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STELLENBOSCH UNIVERSITY

Abstract
Faculty of Engineering

Department of Electrical and Electronic Engineering

Masters in Engineering

Machine Learning for Antenna Array Failure Analysis

by Lydia de Lange

This work investigated the use of machine learning to detect failed elements in an antenna array.
The aim was to identify a trustworthy means of early detection and isolation of faulty elements to
improve the reliability of measured data. Previous work has shown that it is theoretically possible to
identify failed elements from the far-�eld radiation pattern, using machine-learning algorithms such
as arti�cial neural networks and support vector models. However, literature seems void of studies that
test how the input data a�ects the accuracy of the machine-learning algorithm. It is possible to measure
the far-�eld radiation pattern of earth-based antenna arrays, but very few researchers have validated
their proposed techniques on a manufactured array. We therefore investigated the e�ects of various
far-�eld sampling methods on the accuracy and training time of a feedforward neural network, and
on the accuracies of di�erent out-of-the-box classi�cation algorithms, and the e�ect of the antenna
array con�guration on the accuracy of a support vector model. We simulated, manufactured and
measured a 16-element circular patch antenna array to determine the feasibility of using the simulated
far-�eld pattern as training data for a machine-learning algorithm designed to identify failures in a
measured far-�eld pattern. We found it would not currently be feasible to employ machine learning
to detect single element failures by measuring distortions in the far-�eld radiation patterns generated
by a very large array of antennas in an irregular sparse con�guration, such as those planned for the
Square Kilometer Array (SKA) radio astronomy project.
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UNIVERSITEIT VAN STELLENBOSCH

Opsomming
Fakulteit van Ingenieurswese

Departement van Elektriese en Elektroniese Ingenieurswese

Meesters in Ingenieurswese

Masjienleer vir Fout Analise op Antenna Samestellings

deur Lydia de Lange

Die gebruik van masjienleer word ondersoek vir tydige opsporing en uitsluiting van foutiewe elemente
antenna samestellings. Die doel is om ’n betroubare manier te vind om foutiewe elemente vroegtydig
op te spoor en uit te sluit, sodat die gemete data meer betroubaar sal kan wees, soos byvoorbeeld in
groot antenna samestellings, soos die SKA radio astronomie projek. Vorige studies het bevind dat dit
teoreties moontlik is om foutiewe elemente vanaf die ver-veld patroon te identi�seer deur die gebruik
van ’n masjienleer algoritme soos ’n neurale netwerk (NN) of ondersteunings-vektor masjien ("SVM").
Daar is ’n tekort aan studies in die literatuur wat die invloed van die leerdata op die akkuraatheid van
die masjienleer algoritme toets. Die ver-veld van ’n aardvaste antenna samestelling kan gemeet word,
maar min navorsers het al hul voorgestelde metodes op ’n vervaardigde antenna samestelling getoets.
In hierdie studie is daar ondersoek ingestel na die invloed van verskeie ver-veld steekproefmetodes
op die akkuraatheid en opleidingstyd van ‘n FNN; en op die akkuraathede van verskeie standaard
klassi�seringsalgoritmes; asook die invloed van die uitleg van die saamgestelde antenna op die akku-
raatheid van ‘n SVM. ‘n 16-element sirkelvormige plak antenna samestelling is gesimuleer, vervaardig
en gemeet, om vas te stel of die gesimuleerde ver-veldpatroon suksesvol gebruik kan word as leerdata
vir ‘n masjienleer-algoritme vir foutsporing op ‘n gemete ver-veldpatroon. Ons sou nie tans aanbeveel
om ’n enkele foutiewe element te probeer identi�seer deur versteurings te meet in die ver-veldpatroon
van ‘n baie groot saamgestelde antenna met ‘n yl verspreide, ongeordende uitleg, soos beplan vir die
SKA radio astronomie projek nie.
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2

1 Introduction

The title of this study is Machine Learning for Antenna Array Failure Analysis.
An antenna is de�ned in the IEEE Standard for De�nitions of Terms for Antennas [1] as "That

part of a transmitting or receiving system that is designed to radiate or to receive electromagnetic
waves". An antenna array is de�ned as "An antenna comprised of a number of radiating elements
the inputs (or outputs) of which are combined".

An antenna array could also be described as a group of antennas that observe electromagnetic
waves in a certain direction at a certain centre frequency and bandwidth. Using interferometry, data
from each antenna is collected, correlated and processed to produce an image of what the antennas
observed at the given frequency. This image can be used by astronomers to observe astronomical ob-
jects.

Array failure. The failure of elements in an antenna array leads to distorted results. Currently, it
is di�cult to pinpoint a failed element in an array, especially in analogue beamforming antenna arrays,
such as EMBRACE [2].

Array failure analysis. Antenna failures may go undetected until the severity of distortions
makes it clear that an element (or more than one) has failed, and then astronomers and maintenance
sta� rely on manual inspection and other current methods [3]–[6] to identify any element that needs
to be replaced.

An improved ability to remotely detect failed elements and locate their exact positions could im-
prove data reliability for astronomers, and enable more e�cient approaches to repairs and mainte-
nance. This would be particularly bene�cial for large aperture arrays such as the SKA [7] radio as-
tronomy project and similar organisations and situations.

The certainty that an antenna array is fully functional would strengthen con�dence in the valid-
ity of recorded results; and secondly, once a failed element is identi�ed, methods for correcting the
antenna failure [8]–[11] could be applied to exclude any identi�ed element from calculations. Thus,
observed data could be salvaged.

Machine-learning methods such as SVMs [12] and neural networks [13] hold promise as alterna-
tive methodologies for this purpose. Previous work has shown that failed elements can be detected
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Figure 1.1: The LOFAR antenna array, a path�nder for the SKA, operates at the lowest
frequencies observable from earth. LOFAR consists of 50 Stations across Europe, with

the core (38 stations) concentrated in the Netherlands [17].

by analysing the far-�eld radiation patterns generated by an antenna array, as will be discussed in Sec-
tion 1.2.

This study investigated whether a machine-learning method could be used to identify failed ele-
ments in a large aperture array, such as LOFAR [14], [15] (shown in Fig. 1.1) or the LFAA and MFAA [16]
planned for the SKA radio astronomy project. The method proposed in this thesis is focused on ana-
logue aperture arrays. A dish antenna is a complex structure and is very likely to have monitoring
systems in place to detect failures in the system. The method proposed in this thesis is more appropri-
ate for analogue aperture arrays, where each individual element is not monitored. The investigation
was timed to precede the design and construction of the SKA radio astronomy project, so that it can
be considered in system health management conceptualisation.

1.1 Background

1.1.1 The Square Kilometer Array

The SKA is an international project to build the world’s largest radio astronomy interferometer yet,
with a total collection area of one square kilometre.
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Building a radio telescope with a total collecting area of one square kilometre requires stations
across the globe. Since the idea was conceived in 1991, 12 member countries (Australia, Canada, China,
France, India, Italy, New Zealand, South Africa, Spain, Sweden, the Netherlands, and the United
Kingdom), about 100 organisations and 20 partner countries have joined forces to bring the project to
fruition. The huge collecting area and long distances between stations will allow the SKA to produce
high-resolution images of large parts of the sky at once, with a higher sensitivity and angular resolution,
at a faster rate, than ever before.

The SKA is planned to have a frequency range from 50 MHz to 14 GHz. The range will be in
two parts: SKA-low and SKA-mid. SKA-low will consist of almost a million small, low-frequency
antennas, operating from 50 MHz to 350 MHz. This array is referred to as the LFAA. SKA-mid will
operate from 350 MHz to 14 GHz, and will consist of thousands of antennas, including the MeerKAT
dishes and the MFAA [16].

The SKA will be built in two phases - SKA1 and SKA2. During phase one, about 10% of the total
collecting area will be built in South Africa and Australia. These locations are in some of the most
sparsely populated areas on earth, with some of the lowest levels of man-made RFI. The locations were
also chosen for the drier atmospheric state above the sites and because their position in the southern
hemisphere provides a good view of the Milky Way galaxy. SKA1-low will be built in the Murchison
Shire of Australia. SKA1-mid will be built in the Karoo of South Africa. SKA2 will be the completion
of the full array, expanding SKA1-mid into African partner countries, and SKA1-low into other parts
of Australia [16].

The technology, systems and techniques required to build the SKA are being developed and re-
�ned around the world by partner organisations. Their projects fall into three categories: design stud-
ies, path�nders and precursors. System end technology prototypes are designed and tested in design
studies. Precursors (e.g., ASKAP [18], MeerKAT [19]) and path�nders (e.g., LOFAR [14], [15], EM-
BRACE [2]) are demonstrator telescopes and systems built on the SKA sites and in partner countries
respectively. The experience gained from building and maintaining these telescopes will be crucial
when �nally designing, building and operating the SKA.

Once the SKA telescope comes online, unprecedented scienti�c pursuits in the �elds of cosmol-
ogy, fundamental physics, astrophysics and particle astrophysics will become possible. Scientists will
use the SKA to test Einstein’s theory of relativity and try to answer questions about cosmology, the
formation and evolution of galaxies, and the nature of dark matter and dark energy. The SKA will
make it possible to investigate cosmic magnetism and the epoch of re-ionisation. The SKA plans to
expand the observable universe and extend the search for extra-terrestrial life [16].

The detection of failed elements in this large antenna array is important to keep the interferometer
as sensitive as possible. It was therefore considered worth investigating machine learning as a tool to
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identify failed elements in the SKA.
Machine learning has been called the fourth industrial revolution and other researchers have used

it to identify failed elements in an antenna array, as will be discussed in Section 1.2. However, most pre-
vious work focused on identifying failed elements from the far-�eld pattern of the antenna array (i.e.,
the geometric representation of the electric �eld strength at a constant distance far away). There was
not enough focus on using machine learning to detect element failure in radio astronomy speci�cally.

For this reason, the current project has been studying the use of machine-learning methods to
detect element failure in that area for the 24 months since the end of 2017. At the same time, the
Netherlands Institute for Radio Astronomy (ASTRON) [20] has been working on a related project,
using an unsupervised learning method to cluster data from LOFAR.

1.1.2 The SKA in South Africa and at Stellenbosch University

The SKA in South Africa is led by SARAO [21], one of seven National Research Facilities of the
National Research Foundation (NRF) of the Department of Science and Technology [22]. These
seven facilities are organised into four national infrastructure platforms: dealing with biodiversity,
nuclear matters, databases and astronomy [23]. The astronomy platform consists of SARAO and
the SAAO. The SAAO is responsible for optical and infrared astronomy, focusing on astronomy and
astrophysics, including oversight of the Southern African large telescope (SALT) [24] at the SAAO
site in Sutherland. SALT is the largest single optical telescope in the southern hemisphere, and among
the largest in the world.

The SARAO spearheads South Africa’s engineering, science and construction activities in the
SKA, and incorporates radio astronomy instruments and programmes, such as the MeerKAT and
KAT-7 telescopes in the Karoo, the HartRAO in Gauteng, and the AVN in nine African countries [21].

The MeerKAT telescope, inaugurated in July 2018, is the SKA precursor at the SKA-mid site in
the Karoo, which will eventually constitute 25% of SKA1-mid. Of MeerKAT’s existing 64 antenna
dishes, 61% are within 500 m of the centre, while the remaining 39% extend to 4 km from the centre.
The addition of 133 antennas to the MeerKAT precursor telescope’s 64 dishes will form an array of
nearly 200 dishes, where the longest baseline will be 150 km [25]. An illustration of the SKA1-mid
antenna positions is shown in Fig. 1.2. This large footprint of the SKA1-mid in South Africa poses
major challenges for maintenance operations. The positions of the SKA1-mid antennas are shown in
Fig. 1.2. SKA1-mid is just a part of the larger SKA radio astronomy project, which demonstrates the
size of the project.
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Figure 1.2: Illustration of the positions of the SKA1-mid antennas, relative to the �rst
antenna in the array. The existing 64 MeerKAT antennas are shown in red, and the 133

additional SKA1-mid antennas in blue. [25].

The data observed by each antenna is digitised immediately at the antenna. The digital data streams
are sent to the on-site Karoo Array Processor Building (KAPB) and processed by the CBF digital signal
processor. The processed data is stored at the KAPB.

The SARAO control centre and the Centre for High Performance Computing (CHPC) are in
Cape Town, approximately 600 km away. A long-haul optical �bre provides a connection between
the KAPB and these centres, to transfer data and control and monitor operations.

Herein lies the reason for the investigations reported in this thesis: The Karoo is a very hot, windy,
desolate place, where antenna failures are to be expected, and the distance from SKA1-mid to the
SARAO control centre makes maintenance a challenge.

Stellenbosch University’s Electrical and Electronic Engineering Department hosts the Chair in
Antenna Systems for the SKA, one of the �ve research chairs for the SKA SA have currently been
allocated to South African universities [26]. Projects under this chair perform research into various
�elds, focused speci�cally for radio telescope applications. The projects are not limited to the design
of physical components, such as the design of re�ector feeds or antenna arrays. They also encompass
research and design of software, such as the optimisation of the modelling routines that were used to
design antennas.
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SARAO’s science data processing team is already procuring machine-learning expertise for a range
of applications, including RFI characteristics and detection, anomaly detection, and radio source
identi�cation and classi�cation [27].

This provides the context for a research project by Dr DJ Ludick, under the SKA SA Chair at
Stellenbosch University. This thesis is the �rst of a series of theses that will investigate the use of ma-
chine learning for array failure analysis in the context of the SKA. This work focused on a part of Dr
DJ Ludick’s larger project, and investigated machine-learning algorithms and the use of the far-�eld
pattern as training data for the machine-learning algorithm.

The training data required to train machine-learning algorithms was taken from a large distributed
array (for example, the beam pattern of the array) for all relevant element failure scenarios. This train-
ing data was simulated with the computational electromagnetic software, FEKO.

1.2 Literature Synopsis

This is an interdisciplinary study, that requires insights from the �elds of machine learning and an-
tenna theory. This section provides a quick overview of how the processes introduced in this text has
been applied in both technical �elds. A more focused overview will be presented about antenna theory
and machine learning concepts, respectively. Antenna theory concepts, such as the far-�eld radiation
pattern, are explained in more detail in Chapter 2. Machine-learning concepts such as training, SVMs
and FNNs are discussed in Chapter 3.

Software [28] and hardware [3]–[6], [29] techniques have been used in the past to detect failed
elements in an antenna array. The idea of using machine learning to identify failed elements in an an-
tenna array is not novel. Element failure in antenna arrays is a problem that researchers have addressed
with machine-learning techniques in military [30], satellite [31], [32] and other wireless communica-
tion applications [33].

In the next two sections, we describe how machine learning has been used previously in radio
astronomy as a whole, and more speci�cally to detect element failure in a radio antenna array. We also
look at how machine-learning experts in other �elds have detected failed elements in an antenna array.

1.2.1 Machine learning in radio astronomy

In radio astronomy, machine learning is mainly being used for real-time analysis of large data volumes,
such as will be produced by the SKA [34], and to passively analyse data streams to identify anomalous
events that might be of interest to scientists. An example of the latter [35] is the V-FASTR experiment
at the VLBA, which uses machine learning to search for anomalous fast radio transients and has been
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running since July 2011. Another use for machine learning in radio astronomy is in the detection and
classi�cation of RFI in the observed data [36].

An example of using machine learning for system diagnostics in the context of radio antenna
systems was a discussion of a complex set of diagnostic tools developed by NASA for monitoring,
analysing and diagnosing their ground systems and spacecraft [37].

NASA’s Jet Propulsion Laboratory developed two complex software tools to reduce operational
and maintenance costs, BEAM and SHINE. The design of the tools, originally developed to maintain
the system health of spacecraft, allowed them to be applied to complex new systems. These tools were
repurposed for fault diagnostics and prognosis of the DSN [37], which is an international network of
antennas. The DSN tracks spacecraft and performs radio and radar astronomy observations.

Like the SKA, the DSN is required to have minimum downtime and system failures. The article
did not go into the detail of data collection methods, or data types. It only stated that BEAM used
raw sensor data and software-derived data currently used by human experts to perform diagnostics,
along with all DSN data necessary to perform fault diagnostics. The tools provided new insights into
system visibility that were not possible with the previous channel-based diagnostic techniques.

