
Testing Smart Contracts

by

Alexander Leid

Thesis presented in partial fulfilment of the requirements
for the degree of Master of Science (Computer Science) in

the Faculty of Science at Stellenbosch University

Supervisor: Prof. AB van der Merwe

Co-supervisor: Prof. W Visser

March 2020

The financial assistance of the Council for Scientific and Industrial Research (CSIR) is hereby
acknowledged.



Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the sole author thereof
(save to the extent explicitly otherwise stated), that reproduction and pub-
lication thereof by Stellenbosch University will not infringe any third party
rights and that I have not previously in its entirety or in part submitted it for
obtaining any qualification.

March 2020
Date: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Copyright © 2020 Stellenbosch University 
All rights reserved.

i

Stellenbosch University https://scholar.sun.ac.za



Abstract

Testing Smart Contracts

A. Leid

Computer Science Division,
Department of Mathematical Sciences,

University of Stellenbosch,
Private Bag X1, 7602 Matieland, South Africa.

Thesis: MSc (Computer Science)

March 2020

There have been several high-profile exploits of smart contracts running on the 
Ethereum Virtual Machine (EVM) over the last few years since the re-lease of 
Ethereum. Many of these exploits were introduced via programmer error and 
could be avoided by proper auditing beforehand. Security analysis tooling has 
advanced in this space to aid developers and auditors to auto-matically find 

these exploits and in some cases generate test input that can recreate the 
exploit. In this work, we review the most critical vulnerabili-ties currently 

present in the EVM ecosystem and provide best practices and forms of 
prevention. Taxonomies (new and existing) are presented to cate-gorise the 
type of smart contract exploits present at the application layer and compare 
them to similar exploits in imperative programs. Automated testing tools are 
investigated and extended in areas where they may struggle to detect certain 
vulnerabilities and to synthesise adversarial smart contracts. Lastly, some of 

the most popular and actively developed automated testing tools are 
catalogued, evaluated, and benchmarked.

ii

Stellenbosch University https://scholar.sun.ac.za



Acknowledgements

First, I would like to thank my supervisors, Prof. Brink van der Merwe and
Prof. Willem Visser, for their expert insight, assistance, and guidance over the
course of my studies.

I would like to acknowledge the financial support of the CSIR for this work
and hope that they can continue enabling more students in this country to
pursue their postgraduate studies like I have.

Lastly, I would like to thank my family and friends for their unwavering
support throughout all my years of study and especially while preparing this
thesis.

iii

Stellenbosch University https://scholar.sun.ac.za



Contents

Declaration i

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Testing Smart Contracts . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4
2.1 Ethereum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Release Management . . . . . . . . . . . . . . . . . . . 4
2.1.2 Ether . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Accounts and State . . . . . . . . . . . . . . . . . . . . 6
2.1.4 Transactions . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.5 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.6 Pre-compiled Contracts . . . . . . . . . . . . . . . . . . 8
2.1.7 The Ethereum Virtual Machine . . . . . . . . . . . . . 8

2.2 Solidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Language Properties . . . . . . . . . . . . . . . . . . . 12
2.2.2 Basic Syntax . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.5 Storage Access . . . . . . . . . . . . . . . . . . . . . . 17
2.2.6 Built-in Functions and Variables . . . . . . . . . . . . . 19
2.2.7 Token Standards . . . . . . . . . . . . . . . . . . . . . 21

iv

Stellenbosch University https://scholar.sun.ac.za



CONTENTS v

2.3 Solidity Development and Testing . . . . . . . . . . . . . . . . 22
2.3.1 Test Network Clients . . . . . . . . . . . . . . . . . . . 23
2.3.2 Development Frameworks . . . . . . . . . . . . . . . . 23
2.3.3 Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.4 Integration Testing . . . . . . . . . . . . . . . . . . . . 24

2.4 Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Input Generation . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Execution Feedback . . . . . . . . . . . . . . . . . . . . 26

2.5 Symbolic Execution . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.1 Example Program . . . . . . . . . . . . . . . . . . . . . 27

3 Vulnerabilities 29
3.1 Vulnerability Taxonomies . . . . . . . . . . . . . . . . . . . . . 29
3.2 List of Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Integer Overflow . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Unchecked Call Return Value . . . . . . . . . . . . . . 31
3.2.3 Re-entrancy . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.4 Assert Violations . . . . . . . . . . . . . . . . . . . . . 35
3.2.5 DoS with Failed Call . . . . . . . . . . . . . . . . . . . 36
3.2.6 DoS with Block Gas Limit . . . . . . . . . . . . . . . . 38
3.2.7 DoS from Greedy State . . . . . . . . . . . . . . . . . . 40
3.2.8 Unauthorised Ether Withdrawal . . . . . . . . . . . . . 40
3.2.9 Unauthorised Self-destruct . . . . . . . . . . . . . . . . 41
3.2.10 Unauthorised Delegatecall . . . . . . . . . . . . . . . . 42
3.2.11 Transaction Order Dependence . . . . . . . . . . . . . 42
3.2.12 Authorisation Through Origin . . . . . . . . . . . . . . 44
3.2.13 Weak Sources of Randomness . . . . . . . . . . . . . . 44
3.2.14 Write to Arbitrary Storage Locations . . . . . . . . . . 45
3.2.15 Ether Invariants . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Other Vulnerabilities and Bad Practices . . . . . . . . . . . . 48
3.3.1 Solidity Compiler Version Issues . . . . . . . . . . . . . 48
3.3.2 Deprecated Functions . . . . . . . . . . . . . . . . . . . 48
3.3.3 Unused or Uninitialised Variables . . . . . . . . . . . . 48
3.3.4 Use of Inline Assembly . . . . . . . . . . . . . . . . . . 49
3.3.5 Timestamp Dependency . . . . . . . . . . . . . . . . . 49
3.3.6 Signature Replay Attacks . . . . . . . . . . . . . . . . 49

4 Tools 50
4.1 Tool Taxonomies . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 List of Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Securify . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Slither . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.3 MythX . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Stellenbosch University https://scholar.sun.ac.za



CONTENTS vi

4.2.4 Echidna . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.5 Manticore . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.6 Mythril . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Other Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Extensions 64
5.1 Framework Architecture . . . . . . . . . . . . . . . . . . . . . 64
5.2 Framework Implementation . . . . . . . . . . . . . . . . . . . 65

5.2.1 External Interfaces . . . . . . . . . . . . . . . . . . . . 65
5.2.2 Environmental Setup . . . . . . . . . . . . . . . . . . . 66
5.2.3 Vulnerability Detectors . . . . . . . . . . . . . . . . . . 67
5.2.4 Execution . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.6 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . 73

6 Evaluation 75
6.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Vulnerability Reporting Evaluation . . . . . . . . . . . . . . . 76

6.2.1 Contracts . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Challenge Contract Evaluation . . . . . . . . . . . . . . . . . . 78
6.3.1 Contracts . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 80
6.4.1 Contracts . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Conclusion 87
7.1 Testing Smart Contracts . . . . . . . . . . . . . . . . . . . . . 87
7.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . 88
7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Bibliography 90

A Attacking Contract 98

Stellenbosch University https://scholar.sun.ac.za



List of Figures

2.1 Symbolic execution tree of the example swapping function show-
ing the symbolic variables stored in memory and current path
condition at each state. . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Structure of the symbolic execution framework outlining the ma-
jor components. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vii

Stellenbosch University https://scholar.sun.ac.za



List of Tables

2.1 List of major Ethereum forks. . . . . . . . . . . . . . . . . . . . 5
2.2 List of pre-compiled contracts as of Byzantium. . . . . . . . . . 8
2.3 List of EVM opcodes related to control flow. . . . . . . . . . . . 9
2.4 List of EVM opcodes related to arithmetic and mathematical op-

erations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 List of EVM opcodes related to environmental and call data. . . 10
2.6 List of EVM opcodes related to storage and memory functions. . 11
2.7 List of EVM opcodes related to messaging. . . . . . . . . . . . . 12
2.8 List of block variable properties. . . . . . . . . . . . . . . . . . 19
2.9 List of msg variable properties. . . . . . . . . . . . . . . . . . . . 20
2.10 List of tx variable properties. . . . . . . . . . . . . . . . . . . . 20
2.11 List of Solidity messaging functions for payable addresses. . . . 21
2.12 List of ERC-20 token standard functions. . . . . . . . . . . . . . 22

3.1 Taxonomy of vulnerabilities based on the level that they are in-
troduced at and severity. . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Taxonomy of vulnerabilities grouped according to categories. . . 31

4.1 General feature classification of all the tools considered. . . . . . 51
4.2 Vulnerability classification of all the tools considered. The MythX

vulnerabilities marked “Pro” are only available in the paid sub-
scription tier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Mapping between our vulnerability names and the closest Securify
property names. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 List of built-in security properties checked by Securify. . . . . . 54
4.5 Mapping between our vulnerability names and the closest Slither

detector names. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6 List of Slither’s built-in vulnerability detectors. . . . . . . . . . 57
4.7 List of Slither’s built-in informational and optimisation detectors. 58
4.8 List of SWC registry entries checked by the free tier of MythX. . 58
4.9 List of SWC registry entries checked by the premium tier of MythX. 59
4.10 Mapping between our vulnerability names and the closest Manti-

core detector names. . . . . . . . . . . . . . . . . . . . . . . . . 61

viii

Stellenbosch University https://scholar.sun.ac.za



LIST OF TABLES ix

4.11 List of built-in Manticore detectors. . . . . . . . . . . . . . . . . 62
4.12 List of SWC registry entries checked by Mythril Classic. . . . . 62

6.1 List of vulnerabilities chosen for evaluation and the number of
vulnerability occurrences included in each test suite. . . . . . . . 77

6.2 Results for the vulnerability detector evaluation. The number of
successful detections is shown for each tool compared to the total
number of contracts in each respective data set. . . . . . . . . . 78

6.3 List of benchmarks in the Capture the Ether data set. Includes
the number of contracts (C), functions (F), and lines of code
(LoC) contained in each file. The approximate number of trans-
actions (T) required to complete the level is also shown. . . . . . 80

6.4 List of benchmarks in the Ethernaut data set. Includes the num-
ber of contracts (C), functions (F), and lines of code (LoC) con-
tained in each file. The approximate number of transactions (T)
required to complete the level is also shown. . . . . . . . . . . . 81

6.5 Capture the Ether benchmark results for each tool. . . . . . . . 82
6.6 Ethernaut benchmark results for each tool. . . . . . . . . . . . . 83
6.7 Top 20 ERC-20 tokens according to their market cap (volume

times approximate price in USD) on 2019/12/15. The length
of the contract initialisation bytecode (bytes), and lines of code
(LoC) in Solidity is also shown. . . . . . . . . . . . . . . . . . . 84

6.8 Mythril performance results for the real-world token contract set.
The coverage percentage, number of reported errors, and execu-
tion time is shown for three separate runs with a limit of 1, 2 and
3 transactions (TX). . . . . . . . . . . . . . . . . . . . . . . . . 85

6.9 Manticore+ performance results for the real-world token contract
set. The coverage percentage, number of reported errors, and
execution time is shown for one transaction. Empty results failed
to initialise the contract using Solidity 0.4.25. . . . . . . . . . . 86

Stellenbosch University https://scholar.sun.ac.za



Chapter 1

Introduction

After the early success of Bitcoin [1], the first major cryptocurrency, some
members of its community started to investigate ways of running increasingly
complex user applications on a public, decentralised blockchain. One of the
first and most popular cryptocurrency platforms to focus specifically on this
trait is Ethereum.

Ethereum is a distributed computational platform that allows users to run
programs known as smart contracts, first conceived by Nick Szabo in the
1990s [2], that can autonomously respond to human blockchain interactions ac-
cording to a programmed set of rules [3]. Unlike Bitcoin, the scripting instruc-
tion set available at runtime in Ethereum is designed to be Turing-complete
in theory, but practically limited by a maximum computational allowance.

One key aspect of the Ethereum platform is that once a contract is deployed
by the user, the contract’s instruction code will not be able to be altered
any further. Naturally this immutability can spell disaster when combined
with program bugs originating from user error and the handling of monetarily
significant cryptocurrency assets.

The most infamous example of a smart contract bug causing extreme loss
of monetary value is that of The DAO, a Decentralised Autonomous Organi-
sation (DAO) designed to offer decentralised governance of enterprise organi-
sations [4]. As a result of an overlooked software bug, a single user was able to
steal roughly 3.6 million Ether [5], which at the time was worth approximately
$50 million.

Vulnerabilities like that of The DAO hack do not exploit any bugs or issues
in the platform itself, but instead rely on unintentional, yet programmatically
valid behaviour written by the smart contract developers. With this large
amount of room for error, the onus is on the developers to ensure that their
contracts are sufficiently tested and audited for vulnerabilities before deploy-
ment.

1

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 2

1.1 Testing Smart Contracts

A smart contract developer has many options at their disposal to ensure that
a contract is sufficiently tested for vulnerabilities before it is permanently de-
ployed to the blockchain.

Generally the first method of testing smart contracts would be to write unit
and integration tests. Solidity, a popular high-level smart contract language
targeting the Ethereum runtime environment [6], already has a mature testing
framework in the form of Truffle [7] that is well supported by its community
and allows developers to test against a local test Ethereum network.

There are, however, an increasing number of automatic testing and security
analysis tools that are available to smart contract developers and auditors.
These tools can be used to quickly cover large amounts of code and find bugs,
like that of The DAO hack, without any user input or guidance.

In this work we first investigate and survey the common vulnerabilities
that exist in the Ethereum application layer. With a computational environ-
ment like Ethereum that is constantly being developed, it is common that
some software vulnerabilities may be phased out with new updates. Although
it is impossible to catalogue each and every possible vulnerability, since one
application’s bug may be another’s feature, we can at least attempt to narrow
down the ones that are generally considered to be an issue.

Next we survey the security analysis tools at our disposal and note the
types of vulnerabilities that each claims to identify. We take the time to
investigate the use of these tools and also extend one of them, the Manticore
symbolic execution tool [8], thus demonstrating how it can be used during the
auditing process to find bugs that are extremely difficult to catch with manual
inspection.

Lastly, we evaluate these tools to determine how effective they are in auto-
matically detecting certain vulnerabilities and how efficient they are in covering
the code of larger contracts.

1.2 Contributions

The following contributions are made as part of this work:

1. Cataloguing the vulnerabilities and security analysis tools present in the
Ethereum ecosystem:

• Identification of the most severe smart contract vulnerabilities and
methods of preventing them;

• Identification of the most popular automated security analysis tools;

• Taxonomisation of vulnerabilities based on common grouping cri-
teria; and

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 3

• Taxonomisation of tooling according to vulnerability classification.

2. Investigating the use of the Manticore symbolic analysis tool in our own
framework, Manticore+:

• Modelling key elements of the Ethereum ecosystem symbolically;

• Automatically detecting a variety of vulnerabilities; and

• Synthesising attacking smart contracts used as part of exploit se-
quences.

3. Evaluating the effectiveness and efficiency of the investigated security
analysis tools:

• Comparing their effectiveness when automatically detecting vulner-
abilities;

• Analysing their ability to reach invariant states; and

• Investigating performance and efficiency when applied to contracts
from the main Ethereum network.

1.3 Overview

Following this introductory chapter, Chapter 2 provides the reader with back-
ground information on Ethereum, the Solidity programming language, fuzz
testing tools and symbolic execution. Chapter 3 then explains each inves-
tigated Ethereum vulnerability in-depth (with examples) and demonstrates
prevention methods and best practices to avoid them. Then we present a list
of state-of-the-art security analysis tools in Chapter 4 that is able to automat-
ically detect these vulnerabilities. Next, Chapter 5 demonstrates how one of
these tools, Manticore, can be used as part of a framework and extended to
perform advanced security analysis and exploit synthesis. We then evaluate
all these tools in terms of their efficiency and effectiveness in Chapter 6, before
finally concluding the thesis in Chapter 7.

Stellenbosch University https://scholar.sun.ac.za



Chapter 2

Background

This chapter serves to give the reader a brief overview of the Ethereum platform
and its most popular programming language Solidity, as well as an explanation
of the testing and verification methodologies presented later in this thesis.

Vulnerabilities specific to Ethereum and its smart contracts will be dis-
cussed separately in Chapter 3, but will assume a basic understanding of the
system as presented in this chapter. Tool-related discussions will only appear
afterwards in Chapter 4 to keep the background sections tool-agnostic.

2.1 Ethereum

Ethereum is a distributed computing platform hosted on a public, open-source
blockchain initially proposed by Vitalik Buterin in a white paper written in
2013 [3]. This platform allows users to run programs, known as smart con-
tracts, within an environment similar to the Bitcoin blockchain [1].

The key difference is that the scripting language for Bitcoin transactions,
known as Script [9], is intentionally designed to not be Turing-complete or to
keep track of an inter-transactional state and can thus not be used to run the
complex user applications intended to run on Ethereum.

2.1.1 Release Management

As with many other cryptocurrency platforms, Ethereum is constantly devel-
oping and must always be ready to respond to new challenges and feedback
from its community. Some of the more significant system milestones such as
changes to the consensus protocol were planned from the start, while other
modifications to the standard may be proposed by users via an Ethereum Im-
provement Proposal (EIP). Table 2.1 lists some of the major upgrades that
implement various milestones and EIPs as part of a hard fork [10].

4

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 5

In the past the Ethereum community has also responded to major secu-
rity breaches by implementing forks in the codebase and blockchain. One
such example is the hard fork implemented after the DAO hack, allowing
users to retrieve their funds from a curator contract [11], which subsequently
also spawned the Ethereum Classic platform as a continuation of the original
blockchain.

For the purposes of this thesis, we are only concerned with the impact that
major releases have on the vulnerabilities discussed and whether or not the
testing and verification tools are compatible with the latest version. Testing
and symbolic execution frameworks that emulate the EVM are generally not
affected by changes related to mining and consensus protocols, but must be
brought up to date with changes directly affecting program execution (e.g.
adding additional opcodes or changing the way fees are handled).

# Date Name
0 2015-07-30 Frontier
1 2015-09-07 Frontier Thawing
2 2016-03-14 Homestead
3 2016-07-20 After DAO attack
4 2016-10-18 Tangerine Whistle
5 2016-11-22 Spurious Dragon
6 2017-10-16 Byzantium
7 2019-02-28 Constantinople

Table 2.1: List of major Ethereum forks.

2.1.2 Ether

Ethereum also features a tradeable cryptocurrency token called Ether. Each
account, whether owned by a user or operating as a smart contract, may have a
balance of Ether and trade it freely with other accounts. Developers may also
program additional behaviour in their smart contracts that acts on incoming
transactions that send Ether.

Ether doubles as a currency used to pay for computation performed by
smart contracts, known as the gas fee, whereby the cost of each transaction is
relative to the total cost of each instruction executed by the EVM.

The currency has a zero decimal precision, with a single base unit referred
to as Wei. This is typically the unit of measurement when denoting transaction
fees. Since these fees are orders of magnitude smaller than the amount of Wei
mined per transaction, additional denominations were introduced as per the
Ethereum white paper [3]:

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 6

100: Wei

1012: Szabo

1015: Finney

1018: Ether

Amounts transferred between parties are therefore also generally denoted in
Ether.

2.1.3 Accounts and State

The world state in the context of Ethereum is described as a mapping between
20-byte addresses, known as accounts, and their account states [12]. The
account state is defined as follows:

• A nonce value indicating the number of transactions signed or contracts
instantiated by the account that increments each time;

• The Ether balance of the account in Wei;

• A 256-bit hash pointing to the account’s internal state storage; and

• An immutable hash of the EVM code of the account, if applicable.

These accounts are generally grouped into:

• User accounts that are controlled by a private key and possess no EVM
code of their own; and

• Contract accounts that contain code and act autonomously as defined
by this program.

The account nonce value ensures that users can not “double-spend” by sub-
mitting more than one transaction at the same time, since the nonce value will
increment between calls and therefore treat them as distinct messages.

2.1.4 Transactions

The world state of the Ethereum blockchain is modified by the application of a
successful transaction. Transactions are grouped into blocks which are mined
on average approximately every 12 seconds, as determined by the Ethereum
network’s current difficulty [13]. All fees associated with the block are paid by
the accounts submitting the transactions and rewarded to the account address
of the miner that successfully mined the block.

Ethereum transactions are specified to have the following parameters:

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 7

• Fields representing the sender’s cryptographic signature;

• The nonce value of the sender;

• The recipient’s 20-byte address (empty during contract initialisation);

• The amount of Ether paid per unit of gas spent during execution (ex-
pressed in Wei);

• The maximum number of gas units the sender is willing to pay for;

• The amount of Ether sent with the transaction; and

• A byte array of unlimited size representing either optional call data or
the code of the newly created contract during contract initialisation.

Each instruction executed within the EVM and additional bytes of call data
costs a predetermined amount of gas, which is subtracted from the initial
starting gas value sent above. This amount of gas is then multiplied by the
gas price value specified in the transaction and paid upfront by the sender to
the miner. If execution halts gracefully, then all remaining gas is refunded to
the sender. Otherwise, the world state may be reverted without refunding any
gas to the sender. Ethereum also features a global gas limit per block as voted
on by miners.

2.1.5 Messages

Contracts within the Ethereum platform are able to send messages to other
contracts, similar to the transactions described earlier in Section 2.1.4. These
messages act like remote-process calls, but with subtle differences in the way
each contract’s storage is managed during execution. A call consists of the
following elements similar to a transaction:

• The sender of the message;

• The recipient;

• An Ether amount transferred;

• A data byte-array;

• Available gas; and

• The gas price.

Additionally, these messages contain:

• The sender of the initial block-level transaction (or originator);

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 8

• The address of the account that contains the code that must be executed;

• The depth of the message call stack; and

• A flag to allow modifications to state.

These messages will return a byte-array value as output and behave similar to
transactions in terms of gas usage.

