
Thesis presented in partial fulfilment of the requirements for
the degree of Master of Engineering (Research) in the Faculty

of Engineering at Stellenbosch University

Study leader: Prof. H.A. Engelbrecht
Prof. S.Y. Hu

March 2020

VAST: a scalable spatial publish and subscribe
system integrated with Minecraft

by
Miguel Smith

6

BYLAE 1

Plagiaatverklaring / Plagiarism Declaration

1 Plagiaat is die oorneem en gebruik van die idees, materiaal en ander intellektuele

eiendom van ander persone asof dit jou eie werk is.

Plagiarism is the use of ideas, material and other intellectual property of another’s work

and to present is as my own.

2 Ek erken dat die pleeg van plagiaat 'n strafbare oortreding is aangesien dit ‘n vorm van

diefstal is.

I agree that plagiarism is a punishable offence because it constitutes theft.

3 Ek verstaan ook dat direkte vertalings plagiaat is.

I also understand that direct translations are plagiarism.

4 Dienooreenkomstig is alle aanhalings en bydraes vanuit enige bron (ingesluit die

internet) volledig verwys (erken). Ek erken dat die woordelikse aanhaal van teks

sonder aanhalingstekens (selfs al word die bron volledig erken) plagiaat is.

Accordingly all quotations and contributions from any source whatsoever (including the

internet) have been cited fully. I understand that the reproduction of text without

quotation marks (even when the source is cited) is plagiarism.

5 Ek verklaar dat die werk in hierdie skryfstuk vervat, behalwe waar anders aangedui, my

eie oorspronklike werk is en dat ek dit nie vantevore in die geheel of gedeeltelik

ingehandig het vir bepunting in hierdie module/werkstuk of ‘n ander module/werkstuk

nie.

I declare that the work contained in this assignment, except where otherwise stated, is

my original work and that I have not previously (in its entirety or in part) submitted it for

grading in this module/assignment or another module/assignment.

Copyright © 2020 Stellenbosch University

All rights reserved

Stellenbosch University https://scholar.sun.ac.za

Abstract

With the world becoming more connected by the day, the need for modern massively
multi-user virtual environments (MMVEs) to be capable of hosting an increasing number
of players is vital. Unless large sums of money are spent, current system architectures
limit how many players can join a single system due to bandwidth and computational
strains that arise from interactions between players and the virtual world.

This thesis proposes using VAST, a spatial publish/subscribe system, to handle the up-
date and event dissemination of MMVEs in order to make it more scalable. VAST allows
clients within the system to efficiently send and receive messages to each other in a scal-
able way. It achieves this with a multi-layered system that handles different aspects of
the system. The Voronoi-overlay network handles the network connections of different
VAST nodes to each other by using a dynamic Voronoi diagram to determine a node’s
neighbours. It only connects to these neighbours, allowing it to be a part of the system
as a whole whilst only interacting with a part of it. This layer is shown to have scalable
characteristics, handling up to 1000 nodes with response times of under 25ms. The spatial
publish and subscribe system is handled by the Voronoi-spatial overlay. This layer uses
a Voronoi diagram to section the virtual world into regions, each one handled by a single
VAST node. Clients connect to the world and are assigned to a node depending on which
region their joining location falls under. These VAST nodes are dynamic, allowing for
load balancing to occur should one node become overloaded. The layer showed latencies
of 3ms and a drift distance of under 0.0024 for 350 clients. An entry server handles client
logins and packet routing.

Minecraft is used to test the real world applicability of VAST to an MMVE by allowing
VAST to handle its update and event dissemination. The Koekepan project provides
client and server proxies that allow Minecraft packets to be converted into packets that
can be published to VAST. The system is shown to be able to reduce the amount of
packets sent in a system containing two Minecraft clients by 33.52% when using a spatial
publish/subscribe system to disseminate updates. The system is shown to be capable of
handling over 350 simulated clients on a single system without any decrease in perfor-
mance.

ii

Stellenbosch University https://scholar.sun.ac.za

Samevatting

Met die wêreld se toenemende elektroniese verbindings raak die behoefte al hoe groter vir
moderne, massieve multigebruiker virtuele omgewings (MMVEs) om meer gebruikers te
kan huisves. Tensy groot bedrae geld spandeer word, beperk die huidige stelselargitek-
tuur die aantal gebruikers wat by ’n enkele stelsel kan aansluit as gevolg van beperkte
bandwydte en berekeningsvereistes wat onstaan a.g.v. die interaksies tussen gebruikers
en die virtuele omgewing.

Om die virtuele omgewing meer skaleerbaar te maak, word daar in hierdie tesis voorgestel
dat VAST, a ruimtelike publikasie/subskripsie stelsel, gebruik word om vir die versprei-
ding van opdaterings- en gebeure-boodskappe. VAST stel kliënte in die stelsel in staat
om hierdie boodskappe effektief aan mekaar te stuur en te ontvang op ’n skaleerbare
manier. Dit word bereik deur die gebruik van ’n multivlak stelsel wat verskillende as-
pekte van die stelsel hanteer. Die Voronoi-netwerklaag hanteer die netwerk konneksies
van verskillende VAST nodusse aan hul bure deur ’n dinamiese Voronoi diagram te ge-
bruik om nodusse se bure te bepaal. ’n VAST nodus konnekteer slegs aan sy bure, wat dit
toelaat om deel te vorm van totale stelsel terwyl dit slegs kommunikeer met ’n gedeelte
van die virtuele omgewing. Ons toon dat die Voronoi-netwerklaag skaleerbaar is, deur
tot en met 1000 nodusse te hanteer met responstye van minder as 25ms. Die ruimte-
like publiseer/subskripsie stelsel work hanteer deur ’n aparte ruimtelike Voronoi-laag. Die
ruitemlike laag gebruik ’n Voronoi-diagram om die virtuele omgewing te verdeel in verskil-
lende streke, waar elke streek beheer word deur ’n enkele VAST nodus. Kliënte konnekteer
aan die virtuele omgewing en, afhangende van die streek waarin die klient hom bevind,
word dit toegewys aan die VAST nodus wat daardie streek beheer. Hierdie VAST nodusse
is dinamies, wat toelaat vir balansering van die las van die VAST nodusse indien ’n nodus
oorlaai word. Die ruimtelike laag toon vertragings van 3ms en ’n dryfafstand van onder
0.0024 wanneer 350 kliënte gelyktydig konnekteerd is aan die stelsel. ’n Toegangsbediener
word gebruik om aantekening van kliente te hanteer asook roetering van netwerk pakkies.

Om die werklike toepaslikheid van VAST op ’n MMVE te toets word daar van Minecraft
gebruik gemaak. VAST is verantwoordelik vir die verspreiding van opdaterings- en
gebeure-boodskappe.Die Koekepan-projek bied instaanbedieners vir beide die Minecraft
kliënte en bedieners. Hierdie instaanbedieners omskep die Minecraft-pakkies in pakkies
wat deur VAST gepubliseer kan word. Daar word gewys dat die VAST stelsel die aan-
tal Minecraft pakkies wat versprei moet word kan verminder met 33.52%, wanneer twee
Minecraft-kliënte konnekteer is aan die virtuele omgewing. Daar word ook getoon dat die
stelsel meer as 350 gesimuleerde Minecraft kliënte kan hanteer op ’n enkele stelsels sonder
om ’n verlies in prestasie.

iii

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

Firstly, as in all things, glory to my Father in heaven who constantly gives strength and
grace to do what needs doing.

I would like to say thank you to my two supervisors, Herman and Shun-Yun. Without
the weekly (and for a while daily) meetings and constant advice, ideas and life lessons I
would not have finished what I needed to finish. Your wisdom and guidance will be with
me for the rest of my life.

Then to my family and friends who provided constant support and encouragement, re-
minding me that rest is often more productive than work and that we all feel overwhelmed
at times, thank you. The prayers at all hours of the day and night carried me when I did
not feel like I could make it through.

Finally to my fiancé, Eraine. You saw every day of effort and never stopped giving your
love, support and encouragement through it, even in the 4 months that I told you I was
almost finished. Thank you for your patience.

iv

Stellenbosch University https://scholar.sun.ac.za

Contents

Abstract ii

Samevatting iii

Acknowledgements iv

Contents v

List of Figures ix

List of Tables xi

Nomenclature xii

1 Introduction 1
1.1 Massively Multi-user Virtual Environments 1

1.1.1 The client . 2
1.1.2 Virtual environments . 2
1.1.3 Objects and entities . 2
1.1.4 System architectures . 2
1.1.5 Event-update cycle . 3
1.1.6 Requirements of an MMVE . 3
1.1.7 Scalability research . 5

1.2 VAST . 6
1.3 Minecraft . 8

1.3.1 The world . 8
1.3.2 Objects, entities and the event/update cycle 8

1.4 Koekepan . 9
1.5 Research goal . 10
1.6 Thesis Approach . 10
1.7 Thesis Objectives . 10
1.8 Thesis Overview . 11

2 Background of MMVEs 12
2.1 MMVE requirements . 12

2.1.1 Interactivity and fairness . 13
2.1.2 Consistency . 14
2.1.3 Persistence . 18
2.1.4 Scalability . 18

2.2 MMVE architectures . 21

v

Stellenbosch University https://scholar.sun.ac.za

CONTENTS vi

2.2.1 Client/server . 22
2.2.2 Client/multi-server . 22
2.2.3 Peer-to-peer . 23
2.2.4 Hybrid P2P . 24

2.3 Researched solutions to architectural problems 25
2.3.1 Generic solutions . 25
2.3.2 Client-server and multi-server solutions 29
2.3.3 P2P and hybrid P2P solutions . 30

2.4 Summary . 32

3 VAST 34
3.1 Voronoi diagrams . 34
3.2 VON [1] . 35

3.2.1 Neighbour discovery . 35
3.2.2 JOIN procedure . 37
3.2.3 MOVE procedure . 38
3.2.4 LEAVE procedure . 39

3.3 Voronoi Self-organising Overlay and the entry server 39
3.3.1 Architecture of VSO . 40
3.3.2 Spatial publish/subscribe (SPS) . 43

3.4 VAST API . 45
3.4.1 JOIN procedure . 45
3.4.2 SUBSCRIBE procedure . 46
3.4.3 MOVE procedure . 46
3.4.4 PUBLISH procedure . 47
3.4.5 UNSUBSCRIBE procedure . 48
3.4.6 LEAVE procedure . 48

3.5 Implementation challenges and considerations 50
3.5.1 Migrating from C++ to JavaScript 50
3.5.2 Overlapping clients and VAST nodes 51
3.5.3 Consistency and neighbour discovery 51
3.5.4 Robustness . 51
3.5.5 Load balancing . 52

3.6 Summary . 53

4 Minecraft 54
4.1 The server . 54
4.2 World state . 55
4.3 The player entity . 55
4.4 Non-playable characters . 56
4.5 Networking and the Minecraft protocol . 56

4.5.1 Handshaking sub protocol . 58
4.5.2 Login state sub protocol . 58
4.5.3 Play sub protocol . 59
4.5.4 Status sub protocol . 59

4.6 Event and update dissemination . 59
4.7 MMVE requirements in Minecraft . 59

4.7.1 Interactivity and fairness . 60
4.7.2 Consistency . 60

Stellenbosch University https://scholar.sun.ac.za

CONTENTS vii

4.7.3 Persistence . 61
4.7.4 Scalability . 61

4.8 Interest Management . 61
4.9 Research in Minecraft . 62

4.9.1 Manycraft and Kiwano . 62
4.10 Summary . 63

5 Minecraft and VAST 65
5.1 VAST and Minecraft . 65

5.1.1 Client proxy design . 66
5.1.2 Server Proxy . 67
5.1.3 Minecraft client login procedure . 68

5.2 Implementation challenges . 71
5.2.1 Connection sequence . 71
5.2.2 Duplicate packets . 71
5.2.3 Update dissemination by the Minecraft server 72

5.3 Minecraft SPS potential . 72
5.3.1 Theoretical analysis . 72
5.3.2 Hypothesis and setup . 73
5.3.3 Practical analysis and results of SPS potential 74
5.3.4 Packet reduction potential . 75
5.3.5 Conclusion on Minecraft SPS viability 76

5.4 Summary . 76

6 Performance Evaluation of VAST and Minecraft 77
6.1 VON scalability performance . 77

6.1.1 Metrics . 77
6.1.2 Test bench and set up . 79
6.1.3 Test 1: Varying the peer density . 79
6.1.4 Test 2: Varying the number of peers at a set density 84

6.2 VAST scalability test . 89
6.2.1 Test overview . 89
6.2.2 Test setup . 89
6.2.3 Performance evaluation . 90

6.3 Minecraft integrated into VAST . 93
6.3.1 Test overview . 93
6.3.2 Test setup . 94
6.3.3 Performance evaluation . 94
6.3.4 Summary of Minecraft results . 97

6.4 Summary . 98

7 Conclusion 99
7.1 Introduction . 99
7.2 System performance . 99
7.3 Concluding analysis . 100

7.3.1 VAST port from C++ to JavaScript 100
7.3.2 VAST showing scalable properties 101
7.3.3 SPS viability and benefits in Minecraft 101
7.3.4 Interface between Minecraft and VAST 101

Stellenbosch University https://scholar.sun.ac.za

CONTENTS viii

7.3.5 Minecraft functioning through VAST 101
7.4 Future work . 101

A Cluster computer specifications 103

B Single computer specifications 104

C Source code 105

Bibliography 106

Stellenbosch University https://scholar.sun.ac.za

List of Figures

1.2.1 A figure showing the different layers to VAST and their communication chan-
nels [2] . 6

1.2.2 Two types of neighbours in a Voronoi diagram [2] 7
1.3.1 The Koekepan architecture [3] . 9

2.1.1 The ideal relationship between resource usage and the number of clients in a
scalable system [4] . 19

2.1.2 In a) the sender broadcasts a packet received from a client as multiple packets
to every other client. In b) the received packet is sent to a single client at a
time. In c) a single packet received is sent to multiple clients. 20

2.3.1 P2P message exchange where O is the peer, A’s are the active entities and
B’s are the latent entities (source: [5]) . 32

3.1.1 A Voronoi diagram showing p peers and their corresponding regions 34
3.2.1 Figure showing the global view of the system versus what an individual peer

sees . 36
3.2.2 The join procedure and its outcome . 37
3.3.1 The VAST stack (©) with matchers () in the top layer handling clients

() whilst VON peers () handle network routing and connection 39
3.3.2 A figure showing the routing of information () from clients () through

the entry server (�) to their respective matchers () based on position . . . 41
3.3.3 Figure showing ray casting of points through a polygon and their relative

line crossings . 42
3.3.4 An example of thrashing caused by a client () moving between matcher

regions, alternating host regions () (left). The solution is to have a buffer
region () that extends beyond the boundary of the region (right) 42

3.3.5 Calculation of the intersection between a line and a circle [6] 44

4.5.1 Login sequence diagram between a Minecraft client and a Minecraft server
integrated with VAST . 57

4.9.1 A Manycraft node with Kiwano integrated to handle event and update dis-
semination . 63

5.1.1 An overview of the VAST system connected to a Minecraft client and server
module . 65

5.1.2 Figure showing the login sequence of a Minecraft client through VAST . . . 70
5.3.1 The distribution of packets in an ordinary Minecraft playing session 74
5.3.2 The percentage of packets in an ordinary Minecraft playing session 75

6.1.1 Figure showing the change in peer density as a function of radius 80

ix

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES x

6.1.2 Bandwidth per peer across varying peer densities 80
6.1.3 Round-trip time as a function of peer density 81
6.1.4 Latency as a result of varying peer densities 82
6.1.5 Consistency of topology as a result of peer density 83
6.1.6 Drift distance relative to peer density (negative numbers indicate opposite

direction) . 83
6.1.7 Density levels of tests across the number of VON peers 84
6.1.8 Bandwidth relative to number of VON peers 85
6.1.9 Round-trip time relative to number of peers 85
6.1.10 Latencies relative to number of peers . 86
6.1.11 Consistency across number of peers . 87
6.1.12 Drift distance versus number of peers for a set peer density 88
6.1.13 Zoomed-in figure of drift distance versus number of peers for a set peer density 88
6.2.1 Average latency that each client experiences as a result of the increase in

clients across different numbers of matchers 91
6.2.2 Drift distance of clients across different numbers of matchers 92
6.2.3 Consistency of client connectedness across different numbers of matchers in

VAST . 93
6.3.1 Test set up for the integration of Minecraft and VAST 94
6.3.2 Latency of Minecraft clients with different number of VAST nodes 95
6.3.3 Drift distance of Minecraft clients connected through different number of

VAST nodes . 96
6.3.4 Consistency of Minecraft client view when connected through different num-

bers of VAST nodes . 97

Stellenbosch University https://scholar.sun.ac.za

List of Tables

2.2.1 Comparison of the advantages and disadvantages of different MMVE archi-
tectures . 25

3.3.1 Contents of the "Subscription" data type . 44
3.4.1 The VAST API [4] [7] . 49

A.1 Specifications of cluster test computer . 103

B.1 Specifications of moderately powerful test computer 104

xi

Stellenbosch University https://scholar.sun.ac.za

Nomenclature

3D Three dimensional
AE Active entities
AI Artificial intelligence
AoE Area of effect
AoI Area of interest
AOIM Area of interest manager
API Application protocol interface
B bytes
BR Battle royale
C/MS Client/multi-server
C/S Client/server
CPU Central processing unit
DHT Distributed hash tables
EID Entity identifier
ES Entry server
FPS First person shooter
GB Gigabyte
GPU Graphical processing unit
GUI Graphical user interface
ID Identifier
IM Interest management
IP Internet protocol
JS JavaScript
KB Kilobytes
KBps or KB/s Kilobytes per second
LAN Local area network
LE Latent entities
Mbps Megabits per second
MB/s Megabytes per second
MMVE Massively Multi-user virtual environment
ms Milliseconds
NPC Non-playable character
NTP Network time protocol
NVE Networked virtual environment
P2P Peer-to-peer
PBT Predictive binary tree
PCM Predictive contract mechanisms
PD Peer density
RAM Random access memory

xii

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE xiii

RPG Role-playing game
RTT Round-trip time
RTS Real-time strategy
SPS Spatial publish/subscribe
TCP Transmission control protocol
UUID Universally unique identifier
VE Virtual environment
VON Voronoi overlay network
VR Virtual reality
VSO Voronoi self-organising overlay
WAN Wide area network

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

The video game industry is growing faster than ever before and the majority of people
who are playing are playing together. According to [8], 65% of American adults play video
games and of those 65%, 63% play with friends. If this is indicative of world-wide data,
then of the world’s 2.6 billion gamers [9], 1.638 billion play with others. These people
spend an average of 4.8 hours per week playing online with their friends. With such a wide
audience of online gamers playing together, video games need to be able to support the
players that want to play together with architectures that can allow all players to interact
with each other in real-time. Whilst some games are supporting millions of players, only
a few hundred of these are playing together in the same world and the same spaces.
The reason for this is that whilst research [10] has been done to investigate solutions to
scalability problems, the industry has not followed.

1.1 Massively Multi-user Virtual Environments
Massively multi-user virtual environments (MMVE) are systems that have a large simu-
lated world in which users can control an avatar and interact with others whilst completing
objectives or actions. One of the most common implementations of MMVEs is in video
games. Genres such as role-playing games (RPGs), battle royale (BR) and first-person
shooters (FPS) can be classified under the MMVE genre.

Every MMVE game consists of the following components:

• an avatar or viewport (controlled by the client with which the player vicariously
interacts with the virtual world around it)

• this simulated world is known as a virtual environment (VE) in which the player’s
avatar exists

• interactive objects and entities that populate the VE and give the player ways to
complete objectives and actions

• a system that both hosts the information that describes the state of everything
within the MMVE and a way to disseminate updates that result from events that
occur within the VE.

1

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

1.1.1 The client

The client is the software that the user runs to access the MMVE. It is through the client
that the user can control the avatar or viewport. The avatar can be any three-dimensional
(3D) model that the designer has created for the user to control and interact with the VE.
The user will make use of some form of external hardware (keyboard, mouse, controller,
virtual reality (VR) headset) to control the avatar’s movements and therefore the user’s
perspective of the VE. The viewport is the name given to the window that the user sees
the VE through. It is what appears on the screen when the client is run. In some games
the user may not have an avatar and is instead represented by an omnipotent, omnipresent
force that still interacts with the world but is not bound to a single avatar (such as in
Black and White [11] or Spore [12]).

1.1.2 Virtual environments

Virtual environments are the representation of the world within which the avatar exists.
They can either be static and unchangeable to the user, pre-determined by the designers
of the MMVE, or dynamic and volatile with the ability to completely change over time
and different for every instance of the game (such as Minecraft [13]). This world is stored
on the host of the MMVE and defines the bounds of where the avatars and entities within
the VE are permitted to go. These VEs can be a real-life representation of places in our
world or entirely fabricated construction of the designer’s imagination. These worlds can
be designed to lead the user along a certain path, supporting the narrative of the game
(such as dungeons and raids in World of Warcraft), or open-world which allows the user
to freely explore the world and interact with it in any order and manner of their choosing.

1.1.3 Objects and entities

MMVEs would be monotonous and unexciting if it were just the VE and player avatars;
objects add another element of complexity. Objects are interactive pieces within the VE
that the user can utilize to perform certain actions, complete objectives or simply to make
the static VE feel more like a real, living world. These interactive objects can be items
that the player uses and keeps in their inventory, environmental props that have anima-
tions such as trees swaying in the wind or bushes rustling.

Entities are avatars that are controlled by algorithms and artificial intelligence (AI) rather
than a user. These entities are also known as non-playable characters (NPCs) or bots
(which is short for robots). These entities fill the world and create an atmosphere more
akin to a real-world full of life rather than an empty shell of a world with merely a few
user-controlled avatars within.

1.1.4 System architectures

There are a few ways that the MMVE can be hosted; the most widely used and easiest to
set up is the client/server (C/S) architecture. This is where the world is hosted on a single
server and the users make use of clients to connect to the server and receive information
about the world. All actions performed by the user are sent to the server where these

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

changes are logged and sent out to the other users to inform them of the change. This is
called the event-update cycle and is discussed in more detail below.

Another well researched but less commonly used architecture is that of peer to peer (P2P).
In P2P architectures, there is no server. The clients have a dual responsibility of being
both a user in the system, as well as a server for others. This theoretically allows the sys-
tem to have as many users as desired, but provides design and user-experience challenges.

Finally, there is hybrid P2P and client/multi-server (C/MS). Hybrid P2P attempts to
use both P2P and C/S in the design to get the best of both architectures. It stores the
world on the servers whilst having clients inform each other of changes that they enact.
This has benefits in terms of the stability and scalability of the MMVE, however, the
potential for issues with security is still present. C/MS systems aim to keep more security
and control over the system by hosting and controlling all of the information regarding
objects, entities, avatars, and the VE whilst improving on C/S scalability. It does this by
using multiple high-power servers instead of just one, and integrating them so that they
can communicate with each other and share resources.

1.1.5 Event-update cycle

Whether there is a central authority that controls all of the states within a VE, or the
states are distributed among the client machines, every entity, object and player has a
global copy that describes the state that it is in at any given moment. All entities that
are interested in a particular entity get their information from the global copy of such.
This information is stored as a replica of the global copy and is known as the local copy.
If the global copy and a local copy of a state become desynchronised for any reason, the
local copy will defer to the global copy for an accurate view of the entity. Whenever an
entity within the VE performs an action that affects the state of something around it, it
is described as an event. This change in an object’s state is communicated to entities that
have a local copy of the entity’s state via an update. This event-update cycle is integral
to the functioning of an MMVE.

1.1.6 Requirements of an MMVE

For MMVEs to handle the millions of potential players on their system whilst still main-
taining a high-quality user experience, they have to meet the requirements of five different
aspects that make for a functioning and entertaining MMVE. These have been deduced
from [14] and [15] and are as follows:

1. Consistency

2. Persistence

3. Interactivity and fairness

4. Scalability

5. Security

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 4

Consistency

Objects, entities and the world are stored on the host as a state. This is a collection
of attributes and characteristics of an object that define how it appears in the world, as
well as how it is interacted with by other entities. Consistency is when a global copy
of an object’s state and the copies of this state contain information that is different or
contradictory. This desynchronisation can be caused either by latency or packet loss
(the loss of a collection of information that describes an update). If a player interacts
with a VE, object or entity that is not as it appears to be, the result can be a highly
unsatisfactory experience, as the expected outcomes of an action will not be realised.

Persistence

Persistence is both the ability of the MMVE to be left for an indefinite amount of time
and to remain as it was at such time, as well as for all the clients to be disconnected from
it and then reconnect to it in the same state that the MMVE was left in. When video
games were first created, there was no option to save the world state and then return to
where you left off. If you started on world 1-1 in the original Mario Bros, played for a
while and then turned off the system and returned later, you would have to start from
world 1-1 again. This, however, has changed as MMVEs are now required to remain the
same no matter how long the user is gone for, and their progress should be kept even
if the player only returns after an extended period. Persistence is also the ability of the
MMVE to be fault-tolerant. If a host containing global states fails or crashes, the system
should be able to either recover the information or reconstruct the information from state
copies.

Interactivity and fairness

Interactivity is described as the interactions between different entities within the world
and the quality thereof. Within an MMVE, the interactions of players and how quickly
these actions register as permanent affects the potential for the game to be immersive.
This responsiveness is affected by how long it takes for events and updates to be sent and
received, and varies for every genre of online game.

Fairness is the idea that every user that plays the game experiences it in the same way
regardless of their machine’s processing power or how quickly their messages reach the
host of the MMVE. It is directly linked to interactivity; the better the interactivity of
the client, the quicker it can affect the world and everything around it and the quicker
they can receive the updates informing it of the preceding actions. Fairness must be a
priority in MMVEs because alternatively the player experience is significantly reduced by
perceived or real disadvantages relative to their peers.

Scalability

Scalability is the most difficult requirement to satisfy because when it is prioritised ev-
ery other requirement has to sacrifice to be successful. Scalability is the ability of the
MMVE to operate in the same way whether there is one user or millions of users. To be
scalable means to be able to handle as many users as there is a demand for and still have
a functioning game or system. It is not beneficial if there are millions of players but no
interactivity within the game because of the high latency or interactions with the game

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 5

not registering due to the player’s local state constantly being inconsistent and requiring
updating.

