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Abstract 

Water is arguably the most vital natural resource on Earth.  It is of critical importance to humans, plants, 

animals, environments as well as ecosystems. Agriculture is estimated to be responsible for the abstraction 

of approximately 66 – 70 % of the freshwater supply globally, with that number rising to 90 % in some 

countries. The wine industry in South Africa is responsible for producing large amounts of wastewater with 

1.24 billion litres of wastewater generated in 2018.  Winery wastewater is challenging to treat due to variable 

strength and seasonal compositional variation. Biological treatments are very effective for the removal of 

organic pollutants in winery wastewater. Anaerobic digestion is an example of a biological treatment that 

has been widely used for the treatment of winery wastewater. Anaerobic sequencing batch reactor (AnSBR) 

is a viable option for the treatment of winery wastewater. The technology is still under development and has 

not been used extensively in the wine industry. The advantages of the AnSBR include ease of changing 

operational parameters, can operate in batch or fed-batch mode; it efficiently removes chemical oxygen 

demand (COD) and generates biogas with a high methane percentage, that can potentially be reclaimed as a 

source of heat generation. Knowledge of the optimal conditions for pH, mixing intervals and feeding time of 

the AnSBR is limited and needs to be investigated. Two important parameters for the overall stability and 

performance of an AnSBR are COD and total suspended solids (TSS) concentrations. Determination of these 

parameters are however time-consuming and laborious. Near-infrared (NIR) spectroscopy is a rapid, non-

destructive technique which makes use of the wavelength range of 780 – 2 500 nm. The first aim of this study 

was to investigate potential for the use of NIR to quantify and classify winery wastewater based on the COD 

and TSS concentration. 

Near-infrared spectroscopy was used in combination with multivariate data analysis (MDA) for the 

classification and quantification of COD and TSS in winery wastewater. Spectra were acquired using a 

benchtop FT-NIR (Büchi NIR-Flex N500) spectrophotometer with a wavelength range of 1 000 – 2 500 nm and 

a portable spectrophotometer with a wavelength range of 900 – 1 700 nm.  

The concentration of COD could be predicted with a RMSEP value of 893 mg.L-1, an error of 9.9 % 

compared to the range of the reference values, using PCR along with orthogonal signal correction (OSC). This 

was achieved using the wavelength range 2 060 – 2 340 nm on the benchtop instrument. The PCR model 

performed to a satisfactory degree to be used as a screening method to rapidly determine COD concentration 

of winery wastewater. The concentration of TSS could be predicted with a RMSEP of 136.94 mg.L-1, an error 

of 5.72 %, using the benchtop instrument. The prediction model for TSS achieved a prediction performance 

that was almost comparable to the reference method, meaning it is suitable for screening purposes at the 

very least.  Classification accuracies of 90.4 % (COD) & 100 % (TSS), 80.1 % (COD) & 95 % (TSS) could be 

achieved with the benchtop and handheld instruments respectively. Both the benchtop and the handheld 

instruments could classify winery wastewater based on their COD or TSS concentrations to a satisfactory 

degree. The above classification accuracies for the handheld instrument indicates that classification of winery 
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wastewater, into low or high strength categories, may be possible for in-line monitoring of winery 

wastewater and screening via class, instead of quantification. 

The second aim of this study was to evaluate whether the AnSBR technology could successfully treat 

winery wastewater of varying quality and determine the optimal operational parameters for the reactor 

A pilot-scale AnSBR with a volume of 165 L was operated for 16 cycles treating winery wastewater. 

The cycle length was 24 h and the hydraulic retention time (HRT) was approximately 1.85 days.  The reactor 

was initially seeded with 22 kg anaerobic granules. A central composite design (CCD) was performed to 

determine the optimal operational parameters. A mean COD reduction of 68.32 %  (mean influent 

5 852 mg.L-1) was achieved along with a mean polyphenol reduction of 53.35 % (mean influent 215 mg.L-

1)(SAWIS, 2018) and a stable VFA:Alkalinity of 0.23 on average. The AnSBR technology could therefore feasibly 

be used to treat winery wastewater. The pH, feeding time and mixing interval were selected to determine 

the optimal operational parameters. The optimal values achieved were determined to be: pH 7.30; feed time 

180.91 minutes and a mixing interval of 84.17 minutes. This study confirmed the optimal operational 

parameters previously obtained for treatment of synthetic winery wastewater with an AnSBR.  
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Uittreksel 

Water is waarskynlik die belangrikste natuurlike hulpbron op aarde. Dit is van kardinale belang vir mense, 

plante, diere, die omgewing sowel as ekosisteme. Landbou sal na raming verantwoordelik wees vir die 

onttrekking van ongeveer 66 – 70 % van die varswatertoevoer wêreldwyd, en styg tot 90 % in sommige lande. 

Die wynbedryf in Suid-Afrika is verantwoordelik vir die vervaardiging van groot hoeveelhede afvalwater, met 

1,24 miljard liter afvalwater wat in 2018 gegenereer was. Die afvalwater van die wynmakery is uitdagend om 

te behandel weens die wisselvallige sterkte en seisoenale samestelling. Biologiese behandelings is baie 

effektief vir die verwydering van organiese besoedelende stowwe in wynkelderafvalwater. Anaërobiese 

vertering is 'n voorbeeld van 'n biologiese behandeling wat wyd gebruik word vir die behandeling van 

afvalwater van die wynmakery. Anaerobiese Opeenvolgende Lot Reaktor (AOLR) is 'n lewensvatbare opsie 

vir die behandeling van wynkelderafvalwater. Die tegnologie is nog in die ontwikkelings-fase en word nog nie 

breedvoerig in die wynbedryf gebruik nie. Die voordele van die AOLR sluit in: die gemak om 

bedryfsparameters moeiteloos te verander, dit kan in 'n lot proses of semi-lot proses werk; dit verwyder 

chemiese suurstof vereiste (CSV) doeltreffend en genereer biogas met 'n hoë metaanpersentasie, wat 

moontlik as 'n bron van hitte-generasie herwin kan word. Kennis van die optimale toestande vir pH, meng-

intervalle en voedingstyd van die AOLR is beperk en moet ondersoek word. Twee belangrike parameters vir 

die algehele stabiliteit en werkverrigting van 'n AOLR is, CSV en totale gesuspendeerde vastestowwe (TGV). 

Die bepaling van hierdie parameters is egter tydrowend en moeisaam. Naby-infrarooi (NIR) spektroskopie is 

'n vinnige, nie-vernietigende tegniek wat gebruik maak van die golflengte reeks van 780 - 2 500 nm. Die eerste 

doel van hierdie studie was om die potensiaal vir die gebruik van NIR om wynafvalwater te kwantifiseer en 

te klassifiseer op grond van die CSV- en TGV-konsentrasie te ondersoek. 

Naby-infrarooi (NIR) spektroskopie is gebruik in kombinasie met meerveranderlike data analise 

(MDA) tegnieke vir die klassifikasie en kwantifisering van CSV en TGV in wynkelderafvalwater. Spektra is 

verkry met behulp van 'n tafelmodel FT-NIR (Büchi NIR-Flex N500) spektrofotometer met 'n golflengte reeks 

van 1 000 - 2 500 nm en 'n draagbare spektrofotometer met 'n golflengte reeks van 900 - 1 700 nm. 

Die CSV-konsentrasie kon voorspel word met 'n RMSEP-waarde van 893 mg.L-1, 'n fout van 9,9 % in 

vergelyking met die reeks verwysingswaardes, met behulp van PCR saam met ortogonale seinkorreksie (OSK). 

Dit is bereik met behulp van die 2 060 - 2 340 nm golflengte reeks op die tafelmodel instrument. Die PCR-

model is bevredigend uitgevoer, om as 'n siftingsmetode gebruik te word, om die CSV-konsentrasie van die 

wynkelderafvalwater vinnig te bepaal. Die konsentrasie van TGV kon voorspel word met 'n RMSEP van 

136,94 mg.L-1, 'n fout van 5,72 %, met behulp van die tafelmodel instrument. Die voorspellingsmodel vir TGV 

het 'n voorspellingsprestasie behaal wat amper vergelykbaar was met die verwysingsmetode, wat beteken 

dat dit ten minste geskik is vir siftingsdoeleindes. Klassifikasie akkuraatheid van 90.4 % (CSV) en 100 % (TGV), 

80.1 % (CSV) en 95 % (TGV) kon onderskeidelik met die tafelmodel en die draagbare instrument verkry word. 
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Beide die tafelmodel en die draagbare instrument kon die wynkelderafvalwater volgens hul CSV- of TGV-

konsentrasies in ‘n bevredigende wyse klassifiseer. Die bogenoemde klassifikasie-akkuraatheid vir die 

draagbare instrument dui aan dat die klassifikasie van wynkelderafvalwater, in lae of hoë sterkte kategorieë, 

moontlik is vir in-lyn monitering en sifting van wynkelderafvalwater in plaas van kwantifisering.  

Die tweede doel van hierdie studie was om te evalueer of die AOLR-tegnologie suksesvol 

wynkelderafvalwater van verskillende gehalte kan behandel en die optimale bedryfsparameters vir die 

reaktor bepaal. 

‘n Kleinskaal AOLR met 'n volume van 165 L het vir 16 siklusse gehardloop om die 

wynkelderafvalwater te behandel. Die sikluslengte was 24 uur en die hidrouliese retensietyd (HRT) was 

ongeveer 1,85 dae. Die reaktor is aanvanklik met 22 kg anaërobiese korrels gesaai. ‘n Sentrale saamgestelde 

ontwerp (SSO) is uitgevoer om die optimale bedryfsparameters te bepaal. 'n Gemiddelde CSV-vermindering 

van 68,32 % is behaal, tesame met 'n gemiddelde polifenolvermindering van 53,35 % en 'n stabiele VFA: 

alkaliniteit van gemiddeld 0.23. Die AOLR-tegnologie kan dus gebruik word vir die behandeling van 

wynkelderafvalwater. Die pH, voedingstyd en meng-interval is gekies om die optimale bedryfsparameters te 

bepaal. Daar is bepaal dat die volgende optimale waardes bereik is: pH 7,30; voer-tyd 180,91 minute en 'n 

meng-interval van 84,17 minute. Hierdie studie het die optimale bedryfsparameters wat voorheen verkry is 

vir die behandeling van sintetiese wynkelderafvalwater met 'n AOLR bevestig. 
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Chapter 1 

Introduction 

 

Water is arguably the most important natural resource on Earth. It is of vital importance, not only to humans, 

but to plants, animals, environments and ecosystems (Sivakumar, 2011). Approximately  

2.5 % of all the water on Earth is estimated to be freshwater with a further 68.7 % of this water being 

inaccessible as it is locked in permanent snow cover and glaciers (Carpenter et al., 2011). Current water 

systems will be affected by an increase in population, climate change, increased industrialisation in cities and 

transboundary river basins (Sivakumar, 2011; Cooley et al., 2014; Besbes et al., 2019; du Plessis, 2019; 

McNabb, 2019). Global population is estimated to grow to 8.5 billion by 2030 and this will increase to 

approximately 9.7 billion by 2050 (Jury & Vaux, 2007; McNabb, 2019). To maintain current per capita food 

supply, production of food will have to increase by approximately 50 % (Jury & Vaux, 2007). Depending on 

factors such as actual population growth and income and without improvement in land and water 

productivity, crop water consumption must increase by 70 – 90 % to meet the demand for food in 2050 (De 

Fraiture & Wichelns, 2010).  

Agriculture is estimated to be responsible for approximately 66 - 70 % of the freshwater abstraction 

globally, with some countries using up to 90 % of their freshwater resources (UNESCO, 2017; Barbera & 

Gurnari, 2018). In South Africa water abstraction for agricultural usage is 62.5 % which is lower than the 

global average, yet still a significant amount of water (FAO, 2016). Industrial water usage accounts for  

10.5 % of the freshwater withdrawals in South Africa (FAO, 2016). Industrial wastewater however has a higher 

strength and therefore has a higher potential for pollution of freshwater (Moharikar et al., 2005).  

South Africa is currently the 9th largest producer of wine in the world (OIV, 2019). The South African 

wine industry is an important revenue generator for farmers with producers’ income totalling R6.298 billion 

(SAWIS, 2018). This is therefore a vital industry for economic growth and job creation. The large scale of the 

wine industry places strain on the water resources, due to usage of large volumes of freshwater and 

generation of large volumes of high strength wastewater (Van Schoor, 2005; Mosse et al., 2011). 

The wine industry is responsible for the usage of copious amounts of freshwater during the wine-

making process.  Water usage among Australian wineries found the average water usage to be 2.67 L of 

freshwater per 1 L of wine produced, with large variation in water usage (1.2 – 14.4 L) in other countries 

(Kumar et al., 2009; Quinteiro et al., 2014; Angel, 2018; Martins et al., 2018). South African wineries use 

approximately 2m3 of water per tonne of grapes crushed, resulting in usage of 2.48 billion litres of water for 

the 2018 harvest season (Howell & Myburgh, 2018; SAWIS, 2018). Winery wastewater generation is 

estimated to be 50 % of the total water usage in South African wineries, resulting in 1.24 billion litres of 

wastewater generated per annum (Howell & Myburgh, 2018; SAWIS, 2018). The wastewater is challenging 
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to treat due to seasonal and compositional variation as well as its high strength in terms of chemical oxygen 

demand (COD) (Da Ros et al., 2014; Bories & Sire, 2016).   

Reported characteristics of winery wastewater include: COD concentration of 800 – 27 200 mg.L-1; 

pH between 4.0 and 7.1; total suspended solids (TSS) 200 – 1 200 mg.L-1 and volatile suspended solids (VSS) 

of 130 – 420 mg.L-1 (Petruccioli et al., 2000; Eusebio et al., 2004; Vlyssides et al., 2005; Bories & Sire, 2016).  

Due to the high strength nature of the wastewater, it must adhere to strict regulations before it can be 

discharged or utilised for irrigation purposes (RSA, 2013). To comply with these regulations it is often 

necessary to treat the wastewater using physical, chemical or biological treatments prior to disposal or 

irrigation (Welz et al., 2016). Re-use of treated industrial wastewater for irrigation could reduce freshwater 

withdrawals for the agricultural sector (Meneses et al., 2010; Pedrero et al., 2010). 

Biological treatments are very effective for the removal of organic compounds in winery wastewater; 

however the variability of the wastewater presents a potential hindrance to its effectiveness (Mosse et al., 

2011).  Biological treatments can be divided into aerobic and anaerobic treatment options (Mohana et al., 

2009; Ioannou et al., 2015). Anaerobic processes have been shown to have various advantages over aerobic 

processes.  Anaerobic processes have simple designs and the operation is simple (Eleutheria et al., 2016). 

The operational parameters are not extreme and run at a temperature of 350C, a pH of 6.8 – 7.2 and are not 

subjected to extreme pressures (Gerardi, 2003; Eleutheria et al., 2016). There is a low sludge production 

volume associated with anaerobic processes with only 5 -10 % sludge produced (Andreottola et al., 2009). 

Anaerobic digestion results in the production of biogas, of which methane is a big contributor, which can be 

used to generate heat or power for use at the facility (Show & Lee, 2016) Disadvantages of anaerobic 

processes include long start-up times and increased initial production cost (Parawira, 2004; Show & Lee, 

2016).  

Anaerobic digestion has been widely used for the treatment of winery wastewater with upflow 

anaerobic sludge blanket (UASB) and covered aerobic lagoons being utilised often (Keyser et al., 2003; 

Moletta, 2005; Andreottola et al., 2009). Chemical oxygen demand reduction percentages achieved with 

these technologies range from 65 – 98 % (Keyser et al., 2003; Moletta, 2005; Andreottola et al., 2009).  

Anaerobic sequencing batch reactor (AnSBR) is another type of anaerobic reactor that could be utilised to 

treat winery wastewater. The AnSBR operates on a fill and draw basis and the process can be divided into 

four steps: feeding; reacting; settling and decanting (Sung & Dague, 1995; Khanal et al., 2017). There are 

several advantages of the AnSBR technology which include: ease of changing operational parameters such as 

feeding rate or mixing intervals and can therefore treat a variable rang of wastewater quality (Myra et al., 

2015); there is no need for an external clarifier as this happens inside the reactor vessel (Al-Rekabi et al., 

2007; Gurtekin, 2014); the technology efficiently removes COD and produces biogas with a high methane 

percentage (Shao et al., 2008; Myra et al., 2015). Anaerobic sequencing batch reactor technology has been 

used successfully for the treatment of a variety of wastewaters such as: olive mil-l; domestic sewage- and 

brewery-wastewater. There is however limited research performed to evaluate the efficacy of the AnSBR 
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technology for the treatment of winery wastewater. Research is limited to lab-scale reactors with volumes 

rarely exceeding 14.7 L.  Knowledge of optimal conditions for mixing intervals, feeding strategy and 

operational pH of the AnSBR is limited and needs to be explored further for the treatment of winery 

wastewater. 

Two important conditions for the overall stability and performance of an AnSBR are COD and TSS 

concentrations. A high level of these in wastewater may lead to reactor overload, which could lead to failure 

of the reactor as functional microorganisms may perish. Determination of COD and TSS in influent winery 

wastewater is therefore very important to avoid reactor failure.  The determination of COD and TSS can be a 

time-consuming task and both methods take approximately 120 – 180 minutes (APHA, 2005). Chemical 

oxygen demand is generally determined using test kits and involves the chemical reaction with potassium 

dichromate (Pan et al., 2011). It also requires a digestion step of 120 minutes followed by a cooling step of 

30 minutes before COD can be determined (APHA, 2005). Determination of total suspended solids involves 

filtering and consequent drying of a sample in an oven which may take up to two hours to complete (APHA, 

2005). It is therefore important to develop a method that can quantify the COD and TSS concentrations 

rapidly for screening purposes.   

Near-infrared (NIR) spectroscopy is a rapid, non-destructive and accurate technique which makes 

use of the wavelength range 780 – 2 500 nm and is sometimes referred to as the overtone region (Pasquini, 

2003; Ozaki et al., 2006). It is called this as the absorption of polymers originates from the first overtones of 

N-H, S-H, C-H and O-H bending and stretching vibrations (Ozaki et al., 2006; Huang et al., 2008).  This makes 

NIR spectroscopy useful in the biological and organic fields to reveal information about the samples (Ozaki 

et al., 2006). The spectral bands obtained in the NIR region are broad with lots of overlap which may make it 

difficult to determine specific chemical compounds (Workman Jr, 1993).  Furthermore, the spectra obtained 

may be influenced by other chemical or physical variables (Ozaki et al., 2006; Siesler et al., 2008). It is 

therefore necessary to incorporate multivariate data analysis techniques to extract the necessary 

information (Pasquini, 2003). Techniques used for quantification include partial least squares regression (PLS-

R) (Wold et al., 1983) and principal component regression (PCR) (Massy, 1965). Principal component analysis 

can be used as an exploratory technique for cluster analysis and linear-, quadratic- and mahalanobis-

discriminant analysis is commonly used as classification techniques (Fisher, 1936). 

Quantification studies using NIR for the determination of COD and TSS of wastewaters from various 

sources have been performed.  Quantification of COD has been successfully predicted in domestic sewage 

with prediction error of cross-validated samples under 10 % of the reference range (Yang et al., 2009). This 

has been achieved without pre-treatment of the water and involved no digestion step. Determination of COD 

has been successfully predicted for sucrose containing solutions as well as solutions containing bovine-serum 

albumin (BSA) (Innocent et al., 2007). Ethanol content in a hydrogen bioreactor has previously been predicted 

using NIR spectroscopy (Zhang et al., 2009a). Near-infrared spectroscopy has been successfully  used to 
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predict TSS in dairy sludge wastewater as well as in urban wastewaters (Páscoa et al., 2008; Melendez-Pastor 

et al., 2013).  

Near-infrared spectroscopy in combination with multivariate data analysis techniques has been used 

to successfully predict COD and TSS concentrations in a variety of different wastewaters.  It is an appropriate 

alternative technique that is rapid, non-destructive, requires no digestion step and involves no chemicals. 

There has however not been work undertaken to predict COD and TSS concentrations in winery wastewater 

and no attempt has been made to classify winery wastewater into different classes based on the 

concentration of COD or TSS in the wastewater. There is therefore a need to develop a method using NIR 

spectroscopy to classify and quantify winery wastewater based on the TSS and COD concentrations for 

screening of wastewater, before treatment of the wastewater proceeds. There is also potential to use 

portable devices to monitor the concentrations of COD and TSS during a reaction cycle and alert the operator 

to impending reactor failure.  

The first aim of this research was to rapidly quantify and classify winery wastewater, using NIR 

spectroscopy, from four different farms based on the COD and TSS concentrations of the wastewater. Specific 

objectives were established to develop models that: 

• Enable the prediction of COD and TSS concentrations for winery wastewater using a benchtop FT-

NIR spectrophotometer within a 10 % error of the concentration range; 

• Determine the COD and TSS of winery wastewater using a portable, handheld NIR 

spectrophotometer within a 10 % error of the concentration range; 

• Classify winery wastewater as high or low strength based on COD and TSS concentrations respectively 

using a benchtop FT-NIR spectrophotometer and a portable, handheld spectrophotometer. 

 

The second aim of this study was to investigate the performance of a pilot-scale AnSBR to treat 

winery wastewater and determine the optimal operational parameters. The following objectives were 

established: 

• Design and commissioning of a novel pilot-scale AnSBR; 

• Acclimitisation of anaerobic granules to winery wastewater until a COD reduction percentage of  

70 % was reached treating wastewater with an initial COD concentration of 8 000 mg.L-1; 

• A central composite experiment design (CCD) was used and the regression coefficients for the 

applicable variables were analysed; 

• To determine optimal operational parameters for pH, feeding time and mixing intervals, efficiency 

parameters such COD, TSS, Volatile fatty acids (VFA):Alkalinity; polyphenol reduction and methane 

percentage were monitored. 
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Chapter 2 

Literature Review 

 

2.1  Introduction  

Water is the most important natural resource on Earth and is of vital importance for humans, plants, animals, 

ecosystems and environments (Sivakumar, 2011).   Access to water can be the difference between life and 

death as well as between wealth and poverty (Sivakumar, 2011; Kondusamy & Kalamdhad, 2014).  The 

availability of water is the largest constraint influencing development in South Africa as practically all the 

available surface water is currently in use and additional water is imported from neighbouring countries 

(Scholes, 2001; Blignaut & Van Heerden, 2009). Population growth, shifting from plant based diets to meat 

based diets, climate change and other challenges will further increase strain on the natural water resources 

(Cooley et al., 2014). The total amount of water on earth is estimated to be approximately 1.4 x 109 km3, of 

which 2.5 % (35 x 106 km3) is freshwater (Carpenter et al., 2011).  Furthermore, around 68.7 % of freshwater 

is inaccessible for human use as it is locked in glaciers as well as permanent snow cover in the Arctic and 

Antarctic regions (Carpenter et al., 2011).  The main sources of water that are used for human consumption 

are acquired from rivers and freshwater lakes and constitute roughly 0.26 % of the total global freshwater 

resources, which equates to 90 x103 km3 (Sivakumar, 2011). 

There is a limited amount of available freshwater and this is exacerbated in some regions as water is 

not evenly distributed around the world, or even in South Africa, with some parts experiencing higher levels 

of rainfall than other regions (Blignaut & Van Heerden, 2009; Cooley et al., 2014). The human population is 

estimated to reach 7.9 billion people in the year 2025 and 9.7 billion by the year 2050 (Jury & Vaux, 2007; 

Sivakumar, 2011; UNESCO, 2017; McNabb, 2019). In order to maintain the current per capita food supply, 

food production will have to be increased by anything between 50 and 100 % (Jury & Vaux, 2007; Baulcombe 

et al., 2009; Alexandratos & Bruinsma, 2012).  This will put severe strain on the already limited supply of 

freshwater. The water requirements for food production would therefore increase by 7 700 km3 per year by 

2050. Improvements in production efficiency and the expansion of agricultural land may only yield 800 km3 

per year. In order for many industries to survive until this period it will be of major importance that they 

increase their production efficiency and conservation efforts (Jury & Vaux, 2007; Baulcombe et al., 2009) 

Water scarcity is defined as access to less than 1 000 m3 of water per person annually (UNESCO, 

2017).  This is not just a potential problem facing the human population in 2050, but has already surfaced 

across the globe (UNESCO, 2017). Currently around 2.4 billion people worldwide either lack ready access to 

drinking water or have access to water that is deemed unsafe for human consumption (UNESCO, 2017).  

Economic water scarcity is when water is available, however is inaccessible due to financial constraints or 

infrastructure shortages (UN, 2006). The total amount of people living in economic water scarce areas are 
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approximately 1.6 billion people.  This takes the total amount of the world population that has  limited access 

to water to a total of 3.3 billion people (UN, 2006).   

Agriculture is responsible for the use of approximately 70% of all the freshwater globally (UNESCO, 

2017).  Industry is responsible for 19 % of the freshwater use and domestic usage only equals 11 % on a global 

scale (UNESCO, 2017). The South African landscape differs slightly from the global landscape. Agriculture also 

uses the most water, but this figure is estimated to be slightly lower at 62.5% (FAO, 2016). The next main 

user of water is municipalities, which account for 27 % of the freshwater, both in cities and rural areas. 

Industry is responsible for the remaining 10.5 % of freshwater withdrawals in the country (FAO, 2016).  If it 

is assumed that the South African population will follow the same trend as population growth globally, then 

there will be significantly more people to feed in South Africa by the year 2050 and this will place increasing 

strain on the water resources in the country. 

Industrial wastewater generation is much less than that of the agricultural sector.  However due to 

the high strength nature of industrial wastewater, it has the potential to pollute water to a much greater 

degree (Moharikar et al., 2005). By treating the industrial wastewater and subsequently utilising it for 

irrigation, it would place less strain on the freshwater withdrawal by the agricultural sector. The brewing, 

winemaking and distillery industries, which are classified as part of the beverage industry, generate large 

amounts of wastewater. These industries therefore have the potential to reuse large amounts of the 

wastewater that they generate themselves (Visvanathan & Asano, 2009).  Industries which generate large 

volumes of wastewater, such as the wine industry, can limit some of their costs by implementing wastewater 

treatment plants at their facility.  Water that is used in the production process may be reduced by 50 to  

90 % by using internal wastewater recycling (Visvanathan & Asano, 2009). Because the wine industry 

generates such a large volume of wastewater, there is a lot of research currently being conducted to find 

new techniques of treating winery wastewater for reuse in the process, or for irrigation of the vineyards.  

 

2.2  Wine industry and winemaking process 

2.2.1  History and statistics 

The production of wine by humans can be traced back to almost 6 000 years ago. The earliest evidence of 

winemaking dates back to between 5 400 BC and 5 000 BC (Soleas et al., 1997). Modern winemaking 

processes seemed to have begun in the 17th century as evidenced by the presence of sulphur in old wine 

barrels (Soleas et al., 1997). The South African wine industry started in the 1650’s and is regarded as one of 

the oldest wine industries outside of Europe (Bruwer, 2003). In spite of this, countries such as Italy and France 

dominated the international wine markets until the 1980’s (Cusmano et al., 2010). The wine industry in South 

Africa started to grow in the 1990’s as there had been technological advances that have been stimulated by 

investment as well as research in the field (Cusmano et al., 2010). The wine industry in South Africa plays an 

important role in job creation, business growth, regional development, corporate investment and tourism 

(Bruwer, 2003). 
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The South African wine industry is localised in the Western Cape with 91 415 (96.7 %) hectares of the 

total vines in the country (SAWIS, 2016). Of the 493 private cellars in the country, 479 are situated in the 

Western Cape (SAWIS, 2016).  Stellenbosch has the highest percentage of total vines in the country with 

16.36 % of the vines.  The Paarl area has the second highest of 16.17 %. The rest of the wine producing areas 

in the country are Robertson, Swartland, Breedekloof, Olifants River, Worcester, Northern Cape, Cape South 

Coast and the Klein Karoo (SAWIS, 2016).  

South Africa currently ranks 9th on the list of leading wine producers in the world for the International 

Organisation of Vine and Wine (OIV) forecasted data for 2019. Italy, France, Spain, United States of America 

(USA), Argentina, Chile, Australia and Germany are currently ranked above South Africa (OIV, 2019). Of the 

267 million hectolitres produced worldwide, South Africa produces 9.60 million hectolitres (SAWIS, 2018). 

White wines are the most commonly produced wines, accounting for 65 % of the total wine production and 

thus red wine accounting for 35 % of total wine production in South Africa. Whilst grapes crushed as well as 

the amount of wine and wine products produced has decreased since 2014, the domestic sales and exports 

have increased over the same period.  The wine producers consequently saw an increase in their income over 

this period from R4.7 billion to R6.298 billion (SAWIS, 2018).This follows the trend of increased producers’ 

income year on year since 2003, with the producers having increased their income by 190 % over this period 

(SAWIS, 2016). The state revenue followed the same trend with them generating R7.403 billion (SAWIS, 

2018).  This is an increase of 230 % since 2003.  It can therefore be confirmed that the wine industry in South 

Africa is very important to the economy of the country, especially the Western Cape.  

 

2.2.2  Winemaking procedure 

2.2.2.1  White wine 

To produce white wine, the following typical procedure is followed. The grapes that are to be transformed 

into wine are received in the hopper and subsequently crushed.  During this step, the stems are also removed. 

This results in the production of a mash, to which sulphur dioxide is added to inhibit bacterial growth in the 

wine (Arvanitoyannis et al., 2006). The mash is then cooled to inhibit micro-organism growth. Grape juice is 

then extracted by pressing the mash and the juice settles overnight in a settling tank, in order for the 

sediment to settle (Joshi et al., 2017). The juice is then transferred to a fermentation tank where it is 

subsequently inoculated with the correct yeast (Woodard, 2001). Once fermentation is complete the wine is 

drawn to a stainless steel tank for fining to begin (Woodard, 2001). Fining is the process of clarification of the 

wine using fining agents (Conradie, 2015). The wine is then cooled and bottled.  During the bottling stage the 

wine may possibly be protected from oxidation by bottling in an inert atmosphere (Ene et al., 2013).  

 

2.2.2.2  Red wine 

The red wine production procedure differs from that of white wine, although the processes do share 

similarities. During the production of red wine, the fermentation and maceration step takes place before the 
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mash is pressed to obtain juice.  The second fermentation commences once the pressing has completed. The 

wine is transferred to barrels or tanks where malolactic acid fermentation may take place if required.  

Maturation of the wine may take place in tanks or in barrels (Conradie, 2015). Wine ageing is a practice that 

is used to improve the quality of the wine as well as its organoleptic properties (García-Carpintero et al., 

2012).  Maturation may modify the characteristics of the wine due to chemical reactions that occur due to 

oxygen passing through the pores of the wood and due to the compounds that are extracted from the wood 

(García-Carpintero et al., 2012).  The use of barrels is quite expensive to the industry, so by introducing oak 

chips into stainless steel barrels during fermentation it allows these wines to have characteristics such as 

those that are fermented solely in barrels (García-Carpintero et al., 2012). Once maturation is complete, the 

wine is filtered and bottled and ready to be distributed (Joshi et al., 2017). The flow diagram detailing the 

two separate wine processes as well as steps where wastewater is generated is illustrated in Figure 2.1.  

The winemaking process, as seen in Figure 2.1, generates a large volume of wastewater. For every 

litre of wine produced, wastewater generation can be in the region of 2 to 14L (Oliveira et al., 2009). The 

winemaking procedure can be divided into 7 main steps, with each step contributing to wastewater 

generation (Vlyssides et al., 2005). The steps are as follows;  

1. Reception 

2. Must Production 

3. Fermentation (No Wastewater Production) 

4. Decanting 

5. Maturation and Stabilisation 

6. Filtration 

7. Transportation and Disposal 

The fermentation process does not contribute to the production of wastewater within the winery.  

Two processes contribute the most to wastewater production.  These processes are must production and 

filtering (Vlyssides et al., 2005).  Wastewater generation in these steps is because of extensive cleaning and 

pre-cleaning processes in the winery.  The volume generated in these steps is dependent on the size of the 

tanks and can be calculated using the following formula: specific production volume = 71.58 V x 0.328373 

where V is the tank volume in m3 (Vlyssides et al., 2005). Conversely, the volume of wastewater generation 

is the least during the period when wine is transported to its destination (Vlyssides et al., 2005). The main 

steps in the winemaking process that would lead to wastewater generation is illustrated in Table 2.1. 
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Figure 2.1  Flow Diagram of Winemaking process. Adapted from (Arvanitoyannis et al., 2006; Devesa-Rey et 

al., 2011; Ene et al., 2013) 
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Table 2.1  Winemaking steps and wastewater generation sources. Adapted from (Woodard, 2001; Vlyssides 

et al., 2005). 

Step Process Wastewater Generation 

1 Reception Washing of all machinery as well as floors 

2 Must Production Washing of machinery e.g. pneumatic press 

Normal plant clean-up waste 

Waste lees 

Loss of must when transferred to the fermentation tanks 

and the pre cleaning of these tanks 

3 Fermentation Wastewater from normal clean-up practises 

4 Decanting Normal plant wash down i.e. cleaning of tanks 

Pre-washing stabilisation tanks 

Cleaning of decanting pump 

Wine losses due to decanting 

 

5 Maturation and Stabilisation No wastewater production 

6 Filtration Normal plant clean-up 

Washing of storage tanks 

Filter cleaning (Filtering earth residues) 

Wine losses during transfer 

Water from the transportation pump  

7 Bottling, Transportation and 

disposal 

Spillage and overfilling in bottling stage 

Washing of tanks 

Washing transportation pumps 

Cleaning of production room 

 

2.3  Winery wastewater composition 

Due to the seasonal nature of the winemaking process, winery wastewater characteristics and composition 

are variable.  Added to this is the fact that each winery must be treated as an individual entity based on the 

winemaking capacity of the cellar, the types of wines produced, the equipment present at the winery as well 

as the water management plan of the specific winery (Bories & Sire, 2016).   

Winery wastewater is generated internally, by cleaning of the winery production area and tanks 

(Mosse et al., 2011). The major contributors to the composition of winery wastewater are therefore wine, 

grape varietal, suspended solids as well as cleaning or sanitising agents used (Vlyssides et al., 2005; Mosse et 

al., 2011; Ene et al., 2013). Winery wastewater is characterised as a high strength wastewater in terms of 

Stellenbosch University https://scholar.sun.ac.za



15 
 

COD (Da Ros et al., 2014).  Organic compounds contributing to the high COD are mainly sugars, organic acids, 

esters and polyphenolic compounds (Mosse et al., 2011). In the early harvest period, sugars are the 

predominant contributor to COD, however as the end of the harvest season approaches, ethanol becomes 

the main contributor to the COD of the wastewater, with sugars having a negligible effect (Bories & Sire, 

2016). The composition of winery wastewater is summarised in Table 2.2. 

 

Table 2.2  Average composition of winery wastewater. 

(Petruccioli et al., 2000; Eusebio et al., 2004; Vlyssides et al., 2005; Agustina et al., 2008; Kirzhner et al., 

2008; Bories & Sire, 2016; Welz et al., 2016). 

 

Wineries may discharge the wastewater that is generated internally into municipal reticulation 

systems, or may be irrigated onto land used for agricultural activities (Welz et al., 2016). In South Africa, 

approximately 95 % of all winery wastewater is irrigated onto land using sprinkler systems (Van Schoor, 

2005).  The quality of the water may be improved by treating it with physical, chemical or biological 

treatments prior to disposal of the water (Welz et al., 2016).  The enhancement of the water quality is an 

important step as untreated winery wastewater may present a danger to the environment (Ene et al., 2013). 

The environmental concerns associated with untreated winery wastewater are illustrated in Table 2.3. The 

untreated wastewater may have debilitating effects on ecosystems.  It may cause eutrophication in rivers 

and it contains some compounds which may be harmful to animals as well as humans.   

 

2.4  Regulations 

Any wastewater that is subsequently used for irrigation purposes must adhere to specific guidelines as 

stipulated in the National Water Act of 1998 that was revised in 2013.  The guidelines differ based on the 

volume of water used for irrigation purposes on any given day. The volumes stipulated in the act vary from 

  Min Max Mean 

COD (mg.L-1) 800 27 200 8 963.24 

BOD (mg.L-1) 210 8 000 2 877.5 

pH 4.0 7.1 6.31 

TSS (mg.L-1) 0.2 1.3 0.54 

TOC (ppm) 1255 1 255 1 255 

TS (mg.L-1) 3 900 4 100 4 000 

SS (mg.L-1) 0.14 0,2 0.17 

VSS (mg.L-1) 0.13 0.42 0.22 

Tphosphorous (mg.L-1) 0.3 65.7 21.35 

Tnitrogen (mg.L-1) 21,3 71 55.825 

Tphenolics (mg.L-1) 2,8 1 450 270 
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2 000 m3 per day to less than 50 m3 per day.  The guidelines for irrigation up are given in Table 2.4 and Table 

2.5 

 

Table 2. 3 Potential effects of untreated winery wastewater to the environment. Adapted from EPA, 

(Rengasamy & Marchuk, 2011; Ene et al., 2013; Hirzel et al., 2017). 