One important thing to note is that any changes made to the contract’s
storage preceding message calls will remain once the call is made. In other
words, the world state enters a sub-state during message execution and care
must be taken by the contract developer to ensure that it is not left in an invalid
state. The contract might be the recipient of another recursive message further
down the line if enough gas was passed to the recipient, which was the basis
for the infamous DAO attack.

2.1.6 Pre-compiled Contracts

There are a number of reserved addresses in Ethereum that implement fre-
quently used cryptographic functions that are callable by other contracts. The
number of these so-called pre-compiled contracts have increased with time and
are currently up to eight, as of the Byzantium release. The address and name
of the function is listed in Table 2.2, with a more technical description given
in the Yellow Paper [12].

Address Function
0x1 ECDSA signature recovery
0x2 SHA256 hash
0x3 RIPEMD160 hash
0x4 Identity
0x5 Modular exponentiation
0x6 Elliptic curve addition
0x7 Elliptic curve scalar multiplication
0x8 Elliptic curve pairing check

Table 2.2: List of pre-compiled contracts as of Byzantium.

2.1.7 The Ethereum Virtual Machine

The EVM is a stack-based virtual machine with a 256-bit word size and max-
imum stack depth of 1024. This specific word size was chosen because of its
use in various cryptographic functions often performed by the EVM.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 9

Control Flow

Control flow can be terminated with any of the instructions shown in Ta-
ble 2.3, along with the added side-effects of removing the contract from the
blockchain and transferring its Ether to the specified address in the case of
a SELFDESTRUCT. Any other opcode not defined in the specification will also
terminate execution of the current message, but not refund the remaining gas
to the caller.

Hex Code Mnemonic Description
00 STOP Stop execution
F3 RETURN Return a value to the current message

caller
FD REVERT Revert execution and returns the specified

value from memory
FF SELFDESTRUCT Terminates the current contract and trans-

fers its Ether balance to the specified ad-
dress

Table 2.3: List of EVM opcodes related to control flow.

Arithmetic Instructions

The arithmetic and mathematical operations included in Table 2.4 are all re-
turned modulo 2256 to the stack. High-level languages targeting the EVM, such
as Solidity, are able to further manipulate these values using additional instruc-
tions and truncate bits to effectively work with smaller word sizes. Division
by zero will return zero as per the yellow paper specification, but higher-level
languages generally halt execution in such cases.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 10

Hex Code Mnemonic Description
01 ADD Adds the top two elements on the stack,

modulo 2256

02 MUL Multiply the top two elements on the stack,
modulo 2256

03 SUB Subtracts the top two elements on the
stack, modulo 2256

04 DIV Division of the top two elements on the
stack

05 SDIV Unsigned division of the top two elements
on the stack

0A EXP Unsigned exponentiation of the top two el-
ements on the stack

20 SHA3 Keccak256 hash of the value at the specified
memory location

Table 2.4: List of EVM opcodes related to arithmetic and mathematical op-
erations.

Environmental Variables

Table 2.5 notes the opcodes related to some of the EVM-specific features, such
as information on the current message parameters or gas quotas.

Hex Code Mnemonic Description
30 ADDRESS Address of the current contract
31 BALANCE Ether balance of the specified address in

Wei
32 ORIGIN Address of the transaction originator
33 CALLER Address of the message sender
34 CALLVALUE Ether value of the message in Wei
3A GASPRICE Ether price per unit of gas for the current

message in Wei
40 BLOCKHASH Hash of the specified block
41 COINBASE Address of the current transaction fee ben-

eficiary
42 TIMESTAMP Timestamp of the current block
43 NUMBER Current block number
44 DIFFICULTY Current block difficulty
45 GASLIMIT Block gas limit
5A GAS Amount of remaining gas

Table 2.5: List of EVM opcodes related to environmental and call data.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 11

Storage and Memory

The EVM supports both a volatile memory space and a storage area of fixed
size that persists between calls, each able to index up to 2256 elements. Reading
and writing opcodes for memory and storage are both shown in Table 2.6.

Hex Code Mnemonic Description
51 MLOAD Load the 256 bit word at the specified offset

from memory
52 MSTORE Write a 256 bit word to the specified offset

in memory
54 SLOAD Read the 256 bit word at the specified offset

from storage
55 SSTORE Write a 256 bit word to the specified offset

in storage

Table 2.6: List of EVM opcodes related to storage and memory functions.

Messaging

Table 2.7 displays the EVM opcodes that initialise new contracts and send
calls. The key difference between the standard CREATE and CREATE2 opcodes
is that the newly created contract’s address can be determined beforehand
in the latter case. Under normal circumstances, the new contract’s address is
calculated based off the current address and nonce, whereas the second method
bases it off of the current address and initialisation code being passed to the
contract. External applications therefore do not have to rely on a specific
nonce value to calculate new addresses beforehand.

The message calling opcodes (CALL, DELEGATECALL and STATICCALL) are
mainly differentiated by their handling of contract storage, as described in
Table 2.7.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 12

Hex Code Mnemonic Description
F0 CREATE Create a new contract with the code spec-

ified in memory
F1 CALL Send a message to another contract
F4 DELEGATECALL Send a message to another contract with

access to the current contract’s storage
F0 CREATE2 Create a new contract with the code spec-

ified in memory and set its address to a
deterministic value

FA STATICCALL Send a message to another contract with-
out allowing any writes to storage

Table 2.7: List of EVM opcodes related to messaging.

2.2 Solidity

With the EVM as reference specification, developers are able to design high
level languages that compile down to EVM bytecode. One early example
of this was a simple, low-level language called LLL [14] (short for Lisp-Like
Language) that produced very small binaries. At the same time a high-level
language called Solidity [6] was developed officially by the Ethereum team and
soon became the most popular language for implementing smart contracts.

This section will serve to both introduce the reader to some of the basic
syntax necessary to comprehend our example code and to highlight features
of the language that may expose critical vulnerabilities. While there are other
high-level languages that target the EVM, such as Vyper [15] that emphasise
ease of verification and security, we will rather be focusing on Solidity due to
its popularity.

2.2.1 Language Properties

Solidity is a statically-typed, object-oriented language that is used to write
smart contracts for the EVM. Contracts are implemented as objects, where
inter-contract method calls spawn new Ethereum messages. Developers are
also able to make use of inheritance, libraries, user-defined structs and all the
various EVM environment variables discussed in Section 2.1.7.

2.2.2 Basic Syntax

For this section we use Listing 1 to explain some of the fundamental elements
of a Solidity program’s syntax, before moving on to the intricacies of the
language in later sections. In Solidity, the keywords, contract and function,

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 13

are reserved to write an object-like contract and its methods (bounded by curly
brackets), which in our example is a contract called “Basic” with one method
called “test”. The contract also contains a function that will be executed only
when the contract is created, specified by the keyword: constructor. This
constructor function may be left out to simply initialise a contract without
modifying any of its storage or it can be used to perform other actions as in
our example. Just above our constructor we declare a variable named “owner”

1 pragma solidity ^0.5.10;

2

3 contract Basic {

4 address owner;

5

6 constructor () public payable {

7 // Optional constructor function

8 owner = msg.sender;

9 }

10

11 function test() public payable {

12 require(msg.sender == owner);

13 }

14 }

Listing 1: Basic syntax example.

that is of type:address. Variables that are declared outside functions denote
persistent storage variables within the EVM and will by default be initialised to
a zero value. This address variable specifies the address of an account within
Ethereum and can be used to, for example, send messages or read balances.

Back in the constructor we first assign the owner during creation by reading
the msg.sender environmental variable. The built-in msg refers to the current
message and the sender member will return the address of the current message
sender (i.e. it will call the CALLER opcode).

Our only statement in the test() function calls the built-in require func-
tion that takes one boolean argument and reverts execution if it evaluates
to false. Note that our test function also has two modifiers: public and
payable. The following built-in function and variable modifiers are available:

private Only visible in the current contract and no derived ones

internal Only visible inside the current contract or ones that derive it

public Visible inside and outside the current contract

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 14

external Only callable by initiating a transaction or message

payable Indicates that the function or constructor may receive Ether when
called, whereas the default behaviour for a function without this modifier
is to revert immediately if a non-zero Ether value is sent.

The command on the first line, pragma solidity ^ 0.5.10;, simply enforces
the specified compiler version. A ^ symbol before the version indicates that
all minor releases after the specified version are also allowed, however, this is
considered to be bad practice, since the compilation output may no longer be
the same as the bytecode that was tested.

2.2.3 Types

In the previous section we mentioned the address type as part of our basic
example, but we will now briefly highlight some of the other types offered by
Solidity.

Integers

Integers in Solidity are available both in signed (int) and unsigned (uint)
forms, with signed integers represented in two’s complement form as per the
EVM specification. The default byte size for integers is 256 bits, which is
again the same as the EVM word size. If necessary, a developer may declare
variables with smaller sizes in multiples of 8 up to 256 (e.g. uint8, int8).

Booleans

Constant boolean values in Solidity are denoted by the true and false key-
words, with support for the following logical operators:

• equality: ==

• inequality: !=

• conjunction: &&

• disjunction: ||

• negation: !

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 15

Addresses

In our example contract we assigned the 20-byte sender address of the initial
contract creation to the storage variable of type address. In addition to this,
Solidity version 0.5.0 added a new type: address payable, which ensures
that the compiler will only allow these types of addresses to receive funds.
Furthermore, address payable variables may be freely casted to the regular
address type, but not vice versa. Objects of both of these address types
have access to the balance property, which will invoke the low-level BALANCE
opcode on that address and return its Ether balance in Wei. In Section 2.2.6
we will further discuss the list of message sending methods available only to
address payable objects.

Contracts

User-defined contract classes, like the one defined in our earlier example, act
as extensions of the address type and may be used to:

• Create new instances on the blockchain of that contract;

• Instantiate an existing contract account;

• Call functions on contract instances;

• Read properties; and

• Perform the built-in functions provided by the address base class.

Contracts may be created using the keyword: new, and assigned to an instance
variable using

Contract c = new Contract();

or instantiated from existing accounts using their addresses (represented
here by an address literal):

Contract c = Contract(0xBf4eD7b27F1d666546E30D74d50d173d20bca754);

Arrays

Arrays in Solidity are available in fixed or dynamic length formats, declared
to be used for unsigned integers, for example, as uint256[42] or uint256[],
respectively. An array’s length may be retrieved using the length property
and values may be appended or removed using the push() and pop() methods.
The byte and string arrays are also available as more tightly packed versions
of the byte[] array, since it does not pad every byte to 32-byte words.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 16

Mappings

Hash maps are implemented as “mappings” in Solidity and may be declared
with keys of type K and values of type V using:

mapping(K => V)

The key type may not be a contract, array or other mapping, whereas the
value type has no restrictions.

2.2.4 Functions

We will use this section to explain the way that contract functions are struc-
tured within the EVM bytecode generated by the Solidity compiler. These
functions not only have to be callable from within the same contract instance,
but they also have to adhere to a universal format of message calling either
originating from other contracts or user accounts. This message format is de-
fined as the Application Binary Interface (ABI) and it specifies how a given
Solidity function may be called with the byte array data parameter.

When a Solidity contract receives a message or transaction, it will analyse
the first four bytes in the message’s data string for a function selector. If the
data string contains a valid selector that corresponds to one of the contract’s
available functions, then the program counter will jump to that function’s code
location. The function selector is simply the first 4 bytes of the Keccak-256
hash of the function signature, which is the function name followed by the
types of all its parameters in parenthesis.

In the event that the identifier does not match any valid options or if
the data string is empty, the contract will execute what is called the fallback
function. The fallback function is always present, but may be overridden in
solidity by defining a nameless function. Also note that the fallback function
must be marked payable for it to receive funds like other functions. The only
way to avoid this and still receive funds when a contract’s functions are not
marked as payable, is for the contract to be marked as the beneficiary of
a coinbase transaction (i.e. the recipient of all a block’s gas fees) or a self-
destruct.

To demonstrate an example of the function selector, Listing 2 contains
a small sample program that acts as a user’s personal wallet stored on the
blockchain with the following four functions:

• The constructor;

• withdraw();

• transferTo(address,uint256); and

• The fallback function defined using a nameless function.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 17

Our compiled bytecode will generate a function selector for both the withdraw()
and transferTo(address,uint256) function signatures using the following
Keccak-256 hashes:

keccak256(“withdraw()”) = 0x3CCFD60B2E3DDCE51AB210B . . .

keccak256(“transferTo(address,uint256)”) = 0x2CCB1B30FAB9B61DF5BAC0D . . .

1 pragma solidity ^0.5.10;

2

3 contract Wallet {

4 address payable owner;

5

6 constructor () public {

7 owner = msg.sender;

8 }

9

10 function withdraw() external {

11 if (msg.sender == owner) {

12 owner.transfer(address(this).balance);

13 }

14 }

15

16 function transferTo(address payable recipient,

17 uint256 amount) external {

18 if (msg.sender == owner) {

19 recipient.transfer(amount);

20 }

21 }

22

23 function () external payable {

24 // This default function may receive Ether

25 }

26 }

Listing 2: Simple wallet contract.

2.2.5 Storage Access

The EVM allows each contract account to access a state storage area that maps
a 32-byte address space to 32-byte words. Storage variables persist between
successful transactions and also between message calls, unless reverted.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 18

Solidity starts allocating storage by placing each state variable sequentially
beginning at offset 0 in the order that they are declared in. Any types that
are smaller than the 256-bit word size will be padded and, if possible, packed
in with other adjacent smaller variables. In the example contract

1 contract Example {

2 uint256 a;

3 uint256 b;

4 uint128 c;

5 uint128 d;

6 }

we have four state variables that will be packed as follows:

Offset 256-bit word
0 uint256 a

1 uint256 b

2 uint128 c uint128 d

Alternatively, if we had declared the variables in a different order as in

1 contract Example {

2 uint256 a;

3 uint128 b;

4 uint256 c;

5 uint128 d;

6 }

then both the uint128 variables would be padded to 256 bits and occupy the
following storage configuration:

Offset 256-bit word
0 uint256 a

1 uint128 b

2 uint256 c

3 uint128 d

While both approaches semantically describe the same program, the first con-
figuration would save gas on storage operations, since both variables could be
written at the same time.

Array Access

Arrays defined outside functions, as persisted state variables, have their values
stored in the same address space as all other state variables. The length of the

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 19

array is stored as a 256-bit integer at the offset equal to the position that it was
declared at in the source code (with packing accounted for other variables).

Array values, on the other hand, are stored further away determined by
the hash value of the array’s sequential offset. Given an element’s index i for
an array declared at offset n, the final offset in storage of the value will be at
position

keccak256(n) + i.

Note that if an index value is passed such that the offset is greater then or
equal than 2256, the offset value will overflow and wrap around to start at 0
again.

2.2.6 Built-in Functions and Variables

In this section we highlight several important built-in functions and variables
provided by Solidity that will be of use when explaining certain vulnerabilities
and tools in later chapters.

Environmental Data

Solidity provides functions and global variables that correspond to the low-level
environmental EVM instructions discussed in Section 2.1.7. Three important
objects are made available to each function:

• block for properties related to the current block being mined;

• msg containing data related to the current message (regardless of message
depth); and

• tx for transaction-specific data, or in other words the first item in the
message stack.

The properties available to the block, msg and tx objects are listed in Ta-
ble 2.8, Table 2.9 and Table 2.10 respectively. A built-in gasleft() function
may also be called to return the amount of gas left.

Property Type Description
block.number uint256 Current block’s number
block.timestamp uint256 Current block’s unix timestamp
block.gaslimit uint256 Current block’s gas limit
block.coinbase address payable Address of the current block’s beneficiary
block.difficulty uint256 Current block’s difficulty value

Table 2.8: List of block variable properties.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 20

Property Type Description
msg.sig bytes4 First four bytes of call data (function selector)
msg.data bytes Call data byte string
msg.sender address payable Message sender address
msg.value uint256 Message Ether value

Table 2.9: List of msg variable properties.

Property Type Description
tx.origin address payable Sender of original transaction
tx.gasprice uint256 Gas price of original transaction

Table 2.10: List of tx variable properties.

Error Handling

Solidity has two ways of handling errors or exceptional circumstances that re-
quire a state revert. The first method uses the low-level opcode 0xFD (REVERT)
to revert the current message and refund all remaining unspent gas to the
caller. This opcode can be generated either by the revert() function or the
require(bool) function that will only revert if the given boolean expression
evaluates to false. Revert opcodes are also generated when, for example,
funds are send to a non-payable function.

The second method of reverting state uses an invalid opcode, 0xFE, and will
revert execution without refunding gas. Invalid opcodes are generated by the
built-in assert(bool) function whenever the boolean expression evaluates to
false, and should be used to signal an invalid state or other broken invariant.
Solidity will also generate these invalid opcodes for other exceptions, such as
dividing by zero or passing an out of bounds index to an array.

Messages

Contracts in Solidity have several different ways of sending messages to one
another depending on the needs of the developer. Table 2.11 lists all the built-
in messaging functions available to an address payable object. The send

and transfer functions should be used whenever the only requirement is that
funds are transferred to the recipient using their fallback function, since these
functions have a strict gas limit of 2300.

If it is necessary to provide more than 2300 gas or call data, then the more
verbose call function may be used. The amount of gas and Ether value sent
with the call message may be set by chaining the optional gas(uint256) and
value(uint256) functions, for example:

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 21

result = recipient.call.gas(4000).value(10000)();

Omitting a data string as function payload will execute the fallback function
in the receiving contract.

The other variants of the call function, staticcall and delegatecall,
share the same syntax for controlling the gas and Ether value of the message
call, but differ in the way the recipient contract may act on the blockchain.
Recipients of a staticcall are not allowed to write any information to storage
and are intended to be used only for pure functions with no side-effects. A
delegatecall is used to allow the recipient’s contract code to interact with the
sender’s storage and can naturally be very dangerous if the recipient address
is somehow manipulated by an attacker.

One example use case of the delegatecall function is to handle the migration
and release of new contract code in a production environment. The calling
contract may contain the persistent data, while the recipient of the delegatecall
is updated with new logic by authorised users [16].

All calls described so far will halt execution as it waits for a message to
return, but any changes made thus far to its storage will be visible to other
contracts within the system — should they make another call back to the
original contract. Re-entrant calls like this are considered a major vulnerability
and is the focus of Section 3.2.3 on page 33.

Function Description
send(uint) Send the specified amount of Ether to this ad-

dress and return a boolean indicating success.
transfer(uint) Send the specified amount of Ether to this ad-

dress and revert if it fails.
call(bytes) Call this address with the specified payload and

return a boolean indicating success.
staticcall(bytes) Call this address with the specified payload

while allowing no changes to its state and re-
turn a boolean indicating success.

delegatecall(bytes) Call this address with the specified payload
while providing it with access to the current
contract’s state and return a boolean indicat-
ing success.

Table 2.11: List of Solidity messaging functions for payable addresses.

2.2.7 Token Standards

An Ethereum Request for Comment (ERC) can be used to specify a standard
interface that developers can implement in their own contracts, the most pop-

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 22

ular of which is the ERC-20 fungible token standard. Table 2.12 contains all
the functions that have to be implemented for a contract to comply with this
standard [17]. This standard is commonly used to build initial coin offering
(ICO) tokens and reduces the time and complexity of developing one’s own
tradable token. By relying on a common standard, developers further aid those
auditing the ICO for vulnerabilities or others building external wallet software
that track ERC-20 token balances using this standardised interface.

Signature Returns Description
name() string Name of the token (optional)
symbol() string Symbol of the token (optional)
decimals() uint8 Number of decimals for user

representation (optional)
totalSupply() uint256 Number of total tokens in sup-

ply
balanceOf(address) uint256 Number of tokens owned by the

specified address
transfer(address,uint256) bool Transfers your tokens to the

specified address. Emits a
Transfer event

transferFrom(address,

address,uint256)

bool Transfers tokens from one ad-
dress to another. Emits a
Transfer event

approve(address,uint256) bool Allows the address to trans-
fer on your behalf. Emits an
Approve event

allowance(address,address) uint256 Number of tokens that one ac-
count my withdraw from an-
other

Table 2.12: List of ERC-20 token standard functions.

Alternatively, developers can implement the more recent ERC-721 stan-
dard [18], which implements a non-fungible token. This allows one to extend
the token and add their own functionality, while still identifying every token
in circulation with a unique ID.

2.3 Solidity Development and Testing

Having explained the EVM and Solidity language in the previous two sections,
we now briefly present ways in which a smart contract developer can test
their code before it is deployed on the main Ethereum network. The tooling

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 23

discussed in this section are either the most popular solutions or officially
supported by the Ethereum development team.

2.3.1 Test Network Clients

Like most software systems, deploying and running a smart contract in its
production environment (the main Ethereum network) can be prohibitively
expensive and time consuming. Developers therefore need test environments
running a simulated Ethereum blockchain that focus on speed, accuracy and
debugging information.

The officially developed mining clients, for example:

• Geth (written in Go) [19],

• Aleth (written in C++) [20], and

• Py-EVM (written in Python) [21],

allow users to run local versions of the blockchain with the option of mim-
icking its consensus protocol during mining. Another popular community op-
tion is Ganache [22], which offers another local, fast implementation of the
Ethereum network and a graphical user interface for exploring transactions.
These clients all implement a standardised set of RPC methods that interact
with the blockchain, but clients such as Ganache implement additional calls
that also revert the network’s state to a previous snapshot — making it ideal
for testing.

There are also test networks supported by the community that more closely
resemble the main network, except they provide users with a free supply of
Ether [23].

2.3.2 Development Frameworks

One of the most popular development frameworks for developing smart con-
tracts is the Truffle suite [7]. This fully fledged environment assists with,
amongst other features, the following:

• Compilation and binary asset management for smart contracts;

• Scripting and management of connected public and private networks
(including Ganache as its standard test option);

• Integration testing scripts with JavaScript;

• Deployment and migration management;

• Interactive console and other useful commands; and

• APIs to integrate external plugins or scripts.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 24

2.3.3 Unit Testing

Truffle provides the ability to write unit tests in Solidity and offers a variety of
helpful libraries to test authors. These tests are written in Solidity as regular
contracts named with a Test prefix and contain functions that also start with
test. Running the test suite with the truffle test command will compile
the test suite and run it on the selected Ethereum client.