It is for this reason that solving the problem of scalability is such a compelling yet elusive
task. Whilst the other requirements can be solved while sacrificing merely one or two
other requirements, scalability has not been achieved with the same success. Research
has already been undertaken on scalability; this will be the focus of the subsequent section.

1.1.7 Scalability research

There are two ways to improve scalability: reduce the consumption of resources or in-
crease the amount of resources within the system. A system is scalable when clients can
be indefinitely added with minimal to no impact on resource consumption. Therefore
having a genuinely scalable system, unless each client that joins induces a net increase in
resources, requires a design that reduces the consumption of the system.

NPSNET [16] uses the idea of network multicast groups to reduce network bandwidth.
This was an early introduction to the idea of sending messages to specific client groups
instead of broadcasting them or sending them to individual clients. This was instrumental
in further research.

SimMud [17] uses the concept of users being most interested in that which surrounds them
to form self-organising groups based on their virtual locations to which the system can
multi-cast messages. It successfully demonstrated this in a test of 4000 players, showing
scalability whilst still maintaining consistency and ease of state distribution. It does not
take into account variable latency nor security of information within the architecture.

Donnybrook [18] estimates what players will be interested in and tailors the frequency of
updates sent to the client accordingly. It also uses a multicast system that is latency-
sensitive and can support a high rate of change of group members. Its bandwidth require-
ments for the server scale quadratically for every client added to the area of interest (AoI)
however, so it does not deal well with clustering/flocking.

RING [19] takes into account the visible lines of sight of clients within a "densely oc-
cluded" VE - such as a world with high buildings or mountains. It withholds entity
state updates from clients who cannot perceive the changes. Experiments displayed a
decrease of 40 times the number of messages processed by clients in a 1024-client test.
This approach only works for worlds where there are line-of-sight blockages but decreases
the bandwidth needed and therefore improves scalability in conjunction with interactivity.

Kiwano [20] uses a cloud-based solution to handle avatar movement within a virtual world
separate from the computing of static objects and entities within the world. It uses De-
launay triangulation indexing to efficiently assign neighbours to Kiwano nodes. By using
a cloud-based solution one alleviates the problem of over-provisioning of resources that
plagues C/MS systems by allowing the ready removal and introduction of resources from
the cloud. Issues arise when the number of nodes grows as the chance for messages to
have multiple hops and therefore greater latency increases.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 6

Chord [21] scales logarithmically (O(log(n)) with the number of nodes by using a dis-
tributed lookup protocol to solve the problem of scalability in a P2P structure whilst still
being able to reliably retrieve the global copies of states. Pastry similarly does this by
using a 128-bit identifier to efficiently look up peers within the network. Each neighbour
is aware of the nodes whose identifier key is numerically closest to its key. These two ap-
proaches look to improve interactivity by making it easy to find and contact neighbours,
with Pastry [22] successfully testing a system with 100,000 clients.

VAST [2] is a P2P overlay that uses spatial publish/subscribe to efficiently disseminate
updates. It is described in more detail in the section below.

1.2 VAST
VAST is a hybrid P2P system that uses a spatial publish/subscribe (SPS) system to
provide a scalable architecture for MMVEs. VAST is composed of three parts:

1. The Voronoi overlay network, VON, which handles all the network requirements
and network consistency requirements of the system.

2. The Voronoi self-organising overlay (VSO) which uses nodes called matchers to
handle all of the update and event dissemination and load balancing.

3. The entry server (ES) which handles all login procedures and message routing.

This can be seen in figure 1.2.1.

Figure 1.2.1: A figure showing the different layers to VAST and their communication
channels [2]

VAST aims to improve the scalability of the system whilst maintaining consistency and
interactivity by replacing an MMVE’s network system with its own. It does this by dis-
tributing the VE across multiple servers in a P2P overlay. This allows the system to be
dynamic in its resource usage while also being able to handle fluctuating loads. It limits

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 7

(a) A figure showing the
enclosing neighbours (regions

outlined in red) of a peer with its
AoI

(b) A figure showing the
boundary neighbours (regions
outlined in blue) of a peer with

its AoI

Figure 1.2.2: Two types of neighbours in a Voronoi diagram [2]

the number of neighbours a single server has through the use of Voronoi diagrams. Each
server is assigned a Voronoi region and neighbours are determined using this as well as
how the other regions lie around it. There are three types of neighbours: enclosing neigh-
bours, boundary neighbours and AoI neighbours. Enclosing neighbours are neighbours that
share an edge with a specific site’s Voronoi region (seen in red in figure 1.2.2a). Boundary
neighbours are defined as sites that fall within a site’s AoI and form a boundary around
the site’s Voronoi region (seen in blue in figure 1.2.2b). AoI neighbours are simply the
neighbours whose position falls within a peer’s AoI.

Clients connect to this P2P overlay through an ES that handles login procedures and
message routing. From the client’s perspective, VAST looks like a single server. However,
when a client joins it is assigned a starting server based on the position of its spawning
point and which Voronoi region this lies within. When the client crosses these regional
boundaries a handover sequence occurs that routes the packets that the client sends and
receives through the new region’s server. If a single server has too many clients connected
a load balancing procedure happens that prevents a single server from being overloaded.
If the entire system starts becoming overloaded more servers can be added to increase the
capacity of the system.

Update and event dissemination is handled by the SPS system. A client states its interest
within the VE by subscribing to an area in which it wants to receive updates (usually
consistent with its AoI). Events and updates are then published to a specific position or
area and any subscriptions that intersect with these publications receive them. This is
a form of multi-casting as a single message can be sent with multiple receivers defined
by an interest set. This helps to reduce the number of packets that the server needs to
send as it can publish to the intended clients with a single message instead of sending
individually to each one. This synchronises well with MMVEs as almost all events and

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 8

updates occur at a specific location within the VE with clients also being limited in what
they interact with to a specific area.

Minecraft is one such MMVE. The following section will introduce the game and explain
what it is in essence and how it works.

1.3 Minecraft
Minecraft started as a sandbox survival game created by Swedish game developer Markus
Persson [13]. It was published on the 18th of November 2011 by Mojang. It has since
become a massively popular game with the current player count at over 112 million active
monthly players [23].

1.3.1 The world

The Minecraft world is made up of cubes 1 meter in length and of varying types. Play-
ers within the game control an avatar that can break and collect these different blocks to
place them in creative ways and craft items. These varying blocks are placed in 16x16x256
columns called chunks. When a player’s AoI intersects with any part of a chunk, the entire
chunk is loaded into the player’s memory. Similarly, when a player’s AoI stops intersecting
a chunk, it gets unloaded from the client’s memory.

1.3.2 Objects, entities and the event/update cycle

The world is filled with NPCs such as animals and zombies that the player can interact
with, as well as other players when playing in a multiplayer fashion. These entities and
players create events when they interact with each other and with other objects.

Users connect to a Minecraft server that hosts the world within which all of the objects
and entities exist. Players can interact with other objects and entities and this is sent to
the server which then processes the event using the internal game logic. The server then
updates the global copy of the affected states and subsequently generates updates that
get disseminated to other players in the system. These updates renew the player’s local
copies of the states of the affected objects/entities.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 9

Figure 1.3.1: The Koekepan architecture [3]

1.4 Koekepan
Koekepan [3] is a system that aims to turn Minecraft into a generic research tool for use
in MMVE, scalability and other such areas of research. It uses a distributed architecture
that consists of a Minecraft server clone (such as Bukkit), an unmodified Minecraft client,
a client proxy and Augeo, a server plugin for Bukkit. This architecture is shown in fig-
ure 1.3.1. Koekepan uses Minecraft’s inherent networking system, as opposed to VAST
which instead replaces it. The server and Augeo are run together and therefore make up
the server node. It is created in this modular fashion so that the researcher can control
different aspects of Minecraft and the architecture such as the networking between the
server and clients, the AoI management and the partitioning of the VE. It can be run in
a C/MS or P2P architecture due to these abstractions.

The VE is sectioned into different regions using zoning [24], also known as spatial parti-
tioning, with a server node as the authority within that region. The different server nodes
are organised in a P2P overlay to determine with whom they can communicate. Being the
authority of a zone means that the global states of entities, objects, and players within
that zone are controlled by the server node, as well as the event and update dissemina-
tion within that zone. These dynamic zones allow for both load balancing and dynamic
server addition and removal. When clients migrate across zones, a connection handover
sequence is performed, wherein the client connection is transferred between server nodes.
It does this by briefly creating a connection to the destination server so that the client is
connected to both servers. This is to ensure that the connection is not dropped.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 10

1.5 Research goal
This thesis aims to complete the implementation of the JavaScript version of VAST and
prove its scalable properties. It aims to use Koekepan’s proxies to interface between
VAST and Minecraft to show that Minecraft can successfully be operated through an
SPS structure. Using the scalability of VAST and the viability of Minecraft through an
SPS, this thesis aims to prove the scalability of MMVEs using VAST.

1.6 Thesis Approach
The approach taken by this thesis is as follows:

1. Firstly, this thesis undertakes to do an exposé of research on VAST to explain how
it works and how to properly implement it with all of its features. The system will
also be analysed to see how well it can be integrated with MMVEs.

2. This thesis will subsequently convert the current implementation of VAST in C++
to JavaScript, starting with the networking layer, VON.

3. VON will be implemented to handle neighbour discovery procedures as well as the
addition and removal of other VON peers. VON will be rigorously stress-tested for
any faults as well as to test its scalability.

4. This thesis will then implement the VSO layer. This layer will be designed to
handle SPS functions, which consist of subscription and publication management.
It will work in conjunction with VON for its neighbour discovery and communication
requirements. It will be designed to accept connections from the ES and for each
matcher to be in charge of its load monitoring and request for balancing.

5. The ES will then be designed and implemented. It will provide an API for clients
to use to interface with VAST and will route all client information to the matchers
and back to the clients. It will handle the positioning of matchers in load-balancing
procedures.

6. The VSO layer and ES will then be tested to see if it provides the same scalability
properties that the VON layer showed.

7. Lastly, VAST will be integrated with Minecraft using the developed interface to
translate between them. It will be shown that Minecraft can be used with an SPS
structure, and therefore VAST can be used to make the Minecraft server scalable.

1.7 Thesis Objectives
The thesis aims to:

1. Successfully convert VAST and its features from C++ to JavaScript

2. Show that VAST has scalable properties as a standalone system

3. Show that SPS is a viable form of event/update dissemination in an MMVE envi-
ronment and assists in scalability

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 11

4. Create an interface for Minecraft to integrate with VAST.

5. Show that a real MMVE such as Minecraft functions when the event/update dis-
semination is replaced with an SPS system such as VAST.

1.8 Thesis Overview
This section gives an overview of the layout of the thesis and what will be discussed.

In Chapter 2, the background is given on MMVEs and how they work. The chapter
starts with an in-depth discussion of MMVE requirements and the different aspects of it.
Following this is a discussion of MMVE architectures and their advantages and disadvan-
tages, ending with an observation of the solutions to these architectural flaws that have
previously been researched.

VAST is discussed in more detail in chapter 3. Background on the system is given fol-
lowed by a discussion on the system’s three layers and the different aspects that function
together to power the system. The procedures of VON are discussed, followed by a more
in-depth analysis of SPS. Finally, the VAST API is outlined and challenges and consid-
erations are noted.

In Chapter 4 a background on Minecraft is given with an emphasis on the inner workings
of each aspect of the system. The server, world state, player entity, NPCs, networking
and Minecraft protocol, and interest management are all discussed in more detail. Event
and update dissemination in Minecraft is examined as well as MMVE requirements in
relation to Minecraft. Finally, previous research in Minecraft is summarised.

Chapter 5 describes the integration of VAST and Minecraft and how Koekepan interprets
between them. The client and server proxy for the Minecraft system are analysed fol-
lowed by the system’s interactions in the Minecraft login procedure. The challenges in
the implementation complete the discussion of the design of the system. A theoretical
and practical analysis of Minecraft’s SPS potential is then explored.

Chapter 6 evaluates the performance of both VAST and its integration with Minecraft.
Firstly, the metrics used to test the systems are outlined and explained. Then a test
of VON’s scalability potential is presented. This contains two tests: one that varies the
peer density by keeping a constant AoI whilst increasing the peer count in the system,
and another that keeps peer density constant by varying the AoI whilst increasing peer
count. The VSO and ES layers are then tested to show their scalable potential as more
matchers are added to the system. Finally, a test showing Minecraft working through an
SPS system is presented.

A conclusion on the system and its performance is presented in Chapter 7. It discusses
how the thesis meets the defined objectives and describes further work that can be done
to improve the system as well as how to add more features and capabilities to the system.

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Background of MMVEs

This chapter serves to introduce the requirements of the MMVE genre. It will first
discuss the different requirements of MMVEs. Following this will be a discussion on
MMVE architectures and their respective advantages and disadvantages and will end off
by looking at the solutions to some of the problems with these architectures and the
requirements they fail to adequately fulfil, finally focusing on the problem that this thesis
aims to solve.

2.1 MMVE requirements
The requirements of an MMVE are needs that must be fulfilled to some extent to have
a game that is both enjoyable to play and performs to the level that experience is not
negatively impacted when using the game in a reasonable way (being able to play with the
number of people that the game is designed to be played with) [25]. The user experience
is determined by how well these requirements are met. These requirements include:

• Interactivity and fairness between players and in-game objects. This is how fluid
the game feels for the player as well as how equal the experience is for every player
within the game.

• Consistency in the view that a player has of the world around them. When the
player’s view is consistent with the actual state of the world, it gives the player
trust in the system and makes the game enjoyable to play. When it is inconsistent,
the game is no longer fully immersive as the player distrusts the authenticity of the
experience.

• Persistence of the world after an indefinite time. When the game is not persistent,
the player cannot build upon what they did before and results in a lack of progression
in the game, making the game frustrating and less compelling to play.

• Scalability of the architecture as more players join the system. When players cannot
play with the people that they desire to due to the performance of the game not
allowing it, user experience is negatively impacted.

These requirements, introduced in section 1.1.6, are discussed in more detail below.

12

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND OF MMVES 13

2.1.1 Interactivity and fairness

This section will talk about interactivity and the different factors that pertain to it. It
will also discuss fairness and how interactivity and fairness are linked as well as ways to
improve them.

Interactivity is how responsive the game feels to the user when interacting with objects
and entities within the VE. The type of game and how tolerant it is to latency are factors
that affect interactivity.

Game types and latency tolerance

Latency is defined as the time it takes an update to reach its recipient once it has been
generated. Ordinarily it is measured in milliseconds (ms). Latency within MMVEs is
important because the longer it takes for the updates to reach the intended destination,
the less the player will be responding to what is happening in real-time and so the less
accurate the player’s responding updates will be. This can create frustration and distrust
of the game as the user’s actions will not result in the expected response.

Claypool et al.[26] speak about different latency thresholds for different games based off
of their perspective and the genre of game. [26] states that if the player looks from the
perspective of the avatar (first person) then the latency requirements are a lot stricter
because the player’s view is most similar to how the player experiences the real world and
so any ’jittering’ appears more pronounced. This includes game genres such as FPS and
racing games. The latency threshold in these genres was found to be 100ms before the
gameplay was unpleasant. If the player is looking from an over-the-shoulder or isometric
view (third person) the view is like looking at someone else and so is less strict but still
close enough that any lagging that occurs is noticeable but more manageable than first-
person. This includes the sport and role-playing game (RPG) genres and the threshold
is 500ms. For both of the aforementioned cases, the player controls a specific avatar, but
there are genres of games where the player is omnipresent, meaning that the viewport is
not specifically tied to a single avatar or object. In this omnipresent view, the player has
a very high view of what is happening, smaller inconsistencies are less noticeable and is,
therefore, the least strict of all three cases with a threshold of 1000ms, or 1s. This includes
the genres of real-time strategy (RTS) and simulations such as SimCity or The Sims. For
an MMVE the viewport is tied to the avatar and can be either first- or third-person.
This means that the maximum latency threshold sits between 100-500ms before it starts
affecting the gameplay.

When the latency exceeds these thresholds, the performance of the game becomes un-
acceptable and makes the game uncomfortable, undesirable or frustrating to play. This
means that games have to meet the minimum latency requirements of the genre for them
to be feasible.

Fairness talks about how differing latency between the client and server across users can
put into effect natural advantages for those with low latencies [15]. This is due to their
interactions being registered more quickly and updates to be received more quickly which

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND OF MMVES 14

allows the player to make decisions on how to respond faster. To counteract this, measures
are taken to improve the interactivity between players and therefore improve how fair the
game is.

Bandwidth

Bandwidth requirements describe the amount of bandwidth needed to interact with an
MMVE completely without losing access to critical information. This affects both interac-
tivity and fairness as having less bandwidth than what is required means that information
that describes interactions is lost, resulting in lower interactivity. This by definition cre-
ates a difference in the gaming environment of the player and therefore reduces fairness.

2.1.2 Consistency

The requirement of consistency is vital to an MMVE. To better understand what consis-
tency is, one needs to understand object types, different player interactions with objects
and finally object replication and consistency control.

Object Types

Object types refer to the different categories that all in-game entities are grouped into.
These four categories are:

• immutable objects

• mutable objects

• characters, or avatars

• Non-player characters

Immutable objects are objects within the VE that cannot be altered or changed. They
are instantiated when the world is created and continue to exist for the rest of the lifetime
of the VE. This usually consists of the world that the rest of the objects are in, such as
buildings and other structures. These objects are installed on the client-side and are not
altered after that.

Mutable objects are assets within the VE that can be altered and changed. They usually
have a base form that is instantiated either when the VE is created, or when an in-game
event spawns them, after which they can be modified, used or changed by events or up-
dates initiated by the state manager, avatars or NPCs within the VE. This can include
weapons, tools, and food and are temporary within the VE.

Player characters, also known as avatars, are sprites that the player controls to enact
changes in the world. The player installs a client on their machine and this client is a por-
tal through which the player controls the avatar. It takes their input and translates it to
movement and actions performed by the avatar in the VE. These actions are grouped into
three different categories: player updates, player-object interactions, and player-player in-
teractions [17][18]. These change the player’s state, other objects’ states or other players’
states respectively. They are discussed below in section 2.1.2.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND OF MMVES 15

Finally there are NPCs or bots. These are avatar-like entities within the VE that are
controlled by algorithms that make them seem to have a mind of their own. They can
enact changes to mutable objects as well as other NPCs and player characters.

Player interactions

As mentioned above, there are three categories in player interactions. These are player
events, player-object interaction and player-player interactions.

Player events refer to interactions wherein the action only affects the player, such as in-
ventory management, movement or player statistics changes (health, mana, etc.). Most
updates in systems that are simple or unoptimised are movement updates [17].

Player-object interactions are where the player’s actions change the state of a mutable
object. This involves any changes to the world or other objects within the world, such
as picking up a mutable object and adding it to the player’s inventory, or using a tool to
affect an object in the environment.

Player-player interactions are where the actions of one player’s character affect another
player’s character. These actions affect the state of another player’s character, such as
a change of health or a transfer of items between inventories. Since NPCs are avatars
controlled by AI, player interactions between players and NPC can either be considered
as player-player interactions or player-object interactions depending on how the system
is defined.

Object replication

Mutable objects within the VE are stored as states. These states are stored on the server
hosting the VE in C/S architectures. When a client connects to the server, it receives
a copy of the state of the relevant mutable and immutable objects which are called sec-
ondary copies or replicas. This copy is not the authoritative copy (called the primary or
global copy) of the object. In essence, this means that if a client makes a change locally
to the state of an object but does not authenticate the change with the server, which has
the authoritative state, then the change will be reverted the next time the client receives
an updated version of the object state.

In distributed server or P2P architectures, multiple machines can host mutable and im-
mutable objects. By definition, since there is no centralised authority within the system,
there is no central machine that owns all of the objects within the system. Therefore,
every object has a specific server or peer that owns the object. In this case, the copy of
the object state can be given not only to clients that connect but also to other servers who
require the information. The changes applied by holders of replicas are sent via an update
to the owner of the global copy and then distributed to all of the other replica holders
who consequently update their replicas with the change. Publish-subscribe systems use
this idea as the core concept of the system. Every replica of an object state subscribes to
the publications emitted by the global copy. This concept is explained in more detail in
section 2.3.1.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND OF MMVES 16

With clients using replicas of an object instead of the global copy, there is a chance that
the information can become desynchronised when delays are introduced into the update
dissemination process. This poses a challenge which is known as consistency control,
which is discussed in section 2.1.2 below.

Consistency control

When there is a loss of synchronisation between the global and local, this is called in-
consistency. This can happen when there is a delay between an update to an object
being generated and it being sent to the owner of the global copy, or when the global
is disseminating the update to an object to other clients and there is a delay. This can
have varying levels of consequence: from insignificant, to game-breaking. An insignificant
inconsistency could, for example, be when an object whose sole purpose is decoration is
in a slightly different position to the position recorded in the global copy. This will not
result in the game being unplayable but could be a minor annoyance if not fixed quickly.
An example of a game-breaking inconsistency is if a player’s position in an FPS game is
shown to be in another player’s line of fire but they are actually in a position that is not
in this line of fire. This kind of interaction creates frustration for the player and has the
potential to ruin the experience for the player if it happens frequently.

Another source of inconsistency can come from parallel or conflicting updates happening
to the same object. If two updates happen nearly at the same time, the order in which the
updates happen can be very important. Take the scenario where two low-health players
are running for a single health pack. They both have replicas of each other as well as of
the health pack. Both players arrive at almost the same time, after which an explosion
happens that would be fatal for the player who does not receive the extra health from
the pack. Which player picks up the health pack and therefore does not die in the game?
It is unfair for the player who does not receive it, as if there is any delay in updating
the local state with what happened, what will appear to happen is that they will pick up
the health pack which is no longer there, incorrectly appear to gain the health and then
die due to what, from their perspective, should not have had the ability to kill them due
to their actual health level being passed to them from the owner of the global copy of
their state. This would be aggravating for any player of such game and is therefore why
consistency control is so important.

The final possible cause of inconsistency is if the update gets lost due to an unreliable
connection to the host of the global copy of an object or a poorly designed system. If an
update gets lost, then the replica is desynchronised from the global copy and only another
update can rectify it if there is no inherent consistency control.

Consistency is measured by comparing the replica with the global copy at the same in-
stance in time. The most important metric in this project’s context is precision and will
be explained more in section 6.1.1. This is how closely the replica matches the global
copy’s data at any point in time.

Consistency is, therefore, a time-sensitive problem. One could have very strong con-
sistency by insisting that every disseminated update be treated as a transaction with
transactional properties such as isolation or atomicity. Isolated transactions are where
the owner of the global copy of an object ensures that concurrent updates are individually

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND OF MMVES 17

processed. Each update should not work with intermittent data produced by the process-
ing of another update, but rather the result of the preceding update. Atomic transactions
either apply all updates to an object, or none at all. This means that if a single update
cannot be processed for an object then none of the subsequent updates will be processed.
Both of these transactional properties ensure that consistency is maintained by taking
more time to ensure consistency is held. An MMVE need not treat updates as transac-
tions though as MMVEs do not require strong consistency due to the slower nature of the
genre.

As discussed in 2.1.1, [26], [27] describes the threshold for the maximum latency a player
can experience for different game models before the player experience is unreasonably
affected. MMVEs fall into either the first person or third person category depending on
the game, where the maximum threshold is 100ms or 500ms. From this, we can see that
the order of magnitude of time is in the milliseconds.

The other option for consistency is eventual or weak consistency [28]. This means that
objects are allowed to be temporarily inconsistent but will eventually become consistent
if given enough time even if updates ceased to be received for a long time. Brewer’s con-
jecture, expanded on in [29], states that a web service cannot guarantee more than two
of the following three properties: consistency, availability and partition-tolerance. Since
availability and partition tolerance are highly favoured in MMVEs, consistency is usually
not ensured, but rather inconsistency resolution is favoured and at most eventual con-
sistency. One option that is appealing is varying the levels of consistency according to
the importance of the object, for example, ensuring consistency for health packs but only
having weak consistency for positional updates.

There are two categories of techniques for consistency control - Predictive Contract Mech-
anisms (PCM) [30] and multiresolution simulation [31] - but only one is relevant here and
that is a form of PCM called dead reckoning. Dead reckoning predicts the movement of
an object/avatar in motion when the expected does not arrive on time. This is done by
taking the last received positional update and projecting where the entity will be in the
next frame (snapshot at the time between ticks, explained in section 2.3.2) using the
motion vectors of the object. This is effective if there are sparse occurrences of positional
update loss, but fails to varying degrees when there is a change of direction contained
within an update.

Bandwidth requirements

The bandwidth requirement in MMVEs refers to the upload and download speeds required
of the client’s connection to the network of the MMVE in order to operate normally within
it. This means that it needs to be able to send and receive updates at the appropriate
rate so that it does not result in inconsistency for the client. It can be calculated based
on the average message size, update rate and the number of recipients. In systems with
millions of players or high update rates, the bandwidth requirements are high. The client
also needs to be able to handle bursts of network traffic due to in-game events that can
generate a lot of updates all at once or attract many players into a small area, which
would have the same effect.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND OF MMVES 18

2.1.3 Persistence

Persistence is the ability of the MMVE to retain the state of states over an indefinite
period of time. A client who leaves their profile and virtual items untouched for an ex-
tended period of time should be able to come back to it and them in the same state that
they were left in. This requires the MMVE to be able to store the states of all of the
entities and objects within the game somehow and for those states to be retrievable at
any stage. This is easy for architectures that have a centralised authority that the states
can be stored on, but more difficult for distributed architectures where this centralised
point is non-existent or difficult to define. The architecture should be able to handle any
or all players leaving the system only to come back to it in the same state that they left
it in (barring natural, intentional changes caused by the normal running of the VE).

Another problem with persistence in distributed systems is the referencing of objects
across storage hosts. If two server nodes exchange information about states of an object,
they could use the same identifying code yet be referencing two different objects [32]. In
this case, a system where one identifier takes precedence solves this problem.

2.1.4 Scalability

The problem with scalability in MMVEs is that there are many potential bottlenecks
that can cause the MMVE to not be scalable. These bottlenecks are dependant on the
computational power, latency and bandwidth requirements of the client and host systems.
This can be controlled with something called interest management (IM). However, before
discussing IM, the three bottlenecks are dissected.