Constituent Indicators Impact 

Organic Matter BOD 

COD 

TOC 

Depletion of oxygen causing death of plants and fish 

Odours if stored in open lagoons or applied to land 

Can contain toxic or carcinogenic compounds, therefore 

potentially harmful to human health 

Alkalinity / Acidity pH 

Calcium 

carbonate 

May cause death of aquatic organisms at extreme pH 

Influence microbial activity 

Influence solubility, availability and toxicity of heavy 

metals 

Influences growth of crops 

Nutrients Nitrogen 

Phosphorous 

Potassium 

Sulphur 

Sodium 

Eutrophication or algal bloom 

Nitrite and nitrate may be toxic to children 

N is toxic for crops in large quantities 

Sodium and potassium may alter soil structure 

Salinity EC 

TDS 

Chloride 

Undesirable taste 

Toxic to aquatic organisms, plants animals and humans 

Water uptake by plants affected 

Metal 

Contamination 

Chromium 

Cobalt 

Copper 

Nickel 

Zinc  

Lead  

Mercury 

Toxic for plants, animals and humans 

Negative effects for ecosystems 
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Table 2. 4 South African guidelines for irrigation of biodegradeable wastewater between 500 and  
2 000 m3.d-1. 

Variables Units Limits 

pH  ≥ 5.5 - ≤ 9.5 

Electrical conductivity mS.m-1 ≤ 70 intake to a max of 150 per 

metre 

Suspended solids mg.L-1 ≤ 25 

Chlorine as free chlorine mg.L-1 ≤ 0.25 

Fluoride mg.L-1 ≤ 1 

Soap, oil and grease mg.L-1 ≤ 2.5 

Chemical oxygen demand (COD) mg.L-1 ≤ 75 

Faecal Coliforms CFU. 100mL-1 ≤ 1000 

Ammonia (ionised and de-ionised) as 

Nitrogen 

mg.L-1 ≤ 3 

Nitrate / Nitrite as Nitrogen mg.L-1 ≤ 15 

Orthophosphate as phosphorous mg.L-1 ≤ 10 

 

 

Table 2. 5 South African guidelines for irrigation water of biodegradable industrial wastewater. 

Variable Units ≤50 m3  50>vol≤500 m3 

pH  ≥ 6 and ≤ 9 ≥ 6 and ≤ 9 

Electrical conductivity mS.m-1 ≤ 200 ≤ 200 

COD mg.L-1 ≤ 5000 after algae 

removal 

≤ 400 after algae 

removal 

Faecal Coliforms CFU.100 mL-1 ≤ 100 000  ≤ 100 000 

Sodium absorption ratio 

(SAR) 

 ≤ 5 ≤ 5 

 

2.5  Current treatment options 

There are many treatment options available to treat wastewater of different composition and strengths.  

These treatment options include physical, physicochemical and biological treatments (Woodard, 2001; 

Mosse et al., 2011; Welz et al., 2016). The main aim of these treatment options is to reduce the concentration 

of the organic matter and solids and in some cases to reduce the inorganic load as well (Quayle et al., 2009).  
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Determining which treatment options are most suitable for each winery is reliant upon many factors such as 

maintenance, expertise required and capital investment cost (Mosse et al., 2011).  

 

2.5.1  Physical methods 

One of the first wastewater treatment options is physical pre-treatments. Physical methods are therefore 

also known as primary wastewater treatment methods. One of the main reasons to employ these methods 

is to protect machinery in the cellar from becoming clogged by solids such as the grape stems, stalks and 

leaves (Mosse et al., 2011).  Screening and settling are examples of primary treatment methods.   

 

2.5.2  Physiochemical methods 

Physicochemical methods are frequently employed after primary treatment.  The reason for applying these 

treatments is to further reduce COD, turbidity and colour (Mohana et al., 2009). Not all physicochemical 

processes are created equal, with each treatment differing with regards to the particle size it can remove 

(Buys, 2015). Examples of physicochemical methods include: Ion exchange, reverse osmosis, coagulation, 

flocculation and membrane filtration (Mosse et al., 2011; Ioannou et al., 2015). 

 

2.5.2.1  Ion exchange 

The principle of ion exchange is the exchange of ions between immobilised resin and the solution.  This 

method is effective for the removal of ions such as ammonium, chromium and boron from wastewaters 

(Mosse et al., 2011). This process has a low energy requirement and has the ability to reduce sodium and 

potassium levels, however this process is only applicable for large scale wineries (Mosse et al., 2011).  Ion 

exchange processes are not commonly used in the treatment of winery wastewater.  

 

2.5.2.2  Reverse Osmosis 

Reverse osmosis is very effective as a water purification technique and removes salts very effectively from 

wastewater.  This treatment will usually be used to treat water that is intended for potable reuse (Mosse et 

al., 2011). This treatment option is also prone to fouling and as such must be combined with a microfiltration 

step.  The addition of this step increases the price of using such a treatment and makes it unviable for small 

to medium scale wineries. The majority of winery wastewater in South Africa is used for irrigation purposes 

(Van Schoor, 2005), making reverse osmosis unnecessary in the South African wine industry.  

 

2.5.2.3  Coagulation & flocculation 

Coagulation is a primary processing step that is used to accelerate the agglomeration of particles in solution 

(Betancourt & Rose, 2004). Flocculation follows the coagulation step and the combination of the two 

treatments result in the solids separating from the liquid. This is used to destabilise colloidal impurities and 
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in the process, produces large aggregates that are easily removed by addition of a filtration step (Gao et al., 

2002). Aluminium salts are commonly used as coagulants in this water treatment (Gao et al., 2002).  

 

2.5.2.4  Membrane filtration 

The processes included under this broad category are microfiltration (MF), ultrafiltration (NF) and 

nanofiltration (NF) (Zularisam et al., 2006).  Microparticles and macromolecules, which include organic 

colloids, microorganisms, inorganic particles and dissolved organic matter are removed using MF and UF 

(Zularisam et al., 2006; Shivajirao, 2012).  Microfiltration reduces the turbidity and colloidal suspensions in 

water as it acts a porous barrier.  UF has a higher removal rate but operates at higher pressures.  These 

processes are adequate for water reclamation as the water is not intended for drinking purposes (Shivajirao, 

2012).  If the treated water is intended for human consumption, MF and UF could be used alongside NF or 

reverse osmosis in order to minimise fouling of the membrane (Shivajirao, 2012).  

 

2.5.3  Biological treatments 

Biological treatments are very effective at removing organic compounds from winery wastewater as they are 

readily biodegradable (Mosse et al., 2011).  The main difficulty when using biological treatments is that the 

composition and volume of winery wastewater generated fluctuates (Mosse et al., 2011). Biological 

treatments can be crudely subdivided into aerobic and anaerobic processes for the treatment of wastewaters 

(Mohana et al., 2009; Mosse et al., 2011; Ioannou et al., 2015) 

 

2.5.3.1  Aerobic processes 

Aerobic treatment technologies are commonly used in the wine industry to treat the incoming wastewater 

(Sheridan et al., 2014; Ioannou et al., 2015). Aerobic processes are oxidation processes where aerobic 

bacteria degrade the organic matter in the wastewater in the presence of oxygen (Show & Lee, 2016). Organic 

carbon is utilised as the energy source for heterotrophic microorganisms and is degraded into biomass, CO2, 

ammonia, energy, water as well as other end products (Show & Lee, 2016). The process is illustrated in the 

following equations 

 

𝐶𝑂𝐻𝑁𝑆 + 𝑂2 + 𝑎𝑒𝑟𝑜𝑏𝑒𝑠 →  𝐻2𝑂 +  𝑁𝐻3 + 𝑜𝑡ℎ𝑒𝑟 𝑒𝑛𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 +  𝑒𝑛𝑒𝑟𝑔𝑦 Equation 1.1 

 

𝐶𝑂𝐻𝑁𝑆 +  𝑂2 + 𝑎𝑒𝑟𝑜𝑏𝑒𝑠 + 𝑒𝑛𝑒𝑟𝑔𝑦 →  𝐶5𝐻7𝑁𝑂2 (𝑆𝑙𝑢𝑑𝑔𝑒) Equation 1.2 

 

Many aerobic processes have the advantage of being more stable than anaerobic processes (Show 

& Lee, 2016). Other advantages of the aerobic processes include ease of use, high COD removal efficiency, 

versatility in the process when modifying the size of the operation and the process is well established, leading 
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to easier troubleshooting (Mosse et al., 2011; Ioannou et al., 2015). The main disadvantage of aerobic 

treatment of water is the fact that large quantities of sludge is produced (Mosse et al., 2011).  The extent of 

sludge production is illustrated in Figure 2.2. 

 

 

 

 

 

 

 

 

Figure 2.2  Representation of aerobic process. Adapted from (Chetty & Pillay, 2015). 

 

Table 2.6 illustrates the different types of aerobic treatment options available with their respective 

advantages and disadvantages.  The COD removal also illustrates how effective the various treatments are.  

 

2.5.3.1.1  Aerobic treatment of winery wastewater: application 

A number of studies have been conducted to assess the remediation of winery effluent (Brucculeri et al., 

2005; Bolzonella et al., 2010; Montalvo et al., 2010). A study was conducted on the efficacy of two pilot scale 

fed-batch aerated lagoons (Montalvo et al., 2010). The wastewater was treated in the larger of the two 

lagoons for the first 30 days, with the second lagoon in operation from days 31 to 54. The winery wastewater 

was intermittently fed into the lagoons at set intervals to simulate operational conditions.  After 21 days from 

inception of the experiment the COD reduction percentage reached a maximum of 91 % (influent COD: 8 700 

mg.L-1).  The COD removal remained constant and stable thereafter, indicating the efficacy of this treatment 

option (Montalvo et al., 2010). 

The co-treatment of municipal wastewater alongside winery wastewater was investigated in a 

conventional activated sludge process at full scale (Brucculeri et al., 2005). Two different times of the year 

were identified to represent the wine making procedure accurately.  These two periods were described as 

vintage and non-vintage, where during vintage season, wastewater with a higher COD was fed into the 

process.  The COD removal efficiency of the processes were 90 % (Influent COD: 5 480 kg.d-1) during vintage 

and 87 % (Influent COD: 2 515 kg.d-1) during non-vintage.  High removal efficiencies are thus achievable using 

this method. 

 

 

 

Aerobic: 100 kg COD Aerobic reactor 

30 – 60 % sludge 

2 – 10% COD in 

Effluent 

40 – 50 % CO2 
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Treatment of winery wastewater using an aerobic sequencing batch reactor was investigated (Brito 

et al., 2007).  COD removal efficiency was above 90 % (Influent COD: 400 – 2 000 mg.L-1) for all times of the 

year as well as influent COD concentration. 

In order to investigate the efficiency of the membrane bioreactor, a full scale membrane bioreactor 

treated approximately 110 m3.day-1 with COD levels up to 1 600 Kg COD.day-1 (Bolzonella et al., 2010). COD 

was removed with an average efficiency of 95 % with low sludge yield. 
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Table 2. 6 Advantages and disadvantages of the various aerobic treatments. 

Treatment Advantages Disadvantages COD Reduction Reference 

Aerated lagoons • Easy management • Energy intensive 

91% 
(Maynard et al., 1999; 

Montalvo et al., 2010) 
• Works best on small 

volumes 

Activated sludge • Easily managed • Uses lots of energy 

87 – 98% 

(Fumi et al., 1995; Brucculeri 

et al., 2005; Andreottola et 

al., 2009) 

• High reduction of 

COD 

• Requires lots of 
nutrients (N and P) 

Sequencing batch reactor • Automation simple • Storage tanks 

required 
>90% 

(Torrijos & Moletta, 1997; 

Brito et al., 2007; López-Palau 

et al., 2012) 
• Low capital 

investment 

• Difficulties with shock 

loading 

Membrane bioreactor • Improved treated 

water quality 

• High establishment 

cost for membrane 

95 – 97% 
(Artiga et al., 2005; Bolzonella 

et al., 2010) 

• Small footprint • Membrane fouling 

• Rapid start-up 

• Settling not a 

problem 

• Low sludge volume  

Jet-loop activated sludge • Low energy required • Limited application 
94 – 98% (Petruccioli et al., 2002) 

• High efficiency  

Air microbubble bioreactor • High biological 

conversion 

• Limited applications 
93% 

(Petruccioli et al., 2002; 

Oliveira et al., 2009) 
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A jet-looped activated sludge reactor that had a 15dm3 working volume was used to treat winery 

wastewater for a period of just longer than a year (Petruccioli et al., 2002). Wastewater from various farms 

was used in this study.  The wastewater was also collected at different times throughout the year, ensuring 

varying COD levels.  The reactor illustrated its efficacy by having a COD removal efficiency that never dipped 

below 90 % over the course of the year. 

 

2.5.3.2  Anaerobic processes 

Anaerobic digestion is a process that occurs in the absence of oxygen and is a much more complicated process 

than the aerobic process as there is an abundance of potential pathways for the microbial population to 

utilise (Arvanitoyannis et al., 2006; Show & Lee, 2016). The anaerobic process can be summarised in the 

following equation: 

 

  𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 + 𝑚𝑖𝑐𝑟𝑜 𝑜𝑔𝑟𝑎𝑛𝑖𝑠𝑚𝑠 → 𝐶𝑂2 + 𝐶𝐻4 + 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 …equation 1.3 

 

It is possible to divide the anaerobic process into two distinct stages, namely acid formation and 

methane formation (Show & Lee, 2016). However the process is more complicated and is better described 

by dividing the process into 4 distinct stages (Gallert & Winter, 2008).  The stages are hydrolysis, acidogenesis, 

acetogenesis and methanogenesis (Gallert & Winter, 2008; Kondusamy & Kalamdhad, 2014; Show & Lee, 

2016). 

 

2.5.3.2.1  Detailed anaerobic process  

As discussed in the previous section, the anaerobic process can be divided into 4 stages. The process is 

summarised in Figure 2.3. 

 

a) Hydrolysis  

Hydrolysis converts insoluble organic compounds, such as proteins, carbohydrates and fats, into simpler 

organic compounds (Kondusamy & Kalamdhad, 2014). Simple organic compounds, which are soluble in 

water, are then utilised as an energy source. It is important for the simple compounds to be soluble in water 

and of a low molecular mass so that the compounds can be utilised by the microorganisms (Gallert & Winter, 

2008). Hydrolysis is catalysed be extracellular hydrolytic enzymes (Kondusamy & Kalamdhad, 2014).  

Hydrolysis can be further classified depending on the reaction that they catalyse. For example, lipases 

produce glycerol and fatty acids when the ester bonds of lipids are hydrolysed. Other extracellular enzymes 

include, protease, cellulase, amylase and pectinase (Kondusamy & Kalamdhad, 2014; Show & Lee, 2016). 

Hydrolysis of complex organic matter is a slow process and is the limiting factor of the anaerobic digestion 

process (Kondusamy & Kalamdhad, 2014; Zhang et al., 2014; Eleutheria et al., 2016). 
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Figure 2.3  Anaerobic Process. Adapted from (Zhang et al., 2014; Show & Lee, 2016). 

 

b) Acidogenesis 

This is the second step in the anaerobic digestion process.  Acidogenesis is responsible for the conversion of 

the hydrolysed products into even simpler molecules with a lower molecular weight (Kondusamy & 

Kalamdhad, 2014).   

Volatile fatty acids (VFA) are simple molecules and include acetic, propionic and butyric acid 

(Parawira, 2004; Kondusamy & Kalamdhad, 2014).The specific proportions of VFA’s produced during this 

stage are important in the functioning of anaerobic digestion.  Acetic acid and butyric acid are the precursors 

that are preferred in the formation of methane (Parawira, 2004). Other products produced during this stage 

include alcohols, aldehydes, hydrogen ammonia and carbon dioxide (Show & Lee, 2016).  Of the by-products 

of acidogenesis, acetate is considered to be the most important of the intermediates (Show & Lee, 2016).  

A great diversity of bacteria are responsible for the acidification, with most of the bacteria being 

anaerobic. The acidogenic bacteria can metabolise products at very low pH (Kondusamy & Kalamdhad, 2014). 

The acidogenic step is the fastest step in the anaerobic process (Parawira, 2004; Kondusamy & Kalamdhad, 

2014). 

 

c) Acetogenesis 

During acetogenesis the products from acidification are converted into acetic acids, carbon dioxide and 

hydrogen by acetogenic bacteria (Kondusamy & Kalamdhad, 2014). Acetogenesis has two groups of active 

Complex Organics 

Long Chain Fatty Acids 

Hydrolysis 

Simple Organics 

Acidogenesis 

Acetate CH2O2 

Acetogenesis 

CH4 and CO2 (Biogas) 

Methanogenesis Methanogenesis 
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bacteria.  These two groups are hydrogen-producing acetogens and homoacetogens (Show & Lee, 2016).  

Homoacetogens however only contribute to roughly 2 % of acetate formation.  Hydrogen-producing 

acetogens on the other hand catabolise organic acids, alcohols and other compounds to form acetate as well 

as CO2 (Show & Lee, 2016).  Homoacetogens do have a very important role in anaerobic digestion, even 

though they produce low levels of acetate.  The homoacetogens utilise some of the hydrogen that is 

produced by the hydrogen-producing acetogens and in so doing decreases the total hydrogen in the system. 

Methanogens that utilise hydrogen have a higher affinity for hydrogen than homoacetogens, with both 

contributing to lower levels of hydrogen in the process (Show & Lee, 2016)  This is very important as hydrogen 

is a growth inhibitor for hydrogen-producing acetogens (Buys, 2015).  Hydrogen has some positive effects on 

the process with carbon dioxide being reduced to acetate in the presence of hydrogen (Show & Lee, 2016).  

There is therefore a very fine equilibrium that needs to be maintained with regards to hydrogen 

concentration, hydrogen producing acetogens and homoacetogens.  

 

d) Methanogenesis 

The final step in the anaerobic process is methanogenesis. During this stage methanogens utilise acetic acid, 

carbon dioxide and hydrogen. The result of this is ultimately the formation of methane as well as carbon 

dioxide (Kalyuzhnyi et al., 2000).   

Methanogens belong to the phylum Archaea. Two groups of methanogens have currently been 

identified (Show & Lee, 2016).  The first group has 33 species and they reduce carbon dioxide and hydrogen 

to produce methane (Show & Lee, 2016).  They also have the ability to utilise formate to produce methane.  

The 2nd group only has 14 species and these species utilise methanol, acetate and / or methylamines 

(Kondusamy & Kalamdhad, 2014; Show & Lee, 2016).  

Around 70 % of the methane that is produced is from acetate with the remaining 30 % from the 

reduction of carbon dioxide to methane (Solera et al., 2002).  The growth rate of methanogenic bacteria is 

slow and grows at a similar rate to acetogenic bacteria, making this a possible rate limiting step (Solera et al., 

2002).  Hydrolysis is only the rate limiting step during the breakdown of polymers and fats.  If the reaction 

rate drops there is a possibility of acetic acid accumulating to toxic levels (Show & Lee, 2016). The 

methanogens are most active in the pH range 6.6 – 7.3 (Demirel & Scherer, 2008).  At a pH below 6.2, it is 

possible for the methanogens to be inhibited (Demirel & Scherer, 2008).The accumulation of free ammonia 

could also act as an inhibitor. The threshold concentration for inhibition is when the pH goes above 7.4 

(Demirel & Scherer, 2008). In order to combat rapid pH changes buffering capacity must be built into the 

reactor (Tauseef et al., 2013).  

 

2.5.3.2.2  Anaerobic general  

As previously mentioned, anaerobic processes occur in the absence of oxygen.  These processes have several 

advantages.  In general anaerobic processes are simple to design and easy to operate (Eleutheria et al., 2016).  
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The operating conditions required are not extreme as they are generally run at temperatures of 350 C, 

atmospheric pressure and usually at a pH of roughly 7.0 (Eleutheria et al., 2016). The production of methane-

rich biogas means that some of the energy can be recuperated. Methane production of the facility can be as 

large as 12 x 106 BTU of methane per 1 000 kg COD converted to methane (Show & Lee, 2016). Another 

advantage of anaerobic processes is the low sludge production volume as illustrated in Fig. 4 (Andreottola et 

al., 2009; Mosse et al., 2011).  

Despite the many advantages of anaerobic processes there are the inevitable disadvantages.    

Possibly the biggest drawback with anaerobic processes is that there is production of many VFA’s which emits 

a foul odour (Bories et al., 2005). Methanogens have a slow growth rate leading to an increase in retention 

time for anaerobic reactors. Added to this is that methanogens are very sensitive to changes in environmental 

conditions (Show & Lee, 2016). Consequently, anaerobic reactors generally require a long start-up period as 

the bacteria require a long acclimatisation period (Andreottola et al., 2009; Amani et al., 2010).  

 

 

 

 

 

 

 

 

Figure 2.4  Representation of anaerobic process. Adapted from (Chetty & Pillay, 2015). 

 

2.5.3.2.3  Applications of anaerobic processes 

A number of studies have been conducted to assess the remediation of winery effluent using anaerobic 

processes (Ruiz et al., 2002; Shao et al., 2008; Lu et al., 2015). An anaerobic sequencing batch reactor was 

used to treat brewery wastewater. When the COD was controlled between 1.5 and 5.0 kg COD.m-3.d-1 along 

with a hydraulic retention time (HRT) of 1 day the COD removal efficiency was more than 90 % (Shao et al., 

2008).  

Another anaerobic sequencing batch reactor was used by Ruiz (2002) to treat winery wastewater.  

The reactor had a COD removal efficiency of greater than 98 % and it operated under the following 

conditions; Organic loading rate of 8.6 g COD.L-1.d-1, an HRT of 2.2 days and specific organic loading rate of 

0.96 gCOD.gVSS-1.d-1 (Ruiz et al., 2002). 

The efficacy of a lab-scale UASB reactor treating starch wastewater was investigated using variable 

hydraulic retention times (HRT). The optimal HRT was found to be 6 h and COD removal efficiency was found 

to be between 81.1 – 98.7 % (Lu et al., 2015).    

Anaerobic: 100 Kg COD Anaerobic reactor 

5-10 % sludge 

15% COD in 

effluent 

80% Biogas (75% methane) 
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A pilot-scale strengthened circulation anaerobic reactor was built with a working volume of 27 m3 to 

treat industrial textile wastewater.  Influent COD had values between 1 398 – 4 143 mg.L-1.The reactor had a 

HRT of 13.5 h and was able to reduce the COD by 62.7 % (Yang et al., 2018). 

Different anaerobic reactors with their advantages and disadvantages is represented in Table 2.8. 

 

Table 2. 7 Comparison of aerobic and anaerobic processes. 

 Aerobic Anaerobic 

Start-up Very short start-up Long start-up period 

Process • High volume of sludge 

produced 

• Require many nutrients 

• Oxygen requirement 

(Energy to incorporate 

O2 

• Large reactor Volume 

Required 

• No malodours 

• Low volume sludge 

production 

• Lower nutrient 

requirement 

• Zero O2 requirement 

• Small reactor volumes 

sufficient 

• Biomass preserved up to 

years without activity 

deterioration 

• Malodour a.r.o. VFA 

accumulation 

Carbon balance • 40-50% CO2  

• 30-60% Sludge 

production 

• 80-90% converted into 

biogas 

• 5-10% sludge production 

 

Energy Balance • 40% lost as heat 

• 60% used for new 

biomass 

• Energy used to 

incorporate oxygen 

• 90% as methane 

• Only 5% lost as heat 

• 5-7% used for new 

biomass formation 

 

Cost • Low capital investment 

required 

• High operational costs 

• Moderate capital 

investment required 

• Low operational costs 

Development • Developed and 

established 

• Still developing 
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Table 2. 8 Advantages and disadvantages of the various anaerobic treatments from selected publications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Treatment Advantages Disadvantages COD Reduction Reference 

AnSBR • Biogas production 
possible 

• Low sludge volume 
produced 

 

• Batch feeding 
required  

• Moderate installation 
costs 

• Long start-up times 
 

90-98% 

(Ruiz et al., 2002; Shao et 

al., 2008; 

Jiraprasertwong et al., 

2018) 
 

UASB • Low volumes of 
sludge produced 

• Good settleability. 

• Sludge is highly active 

• High installation 
costs,  

• Scum accumulates on 
the water surface  

 

80-98% 

(Keyser et al., 2003; 

Moletta, 2005; 

Andreottola et al., 2009; 

Lu et al., 2015) 
 

Covered anaerobic 

lagoon 

• Biogas capture 

possible 

• Low capital 

investment 

• Long start-up times 

65-95% 
(Moletta, 2005; Blanco et 

al., 2015) 
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2.6  Anaerobic sequencing batch reactor  

The anaerobic sequencing batch reactor (ANSBR) is a fill and draw system involving only one reactor in which 

all the steps of the process occur (Gurtekin, 2014).  Sedimentation as well as clarification takes place in the 

sequencing batch reactor, but it differs from conventional activated sludge systems as everything occurs in 

the same tank (Gurtekin, 2014).   

The ANSBR involves the repetition of four step cycle, being feed, react, settle and decant, however 

many studies have included a fifth stage named the idle stage (Sung & Dague, 1995; Shizas & Bagley, 2002; 

Sarti et al., 2007; Gurtekin, 2014; Khanal et al., 2017). These four steps are illustrated in Figure 2.5. 

 

2.6.1  Feed 

In the feeding step, wastewater is added to the biomass that remained from the previous cycle.  It may either 

be raw wastewater or could even be primary effluent from another treatment process (Al-Rekabi et al., 2007; 

Singh & Srivastava, 2011). Normally the volume fed into the reactor is equal to the volume decanted from 

the reactor (Sung & Dague, 1995).The volume of feed is determined by a number of factors, being the volume 

of the tank, number of, if any, parallel tanks in operation, the desired HRT, organic loading as well as the 

settling characteristics of the granular biomass (Sung & Dague, 1995; Al-Rekabi et al., 2007).  

The ANSBR may be fed using a batch process (shorter feeding time) or a fed-batch process (longer 

feeding time). There are two types of fill that can be implemented, depending on the objective of the process.  

This can be static fill or mixed fill (Gurtekin, 2014). During a static fill scenario there is no mixing taking place.  

Mixed fill is when the mixing mechanism is active while the influent is being fed into the reactor (Gurtekin, 

2014). 

 

2.6.2  React 

The react step is widely regarded as the most important step in the process as it allows the biomass to 

consume the substrate and convert it to biogas (Sung & Dague, 1995; Gurtekin, 2014).  The total react time 

can be 50 % or more of the cycle time (Al-Rekabi et al., 2007).  Mixing is required in this step in order to 

maximise the contact time and contact of the surface area of the biomass and the substrate (Sung & Dague, 

1995). 

 

2.6.3  Settle 

Once the settle phase has started, mixing is shut down to allow the biomass to settle on the bottom of the 

reactor.  Biomass settleability may differ depending on the size of the granules and the amount of biogas still 

trapped in the treated water (Sung & Dague, 1995).  This phase may last for anything from 10 minutes to 90 

minutes (Gurtekin, 2014). No clarifier is required as the clarification takes place in the tank (Al-Rekabi et al., 

2007). 
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2.6.4  Decant 

Upon completion of the settle phase the supernatant is discharged as effluent through the discharge port. 

The discharge port is located at a predetermined level which would allow for the decantation of a specific 

volume of treated effluent (Al-Rekabi et al., 2007).  The effluent may be discharged using a pump or regulated 

by an automatic valve and in this way the flow rate can be maintained (Gurtekin, 2014). The time required 

for the decant phase may differ depending on the volume that needs to be decanted as well as the decanting 

rate that is required (Sung & Dague, 1995). The decant time may range from 5 % to 30 % of the total cycle 

time, however it should not be extended unnecessarily as it may cause sludge washout due to the rising of 

the biomass level (Gurtekin, 2014). 

 

 

Figure 2.5  Illustration of the AnSBR process. 
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Advantages of AnSBR 

• Flexible and can therefore treat a variable range of wastewater (Myra et al., 2015). Can alter one or 

more of the operational control parameters such as mixing regime or feeding rate (Torrijos & 

Moletta, 1997) 

• Static fill may enhance the formation of granule forming bacteria (Gurtekin, 2014) 

• The adaptation of the sludge to varying operational conditions can lead to the system becoming 

robust and maintaining good performance, even when under shock from a high COD load (Gurtekin, 

2014). 

• Efficiently removes COD and produces methane-containing biogas (Shao et al., 2008) (Myra et al., 

2015).  

• No need for the use of an external clarifier as the clarification process happens during the process in 

the tank (Al-Rekabi et al., 2007). 

• Provides a good separation of biomass from the treated wastewater, leading to a lower loss of 

biomass during the decant phase (Sung & Dague, 1995; Gurtekin, 2014) 

• All of the operations can occur in only one tank, decreasing the need for a big land area in order to 

process wastewater (Al-Rekabi et al., 2007). 

 

Disadvantages of AnSBR 

• Requires a level of sophistication in the design as there are intricacies such as timing switches and 

specific controls (Gurtekin, 2014). 

• Due to the higher level of automation required there is also a requirement for more regular 

maintenance in order to check and replace switches, automated valves etc. (Gurtekin, 2014). 

• The reactor has a lower organic loading capacity compared to other water treatment options (Shizas 

& Bagley, 2002). 

• Limited research on the applications of the AnSBR on winery wastewater on laboratory and pilot 

scale. 

 

The differences between the anaerobic sequencing batch reactor and the upflow anaerobic sludge blanket 

is illustrated in Table 2.9. 
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Table 2. 9 Differences between the anaerobic sequencing batch reactor and the upflow anaerobic sludge 

blanket. 

UASB AnSBR 

• Continuous feeding of the reactor • Batch fed 

• External clarifier required • No external clarifier 

• Mixing is not required • Mixing is required (Could lead to biomass 

degradation if too vigorous) 

• No gas displacement system required • Gas displacement system is required 

• Can only treat wastewater if low in 

suspended solids 

• Can treat wastewaters high in suspended 

solids 

• Not effective settling and granular washout 

a possibility 

• Granular washout less of a problem as it 

settles effectively during the settle phase 

 

• No fluctuations of substrate around the 

granules 

• F:M ratio higher in the beginning of the 

cycle and lower towards the end of the 

cycle 

• Application in the industry is widespread • Newer technology therefore less 

applications at present 

Adapted from (Sung & Dague, 1995; Angenent & Dague, 1996; Al-Rekabi et al., 2007; Gurtekin, 2014). 

 

2.7  Operational conditions that effect performance of the AnSBR  

Anaerobic digestion of food waste is a complex system that must digest all the relevant carbohydrates, lipids 

and proteins in a single process (Zhang et al., 2014). There are many operational parameters that are 

important to control in anaerobic digestion as the methanogens are sensitive to changes in their environment 

(Amani et al., 2010). Operational parameters that should be controlled include temperature, pH, nutrients, 

mixing regime, feeding rate, OLR, hydraulic retention time (HRT), and toxicity (Amani et al., 2010; Zhang et 

al., 2014). 

 

2.7.1  Temperature 

It is possible for anaerobic reactors to operate at temperatures below 20°C, better known as the psychrophilic 

temperature range, however most anaerobic reactors operate in the mesophilic or thermophilic temperature 

ranges (Ward et al., 2008).  The different temperature ranges are summarised in Table 2.10.  Thermophilic 

reactors have shown promise as experiments have indicated that thermophilic temperature ranges can 

increase the biogas production potential and consequently increase COD removal rate (Gannoun et al., 2007). 
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Table 2. 10 Optimal temperature range of micro-organisms. 

Micro-organism class Temperature range (°C) 

Psychrophilic 5-25 

Mesophilic 30-35 

Thermophilic 50-60 

 

Reactors operating in the mesophilic temperature ranges have other advantages, namely higher process 

stability, lower VFA levels in the effluent, higher methane content, less inhibition of the product/substrate 

and possibly improvement of the degradation rates (Parawira, 2004; Ward et al., 2008). 

 Control of the operational temperature of the reactor is essential, as a change in temperature of as 

little as 2oC can have detrimental effects on the efficiency of the reactor (Chae et al., 2008; Ward et al., 2008). 

Temperature fluctuations should therefore be kept to a minimum.  

According to Chae et al. (2008) biogas yield increased from 317 to 437 mL CH4.g VS-1 when 

temperature of the reactor was increased from 25 to 35°C.  Methane percentage was also affected by the 

change in temperature as only 82.6 % of the methane produced at 35°C was produced at 25°C.   A similar 

study was performed to investigate the removal efficiency of COD and BOD at temperatures of 8, 15 and 

23°C (Bodıḱ et al., 2002).  The study found that for an HRT of 20 hours the COD as well as BOD removal rates 

were significantly higher in the 15 and 23°C reactors compared to the reactor operating at 8°C (Bodıḱ et al., 

2002). 

Heat is lost to the surroundings from the reactor if it is poorly insulated and should be properly 

insulated and mixed to maintain heat in the reactor (Buekens, 2005).  

 

2.7.2  pH and alkalinity 

Methanogens are very susceptible to changes in the pH of their environment (Amani et al., 2010). Anaerobic 

digestion operates ideally at a pH range of 6.8-7.2, making control of pH a very important operational 

parameter (Gerardi, 2003; Ward et al., 2008). If the pH drops to below 6.6 the growth rate of the 

methanogens is greatly reduced (Mosey & Fernandes, 1988). Conversely, granule disintegration can occur 

when the pH of the system becomes excessively alkaline (Sandberg & Ahring, 1992). Methanogens are 

however only one of the types of micro-organism present and each type of micro-organisms have their own 

specific optimum values.  The optimum pH values required for hydrolysis and acidogenesis are substantially 

lower and fall into the pH range of 5.5-6.5 (Kim et al., 2003; Ward et al., 2008).  Different optimal pH values 

of microbial populations is the reason why many people choose to use two stage anaerobic digestors to 

separate hydrolysis/acidification from acetogenesis and methanogenesis (Ward et al., 2008).  In a reactor 

using only one tank, the optimal pH of the process is governed by the optimal pH of the methanogens 

(Parawira, 2004). This is done to prevent the acid-forming bacteria becoming the dominant population and 
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leading to the accumulation of VFA’s and subsequently, reactor failure (Parawira, 2004).  In the event of 

increased VFA formation and subsequent pH drop, there are two strategies that can be employed to rectify 

the low pH.  The first of these strategies is to stop the feed and allow the micro-organisms time to utilise the 

VFAs and reduce the concentration (Amani et al., 2010).  Another strategy would be to add bases and thereby 

raise the pH of the water and provide additional buffering capacity(Shizas & Bagley, 2002). 

 A study looked at different operational parameters for AnSBRs and evaluated pH as one of the 

important parameters (Laing, 2016). It was determined that a pH close to 7.30 is the optimal pH for a 

laboratory-scale AnSBR.   

Alkalinity is also referred to as the buffering capacity of a system and is defined as the equilibrium of 

CO2 and bicarbonate ions that provide a resistance to change in the overall pH of the system (Chernicharo, 

2007).  Compounds that provide buffering capacity at a pH of 7.0 include; carbonic acid (bicarbonate), 

hydrogen sulphide, dihydrogen phosphate and ammonia (Parawira, 2004). 

Alkalinity is an important process parameter and can be used to monitor the anaerobic process, 

either as total alkalinity or partial alkalinity (Ward et al., 2011).  Total alkalinity includes the VFA buffering 

system compared to partial alkalinity, where the bicarbonate concentration is measured.  Partial alkalinity 

has been proposed to be more sensitive in detecting process imbalances than total alkalinity (Jantsch & 

Mattiasson, 2004). Maintenance of total alkalinity is sufficient to prevent a decrease in pH of the reactor 

(Gerardi, 2003). Using only pH as a sole control means is not recommended as medium or well-buffered 

water can form a large volume of VFA’s which cause a drop in pH, so monitoring of either VFA or alkalinity is 

essential (Lahav et al., 2002).   

The concentration of alkalinity, as either sodium bicarbonate (NaHCO3) or calcium carbonate 

(CaCO3), for optimal reactor performance is 1 000-3 000 mg.L-1 (Amani et al., 2010).  A study was conducted 

on cheese whey to determine the ratio of alkalinity required to influent COD (Mockaitis et al., 2006).  The 

results showed that the initial concentration of alkalinity to COD should be 1:1 in the start-up phase of the 

reactor to maintain stability. For low COD levels (500 and 100 mg.L-1) the alkalinity to COD ratio was 

determined to be 1:2 or 0.5mg alkalinity, as NaHCO3, per 1mg COD.  As the COD increased (2 000 and 40 

00mg.L-1) the ratio of alkalinity to COD was 1:4, or 25 % (Mockaitis et al., 2006).  This study showed that it 

may be useful to supplement alkalinity when wastewater is added to the reactor to maintain buffering 

capacity, regardless of the existing levels of alkalinity in the reactor.   