Although truffle will ensure the Ethereum client loads a clean environment
each time (either by resetting the chain or reverting to a previous snapshot),
one can also define before and after hooks using additional built-in functions.
Additional Solidity libraries are also packaged with Truffle that offer more
flexible, in-depth test assertions (under truffle/Assert.sol) and help with
dynamically managing the addresses of deployed contracts at runtime (under
truffle/DeployedAddresses.sol). The following is a very simple unit test
example included in the Truffle suite documentation that demonstrates the
assertion library and test hooks:

1 import "truffle/Assert.sol";

2

3 contract TestHooks {

4 uint someValue;

5

6 function beforeEach() {

7 someValue = 5;

8 }

9

10 function beforeEachAgain() {

11 someValue += 1;

12 }

13

14 function testSomeValueIsSix() {

15 uint expected = 6;

16

17 Assert.equal(someValue, expected, "someValue should have been 6");

18 }

19 }

2.3.4 Integration Testing

Integration tests can also be written as part of the Truffle suite using the
Mocha testing framework [24]. These tests are written in JavaScript and allow
developers more control over the blockchain environment for each test, since
they can now use the popular web3 API [25] to deploy contracts, submit
transactions, read blockchain information, etc.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 25

Developers can make use of the artifacts.require() JavaScript func-
tion to load contract definitions from the current project and then use the
contract() function to define each test case. Test cases defined using this
function behave similarly to Mocha’s describe() function, but with the added
benefit of resetting the client’s Ethereum environment and ensuring it is re-
verted to a clean snapshot before each test. The Chai assertion library [26]
can also be used to further check that the system is running correctly.

Listing 3 shows another test case snippet from the Truffle documentation,
but now showing how the MetaCoin contract can be deployed and checked for
an Ether balance assertion.

1 const MetaCoin = artifacts.require("MetaCoin");

2

3 contract("MetaCoin", accounts => {

4 it("should put 10000 MetaCoin in the first account", () =>

5 MetaCoin.deployed()

6 .then(instance => instance.getBalance.call(accounts[0]))

7 .then(balance => {

8 assert.equal(

9 balance.valueOf(),

10 10000,

11 "10000 wasn't in the first account"

12 );

13 }));

14 });

Listing 3: Metacoin example using the Mocha and Chai libraries.

2.4 Fuzzing

Fuzzing is a method of automated testing that tests a program using large
amounts of procedural input data. The fuzzer (or fuzz tester) can typically
feed large amounts of input data to the system, analyse the output, and then
potentially generate new input in such a way that a different program execution
path is followed. If any interesting or vulnerable program states are reached
(such as a crash or memory leak), then the fuzzer will be able to report the
trace of inputs necessary to reach the state and recreate the problem.

Fuzzers can broadly be differentiated from one another by their method
of input generation and the type of feedback returned by the program, as
explained further in Sections 2.4.1 and 2.4.2 respectively.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 26

2.4.1 Input Generation

Program inputs from fuzzers are generated typically using one of two ways,
the first of which generates it using a known structure associated with its valid
input either provided by the user or analysed by the fuzzer. This can take the
form of, for example, a grammar-based [27] or model-based [28] approach. The
main advantage to this approach is that the fuzzer could use this additional
knowledge of the system’s valid input to spend less time stressing parsing
components and explore potentially more interesting, deeper program paths.

The other popular approach involves continuously mutating the initial seed
input and generating large amounts of test data. Examples of the mutation
algorithm include flipping random bits, using interesting values such as the
minimum or maximum available integer, or the more complex genetic algo-
rithms used by a tool such as AFL [29].

2.4.2 Execution Feedback

Another important form of distinction among fuzzers is the amount of informa-
tion they have about the given system under test and the feedback that they
gain during fuzzing. We can broadly define these fuzzers into the following
three categories of increasing levels of knowledge about the system:

• Black-box fuzzers only see the program output with no other knowledge
of the system;

• Grey-box fuzzers employ some form of instrumentation to gain coverage
or execution trace feedback, e.g AFL;

• White-box fuzzers have full access to the program source code and could
therefore perform static analysis to gain more information about the
system, e.g. SAGE [30].

This feedback and additional knowledge of the system can be used to inform
the input generation component of the fuzzer, thereby exploring more paths
within the system.

In the case of fuzzing the EVM, we typically have at a bare minimum access
to the full trace of each execution and, in some cases, publicly verified source
code written in high-level languages like Solidity.

2.5 Symbolic Execution

Symbolic execution is an analysis technique that determines under what con-
straints on the input a certain program path would be executed. In this

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 27

section we will briefly explain the concept of symbolic execution and the un-
derlying methods crucial to understanding the tools discussed in later chapters.
Tool-specific discussion and an analysis of the different properties that can be
checked using symbolic engines is in Chapter 4.

2.5.1 Example Program

A symbolic executioner begins by accepting certain specified program input
parameters as symbolic values, instead of initialised or concrete values. The
engine then starts executing the program, while keeping track of its state and
the current path condition (PC). A path condition is a boolean formula that
describes all the constraints on the initial symbolic input that leads to the
current program state. Each of these explored paths can be combined into
a symbolic execution tree, where the nodes represent possible program states
and the edges represent additional constraints appended to the path condition
to reach those new states [31].

As an example, consider the function in Listing 4. Initially when we start
executing this function, our parameters (x and y) will be treated in the program
state as symbolic values. The symbolic engine will proceed to step through
each instruction and simulate the results, but fork at conditional jumps. Each
jump’s conditional expression is appended to the path condition of the next
state and continued in this manner until execution terminates. Figure 2.1
shows the potential symbolic execution path for this example function with
the variable values and path conditions at each state. The only infeasible path
condition is that of the bottom left state (X > Y && Y - X > 0), therefore
indicating that the assert statement is impossible to reach and the function is
safe from this type of error.

1 function swap(int x, int y) {

2 if (x > y) {

3 x = x + y;

4 y = x - y;

5 x = x - y;

6 if (x - y > 0)

7 assert(false);

8 }

9 }

Listing 4: Example swapping function.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 28

Var: x: X, y: Y
PC: true

Var: x: X, y: Y
PC: X > Y

Var: x: X, y: Y
PC: X <= Y

Var: x: X + Y, y: Y
PC: X > Y

Var: x: X + Y, y: X
PC: X > Y

Var: x: Y, y: X
PC: X > Y

Var: x: Y, y: X
PC: X > Y && Y - X > 0

Var: x: Y, y: X
PC: X > Y && Y - X <= 0

Figure 2.1: Symbolic execution tree of the example swapping function showing
the symbolic variables stored in memory and current path condition at each
state.

Stellenbosch University https://scholar.sun.ac.za



Chapter 3

Vulnerabilities

In this chapter we introduce and explain the most common vulnerabilities
present in Ethereum smart contracts. We assume that the reader has a basic
understanding of the EVM, as described in Chapter 2. While many of the
examples are not specific to Solidity and purely rely on the EVM bytecode, we
may opt to provide example source code written in Solidity where appropriate.
Certain vulnerabilities and attacks related to the blockchain itself (e.g. replay
attacks) fall outside the scope of this section and will not be considered unless
it depends on the EVM bytecode or a Solidity contract.

3.1 Vulnerability Taxonomies

The first taxonomy presented in Table 3.1 was initially proposed by Atzei et
al. in a survey published in 2017 [32] and adapted by Ardit Dika that same
year [33]. It classifies vulnerabilities according to the level in the Ethereum pro-
gramming stack that they are introduced at (Solidity, EVM or the blockchain
itself) and a severity level as determined by their research and prior occur-
rences. Since the majority of the tools analysed in later chapters are able to
only accept EVM bytecode as input, we felt that the focus had to be shifted
towards the vulnerabilities that are not reliant on Solidity specific practices.

We therefore draw on this existing taxonomy, along with other surveys
[34], and registries maintained by organisations or members within the indus-
try, [35] and [36], to present a new taxonomy in Table 3.2. This taxonomy
focuses on severe vulnerabilities that still exist at the Ethereum application
layer and group similar ones into four categories. The vulnerabilities are pri-
marily named after the ones given in the SWC Registry [35] to maintain a
single common naming scheme.

29

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. VULNERABILITIES 30

Level Vulnerability Severity

Solidity

Gas costly patterns Low-Medium
Call to the unknown High
Gasless send High
Exception disorders High
Type casts Medium
Re-entrancy High
Unchecked math (integer over and underflow) Low-Medium
Exposed functions or secrets Medium-High
tx.origin usage High
blockhash usage Medium-High
DoS High
send instead of transfer Low-Medium
Style violation Low
Redundant fallback function Low

EVM
Immutable bugs High
Ether lost in transfer High

Blockchain

Unpredictable state Medium
Generating randomness Medium-High
Timestamp dependence Low-High
Lack of transactional privacy Low-High
Transaction-ordering dependence Medium-High
Untrustworthy data feeds (oracles) High

Table 3.1: Taxonomy of vulnerabilities based on the level that they are intro-
duced at and severity.

3.2 List of Vulnerabilities

This section lists each of the major vulnerabilities that were listed in our
taxonomy in the previous section and describes the nature of the particular
vulnerability, provides an example of a vulnerable smart contract, and demon-
strates how to exploit it. Best practices or methods of protecting against a
vulnerability will also be included where applicable.

Section 3.3 lists the vulnerabilities that were omitted from our taxonomy,
but still included since some of them are checked by the analysis tools discussed
in Chapter 4.

3.2.1 Integer Overflow

All arithmetic operations in the EVM, whether signed or unsigned, can over-
flow after reaching the 256-bit internal word size limit and wrap around to zero.
Any use of the ADD, SUB, MUL or EXP opcodes that accepts a value that was

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. VULNERABILITIES 31

Category Vulnerability

Access Control

Unauthorised Ether Withdrawal
Unauthorised Self-destruct
Unauthorised Delegatecall
Authorisation Through Origin

Denial of Service
DoS with Failed Call
DoS with Block Gas Limit
DoS from Greedy State

Missing Checks

Write to Arbitrary Storage Locations
Integer Overflow
Re-entrancy
Unchecked Call Return Value

Requirement and Invariant Violations

Transaction Order Dependence
Weak Sources of Randomness
Assert Violations
Ether Invariants

Table 3.2: Taxonomy of vulnerabilities grouped according to categories.

either directly supplied by the user or tainted by another user-supplied value
is therefore a potential vulnerability. There is currently no EVM instructions
that reports if an overflow has occurred or not and thus this must be checked
by the developer.

Prevention

The simplest way of preventing integer overflow is to analyse every potentially
vulnerable arithmetic result and revert the current transaction if an overflow
has occurred. A popular example of this check is the open-source SafeMath

library developed by the OpenZeppelin organisation. Listing 5 includes the
safety check for addition of two 256-bit unsigned integers, which calculates
the addition result of the two parameters and reverts if the result is smaller
than the first parameter (i.e. it has wrapped around). The rest of the library
contains similar functions for subtraction and multiplication of 256-bit integers,
as well as two functions that check for division and modulo of zero operations.

3.2.2 Unchecked Call Return Value

Message calls in the EVM return a boolean value to indicate the success of the
call, with zero indicating failure. The built-in call, send, delegatecall and
staticcall functions all make use of a bool return value to indicate success,
while the transfer function instead reverts when a message call fails. It is

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. VULNERABILITIES 32

1 library SafeMath {

2 function add(uint256 a, uint256 b) internal pure

3 returns (uint256) {

4 uint256 c = a + b;

5 require(c >= a, "SafeMath: addition overflow");

6 return c;

7 }

8 ...

9 }

Listing 5: Abridged SafeMath library.

considered good practice to always check the result of these calls and handle
the case where a call might fail for whatever reason.

A failed call could, for example, indicate that the recipient contract ran
out of gas during execution. The contract author would have to account for
this potential scenario and either gracefully revert the current transaction or
ensure that the same contract is not called again.

Prevention

Always consider the case where a call using one of the functions mentioned
above might fail and then handle it appropriately. In general this means using
the call status return variable in an if-else conditional and either reverting
the entire transaction or manually reverting the contract state to the point
just before the call was made.

The Solidity snippet in Listing 6 shows an example of a transfer of funds
to the recipient address with a conditional clause that reverts the internal
balance should the message fail. If the contract requirements only dictate that
its internal state is reverted back to its state prior to the transaction, then the
transfer function is a more concise alternative.

1 amount = balances[recipient]

2 balances[recipient] = 0;

3

4 if (!recipient.send(amount)) {

5 balances[recipient] = amount;

6

7 // continue with rest of the error handling code

8 }

Listing 6: Call return value handling example.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. VULNERABILITIES 33

3.2.3 Re-entrancy

Message calls in the EVM switches control flow to the recipient contract while
still maintaining the sender’s substate. Any state changes that were made
during the sender’s initial execution before the message call are therefore visible
to the recipient contract and can be exploited by a subsequent re-entrant call.
Given enough gas, the recipient can potentially invoke one or more functions
in the original sender contract multiple times to eventually drain a significant
amount of its Ether balance — as was the case in the now infamous DAO hack.

Listing 7 contains a simple re-entrancy example from the SWC Registry
maintained by ConsenSys [35]. The following steps are necessary to exploit
this contract and generally form the basis of most attacks of this kind:

1. The attacker deposits some amount of Ether or otherwise performs an
action that will later entitle them to an authorised Ether withdrawal. In
this case they call the donate function.

2. The attacker calls some form of withdrawal function (withdraw here)
that initiates a transfer to their account with enough gas to perform
other tasks.

3. The attacker receives this amount, but may now execute their own code
while the vulnerable contract is still in an intermediate substate.

4. The attacker contract calls the same function and is once again allowed
to withdraw the same amount, since the state variable representing the
balance will only be updated after the first call has finished.

5. The attacker is free to repeat this process until the other contract is
virtually drained of all its Ether and then return control flow to finish
the transaction.

An alternate variation of this exploit involves the attacker making a re-entrant
call while the original contract remains in an invalid substate with the aim
of modifying storage in such a way that they may setup another attack in a
subsequent transaction.

There is one crucial mistake made in this example contract and that is
that its state is only updated after the call has finished, thus leaving it in an
intermediate state that violates one of its invariants (the sum of all the user
balances equals the contract’s own Ether balance). A developer could avoid
re-entrancy in this simple example by limiting the amount of gas transferred
to the withdrawal recipient, however, this negates one of the strengths of the
Ethereum platform and might not adhere to the requirements of a large system
of connected contracts.

We therefore define two potential scenarios where a re-entrancy attack may
have occurred during a transaction:

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. VULNERABILITIES 34

1 pragma solidity 0.4.24;

2

3 contract SimpleDAO {

4 mapping (address => uint) public credit;

5

6 function donate(address to) payable public{

7 credit[to] += msg.value;

8 }

9

10 function withdraw(uint amount) public{

11 if (credit[msg.sender]>= amount) {

12 require(msg.sender.call.value(amount)());

13 credit[msg.sender]-=amount;

14 }

15 }

16

17 function queryCredit(address to) view public returns(uint){

18 return credit[to];

19 }

20 }

Listing 7: SWC Registry re-entrancy example contract.

• Storage is modified during a re-entrant call; or

• A contract’s Ether balance is less than expected after the successful
transfer of funds.

Prevention

There are several ways to protect a contract against re-entrancy. The best
practice in terms of gas cost and functionality is to make all intended changes
to the contract’s state before initiating the first message call and revert after if
it fails, otherwise known as the “checks-effects-interaction” pattern [37]. The
withdraw(uint) function in the example above may be rewritten as follows
to maintain a valid state during the call and prevent the re-entrant call from
withdrawing more Ether than allowed:

1 function withdraw(uint amount) public{

2 if (credit[msg.sender] >= amount) {

3 credit[msg.sender] -= amount;

4 require(msg.sender.call.value(amount)());

5 }

6 }

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. VULNERABILITIES 35

This still allows the recipient contract to perform other tasks, but the balance
in the original contract will remain consistent even if the withdraw function
is called again.

Another solution simply involves limiting the gas stipend sent along with
every outgoing message call. A message sent using Solidity’s call function will
forward all available gas to the recipient, but this may be overridden using the
.gas(amount) method, for example:

recipient.call.gas(70000).value(amount)()

Message calls in the EVM have an inherent base fee of 21000 gas associated
with storage and signature operations, so limiting the stipend to this amount
will prevent an attacker from making another call. If the only goal is to transfer
funds, then using send or transfer is considered best practice, since these two
functions only provide a 2300 gas stipend (sufficient for basic logging tasks).

The last option maintains the ability for other contracts to perform their
own calls, but implements a mutex that prevents any re-entrant calls from
interfering with the contract while it is in a substate [37]. Listing 8 includes
an abridged version of the Mutex contract example included within the official
Solidity documentation. Any function implemented with this modifier will be
locked using a state variable and may only be unlocked once the entire function
call has finished. This strategy raises the gas cost of execution due to the extra
storage operations, but may prove useful if, for example, a function requires a
sequence of transfers with more complex state changes.

1 contract Mutex {

2 bool locked;

3

4 modifier noReentrancy() {

5 require(!locked);

6 locked = true;

7 _;

8 locked = false;

9 }

10 }

Listing 8: Mutex modifier example.

3.2.4 Assert Violations

Although the EVM only specifies one type of revert instruction, namely (0xFD
REVERT), Solidity allows developers to also cause a state reversal based on an

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. VULNERABILITIES 36

assertion failure by using an invalid opcode (0xFE). The REVERT opcode also
causes the sender to be refunded all the remaining gas, where an invalid opcode
does not.

A popular use case for the assert function is therefore to check for vi-
olations of some internal invariant or to detect bugs, while require is the
preferred function to deal with any known exceptions (e.g. invalid user input
or failed calls). Program execution logs can be monitored during testing and
any instance of the 0xFE opcode will indicate the presence of a bug and allow
the developer to address the issue.

Prevention

Assert statements are generally used during the development and testing stages
of software engineering to detect bugs or other unintended program states. If
there are still uses of the assert function present before a public release, then
it would be best to log the failure by emitting a Solidity event and using a
revert statement to roll back the program state and refund the user their
remaining gas.

3.2.5 DoS with Failed Call

In Section 3.2.2 we discussed the issue of ignoring a call return value — typ-
ically in the context of a single message call. We now consider the scenario
where contract operations could be stalled or permanently halted by a mali-
cious recipient that always fails a transfer on purpose or due to the low gas
stipend of some of the built-in Solidity functions. The simplest example of
such a contract is one that contains a Solidity default function that always
reverts when called, as in the following example:

contract Fail {

function () {

revert();

}

}

Listing 9 contains a modified example contract from the Ethereum wiki imple-
menting a simple auction system. In this example each bidder must call the
bid function with an Ether value greater than or equal to the previous highest
bidder. If a lower Ether value is sent, the transaction immediately reverts
due to the require function, otherwise it accepts the payment and refunds
the previous highest bidder. Due to the use of the transfer function during
the refund process, the entire transaction will revert if the previous bidder’s
address contains a contract that intentionally fails or consumes more than the
2300 implicit transfer gas stipend within its default function.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. VULNERABILITIES 37

1 pragma solidity 0.5.10;

2

3 contract Auction {

4 address payable highestBidder;

5 uint highestBid;

6

7 function bid() external payable {

8 require(msg.value >= highestBid);

9

10 if (highestBidder != address(0)) {

11 highestBidder.transfer(highestBid);

12 }

13

14 highestBidder = msg.sender;

15 highestBid = msg.value;

16 }

17 }

Listing 9: Auction contract example.

Prevention

The first step in protecting against a denial of service of this nature is to analyse
the sections of the contract that sends messages to beneficiaries. Every call
must be assumed to be able to fail and return false when using the send or
call functions or to revert when using transfer.

Often the reality is that the contract in question can not move forward even
if a message failure is considered. In our contract above, accepting a new bid
requires that the previous highest bidder be refunded their deposit, so the two
options here are to either forfeit that amount or implement a way for bidders
to collect their funds at a later stage.

This practice of shifting the responsibility of withdrawal to the beneficiary
is commonly referred to as a “Pull over Push” strategy. Instead of immediately
paying a beneficiary or a set of beneficiaries, the contract must implement a
balance for each account and allow them to request a withdrawal in a separate
transaction. Listing 10 contains the previous Auction contract shown above,
but now with an internal mapping for each bidder’s refund amount and a
function allowing them to withdraw that amount. The contract may now
continue accepting new bids even if one of the bidders intentionally fail their
withdrawal. Such a rewrite of the system does, however, come with a few
drawbacks:

1. The contract now requires substantially more storage on the blockchain
due to the refunds map;

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. VULNERABILITIES 38

1 pragma solidity 0.5.10;

2

3 contract Auction {

4 address payable highestBidder;

5 uint highestBid;

6 mapping(address => uint) refunds;

7

8 function bid() external payable {

9 require(msg.value >= highestBid);

10

11 if (highestBidder != address(0)) {

12 refunds[highestBidder] += highestBid;

13 }

14

15 highestBidder = msg.sender;

16 highestBid = msg.value;

17 }

18

19 function withdrawRefund() external {

20 uint refund = refunds[msg.sender];

21 refunds[msg.sender] = 0;

22 msg.sender.transfer(refund);

23 }

24 }

Listing 10: Auction contract example with withdraw functionality.

2. The overall gas cost is increased due to the additional bookkeeping and
withdrawal operations;

3. The number of transactions on the blockchain will increase, with the cost
shifted to the users requesting the withdrawal; and

4. The overall user experience is diminished by requiring them to initiate
the withdrawal, assuming that each bidder withdraws promptly (if at
all).

3.2.6 DoS with Block Gas Limit

Ethereum has two systems in place to ensure programs always halt:

• A stack size limit of 1024 items; and

• A variable gas limit for the entire block of transactions.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. VULNERABILITIES 39

The block gas limit determines the maximum number of transactions that are
allowed per block and is voted on by the mining community. As of the time
of writing, this limit hovers around 8 million gas units.

