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Abstract 

The need to administer more potent antimicrobial drugs is supported by the ever-

increasing incidence of multidrug resistance. Given the (necessary) higher toxicity of 

these drugs, administration into host circulation comes at a high risk to the patient. 

Drug delivery systems that are capable of more localized drug deposition, could limit 

host exposure. Here we propose the use of an autologous delivery system to shuttle 

drugs through circulation to protect the host from premature drug exposure. Our 

approach encompassed a multidisciplinary method to include physiology and 

microbiology. From the physiology side, macrophages exhibit great capacity to 

transverse endothelial barriers during the inflammatory process. From the 

microbiology side, micro-organisms have evolved to evade the immune system by 

harboring within these macrophages to later induce their own expulsion for 

dissemination. The work presented here describes how we have utilized the pore 

forming and actin polymerising ability of the Listeria monocytogenes effectors, 

listeriolysin-O and actin assembly-inducing protein, to produce a novel drug delivery 

system: the synthetic microbe. Firstly, we synthesised these effectors by using a GFP-

linked heterologous expression and purification system, with which we were able to 

produce effectors at a greater yield than previously reported. In vitro experiments 

further confirmed appropriate activity of synthesised proteins and finally, coating of 

these effector proteins onto polystyrene beads induced their expulsion from carrier 

macrophages. Furthermore, drug cargo expulsion did not result in lysis of the carrier 

cells, suggesting that macrophages could contribute to resolution of damage at target 

areas once cargo is released. In our opinion, this multidisciplinary approach may hold 

the solution to effective, controlled drug delivery. 
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Uittreksel 

Die noodsaaklikheid om kragtiger antimikrobiese middels toe te dien, word 

beklemtoon deur die toenemende voorkoms van veelvuldige middel weerstandigheid. 

Gegewe die (noodsaaklike) hoër toksisiteit van hierdie medisyne, hou die sistemiese 

toediening daarvan 'n groot risiko vir die pasiënt in. Medisyne-afleweringstelsels wat 

meer gelokaliseer kan word, kan blootstelling van die gasheer beperk. Hier word 

voorgestel dat 'n outoloë afleweringstelsel gebruik word om dwelms deur die sirkulasie 

te vervoer, wat die gasheer teen voortydige blootstelling aan medisyne beskerm. Ons 

het 'n multidissiplinêre benadering ingespan wat beide fisiologie en mikrobiologie 

insluit. Van die fisiologiese kant af besit makrofage die vermoë om dwarsbrekings deur 

die endoteel te maak gedurende die inflammatoriese proses. Van die mikrobiologiese 

kant af het mikroörganismes ontwikkel om die immuunstelsel te ontduik deur binne 

hierdie makrofage weg te kruip en later hul eie uitsetting vir verspreiding te 

bewerkstellig. Die werk wat hier aangebied word, beskryf hoe ons die porievorming en 

aktienpolimerisasie-vermoë van die Listeria monocytogenes-effektore listeriolysien-O 

en aktien-samestellende induserende proteïen gebruik het om 'n nuwe medisyne-

afleweringstelsel te vervaardig: die sintetiese mikroörganisme. Eerstens het ons 

hierdie effektore gesintetiseer deur gebruik te maak van 'n GFP-gekoppelde heteroloë 

uitdrukking- en suiweringstelsel, waarmee ons effektore met 'n groter opbrengs kon 

produseer as wat voorheen gerapporteer is. In vitro-resultate het die toepaslike 

aktiwiteit van gesintetiseerde proteïene verder bevestig. Laastens het die bedekking 

van hierdie effektorproteïene op polistireenkrale hul uitsetting uit draer-makrofage 

veroorsaak. Verder het die uitsetting van geneesmiddelvragte nie gelei tot lise van die 

draerselle nie, wat daarop dui dat makrofage kan bydra tot die genesing van skade in 

die teikengebiede nadat die vrag vrygestel is. Na ons mening kan hierdie 

multidissiplinêre benadering die oplossing vir effektiewe, beheerde medisyne-

aflewering inhou. 
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Chapter 1: Introduction 

Due to the time and cost involved in the research and development of novel 

pharmaceuticals, the approval of new antibiotics by regulatory bodies cannot keep up 

with the increasing multidrug resistance of many microbial pathogens. Furthermore, 

the increasing need for higher toxicity pharmaceuticals to eliminate these resistant 

bacteria or malignancies is associated with a plethora of undesired effects in the 

already compromised patient (Yasinzai et al., 2013; Hughes et al., 2015). Optimal 

delivery mechanisms are essential to ensure the effective delivery and release of 

these pharmaceuticals (cargo) and to limit side-effects. Apart from obvious problems 

such as toxicity, other problems are also encountered with systemic drug 

administration, which may affect drug efficacy. For example,  drugs may bind to serum 

proteins, which may either inactivate the drug or prevent it from reaching its intended 

target areas (Ahsan et al., 2002; Khan et al., 2002). Also, in chronic diseases such as 

cancer, the high potency drugs required for treatment often have severe side-effects 

resulting in other chronic diseases, e.g. the chemotherapeutic drug doxorubicin, which 

is linked to cardiotoxicity and eventual chronic heart failure (Schlame et al., 2000; Shi 

et al., 2011; Sishi et al., 2013 a;  b). Nanoscience has been incorporated in attempts 

to decrease occurrence of side-effects, but this has introduced new problems, for 

example in terms of pharmacodynamics. For example, doxorubicin has been 

packaged into liposome nanoparticles (Simpkins et al., 2013), however, these 

nanoparticles exhibited low tissue infiltration and the nanoparticle size generally limits 

delivery of larger drugs or proteins (Hoshyar et al., 2016). In addition, antimicrobial 

drugs have been reported to exert a plethora of neuropsychiatric effects (Zareifopoulos 

et al., 2017), such as anxiety, psychosis, mood disturbances, behavioural changes 

and seizures (Warstler et al., 2016). 

The use of biopharmaceuticals is becoming more prevalent due to their high specificity 

and potency. However, due to their structural complexity, these molecules are often 

relatively unstable, and their size complicates the process of traversing biological 

barriers such as mucosal membranes (Youshia et al., 2016). These issues regarding 

drug delivery have invoked research and development initiatives into several drug 

delivery systems, including the use of polymer based micro- and nano- particles, which 

generally utilise encapsulation techniques for packaging drugs for delivery (Ahsan et 
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al., 2002). The limitations and advantages of different drug delivery systems have 

been comprehensively reviewed (Mitragotri et al., 2014; Patra et al., 2018). Although 

advancements have been made over the past few years, it is important to consider 

that these drug delivery systems are markedly diverse with each comprising of its own 

benefits and limitations. I present a short summary of the literature on some drug 
delivery systems to illustrate their diversity, benefits and limitations in table 1.1. Here 

I will only mention a few of these which are most pertinent to my thesis topic. For 

example, one benefit (and reason for use) of microparticles include the ability to delay 

drug release (Cohen et al., 1991). However, microparticles run the risk of increasing 

the inner pH as it degrades in vivo, that could lead to degradation of protein or peptide 

based drugs (Ding et al., 2006). Nanoparticles on the other hand can be used as 

vaccine adjuvants (Zhao et al., 2014), however, vascular epithelial elicits low 

permeability for nanoparticles, lowering bioavailability in deep tissue. It has been 

suggested that this issue could likely be addressed by optimising the geometry of 

nanoparticles (Banerjee et al., 2016), but this remains to be substantiated. 

The quest for techniques to achieve successful focal in vivo delivery of 

pharmaceuticals or cargo – these may range from high-toxicity drugs to stem cells – 

thus remain an important niche within cell biology research and is of great clinical 

importance for future therapeutic interventions. Although a multitude of potential 

delivery systems have already been put forward, no broadly applicable delivery 

mechanism has been elucidated. It is clear that this problem can only be solved by 

taking an “out-the-box”, multidisciplinary approach. To this end, we believe that 

manipulation of an endogenous cellular “delivery system” would significantly address 

the above-mentioned limitations, limit the need for invasive surgery and allow delivery 

to normally inaccessible areas within bone or the central nervous system. Recently, 

we proposed packaging of cargo inside endogenous, living cells, for both protection 

and delivery to specific in vivo sites (Visser et al., 2019). More importantly – and the 

main topic for this project – we propose the development of a method for the release 

of cargo from these cells in a manner that is non-lytic to the host cell itself, so that drug 

delivery itself  would not add to the magnitude of inflammation at the site of delivery. 

Briefly, in my opinion, the monocyte/macrophage leukocyte subpopulation is the 

appropriate candidate for use as a delivery shuttle. (For a brief introduction of basic 
macrophage biology, please refer to  Appendix 1.) Most pertinent to the current thesis 
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topic, these robust cells elicit an unrivalled capacity for migration from the circulation 

into and through various tissue compartments, during normal functioning, to exert their 

roles in the inflammatory process (Arnold et al., 2007 a; Abbas et al., 2014). We have 

recently successfully manipulated macrophages to ingest different cargo – ranging 

from polystyrene particles to live muscle stem cells – without the cargo being digested, 

by experimentally inducing transient phagosome maturation arrest (Visser et al., 

2018). This approach immediately solves the problem of maintaining cargo intact for 

delivery, through shielding it from the in vivo environment until release. Furthermore, 

we have shown sustained phagocytic and transendothelial migration capacity of these 

manipulated, loaded, macrophages using in vitro models (Visser et al., 2018).     

Although these results are very positive and novel, and optimisation for in vivo 

conditions is ongoing, the next major obstacle is related to actual delivery of the drug 

at required sites. Importantly, the method of delivery should not exacerbate 

inflammation or other degradative processes, as this would compromise recovery rate 

and recovery quality. As mentioned, here we propose using an unconventional, 

multidisciplinary approach to achieve delivery of intact cargo from an endogenous live 

cell without damage to the host cell. This would involve “hijacking” the mechanisms 

used by microbes to induce their non-lytic release from cells during infection and in 

vivo dissemination. This would produce a “synthetic microbe” which effectively 

encapsulates the cargo inside a macrophage phagosome, to facilitate its controlled, 

acute burst release.  

In terms of dissertation layout, I provide an overview of the relevant literature in 

Chapter 2. This review has been published in Frontiers in Pharmacology in 2019 

(Visser et al., 2019). This review is followed by a formulation of my hypothesis and 
specific aims, with methods employed presented in Chapter 3. I present the most 

significant results in Chapter 4, before interpreting data and contextualising findings 

in terms of relevant literature in Chapter 5. Finally, I present final conclusions and 

suggestions for further investigations in Chapter 6. 
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Chapter 2: Literature Review 

This literature review has been published in its current form: Visser JG, Van Staden 

ADP, Smith C. (2019). Harnessing Macrophages for Controlled-Release Drug 

Delivery: Lessons from Microbes. Frontiers in Pharmacology 10:22, 1-18. doi: 

10.3389/fphar.2019.00022. Impact factor 3.845 

2.1. Introduction 

In recent years, drug delivery has become a well-documented research niche across 

various disciplines in science. Approaches of drug delivery into pathogenically 

damaged areas or poorly vascularised cancer tissues has been largely focused on 

treatments incorporating nanoparticles (Zhao et al., 2011; Dreaden et al., 2012; Feng 

et al., 2014; Huang et al., 2015; Lv et al., 2016; Tanei et al., 2016). These nanoparticles 

generally serve to shield harsh/labile drugs from the host and subsequently activate 

or release it after reaching target tissues. With the potential exception of nanoparticle 

uptake into target cells via complementary receptor ligands, this approach is however 

still more comparable to drug saturation than with specialised drug delivery per se. 

In this review we propose an alternative to the strategies/approaches used until now: 

a novel macrophage-mediated drug delivery method that more accurately fits the term 

“drug delivery”, via incorporation of both nanomedicine and cellular manipulation. 

Macrophages are highly mobile cells. By loading host macrophages with appropriate 

cargo (e.g. chemotherapeutic agents such as doxorubicin or high-potency 

antimicrobials), one can thus theoretically use the inherent homing capabilities of 

these immune cells to reach target damaged, infected or malignant tissue, in order to 

treat the affected cellular areas only. Such an approach would reduce the total 

concentration of drug required (when compared to systemic administration) and 

significantly reduce or even eradicate the risk of drug-associated adverse effects. 