 

2.7.3  Volatile fatty acids (VFAs) 

During the monitoring of the anaerobic digestion process, VFA concentration is regarded as one of the most 

important parameters (Parawira, 2004).  During anaerobic digestion processes, acetic acid is the predominant 

VFA, although propionic and butyric acids are more inhibitory to the anaerobic digestion process (Boone & 

Xun, 1987).  The important fatty acids to monitor anaerobic digestion are butyrate and isobutyrate, as an 

increase in these fatty acids can indicate an overload of the reactor (Ward et al., 2008).  The reason behind 
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this is that the accumulation of VFAs results in the decrease of the pH value which leads to reactor failure 

(Parawira, 2004).  Excessive concentrations of fatty acids along with hydrogen sulphide and ammonia are 

toxic and inhibit methanogenesis only when in their un-ionised forms.  This is pH dependant and ammonia is 

un-ionised at pH values above 7 whereas fatty acids and hydrogen sulphide are toxic at pH values below 7.  

As winery wastewater generally has a lower pH value of around 6, it shows the importance of monitoring 

VFA concentration for the overall stability of the process (Vlyssides et al., 2005). 

 

2.7.4  Nutrients 

Nitrogen and phosphorous, in their soluble form, are required in relatively high concentrations in an 

anaerobic reactor for optimum growth (Saleh & Mahmood, 2004; Amani et al., 2010).  Along with these 

nutrients, other micro-nutrients and trace elements are also required, although in significantly smaller 

quantities.  These include barium, calcium, cobalt, copper, iron, magnesium, manganese, molybdenum, 

nickel, potassium, selenium, sulphur, tungsten and zinc (Rajeshwari et al., 2000; Amani et al., 2010).  

Generally, industrial wastewaters are high in these micronutrients, but the wastewater must still be analysed 

to determine whether some of these micronutrients should be added (Amani et al., 2010). Some of these 

micronutrients and trace elements play important roles in the metabolism of methanogenic archaea (Khanal 

et al., 2017).  Nickel is important as it is a structural constituent of a factor called F430, which is found in 

methanogens.  Cobalt is also important as it is a structural component of vitamin B12, which is used as a 

catalyst for methanogenic activity (Khanal et al., 2017). 

For optimal performance of the anaerobic digestor, it is important to control the COD:N:P ratio. It 

must be in the range of 200:5:1 to 350:7:1 for low loading wastewaters and 1000:7:1 for high strength 

wastewaters (Rajeshwari et al., 2000; Ammary, 2004; Amani et al., 2010). 

Carbon to nitrogen and carbon to phosphorous are two important ratios as they are used to 

determine the nutrient requirements of high-strength wastewaters.  The desired ranges are 20:1 to 30:1 for 

C:N ratio and around 50:1 for C:P ratio.  If the C:N ratio is lower than the optimal, then this will result in an 

accumulation of ammonia, resulting in inhibition of methanogenesis.  Conversely, a high C:N ratio will result 

in lower gas production as the nitrogen will be rapidly utilised by the methanogens (Buekens, 2005). 

In the study published by Ammary et.al. (2004) they were able to reduce COD by 80 % when using a 

COD:N:P ratio of 900:5:1.7 in the anaerobic treatment of olive mill wastewater.  A study conducted in 2010 

compared COD:N:P ratios of 100:5:1 with a ratio of 100:5:0 (Tang & Liu, 2010).  The effects of the differing 

ratios were that granulation happened more rapidly in the 100:5:1 ratio than in the 100:5:0. This study 

illustrates the importance for phosphorous in the granulation of the biomass during the start-up of a reactor. 

 

2.7.5  Organic loading rate (OLR) 

Organic loading rate is defined as the mass of organic matter (COD) per unit reactor volume per unit time 

(Khanal et al., 2017).  Industries such as winery, brewery and other agro-based industries produce 
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wastewater with very high organic content.  When wastewater with a very high COD is introduced into the 

reactor, it could cause the reactor to fail (Zaher et al., 2007).  This happens as the acidogenic bacteria multiply 

rapidly when exposed to enough substrate.  The methanogenic bacteria are not able to multiply at the same 

pace leading to an accumulation of acidogenic bacteria (Amani et al., 2010).  This would result in an increase 

in the formation of VFA’s and therefore the subsequent decrease in pH of the reactor (Demirel & Scherer, 

2008).  This results in a decrease in the methanogenic population and the relative production of more VFA’s 

until the reactor fails as a result (Zaher et al., 2007; Demirel & Scherer, 2008). Well performing reactors are 

more at risk to sudden increases in OLR as they have a shortage of key microbial populations and are 

therefore less robust as a result (Amani et al., 2010).  

The OLR’s implemented in anaerobic reactors varies greatly, depending on the substrates and their 

characteristics.  Mockaitis et al. (2006) implemented organic loading rate of 0.59 kgCOD.m-3.d-1. A study 

conducted on brewery wastewater used organic loading rates of 1.5 to 5.0 kg COD.m-3.d-1. COD removal 

efficiency was able to reach 90 % for the OLR and various other operational parameters (Shao et al., 2008).  

Winery wastewater was treated using an AnSBR and the OLR was determined to be 8.6kg COD.m-3.d1 (Ruiz 

et al., 2002). COD reduction percentage for a hydraulic retention time of 2.2 days was found to be greater 

than 98 % at this specific OLR (Ruiz et al., 2002).  Olive mill wastewater and abattoir wastewaters were co-

digested using an upflow anaerobic filter at mesophilic and thermophilic temperatures (Gannoun et al., 

2007).  The OLR varied from 3 to 9 kgCOD.m-3.d-1 under mesophilic conditions and ranged from 4.1 to 12 

kg.m-3.d-1 under thermophilic conditions (Gannoun et al., 2007).   

These studies illustrate the variation in OLR in literature, depending on the substrate being utilised, 

hydraulic retention time and temperature of the reactor, among other factors. 

 

2.7.6  Mixing regime 

Mixing of the contents of an AnSBR is done to ensure consistent conditions throughout the reactor. This is 

done by enabling the suspended biomass to be circulated throughout the reactor, thereby interacting with a 

greater volume of water in the reactor. Conditions are kept constant as a result of efficient heat transfer as 

well as the fact that mixing can cause degradation of organic matter resulting in an increase in surface area, 

therefore faster reaction times (Karim et al., 2005).  Another reason mixing is required is to release gas 

bubbles that may be trapped. Mixing, either intermittent or continuous, is used to prevent biomass 

sedimentation to the bottom of the reactor (Ward et al., 2008; Ghanimeh et al., 2012; Huang et al., 2018).  

As mentioned above, reactors, be it aerobic or anaerobic, have different mixing regimes that can be 

implemented.  These include continuous or intermittent mixing and it also includes use of different 

approaches such as mechanical mixing, with aid of an impeller, recirculation of the biogas using air pumps 

and recirculation of the contents of the digester (Karim et al., 2005; Ward et al., 2008). Whilst none of these 

approaches offers clear advantages, it is important to consider the speed of mixing conditions as slow speed 

mixing conditions are associated with more stable reactor conditions (Gomez et al., 2006).   
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The granular structure of sludge within anaerobic reactors is important for the digestibility of organic 

compounds in the wastewater (Ward et al., 2008).  Excessive agitation of the reactor could result in granule 

degradation and therefore a decrease in the ability to digest organic substrate (McMahon et al., 2001). 

Homogenous distribution of granules and organic matter is accomplished using molecular diffusion in laminar 

flow (Stroock et al., 2002).  Rate of flow is increased when turbulence is induced, resulting in large gradients 

in velocity as well as high shear rates (Huang et al., 2018).  High shear rates increase the forces on the 

bacterial granules resulting in damage of the bacterial cells and ultimately tearing of the sludge (Huang et al., 

2018).   

A study published in 2012 compared two reactors performing under similar conditions.  One of the 

reactors was continuously slow stirred, whilst the other reactor was not agitated (Ghanimeh et al., 2012).  

Initially both reactors showed similar trends during start-up when considering methane production.  

Continuous stirring however resulted in a more stable reactor as indicated by lower VFA levels, lower 

VFA:Alkalinity and decreased levels of propionate.  Further the stirred reactor also resulted in an ultimate 

higher loading capacity as well as increase in COD removal rate. 

Karim et al. (2005) compared the efficacy of different modes of mixing namely; unmixed, biogas 

recirculation, impeller mixing and slurry recirculation. These experiments were repeated at increasing COD 

concentrations. At the lowest concentration there was no significant differences between any of the mixing 

regimes.  As the concentration increased the mixed reactors showed significant increases in methane 

production rate when compared to the unmixed reactor. The reactors mixed with the impeller and the 

reactor mixed by slurry recirculation showed the highest methane yield.  At the highest concentration the 

slurry mixed recirculation could not be done as it was not possible due to large amounts of slurry, indicating 

a shortcoming in this mixing technique. The unmixed reactor showed low methane production yield whereas 

the biogas mixed reactor resulted in the highest methane yield. Mixing was shown to be important in the 

production of methane and therefore also COD removal when compared to unmixed reactors. 

Laing (2016) investigated the optimal mixing parameters for the treatment of synthetic winery 

wastewater using an AnSBR. The reactor had a volume of 14.7 L and it was determined that less frequent 

mixing was optimal based on performance efficiency parameters such as COD reduction (%) and methane 

percentage of the biogas.  The optimal mixing interval was found to be every 110.5 minutes. The water was 

recirculated in the reactor using a washing machine pump.  

Stroot et al. (2001) investigated the effect of mixing conditions, i.e. stirred continuously and 

intermittently, on digester performance. Laboratory scale reactors were used in this experiment. The 

conclusion of this study was that reducing the amount of mixing improved the performance of the reactor.  

Lower levels of mixing resulted in more stable reactors when subjected to high OLR.  This study also showed 

that a reactor that is unstable could be stabilised by altering the mixing level from continuous to intermittent.  

The results show the importance of mixing, but it is necessary to limit the amount of mixing to avoid 
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instability.  These experiments were however performed at laboratory-scale and with an extremely small 

working volume of only 500 mL so the results should be taken with caution.   

Continuously stirred reactors can be effective for removal of COD.  A study was performed by 

Mockaitis et al. (2006) to investigate the effect of supplemental alkalinity and OLR.  This meant that different 

mixing regimes were not investigated.  The results still show that continuously stirred reactors with an 

impeller can achieve good COD reductions.  The mixing was done at 50 RPM at lower concentrations up to 2 

000 mg.L-1 COD  and 75 RPM at 4 000 mg.L-1 COD.  None of the reactors had a COD removal of 90 %.  Despite 

not comparing mixing regimes directly, an indirect observation can illustrate that continuous stirring can 

result in good COD removal rates on the condition that the stirring rate is kept relatively low.   

A magnetic stirrer was used with an AnSBR when treating brewery wastewater (Shao et al., 2008).  

The COD content of the wastewater ranged from 1 500 – 5 000 mg.L-1.  The stirrer was operated at 150 RPM 

and this experiment resulted in a COD reduction of above 90 % (Shao et al., 2008).  This once again illustrates 

that mixing intensity should be investigated on a case by case basis, but caution should be exercised to ensure 

that granule disintegration is not a problem.  

In a study conducted in 2003, synthetic domestic wastewater was treated in an AnSBR (Rodrigues et 

al., 2003). The experiment compared different mixing rates in the COD reduction efficiency. The working 

volume of the reactor was 2.0 litres as it was a laboratory-scale experiment and treated a COD of 500 mg.L-

1. The agitation rates varied from no mixing to 75 RPM using an impeller.  The results showed that at 50 RPM 

there was good solids retention and a COD reduction of approximately 88 % was achieved. At 75 RPM there 

was granule breakup and therefore was not viable as an option. Agitation of the reactor led to a decrease in 

total cycle time. 

Mixing regime, with regards to intensity and duration of mixing, is a very important process control 

parameter.  It can lead to a more efficient reactor that becomes more cost effective as it reduces the cycle 

time, however caution should be exercised when choosing a mixing regime, as overmixing, vigorous mixing 

and improper impeller design could lead to degradation of the biomass and subsequently, biomass washout. 

 

2.7.7  Inhibition and toxicity  

Industrial effluents may contain toxic substances or they may be generated by the microorganisms 

themselves, as a result of their metabolic activity during the anaerobic digestion process (Khanal et al., 2017). 

Toxic substances that may be present in wastewater include ammonia, heavy metals, cyanide, phenol and 

halogenated compounds (Khanal et al., 2017).  Microorganisms are responsible for the presence of ammonia, 

sulphide as well as long-chain fatty acids (Khanal et al., 2017).  There is however a lot of variation in the 

inhibition or toxicity levels for most substances as reported in literature (Chen et al., 2008). Acclimation, 

synergism, antagonism and complexing leads to the observed variation in inhibitory concentrations (Chen et 

al., 2008) 
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An inhibitory substance is defined by the ability to shift the microbial population or inhibit bacterial 

growth (Chen et al., 2008). Inhibition of the anaerobic digestion process can manifest in various ways such 

as a decrease in microbial population, VFA accumulation and a reduction in pH (Amani et al., 2010).  

Ammonia is produced in its free and ionised form by the anaerobic degradation of nitrogenous 

compounds (Chen et al., 2008; Amani et al., 2010).  An increase in ammonia concentration leads to a lower 

rate of glucose degradation as a result of inhibition of glycolytic pathways (Mata-Alvarez et al., 2000).  

Ammonia in its free form and at a concentration above 700 – 1 700 mg.L-1 is the most toxic form as it can 

pass through the cell membrane, leading to an imbalance in protons as well as a potassium deficiency within 

the microbial cell (Nakakubo et al., 2008; Amani et al., 2010). Ionic ammonia on the other hand is less toxic 

and the system can handle concentrations of up to 5 000 mg.L-1 and only experience a decrease in efficacy of 

methanogens by 50 % (Sung & Liu, 2003). The effect that pH has on the ionised to free ammonia 

concentration is very important.  As the pH within the reactor increases, the ratio of free ammonia to ionised 

ammonia increases, thereby increasing the toxicity level (Amani et al., 2010).  To avoid ammonia toxicity it is 

important to keep the pH in the range of 6.8 - 7.2, to dilute the contents of the reactor or by increasing the 

organic load and thereby increase the C:N ratio (Mata-Alvarez et al., 2000; Amani et al., 2010). 

Ammonia is not the only substance that can cause inhibition and toxicity.  Sulphate is a compound 

that is often found in wastewaters (Chen et al., 2008).  The reduction of sulphate to sulphide is accomplished 

by the action of sulphate reducing bacteria (SRB) (Hilton & Oleszkiewicz, 1988). Sulphides can inhibit 

methanogenesis in one of two ways, namely primary and secondary inhibition (Chen et al., 2008).  Primary 

inhibition is characterised by suppression of methane production by the competitive inhibition of SRB, i.e. 

the SRB utilises compounds that are also used for methanogenesis (Chen et al., 2008; Luo et al., 2015).  SRB 

have a kinetic advantage over methanogens as they have a higher maximum specific growth rate as well as 

a lower half saturation value (Luo et al., 2015).  This allows the SRB to compete more vigorously for acetate 

and hydrogen which is a common intermediate in methanogenesis (Wang & Banks, 2007).  Secondary 

inhibition is characterised by bacterial groups being susceptible to sulphide (Chen et al., 2008).   

When an experiment kept the sulphide concentration at a value that was roughly 250 mg.L-1 the COD 

removal percentage saw a decrease from close to 80 % to a level of 32 % (Yilmaz et al., 2012). It is possible 

to decrease the effect of sulphide inhibition by dosing the reactor with FeCl3 (Luo et al., 2015). The COD:SO4
2- 

ratio of a UASB treating starch wastewater was decreased to study the influence on granule formation (Lu et 

al., 2016).  A decrease in this ratio from 10 to 2 resulted in a higher proportion of granules larger than 2.8 

mm from less than 10 % to 58.8 - 69.4 % of the granules.  (Lu et al., 2016).  The granules also developed 

filaments that were hydrophilic and had a high affinity for biogas bubbles, facilitating biomass washout (Lu 

et al., 2016). Dosing FeCl3 decreases sulphate reduction and results in iron sulphide precipitation instead (Luo 

et al., 2015).   
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It is however possible for methanogenic bacteria and sulphates to exist in the same system 

(Vossoughi et al., 2003).  When COD:SO4 ratio was decreased from 16.7 to 6 by increasing the SO4 

concentration the COD removal percentage was not affected and was 86 % (Vossoughi et al., 2003).   

Minerals such as: sodium, potassium, calcium, sulphur, Ammonium and magnesium are important 

for proliferation of bacterial populations on the condition that the concentrations are kept relatively low 

(Zaher et al., 2007; Chen et al., 2008).  An increase in the concentrations of these minerals could cause 

inhibition of the methanogenic process. (Zaher et al., 2007; Chen et al., 2008). These elements can be 

released by the breakdown of organic matter during the anaerobic process, or by addition of salts to adjust 

the pH of the reactor (Chen et al., 2008).  The inhibitory concentrations for some minerals are as follows: 

magnesium shows moderate inhibition at concentrations between 1 000-1 500 mg.L-1 and strong inhibition 

occurs at concentration above 3 000 mg.L-1; The concentrations for moderate and strong inhibition for 

potassium are 2 500 - 4 500 mg.L-1 and 12 000 mg.L-1 respectively;  Levels of sodium to have shown moderate 

and strong inhibition is reported as 3 500 - 5 500 mg.L-1 and 8 000mg.L-1; calcium inhibition occurs at 2 500 - 

4 500 mg.L-1 and 8 000 mg.L-1 (Zaher et al., 2007).   

Toxic metals are a concern in anaerobic degradation as they can be found in large quantities in sludge 

as well as sewage (Chen et al., 2008).  The concern with toxic metals in the water is that there is an 

accumulation to the point where they may become toxic.  This is due to the fact that they are not 

biodegradable and the anaerobic bacteria are not able to remove them from the reactor (Chen et al., 2008).  

The most important, or toxic, metals include copper, zinc, nickel, chromium, iron and cobalt (Zaher et al., 

2007). 

One last factor that may contribute to inhibition of the anaerobic bacteria is low temperature (Luo 

et al., 2015).  Temperature directly affects anaerobic digestion rate and generally the reactors operate best 

at mesophilic and thermophilic temperatures (Gannoun et al., 2007; Ward et al., 2008; Luo et al., 2015).  As 

mentioned previously, reactors operating in the mesophilic and thermophilic temperature range have 

process advantages.  One of the main reasons that low temperatures become an issue is due to the costs of 

keeping the reactor at the required temperature as well as extra capital expenditure (Zaher et al., 2007; Luo 

et al., 2015).  

Inhibition and toxicity clearly have many causes and it is essential to keep these parameters under 

control to keep the reactor functioning optimally as well as to avoid the eventual failure of the reactor.  

 

2.7.8  HRT  

Hydraulic retention time (HRT) is the measure of the flow of substrate into and out of the reactor (Zaher et 

al., 2007).  It is determined by the average time taken for the organic contents of the reactor to be digested 

(Zaher et al., 2007).  The HRT should be kept at a minimum time that eliminates dead zones in the reactor, 

so that complete digestion can occur (Amani et al., 2010).  This optimal time is dependent on various factors 

such as feedstock, time of year and process details (Buekens, 2005).  With longer residence time, the rate of 
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degradation decreases, therefore complete digestion will not take place and the process should be optimised 

taking financial implications into consideration (Buekens, 2005). 

The HRT is generally up to 3 days, but different times have been experimented with in literature 

(Sung & Dague, 1995; Ruiz et al., 2002; Shizas & Bagley, 2002).  An HRT of 1 day was used with varying OLR’s 

and achieved a COD removal percentage of 90 % (Shao et al., 2008).  A different study used an HRT of 2.2 

days with varying OLR’s and subsequently achieved a COD removal rate of more than 98 % (Ruiz et al., 2002).  

The following formula is used to determine the HRT (Shizas & Bagley, 2002). 

 

𝐻𝑅𝑇 =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑜𝑟

(𝑉𝑜𝑙𝑢𝑚𝑒 𝑑𝑒𝑐𝑎𝑛𝑡𝑒𝑑 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒)(𝐶𝑦𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦)
 

 

2.8  Chemical quantification methods 

Laboratory quantification methods are of vital importance to determine many process markers to 

characterise the water in terms of quality.  The following tests are some of the most important that need to 

be conducted during anaerobic digestion.  This includes tests for; total alkalinity; turbidity; pH; VFA’s; 

polyphenols; total dissolved solids (TDS); electrical conductivity, total suspended solids (TSS) and COD (APHA, 

2005).  Many of these tests such as; alkalinity; turbidity; pH; total polyphenols and TDS; can be conducted 

using calibrated meters and simple titrations and are therefore rapid and accurate.  Two very important 

parameters to determine for process stability in anaerobic digesters are COD and TSS. The tests for these 

parameters are however time consuming. 

COD is an indicator that is used to determine the degree of organic pollution of water (Yang et al., 

2009; Pan et al., 2011).  Routinely, the determination of COD is performed in a laboratory and is a time 

consuming method that requires chemical reactions, the reaction with potassium dichromate, to quantify 

the levels in water (Yang et al., 2009; Pan et al., 2011).  Total suspended solids are the solids that remain on 

a filter paper once it has been dried. It may affect effluent quality adversely (APHA, 2005).  Both these 

methods take anywhere between 150 and 180 minutes. 

Rapid methods using Near Infrared (NIR) spectroscopy have been used to quantify both COD and TSS 

in wastewater.  NIR is rapid, a non-destructive, simultaneous measurement of different parameters. This 

allows it to give representation of the entire process instead of just a window into the process (Huang et al., 

2008; Perlines Sánchez, 2014). 

Numerous studies have been performed which illustrate the ability of NIR to predict COD 

concentrations in different wastewaters (Páscoa et al., 2008; Sarraguça et al., 2009; Yang et al., 2009; Pan et 

al., 2011; Melendez-Pastor et al., 2013; Dahlbacka et al., 2014).  Similarly, studies have been performed that 

illustrate the potential of NIR to predict TSS values (Páscoa et al., 2008; Sarraguça et al., 2009). 
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2.9  Near-infrared (NIR) spectroscopy 

The discovery of Near-Infrared (NIR) spectroscopy can be ascribed to Herschel in the year 1800 (Siesler et al., 

2008).  From its first use in industry in the mid 1900’s, NIR has made immeasurable progress with increasing 

advances in the technology  (Siesler et al., 2008). 

The wavelength region of 780 – 2 500 nm is the region in which NIR is located and is often referred 

to as the overtone region (Pasquini, 2003; Siesler et al., 2008).  This is so because the NIR absorption of 

polymers originates from the first overtones of N-H, C-H, S-H and O-H bending and stretching vibrations, 

making measurements in the organic and biological fields feasible (Huang et al., 2008; Zhang et al., 2009b). 

The specific wavelength range supplies molecules with enough energy to reach the lowest, excited vibrational 

state (Pasquini, 2003).  The spectrum originates from the transferral of radiation energy to mechanical energy 

and can be observed because of molecular vibrations associated with the energy absorption (Pasquini, 2003; 

Siesler et al., 2008).  Radiation that interacts with the sample of interest can interact in 3 different ways 

namely being absorbed, reflected or transmitted (Huang et al., 2008). These 3 interactions can then be 

further classified into 5 measurement modes being transmittance, transflectance, diffuse reflectance, 

interactance and transmittance through a scattering media (Pasquini, 2003).  

Conventional UV-Vis spectroscopy makes use of transmittance, where substances that are 

transparent are measured in glass or quartz cuvettes with varying path lengths (Pasquini, 2003).  

Transflectance is similar to absorbance in that the radiation passes through the transparent sample, but then 

is reflected back through the sample for a 2nd time using mirrors, in essence doubling the path length before 

it reaches the detector (Halsey, 1985; Pasquini, 2003).  Beer’s Law is applicable for the use of transmittance 

and transflectance as the concentration of a substance has a linear relationship to the absorbance of that 

specific substance,  therefore if the concentration of a substance of interest is higher, then absorption will 

be increased for that substance (Pasquini, 2003).  Diffuse reflectance is affected by the absorbance and 

scattering of solid granules which change the intensity of the signal (Malin et al., 1999).  For interactance 

mode the probability of the incident beam to interact with the sample is higher than the probability of it 

being reflected from the surface.  The beam emerging from the sample contains specific information 

regarding the composition of the sample (Siesler et al., 2008).  Transmittance through a dense sample has 

been used to quantify the active components of certain pharmacological compounds.  This is because there 

is a longer pathlength as a result of internal scattering of light, giving a better representation of the average 

constituents of the sample (Pasquini, 2003).  The above is illustrated in figure 2.6 below with a) representing 

transmittance, b) transflectance, c) diffuse reflectance, d) interactance, e) transmittance through scattering 

media.  
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Figure 2.6  Different modes of spectral acquisition; (a) transmittance, (b) transflectance, (c) diffuse 

reflectance, (d) interactance, (e) transmittance through scattering media. 

 

NIR spectroscopy is a very powerful tool that has the potential to be used for quantitative and qualitative 

purposes, but needs to be used in conjunction with chemometric techniques for complete analysis (Zhang et 

al., 2009b).  Chemometrics is defined as the use of mathematics and statistics to extract proper information 

from the spectral data (Pasquini, 2003).  Spectra obtained from the near-infrared region is full of information 

and therefore is very advantageous.  To extract the correct information from the spectra precise spectral 

analysis must be done or it could lead to incorrect information being extracted (Ozaki et al., 2006).  NIR 

spectra data can often suffer from baseline shifts as well as variations (Li Vigni, 2013).  These disturbances 

can be caused by the following; Scattering of light from solids or turbid solutions; pathlength variations that 

can lead to poor reproducibility; difference in temperature, density and size as well as distribution of the 

sample; lastly spectral noise from an amplifier or detector (Ozaki et al., 2006; Siesler et al., 2008).  There are 

four types of pre-treatment methods namely noise reduction; baseline correction; resolution and 

enhancement and centering and normalisation (Ozaki et al., 2006). 

Noise reduction methods are implemented to reduce the noise associated with chemical or physical 

interferences (Vannucci et al., 2005).  The noise can be high or low frequency with high frequency noise 

associated with the instrument’s electronic circuits and detector (Bevilacqua et al., 2013).  Low frequency 

noise can be caused by drift in the instrumentation (Ozaki et al., 2006).  Baseline correction are used to 

correct baseline shifts that have occurred due to reasons listed earlier in this section.  Resolution 

enhancement methods have been used to separate overlapping bands and amplifying bands that are 

obscured (Ozaki et al., 2006). Mean centering is used to reposition the centre of the data to the origin of the 

coordinate system and normalisation is an alteration to data that results in equal magnitudes for each sample 

(Bevilacqua et al., 2013).  There are many different methods to elucidate the correct information from a data 
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set after pre-treatment and these techniques can be summarised in 11 different methods as defined by Ozaki 

et al (2006). 

• PCA loading plots 

• Derivative spectra 

• Isotope exchange 

• Curve fitting 

• Analysis from group frequencies 

• Analysis from perturbations 

• Correlation between the spectra and chemical structure 

• Fourier self-deconvolution 

• Difference spectra 

• Spectral interpretation by polarisation measurements 

• Theoretical calculations of frequencies of bands.  

 

NIR spectroscopy is clearly a very useful technology when used in conjunction with chemometrics and can 

extract important information.  NIR has been applied to wastewater in the past to extract relevant 

information relating to operating parameters.   

 

2.10  NIR for determination of COD and TSS in literature 

NIR spectroscopy has been used to determine COD and TSS values for the purpose of in-line monitoring of 

reactors.  COD was determined along with BOD using NIR spectroscopy treating domestic sewage (Yang et 

al., 2009). Samples (120) were analysed using NIR spectroscopy and compared to standard methods for 

determination of COD and BOD. Each sample was scanned three times and then averaged to obtain one 

average spectra.  Pre-treatment of the data was performed and smoothing, Savitsky-Golay 1st derivative and 

2nd derivative was compared. Partial least squares regression was used to quantify COD and BOD from the 

spectral data.  Correlation coefficients of the models were high at 0.9542 and 0.9652 for COD and BOD, 

respectively.  A good indicator for model accuracy for quantification is the root mean square error of 

prediction (RMSEP) and the RMSEP for COD and BOD were 25.24 and 12.13 mg.L-1 respectively.  The range 

of measured values were 496.6 mg.L-1 and 289.2 mg.L-1 for COD and BOD.  This translates to error values of 

5.1 % for COD quantification and 4.2 % for BOD determination, which can be considered very accurate and 

within allowable error ranges for process control requirements (Yang et al., 2009).  

The range error ratio (RER) is equal to the range of the compositional values divided by the SEP and 

it provides thresholds to determine model performance.  An RER value of more than four is applicable for 

screening method, a value of more than 10 indicates that the model is acceptable for quality control purposes 

and a value of above 15 means the model can be used to for quantification.  Unfortunately, this study does 

not provide a SEP value and therefore RER cannot be calculated from it. 
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For the prediction model, 10 samples were used and compared to their predicted value obtained 

from the model.  The error of prediction for COD and BOD was 1.48 % and 1.66 %, respectively, indicating a 

very accurate model capable of predicting COD and BOD to a level similar to that of the standard methods 

(Yang et al., 2009).  

An aerobic reactor was used to treat dairy residues and was monitored on-line by NIR spectroscopy 

using a transflectance probe (Páscoa et al., 2008).  The wavelengths obtained from the probe were from  

900 – 1 700 nm.  A total of 48 samples were collected and each sample was scanned 32 times and an average 

spectrum obtained and these spectra were compared to reference values for COD, TS and TSS.  Standard 

normal variate and Savitsky-Golay filtering (45 nm filtering window, 2nd order polynomial and 1st derivative) 

was applied as pre-processing for the model.  The models were applied successfully to determine COD, TS 

and TSS.  The models for COD showed a RER value of 9.8 and 12.5 using standard normal variate in 

combination with Savitsky-Golay filtering and for Savitsky-Golay filtering respectively.  Together with the RER 

value the root mean square error of cross validation (RMSECV) was 67.4 and 86.6 mg.L-1 COD.  This indicates 

that the model was fairly accurate and according to RER values it is possible to use NIR to predict COD for the 

purpose of screening (Páscoa et al., 2008).  This study also looked at TS and TSS values and the RER values 

were 15.6 and 15.8, respectively.  The RPD values were 3.48 and 3.54 for TS and TSS, respectively.  In order 

for a model to be used for process control, it is necessary for the RER and RPD to be above 15 and 3.5 

respectively (Páscoa et al., 2008).  Results obtained from this study showed that NIR in conjunction with the 

appropriate pre-processing can predict TS, TSS and COD values to a fairly accurate degree (Páscoa et al., 

2008).  

Wavelength selection is important to determine specific characteristics of wastewater using NIR.  

Wavelength selection was implemented using moving window partial least square (MWPLS) (Pan et al., 

2011).  Sugar refinery wastewater was used in this study and 81 samples in total were collected.  A reference 

chemical method was used to determine the COD for a specific sample using the potassium permanganate 

oxidation method.  The spectral region used was 400 – 2 500 nm.  Each sample was scanned 3 times and one 

average spectrum was calculated.  When the whole spectrum was investigated a RMSEP value of 82.4 mg.L-

1 was obtained which translates into an error of 25.2 % when compared to the range of 55 to 382 (327).  

When MWPLS was used to determine the optimal wavelength range of 820 – 850 nm the RMSEP was reduced 

to 25.5 mg.L-1 which is equivalent to an error of 7.8 %.  This study clearly indicates that when using wavelength 

selection strategies, the accuracy of a computer based NIR model can be increased (Pan et al., 2011).  

A lab-scale anaerobic digester was used to determine the COD of synthetic wastewater using a NIR 

spectrophotometer (Sarraguça et al., 2009).  The wavelength range of the specific instrument was 900 – 

1 700 nm and was collected using a transflectance probe that had an optical path length of 1.0 cm. Standard 

methods were used to determine the reference values for COD and TSS (Sarraguça et al., 2009).  The models 

that were used in this study were developed using PLS regression with leave one out cross validation.  

Different pre-processing techniques were used in various combinations to produce the most accurate 
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models.   The techniques used were Savitsky-Golay, multiplicative scatter correction and standard normal 

variate.  After the pre-processing was applied, the data was subjected to mean centering.  The prediction of 

COD was shown to be inaccurate as it produced a relative error of 52.4 % in the wavelength region of 900 – 

1 400 nm. This was due to the fact that water is a strong absorber in that wavelength range and may mask 

other C-H stretching vibrations and this in turn results in a decreased sensitivity for organic matter (Sarraguça 

et al., 2009).  The study also had a very narrow range from 17.24 – 99.53 mg.L-1 for COD and it is well 

established that it is important to have a large range to ensure a robust model.  Although COD quantification 

was ineffective, TSS quantification showed promise in this study.  The relative error for TSS was 14.1 % when 

using the NIR range of 900 – 1 400 nm and a correlation coefficient of 0.91.  This shows that NIR can be used 

to detect physical changes within a reactor.  Whilst this study showed that TSS could be predicted accurately, 

further work needs to be done to accurately determine COD concentration using NIR.   

Chemical oxygen demand, along with BOD and TSS were evaluated using visible and short wave NIR 

spectroscopy (Melendez-Pastor et al., 2013).  Urban wastewater was used as the substrate for this study and 

was collected at different stages of the treatment process.  Variability was obtained by collecting samples 

over four months and at different days in the week (Melendez-Pastor et al., 2013).  A total of 84 samples 

were collected for analysis.  Standard laboratory methods were used to determine COD, BOD and TSS as 

reference values.  The wavelength range studied was 325 – 1 075 nm which includes the visible as well as 

short wave NIR (Melendez-Pastor et al., 2013).  Each sample was scanned five times and then an average 

spectrum for the five scans was obtained.  Savitsky-Golay smoothing (3rd order polynomial, moving window 

10 nm) was used as pre-processing to eliminate noise.  Partial least squares regression was used as the 

statistical method to quantify the three parameters.  Wavelength ranges of 400 – 1 000 nm, 400 – 700 nm 

and 700 – 1 000 nm were investigated.  The RMSEP values were lowest for BOD and COD at ranges of 400 – 

700 nm.  The corresponding values were 10.37 and 9.19 % for BOD and COD respectively at 400 – 700 nm.  

At the wavelength range 700 – 1000 nm only the cross-validation results were given as the predictions were 

only done using the best results from the cross validation.  However, the RMSECV values for COD and BOD 

at 700 – 1000 nm was very similar to the best models at 8.62 % compared to 8.48 % for optimal BOD and 

9.37 % compared to 9.31 % for COD.  The TSS parameter was determined most effectively in the 400 – 1000 

nm range and returned values of 10.34 % for RMSEP.  The RER values for the optimal BOD, COD and TSS 

parameters were 9.64, 10.88 and 9.67 respectively, indicating that the models could be used for screening 

and for COD could be used for quality control purposes.  The drawback with this study is that the best results 

were achieved at low wavelength ranges and not in the NIR wavelength range.  More work needs to be done 

using NIR in the 780 – 2500 nm wavelength range to determine its efficacy for prediction of wastewater 

quality parameters.   
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2.11  Conclusion 

The South African wine industry is important for economic growth for the country.  This industry however 

generates large volumes of wastewater every harvest season, placing strain on the available freshwater 

resources (Howell & Myburgh, 2018). The wastewater that is generated by the wine industry is challenging 

to treat due to its high strength and variable composition (Da Ros et al., 2014; Bories & Sire, 2016). Re-use of 

generated wastewater could reduce the wine industry’s reliance on freshwater for the irrigation of vineyards 

during the year (Meneses et al., 2010) 

Biological treatment methods have been shown to be very effective for the removal of organic 

material from winery wastewater (Mosse et al., 2011). Biological treatment methods can be broadly divided 

into aerobic and anaerobic digestion methods (Ioannou et al., 2015). Anaerobic methods have a few 

advantages compared to aerobic processes, with low sludge produce and production of biogas being just two 

of these (Andreottola et al., 2009; Show & Lee, 2016). Anaerobic processes have been used to treat winery 

wastewater in the past with great success (Ruiz et al., 2002; Moletta, 2005). Anaerobic sequencing batch 

reactor is a type of anaerobic treatment that can be used for the treatment of winery wastewater. 