These limits therefore allow for a contract to potentially enter a state where
it is impossible to call a specific function, due to its computational require-
ments. Generally this can happen whenever a function loops over an array
whose length is controlled by the contract users, as shown in the totalBalance
function in Listing 11. Assuming no other way to remove an address from the
list of creditors, this array can grow indefinitely as time goes on and no longer
be callable within the block gas limit. Naturally the risk increases as the com-
plexity of the loop increases, whereas our example remains relatively cheap in
terms of gas usage. Another potential pitfall is the use of the call function

1 contract Bank {

2 address[] creditors;

3 mapping(address => uint256) balances;

4

5 function () external payable {

6 balances[msg.sender] += msg.value;

7 }

8

9 function totalBalance() public returns (uint256) {

10 uint256 total = 0;

11

12 for (uint256 i = 0; i < creditors.length; i++) {

13 total += balances[creditors[i]];

14 }

15

16 return total;

17 }

18

19 // Other functions

20 }

Listing 11: Mock banking contract with potentially infinite loop.

in Solidity that by default forwards all available gas to the recipient (capped
to 63/64 of the remaining gas). An attacker may then load a contract that
depletes all of its available gas during calls to its default function, thus leaving
very little gas in the original calling contract after control flow is returned. If
too many operations are performed afterwards, then it will cause the contract
to revert due to insufficient gas.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. VULNERABILITIES 40

Prevention

The primary approach to prevent an attack related to gas limits is to ensure
that all functions have a deterministic upper bound in execution cost. This
might mean that certain functions that involve looping over a list of values
should either be able to be split into different blocks over multiple transactions
or if possible stored as computed values in storage. A better solution might be
to avoid loops altogether by adopting a strategy such as the “Pull over Push”
one mentioned earlier.

Shifting operations such as a withdrawal to the user can also be a means
around the insufficient gas issues, since only the user themselves will be affected
if they load a malicious contract that is not capable of an error-free interaction.
In all other cases, it is always good practice to consider the maximum possible
gas cost of an external call and ensure that there will be enough left over to
finish the transaction.

3.2.7 DoS from Greedy State

A contract is defined to be in a greedy state if it can receive Ether, but no longer
transfer any of it to other accounts [38]. Funds can either be transferred to
the contract using payable functions or forcibly deposited using self-destructs
and mining fee transactions. Any funds received after entering this state are
therefore considered frozen and permanently lost. If a contract does not con-
tain any outbound call or self-destruct instructions, then it may be considered
greedy by default, since there are no other methods to retrieve funds.

Contracts suffering from the other denial of service vulnerabilities described
in Section 3.2.5 and Section 3.2.6 may further be classified to fall under this
category if all withdrawal functions are permanently affected.

Prevention

The first step to protect against this vulnerability is to ensure that withdrawal
functions do not suffer from any of the other DoS vulnerabilities such as the one
produced by intentionally failed calls. One might also choose to include a self-
destruct function to recover funds in the event that a contract is compromised,
however, developers need to ensure that only authorised users can initiate this
process (as discussed further in Section 3.2.9).

3.2.8 Unauthorised Ether Withdrawal

An unauthorised Ether withdrawal occurs when Ether funds are transferred to
a recipient that can be entirely arbitrary or outside a set of trusted addresses.
This may also be referred to as an Ether leak or a prodigal contract, although
either terminology describes the same process by which an attacker may have

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. VULNERABILITIES 41

stolen funds using a message call. For the purpose of this vulnerability, we do
not distinguish between calls that execute code in the recipient or calls that
have empty data strings. As long as Ether is transferred successfully to an
untrusted party via a call, it may be classified as a leak.

The precise definition of an untrusted contract typically varies from tool
to tool. In general, if the recipient address is manipulable by the caller and
able to evaluate to any arbitrary address, then it may be a cause for concern.
The MAIAN tool [38], for example, reports this vulnerability when funds are
transferred to an arbitrary address that:

• Does not own the contract under test;

• Has never deposited Ether to the contract under test; and

• Has “provided no data that is difficult to fabricate by an arbitrary ob-
server”.

Reporting on this vulnerability may be further improved by taking into ac-
count the severity of the Ether withdrawal by measuring whether or not the
amount gained by the attacker is more than they deposited and measuring the
percentage of the contract’s total funds that can be withdrawn by the attacker.

Prevention

This vulnerability generally occurs as a result of another vulnerability that
opens the contract up to unauthorised access (e.g. Section 3.2.14) or due to a
lack of any authorisation controls. It is always vital to keep in mind that any
contract created during the execution of another contract’s code is visible to
the public and callable by any account.

3.2.9 Unauthorised Self-destruct

The selfdestruct function in Solidity calls the SELFDESTRUCT opcode, which
transfers all remaining funds to the specified address and removes the contract
code and all its storage data from the blockchain. Any funds transferred to this
self-destructed address will be frozen and remain permanently irretrievable,
since the contract can no longer be modified to run new code.

We consider the criteria for an unauthorised self-destruct to be the same
as that of an unauthorised withdrawal from Section 3.2.8, meaning that this
function call must be preceded by sufficient checks for authorisation. The
permanent loss of the contract is severe enough to warrant a report of this
vulnerability, regardless of the recipient or amount of funds transferred.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. VULNERABILITIES 42

Prevention

Functions that contain a self-destruct generally require some trusted address
to initiate the call, otherwise they raise an exception. A very simple method of
protecting against this is to store the message sender of the contract creation
transaction as an owner variable and ensure that all calls to selfdestruct

are preceded by a require(msg.sender == owner) statement. This pattern is
provided by OpenZeppelin’s Ownable base class that allows extended contracts
to use a modifier with functions to check if the owner made the call or transfer
ownership to a new address.

3.2.10 Unauthorised Delegatecall

The EVM provides a delegatecall opcode that allows one contract to execute
another contract’s code, while providing access to its storage. If the recipient
address of the delegated call instruction can be manipulated by the attacker,
then they would be able to load a contract that overwrites potentially critical
storage data in the vulnerable contract. Any contract that therefore delegates
a call to an arbitrary address is therefore considered vulnerable.

3.2.11 Transaction Order Dependence

Contracts are transaction order dependent if the outcome of a set of two or
more of their transactions depend on their order within their block. In other
words, the execution order may cause a race condition depending on the stor-
age variables that are written or amounts of Ether transferred. This is an
important concern for many types of contracts, because when a user submits
their transaction to the network, they can not guarantee which block it will
be accepted in or in what order it will be executed.

Listing 12 shows another version of the auction contract that we have been
using, but with an added stop function that the owner can use to stop the
auction. To demonstrate how a race condition can be exploited, assume we
have two users (A and B) that are interested in bidding on the auction and
our auction contract owner. The following tables show two different scenarios
where the same transactions are ordered differently across two blocks:

Block 1
A bids 100
B bids 110
Owner stops

Block 2
A bids 100
Owner stops
B bids 110

Both scenarios have completely different outcomes and end up with two dif-
ferent values written to the highestBidder, despite user B clearly submitting
the highest bid both times.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. VULNERABILITIES 43

1 pragma solidity ^0.5.10;

2

3 contract Auction {

4 address payable highestBidder;

5 address owner;

6 uint highestBid;

7 bool stopped;

8

9 constructor () public {

10 owner = msg.sender;

11 }

12

13 function bid() external payable {

14 require(!stopped);

15 require(msg.value >= highestBid);

16

17 if (highestBidder != address(0)) {

18 highestBidder.transfer(highestBid);

19 }

20

21 highestBidder = msg.sender;

22 highestBid = msg.value;

23 }

24

25 function stop() external {

26 require(msg.sender == owner);

27 stopped = true;

28 }

29 }

Listing 12: Auction example dependent on transaction order.

Prevention

Transaction order dependence can be prevented by implementing mutual ex-
clusion locks, similar to the common concurrency problem of protecting against
race conditions. Developers can, for example, store the current block number
when entering a critical section and check afterwards in subsequent transac-
tions to make sure that the block number has increased.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. VULNERABILITIES 44

3.2.12 Authorisation Through Origin

The built-in Solidity value tx.origin returns the sender of the current transac-
tion. Authorising functions using this value is therefore considered dangerous,
because the value will remain the same across messages. If a transaction is
originally made using the authorised tx.origin account, then any re-entrant
calls made by attacking contracts will also read this same value and therefore
potentially be able to initialise unauthorised operations.

Prevention

Any critical operations authorised for a specific address should instead use the
msg.sender value, so that the value will more accurately reflect the sender of
the current message instead of the original transaction.

3.2.13 Weak Sources of Randomness

Contracts attempting to implement random behaviour often end up making
use of predictable blockchain or miner attributes [35]. There are several com-
pounding factors that make using variables such as the current timestamp
(block.timestamp) or block number (block.number) vulnerable to attack:

1. All contract data are publicly visible and can be studied by an attacker
to determine the exact algorithm used to achieve pseudo-randomness;
and

2. Colluding miners can choose what transactions to include in their blocks,
the order of transactions, and even the exact timestamp up to a small
margin before other miners submit their solution.

To demonstrate how attackers may choose to exploit this behaviour, consider
the following public lottery function where the first user to submit at the
correct time wins:

1 function play() public payable {

2 require(msg.value > 1 ether);

3

4 if ((block.timestamp * block.number) % 42 == 0) {

5 msg.sender.transfer(address(this).balance);

6 }

7 }

An attacker can now load a proxy account with a function that simply waits
until the correct time to submit to the lottery contract and keep calling it
until it is successful:

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. VULNERABILITIES 45

1 function attack() public {

2 if ((block.timestamp * block.number) % 42 == 0) {

3 lottery.play();

4 }

5 }

Prevention

Contract authors always need to be careful when using these environmental
variables and consider their true intention. If random behaviour is required,
then contracts can make use of on-chain random number generators that rely
on other users for generation (for example RANDAO [39]) or off-chain oracles
that generate the numbers externally.

3.2.14 Write to Arbitrary Storage Locations

All persistent storage values in the EVM share the same segment, including
values that are declared as part of a dynamic array in Solidity. Since these
dynamic arrays can have a length of up to 2256−1, an array with a sufficiently
large length could therefore overwrite other variables within the storage space
by wrapping around at the maximum unsigned integer size of 2256 − 1. These
collisions may go unnoticed and will not cause any exceptions during execution.

Listing 13 contains a contract that implement a dynamic array that can be
manipulated (for the purpose of the example) by any user. During contract
initialisation, the owner address variable will be set to the account that created
the contract. This owner variable is written nowhere else in the contract
and will be the only address that is trusted to successfully call the destroy

function. The goal of this example exploit is to overwrite the owner variable
using a sufficiently large dynamic array that collides with our other variables
in storage. After initialisation and before any transactions are loaded, the
variables are arranged in storage as follows due to the sequential order that
they are declared in:

Offset Variable 256-bit word
0 owner 0xBf4eD7b27F1d666546E30D74d50d173d20bca754

1 a.length 0

Any values at index i for an array declared sequentially at position n, will be
stored at position

keccak(n) + i

using the Keccak-256 hash function. If we call push(0) in our example, then
the value at the offset described above will be set to zero and the length of the
array will be updated as follows:

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. VULNERABILITIES 46

1 contract Array {

2 address payable owner;

3 uint[] a;

4

5 constructor () public {

6 owner = msg.sender;

7 }

8

9 function pop() public {

10 a.length--;

11 }

12

13 function push(uint val) {

14 a.push(val);

15 }

16

17 function set(uint i, uint val) public {

18 require(i < a.length);

19 a[i] = val;

20 }

21

22 function destroy() public {

23 require(msg.sender == owner);

24 selfdestruct(owner);

25 }

26 }

Listing 13: Example contract allowing arbitrary storage access.

Offset Variable 256-bit word
0 owner 0xBf4eD7b27F1d666546E30D74d50d173d20bca754

1 a.length 1
. . .

keccak(1) a[0] 0

Our aim is to overwrite the variable at position 0, meaning we must choose a
large enough index i for our array, such that

keccak(1) + i = 2256.

One solution is to increase the size of the array during normal operations, but
this may prove highly unfeasible due to the gas cost associated with that many
transactions. The other option is to decrease the size of the array until the

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. VULNERABILITIES 47

length value wraps around at 0 and back to the maximum size of 2256 − 1. If
we call our pop() function twice, then the storage space will be ready to be
exploited:

Offset Variable 256-bit word
0 owner 0xBf4eD7b27F1d666546E30D74d50d173d20bca754

1 a.length 2256 − 1

All that is left is to call set(i, val) with 2256− keccak(1) as the index value
and the attacker’s address as the unsigned integer value. Once successful,
the owner variable will be overwritten and the attacker will gain access to
the destroy function and be able to self-destruct the contract. All funds will
subsequently be drained, despite trying to restrict this function only to a single
owner address.

Prevention

Array lengths will in practice never reach the length required to collide with
other variables, because of gas requirements (the number of transactions re-
quired will be orders of magnitude more than the number of Ethereum trans-
actions to date).

Contract authors therefore need to make sure that contracts do not allow
the user to decrement the array length below zero (e.g. require(a.length >

0)) or make use of the built-in pop function for arrays introduced in Solidity
0.5.0. The a.pop() function will delete the element from storage, decrement
the length and trigger an invalid opcode exception if the array is already empty.

3.2.15 Ether Invariants

Developer assertions or other invariants that must hold during execution need
to be carefully considered whenever evaluating a contract’s Ether balance,
since an account will receive Ether without triggering any code by way of
another contract’s self-destruction or a miner’s coinbase transaction. Total
user deposits therefore may have to be tracked using a separate variable if
any invariants check assume that it will be the same as the contract’s Ether
balance.

Prevention

Invariants based on the contract’s balance (this.balance) should always as-
sume that it may be increased without explicitly sending a transaction to the
contract in question. If the invariant is only meant to consider funds deposited
by user accounts, then those amounts should be tracked separately during the
call to each payable function.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. VULNERABILITIES 48

3.3 Other Vulnerabilities and Bad Practices

This section briefly describes the vulnerabilities that were considered, but ul-
timately deemed outside the scope of this investigation. They are generally
either too easily caught by static analysis tools, too low impact or too sub-
jective and dependent on contract requirements to accurately evaluate as a
vulnerability.

3.3.1 Solidity Compiler Version Issues

New Solidity compiler versions are frequently released to introduce bug fixes
and performance enhancements, therefore making it best practice to target the
latest stable release. It is also generally advised to not use a floating pragma

statement at the top of a Solidity program and instead enforce a single compiler
version, thus protecting against any subtle changes that might be introduced
by new minor versions.

Since the tools discussed in the next chapter analyse the compiled bytecode
directly, we can safely ignore these warnings and focus on potential vulnera-
bilities contained within the final code that is pushed to the blockchain.

3.3.2 Deprecated Functions

New Solidity compiler versions often deprecate and phase out functions or
systems that cause vulnerabilities in the compiled bytecode. The compiler will
either warn against the use of these functions or abort compilation in the case
of a severe backwards compatibility issue.

In the end, our analysis tools discussed ultimately only consider the byte-
code output and warn if it found a vulnerability. Source mappings are included
to highlight the part of the Solidity code that may have generated the vulner-
ability, which the developer can then use to reconsider the compiler warnings
and potentially use an updated function to avoid the vulnerability.

3.3.3 Unused or Uninitialised Variables

These are typically considered low impact vulnerabilities that are relatively
easy to check. Uninitialised variables have well defined default values, meaning
that the developer may intend to leave them uninitialised. If a vulnerability
does arise because of these default values, then it will typically be caught
further down the line when a more significant event occurs (e.g. unauthorised
Ether withdrawal).

Similarly, an unused variable will only serve to clutter the codebase and
potentially end up costing the user more gas if stored on the blockchain. It is

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. VULNERABILITIES 49

important to consider the cost to the user and optimise as much as possible,
but it falls outside the scope of vulnerabilities that we intend to consider.

3.3.4 Use of Inline Assembly

While it is possible to write an inline assembly block in Solidity, it is gen-
erally warned against due to the fact that it bypasses many built-in Solidity
features [6]. Using inline assembly can, however, allow experienced developers
to optimise their code in terms of its gas requirements or perform operations
that are not part of Solidity [40].

3.3.5 Timestamp Dependency

The use of the block timestamp is often highlighted separately from other
sources of weak randomness, because the precise value of the timestamp is
submitted by the miner and not necessarily the same as the exact time that
the transaction was processed at. It is therefore recommended that developers
not rely on the EVM timestamps and either use block numbers to estimate
the passage of time or external oracles to provide a more precise measurement
of time.

3.3.6 Signature Replay Attacks

One use case of Solidity and the EVM is to build smart contracts that rely on
signature verification to perform certain tasks and authorise access. Developers
could, for example, write a proxy wallet contract that transfers Ether to anyone
presenting a valid signature communicated offline by the owner. This would
function much like a cheque and a traditional bank account.

Ethereum allows accounts to verify that a message was signed by its asso-
ciated private key, but it is vital that extra information about the nonce and
proxy address is encoded in messages to avoid replay attacks [41].

Stellenbosch University https://scholar.sun.ac.za



Chapter 4

Tools

The previous chapter gave an overview of all the major vulnerabilities that
exist in Ethereum smart contracts and examples of how to prevent some of
them. We now focus on the testing and verification tools that are at our dis-
posal to automatically find these vulnerabilities before contracts are deployed
to a live blockchain.

Our first section in this chapter gives a brief overview of all the tools dis-
cussed in the rest of the thesis and outlines their features. In Section 4.2 we
discuss each investigated tool in more depth and focus on the types of vulner-
abilities that they are able to automatically detect. Our selection criteria for
the tools that form part of this discussion are those that:

• Are in active development;

• Have a simple user-interface or continuous integration option;

• Are offered as an extensible open-source application or provide a devel-
oper API; and

• Produce detailed reports about the vulnerabilities encountered.

Unit and integration testing frameworks were deemed to fall outside the scope
of this chapter, since they require the user to provide concrete program inputs.
We do, however, give an overview of unit and integration testing of Solidity
programs in Section 2.3 of our background chapter on page 22.

4.1 Tool Taxonomies

We present two taxonomies that classify our selected tools based on a set of
significant features and the vulnerabilities that they are able to automatically
detect. Table 4.1 lists the feature classification and Table 4.2 the vulnerability
classification.

50

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. TOOLS 51

The next section will discuss each tool in more detail, but it is worth noting
that MythX supports several features partially, since it is composed of more
than one tool — one of which is Mythril. It can therefore only generate test
inputs when a vulnerability was detected using its fuzzer or symbolic analysis
component and not when using static methods.

Feature Securify Slither MythX Echidna Manticore Mythril
Open-source Yes Yes Partially Yes Yes Yes
Official API Support No Yes Yes Yes Yes Yes
Custom Property DSL No No No No No No
Test Input Generation No No Partially Yes Yes Yes
Coverage Analysis No No No Yes Yes Yes
Truffle Integration Yes Yes Yes Yes Yes Yes

Table 4.1: General feature classification of all the tools considered.

Vulnerability Securify Slither MythX Manticore Mythril
Unauthorised Ether Withdrawal Yes Yes Yes Yes Yes
Unauthorised Self-destruct Yes Yes Yes Yes Yes
Unauthorised Delegatecall Yes Yes Pro Yes Yes
Authorisation Through Origin Yes Yes Pro Yes
DoS with Failed Call Yes Pro Yes
DoS with Block Gas Limit Pro
DoS from Greedy State Yes Yes
Write to Arbitrary Storage Loca-
tions

Pro

Integer Overflow Yes Yes Yes
Re-entrancy Yes Yes Pro Yes Yes
Unchecked Call Return Value Yes Yes Yes Yes Yes
Transaction Order Dependence Yes Pro Yes
Weak Sources of Randomness Pro Yes Yes
Assert Violations Yes Yes Yes
Ether Invariants Yes

Table 4.2: Vulnerability classification of all the tools considered. The MythX
vulnerabilities marked “Pro” are only available in the paid subscription tier.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. TOOLS 52

4.2 List of Tools

In this section we give a brief overview of all of the selected tools. Each tool-
ing subsection will include a brief technical discussion based on their available
literature and a full list of their detectable vulnerabilities. We will also men-
tioned the viability of adding extensions or implementing custom properties
— where applicable.

4.2.1 Securify

The Securify security analysis tool checks a given Ethereum smart contract
for the violation of a variety of properties that signal a vulnerability in the
code. This tool was published in 2018 [42] and is available online via a web
interface [43] hosted by the Chainsecurity organization [44]. Source code for the
tool is also available at its Github page [45], which includes a Java command-
line application.

Its web tool accepts a contract using a text, zip file, or git repository
uploader and produces a line-by-line analysis report that either warns about a
potential vulnerability or indicates a sure violation according to its pre-defined
properties. The report provided by this web tool does not present a sequence
of transactions that exploit the property violations.

Implementation Overview

The Securify analysis system requires two sets of input: EVM bytecode and
security patterns written in its domain-specific language (DSL). This EVM
bytecode is first decompiled into a static single assignment (SSA) form that
captures a stackless intermediate representation (IR) of the program. Secu-
rify then infers semantic facts about the program by analysing its data and
control-flow graphs and declares them in stratified Datalog. All available se-
curity patterns (provided by the user or built-in) are then checked for logical
violations and reported to the user on a line-by-line basis.

Security Properties

Securify’s property names are mapped to the vulnerability names used in the
previous chapter in Table 4.3, while Table 4.4 contains the full list of properties
checked by Securify’s built-in security patterns, along with their description of
each. Each pattern is written internally in both a compliance form (implying
that it is satisfiable at all times) and violation form (implying that it can be
found unsatisfied in some state). Securify vulnerability reports thus fall into
three categories:

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. TOOLS 53

Violations The vulnerability’s violation pattern was satisfied and the con-
tract is deemed unsafe.

Warnings The violation pattern could not be satisfied, but neither could
the compliance pattern.

Safe All compliance patterns hold while none of the violations are satisfi-
able.

