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Abstract
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Language Text
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Department of Industrial Engineering,
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Thesis: MEng (Industrial)

March 2020

This thesis investigates whether text mining (and the related �elds of machine

learning and natural language processing) can be used to extract useful inform-

ation, speci�cally failure modes, from the low quality, unstructured text records

available in industry.

Failure data, and particularly information about failure modes, is imperative for

good asset management, but frequently goes underutilised because it is buried

in unstructured text which is not amenable to traditional analytics, but is too re-

source intensive to process manually. While the ideal solution would be to improve

the information management system to prevent the collection of such data, this

only addresses the quality of future data while years of historic data will then be

lost.
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Several authors have acknowledged the prevalence of text-based maintenance re-

cords, identifying both the potential value and problems in utilising this data,

with many suggesting some form of text mining as a possible solution. Within

this and related �elds, there is a gap between the academic and industry focussed

literature. This pertains to both the scarcity of industry (and especially mainten-

ance speci�c) research and the inadequate attention given to the theoretical basis

of these �elds in the available industry literature. The biggest concern pertains

to the violation of the independent, identically distributed (IID) assumption in

maintenance data and the impact this has on the validity of various evaluation

schemes. Other concerns regard the optimisation of preprocessing parameters and

the evaluation metric used to assess performance.

This project was completed within the CRISP-DM framework. For the research

objectives, both the more practical industry-focussed studies and the more theor-

etical, academic studies were investigated. In the experimental component, two

families of algorithms were evaluated, namely Support Vector Machines and Naïve

Bayes. The focus was on the validity of the modelling and evaluation process based

on problems identi�ed in literature. Noteworthy aspects of this procedure include

using a blocked cross-validation as the outer, evaluation loop of a nested cross-

validation to account for the IID violation and to prevent the over-optimisation

that can occur from single-loop cross-validation.

The most important contribution of this work is the experimental design which

consolidates multiple validity concerns raised in academic literature but receive

limited attention in industry. In particular, it addresses the violation of the IID

assumption in standard cross-validations (Bergmeir and Benitez, 2012), the im-

portance of including preprocessing into the model optimisation (Krstajic et al.,

2014), the high potential of randomised search optimisation (Bergstra and Ben-

gio, 2012) and the di�erent formulations of the cross-validated F-score (Forman

and Scholz, 2010). The recommendations made by authors investigating these is-

sues in isolation were combined to form the experimental design. It is however

worth noting that the methodological conclusions made in this study are based on

the evaluation of a single dataset and is not necessarily indicative of the general

behaviour.
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The project concludes that while text mining o�ers a viable solution for the iden-

ti�ed problem, doing so is not a trivial process and would require substantial

commitment from organisations wishing to utilise their data.
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Opsomming

Die Bepaling van Falingsmodusse Vanuit

Ongestruktureerde, Natuurlike Taal Teks

(�Extracting Failure Modes from Unstructured, Natural Language Text �)

F. Malan

Departiment van Bedryfs Ingenieurswese,

Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MIng (Bedryfs)

Maart 2020

Hierdie tesis ondersoek die moontlikheid of teks ontginning (en die aanverwante

velde van masjienleer en natuurlike taal prosessering) gebruik kan word om bruik-

bare inligting (spesi�ek falings modusse) te bekom van die lae gehalte, ongestruk-

tureerde teks rekords wat in die industrie beskikbaar is.

Falings data, en spesi�ek inligting rakende falings modusse, is onontbeerlik vir

goeie batebestuur, maar word dikwels onbenut omdat dit in teks formaat versamel

word wat nie geskik is vir tradisionele data-analises nie, maar ook te hulpbron-

intensief is om met die hand te verwerk. Alhoewel die ideale oplossing sou wees om

die inligting-bestuur-sisteem te verbeter om te voorkom dat sulke data versamel

word, sal dit slegs die kwaliteit van toekomstige data aanspreek terwyl jare van

historiese data verlore sal gaan.

v
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Verskeie skrywers bevestig dat teksgebaseerde instandhoudings-rekords algemeen

is, en identi�seer beide die potensiële waarde en die probleme in die gebruik hier-

van, wat baie lei tot die voorstel om teks ontginning te gebruik. Binne hierdie velde

is daar 'n gaping tussen die akademiese en industrie-gefokusde literatuur. Dit het

betrekking tot die skaarsheid van industrie (en veral instandhoudings-spesi�eke)

navorsing en die onvoldoende aandag wat aan die teoretiese basis van hierdie velde

gegee word in die beskikbare industrie-literatuur. Die grootste bekommernis is die

oortreding van die IID aanname in instandhoudings data en die impak wat dit

op evaluasie skemas het. Ander bekommernisse is die optimalisering van vooraf-

prosessering parameters, en die evaluasie-maatstaf wat gebruik word.

Hierdie projek is gedoen binne die CRISP-DM raamwerk. Beide die meer prak-

tiese industrie-gefokusde studies en die meer teoretiese, akademiese studies is on-

dersoek. In die eksperimentele komponent is twee algoritme klasse ge-evalueer:

Support Vector Machines en Naïve Bayes. Die fokus was op die geldigheid van

die modellering- en evaluasie proses, gebaseer op probleme soos geïdenti�seer in

literatuur. Opvallende aspekte in hierdie prosedure is die gebruik van geblokkeerde

kruis-veri�ëring in die buitenste evaluasie lus van 'n geneste kruis-veri�ëring om

rekenskap te gee van die IID skending en te voorkom dat oor-optimalisering kan

gebeur van enkel lus kruis-veri�ëring.

Die mees belangrike bydrae van hierdie werk is die eksperimentele ontwerp wat

veelvoudige geldigheids-bekommernisse konsolideer, wat reeds in akademiese lite-

ratuur genoem is, maar weinig aandag kry in die industrie. In besonder adresseer

dit die oortreding van die IID aanname in standaard kruis-veri�ërings (Bergmeir

en Benitez, 2012), die belangrikheid daarvan om vooraf-prosessering in te sluit in

die model optimalisering (Krstajic et al., 2014), die hoë potensiaal van lukrake

soek-optimalisering (Bergstra en Bengio, 2012) en die verskillende formulerings

van die kruis-geveri�eerde F-telling (Forman en Scholz, 2010). Die aanbevelings

van skrywers wat hierdie probleme in isolasie nagevors het, word gekombineer om

die eksperimentele ontwerp te vorm. Dit is egter nodig om te noem dat die me-

todologiese bevindinge uit hierdie studie gebaseer is op die evaluasie van 'n enkele

datastel en nie noodwendig aanduidend is van algemene gedrag nie.

Die projek se bevinding is dat alhoewel teks ontginning 'n oplossing bied vir die
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geïdenti�seerde probleem, dit nie 'n maklike proses is nie en vereis substansiële

toewyding van organisasies wat hul data wil benut.
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Chapter 1

Introduction

This chapter introduces the research undertaken starting with a brief overview of

the background and motivation of the study. After this, the problem statement

is presented in Section 1.2 describing the gaps in literature that require further

investigation. Next, Section 1.3 positions the study within these gaps by de�ning

a research question and project objectives to contribute towards the current body

of knowledge that address the problem statement. This is followed by a discussion

of the project limitations and delimitations in Section 1.4 after which the chapter

concludes with an outline of the remainder of the document.

1.1 Introduction

Assets are the foundation of value creation in any business be it tangible assets such

as plant equipment or intangible assets such as employee skills. In the increasingly

competitive business environment of today, it is becoming more important than

ever to maximise the value that can be extracted from these assets for the minimum

input. For this reason, a holistic approach to asset management (rather than the

traditional maintenance based focus) is becoming more and more popular. An

important part of asset (and all other types of) management is having up-to-date,

accurate and comprehensive information of a good quality (GFMAM, 2014). As

Peter Drucker, a famous management consultant, once said, �You can't manage

what you don't measure.� (McAfee and Brynjolfsson, 2012).

1
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One of the most important pieces of information to �measure� in asset management

is the failure data (and particularly the failure modes) of assets. Without proper

knowledge of the actual failure modes, activities such as Failure Mode and E�ects

Analysis (FMEA), Root Cause Analysis (RCA) or strategies such as Six Sigma,

Total Quality Management (TQM) or Reliability Centred Maintenance (RCM)

are not evidence-based and at risk of having limited success. In fact, according

to Reeve (2016) this data is essential for even the most fundamental aspects of

strategic asset management. This is con�rmed by the various asset management

(AM) resources such as ISO 55000, the AM Landscape and the AM Anatomy

which emphasise the importance of evidence based, data-driven decision making

and that the availability of failure data (and its analysis) can greatly impact the

ability of organisations to optimise the cost, risk and performance trade-o� which

is the ultimate business objective (ISO 2014; GFMAM 2014; IAM 2014).

However, while Computerised Maintenance Management Systems (CMMS) have

made it easy to collect data, ensuring the quality of this data remains a challenging

issue (Reeve, 2016). Poor data quality can lead to great economic loss since data-

driven decisions are only as good as the data used to make them (Woodall et al.,

2015). Data quality does not only pertain to correctness (or accuracy) of the

data. Bad information management practices can also result in data which may be

accurate, but is not amenable to computerised analyses (Reeve, 2016). As Woodall

et al. (2015) points out, if the data is not accessible, or requires an impractical

amount of e�ort to utilise, all other quality considerations are irrelevant and the

data is essentially worthless (Woodall et al., 2015). This is especially prevalent

in low maturity organisations which are typically characterised by departmentally

fragmented silos and poor line of sight (Woodall et al. 2015; IAM 2014). Because

the data is not collected by the end-user, it is often initiated without clear purpose

of use (collecting for the sake of collecting) and in the wrong format (easy to

record, but di�cult to analyse) (Reeve 2016; Woodall et al. 2015; Devaney et al.

2005). Operation and maintenance sta� will typically store failure data in free-

format, natural language text which does not allow for traditional data-science

based failure analyses (Reeve 2016; Uz-Zaman et al. 2015; McKenzie et al. 2010).

These are among the reasons why up to 70% of organisations do not perform
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even basic failure analysis on their data and instead rely on expert intuition and

best-guesses rather than fact-based decision making (Reeve 2016; Edwards et al.

2008).

The ideal solution would be to improve the entire information management system

(Reeve, 2016). Standards such as ISO 8000 (Data Quality), ISO 50000 (Asset

Management) and frameworks such as the AM Landscape are only a few examples

of the many resources available that address the quality of data and maintenance

data speci�cally. A common element advocated by these resources is the need to

introduce a coding or categorisation system that records failure data (and other

important information) in a structured manner that is well-suited to automated

analyses (ISO 2014; ISO 2011; GFMAM 2014).

However, major system overhauls require signi�cant initial investments of time,

money and expertise as well as sustained motivation and discipline from all stake-

holders and a continued commitment by management to provide su�cient re-

sources (ISO 2014; ISO 2011; Mobley 2002). Low maturity companies especially

struggle with this as they are often caught up in �re-�ghting immediate problems

and prioritise short-term operational needs over long-term, focussed improvement

processes that do not yield immediate returns (Mahmood et al., 2015). If not

executed properly an organisation can easily slip back to their previous, or a dif-

ferent but equally undesirable, state (BSI, 2008). Furthermore, improved inform-

ation management strategies can only help improve the quality of data collected

in the future whereas many companies have years of unused, potentially valuable,

historical data that will then go to waste (Reeve 2016; Devaney et al. 2005).

This is not a problem isolated to asset management. It has been estimated that up

to 80% of all organizational data is in text format which requires time-consuming

and labour-intensive manual processing which frequently leads to the data being

either ignored or ine�ectively utilised (Singh and Raghuvanshi 2012; Kobayashi

et al. 2018). Furthermore, the data creating capabilities of many industries have

far surpassed the ability to handle it with many companies hoarding vast amounts

of data they will never use (Russom, 2011). Not only do they not bene�t from this

data, but it has been recognised that excessive amounts of information may even

have a negative organisational impact because it distracts from the main issues,
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delays decision making and can lead to wrong conclusions if incorrectly utilised

(Wuest et al., 2016). In fact, this overwhelming �ood of information, or �Big Data�

as it is called, has led to 30% of companies viewing data as a problem rather than

the opportunity it could be according to the Transforming Data With Intelligence

(TDWI) Best Practices Report (Russom, 2011).

There are no threshold values for when data becomes Big Data. Rather, it is any

data that cannot be processed using traditional data analytics and is typically

characterised by the four V's: Volume, Velocity, Veracity and Variety (Sathi,

2012). In the analysis of asset (maintenance) related data, variety is an especially

big issue. Variety concerns the di�culties involved in treating the broad range

of data formats that contain valuable information but do not come in structured,

easy-to-analyse datasets; such as the text-based maintenance records collected by

many organisations.

The analysis of unstructured data, and speci�cally natural language text, is one of

the fundamental focusses of Big Data analytics (Chen et al., 2014). As such, Big

Data analysis techniques such as text mining could potentially be used to inter-

pret asset related data. Text mining concerns the automated, or semi-automated

(computer-assisted) extraction of useful knowledge from text data (Wachsmuth,

2015). While there is some contention in literature as to the exact de�nition and

scope of text mining, it is generally accepted that it is a multidisciplinary �eld

that draws heavily from the �elds of machine learning (ML) and natural language

processing (NLP) with some seeing it as a branch or sub-�eld of data mining and

others as a distinct but correlated, sibling �eld (Dhanrajani and Gosh 2008; Witten

et al. 2011).

For this thesis, text mining is used to mean text data mining with data mining

de�ned as the exploration and analysis of large quantities of data by automatic

or semi-automatic means with the purpose of obtaining useful knowledge (para-

phrased from the original de�nition by Berry and Lino� (1997) cited in Bastos

et al. (2014)). Machine learning can be seen as the technical basis of data (or

text) mining and refers to the area of arti�cial intelligence that allows computers

to �learn� from data rather than being explicitly programmed (Bastos et al. 2014;

Witten et al. 2011). Natural language processing, which is a sub-�eld of arti�cial
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intelligence and computational linguistics, is the broad term for the integration

of human language and computers that is concerned with converting natural lan-

guage to machine-readable, structured data (Dhanrajani and Gosh, 2008). This

means that NLP can be both a text mining tool and a text mining outcome.

Despite the established need of text mining in industry, its uptake has been slow

for various reasons (Kobayashi et al., 2018). Firstly, while there exists a consider-

able amount of text mining and machine learning literature, it su�ers from a lack

of standardisation in terms of both methodology and terminology (Moreno-Torres

et al., 2012). This is partly due to being relatively new disciplines, and partly due

to simultaneously developing from multiple di�erent �elds with di�erent object-

ives, terminologies and standard practices. The wide range of algorithms, theories

and diverging opinions which are documented in literature poses an especially big

problem for novice practitioners (which industry, and maintenance, practitioners

are likely to be) and represents a barrier for industry adoption (Wuest et al., 2016).

This is further exacerbated by the inconsistent use of terminology with di�erent

terms used to describe the same concept, or even worse, using the same term to

mean di�erent things. Not only does this make it di�cult to �nd relevant liter-

ature, but it also hampers e�ective knowledge sharing, fair comparisons between

studies and the identi�cation of best practices (Moreno-Torres et al., 2012).

Furthermore, according to Kobayashi et al. (2018) slow organisational uptake is

also due to the fact that only a small portion of the available literature is industry

focussed. The majority is targeted towards academic researchers with a skewed

focus on technical details and little regard for more practical concerns. In partic-

ular, they emphasise the importance of not only assessing, but also being able to

demonstrate the validity of text mining outcomes for industry applications. Since

business decisions based on these outcomes will be highly dependent on their reli-

ability, organisational uptake is likely to hinge on the acceptability of these results

to industry stakeholders (Kobayashi et al., 2018).
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1.2 Problem Statement

Failure data, and particularly information about failure modes, is imperative to

good asset management but frequently goes unutilised due to poor information

management practices. An increased awareness of the importance of information-

driven asset management has led to many businesses hoarding years of maintenance

records with this objective in mind. However, because they typically collect failure

data in the form of unstructured, natural language text with little to no quality

measures in place, this data cannot be processed using traditional data analytics

but require time-consuming and labour-intensive manual processing which few

can a�ord (McKenzie et al. 2010; Chen and Nayak 2007; Rajpathak and De 2016;

Devaney et al. 2005). This results in having to rely on intuition-based, �best-guess�

decision making rather than a facts-based approach (Edwards et al., 2008). The

utilisation of such unstructured data sources is a typical application area of Big

Data. For this reason, it has been suggested in literature that Big Data techniques

such as text mining and machine learning could be viable methods for the analysis

of maintenance records (Section 4.1).

Both the potential value and the problems in using the unstructured, free-text

portions of maintenance records is well-documented in literature. Several authors

con�rm not only the prevalence of text-based maintenance records, but also the

problematic consequences this holds for industry including the loss of value-adding

failure data (McKenzie et al. 2010; Chen and Nayak 2007; Rajpathak and De 2016;

Devaney et al. 2005). The more generic problem of utilising text data e�ectively

is well-documented beyond the maintenance domain as well and has been the

focus of much research e�ort, particularly in the text mining and machine learning

literature which have made great advances in recent years. However, Kobayashi

et al. (2018) points out that this literature is dominated by academia and identi�es

the need for more industry-focussed research. In particular, they identify validity

assessment as a critical research area for industry since business decisions depend

on the reliability of text mining outcomes making it an important enabler for

organisational uptake (Kobayashi et al., 2018).

A contributing factor to the limited amount of industry focussed literature, is the
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lack of industry provided training data due to what Kosto� (2005) calls the �in-

centives to conceal rather than reveal �. Companies are seldomly willing to put

their data in the public domain, wary of sharing data or research with potential

competitors. This is especially true in the maintenance domain where data con-

tains details of product and operational problems that organisations little want

to advertise (Kosto�, 2005). This means that even fewer studies have been done

speci�c to the maintenance domain which present several unique challenges not

typically addressed in text-mining literature such as short document length and

highly technical, non-standard vocabularies (McKenzie et al. 2010; Edwards et al.

2008) (Section 4.1.1). Of those that were found and are discussed in Section 4.1,

some like Marzec et al. (2014) have produced promising results. However, many

have found that several NLP and machine learning methods, which are usually

e�ective for text classi�cation, do not perform well on maintenance records and

require further study (McKenzie et al. 2010; Edwards et al. 2008; Chen and Nayak

2007).

The shortage of labelled training-data has also contributed towards the fairly lim-

ited success in the maintenace domain as many researchers have been forced to

either label data themselves (as opposed to subject matter experts) such as Ed-

wards et al. (2008), or to perform unsupervised learning on the unlabelled data

such as Chen and Nayak (2007). Others like Devaney et al. (2005) do not even

have unlabelled data available and provide only hypothetical analyses. As such,

there exists a need to investigate the interaction between dataset size and classi�er

performance to guide future research and data collection e�orts and to address the

gap in literature concerning supervised classi�ers trained on larger maintenance

datasets labelled by subject matter experts (SME).

In fact, there is a generally inadequate consideration of the theoretical issues under-

pinning the application of machine learning in the maintenance-speci�c literature.

Looking beyond the maintenance domain at the broader machine learning liter-

ature (text and otherwise) it seems that there is a considerable gap between the

industry-focussed, practical application studies and the more academia-focussed,

theoretical studies (Kobayashi et al., 2018). While the former often pays little

attention to the theoretical underpinnings of the techniques and methodologies
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used (which calls in to question the validity of their results), the latter typically

uses either synthetic or benchmark data and pays little heed to the practical con-

straints of reality (which calls into question the applicability of their results). Even

validity concerns, which Kobayashi et al. (2018) identi�es as especially important

for business implementations, are often only �eetingly addressed and is not up to

par with the studies in the academic domain. Both the industry and academic

approaches have merit, but there is a need for research that lies somewhere in the

middle of these two extremes. The gap is particularly severe for the maintenance

domain, perhaps due to the extremely limited amount of studies compared to even

the already limited broader industry focussed literature. Accordingly, there exists

a need to address the ML theoretical considerations in the maintenance domain to

align it with the progress made in the academic, and to a lesser extent, the domain

independent, industry literature.

Furthermore, there is a lack of su�cient documentation in the broader machine

learning literature with many authors considering precise implementation details

as too tedious for publication (Blamey et al., 2012). Due to the wide array of tools

available to machine learning, there is no obvious way of determining which were

used making it di�cult to study the interaction between di�erent combinations

of methods and, as Blamey et al. (2012) points out, makes replication almost

impossible. The available literature also su�ers from a lack of standardisation in

terms of both methodology and terminology which presents not only a barrier

for industry adoption, but also for e�ective knowledge sharing between experts

in the �eld (Moreno-Torres et al. 2012; Wuest et al. 2016). While several authors

have addressed these inconsistencies in an attempt to create a unifying framework,

these are often only focussed on speci�c applications such as the number of folds in

cross-validation (Anguita et al., 2012) or the di�erent ways to average the F-score

(Forman and Scholz, 2010) with the results scattered across literature. There is

room for a more comprehensive framework which sacri�ces detail for broadness to

address all implementation needs. Kobayashi et al. (2018) addresses this gap by

providing a comprehensive tutorial document speci�cally tailored towards business

applications that covers the whole scope of text-mining classi�cation. While this

provides an invaluable starting point, it neglects some important theoretical issues
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that have been identi�ed in the non-industry literature such as data drift.

1.3 Research Question and Project Objectives

The main research question of this study, which is also re�ected in the document

title, is:

Can text mining (and the related �elds of machine learning and natural language

processing) be used to extract useful information, speci�cally failure modes, from

the low quality, unstructured text maintenance records which are typically available

in industry?

A wide range of project objectives were identi�ed to address the knowledge gaps

identi�ed in the problem statement, and most importantly, to answer the research

question above. This includes both research (1-5) and experimental (6-9) object-

ives which are summarised below. The chapters addressing these objectives are

indicated in parentheses.

The project objectives are:

1. To provide an overview of the context and signi�cance of the issues in asset

management data (Chapter 2).

2. To investigate the suitability of text mining (and machine learning) to this

problem and compare it with alternatives proposed in literature (Chapters

2, 4).

3. To provide an overview of the most important concepts and terminology of

text mining and machine learning to serve as theoretical framework for both

the experimental and research component of the study (Chapter 3).

4. To investigate both the domain speci�c and domain independent text mining

literature to:

� Identify the particular challenges of the maintenance domain (Chapters

2, 4),
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� Establish the speci�c range of methods and techniques applicable to the

research question (Chapters 3, 4),

� Investigate the strengths and weaknesses of the current domain literat-

ure to identify the most important research areas (Chapter 4),

� Evaluate the state of the domain speci�c research with respect to that

of the domain independent literature (Chapter 4).

5. To identify the most important research areas from the broader machine

learning literature to be addressed in the experimental analysis and future

research (Chapter 4).

6. To perform an experimental analysis on real world data to evaluate the re-

search question with respect to failure mode extraction (Chapters 5, 6, 7).

7. To evaluate the experimental analysis used to achieve the project objectives

and identify potential errors and areas of improvement (Chapters 7, 8).

8. To address the methodological concerns identi�ed from literature with spe-

ci�c focus on validity through the use of, among other things, comparative

experiments (Chapter 8).

9. To compare the experimental results with that found in literature and draw

conclusions to guide future research (Chapters 8, 9).

1.4 Limitations and Delimitations

It is important that research is viewed within the context of the constraints in

which it was completed. This includes both the self-imposed restrictions selec-

ted to focus the research (delimitations) and those beyond the researcher control

(limitations).

It was decided to restrict the study to the open-source, o�-the-shelf resources

available in the Python environment. Python was chosen for its strong technical

capabilities, wide choice of libraries, excellent documentation, active online com-

munity and human readable code which makes it one of the easiest languages to
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learn (Pedregosa et al., 2011). It is also the most popular programming language

for analytics, data science and machine learning according to a 2016-2018 survey

performed by KDnuggets (Piatetsky, 2018). While this does pose some restrictions

on the methods that could be used in this study, this delimitation was deemed

negligible due to the large amount of resources available in this environment. In

particular, the Python machine learning library, Scikit-learn, was used extensively

as it provides state-of-the art implementations of a broad range of ML algorithms

while maintaining an easy-to-use interface and excellent documentation making

it highly relevant for use by non-specialists outside of computer science (in both

industry and research) (Pedregosa et al., 2011).

The use of open-source software also make the results more accessible and relevant

to larger audiences than would be the case for expensive commercial solutions.

This is in line with current trends in both industry and research where four out of

the top �ve most widely used analytics, data mining and Big Data resources are

open-source according to a survey reported on by Chen et al. (2014). Other than

the obvious cost bene�t of open-source software, there are also a few other factors

that make it an attractive option.

Commercial software has the advantage of being developed by professionals and

sometimes o�er more specialised tools and support as well as a friendly graphical

interface (Cortez, 2010). However, the involvement of external, third-party tools

and services increase potential data safety risks and the licensing structure used

by many commercial packages creates a continued reliance on a third-party who

may go out of business or might not scale well with changing business needs (Chen

et al. 2014; Maimon and Rokach 2010). Open-source software typically has a

steeper learning curve, but once mastered the user has much more control and

understanding of the results. It is almost entirely self-reliant and due to its �exible

and extensible nature it can be highly customised to suit and evolve with changing

individual needs. Because it can leverage the contributions of a much wider range

of practitioners, new methods and advances are often more quickly integrated

than in commercial tools allowing open-source projects to be at the forefront of

development (Cortez, 2010).

Only o�-the-shelf applications were considered as this drastically reduces the tech-
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nical skill level required making it more feasible for industry practitioners who

might not have the programming or mathematical knowledge to develop these

from �rst principles. The standardised format of these modules also allow for

easier collaboration and maintenance of the resulting data systems. Using o�-

the-shelf tools is commonly advocated in literature as there is no bene�t in every

practitioner reinventing the wheel. In fact, Alpaydin (2010) recommends using

as much as possible code from reputable machine learning libraries as they are

better tested, more reliable and have been optimised for computing performance.

This also facilitates replication and ensures that results are not a consequence of

software bugs (Alpaydin, 2010).

The �nal delimitation was the decision to restrict the study to supervised clas-

si�cation using the traditional bag-of-words model as the problem statement in

Section 1.2 is well-suited to this approach. While other approaches may have po-

tential too, it was necessary to narrow the scope of this study to a manageable

level.

The biggest limitation to this study concerns the nature of the dataset used in

the experimental analysis. Since it was desirable to use industry data, both the

quality and quantity are largely beyond the researcher's control. An industry

partner made a large sample of historical maintenance records available to this

study which has several quality issues pertaining to both the original creation and

later annotation (labelling) of these records. While these quality issues are more

signi�cant than what is typically addressed in text mining research, it is consistent

with that found in the domain speci�c literature.

The quality issues pertaining to data creation is desirable as this re�ects the reality

of industry applications and is preferable to using arti�cially high quality or non-

relevant data such synthetic or benchmark datasets. The annotation quality poses

a bigger concern as it provides the upper limit of performance that can be achieved

by automated means and if done improperly, can arti�cially limit the learnability

of the data (Mozetic et al., 2016) (Section 3.2).

Only a small portion of the available dataset has failure mode labels which were

assigned by subject matter experts for various other purposes throughout the data
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collection period. From the exploratory analysis in Section 6.2 it is clear that these

are not of a desirable quality. Unlike record creation, the annotation process is not

restricted by the operating environment and should form part of the research e�ort

so that it can be carefully controlled to enable maximum performance. However,

contrary to generic applications such as sentiment analysis, the labelling must be

done by subject matter experts which were not available due the academic origin

of this study. The preferable annotation process that should be used for industry

applications to prevent this limitation is discussed brie�y in Section 3.2, but for

this study it could only be mitigated by careful data selection to discard the worst

quality records. The study was further limited by the lack of SME involvement

in the overall experimental analysis which is likely to bene�t signi�cantly from

domain expertise (Witten et al., 2011).

These limitations position the study somewhere between the studies such as Marzec

et al. (2014) who had extensive SME availability for both the labelling and analysis,

and the studies such as Edwards et al. (2008) who labelled the data themselves

with no SME involvement; and ahead of studies such as Devaney et al. (2005)

who had no data, labelled or unlabelled. While the data quantity also poses a

limitation on the study, it is well beyond that considered in much of the domain

speci�c literature such as Chen and Nayak (2007), Edwards et al. (2008), McKenzie

et al. (2010) or Uz-Zaman et al. (2015).

Due to the propriety nature of the data, only the results could be published which

poses a limitation on the repeatability of this study. This limitation is faced

by all the domain speci�c studies found and is an unfortunate reality of most

industry focussed research. Repeatability was ensured as far as possible by using

open-source and o�-the-shelf tools and through meticulous documentation of the

experimental details as per the reccomendations by Alpaydin (2010). However,

until domain speci�c benchmarks are made available this limitation is likely to

persist.

In addition to the data quality, further limitations arise as a result of the as-

sumptions made about the nature of the data. There is evidence of chronological

distribution changes (data drift) in the dataset which is a clear violation of the

independent, identically distributed (IID) assumption made by the majority of
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machine learning methods (Section 3.1). Further simplifying assumptions made

by the various estimators such as the Naïve Bayes conditional independence as-

sumption or even the common bag-of-words (BOW) assumption are also violated

in practice.

Violation of these assumptions mostly a�ect the modelling process leading to less

e�ective classi�ers than would be the case if they held. While this is not ideal, it

is an acceptable (and unavoidable) limitation of machine learning. A much bigger

concern is that most of the evaluation schemes also make the IID assumption mean-

ing that its violation can impact the validity of the results. This was minimised

by implementing what Bergmeir and Benitez (2012) calls blocked cross-validation

rather than the traditional random or strati�ed cross-validation to emulate an

out-of sample testing procedure. However, this is not a perfect method and some

error will invariably persist. Due to the random uncertainty prevalent in both the

training and testing of the algorithm, the true model performances can only ever

be approximated and all results given in Chapter 7 must be seen as an imperfect

estimate. This is not unique to this study but is an inherent limitation of machine

learning which would be true even if the IID assumption held. As the statisti-

cian George Box famously said, �All models are wrong, but some are useful� (Box,

1979).

1.5 Thesis Outline

Chapter 1 introduces both the topic under investigation and the study performed.

It touches on the background and motivation of the study and formulates the topic

into a research question and nine project objectives. It discusses both the inherent

limitations of the study and the deliberate restrictions used to focus the research

and scope. It concludes with this document outline.

The literature review spans three chapters. The �rst, Chapter 2, provides the

context, background and motivation for the study and can be considered part of

phase one in the CRISP-DM methodology (introduced in Chapter 5). It addresses

the �rst two project objectives identi�ed in Section 1.3.
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The second literature review chapter, Chapter 3, provides the theoretical back-

ground of the other CRISP-DM steps focussing on the third research objective. It

provides an overview of the fundamental concepts, terminology and algorithms of

machine learning applied to the text domain.

The �nal literature review chapter, Chapter 4, reviews the related literature both

in and out of the maintenance domain. It addresses the fourth research objective to

gain insight into the current state of research as it pertains to solving the research

question and how it �ts into the broader machine learning literature.

Chapter 5 introduces the research methodology followed for the experimental ana-

lysis, namely the Cross-Industry Standard Process for Data Mining (CRISP-DM).

It starts by motivating the selection of CRISP-DM followed by a brief discussion

of the six phases contained in this methodology and the treatment of each in this

document.

Objectives six to eight are addressed in the empirical analysis which spans three

chapters. The �rst of these, Chapter 6, starts by establishing the context through

the Business and Data Understanding (�rst two phases of CRISP-DM) followed

by the experimental design created according the the Data Preparation, Modelling

and Evaluation principals of CRISP-DM with speci�c focus on validity (as per the

eighth objective).

The results of this analysis, representing the outcome of the sixth objective, are

discussed in Chapter 7 and compared to a random baseline to get a better indic-

ation of the signi�cance of the performance.

The �nal chapter of the empirical analysis, Chapter 8, presents a methodological

evaluation to con�rm the validity of the experimental process used to obtain the

results as per the seventh and eight objectives. The outcomes of this validity

assessment are also used to better relate the results with those in literature that

used di�erent experimental procedures as per the ninth objective.

The thesis concludes with Chapter 9 which summarises the outcomes of this study;

speci�cally with regard to the accomplishment of the project objectives and an-

swering of the research question identi�ed in Section 1.3. It acknowledges the areas
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of success and failure of this study and concludes with recommendations for future

research.

The appendix provides more detailed results of the experimental analysis. The list

of references is included at the end of the document.
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Chapter 2

Literature Review: Background and

Motivation

The following three chapters present a literature review that explores the back-

ground and motivation of the study (Chapter 2), introduces the theoretical frame-

work (Chapter 3), and evaluates similar research (Chapter 4) in completion of the

�rst �ve project objectives identi�ed in Section 1.3.

In this chapter the �rst two project objectives are addressed; namely to explore the

context and signi�cance of the issues in asset management data, and to investigate

the suitability of text mining to address this compared with alternatives proposed

in literature. It starts with an overview of asset management and the importance

of fact-based, information-driven decision making. The problem area is explored in

more detail to identify possible causes and to determine the severity of the problem

in terms of both prevalence and impact. Next, this maintenance-speci�c problem

is aligned with the broader issue of Big Data, followed by an introduction to the

related �elds of text mining, machine learning and natural language processing

which have shown great promise in Big Data analyses. It ends with a discussion of

the alternative approach recommended in literature; its advantages, disadvantages

and the reasons for going the text mining route.

This chapter can be considered part of the �rst phase of the CRISP-DM method-

ology discussed in Chapter 5, namely Business Understanding. However, rather

17
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than focussing on one particular organisational context, it develops a more generic,

domain understanding of the broader asset management industry which was con-

sidered to be a more appropriate, generalisable outcome for the academic nature

of this project.

2.1 Asset Management

ISO 55000 de�nes assets as an �item, thing or entity that has potential or actual

value to an organization� (ISO, 2014). In the increasingly competitive business en-

vironment of today, it is becoming more important than ever to maximise the value

that can be extracted from these assets for the minimum input. For this reason,

a holistic approach to asset management (rather than the traditional mainten-

ance based focus) is becoming more and more popular (IAM, 2014). Where pure

maintenance is restricted to keeping physical equipment operational, asset man-

agement (AM) comprises all �the coordinated activity of an organization to realize

value from its assets� and involves balancing the con�icting objectives between

cost, risk and performance (ISO, 2014).

According to Kans and Galar (2017) maintenance and AM1 still face a num-

ber of managerial, technical and methodological challenges today. While recent

years have seen increasing awareness of the importance of good AM, a substantial

amount of research e�ort and cumulative recognition of what it entails; industry is

still struggling to harness the full bene�t thereof as there is a lot of wasted e�ort.

Maintenance costs have continued rising, both in absolute terms and as a propor-

tion of the total business expenditure. In 30 years, it went from being an insig-

ni�cant contribution to a major cost priority (Arunraj and Maiti 2007; Moubray

1997). Accounting for a rapidly increasing share of the operating costs (Hipkin

and De Cock, 2000), maintenance is now the second highest, or even highest cost

element in some industries (Arunraj and Maiti 2007; Moubray 1997). In fact,

according to Mobley (2002), it can represent up to 60% of the total operating

1While it is generally recognised that AM goes beyond maintenance management, mainten-
ance remains a fundamental part of AM that is critical to an organisation's long-term pro�tability
and survival (Kans and Galar, 2017)

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND AND MOTIVATION 19

costs and up to 70% according to Arunraj and Maiti (2007). In the USA alone,

this amounted to an annual maintenance and AM expenditure of $200 billion in

2002 rising to $1.2 trillion in 2005 (Mobley 2002; Penrose 2008). The magnitude

of this expenditure coupled with industry's growing dependence on assets and an

increasingly competitive business environment has made maintenance a matter of

organisational survival rather than merely a cost consideration (Kans and Galar

2017; Sharma and Yadava 2011).

However, an alarming proportion of both the bulk and growth of this expenditure

is reportedly due to increasingly ine�ective spending indicating a poor return on

investment. It is estimated that in 2002 up to a third of all maintenance costs (over

$60 billion in the USA), growing to just under two thirds ($750 billion) in 2005,

were wasted as a result of poor asset maintenance and management decisions

(Mobley 2002; Penrose 2008). This trend is con�rmed by Carstens (2012) who

states that, despite industry realising the importance of good asset management,

many organisations still knowingly perform ine�ective maintenance tasks; and

Sharma and Yadava (2011) who states that the gap between industry and literature

remains large. It is clear then that the asset management industry has great

room for improvement with Penrose (2008) calling it the �single largest business

improvement opportunity of the 21st Century�.

A signi�cant amount of research e�ort has gone into furthering the �eld of asset

management in the past few years leading to the publication of several resources by

various organisations to consolidate the available expertise, identify best practices

and to guide and improve the implementation thereof (IAM, 2014). Some examples

of these include PAS 55, ISO 55000, the AM Anatomy and the AM Landscape

(BSI 2008; ISO 2014; GFMAM 2014; IAM 2014). While the background, scope

and focus of these resources are not exactly the same, the underlying principles

of their content is generally well-aligned and useful for di�erent purposes (IAM,

2014).

One of the principles agreed upon by these resources, is the importance of evidence

based, data-driven AM. They recognise information as an asset in itself meaning

it is not only a necessary asset-management tool but also a value-adding entity

falling within the scope of assets to be managed (BSI 2008; ISO 2014; GFMAM
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2014; IAM 2014). Even PAS 55, which is focussed on the management of physical

assets (PAM), recognises that this is inextricably linked, and directly impacted by

the management of information.

This means that like any other AM activity, data management is the responsibility

of top-management, but requires stakeholder buy-in from all organisational levels.

It forms part of the critically important �line-of-sight� between the high-level,

organisational objectives and the ground-level, daily activities. Such bi-directional

alignment requires not only the top-down integration of strategic direction into

everyday activities; but also the bottom-up data feedback that provides input

to all levels of AM (development, implementation and optimisation) to ensure

information-driven decision making that is rooted in fact-based realities. (BSI

2008; ISO 2014; GFMAM 2014; IAM 2014). Furthermore, like any other asset,

data must be considered from a life-cycle perspective that �starts with conception

of the need for the asset through to its disposal� (ISO, 2014) requiring continuous

maintenance, monitoring and improvement to realise value from it.

According to these resources, the availability of accurate, up-to-date asset inform-

ation is a key enabler of both the strategic and operational AM activities and is,

in fact, imperative for successful AM overall. This is emphasised throughout these

documents and speci�cally in Section 4.4.6 in PAS 55 (under AM enablers and

controls), Section 7.5 in ISO 55001/2 (under AM support elements), Section 5.4

in the AM Anatomy (fourth subject group) and Section 6 in the AM Landscape

(subjects 22-25).

While the importance of evidence based, data-driven AM is undisputed by these

and other resources; according to Mobley (2002), one of the leading causes of

ine�ective AM remains a lack of factual data to support business decisions. In a

case-study of four leading manufacturing organisations, Hipkin and De Cock (2000)

identi�es the lack of historical data and insu�cient time to complete analyses as

two of the major barriers for e�ective AM. From a literature survey of the biggest

challenges in AM, Marquez (2007) con�rms both these issues further stating that

there is a big disjoint between what practitioners think they should do (as speci�ed

by AM resources) and what they actually do. They report that managers are

preoccupied by day-to-day operations and reactive problem-solving with little time
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left for strategic data analyses and focussed improvement (Marquez, 2007). Goble

and Siebert (2008) further state that poor information management practices,

and particularly issues with data quality, prevent e�ective utilisation of the data

that is available. More recently, all of Braaksma and Veldman (2013), Baglee

et al. (2015), Woodall et al. (2015), Reeve (2016), Karim et al. (2016), Kans and

Galar (2017), Zschech (2018) and many more, have con�rmed that a lack of data,

data quality and various other data management inadequacies in areas such as

collection, analysis and IT competence are major issues in AM.

Zschech (2018) creates a taxonomy of the recurring data analytics problems in AM

grouping them according to the type of data going into the analysis, the analytical

techniques and the source of the data. These are discussed in Sections 2.2, 2.3 and

2.4 below.

2.2 Data Types

Zschech (2018) identi�es two main categories of data that is relevant to AM: con-

dition monitoring (CM) and event data. CM data relates to the health condition

of assets as determined by physical measurements such as vibration, temperature

or pressure readings. Event data, also called failure data, relates to failure events

or other asset-related incidents and non-conformities (including near misses and

false alarms) as well as the subsequent actions taken (such as repair, replace or

con�gure) (Zschech 2018; Samuel et al. 2006; ISO 2014).

Two additional, more general categories of data that applies to both event and

CM data, are metadata and business-data (Zschech, 2018). Metadata is typic-

ally de�ned as data about data to provide context to either a speci�c data entry

or the data collection system. Metadata can be descriptive (used for discovery

and identi�cation of a particular data entry, e.g. machine type, location, manu-

facturer); structural (describes the organisation of the data system; the required

syntax and permissible range of values including lists of identi�ers, their de�ni-

tions and the relationships between them e.g. measurement unit, precision, list

of machine types); or administrative (used to facilitate information management,

e.g. author, date and time created, access permissions) (Aljumaili 2016; Zschech
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2018). Business data describes the environmental context ranging from legal re-

quirements to market projections to production plans and scheduling information

including all revenue, pro�t, cost and resource information (Zschech, 2018).

The focus of this study is on event data and particularly that of failure events (here-

inafter called failure data). According to Zschech (2018), this data is frequently

treated as having secondary importance and rarely used beyond an operational

record-keeping function. They cite an erroneous belief that CM data is su�cient,

despite several authors emphasising the importance of failure data for e�ective AM

(Zschech 2018; Syeda et al. 2018; Karim et al. 2016; Arunraj and Maiti 2007).

Failure data is imperative for monitoring progress, establishing risk and guiding

further improvements; all of which are important concepts in AM. Failure is an

unavoidable reality for even moderately complex asset systems, and while unfortu-

nate, these events do provide a valuable opportunity to improve this by identifying

areas of concern (Syeda et al., 2018). It provides information on not only the per-

formance of the assets, but also of the asset management, which is necessary to

guide further improvement e�orts and to justify maintenance programs from both

a cost and risk perspective (Hipkin and De Cock, 2000). Furthermore, if these

events are not investigated, the risk of failures will remain unchanged and are

likely to reoccur (Syeda et al., 2018).

This is con�rmed by ISO 55000 which states that all �asset related incidents...

should be investigated and reviewed to see if any improvements are needed and to

prevent their reoccurrence and mitigate their e�ects� (ISO 55000: 2.5.3). In fact,

the collection and analysis of historical failure data is explicitly mentioned as part

of the Information Requirements needed to support AM (ISO 55000: 7.5) as it is

needed for activities such as determining the AM objectives (ISO 55000: 6.2), risk

assessment and management (ISO 55000: 6 and 8), performance evaluation (ISO

55000: 9) and continuous improvement (ISO 55000: 10) (ISO, 2014).

In recent years, widespread recognition of the importance of failure data has led

to the majority of companies collecting at least some form of failure data (Baglee

et al., 2015). The ongoing industrial digitisation has made data collection easy.

Large-scale computerisation and rapid advances in information technology has led
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to a considerable increase in the amount and variety of AM data available (Zschech

2018; Baglee et al. 2015; Kans and Galar 2017). However, increasing the amount of

data collected does not necessarily translate to an increase in relevant information

(Zschech, 2018). The challenge is not to collect as much data as possible since too

much data can even impede the ability to extract useful information with the real

value lying in the insights gained from the modelling and analysis thereof (Karim

et al. 2016; Kans and Galar 2017; Baglee et al. 2015).

2.3 Analytical Techniques

Like Zschech's (2018) distinction between data types, Welte and Wang (2014) dis-

tinguish between failure-time and degradation models based on failure and CM

data respectively. Failure-time models are concerned with modelling and pre-

dicting the time-period associated with failures which is typically modelled as a

stochastic process (Marquez, 2007). An important aspect of stochastic models

is that it involves uncertainty, namely quantities that cannot be predicted ex-

actly, only estimated probabilistically (Welte and Wang, 2014). This is due to

the inherent uncertainty associated with the deterioration process, ambiguity re-

garding future operation of the machine, and �nally, errors associated with the

analysis/modelling methods being applied (Sikorska and Hodkiewicz, 2011). In

other words, while it cannot be predicted when failures will occur exactly, their

probability of occurring at any given moment or within a certain interval can be es-

timated with reasonable accuracy using probability theory and statistical methods

(Marquez 2007; Welte and Wang 2014).

Degradation models are concerned with the changing technical condition of an

asset which is represented by some degradation variable over time (or usage) with

failure assumed when this variable crosses some threshold (Welte and Wang, 2014).

As the focus here is on failure data, degradation models are not considered further.

One of the �rst challenges faced by analysts is deciding how to categorise large

amounts of failure data in some meaningful manner (Syeda et al., 2018). Accurate

analyses require a substantial amount of data (Sikorska and Hodkiewicz, 2011)
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and since not all failures occur with the same frequency2, Samuel et al. (2006)

recommend grouping them on the basis of engineering judgement to get more

statistically relevant samples and evaluating these clusters together. This is sup-

ported by PAS 55 which recommends grouping failures into categories of similar

events to facilitate trends analysis (BSI, 2008).

A common way of doing this is failure modes, namely categorising events according

to the modes, or manner by which asset failure can occur (Braaksma and Veldman

2013; Dictionary 2018; Rudov-Clark and Stecki 2009). In fact, according to Samuel

et al. (2006), this grouping forms part of the �rst step in any analysis identifying

two generic steps: 1) Failure mode identi�cation and data preparation; and 2)

Statistical analysis and interpretation of results.

The �rst step (data preparation and particularly the classi�cation of events into

failure modes) is the focus of this study and the objective of the empirical analysis

discussed in Chapters 6-8. For a discussion on the di�erent modelling approaches

the interested reader can refer to Welte and Wang (2014), Sikorska and Hodkiewicz

(2011) and Marquez (2007).

Failure modes can be de�ned at any level of abstraction (system, subsystem, com-

ponent or even material level) depending on the needs of the particular analysis.

Therefore, the �rst step comprises data collection in the required format and the

failure mode categorisation according to the selected level of abstraction (Samuel

et al., 2006). For the empirical analysis discussed in Chapters 6-8, failure modes

are de�ned at the sub-assembly level (e.g. mechanical, electrical and hydraulic

failure). This categorisation is supported by Devaney et al. (2005) who note that

while highly unique, complex assets will have di�erent components; they share

high-level systems and subsystems (such as hydraulics, electronics and pneumat-

ics) which share machine-independent characteristics with common parts, loads,

functions and interconnections (e.g. all hydraulic systems have hoses which can

burst). Considering them at this level provides more generically applicable res-

ults and data samples that can be shared across various domains and machinery

2From a case-study evaluating aero-engine failures, Samuel et al. (2006) reports that a small
proportion of failure types accounted for more than 80% of the observed failures with the majority
occurring only rarely.
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(Devaney et al., 2005). Most importantly however, this was the indicated prefer-

ence of the data provider.

The second step involves the modelling and prediction of failure events as well as

the subsequent decision making based on the interpretation of the results (Welte

and Wang 2014; Samuel et al. 2006). Failure modelling and analysis contains a

large number of methods. While the level of detail, methodology, assumptions,

focus, limitations etc. of these methods may di�er; most concern the same basic

categories of information, (called entities of interest (EOI) by Syeda et al. (2018))

such as the failure time, time to failure, the time between failures or the number

of failures (at any given moment or within a time, or usage, interval) (Welte and

Wang 2014; Goble and Siebert 2008; Marquez 2007). These can be obtained from

a variety of sources including operational �eld data, public databanks and domain

expertise (discussed below).

The �rst step is a prerequisite to the second. Models and subsequent decisions

are only as good as the data they are based on and as in the �eld of computer

science, garbage in gives garbage out (Samuel et al. 2006; Aljumaili 2016; Woodall

et al. 2015; Goble and Siebert 2008). Several authors con�rm the importance of

this step, with Kenny et al. (2017) stating that it is �of signi�cant importance to

understand a device's high priority failure modes and prepare for them.� (Kenny

et al., 2017). However, Samuel et al. (2006) report that it is not uncommon to

observe situations where no attention is given to the �rst step and that, compared

to literature about statistical modelling and analysis, there is much less about

failure mode identi�cation and data preparation.

This is con�rmed by Sikorska and Hodkiewicz (2011) and Marquez (2007) who

state that while a substantial amount of research is available on the topic of fail-

ure modelling and analysis, much of it is of mathematical/academic interest only

neglecting practical considerations such as the data, expertise and computational

infrastructure requirements. In fact, according to Sikorska and Hodkiewicz (2011)

there is only limited evidence of truly successful implementations in industry. How-

ever, they and other authors emphasise that this is not as a result of problems with

the various tools, but rather due to poor understanding of the limitations of these

tools (Sikorska and Hodkiewicz 2011; Goble and Siebert 2008; IAM 2014).
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All models are subject to various assumptions and approximations by design; some

mathematical and some practical concerning implementation issues such as the

amount, type and quality of data required (Sikorska and Hodkiewicz 2011; Marquez

2007). Variations in these and other factors such as the maintenance capabilities of

the site, their de�nition of failure, failure recognition method, failure data recording

and collection policy (including the competence of those responsible for planning,

collecting and analysing data) and assumptions used to calculate EOI, such as the

number of operating hours and number of failures, can cause order of magnitude

di�erences in the results and it is imperative to completely understand the methods

used to de�ne, collect and analyse failure data before using it (Goble and Siebert,

2008).