Advantages of this technology include: flexibility of operational parameters; no need for an external clarifier 

and it has a kinetic advantage because of alternating F:M ratio during the cycle (high in the beginning and 

lower towards the end of the cycle) (Al-Rekabi et al., 2007; Myra et al., 2015).   

Many physical and chemical factors may affect the performance of the AnSBR including: 

temperature; organic loading rate (OLR); mixing regime; feeding time; substrate to microorganisms ratio 

(F:M) and hydraulic retention time (HRT), pH; alkalinity; volatile fatty acids (VFAs) and toxicity in the digester. 

There is limited research available that utilises the AnSBR technology to treat winery wastewater, specifically 

at pilot-scale. Knowledge of optimal operational parameters for pH, feeding strategy and mixing intervals is 

equally limited and needs to be explored further. 

Two performance measures for anaerobic reactors are COD and TSS. Currently the methods to 

determine the concentrations of these parameters is time-consuming and laborious. Currently no methods 

exist for the rapid determination of COD and TSS of winery wastewater. Near-infrared technology has been 

used to quantify COD and TSS concentration in wastewater of different origins e.g. sugar refinery wastewater 

or domestic sewage (Yang et al., 2009; Pan et al., 2012b). The feasibility of using NIR spectroscopy for the 

quantification and classification of COD and TSS in winery wastewater must be investigated to determine 

whether a rapid, non-destructive method can be proposed. 
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Chapter 3 

Determination of Chemical Oxygen Demand (COD) and Total Suspended Solids 

(TSS) Using Near-Infrared (NIR) Spectroscopy   

 

Abstract 

The use of near-infrared (NIR) spectroscopy was evaluated for the quantification and classification of 

chemical oxygen demand (COD) and total suspended solids (TSS) concentration in winery wastewater. 

Spectra were acquired using a benchtop Büchi NIR-Flex N500 FT-NIR spectrophotometer with a wavelength 

range of 1 000 – 2 500 nm as well as a portable Viavi handheld spectrophotometer with a wavelength range 

of 900 – 1 700 nm.  Exploratory data analysis (PCA) was performed to identify possible wavelengths of 

importance. Different pre-processing methods were performed to identify the best pre-processing method 

along with principal component regression (PCR) or partial least squares regression (PLS-R) for quantification. 

Different discriminant analysis techniques were performed to identify the most effective technique for 

classification of COD and TSS. The concentration of COD could be predicted with a RMSEP value of 893 mg.L-

1, an error of 9.9 % compared to the range of the reference values, using PCR along with orthogonal signal 

correction (OSC). This was achieved using the wavelength range 2 060 – 2 340 nm on the benchtop 

instrument. The PCR model could be used as a screening method to rapidly determine the COD concentration 

of winery wastewater. The concentration of TSS could be predicted with a RMSEP of 136.94 mg.L-1, an error 

of 5.72 %, using the benchtop instrument. The prediction model for TSS achieved a prediction performance 

that was almost comparable to the reference method, meaning it is suitable for screening purposes.  

Classification accuracies of 90.4 % (COD) & 100 % (TSS), 80.1 % (COD) & 95 % (TSS) could be achieved with 

the benchtop and handheld instruments respectively. The handheld device could not quantify COD or TSS to 

a satisfactory degree for the purpose of screening. The above classification accuracies for the handheld 

instrument indicates that classification of winery wastewater, into low or high strength categories, may be 

possible for in-line monitoring of winery wastewater and screening via category instead of quantification. 

 

3.1  Introduction 

Water is the most important natural resource on Earth and is of vital importance for humans, plants, animals, 

ecosystems and environments (Sivakumar, 2011). The most abundant use of water is found in the agricultural 

sector, with this sector using roughly 70 % of all fresh water globally (UNESCO, 2017). Industrial use of fresh 

water is much less at approximately 19 % of fresh water globally, however the wastewater produced from 

industry is very high strength and therefore has the potential to pollute large quantities of water (Moharikar 

et al., 2005; UNESCO, 2017). Wineries generate copious amounts of high strength wastewater in terms of 

chemical oxygen demand (COD) (Da Ros et al., 2014).   
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One method of reducing COD in winery wastewater is through the use of an anaerobic sequencing 

batch reactor (AnSBR) (Mosse et al., 2011). The premise of an AnSBR is that anaerobic bacteria form granules, 

consisting of methanogens, acidogens and acetogens, which use organic compounds in the wastewater as 

substrate (Show & Lee, 2016). This technology has been shown to work numerous times treating winery 

wastewater with COD reduction percentages of up to 98 % (Ruiz et al., 2002; Shao et al., 2008). The one 

problem that persists is one of reactor overload. This is when the COD level coming into the reactor is too 

high and causes reactor failure, as microorganisms perish. It is therefore important to establish the COD of 

incoming wastewater before feeding the AnSBR. Routinely, the determination of COD is performed in a 

laboratory and is a time consuming method that requires chemical reactions, the reaction with potassium 

dichromate, to quantify the levels in water (Yang et al., 2009; Pan et al., 2011). This reaction involves a 

digestion step of 120 minutes at 148°C. Thereafter a cooling step of at least 30 minutes is required to cool 

the sample before inserting it into a spectrophotometer and calculating COD values (APHA, 2005).  

Near-infrared (NIR) spectroscopy has been used in several studies to determine COD concentration 

in water. Chemical oxygen demand (COD) as well as biochemical oxygen demand (BOD) was determined 

simultaneously in domestic sewage using NIR spectroscopy (Yang et al., 2009). The method had a correlation 

coefficient of 0.9542 and 0.9652 for COD and BOD, respectively. A good indicator for model accuracy for 

quantification is the root mean square error of prediction (RMSEP) and the RMSEP for COD and BOD were 

25.24 and 12.13 mg.L-1, respectively. The range of measured values were 496.6 mg.L-1 and 289.2 mg.L-1 for 

COD and BOD. This translates to error values of 5.1 % for COD quantification and 4.2 % for BOD 

determination, which can be considered very accurate and within allowable error ranges for process control 

requirements (Yang et al., 2009).  

Wastewater was assessed for COD determination using NIR spectroscopy and the RMSEP value was 

found to be 25.5 mg.L-1 (Pan et al., 2011). This correlates to a 7.7 % error when taking the range of 330 mg.L-

1 into consideration. The study proved that COD determination can be achieved fairly accurately using NIR at 

the wavelength range of 820 – 850 nm and using moving window partial least squares (MWPLS) as a 

chemometric evaluation.   

Total soluble solids have been previously quantified using NIR. Partial least squares regression (PLS-

R) has been used to predict the concentration of TSS in an activated sludge reactor. The error for prediction 

was 14.1 % and the correlation coefficient (R2) was 0.91 (Sarraguça et al., 2009).   

Wastewater has been assessed for the quantification of TSS using UV-Vis spectroscopy. The root 

mean square error of calibration (RMSECV) was 16.6 % for the cross-validated results (Rieger et al., 2006) 

Near-infrared spectroscopy can be used to quantify COD in various wastewaters, however it has not 

been quantified for winery wastewater in literature. Added to this is that most of the literature is based on 

COD quantification of low strength wastewaters, with no studies investigating wastewaters with COD 

approaching 10 000 mg.L-1. No work has yet been done to predict TSS concentration of winery wastewater 

using NIR spectroscopy.  
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The aim of this study was to investigate the performance of NIR spectroscopy to determine COD and 

TSS concentrations in winery wastewater, as well as classify the water based on COD and TSS strength, using 

a benchtop FT-NIR spectrophotometer and a handheld spectrophotometer. An error percentage of less than 

10 % compared to the range of the independent validation set will be deemed suitable to fulfil the aim of this 

study.  

 

3.2  Materials and methods 

3.2.1  Samples 

Winery Wastewater was collected from four different farms in the Stellenbosch wine region from the end of 

March to the beginning of May 2018. The samples were collected in 2L Schott bottles from various locations 

on each farm. Water was collected from the stream that flows to the wastewater collection dam on Farm A. 

The wastewater from Farm B was collected from the gullies in the cellar. Farm C had a water filtration system 

and water was collected during the different phases of the treatment as well as from gullies in the cellar. 

Farm D had a collection dam on its premises and water was subsequently collected from the dam, however 

after 3 replicates, it was decided that water would not be sourced from that farm anymore, as winery 

wastewater could not be sourced without contamination. Wastewater was collected for 23 days and 80 

samples were collected in total. The samples were transported to the lab where they were sieved using a 

600-micron sieve to eliminate particulate matter. This was performed to ensure that scattering during NIR 

scanning can be minimised. The samples were then kept at ambient temperature (23°C) for analysis which 

commenced immediately upon arrival at the laboratory.  

 

3.2.2  Analytical methods 

Several parameters of the wastewater were determined using Standard Methods (APHA, 2005), namely: pH 

(senTix 41 probe); alkalinity and total suspended solids (TSS). 

 

Alternative methods were used to determine the following parameters: 

1. COD (mg.L-1) 

I. Measured using Spectroquant® COD cell test kits (Merck, Darmstadt, Germany) with the 

ranges  

100 – 1 500 mg.L-1,  500 – 10 000 mg.L-1 and 0 – 90 000 mg.L-1. 

 

3.2.3  NIR instrumentation 

Two instruments were used in this experiment to acquire near-infrared spectra. A benchtop FT-NIR 

spectrophotometer was used along with a handheld portable spectrophotomer. 

The benchtop instrument used was the Büchi NIRFlex N-500 FT-NIR spectrophotometer (Büchi, 

Flawil, Switzerland) with the liquids attachment. A quartz cuvette with a declared optical pathlength of 0.1 
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mm and a volume of 26 µL and detachable windows was used for this analysis. The illumination source of the 

instrument consisted of two tungsten halogen lamps. This instrument is equipped with an extended range 

Indium Gallium Arsenide (InGaAs) detector. The spectral range of the instrument with the liquid attachment 

is 1 000 – 2 500 nm and the resolution used was 16 cm-1. Internal temperature of the instrument was kept 

constant at 35°C. The scans were performed in transmittance mode. 

The handheld instrument used was the MicroNIR Onsite spectrophotometer (Viavi Solutions Inc., 

Milpitas, USA). This instrument is equipped with two integrated vacuum tungsten lamps along with an InGaAs 

photodiode array detector. Spectra were acquired in the spectral range of 908 – 1 676 nm with a resolution 

< 12.5 nm.  The samples were scanned in a white Teflon well with a volume of 900 µL. 

 

3.2.4  Spectral acquisition 

Wastewater that had been previously filtered was kept at ambient temperature (23°C) during spectral 

acquisition. 

 

3.2.4.1  Benchtop instrument 

In order to acquire a single spectrum, the benchtop instrument scans the sample 16 times and displays one 

average spectrum. Each 2 L Schott bottle representing a single farm was considered a single sample (Figure 

3.1). From this sample a subsample was pipetted and placed into the cuvette for spectral acquisition. This 

was defined as one subsample. Each subsample was scanned five times in the benchtop instrument so that 

5 spectra were acquired for each subsample. In total 10 subsamples were scanned for every farm’s 2 L 

sample, which resulted in 50 spectra acquired per farm per day. After each subsample was scanned, the 

cuvettes were cleaned using distilled water and dried using a glass cloth. Thereafter 30 µL of sample was 

placed into the cuvette for subsequent scanning. 

 

3.2.4.2  Handheld instrument 

The handheld instrument displays one average spectrum per scan consisting of 100 spectra. Each subsample 

was scanned 32 times resulting in acquisition of 320 spectra per sample. This was done as scanning time of 

the handheld instrument was significantly faster than the benchtop instrument. After each subsample was 

scanned, the cuvettes were cleaned with distilled water and dried with a cloth. Thereafter 900 µL of sample 

was placed into cuvette for subsequent scanning.  

 

3.2.5  Spectral analysis 

Analysis of the spectral data were analysed using The Unscrambler X10.5 (Camo Software AS., Oslo, Norway) 

software. Spectral analysis for the benchtop and handheld instruments were conducted independently of 

each other. For the benchtop instrument the 5 spectra obtained for each subsample were averaged to one 

average spectrum for each subsample. Each sample was therefore represented by 10 spectra prior to pre-
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processing step. For the handheld instrument the 32 spectra obtained for every subsample were averaged 

to one spectrum, meaning that each sample was also represented by 10 average spectra. The mean spectra 

were computed and plotted onto a graph to investigate potential wavelengths of importance. 

 

 

Figure 3.1  Diagram illustrating spectral acquisition of samples for the benchtop instrument. One sample was divided 

into 10 subsamples with each subsample being scanned 5 times. In total 50 spectra obtained per farm per day.         

 

3.2.6  Pre-processing 

Pre-processing was performed on the data to minimise the contribution that the physical effects have on the 

NIR spectra and prepare the data for consequent analysis (Pizarro et al., 2004). No smoothing was performed 

on the spectroscopic data prior to pre-processing. Several pre-processing techniques, standard normal 

variate (SNV) (Barnes et al., 1989), detrending, Savitzky-Golay first and second derivatives (Savitzky & Golay, 

1964) and orthogonal signal correction (OSC) (Wold et al., 1998), were investigated to determine which 

techniques would yield the best results. 

 

3.2.7  Exploratory data analysis (EDA) 

Principal component analysis (PCA) was performed on the mean spectra. The analysis was performed using 

seven principal components (PCs) to ensure consistency in the analysis. Principal component analysis can be 
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used to detect outliers in the sample set. This is done by using the PCA scores plots along with the influence 

plot (Payne, 2019). No statistical outliers were detected using the PCA scores plots in combination with the 

influence plot. In addition to outlier identification, scores plots, loading line plots and correlation loadings 

were investigated to identify wavelengths of interest. 

 

3.2.8  Multivariate data analysis 

3.2.8.1  Model development 

Two quantification techniques were investigated to determine accuracy of the prediction for COD and TSS 

concentrations in winery wastewater. The techniques in question were partial least squares regression (PLS-

R) (Lorber et al., 1987) and principal component regression (PCR) (Hotelling, 1957). Linear discriminant 

analysis (LDA) and quadratic discriminant analysis (QDA) was performed to classify COD into 3 distinct 

categories; in, warning and out. The same classification techniques were performed to classify TSS into two 

distinct categories; low and high. Once pre-treatment and outlier removal were completed, the data was 

divided into calibration and validation sets. Approximately 70 % of the data was used for the calibration set 

and 30 % used as an independent validation set. Partial least squares regression, PCR, LDA and QDA models 

were developed for each parameter independently and their performance evaluated. For each analysis the 

average spectrum of each farm was calculated from the validation data and those 21 (COD) and 20 (TSS) 

average spectra were used for the validation to retain realism of a real-world environment.  

 

3.2.8.2  Partial least squares regression (PLSR) 

Partial least squares regression is a technique which combines multiple regression and PCA (Abdi, 2003). It is 

a projection method that is used to predict a property, Ž, based on the relationship between the predictors 

X (absorbance) and the response Y (COD/TSS) (Trygg & Wold, 1998). To achieve the best predictive power, 

this technique extracts orthogonal factors (latent variables) derived from the predictors (Abdi, 2003). The 

PLS-R models were used to predict COD and TSS concentrations. Full cross validation was performed on the 

data set. The calibration matrix (70 %) was used to train the algorithm to predict the Y response based on the 

X predictors. These calibration models were applied to the independent validation set (30 %) and the output 

was analysed based on coefficient of determination (R2), RMSEP values and SEP/SEL.  

 

3.2.8.3  Principal component regression (PCR) 

Principal component regression is a technique that combines principal component analysis with least squares 

regression (Keithley et al., 2009). It is important to transform a set of variates into their principal components 

if the independent variables are highly colinear, or if there are many potential reasons for the variation.  

Biological samples are highly variable so by transforming the data to its principal components, the sample 

space can be simplified (Massy, 1965). Full cross validation was performed on the data set. The data was 
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divided into calibration and independent validation sets as with PLS-R. Output was analysed based on R2, 

RMSEP values and SEP/SEL.  

3.2.8.3  Discriminant analysis (DA) 

Principal component (PC) scores were used to construct DA models. To determine the number of PCs to use 

the explained variance plot was analysed and PCs were selected that explains the most variance in the least 

amount of PCs. The number of PCs was decided once the difference in explained variance showed an increase 

of <5 % compared to the previous PC. Linear discriminant analysis calculates an optimal linear projection 

which minimises the intra-class variance and simultaneously maximises the variance between classes (Fisher, 

1936). Quadratic discriminant analysis works by calculating a non-linear boundary, using a quadratic function, 

between classes.  The model that had the best classification rate was selected for use and calibration models 

were built.  Samples were classified based on the distance to the centre of each class.  The model was 

subsequently applied to the independent validation set and an output was generated and analysed. 

 

3.2.9  Performance measures 

To assess the performance of the models with the respective pre-processing techniques the following 

calculations were performed. The classification accuracy (equation 3.1) illustrates the efficacy of the overall 

model. False positive error (equation 3.2) occurred when an incorrect class was classified as a correct class. 

A false negative error (equation 3.3) occurred when a correct class was incorrectly classified as an incorrect 

class.  Various other performance measures were calculated (equations 3.4 – 3.8) to determine the optimal 

model.   

 

Classification accuracy (%) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
×  100   Equation 3.1 

False positive error (%) =
𝐹𝑃

TP+TN+FP+FN
× 100    Equation 3.2 

False negative error (%) =
𝐹𝑁

TP+TN+FP+FN 
× 100     Equation 3.3 

Sensitivity or recall (%) =
TP

TP+FN
× 100     Equation 3.4 

Specificity (%)=
TN

TN+FP
× 100      Equation 3.5 

Precision (%) =
𝑇𝑃

TP+FP
× 100      Equation 3.6 

F1 Score (%) = 
2 ×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

precision+recall
× 100     Equation 3.7 

Misclassification rate = 
𝐹𝑃+𝐹𝑁

TP+TN+FP+FN
× 100    …equation 3.8 
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Where:  

TP = True positive (Positive correctly classified as positive i.e low TSS classified as low TSS) 

TN = True negative (Negative correctly classified as negative i.e high TSS classified as high TSS) 

FP = False positive (Negative incorrectly classified as positive i.e high TSS classified as low TSS) 

FN = False negative (Positive incorrectly classified as negative i.e low TSS classified as high TSS) 

 

3.3  Results and discussion 

3.3.1  COD quantification and classification (benchtop) 

3.3.1.1  Spectral analysis 

The average spectra were computed between the wavelengths of 1 000 - 2 500 nm and it was subsequently 

plotted to determine and compare the chemical properties of the wastewater. The data were manually 

classified into 3 categories for ease of comparison and to investigate trends related to COD (Figure 3.2). 

Categories were identified as follows;  

• In: COD values between 0 and 4 999 mg.L-1 

• Warning: COD values between 5 000 and 6 999 mg.L-1 

• Out: COD values above 7 000mg.L-1 

For the three categories the absorption trend was similar, however there was a difference in intensity and 

overlap between categories.  Differences in intensity can possibly be attributed to physical effects such as 

light scattering in the unprocessed spectra.  Three absorption bands were seen to be prominent at 1 448, 

1 929 and 2 210 nm.   

The absorption band at 1 448 nm is related to the O-H stretch first overtone of water (Cozzolino et 

al., 2007).  The absorption band at 1 929 nm is related to O-H stretch and deformation vibrations of water 

(Cozzolino et al., 2007). Glucose, fructose and ethanol, which are large contributors to COD in winery 

wastewater, can be attributed to the wavebands between 2 200 nm and 2 300nm (Dambergs et al., 2002; 

Cozzolino et al., 2006; Cozzolino et al., 2007).   
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Figure 3. 2  Unprocessed spectra of COD divided into three categories; In (Blue), Warning (Red) and Out (Green).   
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3.3.1.2  Exploratory data analysis 

3.3.1.2.1  Principal component analysis 

Separation between the classes; in, warning and out was observed in the PCA scores plot of the OSC corrected 

data (Figure 3.3). Significant overlap between classes was also observed.  It is expected that there be class 

overlap as the classes are based on a sliding scale of increasing concentration. This means that a COD of 4 999 

mg.L-1 and a COD of 5 001 mg.L-1 will have different classes, yet are only 2 mg.L-1 different in concentration.  

Increasing COD is correlated with a shift from left to right in PC1. PC1 accounted for 100 % of the variation in 

the data. The variation can therefore be explained by PC1 and the loadings plot was investigated to determine 

the source of the separation. Factors that could explain the separation could be differences in concentration 

of glucose, fructose and ethanol (Dambergs et al., 2002; Cozzolino et al., 2006; Cozzolino et al., 2007).  

 

 

Figure 3. 3  PCA (OSC corrected) analysis of spectral data for three COD categories; In (Blue), Warning (Red) 

and Out (Green). Separation 100 % explained in PC 1. 

Differences in the interactions between water and other ions can also be a possible cause for the 

separation. To investigate the differences between the classes, the score plot along with the loadings line 

plot is used. Score scatter plots allow for the inspection of the samples for similarity and can offer a 

visualisation of where the samples are located within the PC space (Li Vigni, 2013). This allows for easy 

detection of groups or trends within the PC space. The loading vectors represent the variable contribution 

(wavelength) to the PCs and the correlation of the variables can then be investigated in the loading line plots 

(Li Vigni, 2013). The loadings can therefore be interpreted as the weights of each wavelength used in the 

analysis. This allows for the identification of important wavelengths that contribute to the separation of 

classes. The loadings line plot (Figure 3.4) in conjunction with the correlations loadings was used to 

determine wavelengths that contribute to the separation. From Figure 3.4 three bands were identified that 
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could explain the separation. These wavebands were at 1 380 – 1 500 nm, 1 930 nm and 2 250 – 2 290 nm.  

The wavebands at 1 380 – 1 500 and 1 930 nm can be attributed to O-H stretch vibrations of water (Cozzolino 

et al., 2006). The band at 2 250 – 2 290 nm can be attributed mainly to glucose, fructose and ethanol. The 

absorption band at 2 270 nm specifically is assigned to the CH-stretch from the methyl group of ethanol 

(Dambergs et al., 2002; Cozzolino et al., 2006). In addition to the loadings line plot, the correlations loadings 

plot (Figure 3.5) can also be used to identify wavelengths that are important to identify the possible reason 

for separation. 

 

 

Figure 3. 4 PCA loadings line plot for PC1 (100 % explained) with interpretable bands at 1 380 -1 500 nm, 

1 930 nm and 2 250 - 2 290 nm. 

The correlation loadings plot indicates the significant wavelengths that are the reasons for the 

separation. The red dotted lines are the upper and lower bounds and values that lie within these bounds are 

modelled by the PCA. The upper line indicates 100 % of the explained variance and the lower line indicates 

50 % of the explained variance. Values lying between the two lower bounds are not considered for the 

analysis. Both the positive and the negative values are used to determine wavelengths of importance.  

Figure 3.5 indicates that for spectral data with OSC pre-processing all the wavelengths were important to 

derive separation. This could be because the winery wastewater has a lot of variables that can be explained 

at all the wavelengths. For example, pH can be explained at wavelengths of 1 332 – 1 640 nm and 2 173 – 

2 355 nm in wine (Ye et al., 2014). As wine and grape juice are the predominant contributors to winery 

wastewater it can be assumed that pH for winery wastewater will also be explained at these wavelengths. 

Total acidity can also be a contributing factor in the separation as it can be explained at wavelengths similar 

to pH at 1 640 – 1 730 nm (Ye et al., 2014). Because OSC does not mean centre the data or correct for 

scattering it is also possible that the turbidity and total suspended solids can cause scattering effects, 

specifically at 1 000 – 1 400 nm as seen in Figure 3.2.  

To investigate if that was a possibility multiplicative scatter correction (MSC) was performed 

alongside OSC and a PCA was calculated. The corresponding correlations loading plot is shown in Figure 3.6. 

It is evident from Figure 3.6 that scattering is not responsible for the separation as the scattering was 
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corrected using MSC. The data was centred around zero and therefore the correlation loadings still showed 

that all wavelengths were important to separate the classes. The plot varies from negative to positive, but all 

wavelengths are between the dotted red line in either positive 1 or negative 1. Other factors must therefore 

be responsible for the separation other than turbidity and TSS. OSC may not be the most effective pre-

processing method for wavelength selection as the method removes variation from the X data that are not 

related to the responses. Wavelength selection will be discussed in the following section.   

 

 

Figure 3. 5  Correlation loadings plot for PC1 on OSC corrected data showing all wavelengths (1 000 – 2 500 

nm) important for separation. 

 

 

Figure 3. 6  Correlation loadings plot for PC1 on MSC and OSC corrected data illustrating important 

wavelengths. 
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3.3.1.2.2  Wavelength selection 

Processing speed of The Unscrambler X.5 software is slow when using all wavelengths so it becomes 

important to select specific wavelengths that can be used to speed up the analysis. The selected wavelengths 

need to perform to a similar standard, compared to the full spectrum of the instrument, for classification and 

quantification. As mentioned earlier, OSC is not the optimal pre-processing technique to use for wavelength 

selection. Savitzky-Golay second derivative (SGD2) (3rd polynomial, 19 smoothing points) in combination with 

MSC was used to identify important wavelengths (Figure 3.7). From Figure 3.7 it is evident that there is some 

separation in terms of the 3 COD classes.  This separation is not as definitive as the pre-processing with OSC 

but can still be useful in terms of wavelength selection.  Most of the variance in the data is explained by PC1 

(94 %) and 5 % is explained by PC2.   

 

Figure 3. 7  PCA (MSC and Savitzky-Golay second derivative) scores plot (PC1 (94 %) vs PC2 (5 %)) for COD 

categories; In (Blue), Warning (Red) and Out (Green).   

When investigating the correlation loadings plot (Figure 3.8) there are several wavelengths that have 

an influence on the separation. The range 1 389 – 1 544 nm is one such example of a prominent waveband. 

Another prominent contributor to the separation is 1 800 – 2 000 nm. Both of these aforementioned ranges 

have been shown to describe interactions of ions, metals and other components with water (Tsenkova et al., 

2018). Winery wastewater does not just consist of wine, there is also considerable amounts of cleaning 

products such as NaOH or Cl- (Vlyssides et al., 2005). These may cause perturbations in the water and 

influence the resulting spectra (Tsenkova et al., 2018). This field of study is known as aquaphotomics and 

these principles were not applied in this research. For this reason, when performing wavelength selection, 

the ranges 1 389 – 1 544 and 1 800 – 2 000 nm were not used. Important wavelengths at 2 060 – 2 170 nm 

and 2 260 – 2 340 nm explain some of the variation observed in PC 1 (Figure 3.8). It has been established that 
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ethanol may be the primary molecule being detected in the wastewater at 2 270 and 2 300 nm (Cozzolino et 

al., 2007). The wavelength range 2 200 – 2 300 nm also represents sugars, as seen when a previous study 

tracked fermentation of wine over time with NIR and attributed changes in that region to conversion of 

sugars to ethanol (Cozzolino et al., 2007). Another possible reason for a prominent peak can be attributed to 

tannins in the wine absorbing at 2 140 nm (Soukupova et al., 2002). These findings by previous authors are 

consistent with the main contributors to COD in winery wastewater. Organic compounds contributing the 

most to COD are organic acids, esters, sugars, polyphenolic compounds and ethanol (Mosse et al., 2011; 

Bories & Sire, 2016).   

 

 

 

 

Figure 3. 8  Correlation loadings plot (PC 1) of data pre-processed with MSC and SGD2 showing prominent 

wavebands at 1 389 – 1 544 nm (Green), 1 800 -2 000 nm (Orange) and 2 060 – 2 340 nm (Purple). 

The goal of wavelength selection is to decrease the wavelengths so that processing of the data can 

proceed more swiftly whilst ensuring that accuracy of the prediction is not compromised. The data without 

wavelength selection was selected and processed with PLS-R to investigate the prediction accuracy of the 

model using MSC and SGD2 (Figure 3.9). The RMSECV obtained when performing PLS-R was 915.93 mg.L-1. 

The range of the COD represented was 102.5 – 10 570 mg.L-1. The error of the prediction was therefore  

8.75 % from the actual values on average.  Wavelengths 2 060 – 2 340 nm were selected and processed with 

PLS-R to investigate the accuracy of the prediction using the same pre-processing but using limited 

wavelengths (Figure 3.10). The RMSECV obtained from this analysis was 925.12 mg.L-1. The range was once 
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again 102.5 – 10 570 mg.L-1, therefore the error of prediction was 8.84 %. By having RMSECV values so close 

together it confirmed that the wavelength range 2 060 – 2 340 nm may be accurate for predicting COD.   
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Figure 3. 9  PLS-R of the data (MSC + SGD2) showing the predicted vs reference values for COD using all wavelengths. 
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Figure 3. 10  PLS-R of the data (MSC + SGD2) showing the predicted vs reference values for COD using the wavelengths 2 060 – 2 340 nm. 
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3.3.1.3  Multivariate data analysis: Model development (benchtop) 

3.3.1.3.1  Principal component regression (PCR) 

Four pre-processing techniques were investigated using principal component regression (Table 3.1). The SNV 

and detrend model did not predict the COD concentration to a satisfactory degree. The root mean square 

error of calibration (RMSEC) was 1 837.10 mg.L-1 with a COD range of 102.5 – 10 570 mg.L-1 (10 467 mg.L-1).  

This translates to an error percentage of 17.55 %. Root mean square error of cross validation (RMSECV) was 

comparable to the RMSEC albeit slightly worse as it uses samples within the calibration set and tries to predict 

the concentration of the COD. The correlation coefficient (R2) values for calibration and cross validation were 

0.439 and 0.410 respectively. The prediction of the independent validation set performed slightly worse than 

the calibration set. An RMSEP value of 1 901.39 mg.L-1 was achieved, yet the correlation coefficient was 

0.632. It is clear that SNV and detrend as pre-processing is not optimal for the prediction of COD. A possible 

explanation for this is because SNV centres and scales the information and corrects for scattering effects, 

similar to MSC (Barnes et al., 1989). Whilst this is a useful transformation, SNV and detrending cannot amplify 

small differences in the spectra. Savitzky-Golay second derivative transformation can be used to amplify 

spectral information. This may be necessary as water absorption bands are predominant and could possibly 

dominate other spectral information in those wavebands. PCR has also been less successful than PLS-R for 

the prediction of COD in literature. A 2014 study determined COD of paper mill wastewater and found PCR 

to be inferior to PLS-R for the prediction of COD (Dahlbacka et al., 2014). To date very little work has been 

done on PCR for quantification of COD as most literature made use of PLS regression. When looking at the 

scores plot for SNV and detrending in the PCR model it becomes clear that there is not a great deal of 

separation between the 3 classes (Figure 3.11). There is considerable overlap of classes in the centre of the 

plot, leading to poor prediction performance. 

 

Figure 3. 11  PCA scores plot of SNV and detrended data using PCR.  Overlap of classes in the centre of the 

scores plot leads to poor prediction of COD concentration. 
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Table 3. 1  Principal component regression calibration, cross validation and prediction results of COD 

concentration for four different pre-processing combinations. 

 

 

 

For the SNV, detrend and Savitzky-Golay 2nd derivative, the predictive power was considerably better 

compared to SNV and detrending on its own. Correlation coefficient values for calibration, cross validation 

and prediction were all above 0.80 (Table 3.1). Root mean square error values were also much lower with 

values of RMSECV and RMSEP values being 822.36 and 1215.15 mg.L-1 respectively. The reason for improved 

predictive power is that derivatives eliminate peak overlap or increase resolution as well as eliminate a 

constant baseline drift between samples (Huang et al., 2010). During conversion of the signal from analog to 

digital, rounding errors can occur which form shoulders upon transformation with second derivative 

specifically (Kitamura & Hozumi, 1987). Savitzky-Golay filter smooths the data and eliminates the shoulders 

(noise) from the spectral data (Kitamura & Hozumi, 1987). Another performance measure to consider is SEP 

(Standard error of prediction) / SEL (Standard error of laboratory). Acceptance of a model can be based on 

the SEP/SEL ratio. An acceptable model has a ratio of < 2 (Corredor et al., 2015). The SEP/SEL ratio for all the 

pre-processing techniques with PCR are above 2. The SEP/SEL for the SNV, detrend and derivative model was 

2.74 as the SEP was 1243.38 and the SEL was 453 mg.L-1.   

The model with the best performance was OSC in conjunction with PCR. Values for RMSECV and 

RMSEP are the most accurate of all the models evaluated for PCR. An RMSEP value of 1006.13 mg.L-1 

translates to an error percentage of 11.14 % of the range. The model is a good fit as the R2 is 0.883. Values 

greater than 0.75 are generally accepted as good predictors of fit for regression models. Previous studies 

have used OSC for classification of wine vinegar and alcohol vinegar with 100 % success (Sáiz-Abajo et al., 

2005). Whilst this was not a quantification experiment it does highlight that OSC can be used on wine 

products with great success. Another study showed that OSC can be used to correct for light scattering in 

very turbid solutions that contain grape musts (Preys et al., 2008). The authors could predict ethanol content 

to within 3.6o.  

Turbidity of winery wastewater collected in this study ranged from 25 – 880 NTU.  This large range 

with moderate turbidity values could explain why prediction accuracy was improved when using OSC. When 

Model  RMSE (mg.L-1) R2 SEP / SEL 

SNV + Detrend 
Calibration 1837.10 0.439  

Cross-validation 1887.42 0.410  
Prediction 1901.39 0.632 3.98 

SNV + Detr. + 
SGD2 

Calibration 809.65 0.891  
Cross-validation 822.36 0.888  

Prediction 1215.15 0.830 2.74 

MSC + SGD2 
Calibration 998.79 0.834  

Cross-validation 1009.50 0.831  
Prediction 1512.25 0.735 3.42 

OSC 
Calibration 875.100 0.873  

Cross-validation 883.118 0.871  
Prediction 1006.13 0.883 2.25 
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comparing the scores plot for OSC there is greater separation between the classes compared to other models 

(Figure 3.12). Reference data collected from laboratory analyses are very accurate in predicting COD. It is 

important for OSC that the reference data be accurate as the algorithm removes only X data that is not 

related to the reference data. The algorithm aims to minimise the covariance between spectra and reference 

data to remove all information that is not related to the reference data (Wold et al., 1998). Orthogonal signal 

correction works well with spectral data as there are many variables (wavelengths) that try to explain a 

limited number of observations (COD, TSS etc).    

 

 

Figure 3. 12  Scores plots of OSC corrected data in PCR showing distinct separation explained by PC 1 for 

the 3 COD classes. 

 

3.3.1.3.2  Wavelength selection performance 

The most accurate model was used to evaluate the performance of waveband selection. The waveband 

selected was 2 060 – 2 340 nm as discussed earlier in the chapter. The OSC model with waveband selection 

performed better than the model without waveband selection. The RMSECV and RMSEP were 760.64 and 

893.81 mg.L-1 respectively (Table 3.2). Error of prediction was therefore 9.9 % and is comparable to previous 

studies, although previous studies focused on PLS-R rather than PCR. Values of 0.912 for R2 show an excellent 

model fit. This model has a SEP/SEL that is <2 and can therefore be concluded that this model is effective at 

predicting COD concentration for screening purposes. This model achieved the requirements of predicting 

COD with a 10 % error or less. Refer to section 3.3.1.3.1 for a detailed explanation as to why OSC was the 

most accurate model. 
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Table 3. 2  Principal component regression results for COD concentration prediction using OSC for 

wavelengths 2 060 – 2 340 nm. 

Model  RMSE (mg.L-1) R2 SEP/SEL 

OSC (Waveband 
selection) 

Calibration 751.96 0.906  

Cross-validation 760.64 0.904  
Prediction 893.81 0.912 1.94 

 

3.3.1.3.3  Partial least squares regression (PLS-R) 

Partial least squares regression in combination with SNV and detrend proved to be more successful than the 

same pre-processing using PCR. Values for RMSECV, RMSEP and R2 all improved markedly. The RMSECV was 

1 040.92 mg.L-1 (Table 3.3) and the range of the samples was 102.5 – 10 570 mg.L-1. Error rate of RMSECV 

was therefore 9.9 %. Prediction of COD was a lot worse than the cross validation, which is to be expected, 

but still shows an improvement of 295 mg.L-1 compared to the data processed with PCR. Current literature 

does not use SNV and detrend for prediction of COD but rather uses second derivative in general. By looking 

at SEP/SEL this model is not sufficient for predicting COD even for screening purposes.  

 

Table 3. 3  Partial least squares regression results for calibration, cross validation and prediction of COD for 

four different pre-processing combinations. 