Modern MMVEs can have millions of users playing them at once. To handle this many
players, a sophisticated hosting architecture is required to meet scalability requirements
and the computational and network limitations of having all of these players in the VE
simultaneously. These requirements are categorised by [33] as follows:

• Bandwidth

• Network latency

• Computational power

When designing for scalability, graph 2.1.1 shows the basic relationship that each resource
must hold to as the number of clients increases in the system. Each one of these limitations
has to be addressed when designing an MMVE for thousands of players and more.
The following sections look at these three bottlenecks and an aspect of scalability called
interest management.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND OF MMVES 19

Figure 2.1.1: The ideal relationship between resource usage and the number of clients in
a scalable system [4]

Bandwidth

Bandwidth is the amount of network data travelling through a communication channel
over a certain period of time. Every packet of information that is sent between nodes
in a network has a certain size, usually measured in bytes (B) or kilobytes (KB). This
information, measured over a period of 1 second, creates bandwidth measured in kilobytes
per second (KBps or KB/s) or if enough data is passing through, megabytes per second
(MB/s).

Every action in a VE creates information that needs to be communicated to other inter-
ested parties, which requires a certain amount of bandwidth. If enough of these actions
happen, the required bandwidth can be higher than the server or connected clients have
access to, creating a bottleneck. When this bottleneck occurs, either the clients have to
wait to send the information through when possible, the packets will get corrupted as
bits of the packet do not make it through the bottleneck, or the packet will fail to send
altogether, which is called packet loss. All of this can cause erroneous behaviour in a
system that is not robust enough to deal with it. If the packet loss is high enough the
system can even fail completely making the game unplayable.

There are a few techniques that, in conjunction with IM, affect how much bandwidth a
system uses when it sends out updates and events. Early network implementation would
send every message to each client, which is called broadcasting. This is very inefficient
as not every user needs every packet and so redundant information is sent. Uni-casting
sends a single message to a single client. This is the most efficient option when the packet
is unique to the client, but not when the same packet needs to be sent to multiple clients
(which is usually the case) as the sender will have to send the same packet multiple times.
Multicasting is, therefore, the most efficient method as a single packet can be sent to
multiple clients that have joined a multicast group. This can be seen in figure 2.1.2.

This allows clients to send a single message (like unicast) to a receiver that can then mul-
ticast (as in broadcasting) to a multicast group. It incorporates the best aspects of the
previous two approaches which is why it is used more than any other technique. There

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND OF MMVES 20

Figure 2.1.2: In a) the sender broadcasts a packet received from a client as multiple
packets to every other client. In b) the received packet is sent to a single client at a time.
In c) a single packet received is sent to multiple clients.

are numerous examples of multi-casting being used in systems such as Scribe [34] and
techniques such as predictive binary tree (PBT) [35]. A useful technique that is used in
this thesis is spatial publish/subscribe (SPS) systems, explained in section 2.3.1.

Latency

Latency, described above in 2.1.1, describes how long a message takes to reach the des-
ignated destination. It is important to note that because the communication mediums
(whether fibre optic or electrical wiring) are not ideal, latency can never be completely
eliminated by using these channels. As such, the latency limits discussed before need
to be low enough to handle these extra latencies as well. If the latency goes above the
threshold of what has been measured as acceptable for extended periods of time, then it
becomes the bottleneck in the system and any further scaling would be futile as it would
make it worse and would still be unplayable.

Computational Power

Computational power refers to how much data the host machine or user machine can pro-
cess without slowing down to the level where game-play is adversely affected. These can
refer to the computational processing unit (CPU) and graphical processing unit (GPU)
processing time, memory usage and accessing as well as retrieval and writing of informa-
tion to and from storage devices where the bulk of a game’s assets are stored.

Every update and event that occurs within a game requires the processing of millions of
calculations on low-level computational levels. These calculations are done by the CPU,
which has multiple cores that allow it to do many calculations at once. Since a large
portion of these calculations are focused around producing an image that the user inter-
acts with, a specialised CPU focused around computing graphics-related calculations is
utilised, called the GPU. Whilst the intensity of the computations can be adjusted for

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND OF MMVES 21

graphics by changing in-game settings, the intensity of calculations done by the CPU is
directly influenced by how the game is designed and it is, therefore, important to design
the game in a way that reduces the CPU usage as much as possible. So in the realm of
scalability, the more information coming in about clients connected to the system, the
harder the CPU has to work until the amount of information to be processed is coming in
faster than it can be processed, producing a delay in the processing of events and updates.
This leads to reduced performance of the system in a similar way to how latency would
but can be even more detrimental as it affects the local performance of the game and not
just what is perceived from others.

Similarly, information that comes in needs to be readily available for processing. This re-
quires space in memory (known as random access memory - RAM) as RAM is much faster
than longer-term storage such as HDDs and SSDs. This memory is smaller as a result and
thus is more valuable when it comes to what we decided to keep in memory. This means
that not all information can be received and kept in RAM when we are working with
scalable systems as even if each client added only contributes a small percentage to the
total memory usage, if one scales up then the memory will quickly become a bottleneck.
The ideal design results in behaviour where the system reaches a limit where more clients
no longer increase the memory usage, as in figure 2.1.1 above.

Finally, if information needs to be accessed from a slower form of storage in HDDs and
SSDs, this needs to be done in a way where the system can do it as efficiently as possible,
as this accessing is relatively slow when compared to how everything else in the system
works. For example, if a player needs to load a dungeon that the rest of their party has
gone in to, but the loading of resources from the hard drive is slow, then they could be
stuck in the loading screen for longer than necessary, impacting player enjoyment and
possibly game playability.

In the final section, this thesis will look at what has been done already to try and address
the scalability issues in MMVEs and other scalable networks that face the same problems.

2.2 MMVE architectures
There are four different architectures that MMVEs run on:

• Client/server

• Client/multi-server

• Peer-to-peer

• Hybrid

Each one has its advantages and disadvantages when it comes to the requirements stated
above. These are discussed below.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND OF MMVES 22

2.2.1 Client/server

The CS architecture is the most basic of all of the architectures. It is widely used in sim-
ple systems as it has much control over the system due to the single centralised authority
in the server [15]. There can be multiple clients that connect to a single system. The
immediate problem that becomes apparent is the bottleneck since all of the events and
updates have to be routed through the server before going to the intended clients. This
has a huge impact on scalability and is, therefore, one of the main reasons that other
architectures get researched.

The other requirements affected by the scalability issue is interactivity and availability.
If there are many clients in the system, all of the updates that get sent to the server
can easily overload the computing power and bandwidth limitations resulting in higher
latency in processing events and sending updates out to the clients. This impacts how
quickly a client action results in a visible change that holds and therefore impacts the user
experience. Over and above this, since everything is stored on the server, if the server is
off or if it crashes then no one can retrieve information and the VE will not be available to
the players. These servers are expensive to install and maintain as they need to be very
powerful in order to manage the loads that they carry. Whilst C/S is the worst of the
four architectures when focusing on scalable systems, these are the only disadvantages it
has.

The advantages of this architecture come in the consistency, persistence, and fairness of
the system. Since the server acts as a centralised authority, the global copies of states are
all stored in one place, giving clients a single place to authorise their local copies. This
allows the clients to stay strongly consistent assuming the scalability aspect has been
respected and the number of clients is low enough for the system to be running normally.
The persistence is easy to guarantee since all of the state information can be stored on
the server and retrieved from there. Finally, since all of the clients have to authorise
their events and receive updates from the single server, there is no unfairness between
clients with better machines as the server does not give any preference to who is sending
information and treats it all equally. However the problem of players having different
latencies and faster or slower connections is still present and has to be addressed, but this
is not a result of the architecture.

2.2.2 Client/multi-server

C/MS works similarly to C/S except that it has many servers that the clients can connect
to and play through instead of the single one. Since the MMVE architect has control
over the communication mediums and channels between servers, they can be designed in
a way that accounts for minimal latency, high bandwidth capabilities, and robustness.
Servers share information between themselves and work together to host a world that is
capable of handling vastly more clients than a single server could. The challenge then
comes in making sure that every server can access any information, even if it is stored on
a different server.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND OF MMVES 23

Cloud computing

An implementation of this that has become popular in recent times is cloud computing.
Cloud computing takes advantage of the high-speed data lines between servers in the
cloud as well as their enormous computational capacity to host MMVEs for many more
clients than regular servers could. It can also divide different modules of the MMVE such
as login management and authentication onto different machines so that these services
are not hindered by overloading on different parts of the architecture [36].

The disadvantage of this architecture is the cost of running such a system. In [37], an
example is given where a system (comprising of an entry server, several map servers, and
a database server) using 27 TB (terabytes) per 12 hours upstream bandwidth and 4.7TB
downstream bandwidth usage at the prices of using Amazon EC2 ($0.08 per gigabyte
(GB)) would result in a monthly fee of $130,000 just for bandwidth usage. As one can
see, this cost is not affordable for any but the largest of game companies.

The advantage of cloud computing specifically is the on-demand nature of it. Since the
server capacity is rented only for what is needed, this allows flexibility in how much com-
putational power is needed from the servers and allows the MMVE to easily get more
computational power when needed [38]. This is enticing as there is no excess spent on
servers sitting on standby. The generic advantages of C/MS is the benefit of the cen-
tralised authority of C/S (persistence, consistency, and fairness) with the added power
of having more than one server to share the computational and bandwidth requirements
(improved scalability and interactivity).

For these reasons, C/MS is used by most of the industry for the trade-offs of cost versus
benefits. The MMVE still has to be designed to make use of the interconnected nature of
the servers.

2.2.3 Peer-to-peer

P2P is an architecture where there is no centralised authority within the system. Instead,
all participants in the system fulfil the same role, that of being an active user in the system
as well as a provider of computational and resource power to ensuring that the system
functions. Each user has a responsibility to manage some part of the greater system.

One can immediately see that there is an issue of fairness in P2P. If one user has a very
powerful machine and the other user a weak machine, if they are given the same load then
the user with the more powerful machine would be more able to handle the load without
adverse effects on interactivity, whereas the user with the less powerful machine might
not be able to handle the load and maintain the same level of interactivity with the game.

P2P is a contentious architecture that has been well researched [14][39][40][15] because
of how appealing the scalable aspects of the architecture are. Whilst there are issues in
almost all of the requirements stated in section 2.1, the promise it brings in handling
the scalability issues of C/S and C/MS results in it being worth investigating. Since each
client brings its own computational power, the system, in theory, can be self-sufficient. No
additional computational resources need to be added no matter how many clients join the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND OF MMVES 24

system. There is no idle computational power as it is always immersed within the system.
All of this in an extremely cost-effective way which is in direct contrast to C/S and C/MS.

The issues appear when considering the other requirements. Since there is no centralised
authority where global copies of states can be stored, the issue arises as to how every
entity that interacts with another entity knows where to find the global copy of its state.
And even if it knows which client the global copy of the state is stored on, if that client is
offline, the global copy may not be there or may be entirely unavailable. So there is the
issue of persistence in the system. Interactivity is also a big problem for P2P systems. If
all of the clients within a system try and communicate with each other, the bandwidth
requirements and resulting computational load would quickly become a bottleneck for
the clients. Finally, since there is no central authority in the system, the safety of the
information such as global copies of states can be in jeopardy from ill-intentioned peers
in the system.

2.2.4 Hybrid P2P

Hybrid P2P architectures attempt to take the best of both C/S and P2P architectures and
meld them into a single mega architecture. They take the promise of resource addition
via client contribution from P2P and connect it with the centralised authority benefits of
C/S and C/MS. It uses the concept of a super-peer, a peer in a P2P distribution that has
powerful computational and bandwidth capabilities and elevated permissions and there-
fore has an authoritative role within the P2P network. The super-peer needs to have
both the bandwidth and computational resources to handle the extra load and network
traffic that results from ordinary peers checking for consistency. It also needs resources
for other functions that the super-peer may have such as storage of sensitive information
and player progress and state.

The disadvantage of the hybrid architecture is that if a super-peer is chosen incorrectly
and they do not have the capabilities to be one, then the entire system can be affected. If
powerful servers are chosen as super peers then the cost of getting such servers is higher
than in a P2P system but lower than in a C/S or C/MS system. If the super-peer is a
peer, then it is also not fair for them to extend extra resources to maintaining the system
over and above their ordinary requirements in being a peer. This is why super peers are
usually chosen to be servers so that there is fairness between all peers in the system.

The advantages are that you are getting the benefits of consistency management, persis-
tency and interactivity that comes from having a semi-centralised authority in the super
peers whilst also having the scalability of P2P architectures.

Table 2.2.1 shows the relative advantages and disadvantages of each architecture. No one
architecture is better than another, but rather which architecture is better suited to the
requirements. The hybrid solution is an attractive architecture however as it combines
the advantages of the previous three architectures whilst minimising disadvantages.

Many solutions have been researched to try and fix these problems with each architecture.
They will be discussed in the next section.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND OF MMVES 25

Table 2.2.1: Comparison of the advantages and disadvantages of different MMVE archi-
tectures

Architecture Advantages Disadvantages
C/S - Consistent

- High Security
- Persistent
- Fair
- Simple to set up and man-
age

- Not Scalable
- Servers are expensive
- Not fault tolerant

C/MS - Consistent
- High Security
- Persistent
- Fair
- Good fault tolerance

- More scalable than C/S
but not completely
- More expensive than
C/S
- Higher complexity than
C/S

P2P - Highly scalable
- Low cost
- Fault tolerant

- Bad consistency manage-
ment
- Persistency difficult to
maintain without external
help
- Fairness
- Difficult to develop
- Security

Hybrid P2P - Good scalability
- Medium cost
- Consistent
- Persistent

- Super peers require more
expensive hardware
- Can be unfair if super
peers are peers as well

2.3 Researched solutions to architectural problems
Many different solutions have been proposed to combat the requirement problems dis-
cussed above. These include both C/S, C/MS as well as P2P solutions and use two
different approaches: adding more resources to the system to meet the game’s require-
ments or decrease the consumption to match the current available resources’ limits.

2.3.1 Generic solutions

The following solutions can be applied to C/S, C/MS, P2P, and hybrid P2P architec-
tures. These include dead reckoning, interest management, and message aggregation and
compression.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND OF MMVES 26

Dead reckoning

Dead reckoning is where a client predicts the movement or actions of an entity in instances
where the updates are not received quickly enough or where the updates are lost [33]. This
prediction can be based on the movement vectors that the entity displayed at the last
update or can be controlled by an artificially intelligent agent (known as a bot) that uses
a model such as a neural network to determine the next most likely movement [41]. It is a
method to improve interactivity within the MMVE as it prevents entities from randomly
stopping or moving erratically and smooths out inconsistencies in the receiving of updates
due to lag. Whilst dead reckoning can provide consistency in the continuous domain of
the client’s view, it does so at the cost of true consistency and a correct state. This is seen
as an acceptable trade-off in games that have moderate consistency requirements but is
not good enough for other strict consistency replicated continuous applications [42] such
as FPS games.

Interest Management

A player is said to be interested in an object if it requires the information about the object
to function in the VE. IM is the determining of what the client would want to be aware
of and what they could be focusing on and then only sending information pertaining to
this. It is a large factor in the scalability of MMVEs. It is, therefore, an important aspect
in the design of an MMVE. If the player were to receive updates and events of the entire
VE at every point in time, the bandwidth usage would increase to an unacceptable level
for every player that interacts with an object or another player. [43] shows how even a
simulation of 1000 peers can have a bandwidth requirement of 3.75 megabits per second
(Mbps) per peer and when reaching 100 000 peers it can use up to 375 Mbps per peer.
The amount of information that the player would be receiving would be significantly more
than the player could be aware of or even what they could feasibly interact with, making
the updates and events unnecessary [18]. Therefore, the interest of the player is limited
to only what the player is spatially close to or what is in vision and how this is achieved
can have a drastic effect on the playability of the game.

IM is about choosing what information the player receives relative to its surroundings
and therefore becomes a spatial problem. This spatial management of interest follows an
aura-nimbus model [44] where the aura is defined as the boundaries of the world around
the player’s avatar and the nimbus is described as the area around the client in which all
the objects it is interested in lie. The nimbus is often referred to as the AoI. A player can
ordinarily only interact with those objects which lie within its AoI and therefore these
objects are the only replicas that the player needs to receive updates about. This signif-
icantly reduces the bandwidth and computational requirements needed when compared
to keeping replicas of every object within the VE.

This method of IM is subsidiary of a technique called zoning [24]. The simplest form
of zoning is where the world is sectioned into completely separate zones and the AoI of
the player is completely bounded by this zone. The only way for a player to interact
with an object in another zone is to migrate to that zone. More complex forms of zon-
ing involve sectioning a world into continuous zones where a player’s AoI can reach over
zone boundaries to interact with objects in that zone. The world can be pre-sectioned

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND OF MMVES 27

into structured zone patterns such as grids [37][45][10] or hexagons [46][47][48], or into
unstructured patterns such as triangulation [49][50] and Voronoi sections [4][1][51].

Grids are commonly used because of their simplicity in creating the zones and the straight-
forward nature in determining their size. Hexagonal grids are used because the hexagons
are always adjacent to each other, meaning that players will always be moving into and
interacting with objects in hexagons that are adjacent and therefore always known by the
zone the player is in. As [15] notes, hexagons are also desirable because of their approxi-
mation to circles, which is the typical shape of an AoI.

Triangulation and Voronoi sectioning are useful as obstacles within the VE can be oc-
cluded as navigable zones when partitioning the world into VEs. This can lead to a
reduced AoI which allows for fewer objects to be considered by the interest manager and
therefore fewer replicas to be sent to the player which results in fewer updates needing to
be sent and therefore a lower bandwidth requirement [49]. One technique of triangulation,
Delaunay triangulation [49][50], make it easy to triangulate inside or around polygons that
represent objects.

One of the most important aspects of zoning is the size of the zones. This consideration
is application-specific and requires careful planning. If the zones are too big, they will
contain too many objects and make IM inefficient as the player will only be interested in
a small subset of these objects. If the zone is too small, the player’s AoI could intersect
multiple zones and make IM overly complex. Since objects within the world are not all
static, this can make the requirements for zone size shift. This is where dynamic zoning
can be useful.

Dynamic zoning is where the size of the zones are not precomputed but are constantly
being recalculated to meet the changing demands of IM within the VE. Occasionally
within an MMVE, there can be a point of interest or an event that can attract players
and objects to a specific location in the world. These are not always predictable. In static
zoning, this would overload the IM system as one zone would have a disproportionally
larger amount of objects and avatars within it than other zones, rendering the zoning
ineffective. Dynamic zoning combats this by constantly changing the size of the zones
and their locations to alleviate the load on the zone where all of the players are flocking
to. This characteristic of combating the overload of a zone is called load balancing. But
what happens if neither dynamic nor static zoning works? The current solution is to
have discrete and separate servers that can host a certain amount of players. The current
record for the most concurrent players on a single server at a time is held by Eve Online’s
Tranquility server, which hit 65,303 concurrent players on the 5th of May in 2013 [52]
with the most people in a single zone being held by the same game at 6,142 players in
January 2018 [53]. However, this method of splitting up the population between servers
can negatively impact the game experience of a player as it is limiting their interaction
with other player’s of the game.

[18] uses the idea of interest sets to determine which entities the player needs to receive
updates about. In a busy VE, they determined that a player can only be aware of a
certain amount of entities at a high fidelity at a single point in time. Using estimations,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND OF MMVES 28

they predict which entities these are going to be and use an entity called a doppelgängers
to represent a low fidelity copy of an entity that can generally model the movement of
that entity in the VE.

Message aggregation and compression

Message aggregation reduces the bandwidth of the system by aggregating similar infor-
mation into a single update to reduce computational time in sending multiple packets as
well as the bandwidth of message overhead such as packet headers and serialization infor-
mation [49]. This can be especially powerful in MMVEs that have a lot of shared updated
between players and do not utilise this already. The downside of this is the possibility of
introducing network latency when waiting for additional messages to aggregate.

Message compression is something that MMVEs incorporate already due to the ease of
implementation. Packets can be compressed to reduce the size of the data and therefore
reduce network bandwidth. The disadvantage of the technique is increased computational
time to compress the packets.

Spatial Publish-Subscribe (SPS)

SPS systems are based on the idea that each participant in the system has an AoI and an
area of effect (AoE). The AoIs are represented by subscriptions, meaning that they have
a center position in the VE and a radius representing the area that it covers. This area
does not have to be a circle and can be any polygon, as long as it is closed. Any update
or event that a player or entity enacts within the system is transmitted via a publication.
These publications have a coordinate point representing the origin of the publication and
optionally have a region that is affected by the publication. Depending on the addition
of this region, these publications are respectively known as point publications and area
publications respectively. If a publication or its region intersects a subscription region in
any way then the owner of the subscription is sent the publication.

These subscriptions and publications are handled by an SPS manager. There need not
be a centralised system that hosts and manages these subscriptions and publications as
this task can be delegated to nodes in an overlay. These nodes can then ensure that the
appropriate publications are sent to the right subscriptions.

There are two categories of message dissemination in an SPS: content-based and channel-
based [54]. Content-based SPS filters messages according to their content type and then
disseminates them according to whether subscriptions have subscribed to that content.
This provides flexibility at the cost of computational time and resource usage. Channel-
based SPS has the subscriptions declare the channel that they are subscribing to so that
any publication that gets published has to be on the channel that the subscriber sub-
scribed to.

In an MMVE, the client subscribes to the area that coincides with their view distance
within the game and the subscription is updated to their position whenever they move.
Then any interaction they have within the VE produces a publication at that point or at

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND OF MMVES 29

the origin of the affected point and any other player who can see that would receive the
update.

The advantage of SPS is that it provides a low resource way to reduce bandwidth costs
and computational time by reducing the number of packets that need to be sent. Instead
of every update needing to be regenerated for each client that the user is connected to,
a single packet could be sent to the SPS manager which can then be disseminated. It
also provides an efficient way to handle interest management as the interest expression is
inherent in a client’s subscriptions.

2.3.2 Client-server and multi-server solutions

A single server does not meet the requirements of MMOGs and MMVEs as the hardware
is not good enough to handle the vast number of clients that can be playing a game at
one time. However, using multiple servers in a distributed structure has been proven [4]
to be an effective solution to the scalability problem prevalent in these architectures in an
expensive manner. It uses the approach of adding more resources to the system so that
it can handle the loads it is presented with.

Sharding, zoning and instancing

Under the category of reducing consumption are techniques such as sharding, zoning and
instancing. Sharding is where an entire copy of the game world exists on a server and a
client’s entire experience can exist on one of these shards. This means that each shard
with its clients acts as a singular C/S system. The disadvantage of this approach is that
there is still a limit on the number of players that a single shard can handle, with little
to no interconnection between shards.

Zoning is discussed above in section 2.3.1 and is where parts of the world are bounded
and a player is completely encapsulated by this zone. When the VE is split into distinct
zones, it creates an ideal environment to use zoning. Instancing is a technique that takes
a group of avatars that have entered a zone and puts them in a copy of that zone. This
zone is completely separate from other instances of the same zone, thereby reducing the
load on the clients whilst allowing everyone to access the zone. This is an effective form
of IM as it allows the developer to decide how many clients are in a single instance and
therefore how many clients a single player will interact with. All of these approaches,
however, have significant drawbacks in that they are not scalable, have minimal fault
tolerance and have high set-up costs [15].

Bucket synchronisation and frame rate

Bucket synchronisation, or more commonly known as local lag [55], is used in most multi-
player games as a way to combat latency issues in clients who have higher network latency.
When there are multiple clients with varying levels of latency, updates can come through
at different times and cause consistency and interactivity issues. To counteract this, the
server collates updates across a specific period called a frame or bucket and only sends the
collected updates at a synchronised interval predetermined by the design of the MMVE.
This allows time for slow incoming updates to reach the server in the correct interval and
for lagging connections to receive updates sent out by the server. This enforces fairness

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND OF MMVES 30

between clients with fast and slow connections to be able to play the game in the same
way. This also allows updates to be executed in the correct order as they can be received
and rearranged according to the chronological order that they were instantiated. These
frames are executed a specific number of times per second called the frame rate. This can
be anywhere from 10-20 times every second [15]. The frame rate is very important to the
overall experience a player has in the game as if it is too slow, the game can be inconsistent
and possibly impossible to play but if it is too fast it is unfair for the clients with slightly
slower connections. A faster update speed also means a higher bandwidth which can have
other implications for the system. A balance needs to be found so that the experience
is smooth and pleasant for the player, but also take into account the limitations of the
bandwidth capabilities of the client connections.

2.3.3 P2P and hybrid P2P solutions

P2P and hybrid P2P architectures are a well-researched field [15][39][40][14]. Since re-
sources are naturally added to the system when more clients connect, the resource-addition
technique of scalable networks is inherent in the architecture, making it an appealing
prospect because we can add consumption-reducing techniques into the game design to
make a very scalable system. According to [39] the different consumption reducing tech-
niques are:

• World partitioning

• Distributed hash tables

• Multicasting

• Fully-connected neighbours

• Neighbour-list exchange

• Mutual notification

Spatial Partitioning

World partitioning is similar to zoning, where the VE is partitioned into zones where
players will most likely be interested in what is going on in that zone. These zones
can be rectangular, tree-based, hexagonal and polygonal (i.e. Voronoi). A master node,
sometimes known as the super-peer, manages the region and the objects within it. The
inherent problem with this technique is deciding how large or small the region must be
in order for it to most effectively reduce resource consumption and the handling of player
crowding in zones, known as load-balancing. To combat this, some solutions dynamically
partition the world so that a single zone is never overloaded. SimMud [17] uses this
approach by partitioning the clients into regions and having them form an interest set for
that region within which they communicate locally.

Distributed Hash Tables (DHTs)

DHTs aims to make the lookup of connections to other peers efficient through the use
of hash table-like functions in conjunction with load-balancing of the peers as well as
connecting them through a logical overlay. The issues involved are the fair distribution

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND OF MMVES 31

of load amongst the peers and latency of the messages travelling through the overlay
across multiple hops to reach the intended client. Pastry [22] uses this approach to route
messages from one client, identified by a 128-bit identification number (ID), to another
numerically closest to it by using a DHT in less than log2b N steps where b is the length
of the ID in bits. Chord [21] uses a distributed lookup protocol to map a specific key onto
a node in order to efficiently locate a node. The issue with this is that if the nodes are
placed far apart in the DHT key space, the high number of hops the message would need
to take to reach the desired node results in high latency.