Achieving this goal would indeed require substantial research into phagocytosis, 

macrophage chemotaxis, pathogenic immune evasion and controlled release of 

therapeutics. Here, we propose such a system where cargo is introduced into the 

macrophage, maintained within “inactivated” phagosomes and released in a controlled 

manner at the appropriate time and in vivo location.  
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The system as proposed in its entirety here, is novel. However, some aspects of this 

system have been investigated individually before (discussed in detail later) and 

testifies to the feasibility of the approach we suggest.  In order to fully understand 

cellular role players, a multidisciplinary approach is clearly required. We propose that 

the literature on host-microbe interactions may provide the insight required. While 

research have described the ability of microbes to evade the immune system by hiding 

(and proliferating) inside immune cells before orchestrating their own expulsion or 

transfer directly into new host cells, the mechanisms by which they achieve this have 

received very little attention by non-microbiologists. In our opinion, harnessing these 

microbial strategies could prove useful in the drug delivery niche. Thus, if a paradigm 

shift can be made to embrace the fact that host-affecting microbial mechanisms may 

potentially have therapeutic application, we believe that biologists could learn valuable 

lessons from microbes, to the benefit of technological advancement in medicine. 

The aim of this paper is therefore to present a summary of pertinent literature on 

microbial mechanisms known to modulate the course of endocytic processes and to 

evaluate their feasibility in the context of therapeutic drug delivery. A specific novel 

focus will be on potential mechanisms through which to achieve controlled expulsion.  

We believe that this paper elucidates an exciting new avenue for research in the 

context of drug delivery. 

In order to facilitate clarity of our argument, we first provide a brief overview of the 

most pertinent literature describing the mechanisms that would come into play in a 

complete cell-based delivery system.  Considering the complexity of these processes, 

one can appreciate the enormity of the task to elucidate which perturbations in this 

process may be used for application to our proposed drug delivery system.  Thus, we 

will describe the different phases – namely cargo loading, maintenance of cargo 

integrity, in vivo motility of the carrier cell toward delivery sites and cargo expulsion – 

individually below, before discussing in more detail, the lessons to be learnt from 

microbes.  
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2.2. Components of a Cell-Based Delivery System 

2.2.1. Cargo Loading into Macrophages 

Circulating monocytes form part of the innate immune system and are largely 

responsible for the initial recognition of foreign material or microbes (Abbas et al., 

2014). Recognition and internalisation, for the purpose of neutralisation, are generally 

very effective. This is evidenced by the absence of adaptive B and T cell responses in 

almost 95% of Animalia (Mills et al., 2015). However, many microbes have been able 

to survive within macrophages by manipulating phagocytic processes (discussed 

later). A summary of the most relevant normal human phagocytic processes is 
presented visually in Figure 2.1. 

Figure 2.1: Fundamental mechanisms 
of phagosome maturation. Initiated 
through (1) Recognition and engulfment 
of opsonised microbe and expression of 
phospholipids and phosphoinositide 3-
kinase (PI3k), at the extending 
pseudopodia. (2) Nascent phagosome is 
formed after actin polymerisation 
facilitates pseudopod closure behind the 
microbe. This phagosome is 
characterized by Rab5, 
phosphatidylinositol 3-phosphate (PI3P) 
and endosomal early antigen 1 (EEA1) 
expression. (3) The late phagosome is 
characterized by Rab7 recruitment; 
resulting in Rab5 inactivation and PI3P 
degradation as well as recruitment of 
lysosome-associated membrane 
proteins (LAMP) while achieving dynein 
linkage and centripetal movement for 
later lysosomal fusion. Rab7 achieves 
these processes via Rab7-interacting-
lysosomal-protein (RILP) and oxysterol-
binding protein related-protein 1 
(ORP1L). Lysosome fusion initiates the 
last stage in maturation; (4) 
Phagolysosome biogenesis, where 
LAMP expression is increased, and 
lysosomal content is dumped into the 
phagosome. Rab20 also allows an acidic 
environment through the action of 
vacuolar-type HC-ATPase (V-ATPase). 

 
The most important aspect of our topic is that of immune recognition and intake into 

the macrophage. It is commonly known that pattern recognition receptors (PRRs) on 

phagocytes recognise several different molecular patterns – such as damage-

associated molecular patterns (DAMPs) or pathogen-associated molecular patterns 
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(PAMPs) – on the target for potential phagocytosis (Abbas et al., 2014). Toll-like 

receptors (TLRs) present on phagocytes also indirectly regulate phagocytosis through 

Myeloid differentiation primary response 88 (Myd88) signalling and activation of the 

p38 residue (Shi et al., 2016). Several other minor role players in pathogen 

recognition, such as receptors for lectin, mannose, complement and Retinoic acid-

inducible gene-I-like (RIG-like) receptors, has been identified, but the immunoglobulin 

G (IgG) receptors are most directly associated with phagocytosis of material. In fact, 

antibody-opsonised material binds and activates IgG receptors to induce engulfment 

independently of co-stimulation by T cells or NK (natural killer) cells (Liu et al., 2013), 

making this mechanism an obvious choice for ex vivo cargo loading into macrophages. 

Engulfment is reliant on phosphoinositide 3-kinase (PI3k) recruitment and its 

production of various phosphatidylinositides that, together with actin polymerisation, 

result in pseudopod formation around the material and subsequent internalisation.  

Once material has been engulfed, it is enveloped inside a double-membraned 

(nascent) phagosome, which  is innocuous and undergoes various maturation phases, 

that culminates in fusion with lysosomes, which enables it to acidify and break down 

its contents. Characterisation of this maturation process is well-established (Patki et 

al., 1998; Fratti et al., 2001; Vieira et al., 2002; Kinchen et al., 2008; Fairn et al., 2012) 

and are not discussed in detail here, as we do not envisage a requirement for huge 

manipulation of this phase. Indeed, previous research by our group and others have 

demonstrated that macrophages readily take in a variety of purpose-designed 

materials and particles of varying sizes via endocytic pathways (Zhao et al., 2011; 

Dreaden et al., 2012; Feng et al., 2014; Oh et al., 2014; Huang et al., 2015; Miller et 

al., 2015; Tanei et al., 2016; Fan et al., 2018; Visser et al., 2018). 

2.2.2. Cargo Maintenance 

Of more direct relevance, lysosomal fusion marks the start of the last stage in 

maturation, that of phagolysosome biogenesis (Seto et al., 2011), which is an obvious 

threat to cargo maintenance. Normally, this lysosome fusion is mediated by 

endoplasmic reticulum (ER) soluble N-ethylmaleimide-sensitive factor-attachment 

proteins (SNARE) such as syntaxin 7, syntaxin 8 and vesicle associated membrane 

protein (VAMP) -7 and -8 (Becken et al., 2010). Lysosome-associated membrane 

protein (LAMP) concentration is increased after fusion (Jahraus et al., 1994) and 
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cathepsin D proteases are recruited from the Golgi via Rab-22b, -32, -34, -38 and -43 

(Ng et al., 2007). The vacuolar-type H+-ATPase (V-ATPase) is also incorporated via 

Rab20 co-localisation at this time (Curtis et al., 2005). In this way, fusion ultimately 

effectuate an acidic environment within the macrophage phagosome, as well as 

supplying it with proteases, reactive oxygen species (ROS) and reactive nitrogen 

species (RNS) to facilitate decomposition of phagosomal content.   

To date, the majority of literature employing macrophages as delivery shuttles, have 

used either nanoparticle-encapsulated drugs travelling inside the cell, or drugs 

“backpacked” on the outside of the cell. The most popular protocol used are to load 

cargo into macrophages to create a “Trojan horse”. However, this approach has some 

limitations: firstly, there is a significant risk of drug-associated cytotoxicity, secondly, 

drugs are released at a relatively slow rate and thirdly, they are vulnerable to lysosomal 

degradation inside the macrophage (Yousefpour et al., 2014). In an attempt to address 

these limitations, transport of drugs on the outer surface of macrophages were 

attempted. However, prevention of internalisation of the backpacked cargo into carrier 

macrophages was a major obstacle (Watson et al., 2010; Doshi et al., 2011).  

In our opinion,  perhaps the most feasible option to ensure integrity of cargo that are 

either labile or highly toxic – so that premature delivery should not be risked – would 

be their maintenance intracellularly by modification of normal phagocyte function. It is 
here where we could substantially learn from microbial strategies (refer to Section 
2.4). Indeed, we have previously demonstrated maintenance of cargo inside primary 

human M1 macrophages chemically treated to transiently inhibit phagosomal cargo 

destruction (Visser et al., 2018). Briefly, protein-coated polystyrene beads, used as 

simulative cargo, were maintained intact (i.e. with no digestion of the protein coating) 

inside macrophages after in vitro treatment with a phagosome maturation inhibiting 

cocktail, consisting of Wortmannin, Concanamycin A and Chloroquine. This inhibition 

cocktail was only administered in vitro, and treated cells were washed prior to use, 

thus lowering risk to patient in the context of in vivo application. Furthermore, this 

intervention did not affect chemotactic or migratory capacity – macrophages were able 

to transverse an in vitro Human Umbilical Vein Endothelial Cell (HUVEC) membrane 

while carrying the bead cargo.  
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Another modern technique relevant here, is the use of nano- or microparticle 

encapsulation of drugs prior to loading into carrier cells (Dou et al., 2006; Zhao et al., 

2011; Blaudszun et al., 2014; Feng et al., 2014; Klyachko et al., 2014; Pang et al., 

2016; Tanei et al., 2016; Gnanadhas et al., 2017; Evans et al., 2018; Fan et al., 2018). 

In addition to host protection, polymeric particles may also be used for maintenance 

of drug integrity itself. Emerging evidence indeed indicates a role for polymeric 

particles as protective modality for both host and drug cargo. Cargo can be rendered 

innocuous via, for example, poly-(NIPA-co-AAm) (PNIPAAm) micelle or microbubble 

encapsulation. PNIPAAm micelles are reported to degrade in response to an increase 

in temperature above the lower critical solution temperature (Feng et al., 2014), 

enabling control over bio-activation of encapsulated drugs. As an example, these 

micelles could be incorporated during treatment of peripheral diseases, such as 

melanoma or myopathy, where an external stimulus can be administered to increase 

the local temperature and release drug cargo from PNIPAAm micelles. Incorporation 

of microbubbles together with nanoparticles has also shown some promise during in 

vivo delivery of resveratrol for treatment of cancer (Lv et al., 2016). In this study, 

resveratrol was loaded into acetylated β-cyclodextrin nanoparticles (PNP), which were 

then loaded into microbubbles. The outer microbubble coating served to protect the 

pH sensitive PNP while in circulation, whereas PNP in turn released resveratrol upon 

exposure to the low pH tumour niche. These studies indicate that polymeric particles 

may be powerful tools to incorporate into delivery systems to address current 

limitations. 

2.2.3. In Vivo Macrophage Migration for Cargo Delivery 

Literature focusing on macrophage (or other phagocyte) migration are normally aimed 

at the prevention of this migration, e.g. in the context of cancer metastasis or 

inflammation. Despite the different focus to ours, these studies have elucidated the 

process of migration in detail. 

For example, in the context of muscle inflammation, M1 macrophages have been 

illustrated to be the most motile, pro-inflammatory phenotype, while M2 macrophages 

are less likely to infiltrate tissues and associated with a relatively anti-inflammatory 

outcome (Arnold et al., 2007 a; Smith et al., 2008; Kruger et al., 2014). Our previous 

work on M1 macrophages (Visser et al., 2018) confirms the choice of this phenotype 
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as superior for drug delivery. However, it should be noted that macrophage phenotype 

has a large degree of plasticity, which will have to be taken into account when 

designing drug delivery protocols for application in particular disease states. To this 

end, a recent review (Ruytinx et al., 2018) comprehensively provide information on 

macrophage polarisation in the context of inflammatory diseases such as neurological 

disease, cancer, metabolic and cardiovascular disorders. 