Model  RMSE (mg.L-1) R2 SEP/SEL 

SNV + Detrend 
Calibration 1009.19 0.831  
Cross-validation  1040.92 0.821  
Prediction 1606.90 0.733 3.60 

SNV + Detr. + 
SGD2 

Calibration 775.62 0.900  
Cross-validation  791.26 0.896  
Prediction 1182.45 0.841 2.67 

MSC + SGD2 
Calibration 794.55 0.895  
Cross-validation  823.51 0.888  
Prediction 1224.80 0.827 2.76 

OSC 
Calibration 724.48 0.913  
Cross-validation  742.01 0.909  
Prediction 937.93 0.905 2.02 

 

When PLS-R was combined with SNV, detrend and Savitzky-Golay 2nd derivative the prediction 

improved when compared to data pre-processed with only SNV and detrend. This is to be expected as second 

derivative can increase the resolution and expose peaks that could not previously be seen due to peak 

overlap (Kitamura & Hozumi, 1987; de Aragão & Messaddeq, 2008). A previous study was conducted to 

predict COD values in domestic sewage (Yang et al., 2009). The average error of prediction was not reported 

as RMSEP for validation samples. However for calibration, SEP values of 25-30 mg.L-1, depending on pre-

processing, were reported in the calibration range of  28.6 – 528 mg.L-1 (499.6 mg.L-1). The SEP for calibration 

using PLS-R and second derivative was 30.18 and translates to an error of 6.04 % (Yang et al., 2009). Another 
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study determined COD of water containing sucrose and water containing bovine serum albumin (BSA) using 

PLS-R and second derivative as pre-processing (Innocent et al., 2007). The prediction results for the sucrose 

containing water was 172 mg.L-1 and a COD range of 7.5 - 1 397 mg.L-1 resulting in a relative error of 12 % 

which is similar to the results obtained from PLS-R in this study. When water containing BSA was analysed, 

the RMSECV of 138 mg.L-1 leading to a relative error of 13.1 %. The study used cross validation for the 

validation and not an independent validation set, so these results must be compared to cross validated data 

in this study. Cross validated error was calculated to be 7.56 % which exceeds the results published in 

literature. A potential reason for this is due to correction of scattering effects from SNV pre-processing which 

could improve the prediction accuracy.  

A study using second derivative combined with auto-scaling and mean-centering was used to predict 

COD concentration of paper mill wastewater. The authors achieved a RMSEP value of 149 mg.L-1 which 

corresponds to an error of approximately 10 % (Dahlbacka et al., 2014). The values obtained in this study are 

comparable to those found in literature, but the concentrations of COD far exceed the concentrations used 

in literature. Therefore, bigger RMSEP values are to be expected, yet the relative error to the range is 

comparable as the error achieved was 13 % using SNV, detrend and SGD2.  The SEP/SEL ratio (Table 3.3) 

achieved was 2.67 which means that although the prediction improved, it is still above a ratio of 2 which is 

the limit for a good model. 

The model that used MSC and SGD2 was very comparable to the model using SNV, detrending and 

SGD2. This was expected, as MSC and SNV are very similar as both correct for scattering. Although SNV and 

MSC are fundamentally different as SNV transforms individual spectra whereas MSC uses the mean spectrum 

to correct for scattering. Differences are therefore expected in the results, but the results should be 

comparable. From Table 3.3, RMSEP of MSC and SGD2 is 42.35mg.L-1 higher, which corresponds to 0.47 % 

difference. This illustrates the similarity in the two pre-processing techniques. 

Orthogonal signal correction used as pre-processing for PLS-R method performed the best out of all 

the regression models. When comparing OSC in combination with PLS-R the RMSECV was 742.01 mg.L-1 

(Table 3.3). This result is lower than the 883 mg.L-1 (Table 3.1) achieved from PCR and OSC using all 

wavelengths. The RMSEP of OSC and PLS-R was 937.93 mg.L-1 which is a 10.38 % error to the range which is 

comparable to studies previously mentioned. Previous work has not specifically been done on COD and OSC 

as pre-treatment, however PLS-R along with OSC has been used to predict ethanol content in the effluent of 

an anaerobic hydrogen bioreactor (Zhang et al., 2009a). Using OSC as pre-processing and PLS-R the ethanol 

content could be predicted with an RMSEP value of 59.1 mg.L-1. The range of the predicted measurements 

was 489.9 mg.L-1, resulting in an error of 12.06 % (Zhang et al., 2009a). This is comparable to previous 

literature as well as to this study. It was expected that OSC and PLS-R would work well as a combination as 

both techniques take the response variables into account when calculating  the latent variables (Niazi et al., 

2007). When comparing results from Table 3.1 and Table 3.3, PLS-R outperforms PCR by a small margin. 

These methods are very similar, with PCR only taking the wavelengths into account in the prediction, whereas 
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PLS-R includes the responses in the calculation of latent variables (Hemmateenejad et al., 2007). Both 

methods give very similar results in literature, with PLS sometimes outperforming PCR, but not to a large 

extent (Wentzell & Montoto, 2003).  

 

3.3.1.3.4  Wavelength selection performance 

The model with the lowest RMSEP was used to evaluate the performance of waveband selection. The OSC 

model with waveband selection performed better than OSC and PLS-R without waveband selection. The 

RMSEP value was 898.67 mg.L-1 which resulted in an error of 9.95 % and is consistent with findings in 

literature for prediction of COD using PLS-R (Yang et al., 2009; Pan et al., 2011; Pan et al., 2012b). Correlation 

coefficient of the model was above 0.9 indicating a very good fit for the data. The SEP/SEL was 1.93, indicating 

suitability of the model to be used as a screening method to determine COD of winery wastewater. Principal 

component regression using OSC and waveband selection performed slightly better (4.86 mg.L-1)(Table 3.2) 

than OSC and PLS-R when using waveband selection (Table 3.4).  This difference is very small and both models 

could be said to have the same predictive capability. The improvement in the model when waveband 

selection is employed may be because some regions in the spectra contain other analytes, interferences and 

interactions which may degrade model accuracy (Hemmateenejad et al., 2007). When waveband selection 

was performed for the comparison of performance of PCR and PLS-R in literature, there was not a significant 

difference in the predictive power of both techniques (Hemmateenejad et al., 2007), confirming the results 

of this study. 

 

Table 3. 4  Partial least squares regression results for COD concentration prediction using OSC for 

wavelengths 2 060 – 2 340 nm. 

Model  RMSE (mg.L-1) R2 SEP/SEL 

OSC (Waveband 
selection) 

Calibration 749.45 0.907  

Cross-validation 760.42 0.904  
Prediction 898.67 0.913 1.93 

 

3.3.1.3.5  Discriminant analysis (DA) 

All of the calibration models had a classification accuracy above 85.0 % (Table 3.5). However, this does not 

always mean that the models are good as they may be overfit. This is the case when using SNV, Detrending 

and Savitzky-Golay 2nd derivative which had a validation classification accuracy of 57.14 %. Linear 

discriminant analysis with OSC provided a classification accuracy of 90.4 % for validation and had a calibration 

classification accuracy of 93.35 %. The data is therefore not overfit as the classification and the validation 

accuracies are similar. The accuracy of the model suggests that LDA and OSC can be used to distinguish 

between the 3 classes of COD accurately. Quadratic discriminant analysis along with OSC as pre-processing 

could also be used as it yields good prediction capability.  
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Table 3. 5  DA model results to assess the performance of the different pre-processing along with optimal 

method (LDA, QDA or Mahalanobis) for COD discrimination. 

Number of 

PCs 
Method Model  

Classification 

Accuracy (%) 

5 

Linear 

SNV, DET SGD2 
Calibration 91.25 

Validation 80.90 

OSC 
Calibration 93.35 

Validation 90.40 

Quadratic 

SNV, DET SGD2 
Calibration 88.21 

Validation 57.14 

OSC 
Calibration 97.53 

Validation 85.70 

Mahalanobis 

SNV, DET SGD2 
Calibration 96.20 

Validation 66.67 

OSC 
Calibration 97.53 

Validation 80.95 

 

The best model from Table 3.5 was further investigated to determine its performance parameters. 

Classification of each class was high with the model being capable of differentiating between each class with 

an accuracy above 90 % for each (Table 3.6). The warning class had the worst accuracy of 90.48 % which 

could be because it was a transition category between In and Out categories. There could therefore easily be 

misclassification. As an example, in Figure 3.12 it is evident that there is overlap between the categories on 

the PCA.  The precision of prediction for classes warning and out are 75 % (Table 3.6). This shows that the 

model struggles to correctly predict warning class and out class correctly. This model therefore struggles to 

differentiate between warning and out. It does however predict the in class with 100 % precision. It is 

therefore still a useful model, specifically as a screening method, as it can predict the in class without error. 

The sensitivity of the warning class is low at 75.00%. Sensitivity describes the possibility that a positive 

response would be correctly classified as positive. Therefore, that the warning class is correctly classified as 

warning.  Literature has not classified COD, preferring to focus on quantification studies. It can be concluded 

that NIR can be used to classify COD which could be useful for screening purposes in bioreactors. If 

quantification is not important to the operator and only whether the water is of too high strength, then 

classification of COD is beneficial. LDA in combination with OSC can be used to classify COD in winery 

wastewater to an acceptable level for screening purposes.  
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Table 3. 6  Performance measures used to assess the LDA model (5 PCs) with OSC as pre-processing for the 

classification of COD into three classes. 

Class 
Classification 

accuracy 

False 
positive 
error (%) 

False 
negative 
error (%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

F1 
Score 

(%) 

In 95.00 0.00 5.00 92.86 100.00 100.00 96.30 

Warning 90.48 4.76 4.76 75.00 94.12 75.00 75.00 

Out 95.00 5.00 0.00 100.00 94.12 75.00 85.71 

 

3.3.2  COD quantification and classification (handheld) 

3.3.2.1  Spectral analysis 

The average spectra for the portable NIR instrument was computed between the wavelengths of  

908 – 1 651 nm. The spectra were plotted to compare chemical properties of the winery wastewater. Data 

were again classified into 3 categories; in, warning and out.  

Three absorption bands were found to be prevalent from the raw spectra. These bands were located 

at 970, 1 160 and 1 400 nm.  The absorption band at 970 nm may be attributed to moisture (Li et al., 2007). 

The band at 1 160 nm may be attributed to the C=O stretching fourth overtone as well as some aromatic 

groups (Debebe et al., 2017; Rosa et al., 2017). Carbonyl groups are often found in wine and can be either 

aldehydes or ketones and they are mostly compounds associated with odours in wine e.g. acetaldehyde (Lago 

& Welke, 2019). Absorption band between 1 400 and 1 650 nm may be attributed to the first overtone of  

O-H stretching of methanol and ethanol or possibly water (Cozzolino et al., 2006; Debebe et al., 2017; 

Tsenkova et al., 2018). From Figure 3.13 there is a lot of overlap between the 3 classes but there are samples 

with increased intensity from 908 – 1 400 nm.  These could be spectral outliers, as TSS should not lead to an 

increase in absorption at those wavelengths as previously discussed.  
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Figure 3. 13  Unprocessed spectra in wavelength range 908 – 1 651 nm in three categories; In (Blue), Warning (Red) and Out (Green). 
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3.3.2.2  Exploratory data analysis 

3.3.2.2.1  Principal component analysis 

No separation of classes was observed when investigating the raw spectra. There is considerable overlap 

between all three classes and no clear separation of classes can be observed (Figure 3.14). The class labelled 

warning that separated to the right in PC1 is the same farm for which the absorbance in Figure 3.13 was 

increased. Pre-processing had to be performed to try and separate classes based on COD concentration.  

Upon pre-processing with OSC there was more clear separation between classes with PC1 explaining 

100 % of the variation (Figure 3.15). There was still overlap between classes, but this was mostly between 

the in and warning classes, which is to be expected as the warning class is a transition class between in and 

out classes. Because COD concentration is on a spectrum, complete separation is unlikely. The variation 

between the classes can be completely explained by PC1 and the loadings line plot can be investigated to 

determine the cause of the separation.   

 

 

Figure 3. 14  PCA of raw spectra (PC1 vs PC2) for the three categories of COD concentration; In (Blue), Warning 

(Red) and Out (Green). 

 

From the loadings line plot (Figure 3.16) three wavebands have some importance. These are 1 120, 

1 162 and 1 378 nm. The band at 1 120 nm may be related to fatty acid content in the wastewater (Moscetti 

et al., 2015). Absorption bands around 1 400 nm can be attributed to C-H and O-H bonds associated with TSS 

(Cozzolino et al., 2006). At 1 400 nm absorption bands may also be attributed to O-H bonds of water 

(Cozzolino et al., 2006). To investigate this further the correlations loadings plot was investigated  

(Figure 3.17).  
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Figure 3. 15  PCA of OSC processed spectra (PC 1 vs PC 2) for the three COD categories; In (Blue), Warning 

(red) and Out (Green). 

 

 

Figure 3. 16  Loadings line plot indicating 3 wavelengths that may explain separation of COD classes at 1 120, 

1 162 and 1 378 nm. 

 

The correlations loadings plot indicates that all the wavelengths may have been important for the 

classification of COD (Figure 3.17).  The plot shows that all the wavelengths lie between the outer and lower 

bounds (Delineated by red dotted lines) meaning that all the wavelengths may be important. This may be so 

as a result of the portable device having a smaller wavelength range compared to the benchtop instrument. 

1 120 nm 

 

1 120 nm 

1 162 nm 

 

1 162 nm 

1 378 nm 

 

1 378 nm 
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Figure 3. 17  Correlation loadings for PC1 to determine important wavelengths in the range 908 – 1 651 nm. 

All wavelengths were deemed important to explain the separation. 

 

However, when investigating the important wavelengths with the benchtop instrument all the 

wavelengths were also deemed to be important for the separation. A more likely explanation may be because 

100 % of the variation is explained by PC1. If PC1 explained less of the variation, there may have been 

wavelengths that are deemed unimportant to explain the separation. Another reason is that OSC as a pre-

processing technique might be responsible, as it removes X data that are not related to the Y response. 

Wavelength selection was not performed on the spectral data as there are few wavelengths available 

when compared to the benchtop instrument. The portable instrument contains 125 wavelengths across the 

range 908 – 1 651 nm whereas the benchtop instrument contained 156 wavelengths once wavelength 

selection was completed. Wavelength selection will therefore have no benefit to the speed of processing.  

 

3.3.2.3  Multivariate data analysis: Model development (handheld) 

3.3.2.3.1  Principal component regression 

For the portable device only two pre-processing techniques were investigated upon identification of the two 

most accurate pre-processing techniques using the benchtop instrument. These techniques were SNV, 

detrending and Savitzky-Golay 2nd derivative and OSC (Table 3.7).  

Table 3.7 illustrates that SNV, detrending and Savitzky-Golay 2nd derivative was not suitable for 

prediction of COD concentration. The RMSEC was 2 211.16 mg.L-1 an error of  21.13 %. Calibration data had 

an R2 of 0.44 which is very low and does not correlate well with the COD data. Prediction of the independent 

validation set decreased further and the RMSEP was 2 296.98 mg.L-1 which translates to an error of 25.43 % 

as the range was 9 032 mg.L-1. The value of R2 improved to 0.615 which indicates some positive correlation, 

yet it falls below the 0.75 needed to indicate a good model fit. The SEP/SEL was 5.19 meaning that the model 
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was not suited for prediction of COD data at all. Winery wastewater is very complex and there may be too 

few variables when using the portable device to explain the complexity of the wastewater. The 4 nm 

increments between wavelengths means that there is a lot of information lost when compared to the 

benchtop instrument (1 nm increments). Principal component regression relies on the principal components 

to be the predictors for the response; however PCs do not always correlate with the responses (Westad et 

al., 2013). The main goal of PCA is to extract information that describes the variation in the X variables best. 

In scenarios where there is a lot of information not related to Y or if there is a high level of noise the PCs may 

be very poorly related to the responses and therefore result in a poor prediction (Westad et al., 2013). This 

could be the reason for SNV, detrending and Savitzky-Golay 2nd derivative not working well with PCR for 

prediction of COD in winery wastewater.  

 

Table 3. 7  Principal component regression results for calibration, cross-validation and prediction of COD 

concentration for two different pre-processing combinations. 

Model  RMSE (mg.L-1) R2 SEP/SEL 

SNV + Detrend + 

SGD2 

Calibration 2211.16 0.44  

Cross-validation 2268.67 0.207  

Prediction 2296.98 0.615 5.19 

OSC 

Calibration 1554.31 0.626  

Cross-validation 1572.21 0.619  

Prediction 1531.39 0.80 3.40 

 

A previous study was undertaken to determine polyphenols in wine using PCR and PLS-R and NIR 

(Martelo-Vidal & Vázquez, 2014). The authors found that PCR did not work as well as PLS-R for the 

quantification.  There were instances when using SNV and detrending along with SGD2 was reliable for 

prediction, but with PLS-R instead of PCR. Using PCR no such combinations were performed, however MSC 

smoothing and SGD2 were performed, but to no great accuracies (Martelo-Vidal & Vázquez, 2014).  

As PCR makes use of PCA for its predictions, it is useful to investigate the PCA scores plot to explain 

poor predictive power. Figure 3.18 shows the PCA scores plot for the data pre-treated with SNV, detrending 

and SGD2. There is poor separation between the classes, with extreme overlap.  Even with increasing 

concentration of COD there are no clear clusters forming.   
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Figure 3. 18  PCA scores plot for COD concentration on spectra pre-processed with SNV, detrending and 

SGD2.    

For the data processed with OSC and PCR the prediction improves considerably. The RMSEC was  

1 554.31 mg.L-1 which results in an error of calibration to the range (102.5 – 10 570 mg.L-1) of 14.85 %. There 

is an absolute improvement of 6.28 % for the prediction of COD compared to the first model. Correlation of 

the data of 0.626 indicate that the fit is not ideal but is far superior to the previous model. The predictive 

power of the OSC and PCR model is improved with the RMSEP being 1 531.39 mg.L-1. An error of 16.96 % was 

achieved for the prediction. The portable instrument does not perform to the same standard as the benchtop 

instrument, as its range is smaller, and it has lower resolution. When looking at SEP/SEL the model is not 

suitable for prediction as the value of 3.40 is greater than the prescribed limit of 2 (Corredor et al., 2015). 

This pre-processing technique performs better for the prediction of COD as OSC removes X data that is not 

correlated to the response. As PCR does not remove unrelated X data, this may explain the improvement of 

the predictive power of the OSC and PCR model. None of these models are powerful enough to be considered 

useful for prediction of COD in winery wastewater. 

 

3.3.2.3.2  Partial least squares regression 

Partial least squares regression was performed on the data with 2 different pre-processing approaches  

(Table 3.8). From Table 3.8 it is evident that SNV, detrending and SGD2 in combination with PLS-R was not 

ideal for predicting COD concentration. The value for RMSEC was 1 835.78 mg.L-1 meaning that the error to 

the range is 17.53 %. This is considerably lower than the RMSEC of the PCR model with the same pre-

processing. The correlation coefficient of 0.479 is low and does not show a good fit for the model. The RMSEP 

value for this combination is 1 843.06 with an R2 value of 0.718. There is a correlation, but it is not strong as 

it is under 0.75. Error of the prediction is 20.41 %. When comparing the same pre-processing and regression 
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technique to the benchtop instrument, the benchtop outperforms the portable instrument by 7.41 % in 

absolute terms. These data suggest that this specific model is not a good predictor for COD in winery 

wastewater. A previous study used PLS-R to determine COD in wastewater using wavelengths of  

820 -850 nm. The prediction error was 7.79 % compared to the range of the independent validation set. It is 

therefore possible to use limited wavelengths although this portable instrument cannot scan at those 

wavelengths (Pan et al., 2011). Very little analysis has been performed on grape juice, must or wine for these 

wavelengths so comparing the results to literature is not possible for similar substrates. 

When OSC was used in combination with PLS-R the RMSECV was considerably better than using SNV, 

detrending and SGD2. The RMSECV was 1009.19 mg.L-1 resulting in an error of 9.64 %. Correlation coefficient 

value was 0.843 which indicates that the model is a good fit (Colton & Bower, 2002). This may not always be 

the case, but it can be a good indicator for the detail explained by the model. A study was performed to 

evaluate the monitoring of COD in a sequential batch reactor for dairy sludge (Páscoa et al., 2008). The 

instrument used had a wavelength range of 900 – 1 700 nm and could predict COD concentration to  

86.6 mg.L-1, however the range was 52.8 – 905.8 86.6 mg.L-1. Error of prediction for the cross-validated data 

was therefore 11.6 %. The model was not subjected to an independent validation set so this study used the 

RMSECV. This compares favourably for the OSC pre-processed data that had an RMSECV of 9.64 %. This study 

improved upon the prediction with a similar wavelength range. Root mean square error of prediction for the 

model was 1 047.97 mg.L-1 meaning the error was 11.60 %. This is greater than the 10 % goal set forth in the 

aim of this study but shows that OSC along with PLS-R has potential to predict COD concentration in winery 

wastewater for screening purposes. It is possible that this combination worked better because of the 

fundamental differences between PLS-R and PCR with PLS-R incorporating the responses into the model 

(Hemmateenejad et al., 2007).   

 

Table 3. 8  Partial least squares regression results for calibration, cross-validation and prediction for two 

different pre-processing approaches 

Model  RMSE (mg.L-1) R2 SEP/SEL 

SNV + Detrend + 
SGD2 

Calibration 1835.78 0.479  

Cross-validation 1934.99 0.423  

Prediction 1843.06 0.718 4.15 

OSC 

Calibration 1009.19 0.843  

Cross-validation 1162.76 0.792  

Prediction 1047.97 0.879 2.36 

 

3.3.2.3.3  Discriminant analysis 

Linear discriminant analysis yielded positive results for the classification of COD for both pre-processing 

techniques with SNV, detrending and SGD2 yielding a calibration accuracy of 76.29 % and validation accuracy 

of 76.19 %. Both the calibration and validation had similar classification performance, which would suggest 

that this model is not overfit, and the correct number of components was chosen to model the data.  The 
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accuracy is not very high, but the data suggest that this pre-processing technique may have potential to 

predict COD using LDA.  

Quadratic discriminant analysis in combination with SNV, detrending and SGD2 achieved bad 

classification accuracies. Calibration accuracy was 31.99 % and classification accuracy was 19.05 %. These 

data suggest that QDA is not suitable for prediction of COD using this specific pre-processing. A possible 

explanation for this may be that QDA requires the variance-covariance to be similar for the two different 

classes, which is not the case for these samples (Siqueira et al., 2017). Classes are very similar as they are 

classified based on a spectrum of COD and not two distinct wastewaters, e.g. winery wastewater versus dairy 

wastewater.  

Mahalanobis discriminant analysis achieved good prediction results with a calibration accuracy of 

86.40 % and a validation accuracy of 76.19 %. Because the calibration and the validation accuracy is 10 % 

different, this model may be slightly overfit, which may reduce predictive capability of the model. The PCA 

plot for this pre-processing combination (Figure 3.17) shows a lot of overlap between classes and this may 

be a reason why the mahalanobis discriminant analysis technique performed worse than LDA. The best 

classification results were achieved using OSC as pre-processing technique. Linear discriminant analysis and 

OSC had a calibration accuracy of 86.95 % and a validation accuracy of 80.95 %.  This would suggest that LDA 

along with OSC as pre-processing is a useful model for the prediction of COD classes. When QDA was used 

along with OSC the calibration was improved (89.15 %), but the validation accuracy remained at 80.95 %. 

This would suggest that the LDA and OSC model is most likely the more robust model, as the difference in 

classification and validation accuracies are smaller.  

Performance of the portable NIR spectrophotometer was decreased compared to the benchtop 

instrument, which was expected as the resolution of the benchtop instrument is superior and the range of 

the instrument is larger, resulting in more information being able to be acquired to model the data. The 

benchtop instrument could scan samples above 2 000 nm where glucose fructose and ethanol absorb. These 

parameters are some of the main contributors to COD in winery wastewater and this can explain the 

difference in prediction results (Mosse et al., 2011).  

The performance measures for LDA and QDA using OSC as pre-processing is shown in Table 3.10 to 

determine the best model for prediction of COD. The best model was LDA using OSC as this model has slightly 

better precision and sensitivity. Most of the other performance measures are very similar and the choice of 

LDA is a combination of slightly superior precision, sensitivity and less difference between classification and 

validation accuracies. If the goal is to predict the “In” class the most accurately, then the LDA model may be 

the best choice, as it predicts the “In” class correctly 100 % of the time. Higher overall precision and F1 scores 

indicate that the optimal model is linear discriminant analysis.  

Performance of the portable spectrophotometer indicates that this instrument could differentiate 

between 3 different classes of COD with an 81 % accuracy.  Whilst this accuracy may not be sufficient for 

implementation at this moment, there is potential for a portable instrument to be used for classifying COD. 
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One shortcoming of this instrument is a reduced wavelength range and it may be necessary for an 

investigation into the performance of a portable instrument with a wavelength range of 2 000 – 2 500 nm.   

 

Table 3. 9  DA model results to assess the performance of the different pre-processing along with optimal 

method (LDA, QDA or Mahalanobis) for COD discrimination. 

Number of 

PCs 
Method Model  

Classification 

Accuracy (%) 

5 

Linear 

SNV, DET SGD2 
Calibration 76.29 

Validation 76.19 

OSC 
Calibration 86.95 

Validation 80.95 

Quadratic 

SNV, DET SGD2 
Calibration 31.99 

Validation 19.05 

OSC 
Calibration 89.15 

Validation 80.95 

Mahalanobis 

SNV, DET SGD2 
Calibration 86.40 

Validation 76.19 

OSC 
Calibration 87.50 

Validation 71.43 

 

 

Table 3. 10  Performance measures used to assess the LDA and QDA models using OSC as pre-processing 

for the classification of COD into three classes. 

Number 
of PCs 

Class 
Classification 

accuracy 

False 
positive 
error (%) 

False 
negative 
error (%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

F1 
Score 

(%) 

5 (LDA) 

In 94.44 5.56 0.00 100.00 83.33 92.31 96.00 

Warning 80.85 4.76 14.29 50.00 93.33 75.00 60.00 

Out 85.00 10.00 5.00 66.67 88.24 50.00 57.14 

5 (QDA) 

In 94.44 0.00 5.56 92.86 100.00 100.00 96.30 

Warning 80.85 9.52 9.52 50.00 88.24 50.00 50.00 

Out 85.00 10.00 5.00 66.67 88.24 50.00 57.14 
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3.3.3  TSS quantification and classification (benchtop) 

3.3.3.1  Spectral analysis 

The average spectra were computed between the wavelength range of 1 000 – 2 500 nm and was plotted to 

investigate the chemical properties of the wastewater. The data were classified into two categories of total 

suspended solids (TSS). Categories were identified as the following; 

• Low: TSS values between 0 and 999 mg.L-1 

• High: TSS values higher than 1 000 mg.L-1 

The raw spectra of the samples look similar, however there is a clear difference in intensity of the low and 

high categories with the low (Blue) categories generally having lower absorbance values than the high (Red) 

category (Figure 3.19). These differences in intensity may be because of light scattering due to increased TSS 

of each sample. The absorption bands were previously discussed in section 3.3.1.1 and the bands may 

primarily be attributed to water (1 448 nm and 1 929 nm) and glucose, fructose and ethanol (2 200 – 2 300) 

(Dambergs et al., 2002; Cozzolino et al., 2006; Cozzolino et al., 2007). 

 

 

Figure 3. 19  Raw spectra for TSS data divided into two categories; Low (Blue) and High (Red) using the 

benchtop spectrophotometer. 

 

3.3.3.2  Exploratory data analysis 

3.3.3.2.1  Principal component analysis 

From the PCA there is separation between the two TSS classes (Figure 3.20). There is overlap between the 

classes and this was expected as the classes are not two very distinct classes. The two classes are just a 

continuation on a spectrum of COD and therefore overlap should be expected, especially at concentrations 

1 448 nm 

 

1 448 nm 

1 929 nm 

 

1 929 nm 

2 210 nm 

 

 

2 210 nm 
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that are close to the boundary of each class. An increase in TSS is correlated with a shift from left to right in 

PC1. This accounted for 100 % of the data in PC1. The loadings line plot for OSC pre-treatment of TSS data 

shows the same peaks as Figure 3.3. The possible compounds absorbing at those wavelengths was discussed 

in section 3.3.1.2.1. The loadings line plot of MSC and Savitzky-Golay 2nd derivative for TSS is shown in  

Figure 3.21.  

 

 

Figure 3. 20  PCA (OSC corrected) analysis of spectral data for two TSS categories; Low (Blue) and High 

(Red). Separation 100 % explained in PC1. 

 

Principal component 1 explains 95 % of the X-variance, but 0 % of the Y-variance, whereas PC2 

explains very little X-variance (4 %) but explains 61 % of the Y-variance. By exploring the wavelengths 

identified by the loadings and correlation loadings it is possible to identify possible causes for the separation 

of classes.  There are four wavebands of importance identified from Figure 3.21. These are at 1 388 – 1 410, 

1 881, 1 904 and 2 200 – 2 400 nm. As previously stated in section 3.3.1.2 the bands at 1 388 – 1 410, 1 881 

and 1 904 nm are all associated with the absorbance of water in the NIR region (Dambergs et al., 2002; 

Cozzolino et al., 2006). Other studies have however found that the wavelengths at 1 350 – 1 400 and  

1 880 – 1 920 nm may correspond with fatty acid absorbers (Velasco et al., 1997). A wavelength at 1 410 nm 

corresponds to the 1st overtone of an alcohol, most likely ethanol. Wavelengths between 2 200 – 2 400 nm 

most likely correspond to ethanol and sugars (Workman Jr, 2000).  
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Figure 3. 21  Loadings line plot for PC2 (61 % Y-Variance explained) with four wavebands of importance at 

1 388 - 1 410, 1 881, 1 904 and 2 200 – 2 400 nm. 

 

3.3.3.2.2  Wavelength selection 

Wavelength selection is an important consideration in NIR spectroscopy as it may decrease processing speed 

of the analysis. As mentioned previously, the selected wavelengths must be able to be used in a prediction 

model and yield similar results to the full spectrum of the instrument. Multiplicative scatter correction in 

combination with SGD2 was used to identify wavelengths of importance. The loadings line plot (Figure 3.21) 

along with the correlation’s loadings plot (Figure 3.22) was used to determine which wavelengths may be 

useful for predicting TSS. From Figure 3.22 it is apparent that there are eight wavelengths that fall within the 

bounds of the red dotted lines. These are; 1 378, 1 407, 1 780, 1 839, 1 882, 1 904, 2 045 and 2 394 nm. Bands 

that have not previously been mentioned include 1 780, 1 839, 2 045 and 2 394 nm. The band at 1 780 nm 

may be caused by the C-H stretch of aromatic compounds. These compounds are found in wastewater and 

may contribute to TSS of the wastewater (Ramos et al., 2016). The waveband at 1 839 nm may be attributed 

to the C-H stretch of a methyl group, likely bonded to aromatic compounds in the wastewater (Workman Jr, 

2000). A N-H or C-N band may be observed at 2 045 – 2 050 nm  and this may be attributed to nitrogen found 

in winery wastewater, albeit at low concentrations (Moletta, 2005). The nitrogen may be as a result of 

cleaning practices of the farms if these farms were to use a nitrogen-based cleaning product. The waveband 

at 2 394 nm corresponds to C-H combination tones in wine and this may influence the TSS (Cozzolino et al., 

2005).   

  

1 388 – 1 410 nm

 

1 388 – 1 410 nm

1 881 nm 

 

1 881 nm 

1 904 nm

 

1 904 nm

2 200 – 2 400 nm

 

2 200 – 2 400 nm
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Figure 3. 22  Correlation loadings on MSC and SGD2 pre-processed data showing prominent wavebands at 

1 378, 1 407, 1 780, 1 839, 1 882, 1 904, 2 045 and 2 394 nm. 

 

Upon inspection of above figures the waveband selected was 1 900 – 2 500 nm as the absorption 

bands at 1 300 – 1 400 nm is predominantly associated with water. The organic molecules associated with 

wavelengths above 1 900 nm are most likely to be associated with TSS, as they contain sugars, ethanol, 

aromatic compounds and potentially inorganic nitrogen. 

The data was subjected to PLS-R using OSC as pre-treatment to determine the RMSECV using all 

wavelengths (Figure 3.23). The RMSECV obtained for this data set was 202.93 mg.L-1 and the range of the TSS 

represented was 14.00 – 2 863.00 mg.L-1. The error associated with this prediction was therefore 7.12 %.  

Wavelengths in the range 1 900 – 2 500 nm were identified and processed with OSC and PLS-R to investigate 

the accuracy of the prediction using limited wavelengths (Figure 3.24). The RMSECV obtained for this data 

set was 216.20 mg.L-1 for the same range resulting in an error of 7.59 %. This result indicates that wavelength 

selection was comparable to the full spectrum and that there is clear potential to predict TSS of winery 

wastewater for screening purposes using a benchtop FT-NIR instrument with the wavelength range  

1 900 – 2 500 nm.    

  

Stellenbosch University https://scholar.sun.ac.za



96 
 

 

 

 

 

Figure 3. 25  Partial least squares regression on OSC corrected data for prediction of TSS using reduced 

wavelengths (1 900 – 2 500 nm). RMSECV (Red) of 216.20 mg.L-1.  

Figure 3. 23  Partial least squares regression on OSC corrected data for prediction of TSS using all 

wavelengths. RMSECV (Red) of 202.93 mg.L-1. 

 

Figure 3. 24  Partial least squares regression on OSC corrected data for prediction of TSS using all 

wavelengths. RMSECV (Red) of 202.93 mg.L-1. 
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3.3.3.3  Multivariate data analysis: Model development (benchtop) 

3.3.3.3.1  Principal component regression 

Four pre-processing combinations were trialled along with principal component regression to determine TSS 

concentration in winery wastewater (Table 3.11). The performance of SNV and detrend was very good for 

the prediction of an unknown sample. The RMSECV for this model was 411.18 mg.L-1 which corresponds to 

11.82 % compared to the range of samples (14 – 3 490 mg.L-1). Prediction of the independent validation set 

resulted in a RMSEP value of 224.67 mg.L-1 compared to the range of 33 – 2 425 mg.L-1. An error of 9.39 % 

was therefore achieved for the independent validation check. Previous work has been performed to monitor 

an activated sludge reactor in real time and the authors were able to predict TSS content with a 14 % relative 

error (Sarraguça et al., 2009). The NIR instrument used only had a wavelength range of 900 – 1 400 nm which 

is considerably smaller than that of a benchtop FT-NIR instrument. Only 14 samples were used in that study 

for calibration, which is far too few for calibration. These factors indicate a possible reason for an increased 

predictive performance of this thesis as 53 samples were used, and 526 spectra were scanned in developing 

the calibration model.  

It is important to check the SEP/SEL. The SEL for the laboratory analyses was calculated to be  

112 mg.L-1. This means that the standard error of the laboratory is 112 mg.L-1 for the specific analyst. The 

ratio is 1.77 which is in the required range of 1.50 – 2.0 for the method to be accepted as an appropriate 

screening method (Corredor et al., 2015). These pre-processing techniques may work well because there is 

a constant baseline vertical shift (offset). Standard normal variate functions by centering and scaling the data, 

eliminating the offset that is not useful for the model (Li Vigni, 2013). Detrending works in a similar way, by 

eliminating background noise when the analysis is done correctly (Li Vigni, 2013).  It is possible that TSS 

correlates better with the X – data than COD does, as this method was ineffective for predicting COD.  

 

Table 3. 11  Principal component regression results for calibration, cross-validation and prediction for four 

different pre-processing approaches to predict TSS in winery wastewater. 

 

 

 

 

 

 

 

 

 

 

Model  RMSE (mg.L-1) R2 SEP / SEL 

SNV + Detrend 
Calibration 407.84 0.690  

Cross-validation 411.18 0.686  
Prediction 224.67 0.884 1.77 

SNV + Detr. + 
SGD2 

Calibration 411.06 0.685  
Cross-validation 415.60 0.679  

Prediction 254.92 0.845 2.04 

MSC + SGD2 
Calibration 430.38 0.654  

Cross-validation 434.49 0.649  
Prediction 229.98 0.855 2.08 

OSC 
Calibration 214.67 0.903  

Cross-validation 216.16 0.902  
Prediction 124.84 0.961 1.04 
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The model for SNV, detrend and Savitzky-Golay 2nd derivative showed similar predictive power for 

calibration and cross validation, compared to SNV and detrend. Prediction of the independent validation set 

was slightly worse with RMSEP being 254.92 mg.L-1. The prediction may not seem significantly large, but it 

drives the SEP/SEL above 2.0 meaning this model is not suitable for prediction of TSS. Pre-processing with 

MSC and Savitzky-Golay 2nd derivative produced the worst RMSECV and SEP / SEL values. Lower predictive 

power may be due to the large differences between samples other than TSS, as MSC corrects for background 

noise using the mean or median values instead of correcting each spectrum’s individual background noise (Li 

Vigni, 2013). The R2 values for the calibration and cross-validation set for all the pre-processing techniques, 

except for OSC, were above 0.6, but below 0.7. This reinforces the RMSEP and SEP/SEL ratios obtained and 

indicates that these models do not explain all the variation in the model and may therefore not be the most 

effective at predicting TSS in winery wastewater (Colton & Bower, 2002). 