Multicasting

The multicast approach involves groups of peers subscribing to an interest set to which
any peer can post a message which is then disseminated amongst everyone subscribed to
the set. These sets usually span a world zone or are specific for an entity or object. The
problem in this is that a high number of peers can be subscribed to an interest set and
when coupled with constantly moving avatars can result in a lot of overhead processing.
NPSNET uses multicast networks to partition the environment and then an AoI manager
(AOIM) uses this to send messages to these multicast network groups [16]. Whilst this
is efficient, the approach breaks down when clients congregate into a single area, called
clustering or clumping. [56] utilises three tiers of IM to reduce resource consumption. The
first tier sections the world into dynamic zones (world partitioning). Using data from the
first tier, the second tier tries to create a protocol-independent match between the client’s
interest and the environment in the section. The final tier adds protocol dependence, or
multicast groups, to determine what information the client will receive. The advantage
of this is that the client can receive information from multiple groups with the same
underlying filter mechanisms.

Fully-connected neighbours

Fully-connected neighbours connect every peer to every other peer in the world, but
with message filtering to decide which messages are sent to whom. Players will send to
small groups of players frequently whilst sending to everyone infrequently. This is not
a good approach due to the overhead of the connections quickly stacking up to take up
crucial resources needed for the processing of updates and events. RING is an algorithm
that checks whether clients should be able to see each other or not before sending it.
Donnybrook [18] uses this approach with two components to it: the first being that it
estimates what the client is focusing on, thereby reducing the frequency of the updates
it sends to those clients that it is not focusing on (as discussed in 2.3.1) and secondly, it
uses multicast systems designed for the specific requirements of the game it is hosting to
reduce the cost of message dissemination.

Neighbour-list exchange

Neighbour-list exchange is when connected peers regularly share information about neigh-
bouring peers that they are connected to in order to decide whether or not to make ad-
justments to whom they are connected to based on their spatial locations. The peers
closest to each other make connections, whilst those that are far away from each other do
not connect to each other. The problem with this is that global connectivity is not guar-
anteed as groups of peers could be too far away from each other as well as the constant

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND OF MMVES 32

Figure 2.3.1: P2P message exchange where O is the peer, A’s are the active entities and
B’s are the latent entities (source: [5])

neighbour-list exchange resulting in large overhead. P2P message exchange [5] is a system
where the peer is connected to a certain number of its closest neighbours, called active
entities (AE). Its AE also have neighbours, which are called the peer’s latent entities (LE).
This can be seen in figure 2.3.1. It regularly updates information about its AE from the
information it receives from the AE and uses this to have the whole system be connected.
The disadvantage to this is that the system, when uncrowded in certain areas, can cause
fragmentation of the overlay.

Mutual notification

Finally, mutual notification is where peers that are near to each other based on a struc-
tured geometry (such as a grid). Mutual notification allows for global network connectivity
as well as neighbour discovery. This approach has high overhead costs in maintaining the
overlay due to high connection change rates that result from continuously moving clients.
There are many examples of this approach, such as pSense [57], Solipsis’03 [58], relaxed
triangulation [59], Red-Black Delaunay [60] and finally, VON [1] which will be discussed
at length in the next section.

2.4 Summary
This chapter described the requirements of an MMVE and the specifics of what they
entail within MMVEs. The different architectures that an MMVE can be built on were
discussed, giving the advantages and disadvantages of each of them with respect to the
requirements discussed beforehand. Finally, solutions to the disadvantages that have

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND OF MMVES 33

already been proposed were looked at. The next chapter will discuss the proposed de-
sign that this project developed to address the scalability of MMVEs and the respective
problems that arise from it.

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

VAST

If the problems of meeting all the requirements of an MMVE feasibly are to be solved,
a creative solution that incorporates the most successful aspects of previously-researched
approaches needs to be taken. This section will describe the solution that is used to solve
the problems presented as well as how possible issues are accounted for. It will discuss
VAST and how it works and end off summarising everything discussed.

3.1 Voronoi diagrams
To understand VAST and its components, one needs to know what Voronoi diagrams are.
Voronoi diagrams are a well-researched mathematical concept [61]. If there are p peers in
a VE (their positions known as a site), the VE will be sectioned into p non-overlapping
regions with only a single site within it and where the boundaries of the region outline the
area closest to its site, shown in figure 3.1.1. These shapes are simple polygons that can
take on any convex shape depending on how the sites are arrayed. The average number
of edges per Voronoi cell is less than 6.

Figure 3.1.1: A Voronoi diagram showing p peers and their corresponding regions

34

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. VAST 35

Using this diagram, enclosing, AoI and boundary neighbours can be calculated. These
neighbours are useful for neighbour discovery which is an important aspect of the working
of the system. Enclosing, AoI and boundary neighbours are not mutually exclusive so a
neighbour can fulfill multiple roles simultaneously. When a site moves or is removed from
the Voronoi diagram, the entire diagram needs to be recalculated to get the new regions.
When the regions change, the neighbour information can change as well. Since the aver-
age number of edges is less than 6 per cell when the number of sites increases, this makes
the diagram useful for limiting neighbours.

3.2 VON [1]
VON is the underlying architecture that handles the routing of network traffic and con-
nections to other peers. It is the backbone of the VAST system.

VON is a P2P overlay. This means that no node is more important than any other, but
also means that there is no centralized authority to provide a connection point for the
other nodes to connect to. Therefore, the first node that joins the system becomes what
is known as the gateway. It is responsible for providing a port for the other nodes in
the system to connect through as well as the initial set up of the system. This set up
entails creating a Voronoi diagram with the gateway (itself) inserted into it and the initial
server that listens for incoming connections from joining nodes. Every other node uses
the gateway port to connect to the system. The gateway, however, does not handle every
joining procedure, but rather finds the closest peer to the joining peer’s initial location
and offloads the join request to that peer. The joining procedure is explained further in
section 3.2.2.

The spatial location of the VON peers is purely in relation to the networked virtual envi-
ronment (NVE) and not the physical location of the peers’ hosts. Each node in the system
constructs and maintains its own local Voronoi diagram using the spatial coordinates of
all of the peers that are within its AoI. These neighbours are classified as boundary, en-
closing and/or AoI neighbours.

3.2.1 Neighbour discovery

The purpose of the Voronoi diagram, as explained in section 3.1, is for neighbour dis-
covery. A VON peer is only connected to its enclosing, boundary and AoI neighbours.
The reason for this is because a client in a VE for the majority of the time only needs to
interact with the clients and objects surrounding it. These objects fall into their AoI by
definition and therefore the enclosing and boundary neighbour regions will contain these
objects. Its Voronoi diagram will therefore only contain its neighbours who are the VON
peers it is connected to. When it needs to communicate with objects that are not near it,
the messages can be routed through its neighbours. Figure 3.2.1 shows the global view of
the Voronoi diagram (left) and a peers’ local view (right) of the same system. We can see
how the positions of the VON peers are the same as the global view of the system, but
the number of VON peers it sees is dramatically less than how many are in the system.
On average, each VON peer has less than 6 enclosing neighbours. This allows for the peer

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. VAST 36

to have fewer connections and therefore decrease the amount of resources it needs to have
a full view of its surroundings.

Figure 3.2.1: Figure showing the global view of the system versus what an individual peer
sees

VON peers use mutual notification to keep track of who their neighbours are and there-
fore whom they stay connected to. This means that whenever a VON peer moves, the
Voronoi diagram is recalculated and neighbour discovery is recalculated. This movement
is communicated to all of the peer’s neighbours. If the receiver of the movement update
is a boundary neighbour then it will check to see whether it thinks that one of its neigh-
bours should know about the moving peer. This is done by seeing whether a peer whose
AoI previously did not overlap with the neighbour peer’s Voronoi region now overlaps
with the Voronoi region. If it does then it will notify the neighbour about the overlap
and that peer will then check to see if the moving peer is indeed a valid neighbour or
not. If it is a valid neighbour, it makes a connection to the peer and if not, it discards
the information. Similarly, if the moving peer results in another peer not being an AoI,
boundary or enclosing neighbour then it will disconnect from that peer. This connec-
tion/disconnection procedure requires a list of enclosing neighbours to be retrieved from
the peer receiving the connection/disconnection and then have a list of all of the per-
ceived neighbours of each enclosing neighbour sent to them to check whether they have
the correct view or not. These enclosing neighbours then send back nodes that it thinks
the original peer should know about as a result of the shifting of the Voronoi diagram
due to the connection/disconnection. The peer then contacts the new neighbour and the
neighbour discovery is complete.

Connection and communication between peers use the TCP protocol. Each client has a
TCP listening server with a unique port with which it can receive incoming connections
from a peer. A TCP socket is established between peers using the peer’s unique port
when it is established that they are neighbours. All communication happens between the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. VAST 37

(a) Greedy forwarding of join
request to closest peer

(b) Joining peer inserted into
Voronoi diagram

Figure 3.2.2: The join procedure and its outcome

client over this connection. If a peer crashes or disconnects, the resultant timeout or error
on the TCP socket tells the peer to disconnect from the client and remove it from its local
view. The Voronoi diagram is then recalculated and neighbour discovery is redone. This
allows the system to be robust against disconnections and peer failures.

Next, the VON application protocol interface (API) will be discussed. This is the protocol
used between VON peers to communicate with each other. We will discuss the JOIN,
MOVE, and LEAVE procedures.

3.2.2 JOIN procedure

The following list describes the JOIN procedure of a VON peer (that is not the gateway).

1. The joining peer sends a message to the gateway, informing it of its existence and
requesting a new ID

2. The gateway assigns an ID to the joining peer and informs the joining peer of its
new ID

3. The joining peer receives an ID and inserts itself into its local Voronoi diagram

4. The joining peer queries the gateway to find out who the closest peer to the joining
peer’s initial position is

5. The gateway offloads the join request to the closest peer from its own local view.
The closest peer then tries the same procedure to find the closest peer to the joining
peer’s position and forwards this peer the JOIN request. This continues until the
closest peer finds itself in a greedy forwarding manner (shown in figure 3.2.2)

6. The closest peer then handles the JOIN request that has been forwarded to it

7. The closest peer inserts the joining peer into its Voronoi diagram and calculates the
joining peer’s neighbours from the closest peer’s own view

8. The closest peer sends a list of nodes that it thinks are the joining peer’s neighbours
to it and disconnects from any neighbours that are no longer its own neighbours as
a result of the insertion

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. VAST 38

9. The joining peer inserts the new information about possible neighbours into its
Voronoi diagram and calculates relevant neighbours, discarding information about
neighbours that it deems irrelevant to it

10. The joining peer contacts the new neighbours and sends them their perceived neigh-
bours that they should be connected to for their own neighbour discovery

11. The new neighbours acknowledge the joining peer’s hailing message and send it any
neighbours that it should know about

12. The joining peer repeats the process from step 9 until there are no new neighbours
to connect to

The only differences that the gateway follows are in step 1. The gateway immediately sets
its own ID instead of sending a message to itself and in step 4 the joining peer immediately
marks itself as joined and does not follow from step 5 onwards as there are no neighbours
to find when the gateway starts the system.

3.2.3 MOVE procedure

This section will describe the MOVE procedure of a VON peer:

1. The moving peer determines whether its movement overlaps with another client.
It does this so that the correct number of Voronoi cells are calculated. Shift the
moving peer’s position if it does

2. Update the local Voronoi diagram and local position

3. Recalculate neighbours and send movement event to them

4. Send all enclosing neighbours a list of neighbours that the moving peer thinks they
should be aware of. Neighbours check info, update their list of neighbours and send
back neighbours they think we should know about

5. Neighbours that receive the MOVE request check for any overlap with any of their
neighbours and adjust slightly if it does

6. Neighbours check for any neighbour changes and send these to the moving peer.
These neighbours then disconnect from any nodes that are no longer their neighbours
as a result of the movement

7. The moving peer inserts these neighbours into its local view and sends a list of
neighbours it thinks they should know about and they return with neighbours that
they think the moving peer should know about

Something to note in both this MOVE procedure and the JOIN procedure is that
whenever a peer sends a list of neighbours to another peer that it thinks that they should
know about then they always respond by sending back a list of neighbours. This is mutual
notification in action and is what ensures a consistent and accurate view of a peer’s correct
neighbour.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. VAST 39

3.2.4 LEAVE procedure

The LEAVE will now be detailed below.

1. Leaving peer sends BYE message to all of its neighbours

2. These neighbours send out a consistency check to all of its neighbours except for the
leaving peer. This consistency check is a call to the other neighbours to check their
perceived neighbours with those around them to ensure that they have the correct
view

3. Neighbours remove the node from their Voronoi diagram and disconnect the TCP
sockets connected to it

4. The Leaving peer then reinitialises itself and awaits reconnection to the VON layer

This LEAVE procedure happens when a node intentionally leaves the VON whilst there
are still peers in the overlay. If a peer erroneously disconnects or crashes, this sequence is
not followed and instead, the neighbours will sense something wrong with the socket and
disconnect the peer automatically.

In the next section, the VSO with spatial publish/subscribe will be discussed.

3.3 Voronoi Self-organising Overlay and the entry
server

The VSO layer sits above the VON layer in the VAST stack. It is the part of the system
that manages client connections and update and event dissemination. Each VAST node
consists of a VON peer and a VSO peer as seen in figure 3.3.1. The VSO peer uses an
SPS system to control the information flow to and from clients. It matches publications
that a client makes to subscriptions that have been declared and is why VSO peers are
also known as matchers.

Figure 3.3.1: The VAST stack (©) with matchers () in the top layer handling clients
() whilst VON peers () handle network routing and connection

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. VAST 40

3.3.1 Architecture of VSO

The VSO layer consists of a collection of matchers each with their own virtual position.
They are arranged with a Voronoi diagram similar to that of the VON layer so that they
are aware of which part of the VE is under its jurisdiction and who its neighbouring
matchers are. The position of the matcher is therefore mirrored by the VON peer as the
VON peer is responsible for ensuring that the matcher is connected to its neighbours in
the networking layer. If the VON peer discovers or disconnects from a neighbouring peer,
then so does the matcher. This ensures that this layer does not need to do any processing
concerning neighbour discovery and therefore improves its performance.

Matchers

The VSO layer uses an SPS system to manage update dissemination. The primary role
of a matcher is therefore to handle subscriptions and publications made by clients in the
system that falls within their Voronoi region.

When the first matcher is created, it records its message handling function with the VAST
node’s message handler (the same one used by the VAST node’s VON peer). It then in-
forms the ES of its ID and initialises its internal states, which include inserting itself into
its local Voronoi diagram, determining its boundary regions and updating its local state
with this information. These boundary regions are discussed further below, but their role
is to create a buffer zone that prevents client connection thrashing.

Once this is done, the matcher marks itself as having joined the layer and the connection
sequence is complete and the matcher is ready to receive connections from clients. If
another VAST node joins the system as a neighbour to the current VAST node then the
VON peer informs the matcher of this new neighbour and the matcher inserts the matcher
into its own Voronoi diagram and stores its state in a list of neighbours. This allows it to
propagate subscriptions and publications to the new neighbour, as well as transfer clients
to it if the client moves out of its region.

The Entry Server

When a client connects to the VSO layer, it does so through the ES. In a practical imple-
mentation of VAST, there would be multiple ES servers located geographically far apart
and connected with high-speed networks. The role of the ES is to route information be-
tween the correct client-matcher pairs and assist with load balancing. The reason that
it routes information from the clients to the matcher is to keep the API simple and to
sequester the client from any connection switching. This has scalability issues however
as it can create a bottleneck within the system. It is chosen to be this way so that the
API is the same as the C++ version of VAST. In future implementations, the API will
be adjusted to allow the client to handle its own connections to the matcher it is commu-
nicating with, thereby alleviating the bottleneck.

The ES essentially acts as a super-peer. It stores the positions of the matchers in a
Voronoi diagram and when a client connects with a position in the VE, the ES checks
it against the Voronoi diagram to see which matcher’s region it is contained in. It then

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. VAST 41

connects the client to the matcher and continues to route all the client information to this
host matcher (shown in figure 3.3.2). If a client moves out of one region and into another
region, then the matcher notifies the ES and it changes the routing of the information to
the new region’s matcher and relieves the old matcher of its connection to that client.

Figure 3.3.2: A figure showing the routing of information () from clients () through
the entry server (�) to their respective matchers () based on position

The calculations of how the matcher and ES determine whether a client is within a certain
region is shown in the pseudo-code below in algorithm 1. To do this calculation, an array
of the vertices x and y coordinates are needed. This array is denoted by V . The position
of the client is also needed. This is denoted by P. The idea behind this algorithm starts
with drawing a ray from the point in question in a certain direction that passes through
the polygon. If the ray crosses an edge an even number of times, then it is originally
outside of the polygon and if it crosses an odd number of times then it originates within
the polygon [62]. This is shown in figure 3.3.3

Algorithm 1: Point within a region algorithm
1 int c = 0 // This is the counter for how many crossings have happened
2 int n = V .length
3 for i = 0; j = n− 1; i < n; j = i++ do
4 if ((V [i].y > P.y) ! = (V [j].y > P.y)) &

(P.x < V [i].x+
(V [j].x− V [i].x)(P.y − V [i].y)

(V [j].y − V [i].x)
) then

5 c = !c // alternate between even and odd for every crossing
6 end
7 end
8 return c ! = 0

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. VAST 42

Figure 3.3.3: Figure showing ray casting of points through a polygon and their relative
line crossings

Thrashing and boundary regions

Something to note here is that a client could cross the threshold of two regions multiple
times in quick succession which results in thrashing (seen on the left of figure 3.3.4). This
is solved by creating a buffer zone that extends a small distance past the region boundary
that the client needs to cross in order to fully disconnect from the matcher whose region
the client just exited and connect to the matcher whose region it is entering (Seen on the
right of figure 3.3.4). This space prevents the client from connecting and disconnecting
rapidly in a short period of time.

Figure 3.3.4: An example of thrashing caused by a client () moving between matcher
regions, alternating host regions () (left). The solution is to have a buffer region ()
that extends beyond the boundary of the region (right)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. VAST 43

Load Balancing

Matchers can only handle a certain amount of clients before reaching their scalability lim-
its. A threshold is therefore set to ensure good performance of the matchers in the VSO
layer. The managing of clients to prevent matchers from being overloaded is called load
balancing. If a matcher has reached this threshold, the next client that connects to the
matcher with a position that falls within an overloaded matcher’s region is removed from
the normal connecting sequence by the matcher and put into a queue of pending clients.
The matcher then sends out a request for help to the ES. The ES calculates the positions
that the neighbouring matchers need to move to and tells them to shift to these positions.
This results in the overloaded matcher’s region shrinking and therefore transferring clients
close to the boundary of the region into their own region, thereby relieving the overloaded
matcher. If no clients are transferred, the matcher continues to request help from the ES
until the load is relieved. The matchers continually run neighbour discovery during this
procedure to ensure that they stay aware of new or expired neighbours. When the load
is relieved, the pending client is again allowed to continue with its connecting sequence.

There is a scenario that is common in MMVEs and MMOGs called clustering or flocking.
This is where an event or point of interest draws players to a single spatial location within
the world. If this happens, the above load balancing would fail as the combination of the
number of subscriptions and clients within a small region would overload the resource
mitigation techniques of VAST. What the ES does to counteract this is after matchers
move a predetermined amount of times and the overloaded matcher is not relieved, then
a backup matcher or new matcher joins the overlay close to the location of the overloaded
matcher. This can be done numerous times until all of the overloaded matchers are re-
lieved.

When a client connects to the ES, it first lets the ES know of what type of connection
(client/server) it is since the ES is agnostic to this otherwise. Once acknowledged by the
ES, the client sends a JOIN request with its position. The ES assigns the client a unique
ID and then checks which matcher has jurisdiction over the region that the client is in. If
load balancing needs to be done then the client halts its connection procedure until the ES
completes the load balancing. Once authorised to continue, the ES maps the connection
between the client and its matcher. The matcher is then notified of the incoming client
and communication between the client and matcher is routed through the ES.

3.3.2 Spatial publish/subscribe (SPS)

The VSO layer uses SPS to efficiently route information between clients. As explained in
section 2.3.1, the idea behind SPS is that entities are only interested in a certain spatial
area within a VE. Any event or update that happens in the VE gets published with spa-
tial coordinates attached to it. If these point or area publications intersect a subscription
region, then the owner of the subscription region receives the publication.

In the realm of VSO, matchers are the custodians of subscriptions and publications. Every
client needs to own at least one subscription in order to interact with the elements and
entities within the VE. When the client subscribes to an area, it gives its host matcher
a description of the subscription. This information is shown in table 3.3.1. The matcher

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. VAST 44

takes the subscription info and checks whether any other matchers’ regions intersect with
the subscription. The way this is calculated is shown below in equations 3.3.1- 3.3.4. This
formula was derived by Paul Bourke [6]. Figure 3.3.5 shows the basic scenario that we
are presented with in this case. P1 and P2 can be seen as vertices of a Voronoi section
and P3 as the publication point.

Table 3.3.1: Contents of the "Subscription" data type

Field Data Type Mask (#-number, $-string) Purpose
Host ID Number Matcher ID (#) The current host matcher of the sub
ID String Host ID + ’-’ Client ID (#-#) The Client’s ID
Subscription ID String Host ID + ’-’ + ClientID +

’-’ + Channel (#-#-#)
The unique ID of the subscription that is a combination of
the host ID, client ID and channel

Channel String Any name ($$$) The specific channel that the client wants to communicate on
AoI Number Number (#>0) The area of interest of the subcription
Time Number In milliseconds (#) The last time this subscription was updated
Type String client’ or ’server’ or ’unknown’ The type of owner of the subscription
Username String Any name ($$$) The display name of the client

Figure 3.3.5: Calculation of the intersection between a line and a circle [6]

The equation of a line is given in equation 3.3.1. The second deduction is that if there is
an intersection between the line and the circle then the intersection point (P) between P1

and P2 to the point P3 is along a perpendicular line, shown in equation 3.3.2. Therefore:

lineequation : P = P1 + u(P2 −P1) (3.3.1)
(P3 −P) · (P2 −P1) = 0 (3.3.2)

[P3 −P1 − u(P2 −P1)] · (P2 −P1) = 0 (3.3.3)

u =
(x3 − x1)(x2 − x1) + (y3 − y1)(y2 − y1)

(x2 − x1)(x2 − x1) + (y2 − y1)(y2 − y1)
(3.3.4)

Equation 3.3.4 shows a calculation for u, a scalar value. The value of u is the scalar value
that scales P2 −P1 to the magnitude of P−P1. If u is between 0 and 1 then the closest
point is between P1 and P2, but if it is not then we have to check for the intersection
between the circle and the points P1 and P2. To do this, the distances between P3 and
P1 and P2 are respectively calculated and is compared to the radius of the subscription.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. VAST 45

If the distance is less than or equal to the radius for either of the distance calculations,
then there is an intersection. If not, then one can be certain that there is no intersection
between the subscription and another region.

If the subscription does intersect a different region then the matcher propagates the sub-
scription to the other relevant matchers. This is an important step as even though the
other matchers are not the client’s host matcher and therefore do not have a connection
to the subscribing client, if a publication within their region falls within or intersects the
subscription then it would need to propagate the publication to the client’s host matcher.
The host matcher would then send the propagated publication to the client.

An example of why this is necessary follows: if a client were to stand right next to the
boundary of a matcher region and there was no publication propagation, then something
could happen right next to it and the client would be oblivious to it because it would not
receive the event/update. The client would have both a negatively impacted experience
as well as be aware of the underlying architectural boundaries which is something to be
seriously avoided. The client should be unaware of the underlying workings of the archi-
tecture to preserve a smooth gameplay experience.

The subscriptions and publications must be robust and work as seamlessly as a single C/S
architecture. Subscriptions need to be on the correct matchers and in the correct position
at all times. When a matcher joins the system, the matcher’s neighbours compare the
subscriptions that they have on record with the new region that the joining matcher owns
within the Voronoi diagram. If the subscription AoI intersects with the region of the
joining matcher, then the subscription is propagated to the joining matcher.

When the client leaves the system or unsubscribes from the SPS layer, the matcher re-
moves the subscription from its records and, if it is the host of the subscription, sends
out a message to other matchers that have a record of the subscription that tells them to
remove their records of the subscription as well.
In the next section, the rest of the VAST API will be discussed, namely the JOIN,
MOVE, SUBSCRIBE, UNSUBSCRIBE, PUBLISH and LEAVE procedures.

3.4 VAST API
The VAST API is the API that the client will use to interact with VAST. It is separate
to the inner APIs that VON uses to communicate with each other.

3.4.1 JOIN procedure

The first procedure is JOIN that the client uses to join the VAST system.

1. The client sends a JOIN request with its username, client type and its position and
AoI to the system through a specific port that the entry server is listening to.

2. The entry server determines which matcher’s region the client’s position falls under
and stores this relationship. It also states whether this is a new connection. The ES
then internally assigns a client ID and forwards this information to the matcher.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. VAST 46

3. The matcher checks how many clients it is handling against its maximum client
threshold. If it is above the threshold then the load balancing procedure described
in section 3.3.1 is followed until the load is relieved.

4. If it is lower than the threshold then it notes the client’s attributes and sends an
acknowledgement to the entry server.

5. The entry server forwards the acknowledgement to the client, informing it that it
has joined the system and may now move and subscribe.

3.4.2 SUBSCRIBE procedure

The next procedure discussed is the SUBSCRIBE procedure. This method allows clients
to join the SPS layer and receive publications from other clients that are already sub-
scribed and publishing. These subscriptions can be further layered by the idea of channels.
A channel is a way to further finesse the SPS system by layering the communication into
different "rooms" or "channels". Subscriptions can only receive publications that match
the channels that they are subscribed to.

1. The client sends a SUBSCRIBE request to the entry server with its client ID, the
channel it wishes to subscribe to, its username, and its position and AoI which gets
forwarded to the matcher.

2. The matcher checks if the subscription has already been made before and if it has,
just updates the existing subscription.

3. If it does not exist then it stores the subscription in a map of subscriptions.

4. It then checks whether the subscription overlaps with any other matchers’ region so
that it can propagate it to those matchers.

5. The receiving matchers then follow the same procedure from 2, ensuring not to
propagate to matchers that already have the subscription.

3.4.3 MOVE procedure

After subscribing the client unlocks the ability to move within the system. The MOVE
procedure is now discussed below. This also includes what happens if a client moves
outside of the matcher’s region and a client transfer to another matcher is needed.