Our Name Securify Name
Unauthorised Ether Withdrawal Unrestricted Ether flow
Unauthorised Self-destruct Unrestricted Selfdestruct
Unauthorised Delegatecall Potentially Dangerous Delegatecall
Authorisation Through Origin Use Of Origin
DoS from Greedy State Locked Ether
Re-entrancy Reentrant method call
Unchecked Call Return Value Unhandled Exception

Transaction Order Dependence
Transaction Order Affects Ether Amount
Transaction Order Affects Ether Receiver

Table 4.3: Mapping between our vulnerability names and the closest Securify
property names.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. TOOLS 54

Property Name Description
Reentrant method call Method calls that are followed by state changes may be

reentrant.
Gas-dependent Reentrancy Calls into external contracts that receive all remaining

gas and are followed by state changes may be reentrant.
Reentrancy with constant gas Ether transfers (such as send and transfer) that are

followed by state changes may be reentrant.
Missing Input Validation Method arguments must be sanitized before they are

used in computations.
Unrestricted ether flow The execution of ether flows should be restricted to an

authorized set of users.
Unrestricted write to storage Contract fields that can be modified by any user must

be inspected.
Unrestricted Selfdestruct The execution of selfdestruct statements must be re-

stricted to an authorized set of users.
Unsafe Call to Untrusted Contract The target of a call instruction can be manipulated by

an attacker.
Unsafe Dependence On Block Gas Security-sensitive operations must not depend on gas-

related information.
Potentially Dangerous Delegatecall The inputs provided to delegatecall must be sanitized

to avoid risk.
Repeated Calls to untrusted code Repeated Calls to untrusted code might return incon-

sistent results.
Repeated call to an untrusted con-
tract

Repeated call to an untrusted contract may result in
different values

Unhandled Exception The return value of statements that may return error
values must be explicitly checked.

Division Before Multiplication The use of division before multiplication may result in
incorrect final results due to integer rounding.

Division influences Transfer Amount The use of division to calculate the amount of trans-
ferred ether may be incorrect due to integer rounding.

Locked Ether Contracts that may receive ether must also allow users
to extract the deposited ether from the contract.

Use Of Origin The origin statement must not be used for authoriza-
tion.

Transaction Order Affects Ether
Amount

The amount of ether transferred must not be influenced
by other transactions.

Transaction Order Affects Ether Re-
ceiver

The receiver of ether transfers must not be influenced
by other transactions.

Transaction Order Affects Execution
of Ether Transfer

Ether transfers whose execution can be manipulated
by other transactions must be inspected for unintended
behavior.

Table 4.4: List of built-in security properties checked by Securify.

4.2.2 Slither

Slither is a static analysis framework [46] developed by the Trail of Bits cy-
bersecurity consultation firm [47]. This static analyser automatically detects
and alerts the user to a variety of vulnerabilities, bad coding practices, and

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. TOOLS 55

optimisation options present in the given code. It is offered as a command-line
application, continuous integration service (as part of the Github app [48]),
and as a Python API where developers can add their own vulnerability detector
modules.

Implementation Overview

The first stage of the Slither analysis process compiles the given smart con-
tract using the Solidity compiler and retrieves its abstract syntax tree (AST).
Afterwards the contract inheritance structure, control flow graph (CFG) and
Solidity expressions are recovered and the contract code is transformed into
an SSA IR of the contract called SlithIR. Additional analysis is performed
to determine, for example, the variables written and read or potential data
dependency between transactions, before lastly running each available detec-
tor module. These detector modules can fully explore all the static analysis
components gathered up to this point and output meaningful information or
warning to the user in the event that a vulnerability is detected.

Security Properties

Slither comes with many built-in detectors aimed at finding vulnerabilities and
optimisation opportunities or assisting with code review and understanding.
These modules can be freely enabled or disabled when using the command-line
interface or Python API. Developers may also write their own detectors for use
with the API to detect custom properties that may be specific to the contract
at hand.

Table 4.3 maps the previously used vulnerability names to the names of the
detectors used in Slither. The rest of the vulnerabilities are listed in Table 4.6,
including their descriptions, impact severity and confidence level as given on
their Github page [49]. The available informational and optimisation detectors
are also listed in Table 4.7.

4.2.3 MythX

MythX is a smart contract security analysis platform developed by Consen-
Sys [50] that integrates several tools into a single analyser [51]. This platform
is offered to subscribers through an online API and comes with both a free
and paid subscription tier. Developers can either submit their code with a
truffle plugin, through the Remix online IDE [52] or integrate with the API
using their own custom tooling. Reported vulnerabilities are categorised ac-
cording to ConsenSys’s SWC registry [35]. The system will also notify users
whenever an AssertionFailed logging event was triggered, thus providing an
alternative to regular Solidity assert statements [53].

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. TOOLS 56

Our Name Slither Name
Unauthorised Ether Withdrawal Functions that send ether to arbitrary destina-

tions
Unauthorised Self-destruct Functions allowing anyone to destruct the con-

tract
Unauthorised Delegatecall Controlled delegatecall destination
Authorisation Through Origin Dangerous usage of tx.origin
DoS with Failed Call Multiple calls in a loop
DoS from Greedy State Contracts that lock ether

Re-entrancy
Re-entrancy vulnerabilities (theft of ethers)
Reentrancy vulnerabilities (no theft of ethers)

Unchecked Call Return Value
Unchecked send
Unused return values

Table 4.5: Mapping between our vulnerability names and the closest Slither
detector names.

Implementation Overview

The platform runs all given code through the following three security analysis
tools:

• Maru, a proprietary static analysis tool [54],

• Harvey, a proprietary fuzzer [55], and

• Mythril, an open-source symbolic executioner [56].

All three analysis results are combined into a single report that indicates the
location of every detected vulnerability, including a sequence of transactions to
recreate the bug in the case of Harvey and Mythril. Mythril will be discussed
in more detail under Section 4.2.6.

Security Properties

MythX checks properties defined according to the SWC registry [35] (also
maintained by ConsenSyS), but restricts them based on the subscription tier
currently held by the user. Table 4.8 lists the 10 vulnerabilities checked by the
free tier of MythX and Table 4.9 lists the rest.

4.2.4 Echidna

Echidna is an open-source fuzzer for Ethereum smart contracts [57] developed
by Trail of Bits and, like Slither, is also included in the Crytic Github app.
One of the key differences between this tool and the others discussed, is that

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. TOOLS 57

Vulnerability Impact Confidence
Right-To-Left-Override control character is used High High
State variables shadowing High High
Functions allowing anyone to destruct the contract High High
Uninitialized state variables High High
Uninitialized storage variables High High
Functions that send ether to arbitrary destinations High Medium
Controlled delegatecall destination High Medium
Re-entrancy vulnerabilities (theft of ethers) High Medium
Incorrect ERC20 interfaces Medium High
Incorrect ERC721 interfaces Medium High
Dangerous strict equalities Medium High
Contracts that lock ether Medium High
State variables shadowing from abstract contracts Medium High
Constant functions changing the state Medium Medium
Reentrancy vulnerabilities (no theft of ethers) Medium Medium
Dangerous usage of tx.origin Medium Medium
Unchecked low-level calls Medium Medium
Unchecked send Medium Medium
Uninitialized local variables Medium Medium
Unused return values Medium Medium
Built-in symbol shadowing Low High
Local variables shadowing Low High
Constructor called not implemented Low High
Multiple calls in a loop Low Medium
Benign re-entrancy vulnerabilities Low Medium
Dangerous usage of block.timestamp Low Medium

Table 4.6: List of Slither’s built-in vulnerability detectors.

it analyses custom invariants that are expressed as Solidity functions instead
of checking through a list of predefined properties.

Implementation Overview

This tool is written in Haskell and tests EVM programs running on HEVM,
which is an EVM also written in Haskell and designed for debugging [58]. The
system generates a variable number of transactions to the contract under test
before resetting the EVM state and testing another sequence of transactions.
Transaction input data is generated based off analysis of the contract’s ABI,
along with additional heuristics and use of the coverage data to repeat calls.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. TOOLS 58

Description Type Confidence
Assembly usage Informational High
Deprecated Solidity Standards Informational High
Un-indexed ERC20 event parameters Informational High
Low level calls Informational High
Conformance to Solidity naming conventions Informational High
If different pragma directives are used Informational High
Incorrect Solidity version (<0.4.24 or complex pragma) Informational High
Unused state variables Informational High
Conformance to numeric notation best practices Informational Medium
State variables that could be declared constant Optimization High
Public function that could be declared as external Optimization High

Table 4.7: List of Slither’s built-in informational and optimisation detectors.

ID Title
SWC-100 Function Default Visibility
SWC-101 Integer Overflow and Underflow
SWC-102 Outdated Compiler Version
SWC-103 Floating Pragma
SWC-104 Unchecked Call Return Value
SWC-105 Unprotected Ether Withdrawal
SWC-106 Unprotected SELFDESTRUCT Instruction
SWC-108 State Variable Default Visibility
SWC-110 Assert Violation
SWC-111 Use of Deprecated Solidity Functions

Table 4.8: List of SWC registry entries checked by the free tier of MythX.

Security Properties

Although Echidna does not test against any of the previously listed vulner-
abilities natively, users are able to provide their own invariants to perform
custom property analysis. By default the system will look for functions with
the echidna prefix and expect a boolean value indicating whether or not the
property still holds.

Since these properties are defined within Solidity itself, you only have ac-
cess to the same context that you would otherwise have in a regular Solidity
function. If, for example, you want to check if an owner variable does not
change after contract initialisation, then you can use a configuration file to
define the exact address of the contract and write the following function:

function echidna_check_owner() returns (bool) {

return owner == address(0xBf4eD7b27F1d666546E30D74d50d173d20bca754);

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. TOOLS 59

ID Title
SWC-107 Reentrancy
SWC-109 Uninitialized Storage Pointer
SWC-112 Delegatecall to Untrusted Callee
SWC-113 DoS with Failed Call
SWC-114 Transaction Order Dependence
SWC-115 Authorization through tx.origin
SWC-116 Timestamp Dependence
SWC-117 Signature Malleability
SWC-118 Incorrect Constructor Name
SWC-119 Shadowing State Variables
SWC-120 Weak Sources of Randomness from Chain Attributes
SWC-121 Missing Protection against Signature Replay Attacks
SWC-122 Lack of Proper Signature Verification
SWC-123 Requirement Violation
SWC-124 Write to Arbitrary Storage Location
SWC-125 Incorrect Inheritance Order
SWC-127 Arbitrary Jump with Function Type Variable
SWC-128 Gas Exhaustion
SWC-129 Typographical Error
SWC-130 Right-To-Left-Override control character

Table 4.9: List of SWC registry entries checked by the premium tier of MythX.

}

The configuration file can also be used to set other parameters such as the
available addresses to use when sending transactions or the initial Ether bal-
ance when deploying a contract. Users can make use of the API and Hedgehog
library to conduct further property analysis using Haskell [59].

4.2.5 Manticore

Manticore is a symbolic analysis tool for Linux ELF binaries and the EVM [8]
developed by Trail of Bits [47]. It features its own implementation of the EVM
specification with the ability for instructions to operate on symbolic data. This
tool features various built-in vulnerability detectors that will print detailed
reports and provide a sequence of inputs to recreate the finding. Users may
make use of a Python API to have more control over the execution environment
setup and add their own vulnerability detectors. The tool is also made available
through a command-line interface that analyses contracts symbolically up to
a specified number of transactions [60].

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. TOOLS 60

Implementation Overview

The Manticore symbolic execution engine currently supports the Frontier ver-
sion of the EVM specification. Manticore is able to model aspects of the
blockchain environment symbolically (e.g. the timestamp or block number),
along with each contract’s storage, memory and Ether balance. Transactions
can be sent with completely symbolic data (including symbolic gas) to a sym-
bolic address, but the recipient will be deterministically concretised to all
available accounts. States that are forked like in this case will be distributed
to a task pool of available workers for parallel symbolic execution, since each
state is given a complete copy of the simulated blockchain.

Vulnerability findings are reported during execution by using a type of
Python object called a detector. These detectors listen for event callbacks
that are triggered at certain points of execution, for example before and after
every transaction or instruction. Each detector has access to the current sys-
tem state, its own persistent context variable, and additional callback specific
information such as the return value of a message. They are also able to taint
variables for later analysis and concretise symbolic values using the system
solver (Z3).

Security Properties

Although users are able to write and run their own detectors via the API,
the Manticore command-line application comes prepackaged with a variety of
built-in detectors. Table 4.10 includes a mapping between our vulnerability
names and the names of each closest built-in Manticore detector. The full list
of Manticore detectors are listed in Table 4.11.

4.2.6 Mythril

Mythril is a symbolic analysis tool for the EVM developed by ConsenSys. This
tool automatically detects a set of security vulnerabilities in the given EVM
bytecode or Solidity file and reports a sequence of inputs that recreates the
exploit. The proprietary MythX security platform includes Mythril as part
of its analysis process, but the publicly available Mythril Classic still remains
open-source. It comes with both a command-line interface and Python API,
with both having the option to generate state space graphs and pull concrete
data from the blockchain for use in analysis.

Implementation Overview

Mythril symbolically analyses the given contract’s CFG using its internal sym-
bolic execution engine, Laser. Laser is able to simulate a sequence of transac-
tions as specified by the user, with additional parameters available to control

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. TOOLS 61

Our Name Manticore Name
Unauthorised Ether Withdrawal Reachable external call or ether leak to

sender or arbitrary address
Unauthorised Self-destruct Reachable selfdestruct instructions
Unauthorised Delegatecall Problematic uses of DELEGATECALL

instruction
Authorisation Through Origin Use of potentially unsafe/manipulable

instructions
Re-entrancy Reentrancy bug
Integer Overflow Integer overflows
Unchecked Call Return Value Unused internal transaction return val-

ues
Transaction Order Dependence Possible transaction race conditions
Weak Sources of Randomness Use of potentially unsafe/manipulable

instructions
Assert Violations Enable INVALID instruction detection
Ether Invariants Use balance in EQ

Table 4.10: Mapping between our vulnerability names and the closest Manti-
core detector names.

the depth of the search and various solver timeout lengths. Transactions are
created using a designated creator address and subsequent transactions are
constrained to be sent from either the creator user account or one of two other
user accounts in the environment.

Unlike Manticore, Mythril stores a copy of the symbolic call graph that
can be used to explore states for vulnerabilities or exported to, for example, a
graphical format that can be used to help with debugging.

Security Properties

Table 4.12 shows all the SWC registry vulnerabilities checked by Mythril’s
built-in analysis modules. The analysis modules can all be configured to be
called after specific opcodes are reached in the symbolic execution engine so
that they can analyse the state space and EVM data to potentially warn the
user about a vulnerability. Several vulnerabilities, for example re-entrancy,
that are not checked by the free version of MythX are included in the Mythril
package distribution.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. TOOLS 62

Description Impact Confidence
Problematic uses of DELEGATECALL in-
struction

High High

Reentrancy bug High High
Reentrancy bug (different method) High High
Integer overflows High High
Use balance in EQ High High
Use of potentially unsafe/manipulable instruc-
tions

Medium High

Reachable selfdestruct instructions Medium High
Reachable external call or ether leak to sender
or arbitrary address

Medium High

Uninitialized memory usage Medium High
Uninitialized storage usage Medium High
Enable INVALID instruction detection Low High
Unused internal transaction return values Low High
Possible transaction race conditions Low Low

Table 4.11: List of built-in Manticore detectors.

ID Title
SWC-101 Integer Overflow and Underflow
SWC-104 Unchecked Call Return Value
SWC-105 Unprotected Ether Withdrawal
SWC-106 Unprotected SELFDESTRUCT Instruction
SWC-107 Reentrancy
SWC-110 Assert Violation
SWC-111 Use of Deprecated Solidity Functions
SWC-112 Delegatecall to Untrusted Callee
SWC-113 DoS with Failed Call
SWC-116 Timestamp Dependence
SWC-120 Weak Sources of Randomness from Chain Attributes
SWC-127 Arbitrary Jump with Function Type Variable

Table 4.12: List of SWC registry entries checked by Mythril Classic.

4.3 Other Tools

In this section we discuss some of the more notable tools in the Ethereum
community that we have omitted from the previous discussion. Many of these
tools implement advanced analysis techniques that could make its way into
newly developed analysis frameworks.

Oyente [61] was one of the first symbolic execution tools implemented

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. TOOLS 63

for the EVM and used to analyse thousands of smart contracts from the
blockchain. Similarly, Nikolić et al. developed a tool called MAIAN [38] that
analysed on-chain contracts for trace vulnerabilities (i.e. those that span mul-
tiple transactions). Kolluri et al. developed EthRacer to symbolically analyse
bytecode for cases of transaction order dependence [62]. We also note the re-
search done by Krupp and Rossow to develop teEther [63] that symbolically
executes a given contract’s CFG to find vulnerabilities such as an unauthorised
self-destruct, delegatecall or withdrawal.

Jiang et al. developed one of the earliest fuzzing tools for smart contracts
called ContractFuzzer [64] that is able to detect multiple vulnerability types
using a set of instrumented oracles within their framework. Input is generated
according to the contract’s ABI. Although not directly associated with finding
vulnerabilities in smart contracts, Fu et al. implemented EVMFuzzer [65] to
find vulnerabilities and inconsistent behaviour in several of the of most popular
EVM clients such as geth and aleth.

Several static analysis tools are available for Solidity smart contracts that
warn about potential vulnerabilities and bad coding practices. This includes
tools such as Smartcheck [66], Octopus [67], Solhint [68], and the Remix IDE’s
analysis component [6].

In 2018 Brent et al. introduced the Vandal static analysis framework [69]
that allows users to specify vulnerability properties using Soufflé. Other tools
that can formally verify and allow users to reason about vulnerabilities using
correctness properties include VerX [70], VeriSolid [71], and a formal semantic
implementation of the EVM using the K framework [72].

Lastly, we note that there are a variety of other tools that focus on analysing
gas-based properties and vulnerabilities within Ethereum smart contracts.
Tools such as GASPER [73] automatically locate inefficient gas patterns in
code, while MadMax [74] analyses the code for vulnerabilities relating to its
gas usage.

Stellenbosch University https://scholar.sun.ac.za



Chapter 5

Extensions

We have thus far considered a variety of tools that analyse properties using
different methodologies, but based on our vulnerability classification, the only
tool that came close to achieving full coverage was the proprietary version of
MythX that combines the results of multiple tools. In this chapter we inves-
tigate how one can use the official APIs supported by these tools, specifically
Manticore, to analyse more vulnerabilities and improve code coverage.

5.1 Framework Architecture

Although Manticore does support a command-line interface as mentioned in
Chapter 4, this method of analysing contracts does not provide the same flex-
ibility in setting up the execution environment as one would have when using
its Python API.

Some contracts are only exploitable after a certain amount of time has
elapsed or at specific block numbers. They may also require interaction with
other smart contracts before a vulnerable state is reached, for example in the
case of re-entrancy. An ideal security analysis tool should be able to correctly
model these environmental characteristics, alert the user of any potential vul-
nerabilities, and produce a set of instructions (including malicious code) to
recreate these exploits.

Our analysis framework is therefore structured in a pipeline format, since
all the main components must be used in the following sequential order:

1. Setting up the analysis environment;

2. Performing symbolic analysis;

3. Validating and preparing results.

Figure 5.1 shows the architecture of this symbolic execution pipeline. Each
listed component will be discussed in more depth in Section 5.2.

64

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. EXTENSIONS 65

Framework

Environmental
Setup

(detectors,
contracts,	block
information)

Manticore
Symbolic
Analysis

Py-EVM
ValidationInput	Data Reports

Figure 5.1: Structure of the symbolic execution framework outlining the major
components.

5.2 Framework Implementation

Each of the following subsections explain a component of the framework in
further detail.

5.2.1 External Interfaces

The framework is intended to be available both as a command-line interface
(CLI) and Python API, similar to the base Manticore system. While the
CLI provides the configuration options necessary to analyse the majority of
smart contracts, some users may require additional configuration before run-
ning analysis (e.g. deploy other smart contracts) by instantiating the system
within a custom Python script.

Regardless of the method used to interface with the system, the following
list of input arguments are available:

• The Solidity contract under test;

• The number of transactions to analyse symbolically;

• The path to the file in which results should be saved;

• An option to only simulate transactions from a single attacker address;

• An optional timeout length;

• Which vulnerability detector modules to activate.

Usage of every detector will increase analysis time significantly and can be
safely omitted if the goal is to only find specific vulnerabilities (e.g. assertion
errors).

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. EXTENSIONS 66

5.2.2 Environmental Setup

The analysis component of the system will take several steps to instantiate the
main Manticore execution environment and configure it accordingly.

One of the first steps taken is to analyse the given smart contract file using
Slither so that the system can statically determine the name of each contract
listed within, whether or not they accept Ether in their constructor functions,
and the name of each publicly accessible function. Function names may contain
special prefixes to indicate that they serve as oracle functions that test some
invariant, namely:

• “manticore ” to return true whenever violated or

• “test ” to return false in case an invariant property is violated.

Two user accounts are initially created, one for the owner of the main contract
under test and one malicious actor, each with a balance of 1000 Ether to ensure
that they can afford to pay for transactions.

Each configured detector is initialised, along with a symbolic block number
and timestamp, before the system makes the first transaction: creation of the
specified contract. The contract itself is owned by the owner account defined
previously, is given a symbolic Ether balance if capable of receiving Ether, and
is passed symbolic arguments. If successfully instantiated, then the system
can continue with setting up an attacking contract in the case where the user
activated the re-entrancy detection module.

Attacking Contract Setup and Synthesis

Re-entrancy exploits always involve at least one adversarial (or attacking)
smart contract in the system that is able to make re-entrant calls to its target
contract, as discussed previously in Section 3.2.3. For us to provide the user
with a concrete example of the entire re-entrancy exploit, we need to synthesise
these attacking smart contracts and provide a sequence of concrete transactions
to recreate the loss of Ether funds. This synthesis of the attacking contract is
similar to that of the SmartScopy [75] tool, however, due to time constraints
we have not been able to implement any of their early pruning strategies in
the Manticore symbolic execution environment.