The most effective pre-treatment for the prediction of TSS was OSC. Compared to the other three 

pre-processing approaches, this approach yielded the most accurate results. This is illustrated by greatly 

reduced RMSE values, a R2 value above 0.9 for calibration, cross-validation and prediction and a SEP/SEL ratio 

of 1.04. When R2 values exceed 0.9 the model can be said to explain more than 90 % of the variance in the 

sample data (Colton & Bower, 2002). Model selection should not focus primarily on R2 as it may be a 

misleading statistic if other values such as RMSEP are ignored. In this case RMSEP is 124.84 mg.L-1 

corresponding to a 5.22 % error of prediction compared to the range. Very few studies have used NIR to 

predict TSS in wastewater (Mesquita et al., 2017). A study from 2008 published results using NIR to predict 

TSS and the authors could predict TSS to within a 10 % error of the measured range (Páscoa et al., 2008). 

Another statistic that the authors used to describe the data was the range error ratio (RER). This statistic uses 

the range and divides it by the error.  The value obtained by the authors was 15.8. The RER of OSC and PCR 

was 2392 / 124.84, which equated to 19.16. A study monitoring urban wastewaters characterisation 

predicted TSS using NIR (Melendez-Pastor et al., 2013). Cross-validation predicted TSS with an 8.8 % error 

and had an RMSEP error of 10.34 % (Melendez-Pastor et al., 2013). The results (Table 3.11) improved upon 

this and had an error of 5.22 %.   

Further studies have been performed to predict TSS using UV-Vis spectroscopy. One of these studies 

could predict TSS with only a 36.67 % error, although the concentration of TSS was very low in the samples 

(<15 mg.L-1) (Rieger et al., 2004). Artificial neural networks in combination with UV-Vis was used to predict 

TSS in sewage wastewater (Jeong et al., 2007). The average error of prediction for TSS was 21.6 % compared 

to the range.  

The reason that the prediction of OSC and PCR was superior is first and foremost due to a more 

powerful instrument with greater wavelength range, compared to other studies mentioned. Another reason 

may be that OSC is a very powerful pre-processing when the reference method for measurements is very 

accurate. There are also many wavelengths that can explain a limited number of observations in the 

wastewater.   
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3.3.3.3.2  Partial least squares regression 

Partial least squares regression worked very well for three of the four pre-processing approaches. The worst 

predictive power was achieved using SNV and detrending (Table 3.12). This was evidenced by the RMSEP 

value of 308.24 which is an error of 12.89 %. The SEP/SEL was marginally above 2.0 and can therefore not be 

considered a viable option. The predictive power was consistently more accurate using PLS-R compared to 

PCR because of lower SEP/SEL values and lower RMSE values. This can be explained by PCR using the principal 

components to predict the Y responses, but the principal components may not always correlate with the 

responses because of variability in the sample, background noise or too many uninformative variables (Li 

Vigni, 2013).  

The model using SNV, detrending and SGD2 showed improved performance for all RMSE values 

compared to those obtained by PCR. Root mean square error of cross-validation was 375.69 and PMSER value 

was 211.8 mg.L-1. The corresponding errors are 10.81 % and 8.85 %. Correlation coefficient for the 

independent validation set is 0.888 which implies that a lot of the variability was explained by the model. A 

value of 1.88 was achieved for SEP/SEL and this indicates that this model may be used for screening purposes 

to predict TSS. The large difference in RMSECV and RMSEP does not mean that the model is underfit. The 

range of the calibration included more extreme values as calibration data must include data on the end of 

the range so as not to artificially increase the range of prediction and make it appear as if the prediction is 

better than reality. The errors for cross-validation and prediction are more important in this case as it takes 

the effect of the range into consideration and these errors are similar.  

From Table 3.12 it is evident that MSC and SGD2 have similar predictive values compared to SNV, 

detrend and Savitzky-Golay 2nd derivative. This is because MSC essentially performs the same function as SNV 

and detrending. This is contrary to the PCR models, mainly because PLS-R makes use of latent variables to 

perform the prediction which are more accurate than the principal components used for PCR (Abdi, 2003).  

The model using OSC and PLS-R was the most accurate to predict TSS in winery wastewater. The 

RMSECV was 217.69 and the RMSEP was 144.16 mg.L-1.  The corresponding errors of prediction are 4.59 % 

and 6.03 % respectively.  Correlation coefficient for the prediction of 0.955 indicates a very good fit for the 

model.  A value of 1.17 for SEP / SEL indicates a very powerful predictive power for this model as it performs 

to nearly the same accuracy as the laboratory technique.   

Partial least squares regression was used to predict TSS in an activated sludge reactor and had 

prediction errors of roughly 14.1 % and an R2 value of 0.91. The study however only made use of 142 

wavelengths to predict TSS (Sarraguça et al., 2009). Three different wastewater treatment plants were 

analysed for TSS prediction us UV-VIS spectrophotometry. The error for calibration was 16.6 % for the local 

calibration (Rieger et al., 2006). The previous studies performed are less accurate than the current study, 

mainly because less powerful instrumentation was used and the wavelength ranges did not reach high 

enough wavelengths, as TSS is correlated to wavelengths above 1 000 nm.  
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The results of PLS-R and OSC were slightly worse than PCR and OSC.  This is most likely a function of 

OSC pre-processing eliminating X-data not relevant to the Y-response, mitigating the limitations of PCR for 

prediction (Li Vigni, 2013). Orthogonal signal correction and PLS-R or PCR can therefore be used as an 

effective screening method to determine TSS of winery wastewater.   

 

Table 3. 12  Partial least squares regression results for calibration, cross-validation and prediction for four 

different pre-processing approaches to predict TSS in winery wastewater. 

 

 

 

 

 

 

 

 

 

 

3.3.3.3.3  Wavelength selection performance PCR and PLS-R 

To investigate the effect of wavelength selection on predictive ability of TSS, the OSC models for PCR and 

PLS-R were used. Wavelengths were identified in section 3.3.3.2.2 by looking at the loadings line plot and 

the correlation loadings plot. The identified wavelengths were 1 900 – 2 500 nm. The OSC model and PCR 

performed identically to the PLS-R and OSC model. The RMSECV, RMSEP, R2 and SEP/SEL values were identical 

for both regression methods. The RMSECV for the methods were 235.31 mg.L-1 resulting in an error of 9.50%. 

The RMSEP is 136.94 translating to an error of 5.72 %. Correlation coefficient of 0.961 for the prediction 

indicates that the variability in the data is very well explained. This coupled with a SEP/SEL of 1.07 indicates 

that these wavelengths predict TSS very accurately using OSC and either PLS-R or PCR. These methods are 

very similar and similar results are to be expected (Hemmateenejad et al., 2007). Total suspended solids 

seem to correlate better with the spectral data than COD and therefore when OSC is applied to the data, the 

important information is extracted for the prediction.  Wavelength selection performed almost as well as the 

full spectrum for PCR and OSC. It can be concluded that the wavelengths from 1 900 – 2 500 nm can be used 

to predict TSS in winery wastewater for screening purposes for this specific FT-NIR benchtop 

spectrophotometer.  

 

  

Model  RMSE (mg.L-1) R2 SEP/SEL 

SNV + Detrend 
Calibration 354.02 0.766  

Cross-validation 366.21 0.751  
Prediction 308.24 0.851 2.03 

SNV + Detr. + 
SGD2 

Calibration 359.85 0.758  
Cross-validation 375.69 0.738  

Prediction 211.80 0.888 1.88 

MSC + SGD2 
Calibration 378.61 0.732  

Cross-validation 393.73 0.711  
Prediction 208.95 0.895 1.78 

OSC 
Calibration 212.21 0.816  

Cross-validation 217.69 0.912  
Prediction 144.16 0.955 1.17 
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Table 3. 13  Partial least squares regression and principal component regression results for calibration, 

cross-validation and prediction for OSC pre-processed data to predict TSS in winery wastewater using 

wavelengths 1 900 – 2 500 nm. 

Model  RMSE (mg.L-1) R2 SEP/SEL 

PCR (OSC) 

Calibration 232.70 0.899  

Cross-validation 235.31 0.897  

Prediction 136.94 0.961 1.07 

PLS-R (OSC) 

Calibration 232.70 0.899  

Cross-validation 235.31 0.897  

Prediction 136.94 0.961 1.07 

 

3.3.3.3.4  Discriminant analysis 

Classification was performed using the 2 best performing pre-treatments for quantification namely; MSC + 

SGD2 and OSC. All the models showed good performance for classifying TSS into its two categories; Low and 

High (Table 3.14). The worst performing model had an overall classification accuracy of 75.00 % for the 

independent validation set. This model was the QDA with OSC as pre-processing technique. For the MSC and 

Savitzky-Golay 2nd derivative pre-processing and LDA the calibration accuracy was 86.50 % and the validation 

accuracy was 80 % (Table 3.14). Multiplicative scatter correction and Savitzky – Golay 2nd derivative was used 

with QDA and mahalanobis discriminant analysis and had identical validation accuracies of 90 %. The 

calibration accuracy of the mahalanobis discriminant analysis was low at 70.34 %. Using MSC and Savitzky-

Golay 2nd derivative, LDA and QDA are the most useful discriminant techniques for classification of TSS in 

winery wastewater.  

Orthogonal signal correction and mahalanobis discriminant analysis had a calibration accuracy of 

88.97 % and a validation accuracy of 90 % (Table 3.14). This is a very good classification accuracy and can be 

useful to predict TSS in winery wastewater. The best combination for classification was OSC in combination 

with LDA. This combination yielded a calibration accuracy of 94.68% and a classification accuracy of 100 %. A 

possible explanation for this could be because of the fundamental difference between LDA and other DA 

methods. In LDA the aim is to maximise the ratio of the between group variance and the within-group 

variance. The aim of this is to have each sample within each group as close together as possible, leading to 

less scattering and therefore the groups/classes are at maximum distances away from each other 

(Stanimirova et al., 2013). Linear discriminant analysis is reliant on the variances and covariances of the data 

to be homogenous to classify with a linear decision boundary (Bevilacqua et al., 2013). Based on the above 

explanation, it needs to be assumed that the variances of the data are homogenous when using OSC as the 

pre-processing technique removes variance/covariance of the X-data that is not related to the Y-responses.  

Previous work has been done using LDA along with SNV and derivatives to classify wines based on 

their fermentation period (Di Egidio et al., 2010). The wine was separated into 4 classes for specific time 

points. Using NIR with LDA the average classification of the 4 classes was 87.1 % for the prediction. For the 

final stage the classification was 100 % accurate. This study did not use TSS as the reason for the separation, 
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but rather the change in glucose, fructose and alcohol content as the fermentation process proceeded. It is 

not customary to classify TSS into categories as generally it is more prudent that the concentration be known 

and not to which class it belongs. However there is a benefit to classifying into low and high classes if the 

goal is to perform basic screening as effluent is pumped out of the cellar or to prevent reactor overload if the 

wastewater were to be treated (Di Egidio et al., 2010).  

 

Table 3. 14  DA model results to assess the performance of the different pre-processing along with optimal 

method (LDA, QDA or Mahalanobis) for TSS discrimination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The best model from Table 3.14 was investigated for the determination of the performance 

parameters (Table 3.15). Because the overall classification of this model was 100 % all the performance 

measures scored 100 % except for false positive and false negative error as no samples were incorrectly 

classified. For the validation set 20 farms were used but each was reduced to one spectrum per farm instead 

of 10 spectra per farm. To investigate whether the one average spectrum may be artificially inflating the 

accuracy of the model, all 200 spectra were used for the validation set as a sanity check. The results from this 

classification was 99 % as there were two incorrectly classified spectra. So, one spectrum from a farm of 10 

spectra was incorrectly classified each time, therefore the average spectra are more likely to resemble the 9 

correctly classified spectra, instead of the one incorrectly classified spectrum. This indicates that the data 

was not artificially inflating the accuracy of the model. It would still be good practice to collect more samples 

and to incorporate them into the model to get a more robust model. These results show that NIR 

Number of 

PCs 
Method Model  

Classification 

Accuracy (%) 

5 

Linear 

MSC + SGD2 
Calibration 86.50 

Validation 80.00 

OSC 
Calibration 94.68 

Validation 100.00 

Quadratic 

MSC + SGD2 
Calibration 82.70 

Validation 90.00 

OSC 
Calibration 95.63 

Validation 75.00 

Mahalanobis 

MSC + SGD2 
Calibration 70.34 

Validation 90.00 

OSC 
Calibration 88.97 

Validation 90.00 
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spectroscopy can be used to differentiate between low and high TSS of winery wastewater without the need 

for time consuming laboratory analyses.  

 

Table 3. 15  Performance measures used to assess the LDA model (5 PCs) for the classification of TSS into 

two classes. 

 

 

 

 

 

 

3.3.4  TSS quantification and classification (handheld) 

3.3.4.1  Spectral analysis 

The average spectra were computed between the wavelengths of 908 – 1 651 nm. The spectra were plotted 

to compare chemical properties and possible points of difference related to TSS in winery wastewater. Data 

were classified into the following two categories: 

• Low: TSS values ranging from 0 – 999 mg.L-1 

• High: TSS values > 1 000 mg.L-1 

The same three absorbance bands were again found to be prominent as in section 3.3.2.1 and these were 

970, 1 160 and 1 400 – 1 600 nm. Refer to section 3.3.2.1 for detailed analysis of these bands.  In summary 

they correlate with moisture (970 nm & 1 400 – 1 650 nm), C=O stretch overtone and aromatic groups and 

carbonyl groups from aldehydes and ketones (1 160 nm) and methanol and ethanol (1 400 – 1 650 nm) 

(Cozzolino et al., 2006; Li et al., 2007; Debebe et al., 2017; Rosa et al., 2017; Tsenkova et al., 2018). 

The average spectra for the portable NIR instrument was computed between the wavelengths of  

908 – 1 651 nm. The spectra were plotted to compare chemical properties of the winery wastewater. Data 

were again classified into 2 categories, low and high.  

From Figure 3.25 TSS groups into low and high in the raw spectra especially at wavelengths below 

1 300 nm. There is overlap between the two classes but low TSS can generally be associated with lower 

absorbance values. This is because high TSS values will have more particulate matter and therefore more 

scattering of the light will take place. The light will not reach the detector and it will seem as if there was an 

increased absorbance from a compound when the light never reached the detector. This is fixed by using an 

appropriate pre-processing technique.  

 

 

Class 
Classification 

accuracy 

False 
positive 

error 
(%) 

False 
negative 
error (%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

F1 
Score 

(%) 

Low 100 0 0 100 100 100 100 

High 100 0 0 100 100 100 100 
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Figure 3. 26  Raw spectra of winery wastewater for the wavelength range 908 – 1 651 nm showing the two 

categories of TSS: Low (Blue) and High (Red). 

 

3.3.4.2  Exploratory data analysis 

3.3.4.2.1  Principal component analysis 

It is clear that there is class overlap between the two classes when scrutinising the PCA of the unprocessed 

spectra (Figure 3.26). Most of the variation can be explained by PC1 which accounts for 80 % of the variation.  

There is some variation explained by PC2 (16 %) and PC3 (3 %). Orthogonal signal correction was performed 

on the data as that pre-processing technique was the most effective for all the predictions thus far.  

 

Figure 3. 27  PCA scores plot (PC1 vs PC2) for unprocessed data indicating some separation between the 

two classes; Low (Blue) and High (Red).  

970 nm 

 

970 nm 

1 160 nm 

 

1 160 nm 

1 400 – 1 650 nm 

 

1 400 – 1 650 nm 
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Figure 3. 28  PCA scores plot (PC1 vs PC2) for data processed with OSC for the two categories of TSS; Low 

(Blue) and High (Red). 

 

 

Figure 3. 29  Loadings line plot of OSC data with perturbations at 1 310 nm and 1 378 nm. 

 

Upon pre-processing with OSC there was more distinct separation between classes with PC1 

explaining 100 % of the variation (Figure 3.27). A higher TSS concentration is associated with a shift from left 

to right in PC1. Because the two classes are based off a spectrum and are not two totally distinct groups, e.g. 

olive oil and sunflower oil, overlap between classes can be expected. The loadings line plot was investigated 

for PC1 to determine important wavelengths. From the loadings line plot (Figure 3.28) two wavebands of 

1 310 nm 

 

1 310 nm 

1 378 nm 

 

1 378 nm 
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importance can be seen. These are the bands before at 1 310 nm and those before it and 1 378 nm and the 

wavebands after it. Compared to Figure 3.16 there are not deflections at 1 120 and 1 162 nm. Please refer 

to section 3.3.2.2.1 for an explanation of important wavelengths and the loadings line plot.   

Wavelength selection was not performed for the portable device as there are already a very limited 

number of wavelengths and therefore limited data. Processing speed will not be significantly decreased by 

performing wavelength selection, while prediction performance may suffer.  

 

3.3.4.3  Multivariate data analysis: Model development (handheld) 

3.3.4.3.1  Principal component regression 

The two best performing pre-processing methods from the prediction of TSS with the benchtop instrument 

were used to predict TSS concentration.  These techniques were MSC and SGD2 (9 smoothing points 3rd 

polynomial) and OSC (Table 3.16).  

For the data treated with MSC and SGD2 the RMSECV was 402.15 mg.L-1. The range of the TSS 

concentration for the calibration set was (14 – 3490 mg.L-1). The relative error of cross validation is therefore 

11.57 %. The correlation coefficient of the cross-validated data was 0.644, indicating a model that explains 

some variation, but not to a satisfactory degree for implementation as a screening method. This poor R2 

coupled with a big RMSEP (405.04 mg.L-1) value means that this combination may not be suitable for 

determining TSS. This was confirmed by the SEP/SEL of 3.34 which means the average error is more than 

three times more than the average error of the laboratory. An improved R2 of 0.74 indicates that the variance 

in the predicted data can be explained by the model, but it is possible that this is not related to TSS and rather 

one of the many other parameters in wine such as pH. The reduced wavelengths and reduced wavelength 

range of the portable device means that lots of spectral information is lost, compared to the benchtop FT-

NIR instrument.  This explains the decrease in performance of the portable instrument. For an explanation 

as to why PCR might not predict the TSS well with reduced spectral information please refer to section 

3.3.2.3.1. 

The data processed with OSC and PCR improved the predictive power of the portable instrument. 

The RMSECV was 272.96 mg.L-1 which translates to an error of 7.85 %. This is a very good cross-validation 

prediction however to determine if the model is robust enough the RMSEP needs to be considered 

simultaneously. When looking at the RMSEP of 311.49 mg.L-1 it translates to an error of 13.02 % for the range 

(33 – 2425 mg.L-1). The R2 for all of the calibration, cross-validation and prediction is above 0.83. This indicates 

a model which explains a large amount of variation, but which still considers unrelated information in the 

prediction (Colton & Bower, 2002). The SEP/SEL is 2.85 which is too high to be considered a viable option for 

screening purposes (Corredor et al., 2015). This pre-processing worked better due to the nature of OSC that 

removes irrelevant data (Wold et al., 1998) Whilst this method may not be suitable for screening purposes, 

it is a big improvement on the prediction of COD with the portable instrument. None of these models should 

be considered for the prediction of TSS in winery wastewater.  
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Table 3. 16  Principal component regression results for calibration, cross-validation and prediction of TSS 

concentration for two different pre-processing combinations. 

Model  RMSE (mg.L-1) R2 SEP/SEL 

MSC + SGD2 

Calibration 393.31 0.658  

Cross-validation 402.15 0.644  

Prediction 405.04 0.74 3.34 

OSC 

Calibration 268.67 0.840  

Cross-validation 272.96 0.836  

Prediction 311.49 0.857 2.85 

 

3.3.4.3.2  Partial least squares regression 

As with PCR, two different pre-processing approaches were investigated for their predictive performance of 

TSS in winery wastewater (Table 3.17).  Partial least squares regression in combination with MSC and SGD2 

has RMSECV and RMSEP values of 331.93 and 351.89 mg.L-1 respectively.  The relative error for the prediction 

is 14.71 %.  This value is higher than the 10.34 % obtained in a previous study (Melendez-Pastor et al., 2013). 

This pre-processing method is not suitable for screening of TSS in winery wastewater. 

When PLS-R was used in combination with OSC as pre-processing technique, the predictive power 

increased. The RMSECV and the RMSEP were both lower than those corresponding values using MSC and 

SGD2 (Table 3.17). The RMSECV corresponds to an error of cross validation of 6.39 %. However, it is possible 

that the model is overfitted as the prediction of an external validation set is considerably worse, with an error 

of 13.02 %. The R2 value for the prediction of OSC is 0.857 which shows a good fit for the data. However, 

when looking at SEP/SEL it becomes clear that the model is not powerful enough to be used as a screening 

method. Interestingly, the prediction data for PCR and for PLS-R with OSC is identical. The same phenomenon 

was observed in section 3.3.3.3.3 when wavelength selection was performed on the benchtop instrument. 

It is difficult to postulate a reason other than PCR overcoming its limitation of not incorporating the Y-

responses into the calculation. This is done by OSC, which might decrease the small gap in performance for 

PCR in general (Hemmateenejad et al., 2007).  

When investigating the predicted response, one sample was very badly predicted. When this sample 

was removed to see what the effect would be the error of prediction dropped to 7.2 %. This sample is not a 

statistical outlier so this cannot be used as it would be cherry-picking data. However, it does warrant 

investigation as to why it may have been poorly predicted. When looking at the wet chemistry data it can be 

seen that this sample has a very high pH of 11.82, high turbidity value of 690.5 NTU and an alkalinity of  

2 200 mg.L-1 CaCO3. One of these factors may have influenced the instrument. This sample is not a true 

statistical outlier so it cannot be discarded, but with more sample acquisition this problem may be overcome, 

and better prediction results may be possible.  
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A study was performed that used a spectrophotometer with the range of 900 – 1 400 nm. This study 

reported similar as error of 14 % for the prediction of COD (Sarraguça et al., 2009). A further study could 

predict TSS using UV-Vis spectroscopy with an error of 16.6 % (Rieger et al., 2006). Both results are 

comparable to the results obtained in this thesis. There are certainly limitations for using NIR portable 

instruments, or instruments of limited wavelengths. It is necessary to investigate whether TSS could be 

predicted with a portable device that has a range from 1 900 – 2 500 nm. 

 

Table 3. 17  Partial least squares regression results for calibration, cross-validation and prediction for MSC and SGD2 

OSC pre-processed data to predict TSS in winery wastewater. 

 

 

 

 

 

 

 

 

3.3.4.3.3  Discriminant analysis 

Classification was performed on two pre-processing techniques (Table 3.19). Performance of the 

mahalanobis discriminant analysis performed the worst, with classification accuracies of 70 and 55 % for the 

independent validation sets of MSC and SGD2 and OSC respectively. The rest of the models all had a 

prediction of the independent validation set of 95 %. The differences between the models are all from the 

calibration. The models using OSC as pre-treatment were the most accurate for the calibration set with 

accuracies of 91.15 % and 90.96 % for LDA and QDA respectively. Multiplicative scatter correction and 

Savitzky-Golay 2nd performed slightly worse, although still achieved results close to 90 %. The LDA models 

performed marginally better than the QDA models and were far superior to the Mahalanobis models. 

Differences between LDA and QDA were discussed in section 3.3.3.3.4 The performance measures of the two 

LDA models is shown in Table 3.18.   

Both models were very similar in their performance measures with only a few small differences. The 

model using OSC in combination with LDA was found to be the best model as it had a greater overall 

sensitivity for the two classes and a greater average specificity for the two classes. The precision of the MSC 

and SGD2 was higher than for the OSC pre-treated data. The OSC data was had slightly better F1 scores and 

overall the LDA model with OSC will give the best prediction results for TSS in winery wastewater.  

Classification of geographical origin of Chinese rice wines was performed using NIR (Yu et al., 2007). 

Classification was possible with 100 % accuracies when using certain 1 300 – 1 650 nm and dropped to  

96.6 % when using 1 650 – 1 850 nm or 1 850 -2 200 nm. Riesling wine characterisation by country of origin 

Model  RMSE (mg.L-1) R2 SEP/SEL 

MSC + SGD2 

Calibration 305.73 0.793  

Cross-validation 331.93 0.757  

Prediction 351.89 0.799 3.04 

OSC 

Calibration 196.39 0.915  

Cross-validation 221.96 0.892  

Prediction 311.49 0.857 2.85 

Stellenbosch University https://scholar.sun.ac.za



109 
 

has been performed using NIR and PLS-DA (Liu et al., 2008). The wines could be correctly classified into the 

country of origin with 97.5 % accuracies for Australian Riesling, 80 % for New Zealand Riesling and 70.5 % for 

European Riesling (Liu et al., 2008). Whilst these studies did not look at TSS they showed the potential for 

characterisation of liquids using NIR. As winery wastewater often contains large volumes of wine, it can be 

used to compare results against. The classification results in literature are comparable to the results obtained 

in this study and a portable NIR spectrophotometer shows potential in the classification of wastewater with 

regards to TSS strength.  

 

Table 3. 18  Performance measures used to assess LDA models for the classification of TSS into two classes. 

 

 

Table 3. 19  DA model results to assess the performance of the different pre-processing along with optimal method 

(LDA, QDA or Mahalanobis) for TSS discrimination. 

 

 

 

 

Number of 
PCs 

Class 
Classification 

accuracy 

False 
positive 
error (%) 

False 
negative 
error (%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

F1 
Score 

(%) 

5 (LDA 

MSC SGD2) 

Low 95.00 5.00 0.00 100 66.67 94.44 97.14 

High 95.00 0.00 5.00 66.67 100.00 100.00 80.00 

 

5 (LDA 

OSC) 

Low 95.00 0.00 5.00 94.12 100.00 100.00 96.97 

High 95.00 5.00 0.00 100.00 94.12 75.00 85.71 

Number of 

PCs 
Method Model  

Classification Accuracy 

(%) 

 5 

Linear 

MSC + SGD2 
Calibration 89.27 

Validation 95.00 

OSC 
Calibration 91.15 

Validation 95.00 

Quadratic 

MSC + SGD2 
Calibration 88.70 

Validation 95.00 

OSC 
Calibration 90.96 

Validation 95.00 

Mahalanobis 

MSC + SGD2 
Calibration 64.41 

Validation 70.00 

OSC 
Calibration 77.40 

Validation 55.00 
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3.4  Conclusion 

NIR spectroscopy, using a benchtop instrument, combined with multivariate data analysis could predict COD 

and TSS concentrations in winery wastewater with enough accuracy for a screening method. This could be 

done irrespective of other interferences in the water such as pH or turbidity and could be accomplished 

irrespective of the farm origin of the wastewater. The models which predicted COD concentration most 

accurately was either PLS-R or PCR using OSC as pre-processing and making use of the wavelengths  

2 060 – 2 340 nm. The RMSEP was 898 mg.L-1 which equates to an error of 9.9 % compared to the reference 

range of the independent validation set. This result falls below the 10 % error threshold that was targeted in 

the aim. A low error percentage combined with a SEP/SEL of 1.93 confirms that NIR spectroscopy can predict 

COD concentration to a suitable degree for screening purposes. 

 Principal component regression along with OSC yielded the best predictive results for TSS with an 

RMSEP of 124.84 mg.L-1 and an SEP/SEL of 1.04. This translates to an error rate of only 5.22 % which is well 

below the target set forth for the aim of this study. An SEP/SEL of 1.04 indicates that the TSS model using the 

benchtop instrument was very similar to the standard method used to determine the reference values. This 

result far exceeded the goal set forth in the aim for the study. The wavelengths  

1 900 – 2 500 nm could be used to accurately predict TSS concentration with an RMSEP of 136.94 mg.L-1  for 

PCR or PLS-R and OSC as pre-processing. A smaller wavelength range did not severely impact the prediction 

performance and the subsequent error of the model was 5.72 %. It can be definitively stated that a benchtop 

FT-NIR can predict TSS concentration with an accuracy suitable for screening purposes. 

Classification of COD with the benchtop instrument was very accurate with an overall classification 

accuracy of 90.4 % using LDA and OSC. This means that 90.4 % of the samples were correctly classified as 

either “In” (COD of 0 – 4 999 mg.L-1), “Warning” (COD of 5 000 – 6 999 mg.L-1) or “Out” (COD above  

7 000mg.L-1 The reason for a lower classification than TSS could be due to there being three categories for 

COD, where TSS was only divided into two categories. The LDA model using OSC as pre-processing yielded 

the best results and could effectively differentiate between low and high TSS concentrations with a 

classification accuracy of 100 %.  

The portable handheld NIR instrument did not predict either COD or TSS concentration to a 

satisfactory degree for the purpose of screening. This was illustrated by the SEP/SEL values which were above 

2.0 for all the models. For a model to be considered a potential screening method, the SEP/SEL must be in 

the range of 1.5 – 2.0. The reduced predictive power of the handheld instrument may be due to the smaller 

spectral range of the instrument of 900 – 1 700 nm. Optimal performance of the benchtop instrument was 

accomplished at wavelengths above 1 900 nm. The handheld instrument showed promise and had error rates 

that are comparable to those found in literature. The effectiveness of portable spectrophotometers need to 

be investigated using higher wavelengths if on-line monitoring of reactors is to be accomplished. If the 

technology can develop to include wavelength ranges up to 2 500 nm it is possible that the handheld 

instrument could perform with similar accuracies compared to the benchtop instrument. 
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Classification of COD and TSS was considered accurate when using the portable instrument. 

Classification accuracies of 81 % and 95 % for COD and TSS respectively were achieved using the portable 

instrument. Classification of COD will improve if only “In” and “Out” classes are created for the classification. 

A classification accuracy of 95 % for TSS indicates that the portable instrument can effectively classify winery 

wastewater based on the TSS concentration. This could allow wineries to classify the wastewater based on 

the current legislation defined limits to determine whether the wastewater would need to be treated before 

irrigation. 

OSC was the best pre-processing technique for all these applications as the laboratory reference 

values were accurate, allowing the technique to eliminate information from the spectra that do not predict 

the responses.  This allows for a method that reduces noise and increases the accuracy of prediction. More 

research will need to be done to investigate the potential of portable NIR spectrophotometers for the 

quantification of COD and TSS in winery wastewater.  
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Chapter 4 

Investigating the Performance and Optimisation of pH, Feeding Time and Mixing 

Intervals of an Anaerobic Sequencing Batch Reactor (AnSBR) for the Treatment of 

Winery Wastewater   

 

Abstract 

A pilot-scale anaerobic sequencing batch reactor (AnSBR) with an effective volume of 165 L was operated for 

16 consecutive cycles using winery wastewater as the substrate. The length of each cycle was 24 h and the 

hydraulic retention time (HRT) was approximately 1.85 days. Initially the reactor was seeded with 22 kg 

anaerobic granules. This resulted in an organic loading rate of 0.38 kgCOD.kgVSS-1.d-1. The anaerobic granules 

were acclimatised to the wastewater for two months with wastewater of increasing strength until the 

microorganisms could reduce wastewater of 7 000 mg.L-1 COD by 70 %. A central composite experiment 

design (CCD) was performed to determine optimal operational parameters. The pH, feed time and mixing 

intervals were the selected operational parameters for optimisation. Mean COD reduction of 68.32 % was 

achieved. The optimal values were determined as: pH 7.30; feed time 180.91 minutes and a mixing interval 

of 84.17 minutes. This demonstrates the feasibility of the AnSBR technology to successfully treat winery 

wastewater with a COD range of 3 200 – 9 700 mg.L-1.  

 

4.1  Introduction 

The wine industry is a very important source of revenue for South African farmers, particularly in the Western 

Cape. The Western Cape has 445 of the 468 private cellars in the country (SAWIS, 2018). Currently South 

Africa is the 9th leading producer of wine in the world (OIV, 2019). Production on this scale has ramifications 

when it comes to water usage as for every litre of wine produced 2 – 14 L of wastewater can be generated 

(Oliveira et al., 2009).  However recent data suggest this is decreasing to roughly 1 kg wastewater per 1 litre 

of wine produced (Barbera & Gurnari, 2018). In South Africa it is estimated that roughly 2m3 of water is used 

per tonne of grapes crushed in the wine making process (Howell & Myburgh, 2018). Generation of winery 

wastewater is estimated to be approximately 50 % of the total water usage (Howell & Myburgh, 2018). South 

African wineries crushed an estimated 1.24 million tonnes of grapes in 2018 meaning that approximately 

1.24 billion litres of winery wastewater was produced in the harvest season (Howell & Myburgh, 2018; SAWIS, 

2018). Winery wastewater is a high strength wastewater of seasonal nature and has variable characteristics 

making it complicated to treat. Organic compounds which contribute to the high COD are mainly sugars, 

organic acids, esters, polyphenolic compounds and alcohol giving the wastewater not only high COD but 

generally an acidic pH (Mosse et al., 2011).  
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Anaerobic digestion (AD) is an established treatment for winery wastewater, however not a lot of 

research has been performed on anaerobic sequencing batch reactors (AnSBR) for the treatment of winery 

wastewater (Ruiz et al., 2002; Keyser et al., 2003; Moletta, 2005). There is a shortage of knowledge regarding 

the optimal operating conditions for treating winery wastewater with an AnSBR. Research regarding optimal 

feeding time, mixing regime and pH of the technology is not established, specifically for treatment of 

substrate with varying strength. 

Previous work done on winery wastewater using AnSBR technology produced COD reduction 

percentage of 98 % (Influent COD: 19.7 g.l-1) (Ruiz et al., 2002). This experiment was however performed in 

a lab-scale AnSBR with a working volume of 5 L (Ruiz et al., 2002).  

A study was performed on a larger AnSBR with a volume of 45 L to treat brewery wastewater and 

achieved a COD reduction of greater than 90 % (OLR: 3.0kg COD.m-3.d-1) (Shao et al., 2008). That study was 

performed on a different substrate, on a scale smaller than the study described in this thesis.  

A more recent study was conducted using an AnSBR for the removal of polyphenols in winery 

wastewater (Ortiz-Cabrera et al., 2018). This study was performed on a lab-scale reactor with a working 

volume of 2.25 L. Polyphenol reduction percentage achieved in this study was 95 % and COD reduction 

percentages of 95 -98 % were achieved. 

The aim of this study was to evaluate whether the AnSBR technology could successfully treat winery 

wastewater of varying quality from day-to-day and what the optimal operational parameters for the reactor 

would be. The AnSBR has an effective volume of 165 L which is significantly larger than previous AnSBRs used. 

The aim was achieved by using a CCD experiment to determine optimal parameters for pH, feed time and 

mixing intervals and simultaneously the feasibility of the technology for wider implementation. 

 

4.2  Materials and methods 

4.2.1  Experimental phases 

The study was conducted in two phases. Phase 1 involved setting the anaerobic sequencing batch reactor 

(AnSBR) up on the farm and acclimatisation of the anaerobic granules to increasing concentrations of 

chemical oxygen demand (COD). Phase 2 of the experiment was performed to evaluate the efficacy of the 

AnSBR at a pilot-scale treating winery wastewater of varying composition and concentrations.  

 

4.2.2  AnSBR design 

A pilot-scale anaerobic sequencing batch reactor (AnSBR) was designed and purpose-built for the 

requirements of this study. The reactor was designed and built at Stellenbosch University (Department of 

Process Engineering workshop). The vessel was constructed out of stainless steel and was comprised of two 

parts. A round cylinder and a conical base. The conical base was built by Fabrinox (Paarl). The conical base 

had an internal diameter of 400 mm and cylindrical wall heights of 130 mm (Figure 4.1). The conical floor of 

the cylinder was set at an angle of 25ᶿ. A 25 mm socket with internal threading was attached to the bottom 
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of the cone to allow for attachment of a ball valve. Three additional sockets, all with internal threading, were 

incorporated into the base. One socket housed a 1.5 kW geyser element and the socket above it was the inlet 

for the wastewater.  The additional socket was for another possible inlet for the wastewater. The cone had 

a 6 mm flange with bolt holes to allow for connection with top of vessel. An intermediate plate of 6 mm 

polyvinyl chloride was manufactured, and eight filter nozzles were inserted to facilitate even distribution of 

water through the nozzles (Figure 4.2).  