1. The client sends a MOVE request with its client ID, username, position and AoI,
the channel it wants to publish the movement on and the information of the MMVE
packet that describes the movement to the ES (usually in the form of a byte buffer),
who forwards it to the matcher.

2. The matcher updates its internal view of the client’s position and then forwards the
information to the matcher.

3. The matcher takes this information and generates the ID of the subscription that
belongs to the client. It uses this to check whether the client has subscribed and if
it has not then it discards the move information.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. VAST 47

4. The matcher checks if the movement takes the client past the boundary region that
describes the matcher’s jurisdiction. If it is outside of its boundary region then it
requests a client transfer.

(a) The matcher deletes the information it has pertaining to the client and sends
a transfer request to the new matcher as well as a subscription update to the
new matcher telling it that it now owns the moving client’s subscription.

(b) The ES removes the connection between the moving client and the requesting
matcher and re-routes the connection to the new matcher.

(c) The new matcher receives the connection and treats it like a client connecting
to the system, sending the successful join acknowledgement to the ES which
signifies the successful transfer of the client.

5. If is within the region, then the matcher updates the information of the relevant
subscription.

6. The matcher then checks for an intersection between the subscription AoI and its
own regional boundaries to see whether the subscription update needs to be propa-
gated.

7. If the subscription AoI newly intersects another matcher’s boundary then the sub-
scription gets propagated to that matcher. This subscription may only be propa-
gated if the matcher owns the subscription. If the intersected matcher was already
aware of the subscription, then it just updates the subscription with the new infor-
mation.

3.4.4 PUBLISH procedure

The client now has the ability to move its subscription around within the system and
receive publications through this. It can also publish to the SPS and this procedure is
described below.

1. The client sends a PUBLISH request to the ES with its client ID, username,
position and AoI, channel and MMVE packet information.

2. The ES finds the matcher that the client is connected to and forwards this informa-
tion to it.

3. The matcher runs through the subscriptions it is aware of and checks whether the
subscriptions match the right channel and whether the publication radius intersects
the subscription AoI. If it does not intersect then that subscription is ignored.

4. If it does match then the matcher determines if it owns the subscription or not
(if the position of the subscription is within its region). Two things can happen
depending on this fact:

(a) If it owns the subscription, then it checks that the subscription does not belong
to the publishing client and if it has a connection to the client whose subscrip-
tion intersects the publication. The valid clients are sent the publication.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. VAST 48

(b) If it does not own the publication then it propagates the publication to the
matcher who owns the subscription for them to send to the client whose sub-
scription it is.

5. The propagated publication gets handled by the matcher in the same way until all
of the relevant clients have received the publication. No acknowledgements are sent
to the ES so that bandwidth and computational costs are minimised.

3.4.5 UNSUBSCRIBE procedure

If a client wishes to remove itself from the SPS layer, then it can send aUNSUBSCRIBE
request todo so. This procedure goes as follows:

1. The client sends an UNSUBSCRIBE request with its client ID, channel and
username to the ES.

2. The ES finds the relevant matcher and forwards the information to it.

3. The matcher checks whether it has a subscription that matches the client’s UN-
SUBSCRIBE request. If it does not, then the procedure ends here and nothing
happens.

4. If the matcher owns the subscription then the UNSUBSCRIBE request is prop-
agated to all of the known matchers who have a record of the subscription.

5. The matcher then deletes the subscription record.

3.4.6 LEAVE procedure

Finally, if the client wishes to leave the system entirely, a LEAVE request is sent and
the client terminates its connection to the system. This sequence is described below:

1. The client sends a LEAVE request with its client ID to the ES.

2. The ES determines which matcher is linked to the client and sends the LEAVE
request to the matcher. It then terminated the connection to the client.

3. The matcher finds the subscriptions relating to the leaving client and removes them.
If it is the host of the subscription then it propagates the removal of the subscription
to the matchers who have a record of the subscription.

4. The matcher finally removes all local information about the client and the client is
considered to have left the system.

All of these procedures and their arguments can be seen below in table 3.4.1.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. VAST 49

Table 3.4.1: The VAST API [4] [7]

Command Arguments Function
JOIN Username (String)

Client type (String)
X position (Number)
Y position (Number)
Radius (Number)

Connects client to the
VAST system

SUBSCRIBE ClientID (String)
Channel (String)
Username (String)
X position (Number)
Y position (Number)
Radius (Number)

Subscribes client to a
certain area and channel
which inserts it into the
SPS layer

MOVE ClientID (String)
Username (String)
X position (Number)
Y position (Number)
Radius (Number)
Channel (String)
MMVE Packet (Byte ar-
ray)

Moves client’s subscrip-
tion’s position and changes
its AoI

PUBLISH Client ID (String)
Username (String)
X position (Number)
Y position (Number)
Radius (Number)
Channel (String)
MMVE Packet (Byte ar-
ray)

Sends client message to
other intersecting subscrip-
tions

UNSUBSCRIBE Client ID (String)
Channel (String)
Username (String)

Unsubscribes a client from
the SPS layer

LEAVE Client ID (String) Disconnects a client from
the VAST system

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. VAST 50

3.5 Implementation challenges and considerations
This section will discuss the design challenges and considerations faced in developing and
implementing this system and how they were solved.

3.5.1 Migrating from C++ to JavaScript

VAST was originally written in C++ by Hu [2] but was migrated to JavaScript (JS) in
this project. The reason for this is that, with the creation of Node.js between when the
system was first created in 2005 and now, the functionality of having VAST being imple-
mentable in both browsers and on the server-side of the browser in Node.js gives VAST a
much wider practical applicability than any other language.

Migrating from C++ to JS resulted in some issues. JS is a dynamically typed language
as opposed to C++ being statically typed. JS does not define strong types when using
variables and this required a strong testing methodology (unit and integration tests) in
order to ensure that each part worked as intended before using it in the larger system.

Working with large scale systems

One of the issues of working with scalable systems is the debugging of such systems. When
there are hundreds of nodes running asynchronously in a system and an error occurs, it
can be difficult to pinpoint exactly where and how to fix such a problem. To solve this, a
custom logger that allowed the log output of a single node in the system was developed.
This allowed finer control over the information that was captured to debug problems that
arose. A visualiser was also created to display the global view of the VON and VSO layer,
as well as the individual views of the VON peers in order to visually verify the neighbour
discovery was working correctly. Incorporated into this is also a debugging tool that al-
lowed the controlling of when messages were sent. This allows the user to choose when to
send individual messages as well as which clients do this. This assisted in the debugging
of scenarios where the specific erroneous client was identified.

Another issue with large scale systems is the reproducibility of errors. When there is a
large system with tight timings, the smallest difference in computing time due to fluctu-
ations in processor performance or other such things can result in a different result for
the same setup. This can make reproducing errors very difficult as the scenario cannot be
accurately replicated. The solution applied in these scenarios was to try and determine
the manner of the error and what the possible cause was and then try to slow down the
timing of the communication between peers as well as try have as small of a scale as
possible whilst still causing the error.

Finally, when working with large systems where it systematically has to cycle through
long lists of items in order to complete an action (eg. iterating through subscribers to
test for publication validity or through matchers to look for subscription propagation
targets), it is of the utmost importance to either keep the lists as short as possible or to
increase the efficiency of the search. VAST’s neighbour discovery’s primary role targets
this problem. It aims to keep the list of neighbours as short as possible. But it still
needs to use an efficient way of iterating through and retrieving these neighbours. For

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. VAST 51

this reason, computations are kept to a minimum within loops and are used as sparingly
as possible. Hash maps are also used over arrays to speed up the accessing of specific
values.

Fragmentation of Voronoi diagram

There is a scenario where VAST can fragment into two halves where one half is unaware
of the other half and there is no way for the nodes within the system to mend the rift
between them. Whilst this is a serious issue, it was only encountered once throughout
thousands of tests and thus was not handled due to the cost-benefit of implementing the
solution versus how many resources it would take to implement a solution. However, if a
solution were to be implemented, it would be an infrequent check done by all the nodes
to the gateway periodically that asks the gateway which nodes it thinks are closest to it.
A greedy forwarding of such a request (similar to the querying described in section 3.2.2)
could be done and once the endpoint is reached, the connection could be established if it
is not already there, resulting in a mended Voronoi diagram.

3.5.2 Overlapping clients and VAST nodes

Whilst the Voronoi diagram is a very powerful tool, when two or more nodes or clients are
on the same spot the Voronoi diagram creation algorithm breaks down as it cannot split
the space between these points. To rectify this, a small random offset with a magnitude
of 10−1 is given to the peer that moves onto another peer in order to give them a small
difference in position. This difference only affects the local slave copies and not the master
copies of the peer states. This results in a small difference in perceived location but not
large enough to make a meaningful difference to neighbour discovery or player experience.

3.5.3 Consistency and neighbour discovery

Consistency in the view of a VAST node relative to its neighbours has several compli-
cations. Whenever a node connects, leaves or moves a consistency check needs to be
performed every time. This consistency check can be resource costly (described in sec-
tion 3.2.1) and therefore cannot be done all of the time due to the asynchronous nature
of these events. Similarly, the outdated neighbours need to be removed, which requires
iterating through neighbours and checking whether each one is still a neighbour or not.
There is also still some inconsistency that appears after much activity by nodes and so a
periodic function is set up that ensures consistency through these two checks.

3.5.4 Robustness

In a fluid system such as VAST, it is imperative that the system is robust against failing
nodes. This proves quite a challenge when there are numerous asynchronous events and
updates, as a single unhandled error can result in a chain reaction of failing nodes. The
system, therefore, had to be designed to be impervious to such events.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. VAST 52

3.5.5 Load balancing

Load balancing is a problem that every MMVE with a distributed architecture faces.
When a matcher is overloaded, the question that is faced is two-fold: does one move
a matcher closer to the overloaded matcher or should an additional matcher be added?
If the matcher is moved, then one needs to decide how much it should move per load
balancing tick. If the movement is too large, then there can be large changes in client
connections and can lead to erratic behaviour in the system. If the movement is too small,
then the overloaded matcher may not be relieved quickly enough and can lead to clients
being disconnected from the system for too long.

In this implementation, the matchers take the distance between them and divide it by a
predetermined scalar value to get the distance that the matcher needs to travel in that
tick. This scalar value was practically tested at multiple values and was finalised to be
20. This means that every time the matcher needs to shift, the distance between the
matchers is divided by 20 to get the delta coordinate values. What was observed is that
the matcher moves a sufficient amount when this scalar value is chosen so that the client
is disconnected for less than 100ms. The load balancing check is done whenever a client
moves and therefore is tied to the movement tick rate of the clients connected to the
system.

One issue that was observed and posed a challenge to rectify is the issue of matchers
converging but never diverging, and consequently causing the Voronoi regions to become
erratic as the distance between matchers became infinitesimally small. This resulted in
matchers becoming overloaded with no possible way to relieve them. This was rectified by
adding a minimum distance that the matchers had to stay away from each other, as well
as by implementing a timed interval that allowed a matcher to check whether it was still
overloaded and if it was not, to tell its neighbours to slowly back away from it towards
their original positions. They move to their original positions to ensure that the opposite
does not happen where the matchers congregate at the edges of the VE. This both allowed
for the Voronoi regions to never become infinitely small or too large as well as to prevent
the entire system from converging to a point.

The last issue faced with load balancing was the handling of clients whilst the load bal-
ancing techniques were being applied. When the region on the side of the client awaiting
connection moved enough, it would result in the pending client’s joining position falling
within the region it was attempting to leave. This means that instead of just connecting
once the overload was eliminated, the pending client would erroneously continue con-
necting to the matcher since the ES is the one that checks whether the joining position
is correct for the matcher. To solve this, the position is checked before the connecting
sequence is continued and if it no longer falls within the matcher’s region then the ES is
immediately notified that it should transfer the client to the correct matcher.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. VAST 53

3.6 Summary
This chapter focused on the design of VAST and how the logic of various functions within
the system work. It discussed the background of VAST as well as what it aims to achieve.
The VON, VSO and ES layer were discussed in detail with their APIs described and
summarised. Finally, the implementation challenges and their solutions were discussed.
In the next chapter, a background of Minecraft will be discussed to understand how it
works as an MMVE and to understand what design challenges need to be worked around
to integrate VAST into the Minecraft structure.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Minecraft

Minecraft is set in a VE called The Overworld which is built up of individual blocks of
different types. Players can break these blocks and place them elsewhere in arrangements
of their choosing, introducing an element of creativity to the game. There are many
different components to Minecraft, but only a few of them are relevant to this project and
will be focused on. These components are:

• The server

• The world state

• The player entity

• Non-playable character (NPC) entities

• Networking including packets, the Minecraft Protocol and the login sequence

• Interest management in Minecraft

The effect that each of the components has on the scalability will be discussed. The
information is summarised from [13].

4.1 The server
The Minecraft server is responsible for processing all events and generating the state
updates of a Minecraft world. It is the host for the different states of The Overworld
and governs any changes made to them. All traffic from clients goes through the server
before any changes are shown on the clients’ portal. The server processes this traffic at
regular intervals in a game loop called a server tick. The Minecraft server runs at 20 ticks
per second, or one tick every 50 milliseconds. Everything that happens in the world is
propelled by the tick of the server, except for graphics, which is separately rendered after
this update happens. The benefit of this is that the frame rate of a client does not affect
the performance of the processing of the game. The server takes all of the updates in the
time between ticks (called a frame) and sends these updates to the connected clients for
them to process and update their local copies of the states.

The Minecraft server allows for modifications (known as plugins) by developers. These
plugins allow for the developer to modify the information flowing into and out of the
server. Plugins do not modify any game files, but rather add functionality to the server,

54

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. MINECRAFT 55

such as player “factions” or implementing leader boards. It is useful for developers as it
allows for data packets to be intercepted and altered or parsed for information. This can
be useful when trying to modify the server without having to change the server code.
Modifications, or “mods”, are similar to plugins except for the fact that they are client-
side and modify the game assets instead of the information that is going to the client.
For example, new blocks and items with specific functionality can be added to the client.
The problem with modifications is that they require every client to have them installed
or else this can cause erroneous behaviour for those clients that do not have the specific
modification installed.

4.2 World state
The world is defined as the blocks that make up the environment that the Minecraft clients
spawn into and exist in. The blocks are placed in a 3D grid using Cartesian coordinate
and are spawned procedurally in 16x16x256 sized columns called chunks. When a player
spawns into the world, chunks are generated around the player within the user-specified
vision radius, known as the AoI. Chunks are generated when a player is interested in it
and is unloaded when there are no players interested in it. This loading and unloading
of a chunk is dependent on a client’s view distance intersecting the chunk. Only loaded
chunks will have entities and other environmental aspects updated in a server tick. This
means that as soon as a chunk is unloaded, no further state updates can be processed for
anything that resided in that chunk before it was unloaded.

4.3 The player entity
The player entity is what the players control to manipulate the world state. They can
break the blocks around them by mining them in order to get that specific type of block
into their inventory. They can then place the blocks that they have collected into the
world around them to create structures limited only by their own creativity. Whenever
the player inputs an action, the client generates a packet that it then sends to the server
hosting the world to inform the server of the change it has made to the state of the game.
These updates include movement, interface interaction such as inventory management or
chat messages, combat actions and block manipulation.

The most important of these updates is movement, as that is how the server knows where
in the world the client is and therefore how it reports this location to other entities and
players in the world. When the client spawns into the world, it is given a specific spawn
location. The server sends an initial orientation packet to finalise the spawning of the
client. Any movements thereafter are performed by the client. These movements generate
packets that are sent to the server as soon as the movement is enacted. The server takes
these movements and uses them to update the player state on the server. Every second,
the server sends a packet to the connected client with its position as the server perceives
it so that the client can correct its position if it gets out of sync with the server. This
also allows the server to keep tabs on how the client is moving and whether the client is
moving illegally. If the client moves more than 100 meters (1 block = 1 meter) away from

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. MINECRAFT 56

the server’s last known position of the client in a single tick, the client will be kicked for
“moving too quickly” and is there to prevent the tampering of positional information by
malicious players.

4.4 Non-playable characters
NPCs, also known as entities in Minecraft, are server-controlled avatars of varying types.
Players are considered human-controlled entities to the server. These entities are ran-
domly spawned by the server into chunks according to the biome of the chunk. They are
dependent on the chunk being loaded into memory in order to have their states updated.
Each entity is given a unique identifier on the server upon being spawned, but when the
entity information is sent through to the player, the player gives it its own internal entity
ID that is specific to its local copy of the entity state.

4.5 Networking and the Minecraft protocol
Minecraft uses transmission control protocol (TCP) with standard WebSockets for con-
nections between the server and the clients. The bytes of information are collected into
defined containers called packets. The Minecraft protocol is the specific rule set that
defines what each packet means to the recipient as well as how the client and server
communicate with each other. Each packet is identified by a packet ID which tells the
recipient what kind of information is contained in the packet. The packets inform the
client and server about any changes to states. This protocol is updated occasionally to
add more functionality to the game as well as to improve legacy code. Protocol versions
must be the same across client and server for the game to run as intended.

The client and server exchange a specific sequence of packets when logging in [63]. This
sequence is shown in figure 4.5.1 and the description follows. These packets follow a
subprotocol and define what state the connection between the two is in. There are four
different states:

• Handshaking

• Login

• Play

• Status

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. MINECRAFT 57

Figure 4.5.1: Login sequence diagram between a Minecraft client and a Minecraft server
integrated with VAST

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. MINECRAFT 58

4.5.1 Handshaking sub protocol

The handshaking state facilitates the initial connection between the client and the server.
The client sends an initialHandshake packet to the server, containing information about
the protocol version of the client, the server internet protocol (IP) address and port and
the next state that the client will be in (either status or login). It also sends a Login Start
packet to start the login process, after which it immediately switches its sub-protocol state
to login. The server receives these two packets and sets the connection sub-protocol to
the login state on the server-side.

4.5.2 Login state sub protocol

Once in the login sub-protocol state, the server sends an Encryption Request to the
client, to which the client authenticates itself with minecraft.net (to see if the account has
purchased Minecraft) and sends a response of the same type back to the server. Once the
server authenticates the response, both of them enable encryption of the packets. Custom
servers such as Spigot give the option to turn authentication with minecraft.net off in a
so-called “offline” mode. When this option is turned on, and authentication is off, this
encryption process does not happen. The next sequence, in which the server sends a Set
Compression packet, is also optional as the packets can be sent without compression.

Following this is a mandatory sequence where the server sends a Login Success, Join
Game, Plugin Message, Server Difficulty, and Player Abilities packet. The Lo-
gin Success packet contains the client’s universally unique ID (UUID) which is used by
the server to uniquely differentiate between clients. The Join Game packet contains
the game mode which could be survival (normal), creative (infinite blocks in inventory,
invulnerable, flight activated), adventure (good for story modes, can only destroy blocks
with tools) and hardcore (similar to survival, with difficulty set to “hard” and no respawns
for any player who dies). It also contains the player’s entity ID (EID), the dimension the
player is joining (there are two others besides The Overworld, the Nether and the End)
and some other, less important info. The last packet, Player Abilities, tells the client if
they are invulnerable, flying if they are allowed to fly, whether they can instantly break
blocks (in creative mode), the client’s flight speed and a field of view modifier for when
the client is under effects such as potions.

The client responds with a Plugin Message packet - which contains the plugin channel
that is used to send the data as well as whatever data a plugin may need to send - and the
Client Settings packet. This gives the server some settings that the client is using such
as whether the client should be left- or right-handed and the client’s render distance. This
render distance is important as it controls what the range entities need to be at before
the client starts receiving updates about them.

After receiving the Client Settings packet and the render distance is received, the client
transitions to a “Loading terrain...” screen which signals that the server has started send-
ing Chunk Data packets, which is the information about how the world around the
client looks. If a 64-bit client has the default render distance of 12, then this means that
12 chunks would be loaded in each direction around the client’s spawning chunk. This
means that a block of 25 x 25 chunks would be sent to the client, resulting in 625 Chunk

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. MINECRAFT 59

Data packets. This takes up the majority of the client’s loading time. When a chunk
is generated, there is a chance that an entity is spawned within that chunk. When this
happens, a Spawn Mob, Entity Metadata and Entity Properties packet is sent to
make the client aware of the relevant entity. When the Chunk Data packets have been
sent, the server sends a Player Position and Rotation and Spawn Position packet
is sent to set the client’s initial position in the world. The server then sets the client
connection state to the play sub-protocol.

4.5.3 Play sub protocol

Once the client receives its initial position, it changes its sub-protocol to play and confirms
the position with a Teleport Confirm and a Player Position and Rotation packet
of its own. This completely the login sequence, after which the client receives normal
gameplay packets as needed. This is the subprotocol that the majority of packets are sent
in and mainly convey state change information. Event and update dissemination happens
through this subprotocol.

4.5.4 Status sub protocol

The status subprotocol is used to send periodic control packets such as Keep Alive
packets to the client and Server Time Update packets. These Keep Alive packets
ensure that the clients are still connected to the server. The client sends a packet with
a unique number generated using a system-dependent time value in milliseconds (known
as a timestamp). The server must respond with a Keep Alive packet that has the same
number in it or the client will automatically disconnect from the server.

4.6 Event and update dissemination
Update dissemination is handled by the Minecraft server. The clients generate events
through actions they commit within the VE and send these actions to the server. The
server then takes these events and applies it to the master state of the entities and world
that is affected. Once this is complete, these updates are sent to any player that has the
chunk where the changes occurred loaded into memory. Each player’s connection is sent
an update packet for every entity and world state change that occurred. The clients use
these update packets to adjust their internal slave states.

This model is simple and effective for ordinary C/S interactions with a moderate number
of users but fails when there are a large number of clients connected to the server and near
each other. It also fails when there is a sudden event that produces a surge of updates,
such as a collection of TNT all going off at once.

4.7 MMVE requirements in Minecraft
In section 1.1.6, four requirements for MMVEs were listed. These requirements include:

• interactivity and fairness between players and in-game objects

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. MINECRAFT 60

• consistency in the view that a player has of the world around them

• persistence of the world after an indefinite period of time

• scalability of the architecture as more players join the system

This section will now look at these requirements with respect to Minecraft and how well
it fulfils each one and the areas that it could be improved.

4.7.1 Interactivity and fairness

Minecraft uses a bucket synchronisation technique (described in section 2.3.2) to aggregate
updates across a 50ms window. This allows small fluctuations in latency to be handled
and provides fairness to different computational capabilities of connected clients but does
not address larger latencies. When latency larger than 50ms is experienced by the client,
there can be instances where the interactivity of the client is affected.

This manifests in instances where a block that was destroyed by the client reappears as
if it was not destroyed, being attacked by entities that should be too far away to attack
and in the worst scenarios, rubber-banding of the client as it is moving. Rubber-banding
is when the client moves normally but the server either does not receive the updates or
the acknowledgement does not reach the client. This results in the client teleporting back
to the last known legal position.

Rubber-banding can also be the case when packet loss is experienced. Because the server
holds the authoritative copy of the client’s state, if the movement packets are lost and
do not update the state on the server then it can result in resetting the client position
when it eventually receives its position update from the server. This is very jarring to the
player’s experience.

4.7.2 Consistency

The server ensures that the world and entity states stay consistent as it is the sole au-
thority of master states. This allows the server to accept or deny updates and also allows
it to ensure that conflicting actions cannot occur on a single master state.

The problem with this centralised authority is that when too many clients are connected
or if there is a high latency connection then the client’s consistency can be affected. The
clients do not stay inconsistent for long however as the server quickly rectifies any in-
consistencies that the clients may have with the next server tick. The server’s ability to
deny an update and send the corrected state gives the system a strong consistency. As
stated above in section 4.7.1, this consistency appears as blocks disappearing or reap-
pearing, rubberbanding movement or sudden entity positional jumps and attacks being
experienced by the player without seeing what caused it.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. MINECRAFT 61

4.7.3 Persistence

Persistence in Minecraft is exceptional. Since the Minecraft server is in control of every-
thing from states to logins, there is little chance of losing any data or world persistency
if the server behaves as intended. Inherent in this strength as a centralised authority is
the weakness of relying completely on a single point of failure. If the server irrecoverably
crashes or corrupts in any way, there is no backup scheme or way to recover the informa-
tion about anything within the world. It is simply lost.

Minecraft worlds that are transferred across updates do not completely update to the
new content. Chunks that have already been loaded before the update will appear the
same in the new update, but new chunks will load with any new features present in the
new update. This is an elegant solution across updates but means that the world is not
versatile unless the chunk data is partially deleted and reloaded.

4.7.4 Scalability

As already alluded to, scalability in Minecraft is not very good due to the centralised
nature of the architecture. When there are a lot of clients, they take up server resources
and bandwidth just to be present in the system.

According to [64], for 1-3 players in a Minecraft server in a wide area network (WAN)
configuration, 750 KB/s upload and 375 KB/s download are required as a minimum to
host them. Going up to 8 or more players, 3.75 megabytes per second (MB/s) upload and
1.875 MB/s download bandwidth is required. Local area networks (LANs) have much
higher bandwidth capabilities than WANs, but limit players to being within close prox-
imity to each other by definition and support limited numbers of users. Therefore WANs
are what will be discussed as they have global connectivity.

Something of note in the WAN bandwidth requirements of a Minecraft server is that
each client does not require a linear amount of bandwidth. The bandwidth requirements
scale up the more clients connect. In a server with 3 players, each player effectively
uses 250 KB/s of upload bandwidth whereas when there are 8 players they then use
470 KB/s. The reason for this is because of the player-player interactions discussed
in 2.1.2. For every player added, there is another player to interact with and therefore
more bandwidth required by the client, over and above the bandwidth required for player-
object and player update interactions. According to [18], communication demands caused
by the linear increase of clients can increase quadratically. This is clearly not scalable.

4.8 Interest Management
Interest in the realm of MMVEs is defined as the objects, entities or events that the
client receives state updates about. Interest management is therefore how the interest for
a client is determined. As stated in section 2.3.1, MMVEs face challenges with regards
to scaling as the more clients there are, the more local states need to be updated and
therefore more network traffic is produced. The aim of IM is therefore to decrease the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. MINECRAFT 62

number of states the client is interested in in order to minimise the amount of generated
state updates.