BEAM used algorithms such as stochastic modelling and non-linear information �ltering, and
processed data using temporal channel analysis and adaptive wavelet theory. SHINE used the outputs
of BEAM, along with model-based reasoning and case-based reasoning, to monitor the DSN.

1.2.2 Machine learning to detect antenna array element failure in other �elds

Antenna arrays, whether used for military applications, in space or on aircraft, are all prone to element
failure. Machine-learning researchers have been tasked with identifying these failed elements.

As will be shown in Chapter 4, antenna array element failure leads to distorted far-�eld radiation
patterns. In many of the articles reviewed, the defective elements were found so that the remaining
functional elements’ excitations could be adjusted in software to restore the radiation pattern as closely
as possible to its original form. This was done by so-called array failure correction [8]–[11], which is pri-
marily applicable to active antennas. It is especially useful for antenna arrays that have been deployed
in space and are impossible to reach and replace.

In radio astronomy, some interferometers are capable of doing active beamforming through soft-
ware to compensate for failed elements in the antenna array. This is useful if an antenna in the array
cannot be replaced before an observation has to be made. However, as for aircraft antennas, the main
purpose for element failure detection in radio astronomy is to enable a failed element to be replaced as
soon as possible. The instrument is used for observations that should be as sensitive as possible, and
can only function properly with a full complement of elements.
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The most common technique for training machine-learning algorithms described in the literature
currently available, is to train them on the amplitude of the far-�eld pattern of an antenna array [32],
[33], [38]–[41]. As far back as 1997, Rochblatt [42] described a method of measuring the far-�eld of
re�ector antennas �xed on earth, so it is feasible to use the entire far-�eld pattern as training data. How-
ever, measuring the complex far-�eld pattern requires expensive equipment and a reference signal, so
many researchers used only the amplitude of the far-�eld pattern [33]. Far less frequently, machine
learning was applied to the near-�eld data of the antenna array [43]. It has also been suggested [40]
that the scattering parameters of the antennas in the antenna array could be used as training data.

Most researchers used a linear array as their training data [8], [38], [40], [41], and recommended
expanding the work to planar arrays, as was done by Bucci [33].

When using the far-�eld data as training data, most articles reported using a cut of the far-�eld
pattern in theφ angle [30], [39], [40]. Some authors kept the simulation of the element failures simple,
so that antennas were either completely ON or OFF [30], [33], [39], while others also investigated
partial failures [38], [40], [41]. Their far-�eld radiation pattern was either simulated with commercial
software to include the e�ects of mutual coupling, or was calculated with self-written software, after
which authors recommended that mutual coupling should be taken into consideration in future work.
Researchers rarely simulated all failure scenarios. This was only done when the array was very small,
with four or �ve elements in the antenna array [38]. With larger arrays, the convention has been to
simulate up to three or four simultaneous failures. Several authors applied some post-processing to
the generated far-�eld patterns, such as adding noise to the signal, to increase the number of training
examples given to the algorithm to train on [30].

The algorithms reportedly were genetic algorithms [31], [33], [39], [43], arti�cial neural networks [38],
[44], case-based reasoning [31], [32], support vector models [30], [40], the Woodward-Lawson method [32],
and bacteria foraging optimisation [41].

Very few researchers have validated their proposed techniques on a manufactured array. However,
Miao et al [39] used a genetic algorithm to detect four unique failure scenarios in a linear 32-element
microstrip printed dipole array. The improved success rate was attributed to the fact that mutual
coupling was taken into account during the simulation of the far-�eld patterns.

1.3 Objectives

The objectives of this work are set out below.

• Use an FNN to rank di�erent ways of sampling the far-�eld radiation pattern by how they
increase the accuracy of the machine-learning algorithm.
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• Evaluate which out-of-the-box scikit-learn [45] algorithms perform best on which training data
sets, to validate the results that were obtained on the FNN and to see which training algorithms
work better than the FNN.

• Use the technique described in [30] to investigate the e�ect of the array con�guration on the
accuracy of an SVM.

• Test the e�ect of the signal-to-noise-ratio (SNR) on the accuracy of an SVM.

• Manufacture and measure an antenna array to see whether it is practical to use its far-�eld ra-
diation pattern to identify failed elements, and evaluate whether the simulated far-�eld pattern
resembles the measured far-�eld pattern closely enough to provide training data for an algo-
rithm that must classify the failed elements in a measured far-�eld pattern.

1.4 Contributions

Two articles were written for international peer reviewed IEEE conferences:

• L. de Lange and D. J. Ludick, "Application of Machine Learning for Antenna Array Failure
Analysis," 2018 International Workshop on Computing, Electromagnetics, and Machine Intelli-
gence (CEMi), Stellenbosch, 2018, pp. 5-6 [46]; and

• L. de Lange, D. J. Ludick and T. L. Grobler, "Detecting Failed Elements in an Arbitrary An-
tenna Array using Machine Learning," 2019 International Conference on Electromagnetics in Ad-
vanced Applications (ICEAA), Granada, Spain, 2019, pp. 1099-1103 [47].

The following contributions to the current body of knowledge emanated from this work, by com-
pleting the objectives listed in Section 1.3.

• We investigated di�erent ways of sampling the far-�eld radiation pattern and found it is best to
sample the far-�eld pattern in a 3-D grid, rather than sampling the far-�eld pattern only in the
φ = 0◦ cut, with few samples, as was common practice in previous work. A data set of training
data sampled in a 3-D grid pattern contains more information to discriminate between failure
scenarios. This means that fewer samples have to be taken of the far-�eld radiation pattern to
form a reliable training data set.

• We investigated di�erent array con�gurations, as was recommended by previous work, and
found that the con�guration of the array does indeed have an e�ect on the accuracy of the
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trained model. When an array is symmetrical in a plane, the far-�eld radiation pattern should
not be sampled in that plane. In symmetrical con�gurations such as a linear or regular dense
array, taking a single cut through the origin (such as the φ = 0◦ cut or the φ = 90◦ cut), will
result in some classes having identical patterns wherever the OFF antennas are a mirror image of
each other. This makes it impossible for any classi�cation algorithm to achieve high accuracy.

• We found that adding noise to a pattern with various signal-to-noise ratios does not model the
di�erence between measured and simulated data su�ciently. Therefore noisy signals should
not be used to generate more training data for the machine-learning algorithm if the purpose
is to identify the failed elements in a measured signal. Future work should rather simulate an
array con�guration many times per failure scenario. Each time the scenario is simulated, small
random deviations can be made in parameters that have an e�ect on the shape of the pattern
(e.g., antenna geometry and material properties).

• We con�rmed the rule that the training data for a machine-learning algorithm has to resemble
the testing data for a machine-learning algorithm to be able to classify the testing data. If the far-
�eld radiation pattern is chosen as the data that will be given to the machine-learning algorithm,
the testing data to classify failure scenarios for an SKA aperture array. The training data must
then resemble the measured LFAA far-�eld radiation pattern to be able to classify an unseen
case.

• The core �nding of this study is that it would not be feasible, at this point in the evolving his-
tory of technology, to employ machine learning to detect single antenna failures by measuring
distortions in the far-�eld radiation patterns generated by a very large array of antennas in an
irregular sparse con�guration, as planned for the SKA radio astronomy project.

1.5 Overview of This Work

Chapter 1 explained the background to this study of machine learning for antenna array failure anal-
ysis, de�ned terms, and summarised the literature about it. It clari�ed the objectives of the study and
how it has already contributed to the body of knowledge on the subject.

Chapter 2 explains the antenna theory necessary to understand the rest of the thesis. The most
important concepts are the far-�eld radiation pattern, the re�ection coe�cient (commonly referred to
as the S11 parameter), and antenna arrays. The chapter discusses the history of antennas, the principles
of antenna radiation, and how and why antennas are arrayed.
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Chapter 3 explains how data was gathered from antenna arrays simulated in FEKO [48], and used
to generate data sets that were used for machine-learning experiments. The chapter discusses the two
machine-learning methods used in this work - FNNs and SVMs.

Chapter 4 describes how we investigated the e�ect of the choice of training data on a classi�cation
algorithm’s accuracy. Two experiments were done, using the training data and the machine-learning
methods described in Chapter 3. The two experiments are summarised in Table 4.1. In the �rst exper-
iment, the far-�eld radiation pattern of a 5×5 bow-tie antenna array was sampled in di�erent ways.
The samples were processed as described in Chapter 3, and used to train an FNN and other classi�-
cation algorithms. In the second experiment, the methods introduced by Yeo [30] were investigated
for di�erent antenna array con�gurations. First, the SVM kernel that achieved the highest accuracy at
the lowest SNR was selected. The results of the selected SVM on di�erent array con�gurations were
compared to determine the e�ect of the number of elements, number of classes and layout of an array
con�guration on the accuracy of the SVM.

Chapter 5 relates how a 16-element circular patch antenna array was designed, manufactured and
measured. The simulated and measured far-�eld patterns of the antenna array were compared to deter-
mine whether it is feasible to use the simulated far-�eld pattern as training data for a machine-learning
algorithm intended to identify failures in a measured far-�eld pattern.

Finally, general conclusions are drawn in Chapter 6, and some recommendations for future work
are made, based on the contributions summarised in Section 1.4.
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2 Overview of Antenna Concepts

An antenna is a structure that transfers radio waves or electromagnetic energy between free space and
electronics. It can either transmit, where radio waves are generated, or receive, where radio waves are
observed.

This chapter addresses antenna theory, based on work by Balanis [49], [50]. We discuss the inter-
esting history of antennas; we explain antenna radiation based on an 8-element linear bow-tie antenna
array; we clarify how antenna arrays work and why they are useful in applications such as radio as-
tronomy; and, �nally, we describe important antenna parameters and �gures of merit. There is special
focus on concepts important to this thesis, such as antenna arrays and the far-�eld radiation pattern
that will be used later in Chapter 3.

2.1 History of Antennas

In 1873, James Clerk Maxwell published his work [51] in which he related the theories by Faraday and
Ampere on magnetism and electricity, through a set of four equations known as Maxwell’s equations.
He also proved that light was an electromagnetic phenomenon. The famous four equations are shown
below in integral form [50].

Gauss’s law for electric �elds states that the integral of the electric �eld ( ~E) exiting an area enclosing
a volume ( ~A) is equal to the total charge (q) inside the volume.∫

~E · d ~A =
q

ε0
. (2.1)

Gauss’s law for magnetic �elds states that the integral of the magnetic �eld ( ~B) exiting an area
enclosing a volume ( ~A) is equal to zero. ∫

~B · d ~A = 0. (2.2)

Faraday’s law of magnetic induction states that the integral of the electric �eld ( ~E) around a closed
loop is equal to the total change in voltage. This change in voltage is brought about by a varying
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magnetic �eld ( ~B) passing through the circuit.∮
~E · d~l = − d

dt

(∫
~B · d ~A

)
. (2.3)

Ampere’s law with Maxwell’s displacement current gives the total magnetic force around a circuit
as a sum of the current (I) through the circuit and the displacement current, d

dt

(
ε0
∫
~E · d ~A

)
, which

is any varying electric �eld through the circuit.∮
~B · d~l =

(
I +

d

dt

(
ε0

∫
~E · d ~A

))
. (2.4)

These equations can be cast into a vector wave equation, the solutions to which are propogating
electromagnetic waves. Heinrich Rudolph Hertz was the �rst to demonstrate that wireless commu-
nication was possible using these electromagnetic waves in 1886. In 1901, Guglielmo Marconi was the
�rst to demonstrate transatlantic transmission with wire antennas. In 1933, Karl Guthe Jansky dis-
covered that the Milky Way galaxy emits radio waves, which is why he is known as the father of radio
astronomy. Jansky used the rotating antenna shown in Fig. 2.1, nicknamed "Jansky’s Merry-go-round"
to survey the sky at a frequency of 20.5 MHz [52].

Figure 2.1: The rotating antenna Jansky built, nicknamed "Jansky’s Merry-go-round".
The antenna functioned at 20.5 MHz. [52]
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It was during World War II that antenna design became more prominent, and the focus shifted
from designing antenna systems to improving the structure and material of the antennas [53]. Until
then, the radiating element in a wireless communication system was a wire antenna, and communica-
tion was limited to up to the ultra high frequency (UHF) band, spanning 300 MHz to 3 GHz. During
the war, modern radiating elements were introduced, such as horn antennas, re�ector antennas, and
waveguides [54]. Nevertheless, the design of the antenna was not the largest concern in the overall sys-
tem design. Antennas were designed in a "cut and try" fashion [49]. However, as computers became
more advanced, it was �nally possible to invent numerical methods and simulation software [48], [55]
to design antennas, so that the antenna is now the most signi�cant part in the system design.

Today, antenna designs can be very complex and large. In contrast to the �rst radio antenna for ra-
dio astronomy, the Five-hundred-meter Aperture Spherical Telescope (FAST) [56], is shown in Fig. 2.2
to demonstrate how much has been achieved in the �eld of radio astronomy in less than 100 years.
FAST was installed in 2016 in China and is the world’s largest single-aperture telescope.

Figure 2.2: The world’s largest single-aperture telescope, the Five-hundred-meter
Aperture Spherical Telescope (FAST), was installed in 2016 in China [57].
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2.2 Antenna Radiation

Antennas are designed for speci�c tasks. These tasks usually require the antenna to be directional,
which means that the radiation pattern is optimised to be sensitive in a certain direction and sup-
pressed in other directions. In other words, design speci�cations usually require that an antenna re-
ceives a signal from a certain direction and is not sensitive to signals from other directions. To achieve
this, the radiation pattern is optimised by using the correct antenna type and shape.

The antenna radiation pattern is a graphical representation of an antenna parameter and is usu-
ally shown in the far-�eld region. Parameters that can be expressed in a radiation pattern include the
amplitude and phase of the electric or magnetic �eld. When referred to in this work, the antenna’s radi-
ation pattern is a geometric representation of the amplitude of the electric �eld strength at a constant
distance far away from the antenna. The representation is usually plotted in a spherical coordinate
system, as a function of the orthogonal (perpendicular) directions θ and φ. In this work, the radia-
tion pattern is always normalised and plotted on the logarithmic scale. The orthogonal directions are
demonstrated in Fig. 2.3.

2.2.1 Electromagnetic �eld regions for an antenna

The characteristics of the electromagnetic �elds generated by an antenna change as the distance from
the antenna increases. They are therefore divided into three regions – the reactive near-�eld, the ra-
diating near-�eld, and the far-�eld region. The electric and magnetic �elds must be in phase and per-
pendicular (orthogonal) in order to propagate or radiate [50].

The near-�eld of an antenna is divided into reactive and radiating regions. The reactive region is
the closest to the antenna. Here, the electric and magnetic �elds are 90 degrees out of phase, which
means that the antenna is not radiating. The region is generally de�ned by the equation

d < 0.62

√
D3

λ
, (2.5)

where d is the distance from the antenna,D is the diameter of the smallest sphere containing the
antenna, and λ is the wavelength calculated at the operating frequency, λ = c

f
, with c as the speed of

light (2.997 924 58× 108 m s−1) and f in Hz.
In the radiative near-�eld (or Fresnel) region, the electromagnetic �elds start changing from reac-

tive �elds to radiating �elds. In this region, the shape of the radiation pattern can be ever-changing
as the distance from the antenna increases. The radiative near-�eld exists in the region de�ned by the
boundary
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Figure 2.3: An 8-element linear bow-tie antenna array and its far-�eld radiation pat-
tern. The orthogonal directions θ and φ are demonstrated.

0.62

√
D3

λ
< d <

2D2

λ
. (2.6)

The far-�eld (or Fraunhofer) region is where long-distance antennas, such as those used for radio
astronomy, operate. In this region, the electric and magnetic �elds are orthogonal to both each other
and the direction of propagation, and therefore radiating. The antenna is far enough away from the
observation point that the �elds can be observed as plane waves. In the far-�eld region, as the distance
from the antenna increases, the �elds and power density decrease, but the geometric shape of the
radiation pattern remains the same. The far-�eld exists in the region

d >
2D2

λ
. (2.7)

As the size and operating frequency of an antenna increases, the far-�eld region quickly becomes
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too far away to measure at a measurement facility such as the anechoic chamber at Stellenbosch Uni-
versity. Chapter 19 of [58] explains a mathematical transformation to determine the far-�eld from a
near-�eld measurement.