Similarly, in terms of chemotactic signals for macrophage migration, chemotaxins 

generally expressed on tissue cells in many different disease conditions have been 

identified. Most notably, inflammation – which would be present in any disease state 

with a requirement for drug delivery – is known to result in increased levels of the 

chemokines macrophage migration inhibitory factor (MIF) and/or macrophage 

chemoattractant protein 1 (MCP-1 or CCL2), which are strong signals for macrophage 

recruitment into the tissue (Lee et al., 2010; Baeck et al., 2012). Additionally, oxidative 

stress – which is a known complication of both chronic disease and infection (Nimse 

et al., 2015; Petersen et al., 2016) – have been shown to initiate macrophage migration 

in vivo (Wang et al., 2016). In terms of systemic migration towards chemotactic signals 

originating from hypoxic tissue, such as in cancer, evidence also exist to confirm the 

inherent capacity of macrophages to migrate toward tumours (Owen et al., 2004; 

Batrakova et al., 2011). Although finer detail on the regulation of macrophage 

migration has been reported, such as its dependence of on integrin β1 expression and 

recycling (Gnanadhas et al., 2017) and numerous proteases (Van Goethem et al., 

2010), these details are likely of academic value only, at least for the context under 

discussion. In our opinion, these factors are unlikely to be a limiting factor, since 

integrin β1 is expressed by almost all cell types and some degree of redundancy is in 

place. For example, in contrast to the fairly uniform amoeboid movement of 

neutrophils, macrophages were reported to exhibit multiple different migration 

mechanisms that are more mesenchymal in nature (Van Goethem et al., 2010; Barros-

Becker et al., 2017), which could confer greater resilience to macrophages in terms of 

mobility under adverse conditions. Interestingly, the latter study also demonstrated a 

greater degree of directionality of macrophages vs. neutrophils in a zebrafish tail 

transection model of leukocyte migration. Another ability of macrophages pertinent to 

the current topic, is their ability to maintain their mobility after ingestion of cargo, even 

when the cargo is much larger than anticipated to be required for the purpose of drug 
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delivery (Chang et al., 2013; Evans et al., 2018; Visser et al., 2018). These reports 

again confirm that this phase of the system is unlikely to require major intervention, as 

it seems to already have been fine-tuned by evolution. 

The only potential limitation we foresee is interference with chemotactic signal 

originating from the intended site for drug delivery, by e.g. an acute, severe 

infection/damage in another organ, which may have chemotactic priority above that of 

the signal originating from the intended delivery site. However, the practise of isolating 

patients for a period prior to a medical procedure is not uncommon and could avoid 

this complication. Furthermore, pathogen-associated infection has been shown to take 

priority above other, relatively less life-threatening, situations, which would in fact 

favour directional macrophage migration, rather than limit it.   

2.2.4. Cargo Expulsion 

The final step to complete such a delivery system, would be a mechanism by which 

the cargo can be released or expelled at the appropriate time and location in vivo. 

Normally, following phagolysosomal destruction of ingested material, digested 

material is either recycled by the phagocytic cell or expelled into the extracellular 

matrix. Recycling of re-usable “waste” such as amino acids, glucose and phosphates 

occur via diffusion through the phagolysosome membrane into the cytosol (Guyton et 

al., 2011). Of particular interest here, the insoluble components are expelled from the 

macrophage either via the ER-Golgi secretory pathway or utilised for antigen 

presentation through Ca2+- and vesicle-associated membrane protein 7 (VAMP7)-

dependant lysosome exocytosis (Samie et al., 2014). We believe that the manipulation 

of these expulsion mechanisms could facilitate controlled drug delivery. 

In terms of published studies on drug delivery systems, most systems either rely on 

non-specific release of nanoparticles containing drugs (Miller et al., 2015), or employ 

release of drugs inside the carrier cell. For example, rupture of doxorubicin-containing 

microbubbles inside macrophages was achieved by high intensity focussed ultrasound 

techniques (Fan et al., 2018). However, this strategy for drug release resulted in 

significant carrier cell death. We believe this is an undesirable mechanism, as this 

would likely contribute to inflammation and thus delayed recovery.  Therefore, to date, 

a controlled cell-based drug release system does not seem to exist. 
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In the next section, we evaluate microbially employed strategies, in terms of their 

feasibility for adaptation into therapeutic contexts. We will focus on the two phases of 

this system which seems to be most commonly and effectively manipulated by 

microbes, namely immune evasion by intracellular survival and programmed expulsion 

from host cells.  

2.3. What Can We Learn from Microbes? 

Pathogenic phagosome maturation arrest or modulation thereof, and subsequent 

escape from the host cell are hallmarks of bacterial host immune evasion and 

dissemination. Well characterized mechanisms include interfering with PI3k and PI3P 

biogenesis (M tuberculosis & Candida glabrata) (Vergne et al., 2003; Rai et al., 2015), 

establishing microbe-containing vacuoles  (Legionella pneumophila & Brucella) (Celli, 

2015; Bärlocher et al., 2017), blocking of fission and fusion with lysosomes and 

endosomes (Mycobacterium tuberculosis & Legionella) (Vergne et al., 2003, 2005; 

Bärlocher et al., 2017), raising pH levels via induction of phagosomal acid leakage 

(Cryptococcus neoformans) (Tucker et al., 2002), lysis of the phagosomal membrane 

(Listeria monocytogenes) (Alberti-Segui et al., 2007), hijacking of the endocytic 

recycling pathway (Legionella pneumophila) (Xu et al., 2013) and even active 

macrophage killing (filamentous Candida albicans) (Gaur et al., 2013). Manipulation 

of the endocytic pathways by microbes is achieved via highly diverse and complex 

mechanisms. Intracellular microbes secrete hundreds of proteins, known as effectors, 

capable of modulating these pathways (Santos et al., 2015; Schroeder, 2018). These 

effectors have diverse functions and microbes employ multiple layers of redundancy 

to ensure their survival (Ghosh et al., 2017; Schroeder, 2018). The abundance and 

variety of these effectors provide an ideal bioprospecting opportunity to identify 

effectors that can be utilized to modulate the endocytic pathways as needed. Keeping 

in mind that not all microorganisms have effectors capable of manipulating the 

endocytic pathway for both maintenance and expulsion. Identified effectors can then 

be further investigated to optimise the cocktail of effectors (possibly from different 

organisms) best suited for application in a macrophage-based delivery system.  
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Table 2.1: Examples of intracellular microbes and main outcomes of endocytic pathway 
modulation. Gram negative (G-), Gram positive (G+). *1 (Pizarro-Cerdá et al., 1998; Hong et al., 2000; Comerci et 
al., 2001; Boschiroli et al., 2002; Celli et al., 2003; Arellano-Reynoso et al., 2005; Celli, 2006; Pei et al., 2006, 2008; Starr et al., 
2008; Chen et al., 2009, 2011; Starr et al., 2012; von Bargen et al., 2012; Smith et al., 2016). *2 (Kirby et al., 1998; Roy et al., 
1998; Gao et al., 1999; Alli et al., 2000; Gerhardt et al., 2000; Bachman et al., 2001; Tilney et al., 2001; Molmeret, 2002; Chen et 
al., 2004; Molmeret et al., 2004; Chen et al., 2007; Xu et al., 2013; Schroeder, 2018). *3 (Smith et al., 1995; Skoble et al., 2000; 
Veiga et al., 2005; Henry et al., 2006; Shaughnessy et al., 2006; Alberti-Segui et al., 2007; Birmingham et al., 2008; Czuczman 
et al., 2014; Mitchell et al., 2015). *4 (Perfettini et al., 2003; Rzomp et al., 2003; Scidmore et al., 2003; Hybiske et al., 2007; Betts-
Hampikian et al., 2010; Capmany et al., 2010; Chin et al., 2012; Volceanov et al., 2014). *5 (Sturgill-Koszycki et al., 1994; Ferrari 
et al., 1999; Renshaw et al., 2002; Walburger et al., 2004; Vergne et al., 2005; de Jonge et al., 2007; Seto et al., 2010; Wong et 
al., 2011; Simeone et al., 2015; Zhang et al., 2016; Augenstreich et al., 2017; Queval et al., 2017; Quigley et al., 2017). *6 (Hersh 
et al., 1999; Steele-Mortimer et al., 1999; Jesenberger et al., 2000; Sano et al., 2007; Bujny et al., 2008; Mallo et al., 2008; 
Bakowski et al., 2010; Braun et al., 2010; McGourty et al., 2012; Chakraborty et al., 2015; D’Costa et al., 2015; LaRock et al., 
2015; Li et al., 2016; Knuff et al., 2017). *7 (Wozniak et al., 2008; Johnston et al., 2010; Nicola et al., 2011; Qin et al., 2011; 
Nicola et al., 2012; Chen et al., 2015; Davis et al., 2015; Smith et al., 2015; Bojarczuk et al., 2016; Gilbert et al., 2017). 
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Examples of intracellular microbes and their mechanisms for modulation of the 
endocytic pathway are summarised in table 2.1. In order to provide more detail on 

the variety and complexity of methods used, modulatory mechanisms of different 

microbes in the context of both phagosome maturation and expulsion are presented 

in the next sections. 

2.3.1. Intracellular Survival Mechanisms 

Due to the high incidence of tuberculosis in especially developing countries, much 

research has been focused on the causative agents of this illness. As a result, 

relatively detailed knowledge is available on the route of immune evasion by this 

pathogen in particular, as well as on how bacterially secreted effectors and cell wall 

components modulate phagosome maturation. The primary route of Mycobacterium 

tuberculosis (Mtb) into the body is through inhalation, where it reaches the lungs’ 

alveolar space and is preferentially taken up by alveolar macrophages. Mtb survive 

intracellularly by working against PI3ks to prevent EEA1 docking. This is achieved in 

two ways: 1) Mtb secretes a PI 3’-phosphatase (SapM) that dephosphorylates PI3P 

and 2) a component in the microbial cell wall, lipoarabinomannan (LAM), interferes 

with recruitment/activation of the human PI3k (hVPS34) (Vergne et al., 2005). 

Mycobacterium-containing phagosomes also retain the tryptophan-aspartate 

containing coat (TACO) protein (normally expressed on the cytosolic leaflet of the 

plasma membrane and involved in intracellular membrane trafficking, cytokinesis and 

cytoskeletal remodelling) (Ferrari et al., 1999). TACO retention causes prolonged 

Rab5 expression - although some maturation effectors can still bind the phagosome, 

this effectuates a relative absence of PI3P, so that the FYVE domain-mediated binding 

of EEA1 is greatly perturbed (Simonsen et al., 1998) and lysosome fusion inhibited 

(Ferrari et al., 1999). Additionally, secretion of the soluble serine/threonine kinase 

Protein kinase G (PKG) by Mtb into the host cytosol is essential for prevention of 

phagosome-lysosome fusion (Walburger et al., 2004). Furthermore, a more alkaline 

and hydrolase deficient phagosome is also brought about in two ways. Firstly, 

hydrolysis is weakened by limited expression of Rab7. This GTPase has been shown 

to only transiently localise to mycobacterial phagosomes, preventing sufficient Rab7-

interacting lysosomal protein (RILP) recruitment, but also limiting cathepsin D protease 

delivery (Seto et al., 2010, 2011). Secondly, acidification is regulated by Mtb by 

interfering with V-ATPase complex assembly and retention, thereby maintaining a 
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stable, slightly alkaline pH (6.2-6.5) (Sturgill-Koszycki et al., 1994; Seto et al., 2011; 

Queval et al., 2017). The Mtb phosphatase, PtpA, is involved in inhibition of complex 

assembly by binding to the subunit H of the V-ATPase where it then dephosphorylates 

and inactivates hVPS33B, effectively inhibiting the membrane fusion machinery 

(Wong et al., 2011).   

In contrast to Mtb, the survival mechanisms of C. glabrata is largely dependent on 

active PI3ks. C. glabrata encodes the enzyme PI3k and produces fungal PI3P (Strahl 

et al., 2007; Rai et al., 2015). In this manner, the PI3P content of phagosomes increase 

prematurely during the early stages of maturation, where PI3P has not yet come into 

play. This could lead to a PI3P rich phagosome being identified as already partly 

matured, thus halting further maturation. Additionally, increased PI3P content could 

overburden PI3P degradation capacity of the phagosomal lumen. Deletion of the 

functional subunits of fungal PI3k led to ameliorated phagosome maturation and 

significantly reduced fungal survival and virulence (Rai et al., 2015).  The differences 

between the strategy of C. glabrata vs. Mtb illustrates how the same cellular role 

players may be modulated in different ways for different outcomes, depending on the 

intended requirement of the modulating microbe, and in our opinion also demonstrates 

the susceptibility of this system to exogenous modulation or control. 