In Minecraft, there is natural IM already in place due to the large, procedurally-generated
world having a high amount of entities and states. This IM is enacted by the server and
is controlled by the client’s rendering distance. In the client settings, the client view
distance can be set. This is sent to the server via the Client Settings packet. The
server uses this as a boundary line, sending updates to the client about a state change or
event if it falls within this boundary and ignoring everything else. This IM, however, is
inadequate when one is scaling to the level of modern-day MMOGs and MMVEs. This is
because the scalability bottleneck of a Minecraft server is the bandwidth of the machine
hosting the server. Therefore, to scale Minecraft, the bandwidth of the system needs to
be reduced. The highest recorded count of concurrent players on a single Minecraft server
is 2,622 which occurred on the 1st of August 2011. When looking at this number, it is
approximately 0.001% of the total player count of Minecraft, which sits at 176 million
[65]. While not all of those players are ever going to play together, the demand to be able
to play with more people at a time is always great.

4.9 Research in Minecraft
There has already been research into improving the scalability of Minecraft. One such
approach, Manycraft, which incorporates Kiwano, is presented below.

4.9.1 Manycraft and Kiwano

Manycraft is a system that allows the Minecraft server to host many more clients than
the standalone server could with the help of Kiwano. This system is seen in figure 4.9.1,
taken from [66]. Kiwano is explained first, followed by Manycraft.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. MINECRAFT 63

Figure 4.9.1: A Manycraft node with Kiwano integrated to handle event and update
dissemination

Kiwano

Kiwano [20] is a scalable distributed infrastructure for VEs, designed to be scalable whilst
allowing random, high-frequency movement. It uses as many nodes as needed as it as-
signs groups of clients to each one based on their close spatial proximity. The clients are
indexed according to a Delaunay triangulation and are split into zones that are indexed
the same way according to entity density. These zones shift dynamically as the entities
move. Each client is assigned a proxy to communicate with Kiwano for it to translate the
Minecraft packets to the communication protocol used by Kiwano.

Manycraft

Manycraft [66] uses Kiwano as its method of event and update dissemination between
clients. The Manycraft node is installed by a client on their machine with the appropri-
ate Minecraft map and consists of a Minecraft server and a proxy. The proxy bridges
communication between the client and the server, but only one way as the server commu-
nicated directly with the Minecraft client. The proxy also handles communication with
the Kiwano server nodes. Kiwano responds in kind with movements from other clients
that are separate to the Manycraft node.

4.10 Summary
In this chapter, a background of Minecraft and its inner workings were discussed in de-
tail. The server and its modification were discussed, followed by a description of the world
state and its representation in Minecraft. This was followed by the player entity and a

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. MINECRAFT 64

description of NPCs. Next, the Minecraft protocol and the networking behind Minecraft,
in general, was discussed, including the login sequence that the client performs to join a
Minecraft server. Following this, it looked at event and update dissemination as well as
how well the Minecraft server and client fulfilled the requirements of MMVEs and dis-
cussed the limitations present within the game. Lastly, interest management and research
done on Minecraft were discussed, ending in a description of Koekepan.
This project uses Koekepan as the integration platform between VAST and Minecraft
in order to test VAST’s performance in a real game environment. VAST takes over
the networking as well as the server node P2P overlay management. The design and
integration will be looked at and discussed in detail in the next chapter. 1

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Minecraft and VAST

To test VAST’s performance in a real-world environment, incorporating it into an estab-
lished MMVE will give an accurate evaluation of VAST’s potential. Minecraft was chosen
as the MMVE because of its versatility in the modification of how it operates. Koekepan
gives the researcher the ability to intercept packets that are being sent between the client
and the server and modify how these packets are sent. It also allows the distribution
of the server across multiple hosts which is exactly what Minecraft needs to improve its
scalability.

This chapter will discuss the integration of Minecraft and VAST. It starts by discussing
how VAST and Minecraft fit together using Koekepan as an interpreter. The layout is
discussed and then the different modules of the system are discussed in detail. This is
finalised with a discussion on the challenges faced in turning Minecraft into a system that
can use SPS for its event and update dissemination.

5.1 VAST and Minecraft
The system consists of a custom Minecraft server, a server and client proxy that wraps
the Minecraft packets into packets consistent with VAST’s API, and emulated Minecraft
clients that function as lightweight vanilla Minecraft clients. These clients are used due to
their lack of a graphical user interface (GUI) which significantly reduces the load on the
host, which is ideal for running scaling tests. They work like normal Minecraft clients and
therefore will not be discussed, but can be read about in [67] at the reader’s discretion.
This system can be seen in figure 5.1.1.

Figure 5.1.1: An overview of the VAST system connected to a Minecraft client and server
module

65

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINECRAFT AND VAST 66

The client and server proxy design and implementation will be discussed first and then
the login procedure will be looked at to see how the system runs.

5.1.1 Client proxy design

The client proxy sits between the Minecraft client and VAST. It accepts communication
from the Minecraft client, wraps it and sends it through to VAST for publishing to the
SPS.

The proxy is a standalone component in the ecosystem. Upon start-up, it is given the
IP address and host of the SPS layer it should connect to as well as the IP address and
port with which it should start a listening server at. This server listens for incoming con-
nections from Minecraft clients. It also establishes a socket connection to the SPS layer
along with an initialisation of the Minecraft protocol and sub-protocol. These protocols,
interpreted and reconstructed by "SteveIce10’s" MCProtocolLib [68], describe each packet
type’s class variables, the accessor functions and the functions that write the fields to a
byte buffer as well as read them from a byte buffer. This is useful when reconstructing
packets from packet IDs or when the packet information needs to be communicated over
a WebSocket connection.

When the listening server receives one of these client connections, the proxy establishes a
line of communication between the client and the SPS. It does this by creating a channel
of communication, called a session, between the client and itself and the SPS and itself.
These sessions should be linked to create a single line of communication between the client
and the SPS.

For the information running through this channel to be of the right format on either side,
it needs to be interpreted and manipulated along the way for either side to understand.
It does this by using a behaviour handler to register how the session should behave when
a specific packet is received.

Behaviours

A behaviour is a description of how the system should handle a specific packet. The
system starts up a packet behaviour handler with both the client session as well as the
SPS session and registers pre-defined behaviours for all of the packets the session expects
to receive. These registered behaviours both route the information to where it needs
to go as well as allow the system to do packet-specific tasks. It is this that allows the
system to listen to each packet and decide which packets will only need basic wrapping
and which ones will require some extra modification or actions before sending it through
to the recipient.

SPS session

The SPS session requires more parts than the client session because it has to interface
with the VAST API, whereas this is done inherently within the Minecraft client when re-
ceiving Minecraft packets. The SPS connection sets up listeners that are used to interface

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINECRAFT AND VAST 67

with VAST. This includes the JOIN, SUBSCRIBE, UNSUBSCRIBE, PUBLISH,
MOVE, and LEAVE procedures defined in section 3.4.

During the initial connecting procedure, the SPS session’s channel is initialised. This
defines what channel the session will publish on. This channel can be changed when the
client needs to publish on a different channel. Channels are described in section 3.4.2. It
also sends its type (server or client) to the VAST system, informing it of whether it should
treat its connection and subsequent subscriptions as a client or server subscription. This
will affect whether it gets packets from the server or the client. The client proxy will state
that it has a client connection and will, therefore, receive packets published by the server.
The client proxy should also subscribe to the lobby channel when connecting a client to
the system. This is so that the initial login packets reach the lobby server and the login
procedure can be followed. The lobby server is defined as the first server that joins the
system. It subscribes to the lobby channel to accept incoming messages from clients that
are logging in. Once the client receives confirmation that it has joined the VE, it can
unsubscribe from the lobby channel, assuming no other clients are still in the process of
logging in.

Each SPS session that connects to VAST receives a unique ID. This is the client ID that
VAST uses to identify different clients and is mapped to the SPS session for use whenever
a packet is sent to VAST. When receiving packets from VAST, the client’s username is
used to look up which session the received packet should be sent through.

5.1.2 Server Proxy

The server proxy works in a very similar way to the client proxy, with an SPS session
and a server session that communicates to the Minecraft server. Upon instantiation, the
connection to the SPS is established. It immediately connects to VAST and subscribes
to the lobby channel so that it can await incoming Minecraft client connections through
the SPS. When receiving a connection, it creates the SPS session and server session for
that specific client’s connection. It registers the server-bound packet behaviours with
the packet handler and registers the session with the username of the connecting client.
Deviating from the way that the client proxy similarly sets up its sessions, the server
proxy also sets up an entity tracker.

Entity tracking

To allow Minecraft to integrate with an SPS architecture, the ability to spatially track
entities and publish their updates from a specific location is necessary so that entities
within Minecraft are seen and interacted with only when they fall within a player’s AoI.
The entity tracker is responsible for this. When the server proxy creates the sessions
it uses to facilitate communication between the SPS and the server for a specific client
connection, it also starts up a client-specific entity tracker. This entity tracker stores the
positional states of entities perceived by the client and updates them upon receiving state
updates. It does this by using a hash map data structure to store entity IDs with their
states as a key-value pair. This allows for efficient lookup of entities and updating of their
states.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINECRAFT AND VAST 68

These entries are initiated by the receiving of the ServerSpawnMob packet which con-
tains the entity ID and UUID, their Cartesian coordinate position and velocity vector, as
well as the metadata associated with the entity (such as entity type and unique effects).
An entity object stores all of the entity information and this is linked with the entity ID
in the hash map.

When a ServerEntityPosition, ServerEntityPostitionRotation or any other entity-
modifying packet is received, the entity is updated with the content of the packet. These
packets then get published using the position of the entity as the point of publication
to give the packets a spatial aspect in the dissemination procedure. This is how entity-
related packets are modified to be SPS-compatible. The entity is removed from tracking
when a ServerEntityDestroy packet is received.

Player tracking

Similar to entity tracking, player tracking is done by the entity tracker. The player
entity is stored when a ServerSpawnPlayer packet is received and removed when a
ServerEntityDestroy packet is received. Once the player is spawned, it is treated
like any other entity in the world and therefore is updated with packets such as the
ServerEntityPositionRotation packet. These packets are published using the same
positional technique as the entities described above and allow for the state updates of the
client to be published with spatial coordinates, therefore completing the conversion of the
update dissemination to an SPS functionality.

5.1.3 Minecraft client login procedure

Section 4.5 describes the login sequence of a Minecraft client. Figure 5.1.2 shows the
sequence diagram of the login procedure. The way that the client proxy handles this
sequence is as follows:

1. The Handshake packet is received by the client proxy and forwarded directly
through to the SPS, which publishes the packet on the lobby channel. The position
of the publication is (0, 0) since the position of the client is not yet known.

2. The client follows this up with a ClientLoginStart packet. Its behaviour tells
the SPS session to initiate the connection procedure, which prompts the creation
and forwarding of the EstablishConnection packet which is a wrapper of the
ClietLoginStart packet. This tells the server proxy that a new session is connecting
and allows it to create the SPS session on the server proxy’s end, the session that
communicates with the server as well as the entity tracker.

3. The login packets now flow back and forth on the lobby channel through the estab-
lished pipeline until the client receives the ServerJoinGame packet. When this
is received, it subscribes to the ingame channel in order to start receiving packets
related to the Play sub-protocol.

4. When the client receives the ServerPositionRotation packet, it starts publishing
its packets to the position of the client.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINECRAFT AND VAST 69

5. Once the server has sent all of its Login sub-protocol packets, it changes its channel
of publication to ingame and continues sending packets through to the client. This
subscription to the ingame channel is player-specific. On the client-side, when it
receives the ServerChat packet, it knows that the server has switched to the ingame
channel and therefore, if there are no other simultaneously connecting clients, can
unsubscribe from the lobby channel.

6. Once this is complete, the login procedure is done and the client can interact with
the game as normal.

7. Upon receiving ClientPlayerPosition or ClientPlayerPositionRotation pack-
ets, the SPS session associated with the client updates its position of publication so
that all publications come from the client’s position.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINECRAFT AND VAST 70

Figure 5.1.2: Figure showing the login sequence of a Minecraft client through VAST

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINECRAFT AND VAST 71

5.2 Implementation challenges
This section describes some of the challenges faced in implementing the design and how
these challenges were addressed and overcome if they were.

5.2.1 Connection sequence

VAST expects the connecting client to connect using the JOIN procedure, giving its
type, username and position in order to determine which matcher it is routed to and to
allows the matcher to identify it accordingly. However, in Minecraft, the Handshake
packet does not contain any of this information yet is the first packet that gets published
and therefore needs a way to reach the server.

The challenge posed by this is how does one create a generic connection to VAST and
not have it be a part of the VSO layer or be represented as a client in the system? The
server needs to be connected initially to receive the packet. How this was solved was with
the idea of a lobby server and a new method TYPE in the VAST API. This lobby server
connects to VAST upon creation and uses the TYPE method to tell VAST that it is a
server. It then subscribes to the ’lobby ’ channel in order to await incoming connections.
This lobby server maintains this subscription to VAST and is always looking to receive
new connections from clients. Its subscription has a position of (0, 0) and an extremely
large radius (currently 10000 but could be made larger if there are clients that extend
beyond that radius).

Any other connection that is instantiated first calls the TYPE method to tell VAST what
kind of connection it is. They subscribe to the ’lobby ’ channel to communicate with the
lobby server and publish from their last known position, defaulting to the same position
as the lobby server. When they receive their first positional update, only then do they
move away from this initial position and publish from their actual location. This ensures
that the connecting client will always be able to access the lobby server.

5.2.2 Duplicate packets

When two clients have an entity or any other world object in their view, and an event
occurs that affects the state of said entity or object, the Minecraft server generates an up-
date message for both clients and sends it to them individually. Since this update message
is published at the point of origin of the entity/object, both clients, whose subscription
regions overlap this point, receive both of the publications. The Minecraft client discon-
nects from the server when it receives packets that are from the incorrect sub-protocol
compared to what it is listening out for, or if it receives a packet that it does not under-
stand and thinks something is wrong.

To solve this channel, the publication contains the username of the client for whom it
is destined. This allows the proxy on the other end to use this username to find the
specific session that handles the communication for that client connection and sends the
packet that way. The problem with this implementation is that it does nothing to reduce
the number of packets being sent overall and thus reduces VAST’s benefits. This is an
issue with how Minecraft disseminates its updates and its compatibility with SPS and is
discussed below.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINECRAFT AND VAST 72

5.2.3 Update dissemination by the Minecraft server

Minecraft, like any other game, is designed to operate singly and does not take easily to
being tampered with or adjusted. The way it disseminates its updates is by generating
an update for each player connection and sending it out that way. It is for this reason,
among others (discussed in section 4.7.4), that Minecraft is currently not scalable in its
base form. In order to reduce how these updates are generated for the players, the server
back-end would need to be modified so that only a single update message is generated
for an event, and all of the players could get their information from this update message
that would be disseminated by the SPS. This is no simple task however.

The way that reverse-engineered Minecraft servers such as Spigot work is that there is not
a central managing class that handles update dissemination to all clients. Every event that
is created separately determines whom it should affect and notifies the individual player
connections that they should update the state for that specific object. This decentralised
approach to update dissemination means that every entity event type, world event type
and other events would need to be individually adjusted to change it from sending to
individual player connections to a single update with a list of players that should receive
it. With there being over 100 different instances of event processing points, coupled
with the fact that the code is obfuscated to protect it from being copied by others, it
was decided that a theoretical analysis of Minecraft’s packets and which ones could be
compatible with SPS would be a more efficient use of time, leaving the conversion of the
Minecraft server for future work. This theoretical analysis is shown below.

5.3 Minecraft SPS potential
The purpose of SPS is to offload the event and update dissemination from the server
to the SPS layer which is built to be scalable. This allows the server to focus on event
processing and the SPS layer to alleviate resource usage from the server. Using VAST,
this technique can theoretically increase Minecraft’s scalability possibilities.

5.3.1 Theoretical analysis

As described in section 4.8, Minecraft currently implements its own IM in order to de-
termine which clients need to receive updates after an event has occurred. When this
happens, it generates a separate packet for each client to disseminate the update. This
can be very inefficient as information is increasingly duplicated the more clients and en-
tities that are in the system and within each others’ AoIs.

In theory, these duplicated packets can instead be combined into a single packet with
multiple recipients and the SPS can publish this single packet to all of the relevant sub-
scriptions. This is based on the idea of uni-casting versus multi-casting (discussed in
section 2.3.3) which uses multi-cast groups (subscriptions in this case) to reduce the pro-
cessing and number of packets sent between the server and the clients. Since the SPS is
designed to efficiently distribute the workload of sending multiple packets across many
nodes, it handles the multi-casting better than the server would.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINECRAFT AND VAST 73

Since the packets would need to be published with a spatial coordinate, the packets that
would be the most applicable to this type of dissemination are ones that originate within
the VE. For example, an entity that moves produces a ServerEntityPosition packet.
This packet contains an entity ID, relative x, y and z movement from its previous position
and a boolean variable saying whether it is grounded or not. This packet gets sent to
every client that can see the entity and the only difference is the recipient. The movement
packet could instead be published at the final location of the entity movement and each
subscriber could receive the update. Compare this to a ServerUpdateTime packet that
is devoid of any point of origin within the packet structure. This kind of packet would
need to be published globally without a position, and is the kind of packet that would not
benefit from SPS, but could still benefit from having a single packet being disseminated
to multiple clients.

To estimate how much Minecraft would benefit from implementing SPS, one would need to
look at the packets that are sent and see what percentage of them have spatial coordinates
that could be exploited as well as which of them are duplicated by the server and could
be combined into a single publishable packet.

5.3.2 Hypothesis and setup

In this test, the hypothesis is that most of the packets that are sent by a Minecraft server
are both related to entities and entity updates and are relevant to a specific location in
the VE. Of these packets, since most of the traffic is speculated to be related to objects
or entities, they should be combinable into a single publishable packet.

An emulated Minecraft client is placed into a random, normal Overworld. A vanilla
Minecraft client is then made to run around in the world around it and perform random
tasks such as destroying blocks, attacking entities, placing blocks, and running and jump-
ing around as a normal player would. This creates a variety of event updates that get
sent to the emulated client, which logs all of the packets received from the server. It only
monitors the packets that are sent by the server as those are the packets that would be
replaced by the SPS and reduction functionality.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINECRAFT AND VAST 74

5.3.3 Practical analysis and results of SPS potential

In figure 5.3.1 we see the number of each sent packet in the session. Overwhelmingly
we see that the number of ServerPlayerPositionRotation, ServerEntityHeadLook,
ServerEntityPosition, ServerEntityPositionRotation, and ServerChunkData pack-
ets constitutes the majority of the packets that are sent to the client from the server. All
of these packets have spatial locations and therefore would benefit from being dissemi-
nated using SPS. In the next 14 highest packet counts, only the ServerUpdateTime
and ServerKeepAlive packets do not have a spatial location.

Figure 5.3.1: The distribution of packets in an ordinary Minecraft playing session

In figure 5.3.2 one can see the percentage of the total number of packets sent that each
packet comprises of. The top 7 packets comprise of over 85% of the total number of
packets sent, and all of these packets can be spatially published using SPS.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINECRAFT AND VAST 75

Figure 5.3.2: The percentage of packets in an ordinary Minecraft playing session

5.3.4 Packet reduction potential

Of the packets that were mentioned above, the only packets that could not be reduced
and sent as a single packet to multiple clients are the packets that are action-confirmation
packets that get returned to the client that created the action such as ServerPlayerPo-
sitionRotation and ServerBlockChange packets. That is because these packets are
sent to the player to confirm its action has been registered by the server.

When it comes to the percentage decrease that SPS could provide to Minecraft, one needs
to take each packet that is sent and determine how many packets would not be sent if
they were to be published as a single packet. An equation for the packet decrease could
then be determined.

The packets that can be reduced depends on the number of clients in the system. Let the
number of clients interested in an action-initiating entity be n. This does not include the
player as they do not receive updates about themselves in the same way that others do.
For every reducible packet, a single packet needs to be published to the players interested
in the affected entity. This means that the number of packets that can be reduced by
SPS is n − 1 for each instance of an action (chosen to be x) that requires an update to

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. MINECRAFT AND VAST 76

be sent to the players. Every instance of a packet x is duplicated n times and then can
be reduced by n − 1 times the instance of the packet to get the number of packets that
are sent.
This makes it clear that the number of packets that are sent stays constant no matter
how many clients there are which indicates scalability.

For a single client in this test containing two clients and the Minecraft server, the number
of packets sent to a single client from the server is 6185. In this test, the number of
packets that are sent to both of the clients overall amounts to approximately 6185 ∗
2 = 12370. Since at least a single instance of a packet needs to be sent at least, the
amount of packets that could be reduced is the total number of packets sent to a single
client minus the number of packets that are client-specific (contain information that only
affects that client) which amounts to 4147. Therefore, the percentage packet reduction is
(4147/12370) ∗ 100 = 33.52%.

5.3.5 Conclusion on Minecraft SPS viability

This test has shown that Minecraft network packet distribution would fit an SPS imple-
mentation and therefore shows that VAST can indeed be integrated into Minecraft with
positive results in theory. Of all of the packets sent by the Minecraft server, only 5% of
packets would need to be globally published overall and therefore has great potential for
scalability and performance improvements. The packet reduction depends on the number
of clients in the system, but the lowest it could be is 33.52% at two clients.

5.4 Summary
This chapter described the integration of Minecraft and VAST, as well as the theoretical
viability and benefit of Minecraft with an SPS implementation handling the update and
event dissemination. First, an overview of how the modules of the system work together
is given. This is followed by a description of the client and server proxy design. The
Minecraft login procedure was then presented. The implementation challenges involved
in integrating Minecraft and VAST was then discussed with the SPS viability and benefit
of Minecraft concluding the chapter. In the next chapter, a performance evaluation of the
system is presented.

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Performance Evaluation of VAST and
Minecraft

This chapter sets out to evaluate the performance of VAST as a system, firstly by looking
at the VON layer and its scalability performance in lieu of its requirements for consistency,
interactivity and accuracy in its view of the neighbours around it. Subsequently, the
chapter aims to evaluate the performance of the VSO layer and the matchers’ ability
to organise themselves in a way that prevents them from being overloaded, while still
providing the consistency and interactivity expected in an MMVE such as Minecraft.
Finally, the performance of Minecraft using VAST for its event and update dissemination
is discussed, along with the challenges of fitting Minecraft into an SPS architecture.

6.1 VON scalability performance
The VON scalability performance test aims to determine how the system performs as more
VON peers are added to it, how well the system performs when the peers are moving,
and the effect of peer density (PD) on the system. It analyses the scaling performance
and potential of the system and determines whether there are scaling limits of the current
version of VAST. An important factor to note is that the peers that are moving in this test
are different to clients that connect to the VAST system and move. The moving of peers
is a test of how well the system performs when the system is being load-balanced and the
peers are having to rearrange themselves to handle varying loads. Firstly, a discussion
on the metrics used will be undertaken, followed by the test set up and then the results,
culminating in a discussion of the scalability of VAST.

6.1.1 Metrics

The following metrics are used to evaluate the performance of the architecture:

Bandwidth

Bandwidth is the amount of data being sent at a fixed amount of time. Whenever a
peer communicates with a neighbour a packet is sent and the total size of this data is
measured over the duration of the test. Bandwidth is important to monitor because it is
one of the bottlenecks when it comes to scaling systems. The more clients in a traditional

77

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. PERFORMANCE EVALUATION OF VAST AND MINECRAFT 78

system, the higher the bandwidth and the more processing power the peer requires. It is
therefore desirable to have as low bandwidth as possible to minimise computation time
and power, but more importantly, the bandwidth of each peer should not increase as more
peers connect to the system. The bandwidth should increase to a point and then hit a
limit. Each client’s bandwidth is measured in KB/s.

Round-Trip Time (RTT)

RTT is the amount of time it takes a packet to travel from one peer to another and back.
There is a physical limit to how low the latency can be because of the limitations of the
electric signals travelling through a sub-ideal medium of the wires. There is also a latency
associated with the packets being transferred through the router to the remote host. The
round-trip time is measured by sending a ping packet with a timestamp from the peer
to another peer. The recipient peer immediately sends a pong packet with the original
timestamp back. The client then compares the time of receiving the pong packet to the
sending time and calculates the RTT (which is measured in milliseconds (ms)).

Latency

Another way of determining the bottlenecks of VON is to calculate how long a packet
takes to be processed after being sent. This requires all the hosts to have synchronised
time as timestamps are compared when sending and receiving on two different hosts. This
is done using one of the hosts as an NTP (Network Time Protocol) server for the other
hosts’ time server. This indicates how much the system is lagging in terms of handling
incoming packets. Latency is measured in milliseconds.

Drift distance

Drift distance is the distance of the perceived location of a peer from another peer’s
point of view relative to its actual position. Due to latency in the packet transfer and
the latency of the system, the peer can have a view of a peer that is outdated and so
it could have already taken its next step of movement by the time the previous move is
processed. The drift distance is measured as the average distance that the perceived and
actual position differs over the course of the test in units across all peers. It is given in
two ways: the absolute value of the drift distance and the actual drift distance. This is
done to accurately represent how far the client has drifted from where it should be as well
as the average distance using both the positive and negative directions.

Consistency

Consistency in this context refers to how accurate a peer’s view is of its neighbours.
Because of drift distance, the incorrect positioning can cause the peer to be connected to
or disconnected from peers that it should not be. This would give the peer an inaccurate
view of its neighbours, resulting in it being inconsistent with the correct state of the
system. Consistency is measured by taking each peer’s position and their neighbours at
intervals of 500ms over the course of the test. This is then compared to a reconstruction
of the test peers’ accurate movements in order to get the percentage of how often the view
was consistent with the reconstruction.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. PERFORMANCE EVALUATION OF VAST AND MINECRAFT 79

6.1.2 Test bench and set up

The following simulation was done using 11 hosts with identical specifications, all con-
nected in a local-area network. The specifications are given in appendix A. Each computer
runs three instances of Node.js with each instance hosting 30 peers resulting in 991 VON
peers in total. The extra peer comes from a single host which runs another instance
of Node.js with a single VON peer which acts as the gateway. This is done to ensure
that Node.js does not throttle the system with its inner thread handling and slow down
the peer’s connection to the gateway. This happens when it takes longer to process the
connections than the time between the clients connecting, resulting in a backlog. This
is undesirable as if the system is throttled important processing that needs to happen
(such as consistency management) cannot, and the performance of the system will drop.
The test starts using a shell script that automatically sets the system up. Once all of the
instances are started, the test runs for 5 minutes and then shuts down.