2.2.2 Antenna arrays

Some applications have requirements for radiation characteristics that cannot be achieved by a single
antenna, but may be achievable when multiple antennas are arranged in a certain con�guration. The
SKA is an example of such an application.

An antenna array is a group of antennas placed in a speci�c con�guration. The antennas are de-
signed for a speci�c frequency range. Antennas are placed in an array to improve the performance of
that of a single antenna. Antennna arrays can be used to increase the overall gain, create a narrower
main beam, cancel out interference from speci�c directions, �nd the direction of arrival of an observed
signal or steer the beam electronically (without moving any mechanical parts). Interferometry is used
to collect, correlate and process the observations by all the individual antennas. In this way, a higher
resolution image is produced, which is very useful for radio astronomy.

Arrays can be dense or sparse, and regularly or irregularly spaced. Three di�erent antenna array
con�gurations are investigated in Section 4.3.

Many antenna arrays have been designed as path�nders for the SKA. One example is the analogue
beamformed phased array, EMBRACE. The output signals of its elements, shown in Fig. 2.4, are
combined in analogue and then the correlated signal is digitised and processed [2]. As mentioned
in Chapter 1, it can be particularly di�cult to pinpoint a failed element in an analogue beamformed
array. Because the output of an individual antenna is not digitised and sent to the correlator directly,
antenna elements are less likely to be monitored individually. A machine-learning technique that can
identify element failures would therefore be very useful.

2.3 Antenna Parameters and Figures of Merit

Many parameters and �gures of merit have been established to characterise the performance of anten-
nas, but only the �gures of merit important to this thesis are shown in this section. A more detailed
discussion of antenna parameters and �gures of merit can be found in [50].

The 8-element linear bow-tie antenna array, shown above in Fig. 2.3, is used in this section to
demonstrate some concepts of radiation patterns, while Fig. 2.5 demonstrates some derived quantities
and other attributes of radiation patterns. The pattern in Fig. 2.5 is the φ = 0◦ cut of the electric
far-�eld radiation pattern shown in Fig. 2.3.
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Figure 2.4: A photograph of the aluminium Vivaldi elements of one of the EM-
BRACE stations [2].

Lobes. The main lobe of the radiation pattern contains the direction of maximum radiation. The
side lobes are radiation lobes in any other direction than that of the main lobe. The side lobe level is
the amplitude of the side lobe relative to the amplitude of the main lobe. Any lobes besides the major
lobe are also commonly referred to as minor lobes.

The radiation intensity [1] is "the power radiated from an antenna per unit solid angle (stere-
dian)". The angle between two directions in which the radiation intensity is equal is de�ned as the
beamwidth (BW). The half-power beamwidth (HPBW) is where the radiation intensity is half the max-
imum radiation intensity.

The re�ection coe�cient is de�ned at the terminals of an antenna and quanti�es the ratio of
the re�ected to the transmitted power. The re�ection coe�cient, denoted by Γ, is de�ned as

Γ = 20 log10

(
V −

V +

)
, (2.8)

whereV − is the re�ected voltage wave andV + is the transmitted voltage wave. In the context of an
array environment the re�ection coe�cient is measured for a particular element, with other elements
terminated in a load impedance. A plot of the magnitude of the re�ection coe�cient vs frequency
can be used to de�ne the bandwidth of the antenna. A threshold of |Γ| ≤ −10 dB is typically used,
which is illustrated in Fig. 2.6.
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2.4 Conclusion

Important concepts relating to antenna theory in the context of radio astronomy were discussed in
this chapter. In the next chapter, we show how the electrical far-�eld radiation pattern is processed
into training data sets. The chapter also describes the machine-learning algorithms that were trained
on far-�eld data sets.
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Figure 2.5: The φ = 0◦ cut of the electric far-�eld radiation pattern or the 8-element
linear array shown in Fig. 2.3. Some �gures of merit and derived quantities described in

the text are indicated.
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Figure 2.6: The magnitude of the re�ection coe�cient of an antenna vs frequency can
be used to de�ne the bandwidth (BW) of the antenna. At a threshold of (Γ) = −10

dB, the bandwidth above will be equal to 50 MHz.
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3 Machine Learning for Failure Detection

The previous chapter introduced antenna arrays and far-�elds. In this chapter, we describe how we
applied machine learning to the far-�eld pattern of an antenna array, in order to locate failed elements
in the array. The two main machine-learning algorithms used were FNNs and SVMs. The data sets
used to train the machine-learning algorithms were the far-�eld patterns of various unique failure
scenarios for a certain array con�guration. We describe the di�erent data set types, how machine-
learning algorithms were trained, and how the far-�eld pattern was generated and processed into data
sets that could be used by the machine-learning algorithm.

3.1 Data Set Generation

Consider the 8-element linear antenna array in Fig. 3.1.

Figure 3.1: 8-element linear bow-tie antenna array, showing only the φ = 0 cut.
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This array and its far-�eld patterns are used throughout the section to exemplify the explanations.
Given the number of elements, n, the number of unique failure scenarios, R, that can occur for this
antenna array, can be calculated as

R = 2n. (3.1)

For the 8-element linear array, this corresponds to 256 unique failure scenarios. Each far-�eld pat-
tern is used as an entry in the training data set. In Fig. 3.1, the whole far-�eld geometrical pattern is
shown; and the φ = 0 cut is highlighted.

Many data sets can be generated from one antenna array con�guration. The data sets correspond
to the di�erent sampling methods used to sample the far-�eld pattern of the antenna array. The dif-
ferent data sets are summarised in Table 3.1, where the Description column describes how each failure
scenario is sampled.

Table 3.1: Data sets formed from the 8-element bow-tie antenna array

Data set Description
φ = 0◦ The φ = 0◦ cuts of each failure scenario
φ = 90◦ The φ = 90◦ cuts of each failure scenario
Principle cuts The principle cuts of each failure scenario, a combination of φ = 0◦ and

φ = 90◦

φ = 45◦ The φ = 45◦ cuts of each failure scenario
φ = 135◦ The φ = 135◦ cuts of each failure scenario
Diagonal cuts The diagonal cuts of each failure scenario, a combination of φ = 45◦ and

φ = 135◦

All cuts All 4 cuts of each failure scenario, a combination of the principal and diago-
nal cuts

3-D, 180 sam-
ples

A 3-D sampled grid of the far-�eld pattern, with 180 samples

3-D, 360 sam-
ples

A 3-D sampled grid of the far-�eld pattern, with 360 samples

3-D, 720 sam-
ples

A 3-D sampled grid of the far-�eld pattern, with 720 samples

3.1.1 Generation of training data from an 8-element linear array

In this section, we describe how to generate the far-�eld pattern of each unique failure scenario and
process the result so that it can be used to train a machine-learning algorithm.
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A commercial computational electromagnetic (CEM) software tool, FEKO [48], was used to anal-
yse and evaluate antenna designs. The three FEKO programs used in this work were CADFEKO, ED-
ITFEKO and POSTFEKO. CADFEKO is a 3-D design program that was used to draw one element
in the antenna array seen in Fig. 3.1. This de�nition of the antenna element geometry is stored as a
mesh �le. EDITFEKO is an editor that allows one to use the mesh �le designed in CADFEKO, and
describe the positions and on/o� states of the antennas. The desired results such as the far-�eld pattern
are also requested in EDITFEKO. Once the simulation has been executed, the results can be viewed
in POSTFEKO. The far-�eld results were processed further by the machine-learning-based diagnostic
utility developed in this work.

EDITFEKO uses the CADFEKO mesh �le, along with an .xml �le, to describe the problem that
FEKO will solve. An .xml �le is generated for each unique failure scenario, and contains the descrip-
tion of each antenna array, including its position and magnitude. The magnitude of an antenna is
equal to 1 when the antenna is fully functional, and equal to 0 when the antenna has failed. Each
unique scenario is given a scenario identi�cation number, and a unique code that describes the ON
or OFF state of the antenna. The di�erent far-�eld patterns necessary to form the training data sets
are requested in the EDITFEKO script.

Once the problem has been simulated, an output �le is generated for each far-�eld request (as
mentioned in Table 3.1). These �les are in a format readable by POSTFEKO. At each sampling point,
the real and imaginary ~E-�elds are measured in both the θ and φ directions. However, for the data to
be useful for training, the output �le for each failure scenario has to be processed before the �les can be
combined into one training data set. Each output �le is processed so that the total absolute magnitude
can be calculated from the measured results. This allows the training data to be compressed from a
matrix of N x 4 to an array of N entries, where N is the number of samples taken of the far-�eld.

In other words, the far-�eld data contained in the output �les generated after simulation are ex-
tracted. The data come in the form of the real and imaginary ~E-�eld in both the θ and φ directions,
i.e., 4 measurements per sampling point. For each sampling point, this is reduced to one value - the
total magnitude for that point. After each sampling point has been processed, the whole pattern is
normalised and converted to the logarithmic scale (dB). This is done because the small di�erences in
low dB values are more prominent when expressed on a logarithmic scale, which makes it easier for
the machine-learning algorithm to distinguish between di�erent scenarios.

Once all the scenarios have been processed, the arrays are stacked together to form a training data
set. Each failure scenario is labelled by its identi�cation number. Each training data set has two matri-
ces - the training data and the related labels. When the far-�eld data of each unique failure scenario is
added to the training data set, the appropriate scenario number is saved in another array, at the same
index. This index is called the label of the training data.
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3.1.2 Other con�gurations and data sets

For more complicated antenna arrays, with more antennas, simulating all possible failure scenarios
becomes too computationally expensive. Not all failure scenarios are going to occur. At some point,
it is unlikely that many failures will occur at once, without being noticed by the system health man-
agement.

The purpose of this project was to �nd ways of detecting a few failed elements in a large array.
So, for the sake of processing time and realism, as the number of elements in an array gets larger, it
is good practice to simulate only up to a certain number of simultaneous failures. The number of
unique failure scenariosR for an antenna array of n elements, with up to k simultaneous failures, can
be calculated as:

R =
k∑
0

(
n

k

)
. (3.2)

Three array con�gurations were studied. The simple example of an 8-element linear antenna array
can be extended to any arbitrary array con�guration. The other two array con�gurations used in this
work were a 25-element regular dense antenna array and an 18-element irregular sparse antenna array.
These two con�gurations can be seen in Fig. 4.7.

Instead of having only one label per entry in the training data set, there can be multiple labels per
entry. This is a machine-learning concept called a multi-label data set. For each entry in the training
data set, there is an array of labels that describe its categories. In this case, the labels of each scenario
re�ect the ON or OFF state of each antenna for each failure scenario. An 8-element antenna would
have 8 labels per entry in the training data set - each combination of labels being unique. Using this
multi-label data, the machine-learning algorithm attempts to learn, by looking at the far-�eld pattern,
whether each individual antenna in the array is ON or OFF.

3.2 Machine-learning Algorithms

In this section, we describe the di�erent machine-learning algorithms used to train on the far-�eld
data. We explain what machine learning is and how it works. We then describe the two main machine-
learning algorithms used in this work - the FNN and the SVM.

3.2.1 Basic machine-learning concepts

In a general sense, machine learning corresponds to pattern recognition. A supervised machine-learning
algorithm attempts to predict the label of a new, unknown example, based on observations of previous
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data-label pairs that the algorithm has processed.
Machine learning has three phases: training, validation and testing[59], [60]. Consequently, the

data set is usually divided into three sets - the training set, the validation set and the test set (usually
80%, 10% and 10% of the data respectively).

During the training phase, the training data is fed to the machine-learning algorithm. Each
machine-learning algorithm’s training phase is di�erent, but the purpose of the training phase is for
the machine-learning algorithm to form a picture of how the classes in a data set di�er from one an-
other. The machine-learning algorithm must be able to predict the class of a new example during the
validation or test phase, based on knowledge learnt from the training phase. The SVM, for example,
attempts to de�ne the separation between classes in a multi-dimensional space. The FNN attempts
to form a functional mapping of the training data and associated labels, using hyperparameters[59].

During the validation phase, the machine-learning algorithm’s ability is assessed. The function
that describes the mapping between the data inputs and consequent labels is no longer altered. The
ability of the machine-learning algorithm to classify unseen data is validated. After using the validation
set, one can go back and change the hyperparameters of the machine-learning algorithm, and retrain
it on the training data set to attempt to achieve a better accuracy or training time. In other words, the
validation data set is used to test and tune the machine-learning algorithm. The testing phase only
starts once the machine-learning algorithm has been �ne-tuned.

During the testing phase, the test set is used only once, to determine the accuracy of the algo-
rithm. This is necessary because a machine-learning algorithm that does not generalise well enough
can be over-trained in both the training and the validation phase. The test set gives a better idea of the
true performance of the algorithm on unseen data if it is only used once.

3.3 Support Vector Models

SVMs were invented around 1979 by Vladimir Vapnik, a Russian scientist. After moving to the United
States, he published his �rst paper on SVMs in 1995 [12].

SVMs are designed to split two classes of data so that the distance between the line of separation
and the two classes is maximised. An SVM is visualised in Fig. 3.2. Two classes, denoted by + and -, are
plotted on a 2-dimensional plane. The plane that separates the two classes is called the hyperplane.
The support vectors are the data points from each class closest to the hyperplane. The separation
zone between the support vectors of the two classes is called the margin. The SVM iteratively changes
the orientation of the hyperplane until the margin is maximised. The maximisation of the margin is a
constrained optimisation problem, which can be solved by using Lagrange multipliers [61].
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Figure 3.2: Demonstration of the SVM hyperplane and the margin that separates two
classes. The support vectors of each class are shown in red.

In this section, we discuss the mathematics behind SVMs, starting with an SVM for linearly sep-
arable data. We explain how SVMs can be used on classes that do not seem linearly separable, and
we introduce multi-class, multi-label data sets. The resources and textbooks used to write this section
are Introduction to Support Vector Machines [62], An introduction to support vector machines and other
kernel-based learning methods [63] and Advances in kernel methods: support vector learning [64].

3.3.1 Linear SVMs

Consider a set (X, Y ) of l training examples {xi, yi}, i = 1, . . . , l. Each training example xi has d
features, so that the datapoints exist in ad-dimensional feature space (xi ∈ Rd). Each training example
belongs to one of two classes, (C+ orC−), so that the class label yi of each training example can have
one of two values, (yi ∈ {−1, 1}).

All hyperplanes in the d-dimensional space Rd can be de�ned by

{x : w · x + b = 0} , (3.3)

where b is a constant, and w is the vector passing through the origin, which is orthogonal to the
hyperplane.

Consider such a hyperplane (w, b) that perfectly separates the classes C+ and C−. The function
that correctly classi�es the training data is then

f(x) = sign (w · x + b) . (3.4)
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Figure 3.3: Many hyperplanes can separate classesC+ andC−.

From all the possible hyperplanes (see Fig. 3.3), the SVM should choose the hyperplane that sepa-
rates the two classes with the widest possible margin. For this study, a canonical hyperplane [64] was
chosen to separate the two classes. A hyperplane is in canonical form with regard to the training data
X if it is a functional distance of at least one unit away from the closest data point of each class. The
functional distance of a hyperplane is the value that the function equates to. This is not the euclidean
or geometric distance, which is the margin. The hyperplanes that satisfy this requirement are

xi ·w + b ≥ +1 when yi = +1, and (3.5)

xi ·w + b ≥ −1 when yi = −1, (3.6)

which can be condensed to
yi (xi ·w + b) ≥ 1 ∀i. (3.7)

In the case where the classes are completely seperable, this constraint can be met by the SVM.
When the classes are non-seperable, the options are to use non-linear SVMs, discussed in Section 3.3.2,
or introduce "slack variables", that allow the linear SVM to misclassify a few examples.

To calculate the geometric distance between a data point and the hyperplane, equation 3.7 is nor-
malised using the magnitude of w, which results in

d ((w, b) , xi) =
yi (xi ·w + b)

||w||
≥ 2

||w||
. (3.8)
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From equation 3.8, one must minimise ||w|| to maximise the margin. We now solve a quadratic
programming problem of optimization, also called a primal problem,

min
w,x

1

2
||w||2 ; subject to equation 3.7 (3.9)

This problem can be rewritten using Lagrange multipliers [12], [65]. Equation 3.8 and equation 3.9
are parallel constraints that can be solved by recasting the constraints as a Lagrangian function by
introducing new "slack variables", denotedα and requiring the derivative of the Lagrange function be
zero. For a vector α of non-negative Lagrange multipliers, with a length l, the Lagrangian is given by

W (w, b, α) =
1

2
||w||2 +

l∑
i=0

αi [yi (xi ·w− b)− 1] . (3.10)

Setting the derivative of the Lagrange function subject to w equal to zero results in the optimal
hyperplane in equation 3.11, which shows that the vector w is just a linear, scaled sum of the training
examples. Setting the derivative of the Lagrange function subject to b equal to zero results in equation
3.12, which will be used as a constraint for the Lagrangian function.

