this chapter and the scanning resolution was adequate to resolve the individual particles. A 
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minimum of 8 voxels is required to define any particle or grain shape at any scanning resolution and this was 

achievable in this case due to larger hematite and quartz grain sizes.  

However, although the number of projections were determined using the Nyquist method as mentioned above, in 

reality more projections were evaluated. The evaluated number of projections were 258, 515, 773 and 1030. The 

projections were evaluated using signal-to-noise ratio (SNR) in order to determine the optimal number of projections 

for this particular study. The highest SNR was associated with 1030 number of projections. The SNR in this case is 

defined as a measure of the detectability of an object within a noisy image, and describes the ratio between the signal 

(mean grey value) and the noise (standard deviation of the mean) within the region of interest.  

Filter Materials 

The utilisation of different filter materials is important because they optimise X-ray penetration and sample 

information especially when dealing with high density samples. However, in this case the filter materials were not used 

due to the geometry of the sample, distribution and amount of hematite within the sample. The application of a beam 

hardening correction during the reconstruction was found to be adequate to correct for beam hardening artefacts in 

this case as discussed under the Beam Hardening Correction section and as shown in Figure 3.9 (b) and (e).  

Beam Hardening and Exposure Time Evaluation 

The evaluation of beam hardening when dealing with high density samples is important in order to determine its 

impact on the sample information. To do this, the SNR ratio was determined for both quartz and hematite by using a 

region of interest (ROI) to assess the quality of the sample information. The ROI for quartz was selected close to a 

hematite region to check how different scanning parameters (number of projections and exposure time) would improve 

this regions SNR. The process would be biased by selecting a quartz region that is less affected by beam hardening. 

This would imply that the beam hardening is either decreasing or increasing which would not be the case.  

Selecting ROIs for quartz that are further from hematite or high impact beam hardening would result in higher SNR 

with increasing exposure time and number of projections. However, this would be irrelevant and not give more 

information about the impact of beam hardening (on both quartz and hematite) which is the focus of this study. The 

motivation behind this study is to use SNR as a guideline or indicator to select optimal and rapid scanning parameters 

with minimised beam hardening. Therefore, after carefully evaluating all the combinations of the scanning parameters 

using SNR, the rapid scanning parameters were determined to be 0.354 sec, 1030 number of projections, 140keV 

spectrum energy (63.1keV effective energy) and beam hardening correction factor of 3. These parameters allowed the 

sample to be scanned in less than 7 minutes.  
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A B S T R A C T  

X-ray computed tomography is a non-destructive 3D analytical technique, which in 
recent years has gained more widespread applications to characterise the internal 
structure of materials in minerals processing and metallurgical studies. Successful 
application of the technique relies on effective X-ray penetration. Ore samples with high 
average specific gravities (e.g. iron ore, massive sulfide ores) inhibit X-Ray penetration 
causing beam hardening artefacts that reduce data quality and limit further analysis. 
This contribution presents a practical way to evaluate the degree of beam hardening 
using a case study iron ore sample. The method quantifies the degree of beam 
hardening that leads to a loss of sample information, through comparing the known 
pore surface area of an aluminium standard sample with that of an iron ore sample.  
This comparison is defined as a %Error. Porosity and sample mineralogy are 
confidently quantified when the %Error is less than 10%. Above 10%, there is 
inconsistent loss of sample information (porosity and relatively low dense sample 
mineralogy) and the results from the volumes cannot be trusted which indicates that 
smaller sample sizes need to be scanned. This practical method can be routinely 
applied in other applications and samples with density higher than iron ore.  

 

1. Introduction 

The ability to characterise and quantify the internal 
structure of rocks, minerals, particles, drill core and 
packed particle beds has made X-ray computed 
tomography (XCT) an increasingly popular method of 
‘ore characterisation’ within both the geosciences and 
minerals engineering studies (Cnudde and Boone, 
2013; Mees et al., 2003; Wang et al., 2015). Its non-
destructive ability to rapidly scan samples, and easily 
locate dense phases typically representing valuable 
base metal sulphides, gold and platinum group mineral 
(PGM) grains, further adds to its attractiveness, 
especially when dealing with low grade ores (g/t).  In 
addition, the method does not suffer from stereological 
error which is encountered when measurements are 
made from 2D particle sections (Evans and Morrison, 
2016; Spencer and Sutherland, 2000), for example 
those routinely prepared for process mineralogy using 
automated scanning electron microscope with energy 

dispersive spectrometry (auto SEM-EDS) technologies 
such as QEMSCAN, MLA, TIMA, and Mineralogic.  

Specific uses of XCT with respect to minerals 
engineering include characterisation and quantification 
of mineralogy and texture within drill core samples, 
which is important since it provides an indication of the 
ore characteristics ahead of mining and processing 
(Jardine et al., 2018; Lin et al., 2017a). This would 
include quantification of the grain size distribution of 
valuable minerals that can be used to define the 
required grinding for liberation (Evans et al., 2015). 
Following grinding, XCT provides a means of 
assessing the potential separation efficiency (Lin et al., 
2017a; Miller et al., 2009). Other applications of XCT in 
process engineering include the analysis of the 
distribution of defects within particles after 
comminution to further understand the mechanisms of 
particle breakage, as well as differences between 
comminution devices (Charikinya et al., 2015; Garcia 
et al., 2009). In 
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leaching studies, XCT has been used to understand 
leach progression on both the particle scale, as well as 
through a packed bed (Dhawan et al., 2012; Fagan-
Endres et al., 2017; Ghorbani et al., 2011). Possible 
future applications of XCT could even extend to its use 
as an online technology for routine characterisation of 
run of mine ore (Lin et al., 2017b). 

In all of the above examples, efficient application of 
the XCT relies on the ability of the X-ray beam to be 
able to penetrate the sample in order to resolve the 
internal geometry. This condition is best met when 
there is a pronounced variation in atomic composition 
between minerals of interest (Mees et al., 2003). 
However, where a pronounced variation in atomic 
compositions is absent or where all atomic 
compositions are very similar, a situation commonly 
encountered with many of the ore minerals that are 
treated in minerals processing and metallurgy, XCT is 
not able to highlight or resolve features of interest. This 
represents the techniques’ primary limitation. The XCT 
technique maps out the spatial distribution of X-ray 
attenuation which increases with increasing atomic 
number or density (Louis et al., 2006). The difference 
in X-ray linear attenuation provides a contrast which 
can be used for mineral differentiation based on their 
differing densities (Koeberl, 2002; Mees et al., 2003). 
Contrast is a function of X-ray energy, beam current, 
exposure time and the number of projections obtained 
(Bam et al., 2016; Kraemer et al., 2015). Improper 
utilisation of these parameters results in poor image 
contrast, noisy images and artefacts that render the 
resultant data unusable. 

In high density samples X-ray penetration is 
important because it allows optimal image contrast, 
quantification of information within a scanning 
resolution, and reduces image noise and beam 
hardening. Contrast optimization requires the 
elimination of common XCT artefacts during 
reconstruction such as: a) beam hardening artefact, 
which is related to the presence of dense objects; b) 
ring artefact, which is related to the detector pixel 
defect; c) line artefact, which is related to the presence 
of anomalously bright pixels in the radiographs and d) 
misalignment artefact, which is related to the imperfect 
alignment of source, detector and axis of rotation 
(Mees et al., 2003). Current and past research 
focussed on eliminating beam hardening artefacts 
through utilisation of different filter materials and the 
optimization of different mathematical models to 
correct for the variation in linear attenuation coefficient 
or grey value variations of single dense materials 
(Ketcham and Hanna, 2014; Meganck et al., 2009; 
Stowe and Curran, 2016; Van de Casteele, 2004). 
However, to our knowledge there has been no analysis 
to evaluate the amount of information that is simply lost 
from denser and thicker samples due to beam 
hardening artefacts or whether this information can be 
recovered. 

The features most affected by beam hardening 
artefacts are (1) porosity and (2) differentiation of 
relatively low density minerals such as silicates and 
carbonates (which in many cases represent the 
gangue minerals in ores). The effects of beam 
hardening become more pronounced with increasing 

sample size and density. The utilisation of XCT to 
quantify porosity is fairly simple, because in most 
cases the density difference between pore spaces and 
sample matrix or minerals is large. In high density 
materials like iron ore and massive sulphide ores, the 
quantification of pore information is not straight forward 
because of the inherent noise introduced by beam 
hardening artefacts. In the case of iron ore, knowledge 
of porosity and textural characteristics are relevant for 
predicting and optimising downstream processing 
(Clout and Manuel, 2015; Donskoi et al., 2016).  

The aim of this paper is to develop a practical way 
to evaluate the loss of sample information due to beam 
hardening in high density materials. The evaluation of 
information loss is done using iron ore as a case study 
but the principles are applicable to many high density 
ore types. The practical evaluation was achieved by 
introducing a standard aluminium sample, with known 
properties, to indirectly evaluate the beam hardening 
and to determine the optimal sample size that results in 
a minimum of beam hardening artefacts and 
information loss. The results have important 
implications for minerals processing because the loss 
of sample information may bias ore characterisation, 
and consequently lead to incorrect interpretations of 
the efficiencies and deficiencies in minerals processing 
circuits.  

2. Artefacts in X-ray tomography 

Unavoidable artefacts are common in most XCT 
systems. In most cases, the artefact type is a function 
of sample properties or improper utilisation of the XCT 
system, in terms of parameter settings and 
reconstruction (Schulze et al., 2011). There are many 
different types of XCT artefacts, of which the most 
common are ring, metal, scatter, motion, cone beam, 
beam hardening and noise (Boas and Fleischmann, 
2012). 

 Common Artefacts 2.1.

Ring artefacts, created by unresponsive or 
uncalibrated detector pixels/elements are visible as 
concentric rings centred around the location of the axis 
of rotation (Davis and Elliott, 2006), and are particularly 
prominent when scanning homogeneous samples 
(Schulze et al., 2011). The artefact can be eliminated 
by moving the detector or specimen slightly (viz. a few 
pixels) between projections, to reduce the severity of 
the ring artefact (Davis and Elliott, 2006). Metal artefact 
is caused by the presence of high density materials, 
during the filter back projection reconstruction. This is a 
streaking or star-shaped artefact that degrade image 
quality and obscure valuable information (Mouton and 
Megherbi, 2013). Scattering artefact is caused by the 
diffracted X-ray beam deviating from its original path 
after interacting with the sample, thereby 
disproportionally increasing the measured intensities of 
other areas in the sample. Scatter causes streak 
artefact similar to that caused by beam hardening and 
also reduces sample contrast (Schulze et al., 2011; 
Siewerdsen et al., 2006). This artefact is usually 
minimised by changing the object-to-detector gap, 
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limiting the field of view, using of an anti-scatter grid 
and by applying an algorithmic correction of X-ray 
scatter (Siewerdsen et al., 2006). Motion artefact is the 
result of the misalignment of X-ray source, object and 
detector, causing inconsistencies in the back-projection 
reconstruction process. Given that the X-ray source 
and detector are stationary and only the object is 
moving during the scanning process, the 
reconstruction does not account for the movement 
because it is not integrated in the reconstruction 
process (Schulze et al., 2011). This artefact causes 
blurring and double edges along sample edges.  The 
above artefacts are systematic and result from the X-
ray source, sample stage, detector behaviour and 
characteristics and are relatively fixed. Sample induced 
artefacts, which include beam hardening and noise, 
are variable and depend on the size, geometry and 
composition of the sample. These artefacts are 
explained below. 

 Beam Hardening 2.2.

Beam hardening artefacts, from scanning samples 
with high density compositions, are attributed to the 
polychromatic nature of X-ray sources of current lab-
based XCT systems. As the polychromatic X-ray beam 
passes through dense samples, lower X-ray energies 
are absorbed more than high X-ray energies. This 
result in an X-ray beam that is depleted in lower 
energies, hence the phrase “hardening”. This hardened 
beam is attenuated less as it continues to penetrate 
the sample (Wildenschild and Sheppard, 2013). The X-
ray beam initially experiences a higher effective 
attenuation coefficient at the beginning of its passage 
through the material, compared to further in, resulting 
in the grey value variation within reconstructed images 
of uniform material to appear more attenuated near the 
edges (Bam et al., 2016; Wildenschild and Sheppard, 
2013). There are several ways to minimize beam 
hardening artefacts: a) use of a high energy X-ray 
beam; b) utilisation of filter materials which harden the 
X-ray beam: c) smaller samples and d) utilisation of 
beam hardening correction factors which are 
incorporated within many reconstruction software 
packages (Bam et al., 2016; Ketcham and Carlson, 
2001; Mees et al., 2003; Wildenschild et al., 2002). 
Utilisation of synchrotron technology eliminates beam 
hardening artefacts because of the monochromatic 
nature of the high flux radiation (Wildenschild et al., 
2002) but the current technology of lab-based XCT 
systems has not met the level of a synchrotron X-ray 
source.   

A number of studies have examined methods to 
optimally eliminate beam hardening artefacts. 
Hardware filtering is one of the most popular methods 
to reduce beam hardening (Van de Casteele, 2004). 
Meganck et al. (2009) and Ay et al. (2013) have shown 
the advantages of utilising different filter materials to 
minimise beam hardening artefacts, but this results in 
prolonged scanning times, on the order of a few hours. 
Prolonged scan times would limit the online application 
of XCT for routine characterisation of high density ores 
for process mineralogy, although an attempt has been 
made to determine the shortest scanning time possible 
(on the order of a few minutes) whilst still achieving 
optimal image contrast with high signal-to-noise ratio in 
the case of iron ores (Bam et al., 2016). Another 

commonly-applied method for beam hardening 
correction is the linearization procedure, which corrects 
the experimentally-measured attenuation coefficients 
curve with respect to thickness, such that it 
corresponds to an expected linear curve. The main 
disadvantage is that the method only works on a two-
component system (e.g. air and some material). Van 
de Casteele (2004) demonstrated the use of a bimodal 
energy model which corrects for the beam hardening 
artefacts for a multi-component system, compared to 
the linearization of a two-component system. Ketcham 
and Hanna (2014) developed an iterative optimization 
algorithm to find a generalized, spline-interpolated 
transform that minimizes the beam hardening artefacts. 
This corrects the affected areas of the sample instead 
of correcting the entire sample although its 
disadvantage is that it can introduce secondary 
artefacts or over-correct. Stowe and Curran (2016) 
demonstrated a predictive correction method to 
suppress beam hardening streak artefacts, which 
performed better than commercially available streak 
artefact correction methods, but was inferior to iterative 
reconstruction. Most beam hardening correction 
methods were developed based on a well-known 
sample composition, density and thickness 
characterisation (Ketcham and Hanna, 2014). The 
application of these approaches to heterogeneous 
samples wherein the correction is typically highly 
nonlinear (Park et al., 2016, 2015) is significantly more 
complex and has not yet been attempted. 