Our approach instead loads a contract that contains a skeleton structure
of a re-entrant attacking contract, where the function content (i.e. how to
respond to an incoming message call) are all left symbolic up to a prede-
fined bound. The full version of this contract is included in Appendix A on
page 98 and is based off the GenericReentranceExploit contract included in
the Manticore repository’s list of examples [60].

Listing 14 shows the proxy function included within the attacking contract.
Its goal is to start the initial call to the contract under test — stored in the

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. EXTENSIONS 67

vulnerableContract field — and pass a symbolic Ether value and data buffer.
These symbolic values are set beforehand for each of the main transactions,
specified by the txCounter variable that increments with each proxy call.
In practice, this allows the system to symbolically execute each function in
the target contract with the attacking contract as the caller. If the target

1 function proxy() public payable {

2 vulnerableContract.call.value(msg.value)(proxyData[txCounter]);

3 txCounter += 1;

4 }

Listing 14: Attacking contract proxy function.

contract sends any Ether back to the attacking contract, for example during
a withdrawal process, then the default function in Listing 15 will be executed.
Here we have two potential outcomes, depending on the type of call:

1. If the call was made to this contract using a non-empty string of data,
then the attacking contract will return a 32 byte string of data (lines 3
to 8);

2. Otherwise, the contract will call the target contract again using symbolic
data up to a maximum number of times defined by the counter variable
(lines 10 to 13).

The goal of the first option is to mimic any unknown function that expects a
return value, since that function’s signature would in practice not be imple-
mented by the attacking contract and will be handled by the default function.
This allows the attacking contract to respond to regular function calls with
symbolic return values and potentially improve coverage.

If it is a regular default function call, for example just a transfer of Ether,
then this contract will simply attempt to make a re-entrant call back into the
target contract. The symbolic values of these re-entrant calls are set before-
hand for each counter value.

5.2.3 Vulnerability Detectors

Detectors are Manticore objects that listen to a variety of callbacks and po-
tentially add a finding at a specified position in the code. Callback events are
fired before and after for example:

• The execution of an EVM instruction;

• Writing to a contract’s storage;

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. EXTENSIONS 68

1 function () payable {

2 if (msg.data.length > 0) {

3 bytes32 data = returnData[txCounter];

4 assembly {

5 let r := data

6 mstore(0x0, r)

7 return(0x0, 32)

8 }

9 } else if (counter > 0) {

10 counter -= 1;

11 vulnerableContract.call.value(symbolicValues[counter])(

12 symbolicData[counter]

13 );

14 }

15 }

Listing 15: Attacking contract default function.

• A transaction is opened or closed.

State information related to the event (values written or returned) is passed
to the detector, at which point it can even concretise symbolic values as part
of its evaluation. Listing 16 shows an example of one of these callback events
implemented by the built-in Manticore self-destruct detector. The function is
passed a state variable containing information related to the symbolic sys-
tem state and EVM world (e.g. current path constraints, account balances),
and two other variables with information about the EVM instruction that is
about to be executed: instruction and arguments. If a vulnerable state
is reached, then the system can flag that state for later reporting using the
add finding here method.

The rest of this section lists each vulnerability detected by this framework
and explains how the corresponding detector was implemented in more detail.

1 def will_evm_execute_instruction_callback(self, state,

2 instruction, arguments):

3 if instruction.semantics == "SELFDESTRUCT":

4 self.add_finding_here(state, "Reachable SELFDESTRUCT")

Listing 16: Self-destruct detector function handling EVM instruction call-
backs.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. EXTENSIONS 69

Unauthorised Ether Withdrawal

Manticore’s built-in unauthorised Ether withdrawal detector is invoked after
every CALL instruction and warns whenever a call is made to the message
sender (msg.sender) or if the recipient address is an arbitrary symbolic ad-
dress. Addresses are considered arbitrary if they can be solved to more than
one value.

A similar detector was implemented that checks if the recipient can be
arbitrary, but also warn if the contract’s entire Ether balance can be withdrawn
by an address that did not create the contract.

Unauthorised Self-destruct

We extended the Manticore self-destruct detector to add additional informa-
tion depending on the recipient of the self-destruct. The base version (listed
partially in Listing 16) simply warns whenever a self-destruct instruction is
reached, but we can symbolically evaluate the recipient value to determine if
it is arbitrary and warn accordingly.

Unauthorised Delegatecall

The built-in Manticore detector for DELEGATECALL instructions is used to de-
tect this vulnerability. It warns whenever the recipient of the DELEGATECALL

is an arbitrary symbolic value and if the function selector of the call (i.e. the
first four bytes that determine the type of function) can also be arbitrarily
controlled by the caller.

DoS from Greedy State

Contracts suffer from this type of denial of service whenever it is impossible for
them to send Ether, while still being able to receive it. In other words, there
is no way for a user to withdraw their funds, even if they force the transfer of
funds through a self-destruct with this contract as the beneficiary. Since we
can not explore every possible state of the system using our symbolic engine,
we need to approximate this vulnerability detection by only warning if every
terminal node from a given initial state never sent a non-zero Ether value.

Manticore does not yet store the symbolic execution tree in a traversable
format. We therefore extend the system by storing the ID of each state’s
parent and then build up a tree structure while executing the program. Our
detector then marks all initial states in each transaction run, as well as those
that send Ether. At the end of the run we perform a depth-first search for an
Ether sending node on each initial state and warn if no instances are found.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. EXTENSIONS 70

Re-entrancy

Two different re-entrancy detectors are registered before the state of execution,
the first of which comes packaged with Manticore and warns of re-entrancy
whenever storage is written after a flagged call. Calls can be flagged if they
have a user-supplied address as recipient, which we set as the attacking contract
if the user requests a check for re-entrancy.

We implemented another re-entrancy detector to check whether Ether can
be stolen by the attacker. Our detector saves the expected Ether balance of
the contract initiating the message call and compares it with the balance after
the call was completed. If that value (generally a symbolic one) can evaluate
to a value less than the expected value, then we know that the recipient of the
call somehow re-entered the contract and withdrew additional Ether.

Integer Overflow

Manticore’s integer overflow detector checks for overflow by doubling the bit-
size of the operands to 512 bits and then checks if the result falls outside of
the 256 bit minimum or maximum value. This check is performed for unsigned
and signed addition, subtraction, and multiplication.

Write to Arbitrary Storage Locations

We present two approaches to detecting this vulnerability. The first is to
implement a check before each storage write instruction (SSTORE) to see if the
offset position is a symbolic value and if it can evaluate to an arbitrary value.

Our other approach is to take a user-supplied storage offset position and
warn if the value at that position is ever overwritten during execution. A
good candidate for this use case would be an owner address or some other
critical variable that is set during contract creation, but is intended to remain
immutable.

Ether Invariants

For this type of vulnerability we again require the user to supply an offset
position in storage so that it can be compared with the contract’s Ether balance
at the end of every transaction. If this value differs from that of the Ether
balance, then the invariant is violated and a warning is raised.

We also implemented a detector to warn whenever a transaction closed
in a state where a contract had to forcefully receive Ether. Contracts can
forcefully receive Ether via self-destructs without triggering any contract code,
which we simulate by adding symbolic Ether amounts to the contract before
each transaction (as explained later in Section 5.2.4). A warning is raised to

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. EXTENSIONS 71

the user if it is infeasible for this symbolic value to evaluate to zero after the
current transaction (i.e. the contract must receive Ether somehow).

Unchecked Call Return Value

The base Manticore unchecked call return value detector is registered by our
framework. This detector taints all call return values pushed to the EVM stack
and checks that they were used in its control flow at the end of a transaction.

Transaction Order Dependence

This vulnerability is checked using the Manticore detector, where it taints
values written to storage and warns when they are used in subsequent trans-
actions. It also saves the name of the functions that were called to help display
a more informative message when adding the finding.

Weak Sources of Randomness and Environmental Variables

We use the Manticore detector that warns whenever an environmental instruc-
tion, for example TIMESTAMP, NUMBER, and ORIGIN, is used. It is currently up
to the user to read the finding reports and determine whether or not this
instruction usage can be considered dangerous or manipulable by attackers.

Assert Violations

Assertion violations are handled similar to the previous detector, where Man-
ticore simply notifies the user whenever an INVALID instruction was reached.
We also added an extension to warn whenever an AssertionFailed logging
event is emitted, similar to the ones implemented in MythX [53].

Custom Properties

We allow the use of custom properties implemented as Python expressions that
allow the user to check for program invariant violations after every call. These
properties are given access to a variable called balance that represents the
current contract’s balance, as well as a dictionary called storage that likewise
represents the current contract’s persistent storage. For example, the following
property:

storage[0] == (storage[1] + storage[2])

will be symbolically evaluated after calls to determine if the value storage offset
0 is the same as the sum of offsets 1 and 2. If this expression can symbolically
evaluate to false, then a warning is raised. Potential future work for this feature
is discussed in Section 5.3.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. EXTENSIONS 72

5.2.4 Execution

Once all the contracts are deployed and detectors initialised, the system can
start analysing the specified smart contract symbolically. The system will:

1. Symbolically increase the block number and timestamp to simulate the
passage of time;

2. Force a symbolic amount of Ether to the contract to simulate the receiv-
ing of Ether from some other contract’s self-destruct;

3. Send a transaction with symbolic data to the contract.

This will continue until the maximum number of transactions is reached, the
system times out, the execution engine does not have any states left to anal-
yse, or if coverage does not improve between runs (if configured explicitly).
Manticore also has a built-in option to stop further exploration of states that
do not affect the world state (e.g. write to storage, revert), thus saving some
execution time by pruning unnecessary states.

Block numbers and timestamps are not allowed to be increased by more
than a week at a time, thus excluding some infeasible waiting periods (e.g.
waiting years for the timestamp to overflow). The timestamp is also con-
strained to increase at a minimum of 5 seconds between transactions. Lastly,
the block number and timestamp are both constrained to either remain equal
between transactions (indicating that they belong to the same block) or to
increase between transactions and thus separate them.

Transaction data byte arrays and Ether values are symbolic, however, the
target address and calling address depend on some of the configuration options.
The system can be configured to only send transactions as the attacking user
account and none as the creator, thereby simulating a scenario where the owner
seldom or never interacts with their contract. If this option is not enabled,
then transactions can be sent by either and will naturally increase execution
time as more states are explored.

When re-entrancy detection is enabled, transactions sent by the attacker
user account will be constrained to only interact with the target address via
the attacking contract’s proxy function. The target contract will therefore
only see messages from either its creator or the attacking contract.

5.2.5 Validation

Our final step in the analysis pipeline is to validate the sequence of concrete
transactions produced as output by Manticore on a test network. The frame-
work makes use of the Ethereum Tester Python library [76] to run a local
instance of Py-EVM [21].

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. EXTENSIONS 73

For each given run of transaction calls, the system must create all applicable
user accounts, load the contracts with their concrete arguments, and finally
send each transaction. The status of the Py-EVM transaction is compared
with that of the Manticore result and marked whether or not it is valid in the
generated report.

5.2.6 Output

The framework outputs largely the same information as that of Manticore in
a JSON format, most important of which is:

• The coverage of analysis of contract code;

• The number of transactions called and original limit;

• The number of states analysed internally by Manticore;

• Timing information and whether or not it timed out;

• A list of vulnerability findings and their associated locations in the code.

These findings also include concrete transaction and environmental data that
allows the user to recreate the detected vulnerability. Regular Manticore re-
porting and finalisation steps can also be activated, but it comes at a cost
given how it concretises every terminated end state, instead of just those that
contain findings.

5.3 Limitations and Future Work

Our attacking contract synthesiser can be expanded to cover more complex ex-
ternal contract interactions, such as those involving malicious DELEGATECALL

instructions or re-entrancy during contract creation [77]. However, additional
heuristics may have to be implemented to optimise calls to our attacking con-
tract before it is expanded, since it causes a significant increase in execution
time.

The custom property support in our framework can be expanded to allow
more control over when the properties are evaluated (after e.g. storage writes,
calls, transactions, etc.) and to allow previous states to be referenced as part
of the property expression. With these expansions it might also be necessary
to implement a DSL for custom properties, similar to that of VerX [70].

Lastly, the framework can be further extended to integrate with truffle
or other analysis tools, similar to how Manticore is currently included in the
Etheno security analysis suite [78]. Truffle could be used to gather contract
compilation artefacts or manage imports, as well as specify the contract’s

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. EXTENSIONS 74

deployment procedures. If a contract’s deployment requires other prerequisite
contracts before it can function correctly, then this will help avoid unnecessary
analysis if added in the tool’s environmental setup.

Stellenbosch University https://scholar.sun.ac.za



Chapter 6

Evaluation

In this chapter we demonstrate how the tools discussed in Chapters 4 and 5
can be used to find vulnerabilities in smart contracts and we evaluate their
effectiveness and efficiency in doing so.

We first discuss the setup of our tools and environment in Section 6.1,
since some of them require additional configuration before they are able to
successfully evaluate certain examples.

Next we evaluate the tools as part of three separate experiments in Sec-
tions 6.2, 6.3 and 6.4. These experiments evaluate the tools’ effectiveness
in automatically detecting vulnerabilities, detecting program invariants that
indicate exploitation, and overall coverage performance, respectively.

Lastly, we compare the results of each experiment and discuss our overall
findings in Section 6.5.

6.1 Setup

Our evaluation over the course of the next few sections will only consider the
main tools highlighted during the previous chapters:

Securify The web version accessible at the time of writing.

Slither Version 0.6.6 of the command-line application.

MythX The free subscription tier of analysis accessible at the time of
writing (available through the Remix IDE plugin).

Echidna A branched version of version 1.1.0.0 that allows some of the
generated transaction inputs to send Ether.

Mythril Version 0.21.20 of the command-line application in its standard
configuration and with a small modification to only send transactions from
a single user account.

75

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. EVALUATION 76

Manticore Our framework as described in Chapter 5, hereafter referred to
as “Manticore+”. Its extended version of Manticore is based off of version
0.3.2.

Each of the evaluation sections will list the tools analysed in the experiment
and any additional configurations or modifications of standard behaviour spe-
cific to that experiment.

Note that all command-line applications (except for Slither) were executed
and evaluated on an IBM System x3650 M4 server with:

• Two Intel Xeon E5-2640 v2 CPUs (16 cores and 32 threads total);

• 283 GB RAM; and

• 4.5 TB of mixed usable storage.

6.2 Vulnerability Reporting Evaluation

The aim of this first experiment is to evaluate the effectiveness of each tool
when used to automatically detect vulnerabilities and predefined properties
in a given smart contract. First, a subset of the vulnerabilities analysed in
Chapter 3 will be chosen for evaluation, along with the tools that are able
to automatically report their violations. Vulnerabilities that have too much
room for interpretation when it comes to the detection criteria and tool-specific
implementation, will be omitted for the sake of fairness.

Each tool will then be evaluated against a large selection of contracts that
are each guaranteed to contain at least one instance of a particular vulnerability
and measured to count the number of successfully reported findings.

6.2.1 Contracts

Table 6.1 lists each of the vulnerabilities chosen and their number of unique
occurrences across all the included contracts. These contracts were gathered
from various articles and online repositories, including:

• The ConsenSys smart contract weakness classification registry [35];

• The Trail of Bits “Not so smart contracts” repository [79];

• Online smart contract security challenges [80], [81];

• Various other sources with examples of vulnerabilities [32], [38], [60], [82],
[83].

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. EVALUATION 77

Vulnerability Contracts
Unauthorised Ether Withdrawal 8
Unauthorised Self-destruct 5
Re-entrancy 7
Integer Overflow 12
Assert Violations 13
Unchecked Call Return Value 3

Table 6.1: List of vulnerabilities chosen for evaluation and the number of
vulnerability occurrences included in each test suite.

6.2.2 Tools

All the tools discussed in Section 6.1, except Echidna, are evaluated against
these contracts. Echidna requires the user to provide oracle functions to test
program invariants, which will be the topic of the next experiment. Mythril
and Manticore+ are evaluated up to three symbolic transactions and given a
timeout of 30 minutes.

Not all of the tools are capable of detecting every vulnerability and will
therefore not be evaluated against those contracts:

• Securify and Slither do not detect integer overflows or assertion viola-
tions;

• The free tier of MythX does not detect re-entrancy.

6.2.3 Results

The results for each vulnerability category and tool is given in Table 6.2,
where each cell indicates the number of successful reported test cases. There
are several notable differences in the number of findings reported among the
tools:

1. Slither reports far fewer instances of an unauthorised Ether withdrawal
than Securify, suggesting that its criteria for what constitutes unautho-
rised access may differ from that of the other tools.

2. Securify and Slither reported the same number of unauthorised self-
destructs, which was significantly less than that of the other tools and
suggests once again different criteria.

3. Securify and Slither both reported more instances of re-entrancy than
the two symbolic tools, but in this case it is important to note that
Manticore+ and Mythril will only report for feasible paths reached within
its bounded execution.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. EVALUATION 78

4. Mythril outperformed Manticore+ in searching for assertion violations,
suggesting that it may have better overall path coverage under these
execution constraints.

5. Mythril outscored or equalled MythX in every category, most likely due
to the fact that MythX was capped at a two minute execution time at
this free subscription tier. A more in-depth comparison between each
tool within the MythX suite can only be done with access to all the
individual tools.

The set of sample contracts in each test case only includes contracts that are
known to contain an instance of that particular vulnerability. Determining
the false positive reporting rate for these tools would therefore require us to
include a fair number of additional samples that are guaranteed to not contain
the vulnerability and measure the number of false reports.

Determining the false positive rate for a tool like Securify under these
conditions would help determine whether or not the time saved in automated
analysis is worth the time spent reviewing potentially false reports. Based on
this selection of contracts, however, we note that Securify and MythX are able
to report nearly all re-entrancy, overflow and assert violations. Manticore+
and Mythril missed at least one of these example re-entrant contracts due to
a lack of coverage in that particular scenario.

Vulnerability Contracts Securify Slither MythX Manticore+ Mythril
Unauthorised Ether Withdrawal 8 8 2 6 7 7
Unauthorised Self-destruct 5 2 2 4 5 5
Re-entrancy 7 6 6 N/A 5 4
Integer Overflow 12 N/A N/A 10 11 11
Assert Violations 13 N/A N/A 11 9 12
Unchecked Call Return Value 3 3 3 3 3 3

Table 6.2: Results for the vulnerability detector evaluation. The number of
successful detections is shown for each tool compared to the total number of
contracts in each respective data set.

6.3 Challenge Contract Evaluation

Our next experiment considers a set of contracts provided as part of the Cap-
ture the Ether [81] and Ethernaut [80] challenges that aim to test the effec-
tiveness of our analysis tools in finding different types of exploits. Both of
these challenges are hosted online as interactive games where players deploy
and exploit contracts on a test Ethereum network, with each level representing
a different contract. Players may use all available features and live contracts

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. EVALUATION 79

on the test network to beat levels, including custom attacking smart contracts
written specifically to exploit a vulnerability.

These contracts were chosen as benchmarks for further effectiveness eval-
uation, since they contain oracle functions that indicate whether or not the
contract was successfully exploited. The Capture the Ether set simply in-
cludes a function, isComplete, within every contract that returns true when
the level is beaten. Ethernaut include a validation function as part of its test
harness (accessible at its GitHub repository [84]) and performs a similar test
to determine if the contract was successfully exploited. We included the Eth-
ernaut test harness setup and validation functions in the challenge contract
itself, in order to make it easier to compare it to Capture the Ether.

There are full examples on how to complete the levels available for each
exploit, both in the source documentation found on GitHub in the case of
Ethernaut, and in the guide to Capture the Ether, published by Enigmatic [85].

6.3.1 Contracts

Table 6.3 and Table 6.4 contains a list of the Capture the Ether and Ethernaut
contract data sets respectively. Each table entry lists the number of contracts,
functions, and lines of code included in the smart contract source file provided.

6.3.2 Tools

For this experiment we only compare the tools that are able to report on any
occurrences of an invariant violation (i.e. our oracle functions) and generate
sequences of transaction input data that recreate these exploits. The contracts
are therefore tested using Echidna, Manticore+, and Mythril (the versions de-
scribed in Section 6.1) and set to only send transactions from a single attacker
address, since the contract owners play no part in these online challenges.
Allowing the contract owner to make calls would in some cases trivialise the
sequence, for example enabling full withdrawals or transfer of ownership.

6.3.3 Results

Tables 6.5 and 6.6 show the results for Capture the Ether and Ethernaut re-
spectively, where empty columns indicate that the tool was not able to success-
fully analyse the given contract. Manticore+ and Mythril were both allowed
to analyse up to three transactions, except in the cases that required more
transactions to find the exploit as specified in Tables 6.3 and 6.4 (with a time-
out of 3 hours). Both symbolic tools successfully exploit significantly more
contracts in the first set than Echidna, most of which require very specific
pseudo-random number inputs and data that triggers integer overflow.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. EVALUATION 80

ID Name C F LoC T
A1 Guess the Number 1 2 16 1
A2 Guess the Secret Number 1 2 16 1
A3 Guess the Random Number 1 2 17 1
A4 Guess the New Number 1 2 16 1
A5 Predict the Future 1 3 28 2
A6 Predict the Block Hash 1 3 28 2
A7 Token Sale 1 3 20 2
A8 Token Whale 1 5 41 3
A9 Retirement Fund 1 3 29 1
A10 Mapping 1 2 14 1
A11 Donation 1 3 28 2
A12 Fifty Years 1 3 41 6
A13 Fuzzy Identity 1 4 28 1
A14 Public Key 1 1 9 1
A15 Account Takeover 1 1 9 1
A16 Assume Ownership 1 2 12 2
A17 Token Bank 2 9 81 2

Table 6.3: List of benchmarks in the Capture the Ether data set. Includes the
number of contracts (C), functions (F), and lines of code (LoC) contained in
each file. The approximate number of transactions (T) required to complete
the level is also shown.