2.4 Data Sources

The data required by these analyses can be obtained through both quantitat-

ive and qualitative means. Quantitative methods use empirical observations of

failure obtained from either the plant's actual performance data (historical �eld

data/records) or from the databanks published by original equipment manufac-

turers (OEM) to determine the various EOI such as the number of failures. In

qualitative methods subject matter experts (SME) estimate these using a vari-

ety of polling, interview, and questionnaire techniques. (Welte and Wang 2014;

Marquez 2007; Arunraj and Maiti 2007)

Manufacturer data consist of the failure rates and other reliability information

published by OEMs based on either laboratory tests or �eld warranty and return

data. Neither of these are an accurate re�ection of the true operating environment

under consideration and may result in optimistic expectations (Hameed et al. 2014;

Goble and Siebert 2008; Samuel et al. 2006). Studies have shown that asset reliab-

ility depends on a wide range of environmental and operational factors which are

di�cult to simulate in a laboratory environment and are not typically speci�ed in

public databanks. The data provided by these sources are average values at best

and idealistic values at worst (Marquez, 2007). Manufacturer data further neg-

lects various practical considerations such as the business-related consequences of
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failure, regulatory requirements and the availability of resources (Marquez, 2007).

Laboratory tests typically assume ideal operating conditions that are unlikely to

be a re�ection of the real world where installation or operation errors (such as poor

calibration, insu�cient lubrication, unexpected loads) and environmental factors

(such as ambient temperature or electrical surges) are likely to cause worse, or at

least unexpected, results (Samuel et al. 2006; Kenny et al. 2017).

While return and warranty records provide a better indication of the real-world

operating conditions, it is still an average measure and not speci�c to each con-

sumer (Hameed et al., 2014). Furthermore, according to Goble and Siebert (2008),

this data is optimistically skewed due to the limited information actually available

to an OEM. Operational hours, estimated from the shipping and return dates, are

typically over-estimated due to unrealistic time-from-shipping-to-usage expecta-

tions. Failure counts, on the other hand, are typically under-estimated due to the

unrealistic assumption that all �eld failures are reported (Goble and Siebert (2008)

report on a survey �nding that only 10% of failures are reported to manufactur-

ers). Not only does this skew the type of failures recorded, but combined with the

overestimated operational hours, also leads to dangerously optimistic failure rates

being published (Goble and Siebert 2008; Samuel et al. 2006).

Field data is typically connected to an organisation's work-order system (Goble

and Siebert, 2008) which stores all the job-related information for every main-

tenance activity/event (Uz-Zaman et al., 2015) in a Computerised Maintenance

Management System (CMMS) (Aljumaili, 2016). These records are primarily fo-

cussed on the day-to-day operational issues such as scheduling and communica-

tion after which they are archived for operational record-keeping purposes (such

as settling disputes, tracking costs and documenting labour) (Woodall et al. 2015;

Palmer 2006). While they explicitly describe every problem, repair, adjustment

and alteration made to the assets of an organisation, they implicitly contain much

higher-level information that can be used to construct life-cycle models, identify

repair and failure trends, optimise maintenance schedules, and ultimately, support

long-term strategic decision-making (Devaney et al. 2005; Palmer 2006).

Field data has many advantages and has been described as the ultimate source
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of failure/reliability information (Goble and Siebert 2008; Samuel et al. 2006). It

re�ects the unique operating conditions of each organisation providing insight to

the speci�c problems, risks and opportunities faced by that organisation and is

therefore expected to yield the most accurate results (Kenny et al., 2017). Fur-

thermore, because this data is in direct control of the organisation in question,

they are able to not only know the limitations of their data (in terms of quality,

bias etc.) but can also address these limitations and tailor the data to their speci�c

needs (what to collect, how to collect, level of precision etc.) (Goble and Siebert

2008; Samuel et al. 2006; Kenny et al. 2017). Almost all organisations have this

type of data available although the quality may vary from plant to plant (Goble

and Siebert 2008; Mukherjee and Chakraborty 2007; Uz-Zaman et al. 2015).

However, these datasets often su�er from several data quality issues restricting

e�ective utilisation of the available information (Rajpathak et al., 2012). Records

are typically entered directly into a database from the operating environment by

maintenance personnel via fairly limited devices under sometimes severe time con-

straints (Devaney et al., 2005). Poor understanding of how the data will be used or

the consequences of low data quality lead to maintenance personnel treating data

collection a secondary task with low importance. This is especially prevalent in

low-maturity organisations which are characterised by departmentally fragmented

silos and poor line of sight (Woodall et al. 2015; Braaksma and Veldman 2013).

Because the data is not collected by the end-user, it is often initiated without clear

purpose of use (collecting for the sake of collecting) and in the wrong format (easy

to record, but di�cult to analyse) (Reeve 2016; Woodall et al. 2015; Devaney et al.

2005).

Operation and maintenance sta� will typically store failure data in free-format,

natural language text which is not conducive to computerised analytics (Reeve

2016; Uz-Zaman et al. 2015; McKenzie et al. 2010). Extracting meaning from

such data must be done manually which is incredibly tedious, time-consuming and

cumbersome work (Chen and Nayak, 2007).

By contrast, qualitative data obtained from subject matter experts (SME), do not

require expensive data collection or processing (Arunraj and Maiti, 2007). Domain

expertise can either be incorporated directly into AM decisions (e.g. by selecting
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maintenance intervals) or indirectly by providing the inputs for the various models,

tools and techniques such as a conceptual FMEA3 performed using a qualitative

risk assessment. While qualitative data is more quickly and easily available re-

quiring much fewer resources; these bene�ts come at the cost of precision. It can

yield satisfactory results if collected with due diligence, but because it relies on

the opinions, experience and intuition of individuals it is inherently subjective and

di�cult to enforce any degree of consistency or uniformity (Marquez 2007; Arunraj

and Maiti 2007).

Domain expertise is a valuable asset in any organisation but su�ers from poor

transferability and might not be held by those responsible for decision making

(Woodall et al., 2015). It is only as good as the knowledge and experience of

those involved and, because the information is contained in individuals, it is sub-

ject to expert availability which may cause organisations to become dependent

on sta� members (who might leave) (Braaksma and Veldman 2013; Sikorska and

Hodkiewicz 2011). Furthermore, human intuition is subject to gross oversight and

there is often (if not always) a big di�erence between perceived and actual risk

(Tversky and Kahneman 1973; Plous 1992).

In any given situation, people are bombarded with massive amounts of information

that the brain cannot possibly cope with. For this reason, the brain develops

various heuristic principles by which to simplify complex information management

(Tversky and Kahneman, 1973). Many of these heuristics have been studied and

documented by psychologists. Although useful (and necessary) for quick decision

making and approximations, they can sometimes lead to severe and systematic

errors (Hobbs and Reason, 2003). One of the most relevant brain short-cuts is

known as the �availability heuristic� (Plous, 1992). It refers to people assessing

the probability of an event (or the frequency of its occurrence) by the ease with

which instances of occurrence can be recalled. The brain will typically be able

to recall recent events much easier than older events leading to a time-dependent

3Failure Mode and E�ects Analysis (FMEA) is a common AM tool used to prioritise assets,
actions and spending according to the risk computed from some combination of the probab-
ility of failure and its consequences. In a conceptual FMEA, these are estimated by domain
experts, but the probability and impact rankings can also be quanti�ed using real frequency and
monetary/production data. (Kenny et al. 2017; Arunraj and Maiti 2007; Hameed et al. 2014)
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bias that will vary according to when a person is polled (Tversky and Kahneman,

1973). Moreover, people tend to recall dramatic events much easier than less severe

ones, regardless of the statistical relevance of the incident. This phenomenon,

called �risk telescoping�, leads to underestimating low-impact, common risks and

overestimating high-impact but rare risks (Science, 2016). These are just some of

the more common inaccuracies that can occur when making intuitive judgements

rather than using statistical analyses of historical data4.

Several authors have investigated this mismatch �nding substantial di�erences in

all but the simplest of systems. Kenny et al. (2017) evaluates the reliability of

domain expertise by comparing the perceived risks (obtained from a conceptual

FMEA) to the actual risks (obtained from historical failure logs) for a Squid 6

Series Wave Energy Converter System. Domain experts tasked with completing

a conceptual FMEA assigned probability, consequence and detection rankings to

each failure mode to determine their respective risk priority levels. To ensure a

consistent comparison, the authors created a failure recording template identical

to this FMEA which was retrospectively populated using information found in the

�eld records. Samuels reports on a similar case study comparing a conceptual

FMEA with historical data for a TFE 731 aero engine.

Both studies found substantial di�erences between the perceived and actual risks

presented by these two assessments. Kenny et al. (2017) reports numerous vari-

ations of either one or both of the frequency and impact rankings being over or

underestimated. Whilst not exploring the topic themselves, their results further

seem to provide anecdotal evidence of the availability heuristic. In particular they

found that high impact failures tended to overshadow those of lower impact leading

to a disproportionate focus on rare, but high consequence events (risk telescoping).

Moreover, where low impact, high frequency failure modes were overpredicted, it

supports the premise of a time-related bias as experts tended to over-predict cor-

rosion, fatigue and wear which become increasingly signi�cant towards the latter

4This is by no means a psychology paper and does not attempt to fully explore the psycho-
logical factors involved. It merely provides a brief overview of some of the relevant theories to
illustrate the problems inherent in intuition-based identi�cation, and analysis of, failure modes.
The interested reader can refer to Hobbs and Reason (2003) who provides a more in-depth study
into the reasons for maintenance error.
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(and more recent) stages of asset life (Kenny et al., 2017). While (Samuel et al.,

2006) provides less detail of the individual variations, they support the overall

results �nding only 20% agreement between the risks perceived by domain experts

and that observed in the �eld data.

Regardless of the reason for these discrepancies, the fact remains that either over

or underestimating the risk of various failure modes can have adverse business

consequences due to the increased costs of non-essential maintenance e�orts in

overestimated areas; and the increased costs of safety and production issues in

underestimated areas hampering the e�orts to reduce or eliminate risk e�ectively

(Braaksma et al. 2011; Arunraj and Maiti 2007; Samuel et al. 2006; Kenny et al.

2017). In fact, from a case-study evaluating the e�ectiveness of industrial ap-

plications of FMEA, Braaksma and Veldman (2013) found limited evidence that

it actually supported consistent decision-making or continuous improvement due

primarily to the sole reliance on domain expertise rather than �eld data to com-

plete them.

Both Samuel et al. (2006) and Kenny et al. (2017) report that such qualitative risk

assessments are inadequate for all but the simplest of asset systems as it becomes

increasingly di�cult to conceptualise complex, real world systems. They relent

that in the absence of �eld data (such as the design phase of a new asset prototype

or when �eld data has simply not been collected) domain expertise can provide

a valuable estimate of asset reliability; but emphasise the importance of verifying

this with �eld data as soon as it becomes available. This is supported by Arunraj

and Maiti (2007) who recommends that qualitative risk assessments should only be

used when risks are small and well-understood or when no �eld data is available.

However, even when �eld data is readily available, according to Baglee et al. (2015),

Braaksma and Veldman (2013) and Palmer (2006) it remains a challenging task to

convince managers to trust this over their own intuition. While Goble and Siebert

(2008) state that most of the �eld data required by failure analytics is already

being collected by organisations, according to Reeve (2016) as many as 70% do

not perform even basic analyses on their �eld data and remain almost wholly reliant

on domain expertise. Even more concerning, they state that this percentage has

not changed in many decades (Reeve, 2016). Several authors con�rm that a sole
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reliance on expert judgement is a major problem in AM (Sikorska and Hodkiewicz

2011; Syeda et al. 2018; Reeve 2016; Baglee et al. 2015) with Braaksma and

Veldman (2013) citing a widespread belief that �eld data is not of adequate quality

to be useful.

This is not an entirely incorrect assumption, because while Kenny et al. (2017)

agree that operational data is superior to predicted data, they also note the signi-

�cant challenges involved with utilising this data retrospectively. A lot of valuable

information is buried in unstructured natural language text (rather than con-

strained value �elds) which is di�cult to analyse (Syeda et al., 2018). Included in

this is the failure modes, which is the focus of this study, as Reeve (2016) found

that most CMMS products do not explicitly record this information. The reason

for this is partly historical.

Traditionally, all record keeping was performed through paper-based systems. Such

hard-copy records require manual, log-by-log analysis (McKenzie et al., 2010). This

meant that unstructured textual descriptions posed no signi�cant analysis disad-

vantage as, unlike computers, humans are not able to process structured, numeric

inputs much faster than free text. This made text, which o�ers the advantage

of greater expressivity and the convenience of translating directly from human

thought and communication, a natural choice. Upon the integration of computers

into everyday life, (most notably through CMMS) most organisations transferred

to electronic data collection systems, but many retained the same basic format,

including the free text �elds (McKenzie et al., 2010). This means that despite

being stored in an electronic format, only the structured �elds can bene�t from

faster computer processing while the text �elds still require time-consuming and

labour-intensive manual processing which few can a�ord (McKenzie et al. 2010;

Chen and Nayak 2007; Rajpathak and De 2016; Devaney et al. 2005).

For CM data consisting of physical measurements, numeric inputs were a natural

choice and the analysis thereof is a well-researched �eld with many successful ap-

plications such as vibration-based condition monitoring (Rajpathak and De 2016;

Wang et al. 2017). However, for event data (which is the focus of this study) the

structured �elds are mostly operational identi�ers such as date and time repor-

ted or location ID; with the more valuable strategic information (such as failure
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modes) implicit in the unstructured text �elds. This is due to the heterogeneous

nature of every failure event. Capturing the distinct details of every incident is a

challenging task greatly aided by the expressivity of natural language text (Chen

and Nayak 2007; Syeda et al. 2018).

The problem of unstructured text data, and the broader issue of ine�ective in-

formation management, is not isolated to the �eld of AM. It has been estimated

that up to 80% of all organizational data is in an unstructured, text format that

is not amenable to traditional analytics (Singh and Raghuvanshi 2012, Kobayashi

et al. 2018; Gupta and Lehal 2009; Tan 1999; Gutierrez 2015). Moreover, accord-

ing to the Electronic Commerce Code Management Association (ECCMA) poor

data management adds up to 20% to companies' direct and indirect costs (EC-

CMA, 2019). The data creating capabilities of many industries have far surpassed

the ability to handle it with many companies hoarding vast amounts of data they

will never use (Russom, 2011). Not only do they not bene�t from this data, but

it has been recognised that excessive amounts of information may even have a

negative organisational impact because it distracts from the main issues, delays

decision making and can lead to wrong conclusions if incorrectly utilised (Wuest

et al., 2016). In fact, this overwhelming �ood of information, or �Big Data� as

it is called, has led to 30% of companies viewing data as a problem rather than

the opportunity it could be according to the Transforming Data With Intelligence

(TDWI) Best Practices Report (Russom, 2011).

2.5 Big Data

Technological advancement has led to an exponential increase in the amount of

data generated worldwide with faster computers generating an ever-increasing

�ood of information at ever-increasing speeds making conventional data storage,

processing and analytics increasingly ine�ective (Hurwitz et al., 2013). Big Data

(BD) is characterised by the fact that data is coming from a wider variety of

sources, and in a wider variety of formats, than ever before (Russom 2011; Kans

and Galar 2017; Karim et al. 2016). A lot of it is also being generated by outside

sources and used for di�erent purposes than it was originally collected for. Because
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the analyst was not in control of (or even involved in) the data collection, there are

frequently concerns regarding the quality, credibility and suitability of such data

(Sathi 2012; Witten et al. 2011). However, along with these challenges it is also

recognised that there is signi�cant potential in BD (Kans and Galar, 2017).

Companies can now know so much more about their clients, their suppliers, their

business environment, their own production and even their employees. Having

such large amounts of data available create many opportunities for businesses that

have the potential to yield big returns for relatively small investments. Data-

driven decisions are necessarily better decisions because managers can make use of

evidence in previously intuition-based environments. �You can't manage what you

don't measure� is a popular business maxim used to demonstrate the importance

of utilising the available data (McAfee and Brynjolfsson, 2012).

There are no threshold values for when data becomes Big Data. Rather, it is any

data that cannot be processed using traditional means and is typically character-

ised by �ve V's: Volume, Velocity, Variety, Veracity and Value (Kans and Galar

2017; Karim et al. 2016; Syeda et al. 2018; Baglee et al. 2015).

Volume and velocity refer to the amount and speed of data generation. What

makes the velocity aspect of Big Data particularly challenging is that often, for

the data to be of any use, the analysis must also happen in real time (e.g. checking

credit card transactions for fraud detection) (Russom, 2011). Variety concerns

the di�culties involved in treating the broad range of data formats that contain

valuable information but do not come in structured, easy-to-analyse data sets; such

as images, video, voice recordings and of course text (Syeda et al. 2018, Russom

2011). Veracity concerns the quality and credibility of the data which can be

negatively a�ected by bias, noise, duplication and error; be it as a result of the

source, processing, type or format of the data (Sathi, 2012).

The �nal characteristic of Big Data is that it must have value. It is imperative

to understand the costs and bene�ts of collecting and analysing the data before

embarking on expensive BDA initiatives to ensure tangible business bene�ts. This

concerns the potential usefulness of the analytical outcome as simply having large

quantities of data has no real value in itself (Karim et al. 2016; Baglee et al. 2015).
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In the analysis of �eld failure data, variety and veracity are especially big issues

(Galar et al., 2015). As discussed previously, a major challenge preventing the

analysis of �eld failure data is the descriptive text �elds which are not amenable

to traditional analytics due to its unstructured nature (variety) (Kans and Galar

2017; Karim et al. 2016; Galar et al. 2015). This ties in with the problem of

veracity, as text is a naturally noisy data source due to the inherent inconsistencies

and variation in human language. Di�erent people will use di�erent words to

describe the same failure and even a single person is highly unlikely to be perfectly

consistent when describing di�erent occurrences of the same event (Tumer et al.,

2003). Moreover, because the data is typically not collected by the end-user and

is recorded in fairly haphazard ways with little to no understanding of why or

how the data will be used; these datasets typically su�er from several additional

data quality issues making veracity a particularly pertinent concern (Reeve 2016;

Woodall et al. 2015; Devaney et al. 2005).

Several authors have also con�rmed that the analysis of �eld failure data, and

maintenance work order records in particular, produce a number of bene�ts for an

organisation; all of which can be summarised as saving money (Goble and Siebert,

2008). More specially, the information contained in these records can be used to

create reliability models (Rajpathak and De 2016; Mukherjee and Chakraborty

2007), identify best-practice repairs (Rajpathak, 2013), accurately predict main-

tenance budgets (Edwards et al., 2008), reduce downtime and prevent failures

(Devaney et al., 2005), improve inventory and spare part management (Rajpathak

et al., 2012) and any number of other activities that enhance both the strategic

and operational decision-making processes (Rajpathak and Chougule, 2011).

While neither the volume nor the velocity is of particular concern for maintenance

datasets (which are small compared to many BD problems), it falls in the realm

of BD because it is not amenable to traditional analytics. Accordingly, several

authors have suggested looking at the analytical tools and techniques which have

had success in this �eld, namely Big Data Analytics (Syeda et al. 2018; Galar et al.

2015; Zschech 2018).
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2.5.1 Big Data Analytics

Big Data Analytics strives to extract useful information from large quantities of

raw data and can therefore be described as a Data Mining (DM) problem; the ana-

logy being that, like the extraction of valuable minerals from Earth, large amounts

of low-value raw material must be processed and sifted to yield a much smaller

quantity of some precious substance (Alpaydin 2010; Witten et al. 2011). However,

to di�erentiate from those using DM to describe only a single step in the knowledge

discovery process, Sharma (2008) recommends using the term Knowledge Discov-

ery and Data Mining (KDDM) to emphasise the inclusion of the entire process;

from data storage, access, and processing to the analysis and interpretation of the

results.

The di�culty in analysing natural language text data comes from its unstructured

(and therefore unpredictable) nature (Hurwitz et al., 2013). Computers make use

of logic-based algorithms and have no �understanding� of language in the human

sense. They are only capable of binary comparisons, namely exact-match or not;

there is nothing in-between even if the only di�erence is as small as a single cap-

italisation. This makes dealing with the ambiguities of everyday language (such

as homonyms, synonyms and context-dependant de�nitions) nearly impossible to

deal with using traditional analytics (Hotho et al., 2005).

KDDM is an interdisciplinary approach that combines methodologies and tech-

niques from various research �elds including statistics, pattern recognition, math-

ematical modelling, data visualisation, optimisation and high-performance com-

puting (Zschech 2018; Maimon and Rokach 2010). Particularly relevant here is

text mining (TM); the automated, or semi-automated (computer-assisted) extrac-

tion of useful knowledge from text data (Wachsmuth, 2015). While there is some

contention in literature as to the exact de�nition and scope of text mining, it

is generally accepted that it is a multidisciplinary �eld that draws heavily from

the �elds of machine learning (ML) and natural language processing (NLP) with

some seeing it as a branch or sub-�eld of data mining and others as a distinct but

correlated, sibling �eld (Dhanrajani and Gosh 2008; Witten et al. 2011).

For this paper, text mining is used to mean text data mining with data mining
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de�ned as the exploration and analysis of large quantities of data by automatic

or semi-automatic means with the purpose of obtaining useful knowledge (para-

phrased from the original de�nition by Berry and Lino� (1997) cited in Bastos

et al. (2014)). Machine learning can be seen as the technical basis of data (or

text) mining and refers to the area of arti�cial intelligence that allows computers

to �learn� from data rather than being explicitly programmed (Bastos et al. 2014;

Witten et al. 2011). Natural language processing, which is a sub-�eld of arti�cial

intelligence and computational linguistics, is the broad term for the integration

of human language and computers that is concerned with converting natural lan-

guage to machine-readable, structured data (Dhanrajani and Gosh, 2008). This

means that NLP can be both a text mining tool and a text mining outcome.

The analysis of text-based maintenance records is a typical text mining problem

according to Chen and Nayak (2007); but they (and other authors) acknowledge

several domain speci�c challenges not typically addressed in text-mining literature.

This includes short document length, a lack of domain speci�c benchmark datasets

and the use of non-standard English (such as domain speci�c jargon, short-hand

notation and a proliferation of spelling and grammar errors) (McKenzie et al. 2010;

Devaney et al. 2005; Edwards et al. 2008). Of course, this is not the only solution

to address the AM data needs.

2.6 Alternative and Ideal Solution

The collection of free text records is widely recommended against in the general

literature where several authors recommend using a consistent, prede�ned struc-

ture and format to collect failure data explicitly; preferably by selecting coded

inputs from a short list of prede�ned information entities (Reeve 2016; Palmer

2006; Marquez 2007; Woodall et al. 2015; Rajpathak et al. 2012; Braaksma and

Veldman 2013; Goble and Siebert 2008) or at the very least standardising the terms

and de�nitions used in text descriptions (Chen and Nayak 2007; Rudov-Clark and

Stecki 2009; Tumer et al. 2003).

Free text also goes against the general principles of the AM resources which require

determining the information needs prior to collection and ensuring its suitability for
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all objectives (ISO, 2014), and more speci�cally, that failure data must be captured

in a manner that enables subsequent analysis (GFMAM 2014; BSI 2008). The ideal

solution would therefore be to prevent the collection of such data by improving the

data collection and information management practices of an organisation (Kenny

et al. 2017; Braaksma and Veldman 2013; Reeve 2016; Rajpathak et al. 2012).

There are several resources available, both within AM domain and beyond, to guide

organisations with the implementation and management of information systems

that will allow them to properly collect and utilise their failure data. Within the

AM domain, Braaksma and Veldman (2013) recommend the use of asset informa-

tion standards which is also one of the 39 AM subjects described in the GFMAM

Landscape. Asset information standards are �data models for uni�ed description of

information relating to assets or products� (Braaksma et al., 2011). They specify

a consistent structure and format for the collection, categorisation and storage of

asset information (including failure data) (GFMAM, 2014).

Beyond the AM domain, the more generic ISO 8000 data quality series is a valuable

resource that is speci�cally recommended by the IAM Anatomy (IAM, 2014).

This standard de�nes the principles of data quality; the data characteristics that

determine its quality; and the requirements for achieving, measuring and improving

data quality (Benson 2008; ISO 2011). The collection of unstructured, natural

language failure data is in direct contravention of one of the leading principles of

data quality identi�ed by ISO 8000: that data must be ��t for purpose i.e. the

decision it is used in�. ISO 8000 directly addresses this inadequacy by suggesting

the use of semantic encoding: �the technique of replacing natural language terms

in a message with identi�ers that reference data dictionary entries� (ISO 2011;

Benson 2008).

The data dictionary consists of a comprehensive list of entries containing, at a

minimum, an unambiguous identi�er, a term, and a de�nition of said term. These

entries are allocated according to the data speci�cations which are the rules used to

describe items belonging to a particular class. This standard does not completely

discount the value of descriptive natural language text and recognises that it does

have a place within the data architecture. The natural language text is, however,

moved (and limited) to the data dictionary de�nitions. Technicians therefore re-
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cord incidents using only the codes speci�ed by the data dictionary; the result of

which can be easily evaluated using traditional data analytics5 (ISO, 2011).

This type of structure enables fully automated, computerised processing that al-

lows for instant search and recall, automatic sorting and analysis, and essentially

enables organisations to extract meaningful information from their failure data

that can be used in AM decision-making and processes.

However, there are a few drawbacks which limit the practical value of this ap-

proach. Braaksma et al. (2011) review the most prominent asset information

standards �nding fairly limited industry adoption other than in select industries

such as aerospace where adoption is regulated by government. While ISO 8000 was

not yet available at the time of their article, and therefore not included in their

review, it faces many of the same challenges. Braaksma et al. (2011) groups these

into standards-related and organisation related problems. Issues related to the

standards themselves include the slow development of standards causing them to

lag behind industry practices and technologies; instability as a result of frequent re-

visions (often without backwards compatibility); the complexity of standards and

their proposed data models (including terminological and structural confusion);

and the cost of proprietary standards which can be prohibitive for small busi-

nesses (Braaksma et al., 2011). Organisational challenges refer to organisational

readiness, resistance to change and the absence of a clear business case (Braaksma

et al. 2011, Braaksma and Veldman 2013).

Organisational readiness refers to an individual organisation's capability to imple-

ment and use such standards which may be hampered by a lack of resources, com-

petence, organisational discipline, management support and commitment (Braaksma

et al., 2011). A major information system overhaul (as would be required by ISO

8000 and similar documents), require signi�cant initial investments of time, money

and expertise as well as sustained motivation and discipline from all stakeholders

and a continued commitment by management to provide su�cient resources (ISO

5These are not the only aspects of data quality addressed by ISO 8000. Other important
elements identi�ed in the standard, like data provenance, accuracy and completeness, are also
imperative for achieving good data quality but semantic encoding is the most directly relevant
to the subject at hand
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2011; ISO 2014; Mobley 2002). A system that is not supported by management

has a very small chance of succeeding (Goble and Siebert, 2008). However, in a

survey by Hipkin and De Cock (2000), a lack of top management support was

identi�ed as one of the highest-ranking barriers to the implementation of new AM

systems in what the authors call management interference rather than support.

Both ISO (2014) and BSI (2008) emphasise that before embarking on ambitious

data collection exercises, organisations must compare the cost and complexity of

doing so with the value that can be derived from it. However, it is very di�cult

to make a clear business-case (in terms of costs and bene�ts) for investments in

data-management. At the time of implementation, when a large amount of re-

sources must be committed to; the bene�ts of future data not yet collected are

indirect, intangible and unproven while the costs are easy to calculate, substan-

tial and immediate (Braaksma et al. 2011, Braaksma and Veldman 2013, Hipkin

and De Cock 2000). This leads to companies prioritising short-term operational

needs over long term focussed improvement processes that do not yield immedi-

ate returns (Mahmood et al., 2015). Low maturity companies especially struggle

with this as they are often caught up in �re-�ghting immediate problems with

managers unwilling or unable to invest the time and money needed to overhaul

the information management system. This is con�rmed in a survey by Braaksma

and Veldman (2013) in which respondents reported that improving data collection

practices was not a priority compared to immediate problems.

Furthermore, the skills needed to create and maintain such databases are often

not held by, or cheaply available, to individuals or companies who need to store

and report on data (Edwards et al., 2008). It has been shown that the potential

value of IT system investments is directly correlated to the level of IT competence

held by an organisation; which is often lacking in maintenance organisations (Kans

and Galar 2017; Braaksma and Veldman 2013). This is con�rmed by Aljumaili

(2016) who adds that maintenance company culture frequently does not support

IT solutions. Personnel perceive it as a threat to their capabilities (Aljumaili,

2016) or part of management's underlying agenda of reducing costs and labour

(Hipkin and De Cock, 2000) which can lead to active resistance, indi�erence or

even vicious compliance (Palmer, 2006). If the entire organisation is not convinced
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of the usefulness of these changes, any intervention is likely to fail (Aljumaili, 2016).

Like AM, e�ective information management is a continuous process requiring sus-

tained e�ort, resources and motivation without which an organisation can easily

slip back to their previous, or a di�erent but equally undesirable, state; minus

the resources invested to get there. However, according to Hipkin and De Cock

(2000), managers increasingly see their role as setting things into motion with poor

follow-through in what Aljumaili (2016) calls an �implement and forget� attitude.

Often ambitious projects are set into motion and start o� well, but within a short

while the enthusiasm wanes with management perpetually looking for a next �cure

all� solution (Hipkin and De Cock 2000; Palmer 2006).

The continuous maintenance of the data dictionary (or similar structure) is espe-

cially important. If the data dictionary becomes outdated, inaccurate or incom-

plete (e.g. if a new failure mode occurs with no corresponding data dictionary

entry) the organisation can end up with worse quality data than before as tech-

nicians will have to record closest �t (but incorrect) codes (Woodall et al., 2015).

Likewise, if sta� are not held accountable or are unable to see the promised ef-

fects of changed data collection practices (e.g. persistence of intuitive rather than

data-driven decision-making); support is unlikely to continue with sta� becoming

demotivated (Palmer, 2006). This can lead to knowingly recording incorrect in-

formation by simply entering any code to pass �eld validation checks (Woodall

et al., 2015).

Where before the data was merely in an unusable format (but accurate), the data

will now be incorrect but easily analysed (and as such still used for decision mak-

ing). Decisions made with incorrect data are worse than intuition based decisions

using no data as they are accompanied by a false sense of con�dence (Tversky and

Kahneman, 1973).

Finally, and perhaps most importantly, this will only improve the quality of data

collected in the future whereas many companies have years of unused, potentially

valuable, historical data that will then go to waste. This can be especially prob-

lematic for long-term assets as Kenny et al. (2017) emphasises the importance of

collecting failure data for the entire life-cycle of an asset, from acquisition to dis-
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posal, which can span years for some equipment. In the meantime, models have to

be constructed with the available data and while present-day changes will improve

future AM, it does nothing to alleviate current data needs (Kenny et al. 2017;

Mukherjee and Chakraborty 2007).

In other words, although a complete overhaul of an organisation's information

management system (or at a minimum changing the way in which data is collected)

is ideal, it is not a practical solution for maintenance departments that do not have

consistent managerial support and discipline. Also, even for companies that are

able to completely overhaul their information management system, there is still

value in being able to extract information from bad quality data collected in the

past. This is con�rmed by McKenzie et al. (2010), Rajpathak and De (2016),

Mukherjee and Chakraborty (2007), Wang et al. (2017), Sipos et al. (2014), Uz-

Zaman et al. (2015), Edwards et al. (2008) and Devaney et al. (2005), all of whom

identify some form of text mining as potential solution and is the approach followed

for this thesis.

This approach is in accordance with the AM standards which recognise that real-

world constraints (such as budget, time or competence) may prevent otherwise

�ideal� decisions (IAM 2014; Palmer 2006) and strongly recommend considering

solutions that do not require additional investments but leverages existing pro-

cesses and data instead (ISO 2014; Marquez 2007). Furthermore, in light of con-

tinuous improvement, both ISO (2014) and BSI (2008) emphasize the importance

of actively seeking out new tools, techniques, technology and practices that relate

to AM and evaluating their potential bene�ts to an organisation and incorporating

them into the AM system if appropriate.
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Literature Review: Theoretical

Overview

This chapter provides an overview of the most important concepts, theory and

terminology of machine learning and natural language processing which are both

extensively used for text mining applications. In so doing it addresses the third pro-

ject objective, the outcome of which forms the theoretical basis for the remainder

of the document.

Included in this review is instructional literature such as text books and tutorials

as well as the more academic literature which is focussed on speci�c aspects of

machine learning (both those concerned with theoretical derivations and those

concerned with experimental analyses).

The primary concern of industry applications is ensuring the validity of the text

mining outcomes (Kobayashi et al., 2018). Accordingly, this is a major focus of

this chapter and is addressed mostly from a machine learning perspective. Natural

language processing mostly concerns the data preparation of text and its relevance

to machine learning is discussed where appropriate.

Most of the content presented here is standard practice in the respective machine

learning, text mining and natural language processing domains. They are used

extensively in literature and the true origin is not always apparent. Therefore,

references are only supplied for the noteworthy, non-standard or controversial ele-

43

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. LITERATURE REVIEW: THEORETICAL OVERVIEW 44

ments and the interested reader is referred to any number of the good text books

available on the subject such as that from Alpaydin (2010), Maimon and Rokach

(2010), Witten et al. (2011), Aggarwal (2018), McCallum (2012) and Raschka

(2015) to name a few.

While there exists a considerable amount of text mining and machine learning

literature, it su�ers from a lack of standardisation in terms of both methodology

and terminology (Moreno-Torres et al., 2012). This is partly due to being relat-

ively new disciplines and partly due to simultaneously developing from multiple

di�erent �elds with di�erent objectives, terminologies and standard practices. The

wide range of algorithms, theories and diverging opinions which are documented

in literature poses an especially big problem for novice practitioners (which in-

dustry, and maintenance, practitioners are likely to be) and represents a barrier

for industry adoption (Wuest et al., 2016). This is further exacerbated by the

inconsistent use of terminology with di�erent terms used to describe the same

concept, or even worse, using the same term to mean di�erent things. Not only

does this make it di�cult to �nd relevant literature, but it also hampers e�ective

knowledge sharing, fair comparisons between studies and the identi�cation of best

practices (Moreno-Torres et al., 2012).

3.1 Machine Learning

Machine learning is a subdiscipline of both statistics and arti�cial intelligence

that allows a computerised system to evolve (and improve its performance) when

exposed to new data. The term was �rst used in 1959 to describe the ��eld of study

that gives computers the ability to learn without being explicitly programmed� by

Arthur Samuel1 (who demonstrated this by developing a computer program that

learned how to beat him at checkers) (Schuld et al. 2015; Samuel 1959). Since

then the �eld has advanced signi�cantly and has been successfully implemented in

1Although this de�nition is widely quoted in literature, the original source of the statement
could not be found. Authors either cite secondary publications or falsely reference Samuel's 1959
�Some studies in machine learning using the game of checkers� paper (Schuld et al. 2015; Samuel
1959).
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a wide variety of applications such as email spam �lters, internet search engines

and facial recognition software (Alpaydin, 2010).

Classic machine learning is divided into two main categories, namely supervised

and unsupervised learning (Zhang et al., 2015). More recently researchers have

identi�ed semi-supervised learning as a third in-between category (Witten et al.,

2011). The main distinction between these methods is the availability, or rather

use, of labelled training data to �supervise� the learning process. Supervised meth-

ods are exclusively trained with labelled data, unsupervised methods with unla-

belled data and semi-supervised methods with both (Witten et al., 2011).

Labelled data consists of a sample of input-output pairs which illustrate the learn-

ing objective (Maimon and Rokach, 2010). For example, a supervised email spam-

�lter would be trained on a sample of emails labelled as spam or ham (not spam)

respectively. These algorithms look for patterns and relationships between the

input and output data provided in the training sample to learn a generalisable

mapping function that can be used to predict the labels of new, unseen inputs

(Maimon and Rokach, 2010).

In unsupervised learning, the algorithm receives only unlabelled training data in

which the algorithm searches for an underlying patterns and structure. This pre-

viously unknown structure is the desired output, giving the user new and valuable

information about the data. One of the most common unsupervised learning ap-

plications is clustering, an exploratory data mining activity that organises the data

into groups on the basis of similarity (Hastie et al., 2009).

The ability, or rather the requirement to learn from labelled data has both ad-

vantages and disadvantages. Labelled data allows the user to specify a concrete,

measurable learning objective. This has many advantages as it enables directional

learning, objective evaluation and model optimisation. By specifying both the in-

put and the output, the practitioner is also able to guide the supervised learning

process to produce useful models (such as email spam identi�cation). In unsu-

pervised learning there is no guarantee that the output will be useful and while

it may uncover compelling new insights from the data, it can just as easily �nd

banal, uninteresting and even spurious patterns (Witten et al., 2011). Further-
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more, because some of the labelled data can be used as a test case, it is very easy

to evaluate and optimise supervised models. In contrast there is no direct measure

of success for unsupervised learning algorithms (Hastie et al., 2009).

However, just as the ability to learn from labelled data is an advantage in su-

pervised learning, so the requirement thereof is a major disadvantage. While

unlabelled data is cheap and abundant, labelled data is expensive and rare (Wit-

ten et al., 2011). Labelling must usually be done by hand which is an incredibly

time-consuming and sometimes prohibitively expensive task. Moreover, sometimes

labelled data is simply not available. Supervised learning is also subject to misla-

belling and can run the risk of being over-�tted to the provided data resulting in

poor generalisability outside of the training sample (Hastie et al., 2009).

Semi-supervised learning lies somewhere between supervised and unsupervised

learning. It attempts to harness the advantages of both labelled and unlabelled

data by using a small amount of labelled data to enhance a large amount of un-

labelled data (Witten et al., 2011). This may seem like the ideal compromise,

but several studies have shown that while the addition of unlabelled data cer-

tainly helps in some applications, in others it does not and may even worsen the

performance (Zhu and Goldberg 2009; Nowak et al. 2009).

The problem of assigning failure modes to maintenance records is well suited to

the supervised domain and particularly its sub�eld of classi�cation. Classi�ca-

tion refers to the process of assigning input data to a predetermined and �nite

set of categories according to the input data characteristics. The predetermined

quali�er distinguishes supervised classi�cation from its unsupervised counterpart,

clustering, which looks for the natural groupings in the data (Maimon and Rokach,

2010). Because supervised models learn by example, the user can identify, or pre-

determine, meaningful categories (such as failure modes) and train a classi�er on

inputs grouped accordingly. Unsupervised models, on the other hand, receive no

such guidance and the natural groupings found may or may not be of interest to

the user. The �nite quali�er distinguishes classi�cation from the related �eld of

regression which predicts a non-�nite, continuous variable (such as cost or time)

(Alpaydin, 2010). Since failure modes are both a predetermined and �nite set of

categories, the problem area identi�ed in Chapter 2 is best suited to classi�cation.
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Classi�cation problems are further designated as being either binary or multi-

class classi�cation according to the number of user-de�ned classes in the output

(Sokolova and Lapalme, 2009). In binary classi�cation there are two classes of

interest (although it can also be thought of as positive and negative examples of

one class) while in in multiclass classi�cation there are multiple (more than two)

classes (Zimak, 2006).

The vast majority of ML literature is focussed on binary classi�cation with the

theory and algorithms developed for this scenario and authors simply adding state-

ments such as �This technique can easily be extended to the multi-class setting.�

(Zimak 2006; Hoens et al. 2012; Rifkin et al. 2003). However, according to Zimak

(2006), the extension to the multiclass setting is often not trivial.

The increased complexity of the multiclass output space inevitably increases the

complexity of the underlying learning problem (Zimak, 2006). Multiclass classi�c-

ation is inherently more di�cult than binary classi�cation because the algorithm

must construct a larger number of decision boundaries (Hoens et al. 2012; Rifkin

et al. 2003). In binary classi�cation the classes are complementary meaning that

rejection of one class is su�cient to assign it to the other class while for multiclass

classi�cation, each class must be explicitly de�ned (Rifkin et al., 2003). Moreover,

errors can occur in the construction of any one of the many decision boundaries

meaning that the opportunity for errors is much more signi�cant in the multiclass

scenario. Even if making random predictions, one can expect to be correct ap-

proximately 50% of the time on binary data, reducing to the order of 1/M on a

multiclass problem with M classes (Rifkin et al., 2003).

Multiclass problems can be decomposed into a set of binary problems and their

predictions combined in an ensemble to make a �nal multiclass prediction using

some type of voting strategy. This uses a divide-and-conquer strategy following

the rationale that a di�cult, complex problem can be solved by solving a set of

easier, simpler problems (Rifkin et al., 2003). There are multiple reasons to do

this. The most frequent reason is that some algorithms are only suitable for binary

classi�cation and do not have a multiclass formulation (Hoens et al., 2012). In this

case the user has no choice. However, sometimes even when there are multiclass

formulations, a binary ensemble could provide advantages. Such decompositions
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provide a powerful tool to transform the less studied multiclass problem into the

more studied binary problem (Hoens et al., 2012). Binary problems are easier

to optimise and can sometimes help to distinguish between closely related classes

as it focuses on one distinction at a time (rather than all at once). However,

Zimak (2006) cautions that the separate optimisation of a collection of independent

classi�ers might not correspond to the optimisation of the overall objective and

can lead to suboptimal, if not poor, multiclass results.

The most common decomposition schemes are one-versus-rest (frequently mis-

nomered as one-vs-all) and one-versus-one (also called all-vs-all and all-pairs) (Zi-

mak 2006; Rifkin et al. 2003). One-versus-Rest (OVR) is the simplest scheme that

trains an independent binary classi�er for each class using all documents from that

class as the positive examples and combining all the other classes into a single out-

of-class, or negative category (Zimak, 2006). The one-versus-one (OVO) scheme

trains a binary classi�er to distinguish between each pair of classes (trained on a

subset of data containing only those classes). This is a more powerful method than

OVR as it captures the local interaction between every pair of classes. However,

it can produce incoherent outputs such as class A over class B, class B over class

C and class C over class A (Zimak, 2006).

While many authors have compared these schemes, the results are inconclus-

ive with Rifkin et al. (2003) �nding no signi�cant di�erence in the performance

between OVR and OVO. Often, a more practical concern is the computational

complexity (Hoens et al., 2012). For a dataset of M classes, OVR trains M models

in comparison to M(M-1)/2 in the OVO scheme. The OVO scheme is therefore gen-

erally considered more expensive, and sometimes prohibitively so; but while each

OVO model uses only a small subset of the data (containing only two classes),

each OVR model uses the full dataset. Depending on how sensitive a particular

algorithm is to the number of samples, the OVO might be faster (Hsu and Lin

2002; Rifkin et al. 2003). A �nal point to consider is that because OVR compares

each class to all of the rest combined, it presents drastic class imbalance in the

binary problems; even in balanced datasets (Hoens et al., 2012).

Class imbalance is a major problem in classi�cation (not just in the OVR de-

composition) (Forman 2007; Hoens et al. 2012). The di�culty stems from the
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induction bias of most ML algorithms. Presented with a dataset with a severely

underrepresented class, most algorithms will ignore the minority class as they can

achieve high accuracy by always predicting the majority class (Hoens et al., 2012).

The e�ect of class imbalance becomes even more problematic in multiclass data

according to Hoens et al. (2012) who further state that while class imbalance is

relatively well studied (and understood) in binary problems, it has been largely

overlooked for the multiclass problem.

The predominance of one of the classes in the training data leads to that class

dominating the modelling process. The reason that this is more problematic for

multiclass classi�cation is because in the binary scenario the classes are comple-

mentary meaning that even if an algorithm is unable to learn the minority class

adequately, its knowledge of the majority class may enable it to correctly classify

minority class records by virtue of not being in the majority class (i.e. does not

require any knowledge of the minority class). Moreover, feature selection meth-

ods tend to be dominated by a high number of strongly predictive features from

easy classes, while ignoring the admittedly poorer features needed to discrimin-

ate the more di�cult classes. In general, a class becomes easier to learn if more

data is available meaning that the minority class is intrinsically harder, contains

less discriminative features and may be overlooked by the feature selection process

(Forman, 2007). Class imbalance can be addressed by adjusting the penalisation of

minority class errors (cost-sensitive learning) or by arti�cially balancing the data

through either under-sampling the majority class or oversampling the minority

class (Kobayashi et al., 2018).

A fundamental assumption in classi�cation is that the past is a reasonable indic-

ation of the future. In practical terms this means that not only must the training

data be representative of the problem setting, but it must be consistent with data

that can be expected in the future (Alpaydin, 2010).

These requirements are formally expressed as the independent, identically distrib-

uted (IID) assumption made by many ML techniques. The condition of independ-

ence requires all training instances to be independent of each other. Namely, that

they should represent unrelated, separate events such as the tossing of a coin (out-

come of each toss is independent of all previous tosses). An identical distribution
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requires all training instances to be sampled from the same data generation pro-

cess. In other words, that there are no overall trends or changes in the distribution

(StatisticsHowTo, 2016).

However, this is rarely true in real world applications (Ganiz et al. 2010; Dar-

rell et al. 2015). In reality, data often contains duplicates and repeated measures

violating the independence assumption as well as changes in the underlying distri-

butions (Witten et al., 2011). These changes can be caused by many factors in-

cluding sample selection bias and non-stationary environments (temporal or spatial

changes). The most challenging is what Moreno-Torres et al. (2012) calls concept

shift, when the fundamental relationship between the input and class variable

changes i.e. changing the de�nition of a class label (e.g. the changing perception

of what construes o�ensive language).

According to Moreno-Torres et al. (2012) there is a lot of terminological confusion

surrounding the description of these distributional changes. In this thesis data drift

is used to refer to gradual distributional changes over time while data fracture is

used to describe more drastic, sudden changes leading to two distinct distributions

before and after some fracture point. Cieslak and Chawla (2009) calls this the point

of failure in the classi�ers' predictions and would typically require training a new

model. While many models may still work well if the changes are fairly subtle,

drastic changes will require training a new model on updated data (Witten et al.,

2011).

Despite these violations, it remains a very useful assumption as it greatly simpli�es

the underlying mathematics (Ganiz et al. 2010; Darrell et al. 2015). Methods using

the IID assumption can still provide very good results as long as the practitioner

remains aware of the potential implications of these violations.

Machine learning is a very broad �eld with numerous di�erent techniques, strategies

and methods that have been successfully applied in a wide range of applications.

Selecting between these can pose a challenging task, especially for novice prac-

titioners (Wuest et al., 2016). Empirical comparisons between the wide variety

of methods have shown that each performs best in some, but not all, situations

(Maimon and Rokach, 2010). This phenomenon is known as the no-free-lunch the-
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orem which was formalised in Wolpert's famous 1996 paper where he demonstrates

that no model can beat random guessing in all possible scenarios (Domingos 2012;

Wolpert 1996).

This is based on the fact that ML is an inductive process and must make assump-

tions to be able to generalise beyond the training sample. The performance of a

model depends on how well its inductive bias matches the properties of a partic-

ular dataset so that for any model, there exists a dataset for which it is accurate

and another for which it is poor (Maimon and Rokach, 2010). Of course, one is

not typically concerned with all possible scenarios but rather with one particular

dataset for which there can theoretically be a �best� model. For this reason, Sta-

por (2018) states that it does not make sense to try and prove that one method is

superior on average (nor should such claims be believed). Instead the focus should

rather be on �nding the conditions in a speci�c problem that makes one method

perform better than another (such as class imbalance, dataset size, application

domain).

In practice it is therefore recommended to evaluate several reasonable alternatives

and select the one that performs best for that particular problem on that par-

ticular dataset with the selection of viable alternatives being guided by literature

according to the prior knowledge of the speci�c problem and data characteristics

(Raschka 2015; Alpaydin 2010). The no-free-lunch theorem does not only hold for

the algorithm but for the entire modelling process, including all the data prepar-

ation and preprocessing decisions as these also make assumptions about data.

Something else to consider when comparing di�erent models is complexity. Higher

model complexity is associated with additional costs requiring more processing

power, computational time and storage space making simplicity a desirable trait.

This preference is often expressed through Occam's Razor which basically states

that if two models perform equally well, the simplest should be preferred (Witten

et al., 2011).

The preference for simplicity is well-founded as complexity may cause models to

over�t which hurts the generalisability of models beyond the training data (Witten

et al., 2011). However, care must be taken to not apply Occam's Razor blindly.
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Domingos (1998) states that there are two possible interpretations (and applica-

tions found in literature) of Occam's razor of which only one is true. The �rst, that

simplicity in itself is a modelling objective and should be pursued for reasons of in-

terpretability and e�ciency - is correct. But Domingos (1998) cautions against the

second, the incorrect assumption that simplicity leads to better performance and

demonstrates both empirically and theoretically that this is not true as complex

problems warrant complex solutions (Domingos 2012; Domingos 1998).

It should be noted that while a large part of ML is automating data analyses,

it is not intended to replace humans but rather to augment them (Maimon and

Rokach 2010; Alpaydin 2010). Domain expertise remains incredibly important and

ideally SMEs should be involved in every step of the process from data preparation,

through modelling decisions and especially evaluation (Maimon and Rokach 2010;

Alpaydin 2010; Witten et al. 2011).

3.2 Data Quality and Source

While ML is frequently applied to datasets that do not meet the normal standards

of data quality (Edwards et al., 2008), it does not mean it is insensitive to the e�ects

of it. In fact, Mozetic et al. (2016) demonstrate that data quality, and speci�cally

annotation quality, is the most signi�cant determiner of model performance, much

more in�uential than even the choice of algorithm or preprocessing methods.