 Noise 2.3.

Noise is defined as an unwanted random or non-
randomly distributed disturbance of a signal that tends 
to obscure the signal’s information content (Jaju et al., 
2013). There are two sets of noise that need to be 
considered in reconstructed images: a) additive noise 
that stems from round-off errors or electrical noise and 
b) photon-count noise (quantum noise) that should 
follow a Poisson distribution (Schulze et al., 2011). 
Noise manifests as inconsistent attenuation 
coefficients or grey values in the reconstructed image 
or larger deviations in areas where a constant 
attenuation is expected (Schulze et al., 2011). From a 
qualitative point of view, noise makes small features 
more difficult to identify. If the signal-to-noise ratio 
(SNR) is low, it can result in additional holes, which are 
perceived as pores, with a diameter equal to the pixel 
or voxel size. The ability to segment features based on 
grey values or attenuation coefficient is consequently 
more difficult. When the effect of noise is not large for a 
given sample, the linear attenuation coefficient may be 
determined by taking an average over many voxels, a 
technique which becomes possible due to the 
insignificant standard error, in turn due to the increased 
number of voxels used to determine the average linear 
attenuation coefficient (Davis and Elliott, 2006). 
However, the determination of linear attenuation 
coefficient would not be possible when dealing with 
beam hardening and scattering artefacts due to the 
increased standard error.  

Like all imaging techniques, X-ray imaging is 
subject to noise. The lower limit of this noise level is 
determined by the number of detected photons and 
equals Poisson noise (Cnudde and Boone, 2013). In 
practice, image noise is a function of many parameters 
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such as resolution and sample size; it is not constant 
throughout the image and it is higher at the centre of 
the sample due to the increased X-ray attenuation, 
while it is anisotropic in the reconstructed images.  This 
is noticeable in samples with a higher aspect ratio such 
that X-rays passing along the longer dimension are 
highly attenuated resulting in random streaks. Images 
of solid specimens or higher attenuating materials will 
have a lower SNR than those with high porosity. 
However SNR is optimal when X-ray penetration is 
about 16% or higher through the centre of the sample 
(Davis and Elliott, 2006). 

3. Methodology 

 Sample Preparation 3.1.

The methodology for evaluating the degree of beam 
hardening uses a hematite stepped-wedge to quantify 
the loss of information. An aluminium cylindrical 
sample was also used as a standard reference sample 
and scanned together with a stepped-wedge sample in 
order to correlate the deviation of the quantified pore 
surface area of the aluminium standard sample with 
the degree of beam hardening of the hematite stepped-
wedge sample. 

3.1.1. Hematite Stepped-wedge 

The normal sample geometry for beam hardening 
evaluation is cylindrical in order to keep the X-ray 
penetration constant throughout. However, the 
geometry and the distribution of high density 
materials/minerals do not always allow constant X-ray 
penetration.  A hematite (SG 5.3) stepped wedge (53 x 
20mm) with five thickness levels of 4, 14, 24, 34 and 
47mm, respectively, was manufactured to evaluate the 
impact of beam hardening in a consistently non-
cylindrical sample. The hematite stepped-wedge 
sample also had a specularite crystal vein running 
through all the thicknesses of the sample and was 
used to evaluate the impact of the beam hardening 
artefacts (Fig. 4.1.). The evaluation of beam hardening 
artefact is not unique to iron ore only. Sample materials 
with similar or greater densities than hematite can also 
be cut in a stepped-wedge design to evaluate the 
impact of beam hardening. 

3.1.2. Core Samples 

A series of apatite-magnetite drill cores from the 
Norrbotten Province in Sweden were selected to 
assess the effect of different sample geometries and 
thicknesses on X-ray penetration. The samples consist 
of magnetite (SG 5.18), ferromagnesian silicates, mica 
and amphibole (SG 3-3.2), apatite (SG 3.2) and Na-
feldspar (SG 2.65), similar to samples used by (Lund, 
2013). Samples were cut into different geometries 
(diameter x height): cylindrical (38 x 34mm), half 
cylinder (19 x 34mm) and quarter cylinder (17 x 20mm) 
in order to vary their thicknesses (Fig. 4.2). 

 

 

Fig 4.1. Hematite stepped-wedge sample with different 

thickness. 
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Fig 4.2. Different sample geometries of apatite-magnetite cores to evaluate beam hardening effect due to different 

geometries: cylindrical (38 x 34mm), half cylinder (19 x 34mm) and quarter cylinder (17 x 20mm). 

3.1.3. Aluminium Standard Sample 

A cylindrical aluminium standard sample was 
manufactured to indirectly assess the effect of beam 
hardening. A 2mm diameter vertical pore was drilled 
through the sample to assess the quality of the scan 
(Fig. 4.3). For the stepped-wedge set-up, the 
aluminium standard sample was placed behind the 
stepped-wedge sample in order to evaluate the impact 
of beam hardening for every thickness increment. For 
the core samples, the aluminium standard sample was 
placed behind the longest path length of each sample 
geometry because they are prone to beam hardening 
artefacts.  

 Scanning Protocol 3.2.

Samples were scanned at different X-ray energies 
(100 to 180 keV) with an increment of 20keV to 
evaluate beam hardening, and quantify porosity 
information and scan quality with increasing X-ray 
energy. The combination of X-ray energy and beam 
current was selected such that image saturation was 
avoided. The density difference between hematite and 
air is large and it is reasonably expected that quantified 
porosity information should be consistent or within an 
acceptable error margin.  Different X-ray energies also 
provides a means of assessing the optimal X-ray 
energy for scanning, based on optimal signal-to-noise 
ratio and contrast (Bam et al., 2016). All samples were 
scanned at the same resolution of 0.0328mm to 
minimise biases associated with varying grey values at 
different scanning resolutions. All the samples were 
scanned at 4 second exposure time with 2000 
projections to improve sample penetration, image 
contrast and to decrease noise within images. For 
background correction for each radiograph the X-ray 
system (Nikon XTH 225 ST) uses a built in shading 
correction method that acquires a dark and bright 

images to correct for background and normalize the 
grey value variation on the radiographs during 
scanning (Hoffman and de Beer, 2012). 

The scans were reconstructed using CT Pro 3D 
reconstruction software which has a built in beam 
hardening correction method which can be used to 
minimize beam hardening artefact for any sample 
material. The degree of correction varies between 1 
and 6 and the applied degree of correction for this work 
was 3, similarly to the one used by Bam et al. (2016). 
After reconstruction the data was analysed using 
VGStudio 3.1 software in order to generate image 
slices. The image slices were further evaluated using 
ImageJ software in order to assess the impact of beam 
hardening with respect to sample size. A combination 
of aluminium (1mm) and copper (1mm) filter materials 
were used during scanning to minimise the impact of 
beam hardening (Meganck et al., 2009). 

 Scan Quality 3.3.

Image quality may be directly assessed by the 
SNR, which also assists in determining optimal 
scanning parameters. The SNR was quantified for 
each incremental hematite thickness to obtain the 
average SNR for all X-ray energies (Fig. 4.4A). The 
quantified SNR for the 4mm thickness, before beam 
hardening correction was applied, indicates minimal 
variation between 100 and 180keV (Fig. 4.4B) 
compared to the corrected results.  After the beam 
hardening correction was applied, the SNR shows a 
decrease from 100 to 140keV, with a small variation 
between 140 and 180keV (Fig. 4.4C). This suggests 
that there is no need for beam hardening correction for 
the 4mm thickness increment. 

With increasing thickness increments, from 14 to 
47mm, an increase in SNR was encountered, before 
beam hardening correction was applied, demonstrating 
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that X-ray penetration increases with increasing X-ray 
energy, but stabilises between 160 and 180keV, based 
on a small variation in SNR. Beam hardening 
correction produces similar SNR across all X-ray 
energies and from 14 to 47mm thickness increments. 
This suggests that the sample information to be 
quantified (in this case, porosity) for each of the 
stepped-wedge thicknesses should be evaluated the 
same or with minimum variation due to similar SNR. 
However, an overall decrease in SNR is observed as 
the stepped-wedge thicknesses increases and this 
would introduce errors when porosity information is 
quantified for the whole sample. 

 

 

Fig 4.3. Aluminium standard sample with a 2mm pore 

diameter utilised to indirectly assess the impact of beam 

hardening artefacts for hematite and core samples. 

 

 

 

Fig 4.4. (a) Hematite stepped-wedge longitudinal image showing different thickness regions, (b) SNR of different thicknesses 

of the hematite stepped-wedge before and (c) after beam hardening correction was applied. 

 Line Profiles 3.4.

The standard method to evaluate beam hardening 
is through line profiles across different sample 
thicknesses and by observing the behaviour of grey 
values of the single material/mineral which are 
expected to be similar. These grey values also 
represent the attenuation coefficient of the single 
material. Figures 4.5A to 4.5E shows line profiles of the 
4, 14, 24, 34 and 47mm thickness increments before a 
beam hardening correction. There is a curved or non-
linear increase in grey values, with increasing X-ray 
energy, between 100 and 180keV which means that 
the X-ray penetration has improved with increasing X-
ray energy. However, an overlap of grey values is 
observed between 140 and 180keV, an effect that is 

more pronounced from 14 to 47mm, between 100keV 
and 120keV, and between 140 and 180keV, before 
beam hardening correction. This indicates that an 
increase in beam hardening artefacts with increasing 
sample thickness increases the amount of noise within 
an image. After the beam hardening correction was 
applied (Fig. 4.5F-J), a horizontal line profile of the 
grey values was observed for the 4mm increment for 
all X-ray energies (Fig. 4.5F). Figures 4.5G to 4.5J 
show an overlap of grey values even after beam 
hardening correction, possibly implying that its 
application has limitations.  
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4. Results and discussion 

 Loss of Information Due to Beam Hardening  4.1.

Beam hardening causes a variation in grey values, 
for the same material, due to variable X-ray 
attenuation: the extent of this is largely unknown 
because sample properties are initially unknown. This 
is circumvented by using phantom samples, with 
known properties, in the same scan, to indirectly 
evaluate beam hardening on the actual sample. Figure 
4.6A shows a longitudinal image of the hematite 
stepped-wedge sample with the specularite vein. From 
Figure 4.1 it is evident that the specularite vein is 
pervasive; however, it is apparent from the XCT 
images of the same sample (Fig. 4.6A) that the vein is 
only observable from 4 to 24mm but, due to beam 
hardening, apparently disappears in increasingly 
thicker increments 

 Porosity Information 4.2.

To further understand the effect of beam hardening, 
porosity information was quantified at different X-ray 
energies. Porosity information was derived from pore 
grey values within the 4mm increment to minimize 
errors that might result from thicker parts of the 
sample. In samples that are not affected by beam 
hardening the pore grey value is selected by using the 
average grey value of all the pores within the sample 
because they have a similar variation of grey values. 
The selection of the average pore grey value was 
guided by utilising the partial volume effect technique 
of the two component system (pore and hematite) that 

represents a clear boundary between the two 
materials.  

Figures 4.6B and 4.6C shows the quantified 
maximum pore volume within the specularite vein 
before and after beam hardening correction to 
demonstrate the loss of information. The vein was ring-
fenced or isolated for each thickness increment, in 
order to evaluate the loss or decrease in pore volume 
for its maximum detectable pores.  An increase in pore 
volume was observed with increasing thickness 
increments (Fig. 4.6B and 4.6C) and this does not 
represent the disappearance of the vein phenomena 
that is observed on Fig. 4.6A. This is one of the errors 
introduced by beam hardening because the 
disappearance of the vein suggests that the quantified 
maximum pore volume should decrease with 
increasing thickness increments. The disappearance of 
the vein also gives an indication of what happens to 
the low density minerals especially those that are 
represented by only a few pixels. Figures 4.6B and 
4.6C also shows consistency of the quantified 
maximum pore volume within the 4mm thickness 
across all the X-ray energies as compared to 14 and 
24mm thickness before and after beam hardening 
correction was applied. Porosity information also 
shows consistency within the 4mm thickness 
increment, with a maximum of 1.21% difference 
between no beam hardening and beam hardening-
corrected images (Fig 4.7A and 4.7B), eliminating the 
need for such a correction. However, for 14, 24, 34 and 
47mm thicknesses increments with a maximum 
percentage difference in porosity of 11.39%, 7.32%, 
10% and 23.37% respectively, were observed. 
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Fig 4.5. (a) to (e) show line profiles for different thickness increments of the hematite stepped-wedge before the beam 

hardening correction was applied, and (f) to (j) shows line profiles after beam hardening correction was applied. 

 Beam Hardening Evaluation Method 4.3.

Beam hardening was evaluated by positioning an 
aluminium standard sample, with an internal pore 
diameter of 2mm and surface area of 3.142mm

2
, 

behind the stepped-wedge sample (Fig. 4.8). The 

protruding top part of the aluminium standard sample 
provided a standard reference. The selected average 
pore grey value for the protruding part of the aluminium 
is selected similarly to the average pore grey value of 
the 4mm thickness of the hematite stepped-wedge. 
The  
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Fig 4.6. (a) Longitudinal image slice of the stepped-wedge showing the loss of information with increasing sample thickness, 

(b) The variation of quantified maximum pore volume of 4, 14 and 24mm thickness at different X-ray energies before beam 

hardening correction was applied, and (c Quantified maximum pore volume after beam hardening correction was applied. 