Reminiscent of Mtb, Leishmania (the causative agent of Leishmaniasis) promastigotes 

are also harboured in phagosomes that retain TACO on their membranes, blocking 

lysosome fusion and ensuring a neutral pH in which this parasite can differentiate into 

the amastigote stage (Ferrari et al., 1999; Gogulamudi et al., 2015). However, after 

differentiation, the parasite allows phagosome fusion with lysosomes to achieve an 

acidic environment in which the amastigotes thrive. Interestingly, these phagosomes 

still exhibit low expression of late phagosomal markers (LAMP, V-ATPase and Rab7), 

after lysosome fusion (Vinet et al., 2009). In addition, Leishmania protects itself by 

inhibiting recruitment of NADPH oxidase to the phagosome, perturbing ROS 

production (Moradin et al., 2012). Similarly, M. tuberculosis was reported to stimulate 

release of TNF-α and IL-10 from infected macrophages (Sendide et al., 2005), 

resulting in a deactivation of ROS and RNS release (Redpath et al., 2001). IL-10 

specifically down-regulates secretion of pro-inflammatory cytokines (Redpath et al., 

2001) like INF-γ and TNF-α and results in a shift toward a Th2-type cell expansion in 

the alveoli (de Almeida et al., 2012), bringing about a shift towards an alternatively 
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activated, anti-inflammatory, M2 macrophage phenotype (Smith et al., 2008), which 

itself produces more IL-10, sustaining this phenotype and a relatively more anti-

inflammatory environment.  This implies that these microbes not only alter the 

response of the host cell to the ingested microbe itself, but that it may also affect 

systemic signalling by the host cell, which may affect the rate at which these bacteria 

are able to spread. 

Brucella and Legionella are examples of intracellular pathogens that manipulate the 

endocytic pathway to create a niche in which they can replicate and thrive. They 

accomplish this by hijacking host proteins and membrane organelles to establish a 

bacterium-containing vacuole with morphological features reminiscent to that of host 

membrane compartments (Xu et al., 2013; Celli, 2015). Effectors secreted by Brucella 

within the Brucella-containing vacuole (BCV) manipulates maturation by altering 

interactions with late endosomes and lysosomes (Celli, 2015). During initial 

phagocytosis a large portion of Brucella cells are rapidly degraded (~90%), however 

surviving cells are capable of prolonged intracellular proliferation (von Bargen et al., 

2012). Previously it was thought that Brucella evade fusion of BCVs with lysosomes 

by secretion of effectors via a functional VirB type IV secretion system (T4SS) and 

cyclic β-1-2-glucan (Pizarro-Cerdá et al., 1998; Celli et al., 2003; Arellano-Reynoso et 

al., 2005). Cyclic β-1-2-glucan was thought to prevent fusion of the BCV with 

lysosomes by modulating lipid raft organization on phagosome membranes but is not 

a requirement for subsequent BCV maturation (Arellano-Reynoso et al., 2005). 

Rather, live cell imaging has shown that the BCV interacts with lysosomes, thus fusion 

is not completely prevented (Starr et al., 2008). Early stages of BCV maturation involve 

the recruitment of late endosome markers, LAMP-1 and Rab7 to the BCV membrane, 

with acidification of the BCV being crucial for VirB expression (Boschiroli et al., 2002; 

Starr et al., 2008). This early BCV is also known as the endosomal BCV (eBCV) due 

to its interaction with the endocytic pathway. These findings highlight the importance 

of the initial interactions with the endocytic pathway in determining outcome. Unlike 

Brucella, Legionella diverts from the canonical endocytic pathway soon after being 

phagocytosed (Tilney et al., 2001). Departure from the canonical endocytic pathway 

starts minutes after being phagocytosed – the Legionella-containing vacuole (LCV) is 

covered with smooth vesicles, ER in origin, and mitochondria is recruited to the LCV 

(Tilney et al., 2001). The LCV is also devoid of early endosome markers such as Rab5 
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and LAMP-1, with the exception of Rab7 (Roy et al., 1998). L. pneumophila utilizes 

early mild caspase-3 activation to prevent lysosome fusion by cleavage of rabaptin5 

(effector of Rab5) (Gao et al., 1999; Molmeret et al., 2004). The eBCV and LCV both 

eventually interact with components of the ER. In the case of the eBCV, LAMP-1 is 

progressively lost as the eBCV interacts with the ER and maturation proceeds to the 

formation of a replication-permissive BCV (rBCV) (Celli et al., 2003; Celli, 2006; Starr 

et al., 2008), with the rBCV subsequently converted from an intermediate vacuole into 

an ER-derived organelle which is ideal for bacterial proliferation (Celli et al., 2003). 

The smooth vesicles recruited to the LCV early on, eventually come to resemble rough 

ER and become studded with ribosomes (Gerhardt et al., 2000; Tilney et al., 2001). 

The specific recruitment of GTPases usually required for fusion of ER-derived vesicles 

with the Golgi apparatus aids in this process. Similar to Brucella, the hijacking of the 

host’s secretory trafficking pathway results in a replication-permissive LCV. The rapid 

formation of an ER-like LCV and subversion of the endocytic pathway is dependent 

on the Dot/Icm T4BSS (Defective in Organelle Trafficking/Intra-Cellular Multiplication 

Type 4B Secretory System) of Legionella (Roy et al., 1998). Indeed, mutants deficient 

in the T4BSS ultimately fuse with the lysosome, indicating that effectors secreted by 

the T4BSS directly influence the endocytic pathway (Roy et al., 1998; Molmeret et al., 

2004; Schroeder, 2018). The Dot/Icm T4BSS secretes hundreds of potential virulence 

effector molecules that aid in the formation of the LCV. However, no one effector has 

been shown to be crucial, again indicative of multiple layers of redundancy (Schroeder, 

2018). Similarly, the VirB T4SS is essential for Brucella survival, as illustrated in virB–

mutants (Hong et al., 2000; Comerci et al., 2001; Celli et al., 2003; Pei et al., 2008). 

Several other pathogens utilize T4SS and other secretion systems to release effector 

molecules that are capable of manipulating host function. The VirB and Dot/Icm 

systems are certainly also capable of releasing effector molecules that, in the case of 

Brucella and Legionella, are used to manipulate ER membrane dynamics and fusion.  

Similar to some vacuole-inhabiting bacteria, Chlamydia also subverts the endocytic 

pathway to create a replicative niche. Chlamydia is also a very proficient modulator of 

the host cytoskeleton through complex interactions of its secreted effectors with the 

host cell. This manipulation is even more interesting when considering that Chlamydia 

has a relatively small genome for bacteria (1.04 Mb and 1.23 Mb for C. trachomatis 

and C. pneumoniae respectively) and relies on the host for their metabolic 
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requirements (Stephens et al., 1999). Furthermore, ~10% of its genome encodes for 

virulence effectors (Betts-Hampikian et al., 2010) which, as for some other intracellular 

pathogens, are delivered through specialized secretion systems. Similar to Legionella, 

the Chlamydia-containing inclusion (the term used for the replicative vacuole) is 

diverted from the endocytic pathway early on and is rather trafficked to the microtubule 

organizing centre (MTOC) via dynein-mediated movement. From here, they are in an 

ideal position to intercept lipids and nutrient-rich exocytic vesicles. Markers for early 

endocytic- and late endocytic-compartments are absent from the inclusion (such as 

Rab5, Rab7 and LAMP-1) (Rzomp et al., 2003; Scidmore et al., 2003). However, 

several other Rab GTPases are recruited to the inclusion, such as Rab1, -4, -6 (C. 

trachomatis only), -10 (C. pneumoniae only), -11 and -14 (Rzomp et al., 2003; 

Capmany et al., 2010). The recruitment of the different Rab GTPases is important for 

the modulation of fusion events, for example the prevention of lysosomal fusion and 

promoting of fusion with lipids and nutrient-rich exocytic vesicles. Chlamydia further 

modulate vesicle fusion via interaction with SNARE proteins. 

Subversion of the canonical phagocytic pathway by Salmonella uses similar 

mechanisms to that of, both, the vacuole-residing bacteria and those opting for a 

cytosolic lifestyle. After internalization, Salmonella remains in a modified phagosome 

– the Salmonella containing vacuole (SCV). Similar to the microbes already 

mentioned, Salmonella utilize secretory systems to deliver their effectors to the host 

and have two T3SS encoded on different pathogenicity islands (SPI-1 and SPI-2) 

(LaRock et al., 2015). The early effectors secreted by Salmonella (via T3SS-SPI1) are 

important for the establishment of this early SCV. Shortly after being phagocytosed 

SCV associates with early endosome markers EEA-1 and Rab5 and via its effector 

SopB (a phosphatase), delays lysosome fusion by indirectly preventing Rab GTPases 

from binding to the phagosomal membrane (Steele-Mortimer et al., 1999; Mallo et al., 

2008; Bakowski et al., 2010). Recruitment of sorting nexins (SNX) help in the 

progression of SCV maturation, SNX1 specifically induces tubulation and is involved 

in the removal of the cation-dependent mannose-6-phosphate receptor (MPR) that 

may be important for the lack of lysosomal enzymes in the late SCV (Bujny et al., 

2008). Additionally, SNX3 transiently interacts with the early SCV and is required for 

tubule formation and recruitment of late endosomal markers Rab7 and LAMP-1 (Braun 

et al., 2010). The replacement of early markers at this stage is accompanied by a 
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decrease in both bacterial cytoplasmic and SCV pH (Chakraborty et al., 2015). This 

drop in pH is crucial for induction of SPI-2 genes required for subsequent effector 

secretion. The effectors secreted by T3SS-SPI-2 change the early SCV into a late 

SCV that is uniquely suited for bacterial replication. Examples of SPI-2 effectors 

involved in SCV maturation include SifA and SopD2. SifA complexes with SifA-and-

Kinesin-Interacting-Protein (SKIP). The SifA-SKIP complex sequesters and binds 

Rab9, thereby inhibiting Rab9-dependent recruitment of MPR (McGourty et al., 2012). 

SopD2 impairs the Rab7-dependent recruitment of RILP and FYCO1 (FYVE and 

Coiled-coil domain Containing protein 1). RILP and FYCO1 are involved in vesicular 

trafficking along microtubules and indirect inhibition of their recruitment by SopD2 

delays delivery of the SCV to lysosomes (D’Costa et al., 2015). At this stage, the SCV 

is similar to a late endosome (with markers LAMP-1, Rab7 and V-ATPase), but not 

enriched with lysosomal enzymes, possibly due to the lack of MPR and incomplete 

lysosome fusion (McGourty et al., 2012). Similar to Chlamydia, Salmonella exploit 

dynein-mediated transport (via its effectors) to arrive at a juxtanuclear position near 

the microtubule organizing centre (MTOC). At this location, Salmonella distinguishes 

itself from other intracellular pathogens with the formation of a dynamic tubular 

network composed of Salmonella induced filaments (SIFs) (Knuff et al., 2017). SIFs 

are required for SCV integrity, enabling continuous fusion of host vesicles to SCV and 

are associated with late endosomal markers such as LAMPs, Rab7, V-ATPase, 

cholesterol and lysobisphosphatidic acid (LBPA), as well as low levels of MPR and 

cathepsin D. Furthermore, another similarity with other vacuole-living bacteria, is the 

communication between the SCV and the ER, illustrating the extensive interactions of 

SIFs/SCV with the host cell (Santos et al., 2015). However, unlike the other vacuolar 

bacteria’s interaction with ER-derived components, the Salmonella SCV interaction 

with the ER-derived coat protein complex II (COPII) can result in SCV rupture and 

Salmonella hyper-replication in the cytosol (Santos et al., 2015). 

In comparison to the more meticulous modulations mentioned, L. monocytogenes 

takes a relatively more radical (and perhaps destructive) approach to ensure 

intracellular survival. Manipulation of the clathrin-mediated endocytic pathway 

facilitates entry into non-phagocytic cells (Veiga et al., 2005), whereas entry into 

macrophages is achieved via phagocytosis and initial engulfment of bacteria to form 

phagosomes. However, with the help of the cholesterol-dependent pore forming toxin 
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listeriolysin-O (LLO), phagosome-lysosome fusion is disrupted via dysregulation of pH 

and calcium gradients across the phagosome membrane (Henry et al., 2006; 

Shaughnessy et al., 2006). Additionally, with the help of two phospholipases (PlcA and 

PlcB), LLO promotes escape of the bacteria from phagosomes into the cytosol (Smith 

et al., 1995; Mitchell et al., 2015). Once in the cytosol, bacteria undergo rapid growth 

and subsequently hijack the host’s actin polymerisation machinery to move within the 

cytosol and ultimately spread in a cell-to-cell manner (Skoble et al., 2000; Mitchell et 

al., 2015). Although not as intricate as Brucella and Legionella, Listeria is also capable 

of slow replication in macrophage vacuoles (instead of rapid cytosol replication) via 

the formation of spacious Listeria-containing phagosomes (SLAPs) (Birmingham et 

al., 2008). SLAP formation is dependent on LLO, but unlike phagosome rupture 

observed with cytosolic life, intermediate LLO expression is required for interference 

with phagosomal pH, without phagosomal rupture. Bacteria containing SLAPs are 

LAMP-1+, which indicates that these are endocytic compartments. However, no drop 

in pH is observed, due to LLO-mediated uncoupling of pH gradients across the 

membrane and prevention of lysosome fusion. Furthermore, SLAP formation is 

dependent on autophagy and is hypothesized to be triggered by the damage caused 

to phagosomes by LLO.  