∂W

∂w
=⇒ w−

l∑
i=0

αiyixi = 0 =⇒ w =
l∑

i=0

αiyixi. (3.11)

∂W

∂b
=⇒

l∑
i=0

αiyi = 0 (3.12)

Substituting the result of equation 3.11 into equation 3.10, and knowing the result of equation 3.12,
we arrive at the minimised Lagrangian

W (α) = −
l∑

i=0

αi +
1

2

l∑
i=0

l∑
j=0

yiyjαiαj
(
xi · xj

)
, (3.13)

which is subject to the constraints below. The constant C is a tunable parameter that will be
discussed soon.

l∑
i=0

yiαi = 0, (3.14)

0 ≤ αi ≤ C ∀i. (3.15)
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Combining 3.7 and 3.11 with some manipulation, the equation

αi (yi (xi ·w + b)− 1) = 0 ∀i, (3.16)

shows that, when the distance between the hyperplane and a given example is larger than one,
αi = 0, the example has no e�ect on the de�nition of the optimal hyperplane. This equation explains
the name of the SVM - only the examples closest to the optimal hyperplane, with values αi > 0, have
an e�ect on its position, and are therefore called the support vectors.

Equation 3.3 shows that two parameters are necessary to de�ne the hyperplane, w, which has been
determined, and b. The parameter b can be calculated by taking any support vector from each class,
to produce an x+ and an x−. One can solve the equations simultaneously (from equation 3.16),

(
x+ ·w + b

)
= +1 and (3.17)(

x− ·w + b
)

= −1, (3.18)

to yield

b = −1

2

(
x+ ·w + x− ·w

)
. (3.19)

Finally, the constraint C is a tunable parameter that determines the �exibility of the hyperplane.
For large values of C , the hyperplane is very strict on classifying each example correctly. A lower C
value allows the hyperplane to misclassify some examples, for the bene�t of having a more generalised
SVM. A more �exible hyperplane is useful for data that is not easily separable.

3.3.2 Non-linear SVMs

SVMs are not limited to linearly separable data. Using a kernel allows one to separate the training data
linearly with a hyperplane in a higher dimensional feature space. A mapping de�ned as

z = φ (x) , (3.20)

is used to transform a vector x, of dimension d, into a vector z, which has a higher dimensionality
than d. The mapping function φ () transforms the data into a higher dimension, where the data may
be linearly separable by a hyperplane. Substituting x with φ (x) in equation 3.13, we �nd
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W (α) = −
l∑

i=0

αi +
1

2

l∑
i=0

l∑
j=0

yiyjαiαj
(
φ (xi) · φ

(
xj
))
, (3.21)

so that the equation describing the optimal hyperplane (??), becomes

w =
∑
i

αiyi φ (xi) . (3.22)

and, the function that correctly classi�es the training data, from equation 3.4, becomes

f(x) = sign (w · φ (x) + b)

= sign

([∑
i

αiyi φ (xi)

]
· φ (x) + b

)

= sign

(∑
i

αiyi (φ (xi) · φ (x)) + b

)
.

(3.23)

In each of these functions, it is important to notice that each φ (xa) that appears is always in a dot
product with another φ (xb). We de�ne this function as

K (xa, xb) = φ (xa) · φ (xb) . (3.24)

Equation 3.24 is called the kernel [63]. The kernel K is a formula for the dot product of two
vectors, xa and xb, in a higher dimensional space. If there is a formula for the dot product of these two
vectors in a higher dimensional space, it is no longer necessary to project the input vectors themselves
into the higher dimensional space. It is not even necessary to know the formula of the mapping z =

φ (x). In other words, the optimal hyperplane will be in an unknown feature space, but the kernel,
the formula for the dot product in that feature space, is all that needs to be known. The optimal
hyperplane will appear as a curved or even non-continuous contour in the original feature space.

The classi�er, from equation 3.4, can now be set up as

f(x) = sign

(∑
i

αiyi (K (xi, x)) + b

)
(3.25)

with an optimisation problem [61], [66], from equation 3.21, as

W (α) = −
l∑

i=0

αi +
1

2

l∑
i=0

l∑
j=0

yiyjαiαj
(
K
(
xi, xj

))
. (3.26)
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Using these equations, the optimal hyperplane can be found as described before. The only di�er-
ence is that the hyperplane is in a feature space that is unknown.

To choose a kernel function K , the dot product between the two vectors must exist in a feature
space for mapping φ (). There are two methods to �nd a kernel function K that adheres to this re-
quirement. The �rst, more tedious method, is to create a mapping z = φ (x). from this mapping,
the kernel K (xa, xb) = φ (xa) · φ (xb) can be derived analytically. The second method is to choose
a kernel function K , and check that it is a valid dot product in a higher dimensional feature space,
using Mercer’s condition [67]. The condition states that, for a choice of fi’s, a kernel functionK can
be written as

K (xa, xb) =
∞∑
i=1

fi (xa) fi (xb) . (3.27)

The kernel functionK is a dot product in a feature space if it satis�es the conditions

∫ ∫
K (xa, xb) g (xa) g (xb) dxadxb > 0

∀g such that

0 <

∫
g2 (x) dx <∞.

(3.28)

Two popular kernels that satisfy these requirements are the polynomial kernel, and the Gaussian
radial basis function (RBF) [63], [66]. The polynomial kernel in equation 3.29 has a tunable parameter
p, which is usually between 1 and 10.

K (xa, xb) = (xa · xb + 1)p (3.29)

As the parameter p becomes larger, so the dimension of the feature space that the optimal hyper-
plane exists in becomes larger. The larger the feature space, the more likely it is that the data will be
linearly separable. However, the more dimensions there are, the more support vectors are necessary to
separate the two classesC+ andC−. This increases the complexity of the problem, which means that
the computational complexity increases. Following Occam’s razor [68], simpler systems are better.
In the case of the polynomial kernel, one should use the lowest possible value for the parameter p, so
that the data is represented in the most compact form (the lowest dimensional feature space). As the
dimension increases, the more di�cult it will become for the algorithm to generalise well [62].

The Gaussian RBF kernel [64], with a tunable parameter σ,
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K (xa, xb) = e−
||xa−xb||2

2σ2 (3.30)

results in the classi�er

f(x) = sign

(∑
i

αiyi e
−||xa−xb||2

2σ2 + b

)
. (3.31)

The shortcoming of SVMs is that their training time and memory complexity worsen as the size
of the training set increases. For further reading, Burges [65] suggests ways to improve the accuracy
and speed of SVMs, and Nalepa [69] describes existing ways to select training data for SVM training
from large data sets.

3.4 Feedforward Neural Networks

3.4.1 From FNNs to SVMs

Linear models such as linear regression [70] or logistic regression [71] are reliable and e�cient, but are
limited to linear functions. This was overcome by the kernel trick introduced in section 3.3.2, where
a mapping φ (x) is able to represent non-linear data in a higher dimensional space, where it is linearly
separable. In other words, the linear function is applied, not to the non-linearly separable data x,
but rather to φ (x), which has been transformed to a space where it is indeed linearly separable. The
mapping φ can be seen as a new representation for x. In machine learning, the task is to choose the
mapping φ.

SVMs use generic mappings φ, that have been proven useful for many applications. These map-
pings are implicitly used by using a kernel, as discussed in section 3.3.2. Another method is to manually
engineer the mapping φ. This requires domain knowledge and specialists, and a new mapping must
be designed for each new task. There is little transfer between domains, and engineering each mapping
takes a lot of human e�ort and time. Deep learning’s approach is to learn the mapping φ.

3.4.2 A broad overview of FNNs

A feedforward neural network (FNN) is the most basic and classic of the deep learning methods. They
are used in many commercial and online applications. Some interesting applications of FNNs include
autonomous driving [72], �nancial prediction [73], time series prediction [74] and text-to-phoneme
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mapping [75]. FNNs are also commonly known as multilayer perceptrons (MLPs), and deep feedfor-
ward networks [59]. Other neural networks are built on the basis of FNNs. For example, a convolu-
tional neural network is a special form of FNN, and is very powerful in object recognition in pictures.
Recurrent neural networks are very good at natural language processing and video processing.

An FNN attempts to approximate some function

y = f ∗ (x) , (3.32)

where the classi�er f ∗ maps the input x to the relevant class label y. This is the true relationship
between the input x to the relevant class label y. The aim of the FNN is to approximate this relation-
ship between x and y by de�ning a mapping

y′ = f (x,W) , (3.33)

where y′ is the predicted class label and W is the learnable parameters that are updated iteratively,
until the true relationship f ∗ is approximated as closely as possible, so that y′ ≈ y.

A neural network is called a network, because it is a combination of functions chained together.
The feedforward neural network is the simplest type of neural network, and serves as a conceptual
stepping stone for more complicated neural networks. It is called feedforward (as opposed to, for
example, recurrent), because the output of one function is the input of the next. The network does
not pass information back to previous functions. Networks with such feedback connections are called
recurrent neural networks [59]. For example, if the three functions f (1), f (2) and f (3) are chained
together to form a feedforward neural network, the function f would be

f (x) = f (3)
(
f (2)

(
f (1) (x)

))
. (3.34)

The input vector x is fed to the �rst function, f (1), which is called the �rst layer in the FNN. The
output of the �rst layer is passed to the second layer, f (2), and so forth. The depth of the model is
the number of layers the model has. A neural network can have many layers, which is why it is called
deep learning. The last layer, in this case f (3), is called the output layer. This �nal layer of the neural
network should produce a value as close as possible to the label y, associated with the current training
example x.

Each training pair (x, y) can be seen as a noisy, approximate sample of the true function f ∗ (x)

such that

y ≈ f ∗ (x) . (3.35)
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As mentioned before, the neural network trained iteratively until f (x) resembles f ∗ (x) as closely
as possible. This is achieved by feeding the FNN with noisy samples x and specifying that the output
layer should produce the associated output y. All the layers in the FNN between the input layer and
the output layer are called hidden layers, because there is no speci�cation as to what the desired outputs
of these layers should be. The learning algorithm must use these hidden layers to produce the desired
output, an approximation of f ∗ (x) in the �nal layer.

The neural network is called neural, because it was inspired by early understanding of neurons
or perceptrons [59]. Each hidden layer f (i) in the neural network has several units of vector-to-scalar
functions, called neurons, which act in parallel. Each neuron in the layer observes the output vector
of the previous layer, and produces a scalar value. The scalar values produced by each neuron in the
layer are combined to form the output vector of that layer. The number of neurons in the layer is the
width of the layer. The idea of using many such layers is inspired by neuroscience, and the observation
of how biological neurons work. However, the goal of an FNN isn’t to design a perfect model of
the biological brain, but rather to use mathematical and engineering principles that are guided by
insights from what we have learned of how the brain functions. FNNs approximate functions to
achieve statistical generalisation.

3.4.3 A mathematical breakdown of FNNs

The work in this section relies heavily on a discussion of feed-forward neural networks in chapter 20
of Arti�cial Intelligence - A Modern Approach by Russel and Norvig [76].

The smallest component of a neural network is a neuron. This idea of a machine-learning model
designed as a network of neurons layered after one another is modelled after current theory on how the
biological brain works. In the biological brain, a neuron is a cell that observes electrical signals from
previous neurons in the network. The neuron processes the input signals according to some function,
and emits a single electric response depending on a function of the input signals. Similarly, a neuron
in a neural network will emit an output signal depending on a function of its inputs. The neuron will
"�re" when the response of the function, a linear, weighted combination if its inputs, exceeds a certain
value.

This operation of a neuron is very similar to logistic regression, which is used to map the relation-
ship between a dependant output variable, given one or more independent input variables. Logistic
regression is used for prediction of a binary output. Let the output variable ai, be

ai = g (xi) = g

(
n∑
j=0

Wj,iaj

)
. (3.36)
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In the �rst step of logistic regression, the weighted sum of all inputs are calculated as
∑n

j=0Wj,iaj .
We then require the output to be a probability – a value between 0 and 1. A non-linear function g is
applied to this sum, to restrict the range of the output to [0,1]. The function most commonly used
is the logistic function, better known as the sigmoid function (see Fig. 3.5 A), from where logistic
regression gets its name.

Figure 3.4: A visual demonstration of the mathematical model of a neuron devised by
McCulloch and Pitts [77].

Fig. 3.4 illustrates the mathematical model of a neuron described by McCulloch and Pitts [77]. A
neural network is composed of a series of neurons. One neuron in a neural network belongs to a layer,
and is connected to the neurons in the previous layer, its inputs, and neurons in the next layer. The
output of the neuron under discussion is connected to many other neurons in the next layer. These
connections between neurons are called links. Consider two neurons, a neuron j in layer l− 1, and a
neuron i in layer l. An activation aj is propagated through a link from neuron j to the current neuron
i. Along with the activation aj , each link also has a numeric, trainable weightWj,i, which is a variable
that controls how much e�ect the signal aj has on the neuron i’s output. The weightWj,i has a sign
and intensity. A weighted sum of all the inputs to the neuron i is computed, so that

xi =
n∑
j=0

Wj,iaj. (3.37)

The activation ai, the output of neuron i, is calculated by applying an activation function g to
the weighted sum xi calculated in equation 3.37,

Note that, in Fig. 3.4, there also exists a bias weightW0,i. The weight is applied to a �xed input a0
with a constant value of−1. This will be discussed soon.

There are two phenomenon that should be taken into account regarding the activation function
g. First, the activation function of a neuron should generally be non-linear, as a linear function at
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each neuron would cause the whole neural network to collapse into one linear function. Second, in
many cases the neuron should emit a value close to +1 when the correct set of inputs are observed.
This is referred to as "activating" the neuron. The neuron should emit a value near 0 otherwise. Typical
activation functions are the sigmoid function, and the ReLU (recti�ed linear unit) function [78]. The
graphs for these functions can be seen in Fig. 3.5.

(a) Sigmoid (b) ReLU

Figure 3.5: Two typical activation functions currently used for FNNs - the sigmoid
function and the ReLU function.

The sigmoid function is di�erentiable, a useful property for learning the weights of the FNN. The
sigmoid function has the form

g (x) =
1

1 + e−x
. (3.38)

The ReLU function is the most commonly used activation function in neural networks, especially
in convolutional neural networks [59]. Mathematically, the ReLU function is de�ned as

g (x) = 0 for x ≤ 0, and

g (x) = x otherwise.
(3.39)

The de�nitions of the activation functions have a threshold at xi = 0. In the neuron, the true
threshold is set by the trainable bias weight,W0,i. From equation 3.37, this means that

xi =
n∑
j=0

Wj,iaj

=
n∑
j=1

Wj,iaj −W0,i,

(3.40)
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so that, when the �rst term,
∑n

j=1Wj,iaj exceeds the value ofW0,i, the neuron is activated.
As said before, a neural network models its output as a function of its inputs. The more layers, the

more complex the function that the neural network can represent. The network computes a function
y = f (x,W), by adjusting the weights W. The function the network represents can be changed by
changing the values of these parameters. The network is trained by gradually adjusting these weights
until the network produces the correct output for a known input.

Consider a simple case of a neural network discerning between only two classes,C+ andC−. The
network would only have one output neuron. This neuron will have a threshold value of 0.5, so that
an output with a value above 0.5 will be interpreted asC+, and an output with a value below 0.5 will
be interpreted asC−. However, for a more complex neural network with k classes, it is more practical
to have k output neurons. This way, the output of each neuron can represent the likelihood of the
input x belonging to that class.