 

Fig 4.7. (a) Porosity information of different stepped-wedge thicknesses and different X-ray energies before the beam 

hardening correction was applied, and (b) Porosity information after the beam hardening correction was applied. 

known internal surface area was compared to the 
calculated surface area in each image slice, for the 
region outside the hematite sample, and for each 
thickness increment of the stepped-wedge. To simplify 
the pore surface area measurements, the aluminium 
standard sample was cropped and isolated from the 
background as pore and background grey values are 
very similar. The beam hardening artefacts for each 
thickness was evaluated by means of error analysis 
(using the percentage error formula) to evaluate the 
quality of the scan of the hematite sample.  

Figures 4.9A and 4.9B show the quantified pore 
surface area for each slice of the aluminium standard 
sample across each thickness increment of the 
hematite stepped-wedge sample, at different X-ray 
energies. The quantified pore surface area for the 
aluminium region outside of the stepped-wedge is re-
positioned to 0mm thickness for both Figs. 4.9A and 
4.9B. The horizontal lines are positioned at 3.142 mm

2
 

to show the deviation of the expected pore surface 
area from the measured pore surface area. Only the 
pore surface area of the protruding portion of the 
aluminium standard sample and the 4mm thickness 
increment show good agreement, before and after 
beam hardening correction. From the 14 mm to 47mm  

 

Fig. 4.8. Shows the positioning of the aluminium 

standard samples in order to indirectly evaluate the 

impact of beam hardening for each thickness.
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Fig 4.9. (a) and (b) Shows the calculated pore surface area of the aluminium standard sample before and after the beam 

hardening correction was applied, and (c) and (d) show the variation of the scan quality due to increasing sample thickness. 

thickness increment there is an increase in calculated 
pore surface area, for each X-ray energy, both before 
and after beam hardening correction. The increase in 
pore surface area represents the amount of noise 
present due to progressive beam hardening with 
increasing thickness increments, causing deviation of 
calculated pore surface area from expected pore 
surface area. The comparison of calculated pore 
surface area with the expected one represents an 
indirect but practical way of evaluating the effect of 
beam hardening for each thickness of the hematite 
sample. It was observed that correlation between 
calculated and expected surface areas was optimal 
when the %Error was less than 10%, as shown on 
Figs. 4.9C and 4.9D. Any %Error greater than 10% 
results in inconsistent porosity information with larger 
percentage differences. This means that the quantified 
porosity and maximum pore volume between 14 and 
47mm thickness increments cannot be used. This is 
due to %Error equal to or greater than 20%, and is 
reflected by diminishing pore information within the 
vein at 14 and 24mm thickness and complete loss of 
the vein information from 34 to 47mm thickness. 

  The Application of the Aluminium Standard Sample to 4.4.

Different Sample Geometries 

The effectiveness of the aluminium standard 
sample was further evaluated by scanning it together 
with different sample geometries (cylindrical, half 
cylinder and quarter cylinder) of apatite-magnetite ore. 
The aluminium standard sample was positioned along 
the thicker part of all the sample geometries to 
evaluate the impact of beam hardening with respect to 

sample geometry or size. Based on results in Fig. 4.10 
it is clear that the %Error decreases with decreasing 
sample size after beam hardening correction was 
applied as would be expected. The aluminium region 
outside all the samples was from 100 to 170 slice 
numbers and slice numbers greater than this 
represents the sample from top to bottom. For full and 
half cylinder samples the %Error is higher than 10% 
before and after beam hardening correction was 
applied. This means that the data does not contain 
enough information for further quantification of the 
volume size and shape of pores and low density 
minerals. It is only at 180keV for the half cylinder 
sample that different parts of the sample showed 
%Error less or equal to 10% after beam hardening 
correction was applied. This means that these sample 
regions can be extracted for further analysis. A 
significant improvement in %Error was observed for 
the quarter cylindrical sample with %Error less than 
10% between 140 and 180keV before and after beam 
hardening correction was applied.  The application of 
the aluminium standard sample demonstrated its 
effectiveness to determine regions of samples affected 
by beam hardening which means it can also be used to 
assess other dense sample types. 

Due to the effectiveness and the easy application of 
the aluminium standard sample to determine if the 
sample is quantifiable it can be easily paired with the 
beam hardening correction method developed by 
Ketcham and Hanna (2014). This is an adaptive 
method that applies a variable correction based on the 
degree of beam hardening, although it requires  
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Fig 4.10. (a) to (f) Shows the scan qualities of full, half and quarter cylinder of the apatite-magnetite sample before and after 

beam hardening correction was applied. 

an experienced instrument scientist to identify sample 
areas that are affected by beam hardening. The main 
advantage of this method is that it allows for 
quantification of the %Error providing a clear indication 
of the degree of beam hardening throughout the 
sample. The %Error greater than 10% is an indication 
that beam hardening artefacts exist and the correction 
of this adaptive method can be applied such that the 
%Error is less than 10%. 

5. Conclusions 

Beam hardening artefacts remain a significant 
problem in the scanning of high density samples by 
XCT. This is compounded when the full extent of 
information loss as a result of beam hardening is 
unknown, particularly when scanning high density and 
complex ore samples. This paper presented a 
methodology to indirectly determine the impact of 
beam hardening on sample information loss by utilising 
a specially manufactured cylindrical aluminium 
standard sample. The quantification of the %Error (a 
measure of the loss of information) was correlated with 

the hematite stepped-wedge sample to determine the 
sample thickness that results in loss of sample 
information (porosity and mineralogy). The key steps of 
the method are: (i) Scan the dense sample together 
with an aluminium cylindrical sample that has an 
internal, single pore, (ii) Scan the sample at different X-
ray energies to determine the optimal X-ray energy for 
scanning and determine the impact of beam hardening 
and consistency of sample information (porosity in this 
case),(iii) Quantify the pore surface area of the 
aluminium standard sample to determine the deviation 
between calculated pore surface area from expected 
pore surface area, and (iv) Calculate and utilise the 
%Error to determine the degree of beam hardening on 
sample information. A %Error greater than 10% results 
in inconsistent sample information that cannot be 
compared at different X-ray energies, indicating loss of 
sample information. A %Error greater than 20% 
indicates substantial loss of sample information due to 
the presence of stronger beam hardening artefacts.  

With this approach an optimal sample size for 
dense ore samples was determined and found to be 
associated with the quarter sample because it is the 
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smallest sample compared to the full and half ore size. 
The half cylinder sample also had sample regions that 
had %Error less than 10% at 180keV after a beam 
hardening correction was applied, which means that 
those regions can be isolated and used for further 
analysis. Although a circular geometry is often 
assumed to give the best results, this is actually only 
valid if the circular geometry is monomineralic. The 
results of this study indicate that it is the absolute size 
of the sample that is critical and not necessarily the 
geometry of the sample since the quarter-core gave 
acceptable %Error values. The evaluation of %Error as 
a function of sample size therefore provides in-depth 
information with respect to the degree of beam 
hardening. The utilisation of an aluminium standard for 
beam hardening evaluation is practical, easily 
applicable and effective. This method can also be used 
to evaluate the effectiveness of different beam 
hardening correction methods to correct grey value 
variation in different high density ores and test the 
ability of these methods to recover the lost information 
by using the %Error as a guideline. 
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Supplementary Notes on Beam Hardening 

These supplementary notes have been added to provide better context about the impact of beam hardening on 

highly attenuating samples. The filter materials were applied to minimise the impact of beam hardening. Thereafter, 

the signal-to-noise ratio, line profiles, porosity information and %Error were evaluated to further understand the impact 

of beam hardening 

Application of Filter Materials  

To minimise the impact of beam hardening in this case a combination of 1mm aluminium + 1mm copper filters were 

used.  

Signal-To-Noise Ratio 

The signal-to-noise ratio (SNR) describes the detectability or quality of the grey values to represent a mineral using 

the ratio between the mean grey value (signal) and standard deviation (noise). The SNR was measured on each 

thickness of the hematite stepped-wedge sample (4 mm, 14 mm, 24 mm, 34 mm and 47 mm). The stepped-wedge 

sample was scanned at different X-ray energy spectrums (Figure 4.1). This was done to determine the quality of the 

scans for each X-ray energy spectrum by using the SNR. The SNR was determined by selecting a region of interest 

(ROI) on the hematite region away from the pores in order to evaluate regions of the sample with the highest 

concentration of hematite to better understand the impact of beam hardening. As expected the SNR was the highest 

for the 4mm thickness of the sample across all the X-ray energies after beam hardening correction factor was applied, 

Figure 4.4c.  

Line Profile 

Even though the SNR was high for the 4mm thickness of the stepped-wedge as compared to other thicknesses the 

impact of beam hardening is still unknown. To further understand this artefact the line profiles were constructed across 

each thickness of the hematite stepped-wedge. The line profiles were compared before and after the beam hardening 

correction was applied, Figure 4.5. The line profiles for the 4mm thickness of the stepped-wedge show pronounced 

beam hardening as demonstrated by the curved line profiles or rather a larger variation of grey values (Figure 4.5a). 

However, after the impact of beam hardening was corrected, horizontal line profiles were obtained. This indicates that 

the grey values for the 4mm hematite stepped-wedge were corrected as expected (Figure 4.5f). But for thicknesses 

above 4mm the line profiles demonstrated the complex nature of beam hardening which was shown by grey value 

overlap of the line profiles for all the thicknesses and X-ray energy spectrums. It is important to note that the grey 

values for each line profiles were not calibrated to represent the linear attenuation coefficient of hematite for each X-

ray energy spectrum but rather observe how the impact of beam hardening affects each thickness of the hematite 

stepped-wedge.  

Specularite Vein 

Although specularite has the same sample properties as hematite on an XCT image, the specularite vein appears 

differently on the images. This is due to the porous nature of the specularite. Analysis of Figure 4.4a shows that 

specularite grains have the same grey values as hematite. To further demonstrate the complexity of beam hardening, 

Figure 4.4a show a vertical cut-through slice that demonstrate clearly how each thickness is affected by the impact of 

beam hardening. The impact of beam hardening is well illustrated by the disappearing specularite vein and the 
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decreasing SNR as the thickness of the hematite stepped-wedge increases even after beam hardening is corrected 

(Figure 4.4a and c). However, this is not a true reflection of the sample information because the specularite vein 

bisects the whole sample. Additional images are provided below to demonstrate that the specularite vein does in fact 

cut continuously through the entire sample (Figure 4.A). 

 

Fig 4.A. Stepped-wedge sample cut from a natural piece of hematite ore with a specularite vein bisecting the entire sample 

Quantification of Pore Volume and %Porosity Information 

Beam hardening can affect the quantification of sample information. This is demonstrated by quantifying the 

maximum pore volume and %porosity information within the stepped-wedge sample. The only reliable and consistent 

quantified maximum pore volume was of the 4mm thickness of the stepped-wedge across all the X-ray energy 

spectrums (Figure 4.6b and c). The quantified %porosity information found to be in good agreement and consistent 

was also for the 4mm thickness of the stepped-wedge sample (Figure 4.7a,b). The thicker parts of the stepped-wedge 

showed inconsistent porosity information which made it impossible to determine the true porosity information of the 

sample.  

Utilisation of Aluminium Standard Sample 

The aluminium standard sample was used to determine the %Error that corresponded with a loss of sample 

information. To do this, the standard sample was placed behind the longest path of the stepped-wedge sample 

because the X-ray beam experiences more beam hardening as it passes through the sample. The aluminium standard 

sample had a 2 mm diameter pore with a cross-sectional area (referred to as the pore surface area) of 3.142mm
2
. The 

pore surface area was then quantified on the scanned aluminium cylindrical sample for each 2D image slice covering 

the length of the hematite stepped-wedge to be compared against the physically measured pore area of 3.142mm
2
 in 

order to quantify %Error as described in section 4.3 of this manuscript.  

Quantification of the %Error 

The %Error is defined as a comparison between the measured or quantified pore surface area of an aluminium 

cylindrical sample within the images against the expected pore surface area of 3.142mm
2
. The quantified pore surface 

area showed good agreement with the expected pore surface area of 3.142mm
2
 within the 4mm thickness of the 

stepped-wedge (Figure 4.9a and b). Beyond this thickness of the stepped-wedge, the quantified pore surface areas 

deviated largely from the expected pore surface area of 3.142mm
2
. This demonstrates the impact and the degree of 

beam hardening on each thickness of the stepped-wedge that translated to a loss of sample information. This was 
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indicated by %Error values larger than 10%.  The large variation of the %Error suggest that each thickness of the 

stepped-wedge requires a different mean grey value in order to quantify the porosity information. However, when 

quantifying porosity information in real samples only a single grey value is selected without knowing how much it 

overlaps with the grey values of other phases. This is demonstrated by Figure 4.6b and c where unreliable maximum 

pore volumes were found to be associated with the thicker parts of the stepped-wedge (above 4mm) due to mean grey 

value of the pores overlapping with hematite grey values. Recognition of this problem could only be achieved or 

observed by using the %Error approach as shown in Figure 4.9c and d.  
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A B S T R A C T  

The discrimination between minerals with similar linear attenuation coefficients is challenging 

when using X-ray computed tomography. This challenge is even more pronounced when 

dealing with samples that are associated with beam hardening. Beam hardening changes 

the grey value ratio and distribution between minerals that is supposed to represent the 

theoretical linear attenuation coefficient of minerals in an image. With the utilization of the 

dual energy subtraction method the discrimination between minerals with similar linear 

attenuation coefficient becomes possible. This method also requires that the sample should 

not be highly affected by beam hardening in order to maintain the grey value difference that 

represents the theoretical linear attenuation coefficient difference to optimize the 

discrimination between e.g. chalcopyrite and pyrite. In high density ores the method is limited 

because the grey value difference between chalcopyrite and pyrite is affected. This study 

presents a simplified dual energy method that uses a combination of the scanned data at 

lower X-ray energy together with a simulated image to improve the discrimination between 

chalcopyrite and pyrite in cases where the sample is affected by beam hardening. The 

method also minimizes the errors associated with the X-ray source that result in edge 

artefacts when using the traditional dual energy subtraction method.