The opportunistic pathogen Cryptococcus neoformans (Cn) is also capable of infecting 

and replicating at high numbers in macrophages and may possibly utilize these 

phagocytes as shuttle for their dissemination across the blood brain barrier. An 

important virulence factor of Cn is its capsule, which ensures survival by protecting 

against phagocytic uptake and oxidative stress, once infiltrated into the host circulation 

(Zaragoza et al., 2008; Bojarczuk et al., 2016). However, phagocytosis can be 

triggered by direct recognition of Cn capsule components or indirectly via complement 

(Johnston et al., 2013). After Cn internalisation by macrophages, it resides in 

phagosomes which mature into a phagolysosome, as usual. Interestingly, this microbe 

does not seem to radically modulate the phagosomal maturation process, but rather 

seems able to thrive at the lower pH of the maturing phagosome. Some early- and 

late-endosomal markers are present on these phagosomes, including EEA-1, Rab5, 

Rab11, MPR, LAMP-1 and cathepsins, with live Cn inducing premature removal of 

Rab5 and Rab11 from the Cn phagosome, which may influence phagosome 

acidification (Tucker et al., 2002; Davis et al., 2015; Smith et al., 2015). The 
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phagolysosomes still acidify, but final pH is maintained slightly higher, at around 5.3 

(vs. normal phagolysosome pH of ~4.5), which is the optimal pH for Cn growth. 

Additionally, damage to the phagolysosome membrane favours Cn survival and 

possibly contributes to the slight increase in pH observed with live Cn (Davis et al., 

2015). Recently urease activity was found to influence phagosomal pH, which through 

production of urease-derived ammonia can increases pH (Lerm et al., 2017; Fu et al., 

2018). Furthermore, membrane damage to the phagolysosome results in 

permeabilization of the membrane and subsequent leakage of lysosomal enzymes 

(e.g. cathepsins), the loss of which may also increase survival of Cn within the 

phagolysosome (Wozniak et al., 2008). Furthermore, the release of these enzymes, 

can result in activation of inflammasomes and subsequent cell death (Chen et al., 

2015). It is clear that Cn is capable of modulating phagosome maturation to some 

extent, but the search for responsible effectors is still ongoing. 

These studies illustrate how some pathogens manipulate the phagocytic process in 

seemingly divergent ways to reach an identical end goal of intracellular survival. In 

doing so they ensure their own propagation and dissemination to elicit disease. 

Importantly, in our opinion, this demonstrated susceptibility to manipulation of the 

phagocytic process supports the feasibility of drug delivery systems that harness one 

or more of the microbial strategies presented here. Although there is still much 

research to be done on the exact microbial effectors involved in manipulation of the 

endocytic pathway, the available literature can already be used to make informed 

decisions as to which effectors can be used in the development of autologous drug 

delivery systems.  

In the context of a complete macrophage-based drug delivery system, the 

manipulation of the endocytic pathway for retention and protection of cargo is only the 

first step. The next step to consider in the development of an effective delivery system, 

is the expulsion of drug cargo from macrophage vehicles. To this end, the mechanisms 

used by microbes can again be mined and possibly exploited to achieve cargo 

expulsion. 

2.3.2. Expulsion from Host Cell 

Turning attention now to the expulsion phase, which is a vital requirement for 

pathogenic dissemination of microorganisms, and which can be induced by either the 
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infected host cell, or by the pathogen itself. Some microorganisms utilise host cell 

machinery to facilitate their escape, while others induce either accidental or intended 

host cell death, resulting in their release from the cell as a “side-effect”. Many 

microorganisms have been identified to have the ability to egress via one or more 

methods and some effectors in this process have been identified. However, in terms 

of manipulation of egress through upregulation or elimination of these effectors, very 

little data is available and substantial experimental work is still required in this niche. 

This can be attributed, at least in part, to a large degree of redundancy. This degree 

of redundancy is also seen in the bacterial mechanisms employed to modulate 

phagosome maturation, which adds complexity to the process of identifying a 

controllable pathway. Below, we provide a summary of the current knowledge 

regarding microbial egress, with an integrated discussion of its potential for therapeutic 

application. 

Probably the most obvious technique used, given the ability of many microbes to 

manipulate phagosomal pH for intracellular survival, is the manipulation of pH to 

induce host cell death. This technique has been described in some detail for Mtb, 

which stabilises phagosomal pH at ~6.2-6.5 by interfering with the V-ATPase complex 

(Sturgill-Koszycki et al., 1994; Seto et al., 2011; Queval et al., 2017). This raised pH 

level is a pre-requisite for the ESX-1 dependent rupture of the phagosome (Simeone 

et al., 2015).  The ESX-1 (T7SS) secretory system secretes two effector proteins, 

namely EsxA and EsxB, which form a heterodimer and are secreted by Mtb in a co-

dependent manner (Renshaw et al., 2002). EsxA has membrane permeabilizing 

properties and EsxB is thought to act as a chaperone to prevent degradation and/or 

premature lytic activity (de Jonge et al., 2007; Zhang et al., 2016). EsxA effects 

phagosome rupture and escape to the cytosol, while being aided by the cell wall lipid 

phthiocerol dimycocerosates (PDIM) (Augenstreich et al., 2017; Quigley et al., 2017). 

This lipid has been proposed to primarily aid in phagosomal rupture, resulting in 

increased numbers of cytosolic bacteria – which in turn induces host cell necrosis and 

ultimately Mtb dissemination (Augenstreich et al., 2017; Quigley et al., 2017). 

Other bacteria have also been described to escape through host cell membrane 

rupture resulting in cell death, albeit achieved by slightly different techniques. Brucella 

for example replicates within host cells, dissociating into two phenotypes, namely a 

smooth and a rough type. The rough phenotype has cytotoxic activity which breaks 
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down the cellular membrane and is essential for bacterial dissemination (Pei et al., 

2006, 2014). In this way, Brucella egress and dissemination are achieved through 

caspase-2 mediated cell death (Chen et al., 2009, 2011). Furthermore, this mode of 

cell death results in a pro-inflammatory response and recruitment of additional 

macrophages - that can be infected - in further aid of  Brucella dissemination (Pei et 

al., 2014). It has however been proposed that Brucella can disseminate via cell-to-cell 

spread using an autophagy related mechanism (Starr et al., 2012; Smith et al., 2016). 

The final phase of Brucellas’ intracellular life cycle is the formation of an aBCV which 

results from the engulfment of rBCVs into autophagosome-like structures via an 

autophagic process (Starr et al., 2008, 2012). This transformation to an aBCV is an 

essential prerequisite for bacterial egress via cell-to-cell spread (Starr et al., 2012; 

Smith et al., 2016). Interestingly, the VirB T4SS has been implicated in Brucella 

release via cell death and cell-to-cell spread, although the bacterial effectors have not 

been identified (Pei et al., 2008; Smith et al., 2016). The different modes of 

dissemination are possibly due to differences in experimental conditions, such as 

bacterial strains and cell lines used. Different bacterial strains may have different 

effectors or altered expression profiles that may result in different post-replicative 

outcomes (i.e. cell death or cell-to-cell spread) and different cell lines will also react 

differently to secreted effectors. 

Legionella can also be placed in the category of intracellular pathogens that escape 

through macrophage cell death. Once a replicative LCV is established inside the 

macrophage, the bacteria converts to a replicative form and multiplies within the 

enclosed LCV. At high multiplicities of infection and subsequent termination of 

replication Legionella exhibit contact-dependent cytotoxicity, resulting in formation of 

pores in the host cell membranes (Kirby et al., 1998; Bachman et al., 2001). Initially 

pores are formed within the phagosomal membrane (of the LCV), resulting in release 

of bacteria into the cytosol. The cytosolic bacteria are then able to form pores within 

the plasma membrane, resulting in osmotic lysis and release of bacteria (i.e. necrosis) 

(Kirby et al., 1998; Alli et al., 2000). The importance of the Dot/Icm secretory system 

of Legionella for pore-formation mediated lysis, and specifically that of the small inner 

membrane protein, IcmT, has been illustrated (Molmeret, 2002). Interestingly, in 

primary protozoan host cells, Legionella is capable of non-lytic release. The bacterial 

effectors LepA and LepB have been shown to play a role in manipulating the amoeba 
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hosts exocytic pathway for dissemination (Chen et al., 2004, 2007). These effectors 

may also play a role in Legionella release from human cells or phagosome maturation 

and can potentially form part of an artificial microbe drug delivery system. 

Literature indicates that Salmonella exits cells via several mechanisms, including 

programmed cell death and flagella-facilitated escape. For example, the SPI-1 effector 

SipB can act by inducing caspase-1-dependent pyroptosis in macrophages (Hersh et 

al., 1999; Li et al., 2016). Briefly, SipB binds to and activates caspase 1, resulting in 

the cleavage of pro-IL1β and its secretion (Hersh et al., 1999; Li et al., 2016). While 

this inflammatory response should result in elimination of Salmonella, the over-

activation during infection results in release of large amounts of bacteria capable of 

infecting naïve recruited cells. SipB is also able to induce apoptosis in a caspase-1 

independent manner involving activation of caspase-2, -3, -6, and -8 (Jesenberger et 

al., 2000). In addition to apoptosis and pyroptosis, Salmonella is also able to induce 

oncosis in macrophages (Sano et al., 2007). Oncosis is associated with macrophage 

swelling resulting in cell death, with Salmonella-induced oncosis characterized by F-

actin dissociation. Subsequently the flagellated Salmonella escapes from oncotic 

macrophages via flagellar movement (Sano et al., 2007). 

Although the methods presented here will effectively release intracellular cargo, the 

associated host cell death may significantly contribute to tissue damage and 

secondary inflammatory damage, which may further delay recovery of patients. While 

certainly an option to consider for further development, specifically where cell death 

and increased inflammation would not be as detrimental (e.g. cancerous tissue), a 

more optimal solution in scenarios where minimisation of inflammation – as well as the 

availability of functional macrophages - might be more critical, would be achieving 

release of drugs without the sacrifice of host cells. 

Manipulation of the host cell’s expulsion mechanics without killing the host has indeed 

been described for a few microbes, although much less information is available in this 

context. From the literature, it seems that only two egress methods have been 

described: direct spread into neighbouring cells and expulsion into the extracellular 

environment. As briefly eluded to earlier, L. monocytogenes escapes from the host 

phagosome into the cytosol through activity of pore forming LLO (Alberti-Segui et al., 

2007). However, complete escape from the host macrophage is aided by the effector 
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responsible for modulation of the host actin polymerisation machinery. Surface 

anchored actin assembly-inducing protein (ActA) interacts with the ARP2/3 complex 

to mediate actin polymerisation on the bacterial surface, which in turn creates sufficient 

force to induce membrane protrusion and cell-to-cell spread (Skoble et al., 2000). The 

actin-propelled bacteria creating these membrane protrusions induce uptake into 

neighbouring cells via a process called efferocytosis (Czuczman et al., 2014). Here, 

LLO damages the plasma membrane of protrusions, resulting in surface presentation 

of the inner membrane leaflet lipid, phosphatidylserine (PS) (Czuczman et al., 2014). 

The PS+ protrusions are recognised by the T cell immunoglobulin and mucin-domain 

containing protein 4 (TIM-4) on macrophages, which subsequently mediates the 

uptake of PS+ protrusions (Czuczman et al., 2014). The bacteria may also be present 

in PS+ vesicles, formed as a result of Ca2+ dependent membrane repair and scission 

of the initial PS+ protrusion (Czuczman et al., 2014). Both PS+ vesicles and 

protrusions are similarly taken up by neighbouring cells via TIM-4. Listeria are one of 

the few phagocytically internalised microorganisms that allow host cell survival after 

escape. Thus, the processes regarding expulsion of Listeria is of great interest as 

target for manipulation or adoption in therapeutic drug delivery systems. 