3.4.4 Multiple layers

The depth of the neural network - the number of hidden layers - determines the complexity of the
function that can be represented. The width of such a hidden layer, which is the number of neurons
per layer, depends on the length of the input vector. Interestingly, it is possible to prove that any
continuous function of the input vector can be approximated by only one hidden layer, given that its
width is su�cient. With two hidden layers, it is possible to represent discontinuous functions. The
proofs are complex, but it is possible to prove that the required width for a hidden layer increases
exponentially as a function of the length of the input vector [76]. However, it is very di�cult to
characterise exactly which types of functions can be represented, given a particular network structure.
It is still not well understood how to choose the number of layers and width of each layer given a
particular problem.

Consider a problem (see Fig. 3.6) where the training data set has a matrix of training examples
X and labels y so that X contains n training examples x, each with an associated label y. The input
vector will be the size of one training example. The �rst layer will therefore have 10 neurons - one
to observe each element of the input vector. For this problem, we will choose one hidden layer with
a width of 4 neurons, and an output layer with one neuron. However, for problems with several
categories, it is more common to have one output neuron per category, so that the �nal layer represents
the probability of the current example x belonging to each category.
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Figure 3.6: A neural network with 10 input neurons, 1 hidden layer with a width of 4,
and a single output neuron.

3.4.5 Back-propagation

For each training example x, the neural network produces an output vector y’ = f (x,W), the pre-
dicted output vector for the observed input vector. This predicted output y’ is compared to the ex-
pected output vector y, as speci�ed by the training data set. Both y and y’ can be vectors, where each
element of the output vector is the probability of the observed example x being in that class. A calcula-
tion,max (y’), produces the winning probability which refers to the (scalar) class label y′ in equation
3.33.

The training of a neural network has two stages: the forward pass and the back-propagation of the
error. During the forward pass, the neural network predicts an output vector y’ for a given training
example x. Next, the error vector Err, the error between y’ and y, is calculated. This error is back-
propagated through the hidden layers, using gradient descent. Let the error vector be de�ned as

Err = y− y’ = y− f (x,W) . (3.41)

The reason why the error is back-propagated, is to adjust the weights W of the network, so that
the error Err is minimised. A classic error measurement is the sum of squared errors. This error is
de�ned as

E =
1

2
Err2 (3.42)

The squared error for a single training example is a sum over the outputs yi of each neuron in the
output layer. We de�ne this errorE as
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E =
1

2

∑
i

(yi − ai)2 . (3.43)

Now, to get the gradient for a speci�c weight Wj,i, the derivative of E in equation 3.43 is taken
with respect to each weight Wj,i. The derivative is written in terms of the activation ai. All other
terms in the summation in equation 3.43 are una�ected by the derivation overWj,i.

Gradient descent [78] is used for back-propagation. With gradient descent, the aim is to calculate
the partial derivative of E with respect to each weight. First, let Erri be the i’th element of Err. In
what follows, g′ is the partial derivative of the activation function, and α is the learning rate. The
learning rate is a parameter chosen for the whole network, before training. Through manipulation,
we can prove that the weight-update rule, based on the gradient descent algorithm, can be written as

Wj,i ← Wj,i + α× aj × Erri × g′ (xi) . (3.44)

For convenience later, we de�ne a modi�ed error ∆i so that

∆i = Erri × g′ (xi) , (3.45)

and equation 3.44 becomes

Wj,i ← Wj,i + α× aj ×∆i. (3.46)

Consider the neuron in Fig. 3.4, as a component of the neural network shown in Fig. 3.6. The
function that describes the link between the neuron i and the neuron j in the previous layer, are
subject to a weightWj,i and an activation signalaj . After the error ∆i has been calculated for a neuron
in the output layer, using equation 3.45, and the weight of that link has been updated, as shown in
equation 3.46, it is time to update the weights of the links in the hidden layer. To update the weight
Wj,i in a hidden layer, we need to de�ne a term ∆j analogous to the error term ∆i that was used for
the output nodes.

This is where the error back-propagation method is used. The concept is that one of the neurons
j in the hidden layer l − 1 has a partial e�ect on the error ∆i for each neuron i in the output layer l.
Each ∆i value is divided according to the strength of the link between the output neuron i and each
neuron j. The error term ∆j for each neuron j is therefore a weighted sum of each error term ∆i, and
the activation value aj for the link to each output neuron i, that were just calculated in the previous
forward pass. This function can be written as
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∆j = g′ (xj)
∑
i

Wj,i∆i. (3.47)

Referring back to Fig. 3.6, the weight-update rule from the hidden layer to the input layer is almost
identical to 3.46, with k counting the number of neurons in the input layer, and ak the activation for
a link between the input and hidden layer,

Wk,j ← Wk,j + α× ak ×∆j. (3.48)

In summary, the back-propagation method works as follows:

• calculate the error ∆ between the predicted and expected outputs, y’ and y,

• for each layer, starting with the output layer and working through the hidden layers until you
reach the input layer,

– popagate the error values ∆ back to the previous layer, as a function of the activation of
each link (which was calculated in the forward pass),

– update the weightsW between the two layers.

In this chapter a review of the SVM and FNN algorithms was presented. In the following chapter
the algorithms will be applied to various numerical examples.
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4 Failure detection in simulated aperture
arrays based on far-�eld sampling

This chapter describes two experiments to discover how the far-�eld radiation patterns of several dif-
ferent array con�gurations a�ect the accuracy of classi�cation algorithms to identify failed elements
in the array.

The far-�eld radiation pattern was sampled using di�erent methods to determine which sampling
method contained the most information. The antenna array used throughout to demonstrate con-
cepts and generate results was the 5×5 bow-tie antenna array shown in Fig. 4.1.

When the 5×5 bow-tie antenna array in Fig. 4.1 is fully functional, the far-�eld pattern’s geometric
shape is symmetrical in thex−z and y−z planes, otherwise referred to as theφ = 0◦ cut andφ = 90◦

cut respectively. Previous work has shown that, when given the far-�eld pattern of an antenna array
(usually the φ = 0◦ cut), a machine-learning algorithm, such as an FNN [38], [44] or an SVM [30],
[40] , can predict failed elements in an antenna array.

To demonstrate why it is possible for classi�cation algorithms to distinguish between failure sce-
narios, the φ = 0◦ cut and φ = 90◦ cut of the 5×5 bow-tie antenna array are shown in Fig. 4.2. Blue
denotes the far-�eld pattern of the fully functional array and red denotes the far-�eld pattern of the
array where elements 1 and 2 have failed. Fig. 4.2 demonstrates that, even at the �rst null, there is a
10 dB di�erence between the failed and the fully functional scenarios. Similarly, each unique failure

z

y

θ 

ϕ 
x

Figure 4.1: Three-dimensional far-�eld pattern of a fully functional regular 5×5 bow-
tie antenna array, showing the θ and φ orientations.
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Figure 4.2: Far-�eld cuts of fully functional and partially failed 5×5 antenna arrays
(see Fig. 4.1).

scenario has a unique three-dimensional (3-D) geometrical far-�eld pattern. This is why it is possible
for a classi�cation algorithm to distinguish between failure scenarios when given the far-�eld pattern
as training data.

4.1 Overview

This chapter describes two experiments to investigate the e�ect of the choice of training data on a
classi�cation algorithm’s accuracy. The two experiments are compared in Table 4.1.

Section 4.2 describes an experiment to discover how the far-�eld of a 5×5 bow-tie antenna array
can be used to train an FNN and other classi�cation algorithms. The classes of training data were
equal to the number of antennas, similar to what was done by Patnaik [38]. The experiment had three
objectives, the �rst of which was to determine which far-�eld sampling method to use to reduce the
training data before training the classi�cation algorithm. The results of the sampling methods on the
FNN were compared for training time and accuracy. The second objective was to see how di�erent
classi�cation algorithms performed with the di�erent sampling methods, and the third objective was
to determine which combination of classi�cation algorithm and sampling method yielded the best
results. The results of di�erent algorithms were compared according to their accuracy in the di�erent
sampling methods.

Section 4.3 describes an experiment simulating three di�erent array con�gurations to generate
training data and investigate the methods introduced by Yeo [30]. An SVM was used as a classi�cation
model, and the number of classes was equal to the number of unique failure scenarios. The ideal
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Table 4.1: A summary of the setup and objectives of two experiments in Chapter 4.

Experiment 1 Experiment 2
Description Investigation of the e�ect of sampling

methods on the accuracy of di�erent
classi�cation algorithms

Investigation of the e�ect of antenna
con�gurations on the accuracy of the
SVM kernel. Based on the method
proposed by Yeo [30].

Classification
Algorithms

An FNN∗,a; and 14 out-of-the-box
scikit-learn [45] classi�cation algo-
rithms.

An SVMb with a linear kernel*, sec-
ond order polynomial kernel, and
RBF kernel.

Training
Data Sets

10 far-�eld sampling methods (see Ta-
ble 4.2).

2 sampling methods: 3-D sampled far-
�eld pattern, and the φ = 0◦ cut.
The training data is taken from the
ideal simulated patterns, and the test
data is taken from noisy samples of
the ideal pattern (see Fig. 4.6).

Array
Configurations

25-element (5×5) regular dense bow-
tie antenna array; up to 2 simulta-
neous failures (326 unique scenarios)
(see Fig. 4.1).

25-element (5×5) regular dense bow-
tie antenna array; up to 2 simultane-
ous failures (326 unique scenarios);
18-element irregular bow-tie antenna
array; up to 3 simultaneous failures
(988 unique scenarios); and
8-element linear bow-tie antenna ar-
ray; up to 8 simultaneous failures (256
unique scenarios) (see Fig. 4.7).

Objectives Determine which far-�eld sampling
method to use to reduce the training
data before training the classi�cation
algorithm. Compare the results of the
sampling methods on the FNN for
training time and accuracy.
Evaluate how di�erent classi�cation
algorithms performed with the di�er-
ent sampling methods, and
Determine which combination of
classi�cation algorithm and sampling
method yielded the best results.
Compare the results of di�erent
algorithms for their accuracy in the
di�erent sampling methods.

Determine which SVM kernel
achieved the highest accuracy and use
this kernel throughout the rest of the
experiment.
Compare the results of di�erent con-
�gurations to determine the e�ect of
the number of elements, the number
of classes and the layout of an array
con�guration on the accuracy of the
SVM.

Notes a In the training data set, the num-
ber of classes is equal to the number
of antennas in the array, to allow the
FNN to have more training examples
per class.

b In the training data set, the num-
ber of classes is equal to the number
of scenarios in the array, to follow the
method proposed by Yeo [30].

∗ Primary classi�cation algorithm.
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far-�eld pattern of a failure scenario was used for the SVM training data and the same pattern with
worsening SNRs was used for the test data. There were two objectives for this, the �rst of which
was to determine which SVM kernel achieved the highest accuracy so that this kernel could be used
throughout the rest of the experiment. The second objective was to compare the results of di�erent
con�gurations to determine the e�ect of the number of elements, number of classes and layout of an
array con�guration on the accuracy of the SVM. The results of the two experiments are discussed in
Section 4.4.

4.2 Experiment 1: Sampling Methods

This section explains how an FNN and other classi�cation algorithms were used to detect and locate
failed antenna array elements in the 5×5 bow-tie antenna array shown in Fig. 4.1. The far-�eld pattern
was used as input training data and di�erent sampling methods were used on the original 3-D geo-
metrical far-�eld pattern to generate training data sets for the FNN. The purpose of this experiment
was to see which far-�eld sampling strategy yielded a training data set on which a given classi�cation
algorithm achieved the highest accuracy and shortest training time. In the �rst part of the experiment,
the exact same FNN model was trained on ten di�erent sampling method data sets. The accuracy and
training times for each sampling method data set were compared to discover which sampling method
resulted in the best information for the FNN to distinguish between failure scenarios. In the second
part of the experiment, the ten di�erent sampling methods were used to compare the performance
of 14 out-of-the-box scikit-learn [45] multi-label classi�cation algorithms to determine which types of
classi�cation algorithms were likely to perform well on the provided data.

4.2.1 Methodology

To generate the training data for the classi�cation algorithm, all possible element failure scenarios were
simulated for up to two simultaneous failures. The data generation process is demonstrated in Fig. 4.3.
First, all possible failure scenarios were calculated and listed. The ON or OFF state of each antenna in
a failure scenario was represented by 0 or 1 respectively. For each listed failure scenario, the appropriate
antenna in the simulation model was turned ON or OFF. The resulting far-�eld was stored, and served
as input for the machine-learning algorithms.

Each unique failure scenario served as a training example for the classi�cation algorithm. After
training on training examples, the classi�cation algorithm attempted to predict the most likely sce-
nario to have caused the observed far-�eld pattern. In doing so, the array excitation law could be mod-
elled by the trained classi�cation algorithm to indicate defective elements.
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Figure 4.3: A demonstration of how the training data was generated.

Sampling methods

Ten di�erent methods of sampling the simulated far-�eld pattern were compared as training data for
the same FNN model.

• The �rst four sampling methods were slices in the 3-D plane at φ ∈ {0◦, 45◦, 90◦, 135◦} and
samples were taken for the integer interval θ ∈ [−90◦, 90◦], resulting in 181 samples in each
data set (refer to Fig. 4.1 for de�nitions of θ and φ).

• The next three sampling methods were combinations of the above-mentioned cuts. The prin-
ciple cuts (the slices in the 3-D plane at φ = 0◦ and φ = 90◦) and diagonal cuts (the slices taken
at φ = 45◦ and φ = 135◦) data sets had 362 samples each, so that the all cuts data set had 724
samples.

• The last three sampling methods were based on the 3-D far-�eld pattern in a (θ, φ) grid. The
three methods are referred to as the 3-D pattern (182 samples), the 3-D pattern (361 samples), and
the 3-D pattern (725 samples).

The sampling methods are summarised in Table 4.2 below.

Training of classi�cation algorithm

For this experiment, the classi�cation algorithms had to be able to predict multi-label data. Each input
(x) was the sampled far-�eld observation of one failure scenario. For each observation, the labels (y)
were the ON or OFF state of each antenna in the array. For the bow-tie array, there were 25 labels per
scenario, i.e., one for each antenna element. The data set used to train the classi�cation model was a
3-D matrix containing the far-�eld data of all possible scenarios.

The 3-D matrix had the dimensionsR×S×T , whereRwas the number of scenarios, S was the
number of sampling points, and T was the number of measurements taken at each sampling point.
The number of scenariosR can be calculated as follows:
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Table 4.2: De�nitions of 10 sampling methods.

Sampling Method Name Number of Samples φ θ
Single cut (φ = 0◦) 181 0◦ θ ∈ [−90◦, 90◦]

Single cut (φ = 45◦) 181 45◦ θ ∈ [−90◦, 90◦]
Single cut (φ = 90◦) 181 90◦ θ ∈ [−90◦, 90◦]

Single cut (φ = 135◦) 181 135◦ θ ∈ [−90◦, 90◦]
Principle cuts 362 0◦, 90◦ θ ∈ [−90◦, 90◦]
Diagonal cuts 362 45◦, 135◦ θ ∈ [−90◦, 90◦]

All cuts 724 0◦, 45◦, 90◦, 135◦ θ ∈ [−90◦, 90◦]
3-D pattern (182 samples) 182 ∗ ∗

3-D pattern (361 samples) 361 ∗ ∗

3-D pattern (725 samples) 725 ∗ ∗

∗ 3-D far-�eld pattern sampled in a (θ, φ) grid.

R =
K∑
k=0

(
n

k

)
, (4.1)

where n is the number of antennas in the array and k is the number of antennas that could fail.
For the 5×5 bow-tie antenna array, n = 25 and k = 2, resulting in 326 scenarios. The number of
far-�eld sampling points, S, was determined by the sampling method. The four measurements, T ,
taken at each sampling point wereRe{Eφ}, Im{Eφ}, Re{Eθ} and Im{Eθ}.

4.2.2 Results

The accuracies achieved by the model for each data set are presented in Fig. 4.4. The four data sets
resulting in the highest accuracies are compared according to their training times in Table 4.3. This
table makes it clear that the training time was proportional to the number of samples.