 

1. Introduction 

The ability of conventional single-energy X-Ray 

computed tomography (XCT) to differentiate individual 

minerals is based on these minerals having a sufficient 

difference in X-ray attenuation that they manifest as 

different grey values (Aran et al., 2014). In a normal 

XCT (XCT systems with X-ray energy spectrum ~ 

200keV), the total attenuation is a combination of the 

photo-electric effect and Compton scattering 

interactions. The relative contribution of these 

interactions to the total attenuation is energy 

dependent and a function of the atomic number and 

density of the materials involved (Aran et al., 2014; 

Rebuffel and Dinten, 2006). For minerals with similar 

densities and linear attenuation coefficients, single 

energy XCT will struggle to differentiate these minerals 

(Fessler et al., 2002). This is due to the fact that 

single-energy XCT scanning provides quantitative 

information based on linear attenuation coefficient of 

the closely related minerals even if there is a 

difference in effective atomic numbers between the 

minerals (Iovea et al., 2006). However, dual energy is 

able to discriminate minerals or structures with similar 

densities but different elemental compositions based 

on their atomic number and density (Aran et al., 2014; 

Rebuffel and Dinten, 2006).  

The dual energy method uses two X-ray energy 

spectrums at both low and high X-ray energy spectrum 

(Forghani et al., 2017; Foust et al., 2018; Noguchi et 

al., 2017; Obaid et al., 2014; Stenner et al., 2007; 

Taguchi et al., 2018). The technique requires that the 

two X-ray energy spectrum measurements be acquired 

in identical geometry in order to allow their numerical 

combination (Rebuffel and Dinten, 2006). The method 

can be implemented in either dual or single exposure 

depending on the system design. The dual exposure 

technique is the most common in a normal XCT 

laboratory. The single exposure technique uses two 

detectors separated by an intermediate filter and the 

front detector records the low energy photons whereas 

the one at the back records high energy ones 

(Rebuffel and Dinten, 2006). In contrast, the dual 

exposure technique acquires two images successively 

using voltage tuning associated with the use of filters 

placed behind the generator. This method is efficient in 

terms of energy separation but assumes that the 

object is static and it is implemented using 2D 

detectors. The disadvantage of using 2D detectors is 
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that they are affected by scattered X-ray beams that 

affects the accuracy of the detected X-ray beam. 

The dual energy technique has shown promise for 

various applications including rock characterization for 

petro-chemical industrial applications (Wellington and 

Vinegar, 1987), soil sample analysis in agriculture 

(Cruvinel and Balogun, 2000), explosives detection 

(Roder, 1979), and radioactive waste characterization 

(Robert-Coutant et al., 1999). However, when 

considering a specific problem the dual energy 

technique may or may not be applicable depending on 

the complexity of the problem (Rebuffel and Dinten, 

2006). Considering its successful applications in the 

various fields mentioned above, the dual energy 

technique has the potential to characterize and 

discriminate minerals with similar densities for minerals 

processing purposes. Some of the minerals of interest 

occur within the more dense ores which induces beam 

hardening due to the polychromatic nature of the X-ray 

energy spectrum of most lab based systems. This 

artefact therefore leads to reconstructed volumes with 

distorted attenuation coefficients of the minerals of 

interest that limits the application of the XCT lab-based 

systems using single X-ray energy spectrum. The most 

common approach to minimize beam hardening is 

through a mathematical correction or a more simpler 

approach, with the use of a physical correction (Iovea 

et al., 2006). There are various other ways to correct 

for beam hardening artefact as summarized in Bam et 

al. (2019). However, it has been shown that the high 

impact of beam hardening can lead to a loss of sample 

information when scanning high density ores which 

affects the true representation of the sample properties 

(Bam et al., 2019) and this can affect dual energy 

results. 

This study proposes a new and simplified dual 

energy method that discriminates high density phases 

with similar attenuation coefficients. The method takes 

advantage of a smaller difference in attenuation 

coefficients at the lower X-ray energy spectrum to 

obtain the scanned information, and a similarity in 

attenuation coefficient at a higher X-ray energy 

spectrum to obtain a simulated image. This optimizes 

the applicability of the dual energy method to dense 

samples affected by beam hardening. The proposed 

method (1) incorporates calibration samples for data 

validation and to improve the accuracy of the 

quantified information, and (2) eliminates unwanted 

errors associated with the X-ray source that uses a 

filament to generate X-ray energy spectrums. The 

proposed method is based on the dual energy 

subtraction technique that involves subtraction of two 

volumes scanned at different X-ray energies. The 

method simulates one scanning condition and the 

other condition is obtained by conducting a real scan 

so that mineralogical information can be obtained in 

3D. The use of a simulated image provides faster scan 

turnaround times thereby addressing the timing issue 

that has been a problem for conventional dual energy 

methods (Fessler et al., 2002). The application of the 

method is demonstrated for the discrimination of 

chalcopyrite from pyrite, two minerals that have 

traditionally been difficult to differentiate using single-

energy XCT scanning.   

2. Methodology 

The simplified dual energy method relies on two 

scanning conditions: a) where there is a small 

discrimination in linear attenuation coefficient between 

two minerals at a lower X-ray energy spectrum; and b) 

where there is an overlap in linear attenuation 

coefficient at a higher X-ray energy spectrum. An 

overlap in the linear attenuation coefficient allows the 

minerals to be simulated in an image with the same 

grey value because they share the same linear 

attenuation coefficient. 

2.1. Simplified Dual Energy Method 

The simplified dual energy method relies on prior 

mineralogical information (density and chemical 

composition) in order to calculate the different linear 

attenuation coefficients of the minerals present within a 

sample (see chapter 2). This optimizes the sample 

information by selecting X-ray energies where there is 

a slight discrimination in the linear attenuation 

coefficient between minerals that share similar 

densities. 
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Fig 5.1. The linear attenuation coefficient distribution with increasing X-ray energy of chalcopyrite, pyrite and magnetite. 

 Linear Attenuation Coefficient of Minerals 2.1.1.

Most mineralogical information can be easily 

discriminated in terms of linear attenuation coefficients 

at a lower X-ray energy range due to the photoelectric 

effect interaction dominating at X-ray energies 

between 50 – 100keV (Ketcham and Carlson, 2001). 

However, these X-ray energies are usually associated 

with many image artefacts including noise and beam 

hardening which makes it difficult to conduct scans 

especially for high density samples. The linear 

attenuation coefficient of pyrite and chalcopyrite 

converges with increasing X-ray energy until around 

130keV and diverges with decreasing X-ray energy 

(Fig. 5.1). The proposed simplified dual energy method 

takes advantage of the similar attenuation coefficients 

of pyrite and chalcopyrite at 130keV. The minimum 

optimal X-ray energy is selected at 70keV because 

there is a small discrimination between pyrite and 

chalcopyrite. To optimize the discrimination between 

chalcopyrite and pyrite using the dual energy method, 

the second X-ray energy is selected at 130keV due to 

an overlap in the linear attenuation coefficient between 

the two minerals. This means the subtraction of the 

130keV scan from 70keV scan will result in an 

optimized discrimination of chalcopyrite from pyrite 

because the contribution of pyrite linear attenuation 

coefficient will be removed from the resultant scan or 

image slice. However, the set voltages on the XCT 

system would be 70kV and 130kV which produces X-

ray energy spectrums with effective X-ray energies of 

45.5keV and 61.3keV respectively (see chapter 2). 

The effective X-ray energy represents a 

monochromatic X-ray energy similar to that of the total 

energy spectrum. This effective X-ray energy is used 

to calculate the linear attenuation coefficient of a 

mineral as per chapter 2. The calculated linear 

attenuation coefficient does not take into consideration 

the impact of beam hardening due to high density 

nature of the minerals and the utilisation of a filter 

material. 

 The Generation of the Simulated Image 2.1.2.

The generation of a simulated image relies on the 

overlap in linear attenuation coefficient between 

chalcopyrite and pyrite 
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at 130keV. This means the grey values of the two 

minerals will be similar on an image due to similar 

attenuation coefficients. However, XCT produces a 

polychromatic X-ray energy spectrum at 130kV with 

effective energy of 61.3keV. Due to high density nature 

of pyrite and chalcopyrite the effective energy can be 

hardened or attenuated such that the linear attenuation 

coefficient of both minerals is that of 130keV. Due to 

this, the true and expected grey values of chalcopyrite 

and pyrite at 130kV are not known. The same applies 

for 70kV voltage with effective energy of 45.5keV that 

it can also be attenuated such that the effective energy 

is increased to 70keV. Therefore, to effectively obtain 

the grey value representation of pyrite and chalcopyrite 

at both 70kV and 130kV, a grey value calibration is 

needed. A calibration was conducted by scanning a 

chalcopyrite standard sample together with a known 

sample that contained both pyrite and chalcopyrite to 

obtain grey values that represents the resulting 

effective energy and linear attenuation coefficients of 

these minerals. The scans were conducted several 

times such that the subtraction of 130kV from 70kV 

scans resulted in an optimal discrimination of 

chalcopyrite from pyrite. Therefore, the relationship 

between chalcopyrite (minimum, mean and maximum) 

grey values at 130kV were compared to the 

chalcopyrite grey values at 70kV. This was done to 

obtain the grey value ratio that can be used to multiply 

the chalcopyrite grey values at 70kV in order to obtain 

the chalcopyrite grey value representation at 130kV 

without having to scan the sample. This information 

was then used to create a simulated image using 

ImageJ, a freely available software. To obtain the true 

dimensions of the simulated image, one of the images 

from the 70kV scan was used.   

Due to the polychromatic nature of the X-ray beam that 

resulted in a variation of grey values, only a maximum 

grey value was considered and added to the simulated 

image (Fig. 5.2). This was done to optimize the 

discrimination of chalcopyrite from pyrite by removing 

all the pyrite grey values including those that overlap 

with chalcopyrite when a simulated image is applied 

during the subtraction. This was also done to improve 

the overall image contrast of other  

 

Fig 5.2. (a) Simulated images representing pyrite and chalcopyrite grey values at 130kV and (b) Pyrite and chalcopyrite grey 

value distribution assuming a monochromatic X-ray beam. 

minerals with grey values higher than that of 

chalcopyrite at 70kV. The simulated grey value also 

assumes a monochromatic X-ray beam that results in 

the same attenuation coefficient of chalcopyrite and 

pyrite with a standard deviation of zero between all 

grey values. The simulated image discriminated 

minerals based on their linear attenuation coefficient 

only, it does not calculate or discriminate minerals 

based on effective atomic mass. 

2.2. Samples 

Four sample sets were used to test the applicability 

and effectiveness of the proposed and simplified dual 

energy method. The first sample was a Witwatersrand 

basin quartz conglomerate containing quartz (2.65 

g/cm
3
), muscovite (2.82 g/cm

3
), chlorite (3.2 g/cm

3
), 

feldspar (2.56 g/cm
3
), biotite (3.05 g/cm

3
), sphene 

(3.53 g/cm
3
), pyrite (5.01 g/cm

3
) and chalcopyrite (4.20 

g/cm
3
) (Nwaila et al., 2013). The second sample 

consisted of discrete chalcopyrite and pyrite mineral 

grains derived from the Witwatersrand basin ores, 

separated using heavy liquid separation techniques. 

The third sample was an apatite-magnetite iron ore 

sample consisting of magnetite (5.18 g/cm
3
), 

ferromagnesian silicates, mica and amphibole (3.1 

g/cm
3
), apatite (3.2 g/cm

3
), Na-feldspar (2.65 g/cm

3
), 

pyrite (5.01 g/cm
3
) and chalcopyrite (4.20 g/cm

3
) 

similar to samples used by Lund (2013). The fourth 

sample was a 4 mm piece of hematite sample 

(5.26 g/cm
3
). An additional standard chalcopyrite 

sample was used as a calibration sample in order to 

optimise the discrimination between chalcopyrite and 

pyrite during the dual energy subtraction analysis. All 

the samples were further analysed and confirmed by 

SEM-EDS and QEMSCAN analysis. However, the 

QEMSCAN blocks were not used for scanning due to 

the smaller grain sizes of pyrite and chalcopyrite which 

require high resolution. 

2.3. X-ray Source Calibration 

The X-ray source is one of the most important parts 

of the XCT system because it determines the 
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resolution capabilities. It is contained within the NIKON 

XTH 225 ST system based at 

the South African Nuclear Energy Corporation (Necsa) 

in the Microfocus X-ray Radiography/Tomography 

(MIXRAD) facility and the capabilities of this system 

are described by (Hoffman and de Beer, 2012). The 

source is capable of generating a voltage range from 

30 up to 225 kV whilst the current ranges from 0 to 1 

mA. The spot size where the X-rays are generated is 

around ~3.7 µm to provide relatively high resolution 

capability for various sample applications. The X-ray 

source uses a filament to produce electrons that 

interact with the tungsten target in order to generate X-

rays. The filament has a lifetime which is determined 

by the frequently used X-ray voltage and is quickly 

depleted when high X-ray voltages > 150kV are used 

which makes it last for about 90 to 100 hours of 

scanning time.  

For every filament change, an alignment of the X-

ray beam is conducted which determines the quality of 

an image in terms of sharpness and consistent 

distribution of the X-ray flux across all the image 

pixels. To ensure optimal quality of the beam, the 

beam is aligned at three different X-ray voltages with a 

minimum of 60kV and a maximum of 225kV. The 

alignment at minimum X-ray voltage is done using both 

physical and electronic alignment. The other two X-ray 

voltages are only aligned electronically and then 

interpolated in order to incorporate all other X-ray 

voltages. The X-ray beam x and y-axis centre position 

can change for each X-ray energy during this 

interpolation process and this can limit the application 

of the dual energy technique even though the sample 

is stationary. For optimal application of the dual energy 

technique it is important that the X-ray beam maintains 

its centre position for all the X-ray voltages. Figure 5.3 

shows two images of a tungsten cross scanned at 

70kV, 130kV and the resulting image after subtraction 

that determines the reliability of the resulting image to 

discriminate sample information that requires dual 

energy application. The tungsten cross was used to 

align and focus the beam and evaluate the geometrical 

subtraction to determine possible errors associated 

with the X-ray beam. Figure 5.3C shows that the X-ray 

beam moved in both the x and y-axis direction during 

the voltage switching from 70kV 

 

 

 

 

 

 

 

Fig 5.3. Tungsten cross used for X-ray beam alignment at (a) 70kV, (b) 130kV and (c) the resulting image to evaluate the X-

ray beam position at both energies. 
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Table 5.1. 