The test is started by creating an instance of Node.js for the gateway on the first host
and then proceeding to start instances of 30 peers on each host, leaving enough time
between them for the 30 peers to connect at 600 ms intervals. These intervals give the
gateway enough time to process the connection and for the peers to join the network.
Once 331 peers have connected, the process is repeated - barring the gateway client - to
give a total of 991 peers in the system. Once the peer has joined the system, it moves
one unit space every 500 ms to simulate the adjustments needed to handle load balancing
and the connections to peers. This is meant to simulate the system under high levels
of stress and evaluate its performance in this state. It is assumed that the system will
work better if there are less peers or they move less frequently, thus testing the upper
limits of the system is desirable. Two tests are run: one with the radius, representing
the AoI, changing to determine the effect of different peer densities on the system and
another with a single density but a different number of peers to determine the effect of
the number of peers on the system. The data is collected for the duration of the test and
is then processed to gather the results.

6.1.3 Test 1: Varying the peer density

The first test evaluates the metrics as a function of a changing PD. This is calculated
by giving the peers a specific AoI radius. This radius is calculated by running several
separate simple simulations until the radius that gives the desired average peer density
is found. The test is then run with this peer radius and the peer density is calculated
by taking the average of all of the peers’ average neighbours across the test. A peer’s
average neighbour count is found by calculating its neighbours every 500ms throughout
the testing. The peer density as a function of radius is shown in figure 6.1.1. The varied
peer density is analysed according to the aforementioned metrics below.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. PERFORMANCE EVALUATION OF VAST AND MINECRAFT 80

Figure 6.1.1: Figure showing the change in peer density as a function of radius

Bandwidth

The bandwidth can be seen in figure 6.1.2 to have a slightly increasing trend as the PD
increases. This trend is to be expected, as the more neighbours that a peer has the more
information it will be receiving and the more traffic there will be over the network as a
result. It starts at 12.168 KB/s at a PD of 8.71 and ends at 36.1 KB/s at a PD of 23.73
with negligible standard deviations of around 40-50 bytes per second. These numbers
are feasible for purely networking functions as is proven to be scalable at reasonable PDs
(which is determined to be at a PD of 15 at 19.5 KB/s).

Figure 6.1.2: Bandwidth per peer across varying peer densities

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. PERFORMANCE EVALUATION OF VAST AND MINECRAFT 81

Round-trip Time

Immediately it is apparent that the RTT is low for all peer densities in figure 6.1.3, not
going above 4.2ms. This is a favourable sign as it indicates that the network was not
saturated by all of the PDs tested and leaves room for scalability. It is noted that all of
the traffic was routed through a router that was local to the hosts and greatly reduced
the travel time of the packets between the hosts. The standard deviation is minimal and
adds no value to the results and therefore is left out for clarity in the figure.

The results indicate that despite the RTT being low, the increase from a low density of
9 to a high density of 24 results in the RTT doubling. This is significant and shows that
the density cannot increase in a scalable manner, but for all reasonable peer densities, the
RTT is not the bottleneck of the system.

Figure 6.1.3: Round-trip time as a function of peer density

Latency

The effect of an increase in PD on the latency is shown in figure 6.1.4. There is a strong
upward trend to the data, starting at 19.61 ms at a PD of 8.71 and increasing to 355 ms
at a PD of 23.73. This trend shows that the more peers that are connected to a single
peer, the longer it takes to process information.

This is to be expected, as there are more peers doing neighbour discovery and consistency
checks as well as all the messages that are sent and received due to moving neighbours
that are connecting and disconnecting. In this we see that the system is not scalable with
regards to PD as the growth in latency is linear relative to PD growth.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. PERFORMANCE EVALUATION OF VAST AND MINECRAFT 82

This increase in latency is partly a result of the procedure where the peer join request is
forwarded to an acceptor and the subsequent join procedure. The more peers that join
the system, the more hops that the join request needs to do in order to find the correct
acceptor and therefore the higher the latency. This could be improved by using a more
efficient forwarding system for the finding of an acceptor node, as well as the join proce-
dure. However, for the intents and purposes of this project, it is sufficient as this is a test
of the upper limits of the system.

The other contributor to the latency is the actual process of discovering neighbours and
keeping consistency in the peer’s view. Since figure 6.1.4 is showing the average peer
density, some peers have a higher peer density and therefore those peers experience more
latency than the peers who are below the average peer density due to having more neigh-
bours to interact and do consistency checks with.

Figure 6.1.4: Latency as a result of varying peer densities

Consistency

The consistency checked here refers to the topology consistency of the peers. Figure 6.1.5
shows a consistent flat line across all densities with the greatest fluctuation being a 2%
change. This shows that this metric is not affected by PD. That is because it usually
takes a large difference in peer positions for the topology to be altered, and even if there
is one client that is inconsistent when compared to even the lowest density of 8.71, that
only results in a loss of 11.5% for a single instance of a consistency check, of which there
are usually upwards of 10 million across the course of a five-minute test.

When we consider the fact that the topology fixes itself relatively quickly as the position
of the peer is recovered one can understand why consistency is not affected too much.
This does show in the standard deviation showing a spread of about 5% across densities.
This is considered to be scalable.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. PERFORMANCE EVALUATION OF VAST AND MINECRAFT 83

Figure 6.1.5: Consistency of topology as a result of peer density

Drift Distance

In figure 6.1.6, we can see that the drift stays consistent but has a very large standard
deviation in the 20’s. The negative drift numbers indicate a drift in the other direction
and do not indicate negative distances. The standard deviation stays fairly consistent as
well, which shows scalability. The large drifts are a result of the latency being high as we
can see that at the lower densities, the drift is lower but once the latency climbs to a level
above 100 ms, the drift jumps to around 5. The absolute value of the drift distance shows
how the drift distance reaches an average of 11.1 units, but stabilises around this range.
This is a sub-ideal result in terms of the working of the system, as the drift is quite high,
yet it does prove scalability with respect to PD changes, which is sufficient.

Figure 6.1.6: Drift distance relative to peer density (negative numbers indicate opposite
direction)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. PERFORMANCE EVALUATION OF VAST AND MINECRAFT 84

6.1.4 Test 2: Varying the number of peers at a set density

This second test investigates the effect of varying the number of peers in the system at
different density ranges. These effects are measured using the same metrics as in the
previous test.

The running of the test is the same as the previous test - except that instead of the radius
being adjusted to change the density with the same number of peers, both the number of
peers and radius is adjusted. The change of radius is needed to keep a relatively constant
density so that the change in the number of peers is the only variant. Below in figure 6.1.7
one can see the different densities for the two different iterations of the same test where
two varied ranges of densities were tested. The red line represents the higher density
(13-16) and the blue line represents the lower density (11-14).

Figure 6.1.7: Density levels of tests across the number of VON peers

Bandwidth

One can see in figure 6.1.8 that the bandwidth does not follow any regular pattern. There
are peaks at 200 and 650 peers from the higher and lower densities respectively. This is
due mainly to the complexities of how often peers connect and disconnect and the checks
involved, rather than it being dependent on density or the number of peers in the system.
Since it is not dependent on density or the number of peers in the system and the trend
is not increasing, we can say that the bandwidth is not a limiting factor in the scalability
of the system.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. PERFORMANCE EVALUATION OF VAST AND MINECRAFT 85

Figure 6.1.8: Bandwidth relative to number of VON peers

Round-trip Time

The round trip time, seen in figure 6.1.9, is seen to stay consistent at a very low latency (in
the microseconds). This is, again, evidence of the fact that the network was not saturated
and therefore did not affect any other metrics in this test.

Figure 6.1.9: Round-trip time relative to number of peers

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. PERFORMANCE EVALUATION OF VAST AND MINECRAFT 86

Latency

The latency is consistent across the number of peers for both density ranges, as seen
in figure 6.1.10. The latency is lower for the lower number of peers due to the nature of
Voronoi diagrams with fewer peers resulting in less fluctuation in neighbours and therefore
fewer computations for neighbour recalculation. At higher peer counts, the latencies stay
consistent with only a 9 ms difference between the 1000 peer test and 250 peer test for the
blue line and a 10 ms difference between the 850 peer test and 250 peer test for the red line.

For the red line, we see an outlier at 600 peers. This is because of an inconsistency in the
running of that specific test. The inconsistency was in the performance of the test bench.
It does show, as will be discussed later, the effect of latency on drift distance and is the
reason the result was not omitted or redone. It is not, however, taken into account in the
discussion of the indication of the latency results effect on scalability.

The increase in the last three latency data points for the red line is due to the system not
being able to handle the processing of the movement of that number peers at that density.
This shows the importance of maintaining a PD that the system can handle as the 11-14
PD line could handle the movement of the peers at these peer count. The general trend,
however, shows the system to be scalable at the lower density.

Figure 6.1.10: Latencies relative to number of peers

Consistency

In figure 6.1.11, we can see that the consistency stays above 98% for both density ranges
tested across the varying number of peers. The slight decline is due to a higher rate of
change in neighbours due to a greater concentration of peers in the VE. This is seen to

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. PERFORMANCE EVALUATION OF VAST AND MINECRAFT 87

be scalable as although the consistency of some clients is below 90% (as seen by the high
standard deviations) and these consistency levels are acceptable but sub-optimal, the av-
erage consistency did not drop below 98.6% and therefore means that the majority of the
clients experienced 100% consistency. Whilst this is not fair to some of the clients experi-
encing lower consistency, this lower consistency is distributed randomly and can happen
to any of the clients, which makes it fairer as one client would not always experience low
consistency.

Figure 6.1.11: Consistency across number of peers

Drift distance

The drift distance is seen to be fairly consistent with a slight increase in variance when
the density range is increased, as seen in figure 6.1.12. A closer view of the results is
shown in figure 6.1.13. The average drift distance is quite low, staying below 1, except
for the red line which jumps at 600, 900, 950 and 1000 peers. This is consistent with the
latency at these peer numbers. The 600 peer test results (which was the poorest result
in the test) were induced by testing the system in a worst-case scenario. This worst-case
scenario is when single peers are heavily overloaded and fall behind in the tasks that need
to be processed and therefore increase the latency which increases the drift distance. This
is considered an outlier and can be seen in results surrounding it that are vastly different.
These results are consistent when observing the absolute value of the drift distances but
at a higher average level.

We can see that an increase in latency results in a direct increase in drift distance standard
deviation and average as the peer takes longer to process movements and therefore lags
behind the movement updates sent through by the peer, resulting in an outdated view of
neighbour positions. This is seen to be scalable with an increase in peers in the system.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. PERFORMANCE EVALUATION OF VAST AND MINECRAFT 88

Figure 6.1.12: Drift distance versus number of peers for a set peer density

Figure 6.1.13: Zoomed-in figure of drift distance versus number of peers for a set peer
density

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. PERFORMANCE EVALUATION OF VAST AND MINECRAFT 89

6.2 VAST scalability test
With a scalable networking system serving as the underlying architecture for VAST, the
update and event dissemination system that is added on top of this layer needs to continue
this scalable trend in order for VAST to be considered scalable. This test aims to show
that the entire VAST ecosystem can work cohesively as a scalable whole.

6.2.1 Test overview

This test aims to determine the effect of the number of clients versus the number of match-
ers in the system and the performance benefits of adding more matchers to determine the
scalability potential of VAST.

The test first utilises a single matcher and increases the number of clients to determine
the limits of the system. Then it increases the number of matchers in multiples of five
whilst testing over the same range of client increases to determine the benefits of having
more matchers in the system.

6.2.2 Test setup

A single moderately powerful computer is used to host the system (specifications in ap-
pendix B). An entry server is hosted on a Node.js server and listens on a single port as a
connection point for the clients. The VAST clients are then started, first with the gateway
client and then with the following clients connecting to the system through the gateway.
Once all of the VAST clients are connected to the system, clients are connected to the
system. These clients are clients developed to behave like Minecraft clients but without
the stringent aspect of the Minecraft protocol. The clients are given a random waypoint
that they move to within ten seconds. These movements are made every 50ms and are the
distance of the movement is calculated in equation 6.2.1. The MOV EMENT_SPEED
constant is defined as 500 in this test.

Movement = (destination− startingposition)/MOV EMENT_SPEED (6.2.1)

The client sends movement packets and publications at the same interval as the move-
ments. This approximates the network traffic that a single Minecraft client would send
in a normal session. These clients connect one-at-a-time, with each client beginning its
connection procedure once it gets an acknowledgement from the previous client’s join
success callback. The test is run for two minutes once all of the clients have joined and
then all of the clients collectively disconnect from the system.

The clients log the packets that they send and receive. This is used to determine the
performance of the system. These packets contain the position that the packet is published
to, the client that sent the packet and the type of packet. When the packet is received, the
recipient is logged as well. The test is concluded and the results are processed thereafter.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. PERFORMANCE EVALUATION OF VAST AND MINECRAFT 90

6.2.3 Performance evaluation

The results of the testing of the system are shown below. First, the latency experienced
by the clients is discussed, followed by the drift distance of the clients within the system.
Finally, the consistency of the client connectedness is discussed.

Latency

In figure 6.2.1, one can see the average latency that each client experiences as a function
of the increasing number of clients in connection to the system. This is shown in different
coloured lines depending on how many matchers were in the system.

As one can see, the latencies were in the 0-5ms range at every point except for four spikes.
The first two, at 250 and 300 clients for five matchers, shows the limits of the five match-
ers. When the connection process of the clients reaches a level where the matchers are
constantly having to adjust in order to not be overloaded due to incoming connections,
the clients who are already connected to the system are frequently being transferred to
other matchers. This process, in conjunction with the high amount of packets being sent,
results in the system not being able to process events fast enough and therefore results
in latency. Five matchers could not handle 350 clients and therefore there is no data for it.

The other spikes are due to the positioning of the join locations of the clients in the test.
Since the joining positions of the clients are random, a large number of clients can connect
to a specific matcher’s region. This results in the matcher being overloaded more quickly
than usual and results in some initial latency as the matchers rearrange themselves and
clients are shifted to other matchers. This can be seen by the small spike for 35 matchers
at 300 clients and 30 matchers at 350 clients.

One can see that for every other test, the latencies were minimal. The peaks for the other
tests could not be reached due to the test bench not being powerful enough to handle all
of the separate entities without running out of resources.

As one can see, when a matcher reaches its limit, the latency increases drastically but
when that limit is not reached, the latency stays at the same level no matter how many
matchers are in the system. The limit is reached at 5 matchers, but adding more matchers
allowed the system to perform better. This can be seen as a scalable response with respect
to latency.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. PERFORMANCE EVALUATION OF VAST AND MINECRAFT 91

Figure 6.2.1: Average latency that each client experiences as a result of the increase in
clients across different numbers of matchers

Drift distance

In figure 6.2.2, the absolute value of the drift distance of the clients is shown. This drift
distance is given as a function of the number of clients connected to the system. Each
colour of line displays the number of matchers that were in the system.

As one can see, at 50 clients the drift distance was the most erratic across the different
number of matchers, ranging from 0-0.0034 units. These distances are relative to dis-
tances within a Minecraft world. They are different from the drift distances shown in
figure 6.1.13 as this is the client drift distance and not the VON peer drift distance. The
more clients that were in the system, the more the lines converge. The reason for this
is that when a client moves, the precision of the movement is recorded to a much higher
degree on the moving client as opposed to the client receiving the positional update. The
more clients that there are, the less these small inconsistencies matter and therefore the
more the lines converge. This is not affected by the number of matchers and is the reason
that the number of matchers does not affect this metric. If the latency were to increase to
the point where it is higher than the frequency of the positional updates (ie the latency
is higher than 50 ms) then the drift distance would increase in kind as the positional
updates would be received late.

This figure 6.2.2 shows that the density is a result of the latency of the system and there-
fore shows scalability as long as the latency is scalable.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. PERFORMANCE EVALUATION OF VAST AND MINECRAFT 92

Figure 6.2.2: Drift distance of clients across different numbers of matchers

Consistency of client connectedness

Figure 6.2.3 shows the consistency of clients’ connectedness to each other as the number
of clients increase and with different numbers of matchers within the VAST system.

Immediately, it is observable that the slope of the consistency decreases as the clients
increase, as does the consistency with an increasing number of matchers. At 50 clients,
5 matchers resulted in consistency of above 98% whereas for 35 matchers the consistency
was at just above 82%. At 300 clients, 5 matchers were at a consistency of 60% whereas
45 matchers were at a consistency of 36%.

These consistencies are not desirable but are a result of the transferring of clients from
one matcher to another. The more clients that there are, the more clients disconnect from
one matcher and reconnect to another matcher or the more chance there is for a single
matcher to get overloaded and need the other matchers to move closer to it to resulting
in clients taking longer to be reconnected to the system. Similarly, the more matchers
there are, the smaller the regions for each matcher are and therefore the more likely the
clients must transfer from one matcher to another. This disconnection time during the
transfer from matcher to matcher is the reason that the consistency is lower as the client
is briefly not a part of the system, resulting in a disconnection from its peers and a drop
in consistency.

To fix this, the implementation needs to be adjusted so that the client stays connected
to the matcher until the handover has been completed. This will allow the client to stay
connected to the system and not result in a consistency drop when being transferred to a
different matcher.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. PERFORMANCE EVALUATION OF VAST AND MINECRAFT 93

Figure 6.2.3: Consistency of client connectedness across different numbers of matchers in
VAST

The results do show, however, that the consistency differs less as more matchers are added.
In the bottom five lines at 350 clients, represented by 30, 35, 40, 45 and 50 matchers, are
all clustered within 10% of each other as opposed to the top four lines, represented by
10, 15, 20 and 25 matchers, which are spread across a 20% range. This shows that the
system is reaching a saturation level where the number of matchers is no longer the issue
for consistency. This is due to the number of clients that a single matcher can handle
stabilising, and results in fewer movements of the matchers which increases client connec-
tivity time and results in a stabilisation of the consistency loss.

Whilst this consistency graph does not show scalability, the proposed implementations
should increase the consistency of the system and result in better performance.

6.3 Minecraft integrated into VAST
In this test, the performance of Minecraft with the event and update dissemination being
handled by VAST is evaluated. The test overview is described as well as the test set-up,
followed by a discussion of the results and finally the conclusion.

6.3.1 Test overview

This test aims to determine whether Minecraft can function when using VAST as an SPS
system to disseminate updates and events and whether it can do so with playable perfor-
mance.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. PERFORMANCE EVALUATION OF VAST AND MINECRAFT 94

The test consists of a Spigot Minecraft server with a plugin that logs the movements
of players that are connected to the system. It also has a server and client proxy that
serves to interpret between the Minecraft server and VAST and the emulated Minecraft
clients that connect to the system. These emulated clients are light-weight clients that
are command-line based and behave and work exactly as a normal Minecraft client would.
Finally, the different number of VAST nodes needed are run.

6.3.2 Test setup

The test commences with the starting of the Spigot server. The entry server is started
and it listens for incoming connections on a specific port (2999 in this case). The desired
number of VAST nodes are then started according to what is required in the test and
the server and client proxy are started, giving them the required ports that they need to
connect to. The server proxy connects to the Spigot server and the entry server whilst
the client proxy connects to the entry server and the Minecraft clients connect to this.
Once all of this has started up, the desired number of clients is connected to the system
and the test is run for two minutes before the clients are disconnected one-at-a-time. This
setup is shown in figure 6.3.1

Figure 6.3.1: Test set up for the integration of Minecraft and VAST

This test uses a moderately powerful computer to host all of this (described in appendix
B). There is no result for the five matcher 35 client test due to the lack of access to
additional computational capacity in the test bench.

6.3.3 Performance evaluation

The results of the test are shown below. First, the latency results are discussed, followed by
the drift results and finally, the consistency of the system is discussed. More matchers and
more clients could not be added due to test bench limitations as well as time limitations.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. PERFORMANCE EVALUATION OF VAST AND MINECRAFT 95

Figure 6.3.2: Latency of Minecraft clients with different number of VAST nodes

Latency

As can be seen in figure 6.3.2, the latency is plotted against the number of clients in the
system, with each line representing the number of VAST nodes joined to the system.

The latency for a single matcher climbs dramatically when it reaches 30-35 clients whereas,
for five matchers, the latency decreases from 20 to 25/30 clients. This shows that the
system performs better when there are more matchers due to all of the traffic being dis-
tributed between the matchers instead of being processed by a single matcher.

When there is a single matcher, the latency climbs to levels that are unacceptable for
normal play, however, for five matchers the latency is low and the game is playable. This
shows the viability of Minecraft running through VAST when it comes to interactivity
due to latency and shows that there is potential for the system to grow even further than
the test bench allows. It serves as a proof of concept that this could be taken even further.

Drift

Figure 6.3.3 shows the absolute value of the drift distance that the clients perceive of other
clients. This is plotted against the number of clients and the different lines represent the
number of VAST nodes within the system.

As one can see, the drift distance for a single matcher starts quite low at 0.12 units and
climbs to 0.34 units at 15 matchers before levelling off. This shows that the drift distance
is not affected by the number of clients in the system for the ranges tested. The reason for
this is that even though the latency increased, the subscription was still being updated
quickly enough on VAST so that the publication of updates continued to reach the clients.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. PERFORMANCE EVALUATION OF VAST AND MINECRAFT 96

Figure 6.3.3: Drift distance of Minecraft clients connected through different number of
VAST nodes

For five matchers, the drift distance stays relatively stable and decreases for 15, 25 and
30 clients to being less than the drift distance of a single matcher. This is a result of the
clients crossing boundary thresholds less often and therefore not being disconnected for
as long. This results in the clients having a more accurate view of where the other players
are. The distribution of load across matchers also results in clients receiving information
faster as opposed to a single matcher. This can be seen in the lower latencies in figure 6.3.2
for 25 and 30 clients for 5 matchers relative to a single matcher. This shows that from
what was tested, the number of matchers decreases the drift distance of the clients.

Consistency

Figure 6.3.4 shows the consistency of client connectedness between the Minecraft clients
when there is an increasing number of Minecraft clients connected to the system. The
different lines show the number of VAST nodes in the system at the time.

The consistency of a single matcher is satisfactory, remaining above 95% for the entire
range of clients. This means that as the latency increased since the drift distance stayed
constant, the clients still had an accurate view of where the other clients were and there-
fore still received updates from them as they should have.

The consistency of five matchers decreased for 25 and 30 Minecraft clients. As before
in section 6.2.3, the more matchers that there are in the system, the more chance that
a client can be transferred from one matcher to another and therefore the more time it
spends disconnected from the system. This results in the consistency decreasing due to

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. PERFORMANCE EVALUATION OF VAST AND MINECRAFT 97

Figure 6.3.4: Consistency of Minecraft client view when connected through different num-
bers of VAST nodes

the client no longer sending and receiving updates until it reconnects to its destination
matcher.

The consistency results show that Minecraft is playable with multiple clients and whilst
the consistency is lowered to 70% when multiple matchers are introduced, the game is in a
playable state. By changing the implementation in the future and allowing the Minecraft
client to stay connected to the system whilst being transferred, the consistency could be
improved.

6.3.4 Summary of Minecraft results

As a whole, the Minecraft results when running through the VAST system show that
Minecraft is playable and that by adding more matchers, some results improve. With
the proposed changes and solutions, it is believed that all results could be improved. In
theory, this allows more clients to join the system than when a single matcher is in the
system. The latency improved as more matchers were added to the system. Additional
matchers allowed for acceptable levels of latency. Drift distance decreased when more
matchers were added and showed acceptable levels whether there was a single matcher or
multiple matchers. The consistency was the only metric that suffered when more matchers
were introduced but a solution was given to rectify the results to improve the system in
the future. The proposed solution is to have the clients stay connected to the matchers
when transferring from one matcher to another rather than be disconnected during the
transfer.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. PERFORMANCE EVALUATION OF VAST AND MINECRAFT 98

6.4 Summary
This chapter first tested the performance of the VON layer and whether it displays scal-
able properties. It looked at the bandwidth, RTT, latency, drift distance and consistency
of the system. It tested for a varying peer density to see the effect on scalability as well
as varying the number of peers at a set density to observe the effect that that had. From
these results, VON was seen to be scalable.

The next evaluation was that of VAST as a whole, with the entry server included. The
drift distance, latency and consistency of the clients were evaluated. The drift distance
and latency showed scalable results, whilst consistency showed diminishing returns. This
was reduced down to the disconnecting of clients when being transferred between match-
ers and a recommendation of how to improve it was given.

Finally, Minecraft integrated into VAST was evaluated. The drift distance, latency and
consistency were observed and discussed. The latency showed improved performance when
more matchers were added to the system whilst the drift distance decreased when more
matchers were added. The consistency decreased as expected when more matchers were
added due to the same reason of clients disconnecting when being transferred between
matchers.

The next chapter concludes this thesis by summarising the aforementioned research and
results and suggests future work that could be done to improve the system.

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

Conclusion

7.1 Introduction
This thesis aims to integrate Minecraft with an SPS system to replace its update and event
dissemination. This is done to show that a traditional MMVE can be made to be scalable,
and could furthermore benefit from using VAST to handle its message dissemination.
MMVEs were investigated to determine the key requirements that are common to the
genre as well as the major obstacles currently faced by researchers. VAST as a system
was discussed and the design of the different aspects of the system were explained. To
test VAST’s performance in a real-world environment, Minecraft was adapted to integrate
with VAST. The viability of Minecraft benefiting from SPS functionality was investigated
before the performance of the system was evaluated. Firstly, the different layers of VAST
were tested to explore how scalable the system was and then the integration between
Minecraft and VAST was evaluated to see how well it performed.

7.2 System performance
The first test was whether Minecraft would benefit from an SPS update and event dis-
semination method. It was found that 95% of packets that were sent in a normal player
session were suitable to be sent as a publication with a specific location. For two clients
it was found that the 95% of SPS-viable packets could be reduced by 33.52% and would
only increase with more clients in the system.

The second test was for VON’s scalability potential in isolation to the rest of the Minecraft
system. It was evaluated to be scalable at a peer density of 15 with the bandwidth amount-
ing to 24.5 KB/s, an RTT of 2ms, a latency of 150ms which could be improved with a
better forwarding algorithm, a consistency of above 95% and a drift distance of just over
3 units.

The next test evaluated VON’s scalability when increasing the number of peers at the set
peer density of 16 and below. The bandwidth stayed within the 1.5-4.75kbps range, the
RTT stayed below 2ms, the latency stayed lower than 45ms, the consistency higher than
98% and the drift distance remained under 5 units. However, the drift distance standard
deviation was high as a result of the increased latency but was seen to be acceptable for

99

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. CONCLUSION 100

scalable purposes due to the drift distance standard deviation staying within a constant
band of 30 units. The layer was determined to be scalable.