The second set of contracts contains a more diverse group of vulnerabilities
and lead to an improvement in Echidna’s overall effectiveness. Mythril was
able to exploit the most contracts out of the two symbolic tools (20 vs 17),
but if the Echidna results are also considered, then all three tools were able to
analyse 24 out of the 39 contracts.

6.4 Performance Evaluation

Our last experiment aims to analyse the efficiency and general performance of
the selected tools when applied to contracts that are in use on the main public
Ethereum network. These contracts are generally larger than the ones analysed
in the previous section and therefore model regular development environments
more closely.

6.4.1 Contracts

For this experiment we evaluate the performance of Mythril and Manticore+
when testing the top 20 ERC-20 contracts listed on Etherscan [86] as of the

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. EVALUATION 81

ID Name C F LoC T
B1 Fallback 2 9 64 2
B2 Fallout 2 10 61 1
B3 Coin Flip 1 6 55 10
B4 Telephone 1 1 12 1
B5 Token 1 2 17 1
B6 Delegation 2 2 23 1
B7 Force 1 0 2 0
B8 Vault 1 1 14 1
B9 King 2 1 25 1
B10 Reentrancy 1 9 49 2
B11 Elevator 1 2 15 1
B12 Privacy 1 1 16 1
B13 Gatekeeper One 1 6 52 1
B14 Gatekeeper Two 1 1 22 1
B15 Naught Coin 5 20 123 1
B16 Preservation 2 3 25 2
B17 Locked 1 1 18 1
B18 Recovery 2 9 55 1
B19 Magic Number 1 1 8 1
B20 Alien Codex 2 4 32 3
B21 Denial 1 9 51 1
B22 Shop 1 2 15 1

Table 6.4: List of benchmarks in the Ethernaut data set. Includes the number
of contracts (C), functions (F), and lines of code (LoC) contained in each file.
The approximate number of transactions (T) required to complete the level is
also shown.

time of writing. Table 6.7 shows all the contracts included in this experiment,
as well as the size of the bytecode used to initialise these contracts as shown
on Etherscan’s page for each token.

These contracts are generally larger than the average ones analysed in the
previous experiment. The additional functions increase the number of possible
program paths that need to be followed during each transaction and thus
decrease the overall number of successive transactions that can be analysed
in a fixed amount of time. Concrete constructor arguments are included with
the Etherscan initialisation bytecode and are passed as is to Mythril during
analysis. Manticore+ can only accept a Solidity file and instead attempts to
compile with Solidity version 0.4.25 and pass symbolic constructor arguments.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. EVALUATION 82

Oracle Time (s) Coverage (%)

ID Mythril Manticore+ Echidna Mythril Manticore+ Echidna Mythril Manticore+

A1 Yes Yes 14 14 37 99 95

A2 9 17 37 76 65

A3 Yes Yes 14 15 36 99 95

A4 Yes Yes 15 785 37 99 96

A5 Yes Yes 29 13288 42 99 97

A6 Yes Yes 28 26203 43 99 96

A7 129 2565 58 99 97

A8 9074 10800 100 99 92

A9 Yes Yes 16 41 39 63 64

A10 Yes Yes 178 1818 57 99 99

A11 Yes Yes 115 1680 52 99 98

A12 Yes Yes 10800 10800 2552 99 96

A13 10 4 40 59 34

A14 Yes 689 11 70 99 71

A15 8 3 35 79 64

A16 Yes Yes Yes 18 11 6 99 99

A17 838 112 81

Table 6.5: Capture the Ether benchmark results for each tool.

6.4.2 Tools

This experiment will analyse the performance of Mythril and Manticore+. It
is configured to analyse the given contract and report the number of detected
issues, without any restrictions on the account that sends the transactions.
Re-entrancy detection in Manticore+ using the attacking contract module de-
scribed in Section 5.2.2 is deactivated for the sake of comparison with Mythril,
due to its significant increase in the number of program paths explored.

6.4.3 Results

Table 6.8 includes the results for Mythril when run with up to three symbolic
transactions, showing the total number of errors reported, coverage percentage,
and the execution time when limited incrementally up to a depth of three
symbolic transactions. T1, T3, T7, T8, and T13 failed to initialise the given
contract within the allocated recursive depth (50) and therefore only show the
partial coverage of the initialisation bytecode.

Of the other 15 contracts that managed to initialise correctly, only 9 in-
creased their coverage after the second transaction and none of them managed
to improve after the third. This lack of additional coverage after three transac-
tions comes at a significant cost in execution time, with six contracts reaching
Mythril’s default execution timeout of 24 hours.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. EVALUATION 83

Oracle Time (s) Coverage (%)

ID Mythril Manticore+ Echidna Mythril Manticore+ Echidna Mythril Manticore+

B1 Yes 95 328 35 99 90

B2 Yes Yes Yes 196 40 2 99 97

B3 Yes 10800 10800 75 98 89

B4 Yes 16 14 45 99 77

B5 Yes Yes Yes 31 64 7 98 98

B6 12 15 57 98 85

B7 Yes 7 6 98 98

B8 Yes Yes 16 8 44 99 99

B9 Yes 140 646 50 99 90

B10 190 429 66 99 93

B11 22 18 51 71 53

B12 Yes Yes 36 15 45 99 99

B13 83 15 44 98 47

B14 23 14 44 99 54

B15 Yes Yes 1889 44 97

B16 21 199 68 34 93

B17 Yes Yes Yes 31 30 6 99 99

B18

B19 54 20 95 70

B20 Yes 801 10800 63 99 65

B21 Yes 86512 1836 99 92

B22 30 17 46 98 48

Table 6.6: Ethernaut benchmark results for each tool.

Table 6.9 shows the results for Manticore+ when analysing the same con-
tracts with a single symbolic transaction and a two hour timeout. The only
contract that managed to successfully analyse the second transaction within
a four hour timeout window was T18, where it took 3 hours and 15 minutes
to complete and increased coverage to 99.97%. Coverage performance was
similar compared to Mythril in the overlapping contracts, but execution time
increased much more rapidly during the second transaction.

6.5 Discussion

Our first experiment compared the ability of each tool to report a number of
different vulnerabilities contained within a set of contracts sourced from online
repositories and articles. Each evaluated contract was guaranteed to contain
one vulnerability in particular, according to its source, and the tools were
evaluated simply based on whether or not that vulnerability was reported.

Securify and Mythx, two tools that typically perform analysis in less than

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. EVALUATION 84

ID Name Bytes LoC Market Cap
T1 Tether USD (USDT) 23,801 251 $4,132,324,825
T2 BNB (BNB) 12,209 112 $2,252,784,046
T3 Bitfinex LEO Token (LEO) 17,171 339 $879,390,793
T4 ChainLink Token (LINK) 6,451 159 $735,352,870
T5 HuobiToken (HT) 3,113 77 $657,296,056
T6 Maker (MKR) 7,141 236 $496,970,792
T7 USD Coin (USDC) 5,779 109 $477,072,506
T8 Crypto.com Coin (CRO) 20,941 323 $369,224,636
T9 HedgeTrade (HEDG) 15,281 245 $353,066,642
T10 VeChain (VEN) 9,165 358 $315,905,856
T11 Ino Coin (INO) 5,929 71 $283,290,728
T12 BAT (BAT) 7,727 129 $262,909,359
T13 Paxos Standard (PAX) 4,187 104 $237,558,126
T14 Synthetix Network Token (SNX) 3,351 156 $210,540,663
T15 Insight Chain (INB) 13,385 151 $182,537,127
T16 TrueUSD (TUSD) 3,175 94 $160,650,286
T17 Centrality Token (CENNZ) 10,587 97 $133,670,012
T18 KaratBank Coin (KBC) 6,927 142 $128,254,150
T19 ZRX (ZRX) 6,125 76 $125,880,783
T20 Reputation (REP) 1,659 504 $111,969,417

Table 6.7: Top 20 ERC-20 tokens according to their market cap (volume times
approximate price in USD) on 2019/12/15. The length of the contract initial-
isation bytecode (bytes), and lines of code (LoC) in Solidity is also shown.

10 minutes, tended to score relatively well compared to their symbolic ex-
ecution counterparts (Manticore+ and Mythril). Securify outscored both in
re-entrancy and unauthorised Ether withdrawal, whereas MythX only failed to
detect one of Mythril’s contracts in overflow and assertion violations. Manticore+
and Mythril performed equally well in four of the categories, with the former
scoring one better in re-entrancy and the latter catching more assertion viola-
tions.

The second experiment evaluated three tools (Echidna, Manticore+, and
Mythril) against a set of contracts meant to be exploited as part of an online
challenge. Both symbolic tools performed much better than Echidna in the
Capture the Ether data set, due to those contracts mostly being comprised of
integer overflow exploits and pseudo-random number guessing games.

In the Ethernaut set, the two symbolic executioners struggled to maintain
the same level of performance. These contracts cover a wider array of vulnera-
bilities, as well as more of an emphasis on interactions between contracts that
neither the base symbolic tools nor our own framework are able to support.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. EVALUATION 85

Coverage (%) Errors Time (minutes)
ID TX1 TX2 TX3 TX1 TX2 TX3 TX1 TX2 TX3
T1 5.46 5.46 5.46 0 0 0 1 1 1
T2 97.15 99.96 99.96 0 0 0 2 22 224
T3 8.81 8.81 8.81 0 0 0 1 1 1
T4 88.60 88.60 88.60 3 5 4 4 125 1445
T5 99.89 99.89 99.89 0 0 0 1 3 17
T6 94.00 99.95 99.95 0 21 21 3 153 1450
T7 7.35 7.35 7.35 1 1 1 1 1 1
T8 13.98 13.98 13.98 0 0 0 1 1 1
T9 95.28 99.97 99.97 0 0 0 4 122 1451

T10 59.96 86.79 86.79 25 26 26 3 106 1445
T11 97.68 99.94 99.94 2 2 2 6 118 1446
T12 66.27 79.16 79.16 26 26 26 3 28 267
T13 6.83 6.83 6.83 1 1 1 1 1 1
T14 60.62 60.62 60.62 3 3 3 1 1 1
T15 95.45 99.96 99.96 0 1 1 2 20 268
T16 86.40 99.86 99.86 0 0 0 1 1 4
T17 96.33 99.95 99.95 0 0 0 2 16 149
T18 99.95 99.95 99.95 2 3 3 2 53 1443
T19 97.18 97.18 97.18 11 11 11 1 4 18
T20 85.81 85.81 85.81 2 2 2 1 1 1

Table 6.8: Mythril performance results for the real-world token contract set.
The coverage percentage, number of reported errors, and execution time is
shown for three separate runs with a limit of 1, 2 and 3 transactions (TX).

The third and final experiment analysed tool performance and efficiency
when applied to larger, more complex contracts that are currently live on the
Ethereum blockchain. We analysed the top 20 ERC-20 tokens using Mythril
and Manticore+ with up to three symbolic transactions. Both Mythril and
Manticore+ achieved similar levels of coverage after the first transaction on
successful evaluations (average of 88% vs 90%), but the latter dropped off
immensely in terms of execution time.

There are several potential explanations why Manticore+ could have taken
so much longer:

• Constructors were called with symbolic arguments instead of the concrete
values used to deploy the live versions of these contracts;

• Enabling all the detectors has a very significant impact on execution
time; and

• The underlying Manticore system forks over all possible recipients of an

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. EVALUATION 86

ID Coverage (%) Errors Time (minutes)
T1 80.72 2 14
T2 91.44 1 4
T3
T4
T5
T6 94.69 0 6
T7
T8 75.37 4 85
T9
T10
T11
T12 93.92 0 30
T13
T14
T15 95.62 2 3
T16 87.83 0 1
T17 96.38 0 2
T18 98.47 7 2
T19
T20

Table 6.9: Manticore+ performance results for the real-world token contract
set. The coverage percentage, number of reported errors, and execution time
is shown for one transaction. Empty results failed to initialise the contract
using Solidity 0.4.25.

external call or transfer of funds, causing a massive increase in paths ex-
plored. This selection of token contracts may therefore be biased against
Manticore, since their primary function is to make transfers between
accounts.

Stellenbosch University https://scholar.sun.ac.za



Chapter 7

Conclusion

We conclude by discussing the overall state of smart contract testing, the
limitations and potential opportunities for future work that exist in this field,
and a summary of the contributions made in this thesis.

7.1 Testing Smart Contracts

Ethereum smart contracts pose a unique security challenge for developers in
that their runtime application code is always publicly visible and immutable.
Without a rigorous testing and auditing process, these two characteristics can
lead to immense monetary loss and disaster. One of the ways to combat this is
to research and develop tools that can aid developers in automatically finding
bugs.

Our work firstly focused on identifying the most common vulnerabilities in
smart contracts that could be detected using security analysis tools. Although
these vulnerabilities are mostly language agnostic and only found in EVM
bytecode, we still opted to include known best practices and security patterns
for the Solidity smart contract programming language. We ended up with 15
vulnerabilities at the Ethereum application layer that we felt were critical to
our investigation.

Next, we surveyed existing security analysis tools that can automatically
detect these vulnerabilities, regardless of their analysis method. We ultimately
selected six tools for further discussion based on their extensibility, ease of use,
and continuous integration support. One of these tools, Manticore, is a sym-
bolic execution tool that we extended within an analysis framework named
Manticore+. This system can detect a number of previously mentioned vul-
nerabilities that the base Manticore does not support and also synthesise adver-
sarial smart contracts in the case of re-entrancy. The additional vulnerability
detector modules and environmental setup does, however, come at the cost of
longer analysis times and would make a good candidate for future work.

87

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 7. CONCLUSION 88

Finally, we evaluated these tools in terms of efficiency and effectiveness.
Our first experiment tested each tool’s ability to detect a known vulnerability
in a set of contracts sourced from various internet repositories and articles.
Securify managed to perform the best in the unauthorised Ether withdrawal
and re-entrancy categories. Manticore+ performed the same as Mythril in
the unauthorised self-destruct and integer overflow categories, but Mythril
managed to find more assert violations.

The second experiment analysed Manticore+, Mythril, and Echidna’s effec-
tiveness at solving two online smart contract exploitation challenges: Capture
the Ether and Ethernaut. Overall, the three tools managed to successfully
complete 24 out of the 39 challenges, with Mythril outperforming the others.
The tools (including our framework) mostly struggled in areas where they have
to rely on other contracts to complete exploits, indicating that more develop-
ment may be required in different approaches to synthesise attacking smart
contracts.

Our final experiment evaluated our framework and Mythril’s performance
when analysing the top twenty ERC-20 tokens found on the main Ethereum
network, so as to simulate testing a large contract before it is released. Mythril
managed to successfully analyse 15 of the given contracts using our configura-
tions and achieved more than 90% coverage in 10 of the remaining contracts
after three symbolic transactions. We also observed, however, that coverage
did not improve after the second transaction. Analysis times increased dra-
matically after each transaction, implying that the optimal configuration will
likely remain at two transactions for most contracts of this scale, since many
of our examples timed out after 24 hours.

The coverage results for Manticore+ was similar after the first transaction,
but the system failed to analyse the majority of the given contracts in two or
more transactions given our timeout parameters.

7.2 Limitations and Future Work

We only considered vulnerabilities that exist as part of the Ethereum smart
contract application layer, but there is an opportunity to survey the available
tooling for the rest of the Ethereum stack [34]. That study could also use new
or existing tools to test the EVM clients themselves, building on the work of,
for example, the EVMFuzzer team [65].

Our discussion of Ethereum vulnerabilities and tooling only focused on the
Solidity language, with no consideration for other languages such as Vyper [15].
It would be beneficial to further analyse which vulnerabilities are mitigated by
the Vyper compiler and determine via an empirical study if Vyper provides
better security. There are, however, some concerns among developers about
the maturity of Vyper and its readiness for use in production environments [87].

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 7. CONCLUSION 89

Other smart contract languages listed in [88] can also be considered as part of
this evaluation.

The set of test contracts used as part of the vulnerability detection exper-
iment in Section 6.2 was sourced from multiple repositories and articles, but
can be further improved in several ways:

1. Seeding the corpus with samples that are guaranteed to be safe so that
one can measure the rate of false-positives reported;

2. Analysing each contract (manually and tool-assisted) to determine what
other vulnerabilities it may contain, since many are only labelled to
contain a single vulnerability;

3. Including additional information to aid in the analysis and tool compar-
isons, such as the minimum transaction depth required for each bug.

By following these steps and expanding the number of contracts per vulnera-
bility, as well as the number of different vulnerabilities featured, one would be
able to more accurately compare the effectiveness of each tool.

7.3 Summary

In this work, we categorised and surveyed the most critical vulnerabilities
that currently exist at the Ethereum smart contract application layer and
presented best practices formulated by the research community to prevent or
mitigate these exploits. A variety of security analysis tools were listed that can
automatically detect vulnerabilities and extended in some cases to have better
vulnerability coverage — particularly when required to synthesise adversarial
smart contracts. Lastly, we evaluated these tools in terms of efficiency and
effectiveness. They were able to automatically detect the majority of issues
in our first two experiments, and produce on average more than 90% code
coverage in 15 of the top 20 ERC-20 tokens in the case of Mythril.

Stellenbosch University https://scholar.sun.ac.za



Bibliography

[1] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[2] Nick Szabo. Formalizing and securing relationships on public networks.
First Monday, 2(9), 1997.

[3] Vitalik Buterin et al. A next-generation smart contract and decentralized
application platform. Ethereum project white paper, 2014.

[4] Thedao/dao-1.0: The standard dao framework at
0xbb9bc244d798123fde783fcc1c72d3bb8c189413. https://github.

com/TheDAO/DAO-1.0. (Accessed on 12/15/2019).

[5] Osman Güçlütürk. The dao hack explained: Unfortunate take-off
of smart contracts. https://medium.com/@ogucluturk/the-dao-

hack-explained-unfortunate-take-off-of-smart-contracts-

2bd8c8db3562, 8 2018. (Accessed on 12/15/2019).

[6] Solidity solidity 0.5.12 documentation. https://solidity.

readthedocs.io/en/v0.5.12/. (Accessed on 10/24/2019).

[7] Truffle Blockchain Group. Sweet tools for smart contracts — truffle suite.
https://www.trufflesuite.com/. (Accessed on 10/29/2019).

[8] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo
Grieco, Josselin Feist, Trent Brunson, and Artem Dinaburg. Manticore:
A user-friendly symbolic execution framework for binaries and smart con-
tracts. arXiv preprint arXiv:1907.03890, 2019.

[9] Script - bitcoin wiki. https://en.bitcoin.it/wiki/Script. (Accessed
on 10/24/2019).

[10] Roadmap — eth.wiki. https://eth.wiki/en/roadmap. (Accessed on
10/24/2019).

[11] Vitalik Buterin. Hard fork completed. https://blog.ethereum.org/

2016/07/20/hard-fork-completed. (Accessed on 10/24/2019).

90

Stellenbosch University https://scholar.sun.ac.za

https://github.com/TheDAO/DAO-1.0
https://github.com/TheDAO/DAO-1.0
https://medium.com/@ogucluturk/the-dao-hack-explained-unfortunate-take-off-of-smart-contracts-2bd8c8db3562
https://medium.com/@ogucluturk/the-dao-hack-explained-unfortunate-take-off-of-smart-contracts-2bd8c8db3562
https://medium.com/@ogucluturk/the-dao-hack-explained-unfortunate-take-off-of-smart-contracts-2bd8c8db3562
https://solidity.readthedocs.io/en/v0.5.12/
https://solidity.readthedocs.io/en/v0.5.12/
https://www.trufflesuite.com/
https://en.bitcoin.it/wiki/Script
https://eth.wiki/en/roadmap
https://blog.ethereum.org/2016/07/20/hard-fork-completed
https://blog.ethereum.org/2016/07/20/hard-fork-completed


BIBLIOGRAPHY 91

[12] Gavin Wood. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 2014.

[13] Ethereum mining - ethhub. https://docs.ethhub.io/using-

ethereum/mining. (Accessed on 12/02/2019).

[14] LLL introduction LLL compiler documentation 0.1 documentation.
https://lll-docs.readthedocs.io/en/latest/lll_introduction.

html. (Accessed on 10/24/2019).

[15] Vyper Team. Vyper — vyper documentation. https://vyper.

readthedocs.io/en/v0.1.0-beta.13/. (Accessed on 10/24/2019).

[16] Trail of Bits. Contract upgrade anti-patterns — trail of bits blog.
https://blog.trailofbits.com/2018/09/05/contract-upgrade-

anti-patterns, 9 2018. (Accessed on 11/06/2019).

[17] Eips/eip-20.md at master ethereum/eips. https://github.com/

ethereum/EIPs/blob/master/EIPS/eip-20.md. (Accessed on
10/24/2019).

[18] Eips/eip-721.md at master ethereum/eips. https://github.

com/ethereum/EIPs/blob/master/EIPS/eip-721.md. (Accessed on
11/05/2019).

[19] ethereum/go-ethereum: Official go implementation of the ethereum pro-
tocol. https://github.com/ethereum/go-ethereum. (Accessed on
10/29/2019).

[20] ethereum/aleth: Aleth ethereum c++ client, tools and libraries. https:
//github.com/ethereum/aleth. (Accessed on 10/29/2019).

[21] ethereum/py-evm: A python implementation of the ethereum vir-
tual machine. https://github.com/ethereum/py-evm. (Accessed on
10/29/2019).

[22] Ganache — ganache quickstart — documentation — truffle suite. https:
//www.trufflesuite.com/docs/ganache/quickstart. (Accessed on
10/29/2019).

[23] Ethereum for developers — ethereum. https://www.ethereum.org/

developers/#testnets-and-faucets. (Accessed on 10/29/2019).

[24] Mocha - the fun, simple, flexible javascript test framework. https://

mochajs.org, 10 2019. (Accessed on 11/05/2019).