Scanning conditions for all the sample 

Sample Condition 
 

Voltage (kV) Resolution (µm) 

Witwatersrand basin quartz conglomerate a  70 130 4.54 

b  70 130 4.54 

c  70 130 13.09 

Discrete pyrite and chalcopyrite mineral 

separates 
a 

 
70 130 4.54 

Apatite magnetite iron ore a  70 130 4.54 

 

to 130kV resulting in bright edge artefacts. This 

means that the scanned data has to be further 

processed in order to merge the reconstructed 

volumes to minimize the edge artefacts. This also 

means that an understanding of the capabilities 

together with the limitations of an XCT system are 

important in order to optimise its full operation. The 

lack of this understanding will limit the capability of the 

XCT system for dual energy application because the 

limitations or errors associated with the X-ray source 

are not well understood 

2.4. Scanning Conditions 

All the samples were scanned at 70kV (147µA, 4 

seconds, 2000 projections, 0.25mm copper filter) and 

130kV (67µA, 2 seconds, 2000 projections, 0.25mm 

copper filter). All the scans were reconstructed using 

CT Pro 3D reconstruction software. The software was 

also used to minimise the impact of beam hardening 

by applying a beam hardening correction factor of 

three. The VG Studio software version 3.2 was used to 

merge the reconstructed volumes obtained at both 

70kV and 130kV. The conducted analyses are based 

on sample information only and excludes the 

background information. The samples were scanned 

together with the chalcopyrite standard sample for 

chalcopyrite grey value calibration after dual energy 

subtraction. The Witwatersrand basin rock sample was 

used to test the capability of the system to discriminate 

chalcopyrite from pyrite and also test the limitations of 

the dual energy method. The sample was subjected to 

three different conditions: a) when the X-ray beam is 

properly aligned; b) induced unsharpness of the X-ray 

beam; and c) experimentally inducing additional beam 

hardening. For the properly aligned X-ray beam 

condition, several scans were conducted and repeated 

until the discrimination of chalcopyrite was possible 

without the need to calibrate grey values. This was 

done in order to understand the relationship of 

chalcopyrite and pyrite grey values that represent the 

linear attenuation coefficient at both 70kV and 130kV 

without calibrating the grey values. The scans with 

induced unsharpness were conducted to evaluate the 

impact of unsharpness on the discrimination of 

chalcopyrite from pyrite. The scans with induced beam 

hardening were conducted by including a 4 hematite 

sample when scanning the Witwatersrand quartz 

conglomerate. The 4 mm hematite 
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sample was not used as a filter but formed part of the 

Witwatersrand basin rock sample and rotated with it 

during scanning. The grey value relationship of pyrite 

and chalcopyrite that represent the linear attenuation 

coefficient on the first condition was applied to the 

second and third conditions in order to optimize the 

discrimination of chalcopyrite from pyrite. Table 5.1 

shows the scanning conditions for all the samples and 

in particular the difference in resolution of the beam 

hardening induced scans due to the incorporated 4 

mm hematite sample. All the dual energy results 

obtained from 70kV and 130kV scans were compared 

with the dual energy results obtained from 70kV scans 

and 130kV simulated image. 

3. Results 

3.1. Dual Energy 

This section assesses the factors affecting the 

application of dual energy method. The ability to 

minimize each factor is compared between the normal 

dual energy subtraction and the simplified dual energy 

subtraction method presented. 

 Beam Alignment 3.1.1.

The variation in grey values between chalcopyrite 

and pyrite when scanned at 70kV and 130kV voltage is 

shown in Fig. 5.4A and B. At 70kV, the pyrite and 

chalcopyrite grains are not easily differentiated 

because of their overlapping grey values and this is 

observable in their broader grey value peak (Fig. 5.5). 

This is due to the fact that the effective X-ray energy of 

45.5keV (70kV) is attenuated such that the linear 

attenuation coefficient of pyrite and chalcopyrite is 

equivalent to that of 70keV. The expected linear 

attenuation coefficient difference between pyrite 

(7.47cm
-1

) and chalcopyrite (9.19cm
-1

) at 45.5keV is 

18.71% which is enough to render discrimination. 

However, at 70keV the linear attenuation coefficient 

difference between pyrite (2.61cm
-1

) and chalcopyrite 

(2.73cm
-1

) is 4.4% which results in significant grey 

value overlap making it difficult to discriminate the 

minerals. The considered grey value information for 

pyrite and chalcopyrite in Figure 5.5 excludes the 

chalcopyrite standard sample. The discrimination 

between the grey values is even more difficult at 

130kV because they share a similar attenuation 

coefficient as shown by the narrow peak of pyrite 

 

Fig 5.4. Witwatersrand basin quartz conglomerate sample scanned at (A) 70kV, (B) 130kV and (C) the discrimination of 

chalcopyrite from pyrite grains through dual energy subtraction method. 

 

 

Fig 5.5. Distribution of peak positions for quartz, pyrite and chalcopyrite at 70kV and 130kV with optimized X-ray beam 

alignment. 
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Fig 5.6. (a) Witwatersrand basin quartz conglomerate scanned at 70kV, (b) Simulated grey values of pyrite and chalcopyrite 

at 130kV and (c) Dual energy subtraction result. 

 

and chalcopyrite at 130kV (Fig. 5.5). The narrow peak 

represents a highly attenuated X-ray beam with linear 

attenuation coefficient difference < 1% between pyrite 

(0.947cm
-1

) and chalcopyrite (0.949cm
-1

) at 130kV. 

This means that the linear attenuation coefficient of 

pyrite and chalcopyrite is that of 130keV energy. This 

is different from the expected linear attenuation 

coefficient difference of 10.65% between pyrite 

(3.69cm
-1

) and chalcopyrite (4.13cm
-1

) at 61.3keV 

effective energy. The narrow peak contains grey 

values responsible for removing the pyrite grey values 

on the 70kV image during the dual energy subtraction 

method using the scans. The grey value peak 

positions for both pyrite and chalcopyrite at 70kV and 

130kV represents the attenuation coefficient behaviour 

and the subtraction of the two images results in the 

discrimination of chalcopyrite from pyrite as shown in 

Fig. 5.4C. However, the subtraction of the two images 

resulted in a small edge artefact even after the volume 

data was aligned and merged. The edge artefact can 

lead to the misinterpretation or over estimation of the 

resulting chalcopyrite grain sizes. 

The 70kV scan was also processed using the 130kV 

simulated image Fig. 5.6(A and B). The subtraction 

between an image slice acquired at 70kV and a 

simulated image also resulted in the discrimination of 

chalcopyrite from pyrite (Fig. 5.6C). However, the 

resulting chalcopyrite particle surface area in Fig. 5.6C 

is 38% smaller as compared to the chalcopyrite grain 

or particle surface area in Fig. 5.6A. This is due to the 

utilised single grey value of the simulated image after 

dual energy subtraction which removes all 

intermediate grey values between pyrite and 

chalcopyrite, Fig.5. 6C. 

 Unsharpness 3.1.2.

The scanned data with induced unsharpness was 

calibrated based on the chalcopyrite standard sample 

grey values (Fig. 5.5) in order to optimise the 

discrimination between chalcopyrite and pyrite. Figure 

5.7 (A and B) shows the Witwatersrand quartz 

conglomerate scanned at 70kV and 130kV and shows 

the dual energy result after subtracting the 130kV scan 

from the 70kV scan and, the 130kV simulated image 

from the 70kV scan. The discrimination between 

chalcopyrite and pyrite in both cases is difficult. This is 

evident in their grey value distribution at both X-ray 

voltages (Fig. 5.8). The dual energy subtraction using 

the 70kV and 130kV scans (Fig. 5.7C) could not 

discriminate chalcopyrite from pyrite. However, the 

dual energy subtraction using the 70kV scan and a 

simulated image could discriminate between 

chalcopyrite from pyrite (Fig. 5.7D). This shows the 

importance of the simulated image especially in cases 

where the acquired scans cannot yield any meaningful 

results due to unsharpness present in both 70kV and 

130kV scans (Fig. 5.7C). The percentage difference 

between the detected chalcopyrite grain surface area 

in Fig. 5.7D is 40% smaller as compared to the original 

particle surface area in Fig. 5.7B. 

 Beam Hardening Artefacts 3.1.3.

The Witwatersrand quartz conglomerate with 

experimentally induce beam hardening demonstrates 

the impact of beam hardening on structural information 

(Fig. 5.9A to D). There is a clear difference in structural 

definition (cracks) before and after beam hardening 

was induced. The induced beam hardening also 

causes pixilation or rough textures within the sample 

structures. This is shown by the narrow peak 

distribution between quartz, pyrite and chalcopyrite 

peak at 70kV (Fig. 5.10). The quartz peak also shows 

two peaks as if there are two different minerals as 

compared to the narrow quartz peak at 130kV (Fig. 

5.10). The peak positions of pyrite and chalcopyrite at 

70kV also show a decrease in grey values as 

compared to the same peaks at 130kV. This was even 

after the samples ware calibrated the same as the 

samples shown in Fig.5.4 A,B that resulted in the 

discrimination of chalcopyrite  
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Fig 5.7. Witwatersrand basin quartz conglomerate scanned at (a) 70kV, (b) 130kV, (c) dual energy subtraction between 70kV 

and 130kV and (d) dual energy subtraction between 70kV and 130kV simulated image. 

 

Fig 5.8. Distribution of peak positions for quartz, pyrite and chalcopyrite at 70kV and 130kV influenced by misaligned X-ray 

beam. 

from pyrite after dual energy subtraction. This grey 

value peak distribution affects the dual energy 

subtraction due to the overall altered grey values of 

these minerals (Fig. 5.11A) where the dual energy 

subtraction using the 70kV and 130kV could not 

discriminate chalcopyrite from pyrite. The dual energy 

subtraction using the simulated image also could not 

discriminate between the internal chalcopyrite from 

pyrite, only a part of chalcopyrite standard sample 

could be detected Fig. 5.11B. The remaining 

chalcopyrite standard sample surface area is 68% 

smaller than its original surface area. 
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3.2. Application of Dual Energy to Different Samples 

The application of the dual energy subtraction 

method together with the utilization of the 130kV 

simulated image were further applied to two different 

samples. The first sample was the Witwatersrand 

discrete pyrite and chalcopyrite grains. The application 

of the dual energy subtraction method to the discrete 

pyrite and chalcopyrite grains resulted in discrimination 

of the chalcopyrite standard sample from pyrite but the 

image still suffered from the edge artefact (Fig. 5.12B). 

No chalcopyrite grains within the sample could be 

detected at that position. The dual energy subtraction 

using the simulated image also produced the same 

image result but with no edge artefact (Fig. 5.12C). 

Figure 5.12(A to C) and (D to F) show two different 

slice positions of the same sample. The dual energy 

subtraction method using the 70kV and 130kV scans 

was able to discriminate chalcopyrite from pyrite 

(Fig. 5.12E) but still resulted in edge artefacts. 

However, the dual energy method using the simulated 

method eliminated the edge artefacts (Fig. 5.12F). It 

can be clearly observed on Figure 5.12D that there are 

three big grains that look similar (bottom left, bottom 

right and top centre) but after the application of dual 

energy method the grain on the bottom left was 

removed (Fig. 5.12E and F). The remaining grains 

have the same grey values with the standard 

chalcopyrite sample. 

The second sample to be evaluated was the 

apatite-magnetite iron ore using the dual energy 

subtraction method. The chalcopyrite discrimination 

was also evaluated in different sample regions (Fig 

5.13A and D). The dual energy subtraction method 

was able to discriminate chalcopyrite (Fig. 5.13B) but 

the dual energy method using the simulated image 

detected more particles (Fig. 5.13C). For the second  

 

 

Fig 5.9. Witwatersrand basin quartz conglomerate 

scanned at (A) 70kV, (B) 130kV before induced beam 

hardening artefact and (C) 70kV and (D) 130kV after 

beam hardening has been induced experimentally. 

 

Fig 5.10. Distribution of peak positions for quartz, pyrite and chalcopyrite at 70kV and 130kV influenced by beam hardening 

artefact 
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Fig 5.11. (a) Dual energy subtraction of 70kV and 130kV scans and (b) dual energy subtraction of 70kV scan and 130kV 

simulated image. 

 

region of the sample, the dual energy subtraction 

method could not discriminate chalcopyrite (Fig. 

5.13E) due to the larger edge artefact that affects the 

discrimination of the smaller chalcopyrite particles. The 

utilization of the simulated image was able to 

discriminate chalcopyrite grains (Fig. 5.13F). In the 

case of the dual energy method using 70kV and 130kV 

scans the edge artefacts were still observable. 

However, the discrimination of magnetite from 

chalcopyrite was optimized by both the normal dual 

energy subtraction method and the simplified dual 

energy method. 

4. Discussion  

The dual energy results show the importance of 

understanding the system capabilities and the 

contribution of each component of the system towards 

quantifiable and reliable information. Dual energy is 

one of the methods that can be used to evaluate the 

systematic errors associated with the X-XCT system 

(X-ray source). In addition to this, is an understanding 

of the artefacts associated with the sample itself, which 

can limit its application to differentiation of minerals 

that share similar linear attenuation coefficients using 

the normal dual energy subtraction method.  