Chlamydia is also known to exit the host cell by extrusion, although it can also induce 

cell lysis (Hybiske et al., 2007). These methods exhibit almost identical prevalence but 

are markedly distinct and independent. The exact bacterial trigger facilitating either 

one or the other outcome has yet to be fully elucidated. Cell lysis is known to be 

protease and calcium dependant and entails perforation of the inclusion body 

(Chlamydia-containing vacuole) and plasma membrane (Hybiske et al., 2007). 

Chlamydia-infected host cell lysis has been suggested to be linked to microbe-

associated apoptotic cell death, although minimal direct evidence exists in support of 

this notion (Perfettini et al., 2003). Regardless, the extrusion capability of Chlamydia 

from host cells without cell lysis is of greater interest here. With this technique, 

inclusion body extrusion requires actin polymerisation, myosin II, RhoA and Neuronal 

Wiskott-Aldrich Syndrome Protein (N-WASP) (Hybiske et al., 2007). The formation of 

an actin coat around the inclusion is correlated to extrusion out of the host cell. Host- 

and bacterium-derived factors play a role in the formation of the actin coat. For 

example, in humans, host-derived septins (GTP-binding proteins) form structures 

around the inclusion and co-localize with F-actin, resulting in the formation of F-actin 

Stellenbosch University https://scholar.sun.ac.za



   
 

27 
 

fibres around the inclusion (Chin et al., 2012; Volceanov et al., 2014). This process 

facilitates normal extrusion of Chlamydia inclusions from host cells (Volceanov et al., 

2014). Actin stabilisation by jasplakinolide (actin polymerisation agent) alone was 

reported to induce extrusion, which substantiates the role of septins in extrusion 

(Hybiske et al., 2007). In terms of therapeutic application, this may suggest that the 

intervention achieved by Chlamydia on the host cell mechanics may be less 

detrimental to the host cell compared to other microbial exit strategies. In a therapeutic 

context, this may result in faster normalisation of function in the host cell, which is 

much desired, as these host cells may then be able to participate in the normal 

inflammatory process that would be required for clean up after the drug has fulfilled its 

function. 

Non-lytic release into the extracellular space has also been observed for Cryptococcus 

neoformans, albeit at low frequencies of 5-15% in vivo (Bojarczuk et al., 2016). 

Autophagy has been implicated in Cn intracellular lifestyle with components such as 

Atg-2a, -5, -9a, -12 and LC3 observed in close proximity to the Cn containing 

phagosome (Qin et al., 2011; Nicola et al., 2012). The effect of autophagy is dependent 

on opsonin, macrophage type and activation state (Nicola et al., 2012). Autophagy 

does seem to play a role in host defence against Cn, with disruptions in autophagy 

affecting host fungistatic activity and fungal growth (Qin et al., 2011; Nicola et al., 

2012). However, this is a double-edged sword with autophagy also seemingly playing 

a role in Cn release. This is evident by the observation of Atg-5-knockout clones of 

J774.16 and RAW264.7 cells having reduced incidence of non-lytic exocytosis events 

(Qin et al., 2011; Nicola et al., 2012). This, along with the observation of LC3 

surrounded cells outside macrophages, suggests a possible role of autophagy in non-

lytic release of Cn (Nicola et al., 2012). Therefore, while autophagy aids in the host 

defence against Cn, it also participates in the dissemination of Cn through non-lytic 

release. This eludes to a balance that must be maintained by the host regarding 

autophagy, with either decreased fungistatic activity combined with decreased non-

lytic release, or vice versa. In addition to the potential role of autophagy in the non-

lytic release of Cn, other factors can also play a role in this route of Cn dissemination. 

The increase in pH of the Cn-containing phagosome results in increased occurrence 

of non-lytic release. Artificially increasing phagosomal pH results in increased 

expulsion of Cn and when compared to the in vivo situation, the damage caused by 
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Cn to the phagosome could result in a similar pH increase (Nicola et al., 2011). 

Unfortunately, the Cn effectors responsible for non-lytic release have not yet been 

elucidated. However, in addition to the potential role of autophagy, the MAP 

extracellular receptor kinase 5 (ERK5) of host cells is implicated in the regulation of 

non-lytic release, with its inhibition resulting in increased release rates (Gilbert et al., 

2017). Furthermore, actin polymerisation also plays a role in release of Cn from the 

host (Johnston et al., 2010). In contrast to other pathogens such as Listeria and 

Chlamydia, actin polymerisation inhibits Cn release through actin flashes on the Cn 

containing phagosome (Johnston et al., 2010). Although some information regarding 

the non-lytic release of Cn is available, it remains poorly understood and the exact 

mechanism for this escape method is still elusive. 

The body of research investigating intracellular pathogens and their host-interacting 

mechanisms is significant. However, specific information on the microbial effectors is 

still largely lacking, probably owing to the fact that the main focus of research was the 

prevention of these microbial actions, rather than full elucidation thereof for 

implementation. In addition, effectors secreted by invading microbial forces exhibit a 

large degree of built in redundancy, so that it is not surprising that the task of identifying 

specific roles for specific effectors has remained largely unaccomplished. Specifically, 

in terms of microbial expulsion, information is largely lacking, with only a handful of 

known microbial effectors. Considering this, clearly a new approach is required. The 

recent advancements in gene editing, heterologous expression, live cell imaging and 

-omics technologies may provide a more powerful platform from which to investigate 

the complex host-pathogen interaction and the effectors involved, especially in the 

context of expulsion from immune cell hosts. 

2.4. The Impossible Made Possible? 

From our review of the literature, we propose that most of the limitations of current 

drug delivery systems can be overcome by harnessing microbial strategies. We 

hypothesize that the synthetic microbe drug delivery system we describe here would 

a) address poor drug-delivery to target tissue – especially at sites with low blood supply 

– b) increase treatment efficacy with lower treatment doses and thereby c) reduce 

adverse host reactions. A visual representation of the proposed system is provided in 
Figure 2.2. 
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In terms of the system we propose, we foresee two novel preparatory steps to be done 

in parallel. Firstly, monocytes should be isolated from peripheral blood collected from 

individuals with a requirement for drug delivery, to enable autologous re-infusion. 

These macrophages can then be propagated in culture, differentiating and polarizing 

them into M1 phenotype macrophages, as previously described (Mia et al., 2014), to 

achieve the phenotype known to be most capable of translocating out of circulation 

and into tissue (Arnold et al., 2007 a; Africa et al., 2015 a;  b). In order to prevent 

intracellular degradation, polarized macrophages can be treated to achieve transient 

phagosome maturation arrest, by in vitro exposure to arresting agents such as 

Wortmannin, Concanamycin A and Chloroquine, which we have previously 

successfully illustrated (Visser et al., 2018). The fact that phagosome maturation arrest 

is achieved by in vitro intervention is a strength of this model, as this eliminates patient 

exposure to these potentially harsh chemicals and their related adverse effects. 

Secondly, the drug should be packaged in multiple layers of nanoparticle coatings 
(Figure 2.2A). These layers will serve to protect the drug from degradation, and can 

be peeled away in sequential, controlled steps to achieve controlled expulsion and 

release of the drug after delivery at its required site. With advancements in polymer 

sciences, smart polymers can be designed that have effectors conjugated to the 

polymers and can also be developed for directed multiphasic release of effectors at 

certain checkpoints. (The nature of the different layers will be clarified in the discussion 
of the expulsion phase and illustrated in Figure 2.2). 

To construct the synthetic microbe drug delivery system, phagosome maturation 

arrested macrophages will engulf opsonized nanoparticle-enclosed drugs (the 
synthetic microbe) and form a phagosome containing this cargo (Figure 2.2). The 

number of synthetic microbes taken up per macrophage may be optimized by 

adjusting macrophage-microbe exposure time. Uptake is largely dependent on particle 

proximity to the macrophage as well as size and shape of particles (Beningo et al., 

2002; Champion et al., 2006; Underhill et al., 2012). Determining the exact onset of 

engulfment, following introduction of particles into cell media, is complex and may 

need optimization on a case-specific basis. Unpublished data from our group suggests 

initiation of engulfment to occur within 5 min, with particles included at a 1:4 ratio with 

cells. From the literature, the last stage of phagosome maturation (phagolysosome 

biogenesis) occurs around 1h after engulfment (Jahraus et al., 1998). Our 

Stellenbosch University https://scholar.sun.ac.za



   
 

30 
 

implementation of an arbitrary exposure time of one hour resulted in significant 4.5µm 

particle engulfment (>1 particle per cell, in ~70% of cells) by both arrested and 

untreated macrophages. Since macrophages are capable of repeated engulfment 

cycles (irrespective of arrest), carrier cells should be removed from drug-containing 

media and washed after the appropriate engulfment period, to prevent overloading of 

macrophages and potentially compromising their ability to traverse endothelial 

barriers, as well as eventual cell death (if particle load exceeds cytosol volume or steric 

hindrance causes membrane rupture during transmigration) (Champion et al., 2006; 

Visser et al., 2018). At this point, the drug-loaded macrophages are ready for 

autologous re-administration into the patient via infusion into the peripheral circulation 
(Figure 2.2B). 

As stated earlier, macrophage migration to sites for delivery will rely on the inherent 

macrophage capacity for chemotactic mobility. However, in vivo testing of the system 

will elucidate whether further optimization is required. Upon arrival at the site for 

delivery, controlled expulsion of the cargo and subsequent release of the drug will be 

achieved through multiple consequential steps. Specifically, the phagosome lysing 

and membrane escaping agents (i.e. microbial effectors) would be released upon 

arrival at target location. This can only be achieved after transient phagosome 

maturation has expired and phagolysosomal degradation agents activate this layer. 

This biphasic layer would, in turn, allow escape of cargo into the cytosol, as well as 

expulsion thereof into the extracellular environment through microbial effectors.  The 

substantial amount of genome data currently available should enable relatively 

comprehensive genomic data mining for novel and existing microbial effectors. The 

use of genome mining in this context will only be useful if information (e.g. homology 

regions, structural information) about effectors are available. The use of techniques 

such as proteomics along with bioinformatic mining/analysis has been suggested as 

more useful tools in combination to identify effectors (Na et al., 2015; Cheng et al., 

2017). For example, in recent studies, proteomics has been used to identify novel 

effectors in Salmonella. Although proteomics can be a useful tool in identification of 

effectors it is only the first step. Next would be to heterologously express the identified 

effectors. Several bacterial effectors have been expressed in heterologous systems 

with success (Skoble et al., 2000; Churchill et al., 2005; Weigele et al., 2017). Most 

notably, the Listeria effectors LLO and ActA have been recombinantly expressed, with 
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recombinant LLO also being used for the effective delivery of several compounds to 

the cytosol of cells (Lee et al., 1996; Skoble et al., 2000; Mandal et al., 2002; Provoda 

et al., 2003; Stier et al., 2005). The ability to identify and express possible effectors 

creates the opportunity to manipulate the host endocytic pathway. However, these 

effectors need to be protected from degradation and secreted in a sequential manner 

to effectively modulate host processes.  

In order to prevent asynchrony of final drug release and arrival of synthetic microbe at 

the target site (i.e. release of drug at inappropriate sites), an innocuous, bio-compatible 

layer, such as PNIPAAm (mentioned above), could be incorporated. This layer would 

be the inner most layer and protect the drug until controlled drug dissemination at the 

required site is achieved via external stimulus (e.g. temperature or ultrasound). In the 

case of a PNIPAAm layer, final drug dissemination can be achieved by temperature 

increase (Feng et al., 2014). In addition, microbubbles could also be incorporated as 

protective drug micelle, instead of PNIPAAm. These microbubbles would then be 

degraded by external ultrasound stimulation (Huang et al., 2015; Lv et al., 2016; Fan 

et al., 2018). This layer should ideally consist of non-biodegradable but bio-compatible 

constituents, to prevent drug release into circulation and exposure to off-target tissue. 

Furthermore, augmented host protection can be achieved by allowing the safe 

extrusion of intact drug-micelles through the urinary tract. 

The redundancy employed in the aforementioned approach is another characteristic 

we could adopt from the plethora of redundancy employed by microbes during immune 

evasion, in order to maximize control over drug delivery and minimize risk of undesired 

effects. 

Stellenbosch University https://scholar.sun.ac.za



   
 

32 
 

 
Figure 2.2: Visual representation of the proposed system. (A) Simultaneous preparation of the 
synthetic microbes (1) and autologous macrophages (2) are followed by introduction of the synthetic 
microbe into phagosome maturation arrested macrophages (3). The complete system can now be 
administered into circulation for in vivo delivery. (B) Intracellular events for in vitro engulfment of 
synthetic microbe (3), in vivo maintenance/expulsion (4–7) and final delivery of drug at target site (8–
9). 
 