The round stainless-steel cylinder screwed into the conical base via the 6 mm flange. The top cylinder 

had a length of 1 150 mm and an internal diameter of 400 mm. Seven internally threaded sockets (25 mm) 

were incorporated into the cylinder, each with its own purpose (Figure 4.3). The total volume of the reactor 

was 160 L with around 10 % headspace, leaving a working volume of roughly 144 L. A floating lid was used in 

the design and a 10 L gas bag (SupelTM-Inert Gas Sampling Bags with ThermogreenTM LB-2 Septa) was 

connected to an outlet pipe from the top of the lid. The floating lid was made of linear low-density 

polyethylene (LLDPE) and used polystyrene to allow the lid to float.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1  Conical base of the AnSBR made from stainless steel.  The cone has a diameter of 400 mm and a 

volume of roughly 16 L. 

 

The reactor was set up on as wine farm on the R304 road outside Stellenbosch 

(GPS Coordinates: -33.834493, 18.797875). In order to get the water to the reactor a submersible pump 

(Speroni 0.8 kW 140 L.min-1) was dropped into the sump, where the winery wastewater collects on the farm. 

The submersible pump was placed inside a basket with very small openings to act as a filter to avoid pump 

blockage by grape skins. A black 25 mm HDPE pipe was connected to the submersible pump and laid along 

the ground to a collection tank approximately 40 m away. The collection tank was a 210 L LLDPE water drum 

and the inlet was covered with a swimming pool filter basket to catch any smaller particulate matter that 

may block the pumps or the filter nozzles. This 210 L drum was connected with a pipe and ball valve to a 90 

a) Pump inlet 

b) Geyser 

Element 

Socket 
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L tank with a heating element. Heating of the water to 35oC took place in this tank. This tank was connected 

to the reactor via a pump (Calpeda 0.45 kW, 4 800 L.h-1). The substrate would be fed to the reactor using this 

water pump. The water entered the reactor from the top socket on the side of the base (Figure 4.3) and the 

pressure pumped the water through the filter nozzle bed for even distribution of the water. A water pump 

(Speroni CAM 80) was used as the recirculation pump. Feeding and mixing times were controlled using a 

Delta PLC. The water would flow from the top of the reactor into a 50 L overflow tank. This overflow tank 

was used as a reservoir for liquid recirculation. The recirculation pump would pump the water from the 

overflow tank back into the reactor at intervals determined by the experimental design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2  Diagram of the layout of the filter nozzles and the PVC plate. 

 

Feeding and mixing strategies were controlled using the Delta PLC and the mixing pump was set to 

mix for 10 seconds at a time. A pH probe (Hanna HI6100405) was fitted onto the reactor and the pH was 

controlled using a mini pH controller (Hanna BL931700-1).  The pH mini controller was connected to a 

peristaltic dosing pump (Watson Marlow 302S), when the pH dropped below the operating pH, the mini 

controller would switch on the dosing pump and 2M KOH would be dosed into the reactor until the pH 

returned to operating levels. The temperature was controlled using a PT 100 connected to temperature 

controllers which would switch on the geyser element in the reactor or 90 L tank if the temperature dropped 

below 35oC. Decanting occurred from the decanting port of the reactor.  The water would pass through the 

copper heating coils in the 90 L tank to assist in the heating of incoming wastewater from the next batch. 

After each cycle, approximately 90 L of wastewater was decanted, leaving 50 L to assist with maintenance of 

alkalinity of the reactor. 
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Figure 4. 3  Diagram of the AnSBR. Water flowed from 90 L tank into reactor, into the overflow tank and 
recirculated in the reactor. 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

  

 

 

 

 

 

4.2.3  Reactor start-up and operation 

Approximately 140 L of water was pumped into the reactor and an additional 20 – 25L of water was always 

kept in the overflow tank during the first phase. Automation was trialled for the first 3 – 4 weeks using clean 

water and no anaerobic granules. The design of the reactor was adjusted to correct for blockages of pumps 

and filter nozzles until the design was settled upon as stated in section 4.2.2. Once it was established that 

the reactor was reliable it was seeded with 22 kg of anaerobic granules which were obtained from a full-scale 

UASB which was treating distillery wastewater. The granules were obtained from the James Sedgwick 

Distillery in Wellington, South Africa.  The water was dosed with CaCO3 to increase the alkalinity to roughly 

2 000 mg.L-1. A trace element solution was also added to the reactor and every 3 weeks 140 mL of the solution 

was added to the reactor (Table 4.1). The reactor operated in four steps during each cycle. The first step is 

the feed step, which feeds 90 L of substrate to the reactor.  The next step is the react step.  The anaerobic 

bacteria reacted with the wastewater whilst being routinely mixed every 60 minutes for 10 seconds at a time. 

The next step is the settling step where all mixing was suspended and allowed the biomass to settle to the 

filter bed. Finally, 90 L of wastewater was decanted, leaving 50 L in the reactor and 20 – 25 L in the overflow 

tank to act as an alkalinity buffer. The initial load of the wastewater was 1 000 mg.L-1 COD. Wastewater from 

the farm was used and diluted until a concentration of 1 000 mg.L-1 COD was obtained. This was done via a 
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calculation and verified using a diluted sample based on the calculation. Once the reactor was able to reduce 

the COD by 70 % for two consecutive days, the concentration of the substrate was increased by 500 mg.L-1. 

This was repeated until the reactor was able to handle COD concentrations of 8 000 mg.L-1. This process 

lasted approximately 2 months until the granules were acclimatised. 

 

Table 4. 1  Concentrations of trace elements in the trace element solution fed to the AnSBR. 

Trace Element Concentration mg.L-1 

Ca (as CaCl2) 36 

Mg (as MgCl2•6H2O) 24 

Mn (as MnSO4•5H2O) 0.241 

Zn (as ZnCl2) 0.202 

Se (as H2SeO) 0.091 

Co (as CoCl2) 0.091 

Al (as AlCl3) 0.081 

Mo (MoO3) 0.066 

B (as H3BO3) 0.0124 

Ni (as NiCl2) 0.006 

Si (as SiO2) 0.004 

W (as Na2WO4•2H2O) 0.002 

 

4.2.4  Operational time of the AnSBR 

As mentioned in section 4.2.3 the AnSBR operated in four steps. A fifth step can be included to describe the 

time that elapsed between the decant step and the next feed cycle. This step will be defined as the idle step. 

From the feed step until the decant step, the reactor operated for a total of 24 hours per cycle.  This meant 

that the hydraulic retention time (HRT) was 1.83 days. The HRT was calculated from equation 4.1. The volume 

of the reactor was calculated as 140 L plus 25 L of the overflow tank for a total of 165 L. As previously stated, 

90 L of water was decanted per day and the reactor ran for one cycle per day.  

 

𝐻𝑅𝑇 =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑜𝑟

(𝑣𝑜𝑙𝑢𝑚𝑒 𝑑𝑒𝑐𝑎𝑛𝑡𝑒𝑑 𝑝𝑒𝑟 𝑑𝑎𝑦)×(𝐶𝑦𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦)
    Equation 4.1 

 

The feeding time was reliant on the experimental design and differed for each run (Table 4.2). During 

the reactor start-up phase, the feeding time was set to 120 minutes.  The feeding interval was controlled by 

determining how fast the pump could transfer water between the tank and the reactor.  This time was 70 

seconds. The pump was subsequently programmed to switch on for 8 seconds at a time. The feeding interval 

was therefore every 13 minutes.  The pump was hardwired to a level-float switch so that the pump would 
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switch off and could not restart until the tank was filled again, to avoid the pump running dry. Mixing of the 

water was also determined by the experimental design, but during start-up it was set to mix every 60 minutes 

for 10 seconds. No mixing occurred outside of the react phase.  Settle time of 45 minutes was applied for the 

start-up as well as during the experiment to allow for the settling of the granular biomass. Decanting was 

accomplished by means of gravitational forces and took 20 – 30 minutes to drain per cycle.  

 

4.2.5  Experimental design 

In order to perform an optimisation study, a CCD experiment can be performed (Box & Wilson, 1951). The 

goal of the central composite design is to use as few experimental runs as possible to maximise or minimise 

a specific response. Factors that may influence the response are temperature, pH or time of reaction, to 

name a few (Box & Wilson, 1951).  The data obtained from the central composite design was used and a 

regression function was fit to determine a prediction model which is known as the response surface 

methodology (RSM). Response surface methodology was applied to optimise the factors to obtain a 

predictive model that can accurately represent the changes in the response variables, based on the 

differences of the input variables; pH, feed time and mixing time (Asadollahzadeh et al., 2014). The predictive 

model used was a regression coefficient function and is shown in equation 4.2.  

 

𝑌 = 𝑏0 +  𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 + 𝑏4𝑋1
2 +  𝑏5𝑋2

2 + 𝑏6𝑋3
2 + 𝑏7𝑋1 ∙  𝑋2  + 𝑏8𝑋1 ∙  𝑋3  + 𝑏9𝑋2 ∙  𝑋3  

          Equation 4.2 

 

For equation 4.2: 

Y = prediction response 

b0 = Model constant 

b1; b2; b3 = Linear coefficients 

b4; b5; b6 = Quadratic coefficients 

b7; b8; b9 = Interaction coefficients 

X1 = pH 

X2 = Feed strategy 

X3 = Mixing intervals 

 

The design of this experiment consisted of three different parameters, each having 5 different levels.  

These levels are calculated based on a central composite design. These levels are: 

+ α = Absolute maximum (Assigned) 

+1 = Maximum value (Calculated) 

0 = centre point (Calculated) 

-1 = Minimum values (Calculated) 
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- α = Absolute minimum (Assigned) 

For this central composite design, the absolute minimum and maximum values were assigned by the 

operator. In this case the absolute maximum and minimum values were assigned to the CCD based on the 

limits of the reactor to handle the specific variables. The limits of the reactor were determined by 

investigating literature.  This was done to ensure that the parameters stay within the previously identified 

working conditions for the AnSBR.  The values for the central composite design is summarised in Table 4.2.  

The following parameters were analysed and monitored to evaluate the efficacy of the AnSBR for the 

treatment of winery wastewater; 

• COD Reduction percentage 

• COD Ultimate 

• Polyphenol reduction percentage 

• TSS content of the Effluent 

• Methane percentage 

• Volatile fatty acid (VFA): Alkalinity 

 

Table 4. 2  Values for the central composite design for each parameter; pH, Feed time and mixing interval. 

  pH (X1) Feed Time (min) (X2) Mixing Interval (min) (X3) 

+α Absolute maximum 7.30 240.00 100.00 

+1 Maximum 7.18 193.38 81.76 

0 Centre Point 7.00 125.00 55.00 

-1 Minimum 6.82 56.62 28.24 

-α Absolute minimum 6.70 10.00 10.00 

 

The definition for COD ultimate in this study was the final COD concentration achieved after every 

cycle. The reason for representing COD ultimate was that the COD influent varied from day to day and only 

using reduction percentage may be misleading regarding the efficacy of a particular experimental run. The 

final or ultimate COD is therefore used as the AnSBR may have a lower limit for the removal of COD in 24 

hours. 

In total 16 experimental runs were performed and analysed for each response.  To determine 

whether a parameter had a significant effect on the response, the p-value was evaluated with a 95 % 

confidence interval. When the function had a p-value <0.05 it indicates that the specific function had a 

significant effect on the specific response. The experimental design values for each of the 16 runs is shown 

in Table 4.3.  
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Table 4. 3  Calculated values for pH, feed time and mixing intervals used for each run in the central 

composite design. 

Experimental run pH Feed Time (Min) Mixing Intervals (Min) 

1 7.18 193.38 81.76 

2 7.00 125.00 100.00 

3 6.70 125.00 55.00 

4 7.00 10.00 55.00 

5 7.00 240.00 55.00 

6 6.82 193.38 81.76 

7 6.82 56.62 81.76 

8 7.00 125.00 55.00 

9 7.30 125.00 55.00 

10 6.82 56.62 28.24 

11 7.18 56.62 81.76 

12 7.18 56.62 28.24 

13 7.00 125.00 10.00 

14 7.00 125.00 55.00 

15 6.82 193.38 28.24 

16 7.18 193.38 28.24 

 

4.2.6  Analytical methods 

There were a number of variables monitored when evaluating the efficacy of an AnSBR for the treatment of 

winery wastewater.  Standard Methods (APHA, 2005) were used to determine the following parameters of 

the winery wastewater: 

1. pH (Hanna HI6100405 probe) was measured at the end of every cycle before decanting occurred. 

2. Alkalinity (measured in mg CaCO3.L-1) 

3. Total suspended solids (mg.L-1) 

4. Volatile suspended solids (mg.L-1) 

5. Volatile fatty acids 

 

Alternative methods were used to determine the following parameters: 

2. COD (mg.L-1) 

I. Influent measured using Spectroquant® COD cell test kits (Merck, Darmstadt, Germany) with 

the ranges  500 – 10 000 mg.L-1 and 0 – 90 000 mg.L-1.  

II. Effluent measured using Spectroquant® COD cell test kits (Merck, Darmstadt, Germany) with 

the ranges 100 – 1 500 mg.L-1 and 500 – 10 000 mg.L-1   
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3. Total Polyphenols (mg.L-1).   

I. Folin-Ciocalteau method (Singleton & Rossi, 1965). 

4. Methane  

I. Biogas was produced during the treatment of the winery wastewater in the AnSBR.  The 

biogas was captured in a 10 L gas bag (SupelTM-Inert gas sampling bag with LB-2 Septa).  The 

concentration of methane (CH4) and carbon dioxide (CO2) was quantified using a Varian 3300 

gas chromatograph.  Helium was used as the carrier gas due to its inert property. The flow 

rate of Helium was 30 mL.min-1 and the oven temperature was 55oC.  The gas chromatograph 

had a thermal conductivity detector.  A 0.2 mL sample was injected into a Haysep Q (Supelco, 

Bellefonte, PA) 80 /100 mesh pack column packed at the Department of Food Science, 

Stellenbosch. Biogas volume could not be measured due to inadequate pressure in the 

AnSBR. 

 

4.2.7  Data analysis 

Analysis of the experimental data was performed on Design expert 12 (Stat-Ease, Inc, Minneapolis, USA). 

Response surface methodology contour plots were generated by analysing the regression coefficients. 

Optimal conditions were chosen based on the solution with the highest desirability for a specific response. 

The overall optimal conditions were chosen based on the solution with the overall highest desirability for the 

responses. Pareto charts were generated to investigate the significance of the linear, quadratic and 

interaction effects of each operational parameters using Minitab 19 (Minitab, LLC, Sate College, 

Pennsylvania, USA). 

 

4.3  Results and discussion 

4.3.1  Phase 1 

During Phase 1 the AnSBR was seeded with 22 kg of anaerobic granules. The goal of this part of the study 

was to start-up the AnSBR and to stabilise to reaction so that the experimental runs could follow. The 

anaerobic reactor was fed with winery wastewater with COD concentrations ranging from approximately 

1 000 – 8 000 mg.L-1 with increases of  500 mg.L-1 at a time. Organic loading rate (OLR) was determined by 

dividing the COD by the HRT and the OLR was therefore in the range 0.54 – 4.32 kgCOD.m-3.d-1.  

For the first nine cycles the COD of the substrate fed to the reactor was on average  

1 106  mg.L-1.  For those nine cycles the COD of the effluent ranged from 320 – 891 mg.L-1.  The higher 

concentrations of COD in the effluent were observed in the first few cycles as the granules were not properly 

acclimatised to the new substrate, even in very low concentrations. Acclimatisation of microbial populations 

in anaerobic granules for a new substrate has been shown in literature to be a time-consuming, but necessary 

process.  Microorganisms that had been acclimated for 39 days resulted in an inferior performance of a lab-

scale submerged anaerobic membrane bioreactor (SAMBR) compared to an acclimatisation time of 100 days 
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(Akram & Stuckey, 2008). The COD reduction for these nine cycles varied between 28.9 % in the first cycle to 

80.9 % in the ninth cycle.  The pH of the reactor was kept at 7.10 throughout the acclimatisation period.  It is 

generally accepted that most functional microorganisms, including methanogens, perform well when the pH 

is between 6.8 and 7.2 (Gerardi, 2003).  To maintain stability and reduce the effect of VFA accumulation, 

alkalinity was increased slowly until a concentration of roughly 2 000 mg.L-1 was obtained. This was in the 

middle of the optimal range of 1 000 – 3 000 mg.L-1 (Amani et al., 2010). The COD was increased by  

500 mg.L-1 once a 70 % reduction of COD was obtained for two consecutive days.  This continued until the 

functional microbial consortium was acclimatised to COD values of ca. 8 000 mg.L-1.  

The COD range of the influent was 1 016 – 8 214 mg.L-1.  Reduction of COD varied considerably during 

this period with reduction percentages ranging from 29 – 92 %.  Alkalinity during this phase ranged between 

926 – 2 642 mg.L-1. Lower COD reduction percentages could be explained by the increasing concentration of 

influent COD of the winery wastewater.  The efficiency of the reactor after increasing COD concentration 

initially decreased. One of the reasons for low COD reduction percentages was when overdosing of KOH 

occurred.  Overdosing by the pH controller occurred occasionally because the controller only switches the 

dosing pump off once the set point is reached.  When this was not combined with recirculation of the water 

it led to an increase in pH in excess of 8.0.  This led to low COD removal percentages as some granule 

disintegration may have occurred and pH values above 8.0 are restrictive and potentially toxic to 

methanogens (Sandberg & Ahring, 1992; Gerardi, 2003). The pH was corrected immediately by lowering the 

pH of the substrate for the next cycle to roughly 5.0 so that the wastewater would gradually become more 

acidic. A possible reason for overdose of the reactor was depletion of alkalinity due to accumulation of short 

chain fatty acids (Ward et al., 2008). This led to a decrease in buffering capacity of the reactor and therefore 

rapid changes in pH even when KOH was dosed.  The addition of KOH does not increase the alkalinity of the 

solution to a large degree. Addition of calcium carbonate (CaCO3) and potassium hydrogen carbonate 

(KHCO3) increased alkalinity in the system.  The two chemicals were mixed with the substrate to increase the 

alkalinity slowly in the reactor. A rapid increase of alkalinity could cause precipitation of CaCO3, so care was 

taken to limit the use of it (Gerardi, 2003).  

 

4.3.2  Phase 2 

In Phase 2 the CCD was followed to evaluate the efficacy of the anaerobic digestion and to optimise 

operational parameters.  The parameters to investigate for optimisation were pH, feeding time and mixing 

intervals.  The CCD was followed as shown in Table 4.3. 

 

4.3.2.1  COD reduction percentage 

The data obtained from the CCD was used to fit the regression model described in equation 4.2. The 

regression coefficients obtained would suggest whether a specific parameter (pH, feed time and mixing 

interval) had a specific effect on one of the responses. It uses three parts of the function namely the linear, 
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quadratic and interaction effects.  A simple way of illustrating this is through the use of Pareto charts. A 

standardised effect is calculated and shown as a bar chart.  Each of the effects are represented and if a specific 

effect is significant the standardised effect for that parameter would be greater than 2.447 which indicates 

p < 0.05 and is shown using a red dotted line on the Pareto chart.  

For COD reduction percentage the Pareto chart is shown in Figure 4.4. It is clear when looking at the 

Pareto chart that there was no significant effect influencing the COD reduction percentage. The biggest effect 

was the quadratic effect of mixing shown as CC.  This was however not significant. If the quadratic effect 

were significant it would indicate that the optimal values for mixing were not at the extremes, but rather 

within the limits.  

 

 

Figure 4.4  Pareto chart of COD reduction percentage.       

 

Feeding time has a very small effect on COD reduction percentage with almost no standardised effect 

according to Figure 4.4. This may be because the AnSBR was able to dose KOH at any time during the feeding 

step, therefore if low pH wastewater was added to the reactor the pH could easily and rapidly be adjusted 

keeping the pH in the optimal range.  

The mean COD reduction percentage was 68.32 % for all the parameters.  COD influent of the 

wastewater ranged between 3 200 – 9 700 mg.L-1. The range of COD reduction percentages was 

41.5 – 85.4 %. The four lowest COD reduction percentages were observed during runs 10, 11, 15 and 16.  This 

may be due to granular degradation of the methanogens as the wastewater gets pumped for mixing 

purposes.  To maintain efficacy the biomass must remain in the system either through aggregating on inert 
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carriers or through self-immobilisation in the form of granules (McHugh et al., 2003). Granular degradation 

would mean that the biomass is lost on every decant phase as there would be less settleability of the biomass.  

This would manifest in higher VSS values.  The highest VSS values coincide with the later experimental runs.  

This would substantiate the theory that the anaerobic granules are being broken up and thereby decreasing 

efficacy of the substrate removal. The four lowest COD reduction percentages are correlated to a high ratio 

of VFA:Alkalinty.  This is an important stability indicator as VFA:Alkalinity ratio above 0.3 – 0.4 indicate a 

process that is not stable and will have a decreased performance and a higher risk of acidification (Fannin, 

1987). The COD removal efficency of 41.5 – 85.4 % is lower than what is reported in most literature. 

A study investigating the removal of COD for a mixture of municipal and synthetic wastewater found 

a COD removal percentage between 56 and 88  % (Bodıḱ et al., 2002).  This was however done on a 

laboratory-scale AnSBR with an effective volume of 2 L. 

Work on brewery wastewater has found that COD removal efficiency can be in excess of 90 % (Shao 

et al., 2008).  This work was performed on a 45 L pilot-scale plant.  A possible reason for this is that the seed 

sludge was taken from a brewery and the substrate that the authors were testing was also brewery 

wastewater.  Less importance would therefore need to be placed on the acclimatisation of the seed sludge.  

A further study using a UASB had lower COD removal rates than those obtained in this study.  The 

COD removal rate had a mean COD removal rate of 57 % (Parawira et al., 2005).  That study was, however, 

done on a full-scale upflow anaerobic sludge blanket with a volume of 500 m3 and a hydraulic retention time 

of 24 h.  

A study by Ruiz et.al (2002) achieved a COD removal rate greater than 98 % in a 5 L lab scale AnSBR 

treating winery wastewater.  The authors do not stipulate the seeding volume of sludge so it is possible that 

the wastewater had a longer contact time with anaerobic granules.   

The average COD reduction of 68.32 % achieved in this study, indicates that the AnSBR technology 

can be used to treat winery wastewater and it has the potential to achieve  high reduction percentages when 

used with the correct parameters. 

 

4.3.2.2  Optimisation of control parameters (COD reduction %) 

Optimisation of control parameters were obtained using the central composite design and calculating the 

regression coefficients. Response surfuce methodology (RSM) contour plots are then produced showing the 

optimal parameters for each response. Figure 4.5 illustrates the COD reduction percentage for pH and feed 

in minutes.  From this plot it is evident that a pH between 6.86 and 7.3 in conjunction with a feeding time 

between 108 and 240 minutes results in a COD reduction of 80 %.  The red portion of the plot represents the 

higher reduction percentage.  It must be clearly stated that none of the parameters had a significant effect 

on the COD reduction percentage from Figure 4.4.  These contour plots do however show trends that 

occurred throughtout the experiments and observations can still be made. A high reduction in COD could be 

obtained by increasing pH above 7.1 and increasing feeding time above 166 minutes Figure 4.5. Low COD 
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removal percentages are correlated with feeding times shorter than 98 minutes.  It is possible that short 

feeding times of a potentially high-strength wastewater can result in VFA build-up in the reactor.  It is known 

that a high organic loading rate can cause the acidogenic bacteria to multiply at a quicker rate than 

methanogens leading to a drop in pH and a subsequent drop in efficiency of the reactor (Amani et al., 2010). 

The optimal pH of an AnSBR is between 7.0 and 7.2 and the pH indicating the highest COD reduction was in 

that range, however the upper limit observed was a pH of 7.3, which is slightly above the optimal levels 

(Gerardi, 2003). 

 
Figure 4.5  Contour plot showing COD reduction percentages for the interaction of pH and feed time. 

 

The reduction of COD follows a very similar pattern for the interaction between pH and mixing 

interval (Figure 4.6). A pH between 6.9 and 7.3 predicted a COD reduction above 80 %.  A 90 % reduction 

may be possible by increasing the pH to between 7.1 and 7.3.  Mixing intervals between 69 and 100 minutes 

was correlated to a higher COD reduction percentage.  The effect of pH has been previously explained in the 

context of COD reduction.  Frequent and intense mixing has the abiltity to shear the anaerobic granules 

leading to a decrease in the ability to digest organic substrate (Sung & Dague, 1995; McMahon et al., 2001; 

Huang et al., 2018).  

Longer periods between mixing may result in a reactor that is more stable and may improve the 

performance of the reactor (Stroot et al., 2001). Longer mixing intervals have been shown to decrease 

breakdown of organic matter, whilst maintaining the efficacy of the reactor when compared to more 

frequent mixing (Gomez et al., 2006).  One condition of less frequent mixing is that the temperature should 
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still remain at 35oC and mixing should be done regularly enough to release methane gas bubbles from the 

anaerobic bacteria.  

 

 

Figure 4. 6  Contour plot showing COD reduction percentages for the interaction of pH and mixing 

frequency. 

 

High COD reductions were obtained due to less frequent mixing and a feed time above 100 minutes 

(Figure 4.7). Increased feeding times may result in less VFA formation and subsequently, a more stable pH. 

Less frequent mixing may have resulted in less breakdown of granules meaning a higher ability of the 

microorganisms to digest the substrate. Mixing frequency of the reactor was still frequent enough to permit 

even distribution of heat throughout the system, to maintain the operating temperature.  

The optimal parameters for COD reduction is summarised in Table 4.4. These parameters were 

chosen based on their desirability score specifically for COD reduction percentage.  The solution with the 

highest prediction value for COD removal was chosen.  Optimal values to maximise COD reduction are a high 

pH, longer feeding times and a less frequent mixing regime. 

Previous work conducted at the Department of Food Science in Stellenbosch on a lab-scale AnSBR 

treating synthetic winery wastewater found the following results for the optimisation of COD reduction 

(Laing, 2016). The optimal pH was reported to be 7.34, which is very similar compared to this study.  The 

optimal feed time was longer, being 240 minutes and the mixing frequency was every 110.5 minutes.  These 

results are similar to the results achieved in this study.  There was however a 2nd experiment performed for 
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which the optimal values were; pH of 6.73, feed time of 6 minutes and a mixing frequency of 29.70 minutes.  

The big discrepency in the two experiments was because the reactor was seeded with unacclimatised 

granules before the 2nd experiment, due to significant biomass washout, which altered the results obtained 

(Laing, 2016). The design of the lab-scale reactor differed significantly from this pilot scale reactor, which may 

explain some of the small discrepencies between the results obtained in this study and the results obtained 

previously in experiment 1. The composition of wastewater also differed considerably compared to 

experiment 1. 

 

Figure 4.7  Contour plot showing COD reduction percentage for the parameters of feed time and mixing 

intervals. 

 

Table 4. 4  Optimal operating parameters with regards to COD reduction percentage. 

Parameter Optimum values 

pH 7.29 

Feed time (min) 189 .68 

Mixing intervals (min) 88.84 

 

4.3.2.3  Ultimate COD reduction 

The COD of the wastewater in this study was not kept constant, but was fed with varying strengths of 

wastewater with varying COD concentrations.  It could be misleading to represent the data only by means of 

a reduction percentage as the reactor may have a limit that it can achieve in a 24 hr cycle and HRT of 1.85 
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days. This limit was 904 mg.L-1 as observed by the lowest COD achieved in this experiment.  If the influent 

COD was 2 000mg.L-1 and the ultimate COD achieved was 1 000 mg.L-1 it would mean that only a 50 % 

reduction took place.  On the other hand, if a initial COD of 3 000 mg.L-1 was fed to the reactor and the final 

concentration was also 1 000 mg.L-1 then this would result in a 66 % reduction.  For this reason ultimate COD 

achieved is also reported in this study.  

The data obtained was used to fit the regression model described in equation 4.2. For COD ultimate 

reduction, the Pareto chart is shown in Figure 4.8. The Pareto chart shows that ultimate COD and COD 

reduction percentage are truly two independent responses as they have different t-scores for the factors.  

Although the influence of the factors differ from COD reduction percentage, none of the factors had a 

significant influence.  This is illustrated by the bars not reaching the red line to the right of the Pareto chart.  

The most significant factor was the interaction of pH and feed time, followed by the linear effect of the mixing 

time.  

 

Figure 4.8  Pareto chart for the ultimate COD reduction value. 

 

Ultimate COD concentrations ranged from 904 – 3 340 mg.L-1, with a mean value of 1 766 mg.L-1.  A 

study was performed to evaluate the AnSBR for the treatment of landfill leachate (Timur & Özturk, 1999).  

Ultimate COD values achieved in that study ranged from 684 – 5738 mg.L-1.  The concentration of influent 

leachate was however signifcantly higher with initial concentrations reaching COD levels of 15 940 mg.L-1 

(Timur & Özturk, 1999).  This can explain the discrepancy in range between the two experiments, but indicate 

that the ultimate COD achieved in this study is comparable to literature. Another study investigated the 

efficacy of an AnSBR to treat slaughterhouse wastewater (Masse & Masse, 2000).  Effluent COD 
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concentrations were reduced to 703 mg.L-1 from an initial concentration of 11 500 mg.L-1.  These studies show 

that there is a clear limit of performance that can be attained for an individual reactor and that substantiates 

the theory that it is not correct to judge a cycle purely based on reduction percentage, but to take the 

performance limits of the reactor into account. 

The five worst COD ultimate concentrations were obtained when at least one of the parameters were 

low pH (around 6.8), frequent mixing or rapid feed. From Figure 4.8 it was shown that there was a small 

effect on the COD ultimate concentration by the interaction of pH and feed time, even though it was not 

significant.  It is possible that these parameters may have had a small effect on the performance of the 

reactor. These results will be described in section 4.3.2.4.  

 

4.3.2.4  Optimisation of control parameters (ultimate COD) 

The optimal conditions to reduce the ultimate COD concentration is shown in Figure 4.9.  The goal of the 

optimisation was to minimise the response i.e. have the lowest COD concentration for the effluent.  Lower 

concentrations are marked by the blue areas with the green, yellow and red representing an increasing 

concentration of COD.  It is clear that there are two areas on in the figure that correspond to low ultimate 

COD values,  that is the top right and bottom left corner of Figure 4.9. This would mean that it would be 

possible to achieve low concentrations of COD at pH of 6.7 and at pH levels between 7.1 and 7.3.  The two 

distinct regions are pH 6.7 – 6.8 in combination with low feed times of 10 – 43 minutes.  Conditions like these 

would suggest that it is possible to achieve ultimate COD concentrations in the region of 1 000 – 1 500 mg.L-

1. From Figure 4.9 it can be shown that the better combination of conditions would be a higher pH and a 

higher feed time as there is a bigger surface area represented on the graph.  A bigger surface area would 

suggest that there is room for error during the process as the optimal conditions cover a bigger range.  A feed 

time of 124 – 240 minutes in combination with a pH 7.1 – 7.3 would achieve the best reduction in COD.  It is 

easier to control pH in a reactor at pH levels above 7.0 as there is a lower likelihood of accumulation of VFA’s 

in the reactor (Amani et al., 2010).  This would lead to more stable pH control and ultimately a more stable 

process. 

The efficacy of the reactor at low pH values and low feed times indicates that it could be possible to 

operate a reactor in these conditions, however the margins are very fine.  Generally longer feeding times and 

higher pH values are preferred in anerobic digestion, but it is possible to achieve good reduction of COD 

because the pH control was active throughout the process.  The pH could therefore be adjusted continually.  

This would mean that the pH would not drop below the operating conditions for a significant amount of time, 

and would not cause reactor failure.  

The interaction of mixing interval and pH is shown in Figure 4.10.  The large blue zone on the right of 

the contour plot shows that higher pH values in the range of 7.06 – 7.30 are optimal for the reduction of 

COD.  Mixing intervals were not as important as low ultimate COD values can be attained across most of the 

range of mixing intervals.  The performance drops slightly when mixing intervals are between 10 and 20 
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minutes in combination with lower pH values.  Mixing frequencies below 20 minutes may be too frequent 

and cause shearing of granules and a subsequent reduction in performance (Huang et al., 2018). 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 4.9  Contour plot showing COD ultimate for the parameter’s pH and feed time. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4.10  Contour plot showing the optimal parameters for pH and mixing regime to reduce ultimate COD. 

(mg.L-1) 
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pH Values below 7.0 are correlated to lower ultimante COD values even when mixing intervals are 

less frequent. This finding is in contrast to literature that states that infrequent mixing corresponds to better 

settleability of the granules and increased performance of the reactor (Sung & Dague, 1995).  Contrasting 

evidence was published in 2012 that showed that continuous mixing may lead to higher COD removals and 

facilitate higher organic loading rates (Ghanimeh et al., 2012). Mixing intervals are an important design 

consideration, but there is no standard mixing regime for all reactors.  A good starting point may be to have 

less frequent mixing, but it is possible that reactor performance can increase when implementing a more 

frequent mixing regime. 

Performance of the reactor is severely impacted when the mixing frequency is very low in 

combination with a short feed time.  This is evident from the red area in Figure 4.11. It must be remembered 

that the interaction of feed time and mixing regime was the 2nd least impactful when investigating the Pareto 

chart.  A very frequent mixing regime may result in granule disintegration and a low feed time could lead to 

overload of the reactor and potential acidification of the wastewater (Shizas & Bagley, 2002).  Glucose is a 

substrate that may rapidly acidify wastewater due to its rapid breakdown by anaerobic bacteria (Shizas & 

Bagley, 2002).  To combat this longer feeding times may be used, which ultimately lead to improved reactor 

performance (Kennedy et al., 1991; Suthaker et al., 1991; Shizas & Bagley, 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11  Contour plot showing the effect of feed time and mixing interval to reduce ultimate COD. 
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Longer feeding times between 100 and 175 minutes in combination with mixing frequencies above 

55 minutes resulted in the best COD reduction.  Control of pH would be most accurate with a lower OLR.  

Lower mixing frequencies were still sufficient to maintain temperature in the reactor and performance was 

not affected by the increased mixing intervals.   

The optimal conditions for ultimate COD reduction is summarised in Table 4.5.  These values were 

determined by the solution that had the highest desirability score for COD reduction. These results were 

similar to the optimum conditions needed for overall COD reduction percentage, even though there were 

small differences between the two methods of determining efficacy of COD removal.   

 

Table 4. 5  Optimal operating parameters with regards to ultimate COD reduction. 

Parameter Optimum values 

pH 7.30 

Feed time (min) 197.81 

Mixing intervals (min) 79.98 

 

4.3.2.5  TSS content 

Analysis of the regression coefficents indicate that none of the factors affected the response significantly.  

Investigation of Pareto chart shows that none of the factors met the threshold, delineated by the red dotted 

line.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12  Pareto chart for the effluent TSS content of the winery wastewater. 
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The quadratic effects show the biggest interactions, which may allude to the optimal conditions not being in 

the extreme ends of the operational conditions. Of the three factors, mixing may be the most important 

aspect with regards to TSS content, although this relationship is not statistically significant.  

The TSS content of the effluent ranged from 185 – 650 mg.L-1. The mean TSS content of the effluent 

was 342.44 mg.L-1.  This would indicate that there was not a lot of biomass washout during the experiment. 

A possible reason is that granule disintegration did not take place. A possible reason for limited granule 

disintegration is a result of a short mixing time of 10 seconds every X minutes. One other possible reason is 

that the overflow was at the top of the reactor so very few granules would be suspended at that height, 

therefore very few granules would have passed through the pump during mixing.  

 

4.3.2.6  Optimisation of control parameters for TSS content 

A high TSS content of the effluent is indicated at the red zone of the contour plot (Figure 4.13).  This correlates 

to a high pH and long feed times.  As pH decreases along with feed time the TSS of the effluent decreases.  

This is in contrast to what would be expected as it would be expected that short feeding times could lead to 

lower TSS removal as it may impair reactor performance.  Values of TSS below 100 are not realistic 

expectations for the effluent so values between 100 and 200 mg.L-1 will be referred to as the optimal in the 

contour plots.  For the pH range of 6.87 – 7.3 low levels of TSS in the effluent can be accomplished.  However 

with increased feed times, a subsequent decrease in pH will result in better TSS removal rates.  Optimal feed 

times range between 59 and 142 minutes.  The one drawback to this graph is that the interaction shown in 

the Pareto chart for pH and feed time is extremely small and potentially plays no significant role (Figure 4.12).  

It can also be seen on the Pareto chart that pH is the factor with the least influence on the efluent TSS 

concentration (Figure 4.12.). The optimum pH value may very well be somewhere within the range and not 

in the extremes as the quadratic effect for pH is high (Figure 4.12).  

The interaction between mixing intervals and pH is not significant, but it is larger than the effect of 

pH and feed time.  More information may be obtained from the subsequent contour plot (Figure 4.14).  