4.1. Impact of X-ray Source 

The application of the dual energy method using 

the scanning information where the X-ray source was 

optimally aligned was able to discriminate chalcopyrite 

from pyrite within the Witwatersrand basin quartz 

conglomerate sample (Table 5.2). But the method 

suffered from edge artefacts that result in the 

overestimation of the discriminated chalcopyrite 

particles. The edge artefacts show how difficult it is to 

properly align the X-ray beam, which affects the 

application of the dual energy subtraction method 

using the 70kV and 130kV scans. However, the 

utilization of the simulated image resolved the edge 

artefacts but resulted in a reduced particle surface 

area that is 38% smaller than its original particle 

surface area (Table 5.2). Table 5.2 summarises the 

advantages and disadvantages of the dual energy 

method using the scanned 
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Fig. 5.12. The Discrete pyrite and chalcopyrite mineral separates scanned at 70kV (a) and (d), processed with dual energy 

subtraction using 70kV and 130kV scans (b) and (e), and also processed with dual energy subtraction using a 70kV scan and 

130kV simulated image (c) and (f). 

 

 

Fig 5.13. Two different slice positions of the apatite magnetite iron ore scanned at (A) and (D) 70kV, (B) and (E) dual energy 

subtraction result using 70kV and 130kV scans and, (C) and (F) dual energy subtraction method using the 70kV and 130kV 

simulated image. 
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Table 5.2. 

Comparison between the experimental and experimental + simulated image result of the dual energy method  

  Experimental Result  Experimental + Simulated Result 

Sample Condition 
Chalcopyrite 
discrimination 

Artefact Duration  
Chalcopyrite 
discrimination 

Artefact Duration 

Witwatersrand 

basin quartz 

conglomerate 

Beam 

alignment 
Yes Edge 2 Scans  Yes 

Reduced surface 

area 
1 Scan 

Unsharpness No Edge 2 Scans  Yes 
Reduced surface 

area 
1 Scan 

Beam 

hardening 
No No detection 2 Scans  No No detection 1 Scan 

Pyrite 

chalcopyrite 

discrete grains 

Beam 

alignment 
Yes Edge 2 Scans  Yes 

Reduced surface 

area 
1 Scan 

Apatite-

magnetite 

sample 

Beam 

alignment 
Yes Edge 2 Scans  Yes 

Reduced surface 

area 
1 Scan 

 

data, and the scanned and simulated image. From 

Table 5.2 it is clear that the utilisation of a single scan 

together with a simulated image, is a major advantage 

of the simplified dual energy method as compared to 

the traditional dual energy method.  

The utilisation of the traditional dual energy method 

on the induced unsharpness scans did not result in 

discrimination of chalcopyrite from pyrite due to an 

overlap in grey values between chalcopyrite and pyrite. 

This also demonstrates how sensitive the traditional 

dual energy method is to changes in grey values. The 

utilization of the simulated image took advantage of 

the slight difference between chalcopyrite and pyrite 

grey values because it uses only a single grey value to 

discriminate the minerals but it resulted in a reduced 

chalcopyrite grain surface area (Table 5.2). 

4.2. Impact of Beam Hardening  

The utilization of the traditional dual energy method 

using 70kV and 130kV scans could not discriminate 

between chalcopyrite from pyrite due to heavily altered 

grey values at 70kV. The changed grey values gave 

an impression that the linear attenuation coefficients of 

chalcopyrite and pyrite are lower at 70kV as compared 

to 130kV and this is not true. This further shows that 

the impact of beam hardening also affects the true 

representation of grey values between chalcopyrite 

and pyrite which makes it difficult for the traditional 

dual energy subtraction method to discriminate the 

minerals. The application of the simulated image also 

could not discriminate smaller chalcopyrite grains 

(Table 5.2). However, the bigger chalcopyrite standard 

sample could still be observed after the subtraction 

was applied with a surface area difference of 68% 

when compared to the original surface area. This 

shows that beam hardening does change the grey 

values of the minerals within the sample but that the 

impact is not uniform which makes it difficult to 

discriminate minerals with similar attenuation 

coefficients. 

4.3. Application of Dual Energy 

Application of the traditional dual energy 

subtraction method resulted in effective discrimination 

in all three case studies. However, the method still 

suffered from the presence of edge artefacts due to 

errors associated with the X-ray source. The 

application of the simulated image was able to 

minimize this artefact (Table 5.2). In the case of the 

apatite-magnetite iron ore sample, use of the 

simulated image resulted in the detection of more 

chalcopyrite grains than the traditional dual energy 

subtraction method. This is thought to be due to larger 

edge artefacts that are within the grain size range 

resulting in the elimination of smaller grains during the 

dual energy subtraction. 

5. Conclusion 

XCT is a powerful technique capable of providing 

3D mineralogical and textural information. The 

capability of XCT to provide reliable and quantifiable 

information though requires a full understanding of the 

XCT system limitations. Understanding the limitations 

leads to appropriate method developments that 

minimize the system limitations in order to optimize 

and broaden the application of XCT. This is evident in 

the development and application of the simplified dual 

energy method that addresses limitations associated 

with the X-ray source. The method has the advantage 
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that it yields rapid dual energy results instead of the 

more time consuming method of scanning two sample 

volumes. The method is demonstrated by showing 

how chalcopyrite and pyrite can be discriminated in 

samples associated with beam hardening, where the 

traditional dual energy method struggles. This means 

that the method can be extended to various high 

density samples that are known to be associated with 

different levels of beam hardening. In particular, further 

study is needed to optimize the method in cases where 

the sample is highly affected by beam hardening.  
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A B S T R A C T  

X-ray computed tomography is increasingly used to visualize and quantify ore characteristics 

in 3D for a variety of minerals processing applications. The success of the technique to 

produce reliable data is a function of optimal scanning parameters, sample density and size 

especially when dealing with high density samples that are more subject to image artefacts. 

To assist with this there is a need to use a standard when scanning high density samples 

(with a specific gravity > 3.5) in order to improve the accuracy of the scan information by 

quantifying error’s due to beam hardening. In this study, the advantages of using an 

aluminium metal standard are demonstrated for the quantification of two different textural 

attributes in high density ores: (i) porosity information for iron ore and (ii) chalcopyrite grain 

size distribution in a polymetallic sulphide ore. The latter is also coupled with a newly 

developed ‘simplified’ dual energy method (Chapter 5). Data reliability is defined as %Error. 

Values below 10% indicate that the data is reliable whereas values above 10% means that 

there is a loss of information and the quantified information is unreliable as presented in 

Chapter 4. The quantified 3D porosity information of two different iron ore samples sets 

(Brazilian and South African) were extracted from sample regions where %Error was less 

than 10%. In the three Brazilian samples investigated, porosity was found to be 7.20, 1.70 

and 2.10%, while for the South African iron ore, a porosity of 3.20% was determined. The 

quantified porosity information is comparable with the QEMSCAN 2D data except for the 

South African ore where QEMSCAN gave a porosity of 0.85%. This difference is interpreted 

to be due to non-uniform distribution of porosity within that ore sample. Applying the same 

approach of only using data with a %Error of less than 10%, the chalcopyrite 3D grain size 

distribution determined using X-ray computed tomography showed similar grain size 

distribution patterns to conventional 2D QEMSCAN data with a larger difference in absolute 

grain sizes. Based on the above results, it is evident that X-ray computed tomography can 

provide accurate mineralogical information on high density ores for minerals processing 

purposes.

 

1. Introduction 

X-ray computed tomography (XCT) is increasingly 

used to visualize and quantify ore characteristics in 3D 

for a variety of minerals processing and metallurgical 

applications (Evans et al., 2015; Fagan-Endres et al., 

2017; Ghorbani et al., 2011; Lin et al., 2017; Miller and 

Lin, 2003; Miller et al., 1990). Of specific interest is its 

ability to characterise and quantify texture in 3D, where 

texture can be defined as the inter-relationship 

between the different mineral grains in the rock or 

particle. The success of the technique to provide 

textural information relies on the effective X-ray 

penetration. This is most easily obtained for small and 

low-density samples or samples that consist of a 

distinct variation in mineral densities. However, this is 

not the case when dealing with high-density ore 

samples because they are associated with beam 

hardening that results in image artefacts and therefore 

unreliable textural information, limiting the application 

of XCT. High density samples are defined here as 

those ores with a specific gravity greater than 3.5 that 

are typically comprised of high proportions of dense 

minerals such as the sulphides (e.g. pyrite, 

chalcopyrite, galena) and / or oxides (e.g. magnetite, 

chromite, hematite). Beam hardening occurs when the 

low energetic X-rays are absorbed more and high 

energetic ones are ‘hardened’ as they penetrate 
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through the sample. This results in an uneven grey 

value distribution of the same material or mineral 

depending on both its location within the sample as 

well as the distribution of other minerals around it. In 

most cases, it is difficult to overcome the issue of 

beam hardening by simply increasing the X-ray energy 

because the discrimination of most minerals with 

respect to the attenuation coefficient is more 

pronounced in the low X-ray energy range. This means 

prior sample mineralogical information is important to 

determine the attenuation coefficient of the minerals 

under investigation (see Chapter 2 and 3). Thereafter, 

the attenuation coefficient information can be used to 

determine the optimal scanning parameters in order to 

better discriminate the minerals of interest and 

minimize scanning artefacts (Bam et al., 2016).  

However, when dealing with high density ores, 

simply applying optimal scanning parameters is often 

insufficient because the extent of beam hardening is 

unknown and thus difficult to minimize. One of the 

simplest ways to minimize beam hardening for a given 

X-ray energy is to increase the X-ray flux. However, 

there is a spot size limitation that defines the 

resolution, and this puts a limit to the X-ray flux in 

order to maintain a true resolution (Lin et al., 2018). 

Other ways to minimize the impact of beam hardening 

are increasing either the exposure time or the number 

of projections or both (Lin et al., 2018) or utilizing a 

filter material (Bucher et al., 2016; Kheruka et al., 

2011). Although all of these methods are relatively 

useful in minimising beam hardening artefacts in XCT 

scan information, their effectiveness when applied to 

high density samples is still compromised because 

they do not completely remove the impact of beam 

hardening. This motivated the development of a 

standardisation procedure using an aluminium metal 

standard sample, specifically for application to high 

density samples (Bam et al., 2019). The utilization of 

the aluminium standard sample has been shown to be 

effective in identifying areas of the scanned volume 

where sample information has literally been ‘lost’ and 

cannot be recovered by any form of post-processing. 

The corollary to this is that it can also be used to 

determine the sample size associated with no loss or 

minimal loss of sample information due to beam 

hardening (Bam et al., 2019). This concept has been 

demonstrated by using the %Error (which is a 

comparison between the quantified pore areas of 

aluminium cylindrical sample within the images with 

the expected or known pore surface area) to evaluate 

whether a given sample volume is sufficient to provide 

an accurate representation of the ore characteristics 

(Bam et al., 2019).  

The dual energy method is also one of the methods 

that can be used to minimize the impact of beam 

hardening because it combines scanning information 

acquired at both low and high X-ray energy (Stenner et 

al., 2007). Chapter 5) propose a simplified dual energy 

method that uses scanned data acquired at a lower X-

ray energy and a simulated image for high X-ray 

energy to improve mineralogical discrimination.  The 

method was used to discriminate chalcopyrite from 

pyrite because they have similar attenuation 

coefficients. In the case of beam hardening, the 

scanned image and simulated image cannot be 

directly combined to discriminate the minerals. This is 

because different sample areas or information are 

affected differently by beam hardening at lower X-ray 

energy. However, quantification of the %Error using 

the aluminium standard sample can be used to identify 

usable sample information or regions for dual energy 

application to improve the accuracy of XCT to 

discriminate chalcopyrite from pyrite.  

The objective of this paper is to further demonstrate 

the application of the aluminium standard sample in 

combination with the new simplified dual energy 

approach, by using two case studies. Each of the case 

studies considers a high density ore and then 

evaluates the quantification of specific attributes of 

relevance to the handling and processing of the ore. In 

the first case study, the aluminium standard sample is 

applied to determine porosity in drill core of two 

different iron ore sample sets. The characterisation 

and quantification of 3D porosity (a component of iron 

ore texture) in the scanned XCT volumes is of 

relevance to the physical processing (including the 

lump to fines ratio, liberation, gravity concentration, 

desliming and transportation) (Fonteneau et al., 2013) 

as well as downstream metallurgical properties 

(including sintering and pelletisation) of these ores 

(Bhuiyan et al., 2013; Muwanguzi et al., 2012; 

Shatokha et al., 2010). The XCT technique has 

previously been used to study and quantify porosity in 

both iron ore drill core (rock) samples (Bam et al., 

2016; Fonteneau et al., 2013) as well as sinters and 

pellets (Bhuiyan et al., 2013; Muwanguzi et al., 2012; 

Shatokha et al., 2010). However, the quantification of 

porosity information has not been previously done on 

the ore samples themselves and hence it is not clear if 

the porosity information determined from the sinters 

and pellets is a true reflection of porosity in the 

unprocessed ores.  

In the second case study, the simplified dual 

energy method is applied to discriminate chalcopyrite 

from pyrite, and thereafter to quantify chalcopyrite 3D 

grain size distribution in a high density polymetallic 

sulphide ore. The quantification of grain size 

distribution (a component of ore texture) is important in 

terms of the inherent rock strength, its breakage and 

liberation properties including the nature of composite 

ore and gangue particles, as well as grade, recovery 

and selectivity during flotation (Cropp et al., 2013; 

Parbhakar-Fox et al., 2011). As such, the 

quantification of grain size distribution is a particular 

parameter of interest when investigating ore 

heterogeneity and establishing geometallurgical units 

(Fragomeni et al., 2005; Gordon et al., 2018). A 

number of studies have previously used XCT 
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technology to quantify grain size distributions in 3D 

particularly those intending to further understand the 

magnitude and effects of stereological error (Evans et 

al., 2015; Reyes et al., 2017; Wang et al., 2018). 

However, the determination of reliable information 

using XCT to provide 3D chalcopyrite grain size 

distribution information (GSD) has not been done on 

high density and complex ores in order to evaluate if 

the quantified GSD is a true reflection of an ore 

sample. 