2.5. Post-Delivery Clearance of the System 

Given the potential complication of polymer accumulation in vivo, or premature drug 

release, it is perhaps relevant to briefly discuss safety aspects of this system. The 

utilization of M1 macrophages would be advantageous as they would remain at target 

locations post-delivery and could potentially contribute to faster resolution of either 

primary inflammation (present due to the disease state) or secondary inflammation 

(required to clear bacterial debris after effective treatment). In support of this theory, 

the M1/M2 phenotype presents with some plasticity as tissue resident macrophages 

have been shown to change phenotype following appropriate effector exposure or 

systemic infection and activation by pathogens (Arnold et al., 2007 a; Mills, 2012).  

This low risk feature is the result of the non-lytic mechanisms employed to achieve 

expulsion, which is novel. 

Stellenbosch University https://scholar.sun.ac.za



   
 

33 
 

In terms of clearance of the components of the nanoparticle layers themselves, 

polymeric nanoparticles have demonstrated clearance rates of hours to several days 

(Alexis et al., 2008; Feng et al., 2014). Macrophages failing to reach their intended 

target sites may still release the encapsulated drug, but final dissemination of drugs at 

unintended sites is unlikely, due to the requirement for external stimulus. Thus, 

encapsulated drugs, polymeric debris and loaded macrophages should be efficiently 

cleared from the system, so that no long-term implications due to residual drugs or 

synthetic microbe components are expected.  

Clearly, a model proposing quite significant paradigm shifts, such as the one we 

described here, requires substantial in vitro and in vivo testing and optimization by 

multiple laboratories. Given the requirement for in vivo tracking of cells, a zebrafish 

model may be the ideal choice for pilot studies, as the basic anatomy of the fish 

facilitates leukocyte migration tracking (Langenau et al., 2004) and this model has 

been employed in the context of macrophage migration (Wang et al., 2016; Barros-

Becker et al., 2017).  Additionally, in vivo tracking can also be achieved by permanent 

intracellular cell labeling and/or lasing techniques (Schubert et al., 2015) that would 

elucidate the exact location of carrier macrophages as well as their cargo over an 

extended period.   

2.6. Conclusion 

Intracellular pathogens have developed a unique arsenal of tools to evade the immune 

system and thrive within host cells. The modulation of host processes, specifically 

modulation of the endocytic pathway, not only make these pathogens difficult to treat 

and dangerous, but also provides the opportunity to utilize and modify their methods 

for human gain. If the right combination of these effectors are repurposed, they can be 

used to develop a macrophage-based delivery system for the transport and controlled 

delivery of therapeutic agents packaged into a “synthetic microbe” as described here, 

to significant benefit of patients currently struggling with diseases at non-accessible 

sites or those caused by multi-drug resistant pathogens.  

The success of a host-derived or biological delivery system is dependent on a key 

understanding of how microbial effectors work and what combination would result in 

effective release without severe side-effects, keeping in mind that the effectors are 
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indeed potent virulence factors. Advancements in molecular biology, -omics, 

bioinformatics and live cell imaging have resulted in the identification of effectors and 

their roles in the host-microbe/pathogen interaction, using and building on this 

information, effectors can be chosen that would result in the desired outcome. Utilizing 

synthetic biology and heterologous expression, effectors can be produced and tailored 

for specific functions. Although some developmental steps for the proposed synthetic 

microbe drug delivery model remains to be addressed in more detail, we believe that 

rapid development in e.g. polymer design and the aforementioned advancements in 

techniques that are used to characterize and tailor effectors, can be used to overcome 

these limitations in the very near future.  
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2.7. Hypothesis 

We hypothesize that it is possible to employ microbial effectors - Listeria 

monocytogenes effectors LLO and ActA - to induce cargo expulsion from human 

carrier cells (primary M1 polarised macrophages) in the absence of infection, in a 

manner that would not result in lysis of carrier cells. Secondly, we hypothesise that it 

is possible to synthesise LLO and ActA in significant amounts using an E.coli 

heterologous GFP-linked protein expression system. 

2.8 . Aims and Objectives  

In order to test our hypothesis, we formulated the following aims and objectives:  

Aims: 

1. Developing an expression system to synthesise microbial effectors 

2. Using these effectors to induce expulsion from carrier cells 

Objectives: 

1. Synthesis of sufficient amounts of the chosen microbial effectors LLO and ActA 

2. Determining appropriate activity of synthesised effectors in vitro 

3. Determining expulsion of effector coated beads from carrier macrophages 
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Chapter 3: Methods 

3.1. Plasmid Design 

The Listeria monocytogenes effectors LLO and ActA, were translationally fused to 

green fluorescent protein (GFP) and expressed in Escherichia coli. Generation of a 

backbone plasmid containing mgfp5 (GFP gene) including an N-terminal 6x 

polyhistidine-tag (His tag) and C-terminal WELQut protease site was done according 

to previous reports (van Staden et al., 2019) (Figure 3.1, 3.2). Briefly, the mgfp5 gene 

was amplified from the pTRKH3-ermGFP using the primers listed in Table 3.1 and 

purified using the pJET PCR purification kit according to the manufacturer’s 

instructions (Thermo Fisher Scientific). The PCR product and pRSFDuet-1 were 

digested with the restriction enzymes BamHI/PstI. The digestion products were 

electrophoretically separated on an agarose gel and bands corresponding to the 

corrected sizes were excised and purified from the gel pieces using the ZymoClean 

gel DNA recovery kit according the manufacturer’s instructions (Zymo Research). The 

purified digestion products were ligated using T4 ligase according to the 

manufacturer’s instructions (New England Biolabs). The resulting pRSFGFP was used 

to transform chemically competent E. coli BL21 (DE3) cells. For transformation, the 

ligated plasmid DNA (pDNA) was added to competent cells (thawed on ice) and 

incubated, on ice, for 5 minutes. Cells were subsequently heat shocked at 37°C for 10 

min, after which warm (37˚C) Luria Bertani (LB) broth was added to a total volume of 

1 mL. Cells were recovered at 37°C for 1 hour and plated onto LB agar containing 50 

µg/mL kanamycin. Plates were incubated at 37°C until visible colonies were observed. 

Colonies were selected and used to inoculate 5 mL of LB broth and incubated with 

agitation at 37°C for 18 hours. Plasmid DNA was isolated from these cells using the 

Pure Yield plasmid isolation kit according to the manufacturer’s instructions 

(Promega). Listeriolysin-O was amplified from L. monocytogenes EDG-e genomic 

DNA (gDNA, isolated using the Zymogen fungal/bacterial gDNA Miniprep kit) using 

the primers listed in Table 3.1, with the forward primer designed to exclude the N-

terminal signal peptide (Figure 3.1). Digested (PstI/NotI) and purified LLO was cloned 

into pRSF-GFP on a PstI/NotI fragment using T4 ligase, resulting in the translational 
fusion of LLO to His tagged GFP (Table 3.1) The resulting pRSFGFP-LLO construct 

was transformed into chemically competent E. coli BL21 cells as described elsewhere. 
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Plasmid DNA was isolated from positive transformants and used in sequencing 

reactions (CAF Stellenbosch). Correct transformants were used in subsequent 

expression experiments. 

 
Figure 3.1:  GFP-LLO plasmid map and sequence. Plasmid map: pRSFDuet-1 with GFP fused to 
LLO. Relevant restriction sites and WELQut protease site are indicated. Sequence: GFP-LLO including 
relevant restriction sites and protease cleavage sites. GFP sequence is indicated in green and LLO 
sequence indicated in black. 
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Figure 3.2: GFP-ActA-GST plasmid map and sequence. Plasmid map: pRSFDuet-1 with N-terminal 
GFP fusion to ActA and C-terminal fusion to GST. Relevant restriction sites and WELQut is indicated. 
Sequence: GFP-ActA-GST including relevant restriction sites and protease cleavage sites WELQut 
and AVPR for thrombin). GFP sequence is indicated in green, ActA sequence indicated in blue and 
GST sequence indicated in purple. 
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Several plasmid constructs were generated for the expression of ActA (refer to 
Appendix 2), due to degradation products observed during the expression and 

purification of ActA. The final construct resulted in the translational fusion of ActA to 

His tagged GFP on its N-terminal and a glutathione S-transferase (GST) tag on the C-
terminal (Figure 3.2). Actin Assembly-Inducing Protein was amplified from L. 

monocytogenes EDG-e gDNA with the primers designed to exclude the N-terminal 

and C-terminal signal peptide and transmembrane domain, respectively (Figure 3.2, 
Table 3.1).  The GST tag was amplified from pET41a(+) using primers listed in Table 
3.1. Purified ActA PCR product was digested with PstI/NotI and ligated into pRSFGFP 

Table 3.1: Primers used in this study 

ID Primer Name Primer Sequence Description Ref
f 

1 GFP_BamHI_F GGATCCGATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCC
AATTC 

PCR of GFP 
from pTRKH3-

ermGFP 
including 

sequence for 
C-terminal 

WELQut site 

$ 
2 GFPWELQ_PstI

_R 
CTGCAGTTCCCAACCGGTTTTGTATAGTTCATCCATGCCATGTGTAA
TCC 

3 GST_NotI_F GCGCGGCCGCGTCCCCTATACTAGGTTATTGGAAA PCR of GST 
tag from 

pET41a (+) 
* 4 GST_XhoI_R CAGACTCGAGTTACGATTTTGGAGGATGGTCGCCA 

5 WLLO_PstI_F GGGAACTGCAGGCATCTGCATTCAATAAAG PCR of 
truncated LLO 

from L. 
monocytogen
es EDGe gDNA 

* 6 LLO_NotI_R ATTATGCGGCCGCTTATTCGATTGGATTAT 

7 WActA_PstI_F GGGAACTGCAGGATAGCGAAGATTCTAGTCTAAACAC PCR of 
truncated 

ActA from L. 
monocytogen
es EDGe gDNA 

* 8 ActA_NotI_R ATGCGGCCGCTTACGTCGTATGGTTCCCTG 

9 mCherry_NotI_
F 

CACGCGCGGCCGCGATGGCAATCATCAA PCR of 
mCherry for 
fusion to C-
terminal of 
GFP-ActA 

* 1
0 

mCherry_XhoI_
R 

ACCAGACTCGAGTTTATATAATTCATCCATA 

1
1 pRSFMCS1_F GGATCTCGACGCTCTCCCT 

Sequencing 
primer for 
inserts in 
MCS1 of 

pRSF-Duet 1 

# 1
2 pRSFMCS1_R GATTATGCGGCCGTGTACAA 

$ (van Staden et al., 2019). * This study. # Sequences obtained from Novagen 
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previously digested with PstI/NotI. The ligation product was transformed and purified 

as described elsewhere. The resulting pRSFGFP-ActA construct was subsequently 

digested with NotI/XhoI and used in a ligation reaction with the GST tag (digested with 

Notl/Xhol). The product from the ligation reaction was used to transform chemically 

competent E. coli BL21 (DE3) cells and pDNA isolated as described elsewhere. To 

further increase the stability of ActA during expression an E. coli BL21 (DE3) strain, 

ArcticExpress, harbouring the cold-adapted chaperonins Cpn10 and Cpn60 was 

employed. Transformation and culturing of ArcticExpress E. coli BL21 (DE3) is 

essentially performed as described for E. coli BL21 (DE3) with one exception. During 

culturing, gentamicin (20 µg/mL) is included in order to maintain the plasmid 

harbouring cpn10 and cpn60 (pACYC-based plasmid). 

3.2. Protein Synthesis and Purification 

The GFP-linked heterologous expression method used for purification of LLO and 

ActA allowed real time validation of purification products through visible GFP 
fluorescence in samples and SDS PAGE gels (Figure 3.3) (van Staden et al., 2019). 

3.2.1. Listeriolysin-O (LLO) 

Escherichia coli BL21 (DE3) cells expressing GFP-LLO were inoculated in 10 mL LB 

broth containing 50 µg/mL kanamycin and incubated overnight at 37°C under 

agitation. For thio-B-D-galactopyranoside (IPTG) optimization, the overnight culture 

was used to inoculate 200 mL Terrific Broth (TB; 1% v/v) containing 50 µg/mL 

kanamycin. Flasks were incubated at 30°C on a shaker until an optical density 

(OD600nm) of 0.6 was reached. Cells were induced with 0.25, 0.5 and 1.0 mM IPTG and 

expressed for 24 hours at 26°C with agitation. Cells were collected via centrifugation 

at 7500 rpm for 15 min at 10°C and wet weight recorded. The pellets were frozen 

before cells were lysed with lysis buffer (5 mL/g cell wet weight) for 30 min on ice. 