The next test evaluated the scalability of VAST as a whole. It used clients that simu-
lated a Minecraft client’s network traffic to stress test the VAST system. The latency,
consistency and drift distance were measured. The latency spiked when the 5 matchers
got overloaded but stayed low when increasing the matchers to 10-50. The drift distance
converged to a range of 0.0008-0.0012 units when more matchers were added and consis-
tency decreased from a range of 80-100% to 27-60%. This decrease was attributed to the
disconnecting that a client experiences when transferring across matchers and could be
rectified if the client stayed connected until the transfer to the new matcher was complete.
The system was determined to be scalable for the ranges that the test bench could handle,
which was 50 matchers with 350 clients.

Finally, the integration of Minecraft with VAST was tested. The latency, consistency and
drift were evaluated. The latency increased for one matcher as it hit its limit at 30 clients
within the system, but stabilised when five matchers were introduced into the system.
The drift distance was unaffected due to the latency not being high enough for the clients
to miss positional updates. The consistency dropped in the same way that it did for the
previous test for the same reason of clients being disconnected from the system for a small
period of time. The metrics showed that the game was playable and therefore that the
system was a success.

7.3 Concluding analysis
The objectives stated in 1.7 were partially met and are each discussed below.

7.3.1 VAST port from C++ to JavaScript

VAST was successfully converted to JavaScript in that it is working with the same level
of functionality that the C++ version did. However, the conversion is not optimised to
its full potential. Optimisations that should be implemented include:

• Changing the forwarding algorithm of VON’s acceptor finder to search more effi-
ciently.

• Changing the way that messages are routed from client to matcher so that they do
not have to go through the entry server. This requires a modification of the API so
that the client can reconnect to a different matcher whilst already being connected
to the system.

• Allow for multiple ESs so that the load of multiple TCP connections does not
overload any single ES (load balancing on ES). It could be another layer in VAST
controlled by a Voronoi diagram.

This objective is considered to be achieved based on these conclusions.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. CONCLUSION 101

7.3.2 VAST showing scalable properties

As discussed in section 7.2, VON was determined to be scalable in all of the tests that
were performed on it. VAST as a whole was determined to be scalable for the ranges that
the test bench could handle. Larger tests using more powerful and robust test benches
could be done to observe how the system performs with greater client and matcher scales.
However, in theory, and the observable results given in this thesis the system will be able
to handle these larger tests, and this objective is considered to be met.

7.3.3 SPS viability and benefits in Minecraft

Section 5.3 describes the investigation into the viability and potential of Minecraft using
SPS for its update and event dissemination. This found that 95% of packets could be
published with coordinates and at minimum, the reduction in packets using SPS for a
normal usage session is 33.52%. This is a large reduction in network traffic and Minecraft
could, therefore, benefit from using SPS for its event and update dissemination.

7.3.4 Interface between Minecraft and VAST

The client and server proxies developed allowed Minecraft packets to successfully be pub-
lished and for subscriptions to be made. This objective has therefore been met.

7.3.5 Minecraft functioning through VAST

Minecraft could successfully be played through VAST in its most basic form. However, the
reduction in packets could not be implemented due to foundational work that is needed to
be done on the Minecraft server to change the way that it handles player connections. The
player connections would need to be independent of player sessions so that the Minecraft
server could publish a single packet for an event that happens rather than multiple packets
for individual player connections. Minecraft was also not implemented with Koekepan.
The server modifications are necessary before Koekepan would benefit from the scalability
of Minecraft integrated with VAST. This objective is partially met, yet further work in
future research could be aimed at improving the success of the system in this area.

7.4 Future work
The recommended future work is as follows:

• The VAST system could be optimised by replacing the greedy forwarding method
of the VON layer’s JOIN procedure with a procedure that produces fewer hops and
finds the acceptor more efficiently.

• The routing of information through the entry server and the bottleneck that it
would inevitably create could be circumvented by creating a way to have multiple
entry servers as well as a way for the entry server to hand over the connection it
has with a client to the relevant matcher so that all Minecraft packets do not get
routed through the entry server. This would leave the entry server to only find
the relevant matcher for the connecting clients and manage the positions of load
balancing matchers.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. CONCLUSION 102

• The transferring of clients could be streamlined to not disconnect completely from
the system whilst in the process of being transferred to another matcher.

• The system could be properly integrated with the Koekepan system so that it can
be truly scalable with access to multiple servers running the same Minecraft world.

• The Minecraft server needs to be modified so that it fully utilises the SPS function-
ality that it has been evidenced to be compatible with. This would involve going to
each point in the code at which updates are sent to multiple clients and change it
so that it only sends a single update to an SPS connection that is made. It would
also need to make only a single connection, as opposed to a single connection for
every client that connects to it. This is essentially an amalgamation of the server
proxy and the Minecraft server. Until this is done, the Minecraft server cannot fully
utilise the power of SPS.

While the Minecraft server cannot fully utilise the power of SPS currently, the benefits
presented in this thesis show how MMVEs can utilise SPS and VAST to become more
scalable.

Stellenbosch University https://scholar.sun.ac.za

Appendix A

Cluster computer specifications

Table A.1: Specifications of cluster test computer

Part Specification
CPU Intel Core i5-2400S CPU @ 2.5GHz (4 cores)
RAM 3.7 GB

Network interface Intel 82579LM Gigabit Network interface
OS Linux Mint 18.3 Cinnamon 64-bit (version 3.6.6)

Kernel Linux Kernel 4.10.0-38-generic

103

Stellenbosch University https://scholar.sun.ac.za

Appendix B

Single computer specifications

Table B.1: Specifications of moderately powerful test computer

Part Specification
CPU Intel Core i7-8700K @ 3.7GHz base (12 cores, 64-bit,

12MB cache, 4.7GHz Max frequency)
RAM 16 GB

Graphics Card NVidia GeForce GTX 750 (2GB GDDR5 VRAM)
OS Windows 10 Professional

104

Stellenbosch University https://scholar.sun.ac.za

Appendix C

Source code

Source code for VAST can be found at https://github.com/imonology/VAST.js.

Source code for the Minecraft proxies can be found at https://bitbucket.org/hebrecht/
herobrineproxy/src/v1.11.2_sps/ on the v1.11.2_sps branch at the time of writing.

105

Stellenbosch University https://scholar.sun.ac.za

https://github.com/imonology/VAST.js
https://bitbucket.org/hebrecht/herobrineproxy/src/v1.11.2_sps/
https://bitbucket.org/hebrecht/herobrineproxy/src/v1.11.2_sps/

Bibliography

[1] Hu, S.-Y., Chen, J.-F. and Chen, T.-H.: Von: a scalable peer-to-peer network for virtual
environments. IEEE Network, vol. 20, no. 4, pp. 22–31, July 2006. ISSN 1558-156X.

[2] Hu, S.-Y., Wu, C., Buyukkaya, E., Chien, C.-H., Lin, T.-H., Abdallah, M., Jiang, J.-
R. and Chen, K.-T.: A spatial publish subscribe overlay for massively multiuser virtual
environments. 2010 International Conference on Electronics and Information Engineering,
vol. 2, pp. V2–314–V2–318, 2010.

[3] Engelbrecht, H.A. and Schiele, G.: Koekepan: Minecraft as a research platform. Annual
Workshop on Network and Systems Support for Games, pp. 10–12, 2013. ISSN 21568146.

[4] Hu, S.-Y. and Liao, G.-M.: Scalable peer-to-peer networked virtual environment. In: Pro-
ceedings of 3rd ACM SIGCOMM Workshop on Network and System Support for Games,
NetGames ’04, pp. 129–133. ACM, New York, NY, USA, 2004. ISBN 1-58113-942-X.
Available at: http://doi.acm.org/10.1145/1016540.1016552

[5] Kawahara, Y., Morikawa, H. and Aoyama, T.: A peer-to-peer message exchange scheme
for large scale networked virtual environments. In: The 8th International Conference on
Communication Systems, 2002. ICCS 2002., vol. 2, pp. 957–961 vol.2. Nov 2002.

[6] Bourke, P.: Circles and Spheres. 1992.
Available at: http://paulbourke.net/geometry/circlesphere/

[7] Hu, S. and Chen, K.: Vso: Self-organizing spatial publish subscribe. In: 2011 IEEE Fifth In-
ternational Conference on Self-Adaptive and Self-Organizing Systems, pp. 21–30. Oct 2011.
ISSN 1949-3673.

[8] Entertainment Software Industry: Essential Facts About the Computer and Video Game
Industry 2019. Entertainment Software Association, 2019.
Available at: https://www.theesa.com/wp-content/uploads/2019/05/ESA_Essential_
facts_2019_final.pdf

[9] Entertainment Software Industry: Essential Facts About the Computer and Video Game
Industry 2018. Entertainment Software Association, 2018.
Available at: https://www.theesa.com/wp-content/uploads/2019/03/ESA_
EssentialFacts_2018.pdf

[10] Cecin, F., Jannone, R., Geyer, C., Martins, M. and Barbosa, J.: Freemmg: a hybrid peer-
to-peer and client-server model for massively multiplayer games. p. 172. 01 2004.

[11] Electronic Arts: Black & White 2.
Available at: https://www.ea.com/games/black-and-white/black-and-white-2

[12] Electronic Arts: Spore. 2009.
Available at: https://www.spore.com/

106

Stellenbosch University https://scholar.sun.ac.za

http://doi.acm.org/10.1145/1016540.1016552
http://paulbourke.net/geometry/circlesphere/
https://www.theesa.com/wp-content/uploads/2019/05/ESA_Essential_facts_2019_final.pdf
https://www.theesa.com/wp-content/uploads/2019/05/ESA_Essential_facts_2019_final.pdf
https://www.theesa.com/wp-content/uploads/2019/03/ESA_EssentialFacts_2018.pdf
https://www.theesa.com/wp-content/uploads/2019/03/ESA_EssentialFacts_2018.pdf
https://www.ea.com/games/black-and-white/black-and-white-2
https://www.spore.com/

BIBLIOGRAPHY 107

[13] Official Minecraft Wiki - The ultimate resource for all things Minecraft. 2017.
Available at: https://minecraft.gamepedia.com/Minecraft_Wiki

[14] Gilmore, J. and Engelbrecht, H.: A survey of state persistency in peer-to-peer massively
multiplayer online games. Parallel and Distributed Systems, IEEE Transactions on, vol. 23,
pp. 1 – 1, 05 2012.

[15] Yahyavi, A. and Kemme, B.: Peer-to-peer architectures for massively multiplayer online
games: A survey. ACM Comput. Surv., vol. 46, no. 1, pp. 9:1–9:51, July 2013. ISSN 0360-
0300.
Available at: http://doi.acm.org/10.1145/2522968.2522977

[16] Young, R.D.: Npsnet-iv: a real-time, 3d distributed interactive virtual world. 1993.
Available at: https://calhoun.nps.edu/handle/10945/40017

[17] Knutsson, B., Honghui Lu, Wei Xu and Hopkins, B.: Peer-to-peer support for massively
multiplayer games. In: IEEE INFOCOM 2004, vol. 1, p. 107. March 2004. ISSN 0743-166X.

[18] Bharambe, A., Douceur, J., Lorch, J., Moscibroda, T., Pang, J., Seshan, S. and Zhuang, X.:
Donnybrook: Enabling large-scale, high-speed, peer-to-peer games. vol. 38, pp. 389–400. 01
2008.

[19] Funkhouser, T.A.: Ring: A client-server system for multi-user virtual environments. In:
Proceedings of the 1995 Symposium on Interactive 3D Graphics, I3D ’95, pp. 85–ff. ACM,
New York, NY, USA, 1995. ISBN 0-89791-736-7.
Available at: http://doi.acm.org/10.1145/199404.199418

[20] Diaconu, R. and Keller, J.: Kiwano: Scaling virtual worlds. In: 2016 Winter Simulation
Conference (WSC), pp. 1836–1847. Dec 2016. ISSN 1558-4305.

[21] Stoica, I., Morris, R., Karger, D., Kaashoek, M. and Balakrishnan, H.: Chord: A scalable
peer-to-peer lookup service for internet applications. vol. 149-160, pp. 149–160. 01 2001.

[22] Rowstron, A.: Pastry: Scalable, distributed object location and routing for large-scale peer-
to-peer systems. Middleware, 07 2001.

[23] Lawver, B.: Minecraft Now Has Over 100 Million Monthly Active Players. 2019.
Available at: https://screenrant.com/minecraft-100-million-monthly-active-players/

[24] Chen, J.: Locality aware dynamic load management for massively multiplayer games. pp.
289–300. 01 2005.

[25] Schiele, G., SÃ¼selbeck, R., Wacker, A., HÃ¤hner, J., Becker, C. and Weis, T.: Require-
ments of peer-to-peer-based massively multiplayer online gaming. pp. 773–782. 05 2007.

[26] Claypool, M. and Claypool, K.: Latency and player actions in online games. Commun.
ACM, vol. 49, no. 11, pp. 40–45, November 2006. ISSN 0001-0782.
Available at: http://doi.acm.org/10.1145/1167838.1167860

[27] Beigbeder, T., Coughlan, R., Lusher, C., Plunkett, J., Agu, E. and Claypool, M.: The effects
of loss and latency on user performance in unreal tournament 2003®. In: Proceedings of
3rd ACM SIGCOMM Workshop on Network and System Support for Games, NetGames ’04,
pp. 144–151. ACM, New York, NY, USA, 2004. ISBN 1-58113-942-X.
Available at: http://doi.acm.org/10.1145/1016540.1016556

Stellenbosch University https://scholar.sun.ac.za

https://minecraft.gamepedia.com/Minecraft_Wiki
http://doi.acm.org/10.1145/2522968.2522977
https://calhoun.nps.edu/handle/10945/40017
http://doi.acm.org/10.1145/199404.199418
https://screenrant.com/minecraft-100-million-monthly-active-players/
http://doi.acm.org/10.1145/1167838.1167860
http://doi.acm.org/10.1145/1016540.1016556

BIBLIOGRAPHY 108

[28] Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J. and Hauser, C.H.:
Managing update conflicts in bayou, a weakly connected replicated storage system. SIGOPS
Oper. Syst. Rev., vol. 29, no. 5, pp. 172–182, December 1995. ISSN 0163-5980.
Available at: http://doi.acm.org/10.1145/224057.224070

[29] Gilbert, S. and Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, vol. 33, no. 2, pp. 51–59, June 2002. ISSN
0163-5700.
Available at: http://doi.acm.org/10.1145/564585.564601

[30] IEEE: IEEE standard for distributed interactive simulation application protocols. Tech.
Rep., IEEE, 2012.

[31] Hamilton, J.A., Nash, D.A. and Pooch, U.W.: Distributed simulation, vol. 8. CRC Press,
1997.

[32] Engelbrecht, H.A. and Schiele, G.: Transforming Minecraft into a research platform. In:
2014 IEEE 11th Consumer Communications and Networking Conference, CCNC 2014, pp.
257–262. 2014. ISBN 9781479923557.

[33] Smed, J., Kaukoranta, T. and Hakonen, H.: Aspects of networking in multiplayer computer
games. 2001.

[34] Castro, M., Druschel, P., Kermarrec, A.-M. and Rowstron, A.I.: Scribe: A large-scale and
decentralized application-level multicast infrastructure. IEEE Journal on Selected Areas in
communications, vol. 20, no. 8, pp. 1489–1499, 2002.

[35] Cordasco, G., De Chiara, R., Erra, U. and Scarano, V.: Some considerations on the design
of a p2p infrastructure for massive simulations. pp. 1–7. 10 2009.

[36] Shaikh, A., Sahu, S., Rosu, M.., Shea, M. and Saha, D.: On demand platform for online
games. IBM Systems Journal, vol. 45, no. 1, pp. 7–19, 2006. ISSN 0018-8670.

[37] Chen, K.-T., Huang, P., Huang, C.-Y. and Lei, C.-L.: Game traffic analysis: an mmorpg
perspective. pp. 19–24. 06 2005.

[38] Carlini, E., Coppola, M. and Ricci, L.: Integration of p2p and clouds to support massively
multiuser virtual environments. In: 2010 9th Annual Workshop on Network and Systems
Support for Games, pp. 1–6. Nov 2010. ISSN 2156-8138.

[39] Buyukkaya, E., Abdallah, M. and Simon, G.: A survey of peer-to-peer overlay approaches
for networked virtual environments. pp. 276–300, 2015.

[40] Wang, C. and Li, B.: Peer-to-peer overlay networks: A survey. 09 2004.

[41] Henninger, A., Gonzalez, A. and Reece, D.: Predicting Agent Spatial Information: A Com-
parison Between Neural Networks and Dead Reckoning Algorithms, pp. 459–464. 04 2019.
ISBN 9781315782379.

[42] Mauve, M., Vogel, J. and Hilt, V.: Local-lag and timewarp: Providing consistency for
replicated continuous applications. Multimedia, IEEE Transactions on, vol. 6, pp. 47 – 57,
03 2004.

[43] Loral Systems Company: Distributed Interactive Simulation Architecture Description Doc-
ument Volume II: Supporting Rationale Book II: DIS Architecture Issues. 2nd edn. ADST
Program Office, Florida, 1992. ISBN ADST/WDL/TR-92-003010.

Stellenbosch University https://scholar.sun.ac.za

http://doi.acm.org/10.1145/224057.224070
http://doi.acm.org/10.1145/564585.564601

BIBLIOGRAPHY 109

[44] Benford, S. and Fahlén, L.: A spatial model of interaction in large virtual environments. In:
Proceedings of the Third European Conference on Computer-Supported Cooperative Work
13–17 September 1993, Milan, Italy ECSCW’93, pp. 109–124. Springer, 1993.

[45] Iimura, T., Hazeyama, H. and Kadobayashi, Y.: Zoned federation of game servers: a peer-
to-peer approach to scalable multi-player online games. pp. 116–120. 01 2004.

[46] Yu, A. and Vuong, S.: Mopar: a mobile peer-to-peer overlay architecture for interest man-
agement of massively multiplayer online games. pp. 99–104. 01 2005.

[47] Macedomia, M.R., Zyda, M.J., Pratt, D.R., Brutzman, D.P. and Barham, P.T.: Exploiting
reality with multicast groups: A network architecture for large-scale virtual environments.
In: Proceedings of the Virtual Reality Annual International Symposium (VRAIS’95), VRAIS
’95, pp. 2–. IEEE Computer Society, Washington, DC, USA, 1995. ISBN 0-8186-7084-3.
Available at: http://dl.acm.org/citation.cfm?id=527216.835997

[48] Jaramillo, J., Escobar, L. and Trefftz, H.: Area of interest management by grid-based
discrete aura approximations for distributed virtual environments. 01 2003.

[49] Boulanger, J.-S., Kienzle, J. and Verbrugge, C.: Comparing interest management algorithms
for massively multiplayer games. In: Proceedings of 5th ACM SIGCOMM Workshop on
Network and System Support for Games, NetGames ’06. ACM, New York, NY, USA, 2006.
ISBN 1-59593-589-4.
Available at: http://doi.acm.org/10.1145/1230040.1230069

[50] Buyukkaya, E. and Abdallah, M.: Efficient triangulation for p2p networked virtual environ-
ments. Multimedia Tools and Applications, vol. 45, pp. 291–312, 10 2008.

[51] Hu, S.-Y., Chang, S.-C. and Jiang, J.-R.: Voronoi state management for peer-to-peer mas-
sively multiplayer online games. pp. 1134 – 1138. 02 2008.

[52] Online, E.: EVE-online Status Monitor. 2019.
Available at: https://eve-offline.net/?server=tranquility

[53] Stubbings, D.: EVE Online gamers set new record for taking part in a huge video game
battle. 2018.
Available at: https://www.guinnessworldrecords.com/news/2018/4/
eve-online-gamers-set-new-record-for-taking-part-in-a-huge-video-game-battle-522213

[54] Hu, S.-Y.: Spatial publish subscribe.

[55] Gautier, L. and Diot, C.: Design and evaluation of mimaze a multi-player game on the
internet. In: Proceedings. IEEE International Conference on Multimedia Computing and
Systems (Cat. No.98TB100241), pp. 233–236. July 1998.

[56] Abrams, H., Watsen, K. and Zyda, M.: Three tiered interest management for large-scale
virtual environments. 1998.
Available at: https://calhoun.nps.edu/handle/10945/41588

[57] Schmieg, A., Stieler, M., Jeckel, S., Kabus, P., Kemme, B. and Buchmann, A.: psense
- maintaining a dynamic localized peer-to-peer structure for position based multicast in
games. In: 2008 Eighth International Conference on Peer-to-Peer Computing, pp. 247–256.
Sep 2008. ISSN 2161-3567.

[58] Keller, J. and Simon, G.: Solipsis: A massively multi-participant virtual world. pp. 262–268.
01 2003.

Stellenbosch University https://scholar.sun.ac.za

http://dl.acm.org/citation.cfm?id=527216.835997
http://doi.acm.org/10.1145/1230040.1230069
https://eve-offline.net/?server=tranquility
https://www.guinnessworldrecords.com/news/2018/4/eve-online-gamers-set-new-record-for-taking-part-in-a-huge-video-game-battle-522213
https://www.guinnessworldrecords.com/news/2018/4/eve-online-gamers-set-new-record-for-taking-part-in-a-huge-video-game-battle-522213
https://calhoun.nps.edu/handle/10945/41588

BIBLIOGRAPHY 110

[59] Buyukkaya, E. and Abdallah, M.: Efficient triangulation for p2p networked virtual environ-
ments. Multimedia Tools and Applications, vol. 45, pp. 291–312, 10 2008.

[60] Ghaffari, M., Hariri, B. and Shirmohammadi, S.: A delaunay triangulation architecture
supporting churn and user mobility in mmves. pp. 61–66. 06 2009.

[61] Guibas, L. and Stolfi, J.: Primitives for the manipulation of general subdivisions and the
computation of voronoi diagrams. vol. 4, pp. 221–234. 01 1983.

[62] Franklin, W.R.: PNPOLY - Point Inclusion in Polygon Test. 2018.
Available at: https://wrf.ecse.rpi.edu//Research/Short{_}Notes/pnpoly.html

[63] Protocol FAQ. 2019.
Available at: https://wiki.vg/Protocol{_}FAQ

[64] Server/Requirements/Dedicated. 2019.
Available at: https://minecraft.gamepedia.com/Server/Requirements/Dedicated

[65] Persson, S.: Celebrating 10 Years of Minecraft. 2019.
Available at: https://news.xbox.com/en-us/2019/05/17/minecraft-ten-years/

[66] Diaconu, R., Keller, J. and Valero, M.: Manycraft: Scaling minecraft to millions. In: 2013
12th Annual Workshop on Network and Systems Support for Games (NetGames), pp. 1–6.
Dec 2013. ISSN 2156-8138.

[67] Rossouw, J.K.: Development of a Minecraft Multiple Client Emulator. Tech. Rep. Novem-
ber, University of Stellenbosch, 2015.

[68] SteveIce10: McProtocolLib. 2019.
Available at: https://github.com/Steveice10/MCProtocolLib

Stellenbosch University https://scholar.sun.ac.za

https://wrf.ecse.rpi.edu//Research/Short{_}Notes/pnpoly.html
https://wiki.vg/Protocol{_}FAQ
https://minecraft.gamepedia.com/Server/Requirements/Dedicated
https://news.xbox.com/en-us/2019/05/17/minecraft-ten-years/
https://github.com/Steveice10/MCProtocolLib

	Abstract
	Samevatting
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Massively Multi-user Virtual Environments
	The client
	Virtual environments
	Objects and entities
	System architectures
	Event-update cycle
	Requirements of an MMVE
	Scalability research

	VAST
	Minecraft
	The world
	Objects, entities and the event/update cycle

	Koekepan
	Research goal
	Thesis Approach
	Thesis Objectives
	Thesis Overview

	Background of MMVEs
	MMVE requirements
	Interactivity and fairness
	Consistency
	Persistence
	Scalability

	MMVE architectures
	Client/server
	Client/multi-server
	Peer-to-peer
	Hybrid P2P

	Researched solutions to architectural problems
	Generic solutions
	Client-server and multi-server solutions
	P2P and hybrid P2P solutions

	Summary

	VAST
	Voronoi diagrams
	VON Hu2006
	Neighbour discovery
	JOIN procedure
	MOVE procedure
	LEAVE procedure

	Voronoi Self-organising Overlay and the entry server
	Architecture of VSO
	Spatial publish/subscribe (SPS)

	VAST API
	JOIN procedure
	SUBSCRIBE procedure
	MOVE procedure
	PUBLISH procedure
	UNSUBSCRIBE procedure
	LEAVE procedure

	Implementation challenges and considerations
	Migrating from C++ to JavaScript
	Overlapping clients and VAST nodes
	Consistency and neighbour discovery
	Robustness
	Load balancing

	Summary

	Minecraft
	The server
	World state
	The player entity
	Non-playable characters
	Networking and the Minecraft protocol
	Handshaking sub protocol
	Login state sub protocol
	Play sub protocol
	Status sub protocol

	Event and update dissemination
	MMVE requirements in Minecraft
	Interactivity and fairness
	Consistency
	Persistence
	Scalability

	Interest Management
	Research in Minecraft
	Manycraft and Kiwano

	Summary

	Minecraft and VAST
	VAST and Minecraft
	Client proxy design
	Server Proxy
	Minecraft client login procedure

	Implementation challenges
	Connection sequence
	Duplicate packets
	Update dissemination by the Minecraft server

	Minecraft SPS potential
	Theoretical analysis
	Hypothesis and setup
	Practical analysis and results of SPS potential
	Packet reduction potential
	Conclusion on Minecraft SPS viability

	Summary

	Performance Evaluation of VAST and Minecraft
	VON scalability performance
	Metrics
	Test bench and set up
	Test 1: Varying the peer density
	Test 2: Varying the number of peers at a set density

	VAST scalability test
	Test overview
	Test setup
	Performance evaluation

	Minecraft integrated into VAST
	Test overview
	Test setup
	Performance evaluation
	Summary of Minecraft results

	Summary

	Conclusion
	Introduction
	System performance
	Concluding analysis
	VAST port from C++ to JavaScript
	VAST showing scalable properties
	SPS viability and benefits in Minecraft
	Interface between Minecraft and VAST
	Minecraft functioning through VAST

	Future work

	Cluster computer specifications
	Single computer specifications
	Source code
	Bibliography