In classi�cation, the algorithm learns by example meaning that the quality of

learning can only ever be as good as the quality of the training data (garbage in

gives garbage out) (Maimon and Rokach, 2010). The problem is that the labels are

dependent on the subjective judgement of humans who do not always agree with

each other, or even with themselves (Mozetic et al. 2016; Lewis et al. 2004). The

authors in Mozetic et al. (2016) suggest that the main reasons for disagreements

are: the inherent di�culty of the task - especially when evaluating borderline

cases; domain speci�c vocabularies where di�erent words mean di�erent things

to di�erent people; concept drift (e.g. what constitutes o�ensive language may

change with time); or simply human error resulting from low quality work. They
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recommend monitoring the annotation quality throughout the labelling process so

that problems can be detected early on and addressed (Mozetic et al., 2016).

They evaluate data quality by assessing the extent of agreement between human

annotators by duplicating 15% of the original data to be labelled twice by either

di�erent or the same annotator (unbeknownst to the annotators). They used two

measures, namely inter-annotator agreement and self-agreement (Mozetic et al.,

2016).

The inter-annotator agreement evaluates the di�erence in labels assigned to the

same document by di�erent annotators. These inconsistencies provide an indica-

tion of the objective di�culty of the task rather than the data quality. Moreover,

the authors found that this provides the upper limit of classi�cation performance

for that dataset (unless the self-agreement is too low) (Mozetic et al., 2016).

The self-agreement evaluates the di�erence in labels assigned to the same docu-

ment by the same annotator. This provides a good measure by which to identify

low quality annotators. While poor self-agreement can lower the performance

limit (by introducing unnecessary inconsistency in the data), good self-agreement

cannot increase the performance beyond the limit imposed by the inter-annotator

agreement. However, if the data is labelled by only one annotator, the performance

is limited only by the self-agreement, but in this case the model is no longer learn-

ing the true �average� classi�cations but rather learning the classi�cation process

of that particular person (Mozetic et al., 2016).

The authors in Mozetic et al. (2016) evaluated 17 datasets of various languages

using multiple annotators on each. They report self-agreements varying from be-

low 30% to above 80% and inter-annotator agreements varying from below 20% to

above 60%. These results are not the exception. According to Lewis et al. (2004)

the consistency of annotations has been shown to vary considerably in several stud-

ies on di�erent datasets. This shows the unfortunate reality of the inconsistent and

low-quality data that can be expected in practice. Apart from the labelling errors,

the more general concerns of data quality such as incompleteness, noise, duplic-

ation and inconsistency are also relevant in classi�cation (Maimon and Rokach,

2010).
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The authors in Mozetic et al. (2016) recommend excluding poor quality data on

the basis of low self-agreement as the model will be hurt more by their inclusion

than it would gain from the additional training data. However, this provides

a signi�cant challenge in industry as often no surplus labels are available with

which to evaluate the annotator agreement scores. As alternative Aljumaili (2016)

recommends evaluating the data quality using meta data �elds. Because metadata

de�nes, describes and constrains data, any discrepancy, violation or anomalies are

good indicators of poor data quality. For example, violations of data type or value

constraints (e.g. text in numeric �eld, telephone number with too few digits),

and data anomalies (e.g. order of magnitude di�erences in numbers, or single

character descriptive text �elds) can be indicative of poor-quality records. The

downside is that such measures do not actually consider the data content or its

labelling quality, addressing only the more general data quality issues heuristically.

3.2.1 Choice of Data

Machine learning research is largely driven by the available data (Lewis et al.,

2004). A common challenge in machine learning research is the acquisition of

relevant and su�cient training data (Wuest et al., 2016). There are three sources

of data typically used in ML studies, namely synthetic data, publicly available

benchmark datasets and industry data.

Synthetic data is generated arti�cially by researchers to try and mimic the real-

world in a controllable manner with the speci�c purpose of testing some hypothesis

(Demsar, 2006). The advantage of such data is that there is no limit to the amount

of data available meaning an in�nite amount of independent tests can be performed

without the need for cross-validation or other subsampling techniques (Bellinger

et al., 2012). Moreover, it allows the researcher to precisely specify the conditions

of the experiment and in so doing eliminate any unknown external e�ects that

may a�ect the results unintentionally (Rodriguez et al., 2010). While this can

provide valuable insights to the e�ects of speci�c test conditions, it may result in

unrealistic datasets not representative of the complex interactions found in noisy,

real-world datasets. The results of such studies are as dependent on the researcher's

ability to emulate real data as it is on the modelling decisions under consideration
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(Demsar, 2006). For this reason, Alpaydin (2010) strongly recommends avoiding

synthetic data as far as possible and rather to focus research on real-world datasets

(benchmark or industry databases) collected under real-life circumstances.

Publicly available, benchmark datasets such as the UCI repository have many

bene�ts as they enable researchers to use real-world data without each having to

perform costly data collection and labelling. More importantly however, it enables

replication, transparency and provides a baseline on which new algorithms can be

evaluated (Lewis et al. 2004; Salzberg 1997). However, Lewis et al. (2004) cautions

that just as a model can over�t to a speci�c sample of training data, so the broader

research community can over�t to these benchmark datasets. This is con�rmed by

Salzberg (1997) who further states that these repositories are not representative

of the larger population of classi�cation problems but are in fact a very limited

sample of problems. They both recognise the continual need for studies performed

on new, real-world datasets to ensure a representative set of problems are addressed

by academia as a whole (Lewis et al. 2004; Salzberg 1997).

Industry datasets provide the most realistic representation of not only real-world

data but also provides insight to the real-world problems and domains (Lewis et al.,

2004). However, there are very real disadvantages to industry data as well. The

biggest challenge concerns the limited availability. Companies are wary of letting

their data into the public domain and while a researcher might be allowed to use

their data and even publish the results, they will rarely be permitted to publish the

accompanying datasets as well preventing replication or veri�cation by other re-

searchers (Kosto�, 2005). Moreover, this means that the labelling e�ort cannot be

shared by the broader research community leading to many researchers perform-

ing unsupervised learning on unlabelled data or following inadequate annotation

procedures.

Apart from the general quality considerations discussed above, document classi-

�cation also faces many additional challenges due to the characteristics of text.
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3.3 Text Characteristics

Natural languages are incredibly expressive and are capable of conveying even

the most complicated, abstract ideas in a variety of ways (de Vos et al., 2016).

However, they are also highly unstructured, deeply ambiguous and tremendously

complex data sources making automated processing a challenging task. The most

challenging aspects of natural language processing is the ambiguity as well as the

high dimensionality and sparsity.

3.3.1 Ambiguity

Even when processed by humans, language can be highly ambiguous and frustrat-

ingly vague. Ambiguity refers to anything that can have multiple meanings (de Vos

et al., 2016). There are many potential sources of ambiguity - poorly construc-

ted sentences, context-dependent word de�nitions, synonymy, polysemy, �gurative

imagery and subtle variations in language (chronologically, geographically or by

domain) to name a few.

To illustrate just how ambiguous language can be, one needs only consider the

fact that a large portion of contractual litigation revolves around ambiguity in

text. Despite contracts being speci�cally drawn up for clarity and precision, many

disputes still arise from di�erent interpretations of these contracts.

Humans are often able to disambiguate the correct sense through context or know-

ledge of the real world: either because only one interpretation is meaningful, or

because one interpretation is dramatically more plausible than the others. How-

ever, computers have no real-world knowledge with which to judge the sensibleness

of the various interpretations and are subject to much more ambiguity than might

be immediately obvious to a human reader.

There have been attempts to encode background knowledge into computers to

lessen this e�ect, most notably through ontologies. Ontologies try to formalise

the domain of discourse. These can range from a synonym list to more complex

conceptual models that describe the various entities, their properties and concep-

tual relationships between them (Chougule and Chakrabarty, 2009). These can
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be general-purpose or speci�c to a particular domain (Poli, 2003). While these

have been successfully applied in some �elds, Chougule and Chakrabarty (2009)

note that both the creation and upkeep of ontologies is a very time-consuming and

error-prone process presenting a barrier to many applications.

A further challenge in text analyses is the extensive use of non-literal, or �gurative

language. Figurative language is very much ingrained into all forms of written and

spoken language, even scienti�c literature. For example, in ML literature a �black

box model� is used to describe an uninterpretable model, where the imagery refers

to the inner workings being hidden from view as if in a black box. However, a

computer will be unable to distinguish between this and the literal use of either

the colour black or a physical box.

Furthermore, language is not a stationary thing. It changes with time, region, cul-

ture and domain. These challenges become even more signi�cant when analysing

at a word level which is often the case as discussed in the next section.

3.3.2 Dimensionality and Sparsity

The core of machine learning is �nding recurring patterns that can be used to

create a model which applies to new data (Witten et al., 2011). Although the

various algorithms di�er in precisely how and when in the modelling step they do

this, all of them utilise some form of similarity measure between documents to �nd

consistent similarities between documents from the same category, and consistent

di�erences between documents from disparate categories. This information is then

used to construct a model that classi�es new documents according to their level of

sameness (or di�erentness) to the various categories (Maimon and Rokach, 2010).

The biggest problem in such analyses are things which look the same but aren't

and things which look di�erent but aren't. This is an especially signi�cant chal-

lenge in text due to the ambiguity (discussed above) and the extreme variability

of natural language. Natural languages have an unbounded dimension as a po-

tentially in�nite variety of possible expressions exist. Due to the large number of

ways to communicate the same idea it is highly unlikely that any text segment

longer than a few words will have been used exactly before. Even the same author
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presenting the same idea within a short time-lapse, is highly unlikely to produce

an exact duplicate of an earlier text without actively seeing it; even if that is their

intention (de Vos et al., 2016).

Computers have no faculty for similarity and are only capable of binary comparis-

ons, namely perfect match or not. For example, given the inputs: (I) �The pump

broke.� (II) �The pump broke� (III) �The pump is not working.� and (IV) �Die

brandstof is op.� a computer will assess them all as equally unalike; even though

I and II di�er only with a period, while I and IV are not even the same language

and refer to completely di�erent subjects. However, despite this a human will

easily recognise I and II as equivalent, I and III as related and IV as completely

dissimilar. One of the obvious reasons for this is the reoccurring elements in re-

lated texts while there is little overlap between unrelated texts. Therefore, it is

common practice to evaluate text according to the linguistic elements it contains

as this allows computers to perform partial matching.

Despite the in�nite dimensionality of language considered at the document level,

all the expressional variety of text is achieved by di�erent combinations of an

essentially �nite set of linguistic elements, such as characters, words, phrases etc.

There are much fewer elements than there are ways to combine them. Therefore,

many authors suggest only considering the statistical distribution of these distinct

elements to reduce the dimensionality to a more manageable level. However, each

reduction in dimensionality is accompanied by an inevitable loss in meaning. The

most common way to do this is through the bag-of-words model which represents

each document as an unordered set of words (Alpaydin 2010; Reese et al. 2017).

Evaluating documents at a word level o�ers a signi�cant reduction in dimen-

sionality, however it can still be prohibitively large. According to de Vos et al.

(2016), there are approximately 100 000 words used in everyday English which

still provides a signi�cant dimensionality problem. Furthermore, text is also very

sparse as each document will typically contain only a fraction of the corpus vocab-

ulary. This leads to an incredibly sparse data distribution as the representation

of each document (as a function of the corpus vocabulary) will be mostly empty.

Both the dimensionality and the sparsity increase exponentially for higher level-

representations such as n-grams (overlapping phrases containing n words).
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Word appearance in language is characterised by Heap's Law and Zipf's Law shown

on the right and left of Figure 3.1. Heap's Law shows the vocabulary growth

(number of distinct words) corresponding to the corpus growth (total number of

words) (Serrano et al., 2009). Firstly, this shows that the most dramatic growth

happens initially meaning that even relatively small datasets are likely to have

high dimensionality. Secondly, the continuous growth means that any addition of

new data will increase the corpus vocabulary meaning that a classi�cation model

must be able to handle words unseen during training.

Figure 3.1: Text characteristics: Zipf's Law and Heap's Law

Zipf's Law states that the frequency of a term is inversely proportional to its

frequency rank. This means that the most frequent term will appear approximately

twice as often as the second most frequent term and three times more often than

the next (Serrano et al., 2009). This leads to a highly skewed distribution of words

where only a few words occur frequently, while the majority of the words are very

rare (Forman, 2007). For instance, in English the 10 most frequent words (the,

be, to, of, and, a, in, that, have, I) make up 25% of all written text, while on

the other end of the distribution 50% of all words occur only once - even in very
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large corpora2. These words, also called hapax legomena, make up only 5% of

all written text but constitute a signi�cant portion of the dimensionality (Witten

et al. 2011; Press 2011).

Statistically speaking, the high frequency words are more signi�cant. However,

these are typically stop-words which add very little content information and serve

more as grammatical construct. Their frequency is such that it can sometimes

dominate frequency-based schemes and obscure much more signi�cant, actual

content-based words. On the other hand, the low frequency words, and especially

the single occurrence hapax legomena, have much lower statistical signi�cance as

an algorithm cannot ascertain a pattern from a single point (Witten et al., 2011).

Therefore, many researchers suggest removing both the high-frequency stop-words

and the low-frequency rare words to reduce the dimensionality and improve the

information density of the data in a process called frequency thresholding (Section

3.7).

A �nal characteristic of text is word-burstiness which refers to the notion that

words are more likely to reappear in a document it has already appeared in, com-

pared to its overall frequency in the corpus (Serrano et al., 2009). This means that

the �rst occurrence of a word in a document is the most informative.

3.4 Data Representation

At the core of machine learning is its ability to learn from data. For this reason,

a critical step in the learning process is de�ning an appropriate representational

framework in which to process the data (Witten et al., 2011). This is not a trivial

exercise as the choice of representation inevitably biases the learning scheme in

a manner which could either enhance or limit performance (Witten et al., 2011).

The training data must be presented in a computer-suitable format. The standard

2Although considered a general phenomenon, the precise statistics will di�er slightly from
corpus to corpus. These statistics were computed from the Oxford English Corpus: a large
collection of 21st century English from a wide variety of sources (literary novels, newspapers,
blogs and more) and at the time contained more than 2 billion words (Press, 2011).
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way to do this is by expressing the data in a matrix-like data structure called the

vector space model (Sinoara et al., 2017).

3.4.1 Vector Space Model

The Vector Space Model (VSM) is an algebraic model that represents textual

information as a numeric vector to facilitate computer analysis. The dimension of

the vector space corresponds to the number of features used to describe the text. In

the usual bag-of-words implementation, this is the number of unique words found

in the data-set, namely the corpus vocabulary. The training data is transformed

to vector space by representing every document as a function of the words found

in that vocabulary. This creates a matrix-like data structure where each row i

is a document and each column j is a word from the corpus vocabulary. This

representation is also called a Document Term Matrix (DTM) (Gentzkow et al.

2017; Reese et al. 2017).

So, for a training corpus consisting of N documents containing a total of p distinct

words, the corpus vocabulary: V = (w1, w2, ..., wp) provides the matrix column

indices. Each document d can then be transformed to vector space: V (di) =
−→
di = [xi1, xi2, ..., xip] to populate the rows of a matrix to form the document term

matrix:

DTM =


−→
d1−→
d2

...
−→
dN

 =


x11 x12 ... xip

x21 x22 ... x2p

... ... ... ...

xN1 xN2 ... xNp

 (3.4.1)

Each matrix element xij �measures� the presence of the j
th word in the ith docu-

ment. These feature values (matrix elements) can be encoded in various ways with

the most common being Binary Occurrence, Term Frequency and Term Frequency

Inverse Document Frequency (TFIDF) (Reese et al., 2017).

Binary occurrence features: considers only the presence or absence of the jth
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word in the ith document using a binary representation such that:

xij =

1 if document i contains word j

0 otherwise
(3.4.2)

This representation ignores duplicates and has the e�ect of weighting each term

in a document as equally important (Reese et al., 2017).

Term Frequency Features: evaluates the number of occurrence of every word

in a document under the assumption that the most frequent terms in a document

are probably also the most relevant to that document. This can be thought of as

the local frequency (document level). The simplest formulation of this evaluates

the number of times that term j appears in document i namely:

xij = TFij = count(word j in document i) (3.4.3)

However, although it is widely accepted that there is some correlation between the

term importance and its frequency in a document, there is no consensus over the

exact nature of this correlation with some authors suggesting sub-linear formula-

tions instead. The most popular of these is through the use of Log Frequencies

such that:

xij = log(1 + TFij) (3.4.4)

where the logarithmic function lessons the e�ect of high frequency terms while

still maintaining the positive correlation. In other words, while recognising that

a word occurring 10 times more often than another is probably more relevant, it

rejects the notion that it is 10 times more important. (The addition of 1 prevents

zero-division for terms which are absent in the document.) (Marzec et al. 2014;

Reese et al. 2017)

Term Frequency - Inverse Document Frequency (TFIDF) Features: eval-

uates the number of occurrences of a word in a document, normalised by the total

number of documents that contain the word in the general corpus. It operates
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under the assumption that words which are common in every document will not

provide much discriminative power. Then each element is:

xij = TFIDFij = TFij ∗ IDFij (3.4.5)

where TF is the term frequency (or one of its variants) which favours locally

frequent words while IDF is the Inverse Document Frequency which scales down

globally frequent words and is typically calculated from:

IDFij = log

(
N

1 + nj

)
(3.4.6)

where N is the number of documents in the corpus and nj is the number of

documents containing word j. In the same way as above, the logarithm is used to

lessen the scale of the weighting and the addition of 1 in the denominator prevents

zero-division. (Marzec et al. 2014; Reese et al. 2017)

Once again, there are numerous di�erent schemes used in literature to calculate

TFIDF. Some authors only scale the IDF component logarithmically (Sinoara

et al., 2017), others scale both TF and IDF logarithmically (Marzec et al., 2014),

others scale TF by document length (Rajpathak et al., 2012) and many do not

specify which formulation was used (Chen and Nayak, 2007).

All of the above formulations (and their variants) are regularly used in literature

with no universally accepted, superior representation. For this reason, Forman

(2007) recommends evaluating multiple schemes to �nd the best one (time and

resources permitting), or otherwise, to choose a reasonable method based on liter-

ature.

In general, TFIDF is the most popular text representation scheme used in literature

(Allahyari et al., 2017). It is a fairly intuitive scheme and has been shown to

achieve some impressive results. However, this is by no means a guarantee that

this, or any other method preferred in literature, is the most appropriate for any

given situation and Witten et al. (2011) cautions against neglecting more situation

dependent, practical considerations.
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Binary occurrence features provide the lowest level of information, TF lies some-

where in the middle and TFIDF features provide the highest level of information

as it considers both the local (TF) and the global (IDF) characteristics of the

data. Theoretically, the higher level of information provided by the TFIDF scheme

should enable superior performance. However, if the additional information o�ered

by higher level schemes are not relevant to the speci�c application, it could hurt

rather than improve performance.

Finally, there are also some algorithms that require speci�c inputs. For example,

Bernoulli Naïve Bayes require Boolean features. This can be circumvented by

using some threshold value above which a TF or TFIDF feature value is mapped

to one and below which it is mapped to zero. However, it is not clear whether this

will provide any signi�cant advantage over the Binary occurrence features (Witten

et al., 2011).

The schemes discussed up to now all present di�erent variations of the bag-of-

words model which characterises text by the words that appear in them. This

is, by far, the most common scheme used in literature, but it is not the only

one worth considering (Reese et al., 2017). A common extension of this is the

inclusion of higher order n-grams, which considers overlapping phrases of length n

rather than individual words (which are unigrams). This preserves some level of

word-order information while retaining the simplicity of the bag-of-words model.

There is some contention in literature regarding the usefulness of higher-order

n-grams which leads to an exponential increase in both the dimensionality and

sparsity which can sometimes degrade the performance (Gentzkow et al., 2017).

However, while researchers may disagree on the principle of higher-order n-grams,

according to Tan et al. (2002) it is widely accepted that n>3 is not useful and may

even decrease performance. An important point made by Bekkerman and Allan

(2004) is that higher order n-grams should only be considered as extension to the

standard unigram (i.e. combined with and not as replacement) as the exclusion of

unigrams generally hurts the performance. All of the above formulations (Binary,

TF, TFIDF) are applicable to n-grams as well.
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3.5 Bias and Variance Trade-o�

The goal of supervised learning is generalisable predictive performance, namely to

learn a classi�cation function that will be able to predict the labels of new unseen

data and not only memorise the provided training data (Maimon and Rokach,

2010). There are three sources of error that can a�ect the generalisation perform-

ance; the error due to bias, error due to variance and the irreducible error due to

noise (Alpaydin, 2010).

In classi�cation the noise refers to labelling inconsistencies whether due to un-

de�ned boundary cases or human error (Witten et al., 2011). While some level

of noise is inevitable, this does not mean that the irreducible error cannot be ad-

dressed. The inconsistencies due to the unde�ned boundary cases (inter-annotator

agreement) should not be removed as this presents an inherent probabilistic com-

ponent in the target objective due to the subjective nature of labelling (which is

what is being modelled). However, if the labelling inconsistencies caused by error

can be identi�ed (e.g. by using self-agreement), these can be removed from the

dataset to reduce the amount of noise in the data. It forms part of the irreducible

error term because once included in the training set it cannot be reduced by im-

proving the modelling process. As discussed in Section 3.2, these inconsistencies

provide the upper limit of performance (Alpaydin, 2010).

It should be noted that this performance limit refers to the generalisable perform-

ance. It is possible to �nd a model that �ts the data exactly, however because this

would lead to also modelling the sample-speci�c error, such a model is likely to

have poor generalisability. This is an example of an over-�tting model (Alpaydin,

2010). This is why it is typically recommended to evaluate the model performance

on a separate sample of data (called a hold-out test set) unseen by the algorithm

during training. This will provide a better indication of the generalisable per-

formance as it is assumed that while the underlying predictive function will be

consistent in di�erent samples, the noise will vary from sample to sample.

The variance refers to the model's sensitivity to the training data. A high variance

model is over-sensitive to the training data and will model the particular charac-

teristics of that speci�c sample (including the noise). A model that su�ers from
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high variance is typically over-�tting meaning that it has a poor generalisation

performance as the model is dependent on the speci�c sample of data and will

�uctuate between datasets. Alternatively, a low variance model will ignore the

training data making the same prediction regardless of the input. This is also a

high bias model. Bias refers to the data-independent assumptions made in the

modelling process that cause systematic errors if incorrect. High bias can lead

to models under-�tting the data due to its insensitivity to not only the noise but

also the important features (Alpaydin, 2010). Such a model will also have poor

generalisation performance.

The dilemma of trying to simultaneously lower the bias and the variance of a model

is called the bias-variance trade-o� because typically reducing one will lead to an

increase in the other. Both are a function of complexity as typically the variance

can be reduced by decreasing the complexity of models considered, while the bias

can be reduced by increasing the complexity (Maimon and Rokach 2010; Alpaydin

2010). In order to learn a model that is applicable beyond the provided sample

of data, a small amount of both bias and variance is required and the challenge

is to ensure that the complexity is no more and no less than is required (Occam's

Razor).

The bias and variance trade-o� is not only applicable to model building but a�ects

the model evaluation as well (Santafe et al., 2015). Just as the modelling process

can be over-sensitive to the training data, so the evaluation process can be over-

sensitive to the testing data. When evaluating a model on a hold-out test set, one

is not interested in the performance on that particular sample but using that to try

and estimate the generalisation performance. However, it is possible that a speci�c

sample could accidentally be much easier or harder to classify due to the particular

documents contained in it meaning it is not a good indication of the generalisation

performance. If an evaluation procedure is too dependent on the particular test-

set being used, it su�ers from high variance while if the generalisation error is

always over or underestimated it su�ers from high bias. This presents a signi�cant

challenge because while the variance of the modelling procedure can be reduced

by increasing the amount of training data; and the variance of the evaluation

procedure can be reduced by increasing the amount of testing data; typically there
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is only a �nite amount of data available for both (Beleites et al. 2013; Santafe

et al. 2015). Learning curves provide a way to diagnose the main source of error

in a model and to evaluate the bene�t of increasing the amount of training data

(Raschka, 2015).

3.6 Learning Curves

Learning curves depict the performance of a model as a function of the amount

of training data (Beleites et al., 2013). The leftmost diagram of Figure 3.2 shows

the general shape of such a curve. It starts o� with a steep incline where a small

addition of data translates to large performance gains. When there is too little data

available, the algorithm has not received enough data to learn the concept fully

and each additional instance provides new information and a substantial increase

in the performance. However, this relationship does not increase inde�nitely. After

some threshold is reached, the algorithm has received a reasonably representative

set of examples to learn the underlying concept and the curve starts to plateau

with larger and larger amounts of data needed to achieve even small performance

gains (Hastie et al., 2009). This is known as the law of diminishing returns (Witten

et al., 2011).

Figure 3.2: Typical learning curves

However, the true generalisation performance cannot be evaluated directly and

only estimated from the empirical performance evaluated on a sample of data.
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Therefore, it is useful to look at the learning curves evaluated on a sample of data.

These are called conditional learning curves (Beleites et al., 2013). Conditional

learning curves are created by evaluating a model trained on an increasing portion

of the training data to see how the performance is a�ected by the sample size

(Witten et al., 2011).

The middle diagram in Figure 3.2 shows the typical learning curves for experi-

mental models with the upper black curve showing the training performance (eval-

uated on the same data used for training) and the lower grey curve showing the

testing performance (evaluated on a separate hold-out sample of data unseen dur-

ing training) (Luz 2017; Beleites et al. 2013; Ritchi 2019; Raschka 2015). From

this it can clearly be seen that the hold-out test performance is a much better

approximation to the true performance curve.

If the amount of training data is too small, the noise is indistinguishable from

the signal and the algorithms tend to over�t to the speci�c characteristics of the

sample leading to a high training performance but low generalisability beyond

that sample (as indicated by the low test performance) (Beleites et al., 2013). As

the amount of training data increases, the model becomes less likely to over�t as

the underlying function begins to dominate the incidental patterns in the data.

While ignoring the noise leads to lower training performance, the generalisability

of the model increases as indicated by the increasing test performance. While the

training performance will always be higher than the testing performance, these

will continue converging as the amount of data increases until the curves start to

plateau (Luz 2017; Ritchi 2019).

When performing experiments, learning curves can provide valuable insight to

the bene�t of collecting more data as well as diagnosing the main source of error

in models to guide further improvement e�orts (Luz 2017; Ritchi 2019; Raschka

2015). If the model performance has not yet started to plateau at the maximum

sample size, the collection of more data is highly recommended as the return on

investment is high. If the amount of training data is adequate, a model should

be su�ciently beyond that threshold to where the curves start to plateau (Hastie

et al., 2009). However, that does not mean more data will not be bene�cial.

Depending on whether the model su�ers predominantly from variance or bias, it
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may or may not be worthwhile to collect more data.

The area between the training and testing curves (arrows on the �gure) is indic-

ative of the model variance (Raschka, 2015). If, like in the middle diagram, the

curves converge, the model has low variance. For these models, the error is likely

dominated by bias and it is unlikely to bene�t much from the addition of more

data. Such models are likely under�tting the data and may bene�t from increasing

the complexity to reduce the bias (e.g. by considering more complex algorithms,

more complex feature sets or reducing the regularisation). (Luz 2017; Ritchi 2019;

Witten et al. 2011; Raschka 2015)

On the other hand, models for which the curves do not converge (like in the

rightmost diagram) su�er from high variance and are likely to bene�t from the

addition of more data (Raschka, 2015). A big di�erence between the training

and testing performance is an indication of poor generalisability meaning that

the model is likely over�tting the data. This can be addressed by decreasing

the complexity (e.g. considering simpler algorithms, simpler feature sets or more

regularisation) or by the addition of more data if the researcher feels that the

complexity is warranted (Luz 2017; Raschka 2015). Of course, high bias and high

variance are not mutually exclusive, and it is possible for a model to su�er from

both. A low training performance is always indicative of high bias, regardless of

the curve convergence.(Luz 2017; Ritchi 2019; Raschka 2015)

A �nal thing to note is that while increasing the amount of training data does

generally increase the generalisation performance, it can have the opposite e�ect

if the quality of the additional data is too low. This is illustrated by Mozetic

et al. (2016) who found that the addition of poor-quality data (as indicated by low

self-agreement) actually lead to a decrease in the test performance.

3.7 Basic Techniques

Machine learning is a very broad �eld with numerous di�erent techniques. This

section provides an overview of the basic techniques used in document classi�ca-

tion. An important point made by Alpaydin (2010) is that practitioners should
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not code their own implementations of these techniques, but rather use one of

the several publicly available libraries to do so as these have been optimised and

validated by a large number of experts. This also enables replication of results

(Alpaydin, 2010).

3.7.1 Data Cleaning and Preprocessing

Preprocessing concerns all the cleaning and preparation steps required to get data

into a format suitable for modelling. Preprocessing consumes the bulk of the e�ort

and time going into the entire data analysis; comprising up to 60% of the total data

mining project according to Cios et al. (2007) and Kurgan and Musilek (2006).

While it has no tangible business outputs, it is a critically important step with

Witten et al. (2011) stating that the e�ort going into this process pays o� many

times over as industry data is typically of disappointingly low quality.

The success of the various preprocessing methods is very much data and application

speci�c. While literature can provide valuable guidance, there is no substitute for

good data understanding. It is an iterative process requiring substantial trial-and-

error as there is typically no way to know before-hand how any given method (or

combination of methods) will work for a speci�c implementation (Witten et al.,

2011).

The high-level preprocessing methods common to all machine learning applications

(not just text) is discussed �rst followed by the more text-speci�c transforms.

3.7.1.1 General Considerations

Any analysis should start with an exploration of the available data to determine

the applicability of assumptions such as IID and to get a feel for the speci�c data

characteristics such as class distribution or potential data quality issues. In this

phase visual tools such as graphs can be very helpful. At this point it can be

useful to look at all of the available data, not only the text �elds. In the case

of maintenance records, this includes the entire WO database because while the

descriptive text �elds are the focus of the analysis, the structured �elds could
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provide valuable insight to the quality of the records and might even be useful

features in themselves (Aljumaili, 2016).

The goal is to re�ne quality of the training data to maximise the performance

that can be achieved. Ideally this would include evaluating the labelling quality

according to the self-annotator agreement de�ned in Section 3.2. Other things to

look at include the duplicates, missing data and outliers.

Duplicate records can result from data handling errors. This can be problematic as

the repetition gives these records more signi�cance than they actually have (Witten

et al., 2011). These are typically discarded (Maimon and Rokach, 2010). Most

datasets have at least some missing values. It is important to consider the potential

reasons for missing values when deciding how to handle them. For instance, missing

values resulting from poor data collection discipline may be indicative of a low

quality record, but if omitted due to irrelevance (e.g. failure symptom �eld for

an inspection task) this might not be the case (Witten et al., 2011). Outliers in

any of the �elds may also be indicative of poor quality records, however Witten

et al. (2011) cautions that these should only be discarded if it is certain that they

are not a valid anomaly of process but the result of some human mistake or data

handling error. Domain expertise is invaluable in this phase as they can provide

insights to the various reasons for any of the above issues (Witten et al., 2011).

3.7.1.2 Text Cleaning

The purpose of data cleaning is to remove any irrelevant information (extraneous

variations in the text) as these may obscure meaningful patterns in the data and

in�ate the dimensionality unnecessarily leading to poor classi�cation performance

(Kobayashi et al., 2018).

Text is a very high dimensional, noisy data source. While using the BOW model to

analyse the data at a more granular level reduces the input variation (Section 3.3),

it is still a very high dimensional source with a lot of noise even at a word-level.

Additional clean-up is frequently required to lessen this variation and increase the

signal to noise ratio, although inadvertently some signal will be lost as well. The

most typical steps deal with special character encoding/decoding, capitalisation,
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punctuation, numbers and spelling-errors as well as more advanced steps such as

stop-word removal, stemming, feature selection, feature scaling and dimensionality

reduction

While text cleaning tools can be created from scratch using Regular Expressions3,

due to the growing popularity of text-mining applications, many machine learning

platforms already have dedicated text preprocessing tools for this purpose which

can be used as is or customised to suit speci�c needs.

Special Characters Encoding

Character encoding refers to how computers store text, namely the mapping

between the actual characters that occur in text and the numeric representation

scheme used by the computer (McCallum, 2012). Essentially, the encoding is a

table that translates bytes into human readable characters. As the computational

�eld progressed, multiple di�erent text encoding schemes have been developed

such as ASCII, Code Page 1252, Mac Roman, Shift-JIS, Unicode and many more.

These schemes di�er in the exact mappings used as well as the character-sets they

address.

If the encoding scheme used to store the data is unknown, the data could be mis-

interpreted or even corrupted if decoded with the wrong scheme. All the encoding

schemes transform text to a computer readable bit sequence. However, if using the

wrong scheme, a bit-sequence could be mapped to an entirely di�erent character.

Or, if no such bit-sequence exists in that scheme, a program might silently discard

the invalid sequence or replace it with some place-holder replacement symbol such

as � or ? (Zentgraf, 2015). This can be a problem because often, a researcher

will receive plain text �les and frequently do not know the correct encoding scheme

used. While there are tools available that can help detect the encoding scheme

used, McCallum (2012) cautions that these are not perfect and recommends in-

specting snippets of the text manually to evaluate the viability of the characters

produced.

3A sequence of characters that de�nes a search pattern that is more powerful than exact
match searches in text due to its use of several wildcard notations (for example �\d� can be used
to search any single digit, �\D� any single non-digit, �\w+� one-or-more word characters and
�\d2, 5� between two and �ve digits).
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For English applications, once the correct encoding has been identi�ed, it may be

a good idea to convert any non-ASCII characters to the nearest equivalent ASCII

characters (e.g. naïve to naive) in a process called Transliteration by Marzec et al.

(2014). In English, diaereses are mostly found in foreign names and loan words such

as façade and naïve. But even here they do not change the meaning and are, in fact,

neglected by some authors which would lead to a computer regarding inconsistent

usage of �façade� and �facade� as two distinct words. Most programming languages

have tools for this e.g. Python Unidecode package which translates any Unicode

to the closest ASCII representation. For more detailed discussion on dealing with

encoding problems refer to McCallum (2012) and Zentgraf (2015).

Capitalisation

Capitalisation can add a signi�cant portion of the dimensionality of text without

adding much meaning. On a character level it already doubles the number of

distinct features (from 26 to 52) which becomes even more extreme on a word

level. For example, sentence starting capitalisation carries no content information

but will drastically increase the dimensionality if e.g. �The� is treated distinct from

�the�. For this reason, case information is often removed by transforming all text

to lower case in a process called case-normalisation. However, there are rare cases

where capitalisation can be meaningful. Some words, called capitonyms, change

meaning when capitalised and can, for instance, help to distinguish between the

Polish nationality and polish used for shining shoes. (This is just for English, in

some languages capitalisation might be even more signi�cant e.g. German which

capitalises nouns (Witten et al., 2011).)

Punctuation

Punctuation symbols are also often removed to reduce the dimensionality of the

data. Otherwise mid-sentence occurrences of the word �pump� will be evaluated as

distinct from sentence ending �pump.� (and all other variations due to exclamation

marks, commas, brackets etc.).

Common practice is to remove punctuation during the tokenisation process. How-

ever, how this is done is not always so trivial (Blamey et al., 2012). At the

most basic level, the punctuation can simply be removed without replacement (I);
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replaced with a single white-space (II); or replaced with a uni�ed punctuation

placeholder variable (III). All of these will get di�erent things right and wrong.

For example, in the contraction �can't� the �rst method (I) would give <cant>

which is probably preferable to <can>, <t> provided by the second (II) as this

would make it impossible to distinguish from its opposite �can�. However, for the

decimal point in the number �9.21�, the �rst method (I) yields 921 which changes

the order of magnitude completely.

For this reason, some authors suggest applying di�erent rules for di�erent punctu-

ation marks for example McKenzie et al. (2010) who retains all apostrophes before

the letters s, t and d.

Numerals

In many applications, numeric terms are regarded as adding irrelevant variation

and therefore dimensionality. Kobayashi et al. (2018) recommend removing num-

bers to improve model e�ciency unless there is reason to believe doing so will hurt

the performance.

Similar to punctuation, this can be done through simple removal, replacing with

white-space or by replacing with a numeric placeholder (i.e. only retain that it

was a number, not what number). For example, if classifying books into topics, a

high prevalence of numeric terms might be indicative of a text book rather than

a romance novel. However, treating each unique number-term (including page

numbers, publication dates and every example) as a distinct feature is less likely

to be useful and will quickly make the dimensionality intractable. As with most

modelling decisions, the choice of how to (and whether to) remove numbers is

application speci�c (Kobayashi et al., 2018).

Language Mistakes: Spelling Errors and Typos

Over and above the incredible complexity and variety of perfect language, language

is seldomly perfect. Formal text sources such as academic journals or newspaper

articles undergo rigorous editing and contain much less error, although even then
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it prevails4. Informal texts, which are usually not edited, have a much higher

prevalence of spelling, grammar and miswording errors.

For this reason, some authors suggest using spell-checkers to correct misspelt words

during the preprocessing phase. While it may, on average improve results for

generic language usage, Forman (2007) warns that automatic spelling correction

mistakes may outweigh the bene�ts as unfamiliar terms are forced to the �nearest�

known word which may be incorrect5. This is an especially bad idea for technical

documents which may have many uncommon, domain-speci�c words not found in

a typical vocabulary (Forman, 2007).

Part-of-Speech Tagging

In Part-of-speech (POS) tagging, words are tagged with their respective parts of

speech such as noun, verb or adjective (Maimon and Rokach, 2010). There are

multiple o�-the-shelf POS taggers available for English. These are usually trained

on manually tagged corpora such as the Brown corpus meaning that essentially

they are supervised classi�ers. This tries to capture the syntactic relationships

between words to provide a more expressive representation than the traditional

BOW to, for example, distinguish between �pump� used as a verb, noun or adject-

ive. However, this is not a trivial process and incorrect tags may hurt rather than

help the performance with Allahyari et al. (2017) stating that POS tagging is a

tedious and error-prone process. A �nal point that should be noted is that POS

taggers use the full sentence information to identify the correct part of speech.

This means that documents containing sentence fragments might not be compat-

ible with standard taggers (Mukherjee and Chakraborty 2007; McKenzie et al.

2010).

Tokenisation

Tokenisation refers to splitting up of text into distinct tokens to be used as features

4Such as the humorous case of �The Wicked Bible� which accidentally printed: �Thou shalt
commit adultery.� as the 7th commandment by accidental omission of the word �not� in one of
the early King James versions (Eisiminger, 1989).

5Such as the poor student, in whose entire thesis document an incorrect spelling of �tests�
was changed to �testes�.
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in the vector space (Allahyari et al., 2017). The most typical version of this is

splitting text on whitespace to get a word-level representation, namely the bag-of-

words model. However, tokenisation does not have to refer to words, it can split

on any character (or sequence of characters, or punctuations etc.) as long as the

end result is an unordered set of tokens. Moreover, the tokens do not have to be

distinct. For instance, the n-grams representation overlaps to both sides as each

word interacts with the word before and after it (Witten et al., 2011).

The tokens are represented in vector space by some numeric value which is typically

somehow related to the frequency of occurrence. There are numerous options but

the most common are binary occurrence (1 if present and 0 if absent), integer

frequency count (number of occurrences) or more complex scaled versions such as

log frequency or TFIDF (Section 3.4).

The above sections already mentioned some of the issues regarding tokenisation -

although simple in concept, the implementation is often not as trivial. Choosing

exactly how to split on which characters can be di�cult (Witten et al., 2011).

Moreover, while one of the most ubiquitous techniques in text-mining literature,

the majority of researchers do not report the actual process used leading to high

uncertainty when trying to compare studies or emulate the results (Blamey et al.,

2012).

Stemming

Stemming tries to reduce the extraneous dimensionality caused by the in�ection of

words by reducing words to their base form, or at least trying to (Kobayashi et al.,

2018). In�ection refers to changing the form of a word to express di�erences in

tense (work, worked, working), number (pump, pumps), gender (waiter/waitress)

and more.

In�ection can add a lot of expressive nuance to words which aids in expressivity and

particularity, but often at the cost of generalisability. Frequently, the in�ectional

di�erence between words are a language construct that does not actually change

the meaning of the word in a major way. Computers, only capable of exact match

will evaluate the words �run�, �runs� and �running� to be completely distinct and

as dissimilar as �run� and �stop�. By evaluating these as distinct words, not only
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do the dimensionality (and sparsity) increase unnecessarily, but performance can

be adversely a�ected by the feature dispersion.

Stemming is most typically done through a set of heuristic rules such as removing

trailing �s� from words. These methods are purely statistical and do not take the

individual word, meaning or context into account at all. However, this can lead to

situations of both over-stemming, merging distinct words to a common form (e.g.

�news�/�new�), and under-stemming, not merging words together which should be

(e.g. �mouse�/�mice�) (Jivani, 2011).

Stop-word Removal

Stop-words are not only a meaningless addition to the dimensionality of text,

they are sometimes even considered harmful as their high frequency can obscure

actual signi�cant patterns. These are typically removed using a stop-word list

compiled for a speci�c language (Witten et al., 2011). However, it is not always

so straight-forward. For instance, removing the stop-words changes the meaning

of the following sentences: �she was arrested� changes to �she arrested� and �the

pump is not working� changes to �pump working�.

There are even some applications where stop-words prove the most important fea-

tures, precisely because of their content independence and ubiquity. In authorship

attribution for example, the content-heavy words vary highly according to di�er-

ent topics addressed by an author, but the function words stay relatively constant,

posing as more of a stylistic feature (Witten et al., 2011). However, this is a very

speci�c scenario that is not frequently relevant to more general text classi�cation

tasks.

Feature Selection

Feature selection can be both supervised or unsupervised depending on whether

they make use of the class labels. Some of the most common unsupervised methods

include stop-word removal (described above) and frequency thresholding which is

used to remove both the most frequent and most rare terms above and below

some user speci�ed maximum and minimum threshold respectively. While any of

the feature representations can be used, this is typically done using the document
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frequency (DF) under the assumption that a word appearing in all documents does

not have discriminative power while words appearing in too few documents do not

have the statistical validity with which to make inference (Kobayashi et al., 2018).

Maximum frequency thresholding will a�ect many of the same words as stop-word

removal, but enables a more corpus speci�c elimination.

Supervised feature selection makes use of the class membership information to de-

termine the predictive power of each feature. Here the focus is more on selecting

the best, most informative features rather than on discarding the worst, uninform-

ative features. Common methods here include Mutual Information, Chi-Squared,

Gini Index and Information Gain (Kobayashi et al., 2018).

Data Scaling

Feature scaling comprise the set of techniques that can be used to scale features

to a comparable range. This can be done per document (per row in DTM) or per

feature (per column in DTM).

Document length normalisation prevents the features from longer documents dom-

inating those of shorter documents by normalising each document vector according

to its vector length. This can be done using either the Euclidean L2 norm, or the

Manhattan L1 norm:

||~x||L1 = (|x1|+ |x2|+ ...+ |xp|) (3.7.1)

||~x||L2 =
√

(x21 + x22 + ...+ x2p) (3.7.2)

The IDF transform can also be considered a feature scaling method. It accounts

for the frequency component resulting from corpus frequency rather than docu-

ment relevance by scaling each feature (column in DTM) by its inverse document

frequency.

Finally, feature standardisation rescales the feature columns to that of a normal

distribution centred around a mean of 0 and a standard deviation of 1. This
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retains outlier information but make models less sensitive to them. This is useful

for distance based classi�ers.

Dimensionality Reduction

While all the data cleaning steps discussed up to now can be considered dimen-

sionality reduction methods, the word is more typically used to describe those

techniques that transform the features to a lower dimensional space. One of the

most popular methods for text is Latent Semantic Analysis (LSA) which performs

a singular value decomposition of the document term matrix to reduce the dimen-

sionality of the vector space. This reduces the dimensionality of the feature space

and may even lead to improved performance through better feature representa-

tions. However, inevitably such a representation loses some descriptive detail and

may not be interpretable any more (Edwards et al., 2008).

3.7.2 Algorithms

An algorithm is the mathematical process which, when applied to training data,

produces a model such as a classi�er. It is useful to distinguish between the hy-

poparameters, which the algorithm learns from the data, and the hyperparameters,

which can be set (and optimised) by the practitioner (Tsamardinos et al., 2015).

There are many di�erent classes of algorithms that have been successfully applied

for document classi�cation including K-Nearest Neighbours, Naïve Bayes, Support

Vector Machines, Decision Trees and Neural Networks to name a few (Lee and

Yang 2009; Kobayashi et al. 2018). As per the no-free-lunch theorem (Section

3.1), there is no algorithm that is best for all situations as all of these make

various assumptions about the data and the learning objective making them more

or less applicable in various situations (Maimon and Rokach, 2010).

Naïve Bayes and Support Vector Machines are particularly popular due to their

e�ciency at handling the high dimensionality and sparsity that is characteristic of

text (Kobayashi et al., 2018)
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3.7.2.1 Naïve Bayes

Naïve Bayes is very popular due to its speed and simplicity. It is therefore often

selected as a baseline method with which to compare more complex algorithms.

Despite its simplicity, it can perform surprisingly well in certain applications show-

ing comparable performance to more complex methods such as Support Vector

Machines (Schneider, 2005).

It is a probabilistic method based on the application of Bayes Theorem and the so-

called �naïve� conditional independence assumption whereby it assumes that the

presence of features (words) in a document are independent of each other given the

class (Mccallum and Nigam, 1998). While this assumption is typically violated in

real-world applications, it enables incredibly e�cient handling of high-dimensional

data as the parameters for each feature can be learned independently (Mccallum

and Nigam, 1998). Moreover, despite this violation it can perform surprisingly

well (Witten et al., 2011).

The classi�cation function works by selecting the class that is most likely to have

generated that document (using Bayes Theorem of posterior probability) and is

also called a generative model. Variants of Naïve Bayes di�er only in the assump-

tion they make about the distribution of the features. The two most common

are the Bernoulli Naïve Bayes and the Multinomial Naïve Bayes which assume a

multivariate Bernoulli and multinomial distribution respectively (Schneider, 2005).

3.7.2.2 Support Vector Machines

Support Vector Machines (SVM) are particularly well suited to the character-

istically high-dimensional nature of text data as it is able to utilise the natural

sparsity of text to avoid a dimensionality crisis (Allahyari et al., 2017). Despite

the no-free-lunch theorem, several studies have demonstrated SVMs consistently

outperforming other models with some authors proclaiming it as the state-of-the

art, industry standard (Mertsalov and McCreary, 2009).

SVM is a distance based, discriminatory classi�er that looks for a decision sur-

face that separates the classes in an n-dimensional hyperplane and maximises the

margin of separation between them (Baharudin et al., 2010). It is very e�cient
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because only the documents closest to the decision surface are used to create the

model; these are called the support vectors.

SVM is a linear classi�er, but it can perform non-linear classi�cation by using

the kernel trick. While higher-order kernels have been used to great e�ect in

other domains, they have not been shown to provide any discernible performance

bene�ts for text classi�cation leading only to an undesirable increase in model

complexity (Lewis et al. 2004; Leopold and Kindermann 2002). Due to its e�ciency

at handling high-dimensionality, it is often claimed that SVM does not bene�t from

feature selection, but Forman (2004) states that this not true.

3.7.3 Hyperparameter (Model) Optimisation

The hyperparameter optimisation can have a drastic impact on the model perform-

ance. However, it is important to note that the hyperparameters are not limited

to algorithm parameters but include any variable in the modelling process that is

not estimated directly from the data (Tsamardinos et al., 2015). This includes all

user decisions such as the selection of preprocessing transforms and parameters.

Due to the complex interactions between the various parameters, algorithms and

data there is no way to know beforehand which combination will yield the best

results (Marzec et al., 2014). For this reason, the optimisation typically comprises

a trial-and-error process whereby di�erent parameter combinations are implemen-

ted and evaluated according to the target objective (in this case classi�cation

performance) to select the best combinations (Witten et al., 2011).

There are di�erent optimisation strategies used in literature including one-factor-

at-a-time, exhaustive grid-search and a randomised-search procedure. In all of these

methods the researcher must �rst de�ne the parameter search space to explore by

selecting a set of parameters and a reasonable range of values for each.

As the name suggests, one-factor-at-a-time keeps all but one parameter steady to

optimise each one-by-one. The problem with this method is that the combination

of such separate optimisation outcomes is not guaranteed to yield optimal results

(Baharudin et al., 2010) as this method ignores the complex interactions that are

known to exist between parameters (Alpaydin, 2010).
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To combat this e�ect, the grid-search varies all parameters together instead of

one at a time to perform an exhaustive search of every parameter combination

in the search space. According to Bergstra and Bengio (2012), this is the most

widely used strategy in literature but su�ers from the curse of dimensionality as the

search space grows exponentially with the number of parameters considered. For

this reason, grid-searches quickly become computationally infeasible meaning that

only a small subset of parameter-combinations must be selected by the practitioner.

Therefore, some practitioners suggest performing a grid-search on a smaller subset

of the data to ease the computational load. However, Forman (2007) cautions that

the optimality of parameters may be dependent on the amount of data so that this

can lead to the selection of suboptimal parameters.

Alternatively, Bergstra and Bengio (2012) recommends performing a randomised-

search procedure which evaluates only a random sample of points on the grid under

the assumption that there is a close-to-optimal region in the search space that will

yield comparable results to the single optimal point.