2. Materials and Methods 

The approach used for the two case studies 

presented here, consists of first determining sample 

regions that are not associated with a loss of sample 

information according to Chapter 4 by quantifying the 

%Error. Bam et al., (2019) found that %Error values 

less than 10% are not associated with high impact of 

beam hardening that leads to a loss of sample 

information. Therefore to obtain the %Error information 

in this case, the standard aluminium sample was 

drilled using a drill bit of 1mm diameter that generated 

a known or expected pore surface area of 0.785mm
2
 

where pore surface area is defined as the cross-

sectional area of the pore perpendicular to the length 

of the pore. This pore surface area is then compared 

to the quantified pore surface area of the standard 

aluminium sample to obtain the %Error information. 

The %Error is basically a comparison or deviation 

between the quantified pore areas of an aluminium 

standard sample within the images against the 

expected or known pore area of 0.785mm
2
 (Bam et al., 

2019). Thereafter, the regions of low %Error are used 

to quantify porosity information in iron ore samples and 

measure the quantified chalcopyrite GSD in 

polymetallic sulphide ore samples. For both case 

studies, two dimensional automated SEM-EDS 

(QEMSCAN) techniques are used to complement and 

validate the results of the XCT scanning. 

2.1. Samples 

In both case studies, a combination of rock 

fragments and drill core samples were used. Case 

study 1 samples comprise a South African massive 

hematite sample (Sishen-type banded iron formation), 

as well as three Brazilian iron ore types (a compact 

coarse-grained hematite ore, a compact itabirite ore 

and a goethite ore). For case study 2, a sample was 

obtained from the magnetite dominated Upper Ore 

Body of the Swartberg polymetallic Cu-Pb-Zn sulphide 

ore in South Africa 

(Gordon et al., 2018). 6mm and 4mm diameter drill 

cores were prepared from these samples as 

summarised in Table 6.1. The required core diameters 

were determined using the approach outlined in 

Chapter 4 that determines the sample size associated 

with no loss of sample information due to beam 

hardening.  

2.2. QEMSCAN  

The various rock pieces and drill core samples 

were prepared into 30mm, epoxy-resin mounted 

polished sections which were coated with an 

EMITECH Quorum carbon coater. Special care was 

taken during the sample preparation procedure to 

ensure that no plucking took place and this was 

verified using a binocular microscope. Samples were 

thereafter analysed using an FEI QEMSCAN 650F 

instrument in the Centre for Minerals Processing at the 

University of Cape Town fitted with two Bruker SDD 

detectors operating at (25kV, 10nA) using the 

QEMSCAN field image analysis routine. Samples were 

run at 1500 µm field size with 15 µm pixel spacing. All 

data processing and results quantification was carried 

out using the QEMSCAN iDiscover software..  

2.3. X-Ray Computed Tomography 

All XCT scanning were conducted using a NIKON 

XTH 225 ST system based at the South Africa Nuclear 

Energy Corporation (Necsa) in the Microfocus X-ray 

Radiography/Tomography (MIXRAD) facility (Hoffman 

and de Beer, 2012). A total number of four samples 

were scanned with 2000 projections, 4 seconds 

exposure time, 130kV (iron ore samples) and 70kV for 

the polymetallic sulphide ore sample. All the samples 

were scanned together with the aluminium standard 

sample in order to quantify the %Error. For the 

polymetallic sulphide ore sample, a chalcopyrite 

standard sample was included to optimize chalcopyrite 

discrimination. A 0.25 mm copper filter was also used 

to remove the low X-ray energies associated with 

beam hardening artefacts. The scans were 

reconstructed and corrected for beam hardening using 

the CT Pro 3D . 
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Table 6.1 

Summary of the drill core samples analysed in Case studies 1 and 2.  

 

Details Description Core diameter 

   (mm) 

Case study 1 South African iron ore Massive banded iron formation 6 

 

Brazilian iron ore Compact Hematite - 6 

Compact Itabirite - 6 

Goethite 4 

Case study 2 
Swartberg Polymetallic Cu-Pb-Zn 

ore 
Upper ore body – magnetite dominated ore 6 

Table 6.2 

Scanning parameters for porosity quantification, optimization parameters and chalcopyrite discrimination. 

Parameter Settings Porosity Quantification Optimization Parameters Chalcopyrite Discrimination 

X-ray voltage (kV) 130 70 70 

Current (um) 77 143 143 

Exposure time (sec) 2 1 – 4 4 

Resolution (mm) 0.012 0.007 0.012 

No of projections 2000 2000 2000 

 

reconstruction software. The beam hardening 

correction factor of 3 was selected because it removed 

all the bright grey values on the edge of the samples. 

This result to reliable grey values that reflect the true 

mineralogical information of the sample. The data was 

then processed using VG Studio rendering software 

3.2 and the open source ImageJ software. 

2.3.1. Iron Ore Case Study 

The iron ore samples were scanned to evaluate the 

reliability and the applicability of the aluminium 

standard sample to quantify porosity information in 

these high density ores. The aluminium standard 

sample has a pore diameter of 1 mm in order to 

evaluate the quality of the data produced. This was 

done by quantifying the %Error for each and every 

image slice representing the entire volume. In order to 

do this the aluminium standard sample was placed 

behind each sample being scanned. The method is still 

applied even after the optimal sample size was 

determined because the quantification of sample 

information in high density samples is not straight 

forward and the extent of beam hardening is still 

unknown. All iron ore samples were scanned at 130kV 

(equivalent to an effective energy of 61.3keV) in order 

to minimize beam hardening artefacts as shown in 

Table 6.2 under the porosity quantification parameter 

settings column. However, the X-ray beam with 

effective energy of 61.3keV can be attenuated or 

hardened such that it is equivalent to 130keV due to 

the high density nature of the samples. The %Error of 

the scanned data was first quantified to determine if 

there is a loss of sample information before porosity 

information is quantified. 

2.3.2. Polymetallic Sulphide Ore Case Study 

Several preliminary scans of the polymetallic 

sulphide ore samples were conducted to determine 

optimal scanning parameters for chalcopyrite 

discrimination. The procedure to determine the optimal 

scanning parameters to obtain mineralogical 

information was adopted from Bam et al. (2016). The 

selected X-ray voltage to evaluate the applicability of 

the procedure was 70kV (equivalent to an effective 

energy of 45.5keV) based on the simplified dual 

energy method to discriminate chalcopyrite from pyrite 

grains (Bam et al., In preparation a). This effective 

energy can also be attenuated such that it is 

equivalent to 70keV. The sample was scanned 
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with varying exposure times to determine the optimal 

SNR (Table 6.2). The data set acquired at 4 seconds 

exposure time had the least amount of noise within an 

image as compared to data set acquired at 1 and 2 

seconds exposure time (Fig. 6.7A to C). Like the iron 

ore samples, 2000 projections were used to scan. 

These optimal scanning parameters were then used to 

scan the polymetallic sulphide ore sample. The sample 

was also scanned with the chalcopyrite standard 

sample to optimize the chalcopyrite grain 

discrimination. The dual energy method used to 

discriminate chalcopyrite from pyrite is adopted and 

described by Bam et al. (In preparation a). The method 

uses a simplified dual energy subtraction approach 

that relies on a single scanning condition at 70kV and 

a simulated image at 130kV. The resulting image grey 

values are then compared with the chalcopyrite 

standard sample to optimize chalcopyrite grain 

discrimination. 

3. Iron Ore Case Study 

3.1. Results  

Before the porosity information was measured, the 

average pore grey value was first determined using the 

partial volume effect of the two component system 

(pore and hematite/goethite) to determine the 

boundary between the minerals and pores. The %Error 

was then quantified to identify regions of the ore 

samples that are associated with a loss of porosity 

information due to beam hardening (Fig. 6.1A). The 

increasing slice numbers represents the sample from 

top to bottom and Fig. 6.1B shows one of the image 

slices of the sample. To improve image contrast in 

Figure 6.1B ImageJ free software was used to 

minimise the background information in order to 

optimise the discrimination between quartz, hematite 

and pores. The quantified %Error for all the image 

slices is less than 10% which falls within the range of 

%Error that is not associated with a loss of sample 

information. The highest %Error for the massive 

hematite is 6% which represents a region of the 

sample with less porosity. The sample regions with 

%Error values less than 2%, represent sample regions 

with the highest porosity information and this can be 

observed between slice number 1 to 50 and 220 to 

340 (Fig. 6.1A). This could also be observed from the 

frequency distribution of pore sizes where pores with a 

diameter ranging from 13 to 40 µm were between 10 to 

56% (Fig. 6.2). The total quantified porosity of the 

sample was 3.2 volume% across all the image 

 

Fig 6.1. (a) The distribution of the quantified %Error in each slice of the massive hematite ore sample and (b) Iron formation 

showing the presence of quartz and pores in the interstitial spaces of massive hematite ore (slice number 157). 
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Fig 6.2. Histogram of frequency of 3D pore diameter distribution within the interstitial spaces of the massive hematite ore 

sample. 

 

 

Fig 6.3. (a) The distribution of %Error for compact hematite and (b) 2D image slice of compact hematite (slice number 212) 
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Table 6.3 

Comparison of 2D and 3D porosity information of different 

iron ore samples. 

Sample 
XCT 

Porosity 

QEMSCAN 

Porosity 

 (%) (%) 

Massive 

hematite 
3.20 0.85 

Compact 

hematite 
7.20 5.30 

Compact 

itabirite 
1.70 1.10 

Goethite 2.14 2.00 

slices. The quantified 3D porosity is higher than the 

QEMSCAN porosity result which is 0.85% (Table 6.3). 

Similarly, the %Error was quantified for the compact 

hematite, compact itabirite and goethite ore samples 

from Brazil to evaluate the reliability of the quantified 

porosity information. For the compact hematite ore, the 

%Error was less than 6% for the entire sample (Fig. 

6.3A) with the majority of the regions less than 2% 

highlighting the porous 

character of the sample (Fig. 6.3B). The quantified 

total porosity in the compact hematite ore was 7.2%. 

The compact itabirite ore showed increasing %Error 

values from the top to the bottom of the sample 

(increasing slice numbers; Fig. 6.4A). The majority of 

the sample image slices, from 1 to 1359, have a 

%Error less than or equal to 10%,while from slice 1360 

to 1400 the values were higher than 10% due to more 

compact itabirite in those regions (Fig. 6.4B). Taking 

into account the above %Error information, the 

quantified 3D porosity for the compact itabarite was 

1.7%. The difference in porosity is also demonstrated 

by the relatively bigger pores in terms of diameter in 

the compact hematite compared to the compact 

itabirite pores (Fig. 6.5). The goethite ore sample also 

had quantified %Error values less than 10% for the 

entire sample with the majority of the images slices 

with %Error values less than 2% (Fig. 6.6A). The 

quantified total porosity of the sample was found to be 

2.14% (Fig. 6.6B). All the quantified porosity results for 

compact hematite, compact itabirite and goethite were 

compared with the QEMSCAN porosity results as 

demonstrated in Table 6.3. 

 

Fig 6.4. (a) The distribution of %Error for compact itabirite, (B) 2D image slice (slice number 311) and (C) 2D image slice 

(slice number 433) of compact itabirite. 
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Fig 6.5. Histogram of frequency of 3D pore diameter distribution of compact itabirite and hematite with minimum pore size of 

15 µm. 

 

Fig 6.6. (a) The distribution of %Error for goethite and (b) 2D image slice of goethite. 

 

3.2. Discussion 

The low %Error for the massive hematite sample 

showed that the sample is minimally affected by beam 

hardening and hence the quantified porosity 

information for the sample is a true reflection of the 

sample and is reliable. The big difference between 2D 

and 3D quantified porosity information is that in 3D the 

total volume porosity is captured including its 

distribution whereas in 2D only surface porosity and 

distribution is quantified. This poses a challenge for 2D 

quantification when the distribution of pores including 

pore sizes have a random and non-uniform distribution 

within an ore sample. The more variable the ore, the 

larger the sample volume that would need to be 

analysed in order to improve the comparison between 

2D and 3D. The compact hematite had sample regions 

with %Error similar to massive hematite but compact 

hematite had higher quantified porosity information. 

This is due to the massive hematite sample consisting 

of more quartz within the sample. Quartz has a lower 

SG which means it is less attenuating which results in 

higher X-ray penetration. The goethite ore sample also 

had a majority of the sample regions with %Error less 

than 2% but its porosity was lower compared to the 

massive hematite and compact hematite samples. This 

is due to the lower SG of the goethite ore sample as 

compared to the higher SG (5.26) of hematite. All the 

samples had a similar external diameter which means 

that the lower %Error for the goethite sample is due to 

more X-ray penetration as compared to hematite 

samples. In the case of hematite samples the lower 

%Error represents X-ray penetration in regions where 

the effective thickness of hematite is less than 6mm 

due to the presence of quartz and/or pores. The 

compact itabirite had the lowest quantified porosity 

information and this was indicative in its increasing 

%Error distribution. The sample also had %Error 

greater than 10% which indicates inconsistent sample 

information that would result in inconsistent porosity 

information. The quantified porosity information for 

compact itabirite excluded the sample region with 

%Error values more than 10% to minimize errors 

associated with a loss of sample information due to 

beam hardening. Despite the differences in %Error 

distributions of compact hematite, compact itabirite 

and goethite, the 3D quantified porosity information is 

in agreement with the 2D QEMSCAN data. This 

agreement between the 2D and 3D is attributed to the 

uniform distribution of the porosity information within 

the samples. This means that the %Error distributions 

are a true reflection of the density distribution of a 

sample, different proportions of the mineralogy and 

effective thickness of the sample matrix (goethitic, 

hematitic, itabiritic, etc). 

4. Polymetallic Sulphide ore Case study  

4.1. Results 

The %Error was found to be less than 10% for the 

entire sample meaning the entire sample can be used 

for further quantification (Fig. 6.7). The simplified dual 

energy method was then implemented on the sample 

to discriminate chalcopyrite from pyrite. The 

discrimination between chalcopyrite and pyrite grains 

is not possible without dual energy analysis (Fig. 6.8A 

and B). This is due to the highly attenuated X-ray 

beam (45.5keV effective energy) such that its effective 

energy is equivalent to 70keV where pyrite (2.61cm
-1

) 

and chalcopyrite (2.73cm
-1

) linear attenuation 

coefficient difference is 4.4%. The discrimination 

between magnetite and chalcopyrite was also 

optimized after dual energy subtraction (Fig. 6.8C and 

D). This is shown by the bright grey values of 

magnetite which are distinct from chalcopyrite (Fig. 