Feedforward Neural Network

The results in Fig. 4.4 demonstrate the nature of the FNN, i.e., a drop in accuracy with an increase
in the number of far-�eld samples. Data sets with more samples resulted in more network parameters
Ψ. As the number of network parameters increased, more training iterations would be required to
approximate the function f 3.32, than the current experimental setup allowed. Whenever a result
deviated from this (the accuracy increased even though the number of samples stayed the same or
even increased), it indicated that the sampling method had found areas in the far-�eld pattern that
contained information useful for accurately identifying the failure scenarios. Examples include the
di�erence in accuracy between single cuts and 3-D pattern (182 samples), the jump in accuracy from
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Figure 4.4: Accuracy vs number of far-�eld samples for each sampling method data
set.

single cuts to diagonal cuts, and the jump in accuracy from 3-D pattern (361 samples) to 3-D pattern
(725 samples). The highest accuracies for the array con�guration shown in Fig. 4.1 were achieved when
sampling the far-�eld pattern using the diagonal cuts and 3-D pattern (182 samples) methods.

Table 4.3: Training time of the four most accurate data sets.

Data set Samples Training Time (sec) Accuracy (%)
90◦ cut 181 31.98 69.70

3-D pattern 182 32.17 87.88
Diagonal cuts 362 35.48 90.91

All cuts 724 40.73 75.76

Comparison of classi�cation algorithms

This section explains how the sampling method data sets compared in the �rst part of the experiment
were used to compare the accuracies of 14 out-of-the-box multi-label classi�cation algorithms [45].
The algorithms and their average accuracies over all data sets are listed in Table 4.4 below.

The four best classi�cation algorithms, according to their accuracy on the 10 sampling data sets,
were the FNN, One-vs-rest Classifier with Linear SVC core, One-vs-rest Classifier with Logistic Regres-
sion CV core and One-vs-rest Classifier with Logistic Regression core classi�cation algorithms. The accu-
racies of the four classi�ers are plotted for each of the 10 sampling method data sets in Fig. 4.5 below.
The algorithm that performed best overall was the One-vs-rest Classifier with Logistic Regression CV
core, which is a one-vs-rest classi�er with a logistic regression cross-validation core. This classi�cation
algorithm achieved a 100% accuracy on the all cuts data set, while the One-vs-rest Classifier with Lin-
ear SVC core and One-vs-rest Classifier with Logistic Regression core achieved 100% accuracy on the 3-D
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Table 4.4: Average accuracy of the four most accurate data sets.

Classi�cation Algorithm Average Accuracy (%)
Decision Tree Classi�er 0

Extra Tree Classi�er 0
Extra Trees Classi�er 5.1515

Random Forest Classi�er 4.5454
K Neighbors Classi�er 2.1212

Radius Neighbors Classi�er 0.606
One-vs-rest Classi�er with Gradient Boosting Classi�er core 31.5151
One-vs-rest Classi�er with Gaussian Process Classi�er core 0

One-vs-rest Classi�er with Linear SVC core 66.6666∗
One-vs-rest Classi�er with Logistic Regression core 77.8787∗

One-vs-rest Classi�er with Logistic Regression CV core 78.1818∗
One-vs-rest Classi�er with SGD Classi�er core 11.8181

One-vs-rest Classi�er with Perceptron core 9.9999
One-vs-rest Classi�er with Passive Aggressive Classi�er core 18.7878

FNN 64.8484∗
∗ The four classi�cation algorithms that achieved the highest accuracy are indicated.

pattern (182 samples) data set. The One-vs-rest Classifier with Logistic Regression core achieved a better
overall accuracy on the combined cuts and 3-D pattern data sets, while the One-vs-rest Classifier with
Logistic Regression CV core achieved a better overall accuracy on the single cuts data sets.

From Fig. 4.5, one can see that the 3-D sampling method datasets generally contained more dis-
criminative information to distinguish between classes than the sampling methods based on single
cuts. It was also clear that the other classi�cation algorithms did not have the same relationship be-
tween the number of features and the accuracy of the algorithm that were seen for the FNN in the
�rst part of Experiment 1. The FNN tends to have a drop in accuracy with an increase in the number
of far-�eld samples. However, the results of the other three classi�cation algorithms in Fig. 4.5 show
an increase in accuracy as the number of samples increase. This behaviour is best demonstrated by the
One-vs-rest Classifier with Logistic Regression core, that achieves the highest accuracy for the Principal
cuts, Diagonal cuts, 3-D pattern (361 samples) and 3-D pattern (725 samples) data sets.

4.2.3 Conclusion

In this section, an FNN was used to detect and locate failed antenna elements in a bow-tie array and
investigate the e�ect of the choice of training data on the machine-learning model’s accuracy and train-
ing time. The results indicate that training the model on a data set using the diagonal cuts sampling
method achieves the best accuracy for this antenna array (90.91% accuracy). However, the 3-D pattern
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Figure 4.5: Accuracy of the four best classi�cation algorithms on the 10 sampling
method data sets

(182 samples) method achieves a shorter training time. If the experiment were repeated on a data set
with more scenarios, e.g., a largern or k (4.1), this di�erence in training time might become even more
signi�cant. Comparing out-of-the-box multi-label classi�cation algorithms enabled us to postulate
which classi�cation algorithms were likely to do well on far-�eld data as training data. The One-vs-
rest Classifier with Logistic Regression CV core achieved the best overall accuracy on the 10 sampling
method data sets. From Fig. 4.5, it can be seen that the 3-D sampling methods generally achieved a
higher accuracy, which indicates that these sampling methods contain more information for distin-
guishing between failure scenarios.

4.3 Experiment 2: Array Con�gurations

The focus of this experiment is to investigate the possibility of using the SVM method introduced by
Yeo [30] on large antenna arrays, such as those planned for the SKA radio astronomy project[7]. The
experiment compared the accuracies of SVM kernels on increasing SNRs.

Methods similar to those described by Yeo [30] were used to identify failed elements, including
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binary codi�cation of the ON or OFF state of each antenna in the array in order to list all the unique
failure scenarios, and the de�nition of classes as the scenario numbers. The array con�gurations shown
in Fig. 4.7, were used in this experiment to train SVMs with di�erent low-degree polynomial kernels.

The rest of this section reports which combination of kernels and sampling methods yielded the
best results, and how the con�guration of the antenna array a�ected the classi�er accuracy.

4.3.1 Methodology

Representation and simulation of failure scenarios

Element failure can occur in a number of ways, as described by Yeo [30]. For this experiment, any
element in a given array could be either fully functional (ON) or not radiating (OFF). To generate
a far-�eld pattern for each unique failure scenario, faulty elements were turned completely OFF. To
simulate all possible failure scenarios would have required 2n combinations, where n is the number
of elements in the given array. As n increases, so does the computational time required to simulate all
unique failure scenarios, as well as to train the machine-learning algorithm on each possible scenario.
As it is unlikely that a large number of failed elements would go undetected by the array’s mainte-
nance team, it was only considered necessary to design the machine-learning algorithm to identify a
small number of failed elements that might otherwise be hard to �nd. The number of unique failure
scenariosR for an antenna with n elements, and up to k element failures per scenario, was calculated
in (4.1) in Section 4.2.

The method of presenting the state of all elements per unique failure scenario as a binary code,
introduced by Yeo [30], is used in this work, as shown in Table 4.5. In the binary representation, 0

represents a fully functional element, and 1 indicates that the element has failed. A scenario identi�-
cation number (SID) was assigned to each unique binary code. The binary representation is used to
simulate the scenario identi�ed by each SID, to generate an ideal far-�eld pattern for each SID.

Table 4.5: Representation of failure scenarios

SID∗ Binary encoding Description
1 0000...0000 All elements ON
2 0000...0001 nth element OFF
... ... ...
R-1 1100...0000 Elements 1 and 2 OFF
R 1110...0000 Elements 1, 2 and 3 OFF
∗ SID: scenario identi�cation number

Table 4.5 shows the scenario numbers and binary codes for an arbitrary array with n elements in a
Cartesian grid. The number of elements per failure scenario (k) was chosen to be equal to 3, resulting
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in a number of scenarios equal to R. Elements on the Cartesian grid were numbered �rst along the
positive x axis, and then along the positive y axis, starting from the element closest to the origin. The
most signi�cant bit in the table shows the �rst element’s state, and the least signi�cant bit the nth

element’s state.

Training and testing data generation

To train an SVM, the number of classes were equal to the number of scenarios (R). Each training
example consists of a label (y) and feature vector (x). The labels of the data set were the SIDs of the
failure scenarios, shown in the �rst column of Table 4.5. The feature vectors (x) of each training exam-
ple were samples of the normalised amplitude (in decibels) of the far-�eld corresponding to the speci�c
SID. The far-�eld pattern of each unique failure scenario was simulated using FEKO, to include the
e�ects of mutual coupling of antennas in the array. When given a sampled far-�eld pattern (x), the
trained SVM attempts to predict the label (y), from which a reference to a table such as Table 4.5 will
identify which elements have failed.

In this work, each unique failure scenario was deemed a class, with the SID taken as the class name.
To train the SVM model, the ideal far-�eld pattern of each scenario was fed to the SVM. The SVM
thus received one perfect training example per class, and received no noisy far-�eld patterns during
training. This method proved successful for SVMs [30], but will not work for other machine-learning
algorithms such as FNNs, which require many training examples per class.

Once the SVM had been trained, its ability to predict the SID (y) from a given noisy far-�eld pat-
tern (x) was tested. Increasingly noisy versions of each class were given to the classi�cation algorithm
as test data. The test set was produced by generating ten examples of what a given far-�eld pattern
would look like at a certain SNR. Thus, 10 noisy examples of each of the R far-�eld patterns were
generated for 12 SNRs, ranging between 25 dB and 0 dB. The size of the test set T was therefore

T = R× 10× 12. (4.2)

Fig. 4.6 shows an example of the training and testing data given to the SVM, and how the SNR a�ected
the far-�eld pattern. The training data was the ideal far-�eld pattern, and test data of the same class
became increasingly noisy, until it was impossible to recognise the original pattern.

4.3.2 Results

The aim of this section is to report what e�ect the choice of training data had on the reliability and
accuracy of an SVM with a low-degree polynomial kernel. As the test examples became noisier, it
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Figure 4.6: The ideal far-�eld pattern for scenario 1, used as training data for the SVM,
is shown in black. 10 examples of the pattern were generated at varying levels of SNR
to provide testing data. An example of testing data is shown in red for a SNR of 20, in

orange for a SNR of 15, and in yellow for a SNR of 10.

became more di�cult for the SVM to predict the class label (y). For this experiment, the reliability
of the SVM lay in how accurately the SVM could classify a given noisy pattern for worsening SNRs.
The data sets used to train the model were the far-�eld patterns of di�erent array con�gurations with
an increasing number of elements. The three con�gurations used are shown in Fig. 4.7. For each
con�guration, the far-�eld array was sampled in two di�erent ways, referred to here as the φ = 0◦ cut,
and the 3-D sampled far-field pattern. The φ = 0◦ cut contained 180 samples of the far-�eld radiation
pattern, one for each θ integer interval in (φ = 0◦, θ ∈ [−90◦, 90◦)). The 3-D sampled far-field
pattern contained 180 samples of the far-�eld radiation pattern in a (θ, φ) grid.

The 25-element regular dense array (a) was simulated for up to two simultaneous failures, kdense =

2. From (4.1) in Section 4.2, this resulted in a total number of unique failure scenariosRdense = 326.
The 18-element irregular array (b) was simulated for up to three simultaneous failures kirregular = 3,
resulting in a total number of scenariosRirregular = 988. The 8-element linear array (c) was simulated
for all possible failure scenarios klinear = 8, so that the total number of scenarios wasRlinear = 28 =

256.

Support vector model kernels

The SVM described in this section was a one-vs-one SVM classi�er [45]. The kernels that were com-
pared were the radial basis function (RBF) kernel, the polynomial kernel of degree 1 (linear) kernel,

Stellenbosch University https://scholar.sun.ac.za



Chapter 4. Failure detection in simulated aperture arrays based on far-field sampling 55

Figure 4.7: The (a) 25-element regular dense, (b) 18-element irregular (randomly
spaced), and (c) 8-element linear antenna arrays used to generate the far-�eld data sets

for this investigation.

and the polynomial kernel of degree 2. The classi�cation accuracy of an SVM with the three di�er-
ent low-degree polynomial kernels on test data with increasing SNRs is plotted on a logarithmic scale
in Fig. 4.8 to show up to what noise level the kernels under investigation were able to identify failed
elements.

Fig. 4.8 shows the e�ects of the three kernels on the 3-D sampled far-field pattern for all simulated
failure scenarios. The two polynomial kernels consistently identi�ed the correct patterns better than
the RBF kernel, in accordance with the �ndings by Yeo [30]. The polynomial kernel of degree 1 (linear
kernel) is used throughout the rest of the section to compare data sets further.

Sampling methods

The two sampling methods, the φ = 0◦ cut, and the 3-D sampled far-field pattern, were compared for
each con�guration in Fig. 4.9.

The results of the linear and irregular array con�gurations in Fig. 4.9 show that the 3-D sampled
far-field pattern sampling method was slightly more reliable than the φ = 0◦ cut sampling method.
This means that the 3-D sampled far-field pattern sampling method contained more information that
the SVM could use to distinguish between di�erent scenarios. However, the di�erence in the reliabil-
ity and �nal accuracy of the two sampling methods was small. This means that for a linear or irregular
array, the 3-D sampled far-field pattern sampling method did not contain much more information
than the φ = 0◦ cut sampling method.

Each ideal training example of 180 features was a point in a feature space of 180 dimensions. Thus,
for each con�guration, R points were plotted to the 180-dimensional feature space. The one-vs-one

Stellenbosch University https://scholar.sun.ac.za



Chapter 4. Failure detection in simulated aperture arrays based on far-field sampling 56

(a)

(b)

(c)

Figure 4.8: Support vector model kernel results for con�gurations (a) (25-element
regular dense array, 326 classes), (b) (18-element irregular array, 988 classes) and (c) (8-

element linear array, 256 classes).
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Figure 4.9: Comparing what the sampling method does to the SVM accuracy for a
linear kernel, for each con�guration.

SVM calculated a support vector that separated each pair of points in the feature space. As the num-
ber of unique failure scenarios (R) increased, the points plotted in the 180-dimensional feature space
became more dense. This made it harder for the SVM to distinguish between classes, which resulted in
the large di�erence in reliability between the linear (Rlinear = 256) and irregular (Rirregular = 988)
array con�gurations.

The con�guration of a regular dense array is symmetrical around the φ = 0◦ plane. This meant
that two di�erent scenarios that were mirror images of each other across the φ = 0◦ cut, had exactly
the same e�ect on the far-�eld amplitude sampled atφ = 0◦. This produced two identical patterns for
two di�erent classes in the data set, which made it impossible for the SVM to achieve high accuracies
using the φ = 0◦ cut sampling method.

The case of the regular dense antenna array illustrates that the 3-D sampled far-field pattern sam-
pling method contains more information than the φ = 0◦ cut sampling method for antenna array
con�gurations that are symmetrical around the φ = 0◦ plane.

Number of classes

Fig. 4.8 shows that, as the number of classes in the data sets increased, the SNR at which the SVM
was able to reliably identify the true pattern from noisy signals was higher. To see whether this trend
was because of the number of classes the SVM had to discern, only the �rst 200 classes of each data
set were used to train and test the SVM. The results of using the full number of classes and only 200
classes to train the SVM, for each con�guration are compared in Fig. 4.10.
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Figure 4.10: Comparing what the number of classes does to the SVM accuracy for a
linear kernel, for each con�guration. The sampling method was kept as 3-D sampling

for all con�gurations.

The results of the linear array con�guration in Fig. 4.10 illustrate that, when the number of classes
in a data set was decreased, the points in the 180-dimensional feature space were fewer and further
apart. This made it easier for the SVM to distinguish between classes. As a result, the reliability and
accuracy of the SVM improved slightly. However, there was still a large jump in reliability between
data set con�gurations. This means that the array con�guration and the number of elements in the
array a�ected the distribution of the points in the 180-dimensional feature space.

As the number of elements in a regular (symmetrical) array con�guration increases, the e�ect of
the failure of one element on the shape of the far-�eld pattern becomes less pronounced. The points
that represented these far-�eld patterns in the 180-dimensional feature space were situated closer to-
gether as the number of elements increased. Thus, for symmetrical con�gurations, as the number of
elements in the array increases, the SVM is less and less reliably able to distinguish between classes.
However, the failure of an element in a symmetrical array caused the side-lobes of the array’s far-�eld
pattern to rise, which made the e�ect of a failed element in a symmetrical array more predictable, as
the far-�eld pattern should also be symmetrical.