The advantage of this method over the more common exhaustive grid-search is

two-fold. Firstly, a much larger range of parameters settings can be explored

for a fraction of the computational e�ort. This is especially important for inex-

perienced practitioners as selecting the most important hyperparameters and a

speci�c range of values to consider can be a daunting task. It is not always ap-

parent which parameters will have the largest impact on performance nor which

speci�c set of parameter-values are likely to contain the optimum (Bergstra and

Bengio, 2012). There are resources available that attempt to guide practitioners in

selecting parameter-grids by specifying the most in�uential parameter(s) for each

algorithm and providing a reasonable range of values for each. However, Bergstra

and Bengio (2012) found that parameter in�uence (and optimal value-range) is

very much data-dependent, a �nding that is supported by the con�icting recom-

mendations sometimes found in literature. Furthermore, despite the fact that

complex interactions are known to exist between the various parameters, these

resources frequently address only one aspect of parameter optimisation at a time

(e.g. only the estimator parameters or only a single aspect of the preprocessing

decisions). The combination of these separate optimisation outcomes is not guar-
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anteed to yield optimal results (Baharudin et al., 2010).

Secondly, because it randomly samples parameter combinations from the provided

parameter space, the range of values to evaluate for each parameter can be provided

as a continuous distribution. This enables a much �ner optimisation than is pos-

sible for grid-search which can only evaluate a discrete set of values. This enables

the randomized-search procedure to explore a much wider range of the important

parameters while being relatively una�ected by the inclusion of unimportant para-

meters. This is because unlike grid-search, multiple parameters can be changed

for each iteration. The grid-search wastes a large portion of e�ort keeping the

important parameter values constant while testing di�erent values of the unim-

portant parameters. In contrast, the randomized-search procedure varies both at

once meaning that more values can be tested for the important parameter and is

largely una�ected by simultaneously varying the unimportant parameter values.

(Bergstra and Bengio, 2012)

While it is reasonable to doubt the e�ectiveness of this procedure as it does not

evaluate each grid point, Bergstra and Bengio (2012) shows that in many instances,

the randomised-search procedure is able to �nd models that are as good or better

than the grid-search applied over the same search space. Overall, trying only 60

points seems to be su�cient. Zheng (2015) con�rms that the randomised-search

procedure is as good as an exhaustive grid-search in many instances and further

explain the selection of 60 trials. While the full discussion is beyond the scope of

this study, Zheng (2015) summarises their explanation by stating that �if at least

5% of the points on the grid yield a close-to-optimal solution, then random search

with 60 trials will �nd that region with high probability (95%)�.

3.7.4 Evaluation

As mentioned in Section 3.5, when evaluating supervised models the concern is

with generalisation, namely estimating the performance that can be expected upon

deployment for all data, not just the available training data (Maimon and Rokach,

2010). In doing so there are various things to consider including the evaluation

metrics and evaluation approach.
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3.7.4.1 Evaluation Metrics

The most straightforward metric is Accuracy (or its complement misclassi�cation

error) de�ned as the proportion of documents labelled correctly (eq 3.7.3). (To

distinguish the speci�c metric from accuracy used in the general sense to mean

correctness, the metric is referred to with a capital letter.)

Accuracy =
Correct Predictions

Total Predictions
= 1−MisclassificationError (3.7.3)

Accuracy is an intuitive and easy to understand metric, but it can be dangerously

misleading in situations of class imbalance. For example, in a binary classi�cation

problem with a 90/10 class imbalance, a trivial classi�er which always predicts

the majority class will achieve a 90% Accuracy despite being a useless model.

For this reason, it is widely recommended against to report only the Accuracy of

models. Regardless, it remains one of the most widespread metrics with many

studies still reporting Accuracy in isolation. Even if data is balanced it is still

good practice to look at more than one metric to get a better understanding of

the model performance as each gives a di�erent perspective of the errors made.

Numerous other evaluation metrics exist to quantify the model performance. Clas-

si�cation results are often summarised using a confusion matrix which provides the

number of correct and incorrect predictions for each class and from which the other

metrics can be computed. An example can be seen in Figure 3.3 where each row

represents the true class membership and each column the predicted class mem-

bership to not only indicate the amount of errors but also give insight into the

type of errors made.

Figure 3.3: Confusion matrix schematic
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From this it is useful to distinguish between True Positives (TP), False Positives

(FP), True Negatives (TN) and False Negatives (FN) for each class. For example,

for class A:

� TP: number of documents correctly predicted as class A

� FP: number of documents incorrectly predicted as class A

� TN: number of documents correctly predicted as not class A

� FN: number of documents incorrectly predicted as not class A

It is desirable to maximise the diagonal elements of the matrix as these represent

the correct predictions (TP). The o�-diagonal rows provide the FN and the o�-

diagonal columns the FP. (Of course, the TP of one class forms part of the TN for

all the other classes).

The confusion matrix can be used to calculate the Precision and Recall for each

class. Precision determines what proportion of documents classi�ed into class A

are truly class A and can be calculated from the confusion matrix by taking the

diagonal element of each class as a percentage of its column total as shown in

eq 3.7.4. Recall determines the proportion of documents from class A that are

correctly classi�ed and can be calculated from the confusion matrix by taking the

diagonal element of each class as a percentage of its row total as shown in eq 3.7.5.

While both metrics maximise the TP, Precision penalises FP and Recall penalises

FN.

Precision =
TP

TP + FP
(3.7.4)

Recall =
TP

TP + FN
(3.7.5)

Ideally you want to maximise both of these measures for all classes, but often

maximising one will lead to minimising the other. The cost of di�erent types of
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error are not always equal, sometimes Precision (which penalises FP) may be more

important than Recall (which penalises FN) or vice versa. For instance, in email-

spam detection it is far more costly to delete a non-spam email than to let a few

spam emails into the inbox.

In cost-sensitive learning where one type of error is more costly than another, this

trade-o� between Precision and Recall is evaluated by calculating the harmonic

mean between them using a metric called the F-beta score:

FBeta = (1 + β2)
Precision ∗Recall
β2Precision+Recall

(3.7.6)

where β refers to the relative importance of Recall over Precision. In the event

that Precision and Recall are weighted equally, namely β = 1, it reduces to the

F1-score as can be seen in eq 3.7.7. This is also called the balanced F-score and

can be further simpli�ed using the above de�nitions of Precision and Recall as

shown below:

F1 = 2
Precision ∗Recall
Precision+Recall

=
2TP

2TP + FP + FN
(3.7.7)

The F-score is widely recommended for text-classi�cation, especially in the case

of class-imbalance where it provides a better view of the total performance than

Accuracy. There also exists graphical methods to evaluate models, such as Area

Under the Curve (AUC), but the extension to multiclass is not trivial (Santafe

et al., 2015) with no accepted method to do so in literature (Sokolova and Lapalme,

2009) and is therefore not presented here.

All the above measures determine the per-class performance, but can also be

used to evaluate the overall model performance by taking either the micro- or

the macro-averaged metrics. Micro-averaging determines the per-document met-

rics. It weights each document equally meaning that the majority class (which

has more documents than minority classes) performance will dominate the score.

Macro-averaging, on the other hand, determines the per-class averages. Therefore,
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it weights each class equally meaning that the in�uence of the minority classes on

the score is upweighted beyond their proportionality in the dataset. For example,

the di�erence between the micro- and macro-average is shown for Precision in

equations 3.7.8 and 3.7.9.

Pmicro =

∑
True positivesall classes∑

True positivesall classes +
∑

False positivesall classes
(3.7.8)

Pmacro =

∑
Precision for all classes

Number of classes
=

∑M
i=1

TPi

TPi+FPi

M
for M classes (3.7.9)

In balanced datasets these are equivalent, but in in cases of class-imbalance the

micro-averaged scores can hide poor performance of minority classes (which are

typically harder to classify), while the macro-averaged metrics are disproportion-

ally in�uenced by the minority classes which make up only a small component of

the dataset.

To some extent, the micro-average can be considered a better indication of the

desired performance since the score is dominated by the majority of the documents.

By de�nition, the majority class is the most frequently occurring class. Therefore,

the performance of the majority class can be considered more important than that

of the minority classes since you want the model to perform well for the majority

of instances. However, it can hide unacceptably poor results for the minority class.

The majority class performance may be more important overall, but there might

be some threshold below which the minority class performance is unacceptable

(e.g. a trivial classi�er that always predicts the majority class can have a high

micro-averaged score). For this reason it is generally recommended to consider

multiple di�erent metrics to get a broader perspective of the model performance.

Overall, however, the choice of evaluation metric (and averaging method) should

be application speci�c.
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3.7.4.2 Other Considerations

While the predictive performance (as quanti�ed by the above metrics) is important,

other factors to consider when evaluating models is the interpretability, e�ciency

and actionability (Witten et al., 2011).

Interpretability (also called comprehensibility) refers to how well humans can grasp

the model and understand the relationships it identi�es. People are more accepting

of what they understand making interpretability an important factor for industry

adoption. Interpretable models can be reviewed by experts. Not only is this

important for error-�nding and validation, but it also enables the incorporation of

expert feedback into the modelling process leading to improved models. Moreover,

interpretable models open up the possibility of experts being able to identify and

use the interesting patterns found by these models (as opposed to using just the

models) (Maimon and Rokach, 2010).

E�ciency refers to the computational e�ciency and concerns the memory, speed

and complexity of the analysis. For applications requiring real-time predictions,

such as fraud detection, e�ciency is of utmost importance, but otherwise only

limited by practicality. Actionability refers to the potential usefulness of the model

to justify the data mining e�ort (Witten et al., 2011).

3.7.4.3 Evaluation Approach

The main approaches used for performance evaluation are training performance,

hold-out test sets and cross validation. The training performance, also called the

resubstitution method, is perhaps the most simple evaluation approach that uses

all of the available data to �rst train and then test the model (Santafe et al. 2015;

Varma and Simon 2006). Because the same data is used to train and test the model,

this approach tends to be optimistically biased (underestimates the generalisation

error due to over�tting) (Maimon and Rokach, 2010). With this approach, a trivial

model that simply memorises the training data would get a perfect resubstitution

score despite being useless beyond that speci�c sample (Santafe et al. 2015; Witten

et al. 2011). For this reason, it is generally not considered to be an adequate

approach. While the training performance can be useful to know (Section 3.6), it
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is generally recommended to evaluate the model on unseen data to emulate the

deployment scenario such as the hold-out method (Santafe et al. 2015; Witten

et al. 2011).

Hold-out Method

The hold-out method, as the name suggests, holds out a subsample of the available

training data to better estimate the generalisation error, namely the performance

on unseen data. There are multiple ways in which this can be done including two-

way, three-way and k-fold cross-validation (Santafe et al. 2015; Raschka 2015).

In a two-way evaluation, the data is split into two mutually exclusive sets: a train-

ing set used to create a model and the testing set used to evaluate the performance

(Santafe et al., 2015). However, most ML applications also involve an optimisa-

tion process in which hyperparameters are selected according to the performance

as evaluated on the test set. While the two-way evaluation o�ers a drastic im-

provement to the resubstitution approach, it can also be optimistically biased as

the test set is used repeatedly to tune the hyperparameters. Just as models can

over�t to the training data, so the modelling process can also over�t to the testing

dataset. Because the test set is used repeatedly in the hyperparameter optim-

isation process, it can no longer be considered a good imitation of generalisation

performance on unseen data as the model may have been over-optimised to the

characteristics of that speci�c test-set.

For this reason, it is preferred to split the data three-ways to create a training,

validation and test set so that the model can be optimised repeatedly according

to the performance on the validation set with only the �nal, optimised model

evaluated on the hitherto unseen test set.

From the learning curves (Section 3.6) it can be seen that model performance is

a function of the amount of training data, but Beleites et al. (2013) point out

that building a good model is not enough; the performance must also be validated

(Beleites et al., 2013). The more data available for training, the lower the modelling

bias meaning a better model can be trained. However, assuming a �nite amount of

data, an increase in the training sample equates to a decrease in the testing sample

in the hold-out scenario. This increases the evaluation variance as the performance
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estimate becomes more sensitive to characteristics of a particular test set leading

to a less reliable evaluation. Using a larger testing sample will reduce the variance

and thus improve the validity of the evaluation; but will again result in a smaller

training sample leading to a weaker model.

Cross-validation attempts to solve the above mentioned problems by using multiple

training/testing subsets of the data to train multiple models and in so doing also

get multiple performance evaluations. The most common formulation of this is k-

fold cross-validation in which the data is divided into k equal folds (subsets). Then

k models are trained using each fold as a test set and the remainder as training

data. Each document is therefore used as a test document exactly once and used

k-1 times as training (Santafe et al., 2015).

This method allows models to use all of the data for training and all of the data

for testing in an attempt to minimise both the bias of the model and the variance

of the evaluation. Rather than having a single point estimate of performance it

gives multiple values indicating the spread of performance that can be expected.

It should be noted however, that the cross-validation is only used as performance

estimate. The �nal model should be trained using all of the data. Because all of

the performance estimates are of models trained on less data than the �nal model,

assuming the general trend of increasing performance with more data, this means

that the cross-validation estimate should be slightly conservatively biased (better

than overcon�dent).

The choice of k is once again a bias variance trade-o�. For larger k's the training

sets become large meaning that the performance estimate bias is reduced and will

be closer to the true value. However, this also means that the test set sizes will

decrease meaning that evaluation variance will increase making the CV estimate

less trustworthy. Also, the larger k is, the more models are trained leading to

an increase in the computational and manual e�ort. On the other hand, smaller

values of k mean that the training sample for each model decreases which result

in poorer models and an increase in the conservative bias of evaluation (bigger

di�erence between models evaluated and true model). But correspondingly, the

test set increases which decreases the test variance improving the validity of the

evaluation.
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For all of the hold-out methods, the dataset can be separated using either a ran-

dom or a strati�ed splitting strategy. In the random approach, the data is typic-

ally shu�ed and split randomly into the number of sets required by the hold-out

scheme. However, for imbalanced data, this can result in minority classes being

excluded from some of the folds. In these situations a strati�ed scheme is re-

commended which maintains the class proportions in all of the folds (Raschka,

2015).

3.8 Validation

Apart from evaluating the speci�c scores of a classi�er, it is important to consider

the validity of both the modelling and the evaluation process as this pertains to

the validity of the results.

3.8.1 Baselines

When evaluating models it is good to have a baseline with which to compare

the results. Some authors suggest using the performance on publicly available

benchmark datasets as a baseline to compare di�erent methods.

However, good performance on a benchmark does not guarantee the superiority of

a method, which might simply be particularly suited to the speci�c properties of

that data. Lewis et al. (2004) cautions that industry as a whole can become over�t

to benchmark data if used repeatedly to justify the preference of one method over

another. Baharudin et al. (2010) further state that experiments performed by

di�erent authors cannot be compared due to the various incidental, �background

conditions� extraneous to the particular algorithm or method under consideration

that a�ect the results. Therefore it is good to have a problem-speci�c baseline

that can be created by every author for their speci�c dataset. One such method

is what is called �dummy estimators� in the Scikit learn documentation.

Dummy estimators are used to quantify how much of the model performance can

be attributed to chance. A trivial model that simply assigns all documents to the

majority class (which has frequently been used as an example in this thesis) is
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one such dummy estimator, in particular a Majority Class Dummy Estimator. It

provides a useful baseline comparison in cases of class imbalance. Other possib-

ilities include a Random Dummy Estimator and a Strati�ed Dummy Estimator.

The Random Dummy Estimator assumes uniform priors for each class while the

Strati�ed Dummy Estimator uses the observed class distribution to make data

predictions. While none of these are useful models, they provide a useful baseline

comparison which can be used to evaluate actual models.

3.8.2 Statistical Validation

Due to the experimental nature of ML, some researchers propose using various

statistical tests to determine the signi�cance of results (e.g. whether the per-

formance gains observed for a new algorithm is statistically signi�cant or due to

chance).

However, there is some controversy surrounding the validity of such tests (Bergmeir

and Benitez, 2012) as typical ML experiments violate many of the assumptions

these tests make (such as the lack of independence between the training folds

of a cross-validation) (Dietterich 1998; Stapor 2018). In fact, due to the frequent

misuse and misinterpretation of statistical tests in literature, Demsar (2006) states

that many researchers are of the opinion that signi�cance tests should not be used

at all.

Dietterich (1998) reports that the most popular method observed in ML literature,

the paired t-test, is not suitable (due to high probability of making a Type I error)

further stating that it should never be used. While this view is shared by several

authors, there is much less agreement about what should be used in its stead and

from the con�icting views in the literature surveyed, no de�nitive answer could be

found.

However, according to Salzberg (1997), research focussed on feasibility do not re-

quire a statistical evaluation to be convincing. Moreover, Witten et al. (2011)

states that for most practical applications simply choosing the method with the

best cross-validated performance is su�cient; even if this di�erence is due to chance

and not statistically signi�cant. As mentioned previously, the objective is not to
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�nd the single �best� model, but rather to �nd one that is good enough and demon-

strate this empirically. More important than proving the statistical signi�cance of

results, is ensuring the validity of the modelling and evaluation procedure used to

obtain them to make sure the results are not overestimated.

3.8.3 Methodological Concerns

Several concerns have been identi�ed in literature that pertains to the validity

of the various steps typically found in ML projects. First is the concern of data

leakage (also called data contamination) which occurs when the model has unfair

insight to the test-set when training leading to overcon�dent performance estim-

ates. This can be due to a wide variety of issues. The most drastic version of

this is if the label is accidentally included in the training data leading to a trivial

classi�er �predicting� the label based on the label (Sapkota et al., 2015). However

it can also occur in more subtle ways.

According to Krstajic et al. (2014) a common mistake made in literature is to

optimise the preprocessing transforms outside of the modelling process, namely

before the hold-out data is separated, leading to an optimistic bias. Both Kr-

stajic et al. (2014) and Tsamardinos et al. (2015) recommend that the selection

of preprocessing transforms should be treated as hyperparameters and optimised

with the algorithm hyperparameters in the cross-validation. This also enables

the preprocessing transforms to be optimised for each algorithm. According to

Baharudin et al. (2010) proper optimisation of the preprocessing transforms can

have a big impact on the algorithm performance further stating that the predom-

inance of SVM in literature is due to people comparing unoptimised versions of

the algorithms. While this does not impact the validity of the results it can lead

to selecting suboptimal models.

Moreover, in the typical scenario where cross-validation is used for both model

optimisation (tuning the hyperparameters) and model evaluation, data leakage

can also occur by manner of the algorithm over-optimising for the speci�c test

set. This is no di�erent to the repeated optimisation in a two-way split meaning

that the performance estimate is no longer truly a hold-out evaluation leading to
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a dangerously optimistic bias. Therefore Krstajic et al. (2014) and Tsamardinos

et al. (2015) recommend performing a nested cross-validation, namely a cross-

validation within a cross-validation where the inner loop is used for optimisation

and the outer loop is used for the performance evaluation. They recognise that

this will result in a pessimistic bias due to the smaller amount of data used for

training, but they state that this is preferable to an optimistic bias.

Another concern identi�ed by Bergmeir and Benitez (2012) is the violation of the

IID assumption and its impact on model evaluation. By splitting the data ran-

domly (typically after shu�ing) or through strati�cation you create an arti�cially

IID train/test distribution where the model is evaluated on data consistent with

the data it was trained on. While this would be the ideal situation, more frequent

than not there is at least some form of data drift. They therefore recommend

doing a blocked cross-validation (also called a grouped CV) whereby the data is

split into more homogeneous blocks (based on some grouping) so that the classi�er

can be evaluated in a more realistic scenario where the training and test sets di�er.

While this can be done for any dependencies, they evaluate the impact of making

chronological time-blocks and using these as the folds in a cross-validation. They

�nd that while this method underestimates the performance, this was preferable

to both randomised and strati�ed cross-validation which over-estimated the true

performance (Bergmeir and Benitez, 2012). Lewis et al. (2004) does not use a

cross-validation but proposes a similar concept for a three-way split saying that

the chronologically last data should be kept apart for testing to emulate the de-

ployment scenario where a model is trained on historical data and tested on future

data.

Another concern noted by Forman and Scholz (2010) is the di�erent ways in which

the cross-validated F-score can be computed. They note that according to the

de�nition of the F-score in eq 3.7.7 when averaging the results of a cross-validation

this can be computed in one of two ways. The cross-validated F-score can either

be computed as a single metric using the aggregated fold predictions (FAGG), or by

calculating the F-score for each fold and then averaging the results (FAV G). From

a literature survey they found evidence of both methods being used, but that

many did not report which was used stating that the vast majority of researchers
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seemed unaware of this discrepancy. However, they note that there is a signi�cant

di�erence between these two methods and that FAGG is the least biased formulation

and should always be used; especially in the case of class imbalance. This is

because of the non-linear penalisation of error for very small classes leading to over-

penalising mistakes on the minority class. This e�ect is lessoned by aggregating

the TP over all the folds to remove the score away from the highly non-linear

region near TP=0.
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Chapter 4

Literature Review: Related Studies

This chapter reviews the text mining literature that is most relevant to the project

at hand, both within and beyond the maintenance domain. Only industry focussed

research, or at least those that consider real world data are included. It addresses

the fourth and �fth project objectives to gain insight into the current state of

research as it pertains to solving the speci�c research question as well as how it

�ts in to the broader machine learning and text mining literature. Along with the

validity concerns identi�ed in the previous chapter, the outcome of this is used to

guide the experimental analysis.

It starts by considering the studies speci�c to the maintenance domain. Although

initially limited to those concerning failure modes, too few studies could be found

and so the scope was broadened to include all text mining literature that consider

historical maintenance records. The next section considers the broader text mining

literature, focussing speci�cally on data with similar properties as the maintenance

records, particularly those with short document lengths. An important outcome of

this chapter is to compare the common practices observed in the industry focussed

literature with that recommended by the more academic literature.

4.1 Domain Speci�c Literature

Several authors con�rm both the prevalence of and challenges associated with

text-based maintenance records in a variety of industries including the automotive

96

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. LITERATURE REVIEW: RELATED STUDIES 97

domain (Rajpathak and De, 2016), military helicopters (McKenzie et al., 2010),

power generation (gas and steam turbines) (Mukherjee and Chakraborty, 2007),

the railway sector (Wang et al., 2017), manufacturing (Sipos et al., 2014), coal

mills (Uz-Zaman et al., 2015), water infrastructure (Edwards et al. 2008; Chen

and Nayak 2007); public transport (Marzec et al., 2014) and according to Mukher-

jee and Chakraborty (2007), Reeve (2016) and Devaney et al. (2005), almost all

asset intensive and service organisations. Such data cannot be processed using tra-

ditional data analytics and require time-consuming and labour-intensive manual

processing which few can a�ord.

With the exception of Reeve (2016), all the above mentioned authors identify

some form of text mining as potential solution, although they acknowledge vari-

ous domain speci�c challenges over and above the already signi�cant di�culty of

more standard text mining applications (such as high-dimensionality and sparsity)

(McKenzie et al. 2010; Devaney et al. 2005). This includes short document length,

class imbalance, non-standard English usage and very little domain-speci�c re-

search which sets it apart from more general literature conducted on corpora of

much better quality than is typical for maintenance records (Edwards et al. 2008;

Rajpathak 2013).

4.1.1 Domain Speci�c Challenges

Due to limited input space (character limitations) and severe time-pressure under

which data is collected, maintenance records are frequently much shorter than that

typically considered in literature (Mukherjee and Chakraborty 2007; Chen and

Nayak 2007; Devaney et al. 2005). Most TM research is focussed on documents

with more than 100 words, such as the common Reuters-21578 dataset which has

an average document length of 160 words (Timonen, 2012). In contrast Chen

and Nayak (2007) report records ranging from 1-50 words and even more extreme

Mukherjee and Chakraborty (2007) reporting texts of 5-10 words.

For many of the studies reported here, class-imbalance was a major challenge.

Because the training data is dominated by examples from one class, models tend

to favour this majority class and perform poorly on the smaller classes. For failure
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mode classi�cation in particular, Wang et al. (2017) note that the performance on

minority classes is also important for assuring the safety and e�ciency of assets,

not just the majority and middle fault classes. While the class imbalance will vary

from dataset to dataset and according to the classi�cation objective, all of Wang

et al. (2017), Sipos et al. (2014), Edwards et al. (2008) and Uz-Zaman et al. (2015)

identify varying levels of imbalance in their datasets.

While there is a substantial amount of literature and other resources available

for natural language processing, these have been developed for Standard English

(or standard language) and is not suitable for maintenance records due to the

poor grammar, high proliferation of abbreviations and the unique and specialised

vocabulary and syntax used by maintenance personnel that more closely resembles

short-hand notation than standard English (McKenzie et al. 2010; Edwards et al.

2008; Rajpathak 2013).

Because the data is typically not collected by the end-user, it is often treated as a

secondary task and recorded in fairly haphazard ways (Devaney et al., 2005) with

little to no quality controls in place during data collection (Edwards et al., 2008).

Variation in the input is extremely large, exhibiting all the expressive freedoms

of natural language but none of the typical constraints of spelling or grammar

(Devaney et al., 2005). This leads to a high prevalence of language errors and

incomplete segment fragments in the input data (Devaney et al. 2005; McKenzie

et al. 2010).

The data further has a high proliferation of extremely terse, non-standard abbre-

viations and acronyms used inconsistently throughout the dataset (Mukherjee and

Chakraborty 2007; Devaney et al. 2005; Edwards et al. 2008). These are not con-

sistently marked with punctuation and may be speci�c to a machine, department

or even an individual (McKenzie et al., 2010). Rajpathak (2013) compares the

number of unique abbreviations found in their maintenance dataset with that of

a standard benchmark corpus �nding that the maintenance records contain 107

unique abbreviations in comparison to 6 in a similar sized sample of the benchmark

data. Added to this is the particularity of the maintenance domain. According

to McKenzie et al. (2010), the majority of words used in maintenance records are

domain speci�c. This relates to uncommon usage of general terms (such as seal
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referring to a rubber seal not an animal) as well as technical terms, jargon and

abbreviations not found in general corpora. This prevents the usage of general-

purpose dictionary or thesaurus-based resources (Devaney et al., 2005).

However, unlike more generic text-mining tasks (such as sentiment analyses) there

are also no subject speci�c resources like ontologies or benchmark datasets avail-

able since little research has been done for the maintenance domain speci�cally

(Chen and Nayak 2007; McKenzie et al. 2010; Edwards et al. 2008). The lack

of benchmark datasets limit researchers to industry data availability (Chen and

Nayak 2007; McKenzie et al. 2010). As mentioned in Section 3.2.1, while there

are many advantages to real-world data sets, there is also much less available,

especially in the maintenance domain.

The implication of this is slower progress as few researchers have access to data and

even fewer to labelled data as the labelling e�ort cannot be shared across multiple

studies (Devaney et al. 2005; Edwards et al. 2008). Moreover, the studies with

labelled data often have only small samples available and can typically only publish

the results and not the datasets preventing replication and the establishment of

strong baselines. According to Edwards et al. (2008), such studies become an

investigation into what results can be expected from TM methods when the usual

standards of data quality and size are not met.

4.1.2 Overview of Studies Considered

The potential value of the unstructured, free-text portions of maintenance records

is well-documented in literature and has been used to create reliability models

(Rajpathak and De 2016; Uz-Zaman et al. 2015), construct fault trees (Mukherjee

and Chakraborty, 2007), identify best-practice repairs (Rajpathak, 2013), accur-

ately predict maintenance budgets (Edwards et al., 2008), reduce downtime and

prevent failures (Devaney et al., 2005), improve inventory and spare part manage-

ment (Rajpathak et al., 2012) and any number of other activities that enhance both

the strategic and operational decision-making processes (Rajpathak and Chougule,

2011).

As mentioned before, there is limited research available on the topic of mainten-
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ance records, and even less dealing with failure mode classi�cation. The most

relevant, and which are considered the primary studies of this review, are those

by Wang et al. (2017), Chen and Nayak (2007), Marzec et al. (2014), Edwards

et al. (2008), Uz-Zaman et al. (2015), McKenzie et al. (2010), Mukherjee and

Chakraborty (2007) and Devaney et al. (2005). Of these, only Wang et al. (2017)

and Chen and Nayak (2007) consider failure modes while all of Marzec et al.

(2014), Edwards et al. (2008) and Uz-Zaman et al. (2015) are concerned with

distinguishing between corrective and preventive events (namely failure and non-

failure). McKenzie et al. (2010), Mukherjee and Chakraborty (2007) and Devaney

et al. (2005) do not involve any speci�c class distinction as they are concerned

with information extraction rather than classi�cation. However, they still provide

valuable insights to the data cleaning and preprocessing of maintenance records

that best deal with the domain speci�c challenges discussed above.

Where relevant, aspects of the studies by Bastos et al. (2014), Sipos et al. (2014)

and the series of studies by Dnyanesh Rajpathak and other authors (Rajpathak

and Chougule (2011), Rajpathak et al. (2012), Rajpathak (2013) and Rajpathak

and De (2016)) are also brie�y mentioned. However, due to notable di�erences

between these and the above studies; they are only considered in a supplementary

fashion and not discussed in great detail.

While the studies of Bastos et al. (2014) and Sipos et al. (2014) are also concerned

with distinguishing between corrective and preventive events; their input data is

di�erent to the verbatim text records considered in this thesis and the primary

studies. Bastos et al. (2014) consider only structured data using a combination

of numeric and coded CM data along with the structured event data �elds such

as component ID. Sipos et al. (2014) do consider textual event data, but their

input consists of automatically generated equipment logs. While the desired in-

formation is still implicitly buried in text, because they are machine-generated

from a template, they are not natural language and contain much less variation

than human-generated text. However, both give valuable insights to the modelling

processes found within the AM domain.

Dnyanesh Rajpathak and several other authors performed a series of text-mining

studies on a large sample of automotive text-based records: Rajpathak and Chougule
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(2011), Rajpathak et al. (2012), Rajpathak (2013) and Rajpathak and De (2016).

These are not considered as part of the primary sources due to their extensive use

of high-level domain speci�c ontologies not typically available to industry practi-

tioners (nor to this study in particular). However, they are a good example of the

possibilities of text-mining and also the only studies that have been deployed in

industry.

The lack of industry data is evident from the fact that two of the primary stud-

ies, Mukherjee and Chakraborty (2007) and Devaney et al. (2005), had no data

available providing only a theoretical proposal with no experimental component to

verify their claims. Apart from Marzec et al. (2014) and Uz-Zaman et al. (2015),

all the primary studies considered datasets with fewer than 1 000 records. Even

Marzec et al. (2014), with the biggest dataset at 15 000 records is not a massive

sample in terms of text mining problems. Both Uz-Zaman et al. (2015) and Wang

et al. (2017) evaluate di�erent training-testing ratios to show how model perform-

ance improves with larger training sets (learning curves in Section 3.6) and all of

Chen and Nayak (2007), McKenzie et al. (2010) and Edwards et al. (2008) con�rm

that their performance can be expected to improve with more data.

Of the primary studies that had data available, distinction can be made between

those that had labelled and unlabelled data. Only Marzec et al. (2014) and Wang

et al. (2017) had labelled data (labelled by subject matter experts) while the rest

labelled data themselves or resorted to unsupervised methods.

In Edwards et al. (2008) the authors tried two approaches; �rst labelling the

data themselves using a best-guess approach, and later using an unsupervised

clustering algorithm to �nd the natural categories of the data. Due to the absence

of SME labelled data, McKenzie et al. (2010) also labelled the data themselves but

used it to train a supervised POS tagger rather than for classi�cation. Chen and

Nayak (2007) also resorted to unsupervised clustering methods. Uz-Zaman et al.

(2015) labelled their data using meta-data �elds (such as urgency or down-time

information) to create a labelling �lter that assigns labels heuristically. A similar

approach was taken by one of the secondary studies, Sipos et al. (2014), who also

created a meta-data �lter but recognised that this was not an ideal approach due

the imperfect approximations used to construct such a �lter.
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Of those who had labelled data available with which to perform classi�cation, the

majority looked at binary classi�cation and speci�cally at distinguishing between

corrective and preventive maintenance events (Marzec et al. 2014; Edwards et al.

2008; Uz-Zaman et al. 2015; Sipos et al. 2014; Bastos et al. 2014). Edwards

et al. (2008) performed both multiclass and binary classi�cation: a binary model

trained on the records they labelled themselves and a multiclass classi�er trying

to predict the natural categories of the same records which had been �labelled� by

an unsupervised clustering algorithm. They con�rm that multiclass classi�cation

is a more di�cult problem as the binary output variable simpli�es the problem

search space (Edwards et al., 2008). Only Wang et al. (2017) considered multiclass

failure mode classi�cation. (Chen and Nayak (2007) also considered failure modes

but tried to �nd them through unsupervised clustering.)

Both Edwards et al. (2008) and Chen and Nayak (2007) performed unsupervised

clustering on their respective datasets to obtain their target objective: correct-

ive vs preventive and failure modes respectively. While the clustering provided

some interesting insights into their data and into the e�ectiveness of preprocessing

techniques, both reported dissatisfaction at the natural categories provided by the

clustering algorithm not matching the desired groupings. This is a frequent prob-

lem of unsupervised learning as the model cannot be guided to provide the output

required by the researcher.

None of these studies addressed the label quality directly by means of the annotator

agreement measures as recommended by Mozetic et al. (2016) (Section 3.2) since

this would require additional labelling e�ort and most struggled to get even a single

labelled dataset. However, they do not dispute the importance of data quality, and

of the label quality in particular (Marzec et al. 2014; Bastos et al. 2014). And while

Sipos et al. (2014) emphasise that labelling error could drastically a�ect the quality

of the results, they recognise the practical constraints of data availability and that

it may be infeasible to improve data quality. This is con�rmed by Mukherjee and

Chakraborty (2007) and Uz-Zaman et al. (2015) who state that models must be

constructed from the available data to bridge the gap between the data that is

available and the information that is required. Both Chen and Nayak (2007) and

Edwards et al. (2008) state that SME labelled data would be preferable to their
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respective approaches but recognise the importance of using what is available.

This is especially relevant in academic contexts (such as this) where researchers

have limited interaction with subject matter experts.

4.1.2.1 Performance Results

The performance of text-mining applications depends on a number of factors in-

cluding the complexity of the target objective, the algorithms used, and the nature,

quality and amount of data available (Marzec et al., 2014). This makes it di�cult

to compare the results of di�erent studies; not one of which used the same data-

set. In fact, as mentioned before, comparisons are only reliable when based on

experiments performed by the same author under carefully controlled conditions,

which is not the case here (Baharudin et al., 2010). Despite not comparing the

actual scores achieved by these studies; it is evident that as could be expected, the

best results are achieved by those who had access to large datasets and domain

expertise.

In particular Marzec et al. (2014), who looked at binary classi�cation of urban

bus maintenance records into preventive and corrective events, achieved very good

results. They had the largest sample of labelled records available (15 000 records)

and the most extensive SME involvement; from labelling to data cleaning, prepro-

cessing and model evaluation. It is also interesting to note that their dataset was

in Polish making them the only non-English study. This may have had an impact

on their success as Polish and English have signi�cantly di�erent grammars.

The objective of their study was to investigate the viability of the TM approach

to see if existing methods are su�ciently accurate to use in business decisions.

With an accuracy of 99% they concluded it was, but it should be mentioned that

there is a possibility that these results are over-estimated due data leakage in their

modelling process (discussed below) (Marzec et al., 2014).

The importance of domain expertise is con�rmed by all of Mukherjee and Chakraborty

(2007), McKenzie et al. (2010), Marzec et al. (2014), Edwards et al. (2008) and

Chen and Nayak (2007). While neither Edwards et al. (2008) nor Chen and Nayak

(2007) were even able to obtain SME-labelled data due to the academic nature of
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their work, they both emphasise that expert involvement should ideally go beyond

the labelling phase and comprise the entire process.

The studies by Rajpathak can also be considered highly successful as they were

the only ones found that has been successfully deployed in industry. Like Marzec

et al. (2014); they also had a large amount of data available (more than any of the

primary studies) and extensive SME involvement; but most signi�cantly they had

access to high level domain speci�c ontologies they developed in previous research

(Rajpathak and Chougule, 2011), namely a reliability ontology (Rajpathak and De,

2016), a diagnosis ontology (Rajpathak, 2013) and an Integrated Vehicle Health

Management ontology (Rajpathak et al., 2012).

While the value of domain speci�c ontologies is undisputed, and clearly evident

from these studies, they are not typically available to researchers or industry. This

is con�rmed by McKenzie et al. (2010) and Chen and Nayak (2007) who further

recognise the substantial e�ort and expertise required to create these manually

limiting the practicability of this approach. The high prevalence of jargon and non-

standard vocabulary found in these records limits the usefulness of general-purpose,

linguistic ontological resources (Devaney et al., 2005). Furthermore, even within

the AM domain many of the terms are highly speci�c to a particular machine, set-

up and industry and may vary signi�cantly between companies, departments and

even individuals requiring each practitioner to develop their own. In fact, despite

using very similar datasets and considering only one asset type (automobiles), in

the studies by Dynash Rajpathak each used a di�erent ontology created speci�cally

for that problem (Rajpathak et al. 2012; Rajpathak 2013; Rajpathak and De 2016).

While this was facilitated by the ontology development framework they created in

earlier work (Rajpathak and Chougule, 2011), they also recognise the substantial

e�ort required to create and maintain these resources.

In the primary studies, Mukherjee and Chakraborty (2007) and Devaney et al.

(2005) also considered ontology creation. Mukherjee and Chakraborty (2007) pro-

poses combining WordNet (linguistic ontology) with a speci�c machine's Bill of

Materials to create a machine-speci�c ontological resource but they do not verify

this experimentally. To reduce the e�ort required by each practitioner develop-

ing application speci�c ontologies, Devaney et al. (2005) proposes using industrial
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standards to create more general-purpose ontologies that can be shared across a

number of application domains and types of machinery. They work on the basis

that all equipment share high-level systems and subsystems (such as hydraulics

pneumatics and electronics) with machine independent characteristics (e.g. all hy-

draulic systems have hoses, pumps and �uid). However, they have also not veri�ed

this experimentally.

The emphasis on domain expertise reiterates the point that advanced analytical

tools and methods are not meant to replace SMEs but rather to enhance their

productivity and that obtaining their support and involvement can be very bene�-

cial. One way to encourage stakeholder support, is to create interpretable models.

People are more accepting of what they understand and while this is true for all

domains, Bastos et al. (2014) and Sipos et al. (2014) emphasise that model in-

terpretability is exceptionally important for the maintenance domain speci�cally,

stating that it is crucial to be able to show how or why the model works. As

mentioned in Chapter 2, a major challenge remains convincing managers to trust

data over their own intuition (Baglee et al., 2015). Using interpretable model-

ling methods mean SMEs can review and incorporate expert feedback into the

modelling process leading to better and more valid models. Even when SMEs

are not involved, according to Sipos et al. (2014), just knowing that the model is

�interpretable�, and understanding which the most important features are, make

experts more comfortable adopting it. This has an e�ect on the techniques used as

dimensionality reduction methods like SVD or black-box algorithms such as Neural

Networks reduce the interpretability of the models making them less acceptable

to industry professionals.

None of the primary studies were particularly concerned with model e�ciency

other than the fact that the techniques must be able to handle the large number

of features typically found in text data. While all text-mining applications require

a degree of e�ciency to handle the high-dimensionality of text data; this concerns

the training rather than the prediction e�ciency as none of the primary studies

required real-time predictions.

Several authors recognised the value of sample selection. In Bastos et al. (2014),

the authors delete records with missing values to improve the quality of the input

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. LITERATURE REVIEW: RELATED STUDIES 106

data. In Sipos et al. (2014) and McKenzie et al. (2010) the authors discard certain

records to increase the homogeneity of the input data. Sipos et al. (2014) select

only records from a speci�c component in a speci�c machine while McKenzie et al.

(2010) select only the records concerning inspections (discarding all failure events).

McKenzie et al. (2010) compare the results of this more homogeneous group with

that of their full sample and found that the performance improved signi�cantly

showing the value of such sample selection. In Edwards et al. (2008) and Chen and

Nayak (2007) the authors discard all meta �elds (coded inputs containing mostly

identi�ers such as LocationID and time-stamp data) retaining only the descriptive

text �elds. Edwards et al. (2008) further concatenate all the text �elds into a

single input to extend the document length to mitigate the short document length

challenges.

4.1.3 Methodology

While the actual scores of the various studies cannot really be compared due

the di�erences in their speci�c datasets and modelling objectives; it is useful to

compare the various tools and techniques to discern what may be useful for the

empirical analysis in Chapters 6-81.

Data cleaning and preprocessing is discussed in varying levels of detail in the

di�erent studies. Uz-Zaman et al. (2015), McKenzie et al. (2010), Marzec et al.

(2014) and especially Edwards et al. (2008) give relatively detailed descriptions

of their data cleaning and preparation. Wang et al. (2017) and Mukherjee and

Chakraborty (2007) make no mention of the process used to obtain a document

word matrix. Others like, Chen and Nayak (2007) and Devaney et al. (2005),

discuss only the speci�c steps they felt were important making little to no mention

of the rest.

The only author who speci�ed a KDDM methodology is Edwards et al. (2008) who

followed the CRISP-DM model which emphasises the importance of comprehensive

documentation for the entire knowledge discovery process including preprocessing

1For those without an experimental component their proposed techniques are discussed rather
than what they actually did.
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and other implementation details often neglected in literature. The value of this

methodology can be seen from the fact that theirs is the most repeatable study

providing su�cient details of every step and the order in which they were used to

enable replication. Others, such as Wang et al. (2017), provide interesting results

but insu�cient details to reproduce their experiment exactly.

The multitude of di�erent tools and techniques discussed in the theory in Chapter

3 is also evident in these papers, with no de�nitive set recommended by all. Mar-

zec et al. (2014), McKenzie et al. (2010) and Chen and Nayak (2007) all seemingly

support the no-free-lunch theorem (Section 3.1) with Marzec et al. (2014) stating

that while similarities in class can provide useful guidance, it cannot be assumed

that what worked well for one problem will work well for another. While this

highlights the value of multiple case studies in literature, it also emphasises the

importance of experimenting on each particular dataset. McKenzie et al. (2010)

con�rm that it is imperative that the selection of these methods must be optimised

for each dataset with Chen and Nayak (2007) adding that this can vary substan-

tially between datasets.

The basic data cleaning methods used to prepare text for tokenisation is discussed

in the following section followed by the more advanced preprocessing steps of

POS tagging, stop-word removal, stemming, feature representation and feature

selection. Next, the algorithms are discussed, followed by the evaluation methods.

4.1.3.1 Data Cleaning

Edwards et al. (2008) started with an exploratory assessment of their data to

identify the most pertinent DQ problems and guide the cleaning and preprocessing

e�ort (as required by CRISP-DM). While it is assumed that the others did too,

Edwards et al. (2008) is the only one that explicitly states and describes this

process giving some insight to their selection of preprocessing transforms.

In particular they note that no information value was apparent in the use of punc-

tuation or capitalisation and therefore transformed all text to lowercase, and re-

placed all punctuation (and non-alphabetic characters such as @, $ and &) with

whitespace to be used as splitting character in the subsequent tokenisation pro-
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cess. They also concatenated words frequently negated by the word �no� so that

e.g. �no damage� was replaced by the single term �nodamage� to retain negation in

the tokenisation process where it would otherwise be lost (indistinguishable from

the token �damage� in a sentence �there was damage� vs �there was no damage�)

(Edwards et al., 2008).

Only a few other authors made speci�c reference to capitalisation. For McKen-

zie et al. (2010), case di�erentiation was not a factor since all of their data was

fully capitalised. Uz-Zaman et al. (2015) also performed case-normalisation before

tokenisation with the remaining Marzec et al. (2014), Chen and Nayak (2007),

Wang et al. (2017), Devaney et al. (2005) and Mukherjee and Chakraborty (2007)

making no mention of retaining or removing case information.

Similarly, none of Chen and Nayak (2007), Wang et al. (2017), Devaney et al.

(2005) or Mukherjee and Chakraborty (2007) mention punctuation in their studies

and it is unclear whether retained (unusual but not unheard of in TM) or removed

and not mentioned. Like Edwards et al. (2008), Marzec et al. (2014) and Uz-Zaman

et al. (2015) removed punctuation through the tokenisation process (either by

replacing with whitespace or by using as splitting token which has the same result).

McKenzie et al. (2010), however, used a modi�ed tokenizer to retain apostrophes

before the letters �s�, �t� and �d� to prevent breaking up contractions such as �can't�

into two tokens: �can� and �t� which becomes impossible to distinguish from its

opposite �can� in the bag-of-words model. Due to the ubiquity of these steps, it is

possible that the studies making no mention of punctuation or case di�erentiation

did both but did not mention it.

Only Uz-Zaman et al. (2015) and McKenzie et al. (2010) addressed the numeric

terms found in between the text of their dataset. Uz-Zaman et al. (2015) simply

removed all number terms replacing them with whitespace before the tokenisation

process. McKenzie et al. (2010) used several Regular Expressions to tag frequently

reoccurring token-types such as codes (letter followed by numbers) and digits (all

other number formats) to retain some information while substantially reducing

the dimensionality of a feature space where every number is considered a separate

feature.
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An additional data cleaning step performed only by Marzec et al. (2014) is translit-

eration; uni�cation of the way in which special characters such as äó are encoded

which they did using a simple ASCII transformation (e.g. ä → a and ó → o)

with great success. This is perhaps because their data is in Polish, which has a

much higher degree of diaeresis than the English language considered by the other

studies reviewed here.

Before this data cleaning process, Edwards et al. (2008), Marzec et al. (2014) and

Devaney et al. (2005) all recommend improving the quality of data by utilising the

Microsoft Excel spell-checker to �ag incorrectly spelt words (typos, non-standard

abbreviations and true misspellings) and manually correct these according to the

researchers' best guess. This can have a drastic impact on the results considering

the poor quality of data typically observed in maintenance records. However, this

approach is not automated meaning any subsequent data will have to undergo

the same manual e�ort before being analysed (test-performance is indicative of

cleaned data performance and cannot be expected to perform similarly on new,

uncleaned data). While automated spelling correctors have been proposed in other

literature, Forman (2007) cautions that these do not work well on data with many

technical terms (as in the maintenance domain) stating that mistakes can outweigh

the bene�ts if words are incorrectly �corrected�.

In the secondary studies, it is useful to mention that before removing punctu-

ation and capitalisation, Rajpathak (2013) and Rajpathak and De (2016) create

an abbreviation disambiguation algorithm to �rst identify and then standardise

the large variation of abbreviations found in these records. They use a number

of Regular Expressions to identify the most frequently occurring abbreviations us-

ing this case and punctuation information such as: <period, white-space, capital

letter> = sentence boundary indicator, <period, white-space, lower-case letter>

or <letter, period, letter> = abbreviation or acronym indicator. The disambigu-

ation process is performed using their domain speci�c ontology to standardise the

various forms of the same abbreviations into a single representative token.

In the primary studies Edwards et al. (2008) also standardise the various forms of

the same abbreviation to a single term during their manual spell-checking process

(e.g. �air con�, �aircon�, �ac�, all replaced by one standardised: �aircondition�) but
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this was not an automated process. While McKenzie et al. (2010) does not try to

disambiguate abbreviations, they do prevent their splitting up by further modi�c-

ation on how their tokenizer handles punctuation to e.g. retain the abbreviated

token �W/IN� (within) as is and not split it into �W�, �IN�.

4.1.3.2 Stop Words and Stemming

All of Chen and Nayak (2007), Edwards et al. (2008), Marzec et al. (2014) and

Devaney et al. (2005) performed both stemming and stop-word removal and Uz-

Zaman et al. (2015) performed only stop-word removal. The remaining papers

made no mention of these methods in their experimental designs. However, only

McKenzie et al. (2010) gave su�cient detail of their preprocessing that this omis-

sion can be considered relevant. In Mukherjee and Chakraborty (2007) and Wang

et al. (2017) it is unclear whether these steps were truly omitted from their pre-

processing or simply not mentioned as they provide almost no detail of their pre-

processing.

Chen and Nayak (2007) evaluated the e�ect of stop-word removal and stemming

by treating it as a hyperparameter to compare the inclusion of both, neither, or

either one alone on their clustering results. They report that the inclusion of both

gave the best results and neither the worst although it should be mentioned that

clustering performance is di�cult to quantify. Their results also seem to indicate

that stemming with no stop-word removal was preferable over stop-word removal

with no stemming. They used the Porter stemmer. None of the other papers gave

their reason for either the inclusion or exclusion of stop-word removal or stemming,

nor evaluated its success.

4.1.3.3 POS Tagging

The only authors to consider POS tagging were those concerned with informa-

tion extraction rather classi�cation, namely Mukherjee and Chakraborty (2007),

Devaney et al. (2005) and McKenzie et al. (2010) of which only McKenzie et al.

(2010) had an experimental component. Both Mukherjee and Chakraborty (2007)

and McKenzie et al. (2010) state that the malformed, incomplete sentence frag-

ments found in maintenance records are problematic for standard POS taggers

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. LITERATURE REVIEW: RELATED STUDIES 111

(created for Standard English) which depend on the formulation of complete sen-

tences. They therefore propose creating their own custom POS taggers.