6.8D). The dual energy subtraction results in a 

reduction in chalcopyrite surface area before and after 
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subtraction of 60%. However, the resultant 

discriminated chalcopyrite grey values (mean 75.96) 

were comparable with those of the chalcopyrite 

standard sample (mean 79.68). Thereafter, the volume 

and equivalent diameter of each chalcopyrite grain 

was quantified in 3D and converted to mass of 

chalcopyrite for each grain. Therefore, the quantified 

total mass of the 3D chalcopyrite grains (22g) was 

more than the 2D chalcopyrite grains (18g) by 18.9%. 

The 3D chalcopyrite grain size distribution (GSD) was 

then compared with the same sample using 

QEMSCAN (Fig. 6.9). As expected the 3D chalcopyrite 

GSD show a coarser distribution with an overall similar 

trend when compared to the QEMSCAN data. This is 

attributed to the fact that more regions of the same 

sample were quantified using the QEMSCAN which 

optimised the comparison between 2D and 3D GSD 

(Fig. 6.10). This also indicates that the utilisation of the 

simulated image does optimise the discrimination 

between chalcopyrite and pyrite. 

 

 

Fig 6.7. %Error for each image slice of the polymetallic sulphide ore sample (UOB) at 70kV X-ray energy. 
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Fig 6.8. Shows different image slices of the polymetallic sulphide ore sample with magnetite dominated before and after dual 

energy subtraction (a) and (c), and (b) and (d). The discriminated chalcopyrite grains grey values were compared to the 

chalcopyrite standard sample. 

 

Fig 6.9. The comparison of 3D XCT (UOB) and QEMSCAN (UOB) grain size distribution of the polymetallic sulphide ore 

sample. 

 

 

Fig 6.10. QEMSCAN images showing different distributions of the chalcopyrite grains in different sections of the same 

polymetallic sulphide ore sample 

 

4.2. Discussion 

The utilization of the %Error together with the 

simplified dual energy method improved the ability to 

discriminate chalcopyrite from pyrite and magnetite. 

The advantage of the dual energy subtraction method 

using the 130kV simulated image is that it uses a 

single grey value to optimize the discrimination of 

chalcopyrite from pyrite. This means that the majority 

of chalcopyrite grey values that overlap with pyrite are 

removed, leaving only the chalcopyrite grey values that 

are genuinely distinct from pyrite based on attenuation 

coefficient. In the case of using two scanning 

conditions (70kV and 130kV) the discrimination is 
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difficult because the two sample volumes are affected 

differently by beam hardening. This means that the 

pixel grey values do not meet the grey value difference 

required to discriminate chalcopyrite from pyrite and 

this results in noisy images. Even though the utilization 

of a simulated image improved the discrimination 

between pyrite and chalcopyrite, it resulted in 

artificially smaller surface area/volume of the 

chalcopyrite grains, impacting on the true diameter of 

the grains but this did not affect the 3D chalcopyrite 

GSD.  Thus, the XCT shows overall coarser 

chalcopyrite grain sizes compared to the QEMSCAN 

data as expected. The quantified XCT chalcopyrite 

grains are larger because they are 3D in nature and 

more grains are quantified which increases the 

probability of XCT to quantify even larger grains than 

QEMSCAN data. This is also evident in the quantified 

total mass of the 3D chalcopyrite grains which is more 

than the QEMSCAN. The 3D chalcopyrite GSD show 

an overall similar trend when compared with the 

QEMSCAN data. The similar trends show that the 

quantified 3D chalcopyrite GSD is a true reflection of 

the sample characteristics and the application of a 

simplified dual energy method is reliable. The 

simplified dual energy method is not limited to the 

discrimination of chalcopyrite from pyrite in dense ore 

samples. It can also be applied to different ore types 

ranging from low to high density ores that consist of 

different minerals with similar attenuation coefficients 

that require the utilization of the dual energy method to 

discriminate between 

5. Conclusions 

Beam hardening is a challenge in XCT due to the 

lack of X-ray penetration when dealing with high 

density ore samples that limit its application. With a 

better understanding of this challenge, there is the 

potential for development of refined scanning protocols 

and analysis methods that can overcome this 

challenge. The utilization of an aluminium standard 

sample shows that the accuracy required to quantify 

porosity information within the iron ore samples is 

attainable when evaluated using the %Error analysis 

approach. Comparison of the quantified 3D porosity 

information between XCT and QEMSCAN indicates 

that XCT is an effective and reliable technique for 

quantification of this parameter in high density ore 

samples and can therefore be used within the minerals 

processing environment for predicting and optimising 

downstream processing. The utilization of an 

aluminium standard sample and the simplified dual 

energy method were also effective in enabling 

discrimination of chalcopyrite from pyrite. However, 

more investigation about the %Error analysis is 

needed in order to understand the impact of beam 

hardening on the actual grey values themselves. This 

will optimize the application of the simplified dual 

energy method and result in the actual quantification of 

the chalcopyrite grain sizes with respect to volume and 

diameter. However, the application of the simplified 

dual energy method resulted in coarser grain sizes of 

the chalcopyrite when compared to QEMSCAN data. 
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Conclusions and Recommendations 

In this chapter the outcomes of this thesis are discussed in terms of the original project objectives with 

consideration of the key questions that were posed in Chapter 1. Thereafter, consideration of the general 

findings are presented and an assessment made on the future of XCT for routine mineralogical and textural 

characterisation of high-density ores. 

In Chapter 2 the key objective was to build an attenuation coefficient data bank in order to predict 

mineralogical discrimination in high-density ores using XCT prior to scanning and quantification. The 

spreadsheet calculated linear attenuation coefficients of different minerals to determine the linear 

attenuation coefficient difference. The spreadsheet was based on NIST data but is more flexible than the 

NIST online calculator because it can be used offline and linear attenuation coefficients can be calculated 

for X-ray energies spectrums between (40 to 225keV). This is an important requirement for exploiting subtle 

differences in linear attenuation coefficients of mineral pairs at different X-ray energies. Based on the linear 

attenuation coefficient information correlated with the grey values of the scanned minerals, the minimum 

attenuation coefficient difference required to differentiate two minerals using XCT is greater than 6% at 

45.5keV effective X-ray energy. Minerals with a percentage difference in linear attenuation coefficient less 

than this generally have similar densities. In contrast to the density, the chemical composition of the 

minerals had a greater contribution to the linear attenuation coefficient of a mineral. It was pointed out that 

this is sometimes contrary to impressions using the example of barite which has a low density but a high 

linear attenuation coefficient because of its composition. In light of this finding, minerals were found to be 

difficult to discriminate when their attenuation coefficient difference was below the above indicated 

minimum. The development of the spreadsheet to calculate the linear attenuation coefficients together with 

the scanned minerals were instrumental in analysing the ability of XCT to differentiate different minerals in 

the samples that were used in subsequent chapters. In particular, the calculation spreadsheet was 

instrumental in understanding the potential for discrimination of chalcopyrite from pyrite using dual energy. 

The method for doing this was explored in Chapter 5. 

In Chapter 3 the key objective was to determine the optimal scanning parameters to quantify 

mineralogical and textural information in high density ores. The focus was on a method to evaluate the 

impact of different scanning parameters for high density ore samples. The parameters considered for 

optimisation included: number of projections, exposure time, signal-to-noise ratio and sample contrast. The 

number of projections had the greatest impact on the quality of the scan images after a beam hardening 

correction was applied. The number of projections defined the resolution and this is important for the 

quantification of mineralogical and textural information. The exposure time had little impact on the textural 

information (but only when the number of projections were optimal and corrected for beam hardening). The 

corrected images for beam hardening were associated with a highest signal-to-noise ratio, and hence less 
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noise within the images. The scanning protocol demonstrated the ability of XCT to scan drill cores rapidly to 

obtain mineralogical information. This is an important finding because obtaining information rapidly is a core 

requirement for the potential implementation of XCT on a mine site. Previously, it was assumed that getting 

high quality information from XCT scans required long scan durations. This part of the study successfully 

demonstrated that long scan times were not a pre-requisite to generate image volumes from which textural 

information required for downstream ore characterisation, could be generated.  

In Chapter 4 the third objective for this thesis was to develop a method that quantified the amount of 

sample information lost due to beam hardening in high density ores. This is a significant contribution given 

that the effect of   its impact on sample information was effectively unknown. Previously, it had always been 

assumed that the impact of beam hardening could be minimised through the use of various filter materials, 

calibration methods and mathematical functions to correct for the grey value variations of single materials. 

The developed method made use of an aluminium standard sample from which the sample size associated 

with a loss of sample information could be identified using the %Error. %Error values above 10% were 

associated with a loss of sample information as determined by comparison of the quantified pore surface 

area with the known pore surface area of the aluminium standard sample. The method was applied to a 

hematite stepped-wedge sample where a specularite crystal vein “disappeared” with increasing sample 

thickness due to beam hardening. The recognition of this disappearance represented an important guide 

towards the recognition of loss of sample information. The method also showed that low density sample 

information (e.g. porosity) was the most affected by beam hardening. . This method was used in Chapter 6 

for quantification of both porosity in iron ores and chalcopyrite grain size distribution in polymetallic sulphide 

ores. 

In Chapter 5 the fourth objective for this thesis was to develop a new approach for dual energy scanning 

applied to high density ore samples where beam hardening affects the discrimination between minerals. 

This key objective was addressed by developing a simplified dual energy approach to optimize the 

discrimination of the chalcopyrite – pyrite mineral pair. The method used information derived from single 

energy scanning at a lower X-ray energy where a small variation of the linear attenuation coefficient exists. 

The other X-ray energy scan information was simulated based on the same linear attenuation coefficient of 

pyrite and chalcopyrite at higher X-ray energy which meant the two minerals have the same grey value. In 

the case of beam hardening the normal dual energy subtraction method could not discriminate the two 

minerals due to the change in grey value distribution and grey value ratio between chalcopyrite and pyrite. 

While both methods are limited in their ability to discriminate minerals that share the same linear attenuation 

coefficient across all the X-ray energies the simplified method was successful in discriminating two minerals 

in cases where the X-ray source or beam was not optimized or resulted in edge artefacts.  The proposed 

method was applied to the polymetallic case study presented in Chapter 6. 

In Chapter 6 the fifth objective for this thesis was to demonstrate the practical application of the 

scanning methods and protocols developed in Chapter 4 and 5 (but also incorporating information from 

chapters 2 and 3) using high density ores and their relevance to the minerals processing industry using two 

case studies. The case studies examined the analysis of porosity information for a set of iron ore samples 

and the discrimination and quantification of chalcopyrite grain size distribution in a polymetallic sulphide ore. 

For both ore samples, the aluminium standard sample was applied to quantify the loss of sample 

information due to beam hardening. Comparison of the 3D calculated porosity for various iron ore samples 

was in agreement with that derived from 2D QEMSCAN analysis. One notable exception was the massive 

hematite sample where the variability between measurement techniques was attributed to the non-uniform 
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distribution of the porosity information in this sample. This illustrates one of the added benefits of the 3D 

XCT technique that allowed the analysis of a greater sample volume compared to the limited area analysed 

using 2D sections. The quantified chalcopyrite grain size distribution showed a similar distribution with 

coarse grains as compared to the QEMSCAN data as expected. The quantified porosity and chalcopyrite 

GSD emphasised the importance of an optimal sample size in order to obtain accurate results when using 

XCT. Due to the established relationship mentioned above, XCT can be used as one of the techniques to 

provide textural attributes relevant for predicting and optimising downstream minerals processing. 

The ability of XCT to quantify mineralogical and textural information in high density ores using 

specialised scanning protocols and analysis methods is an important finding. This means that XCT can be 

used to obtain 3D mineralogical and textural information that is important for the design of mineral 

processing circuits, their optimization, benchmarking and trouble shooting. There are routine analytical 

techniques that are used to obtain this information due to easy access (QXRD, Optical microscope, 

chemical assays, etc). XCT is regarded as a specialised technique because it lacks routine scanning and 

analysis protocols that can be used to obtain textural information. However, with the scanning methods 

developed here that optimise the quantification of textural attributes, XCT has the potential to become one 

of the routine techniques for process mineralogy in the near future. It is important to note that the scanning 

protocols and analysis were developed using small sample sizes (~6 mm drill cores). This size is smaller 

than commonly used drill cores on mine sites and this might affect statistical representation of the 

mineralogical and textural information of the ore. However, recent physical developments of the XCT 

systems (outside the scope of this study) allow routine scanning of samples to facilitate automated scanning 

of a larger number of samples and this will address the issue of representability. To facilitate this application 

only the optimal sample sizes determined in this study will be used. 

To optimize the required mineralogical and textural information of high-density ores, the sample size 

needs to be further optimized. This should be based on the sensitivity and nature of the required 

mineralogical and textural information. From this study it was found that beam hardening changes the grey 

value ratio between minerals in cases where there is no loss of sample information. This means that the 

variation of %Error values between (0 and 10%) needs to be better understood. This is well illustrated by 

the quantified porosity information in iron ore samples. For %Error less than 10% the quantified porosity 

information is valid due to a large attenuation coefficient difference between hematite and pores. However, 

for the discrimination between minerals with similar attenuation coefficients the %Error needs to provide a 

better indication on what is happening to the actual grey values as it varies from 0 to 10%. The exact 

value(s) that indicates the preserved theoretical ratio of the attenuation coefficient difference would be 

determined and understood. This would optimise the developed spreadsheet to calculate the linear 

attenuation coefficient that is correlated with the required sample size.  Lastly, the turnaround time for 

scanning high density ore samples would be optimized because all the possible contributions that result to 

an image artefact will be minimized. 
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