Irregular arrays were less a�ected by element failure. They were designed so that the e�ects of
individual elements on the side lobes of the far-�eld pattern cancelled each other out, resulting in low,
asymmetrical side lobes. When one element failed, the functional elements still kept the far-�eld side
lobes low. Consequently, for irregular array con�gurations, the failure of one element had a much
smaller e�ect on the shape of the far-�eld pattern than for a symmetrical con�guration with the same
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number of elements. In the representation of the far-�elds of di�erent failure scenarios as points in
the 180-dimensional feature space, the classes for an irregular array lie much closer together than in a
regular array with the same number of elements. This means that, as the number of elements in an
irregular array increases, the e�ect of the failure of one element on the shape of the far-�eld pattern
becomes less predictable, and it is harder for the SVM to distinguish between classes.

4.3.3 Conclusion

The methods introduced by Yeo [30] to categorise failure scenarios with a binary code, and compare
the ability of di�erent SVM kernels to classify far-�eld patterns with worsening SNRs were imple-
mented and tested in three di�erent simulated scenarios. Two sampling methods were compared, the
φ = 0◦ cut and the 3-D sampled far-field pattern.

This work shows that it is important to bear in mind the con�guration of the antenna array when
choosing how to sample the far-�eld pattern to generate training data. Consistent with Yeo’s �nd-
ings [30], Fig. 4.8 shows that an SVM with a linear kernel was functional for data sets generated by ar-
bitrary array con�gurations. However, Fig. 4.9 illustrates that, for symmetrical array con�gurations, it
was better to sample the far-�eld pattern to be used as training data with the 3-D sampled far-field pat-
tern sampling method. Symmetrical con�gurations sampled using the φ = 0◦ cut sampling method
produce classes that look identical and result in poor SVM accuracy.

Finally, as the number of elements in an arbitrary array increases, the e�ect of one element on the
amplitude of the far-�eld pattern becomes less noticeable. This means that, for the application of large
antenna arrays with thousands of elements, it could become impossible for the current SVM method
to locate one failed element.

4.4 Conclusion

This chapter describes how failed antenna elements were detected and located using various classi-
�cation algorithms. The two algorithms investigated in more depth were the FNN and SVM. The
algorithms were trained on sampled far-�eld patterns.

4.4.1 Sampling methods on a feedforward neural network

The �rst experiment investigated far-�eld sampling methods. In the �rst part of the experiment, an
FNN was trained with multi-label data, so that each example had the same number of labels as the
number of antennas. That means for an antenna array of 25 elements, such as the array shown in
Fig. 4.1, each example had 25 labels. Each label indicated the state (0=ON, 1=OFF) of one antenna.
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Ten di�erent sampling methods, described in Table 4.2, were used to sample the 3-D far-�eld pattern
of each unique failure scenario, to generate 10 sampling method training data sets. The same FNN
model was trained on each sampling method data set, and the results were compared according to
accuracy and training time:

• The diagonal cuts sampling method achieved the highest accuracy (90.91% accuracy).

• The 3-D pattern (182 samples) method achieved the shortest training time.

The 3-D pattern (182 samples) method is recommended for training sets with more scenarios, e.g. a
larger n or k in (4.1), where the di�erence in training time between sampling methods is likely to
become even more signi�cant.

4.4.2 Sampling methods on classi�cation algorithms

In the second part of the �rst experiment, 14 other out-of-the box scikit-learn multi-label classi�cation
algorithms were trained on the ten sampling method data sets and compared for their accuracy. Most
algorithms did not fare well but the four best algorithms were the FNN, the one-vs-rest classi�er with
a linear support vector classi�er, the one-vs-rest classi�er with logistic regression, and the one-vs-rest
classi�er with logistic regression and a cross-validation core. The one-vs-rest classi�er with logistic re-
gression and a cross validation core was the most successful overall, and achieved 100% accuracy. From
this part of the experiment, we can see that not all classi�cation algorithms have the same behaviour
as an FNN, where the number of parameters has a strong in�uence on the accuracy of the algorithm.
From the results in Fig. 4.9, it was clear that the 3-D sampling methods consistently contain more
distinguishing information than the single cut-composed sampling methods.

4.4.3 E�ect of array con�guration on model performance

The second experiment investigated array con�gurations. Three di�erent array con�gurations, as
shown in Fig. 4.7, were used to train an SVM with di�erent kernels on test data with worsening SNRs,
a method �rst described by Yeo [30]. In the �rst part of the experiment, all con�gurations were com-
pared on three kernels according to their accuracies on training samples with worsening SNRs. The
linear kernel yielded the best performance on noisy signals, which was consistent for all con�gurations.
This result compares well with what was found by Yeo [30]. The result was also in line with what was
found in Table 4.4 which is that the most linear and basic classi�cation algorithms performed best on
the far-�eld data. This may be because the training data has a near-linear line-of-separation, which is
di�cult to model with high-polynomial kernels or complex machine-learning models.
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This experiment demonstrated the importance of being aware of the array con�guration type.
Taking a single cut through the origin (such as the φ = 0◦ cut or the φ = 90◦ cut) of symmetrical
con�gurations, such as a regular dense or linear antenna array, will result in some classes having iden-
tical patterns wherever the OFF antennas are a mirror image of each other. This makes it impossible
for any classi�cation algorithm to achieve high accuracy. This agrees with what was found in the �rst
experiment, that it was better to use the 3-D sampling method, if the number of samples are to be kept
low.

Consistent with what was found by Yeo [30], Fig. 4.8 shows that an SVM with a linear kernel
is functional for datasets generated by arbitrary array con�gurations. However, Fig. 4.9 illustrates
that, for symmetrical array con�gurations, the 3-D sampled far-field pattern sampling method is better
when sampling the far-�eld pattern to be used as training data. When symmetrical con�gurations are
sampled using the φ = 0◦ cut sampling method, the resultant classes look identical, which produces
low SVM accuracy.

Finally, as the number of elements in an arbitrary array increases, the e�ect of one element on the
amplitude of the far-�eld pattern becomes less noticeable. This means that, for the application of large
antenna arrays with thousands of elements, it could become impossible for the current SVM method
to locate a singular failed element.
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5 Case Study: Failure Detection in a
Manufactured 16-element Circular Patch
Antenna Array based on Far-�eld Sampling

5.1 Introduction and Aim

The previous chapter described how FNNs and SVMs were applied to simulated data to establish
whether it was theoretically possible to detect failed elements in an arbitrary antenna array using the
simulated far-�eld pattern as training data, as proposed by many researchers in the literature reviewed.
Then we needed to establish whether machine-learning algorithms such as those presented in Chap-
ter 4 would be useful when the algorithms were trained on simulated far-�eld patterns, but tested on
measured far-�eld patterns. The next step for the current study was therefore a practical test of our
proposed methods on a measured example. According to the literature reviewed, this had seldom been
done before [39].

In this chapter, we describe how we designed and manufactured a 16-element circular patch an-
tenna array so that we could compare the principle and diagonal cuts of its simulated and measured
far-�eld radiation patterns.

The aim was to investigate whether it was feasible to train a machine-learning algorithm, such as
an FNN or SVM, on a numerically e�cient simulated far-�eld data set, and use the trained model to
identify the failure scenario when given a measured far-�eld pattern.

The hypothesis was that the shape of the far-�eld cuts, even for such a numerically e�cient simu-
lation, would contain enough information for a machine-learning algorithm such as an SVM or FNN
to recognise the same patterns in the far-�eld measurements of the same manufactured array.

The objectives and setup of this case study are summarised in Table 5.1.
The experiment limitations, design and setup are described in Section 5.2. The design of the an-

tenna array is explained in Section 5.3. The steps followed to manufacture the antenna array design
are outlined in Section 5.4. The measurements necessary for the six failure scenarios are expounded
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Table 5.1: The setup and objectives of the Measurements Case Study described in
Chapter 5.

Measurements Case Study
Description Investigation into whether it is feasible to use the simulated far-�eld pattern as

training data for a machine-learning algorithm designed to identify failures in a
measured far-�eld pattern.

Training Data
Sets

The φ = 0◦, φ = 90◦, φ = 45◦ and φ = 135◦ cuts of 6 unique failure scenarios
(see Table 5.3) were simulated and compared to the measured cuts.

Array
Configurations

16-element (4×4) circular patch antenna array with up to 3 simultaneous failures
(see Fig. 5.2).

Objectives To simulate and measure the far-�eld pattern of the same antenna array. To estab-
lish whether the patterns were similar enough for a machine-learning algorithm
trained on simulated far-�eld radiation patterns to identify failed elements when
given a measured far-�eld radiation pattern.

in Section 5.5. The simulated and measured far-�eld patterns are compared in Section 5.6. The con-
clusion that the raw simulated data should not be used as-is as training data for a machine-learning
algorithm whose purpose is to identify failed elements from a measured far-�eld pattern is expounded
in Section 5.7.

5.2 Methodology and Experimental Setup

This section explains the limitations on the experiment and how they de�ned the design choices. The
calculations for the patch diameter and other parameters of the circular patch are summarised in Sec-
tion 5.3 and listed in Table 5.2. We describe the various scenarios used to compare the simulated and
measured far-�eld patterns in the experimental setup in Section 5.4.2.

5.2.1 Design choices

The requirements for this case study were:

• that the antenna array was easy to design and simulate in FEKO;

• that it was possible and simple to manufacture the antenna array at Stellenbosch University;

• that the antenna array design �t the frequency and size restrictions of the spherical near-�eld
scanner at Stellenbosch University;

• that the antenna array could be powered by a power combiner available at Stellenbosch Univer-
sity;
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• that it would be easy to attach and remove cables from the antenna array, to emulate failed
elements; and

• that the simulation of the failure scenarios was computationally inexpensive.

In order to meet the requirements listed above, the following design choices were made:

• A circular patch antenna is a microstrip type of antenna, easy to simulate in FEKO and to man-
ufacture using the PCB milling machine available at Stellenbosch University. Rogers RO4350B
PCB plates [79] were readily available at Stellenbosch University. The standard panel size avail-
able is 305×457 mm. The antenna elements were therefore designed to �t this plate size.

• A 16-way radial power combiner that had been designed at Stellenbosch University [80] split the
power to the antennas equally, without allowing re�ections from one antenna to a�ect another
in the array. Thus, when an antenna failed, the other antennas in the system were not a�ected.
The power combiner had 16 ports and worked at frequencies around 4 GHz. Using it to power
the antenna array implies that the antenna array should have 16 elements and a centre frequency
near 4 GHz.

• To easily emulate antenna failures while taking measurements, the cable of a "failed" antenna
was simply detached from both the antenna and the power combiner.

• To keep the simulation of the failure scenarios computationally inexpensive, an in�nite ground
plane was used to simulate each unique failure scenario. The simulations had to be computa-
tionally economical because, as the number of elements and the number of simultaneous fail-
ures increases, the time it takes to simulate all possible failure scenarios increases proportionally.

• Finally, the coordinate system of the spherical near-�eld scanner used to take the measurements
was di�erent from the spherical coordinate system used in FEKO. To easily compare the two far-
�eld patterns, their principal and diagonal cuts were compared, instead of using 3-D patterns.

The spherical near-�eld scanner at Stellenbosch University, developed by NSI-MI Technologies is
NSI-MI’s most common, "Roll over Azimuth" spherical system. The scanner can measure antennas
that radiate at frequencies between 750 MHz and 26.5 GHz [81], and that have a diameter between
0.25 m and 3 m.

A 16-element circular patch antenna array that radiates at a centre frequency fr of 3.87 GHz was
chosen because it met all the design requirements. The design of the circular patch is discussed in
Section 5.3.
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5.3 Designing the Antenna Array

In [50], Balanis arrived at the following formulae to determine the radius (a) of a circular patch an-
tenna when the desired resonant frequency (fr), the dielectric constant of the substrate (εr), and the
height of the substrate (h in cm) are known.

a =
F√

1 + 2h
πεrF

[ln(πF
2h

) + 1.7726]
, (5.1)

where
F =

8.791× 109

fr
√
εr

. (5.2)

From the parameter values listed in Table 5.2, using the Rogers substrate and a power combiner
that functions around 4 GHz, the diameter D = 2a of the circular patch antenna was calculated to
be 22.768 mm. After optimising the design using FEKO [48] and Antenna Magus [55], the design
parameters were �nalised as listed in Table 5.2. The �nal design resulted in an antenna array that �t
on a 200 mm × 200 mm PCB. The spacing between antennas is λ

2
. The parameters that describe

the geometry of the circular patch in Table 5.2 are de�ned in Fig. 5.1. The diagram is for illustrative
purposes, and is not drawn to scale.

Table 5.2: Parameters of the circular patch antenna

Parameters
Symbol Value Description
fr 3.87 GHz Desired resonant frequency
εr 3.58 Relative permittivity
h 813 µm Substrate height
w, l 200 mm Substrate width and length
R 190 µm Feed pin radius

tan(δ) 2.4e-3 Loss tangent of the substrate medium
D∗ 22.865 mm Patch diameter
S∗f 2.49 mm Feed o�set

∗ Values deduced from calculation and re�ned using simulation
software [48], [55].

The steps followed to manufacture the antenna array design are outlined in Section 5.4.
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(a) Top view of a circular patch

(b) Side view of the antenna array design

Figure 5.1: The parameters that describe the geometry of the circular patch as listed in
Table 5.2 are shown using a top and side view.

5.4 Manufacturing the Antenna Array

This section describes how the antenna array was put together so that element failures could be easily
simulated. It justi�es the comparison of the measured and simulated re�ection coe�cients to show
whether the manufactured array performed as expected.

The FEKO model (see Fig. 5.2 (A)) containing the array dimensions was used to create the �le
given to the PCB milling machine to cut the shapes of the 16 antennas onto a Rogers PCB plate. Three

Stellenbosch University https://scholar.sun.ac.za



Chapter 5. Case Study: Failure Detection in a Manufactured 16-element Circular Patch Antenna
Array based on Far-field Sampling

67

(a) Simulated array

(b) Manufactured array

Figure 5.2: In (A), the 16-element circular patch antenna array is shown as it was de-
signed and simulated in FEKO. In (B), the 16-element circular patch antenna array is
shown mounted on the spherical near-�eld scanner in the anechoic chamber at Stellen-

bosch University.
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support structures were designed and 3-D printed to hold the antenna array and the power combiner
in place when they were rotating in the spherical near-�eld scanner. Female SMA connectors were
soldered onto the antenna elements so that the antennas could be pin-fed through the ground plane.
Sixteen cables were cut at exactly the same length, and male SMA connectors were attached to each end
to connect each antenna to the power combiner. The assembled antenna array can be seen mounted
on the spherical near-�eld scanner in Fig. 5.2.

5.4.1 Re�ection coe�cients

As mentioned in Chapter 2, the re�ection coe�cients can be used to determine the bandwidth and
centre frequency of an antenna. A comparison of the measured and simulated re�ection coe�cients
can show whether the manufactured array performs as it is expected to.

The re�ection coe�cients of antennas A and B were measured and compared to the simulated
re�ection coe�cients as shown in Fig. 5.3. From the �gure, it is clear that the manufactured antenna
array resonates at fr = 3.78 GHz, as expected from the simulation. Before the simulated and measured
far-�eld patterns were compared, the parameters of the simulated model were manually adjusted until
the simulated and measured re�ection coe�cients matched as well as possible. Of the parameters listed
in Table 5.2, the quantity that impacted the model the most was εr.

5.4.2 Experimental setup for three simultaneous failures

The layout of the 16-element circular patch antenna array is shown in Fig. 5.4. The measured and
simulated far-�eld cuts were compared for up to three simultaneous failures. The �gure indicates
the placements of the three antenna elements A, B and C, that were turned OFF or ON in di�erent
combinations.

The measurements necessary for the six failure scenarios are expounded in Section 5.5.

5.5 Measuring the Failure Scenarios

The antenna array was measured for the six di�erent failure scenarios described in Table 5.3. The table
uses the method introduced for Table 4.5 in Section 4.3 to present the state of all elements per unique
failure scenario as a binary code. The SID is the number that identi�es the simulated failure scenario.