Mukherjee and Chakraborty (2007) propose using the WordNet Knowledge Base

(linguistic ontology), the Bill of Materials for the machine under consideration, and

a set of expert provided domain rules to create a custom POS tagger. But since

they had no data available, their method has not been veri�ed experimentally.

McKenzie et al. (2010) propose training a supervised POS tagger on a labelled

corpus (manually tagged with their respective parts of speech) and evaluates it

on their sample of helicopter maintenance records. While they report tagging

accuracies above 90% indicating the merit of their approach, they did not evaluate

its impact as preprocessing method for subsequent classi�cation tasks. Moreover,

this approach would require double the labelling e�ort which is already problematic

for maintenance datasets.

4.1.3.4 Feature Representation

From their literature survey, Edwards et al. (2008) con�rm the predominance of

the Bag-Of-Words (BOW) approach. This is also evident from the studies reviewed

here as all of the primary studies make use of the BOW model discarding the word-

order and retaining only the frequency information of unigrams. Only McKenzie

et al. (2010), who performed information extraction rather than classi�cation,

considered bigrams as well. While they report disappointing results for the bigrams

compared to the unigrams, they ascribe this to their small sample of training data

stating that bigrams require much more data than unigrams.

The most popular feature weighting scheme is term frequencies weighted by inverse

document frequencies (TFIDF) which is used by Edwards et al. (2008), Marzec

et al. (2014) and Chen and Nayak (2007). Uz-Zaman et al. (2015) uses term

frequencies (TF) and Wang et al. (2017) does not specify which weighting scheme

they used. While not evaluating another weighting scheme, Chen and Nayak (2007)

reports that TFIDF did not work as well as expected for short documents. They

speculate that this is because while important terms appear infrequently across

the dataset, due to the small number of terms in every document, even important
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words are unlikely to occur frequently in any given document and are subsequently

down-weighted by the low TF component in the TFIDF score. This suggests that

binary features combined with an IDF weighting scheme may be a viable option

for short documents but this was not investigated by any of these studies.

Edwards et al. (2008) and Marzec et al. (2014) further transform their TFIDF fea-

tures to a lower dimensionality by computing the Singular Value Decomposition

(SVD) of their Document Term Matrix. Marzec et al. (2014) combine the SVD

features with their original TFIDF features into a single feature space from which

the top features were selected. In Edwards et al. (2008) the SVD was only per-

formed to reduce the dimensionality of the input used to train a Neural Network,

with the TFIDF features used in a Decision Tree. While not evaluating these

algorithms with the alternate feature representation, they report that the TFIDF

features were superior to the SVD features stating that while the SVD features

simpli�ed the problem space, the information lost in this process reduced the per-

formance. They also recognise the disadvantage of the loss of interpretability that

accompanies SVD transformations (Edwards et al., 2008).

4.1.3.5 Feature Selection

All of the classi�cation and clustering studies performed feature selection to some

degree. Uz-Zaman et al. (2015) performed only maximum frequency thresholding

to remove the most common words. Chen and Nayak (2007) performed both min-

imum and maximum frequency thresholding followed by selecting the top TFIDF-

weighted features. They note that low thresholds should be used for minimum

frequency thresholding because some important terms that re�ect the failure mode

do not occur frequently in the dataset (would be upweighted by IDF component

in the subsequent TFIDF selection if not discarded). While not being able to do

so due to lack of expert involvement, they state that SMEs should ideally adjust

the thresholds until they get the desired results and manually discard any terms

deemed irrelevant.

Edwards et al. (2008), who also had no SME involvement, inspected their top

TFIDF-weighted features themselves to remove high-ranking but irrelevant terms
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before selecting the 100 highest weighted features. They state that this should

ideally be done by SMEs.

Marzec et al. (2014) is the only primary study with intensive SME involvement.

After minimum frequency thresholding, in which they removed all hapax legomena

to retain only words appearing more than once (reduced feature set from 3000 to

206 words), domain experts selected the 76 words they deemed most relevant to

the classi�cation objective. These words were used to construct both the TFIDF

and SVD features from which the top 15 word and SVD features were selected

using the CHI-squared statistic.

Wang et al. (2017) note that feature selection is negatively a�ected by class im-

balance as the features in minority classes tend to be dominated by features in the

majority classes. They therefore propose a modi�ed CHI-squared statistic that ad-

justs the feature weights of the minority and majority classes to make them further

apart. They compare this with various other feature selection methods including

the standard CHI-square statistic, Information Gain and the original feature set

(no feature selection).

The original feature set (with no feature selection) is consistently worst showing

that not all features are helpful to the algorithm. Both CHI-squared and Inform-

ation Gain improved the performance with the standard CHI-squared performing

marginally better than Information Gain and the best results achieved by their

modi�ed CHI statistic. It is interesting to note the consistently lowest performance

by no feature selection given the fact that they used a Support Vector Machine,

an algorithm which is commonly believed not to bene�t from feature selection,

and supports Forman (2004) who states that this is a popular myth (Wang et al.,

2017).

4.1.3.6 Algorithms

The algorithms observed in the classi�cation studies include Decision Trees (Mar-

zec et al. 2014; Edwards et al. 2008; Bastos et al. 2014), Support Vector Machines

(Wang et al. 2017; Sipos et al. 2014), Neural Networks (Edwards et al., 2008) and

Naïve Bayes (Uz-Zaman et al., 2015).
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Various reasons are given for the respective algorithm choices. Bastos et al. (2014)

chose Decision Trees (DT) for its interpretability stating that in the maintenance

domain, interpretable models are preferable to black-box models like Neural Net-

works (NN) which are popular in applications where only accuracy matters. Ed-

wards et al. (2008) evaluated both Neural Network and Decision Tree algorithms.

Like Bastos et al. (2014) they chose a Decision Tree for its interpretability, even

stating that the accuracy was not expected to be high, but that they hoped it

could provide some useful insights to the data for use in other models. The more

complex Neural Network was selected for its anticipated superior accuracy but,

contrary to their own expectations, they found that it was outperformed by the

simpler DT. This result was also the motivating factor in Marzec et al.'s (2014)

choice of Decision Tree citing Edwards et al.'s (2008) paper in their algorithm

selection.

Sipos et al. (2014) chose a Support Vector Machine (SVM) with a linear kernel cit-

ing its pro�ciency in dealing with the high dimensionality and sparsity of text data.

While they do not provide the results, they state that a K-Nearest Neighbours al-

gorithm was also evaluated but performed very poorly on their dataset. They also

evaluated building an ensemble of classi�ers but report that while it increased the

computational complexity, it did not noticeably improve the performance over the

single SVM. Wang et al. (2017) does not give a reason for choosing Support Vector

Machines but it is not a surprising choice since they are often regarded as best-in

class for text problems. While Sipos et al. (2014) cautions that SVM may struggle

with highly imbalanced datasets, according to Wang et al. (2017), this is true of

all algorithms stating that all classi�ers are inclined towards the majority class.

Uz-Zaman et al. (2015) selects the multinomial Naïve Bayes algorithm based on

its pro�ciency at handling high-dimensional data such as text and its successful

application in other text classi�cation problems (such as email spam-�lters). Only

Edwards et al. (2008) compared two di�erent algorithms while the rest evaluated

only one.
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4.1.3.7 Evaluation

While it is interesting to compare the di�erent preprocessing and modelling tools

used in these studies, a more pertinent concern is their evaluation process as this

concerns the validity of the results.

Only Sipos et al. (2014), which is considered a secondary study in this review, per-

formed cross-validation to evaluate and optimise their models. None of the primary

classi�cation studies used cross-validation to evaluate their models. Only Wang

et al. (2017) performed a three-way training, testing and validation split while the

rest performed a simple two-way split (Marzec et al. 2014; Edwards et al. 2008;

Uz-Zaman et al. 2015). The absence of cross-validation is noteworthy since it is

widely preferred in the theoretical literature. While a three-way split is acceptable,

a two-way split is susceptible to over�tting and may lead to overestimated results

and is widely recommended against.

Uz-Zaman et al. (2015) makes no mention of the strategy used to split their data

into training and testing sets. Both Edwards et al. (2008) and Marzec et al. (2014)

used a random splitting strategy while Sipos et al. (2014) and Wang et al. (2017)

used a strati�ed strategy. Neither Marzec et al. (2014), nor Wang et al. (2017)

justi�ed their respective choices, and while both Edwards et al. (2008) and Sipos

et al. (2014) reported class imbalance in their respective datasets, according to

Edwards et al. (2008) this was not extreme enough to require strati�ed sampling

while according to Sipos et al. (2014) it was.

The other secondary study by Bastos et al. (2014) also performed a three-way

evaluation, but they split the data chronologically using a time-series, sequential

splitting strategy. Their dataset, spanning a year, is separated into three sequential

sets with the �rst two used as training and validation sets (to optimise the model)

and the chronologically last set used as hold-out test set to evaluate the model.

In this way the model is only ever trained on �historical� data and evaluated on

�future� data as would be the case in deployment.

The various evaluation metrics discussed in Section 3.7.4.1 are evident in these
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studies. In Chapter 3 it was discussed that reporting on the Accuracy2 score in

isolation can be misleading for data presenting class imbalance. While Edwards

et al. (2008) did report class imbalance in their study, they provide only the ac-

curacy (although in the form of its compliment misclassi�cation error). Uz-Zaman

et al. (2015), who also reports signi�cant class-imbalance, provides the Precision

and Recall in addition to the Accuracy and also evaluate the learning curves for

increasing dataset sizes for each of these metrics. From their results it can be seen

that while both the Precision and Recall follow the expected test curves (rapid

increase followed by a plateau), the Accuracy follows a �at, horizontal line irre-

spective of the dataset size and seemingly more indicative of the class distribution

than the actual model performance. At 80% the Accuracy is consistently signi�c-

antly higher than both the Precision (40%) and the Recall (30%). Together these

results show why Accuracy must not be considered in isolation.

Only Wang et al. (2017) and McKenzie et al. (2010) report the F-1 score to evaluate

the performance of their classi�cation and information extraction model respect-

ively. While they do not specify how this was computed, the speci�c formulation

is not that important since neither performed cross-validation (as per the study

by Forman and Scholz (2010)). The only domain speci�c study that considered

cross-validation was the secondary study by Sipos et al. (2014) who evaluated their

models using the Area Under the Curve (AUC) metric.

In addition to the performance metrics, Sipos et al. (2014) and Edwards et al.

(2008) also evaluated Dummy Estimators to determine how much of their perform-

ance can be attributed to chance for the particular datasets under consideration

and serve as a baseline for their models. Sipos et al. (2014) reports outperforming

a random baseline dummy estimator and Edwards et al. (2008) reports that three

out of four models outperformed a majority class dummy estimator. Uz-Zaman

et al. (2015) does not report a dummy baseline, but from the dataset character-

istics and results provided it can be seen that the Precision and Recall would be

outperformed by any of a majority class, random or strati�ed dummy estimator.

(Their Accuracy score, on the other hand, would be outperformed by a major-

2As per Chapter 3, uncapitalized accuracy is used to refer to the general performance with
regard to �correctness� while the capitalised Accuracy refers to the speci�c metric.
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ity class dummy estimator, would surpass a random dummy estimator and be

equivalent to a strati�ed dummy estimator once again showing the in�uence of

class-imbalance on Accuracy.)

Since the decisions made with these models can have cost and safety implications,

Marzec et al. (2014) emphasise the importance of achieving high accuracies. How-

ever, Edwards et al. (2008) note that even moderate accuracy can be acceptable for

business decisions such as budgeting when compared to alternative intuition-based

decision making.

4.1.4 Concerns

A notable concern observed in these studies is the pervasiveness of data leakage.

This is due to researchers performing data cleaning and preprocessing transforms

on the entire dataset (before separating the hold-out test) as well as repeated

evaluations on the same test-set in a two-way split.

Bastos et al. (2014) and Uz-Zaman et al. (2015) explicitly state that the data

preprocessing was performed before separating the hold-out test data. While not

explicitly stated by Marzec et al. (2014) or Edwards et al. (2008), from the order

in which their modelling steps are presented, it seems as if the same is true for

their studies. This means that none of Bastos et al. (2014), Uz-Zaman et al.

(2015), Marzec et al. (2014) or Edwards et al. (2008) truly performed a hold-out

test evaluation since their models had unfair access to the test-set. For example,

when tokenisation occurs before splitting, the models do not encounter any unseen

words in the test sets, a very unlikely scenario in deployment.

Furthermore, evaluating the models using a two-way split (as done by Marzec et al.

(2014), Edwards et al. (2008) and Uz-Zaman et al. (2015)) can also be considered

as a form of data leakage since the model is repeatedly tested on the same dataset

during the optimisation process and the parameter selection has unfair insight to

the test data.

Data leakage can lead to overestimated results as the hold-out test set is not truly

unseen creating the possibility of over�tting to that speci�c test set. While it is
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not clear how big the impact of this is on their results (may even be negligible for

the speci�c datasets) it calls into question validity of their methodology.

Finally, none of the studies made explicit reference to the IID assumption, nor what

its violation might mean for the results. However, chronological drift (which viol-

ates the IID assumption) is implicitly acknowledged by Mukherjee and Chakraborty

(2007) who identify the �changing dynamics of product life-cycles� as a challenge

in maintenance data; Rajpathak and De (2016) who refer to the changing failure

rate of the �bathtub� curve, and by all the authors that recognise the heterogeneity

of the data (Chen and Nayak 2007; Rajpathak et al. 2012; Devaney et al. 2005;

Sipos et al. 2014).

The next section considers the broader text mining literature, focussing speci�cally

on data with similar properties as the maintenance records, particularly those with

short document lengths.

4.2 Domain Independent Literature

Beyond the maintenance domain, the most relevant studies are those concerned

with Twitter data which share some of the characteristics of the maintenance

records described above; in particular short document length and non-standard

English usage. While the majority of text classi�cation research has been focussed

on corpora with documents longer than 100 words, the rise of social networking

sites has made the classi�cation of very short documents, called short-form cor-

pora by Bermingham and Smeaton (2010), an important research topic (Timonen,

2012). Twitter allows people to publish their thoughts in real-time and therefore

contains valuable information on the public sentiment regarding various social,

political or economic issues (Mozetic et al. 2018; Mozetic et al. 2016; Bermingham

and Smeaton 2010).

Until recently, Twitter messages were limited to 140 characters with an average

length of 34 characters per tweet3 (Perez, 2018) making it much shorter than more

3While the character limit has since been extended to 280 characters, according to Perez
(2018) this has not had much of an e�ect on the average length of Tweets (which has actually

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. LITERATURE REVIEW: RELATED STUDIES 119

typical text-mining corpora such as the Reuters-21578 dataset with an average

length of 160 words per record (Timonen, 2012). The character length limita-

tions along with the conventions of social media has led to a high prevalence of

non-standard English usage including emoticons, #hashtags, @handles, slang and

informal abbreviations (such as �u�, �btw� and �wtf�) (Bermingham and Smeaton

2010; Mozetic et al. 2016). While these characteristics separate it from more tra-

ditional TM literature and resemble the challenges face by maintenance records,

there are some important distinctions.

Due to social media already being in the public domain, these datasets are typically

not proprietary and can be published for use and review by other researchers. This

means the data labelling e�ort can be shared. Moreover, since the target audience

for these messages are general society, the data can be e�ectively understood and

labelled by lay-persons (including researchers) and do not require SMEs as in the

maintenance domain. Finally, while the improper language usage separates Twit-

ter from the more formal language found in typical TM corpora, the non-standard

language is still relatively standardised across all of Twitter. (For example, unlike

the maintenance domain where the abbreviations di�er by organisations, depart-

ments and even individuals, Twitter abbreviations such as �U�, �LOL� and �IMO�

are widespread.)

While there are more Twitter classi�cation studies available than can be evalu-

ated here, it was thought useful to summarise a few of the most relevant ones

found to show how similar problems are treated beyond the maintenance domain.

The studies considered in this section includes that of Bermingham and Smeaton

(2010), Timonen (2012), Mozetic et al. (2016), Mozetic et al. (2018) and Blamey

et al. (2012). Thereafter, the scope was broadened beyond Twitter to verify the

�ndings made here.

Bermingham and Smeaton (2010) consider the e�ect of document length on the

performance and techniques used in sentiment classi�cation by performing a num-

ber of experiments on two short-form corpora and their respective long-form coun-

since gone down to 33 characters) with only 12% longer than the original 140-character limit.
Moreover, since all of the studies reviewed here used Tweets collected before this extension this
is not a factor here.
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terparts: micro-blogs (Twitter data), micro reviews, standard blogs and standard

reviews. While they recognise the challenges posed by short-document length,

they also recognise a possible advantage of such brevity stating that such texts

are more focussed with less opportunity for non-relevant information to enter the

content. They performed both multiclass and binary classi�cation. Like Edwards

et al. (2008), they consider the former more di�cult than the latter and as they

expected, report signi�cantly higher results for the binary task.

While Bermingham and Smeaton (2010) found mixed results concerning the overall

performance of short- over long-form corpora (microblogs outperformed blogs, but

micro-reviews underperformed reviews), they report signi�cant di�erences in the

e�ectiveness of the various techniques. In particular they note that higher-order

n-grams (bigrams and trigrams) did not improve the performance on short-form

corpora; that binary features were more e�ective than frequency-based feature

vectors; and that no bene�t was gained from either stop-word removal or stemming.

Interestingly they also found that while the SVM performance was superior for the

long-form corpora, the opposite was true for the short-form corpora where it was

outperformed by the Multinomial Naïve Bayes.

Timonen (2012) compares the performance of common feature weighting approaches

on two corpora of very short documents consisting of Twitter and online consumer

poll data respectively. According to Timonen (2012), the biggest challenge in short

document classi�cation concerns feature weighting. Because there are so few words

per document, each word typically only occurs once per document, regardless of its

importance. This makes traditional frequency-based feature weighting approaches

such as TF and TFIDF ine�ective on short documents as these are unable to dis-

tinguish between word-frequencies and end up distributing the weights somewhat

equally among all words. They call this the TF=1 challenge. While they do not

consider binary features in their experiments, their study provides some insight

to the comparatively poor performance of frequency-based feature vectors in the

studies by Bermingham and Smeaton (2010) and Chen and Nayak (2007).

Mozetic, et al. performed two sentiment classi�cation studies on multiple corpora

of Twitter data. In the �rst they consider the quality, quantity and sampling

of training data as well as the choice of classi�cation algorithm and evaluation
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metric (Mozetic et al., 2016). In the second they address the evaluation proced-

ure required to obtain reliable performance estimates and evaluate whether the

temporal ordering of Twitter data matters (Mozetic et al., 2018).

They recognise that human labelling depends on the subjective judgement of hu-

man annotators which may vary between di�erent people and may even be incon-

sistent in individuals and recommend evaluating this using the annotator agree-

ments described in Section 3.2. In particular they show the importance of sample

selection to exclude low quality data and recommend removing these on the basis of

annotator self-agreement. They �nd that quality is more important than quantity

showing on their learning curves that while performance is typically improved by

including more training data, if the quality of the additional data labels is too low

(indicated by low self-agreement), it actually decreases the performance (Mozetic

et al., 2016).

Neither their literature review nor their experimental results found a signi�cant

di�erence between the performance of the top classi�cation algorithms. They con-

clude that that the choice of algorithm is not highly signi�cant and recommend

that e�orts should be spent on improving the quality of the training data rather

than on selecting the best algorithm. They also consider di�erent evaluation met-

rics and con�rm that Accuracy is unacceptably misleading and recommend using

the balanced F-score instead (Mozetic et al., 2016).

To investigate whether the temporal nature of Twitter data matters, Mozetic et al.

(2018) compare various performance evaluation methods that split the data in

di�erent ways. In particular, they evaluate several variants of cross-validation and

sequential validation approaches. While Twitter data is time-ordered, it cannot be

considered a time-series as Tweets are posted at any time and at any frequency.

However, while original Tweets are not directly dependent on previous posts, long-

term data drift is evident from changing trends in either the topics of interest or

the sentiment regarding a certain topic (which can be a�ected by in�uential users

or outside events) so that the data cannot be considered IID either (Mozetic et al.,

2018).

While sequential approaches provide more realistic test-scenarios where the train-
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ing data always precedes the test data chronologically to emulate the deployment

scenario, cross-validation utilises all the available data for both training and testing

purposes leading to more robust performance estimates. However, they recognise

that cross-validation is only applicable when the IID assumption holds, and that

its violation, as in Twitter data, can hinder the generalisability of performance

estimates. Along with the standard cross-validation approaches found in literat-

ure (random and strati�ed), they also evaluated Bergmeir and Benitez's (2012)

grouped cross-validation method as an in-between approach that uses all of the

data to yield more robust estimates, but slightly compensates for the IID violation

(Mozetic et al., 2018).

Their results support that of Bergmeir and Benitez (2012). They �nd that the

cross-validation variants tend to overestimate the true model performance and the

sequential methods tend to underestimate it. Randomly split cross-validation was

the worst, and while recognising it as the industry standard, they state that it

should not be used to evaluate time-ordered data such as this. While underestim-

ation is usually preferable to overestimation, they do not �nd a notable di�erence

between the best performing cross-validation (grouped CV) and sequential ap-

proaches and recommend using grouped CV for its added robustness (Mozetic

et al., 2018).

Blamey et al. (2012) also performed sentiment classi�cation on Twitter data to

evaluate the usefulness of character, rather than word, n-grams. They hoped

that the increased �exibility of this approach would be well-suited to the non-

standard English found in social media, but found little improvement over the

standard BOW model. However, in contrast to Bermingham and Smeaton (2010),

they found the inclusion of bigrams bene�cial over unigrams alone (they did not

evaluate trigrams).

4.2.1 General Observations

Unlike any of the domain speci�c studies discussed above, most of these authors

published their data including that of Mozetic et al. (2016), Mozetic et al. (2018)

and Bermingham and Smeaton (2010). While Timonen (2012) could not publish
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the data in its original text form, they did make their feature vectors publicly

available. Moreover, according to Mozetic et al. (2016) there are already several

publicly available, manually labelled Twitter datasets, ranging in size from several

hundred to several thousand records. Blamey et al. (2012), who did not specify

whether their dataset is published, also refers to Twitter-speci�c resources available

such an emoticon tagger obtained from Wikipedia data. Furthermore, because

Twitter data does not require SME labelling, labelled data was easier to obtain

than for the domain speci�c studies. Both of Bermingham and Smeaton (2010) and

Mozetic et al. (2016) were even able to address the quality of their data through

extensive annotator training and duplicate labelling to evaluate the annotator-

agreement measures.

As with the domain speci�c studies, there is a lot of variation in the speci�c

preprocessing methods applied by each study, but the actual range of techniques

considered is mostly consistent with the exception of document-length normalisa-

tion. While not mentioned by a single domain speci�c study, perhaps because it

was thought irrelevant due to the short document lengths, it is used by both Ber-

mingham and Smeaton (2010) and Timonen (2012) who also consider short-form

corpora (both of which use L2 normalisation).

All of these studies evaluated at least two algorithms. This is notably di�erent

to the domain speci�c studies where only Edwards et al. (2008) evaluated more

than one. Bermingham and Smeaton (2010) considers a Multinomial Naïve Bayes

and a Support Vector Machine with a linear kernel stating that these were the

state of the art in text classi�cation. Interestingly, they found that while the SVM

performance was superior for the long-form corpora, the opposite was true for the

short-form corpora where it was outperformed by the Multinomial Naïve Bayes.

Timonen (2012), who considers only short-form corpora, evaluated three algorithms

namely SVM, Naïve Bayes and KNN stating that all of these have shown good

promise in text classi�cation. They found that SVM was the clear winner followed

by Naïve Bayes. While this contradicts the results of Bermingham and Smeaton

(2010), it conforms to their own expectations as, like many in literature, Timonen

(2012) considers SVM best-in class for text classi�cation.
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While noting the popularity of SVM, Mozetic et al. (2016) report that a wide range

of algorithms are used in literature with apparently no consensus as to a best one,

citing the contradictory results found in studies comparing them. They �nd no

signi�cant di�erence between the performance of the top classi�cation algorithms

in their literature review. Similarly, they �nd comparable results between multiple

variants of SVM and Naïve Bayes in their experiments. From both their literature

review and experimental results, they therefore conclude that the particular choice

of algorithm is not highly signi�cant.

Blamey et al. (2012) considers four algorithms (which includes SVM and Naïve

Bayes) in their study �nding mixed results with neither clearly superior. While

not discussing the signi�cance of this themselves, their results seem to support

that of Mozetic et al. (2016).

In terms of model evaluation, all of these studies used cross-validation in compar-

ison to none in the primary domain speci�c studies. However, only the studies

by Mozitec, et al. address the implicit IID assumption made by cross validation

and recognise its violation in the time-ordered Twitter data due to chronological

drift. They therefore perform a grouped CV �nding that other CV approaches,

and especially randomised CV which is the industry standard, overestimates the

true performance on time-ordered Twitter data in support of Bergmeir and Benitez

(2012) (Mozetic et al. 2016; Mozetic et al. 2018). Neither Blamey et al. (2012)

nor Bermingham and Smeaton (2010) speci�ed the splitting strategy used and

Timonen (2012) used a random splitting strategy.

Timonen (2012), Mozetic et al. (2016) and Mozetic et al. (2018) evaluate their

models using the balanced F-score metric as recommended in Chapter 3, but do

not specify how this was averaged across the folds of the cross-validation. While

reporting on Accuracy in imbalanced data is widely recommended against (a notion

supported by Mozetic et al. (2016)), both Bermingham and Smeaton (2010) and

Blamey et al. (2012) report only on Accuracy. This is a greater concern for Blamey

et al. (2012) who makes no mention of their class-distribution while Bermingham

and Smeaton (2010) balanced their data arti�cially using under-sampling.

Some of the above points are also addressed in literature outside the Twitter do-
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main. Leopold and Kindermann (2002), Ikonomakis et al. (2005) and Wilbur and

Kim (2009) con�rm the TF=1 challenge in short documents stating that due to

the lack of variance in term frequencies, frequency-based feature vectors do not

work as well on short-form corpora and recommend using Binary features in sup-

port of Timonen (2012) and Bermingham and Smeaton (2010). Ikonomakis et al.

(2005) further recommend using Binary features on the basis of computational

e�ciency. Moreover, according to Wilbur and Kim (2009), the popular success

of TFIDF comes from the IDF component and recommends discarding the TF

and using IDF with Binary frequencies instead. It is interesting to note that while

Wang and Manning (2012) found a slight advantage to using Binary features rather

than TF features for long documents, they report a negligible di�erence in short

documents.

Tan et al. (2002) support Bermingham and Smeaton (2010) who found that higher-

order n-grams do not work well on short documents stating that phrases are even

more unlikely to repeat in short documents aggravating the potential disadvant-

ages of higher order n-grams (increased dimensionality, sparsity and synonymy).

Bekkerman and Allan (2004) do not address document length in their study, but

while they argue against the inclusion of bigrams in general, they do state that

bigrams may be bene�cial in technical domains with more limited corpus vocab-

ularies (such as the maintenance domain) as informative phrases are more likely

to repeat. As possible explanation for the contradictory results by Bermingham

and Smeaton (2010) and Blamey et al. (2012), Wang and Manning (2012) found

that the potential bene�t of bigrams depends more on the speci�c task than on

document length, reporting mixed results for the bene�t of bigrams in both short

and long form corpora.

Kobayashi et al. (2018) support Bermingham and Smeaton's (2010) �ndings that

stop-word removal and stemming are not as e�ective for short documents. They

also state that document-length normalisation does not a�ect short documents

which may be why none of the domain speci�c studies mentioned it (Kobayashi

et al., 2018). However Leopold and Kindermann (2002) found that document-

length normalisation did improve classi�cation performance, even for short docu-

ments. But, in contrast to Bermingham and Smeaton (2010) and Timonen (2012)
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who applied L2 normalisation, as well as the general recommendation literature,

Leopold and Kindermann (2002) found that for short documents L1 normalisation

was sometimes superior with L2 only surpassing and becoming notably superior

for increasing document lengths.

Finally, Wang and Manning (2012) support Bermingham and Smeaton's (2010)

�nding that Naïve Bayes performs better than Support Vector Machines on short

form corpora while the opposite is true for longer documents. They speculate

that this is due to the many poor assumptions of the Multinomial Naïve Bayes

becoming increasingly detrimental for longer documents. They also state that

while the Multinomial Naïve Bayes is generally considered superior to the Bernoulli

variant, the performance becomes more comparable for short documents (Wang

and Manning, 2012).
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Chapter 5

Research Methodology

This chapter presents the overarching methodology according to which the empir-

ical analysis was designed and executed. It starts with an overview of common

Knowledge Discovery and Data Mining methodologies followed by a more detailed

explanation of the one selected for this study, the Cross-Industry Standard Pro-

cess for Data Mining (Crisp-DM). The more detailed experimental methodology is

presented in the next chapter and was selected according to the principles of this

methodology.

5.1 Knowledge Discovery and Data Mining

Methodologies

As discussed in Chapter 2, this project falls within the realm of Knowledge Dis-

covery and Data Mining (KDDM) and can therefore bene�t from a Knowledge

Discovery methodology. Several methodologies have been proposed (and used) in

literature. These usually take the form of knowledge discovery process models that

provide a roadmap for the planning and execution of a KDDM project (Sharma,

2008). Some of the most popular models include the nine-step model by Fayyad

et al. (1996), the �ve-step model by Cabena et al. (1998), the eight-step model

by Anand and Buchner (1998) and the six-step CRISP-DM model (1996).

127
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Cios et al. (2007) and Kurgan and Musilek (2006) review the di�erent models

�nding them very comparable. They all propose a multiple step, sequential pro-

cess that spans a similar range of activities with the main di�erence lying in the

number and scope of their speci�c steps (namely how the activities are grouped).

They conclude that while there is no universally �best� methodology, each has

its own strengths and weaknesses making it more or less preferable for di�erent

applications and recommend making a choice based on the application domain,

user background and individual preferences among other things (Cios et al. 2007;

Kurgan and Musilek 2006).

They further identify several common principles advocated by all of these models.

The most important of this is the emphasis on iteration. While all these models

outline a sequential approach with each new step building on the outputs of the

previous; they all emphasize the need for multiple feedback loops contained in

an iterative revision process. Another important point con�rmed by all these

methodologies, is the context-dependent application of these models which will

vary according to the objectives, resources and complexity of each project. Finally,

all of these methodologies recognise the data preparation step as the most time-

consuming (and critically important) part of the knowledge discovery process;

a fact that might be missed by industry practitioners as this step is seldomly

documented in literature. (Cios et al. 2007; Kurgan and Musilek 2006)

Both Cios et al. (2007) and Kurgan and Musilek (2006) distinguish between meth-

odologies developed by industry and those developed in academia. Similar to the

academic-industry gap identi�ed in ML literature (Section 1.2), Cios et al. (2007)

and Kurgan and Musilek (2006) found that the academic tools do not take prac-

tical, industry issues into account. For this reason the CRISP-DM methodology

(discussed below), which is the leading industry model according to both Cios

et al. (2007) and Kurgan and Musilek (2006), was selected. Kurgan and Musilek

(2006) further state that this methodology is the most appropriate model for novice

practitioners, industry and academic alike, citing its easy-to-read documentation

and intuitive, industry focussed descriptions. This methodology was also used

by Edwards et al. (2008), the only domain speci�c paper found that stated their

methodology.
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5.2 CRISP-DM Model

The Cross-Industry Standard Process for Data Mining (CRISP-DM) was developed

by a large group of industry professionals in the late 1990s (Chapman et al., 2000).

It falls within the delimitations set out in Section 1.4 as it was published as an

open standard making it very accessible and contributing towards its popularity.

It identi�es six main phases that should be completed in a KDDM project, namely

Business Understanding, Data Understanding, Data Preparation, Modelling, Eval-

uation and Deployment. These can be seen in the reference model provided in

Figure 5.1.

Figure 5.1: CRISP-DM reference model (Chapman et al., 2000)

The model revolves around the data indicating the paramount importance of the

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. RESEARCH METHODOLOGY 130

nature, quality and quantity of this resource to the KDDM outcome. The circle

indicates the cyclic nature of the process, KDDM is never really done and con-

tinues after the �solution� is found. The output of a KDDM project is often new

information, either about the business or the data itself which enables new business

questions, new processing strategies, collecting new data and essentially the start

of a new (or more correctly continued) KDDM project (Chapman et al., 2000). It

is critical to realise then, that to continue receiving value from the data, the data

mining activities must continue. This is in accordance with both ISO 55000 and

ISO 8000 discussed in Chapter 2 which stresses the importance not only of estab-

lishing an information management system, but also the continued maintenance

and management thereof.

Although the process model describes the six main phases in a sequential man-

ner, the documentation stresses that this is for illustrative purposes only and is

intended to show the general methodological progression, not a rigid rule-set. In

practice there are various interdependencies between non-sequential phases of the

methodology, the precise nature of which depends on the data-mining objectives,

practitioner skill-level and resources as well as the speci�c dataset available. Like

the other KDDM models, it acknowledges the iterative nature of the process and

indicates main interactions with the multi-directional arrows (Cios et al. 2007;

Kurgan and Musilek 2006; Chapman et al. 2000).

The �rst phase, Business Understanding, is paramount to the application of data

mining. Any dataset contains a potential wealth-mine of information, but most of

it is useless. Therefore the CRISP-DM methodology calls for the creation of both

business and data mining objectives to focus the research e�ort. This is related to

the requirement of actionability discussed in Section 3.7.4.2. It is important to get

a good feel for the data that is available and the types of output information that

is potentially valuable for the organisation (Chapman et al., 2000). Due to the

academic nature of this study, this is done in a more general manner for the asset

management industry at large in Chapter 2. The research question formulated

in Section 1.3 can be seen as the business objective for this more generic context

with Chapter 6 providing only a brief overview of the organisational context within

which the speci�c dataset was generated. The data mining objectives are presented
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in Section 6.3.

The second phase, Data Understanding, is about getting to know the available data

through a combination of manual inspections, data queries, visualisation tools and

statistical summaries. It is an exploratory process that will vary according to the

particular dataset and research objectives, but will typically include general quality

considerations (such as noise, error and duplication), as well as more speci�c data

characteristics (such as interesting subsets of data and the distribution of key

attributes). An important aspect of this phase is to establish the extent to which

the various assumptions, such as IID, hold for the dataset as it can impact not only

the performance but also the validity of the results. At this point the researcher

will probably develop a better understanding of the business as well leading to

more focussed research questions and objectives as indicated by the �rst multi-

directional arrow in Figure 5.1 (Chapman et al., 2000). The Data Understanding

phase is not typically documented in literature because it is data and application

speci�c holding little general value. For the same reason, only the most important

outcomes of this phase are presented in Chapter 6. However, it is of utmost

importance as it forms the basis of the subsequent Data Preparation, Modelling

and Evaluation decisions and can have a profound impact on the �nal performance.

The third phase is Data Preparation. This typically forms the bulk (up to 60%)

of the data mining e�ort and time (Cios et al. 2007; Kurgan and Musilek 2006).

While it has no tangible business outputs, it is of critical importance as it involves

the selection of features which is the only input given to the models. If important

features are neglected or bad features are included it could drastically a�ect the

ability of models to learn and may prevent the accomplishment of the business

objectives. Some of the major steps identi�ed by CRISP-DM is the selection,

cleaning and formatting of data to the appropriate representation (Chapman et al.,

2000). These steps fall under the blanket term of preprocessing as de�ned in

Chapter 3.

While CRISP-DM emphasises the importance of comprehensive documentation for

all steps of the knowledge discovery process, preprocessing and other implementa-

tion details are often neglected in literature, considered too trivial for publication

(Blamey et al., 2012). This is not only an issue from an academic perspective (pre-
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venting replication), but can also be problematic for e�ective knowledge sharing

within an organisation. For this reason both the selection and the evaluation of

the preprocessing steps are documented in Chapters 6 and 7.

The fourth phase is Modelling and is where the actual model-building occurs.

Typically, there are multiple algorithms that can solve a problem with no way to

know beforehand which will be best as per the no-free-lunch theorem discussed

previously. Furthermore, each algorithm also has multiple hyperparameters that

can be adjusted including the selection of preprocessing techniques with which to

combine it. The complex interactions between the di�erent preprocessing steps

and algorithms are acknowledged, but poorly understood in literature leading to

either one-size-�ts all preprocessing (discouraged by many authors such as Wang

and Manning (2012) and Baharudin et al. (2010)) or brute force and random search

methods to select optimal combinations from some speci�ed set.

Several authors argue that preprocessing should be considered part of the model-

ling phase and be included in the hyperparameter optimisation to ensure not only

the optimality but also the validity of the results (Krstajic et al. 2014; Tsamardi-

nos et al. 2015; Varma and Simon 2006). This view is not incompatible with

the CRISP-DM methodology which stresses not only the interrelatedness of all

phases, but also the adaptability of their model (Chapman et al., 2000). Fur-

thermore, the inclusion of preprocessing in the model optimisation can simply be

viewed as multiple successive feedback loops between the two phases in accord-

ance with the multi-directional arrows between Data Preparation and Modelling

in Figure 5.1. This is the approach used for the experimental analysis which is

discussed in Chapter 6.

While the implementation details such as algorithm choice, optimisation strategy

and evaluation scheme are beyond the scope of CRISP-DM (which strives to

provide an application independent methodological guide) it recommends select-

ing and testing a few viable algorithms based on the speci�c KDDM objectives

and what is observed in literature. Included in this phase is preliminary model

assessment but this relates to model selection rather than evaluation of the results.

It again emphasises the importance of adequate documentation for all steps of the

analysis (Chapman et al., 2000).
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The next phase is Evaluation which not only seeks to assess the model perform-

ance, but also to understand the results (e.g. why certain techniques or parameter

settings led to good/bad performance). While the predictive accuracy of the mod-

els are important, so are the other considerations identi�ed in Section 3.7.4.2,

namely e�ciency, interpretability and actionability. These results are discussed

in Chapter 7. Even more important, this phase also includes a methodological

evaluation that reviews the experimental procedure in order to asses the validity

of the results (Chapman et al., 2000). This was identi�ed as particularly import-

ant in the problem statement in Section 1.2 as business decisions depend on the

reliability of these results which depend on the validity of the methods used to

obtain them (Kobayashi et al., 2018). This is provided in Chapter 8.

Included in the Evaluation phase, is determining whether the business objectives,

as opposed to the data mining objectives, were met (Chapman et al., 2000). For

this study it involves answering the research question which is done in Chapter 9.

The arrow pointing back to the �rst phase is not only indicative of the continuous

nature of KDDM projects, but also shows that the outcome of such a cycle is

enhanced Business Understanding that can be used to initiate new projects. This

takes the form of the future recommendations also provided in Chapter 9.

The �nal phase of the CRISP-DM methodology is Deployment. Deployment refers

to the application of the model to actually solve or improve the business problem

(Chapman et al., 2000). The most important outcomes of this phase concern the

implementation of the model; the monitoring and maintenance of the model; and

most important to this study, the documentation of the project which takes the

form of the total thesis document. The research, models and results are provided to

the data sponsor to use at their own discretion, but due to the academic nature of

this project, the �nal deployment step is not included. This is a common limitation

in literature as can be seen from the domain speci�c studies evaluated in Section

4.1 where only Rajpathak (2013) reports on the results of an industry deployed

system.
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Empirical Analysis: Design

The empirical study was designed according to the CRISP-DM methodology dis-

cussed in the previous chapter and is presented according to the main phases of

the process model shown in Figure 5.1. Although these phases are presented in a

sequential manner, this is for the sake of clarity and presents only the �nal out-

put of numerous iterations with a signi�cant amount of back-and-forth between

non-sequential phases (in accordance with the methodology).

It starts with the �rst phase of the CRISP-DM model, Business Understanding.

Due to the academic nature of this study, it was considered appropriate to rather

develop a more generic, domain understanding of the asset management industry

(Chapter 2) instead of focussing on a particular business context. The research

question in Section 1.3 is framed within this broad context and can be considered

the business objective of the analysis. The section below provides only a brief

overview of the speci�c organisational context within which the data was gener-

ated.

This is followed by the most important outcomes of the Data Understanding phase.

The output of this phase was signi�cantly more than is presented here, but holds

little general value as it is dataset dependent. Hence, only the outcomes which are

relevant to the remainder of the study is provided. This section is combined with

the data selection which actually forms part of the Data Preparation phase, but

is so integrated with the outcomes from the Data Understanding that it is easier

134
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to explain their combined output.

To ensure the validity of the results (in accordance with the eighth project object-

ive), the Data Preparation, Modelling and Evaluation phases were integrated into

a single procedure described in the section titled Experimental Design. Only the

data selection and a few unsupervised (namely class independent) preprocessing

steps were completed separately to lessen the computational load of unnecessary

repetitions as recomended by Krstajic et al. (2014). These are described in Section

6.2.2.

6.1 Business Understanding

For the purposes of this study, maintenance records were obtained from one of

South Africa's leading service fuel service-station brands. E�ective management

of these assets are critical, not only for business pro�tability, but also for envir-

onmental, health and safety considerations. Filling stations store and sell highly

�ammable and potentially explosive liquids that are also hazardous to the en-

vironment if not managed properly. Furthermore, many stations require 24/7

operability to meet customer expectations making unplanned downtime especially

problematic.

The data was made available by a third-party maintenance and asset care provider

with permission from their client. The maintenance service provider is responsible

for keeping the service stations operational which includes breakdown response,

routine inspections and various scheduled maintenance activities. The dataset

contains historical work-order records detailing the maintenance events from more

that ten years and have been stored in an SQL database.

The work-orders are created in an operational setting and may have many con-

tributors including the maintenance technicians, call-centre sta� and external con-

tractors. While they are mostly used for scheduling and record-keeping purposes,

they contain valuable information that could provide great bene�t if utilised ef-

fectively. In an attempt to address this, numerous structured �elds containing

coded inputs were introduced to facilitate the computerised extraction of higher
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level information such as failure modes. For this they identi�ed eight failure modes

of interest and assigned them input codes. However, the completion rate has been

poor with only the free-text �elds consistently �lled in.

6.2 Data Understanding, Selection and Cleaning

The total dataset contains 373 344 records spanning 12 years from 2005-2016 of

which only 173 331 (46.43%) are labelled with a failure mode. Each record has a

unique identi�er code and represents a work-order generated for some maintenance

event. The work-orders have several structured and unstructured �elds that detail

di�erent aspects of the various events. This includes two unstructured, descriptive

text �elds detailing the WorkRequired and the WorkPerformed which are the pos-

sible inputs for the models. Several structured �elds provide further details using

coded inputs such as SiteId, AssetId, WorkOrderStatus and of course the �eld of

interest, FailureTypeId which speci�es the various failure modes (FM) and is the

desired output of the models.

There are eight FM codes present in the dataset that correspond to high level

functionalities such as Electrical,Mechanical or Hydraulic Failure which are shared

by all asset types. This includes a non-informative Generic Failure class which

makes up the majority at more than 80% of the labelled records. The two smallest

classes make up less than 1% of the labelled set with the smallest containing only

one record. This makes it a multi-class classi�cation problem with severe class

imbalance.

Records are initiated with the WorkRequired �eld making it a natural choice for

model input as it is therefore present in all records. In the total dataset, this �eld

varies in length from 1-2535 characters and 1-388 words. The average document

length is 17.9 words with 251 single-word documents, 20 111 below �ve words, and

130 886 below ten. Without any preprocessing the corpus vocabulary is 102 425

unique words (of a total of 6 730 423 words). Included in this is unique numbers

and words di�ering only by capitalisation. If all numbers, punctuation and accents

are removed and the text forced to lower-case, this reduces substantially to 34 602

unique words. These properties are signi�cantly di�erent to those typically found
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in literature. For instance, the commonly used Reuters (RCV1-v2) dataset with

23 307 documents has a corpus vocabulary of 47 219 unique words and an average

document length of 123.9 terms (Lewis et al., 2004).

For this reason it was initially decided to combine the WorkRequired and Work-

Performed �elds into a single text input to achieve longer document length. A

preliminary analysis yielded suspiciously high results, and upon closer inspection

it was found to be due to data-contamination (Section 3.8.3). At some point in

time, a data-copy error occurred in the original database causing the text of all

�elds (including the target column FailureTypeId) to be copied into the WorkPer-

formed text �eld.

This is a classic example of data-contamination which causes an estimator to treat

the duplicated label in the input text �eld as a strong indicator of that label-

class. This creates a trivial classi�er that is worthless for unlabelled records not

containing this duplication. It can be di�cult to identify this problem, especially

when the contamination is not present in all records, and can lead to dangerously

over-con�dent results. This is one of the reasons why the interpretability and not

only the accuracy of the models are important as it is much easier to identify

suspect logic in white-box models such as Naïve Bayes than in black-box models

such as Neural Networks. For this reason, only the WorkRequired �elds were

used as modelling inputs for the analysis described in Section 6.4. This has the

additional bene�t of potentially being able to assist AM activities in real-time,

namely before any work is performed.

A further challenge of the dataset, is the highly speci�c, non-standard vocabulary.

Of the ten words with the highest frequency in standard English (the, be, to, of,

and, a, in, that, have, I (Press, 2011)) only the appears in the top ten of the data-

set, and is preceded by pump, a typically much scarcer word. Furthermore, there

is a notable di�erence in the frequency of function (or stop) words in the dataset

with speci�c words such as dispensing, nozzle and abbreviations such as lrp and vp

included in the top ten which contains only three function words (most frequent

of which is not). This indicates not only the domain speci�c vocabulary, but also

the use of non-standard grammar as reported by McKenzie et al. (2010) among

others with the text containing short phrases rather than well-formed sentences.
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As evident from the domain speci�c studies evaluated in Section 4.1, one of the

particular challenges in the analysis of maintenance records is the high variety of

extremely terse, ad-hoc abbreviations used inconsistently throughout the dataset.

To illustrate the quality di�erence between maintenance records and typical NLP

corpora, Rajpathak (2013) compares the distribution of unique abbreviations in

his dataset of automotive maintenance records with that of the Wall Street Journal

corpus (a more general language dataset). He reports that only 6 di�erent abbre-

viations account for 80% of all those found in the generic WSJ corpus in contrast

with 107 in his dataset.

A preliminary inspection of the data seemed to indicate a similar trend in the

data used for this study. Using simple heuristics based on observed punctuation

and capitalisation trends, the frequency distribution of unique abbreviations was

evaluated for the dataset �nding that 85 abbreviations account for approximately

80% of the total. Although less than Rajpathak's (2013) dataset, this still indicates

a variety of abbreviations that far exceeds that of the generic corpus. This is further

con�rmed by the inclusion of three abbreviations in the top ten most frequent

words in the dataset, which is not the case in any of the generic corpora.

Apart from being non-standard, the abbreviations are also used inconsistently with

many variants such as: u.c, u/c, U/C, u/canopy, u-canopy, u canopy, u'c and un-

der c all referring to under canopy causing di�erent versions of the same word to

be treated separately. Not only does this in�ate the already high dimensionality of

text, but it can also the hurt performance as the feature signi�cance is dissipated

between di�erent representations. All of these issues further restrict the e�ective-

ness of standard NLP tools such as stemming and POS tagging that have been

developed for standard English (McKenzie et al. 2010; Uz-Zaman et al. 2015).

6.2.1 Data Selection

The quality of the dataset is far from desirable and presents all the quality issues

typically found in industry data namely incompleteness, duplication and noise. On

top of the already signi�cant challenges faced by standard NLP applications (high-

dimensionality, sparsity, polysemy and synonymy), it also presents the domain
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speci�c challenges described in literature such as short document length, highly

speci�c vocabulary, non-standard grammar, high number of extremely terse and

inconsistently used abbreviations and most importantly, poor annotation quality.

While machine learning is frequently applied to datasets that do not meet the nor-

mal standard of data quality (Edwards et al., 2008), this does not imply immunity

to the e�ects of poor data quality. In fact, Mozetic et al. (2016) demonstrates that

data quality is the most signi�cant determiner of model performance.

Mozetic et al. (2016) show that the annotation quality provides the upper limit

of performance that can be reached and recommends removing low quality data

on the basis of self-annotator agreement (Section 3.2). Unfortunately, annotator

information was not retained and none of the documents were labelled more than

once preventing sample selection on this basis. Instead, the data was �ltered

according to several quality issues identi�ed during the Data Understanding phase.

The �nal sample comprised only a small portion of the total dataset containing 30

751 records (8.23% of the total). It was compiled according to the following steps

discussed in more detail below:

1. Discard all unlabelled records (53.57% of total)

2. Discard all records outside 2007-2011 time period (65.63% of total)

3. Discard all uninformative classes (37.99%)

4. Discard all records that are not failure based (26.82% of total)

5. Discard all incomplete (cancelled, pending or rejected) records (43.53% of

total)

6. Discard all externally completed, sub-contracted records (7.68% of total)

7. Discard all duplicate records (4.86% of total)

8. Discard all meta �elds (preserving input, group and output)

9. Encode class labels
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10. Shu�e data

The project was limited to supervised learning in Section 1.4 which requires la-

belled training data. Since only 173 331 (46.43%) of the records are labelled with

a failure mode, the remaining unlabelled majority is excluded from use (step 1).

While possible to expand the labelled set using a best-guess approach as done by

Edwards et al. (2008), it was decided against this as the non-expert labelling would

be inferior to (and inconsistent with) the subject matter expert (SME) labelling

which could potentially decrease the quality of the training set. Furthermore, be-

cause the �nal dataset size is comparable to (and larger than many of) the related

studies evaluated in Section 4.1, the additional time and e�ort investment was not

judged worthwhile.