Stellenbosch University https://scholar.sun.ac.za

https://docs.ethhub.io/using-ethereum/mining
https://docs.ethhub.io/using-ethereum/mining
https://lll-docs.readthedocs.io/en/latest/lll_introduction.html
https://lll-docs.readthedocs.io/en/latest/lll_introduction.html
https://vyper.readthedocs.io/en/v0.1.0-beta.13/
https://vyper.readthedocs.io/en/v0.1.0-beta.13/
https://blog.trailofbits.com/2018/09/05/contract-upgrade-anti-patterns
https://blog.trailofbits.com/2018/09/05/contract-upgrade-anti-patterns
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/aleth
https://github.com/ethereum/aleth
https://github.com/ethereum/py-evm
https://www.trufflesuite.com/docs/ganache/quickstart
https://www.trufflesuite.com/docs/ganache/quickstart
https://www.ethereum.org/developers/#testnets-and-faucets
https://www.ethereum.org/developers/#testnets-and-faucets
https://mochajs.org
https://mochajs.org


BIBLIOGRAPHY 92

[25] web3.js - ethereum javascript api web3.js 1.0.0 documentation. https:

//web3js.readthedocs.io/en/v1.2.2. (Accessed on 11/05/2019).

[26] Chai. https://www.chaijs.com. (Accessed on 11/05/2019).

[27] Patrice Godefroid, Adam Kiezun, and Michael Y Levin. Grammar-based
whitebox fuzzing. In ACM Sigplan Notices, volume 43, pages 206–215.
ACM, 2008.

[28] HyungSeok Han and Sang Kil Cha. Imf: Inferred model-based fuzzer.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2345–2358. ACM, 2017.

[29] Michal Zalewski. american fuzzy lop. http://lcamtuf.coredump.cx/

afl. (Accessed on 11/18/2019).

[30] Patrice Godefroid, Michael Y Levin, and David Molnar. SAGE: whitebox
fuzzing for security testing. Communications of the ACM, 55(3):40–44,
2012.

[31] Corina S Păsăreanu and Willem Visser. A survey of new trends in sym-
bolic execution for software testing and analysis. International journal on
software tools for technology transfer, 11(4):339, 2009.

[32] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks
on ethereum smart contracts (sok). In International Conference on Prin-
ciples of Security and Trust, pages 164–186. Springer, Berlin, Heidelberg,
2017.

[33] Ardit Dika. Ethereum smart contracts: Security vulnerabilities and secu-
rity tools. Master’s thesis, NTNU, 2017.

[34] Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. A
survey on ethereum systems security: Vulnerabilities, attacks and de-
fenses. arXiv preprint arXiv:1908.04507, 2019.

[35] ConsenSys. Overview smart contract weakness classification and test
cases. https://swcregistry.io. (Accessed on 10/25/2019).

[36] Safety ethereum/wiki wiki. https://github.com/ethereum/wiki/

wiki/Safety. (Accessed on 11/20/2019).

[37] Maximilian Wohrer and Uwe Zdun. Smart contracts: security patterns in
the ethereum ecosystem and solidity. In 2018 International Workshop on
Blockchain Oriented Software Engineering (IWBOSE), pages 2–8. IEEE,
2018.

Stellenbosch University https://scholar.sun.ac.za

https://web3js.readthedocs.io/en/v1.2.2
https://web3js.readthedocs.io/en/v1.2.2
https://www.chaijs.com
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl
https://swcregistry.io
https://github.com/ethereum/wiki/wiki/Safety
https://github.com/ethereum/wiki/wiki/Safety


BIBLIOGRAPHY 93

[38] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas
Hobor. Finding the greedy, prodigal, and suicidal contracts at scale. In
Proceedings of the 34th Annual Computer Security Applications Confer-
ence, pages 653–663. ACM, 2018.

[39] randao/randao: Randao: A dao working as rng of ethereum. https:

//github.com/randao/randao. (Accessed on 11/15/2019).

[40] solidity - what are some examples of how inline assembly ben-
efits smart contract development? - ethereum stack exchange.
https://ethereum.stackexchange.com/questions/3157/what-

are-some-examples-of-how-inline-assembly-benefits-smart-

contract-developmen. (Accessed on 12/15/2019).

[41] Program the blockchain — signing and verifying messages in ethereum.
https://programtheblockchain.com/posts/2018/02/17/signing-

and-verifying-messages-in-ethereum. (Accessed on 12/02/2019).

[42] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Flo-
rian Buenzli, and Martin Vechev. Securify: Practical security analysis of
smart contracts. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 67–82. ACM, 2018.

[43] Chainsecurity. Security scanner for ethereum smart contracts. https:

//securify.chainsecurity.com. (Accessed on 10/28/2019).

[44] Chainsecurity. Chainsecurity. https://chainsecurity.com. (Accessed
on 10/28/2019).

[45] ETH Zurich SRI Lab. eth-sri/securify: Security scanner for ethereum
smart contracts. https://github.com/eth-sri/securify. (Accessed
on 10/28/2019).

[46] Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: a static analysis
framework for smart contracts. In 2019 IEEE/ACM 2nd International
Workshop on Emerging Trends in Software Engineering for Blockchain
(WETSEB), pages 8–15. IEEE, 2019.

[47] Trail of bits. https://www.trailofbits.com. (Accessed on 10/28/2019).

[48] Trail of Bits. Crytic. https://crytic.io. (Accessed on 10/28/2019).

[49] Trail of Bits. crytic/slither: Static analyzer for solidity. https://github.
com/crytic/slither. (Accessed on 10/28/2019).

[50] ConsenSys. Consensys. https://consensys.net. (Accessed on
10/28/2019).

Stellenbosch University https://scholar.sun.ac.za

https://github.com/randao/randao
https://github.com/randao/randao
https://ethereum.stackexchange.com/questions/3157/what-are-some-examples-of-how-inline-assembly-benefits-smart-contract-developmen
https://ethereum.stackexchange.com/questions/3157/what-are-some-examples-of-how-inline-assembly-benefits-smart-contract-developmen
https://ethereum.stackexchange.com/questions/3157/what-are-some-examples-of-how-inline-assembly-benefits-smart-contract-developmen
https://programtheblockchain.com/posts/2018/02/17/signing-and-verifying-messages-in-ethereum
https://programtheblockchain.com/posts/2018/02/17/signing-and-verifying-messages-in-ethereum
https://securify.chainsecurity.com
https://securify.chainsecurity.com
https://chainsecurity.com
https://github.com/eth-sri/securify
https://www.trailofbits.com
https://crytic.io
https://github.com/crytic/slither
https://github.com/crytic/slither
https://consensys.net


BIBLIOGRAPHY 94

[51] ConsenSys. Mythx: Smart contract security tool for ethereum. https:

//mythx.io. (Accessed on 10/28/2019).

[52] Remix - ethereum ide. https://remix.ethereum.org. (Accessed on
10/28/2019).

[53] Valentin Wüstholz. Checking custom correctness properties of
smart contracts using mythx. https://medium.com/consensys-

diligence/checking-custom-correctness-properties-of-smart-

contracts-using-mythx-25cbac5d7852. (Accessed on 11/06/2019).

[54] Bernhard Mueller. The tech behind mythx smart contract secu-
rity analysis. https://medium.com/consensys-diligence/the-tech-

behind-mythx-smart-contract-security-analysis-32c849aedaef, 3
2019. (Accessed on 11/13/2019).

[55] Valentin Wüstholz and Maria Christakis. Learning inputs in greybox
fuzzing. arXiv preprint arXiv:1807.07875, 2018.

[56] ConsenSys. Consensys/mythril: Security analysis tool for EVM byte-
code. Supports smart contracts built for ethereum, quorum, vechain, roo-
stock, tron and other EVM-compatible blockchains. https://github.

com/ConsenSys/mythril. (Accessed on 10/31/2019).

[57] crytic/echidna: Ethereum fuzz testing framework. https://github.com/
crytic/echidna. (Accessed on 10/28/2019).

[58] hevm: Ethereum virtual machine evaluator. http://hackage.haskell.

org/package/hevm. (Accessed on 11/14/2019).

[59] State machine testing with echidna — trail of bits blog.
https://blog.trailofbits.com/2018/05/03/state-machine-

testing-with-echidna, 5 2018. (Accessed on 11/14/2019).

[60] Trail of Bits. trailofbits/manticore: Symbolic execution tool. https:

//github.com/trailofbits/manticore. (Accessed on 11/14/2019).

[61] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Ho-
bor. Making smart contracts smarter. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, pages
254–269. ACM, 2016.

[62] Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor, and Prateek
Saxena. Exploiting the laws of order in smart contracts. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis, pages 363–373. ACM, 2019.

Stellenbosch University https://scholar.sun.ac.za

https://mythx.io
https://mythx.io
https://remix.ethereum.org
https://medium.com/consensys-diligence/checking-custom-correctness-properties-of-smart-contracts-using-mythx-25cbac5d7852
https://medium.com/consensys-diligence/checking-custom-correctness-properties-of-smart-contracts-using-mythx-25cbac5d7852
https://medium.com/consensys-diligence/checking-custom-correctness-properties-of-smart-contracts-using-mythx-25cbac5d7852
https://medium.com/consensys-diligence/the-tech-behind-mythx-smart-contract-security-analysis-32c849aedaef
https://medium.com/consensys-diligence/the-tech-behind-mythx-smart-contract-security-analysis-32c849aedaef
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://github.com/crytic/echidna
https://github.com/crytic/echidna
http://hackage.haskell.org/package/hevm
http://hackage.haskell.org/package/hevm
https://blog.trailofbits.com/2018/05/03/state-machine-testing-with-echidna
https://blog.trailofbits.com/2018/05/03/state-machine-testing-with-echidna
https://github.com/trailofbits/manticore
https://github.com/trailofbits/manticore


BIBLIOGRAPHY 95

[63] Johannes Krupp and Christian Rossow. teether: Gnawing at ethereum
to automatically exploit smart contracts. In 27th {USENIX} Security
Symposium ({USENIX} Security 18), pages 1317–1333, 2018.

[64] Bo Jiang, Ye Liu, and WK Chan. Contractfuzzer: Fuzzing smart contracts
for vulnerability detection. In Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering, pages 259–269.
ACM, 2018.

[65] Ying Fu, Meng Ren, Fuchen Ma, Heyuan Shi, Xin Yang, Yu Jiang,
Huizhong Li, and Xiang Shi. Evmfuzzer: detect evm vulnerabilities via
fuzz testing. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, pages 1110–1114. ACM, 2019.

[66] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil
Takhaviev, Evgeny Marchenko, and Yaroslav Alexandrov. Smartcheck:
Static analysis of ethereum smart contracts. In 2018 IEEE/ACM 1st In-
ternational Workshop on Emerging Trends in Software Engineering for
Blockchain (WETSEB), pages 9–16. IEEE, 2018.

[67] Patrick Ventuzelo. quoscient/octopus: Security analysis tool for we-
bassembly module and blockchain smart contracts (btc/eth/neo/eos).
https://github.com/quoscient/octopus. (Accessed on 11/05/2019).

[68] Protofire. Solhint - solidity linter. https://protofire.github.io/

solhint. (Accessed on 12/05/2019).

[69] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier,
Vincent Gramoli, Ralph Holz, and Bernhard Scholz. Vandal: A scal-
able security analysis framework for smart contracts. arXiv preprint
arXiv:1809.03981, 2018.

[70] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-
Cohen, and Martin Vechev. Verx: Safety verification of smart contracts.
Security and Privacy, 2020, 2019.

[71] Anastasia Mavridou, Aron Laszka, Emmanouela Stachtiari, and Abhishek
Dubey. Verisolid: Correct-by-design smart contracts for ethereum. arXiv
preprint arXiv:1901.01292, 2019.

[72] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu,
Philip Daian, Dwight Guth, Brandon Moore, Daejun Park, Yi Zhang,
Andrei Stefanescu, et al. KEVM: A complete formal semantics of the
ethereum virtual machine. In 2018 IEEE 31st Computer Security Foun-
dations Symposium (CSF), pages 204–217. IEEE, 2018.

Stellenbosch University https://scholar.sun.ac.za

https://github.com/quoscient/octopus
https://protofire.github.io/solhint
https://protofire.github.io/solhint


BIBLIOGRAPHY 96

[73] Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. Under-optimized
smart contracts devour your money. In 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 442–446. IEEE, 2017.

[74] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard
Scholz, and Yannis Smaragdakis. Madmax: Surviving out-of-gas con-
ditions in ethereum smart contracts. Proceedings of the ACM on Pro-
gramming Languages, 2(OOPSLA):116, 2018.

[75] Yu Feng, Emina Torlak, and Rastislav Bodik. Precise attack synthesis for
smart contracts. arXiv preprint arXiv:1902.06067, 2019.

[76] ethereum/eth-tester: Tool suite for testing ethereum applications. https:
//github.com/ethereum/eth-tester. (Accessed on 12/27/2019).

[77] Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi.
Sereum: Protecting existing smart contracts against re-entrancy attacks.
arXiv preprint arXiv:1812.05934, 2018.

[78] Trail of Bits. crytic/etheno: Simplify ethereum security analysis and test-
ing. https://github.com/crytic/etheno. (Accessed on 12/25/2019).

[79] Trail of Bits. crytic/not-so-smart-contracts: Examples of solidity security
issues. https://github.com/crytic/not-so-smart-contracts. (Ac-
cessed on 12/11/2019).

[80] OpenZeppelin. Ethernaut. https://ethernaut.openzeppelin.com.
(Accessed on 09/23/2019).

[81] SMARX. Capture the ether - the game of ethereum smart contract secu-
rity. https://capturetheether.com. (Accessed on 09/23/2019).

[82] Andreas M Antonopoulos and Gavin Wood. Mastering ethereum: building
smart contracts and dapps. O’Reilly Media, 2018.

[83] Security alert — parity technologies. https://www.parity.io/

security-alert-2. (Accessed on 12/15/2019).

[84] OpenZeppelin. Openzeppelin/ethernaut: Web3/solidity based wargame.
https://github.com/OpenZeppelin/ethernaut. (Accessed on
09/23/2019).

[85] Enigmatic. Smart contract exploits part 1 featuring capture the
ether (lotteries). https://medium.com/coinmonks/smart-contract-

exploits-part-1-featuring-capture-the-ether-lotteries-

8a061ad491b, 9 2018. (Accessed on 09/26/2019).

Stellenbosch University https://scholar.sun.ac.za

https://github.com/ethereum/eth-tester
https://github.com/ethereum/eth-tester
https://github.com/crytic/etheno
https://github.com/crytic/not-so-smart-contracts
https://ethernaut.openzeppelin.com
https://capturetheether.com
https://www.parity.io/security-alert-2
https://www.parity.io/security-alert-2
https://github.com/OpenZeppelin/ethernaut
https://medium.com/coinmonks/smart-contract-exploits-part-1-featuring-capture-the-ether-lotteries-8a061ad491b
https://medium.com/coinmonks/smart-contract-exploits-part-1-featuring-capture-the-ether-lotteries-8a061ad491b
https://medium.com/coinmonks/smart-contract-exploits-part-1-featuring-capture-the-ether-lotteries-8a061ad491b


BIBLIOGRAPHY 97

[86] Etherscan. Ethereum (eth) blockchain explorer. https://etherscan.io.
(Accessed on 09/23/2019).

[87] Weiqin Zou, David Lo, Pavneet Singh Kochhar, Xuan-Bach D Le, Xin
Xia, Yang Feng, Zhenyu Chen, and Baowen Xu. Smart contract devel-
opment: Challenges and opportunities. IEEE Transactions on Software
Engineering, 2019.

[88] Dominik Harz and William Knottenbelt. Towards safer smart con-
tracts: A survey of languages and verification methods. arXiv preprint
arXiv:1809.09805, 2018.

Stellenbosch University https://scholar.sun.ac.za

https://etherscan.io


Appendix A

Attacking Contract

1 pragma solidity ^0.4.25;

2

3 contract AttackingContract {

4 address vulnerableContract;

5 uint counter;

6 uint txCounter;

7

8 bytes[] symbolicData;

9 uint[] symbolicValues;

10 bytes[] proxyData;

11 bytes32[] returnData;

12

13 constructor() payable {}

14

15 function proxy() public payable {

16 vulnerableContract.call.value(msg.value)(proxyData[txCounter]);

17 txCounter += 1;

18 }

19

20 function setTarget(address _vulnerableContract, uint _counter) public {

21 vulnerableContract = _vulnerableContract;

22 counter = _counter;

23 }

24

25 function setProxyData(bytes data) public {

26 proxyData.push(data);

27 }

28

29 function setSymbolicData(bytes data) public {

30 symbolicData.push(data);

31 }

32

98

Stellenbosch University https://scholar.sun.ac.za



APPENDIX A. ATTACKING CONTRACT 99

33 function setSymbolicValue(uint value) public {

34 symbolicValues.push(value);

35 }

36

37 function setReturnData(bytes32 data) public {

38 returnData.push(data);

39 }

40

41 function () payable {

42 if (msg.data.length > 0) {

43 bytes32 data = returnData[txCounter];

44 assembly {

45 let r := data

46 mstore(0x0, r)

47 return(0x0, 32)

48 }

49 } else if (counter > 0) {

50 counter -= 1;

51 vulnerableContract.call.value(symbolicValues[counter])(

52 symbolicData[counter]

53 );

54 }

55 }

56 }

Stellenbosch University https://scholar.sun.ac.za



Glossary

ABI An Application Binary Interface (ABI) specifies the calling conven-
tion and input data structure formats of a binary program.

AST An abstract syntax tree (AST) represents the abstract syntax of a
program in a tree structure.

Bitcoin An open-source, decentralised cryptocurrency based on a public
blockchain. Launched in 2009, Bitcoin is the world’s most widely traded
cryptocurrency (by volume) and inspired hundreds of new cryptocurrencies
since then.

blockchain An immutable, decentralised, distributed ledger represented
in a tree structure. Typically they employ some form of cryptographic con-
sensus protocol to maintain a trustless interaction between its participants
and a single source of truth.

CFG A control-flow graph represents the potential paths travelled within
a program using a graph. Nodes represent blocks of code and outward
directed edges represent the jump destinations following these blocks.

cryptocurrency A digital asset that can typically be exchanged using
cryptographic authorisation and a decentralised trustless authority like a
blockchain. These currencies mainly differ from that of a traditional bank-
ing institution in that: newly issues currency are not minted by a sovereign
central authority, participation in the system does not require physical
proof of identity, and transaction rules are determined by source code in-
stead of legislature and contractual agreements.

DSL Domain-specific languages are programming languages designed for
use in a particular domain or application as opposed to a general-purpose
language.

Ether The cryptocurrency available within Ethereum that can be freely
traded between user accounts and smart contracts.

100

Stellenbosch University https://scholar.sun.ac.za



Glossary 101

Ethereum An open-source, decentralised, distributed computing plat-
form hosted on a public blockchain. This system also features a tradable
cryptocurrency called Ether. Ether is used to pay for computation on the
EVM.

EVM The Ethereum Virtual Machine (EVM) is a stack-based virtual ma-
chine that forms part of the Ethereum computational platform and is re-
sponsible for executing all hosted smart contract code.

ICO An Initial Coin Offering (ICO) is a round of funding for a new venture
that utilises a cryptocurrency to raise money and manage share distribution
in the investment.

IR An intermediate representation (IR) is an internal transformation of
high-level source code that captures all necessary information generally
required for analysis, optimisation, or further code generation. Compilers
and static analysis tools will typically transform the given source code to
an IR at some stage as part of their process.

smart contract The autonomous applications that are hosted on the
Ethereum platform. They may possess its own Ether balance, persist data
between transactions and call other smart contracts.

Solidity Object-oriented smart contract language that targets the EVM.

SSA A program is in a static single assignment (SSA) form when all vari-
ables are only assigned values once throughout their context.

Stellenbosch University https://scholar.sun.ac.za



Acronyms

ABI Application Binary Interface.

AST Abstract Syntax Tree.

CFG Control-flow Graph.

DSL Domain-specific Language.

EIP Ethereum Improvement Proposal.

ERC Ethereum Request for Comment.

EVM Ethereum Virtual Machine.

ICO Initial Coin Offering.

IR Intermediate Representation.

SSA Static Single Assignment.

102

Stellenbosch University https://scholar.sun.ac.za


	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Testing Smart Contracts
	Contributions
	Overview

	Background
	Ethereum
	Release Management
	Ether
	Accounts and State
	Transactions
	Messages
	Pre-compiled Contracts
	The Ethereum Virtual Machine

	Solidity
	Language Properties
	Basic Syntax
	Types
	Functions
	Storage Access
	Built-in Functions and Variables
	Token Standards

	Solidity Development and Testing
	Test Network Clients
	Development Frameworks
	Unit Testing
	Integration Testing

	Fuzzing
	Input Generation
	Execution Feedback

	Symbolic Execution
	Example Program


	Vulnerabilities
	Vulnerability Taxonomies
	List of Vulnerabilities
	Integer Overflow
	Unchecked Call Return Value
	Re-entrancy
	Assert Violations
	DoS with Failed Call
	DoS with Block Gas Limit
	DoS from Greedy State
	Unauthorised Ether Withdrawal
	Unauthorised Self-destruct
	Unauthorised Delegatecall
	Transaction Order Dependence
	Authorisation Through Origin
	Weak Sources of Randomness
	Write to Arbitrary Storage Locations
	Ether Invariants

	Other Vulnerabilities and Bad Practices
	Solidity Compiler Version Issues
	Deprecated Functions
	Unused or Uninitialised Variables
	Use of Inline Assembly
	Timestamp Dependency
	Signature Replay Attacks


	Tools
	Tool Taxonomies
	List of Tools
	Securify
	Slither
	MythX
	Echidna
	Manticore
	Mythril

	Other Tools

	Extensions
	Framework Architecture
	Framework Implementation
	External Interfaces
	Environmental Setup
	Vulnerability Detectors
	Execution
	Validation
	Output

	Limitations and Future Work

	Evaluation
	Setup
	Vulnerability Reporting Evaluation
	Contracts
	Tools
	Results

	Challenge Contract Evaluation
	Contracts
	Tools
	Results

	Performance Evaluation
	Contracts
	Tools
	Results

	Discussion

	Conclusion
	Testing Smart Contracts
	Limitations and Future Work
	Summary

	Bibliography
	Attacking Contract