Higher TSS content of the effluent is correlated to a high pH and high mixing interval as well as a low pH and 

frequent mixing.  For efficient removal of TSS it is necessary to keep the pH above 7.0 if the mixing frequency 

is between 10 and 41 minutes.  A pH below 7.0 in combination with less frequent mixing (52 – 100 minutes) 

results in the most efficient removal of TSS.  Low TSS at a lower pH range can potentially be because a slightly 

acidic condition inside the reactor would help maintain granular structure explained by the proton 

translocation – dehydration theory (Liu et al., 2002).  This theory is simply explained as the dehydration of 

microbial surfaces which could allow methanogens and acidogens to adhere to each other causing more 

stable granules (Liu et al., 2002). This would help resist granule disintegration when mixing intervals are 

below 50 minutes. 
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Figure 4.14  Contour plot showing optimal parameters for pH and mixing intervals related to TSS content of the 

effluent. 

 

(mg.L-1) 

Figure 4. 13  Contour plot showing optimal parameters for pH and mixing time to reduce TSS in the 

effluent. 
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From Figure 4.15 it is clear that a long feed time and infrequent mixing may cause increased TSS in 

the effluent.  Lower TSS values could however be achieved with any other combination of mixing and feeding 

regimes.  The most effective combination would be a longer mixing frequency (> 61 minutes) and a short 

feed time (10 – 99 minutes). Due to the large discrepancy in the optimal conditions for TSS it may be advisable 

to focus on more important parameters for the optimisation of the reactor conditions, however longer mixing 

intervals seem to be favoured above all other parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. 6  Optimal operating parameters with regards to TSS of the effluent. 

Parameter Optimum values 

pH 7.19 

Feed time (min) 147.50 

Mixing intervals (min) 99.76 

 

Optimal values for TSS were decided on based on the desirability of the solutions. The values are 

summarised in Table 4.6. A pH of 7.19 with a medium feed time and infrequent mixing showed the best 

results in terms of TSS of the effluent.   

 

(mg.L-1) 

Figure 4. 15  Contour plot showing optimal parameters for feed time and mixing intervals related to TSS 

content of the effluent. 
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4.3.2.7  Polyphenol reduction percentage 

Data that was obtained from the central compostie design was used to fit regression coefficients.  None of 

the factors produced significant effects on the reduction of polyphenol content (Figure 4.16). The biggest 

effect was from the interaction of pH and mixing interval followed by the interaction of mixing interval and 

feed time.  The linear factors with the biggest influence were pH and mixing interval.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Polyphenols have been associated with phytotoxic and antibacterial effects which could affect the 

performance of anaerobic digestors (Goodwin et al., 2001; Donoso-Bravo et al., 2009; Ortiz-Cabrera et al., 

2018). It is therefore important to monitor the reduction of polyphenols in an AnSBR to ensure that the 

performance of the reactor is not decreased.   

The polyphenol reduction was in the range of 13.11 – 77.69 % with a mean reduction of  53.35%. 

Previous work conducted on anaerobic reactors had obtained an average polyphenol reduction percentage 

of 63 % (Melamane et al., 2007).  This indicates that the performance of the AnSBR in this study was inferior, 

yet still produced reductions within an acceptable range.  It is however paramount that polyphenol 

concentration be monitored within the reactor to ensure that build-up of polyphenols do not occur. A build-

up of polyphenols may also slow down the digestion process and result in reduced removal performance of 

other compunds such as COD (Melamane et al., 2007).  

 

Figure 4. 16  Contour plot showing optimal parameters for feed time and mixing intervals related to TSS 

content of the effluent. 
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4.3.2.8  Optimisation of control parameters for polyphenol reduction percentage 

The contour plot for pH and feed time shows a clear area in the top right corner where polyphenol reduction 

is the highest.  This correlates with a pH between 7.2 and 7.3 and a feed between 174 and 240 minutes 

(Figure 4.17).  It is clear from this plot that longer feeding times are required to ensure higher rates of 

polyphenol removal.  Slower feeding times could mean that the initial load on the anaerobic bacteria is lower 

and that polyphenol degradation can occur earlier.  No initial overload could therefore occur. The effect of 

pH is more prominent than that of the feed time as there is still a large tolerance for feed time between 60 

and 80 % removal (Figure 4.17). Previously, an anaerobic digester was operated at a pH of 7.05 and a 

polyphenol reduction of 63 % was achieved (Melamane et al., 2007).  That is lower than the pH from this 

study, but does indicate that polyphenol reduction may occur at the higher end of the pH range for anaerobic 

digestion. In another study an effluent pH of 7.5 was recorded when analysing the Anaerobic Digestion Model 

No 1 (ADM1) for olive mill wastes (Fezzani & Cheikh, 2009).  Polyphenol reductions occurred, however no 

percentages were stated, only effluent soluble phenol was reported. This study shows that pH values above 

7.3 may well be effective at reducing polyphenol content . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The contour plot showing the interaction for pH and mixing intervals indicates that polyphenol 

reduction is increased at high pH levels and infrequent mixing (Red area of contour plot)(Figure 4.18). This 

corroborates the observation from Figure 4.17 that indicates that a pH value between 7.2 and 7.3 may be 

Figure 4. 17  Contour plot showing the optimal parameters of pH and feed time for the removal of 

polyphenol reduction percentage. 
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optimal for the reduction of polyphenols in winery wastewater. As previously mentioned, anaerobic digestors 

perform optimally at pH values between 7.0 and 7.2 (Gerardi, 2003). Less frequent mixing is also associated 

with an increase in polyphenol removal.  Very frequent mixing (every 22 minutes or less) is associated with 

poor removal of polyphenols as illustrated in the blue area of Figure 4.18. The reason for this may be granular 

disintegration, although when investigating TSS it was found that very little granular disintegration was 

evident in the effluent. It has been suggested that rapid mixing may disrupt the structure of flocks in reactors 

which could lead to the disturbance of the syntrophic relationships between organisms (Whitmore et al., 

1987; Dolfing, 1992). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The interaction between mixing interval and feed time is shown in Figure 4.19.  More frequent mixing 

and long feeding times are associated with poor polyphenol removal efficiency (Blue zone Figure 4.19). More 

efficient removal percentages are obtained when feed time is between 174 and 240 minutes and mixing 

interval is between 90 and 100 minutes.  As mentioned previously, longer feed times may ensure that the 

anaerobic organisms are not overloaded and less frequent mixing may preserve syntrophic relationships 

between microorganisms. Longer feeding times, less frequent mixing and higher pH values are associated 

with a higher removal rate of polyphenolic compounds in winery wastewater. The optimal conditions are 

summarised in Table 4.7.  

 

Figure 4. 18  Contour plot showing optimal conditions for pH and mixing interval for removal of 

polyphenols from winery wastewater. 
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Table 4.7  Optimal operating parameters with regards to polyphenol removal percentage. 

Parameter Optimum values 

pH 7.24 

Feed time (min) 232.22 

Mixing intervals (min) 88.71 

 

Optimal operational parameters obtained in this study for the reduction in polyphenols is similar to 

the optimal paramaters obtained by Laing (2016).  The optimal parameters for experiment 1 in that study 

were pH of 7.34, feeding time of 240 minutes and a mixing interval of 110.5 minutes.  Similarity of these 

results indicate that these may well be optimal parameters for the removal of polyphenols, even in the 

absence of singnficant statistical effects (Figure 4.16).  

 

4.3.2.9  VFA: Alkalinity 

Data from the CCD was used to fit the regression coefficients. None of the factors involved had a statistically 

significant effect on the VFA:Alkalinity rato (Figure 4.20).  The factor that had the largest influence was the 

mixing interval followed by the interaction between the feeding time and mixing interval.  The effect of pH 

Figure 4. 19  Contour plot showing optimal conditions for feed time and mixing interval for the removal of 

polyphenols from winery wastewater. 
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on VFA:Alkalinity was small, mainly because pH was kept within standard operating ranges for anaerobic 

digestion.  

The range of VFA:Alkalinity obtained was 0.0414 – 0.593 in this study.  A mean ratio of 0.23 was 

obtained for the experimental runs indicating that the reactor was stable for the majority of the experiment. 

Four runs were identified when VFA:Alkalinity was greater than 0.3.  These runs also coincided with the four 

worst COD reduction percentages, high ultimate COD values and below average methane percentage.   For 

optimal reactor performance VFA:Alkalinity must be kept below 0.3 – 0.4 (Fannin, 1987; Brown & Li, 2013).  

This ratio is a common stress indicator in anaerobic digestion and can be used to monitor the stability of the 

reactor (Anderson & Yang, 1992).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20  Pareto chart for the factors influencing VFA:Alkalinity. 

 

From Figure 4.21 it is clear that VFA:Alkalinity is low across almost the whole pH range and is more 

reliant upon the feed time than the pH of the reactor.  For a short feeding time however, it is essential that 

the operating pH of the reactor is high at 7.2 – 7.3. Reactor failure along with a low methane yield can be 

caused by imbalances of hydrolytic, fermentative and acetogenic bacteria as well as methanogenic archaea 

(Brown & Li, 2013). These imbalances may be caused by an accumulation of VFA. A rapid feed may lead to 

an accumulation of VFA and a subsequent drop in pH, causing decreased performance or potentially even 

reactor failure (Brown & Li, 2013). Low pH accompanied by rapid feed can lead to a dangerously high 

VFA:Alkalinity.  A feed time above 140 minutes leads to relatively stable VFA:Alkality as it decreases the 

chance of VFA accumulation in the reactor. 
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Figure 4.21  Contour plot showing optimal conditions for pH and feed time for VFA:Alkalinity. 

 

Mixing intervals below 35 minutes are correlated with increased VFA:Alkalinity across the pH range 

for anaerobic digestion. In order to decrease the VFA:Alkalinity, mixing should take place less frequently 

(once every 74 minutes) in conjunction with an operating pH between 7.0 and 7.3 as indicated in the blue 

region of Figure 4.22. More frequent mixing may liberate more CO2 from the microorganisms, which could 

lead to acidification of the water. The role of pH may not have been large because of the automatic dosing 

that occurred if the pH dropped below set point.   

There is one large area that is associated with low VFA:Alkalinity in Figure 4.23.  This is represented 

by the blue area of the contour plot. The combination of low feed time and frequent mixing as well as longer 

feeding times with less frequent mixing lead to lower VFA:Alkalinity.  

With longer feeding times,  more frequent mixing needs to be employed to ensure VFA:Alkalinity is 

maintained.  Long feeding times with very frequent mixing is represented by the red region of Figure 4.23. In 

order to have a stable anaerobic process the range of parameters depicted in this area need to be avoided.  

It is unexpected that a rapid feed time did not lead to high VFA:Alkalinity.  This may be in part due to the 

automatic 2M KOH dosing which could increase the pH in response to accumulation of VFA thereby stabilising 

the reactor.  The optimal region would be the region in the top right represented by the dark blue shading.  

Longer feed times with less frequent mixing could result in the most stable conditions.  The blue region in at 

the bottom left of Figure 4.23 has very strict boundaries, and if these boundaries are exceeded VFA:Alkalinty 

increases rapidly.   
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Figure 4. 22  Contour plot showing optimal conditions for pH and mixing interval for VFA:Alkalinity. 

Figure 4. 23  Contour plot showing optimal conditions for feed time and mixing interval for VFA:Alkalinity.. 
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Table 4.8  Optimal operating parameters with regards to VFA:Alkalinity. 

Parameter Optimum values 

pH 7.21 

Feed time (min) 155.49 

Mixing intervals (min) 96.49 

 

Using the desirability of the solutions the optimal parameters were found to be a higher pH, 

intermediate feed time and longer mixing intervals (Table 4.8). These parameters are very similar to those 

observed by Laing (2016).  The optimal parameters obtained in that study were;  

• pH : 7.34  

• Feed time : 123 minutes 

• Mixing intervals : 100.40 minutes 

 

4.3.2.10  Methane percentage  

Data from the CCD was used to fit the regression coefficients.  The pH had a significant statistical effect on 

the methane percentage achieved during the experiment (Figure 4.24). The quadratic effect for mixing and 

feed had the next largest effects, indicating that the optimal values may not lie at the extremes of the ranges, 

although these effects were not statistically significant (Figure 4.24). 

Methane has the potential to be used as a clean renewable source of energy producing few 

atmospheric pollutants and the gas can be used at different levels of purity (Chynoweth et al., 2001).  During 

anaerobic digestion 60-70 % of the gas produced is methane and 30-40 % is carbon dioxide (Chynoweth et 

al., 2001; Li et al., 2011).  Methanogens convert acetate, carbon dioxide and hydrogen to methane (Li et al., 

2011). Methane-forming archaea are sensitive to changes in the environment and function optimally at a pH 

range of 6.8-7.2 (Gerardi, 2003; Rajagopal et al., 2013). The range of the methane percentage in this study 

was 54.89 – 72.18 %. The mean methane percentage achieved was 61.81 %.  This value is slightly lower than 

the optimal methane percentage in biogas, but still falls within the acceptable range for methane percentage.  

The pH had a significant effect on the methane percentage achieved.  A high methane percentage 

represented by red and orange in Figure 4.25 indicates that methane percentage is increased when pH ranges 

between 7.16 and 7.3.  The increase in methane percentage is affected very little by feed time as pH is the 

significant factor for determining methane percentage of the biogas. At pH values closer to 7.2 there is 

however an increase in methane percentage when the feed time increases beyond 140 minutes.  A slower 

feeding time may result in a more stable reactor, with less accumulation of VFA and therefore an increased 

ability to maintain the pH above 7.2.  According to the Pareto chart (Figure 4.24) feed time is a more 

important factor than mixing frequency, although it is not statistically significant. Methanogens are 

susceptible to changes in the environment (Amani et al., 2010).  The ideal pH range in which anaerobic 
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digestion operates is 6.8-7.2, if the pH drops below 6.6 the growth rate of the methanogens is severely 

impacted (Mosey & Fernandes, 1988; Ward et al., 2008).  This could explain why the methane percentage 

obtained was a direct function of pH.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There is a clear optimal region for methane production on the right of Figure 4.26 indicated by the 

red region.  Methane percentage is not affected by mixing interval at all.  pH Is the only factor responsible 

for ideal methane content of the biogas.  Mixing may not have a big effect as it was established previously 

that there was limited granule disintegration.  There are also contrasting reports in literature with regards to 

the ideal mixing frequency. At pH values between 7.0 and 7.2 the anaerobic digester works optimally and 

may favour the growth of methanogens (Gerardi, 2003).  The temperature maintained in the reactor was 

35oC which is the preferred temperature for the mesophilic methanogens (Gerardi, 2003).  Frequent mixing 

may have facilitated even and constant heat distribution as the water was only heated by a geyser element 

from the base of the reactor.  The stainless steel frame of the reactor, combined with the reactor being placed 

in a shipping container may have helped to avoid temperature fluctuations.   

 

  

Figure 4. 24  Pareto chart for the factors influencing methane percentage. 
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The interaction between feeding time and mixing interval is shown in Figure 4.27.  This is not a 

significant interaction but it does illustrate that longer feeding times at any mixing intervals can achieve 

methane percentages of 65 %.  It is possible to achieve higher percentages of methane using shorter feeding 

time and more frequent mixing, however the goal of this optimisation was to achieve as close to 65 % as 

possible, as this is what is commonly reported in literature.  Longer feeding times would be expected to yield 

better methane percentages as less substrate is introduced into the reactor at the start of the cycle. Less 

frequent mixing is generally preferred, as in the long run there may be significant disintegration of anaerobic 

granules which could result in decreased performance.  

The optimal values to achieve a methane percentage of 65 % were selected based on the desirability 

score and the values are shown in Table 4.9. To achieve a methane yield of 65 % a higher pH is favoured 

along with long feeding time and infrequent mixing.  

These results compare favourably with previous work performed at the Department of Food Science 

in Stellenbosch (Laing, 2016).  The optimal conditions reported in that study were as follows; 

• pH: 7.30 

• Feed time: 240 minutes 

• Mixing interval: 110 minutes 

 

 

Figure 4. 25  Contour plot showing optimal conditions for pH and feed time for methane percentage. 
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Figure 4. 26  Contour plot showing optimal conditions for pH and mixing interval for methane percentage. 

Figure 4. 27  Contour plot showing optimal conditions for feed time and mixing interval for methane 

percentage 
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Table 4.9  Optimal operating parameters with regards to methane percentage. 

Parameter Optimum values 

pH 7.22 

Feed time (min) 240.00 

Mixing intervals (min) 88.86 

 

4.3.2.10  Overall optimal conditions  

The optimal operating conditions achieved during the experiment is summarised for all the performance 

parameters in Table 4.10. The optimal values that need to be used to optimise all the performance 

parameters were calculated using overall desirablilty of all the parameters and is shown in Table 4.11. The 

optimum value for pH was found to 7.30 and this can be confirmed by investigating the individual optimal 

parameters.  Optimal values for pH were consistently above 7.20 except for TSS with an optimal pH of 7.19.  

The feed time of 180.91 minutes obtained from Table 11 is just below the mean feed time of 194 minutes 

obtained for the individual optimal values.  The mixing interval was found to be slightly lower than what was 

achieved for the performance measures individually, however it is still an infrequent mixing regime that 

favours all of the performance measures. Therefore for the treatment of winery wastewater with varying 

degrees of strength the optimal conditions are a pH of 7.30, a feed time of 180.91 minutes and a mixing 

interval of 84.17 minutes.  

 

Table 4. 10  Overall optimal values achieved for all the performance parameters evaluated during the 

experiment.  

 pH Feed Time (Min) Mixing Interval (Min) 

COD Reduction (%) 7.29 189.68 88.84 

COD Ultimate (mg.L-1) 7.30 197.81 79.98 

TSS (mg.L-1) 7.19 147.50 99.76 

Polyphenol reduction (%) 7.24 232.22 88.71 

VFA:Alkalinity 7.21 155.49 96.49 

Methane (%) 7.22 240.00 88.86 

 

Table 4. 11  Optimal values achieved for the three parameters to yield the best results for all performance 

measure. 

Parameter Optimum values 

pH 7.30 

Feed time (min) 180.91 

Mixing intervals (min) 84.17 
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4.4  Conclusion 

Winery wastewater is a high strength product that often requires treatment before the water can be reused 

for irrigation, or discharged into the water supply.  One potential avenue is to use anaerobic digestion as a 

treatment option, either as the only treatment option, or for use after a primary treatment such as screening 

and settling to further reduce COD.  An anaerobic sequencing batch reactor may fulfill the requirements for 

treatment of high strength wastewater as one of the byproducts is methane generation which could be 

reused for clean energy. Other advantages include low operational costs and very little sludge production.   

This study proved that the use of a novel AnSBR to treat winery wastewater of varying strength and 

composition is feasible for the COD range of 3 200 – 9 700 mg.L-1.  A mean COD reduction percentage of  

68.32 % was achieved in this study with a maximum COD reduction percentage of 85.4 %.  The pH could be 

effectively controlled within the range of 6.7 – 7.3 and alkalinity was maintained in the system above 1 600 

mgCaCO3.L-1.  Reactor stability was maintained except for the last two runs with VFA:Alkalinty ratio during 

those two runs being 0.39 and 0.59. A VFA:Alkalinty of 0.3 and above is associated with an unstable reactor, 

possibly due to a high organic load and a subsequent accumulation of VFA in the reactor. It is possible that 

the HRT was not long enough to facilitate the complete degradation of the substrate.  The occasional 

instability of the reactor does highlight potential problems with this technology.  The design of the reactor 

must be very particular and the operator needs to be well trained with regards to potential problems and 

the cause thereof. Much of the instability could potentially be solved by upscaling the reactor to handle 

bigger volumes as it would potentially have better buffering capability.  

Operational parameters for the AnSBR were optimised by performing a CCD experiment and 

generating RSM contour plots. Three operational parameters (pH, feed time and mixing intervals) were 

optimised for six different responses (COD reduction (%), COD ultimate reduction, TSS, VFA:Alkalinity, 

Polyphenol reduction (%) and methane (%)).  The optimal pH obtained, by choosing the solution with the 

overall highest desirability, was 7.30. An optimal feed time of 180.91 minutes was obtained and the optimal 

mixing interval was determined to be 84.17 minutes.  These values were comparable to a previous study 

performed on a lab-scale 14.7 L AnSBR.  Those overall parameters were a pH of 7.3, feed time of 240 minutes 

and mixing intervals of 110 minutes.   

This study corroborated the findings of the previous study and showed that the optimal parameters 

remain comparable in spite of varying strength of the substrate and the increase in size of the reactor. The 

AnSBR technology can potentially be used in the South African wine industry to treat winery wastewater of 

varying strengths up to a COD concentration of 9 700 mg.L-1. Two independent studies have now confirmed 

the range of the optimal operational parameters at laboratory- and pilot-scale. The biggest hindrance for 

implementation at the moment is the design of the reactor. An optimal design is yet to have been achieved, 

with both reactors having design flaws that would decrease the performance significantly at a larger scale. It 

is therefore important that future studies focus more on the design and commissioning of the reactor to 

allow it to make use of the specific optimal operational parameters achieved in the two studies.  
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Chapter 5 

General Discussion and Conclusion 

 

Water is one of the most important natural resources on Earth and needs to be carefully managed to meet 

the demand in the future, as human population is growing rapidly (Sivakumar, 2011; Cooley et al., 2014; 

McNabb, 2019). Currently, agriculture and industry is responsible for roughly 73 % of the abstracted 

freshwater in South Africa (FAO, 2016). Wastewater generated by industry is high strength and has the 

potential to pollute large volumes of freshwater (Moharikar et al., 2005). It is therefore imperative that 

industries treat the generated wastewater and re-use the treated wastewater to limit the volumes of 

freshwater needed for their production processes (Moharikar et al., 2005; Pedrero et al., 2010). The wine 

industry in South Africa generates approximately 1.24 billion litres of high strength wastewater every harvest 

season (Howell & Myburgh, 2018).  

Anaerobic treatment processes have been widely-used in the past to treat wastewater from varying 

sources, however very little research has been conducted on a specific anaerobic digestion technique to treat 

winery wastewater, namely the anaerobic sequencing batch reactor (AnSBR) (Ruiz et al., 2002; Mosse et al., 

2011). There are numerous advantages of the AnSBR technology namely; flexibility with regards to control 

of the process; alternating food:microorganisms (F:M) ratio (High at the beginning of cycle and lower towards 

end of cycle); low sludge production and generation of methane containing biogas which could be re-used 

(Andreottola et al., 2009; Eleutheria et al., 2016; Show & Lee, 2016). Limited research is available for the use 

of AnSBR to treat winery wastewater. Current studies have identified three important operational 

parameters that need to be optimised. The feeding strategy, mixing interval and operational pH need to be 

investigated to for the optimisation of the AnSBR technology (Laing, 2016).  

Chemical oxygen demand (COD) and total suspended solids (TSS) are important parameters to 

monitor reactor stability and performance. The determination of these parameters are time-consuming and 

laborious (APHA, 2005). It is important to develop a screening method that has the capability of quantifying 

and classifying COD and TSS based on the concentration of the respective parameters.  

Near-infrared spectroscopy is a rapid and non-destructive technique which has been used to quantify 

COD and TSS in wastewater of various origins (Rieger et al., 2006; Innocent et al., 2007; Sarraguça et al., 2009; 

Pan et al., 2012a). Winery wastewater has never been quantified or classified based on COD and TSS 

concentrations.  

The first aim of this study was to develop calibration models for the classification and quantification 

of winery wastewater in terms of COD and TSS concentrations using a benchtop FT-NIR and a portable 

handheld NIR spectrophotometer.  The second aim of this study was to investigate the efficacy of the AnSBR 

technology to treat winery wastewater of variable strength and to optimise the operational parameters.  
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Near-infrared spectroscopy in combination with multivariate data analysis techniques was used to 

quantify and classify winery wastewater in terms of COD concentration, irrespective of the farm of origin of 

the wastewater. Wastewater was collected from four farms in the Stellenbosch wine region from different 

locations on each farm. The samples were scanned using a benchtop FT-NIR and a handheld NIR 

spectrophotometer.  

The benchtop FT-NIR spectrophotometer was able to predict COD concentration with a root mean 

square error of prediction (RMSEP) of 1 006.13 mg.L-1 using orthogonal signal correction (OSC) as pre-

processing and principal component regression (PCR).  This means that the prediction of COD has a 

confidence of ± 1 006.13 mg.L-1. Orthogonal signal correction outperformed the other pre-processing 

techniques for which the most likely explanation is that OSC removes spectral data that is not related to the 

Y-response (COD concentration) (Wold et al., 1998). Partial least squares regression (PLS-R) outperformed 

PCR for the prediction of COD concentration. The obtained RMSEP was 937.93 mg.L-1 for the same reference 

range of COD of 102.5 – 10 570 mg.L-1. This translates to an error to the range of 10.38 %.  The performance 

of PLS-R and OSC compares favourably with previous studies which had error rates between 6 and 12 % 

(Innocent et al., 2007; Yang et al., 2009). It is possible that PLS-R outperformed PCR due to the fact that PLS-

R includes the Y-response in the calculation, with OCR only using the X-variables (wavelengths) 

(Hemmateenejad et al., 2007). Wavelength selection was manually performed using the benchtop FT-NIR. 

The wavelength range of 2 060 – 2 340 nm was identified as a possible region where COD could be 

represented due to the absorption of glucose, fructose, ethanol and tannins within that spectral range 

(Soukupova et al., 2002; Cozzolino et al., 2007). When reduced wavelengths were used, RMSEP for both PCR 

and PLS-R was below 900 mg.L-1. Another important performance parameter to consider is standard error of 

prediction (SEP) / standard error of the laboratory (SEL). The SEL is the average error of the laboratory and 

was calculated to be 453 mg.L-1. When the SEP/SEL is between 1.5 and 2.0 it can be concluded that the 

technique may be useful for screening purposes (Corredor et al., 2015). The SEP/SEL ratio for PLS-R with OSC 

as pre-processing using reduced wavelengths was 1.93 which means that this model may be useful for the 

determination of COD of winery wastewater for screening purposes.   

Discriminant analysis (DA) could accurately classify COD of winery wastewater into three different 

classes, namely; in (0 – 4 999 mg.L-1 COD); Warning (5 000 – 6 999 mg.L-1 COD) and out (above 7 000 mg.L-1 

COD). The linear discriminant analysis (LDA) model with OSC as pre-processing was deemed successful as the 

classification accuracy achieved was 90.40 % for classification into the three classes. The successful 

classification may be attributed to OSC being able to eliminate X-variables that are not related to the Y-

response. This model does however struggle to differentiate between the warning and out classes.  This may 

be because the classes are separated on a sliding scale of increasing strength and the classes do not have 

hard boundaries. Prediction of the “in” class for this model was very accurate and predict the in class with 

100 % accuracy. It can be concluded that NIR may be useful in the classification of winery wastewater in 

terms of COD. 
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Quantification of COD using a portable spectrophotometer with a wavelength range of  

908 – 1 651 nm was showed potential for the prediction of COD in winery wastewater. Principal component 

regression in combination with OSC could not predict COD to a reasonable accuracy and had a SEP/SEL of 

3.40 which is unacceptable for screening.  Partial least squares regression in combination with OSC had a 

RMSEP of 1 047.97 mg.L-1, which translates to an error of ± 11.60 %. This compares favourably with previous 

studies that had root mean square error of cross validation (RMSECV) of 7.79 – 11.60 %. The SEP/SEL was 

however calculated to be 2.36 which indicates that the portable spectrophotometer shows potential for the 

prediction of COD in winery wastewater, but it is not sufficient at this stage to be used for screening purposes. 

Linear discriminant analysis in combination with OSC could classify COD into the three classes with 

an 81 % overall accuracy.  Quadratic discriminant analysis (QDA) showed the same overall accuracy of 81 %. 

The LDA model was superior due to increased precision and increased sensitivity for the “in” class. The 

performance of the portable spectrophotometer was inferior to the benchtop FT-NIR, likely due to reduced 

wavelength range of the instrument.  

Total soluble solids was predicted with an RMSEP of 124.84 mg.L-1 when using the benchtop FT-NIR, 

PCR and OSC as pre-processing. This equates to an error of 5.22 % compared to the range of reference values 

of 33 – 2 425 mg.L-1. The SEL of the reference value was 112 mg.L-1 which means that if the reference method 

is determined to be 1 000 mg.L-1, then it can be expected that it is  

± 112 mg.L-1 off in both the positive and negative direction (888 – 1112 mg.L-1). The SEP/SEL was 1.04 which 

indicates that this model predicted TSS to almost the same accuracy of the reference method. This model 

outperformed previous studies with errors in other studies varying between 10.0 and  

21.6 % (Jeong et al., 2007; Páscoa et al., 2008; Melendez-Pastor et al., 2013). The prediction model using PLS-

R and OSC performed slightly worse than the PCR model with an RMSEP of 144.16 mg.L-1 and a SEP/SEL of 

1.17. While this model performs worse, it still only has an error of 6.03 %. This model outperforms previous 

work conducted on NIR to predict TSS and is a viable option for the prediction of TSS in winery wastewater. 

Wavelength selection improved the PLS-R model and slightly reduced the effectiveness of PCR.  Both 

techniques with OSC and reduced wavelengths (1 900 – 2 500 nm) performed identically with an RMSEP of 

136.94 mg.L-1 and SEP/SEL of 1.07. The error of prediction for these models was 5.72 % which once again 

outperformed previous work performed on TSS quantification for various wastewaters. The increased 

performance of TSS compared to COD indicates that TSS may correlate better than COD at these wavelengths.   

Classification of TSS using a benchtop FT-NIR spectrophotometer could classify TSS into two classes; 

high and low, with 100 % accuracy. The prediction accuracy is improved compared to COD because of a 

reduction in the number of classes which simplifies the prediction.  Added to that is the fact that 

quantification of TSS was superior to that of COD and NIR may be more useful for the prediction of TSS and 

hence a more powerful classifier for TSS compared to COD. 

Both PCR and PLS-R had exactly the same RMSEP of 311.49 mg.L-1 for the prediction of TSS in winery 

wastewater using the handheld spectrophotometer and OSC as pre-processing. The error of prediction was 

Stellenbosch University https://scholar.sun.ac.za



161 
 

13.02 % compared to the range of the reference values. These models have a SEP/SEL of 2.85 which is above 

the threshold of 2.0 for an effective screening method.  The reduced wavelength of 908 – 1 651 nm is the 

main reason for the decreased performance as wavelengths above 1 900 nm seem to be responsible for the 

accurate prediction of TSS in winery wastewater.  

Linear discriminant analysis in combination with OSC was the optimal model for classification of TSS 

into the two classes with an overall accuracy of 95.00 %. Multiplicative scatter correction (MSC) in 

combination with Savitzky-Golay 2nd derivative as pre-processing had the same classification accuracy, 

however LDA and OSC had a higher overall specificity and sensitivity.  Added to this is that for every other 

model OSC was the optimal pre-processing, so for ease of use for the operator it would be advised to use 

OSC as pre-processing for this model. In future NIR spectroscopy could be implemented in an AnSBR to 

monitor process efficiency and performance measures. 

The aim of the 2nd part of the study was to investigate the performance of the AnSBR and determine 

the optimal operational parameters associated with the performance measures.   

The AnSBR technology was able to treat winery wastewater with overall COD reduction percentages 

of 68.32 % with the range of reduction percentages achieved being 41.5 – 85.4 %. Low COD reduction 

percentages correlate with increased volatile fatty acids (VFA):Alkalinity. A VFA:Alkalinity below 0.3 is optimal 

for the stability of an AnSBR (Fannin, 1987). An increased ratio may hinder performance of the AnSBR and 

increase acidification within the reactor.  The COD reduction is within the range of reported COD reduction 

percentages. The reduction percentage achieved in this study is inferior to some studies which reported COD 

reduction percentages of more than 90 % (Ruiz et al., 2002; Shao et al., 2008).  These studies were however 

conducted using smaller volume reactors and winery wastewater that was of consistent strength in terms of 

COD for each experimental run.  Polyphenol reduction percentages ranged from 13.11 – 77.69 % with a mean 

reduction percentage of 53.35 %.  While this is lower than mean values reported in literature (63 %), the 

reduction percentage is still acceptable, however polyphenol content of the wastewater should be monitored 

as polyphenols may slow down the digestion process and decrease reactor performance (Melamane et al., 

2007). Overall the reactor was stable as illustrated by a mean VFA:Alkalinity of 0.23. However there were 

times when the VFA:Alkalinity exceeded 0.4 and reached 0.593 at its maximum. When VFA:Alkalinity exceeds 

0.4 the reactor can be said to be unstable and an immediate reduction of VFA should commence (Brown & 

Li, 2013). Methane percentage obtained in this study ranged between 54.89 and 72.18 with a mean methane 

percentage of 61.81 %. This is within the acceptable range of methane percentage of the biogas previously 

reported. The performance measures were deemed to be stable throughout the study with an occasional 

decrease in performance of the reactor. Overall the reactor could be said to be stable and it could efficiently 

treat winery wastewater of varying quality.  

Operational parameters for the AnSBR were determined by conducting a CCD experiment in a 5-level 

design for the three parameters: pH; feed time and mixing interval. The experimental design called for 16 

experimental runs conducted in a randomised order.  The data obtained was used to generate response 
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surface methodology (RSM) contour plots to determine optimal conditions for each of the six responses: COD 

reduction (%); COD ultimate reduction; TSS; VFA:Alkalinity; polyphenol reduction (%) and methane (%). 

Optimal conditions were selected based on the solution generated which had the highest desirability values.  

The optimal pH was deemed to be 7.30. An optimal feed time of 180.91 minutes was obtained. The optimal 

mixing interval was found to be every 84.17 minutes (for 10 seconds at a time).  

 

5.1  Concluding remarks 

This study illustrated that a benchtop FT-NIR spectrophotometer (1 000 – 2 500 nm) can be used to predict 

COD and TSS in winery wastewater at a level that can be said to be accurate enough to be considered as a 

viable screening method. This is very important as it offers an alternative to the current time-consuming and 

laborious methods currently in use to determine these parameters. A rapid technique can allow a reactor 

operator to take more frequent samples to assess the performance and stability of the reactor.  These models 

can allow wineries to monitor the quality of the effluent more frequently which could lead to implementation 

of more stringent wastewater practices. The portable NIR instrument with a wavelength range of 908 – 1 651 

nm could classify wastewater accurately in terms of strength for both COD and TSS.  Whilst the instrument 

struggled to quantify these parameters, there is significant potential for this technology to be used in-line to 

monitor reactor stability. Classification of these parameters as either low or high strength could allow an 

operator to make an informed decision about the stability of the reactor, and potentially prevent reactor 

failure. The low cost of the portable instrument and the ease of use may make this an attractive option for 

in-line monitoring of winery wastewater treatment facilities in the future. Before this technology can be 

implemented successfully, more research needs to be conducted to optimise the COD and TSS quantification 

by attempting to increase the wavelength range to between 1 700 nm and 2 200 nm as this is the region that 

is correlated with TSS and COD.  This may prove to be too expensive to manufacture, in which case, a robust 

benchtop instrument could be placed on-site and an operator could take measurements more frequently. 

Furthermore, more samples should be obtained to increase the robustness of the calibration model, which 

could decrease the error of prediction for both the benchtop and portable spectrophotometers.  

The use of a pilot-scale AnSBR to treat winery wastewater between a COD range of  

3 200 – 9 700 mg.L-1 was determined to be feasible as performance parameters remained mostly stable 

throughout the experiment. The performance of the reactor was inferior to previous studies, although most 

of those studies were conducted on lab-scale reactors with wastewater that did not vary significantly in terms 

of composition. To increase the performance of the reactor it is possible to increase the cycle time to facilitate 

further degradation of organic compounds. The occasional instability illustrated by elevated VFA:Alkalinity 

for some of the runs highlights the potential pitfalls of this technology, however this may be overcome by 

increasing the hydraulic retention time (HRT) and up-scaling to potentially increase buffering capacity of the 

water. The design of the reactor would need to be optimised with the addition of a closed vessel instead of 

a floating lid to maximise biogas capture and ensure an anaerobic environment within the reactor. Gas 

Stellenbosch University https://scholar.sun.ac.za



163 
 

recirculation could be used as an alternative to mechanical mixing as it may be gentler and cause less 

destruction of anaerobic granules.  

The optimal parameters for the operational parameters were found to be: pH of 7.3 a feeding time 

of 180.91 minutes and a mixing interval of every 84.17 minutes for 10 seconds at a time.  These optimal 

parameters were very similar to a previous study conducted at the Department of Food Science at 

Stellenbosch University which found optimal parameters to be: pH of 7.3, feed time of 240 minutes and 

mixing intervals of 110 minutes (Laing, 2016). This study showed that the operational parameters remained 

comparable irrespective of the size of the reactor and the treatment of wastewater of variable strength. 

Further research should focus on the optimisation of the design of a larger AnSBR before this technology can 

be used for the full-scale treatment of winery wastewater.  
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