The yearly class distribution of the labelled sample is shown in Figure 6.1 from

which it is clear that the independent, identically distributed (IID) assumption

does not hold. There is evidence of both data-fracture and chronological concept-

drift in the data (Section 3.1). From 2012 onwards there is a sudden onset of

Generic labels accompanied by a drop for all the other classes. A similar dis-

continuity between records from before 2012 and after was observed for many of

the other structured �elds indicating 2011-2012 as a point of data-fracture due to

changes in the information management system (evident from distinct code-sets for

some �elds). Such an extreme fracture point cannot be modelled as the relation-

ship between the input and output, namely what constitutes as Generic Failure

in terms of the input text, has emphatically changed (irrespective of whether this

change is a re�ection of the external reality).

For this reason only records from the period 2007-2011 were retained (the dataset

starts in 2005, but the labelling only started in 2007) (step 2). While using the

most recent data would be preferable, the labels become e�ectively meaningless

after 2011 as all the documents are labelled with the same, uninformative class:

Generic Failure making the data before the fracture point more valuable.

While more homogeneous, this sample is not IID either as can be seen by the

yearly class distribution of the �nal sample shown in Figure 6.2 which still presents
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Figure 6.1: The yearly class distribution for the full sample showing the IID violation
and a fracture point at 2011/2012

changes with time. The 2007-2009 and 2011-2012 subsets are more homogeneous

than their combination but the di�erence is less extreme a�ecting only the Mech-

anical and Structural classes signi�cantly. This indicates chronological data-drift,

rather than data-fracture, which is a re�ection of the non-stationary business envir-

onment (e.g. changing reliability curves of ageing assets or maturing AM practices

leading to di�erent types of failure). While none of the domain speci�c stud-

ies explicitly address the IID assumption, its violation and chronological drift is

implicitly acknowledged by Mukherjee and Chakraborty (2007) who identify the

�changing dynamics of product life-cycles� as a challenge in maintenance data, Ra-

jpathak and De (2016) who refer to the changing failure rate of the �bathtub�

curve and by all the authors that recognise the heterogeneity of the data (Chen

and Nayak 2007; Rajpathak et al. 2012; Devaney et al. 2005; Sipos et al. 2014).

The sample was not reduced to either of the more homogeneous subsets for two

reasons. Firstly, to maintain a larger quantity of training data, and more import-

antly, to accurately re�ect the reality of the changing operating environment in

which the model will be deployed to ensure the validity of the results. This was

done by identifying the record date (year) as a group variable which is used to test

the out-of-sample performance of the models in the evaluation procedure described

in Section 6.4 below.
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Both the largest and the two smallest classes were discarded for being uninform-

ative leaving the sample with �ve remaining labels (step 3). The largest, Generic

Failure, does not contain any information about the failure mode other than the

absence of the others. This makes it a di�cult class to model as it is not a homo-

geneous group. The smallest two classes, Civil Failure and Veri�cation, contain 1

and 330 documents respectively. One example is obviously inadequate and while

330 documents are more plausible, it becomes very small when separated into the

respective training and evaluation folds for the nested cross-validation (described

in Section 6.4). Furthermore, like the Generic class, Veri�cation does not present

an actual failure mode but serves as a place-holder for activities such as routine

inspection and machinery calibration. This reduces the class-imbalance somewhat

with Structural Failure being the new majority class at 32% and Electrical Failure

the smallest at 6%.

Because the modelling objective is the identi�cation of failure modes, mainten-

ance events that involved no failure was deemed irrelevant to the analysis. These

records were eliminated by discarding all system-generated records (mostly sched-

uled inspections) and retaining only unscheduled, non-tactical records (step 4).

All un�nished records (indicated as cancelled, pending or rejected in theWorkOrder-

Status) were discarded as the information of these records have not been veri�ed

as legitimate for whatever reason (step 5). Many of the reasons make the records

irrelevant to the analysis such as false alarms indicating that no failure occurred,

or out-of-scope statements absolving the service provider of responsibility. Other

reasons, such as administrative or procedural errors, could indicate bad quality

information which could hurt the performance. The same logic was followed in the

decision to exclude all externally completed, sub-contracted records (indicated as

company-owned in the asset-type). Since these assets fall outside the scope of the

service provider's responsibility, the failure modes and maintenance of these assets

are also considered irrelevant as well as potentially incompatible with the in-scope

assets (step 6).

Next, the meta �elds were used to identify and discard duplicate records (step 7)

as it became evident during the data exploration process that some records with

identical input and output �elds nonetheless account for separate, albeit similar,
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events. To distinguish these from true duplicates (due to data handling errors)

only those records with identical meta �elds (AssetID, SiteID and AuthorID) were

discarded. Thereafter, all meta �elds were discarded (step 8) retaining only the

input: WorkRequired, the group: ReceivedOn and output: FailureModes. Finally,

the class labels were encoded to numeric format using Scikit-learn LabelEncoder

(step 9) and the �nal dataset shu�ed (step 10).

The �nal sample is much smaller than the original dataset containing 30 751

records (8.23% of the total). However, the quality is signi�cantly better. The

WorkRequired �eld of this sample has no more single-word documents and the

document length is more tightly distributed than before at 15-563 characters and

2-93 words. The average document length has reduced to 10.7 words due to the

exclusion of several extremely long, noisy outliers in the full set.

6.2.2 Unsupervised Data Cleaning

Although common in practice, many authors caution against preprocessing data

prior to the cross-validation. The selection of preprocessing transforms amount

to an optimisation process which can lead to biased results if adjusted repeatedly

to improve performance. Just like the estimator can over-�t to the training data,

so the modelling process can over-�t to the evaluation data leading to an over-

estimated generalisation performance. Furthermore, care must be taken to limit

the pre-processing transforms to the training data (hence be applied per training

fold of a cross-validation). Data-leakage can occur if the full data-set is prepro-

cessed before evaluation, as the model will not be tested on any unseen words

and feature selection and weighting algorithms will have unfair access to feature

distribution in the test set. This can also lead to optimistically biased results.

However, Krstajic et al. (2014) notes that unsupervised (namely class independ-

ent) preprocessing procedures can be applied prior to the cross-validation if care

is taken to prevent data-leakage in order to lessen the computational expense of

unnecessary repetitions.

Following the recommendations by these authors, only a very limited degree of un-

supervised preprocessing was performed prior to the evaluation comprising of data
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cleaning activities which falls under the Data Preparation phase of the CRISP-

DM model. A small amount of data-leakage can still occur from the selection of

unsupervised data cleaning transforms if the practitioner is guided too extensively

by the particular elements of the training set. To prevent this, the exploratory

analysis that is needed to guide the selection of cleaning steps was performed on

theWorkRequired �elds of the out-of-sample records which were excluded from the

training set for various reasons in the above section. This way it is still a data-

guided process but cannot over-�t to the particular training set. The remainder of

the data preparation was performed in the inner loop of the nested cross-validation

treating the selection of preprocessing variables as hyperparameters. These were

optimised along with the estimator parameters according to the hyperparameter

optimisation strategy described in Section 6.4.

Data cleaning is used to improve the quality and lessen the excessive dimensionality

of the typically noisy text data. The following steps were applied in the order

provided with more details below:

1. Transform all characters to ASCII equivalents (transliteration)

2. Replace all explicit newline characters: \n with single whitespace

3. Replace all numeric terms with a single numeric placeholder surrounded by

whitespace: � 0 �

4. Abbreviation Standardisation using a heuristic search-and-replace function

5. Punctuation

� Remove all apostrophes without replacement

� Replace all remaining punctuation with a single whitespace

6. Remove capitalisation

The transliteration was performed using Python's Unidecode module to replace

inconsistently used accented characters such as é and ç with ASCII equivalents

e, c to prevent inconsistent variants of words such as facade and façade from
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arti�cially in�ating the dimensionality (step 1). Marzec et al. (2014) reports good

results using this technique on a Polish dataset � a language with a much higher

prevalence of diacritic marks)

Furthermore, the module is capable of intelligent replacement of special characters

such as ◦ with a text equivalent deg while all remaining unknown character such

as � and ? (remnants from earlier �le conversions and corruption) are removed

without replacement. In addition to the unknown character symbols removed

by the transliteration, previous data handling errors also left some records with

explicit newline characters: \n. These were replaced with a single whitespace (step

2).

The inclusion of numeric terms in the text data is very much context dependent

based on whether or not the practitioner deems them relevant to the learning

objective. If uncertain, Kobayashi et al. (2018) recommends retaining them and

letting subsequent dimensionality reduction procedures such as feature selection

handle their inclusion. However, due to the technical nature of the dataset, the

unique numeric terms account for a disproportional portion of the dimensionality.

Of the 102 425 unique terms in the unprocessed total dataset, 44 164 are numeric

accounting for 43.12% of the dimensionality. Therefore, it was decided to merge

all numeric terms into a single template, replacing them with a single numeric

placeholder surrounded by whitespace namely � 0 � so that the numeric identity

is retained without the excessive dimensionality of the speci�c values. (A method

supported by Kobayashi et al. (2018) and McKenzie et al. (2010)) (step 3).

Many authors recommend cleaning the data by removing all non-alphabetic char-

acters (step 5) and converting the remaining text into lower-case (step 6). This is

typically done in the tokenisation process to remove extraneous di�erences between

features and in so doing reduce the dimensionality of the input space. Rather than

doing this in one fell swoop, it was decided to do this in stages enabling �ner con-

trol of the tokenisation process as well as enabling the use of syntactic information

(punctuation and capitalisation) in the abbreviation standardisation process (step

4) described below.

The standard way of handling punctuation is to treat it as a delimiter in the
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tokenisation process so that the text is split on (and removes) all whitespace and

punctuation. However, as McKenzie et al. (2010) points out, this can lead to sep-

arating contractions and abbreviations in an undesirable way. For example [can't]

is separated into [can] [t] preventing distinction between it and its opposite [can].

Abbreviations such as [e.g.] is separated into individual letters [e] [g] making it lose

all meaning considering that word order is lost (and will return a shared feature

[e] for very di�erent abbreviations (such as e.g. i.e. and e.t.a) Rather than alter-

ing the tokenisation process like McKenzie et al. (2010), the punctuation marks

that should not be separated on was identi�ed and removed (without replacement)

beforehand so that only valid delimiters remained.

In the �rst step, all apostrophes were removed without replacement reducing con-

tractions like [can't] into a single token [cant]. This was preferred to McKenzie

et al.'s (2010) method of ignoring apostrophes in the tokenisation process (yield-

ing a �nal token [can't]) because it was observed that apostrophes were sometimes

neglected in the text which would yield two di�erent tokens.

In the next step, the punctuation elements that frequently occur in abbreviations

(and should not be spilt on) were identi�ed as periods, hyphens, and forward

slashes. These were used in the abbreviation standardisation process described

below. However, these elements do not only occur in abbreviations. Unlike the

apostrophes, these elements are sometimes needed as delimitators and cannot

simply be removed (or ignored in the tokenisation process). For example when

whitespace is neglected after a sentence ending period or when a forward slash is

used to separate items in a list, simply removing these symbols will lead to the

concatenation of separate features leading to loss of the true features as well as

addition of bad features (e.g. [switch/wiring] will lead to addition of bad feature:

[switchwiring] that is very rare, and loss of both [switch] and [wiring] which is more

common). For this reason, all abbreviations are standardised to punctuation free

forms so that the remaining periods, hyphens, and forward slashes can be treated

as delimitators.

Finally, the capitalisation trends relating to abbreviations were identi�ed and used

in the abbreviation standardisation process to identify punctuation-free abbrevi-

ations as well as helping to distinguish between punctuation elements used in

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. EMPIRICAL ANALYSIS: DESIGN 147

abbreviations and without. After identi�cation and lower-case standardisation of

abbreviations such as P and T to pump and tank, the remaining text was converted

to lower case.

Abbreviations are relatively rare in general-purpose text and are therefore not

a big consideration in typical text analyses. However, as discussed in Section

6.2, this dataset contains both a high density and a high variety of non-standard

abbreviations. This is a typical characteristic of maintenance records and one of

the particular challenges that set it apart from more generic text analyses.

Abbreviations were identi�ed in an exploratory manner using several Regular Ex-

pressions (regex)1 based on the syntactic structure observed in the text. Because

a signi�cant portion of these were found to be variations of each other, further

expressions were constructed to search for additional variants of the most frequent

abbreviations and combining those found into a single abbreviation class and list

of corresponding regex expressions. For each abbreviation class, a standardised

version was selected and the regex rules of all variants combined into a single

search-and-replace function.

To enable the subsequent removal of all remaining punctuation and capitalisation,

the abbreviations were all standardised to lower case, punctuation free formats

containing only delimiter whitespace. The standardised versions were selected on

a per-case basis. For some abbreviations such as u/c, the intended meaning (under

canopy) was obvious and consistent. For these, the unabbreviated text form was

used as the standardised replacement to retain the relationship between unabbre-

viated occurrences of the phrase as well as individual occurrences of either term.

In this manner the relationship between records referring to e.g. under canopy,

all canopy and side canopy is maintained by the shared feature: canopy which

would be lost with abbreviated replacements (uc, all canopy and sc). However,

for some abbreviations the intended meaning could not be inferred from the text,

while for others such as d/b, multiple context-dependent meanings (e.g. data base,

1A sequence of characters that de�nes a search pattern and is more powerful than exact
match searches. For example: re.search(r'\b[\w]/[\w]+', �ags=re.IGNORECASE) will search
for all occurrences of a single letter followed by a forward slash followed by one or more letters
to match both u/canopy and U/C but not switch/wiring
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distribution board, dash board) were identi�ed. These were standardised to a set

abbreviated format: lower case, no punctuation and no spacing e.g. db. Although

still ambiguous, the standardised format prevents splitting abbreviations in the

tokenisation process and reduces the dimensionality of the input space by the

removing extraneous di�erences in their formulation.

To prevent data contamination, this procedure was conducted on records excluded

from the �nal sample in Section 6.2. Only the �nal search-and-replace function

is applied to the actual dataset. This ensures that the cross-validation test sets

remain truly �unseen� from a data preparation perspective. While this also means

that the preprocessing might not be fully optimised for the speci�c cross-validation

training sets, this should not hurt the generalisability of the model which may even

increase due to the use of a much bigger sample (342 593 discarded records). Ab-

breviations were seen as stylistic attributes of authors and less likely to be a�ected

by the quality considerations discussed in Section 6.2.1 making the excluded re-

cords a viable abbreviation sample.

After running the abbreviation standardisation search-and-replace function on

the �nal dataset, all remaining non-word characters were replaced with a single

whitespace and the remaining text converted to lower case. In a �nal step, all

excess whitespace was removed. These �nal steps could just as easily have been

implemented in the tokenisation process inside the cross-validation. Although this

would have no e�ect on the results, they were done before to avoid unnecessarily

repeating the same procedure in every loop.

6.3 Data Description and Data Mining Objective

The �nal dataset selected for training contains 30 751 documents and �ve failure

mode classes presenting relatively severe class imbalance as can be seen in Table

6.1 below. The F1-score is the most relevant evaluation metric as it accounts for

both the precision and recall which is especially important for class imbalance.

While no metric can adequately summarise the model performance, it is useful

to have a single metric with which to compare and select models especially for

optimisation. Both the macro- and micro-averaged scores are used in literature
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Table 6.1: Class distribution in selected sample

Failure Mode 2007 2008 2009 2010 2011 Total Normalised
Electrical Failure 169 390 329 745 246 1 879 6.11%
Electronics Failure 664 1 696 921 1 819 1 944 7 044 22.91%
Hydraulic Failure 325 875 972 485 370 3 027 9.84%
Mechanical Failure 812 3 308 3 305 1 002 455 8 882 28.88%
Structural Failure 117 66 180 4 592 4 964 9 919 32.26%
Total (Test Folds) 2 087 6 335 5 707 8 643 7 979 30 751 100.00%
Training folds 28 664 24 416 25 044 22 108 22 772

and present di�erent views of the performance. It is desirable to maximise both,

but for this implementation the micro-average was deemed more important as it

is indicative of the performance of the largest number of documents. As per the

project objectives de�ned in Chapter 1, validity is critical. Therefore the data

mining objective is to maximise the micro-averaged F1-score and to demonstrate

the validity of the results.

The �nal dataset still contains chronological data-drift as can be seen in Figure

6.2, which must be taken into account for evaluation measures that use the IID

assumption.

Figure 6.2: Final sample training and testing folds distribution. The test folds are
indicative of the total sample
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6.4 Experimental Design

This section presents the experimental design used to achieve the data-mining

objectives identi�ed in the previous section. As per the CRISP-DM methodology,

the experimental procedure presented here is the outcome of several iterations used

to review and re�ne the process. For the sake of brevity, only the �nal experimental

procedure is presented here.

The design was guided by the literature reviewed in previous chapters including the

common-practices identi�ed from the related studies as well as the more theoretical

concerns identi�ed in Section 3.8.3. It includes Data Preparation, Modelling and

Evaluation sections as per the CRISP-DM methodology, but to ensure the validity

of the results, these three steps are embedded into a single, nested procedure as

described in the Evaluation section.

It is important to note that the experiment was designed from a model assessment,

rather than model building, perspective to ensure a conservative performance es-

timate. A better model can (and must) be learned from the total dataset before

deployment so that the results from this analysis provide a lower limit on the

generalisation performance that can be expected.

6.4.1 Optimised Preprocessing

This section describes the preprocessing steps that were optimised within the cross-

validation process. As previously discussed, hyperparameters include any variable

in the modelling process that is not estimated directly from the data (Tsamardinos

et al., 2015). This includes all user decisions including the selection of prepro-

cessing transforms and parameters. To prevent data contamination resulting from

optimising these data-preparation steps on the test data, the preprocessing phase

is re�ned within the inner loop of a nested cross-validation (along with estimator

hyperparameters) according to the optimization strategy described below.

This section is organized according to the main preprocessing functions, namely

Tokenisation, Feature Weighting, Data Scaling and Feature Selection. It provides
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an overview of the range of preprocessing transforms evaluated for each stage as

well as details of their implementation.

6.4.1.1 Tokenisation

Tokenisation was performed using the Scikit-learn CountVectorizer module which

performs both tokenization and vectorisation to yield a Document Term Matrix

(DTM) of numeric feature vectors. Additional preprocessing transforms were eval-

uate using NLTK stop-words and Porter Stemmer (2).

A standard tokenization process was used to split the text into word-tokens treating

whitespace as delimiters2. From the studies evaluated, no consensus could be

found on the e�ectiveness of either stemming or stop word removal. Accordingly,

the e�ect of including neither, one or both of stop-word removal and stemming

was investigated.

For the stop word removal, the NLTK English stop-word list containing 153 English

words was used. For stemming, the NLTK extension of Porter Stemmer (2) was

used as per the recommendations by Gentzkow et al. (2017) who cites the Porter

Stemmer as the industry standard for English. Only words containing more than

two characters were passed to the stemmer leaving the rest unchanged (no sensible

stem for non-standard abbreviations or numeric terms). When both stemming and

stop-word removal are applied, the stop-words are removed �rst and the remaining

text sent to the stemmer. This ordering is supported by Baharudin et al. (2010)

and makes intuitive sense as running stop words through the stemmer only to be

discarded directly thereafter is a computational waste.

To preserve some level of word-order information while retaining the simplicity and

computational e�ciency of the bag-of-words model, the inclusion of higher order

n-grams were considered in addition to the standard unigram. This was limited

to bigrams and trigrams because while researchers may disagree on the e�ect of

including these, it is widely accepted that n>3 is not useful and may even decrease

2This is a typical tokenisation implementation but presents a slight modi�cation to the default
used by CountVectorizer which recognises only words with two or more characters. The default
tokenizer would discard any remaining 1-character abbreviations as well as the numeric terms
standardised to 0 in Section 6.2.2.
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performance (Tan et al., 2002). As per the recommendations by Bekkerman and

Allan (2004), these were only considered as extension to the standard unigram (i.e.

combined with) and not as replacement.

The vectorizer returns a Document Term Matrix constructed according to the

vector-space-model where every column represents a feature and every row repres-

ents a document (transformed to a feature vector) so that every element represents

the weight (importance) of the respective feature in the respective document.

6.4.1.2 Feature Weighting

The weighting schemes evaluated were: binary indicators (features weighted equally

indicating only the presence or absence of a term in a document), term frequencies

(features weighted according to the frequency in a document) and sublinear log

frequencies (features weighted according to the logarithm of the frequency in a

document).

Term frequency (TF) is the predominant method found in literature. It has been

demonstrated to be a very e�ective approach, especially when combined with IDF

scaling (discussed below). However, most research has been focussed on documents

longer than 100 words such as the Reuters-21578 dataset which has an average

document length of 160 words in comparison to 54 in this dataset (both before

stop word removal). Words are much less likely to repeat in such short documents

leading to what Timonen (2012) calls the TF=1 challenge. He further states that

weighting schemes based on TF do not perform well on short documents.

Therefore, less common variants binary and logTF were also evaluated. While

Ikonomakis et al. (2005) recommend using binary features for computational reas-

ons (citing equivalence with TF for short documents), the Scikit learn document-

ation recommends binary features as superior for short documents citing noisy

TFIDF features which can lead to model instability3. Despite these recommend-

ations, term frequencies are still the predominant weighting scheme used in short

3Furthermore, one of the algorithms evaluated (Bernoulli Naïve Bayes) requires Boolean
features.
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text classi�cation. Hence, log frequencies were also evaluated as a middle-ground

between the two as it dampens the in�uence of frequency somewhat.

6.4.1.3 Data Scaling

To account for the e�ect of di�erent document lengths, feature lengths and feature

distributions additional scaling functions were evaluated for all the base values,

namely Document Length Normalisation, IDF and feature standardisation. These

were implemented using the Scikit-learn Normalizer, T�dfTransformer and Stand-

ardScaler modules.

From the data understanding phase, it was seen that the document length var-

ied from 2-93 words per document. To prevent features in long documents from

dominating the classi�cation process, document length normalisation was invest-

igated which scales each document (row in DTM) independently by the length

of its feature vector. The feature length was computed using both L1 and L2

normalisation.

To account for the frequency component resulting from corpus frequency rather

than document relevance, Inverse Document Frequency normalisation was invest-

igated which scales each feature (column in DTM) by its IDF to yield IDF, TFIDF

and logTFIDF for the respective frequency transforms.

For the support vector machines an additional feature scaling method was investig-

ated that standardizes features to have a unit variance. This prevents features with

greater numeric ranges dominating those with smaller ranges (a common problem

for distance-based estimators such as SVM) which can improve both the perform-

ance and the convergence rate of the algorithm. It should be noted that this is

di�erent from the traditional standardisation which also centres the data around

a zero mean as this would destroy the sparsity of the data (without which the

dimensionality would be intractable) (Stolcke et al., 2008). Furthermore, due to

the natural sparseness of text, Aggarwal (2018) suggests that the attribute means

are naturally close to zero meaning the lack of centring should not have a big e�ect

(supported by Stolcke et al. (2008)). Although none of the studies evaluated in
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Chapter 4 implement this approach, it is common in non-text domains where IDF

is meaningless and was considered worthy of review.

6.4.1.4 Feature Selection

Both supervised and unsupervised methods were used to evaluate the e�ect of se-

lecting di�erent sized feature subsets. For supervised feature selection, Chi-squared

was implemented to rank features according to class dependence (correlation to

the various classes) and select between 50-100% of the highest scoring features.

For unsupervised feature selection, both high and low document frequency (DF)

thresholding was evaluated to discard the most common and most rare terms

respectively. For the lower threshold an absolute DF of 1-5 was evaluated (dis-

carding features appearing in less than the threshold documents); and for the

upper threshold a proportional DF of 95-100% was evaluated (discarding features

appearing in more than the threshold proportion of documents).

Note that both the DF scores and Chi-squared statistics were only used to rank

the features for subsequent elimination or inclusion, not to weight them. The

feature values passed to the estimator is unchanged from the feature weighting

steps above. The e�ects of feature selection were evaluated for all estimators as

Forman (2004) demonstrated that contrary to popular belief, SVM can bene�t

from feature selection.

The focus of thresholding is feature elimination rather than selection as it attempts

to discard the worst features (as opposed to selecting the best). For this reason,

it was applied before data scaling so that the document length normalisation was

not a�ected by the discarded features (likely to be outliers). In contrast, the Chi-

squared statistic (which attempts to select the most informative features rather

than discarding the worst) was performed as a �nal step before estimator-training

so that the ranking can bene�t from appropriately weighted (and normalized) data.

The thresholding was implemented inside CountVectorizer and the Chi-squared

using the Scikit-learn SelectPercentile module.
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6.4.2 Modelling

As per the no-free-lunch theorem, there is no objectively �best� estimator for all

problems and no way to predict with certainty which will be superior for a speci�c

data set. Therefore, practitioners are typically guided by the results from related

research as well as the speci�c properties of the various estimators which may

make them more or less desirable for a certain objective. Accordingly, two broad

estimator classes were selected for the study, namely Naïve Bayes and Support

Vector Machines. For each of these, two variants were evaluated called multiNB,

bernNB and SVC, linSVC respectively.

6.4.2.1 Naïve Bayes

Naïve Bayes is one of the most popular estimators due to its speed, e�ciency

and simplicity. Two variants of Naïve Bayes were evaluated, namely the Bernoulli

Naïve Bayes (hereafter called bernNB) and the Multinomial Naïve Bayes (hereafter

called multiNB). They di�er only in the assumption they make about the distribu-

tion of the data with the Bernoulli assuming a multi-variate Bernoulli distribution

and the Multinomial Naïve Bayes assuming a multinomial distribution.

Although the Multinomial is generally considered superior to Bernoulli, some stud-

ies have shown comparable and even superior performance by Bernoulli in certain

situations � speci�cally for shorter documents (Wang and Manning, 2012). This

is also supported by the Scikit-learn documentation.

These estimators require features according to the model assumptions. The Bernoulli

Naïve Bayes require boolean features, hence only binary frequencies and no scaling

was evaluated. The multinomial model was initially developed for word frequen-

cies, however, several authors have demonstrated better performance using binary

features while others using logarithmic frequencies. Furthermore, while the inde-

pendence assumption means they are insensitive to feature scale, many authors

have demonstrated that the excessive word burstiness can sometimes cause over

sensitivity to word frequencies which can be improved with IDF weighting. How-

ever feature standardisation is not generally applied and not evaluated. Finally,

several authors recommend document length normalisation for multiNB so this
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was also considered.

Both estimators were implemented using the Sciket-learn Naïve Bayes class which

is a fairly standard Naïve Bayes implementation. However, these were set to as-

sume uniform class priors rather than learn them from the data unlike standard

implementations (in Sciket learn or otherwise). This was done because from the

data understanding phase it was clear that models would be expected to handle

signi�cant data drift meaning class priors observed in the data was subject to

change which could hurt, rather than bene�t, performance. Uniform priors would

assume equal probability for all classes which would prove more true in the long

run and prevent over focussing on the majority class. This was hard-coded into

the algorithm and not as parameter setting to be decided by hyperparameter op-

timisation. The reason this was hard-coded into the algorithm and not evaluated

in the hyperparameter optimisation is because the optimisation CV was performed

using strati�ed sampling which created arti�cially IID data to promote learning.

However, this parameter is directly in�uenced by data distribution and optimisa-

tion would have optimised for IID data in which case learning priors is a good

idea.

The only estimator parameter optimised in the hyperparameter optimization CV

is the smoothing parameter alpha which accounts for words not observed during

training. For both estimators a continuous, uniform distribution was created from

which alpha values could be sampled in the randomized optimisation procedure

described below.

6.4.2.2 Support Vector Machines

Support Vector Machines are particularly well suited to the characteristically high-

dimensional nature of text data as it is able to utilise the natural sparsity of text

to avoid a dimensionality crisis with some even calling it best in class for text

classi�cation (Allahyari et al., 2017).

While higher-order kernels have been used to great e�ect in other domains, they

have not been shown to provide any discernible performance bene�ts for text

classi�cation leading only to an undesirable increase in model complexity (Lewis
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et al. 2004; Leopold and Kindermann 2002). Hence only linear Support Vector

Machines were evaluated using the Scikit-learn SVM class.

In the remainder of the document, SVM and SVC is used interchangeably in keep-

ing with the Scikit-learn notation of abbreviating Support Vector Classi�cation (as

opposed to Support Vector Regression) to SVC. This is mostly used when referring

to the speci�c estimators implemented rather than the general estimator class.

Two variants of the linear SVM were implemented that use di�erent approaches to

solve the optimisation problem. Although they solve the same problem and should

theoretically be equivalent, the heuristic nature of the approaches mean that can

sometimes lead to quite di�erent results. The �rst approach, denoted SVC was

implemented using Scikit-learn SVC class that uses the LIBSVC solver. This is a

general SVM library that can handle higher order-kernels and uses a Sequential

Minimal Optimization (SMO) algorithm.

The second approach, denoted linSVC, was implemented using the Scikit-learn

linearSVC class that uses the LIBLINEAR solver that implements a coordinate

descent algorithm. It is a specialised linear solver which does not o�er any higher

order kernels and has therefore been optimised for the linear case making it more

e�cient for large datasets. The theoretical basis for the di�erent implementations

is beyond the scope of this report, but the interested reader can refer to the

respective documentation for more details.

Neither approach is inherently multiclass but follows di�erent multiclass decom-

position strategies by default. The liblinear uses a one-vs-rest while the SVC uses

a one-vs-one. Several studies have been done to compare these approaches with

no de�nite best answer. The biggest di�erence is in the computational time as

the one approach trains k models using all the data, while the other trains more

models but uses a smaller number of instances in each. The co-ordinate descent

method is insensitive to the number of samples with computational complexity

stemming only from the feature space making OVR preferable. In contrast, the

SMO is sensitive to the number of samples making the OVO which trains more

models but on a smaller training sample for each, preferable.

For both estimators, two algorithm parameters were optimised in the hyperpara-
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meter optimisation, the regularization parameter C and the class weight scheme.

The regularization parameter impacts the trade-o� between model complexity and

incorrect classi�cation. The model complexity depends on the number of docu-

ments used to form support vectors and greatly a�ects the training time. Hence

low values of C is preferred. Accordingly, a log uniform distribution was created

between 10−5 and 102 using SCIPY distributions. The continuous distribution

allows for �ner tuning than grid search and the log uniform distribution is used

to skew the sampling to lower C values while still allowing for larger values to be

tested.

The �nal parameter optimised in the hyperparameter optimisation is the class

weights where both balanced and none were evaluated. The balanced distribution

adjusts the class weights inversely proportional to its frequencies to arti�cially

balance classes preventing SVM from learning only the majority class as SVMs

are sensitive to class imbalance.

This is di�erent to the class priors in Naïve Bayes. While related they make

di�erent assumptions. Naïve Bayes is a probabilistic, generative model with the

priors making an assumption about the class distribution that can be expected in

future. SVM is a distance-based, discriminant model which uses class weights to

make an assumption about the importance of minority classes vs majority classes.

6.4.2.3 Hyperparameter Optimization

The hyperparameter optimization was performed using a randomized search pro-

cedure over the parameter space speci�ed for each estimator as recommended by

Bergstra and Bengio (2012) in Section 3.7.3. As previously discussed, the ad-

vantage of this method over the more common exhaustive grid-search is two-fold.

Firstly a much larger range of parameters settings can be explored for a fraction of

the computational e�ort. Secondly, the range of values to evaluate for each para-

meter can be provided as a continuous distribution which enables a much �ner

optimisation than is possible for grid-search which can only evaluate a discrete set

of values (Bergstra and Bengio, 2012).

The optimisation was implemented using the Scikit-learn RandomizedSearchCV
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module with the random state set to 42 for repeatability. In this implementation, a

set number of parameter combinations are randomly sampled (with replacement)

from the speci�ed parameter-space and evaluated using a cross-validation loop.

Each fold is used as a testing-set once while the other folds are used to train a

model for each of the parameter settings. The parameter-settings of the model

achieving the highest mean performance over all folds is used to train a �nal,

optimised model on the full dataset (using all folds). As per the recommendations

by Zheng (2015), the optimisation was set to evaluate 60 parameter-combinations.

From the data understanding phase, it became apparent that the data has signi-

�cant class imbalance. To ensure that every fold has su�cient training and testing

data from each class, strati�ed sampling was used for the optimisation CV as

per the recommendations by Tsamardinos et al. (2015), Santafe et al. (2015) and

others. The Scikit-learn Strati�edKFold module was used to implement the Ran-

domizedSearchCV cross-validation and set to include shu�ing with the random

state set to 42 for repeatability.

As per the evaluation design discussed below, to prevent an optimistically biased

performance estimate, the hyperparameter optimization was performed in the in-

ner loop of a 5x2 nested cross-validation. In other words, the total optimisation

process was performed 5 times, once for each outer evaluation fold with the re-

maining folds passed as training data to the inner, 2-fold optimisation process so

that the inner optimisation loop only ever received approximately 80% (four folds)

of the data.

However, it is important to note that this design was selected from a model as-

sessment, rather than model building, perspective to ensure that the model per-

formance is over, rather than under estimated. A better model will be learned by

performing a single, 5-fold optimisation to �nd the best parameter-settings with

which to train a �nal, optimised model on the full dataset. This is the model that

will typically be deployed in practice with the nested-CV results expected to be a

conservative estimate of the true generalisation performance.
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6.4.3 Evaluation

This section describes the evaluation process used to evaluate the model perform-

ance. As per Section 3.7.4.2, whilst important, the predictive performance is not

the only measure of model success. Other important factors include interpretabil-

ity, actionability and e�ciency. Interpretability was addressed by the consideration

of the white-box Naïve Bayes algorithm and the exclusion of dimensionality reduc-

tion methods. Actionability was addressed through communication with the data

provider to ensure that the data mining objectives aligned with their business ob-

jectives. In terms of e�ciency, while always desirable, for this application neither

training nor prediction speed is of utmost importance. Computational complexity

and memory footprint is also not very constrained so that the e�ciency is limited

only by practicality.

In terms of the predictive performance, the micro-averaged F1-score was identi�ed

as the most important evaluation metric. However the macro-averaged and per-

class F1-scores as well as a confusion matrix and training time was also considered.

It is generally agreed that in the absence of su�cient data to sample multiple

independent training and testing sets, CV is a preferable evaluation procedure to

resubstitution, two-way train/test split or even a three-way train/validation/test

split. Although most of the domain speci�c studies evaluated in Section 4.1 do

not make use of CV to evaluate di�erent estimators, the vast majority of broader

empirical studies do. However, on the speci�c implementation of CV, as well as on

the aggregation of results obtained from the separate folds, there is less consensus.

The main discrepancies identi�ed from research is:

� Sampling strategy: Random, Strati�ed or Grouped (Blocked)

� Nested or single-loop cross-validation

� Obtaining �nal performance estimates by averaging the metrics achieved for

each fold or by determining metrics for aggregated predictions

� Statistical quanti�cation of results
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Many authors do not explicitly address these issues and provide only the selected

methods with no explanation or motivation of their choice, while others do not

even provide su�cient details of their process to enable replication. As per Forman

and Scholz (2010) this is not necessarily with intent, but rather due to a lack of

awareness of di�erent options and possible di�erent interpretations. The papers

that did address these issues, are mostly the theoretical studies with a very speci�c

focus and none addressed all of these concerns.

Hence, the �nal evaluation procedure was designed according to the most conser-

vative theoretical papers. Because no empirical studies were found in the domain

(or elsewhere) applying this exact procedure, the estimators were also evaluated

using more common methods to demonstrate the di�erence between these meth-

ods and to evaluate the validity of the assumptions inherent in every evaluation

method. These results are discussed in Chapter 8.

6.4.3.1 Evaluation Procedure

To prevent data-contamination resulting from over-optimising the estimators for

the speci�c dataset, the estimators were evaluated using 5x2 nested cross-validation

with an inner optimisation loop and a outer evaluation loop as per the recommend-

ations by Tsamardinos et al. (2015) and Krstajic et al. (2014).

From the data understanding and exploration phase it became apparent that the

IID assumption does not hold for the dataset under consideration. Although the

data preparation phase includes the selection of a more homogeneous sample, there

is still clear distributional changes with time and possibly other unknown variables

as well.

To account for the data-drift present in the available dataset (and which the mod-

els will accordingly be subjected to in practice) the models were evaluated using

blocked cross-validation rather than strati�ed cross-validation as per Bergmeir and

Benitez (2012) in Section 3.8.3. Rather than separating the folds with arti�cially

even class distributions (strati�ed CV), the data was separated into chronological

folds grouped by year. In other words, each year constitutes one fold so that all but

one year's data is available for training in each evaluation. The training sample
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selected in the data preparation phase spans over �ve years with clear distribu-

tional di�erences between the beginning and the end. While the distributional

variation between years is signi�cant, each year contains a reasonable amount of

samples from each class. Hence, the years form a convenient blocked splitting

strategy to be used in Bergmeir and Benitez's (2012) blocked cross-validation and

also corresponds to the �nal-year hold-out test-set of Lewis et al. (2004).

Because the dataset presents signi�cant class imbalance, the two-fold inner optim-

isation loop was split using strati�ed sampling to ensure all training and testing

samples contain su�cient minority class samples as per the recommendations by

Tsamardinos et al. (2015), Santafe et al. (2015), Forman and Scholz (2010) and

others. This is especially important for the smaller sample sizes available to the

inner cross-validation loop. For the optimisation process, only the relative perform-

ance is of interest and while the IID assumption violation may hurt the ability to

optimise for changing distributions, it does not a�ect the validity of the perform-

ance evaluation. Here strati�ed sampling was deemed more appropriate to ensure

su�cient samples from each class available for training.

In addition to the algorithm hyperparameters, the optimisation step also includes

the preprocessing design decisions such as feature weighting, scaling and selec-

tion. The optimisation was performed using a randomised search procedure that

performs 60 iterations of the 2-fold CV over the parameter search-space provided

to �nd the parameter-set that maximises the geometric mean of the micro- and

macro-averaged F1-score (see metrics discussion below). The optimal parameter-

set is used to re-train a model on the full optimisation data set (outer loop training

data) and is evaluated on the unseen outer-loop test data.

This means that for each of the four algorithms (multiNB, bernNB, linSVC and

SVC) a total of 605 models were trained4 � 600 for the parameter optimisation

and a further 5 for the evaluation.

4For each outer training fold 120 models (2x60) are trained in the optimisation CV phase
with the resulting optimised model retrained on the full training set for evaluation in the outer
fold. This process is repeated 5 times in the outer evaluation CV namely 5x(120+1) = 605
models.
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Metrics

As previously discussed, the micro-averaged F1-score was deemed the most appro-

priate evaluation metric. The class-imbalance makes Accuracy an inappropriate

metric and, because it is a multiclass problem, other popular classi�cation metrics

such as ROC and AUC are also not applicable. Therefore the models were evalu-

ated using the harmonic mean of the precision and recall, namely the F1-score as

de�ned in Section 3.7.4.1.

The micro-averaged F1-score is more representative of the true model perform-

ance than the macro-averaged score as the micro metric is evaluated per-document

(each document is weighted equally) and accordingly the majority class perform-

ance tends to dominate the score. This is desirable as the majority class is the

most frequently occurring class by de�nition. Hence, a model performing poorly

on the majority class, will perform poorly on the majority of documents. Of

course, good performance on the smaller classes is also desirable and to prevent

the micro-averaged score from hiding unacceptably poor performance in the smal-

ler classes, the macro-averaged F1-score, per-class F1-score and confusion matrix

of each classi�er were considered as well.

For the automated optimisation of hyperparameters, a single score value is needed

to guide the optimisation process. Although the micro-averaged F1-score was

selected as the most pertinent evaluation metric, this should not be at the cost of

the complete disregard for the other metrics. To ensure a more balanced estimator,

the optimisation was performed to maximise the average of the micro- and macro-

averaged F-scores. The macro-average is evaluated per-class (each class is given

the same weight) and leads to the scores of the minority classes being up-weighted

beyond their proportional representation in the total data set. By taking the

mean of the micro- and macro- averaged F-scores, the majority class dominance is

maintained by the micro-averaged score (where the majority class is up-weighted

according to its proportionality), but lessened by the inclusion of the macro-average

(where the majority class is weighted equally to the minority classes). Although

no papers were found employing this method, as Dietterich (1998) states, the inner

loop of the cross-validation function is only concerned with relative performance

in order to guide parameter selection. Therefore questionable methodology may
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hamper the performance but does not a�ect the validity of the results.

Initially the arithmetic mean of the micro- and macro-average was taken as the

optimisation metric so that: Fopt = 0.5(Fmin+Fmac). However, this produced very

unstable results as each optimisation fold selected di�erent parameter sets. High

variability in the parameter selection indicates instability of the modelling process

which leads to high variance in the evaluation results which is undesirable regard-

less of the �nal performance achieved. Upon closer inspection, it became apparent

that the arithmetic mean was frequently dominated by extreme values, namely

high micro scores corresponding to low macro scores. Therefore, the optimisa-

tion metric was changed to the geometric mean of the micro- and macro-averaged

scores (calculated from
√
Fmic ∗ Fmac) which is less sensitive to high outliers than

the arithmetic mean (while also less sensitive to low outliers than harmonic mean)

as can be seen in Figure 8.6.

The use of statistical tests to evaluate and compare machine learning models is

somewhat controversial and no consensus could be found from literature regarding

how, or even whether, to perform such tests (Section 3.8.2). Since the focus of

this experiment was feasibility, and not to prove whether a certain technique is

better than another, it was decided that simply choosing the method with the

best cross-validated performance is su�cient as per the recommendations by Wit-

ten et al. (2011). The �nal cross-validated F1-score was computed according to

recommendation by Forman and Scholz (2010) to aggregate the predictions from

all folds before calculating a single F1-score (called FAGG), rather than averaging

the F1-scores achieved by each fold (called FAV G) (Section 3.8.3).

To get an indication of the model stability and range of performances that can be

expected in practice, the models were also evaluated according to their standard

deviations. However, since the aggregated F-score provides only a single point

estimate, the standard deviations were estimated from the per-fold F1-scores. It is

therefore important to keep in mind that these per-fold F1-scores, and accordingly

the standard deviations calculated from them, may contain signi�cant levels of bias

due to the ill-de�ned edge-cases which may manifest as exaggerated variation.
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Chapter 7

Empirical Analysis: Results

The experimental procedure described in the previous chapter was implemented

on the selected data sample described in Section 6.2.1. The most important results

are provided in this chapter including the evaluation of both the models and the

modelling process used to obtain them. This forms part of the Evaluation phase

of the CRISP-DM methodology.

It starts with the results from the hyperparameter optimisation to investigate the

model (and modelling process) stability and to compare the parameter selections

with those found in literature. Next, the random baseline performance of this

dataset is modelled to provide a frame of reference for the model performance

evaluated in the section below. To gain a better understanding of the respective

model behaviours, their learning curves are then evaluated to diagnose the main

source of error and �nd the most promising areas of improvement for each model.

As discussed in Section 3.8.2, no statistical tests were performed in this evaluation

and the word signi�cant is only ever used in its generic sense and not intended to

convey any statistical meaning.

7.1 Hyperparameter Optimisation

The purpose of the hyperparameter optimisation was to improve model perform-

ance, not to investigate the details of speci�c parameter behaviours and interac-

tions. Therefore, these results were only inspected in a cursory manner to assess

165
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the model stability and ensure sensible outputs. The most important observations

are provided here along with a speculative discussion for possible explanations of

the results, but a detailed investigation of the various parameter interactions is

left for future work.

The results are summarised in the tables below with Table 7.1 providing the optim-

ised preprocessing parameters and Table 7.2 the optimised algorithm parameters.

The inner columns provide the parameters selected for each outer fold of the nested

cross-validation and are labelled with their corresponding test year (which was left

out of the sample sent to the inner optimisation loop). The second to last column

summarises the per-fold results using a voting strategy to show the over-all best

selection of parameters according to the nested-cross-validation (NCV). These can

be considered the �average� parameter values used to obtain the average perform-

ance values in Section 7.3.

As mentioned before, the NCV experimental design is only for evaluation purposes.

For actual deployment the parameters would be optimised on the whole dataset

using a single loop CV and the optimal parameters then used to train a �nal model

on the full dataset to maximise the amount of training data. According to Forman

(2007) the optimality of parameters may be sample-size dependent leading to the

evaluation of suboptimal models by the NCV which could lead to underestimated

performance estimates. To evaluate the stability of the parameter optimisation

for di�erent sample sizes, it was repeated using a non-nested, single loop cross-

validation with the same splits as before so that the parameters are optimised

on the full training folds. These parameters are provided in the �nal column of

the tables below (CV Opt.) and the methodological implications of these results

discussed in Section 7.1.1.

All values not corresponding to average NCV selection (NCV Opt.) are indicated in

red. Where relevant, the default values are shown underneath the parameter name

in the �rst column. All empty cells are greyed to distinguish between parameters

that were not considered at all and those excluded by the optimisation process

(indicated with a dash).

These results provide information on both the model and modelling process stabil-
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Table 7.1: Preprocessing hyperparameter optimisation results - Year columns are the
(unincluded) test folds of the respective training folds used to optimise parameters

Pre-Processing
Parameters

2007 2008 2009 2010 2011 NCV
Opt.

CV
Opt.

multiNB (1 - 3) (1 - 3) (1 - 3) (1 - 3) (1 - 3) (1 - 3) (1 - 3)
N-gram range bernNB (1 - 3) (1 - 3) (1 - 3) (1 - 3) (1 - 3) (1 - 3) (1 - 3)
(1-1) linSVC (1 - 2) (1 - 2) (1 - 2) (1 - 2) (1 - 2) (1 - 2) (1 - 2)

SVC (1 - 2) (1 - 2) (1 - 2) (1 - 2) (1 - 2) (1 - 2)

Stop-Words

multiNB - - - - - - Stop
bernNB Stop Stop Stop - - Stop Stop
linSVC - - - - - - -
SVC - - - - - -

Stemming

multiNB Stem - Stem - Stem Stem -
bernNB - - - Stem Stem - -
linSVC Stem Stem Stem Stem Stem Stem Stem
SVC - - - - - -

Max DF (None)

multiNB 96.6% 95.5% 96.6% 95.2% 96.6% 96.6% 95.5%
bernNB 96.5% 96.5% 96.5% ≈100% ≈100% 96.5% 96.5%
linSVC 96.6% 98.2% 96.6% 96.6% 96.6% 96.6% 96.6%
SVC 96.3% 96.3% 96.3% 95.9% 95.9% 96.3%

Min DF (None)

multiNB 1 3 1 3 1 1 4
bernNB 2 2 2 1 1 2 2
linSVC 3 4 3 3 3 3 3
SVC 4 4 4 4 4 4

Frequency (TF)

multiNB TF Bool TF Bool TF TF Bool
bernNB Bool Bool Bool Bool Bool Bool Bool
linSVC TF logTF TF TF TF TF TF
SVC LogTF LogTF LogTF LogTF LogTF LogTF
multiNB - - - - - - -

Feature bernNB
Normalisation linSVC IDF IDF IDF IDF IDF IDF IDF

SVC IDF IDF IDF - - IDF
multiNB - L1 - L1 - - L2

Doc-length bernNB
Normalization(L2) linSVC L1 L1 L1 L1 L1 L1 L1

SVC L2 L2 L2 L2 L2 L2
multiNB 56.9% 53.5% 56.9% 80.9% 56.9% 56.9% 94%

Feature Selection bernNB 68% 68% 68% 58.3% 58.3% 68% 68%
CHI2 linSVC 68.5% 51.3% 68.5% 68.5% 68.5% 68.5 68.5%

SVC 51.1% 51.1% 51.1% 88.4% 88.4% 51.2%

ity which are discussed in Section 7.1.1 below. The speci�c parameter-selections

are brie�y discussed after that and compared with those used in literature.
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Table 7.2: Estimator hyperparameter optimisation results - Year columns are the (un-
included) test folds of the respective training folds used to optimise parameters

Algorithm Parameters 2007 2008 2009 2010 2011 NCV Opt. CV Opt.
Alpha - Naïve multiNB 0.7 0.2 0.7 0.1 0.7 0.7 0.7
Bayes(1) bernNB 0.7 0.7 0.7 0.3 0.3 0.7 0.7
Penalty C - linSVC 0.23 0.2 0.23 0.23 0.23 0.23 0.23
SVM(1) SVC 0.39 0.39 0.39 1.14 1.14 0.39
Class Weight - linSVC (OVR) Bal. Bal. Bal. Bal. Bal. Bal. Bal.
SVM (Uniform) SVC (OVO) Uni. Uni. Uni. Uni. Uni. Uni.

7.1.1 Stability

If the parameter selection changes signi�cantly between folds (per row) it is an

indication of instability in either the model, the modelling process or both. From

the tables it can be seen that LinSVC is the most stable selecting identical para-

meter sets for all folds except the one excluding 2008. (Note that the column

labels are the test sets not used for optimisation, hence column 2008 represents

parameters optimised on data from 2007, 2009, 2010 and 2011.) Both bernNB and

SVC seem to have two distinct groups that present more cohesive parameter sets,

namely folds excluding 2010/2011 and those including them. This corresponds

to the changing class distribution identi�ed in Section 6.2 whereby 2007-9 and

2010-11 form more distinctive groups.

At �rst glance, MultiNB also seems to present two groups arbitrarily divided ac-

cording to the exclusion of 2007, 2009, 2011 and the exclusion of 2008, 2010.