The measurement identi�cation number (MID) is the number used to identify the measured sce-
nario in this text. Of the six unique failure scenarios were emulated and measured, the �rst MID was
where all the antennas were fully functional. For the second MID, only antenna A was turned OFF.
For the third MID, antenna B was turned OFF. For the fourth MID, antennas A and C were turned
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(a) Antenna A

(b) Antenna B

Figure 5.3: A comparison of the simulated and measured re�ection coe�cients of an-
tenna A and antenna B.
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Figure 5.4: Layout of 16-element circular patch antenna array. The indicated elements
A, B and C were switched o� in di�erent combinations to create six failure scenarios.

o�. For the �fth MID, antennas A and B were turned OFF. Finally, for the sixth MID, antennas A, B
and C were turned o�. Table 4.5 shows the SID to which each MID corresponded.

Table 5.3: Measured scenarios

MIDa SIDb Binary encoding Description
1 1 0000000000000000 All elements ON
2 14 0000000000001000 Element A OFF
3 11 0000000001000000 Element B OFF
4 106 0000000100001000 Elements A and C OFF
5 119 0000000001001000 Elements A and B OFF
6 623 0000000101001000 Elements A, B and C OFF

a MID: measurement identi�cation number
b SID: scenario identi�cation number

The simulated and measured far-�eld patterns are compared in Section 5.6.

5.6 Comparing Far-�eld Patterns

This section describes how we compared the simulated and measured far-�eld patterns of the antenna
array designed in Section 5.2. We show �gures of the measured and simulated patterns and discuss
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(a) 0◦ cut, MID6 (b) 90◦ cut, MID1

(c) 45◦ cut, MID2 (d) 135◦ cut, MID4

Figure 5.5: Four patterns of the principal and diagonal cuts of the simulated and mea-
sured far-�eld patterns of each MID. The comprehensive set can be found in Appendix

A.
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why it is not feasible to use the shape of the simulated far-�eld patterns as-is as training data for a
machine-learning algorithm designed to identify failed elements in a measured far-�eld pattern.

Once the design for the antenna array was �nalised, we simulated the far-�eld patterns of all pos-
sible failure scenarios for up to three simultaneous failures, resulting in 697 unique failure scenarios.

A spherical near-�eld scanner in an anechoic chamber was used to measure the far-�eld patterns of
each of the six MIDs in Table 5.3. The anechoic chamber isolated the antenna under test from outside
interference sources. To emulate an antenna failure, the relevant antenna’s cable was detached from
the antenna and the power combiner, and the port on the power combiner was terminated with a
matched (50-Ω) load.

The principal and diagonal cuts of the simulated and measured far-�eld patterns of each MID
listed in Table 5.3 are shown in Appendix A. Four of these patterns are shown in Fig. 5.5 to demonstrate
our �ndings.

The simulated pattern is the ideal representation of the far-�eld pattern. Consequently, the dB
value strives to −∞ at θ = −90◦ and θ = 90◦. The spherical near-�eld scanner is not capable of
measuring such low dB values, so the measured far-�eld pattern rarely registers a value below -40 dB.

On average, there was a smaller di�erence between the principal cuts than between the diagonal
cuts. The positions of the �rst nulls are modelled better in the principal cuts than in the diagonal cuts.

The results show that the simulated pattern usually has deeper nulls than the measured pattern.
The average di�erence between the simulated and measured results for the main lobe is small. How-
ever, the results di�er severely between the simulated and measured patterns in the side lobes.

5.7 Conclusion

To make it possible for a machine-learning algorithm to classify a given test case, it is important for the
training data to resemble as closely as possible the data that has to be classi�ed in the testing phase. In
this case study, we chose to investigate cuts in the φ direction of the amplitude of the far-�eld pattern
as the training and testing data.

5.7.1 Amplitudes a�ected by nonidealities

From Fig. 5.5, and the comprehensive set in Appendix A, it is clear that the inexpensive simulation of
the 16-element circular patch antenna array did not model the measured far-�eld pattern accurately
enough. The di�erence between the measured and simulated far-�eld patterns illustrates how the
amplitude of the measured far-�eld pattern was a�ected by nonidealities that were not modelled by
the numerically e�cient simulation (for example, small deviations in the simulated parameters listed
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in Table 5.2), even though these measurements were taken in an anechoic chamber that isolated the
antenna under test from sources outside the anechoic chamber. For larger arrays, such as those en-
visioned for the SKA radio astronomy project, an accurate measurement of the far-�eld poses even
more challenges.

5.7.2 Added noise is irrelevant

In previous work, researchers added noise to the simulated far-�eld pattern to increase the training
data set and make the machine-learning model robust enough to handle small deviations from the
ideal pattern [30]. However, the measured far-�eld pattern in this study was not noisy, and nor was
the measured far-�eld pattern in [39]. Noisy signals should therefore not be used as training data for
a machine-learning algorithm if the purpose is to identify the failed elements in a measured signal.

5.7.3 Multiple simulations per failure scenario

Future work should rather simulate an array con�guration many times per failure scenario: Each time
the scenario is simulated, small random deviations can be made in parameters that have an e�ect on
the shape of the pattern (for example, antenna geometry and material properties, such as those listed
in Table 5.2).
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6 Conclusion

6.1 Review

Machine learning is a new and fast-evolving �eld, which makes it di�cult for other disciplines to keep
abreast of the possibilities and, more important, the limitations of machine learning in their own
contexts. Machine-learning practitioners, on the other hand, typically need to develop quite detailed
insight into the peculiarities of the other discipline before they can successfully ply their trade.

This study was an example of such an interdisciplinary investigation. It required signi�cant ap-
plied insights from both machine learning and antenna theory and practice in order to determine the
feasibility of using machine learning to manage the system health of large antenna arrays like the SKA.

This thesis aimed to identify a trustworthy means of early detection and isolation of faulty ele-
ments in the SKA radio astronomy project [16] to improve the reliability of measured data. Once
failed elements are identi�ed, antenna failure correction methods [8]–[11] can be used to exclude failed
elements from calculations.

NASA has used machine learning in the context of radio astronomy to detect element failures in
the DSN, which is an international network of antennas [37]. Machine learning for element failure de-
tection has also been investigated by researchers in military and satellite applications of antenna arrays.
The trend is to use a cut of the amplitude of the far-�eld radiation pattern as training data. Machine
learning algorithms such as genetic algorithms [31], [33], [39], [43], arti�cial neural networks [38], [44],
case-based reasoning [31], [32], support vector models [30], [40], the Woodward-Lawson method [32],
and bacteria foraging optimisation [41] have been investigated.

6.1.1 E�ect of input data on accuracy

Previous work [33], [38], [39], [41], [44] has proven that it is theoretically possible to identify failed
elements from the far-�eld pattern. However, not many researchers have looked at the e�ect of the
input data on the accuracy of the machine-learning algorithm. In Chapter 4, we described how we
therefore investigated:

• the e�ect of 10 far-�eld sampling methods on an FNN’s accuracy and training time;
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• the e�ect of 10 far-�eld sampling methods on the accuracies of di�erent out-of-the-box classi�-
cation algorithms; and

• the e�ect of the con�guration of the antenna array on the accuracy of an SVM.

A detailed summary of the experiments’ setup and objectives is given in Table 4.1.
Two articles were written from work presented in this thesis for international peer-reviewed IEEE

conferences [46], [47].

6.1.2 Comparison of measured and simulated far-�eld patterns

As shown in Chapter 4, it has been illustrated that the far-�eld pattern can theoretically be used as
training data to detect failed elements. Until now, very few researchers have validated their proposed
techniques on a manufactured array [39]. Chapter 5 described how we measured and simulated a 16-
element circular patch antenna array. The aim was to determine whether it is feasible to use the sim-
ulated far-�eld pattern as training data for a machine-learning algorithm designed to identify failures
in a measured far-�eld pattern.

6.2 Experiment and Case Study Conclusions

In Chapters 4 and 5, we found that various parameters have an e�ect on the accuracy of the machine-
learning algorithm. This includes the sampling method, algorithm choice, array con�guration and
the di�erence between the measured and simulated radiation pattern. The number of elements in the
array and whether the array is symmetrical or asymmetrical also has an e�ect on the accuracy of the
machine-learning model.

6.2.1 E�ect of sampling method

In Chapter 4, we described how we found that training an FNN on a dataset using the diagonal
cuts sampling method achieved the highest accuracy (90.91%). The 3-D pattern (182 samples) method
achieved a shorter training time, and a similar accuracy (87.88%). We therefore recommend the 3-D
pattern (182 samples) method for training data sets with a large number of elements (such as those
planned for the SKA). The di�erence in training time is likely to become more signi�cant as the num-
ber of elements and the number of simultaneous failures in the array increases (from (4.1) in Sec-
tion 4.2).

Fourteen out-of-the-box scikit-learn multi-label classi�cation algorithms were also trained on the
ten sampling method data sets and compared for their accuracy. Most algorithms did not fare well,
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but the one-vs-rest classi�er with logistic regression and a cross-validation core was the most successful
overall, with a 78.18% average accuracy over all data sets. From the results in Fig. 4.5, it is clear that,
generalised over di�erent classi�cation algorithms, the 3-D sampling methods contain more distin-
guishing information than single-cut composed sampling methods.

6.2.2 Choice of SVM kernel

The three di�erent array con�gurations shown in Fig. 4.7 were used to train an SVM with di�erent
kernels on test data with worsening SNRs. The linear kernel yielded the best performance for all
con�gurations (consistent with what was found by [30]), and was used throughout the rest of the
experiment. The �ndings in Table 4.4 and the �nding that the linear kernel performed best, suggest
that the training data over all con�gurations has a near-linear line-of-separation, which is di�cult to
model with high-polynomial kernels or complex machine-learning models.

6.2.3 E�ect of symmetry

This experiment demonstrated that it is important to consider the symmetry of the array con�gura-
tion. In symmetrical con�gurations such as a linear or regular dense array, taking a single cut through
the origin (such as the φ = 0◦ cut or the φ = 90◦ cut), will result in some classes having identical
patterns wherever the OFF antennas are a mirror image of each other. This makes it impossible for any
classi�cation algorithm to achieve high accuracy. This agrees with what was found in the �rst experi-
ment, that it was better to use the 3-D sampling method, if the number of samples must be kept low.
This is illustrated in Fig. 4.9, where the 3-D sampled far-field pattern sampling method, that samples
the far-�eld pattern in a θ, φ grid, achieves higher accuracies on symmetrical con�gurations than using
the φ = 0◦ cut sampling method, which only takes a single cut of the far-�eld pattern in one plane.

6.2.4 E�ect of asymmetry

As well as testing the e�ects of regular dense con�gurations, we tested the e�ects of an irregular sparse
con�guration on SVM accuracy. We found that the e�ect of one antenna on the far-�eld radiation
pattern becomes less noticeable as the number of antennas in the antenna array increases. If the an-
tenna array has an irregular sparse con�guration, the e�ect of one antenna on the radiation pattern
is even less pronounced. This means that, for application in large irregular arrays with thousands of
elements, it could become impossible for the current SVM method to locate a single failed element.
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6.2.5 E�ect of pattern source

In Chapter 5, the di�erence between each MID and the equivalent SID was calculated for each MID.
We demonstrated that the simulated pattern, although it closely resembled the far-�eld pattern gen-
erated by the array, would not work well as training data for a machine-learning model. This is be-
cause the measured pattern and the simulated patterns have been generated by two di�erent sources,
which means that the far-�eld radiation pattern, and therefore training data is inherently di�erent. A
machine-learning algorithm should be able to identify the class of a new, unseen example after it has
been trained on the training data. Therefore, the training data must resemble this test data as closely
as possible.

Simulated data therefore cannot be used as-is as training data for a machine-learning algorithm
that must identify failed scenarios from a measured far-�eld pattern.

The di�erences between the measured and simulated far-�eld patterns of a speci�c scenario might
be overcome by calculating the derived quantities, such as the half-power beam-width, location of �rst
nulls (but not the depth of the nulls), and the side-lobe levels.

6.3 Overall Conclusions

We found that it would not be feasible, at this point in the evolving history of technology, to employ
machine learning to detect single antenna failures by measuring distortions in the far-�eld radiation
patterns generated by a very large array of antennas in an irregular sparse con�guration.

Chapter 4, Section 4.3, showed that the e�ect of one element on the far-�eld radiation pattern
becomes less discernible as the number of elements increase. If the antenna array has an irregular
sparse con�guration, the e�ect of one antenna on the radiation pattern is even less discernible.

As was demonstrated in Fig. 1.2, SKA-mid, a part of the SKA radio astronomy project, is planned
to be an irregular sparse antenna array of more than 200 elements. Even if it were possible to measure
the far-�eld pattern, to train on simulated data and to test using the measured data, the failure of
one antenna will have almost no e�ect on the total far-�eld radiation pattern of the antenna array.
The di�erent failure scenarios will be relatively close to each other in the multi-dimensional feature
space, which would make it di�cult for a machine-learning algorithm to distinguish between failure
scenarios.
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6.4 Recommendations for Future Work

In Chapter 5, we illustrated that the simulated far-�eld pattern does not reproduce the measured far-
�eld pattern well enough for it to be used as training data. The di�erence between the simulated far-
�eld pattern and a far-�eld pattern measured outside an anechoic chamber will be even greater than the
di�erence between the simulated pattern and data measured inside an anechoic chamber. We there-
fore do not recommend using the amplitude of the simulated far-�eld pattern as-is for element failure
detection in large antenna arrays. This is signi�cant, as the most common technique described in liter-
ature currently available for training machine-learning algorithms, is to train them on the amplitude
of the far-�eld pattern of an antenna array [32], [33], [38]–[41]. The far-�eld data should be prepro-
cessed, for example by calculating the derived quantities (e.g., the half-power beamwidth, location of
the �rst nulls and side lobe levels, as demonstrated in Fig. 2.5) before it is used as training data for a
machine-learning algorithm.

If the far-�eld pattern is chosen as the training data, adding noise to the training data to increase
the training data set will not model the measured far-�eld pattern well. Future work should rather
focus on simulating an array con�guration many times per failure scenario and introducing small ran-
dom deviations in parameters that may have an e�ect on the shape of the pattern. Parameters such as
antenna geometry and material properties can be used. Non-idealities can also be introduced in the
simulation, such as interference sources.

Another interesting avenue for future investigation is how to correct for distortions in the far-�eld
pattern (see Fig. 4.2) when a failure element is detected.

ASTRON has been using an unsupervised learning method to cluster data from LOFAR. We
recommend collaboration with ASTRON in future work, to see if there are other sources of data in the
antenna array that can be used as training data for a machine-learning algorithm. For example, future
work could apply machine learning to detect element failure from data such as the power spectral
density, correlations and re�ection coe�cients of antenna arrays.
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A Far-�eld measurements of various failure
scenarios in the 16-element circular patch
antenna array

A spherical near-�eld scanner in an anechoic chamber was used to measure the far-�eld patterns of each
of the six MIDs in Table 5.3. To emulate an antenna failure, the relevant antenna’s cable was detached
from the antenna and the power combiner, and the port on the power combiner was terminated with
a matched (50-Ω) load.

The principal and diagonal cuts of the simulated and measured far-�eld patterns of each MID are
shown in Figs. A.1 to A.6 below.
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(a) 0◦ cut (b) 90◦ cut

(c) 45◦ cut (d) 135◦ cut

Figure A.1: The principal and diagonal cuts of MID 1. The measurements were taken
at fo = 3.87 GHz
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(a) 0◦ cut (b) 90◦ cut

(c) 45◦ cut (d) 135◦ cut

FigureA.2: The principal and diagonal cuts of MID 2. The measurements were taken
at fo = 3.87 GHz
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(a) 0◦ cut (b) 90◦ cut

(c) 45◦ cut (d) 135◦ cut

FigureA.3: The principal and diagonal cuts of MID 3. The measurements were taken
at fo = 3.87 GHz
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(a) 0◦ cut (b) 90◦ cut

(c) 45◦ cut (d) 135◦ cut

FigureA.4: The principal and diagonal cuts of MID 4. The measurements were taken
at fo = 3.87 GHz
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(a) 0◦ cut (b) 90◦ cut

(c) 45◦ cut (d) 135◦ cut

FigureA.5: The principal and diagonal cuts of MID 5. The measurements were taken
at fo = 3.87 GHz
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(a) 0◦ cut (b) 90◦ cut

(c) 45◦ cut (d) 135◦ cut

FigureA.6: The principal and diagonal cuts of MID 6. The measurements were taken
at fo = 3.87 GHz
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