However, only the �rst group (2007, 2009, 2011) is actually cohesive. The real

value parameters such as alpha and percentile-features di�er for 2008 and 2010

indicating that these folds are not so much a distinct group responding to changes

in the data, but rather two separate instances of model instability. It is interesting

to note that this corresponds somewhat to LinSVC that only presents instability

for the fold excluding 2008. This may indicate a deviation in data quality (up

or down) for 2008 so that the exclusion of those records leads to di�erent results

although it is not clear why this would be.

The parameter stability of the di�erent models support their respective variance

diagnoses made from the learning curves in Section 7.4. LinSVC and multiNB

which has the lowest and the highest parameter instability, also have the lowest
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and the highest variance respectively. Furthermore, it can be seen that multiNB

is the only model whose parameters are a�ected by the increased training data

available to the single loop CV. This con�rms both the high variance and the

growth potential of multiNB as discussed in Section 7.4. The mostly consistent

parameter sets between NCV and CV indicate that while more data would be

bene�cial, the optimisation process is su�ciently stable for the amount of data

available to the NCV optimisation.

While model stability is desirable, so is robustness to concept-drift. From the

per-year distribution of the changing parameters it seems that while BernNB and

SVC are more stable than multiNB; multiNB is more robust to concept-drift as its

parameter changes are not grouped chronologically and do not correspond to the

distributional changes observed in Section 6.2. LinSVC is both more stable and

more drift-robust than any of BernNB, SVC or multiNB; probably because of its

low variance as discussed in Section 7.4.

7.1.2 Parameter Discussion

None of the models performed best with single word tokens in contradiction with

Tan et al. (2002) and Bermingham and Smeaton (2010) who found that higher-

order n-grams do not work well on short documents. This might be due to the

highly speci�c, technical nature of the maintenance documents leading to a more

limited corpus vocabulary than is normal (Section 6.2) which, according to Bek-

kerman and Allan (2004), increases the potential value of higher order n-grams as

they are more likely to repeat than for large vocabularies.

What was interesting is that, except for bernNB, none of the models preferred stop-

word removal which is very commonly recommended. This makes sense considering

the low density and non-typical distribution of stop-words observed in the data.

The low density of stop-words mean the purported bene�t of stop-word removal is

less, and the unusual distribution, speci�cally pertaining to the high frequency of

not in comparison to standard English, indicates greater than usual signi�cance of

the word not (for instance in records describing not dispensing vs dispensing �ne)

so that stop-word removal hurts the performance. It may be worthwhile to remove
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not from the stop-word list and reevaluate the parameter selection in future work.

Stemming, which is more frequently advised against in literature, proved more

successful, especially in linSVC and more moderately in multiNB and bernNB. In-

terestingly enough, bernNB only performed stemming for folds without stop-word

removal meaning the popular combination of stop-word-removal and stemming was

not selected by a single model for a single fold. This might be as a result of the

short document length as Bermingham and Smeaton (2010) and Kobayashi et al.

(2018) state that stop-word removal and stemming are not as e�ective for short

documents.

The maximum document frequency threshold is surprisingly consistent for all mod-

els and within the range typically found in literature. The minimum DF threshold

was relatively surprising as it was expected that the higher order n-grams selec-

ted by the Naive Bayes models would correspond to higher thresholds to handle

the increasingly long-tailed distribution and large vocabulary size. However, both

SVM implementations (which selected only bigrams) used higher thresholds than

the Naive Bayes estimators (which selected trigrams). In hindsight, this can be

explained by the fact that trigrams are much less likely to repeat than uni- or

bigrams meaning lower thresholds are needed to bene�t from their inclusion (a

trigram occurring in two documents is likely more meaningful than a bigram oc-

curring in two documents).

Both multiNB and linSVC selected term frequency features over either Boolean

or logTF. This is in contrast with Rennie et al. (2003), Wilbur and Kim (2009),

Bermingham and Smeaton (2010), Timonen (2012), Ikonomakis et al. (2005) and

many others who argue against the use of TF features for short documents or

otherwise. However, the mixed selection of feature representations is consistent

with Wang and Manning (2012) who found that the di�erence between the various

representations is much less signi�cant for short documents.

Even more surprising was the bad performance of IDF for multiNB, in direct

contrast to the recommendations by Wilbur and Kim (2009) to discard TF but

use IDF. Only linSVC demonstrated clear bene�t from IDF for all folds with SVC

preferring it in three out of �ve. LinSVC favoured L1 norm while only SVC used
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L2 norm. As expected, both implementations of SVM responded better to scaled

data (both document length and feature wise). Another interesting result is that

only the folds using Boolean features selected document length normalisation for

multiNB while the majority of folds which use TF (and would have been expected

to be more sensitive to document length di�erences) perform no normalisation

in contrast to the results by Rennie et al. (2003). This might be because of

the limited information in short documents. Without normalisation, features in

longer documents dominate those in shorter documents. While this is usually

undesirable, it may be that the slightly longer documents are more informative

so that favouring their features is useful. However looking at the single-loop CV

optimisation results, the multiNB parameters are much less surprising selecting

Boolean features, stop-word removal and L2 normalisation which are more typical

parameters. This is an indication that the unexpectedness of the NCV parameters

for multiNB are as a result of too little data (suboptimal parameters) rather than

the consequence of the speci�c data properties.

All the models implement substantial feature selection, even SVM which many

have reported are robust to feature selection. Although varying by fold, multiNB

and bernNB select the same smoothing parameter over-all. All of the selected

smoothing parameters are below the default Laplace smoothing of 1 which is sup-

ported by Wilbur and Kim (2009) (and in contrast with the large number of

authors who do not consider optimising Naive Bayes). The penalty parameters

selected by the SVM are also both below the default but still in a similar range.

As could be expected, linSVC consistently preferred balanced class weights while

SVC preferred uniform. Because the linSVC implements an OVR scheme it deals

with much more drastic class imbalance while the SVC implements OVO resulting

in much more balanced datasets.

7.2 Baseline Performance

This section evaluates the maximum baseline performance that can be attributed

to random chance for the dataset under consideration. This is used as a point

of reference with which to compare the performance of the true models in all
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subsequent sections. The models are evaluated and compared with each other

according to their respective F1-scores, and speci�cally, their micro-averaged F1-

score which is identi�ed as the most important metric in Section 6.4.3. Accordingly,

this is also the focus of the baseline analysis only reporting the macro-averaged and

per-class F1-scores to provide a more in-depth perspective of the di�erent model

behaviours.

The data presents relatively severe class imbalance with the most extreme ratio

between the largest and smallest class being 84%-16% if only those two classes are

considered. However, because it is a multi-class problem, the dominance of the

majority class (Structural Failure) is softened to an overall 32% by the inclusion of

several in-between class sizes. For this reason, both a majority (single-class) and

a strati�ed dummy estimator were considered. Furthermore, upon the evaluation

of the real models in Section 7.3, it was observed that all of them performed best

on the same class: Electronics Failure, which is not the majority class. Therefore,

an additional single-class dummy estimator was trained that always predicts Elec-

tronics Failure to get the maximum random performance that can be achieved for

that class.

These models were evaluated with the re-substitution error computed from the full,

shu�ed dataset. In other words, contrary to the experimental design described in

Chapter 6, not only was the same data used for training and testing (no unseen

test data), but it was also shu�ed before to create an arti�cially IID distribution.

While this is not an appropriate evaluation strategy for real models, it is suitable

for calculating the performance-baseline for two reasons.

Firstly, unlike the real models, dummy estimators are not intended for implement-

ation. They provide a minimum performance threshold which real models must

surpass to have value. This means that while a conservative evaluation of real

models will underestimate rather than overestimate the performance, the oppos-

ite is true for baseline models. This makes the training error (which is prone to

overestimating the performance) a conservative estimate of the performance that

can be attributed to chance.

Secondly, because dummy estimators make predictions on a purely statistical basis
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ignoring both the training and the testing inputs, there is no real distinction

between seen and unseen data. This means that unlike real models, they cannot

over�t to the sample-speci�c relationships between document features and class

labels found in the training data making the di�erence between the training and

testing performance much less signi�cant. Furthermore, as discussed in Section 6.2,

the IID assumption does not hold for this data. This has an undesirable e�ect on

the statistical formulation of both the strati�ed and majority class estimator when

evaluated with the unshu�ed, grouped CV that is centred around maintaining this

inconsistency. Because the class distributions vary quite drastically between the

training and testing sets of each fold (Figure 6.2) it leads to very poor hold-out

performance for the strati�ed and majority class estimator which simply mimics

the training distributions when making predictions. This is especially detrimental

to the majority class estimator as the dominant class changes from one fold to the

next. This e�ect can be seen for the grouped CV in Figure 6.2 where not only

do none of the folds have matching training and testing majority classes, but the

majority class selected for each training fold is actually a minority class (<10%)

in the corresponding test fold. This results in micro and macro averaged scores

below 6%. The e�ect is similar, but less extreme, for the strati�ed approach (the

Electronics Failure single-class estimator results are independent of the evaluation

strategy).

While this presents a more realistic scenario of the random performance that can be

expected in changing distributions, as mentioned before the purpose of a baseline

is not to be realistic. Therefore the shu�ed re-substitution error was used to �nd

the maximum possible performance that can be attributed to chance with which

to evaluate the value of the true models.

The strati�ed estimator randomly assigns labels to the test-set while maintaining

the class distribution observed in the training-set. The accuracy of these predic-

tions relies on the accidental alignment of the predicted and true labels of the

test set. This means that even for identical distributions (as for re-substitution

error) the strati�ed estimator can theoretically achieve 100%, 0% and anything

in-between. Therefore, the strati�ed performance was obtained from multiple re-

petitions with di�erent random seeds to obtain the average estimate.
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This was not necessary for the single-class estimators (majority and Electronics)

which provide completely stable results. Their performance depends only on the

prevalence of the respective class in the total dataset. Because all documents are

put into one class, it necessarily leads to perfect recall of that class but zero for all

others. Likewise, the precision of that class will always be equal to its proportion

in the full dataset but zero for all others. This is true regardless of the order of

the data making shu�ed repetitions unnecessary.

The micro, macro and per-class F1-scores of all three models are shown in Figure

7.1 below. The scores of the majority and Electronics single-class estimators are

indicated with a single marker and dashed line as indicated in the legend. Sixteen

iterations were performed for the strati�ed estimator and the mean results are

indicated with the black diamonds and bar graph. The iteration scores are indic-

ated with the faded markers showing the tight spread around the mean. These

were evaluated with random states set to 0, 1, 2... 15 to ensure repeatability. The

mean score values are provided in Table 7.3 with the highest value for each metric

highlighted.

Figure 7.1: Micro, macro and per-class F1-scores of the baseline dummy estimators

The single-class estimators have the highest per-class scores for Electronics and

Structural Failure respectively, but the strati�ed estimator is superior for all other
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Table 7.3: Dummy estimator results, baseline performance (F1)

Dummy Estimator Micro Av-
eraged

Macro Av-
eraged

Electrical
Failure

Electronics
Failure

Hydraulic
Failure

Mechanical
Failure

Structural
Failure

Strati�ed 25,34 20,01 6,09 22,97 9,92 28,87 32,21
±0, 27 ±0, 28 ±0, 79 ±0, 64 ±0, 58 ±0, 41 ±0, 37

Single-Class Majority 32,26 9,76 0 0 0 0 48,78
(Structural Failure) ±0 ±0 ±0 ±0 ±0 ±0 ±0
Single-Class Electronics 22,91 7,45 0 37,27 0 0 0

±0 ±0 ±0 ±0 ±0 ±0 ±0

classes for which the single-class estimators of course achieve zero. Because of

this, the strati�ed estimator also has much higher macro-averaged result as this

metric weights all classes equally and is therefore signi�cantly downweighted by

the predominance of zero-scoring classes for the single-class estimators. Since

both Structural and Electronics Failure are fairly big classes they have reasonably

high micro-averaged results as it weights all documents equally and is therefore

dominated by the bigger classes. In fact, the majority-class estimator has the

highest micro-averaged score, beating even the strati�ed estimator, as a result of

its high performance on Structural Failure which is of course the largest class and

accordingly has the most in�uence on this metric.

While the micro-averaged F-score was identi�ed as the most important metric in

Section 6.4.3, the strati�ed estimator (which has the second highest micro score)

was selected as the baseline as it has better over-all performance and provides

a non-zero point of reference for all metrics. These scores are indicated with a

solid line in all ensuing results plots. For the metrics where one of the single-class

estimators surpass the strati�ed results, the single-class scores are also provided as

reference and are generally indicated with a dashed line. However, this provides

another point of reference separate to the strati�ed baseline and should not be

used without remembering their accompanying low scores. While it is certainly

desirable for the true models to surpass the combined highest scores from all the

dummy estimators, this would no longer be a random baseline.

Only the mean scores are used as frame of reference in the sections below as

the variation around the means are inconsequential compared to that of the true

models. The single-class estimators are stable by de�nition and the strati�ed scores

are tightly distributed around the mean with a standard deviation below 1% for
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all metrics.

7.3 Model Performance

In this section, the models are evaluated and compared with each other according

to their respective F1-scores and to a lesser extent their e�ciency. The micro-

averaged F1-score is identi�ed as the most important metric and is accordingly

the focus of the results (called the evaluation metric). The macro-averaged and

per-class F1-scores as well as the model e�ciency is further considered to provide

a more in-depth perspective of the di�erent model behaviours.

The models are evaluated in the outer loop of the nested cross-validation as de-

scribed in Section 6.4.3. The most important results are summarised in Table

7.4 and plotted against the baseline performance in Figure 7.2. Each marker rep-

resents the mean F1-score achieved over all the folds calculated using the FAGG

method described in Section 3.8.3. The error-bars indicate one standard deviation

from the mean to give an indication of the stability of the model (and modelling

process) as well as giving a better estimate of the range of expected performance.

These are calculated from the per-fold scores.

The horizontal lines provide the baseline performance of each score (micro, macro

and per-class) as achieved by the dummy estimators described in Section 7.2.

The solid lines represent the strati�ed dummy estimator and the dashed lines the

single-class dummy estimators as indicated in the legend. The top �gure plots the

absolute performance of all estimators while the bottom �gure plots the results

relative to the baseline performance (strati�ed dummy estimator) to show only the

improvement over random. The single-class dummy estimators are only plotted

where they achieved a higher score than the strati�ed estimator.

Table 7.4 provides the mean F-scores, standard deviation and run-time for all the

evaluations highlighting the highest value in each column. The baseline perform-

ance is also repeated for convenience.

From these results it can be seen that all models outperform the selected baseline

(strati�ed estimator) for all scores indicating a de�nite improvement over random.
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Figure 7.2: Nested cross-validation evaluation results

MultiNB has the highest micro-averaged score which is identi�ed as the most im-

portant metric in Section 6.4.3 and is therefore considered the highest performing

model. However, the performance di�erence is not substantial and both bernNB

and linSVC surpass multiNB on some metrics. BernNB has the lowest running

time, but does not o�er a drastic advantage over multiNB or linSVC di�ering

by less than 20 minutes. Not only is SVC the most computationally expensive

method (running over 10 hours in comparison to under 2 for the rest), but it is

also the consistently worst performing model. The other three models have much

more comparable results for both the performance and the runtimes. While run-

ning time is not particularly constrained for this application, SVC is bordering

on impractical and will only worsen if more data is collected as SVC complexity

scales more than linearly with the number of documents (not features).
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Table 7.4: Final experimental design results

Estimator F1-Scores (% Mean ± 1 Standard Deviation) Run-Time
Micro
Avg.

Macro
Avg.

Electrical
Failure

Electronics
Failure

Hydraulic
Failure

Mechanical
Failure

Structural
Failure

(sec, min)

multiNB 41,15 35,15 19,98 48,69 24,91 38,43 43,72 5271,03
±4, 79 ±8, 09 ±15, 16 ±7, 65 ±4, 92 ±14, 53 ±30, 89 (87,85)

bernNB 40,38 34,56 17,93 48,11 27,81 33,19 45,77 4326,39
±6, 92 ±7, 71 ±13, 68 ±8, 29 ±2, 17 ±12, 02 ±32, 54 (72,11)

linSVC 40,51 36,42 24,48 47,28 28,06 39,44 42,84 5142,6
±3, 57 ±6, 59 ±10, 47 ±8, 93 ±2, 61 ±15, 79 ±29, 74 (85,71)

SVC 30,11 26,09 16,66 32,86 17,47 28,86 34,58 36859,13
±8, 02 ±7, 31 ±13, 19 ±7, 76 ±3, 47 ±10, 37 ±24, 92 (614,32)

Baseline_Strat 25,34 20,01 6,09 22,97 9,92 28,87 32,21
±0, 27 ±0, 28 ±0, 79 ±0, 64 ±0, 58 ±0, 41 ±0, 37

Baseline_Maj 32,26 9,76 0 0 0 0 48,78
±0 ±0 ±0 ±0 ±0 ±0 ±0

Baseline_Elec 22,91 7,45 0 37,27 0 0 0
±0 ±0 ±0 ±0 ±0 ±0 ±0

The models seem to vary together in terms of both their mean scores and standard

deviations. For both the absolute and relative mean scores, all models perform

best on Electronics Failure; but while Electrical Failure is the lowest performing

class in terms of absolute scores, Mechanical Failure is the worst in terms of margin

of improvement. The performance is expected to be lower for smaller classes as

the models have less training data from which to learn. Since Electrical Failure

is the smallest class, its low absolute performance might not be an indication of

true di�culty but rather a consequence of its small size. Electronics Failure, on

the other hand, is medium sized which means that it is very likely the easiest class

to learn as it surpasses both Mechanical and Structural Failure which are larger.

The strati�ed baseline model tries to account for the size advantage which is why

Mechanical Failure, which has reasonably high absolute scores, has the lowest

relative scores instead of Electrical Failure for which the baseline is very low. While

this suggests that Mechanical Failure has the highest true di�culty (that even a

human annotator might struggle with) the fact is that limited data availability,

which makes Electrical Failure more di�cult to learn, is an implementation reality.

The class properties also seem to a�ect the standard deviation of the respective

per-class metrics in a fairly consistent manner with at least some correspondence

to the distributional changes between folds as expected. While the variance is

expected to be largest for the smallest classes, the violation of the IID assumption
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is also expected to increase the variance of the per-class metrics in proportion to

the extent of the data-drift experienced by each class as depicted in Figure 6.2. The

results re�ect this to some extent as Structural Failure, which has the most drastic

distributional changes from the data-drift, has the highest standard deviation for

all the models despite being the largest class which should otherwise lead to more

stable results. The high standard deviation of Mechanical Failure can be explained

in a similar way while that of Electrical Failure, which has a relatively consistent

distribution, can be explained by its small class size.

The error-bars indicate quite a large margin of performance values overall which

would mean that the models exhibit relatively large levels of variance. How-

ever, these values should not be taken at face value. Because the FAGG method

only provides a single point estimate of the expected mean performance, the vari-

ance was estimated from the per-fold variation (standard deviation) around FAV G.

While frequently used in literature, Forman and Scholz (2010) caution against the

use of per-fold calculated F-scores (and its mean FAV G) which is sensitive to the

changing class-distribution of di�erent folds leading to inconsistent penalisation of

error. This means that the reported standard deviations are likely over-estimated,

and more so for some classes than others calling into question the validity of the

above across-class score comparisons. This is further investigated in Section 8.4.

It is important to keep this limitation in mind, but since the grouped evaluation

scheme does not allow for di�erent fold-splits, the variance could not be estimated

using repeated NCV as recommended by Krstajic et al. (2014) leaving the per-fold

scores as the only alternative.

Relative comparisons made across models, but within the same score (e.g. in

Hydraulic Failure multiNB has the highest standard deviation), are more reliable

as all models are evaluated on the same fold-splits and are likely to be similarly

biased for each class. Then, looking only at the relative ranking of the top three

models in each score in Table 7.4, it can be seen that linSVC has the lowest

variance, followed by bernNB and �nally multiNB which has the highest1. While

1Excluding SVC, linSVC has the lowest standard deviation for four of the seven scores in-
cluding the most important: micro-averaged. BernNB has the lowest for two of the seven scores
(and is lower than multiNB for four of the seven) and multiNB has the lowest for only one.
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the reliability of this conclusion is also not guaranteed, it is supported by the

parameter stability discussed in Section 7.1.1 and the learning curves evaluated in

Section 7.4 adding more credibility to this claim.

The di�erence between the top three models is not substantial enough to make

a de�nitive best selection. However, the di�erence between them and the lowest

model SVC (in terms of both running time and performance) is enough to exclude

it from further consideration.

All of the models, even the worst-performing SVC, consistently beat the strati�ed

baseline performance with a sizeable margin (even the potentially overestimated

error-bars are well beyond the range of the baseline). The top three models also

beat the majority-class micro-averaged score (which is the highest baseline score

for the evaluation metric) and are even able to beat the per-class performance of

the single-class estimator trained for Electronics Failure; falling just short of the

majority class estimator on Structural Failure. Considering the zero scores for all

other classes, the learnt models are vastly superior to both single-class dummy

estimators. While the actual results are not fantastic, they provide a de�nite

improvement over all the random baselines indicating at least a level of practical

value. Looking only at the margin of improvement for the micro-averaged results

(most important metric) multiNB has a 15.8% increase over the strati�ed estimator

and 8.9% over the majority-class estimator which is a sizeable improvement.

While the actual scores are far from desirable, these should be signi�cantly im-

proved if subject matter experts were to be involved in every step of the process

and especially if better quality labelled training data were to be made available.

The improvement over the random baseline for such a low quality dataset indic-

ates that machine learning methods are at least viable for maintenance data and

should be investigated further.

7.4 Learning Curves

Learning curves were evaluated for all the optimised models from the nested CV

results except for SVC which was excluded due to its excessive training time and
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low performance. These curves were investigated to analyse the bene�t of col-

lecting more data as well as diagnosing the bias-variance trade-o� of each model

as discussed in Section 3.6. This was implemented using the Scikit-learn learn-

ing_curve module.

The learning curves are evaluated by performing cross-validation on increasing

portions of the data and averaging the CV results (using FAGG). Because the curves

typically start steep and become more gradual as the training data increases, the

curves were evaluated for: 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,

90% and 100% of the training data using smaller increases for the steepest region.

Only the micro-averaged F-scores, identi�ed as the most important metric, are

reported.

The curves show the testing and the training performance as a function of the

training-set size. As discussed in Section 3.6, the test (generalisation) performance

tends to improve as the amount of training data increases, �rst drastically and then

more gradually after some threshold. If the amount of training data is adequate,

all models should be su�ciently beyond that threshold to where the curves start

to plateau for the maximum training set size (100%). However, that does not

mean more data will not be bene�cial. Depending on whether the model su�ers

predominantly from variance or bias, it may or may not be worthwhile to collect

more data.

Learning curves were evaluated for a strati�ed 10-fold, strati�ed 5-fold and grouped

5-fold CV. As for any cross-validation, increasing the number of folds will result

in more training data available for each run. Therefore, using 10-folds mean that

the learning curves can be extrapolated beyond the amount of training data made

available to the 5-fold evaluation loop in the NCV in Section 7.3. (Strati�cation

was required since the data contains only 5 groups preventing 10-fold grouped

CV.) To ensure consistency with the evaluation strategy used in the experimental

analysis, 5-fold grouped CV learning curves were also evaluated and compared with

those created with strati�ed 10-fold CV. Finally, strati�ed 5-fold learning curves

were also investigated to provide more insight into di�erences resulting from the

number of folds (strati�ed 5-fold vs strati�ed 10-fold) as opposed to di�erences

resulting from the splitting strategy (strati�ed 5-fold vs grouped 5-fold).
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The learning curves are shown in Figure 7.3 below. The increasing training set

size is indicated on the x-axis and the evaluation metric (micro-averaged F-score)

is indicated on the y-axis. The top, downwards sloping curves present the training

performances (re-substitution) while the bottom, upwards sloping curves indic-

ate the testing performances (hold-out). The markers indicate the mean F-score

computed using FAGG as before. The vertical, dashed line shows the smallest

training-set size used in the NCV evaluation in Section 7.3. This serves as a lower

limit for those models since 4 of the 5 training folds lie further along the curve.

The �rst row shows the learning curves for each model evaluated using strati�ed 10-

fold cross-validation. Because it uses 10 folds, these curves are the most complete;

that is to say it is evaluated for the largest range of training set sizes. The strati�ed

10-fold learning curves can be evaluated up to training sets of 27 675 documents

( 9

10
of total data), while the strati�ed 5-fold maxes out at 24 600 documents (4

5
of

total data). For grouped 5-fold the maximum is even smaller at 22 108 documents

due to the uneven distribution of documents in groups as can be seen in Table 6.1

(limited by the smallest fold). This can clearly be seen in the second row of the

�gure which superimposes the learning curves for all three evaluation strategies on

top of each other. (The area between the training and testing curves are shaded

to make it easier to distinguish the correct pairs.) The bottom row shows only the

testing curves of the three evaluation strategies. Here, the shaded area around each

curve indicates the range of the per-fold test scores (connected to form per-fold

test curves) showing the extent of the overlap between the di�erent strategies. The

three columns indicate the multiNB, bernNB and LinSVC models respectively.

The most important thing to notice is that all the models, for all the evaluation

schemes are su�ciently beyond the initial rapid increase threshold at the smallest

NCV training fold (indicated with the vertical line). This means that the pess-

imistic bias inherent in cross-validation estimates should not be excessive (Hastie

et al., 2009).

As per Section 3.6, the area between the training and testing curve is indicative

of the model variance and generalisation performance. If the curves converge,

the model has low variance and good generalisation performance relative to the

training performance. For these models, the error is likely dominated by bias and it
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Figure 7.3: Learning curves of the top three models multiNB, bernNB and linSVC
(from left to right). Top row: strati�ed 10-fold CV (faded lines showing per-fold vari-
ation). Middle row: all evaluation strategies superimposed (shaded region connecting the
training and testing curves for each scheme). Bottom row: test-curves of all evaluation
strategies (shaded region indicating per-fold variation).

is unlikely to bene�t much from the addition of more data. Such models are likely

under�tting the data and may bene�t from increasing the complexity to reduce

the bias (e.g. by considering more complex algorithms, more complex feature sets

or reducing the regularisation).
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On the other hand, models for which the curves have not yet converged su�er from

high variance and are likely to bene�t from the addition of more data. A much

higher training performance than testing performance at the maximum sample size

is indicative of poor generalisation performance relative to the training perform-

ance meaning that the model is likely over�tting the data. This can be addressed

by decreasing the complexity (e.g. considering simpler algorithms, simpler fea-

ture sets or more regularisation) or by the addition of more data if the researcher

feels that the complexity is warranted. Of course, high bias and high variance

are not mutually exclusive, and it is possible for a model to su�er from both. A

low training performance is always indicative of high bias, regardless of the curve

convergence.

Looking �rst at the strati�ed 10-fold curves which are the most extensive, it can

be seen that linSVC is a high-bias, low-variance model while multiNB is a low-

bias, high-variance model and bernNB is somewhere in between. As discussed in

Section 3.5, this inverse relationship of bias and variance is typical as reducing one

often leads to increasing the other.

LinSVC has the best convergence (low variance) indicating that it is the least

likely to bene�t from more data. Coupled with the fact that it also has the

lowest training error (high bias) suggests that the performance may be improved

by increasing the model complexity. While this suggests that there may be bene�t

in evaluating higher order kernels (which are more complex), this would have to

be implemented using LIBSVC and if SVC is any indication, the training time

could become intractable (will be higher than for SVC using linear kernel) and

the performance may not be in line with that of linSVC as it uses a di�erent

solver. Furthermore, several authors have demonstrated no bene�t in using higher

order kernels for text. Alternatively, the optimisation strategy can be modi�ed to

forcibly reduce the regularisation (controlled by parameter C) or to consider more

complex pre-processing strategies (more intricate or simply more features).

What is interesting to note is that both the low variance and the high bias are

supported by the evaluation results in Section 7.3 and the hyperparameter optim-

isation discussed in Section 7.1. In Figure 7.2 and Table 7.4 it can be seen that

LinSVC has smaller standard deviations than the other models for both the micro
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and macro-averaged scores in support of lower variance. While the standard devi-

ations are likely inaccurate as discussed in Section 3.8.3, the problems stemming

from incompatible folds are not an issue when only compared relatively within one

metric as all models are evaluated on the same fold-splits. Furthermore, unlike

either of the Naïve Bayes models, linSVC did not select tri-grams in the hyper-

parameter optimisation limiting features to simpler uni and bi-grams. It is also

the only model that ubiquitously implemented stemming, IDF normalisation and

document length normalisation all of which result in less complex feature-sets than

for those selected by multiNB and bernNB which support the higher bias observed

in the learning curves.

The di�erence between the multiNB and bernNB curves is consistent with their re-

spective complexities. The multinomial Naïve Bayes formulation is more complex

than the Bernoulli one making both the higher variance (less convergence) and the

lower bias (higher training error) expected. It is not clear whether the bias or the

variance dominates the bernNB model and it is likely to bene�t from a reduction

of both. While it has a higher variance than linSVC and should therefore be more

likely to bene�t from the addition of more data, its test curves plateau very fast

and show a similarly low growth rate (slope) at the maximum training-set size

indicating limited further potential.

Cross-validation (used by both the learning curves and the experimental design)

are only an evaluation tool. Before implementation, a model will be re-trained

on all the data without the need for hold-out test samples meaning a training-set

size of 30 751 documents. Due to having the highest variance (least convergence),

multiNB is the most likely to bene�t from this increase in data. Furthermore,

multiNB already has the highest testing performance at the maximum sample size

of 27 675 documents and is also the highest performing model in the results from

Section 7.3. This means multiNB will likely have a larger margin of superiority

upon implementation making it the preferable model.

Next, the superimposed strati�ed 10-fold, strati�ed 5-fold and grouped 5-fold

curves are considered to evaluate the correspondence between the di�erent eval-

uation schemes. It can be seen that the 5-fold and 10-fold strati�ed curves are

almost identical. In fact, contrary to expectations the 5-fold training curves are
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fractionally higher than the 10-fold curves indicating a lower pessimistic bias for

5-folds. As discussed previously, decreasing the number of folds is generally ex-

pected to increase the pessimistic bias and decrease the variance of the evaluation

due to the smaller training but larger test sets (Tsamardinos et al., 2015). From

the range of per-fold testing curves shown in the bottom row of the �gure, it can

be seen that the variation of the strati�ed 5-fold scores is indeed less than that

of the strati�ed 10-fold scores. However, both the expected variance reduction

and the unexpected bias reduction are insigni�cantly small and overall the results

seem to support the authors who found no signi�cant di�erence between 10 and 5

folds. This suggests that the di�erences observed between the grouped 5-fold and

strati�ed 10-fold curves are due to the splitting strategy and not the number of

folds.

While the training curves are almost identical for all the schemes, the grouped

testing curves are signi�cantly lower than either of the strati�ed schemes mean-

ing similar levels of bias, increased variance and lower generalisation performance

(absolute and relative to the respective training performances). This was to be

expected as the strati�ed schemes train and evaluate the models on arti�cially IID

data and do not account for the changing distributions resulting from concept-drift.

The grouped strategy, on the other hand, tries to account for the concept-drift by

evaluating the models on chronologically out-of-sample folds.

In other words, while the actual models seem relatively una�ected by the di�erent

schemes (near identical training curves) they perform signi�cantly worse on the

grouped test because it evaluates their performance on a variable environment in

comparison to the much easier stable environment used by the strati�ed schemes.

The changing test conditions of the grouped scheme accounts not only for the

lower test curves, but also for the increased variance (evident from the bigger gap

between the curves) which in turn translates to larger data requirements. It is

important to note that while high variance is an undesirable property, it is not so

much caused by the grouped scheme as it is captured by it (while neglected by the

strati�ed schemes) and therefore better re�ects the implementation reality.

Looking at the di�erences between the three models there seems to be some dis-

crepancy between the grouped and strati�ed schemes. For the strati�ed curves,
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the variance (indicated by the convergence) of linSVC is notably smaller than that

of bernNB while on the grouped curves the variance as of linSVC and bernNB

seem equivalent. Furthermore, while multiNB is the highest performing model

for both strati�ed schemes, it is actually the lowest performing for the grouped

schemes. To get a better indication of the model test behaviour, the test curves

are redrawn at a better scale in the bottom of Figure 7.3 with the shaded region

showing the full range of the per-fold scores.

The deviation around the means provide an alternative view of the variance and

while the per-fold scores are not an ideal metric, they still contain valuable inform-

ation. As expected, there is clearly much more variation in the grouped results

than for either of the strati�ed schemes. However, looking only at the variation

of the per-fold scores, linSVC once again has lower variability than bernNB in

support of the strati�ed results. The reason for this discrepancy is not clear but

may be due to the interaction of di�erent sources of variance (training, evaluation

and noise variance).

To get a better indication of the model test behaviour, the test curves are redrawn

in Figure 7.4 but grouped according to scheme rather than model so that the three

columns now present all the strati�ed 10-fold, strati�ed 5-fold and grouped 5-fold

curves respectively. The scales are the same but the grouped plot shows a di�erent

segment of the graph to save space.

Figure 7.4: Test curves grouped by evaluation scheme

At this scale the di�erence between the strati�ed and grouped learning rate is
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much more apparent. While all the curves are su�ciently beyond the initial rapid

increase phase at the smallest NCV training fold (indicated with the vertical line),

the grouped curves are slower to plateau and still have signi�cant growth rate at

this point. In other words, a substantial performance increase might be possible

for the grouped results if more training data was available. At the very least, the

improvement should be more extensive than that observed in the strati�ed curves

beyond the dashed line. This supports the earlier �ndings of higher variance that

needs more data to reach a similar level of stability. It makes sense that more data

is needed to properly learn the changing distributions as tested by the grouped

scheme as it poses a more di�cult learning task than the strati�ed schemes.

In contrast to the strati�ed results, the testing curves of the various models seem

to converge for the grouped scheme. While this seems to support the �ndings

by Mozetic et al. (2016) that the estimator choice is not highly signi�cant, it is

possible that if enough additional data was obtained the curves would diverge as

for the strati�ed schemes.

The fact that multiNB is the highest performing model for both the strati�ed

curves and for the grouped NCV evaluation in Section 7.3, but the lowest per-

forming model on the grouped learning curves, con�rms that multiNB has the

greatest growth potential. The learning curves are limited by the smallest training

fold. Due to the uneven distribution of documents in year-groups, most of the

training folds used in the NCV analysis are signi�cantly larger than the 22 108

documents indicated by the vertical line. This means that the results reported in

Section 7.3 are for further up on the learning curves where the multiNB, which

has the steepest grouped curve, has surpassed the other two curves. Furthermore,

while the test scores may di�er, multiNB has the highest training curves (and

therefore the lowest bias) for both the grouped and strati�ed schemes. While it is

dangerous to extrapolate beyond the observable learning curves, the results seem

to indicate that future work should be focused on the Multinomial Naïve Bayes

and potentially more complex variants of Support Vector Machines.
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7.5 Comparison to Literature

Due to the substantial di�erences in the experimental procedure used in this paper

and that reported in literature, a comparison between these results and that of

the related studies evaluated in Section 4.1 is not really meaningful. Moreover

according to Baharudin et al. (2010) such comparisons are only meaningful when

comparing experiments performed by the same author in highly controlled con-

ditions (even if the experimental procedure was the same) due to the various

�background conditions� that a�ect the results and make such comparisons mean-

ingless. A more useful evaluation is a methodological comparison to investigate

the di�erences between the experimental procedures followed. This is done in the

next chapter.
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Chapter 8

Empirical Analysis: Methodological

Evaluation

To validate the experimental design used in this analysis, additional experiments

were performed to investigate the e�ects of the methodological decisions made

in Chapter 6. There are some noteworthy di�erences between the experimental

design used to obtain the results in Chapter 7, and those implemented in the related

studies evaluated in Chapter 4. For some of the methodological di�erences, such

as the use of grouped rather than strati�ed cross-validation, alternative methods

were explicitly stated. For others, such as the cross-validated F-score computa-

tion, it is often unclear whether and how it was implemented due to inadequate

documentation.

From the literature review there seems to be a signi�cant gap between the method-

ological recommendations made in the more theoretical papers, and the common

practice observed in more industry-focussed papers. The gap is smaller in the

more general literature than for the maintenance related studies considered in

Section 4.1, but even so, many papers address only one aspect of experimental

validity or not at all. As per the �fth phase of the CRISP-DM methodology, it

is incredibly important to evaluate not only the results, but also the process used

to obtain them to ensure conservative performance estimates. This is especially

important in the industrial setting where the models are used for decision-making

with the potential for high safety and �nancial consequences. Furthermore, from

190
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Table 8.1: Naming convention of experiments

Methodological aspect Key Description

Evaluation Strategy NCV Nested cross-validation: outer evaluation and inner optimisation
loop

CV Single loop cross validation: Same loop used for evaluation and
optimisation (if any)

Evaluation Splitting Strategy
(optimisation always strati�ed)

grp Grouped (Blocked) according to year, i.e. number of splits = num-
ber of years in sample

strat Strati�ed (number of splits corresponding to number of years to
enable comparison with grouped)

Optimisation def Default parameters, i.e. no optimisation (all others optimised)

More IID Subsample iid More IID sample selected using only data from 2007-2009. (Hence
nested CV becomes 3x2 for grouped, strati�ed also made 3x2 to
allow comparison)

Binary Classi�cation
(single class, one-vs-rest
decomposition)

ovr_maj OVR classi�er using only the majority class: Structural Failure

ovr_best OVR classi�er using only the best performing class: Electronic Fail-
ure

ovr_worst OVR classi�er using only the worst performing class: Electrical
Failure

Algorithm multiNB Multinomial Naïve Bayes

bernNB Bernoulli Naïve Bayes

linSVC Linear Support Vector Machine (LIBLINEAR)

SVC Support Vector Machine with linear kernel (LIBSVM)

Evaluation Metric FAGG Aggregated F1-score described in Section 3.8.3 (single score calcu-
lated by aggregating fold predictions)

FAV G Average F1-score described in Section 3.8.3 (average of per fold
F1-scores)

FGeom Geometric average of the micro and macro-averaged F1-score used
in parameter optimisation

an academic perspective it is important to understand how the di�erences in the

evaluation strategy will a�ect the results to enable a more fair comparison with

literature.

This was investigated by performing several additional experiments on the same

data changing di�erent aspects of the experimental design to investigate their

respective consequences. The micro and macro-averaged results are summarised

in Figure 8.1 with the markers indicating the mean F1-score (calculated from

FAGG) and the error bars showing one standard deviation (estimated from the

per-fold F1-scores) as before. Table 8.1 gives a brief description of the naming

conventions used in the graph. The most important results are discussed in more
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Figure 8.1: Results from the methodological experiments, labelled according to the
naming conventions of Table 8.1
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detail below. More detailed results are provided in the appendix.

8.1 Optimisation and Evaluation

Of the studies that did report on optimisation, none of the related studies per-

formed it in the inner loop of a nested cross-validation. Several did not explicitly

report on how (or even if) optimisation was performed while others optimised

and evaluated their models on the same test-data (in either a two-way split or a

single-loop CV). To see the e�ect of the signi�cantly more computationally ex-

pensive NCV, the experimental procedure described in Chapter 6 was modi�ed to

a single-loop, 5-fold CV so that both the evaluation and optimisation occur in the

same loop (all other parameters stay the same). In other words, the randomized-

search CV is performed on the outer folds. These experiments are denoted CV (as

opposed to the nested cross-validation experiments denoted NCV) with the results

depicted by a grey square in Figure 8.2.

Furthermore, many of the authors did not use (or did not report on) any model

optimisation and presumably used the default parameters of the implementations

(or other common values reported in literature). To investigate this e�ect, all

models were evaluated using the default parameters of both the estimator and

preprocessing functions. Because no parameters are being optimised on the test

sets, the inner optimisation loop of the NCV is no longer required. Accordingly,

these were evaluated using a single-loop CV, but in comparison to the optimised

models, the use of a single-loop is valid. These models are denoted defCV in

Table 8.1 and indicated with a black triangle in Figure 8.2. The NCV results from

Section 7.3 are shown with a white circle for comparison.

The running time of a single-loop CV is signi�cantly less than for a nested one.

While the NCV ran 72-88 minutes, the single-loop optimisation (which still per-

forms 60 iterations for every fold) ran 35-48 minutes and the unoptimized, default

CV ran 2-7 minutes. However, as discussed previously, the only computational

limits for this task is practicality and even the SVC running time of more than 10

hours would not pose an implementation problem. Faster models are still desirable
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Figure 8.2: Optimisation strategy: Performance di�erence between models optimised
in a NCV, a single-loop CV and unoptimised models.

for both convenience and scalability, but this is secondary to the performance and

reliability of the model.

From these results it can be seen that optimisation is de�nitely worthwhile as it

improves the results of all the models. The improvement is not only due to the

re�ned algorithm parameters, but also due to the fact that the preprocessing trans-

forms are customised for each algorithm. The improvement con�rms the validity

of a randomised search procedure in support of Bergstra and Bengio (2012) and

Zheng (2015). While it is possible that an exhaustive-grid search could provide

higher improvements, considering a parameter space of this size would be com-

putationally infeasible. (Excluding the continuous parameters it would already

be more than 1000 combinations for each loop as opposed to 60. Considering a

reasonable range for the continuous variables it will be upwards of 100 000.)

Interestingly enough, the bene�t is most substantial for multiNB, in contrast to

the frequent belief that Naïve Bayes requires no optimisation. On the other hand,

bernNB is the least a�ected, perhaps because its Boolean features limit the extent

to which the preprocessing can be tuned (none of the normalisations or weighting

schemes have any e�ect). In fact, without the optimisation, bernNB is the highest

performing model. This shows the importance of comparing optimised models with

each other when evaluating and selecting algorithms (Baharudin et al., 2010).
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Furthermore, it can be seen that the single-loop optimisation (CV) generally

provides higher scores than the nested optimisation (NCV) as expected. There

are two potential reasons for this di�erence, namely the optimistic bias of an op-

timised CV leading to overestimated performance (Tsamardinos et al., 2015) and

the pessimistic bias of NCV leading to underestimated performance1 (Forman,

2007). However, the di�erences are not as big as expected and in fact, NCV

actually outperforms the single-loop CV for linSVC.

Several authors have demonstrated the danger of combining the model optimiza-

tion and the model assessment into a single CV as this tends to overestimate the

performance. Tsamardinos et al. (2015) show that this e�ect is most signi�cant

for smaller sample sizes (<500) which may explain why the di�erence is not very

pronounced for this dataset. They also show that the variance of NCV is signi�c-

antly higher than for CV which could account for NCV surpassing CV on a few of

the metrics. This e�ect is demonstrated by Krstajic et al. (2014) who show that

despite NCV being lower and more reliable than CV on average, depending on the

fold splits, a much wider range of NCV scores are possible (some much higher and

some much lower than the corresponding CV scores) which is why they strongly

recommend using repeated NCV.

Due the grouped evaluation strategy, di�erent splits are not possible meaning

that repeated NCV could not be implemented to reduce or evaluate the variance.

However, it is likely that the potentially high variance of an unrepeated NCV is

not so large as to invalidate the NCV results due to the sample size considered

here. Tsamardinos et al. (2015) �nd that the increased variance of the NCV is a

smaller concern for larger samples and already show a substantial reduction for

sample sizes of 1 500. Krstajic et al. (2014) only considers sample sizes <5 000

which is substantially smaller than the 30 751 considered here. This seems to be

supported by the error bars showing similar levels of variation between the NCV

and CV results in the �gure. Furthermore, Tsamardinos, et al. (2015) state that

1Technically both the single-loop CV and NCV are subject to a pessimistic bias as con-
sequence of not using all of the data to train the model. However, not only is the pessimistic bias
more signi�cant for NCV, but in the single-loop CV this e�ect is dominated by an optimistic
bias resulting from evaluating the model on the same data used to optimise it (data leakage).
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the overoptimistic bias of the CV is more dangerous than the high variance of

NCV.

Apart from the single CV overestimating the performance, the NCV also tends to

underestimate the performance. According to Forman (2007), the optimal para-

meters may be sample size dependent. The single loop CV optimises parameters

on the training folds (which is already smaller than the full set) while the NCV uses

only half of the training folds to select parameters. This can lead to suboptimal

models being evaluated and reported by the NCV leading to underestimated per-

formances. While this is acknowledged by most of the authors recommending NCV

in Section 3.8.3, it is only mentioned in passing and portrayed as inconsequential.

From Tables 7.1 and 7.2, it can be seen that the parameters selected by NCV and

CV di�ers only for multiNB and are identical for bernNB and linSVC. This sup-

ports the conclusion made from the learning curves in Section 7.4 that multiNB

is most likely to bene�t from more data and could account for the fact that the

di�erence between CV and NCV is bigger for multiNB than linSVC. However, the

fact that the di�erence between NCV and CV is larger for bernNB (which also

has completely stable parameters) than for multiNB suggests that the pessimistic

bias of the NCV is less signi�cant than the optimistic bias of CV in support of

Tsamardinos et al. (2015) and Varma and Simon (2006).

Furthermore, the learning curves in Section 7.4 also indicated that linSVC is a high

bias, low variance model which is the least likely to over�t. The overestimation

of the single-loop CV is due to over�tting the optimisation process to the testing

folds. Because linSVC is less likely to over�t, the optimistic bias of CV is smaller

so that the smaller di�erence between NCV and CV makes sense. This supports

the notion that the di�erence in results are mostly due to the overestimation of

CV rather than the underestimation of NCV. However, the true results are likely

to be somewhere in between.

While the di�erence between NCV and CV is not drastic, it is enough to make

bernNB the top performing model instead of the bottom which can lead to the

implementation of a poorer model. Furthermore, just because the di�erence is

small for these models on this dataset does not mean it will not be much more

consequential for others (Varma and Simon (2006) demonstrated error di�erences
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of more than 20%). Unlike the decision on whether to optimise or not, this is not a

question of performance but concerns the validity of the results. Therefore, while

the increased computational cost (almost double) is unfortunate, it is warranted

to prevent false con�dence.

Once again, however, this pertains only to the calculation of performance estim-

ates. For actual deployment the parameters would be optimised on the whole

dataset using a single-loop CV and then retrained on the full dataset using the

optimal parameters.

8.2 Splitting Strategy (Strati�ed vs Grouped)

None of the domain speci�c studies and only one of the domain independent studies

used a grouped splitting strategy for cross-validation. While some of the authors

did not explicitly address the splitting strategy, those that did performed either

strati�ed or random splitting. It is generally recommended to use strati�ed split-

ting for imbalanced data such as this, with Forman and Scholz (2010) stating that

strati�cation should always be used regardless of class imbalance.

To evaluate the e�ect of using the more common strati�cation over the chronolo-

gically grouped strategy of Bergmeir and Benitez (2012), the experimental design

was repeated using strati�ed splitting for both the 2-fold inner optimisation loop

as before, but also for the 5-fold outer evaluation loop. This means that both the

optimization and evaluation was performed on arti�cially IID data, namely all the

training and test sets have identical distributions and are also the same size. The

micro and macro-averaged scores are plotted next to the grouped CV results in

the left-hand column of Figure 8.3.

From these results it can be seen that the strati�ed approach performs consistently

better than the grouped approach. Not only are the mean scores substantially

higher but the spread is also signi�cantly less. These results were expected and

supports the work by Bergmeir and Benitez (2012) and Mozetic et al. (2018) who

found that the strati�ed approach is likely to overestimate the performance in

the presence of data drift. From Figure 6.2 in Chapter 6 it can be seen that
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Figure 8.3: Di�erent evaluation schemes (strati�ed vs grouped CV) for the full sample
of data (left) and a more IID subsample (right)

Structural Failure and Mechanical Failure are the classes with the most extreme

distributional changes between folds which should make them the most sensitive

to the IID assumption of the CV. This is con�rmed in Figure A.2 which shows

that for all estimators, the biggest di�erence in mean performance for the two

evaluation strategies is Structural Failure, followed by Mechanical Failure.

The di�erence in variance (indicated by the standard deviation error bars) was

also expected due to the strati�ed approach arti�cially suppressing the variance.

This is because, while the strati�ed CV is being applied to consistent data and

therefore responds in a fairly steady manner; the grouped CV is being applied to

highly irregular data and therefore responds in an inconsistent manner. Because

the folds are not equally dissimilar, a wider range of results are expected as the

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 8. METHODOLOGICAL EVALUATION 199

performance is likely to vary according to the similarity between the training and

the testing sets of the folds. This relates to both the model variance (stability to

training data) and evaluation variance (stability of the evaluation procedure). The

strati�ed approach seems to provide lower variance; however, this is a consequence

of the arti�cially stable training and testing data, not due to a real reduction

of variance. In other words, while the high variance exhibited by the grouped

approach is undesirable, it is not caused by the grouped CV2 but rather captured

by the grouped CV (and ignored by the strati�ed CV). The di�erent variances

exhibited by these approaches is also con�rmed by the learning curves in Section

7.4.

However, this di�erence is possibly exaggerated by the per-fold F-scores used to

calculate the standard deviation which is likely to overestimate the variance of the

grouped CV as discussed in Section 8.4. The variation is estimated from the per-

fold F-scores which tend to be biased according to the degree of class-imbalance

and is especially sensitive to very small classes in the test set. Forman and Scholz

(2010) show that this e�ect is somewhat mitigated by the strati�ed approach

which prevents the class-imbalance from becoming more extreme than the over-all

dataset. This means that while the variance of the grouped approach is higher that

the strati�ed approach as explained above, the di�erence might not be as extreme

as indicated in the �gure as the grouped CV variance is likely to be overestimated

due to small class representation in some test folds. This is con�rmed by Figure

A.2 which shows the per class F-scores of both approaches. There it can be seen

that the biggest di�erence exists for Structural Failure which has both the smallest

(<100) and the largest (>4 500) test size for di�erent folds as can be seen in Figure

6.2 and whose per-fold variation is therefore the most a�ected by the F-score bias.

To con�rm that the di�erences observed between these two methods are due to

the evaluation strategy and not indicative of a superior modelling approach, both

2To some extent the grouped approach does cause some additional variance as the irregular
fold sizes lead to some folds with smaller test sets than those used by the strati�ed approach.
Smaller test sets are associated with increased evaluation variance. However, those folds also
have larger training sets which are associated with reduced model variance. Furthermore, other
folds have this relationship reversed (larger test sets smaller training). Therefore, it is assumed
that the overall e�ect of this is cancelled out.
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the grouped and strati�ed experimental procedure was repeated on a sub-sample

of the training set that is much closer to IID than the full sample. From the data

understanding phase it could be seen that the 2007-2009 data is more homogeneous

than the full set. Because this set only comprises 3 years, the evaluation was altered

to a 3x2 NCV for both the strati�ed and grouped approach. The results are shown

in the second column of Figure 8.3.

From these results it can be seen that while the strati�ed approach still performs

better than the grouped approach, both the mean performance and the variance

is much more comparable. The remaining di�erences make sense as the data drift

was reduced but not entirely removed. This indicates that the improved score of

the strati�ed approach is not a re�ection of the true model performance but rather

an unintended consequence of an erroneous evaluation strategy. In other words,

while both of these approaches are valid from a model-building perspective and

are likely to achieve equivalent generalisation performances in practice, only the

grouped approach is valid from an evaluation perspective as the strati�ed approach

can dangerously overestimate this performance.

Furthermore, both the strati�ed and the grouped micro-averaged F-scores have

improved for the more IID sample despite having less training data available than

their full-set counterparts. The reduced macro-averaged scores are mostly due

to the extreme performance loss for Structural Failure. This is not unexpected as

Structural Failure is the smallest class in the IID sample (less than half of the over-

all minority class: Electrical Failure) meaning that it does not have enough data to

properly learn the class. Due to its small size it does not a�ect the micro-averaged

scores much, but because all classes are weighted equally for the macro-average it

has a disproportionate e�ect. As discussed previously, the micro-averaged results

are deemed more representative of the overall model performance making the IID

sample results superior. This improvement has nothing to do with the validity of

the evaluation strategies, but re�ects a true performance increase demonstrating

the bene�t of using data that conforms to the internal model assumptions as well

as the increased di�culty of non-IID learning.

Both Naïve Bayes and Support Vector Machines make the IID assumption. While

violating this does not a�ect the validity of the model (or the results) in the same
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manner as it does the cross-validation, they should perform better on data that

matches these assumptions. Furthermore, non-IID data is likely to be indicative

of a di�cult task that even human annotators have di�culty with. Mozetic et al.

(2016) showed that inter-annotator disagreement limits the theoretical perform-

ance that can be achieved by a model. While this could not be measured for

this dataset, data-drift can be an indication of inter-annotator disagreement if, for

example, the de�nition of what constitutes electrical or electronic failure changed

over time, or if the failure mode assignments change according to the growing

expertise of technicians. Regardless of the source of the labelling inconsistency,

it poses a much more di�cult learning task that requires more training data to

reduce the error to acceptable levels.

This shows the value of data quality over quantity and it is likely that the per-

formance (as measured by the grouped CV) can be substantially improved if the

training data underwent a more stringent labelling process. However, the reality

of the dynamic business environment is that some level of data drift is inevitable,

irrespective of quality controls. Therefore it is important to have a realistic estim-

ate of the model performance in such a changing environment as per the grouped

CV. Furthermore, this also shows the value of up-to-date information which is

why it is imperative to continuously monitor the model performance and update

its parameters (and training data) to re�ect these changes as per the CRISP-DM

methodology (Chapman et al., 2000).

8.3 Multiclass Decomposition

Most of the related studies evaluated in Section 4.1 performed binary rather than

multiclass classi�cation. This is consistent with the broader classi�cation literature

(both theoretical and practical) which is almost exclusively focused on the binary

problem (Rifkin et al. 2003; Hoens et al. 2012). However, as discussed in Section

3.1, multiclass classi�cation is inherently more di�cult than binary classi�cation

and the performance is generally expected to be signi�cantly lower (Rifkin et al.,

2003).

This means that the performance might be drastically improved if the problem was
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simpli�ed to a binary one by identifying the most important class and combining

the rest into a single "other" category. This is similar to the OVR3 approach,

except that only a single binary classi�er is trained and not an ensemble. Such

a model could still provide valuable information to the maintenance service pro-

vider if the most costly failure mode can be reliably detected (cost can include

anything important to the service provider such as capital, production, customer

experience, environmental or safety). Furthermore, this will enable a more fair

comparison with the binary classi�cation studies discussed in Section 4.1 as they

cannot properly be compared to the multiclass results achieved in Section 7.3.

From the results in Section 7.3, it was observed that both the best-performing class

(Electronics Failure) and the worst-performing class (Electrical Failure) are con-

sistent for all estimators. These were selected, along with the majority class (Struc-

tural Failure), to create three one-vs-rest binary problems denoted as ovr_best,

ovr_worst and ovr_maj respectively. The majority class performance is arguably

the most important as it a�ects the largest number of documents. The best and

the worst performing classes were further selected to investigate the bene�t of

binary classi�cation for both an easy and a di�cult class.

These were evaluated for all algorithms using the same 5x2 experimental proced-

ure as before, except that the parameter optimisation was modi�ed to maximise

the macro-averaged F-score instead of the geometric F-score. The macro-averaged

scores favour minority classes which is a desirable property for these models as the

class under consideration is inevitably much smaller, but more important, than

the combined "other" class. The results are shown in Figure 8.4 with the averaged

metrics in the �rst row and only the applicable per-class scores for each OVR

approach in the bottom row. (Each OVR model has only two per-class scores,

the one under consideration and all others combined into �other�.) The multi-

class results from Section 7.3 are also indicated for comparison. Like before, the

solid horizontal line indicates the baseline scores achieved by the overall strati�ed

dummy estimator and the dashed line spanning the micro-averaged graph shows

the overall majority class dummy estimator score (not indicated for the micro-

3Here OVO would not be applicable as that would require knowing which of two classes all
new data falls in.
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averaged graph as lower than the strati�ed). To get a better indication of the true

performance of the OVR models, additional single-class and majority class dummy

estimators were evaluated for each OVR reduction to investigate how much of the

model scores might be accounted for by chance.

For all the OVR models, the majority class is the combined "other" category which

is used to train three additional majority-class dummy estimators (indicated as

OVR_maj in graph key). These are indicated with the thin dashed line that

varies according to the speci�c class imbalance ratio of each OVR formulation.

Furthermore, a single-class dummy estimator was also trained for each of the

respective class metrics (Electrical, Electronic and Structural) and indicated on

those graphs with a thicker dashed line (called OVR_single in the key). The per-

class scores of ovr_best and ovr_worst are identical to the overall single-class and

majority class-estimators discussed in Section 7.2.

Only the majority-class OVR scores are indicated for the averaged plots as the

single-class OVR scores are almost entirely below the total sample, overall baseline

scores which are already substantially lower than the results achieved. By de�n-

ition, both the single and majority-class OVR estimators achieve zero for the

alternative class which is why they are invisible in all but one class graph.

Both the micro- and the macro-averaged scores have improved substantially for all

estimators. However, from the per-class results it can be seen that this is mostly

due to the high performance of the much larger, but less important "other" class.

This is con�rmed by the fact that the micro-scores, which favour the majority

class, consistently outperform the macro-scores despite being macro-optimised.

This e�ect is the most evident for ovr_worst which also has the most extreme class

imbalance ratio of 6:94 percent. It has both the lowest macro and highest micro

scores corresponding to very low performance on the minority class of interest

(Electrical Failure) and very high performance on the less important majority

class ("other"). In fact, the Electrical class scores actually worsen for most of

these models; though it should be noted that all of the mean scores are still safely

above both the OVR single-class model (that predicts only Electrical Failure) and

the overall strati�ed baseline.
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Figure 8.4: Micro-averaged, macro-averaged and per-class F-scores of the OVR multi-
class decompositions

For ovr_best and ovr_maj the class-imbalance becomes decreasingly severe at

23:77 and 32:68 respectively. Accordingly, these models are less dominated by

the majority class leading to reduced micro scores but improved macro scores

corresponding to lower performance on the "other" class but higher performance

on the classes of interest (Electronics and Structural Failure respectively). The

biggest class improvement is for Structural Failure (ovr_maj), which is also the

most balanced formulation. The Electronics class performance also increases for

all ovr_best models, but the improvement is to a lesser degree. While it is still

the highest scoring class, the di�erence between it and Structural Failure is much

smaller than for the multiclass results. However, if the variance and single-class

baseline results are considered, the Electronics performance is signi�cantly better.

While none of the OVR models were able to surpass the micro-average scores

achieved by always predicting "other", they all comfortably surpass the corres-
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ponding macro-averaged scores which is much more important here. While both

the best and majority class scores were improved by considering them in isolation,

it appears that isolating the worst class only served to improve the performance

of the remaining classes. However, it is possible that this is a consequence of the

class imbalance rather than an indication of the intrinsic learnability of the classes.

These results support the notion that learning becomes more di�cult for increas-

ing class-imbalance which is naturally severe for OVR implementations. It is pos-

sible that these results can be further improved by directly addressing the class

imbalance using techniques such as over-sampling, under-sampling, synthetic data-

generation or di�erent cost functions. These techniques could potentially improve

the results of the multiclass formulation as well as it also su�ers from class imbal-

ance. This is left for future work.

8.4 Metrics

Literature is frustratingly vague about many implementation details. While this

is problematic from a repeatability point of view, it is also extremely challenging

for new practitioners wanting to extend machine learning to di�erent domains.

One of the most important issues identi�ed in Section 3.8.3, is the inconsistency

surrounding the computation of the cross-validated F-score.

While the combination of the F-score metric with cross-validation is a widely

accepted practice, there is signi�cant discrepancy in exactly how this should be

implemented. Perhaps even more dangerous, is that many authors appear unaware

of this discrepancy and do not report the method used leading to incompatible

comparisons made across literature (Forman and Scholz, 2010).

Forman and Scholz (2010) investigate several divergent methods found in literature

and conclude that the method used in this study up to now: FAGG, is the least

biased formulation. While the theoretical proof of this claim is beyond the scope

of this study, it was considered worthwhile to evaluate the di�erence between

results generated by this method and FAV G, the other common formulation found

in literature as many of the studies considered in Chapter 4 did not specify which
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was used.

To investigate this e�ect, the per-fold F-scores of the results are plotted in the �rst

row of Figure 8.5 showing both the FAGG and FAV G computed mean scores. Each

fold score is indicated by a small x with the corresponding test-years indicated

above in the same order. The larger markers indicate the mean scores used in all

previous results: FAGG, while the small horizontal lines indicate the mean scores

computed with FAV G.

Below this, the results from the strati�ed NCV experiment in Section 8.2 is plotted

in the same way to evaluate the impact of strati�ed splitting on this computation.

While FAGG is always superior to FAV G according to Forman and Scholz (2010),

they do state that these results become more comparable if strati�cation is used

to limit the class-imbalance of folds and in so doing reduce the bias of the per-

fold F-scores which is the source of error for FAV G. This is important to validate

the strati�ed hyperparameter optimisation strategy which necessitates the use of

per fold F-scores in the inner loop of the NCV as these are required to compare

and select di�erent parameter combinations4. While these scores are not used

in the performance evaluation, they can drastically a�ect the results by choosing

suboptimal parameter combinations and should ideally be based on valid score

calculations.

From the grouped CV results it can be seen that FAV G tends to be lower than

FAGG. Comparing this tendency to the per-fold test distributions shown in Figure

6.2, it can be seen that the biggest di�erence between FAGG and FAV G is for the

classes that have very small test samples in some of the folds. This consistent

with the claim by Forman and Scholz (2010) that FAV G tends to have a negative

bias due to underestimating the performance of folds with very few test examples.

This e�ect is most evident for Structural Failure whose FAV G score is brought

down signi�cantly by the scores from 2007, 2008 and 2009; all of which have test

samples below 200 documents. Removing just the fold with the smallest number

4The reason is two-fold. Firstly, the aggregated F-score of the inner cross-validation is the
per-fold F-score of the outer cross-validation by de�nition. Secondly, the Scikit-learn framework
uses FAVG to evaluate cross-validation results and while this was modi�ed for the outer loop
of the NCV, changing it for the inner cross-validation embedded in the RandomizedSearchCV
module is non-trivial and would no longer be an o�-the-shelf implementation.
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Figure 8.5: Di�erence between the aggregated F-score and the average F-score

of test documents: 2008 (which has 66 test documents) already improves the FAV G

score by just over six percent to above 33%. In contrast, the two means are almost

equivalent for Hydraulic Failure which never has below 325 documents per test

fold.

According to Forman and Scholz (2010) this is due to the highly non-linear regions

of the F-score function which is concave in the number of true positives (TP) and

steepest near TP=0 (and unde�ned at zero). This means that the impact of a

single test document is not �xed but is determined by the context of its test

set. For instance, the cost of misclassifying a Structural Failure document in

fold 2008 with 66 documents is much more signi�cant than in fold 2011 with 4

964 documents. This is an undesirable property as it does not re�ect the actual

di�culty or importance of the document but rather the accidental properties of the

test set. While FAGG is similarly curved, it avoids the highly non-linear regions

near TP=0 by aggregating all the fold predictions before calculating F with a
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subsequently higher TP which reduces the bias signi�cantly.

Because the model variances are estimated from the standard deviation of the per-

fold scores, the error bars shown in previous �gures are likely to be overestimated;

especially for the classes most e�ected by this bias such as Structural Failure. This

does not only a�ect the absolute values of the standard deviations but also their

relative variation. Because the per-fold score bias a�ects some classes more than

others, even the relative variation may be inaccurate. For example, if the bias

could be accounted for, Structural Failure might not be the class with the highest

standard deviation anymore. Unfortunately, this could not be veri�ed as no better

method of estimating the per-fold variation could be found. It should be noted

that while neither the absolute value nor the relative variation across metrics is

reliable, the relative variation within metrics (i.e. between models for the same

score) should be �ne as all models are evaluated on the same fold-splits. That

means they should all be consistently biased enabling the comparison between

models on a per-metric basis.

The only unexpected results was for Electronics Failure where the FAV G is slightly

higher than FAGG. It is also the only class where its smallest test fold, 2007, is

also the highest scoring fold. While these results were unexpected and not directly

accounted for by Forman and Scholz (2010), they are not entirely incompatible

with their �ndings. The high performance of its smallest fold is not implausible

as at 664 documents it is the largest minimum-test fold of all the classes and

therefore the least a�ected by the negative bias. This makes it clear that the

di�erence between FAGG and FAV G is not due to FAV G over-penalising low TP

scores. However, it is less clear what the cause for this di�erence then is or why

FAV G surpasses rather than equalises with FAGG.

Forman and Scholz (2010) consider only the lower TP region of the F-score curve

where the non-linearity is the most extreme to address the small test samples

typically encountered in imbalanced datasets. They make no mention of the higher

TP region where test-folds may di�er greatly in size, but even the smallest is

su�ciently beyond the highly non-linear region near TP=0 (which is the case for

Electronics Failure). While the non-linearity reduces for higher values of TP, it

is possible that the wide range of test-fold sizes make even minor non-linearity
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noticeable.

Furthermore, Forman and Scholz (2010) show that not only does FAV G tend to

over-penalise low true positive (TP) values, but it also under-penalises high false

positives (FP). From the per-fold confusion matrices it was found that Electronics

Failure has a particularly high density of false positives and is the only class for

which the false positives consistently outnumbers the true positives. This may

suggest that for higher TP values the FAV G bias becomes dominated by the under-

penalisation of FP rather than the over-penalisation of TP leading to a positive

rather than negative bias. This positive bias would then explain FAV G surpassing

FAGG. However, as mentioned before, this speculation cannot be substantiated

from literature and warrants further investigation in future work.

For the strati�ed results, there is no discernible di�erence between FAV G and FAGG

plotted on the �gure below. Whilst not exactly equal, they never di�er by more

than 1% and usually signi�cantly less. These results are consistent with Forman

and Scholz (2010) who found that strati�cation reduces the FAV G bias signi�cantly.

Furthermore, the per-fold scores are also much more tightly distributed than the

grouped results. Unlike the grouped results, the order of the highest to lowest

achieving test-folds for a class varies between the three algorithms. In the grouped

results, the per-fold scores are dominated by the accidental properties of the test-

folds which is why their order remains relatively constant across all algorithms in a

class. The di�culty may still vary between strati�ed folds leading to consistently

higher or lower performing folds in a class. However, the increased �uctuation of

this order indicates a better response to the individual strengths and weaknesses

of each estimator. Because the results are less dominated by the fold properties

they also provide better re�ection of the actual model performance.

This validates the use of per-fold F-scores and FAV G in the hyperparameter op-

timisation. Since the results are only ever used comparatively to select parameters

and not to evaluate the models, any remaining bias will only a�ect the optimality

of the model and not the evaluation results.

Finally, these results provide some insight into why the di�erent F-score compu-

tation methods receive so little attention in literature. Because most studies use

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 8. METHODOLOGICAL EVALUATION 210

strati�cation, the di�erence between these methods will be very small in all but

a few exceptions making the distinction between them go unnoticed. This also

means that of the studies evaluated that do not specify the F-method used, only

those that also used strati�cation can actually be compared with each other.

It should be noted that the intention of this section is not to prove the superiority of

one method over another. In fact, no claim is made of the superiority of FAGG other

than citing Forman and Scholz (2010). Rather, it is to demonstrate the danger of

the incompatible evaluation measures found in literature on real word data. While

Forman and Scholz (2010) provide a much more detailed analysis of this subject,

they used mostly synthetic data and experiments designed to isolate and maximise

the di�erences between these measures. Therefore, it was considered worthwhile

to demonstrate the non-exaggerated impact of di�erent F-score calculations for a

more realistic data analysis (where neither the data nor the experimental procedure

is designed to showcase this di�erence).

8.4.0.1 Optimisation metric: Geometric F-score

The hyperparameter-optimisation, performed in the inner loop of the NCV, re-

quires a single metric with which to select the superior parameter set. Although

the micro-averaged F-score was identi�ed as the most important evaluation metric,

it should not be favoured to the point of disregarding the minority classes during

model building. To ensure more balanced estimators, the optimisation was there-

fore performed to maximise the geometric mean of the micro and macro scores.

Figure 8.6 plots the micro, macro and mean F-scores produced by the MultiNB

optimisation runs to show the relationship between these metrics. The left-hand

graph shows all 600 optimisation runs sorted according to the geometric means.

It can be seen that the micro-averaged scores (indicated with the topmost, jagged

blue line) are always signi�cantly higher than the macro-averaged scores (indicated

with the bottom, jagged green line). This was to be expected as the models

are naturally biased towards to the majority classes (more training data) which

dominates the micro-averaged scores.

The mean provides a middle ground where the documents in the minority classes
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are slightly upweighted by the macro scores (which weights all classes equally), but

the dominance of the majority classes are maintained by the micro scores (which

weights classes according to their proportionality) just to a lesser extent. The

importance of this averaging e�ect can be seen in the �gure below. While both

the micro and the macro scores should ideally be maximised, they tend to react in

opposite directions with high spikes in the micro-averaged scores coinciding with

low spikes in the macro-averaged scores. The mean scores provide a more moderate

tradeo� between these two opposing objectives.

Figure 8.6: Di�erence between the optimal point selected by the geometric and arith-
metic mean

Initially the arithmetic mean of the micro and macro scores was taken as the optim-

isation metric so that: Fopt =
1

2
(Fmic + Fmac). However, preliminary experiments

selected inconsistent parameters for the various folds. High variability in the para-

meter selection indicates instability of the modelling process which is undesirable

from both an evaluation and implementation perspective. Furthermore, while the

micro-average scores were reasonably high, the macro average scores were unac-

ceptably low in comparison. Upon closer inspection it became apparent that the

arithmetic mean was frequently dominated by extreme values, namely high micro

scores corresponding to low macro scores. Therefore, the optimisation metric was

changed to the geometric mean of the micro and macro averaged scores which is

less sensitive to high outliers (calculated from
√
Fmic ∗ Fmac ). This led to more

stable parameter sets.
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Both the arithmetic and geometric means are indicated between the micro and

macro scores using a red and black line respectively. From the left-hand graph

it can be seen that while they follow the same over-all trends and are sometimes

very near equal, the arithmetic mean (red) is more sensitive to �uctuations of

the micro-averaged scores. This e�ect can be seen more clearly in the right-hand

�gure which shows the di�erent optimum points according to the micro, macro,

arithmetic and geometric means for a smaller sample of runs. The maximum

arithmetic mean (indicated with a dashed, vertical line) coincides with the highest

micro score (indicated by black circle on blue line) but a very low macro score.

The geometric mean is also sensitive to the micro �uctuations, but in a more

moderate manner. While its maximum does fall on a micro-averaged spike and a

macro-average dip, both are less extreme than those of the arithmetic average.

The di�erence between the two mean scores are never very large, not even at their

respective optimal points. However, they lead to the selection of vastly di�erent

parameter sets which can drastically a�ect both the evaluation results and the

future implementation performance.

None of the studies considered in the literature review used the geometric mean

of the micro and macro averaged scores as optimisation metric. In fact, nothing

could be found in literature about taking any type of mean of the micro and macro

averaged scores; for hyperparameter optimisation or otherwise. Although, since

many studies omit such implementation details it is not impossible that one of

them did. Regardless, the absence in literature does not pose a validity concern

as it is only used in the inner optimisation loop and not for evaluation.
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Conclusion

This chapter concludes the study providing a brief overview of the project, the most

important outcomes and potential areas of improvement which warrant further

study and may form the basis of future research. Most importantly, it considers the

completion of the project objectives and answers the research question identi�ed

in Section 1.3.

9.1 Project Overview

Failure data, and particularly information about failure modes, is imperative for

good asset management, but frequently goes unutilised because it is buried in un-

structured, natural language text which is not amenable to traditional data analyt-

ics. Several authors have acknowledged the prevalence of text-based maintenance

records identifying both the potential value and the problems in utilising this data

source leading many to suggest text mining as possible solution. Chapter 1 intro-

duces both the problem area and proposed solution formulating it into the research

question addressed in this study. Like Kobayashi et al. (2018), it identi�es a gap

between the academic and industry focussed text mining literature. This pertains

to both the scarcity of industry (and especially maintenance speci�c) research and

the inadequacy of the available industry and academic literature in terms of the-

oretical and practical considerations respectively. The most important outcome

of this chapter is the overall research question and nine project objectives which

213
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seek to address this gap focussing speci�cally on the validity assessment which

Kobayashi et al. (2018) identify as a critical enabler for organisational uptake.

Chapters 2-4 provide the literature review, starting with the background and mo-

tivation for the study in Chapter 2. This addresses the �rst two project objectives,

namely, to explore the context and signi�cance of the issues in asset management

data, and to investigate the suitability of text mining to this problem and com-

pare it with alternatives proposed in literature. The most important outcome

of this chapter is the establishment of the pervasiveness of the problem in both

the maintenace domain as well as the broader organisational context. Singh and

Raghuvanshi (2012) report that up to 80% of all organizational data is in text

format with Kobayashi et al. (2018) identifying text mining, and speci�cally text

classi�cation, as a major business opportunity.

According to Mobley (2002), one of the leading causes of ine�ective asset man-

agement is the lack of factual data to support business decisions. Several authors

con�rm both the prevalence of, and challenges associated with, text-based main-

tenance records in a variety of industries including the automotive domain (Ra-

jpathak and De, 2016), military helicopters (McKenzie et al., 2010), power gen-

eration (Mukherjee and Chakraborty, 2007), railway sector (Wang et al., 2017),

manufacturing (Sipos et al., 2014), coal mills (Uz-Zaman et al., 2015), pump sta-

tions (Edwards et al., 2008) and according to Mukherjee and Chakraborty (2007),

Reeve (2016) and Devaney et al. (2005), almost all asset intensive and service

organisations. Such data cannot be processed using traditional data analytics

and require time-consuming and labour-intensive manual processing which few

can a�ord. This is one of the reasons Reeve (2016) cites for up to 70% of organ-

isations not performing even basic failure analyses on their data and Mukherjee

and Chakraborty (2007) blames for the limited spread of data-driven, reliability-

centred asset management forcing organisations to continue relying on intuition

based, �best-guess� decision-making (Edwards et al., 2008). With the exception of

Reeve (2016), all the above-mentioned authors identify some form of text mining

as potential solution although they acknowledge various domain speci�c challenges

over and above the already signi�cant di�culty of more standard text mining ap-

plications.
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Reeve (2016) suggests improving the information management system according

to the same principles recommended in ISO 8000 (Data Quality) and ISO 50000

(Asset Management), namely the use of coded inputs to collect structured data

which enables instant search, recall and analysis. While this was recognised as

the ideal solution in Chapter 2, it only improves the quality of data collected in

the future whereas many companies have years of unused, potentially valuable,

historical data that will then go to waste. This can be especially problematic

for analyses requiring longitudinal data such as mean-time-between-failures which

may be years for some equipment. Accordingly, Chapter 2 concludes the suitability

of text mining to the identi�ed problem.

Chapter 3 presents the theoretical background of both machine learning and nat-

ural language processing which are both extensively used for text mining applica-

tions. In so doing it addresses the third project objective, the outcome of which

forms the theoretical framework for the subsequent chapters. One of the literature

gaps identi�ed in Chapter 1 pertains to the lack of standardisation in terms of both

terminology and methodology in the text mining and machine learning literature

and the need to consolidate this into a single, comprehensive framework (Moreno-

Torres et al. 2012; Wuest et al. 2016). This chapter contributes towards �lling this

gap by sacri�cing some of the broad, industry orientated scope of Kobayashi et al.

(2018), but including several important theoretical issues such as data-drift (IID

violation), the cross-validated F-score formulation and hyperparameter optimisa-

tion strategy (neglected in Kobayashi et al. (2018)); but in much less detail than

their individual treatment in more academic papers such as Bergmeir and Benitez

(2012), Forman and Scholz (2010) and Bergstra and Bengio (2012) respectively.

The �nal chapter of the literature review, Chapter 4, evaluates similar research

done in both the maintenance-speci�c domain as well as the broader text clas-

si�cation literature to address the fourth project objective. Compared to the

broader text mining literature, very few studies could be found that concern the

maintenance domain, and of those that did, even fewer considered supervised and

speci�cally multi-class classi�cation as was the focus of this study. By far, the

greatest success was achieved by those with extensive SME involvement, such as

Marzec et al. (2014), and especially those who had access to (or created) domain
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speci�c ontologies, such as Rajpathak and De (2016), showing the extensive be-

ne�t of domain expertise. The authors without, such as Uz-Zaman et al. (2015),

achieved much more moderate levels of success posing the question of viability for

applications without these resources.

The most important outcome of this chapter, and the literature review as a whole,

is the gap identi�ed between the methods used in the industry focussed research

and that recommended by the more theoretical literature of the previous chapter,

especially with concern to validity assessment which is critical for industrial ap-

plications (Kobayashi et al., 2018). The gap is even bigger for the maintenance

speci�c literature, partly due to the very limited amount of research that could

be found. The biggest concern pertains to the impact of the IID assumption on

the validity of the various evaluation schemes and deals speci�cally with the use

of strati�cation. This was not addressed in any of the domain-speci�c literature,

despite many implicitly acknowledging the fact of its violation in their data. Other

concerns regarded the choice and optimisation of preprocessing parameters and the

evaluation metric used to asses performance.

Chapter 5 identi�es the Cross-Industry Standard Process for Data Mining (CRISP-

DM) as an appropriate methodology for this project brie�y discussing its overlap

with other knowledge discovery and data mining (KDDM) methodologies. Most

prominent is the emphasis on iteration, context-dependency and the identi�cation

of data preparation as the most time-consuming, and critically important part

of the knowledge discovery process. Both Cios et al. (2007) and Kurgan and

Musilek (2006) identify CRISP-DM as the preferred industry model making it the

ideal choice for industry-focussed research. The most important outcome of this

chapter is an overview of the six phases of the CRISP-DM model which was used

to guide the completion of the experimental project objectives (six to nine) as well

as providing the chapter references for where each was completed.

Chapters 6-8 address the experimental project objectives according to the CRISP-

DM methodology. Chapter 6 provides both the Business and Data Understanding

of the particular dataset made available to this study, namely the maintenance

records of one of South Africa's leading service fuel service-station brands as per

the sixth project objective to use real world data. The experimental design is the
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most important outcome of this chapter forming the crux of the empirical analysis.

Based on the outcomes of the literature review, it combines the Data Preparation,

Modelling and Evaluation into a single integrated step to ensure the validity of

the results. Four algorithms were considered, namely two variants of both Naïve

Bayes and Support Vector Machines. Noteworthy elements of the experimental

procedure include the use of:

1. Optimised preprocessing : treating the preprocessing steps as hyperparamet-

ers in the modelling process to prevent data leakage and to ensure optimality

of the algorithm and preprocessing interaction (Krstajic et al., 2014).

2. Randomised hyperparameter optimisation: to enable a wider search space

as well as the evaluation of continuous distributions (Bergstra and Bengio,

2012).

3. Blocked (grouped) cross validation: to address the IID violation resulting

from chronological data-drift and prevent the optimistic bias that can result

from evaluating with shu�ed or strati�ed CV (Bergmeir and Benitez, 2012).

4. Nested Cross validation: to separate model selection (hyperparameter op-

timisation) from model evaluation (blocked CV) in the inner and outer loop

respectively to avoid the overoptimistic bias resulting from multiple repeated

optimisations (Varma and Simon, 2006).

5. CV Aggregated F-score: computing the cross-validated F-score as the single

metric computed from the aggregated fold predictions to prevent the bias

that can result from highly non-linear edge cases (Forman and Scholz, 2010).

6. Geometric F-score Optimisation: performing the hyperparameter optimisa-

tion using the geometric mean of the micro- and macro-averaged F-score as

optimisation metric to prevent low scores of either.

All but the last have been individually addressed in the academic literature in

some level of detail and have also been implemented individually, or in combin-

ation with one or two other elements, in industry. However, while none of these

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 9. CONCLUSION 218

elements are original, or even recent ideas, their individual utilisation remains rare

in literature and no example of their combination could be found in either aca-

demic or industry-focussed research. Several papers combine one or two aspects,

but, most importantly, none could be found that paired any two of NCV, ag-

gregated F-score and blocked evaluation. Therefore, evaluating their combination,

and consolidating their literature into a single review, is a valuable contribution

towards the body of knowledge in not only the maintenance domain but also the

broader machine learning literature. It should be noted, however, that the lack

of standardised terminology makes it very possible that this exact experimental

procedure is simply hidden under di�erent names. The geometric F-score optim-

isation is the only exception in that no literature reference to any type of averaged

micro and macro score could be found.

Chapter 7 provides the results of the experimental design implemented on the

maintenance dataset in completion of both the sixth and seventh project object-

ives. This includes the results of the hyperparameter optimisation as well as the

scores achieved by the optimised models. The optimisation results indicate rel-

atively stable parameter selections which validate the NCV optimisation method.

The most important outcome here is the somewhat surprising parameter combin-

ations selected by the optimisation process, which di�ers not only from the more

typical �defaults�, but also between the four algorithms showing the importance of

problem-speci�c and algorithm-speci�c optimisation. Along with the contradict-

ing recommendations found in literature, this further justi�es the consideration of

such a large search-space as choosing a viable subset to evaluate would likely have

excluded these points.

In terms of model performance, the highest micro-averaged F1-score is 41.15% and

was achieved by the Multinomial Naïve Bayes which also has the highest per-class

score at 48.69% for Electronics Failure. Similar results were achieved by both

the Bernoulli Naïve Bayes (which was the fastest) and the LIBLINEAR imple-

mentation of of Support Vector Machines (which was the most stable) with only

the LIBSVM implementation of SVM being de�nitively worse (in terms of both

speed and performance). While the results are relatively low, they are consistently

higher than the random baselines indicating at least some level of learnability for

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 9. CONCLUSION 219

the data and objective. Considering the low quality of annotations used to train

these models as well as the lack of SME involvement, the consistent improvement

over the random baselines are a considerable achievement. Higher performance

would need to be demonstrated to use as basis for business decision-making, but

it is likely that this can be achieved if the issue of annotation quality and domain

expertise is addressed.

Chapter 8 provides the methodological evaluation of the experimental design in

accordance with the �fth phase of the CRISP-DM model. The purpose is not only

to validate the results (objective eight), but also to assess the e�ect of the particular

methodological elements which set it apart from the results reported in literature

(objective nine). First and foremost, this analysis con�rms the validity of the

design decisions made in Chapter 6, showing by experiment that the motivation for

their selection was warranted. Most importantly, it demonstrates the substantial

di�erence between the strati�ed and blocked evaluation schemes in Section 8.2

showing the dangerously optimistic performance estimates made by strati�ed cross-

validation applied to non-IID data resulting from data-drift.

Also signi�cant, is both the importance of optimisation and the capability of the

randomised search procedure to perform it, which is demonstrated in Section 8.1.

All of the models showed substantial performance gains with the most drastic

improvement by Multinomial Naïve Bayes whose performance increased by more

than 12%. While possible that an exhaustive grid search would �nd better results,

evaluating a search-space of this size would be infeasible and the substantial per-

formance gains provided by the randomised optimisation (over the unoptimised

models) demonstrate the value of this method.

The evaluation did not show a big di�erence between that of a single-loop op-

timisation and the NCV with only a slightly higher performance estimate by the

single loop. While the optimistic bias of the CV seems almost negligible for this

dataset, it cannot be taken to mean it will never be an issue as several authors

have demonstrated signi�cant bias on synthetic data.

It also shows the comparative di�culty of multiclass as opposed to binary perform-

ance due to both real improvement (as a result of the simpli�ed learning objective)
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and the deceptive, apparent performance bene�t arising from the increased class-

imbalance. This is signi�cant as the majority of maintenance literature considered

binary classi�cation.

The �nal important issue is the computation of the cross-validated F-score in Sec-

tion 8.4 which can be computed as either the average of the per-fold F-scores

(FAV G), or as a single metric from the aggregated predictions (FAGG). While

this study makes no claim to the superiority of the aggregated F-score other than

referencing Forman and Scholz (2010), it shows the importance of specifying the

formulation demonstrating a more than 10% di�erence between the two formula-

tions for some classes.

Overall, this chapter concludes that while a direct comparison with the results

reported in literature is not possible due to substantial di�erences in the data and

modelling methods used, it is evident that many of those results are potentially

over-estimated due to inadequate consideration of these methodological issues.

9.2 Project Critique and Future Research

The limitations and delimitations discussed in Chapter 1 summarise the most

important restrictions to this study and also indicate future areas of research. The

abundance of unlabelled data make semi-supervised learning, excluded from the

scope of this study, a potentially valuable research area.

The failure to secure industry involvement in the data analysis is likely to have

severely limited the results and it would be valuable to repeat the analysis in

conjunction with SMEs and on data labelled within annotation quality control

schemes like that described in Mozetic et al. (2016) or Lewis et al. (2004).

No feature transformations such as Principle Component Analysis (PCA) or Latent

Semantic Analysis (LSA) were applied as it was considered valuable to maintain

the interpretability of the features used by the models (which is lost in these

representations). While this enabled the detection of data-contamination in an

earlier iteration (Section 6.2) con�rming the value in this decision, these methods

have shown great promise in some applications and may be worth considering
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in future research. Another method not considered in this study, and which the

author only became aware of upon completion of the analysis, is class-speci�c

feature selection which has been shown to greatly improve multi-class performance

(Forman, 2004) and should be considered for future research.

The hyperparameter optimisation procedure was evaluated in terms of overall per-

formance bene�t and the �nal parameter selections, but the individual impact and

behaviour of the various parameters were not considered and may be a valuable

avenue of pursuit. Speci�cally, there may be value in modi�ed stop-word-removal

lists to, for instance, remove all negation stop-words such as not and no which has

a greater than usual importance in the maintenance records (Section 6.2).

Finally it should be noted that the methodological conclusions made in this study

are based on the evaluation of a single dataset and is not necessarily indicative of

the general behaviour. It would be worthwhile to assess the signi�cance of nested

vs single loop cross-validation, strati�ed vs blocked (grouped) evaluation and the

di�erences in the cross-validated F-score formulations on multiple datasets.

9.3 Project Conclusion

The answer to the research question posed in Chapter 1 is a provisional yes. Text

mining (and the related �elds of machine learning and natural language processing)

is a viable solution for the extraction of useful information, and speci�cally failure

modes, from the low quality, unstructured text maintenance records which are

typically available in industry. Not only does the theoretical analysis con�rm

this, but the the potential has also been demonstrated to some extent in the

empirical analysis. The reason for the provisional, rather than de�nitive yes, is

that the potential is largely dependent on the organisation. A substantial amount

of time and resources need to go into the planning, preparation, execution and

maintenance of text mining systems to get the full bene�t thereof, not unlike that

needed for improved information management systems. Text mining does not

provide a magic wand with which to �x all data quality problems, but if correctly

applied it can be a powerful enabler. All the project objectives were fully completed
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in the study, with the exception of the ninth which could only be broadly discussed

due to the large methodological di�erences preventing fair comparisons.
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Appendix A

Additional Results

Some additional results of the experimental analysis are provided in this appendix.

Table A.1 provides the per-fold class distribution in the �nal sample described in

Section 6.2.1 to better show the distributional changes corresponding to chronolo-

gical data drift. Table A.2 shows the micro-averaged, macro-averaged and per-class

F1-scores of all experiments including the additional methodological experiments

discussed in Chapter 8.

Figure A.1 provides the confusion matrices for the four algorithms with the rows

corresponding to the Multinomial Naïve Bayes, Bernoulli Naïve Bayes, LIBLIN-

EAR implementation of of Support Vector Machines and the LIBSVM implement-

ation of Support Vector Machines. The left-hand column shows the raw number

of documents with the diagonals showing the number of correct predictions (TP).

The right-hand column is normalised according to the row-totals (true class mem-

bership) so that the diagonals provide the per-class recalls. From this the di�erent

types of error can more clearly be seen. For instance, it can be seen that Elec-

trical Failure documents are often misclassi�ed as Electronics Failure, a mistake

that can be explained by the shared vocabulary of these two classes. Moreover,

documents from all classes are frequently misclassi�ed as Structural Failure, which

is the majority class so that the mistake is driven by class-imbalance.

Finally, Figure A.2 plots the micro-averaged, macro-averaged and per-class F1-

scores of the optimisation (left) and splitting strategy (right) experiments dis-
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cussed in Sections 8.1 and 8.2 respectively. From this the di�erence in strati�ed

and grouped cross-validation can clearly be seen for both the full sample and the

more IID sub-sample.

Table A.1: Per-fold class distribution in selected sample

Testing Sets Training Sets
2007 2008 2009 2010 2011 2007 2008 2009 2010 2011

Electrical Failure 8.1% 6.2% 5.8% 8.6% 3.1% 6.0% 6.1% 6.2% 5.1% 7.2%
Electronics Failure 31.8% 26.8% 16.1% 21.1% 24.4% 22.3% 21.9% 24.5% 23.6% 22.4%
Hydraulic Failure 15.6% 13.8% 17.0% 5.6% 4.6% 9.4% 8.8% 8.2% 11.5% 11.7%
Mechanical Failure 38.9% 52.2% 57.9% 11.6% 5.7% 28.2% 22.8% 22.3% 35.6% 37.0%
Structural Failure 5.6% 1.0% 3.2% 53.1% 62.2% 34.2% 40.4% 38.9% 24.1% 21.8%
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Table A.2: Micro-averaged, macro-averaged and per-class F1-scores of all experiments

Name F1-Scores (% Mean ± 1 Standard Deviation) Run-Time
Micro Av-
eraged

Macro Av-
eraged

Electrical
Failure

Electronics
Failure

Hydraulic
Failure

Mechanical
Failure

Structural
Failure

Other (sec. min)

N
es
te
d
C
V
-
O
p
ti
m
iz
ed

NCV_grp_multiNB 41,15 35,15 19,98 48,69 24,91 38,43 43,72 5271,03
± 4,79 ± 8,09 ± 15,16 ± 7,65 ± 4,92 ± 14,53 ± 30,89 (87,85)

NCV_grp_bernNB 40,38 34,56 17,93 48,11 27,81 33,19 45,77 4326,39
± 6,92 ± 7,71 ± 13,68 ± 8,29 ± 2,17 ± 12,02 ± 32,54 (72,11)

NCV_grp_linSVC 40,51 36,42 24,48 47,28 28,06 39,44 42,84 5142,6
± 3,57 ± 6,59 ± 10,47 ± 8,93 ± 2,61 ± 15,79 ± 29,74 (85,71)

NCV_grp_SVC 30,11 26,09 16,66 32,86 17,47 28,86 34,58 36859,13
± 8,02 ± 7,31 ± 13,19 ± 7,76 ± 3,47 ± 10,37 ± 24,92 (614,32)

NCV_strat_multiNB 48,49 40,13 21,14 49,67 25,74 46,66 57,46 5062,13
± 0,86 ± 0,67 ± 2,6 ± 1,31 ± 2,24 ± 1,04 ± 1,77 (84,37)

NCV_strat_bernNB 48,04 39,6 21,49 49,03 25,66 43,47 58,36 4607,14
± 0,23 ± 0,14 ± 2,17 ± 1,01 ± 1,96 ± 1,04 ± 0,37 (76,79)

NCV_strat_linSVC 47,15 41,2 26,49 48,44 28,65 47,16 55,27 5616,64
± 0,45 ± 0,7 ± 2 ± 1,42 ± 1,95 ± 0,48 ± 0,4 (93,61)

S
in
gl
e
L
o
op

C
V
-
O
p
ti
m
iz
ed

CV_grp_multiNB 41,77 36,16 19,47 48,39 28,56 36,62 47,78 2445,8
± 6,76 ± 7,97 ± 12,79 ± 8,66 ± 2,54 ± 14,4 ± 33,77 (40,76)

CV_grp_bernNB 42,4 35,99 18,89 48,43 28,6 34,31 49,7 2077,67
± 9,07 ± 8,89 ± 14,17 ± 8,15 ± 2,11 ± 12,55 ± 35,96 (34,63)

CV_grp_linSVC 40,45 36,36 24,27 47,16 28,1 39,35 42,91 2882,87
± 3,67 ± 6,62 ± 10,5 ± 8,93 ± 2,55 ± 15,74 ± 29,69 (48,05)

CV_strat_multiNB 48,88 40,13 21,39 49,19 24,91 46,73 58,42 2221,91
± 0,62 ± 0,62 ± 2,75 ± 1,13 ± 1,48 ± 0,93 ± 0,84 (37,03)

CV_strat_bernNB 48,04 39,6 21,49 49,03 25,66 43,47 58,36 2052,28
± 0,23 ± 0,14 ± 2,17 ± 1,01 ± 1,96 ± 1,04 ± 0,37 (34,2)

CV_strat_linSVC 47,17 41,23 26,27 48,42 28,8 47,44 55,23 3178,82
± 0,57 ± 0,79 ± 2,02 ± 1,34 ± 1,97 ± 0,34 ± 0,55 (52,98)

S
in
gl
e
L
o
op

C
V
-
U
n
op
ti
m
iz
ed

defCV_grp_multiNB 28,99 22,53 14,74 45,01 1,48 30,27 21,16 2,14
± 3,07 ± 4,38 ± 15,39 ± 6,37 ± 2,81 ± 12,61 ± 13,54 (0,04)

defCV_grp_bernNB 39,4 31,26 16,64 48,02 14,71 32,48 44,46 2,13
± 9,26 ± 8,16 ± 16,04 ± 7,56 ± 3,46 ± 11,8 ± 32,68 (0,04)

defCV_grp_linSVC 36,25 29,72 15,49 44,21 16,07 36,43 36,38 7,19
± 4,19 ± 7,46 ± 14,12 ± 7,19 ± 9,38 ± 14,85 ± 26,25 (0,12)

defCV_grp_SVC 34,14 28,19 14,91 46,54 15,7 33,06 30,75 573,5
± 4,18 ± 7,83 ± 15,05 ± 7,28 ± 14,47 ± 12,78 ± 21,44 (9,56)

defCV_strat_multiNB 47,02 33,29 17,15 47 0,72 44,98 56,58 2,35
± 0,26 ± 0,3 ± 2,57 ± 0,44 ± 0,27 ± 0,54 ± 0,57 (0,04)

defCV_strat_bernNB 45,9 35,21 18,08 49,07 14,27 38,62 56,01 2,24
± 0,33 ± 0,19 ± 1,94 ± 0,95 ± 1,02 ± 0,27 ± 0,46 (0,04)

defCV_strat_linSVC 47,58 37,29 18,93 45,82 17,19 48,04 56,46 7,18
± 0,49 ± 0,58 ± 1,31 ± 0,7 ± 2,17 ± 0,51 ± 0,75 (0,12)

defCV_strat_SVC 47,66 35,41 18,16 48,72 7,43 46,2 56,56 580,61
± 0,54 ± 0,46 ± 2,4 ± 0,99 ± 1,34 ± 0,43 ± 0,9 (9,68)

N
es
te
d
C
V
-
O
p
ti
m
iz
ed

iidNCV_grp_multiNB 48 30,63 11,81 49,7 28,83 58,17 4,63 1329,57
± 2,91 ± 2,12 ± 5,62 ± 12,28 ± 6 ± 0,32 ± 2,37 (22,16)

iidNCV_grp_bernNB 46,92 29,77 11,04 48,05 29,99 57,14 2,63 1190,75
± 5,56 ± 3,2 ± 7,78 ± 9,96 ± 5,98 ± 6,13 ± 1,96 (19,85)

iidNCV_grp_linSVC 49,61 32,27 20,59 46,69 22,5 62,61 8,95 1351,99
± 2,22 ± 1,88 ± 6,35 ± 7,02 ± 2,94 ± 3,38 ± 2,46 (22,53)

iidNCV_strat_multiNB 50,34 32,58 15,66 51,25 27,34 61,11 7,53 1239,38
± 2,78 ± 1,7 ± 4,48 ± 1,12 ± 3,99 ± 4,31 ± 3,87 (20,66)

iidNCV_strat_bernNB 51,67 32 14,04 50,44 26,93 63,25 5,37 1094,9
± 0,59 ± 1,35 ± 5,74 ± 0,29 ± 0,84 ± 1,26 ± 1,45 (18,25)

iidNCV_strat_linSVC 49,75 33,4 20,82 48,55 23,31 62,79 11,52 1209,7
± 1,42 ± 0,39 ± 1,83 ± 2 ± 1,36 ± 1,23 ± 0,66 (20,16)

O
n
e-
V
s-
R
es
t,
N
es
te
d
C
V
O
p
ti
m
iz
ed

ovr_bestNCV_grp_multiNB 69,51 63,9 49,65 78,14 4580,44
± 1,22 ± 3,67 ± 8 ± 0,89 (76,34)

ovr_bestNCV_grp_bernNB 70,07 64,46 50,35 78,58 4287,64
± 1,37 ± 3,44 ± 7,62 ± 1,43 (71,46)

ovr_bestNCV_grp_linSVC 67,2 62,87 50,19 75,55 4618,13
± 1,01 ± 3,16 ± 7,46 ± 1,26 (76,97)

ovr_majNCV_grp_multiNB 63,9 59,54 46,27 72,82 5322,79
± 8,13 ± 12,05 ± 33,46 ± 14,25 (88,71)

ovr_majNCV_grp_bernNB 63,66 60,35 48,89 71,81 4362,7
± 5,95 ± 13,65 ± 35,73 ± 12,97 (72,71)

ovr_majNCV_grp_linSVC 64,38 61,17 50 72,34 4835,1
± 7,97 ± 13,33 ± 36,35 ± 15,9 (80,58)

ovr_worstNCV_grp_multiNB 87,44 56,76 20,33 93,18 4533
± 5,25 ± 5,8 ± 14,19 ± 3,19 (75,55)

ovr_worstNCV_grp_bernNB 88,99 55,82 17,54 94,1 4149,29
± 3,23 ± 6,05 ± 12,29 ± 1,84 (69,15)

ovr_worstNCV_grp_linSVC 92,47 56,88 17,7 96,05 4836,69
± 2,39 ± 6,68 ± 13,38 ± 1,32 (80,61)

D
u
m
m
y

Baseline_Strat 25,34 20,01 6,09 22,97 9,92 28,87 32,21
± 0,27 ± 0,28 ± 0,79 ± 0,64 ± 0,58 ± 0,41 ± 0,37

Baseline_Maj 32,26 9,76 0 0 0 0 48,78
± 0 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0

Baseline_Elec 22,91 7,45 0 37,27 0 0 0
± 0 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0
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Figure A.1: Confusion matrices for multiNB, bernNB, linSVC and SVC
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Figure A.2: The micro, macro and per class F-scores of the optimisation (left) and
splitting strategy (right) experiments grouped by models
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