Lysis buffer was made up in Start Buffer (SB) containing 30 mM imidazole (SB30), 1 

mg/mL lysozyme, 1 U/mL RNAse (NEB) and 6 U/mL DNAse (NEB) and SigmaFast 

(EDTA free) protease inhibitors (Sigma-Aldrich; added according to manufacturer’s 

instructions). Cells were sonicated on ice three times at 70% power output, 90% 

pulses for 3 min and centrifuged at 13000 rpm for 45 min at 10°C to separate cell 

debris from GFP-LLO containing lysate. Prior to isolating protein via immobilized metal 
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affinity chromatography (IMAC), His Trap HP Ni-NTA His tag columns (1 mL, GE 

Healthcare) were equilibrated with 5 column volumes of SB30, followed by application 

of cell-free supernatant. Columns were washed with SB30 for 10 column volumes and 

GFP-LLO eluted using SB containing 500 mM imidazole over 5 column volumes. The 

eluted samples were desalted against PBS (pH 7.4) using 10 kDa spin columns 

(Thermo Fisher). Protein concentration for yield determination of desalted proteins 

were determined using the BCA protein assay according to the manufacturer’s 

instructions (Thermo Fisher).  

Desalted GFP-LLO concentration was adjusted to 1 mg/mL for determination of 

optimal cleavage conditions. Listeriolysin-O was liberated from its GFP fusion partner 

by cleavage with 0.5 U, 1.0 U, 5.0 U and 10 U WELQut protease for 16 hours at 26°C 

in a total reaction volume of 25 µL. Optimal WELQut concentration was evaluated by 

SDS-PAGE analysis. Using optimal cleavage conditions, LLO was further purified to 

remove the GFP fusion partner and WELQut protease (also His tagged). Imidazole 

was added to the cleavage reaction to a final concertation of 10 mM and applied to a 

His Trap HP Ni-NTA column previously equilibrated with 10 mM imidazole. The LLO 

containing flow through was collected, with His tagged-GFP and -WELQut protease 

remaining on the column. The purified LLO was desalted with PBS (pH 7.4) using 10 

kDa protein concentrators and used in subsequent experiments.    

3.2.2. Actin Assembly-Inducing Protein (ActA) 

Purification of GFP-ActA-GST was done in a similar manner to that of GFP-LLO with 
the exception of additional GST tag purification (Figures 3.3). Escherichia coli BL21 

(DE3) ArcticExpress cells expressing GFP-ActA-GST were inoculated in 10mL LB 

broth containing 50 µg/mL kanamycin and 20 µg/mL gentamycin and incubated 

overnight at 30°C under agitation. The overnight culture was used to inoculate 500mL 

TB (2 % v/v) containing 50 µg/mL kanamycin and 20 µg/mL gentamycin. Flasks were 

incubated at 30°C on a shaker until an OD600nm of 0.5 was reached. Cells were 

subsequently induced with 0.5 mM IPTG and allowed to express at 26°C with agitation 

for 18 hours. After expression cells were collected via centrifugation at 7500 rpm for 

15 min at 10°C and wet weight recorded. The pellets were frozen before cells were 

lysed with 5 mL/g wet weight lysis buffer for 30 min on ice. Lysis buffer was made up 

in SB containing 20 mM imidazole, 1 mg/mL lysozyme, 1 U/mL RNAse (NEB) and 6 
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U/mL DNAse (NEB) and protease inhibitors (Sigma-Aldrich). Cells were sonicated on 

ice three times at 70% power output, 90% pulses for 3 min, centrifuged at 13000 rpm 

for 45 min at 10°C. All subsequent purification steps were done on ice to reduce 

degradation of GFP-ActA-GST. Prior to isolating protein via IMAC, His Trap HP Ni-

NTA His tag columns (1 mL, GE Healthcare) were equilibrated with 5 column volumes 

of SB containing 20 mM imidazole (SB20) supplemented with protease inhibitors (1x 

stock made up according to manufacturer’s instructions), followed by application of 

cell-free supernatant. Columns were first washed with SB20 containing protease 

inhibitors for 10 column volumes. Columns were further washed with PBS containing 

20mM imidazole (PBS20) for 10 column volumes before eluting GFP-ActA-GST with 

PBS containing 125 mM imidazole. The eluent was diluted 1:1 in PBS (pH 7.4) and 

dithiothreitol (DTT) was added to a final concentration of 5 mM. The diluted eluent was 

applied to a column packed with glutathione agarose (2 mL; Thermo Fisher) and 

allowed to bind with continuous circulation for 1 hour to allow adequate binding of 

GST-tagged protein. Columns were washed with 10 column volumes of PBS (pH 7.4) 

and bound GFP-ActA-GST eluted from the column with PBS containing 10 mM 

reduced glutathione (pH 8).  

 

 
Figure 3.3: Schematic of Protein Purification: Immobilized metal affinity chromatography (IMAC; 
steps 1-4) and glutathione S-transferase (GST; steps 1-7) purification used in this study. Image created 
in BioRender. 
 

Liberation of ActA-GST from the GFP fusion partner was achieved through cleavage 

with WELQut protease. The eluent from GST-tag purification was cleaved with 10 U 
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WELQut protease per millilitre of eluent and incubated for 16 hours at 8°C. After 

cleavage, imidazole was added to the reaction to a final concentration of 10 mM and 

applied to a His Trap HP Ni-NTA column pre-equilibrated with 10 mM imidazole. The 

flow through containing the liberated ActA-GST was collected and desalted in a 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer (20 mM HEPES, 50 

mM KCl; pH 7.5) using a 10 kDa protein concentrator. Desalted samples were used in 

subsequent experiments and for determination of protein yield (protein concentration 

determined using BCA protein assay). Samples were collected throughout purification 

and cleavage reactions for analysis by SDS-PAGE.    

3.3. SDS-PAGE 

Samples were electrophoretically separated using tricine SDS-PAGE (Schägger, 

2006). Briefly, samples were added to tricine sample buffer (1:1) and incubated at 

37°C for 30 min. Subsequently, 7 µL sample was loaded into the wells of a 10% tricine 

SDS-PAGE gel. After separation GFP fluorescence was visualized using either a 

MiniBIS Pro DNR Bio-imaging system (DNR Bio-imaging systems, Israel) or Dark 

Reader DR195M Transilluminator (Integrated Scientific Solutions) (van Staden et al., 

2019). Gels were fixed with 25% Isopropanol and 10% acetic acid fixing buffer and 

stained using blue silver Coomassie stain until protein bands could be visualized 

(Candiano et al., 2004). 

3.4. Processing Donor Peripheral Blood Samples  

Ethical clearance exemption was obtained from Subcommittee C Human Research 

Ethics Committee (HREC) of Stellenbosch University (Reference # X15/05/013) for 

isolation of primary human monocytes and erythrocytes from donor blood. Monocyte 

isolation, differentiation and polarization into M1 macrophages was performed as 

previously described (Visser et al., 2018). Briefly, collected donor buffy coats from the 

Western Province Blood Transfusion Service was mixed at a 2:1 ratio with RPMI in 

order to facilitate layering onto a Histopaque gradient. This was centrifuged at 400 x g 

for 30 min after being washed in PBS containing 1 mM EDTA. The PBMC sample was 

then layered onto a 46% iso-osmotic Percoll solution containing PBS, RPMI and FBS 

before being centrifuged at 550 x g for 30 min. The monocyte layer was removed and 

plated onto 35 mm culture dishes and cultured for a total of 6 days in RPMI containing 
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10% Human Serum, 100 U/mL Penicillin-Streptomycin, 2 mM Glutamax and 50 ng/ml 

GM-CSF. To induce polarisation into M1 phenotype 50 ng/ml LPS and 20 ng/ml IFN-

γ was added at 5 days into culture. Cells were harvested or imaged on day 6.  

3.5. pH-Dependant Protein Activity 

Haemolytic activity of LLO and GFP-LLO was determined at varying concentrations 

and pH, using human erythrocytes prepared from donated whole blood. The different 

pH levels were chosen to determine appropriate LLO activity, which is reported to 

occur from pH 6 and lower (Alberti-Segui et al., 2007). At physiologically relevant 

concentrations, LLO should have no haemolytic capacity at physiological pH of 7.4. 

Activity of LLO at lower pH levels is also in accordance with its pore forming activity 

within mature phagolysosomes (Friedrich et al., 2012). Furthermore, the concentration 

was chosen at 10x serial dilutions of the maximum protein yield obtained. This was 

conducted due to the lack of literature on the exact concentration of LLO haemolysis. 

Peripheral blood was centrifuged at 400 x g for 10 min and plasma removed. 

Erythrocytes were washed in PBS (pH 7.4) followed by centrifugation. Supernatant 

was removed and erythrocytes resuspended to original volume followed by dilution at 

1:50 in PBS at pH 7.4, 6.0 or 5.5 before 190 µL of these dilutions were loaded into 

wells of a 96-well plate and mixed with 10 µL LLO or GFP-LLO at varying 

concentrations. A positive control of 0.1% Triton X100 was included to induce 

complete lysis of erythrocytes in a separate reaction. An untreated sample and blank 

were also included. Plates were incubated at 37°C for 1 hour after which absorbance 

readings  were measured at 540 nm. Zero (blank) and 100% haemolysis was 

determined using PBS (pH 7.4, 6.0 and 5.5) and 0.1% Triton X100, respectively. All 

other groups were expressed as a percentage of the positive control, as previously 

described (van Staden et al., 2012). 

3.6. Microbial Effector Coating onto Carboxylate Modified Beads 

For in vitro testing with primary macrophages, the microbial effectors were coated onto 

200 nm carboxylate modified crimson polystyrene beads (Thermo Fisher; F8806). 

Bead stock (3.4x1012 beads/mL) was diluted into 100 µL 2-(N-

morpholino)ethanesulfonic acid (MES) buffer (50mM, pH 5.2) to a final concentration 

of 3.4x1011 beads/mL and incubated for 1 hour at 23°C. Beads were collected by 
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centrifugation at 10 000 rpm for 10 min at 23°C. The supernatant was removed and 

100 µL LLO (470 µg/mL) and 100 µL ActA (450 µg/mL) were added to the bead 

solution and incubated at 23°C for 4 hours. Beads were then washed three times with 

PBS before adding 100 µL O+ donor serum.  

Effective bead coating was evaluated using SDS-PAGE, samples were collected of 

stock LLO, ActA and LLO/ActA mixture before coating as well as supernatant after 

coating. Gels were analysed using ImageJ software (1.52a) to determine intensities of 

bands. The LLO and ActA (intact) stock bands were used to determine purity of 

respective effectors added to beads. In order to estimate bead coating the intensities 

of bands corresponding to LLO or ActA (intact) originally added to beads was 

subtracted from that remaining in the supernatant after coating. 

3.7. Confocal Microscopy for Actin Polymerisation Activity 

Sodium citrate (3.2%) vacutainers were used to isolate donor peripheral blood. Blood 

was centrifuged at 1500 x g for 10 min at 4˚C, supernatant was removed and washed 

with PBS. After washing, 2.16x1010 cells were lysed in 2x lysis buffer (2 M Tris-HCl, 

pH 7.0, 1.2 M KCl, 2 mM DTT, 1 mM MgCl2, 2 mg/mL Tween-20, 7.5% (w/v) Triton 

X100, and 0.2 mM protease inhibitors) for 30 min at 23˚C (modified from Schafer et 

al., 1998). Buffer was removed by centrifugation at 10 000 RPM for 10 min at 23˚C. 

Lysate was resuspended in ddH2O and transferred to a protein concentrator tube. 

Lysate was centrifuged 3 times at 4000 x g for 30min to desalt the sample, after which 

it was resuspended in PBS and centrifuged again. This reduced the Tris-HCl 

concentration to 0.013M. Additional 0.2 mM protease inhibitors were added. Lysated 

RBCs were labelled with Oregon Green Phalloidin at 0.5 µL/mL (0.5x working 

concentration) and exposed to ActA coated beads (ActABeads) at 6.8x108 beads/mL. 

In order to facilitate actin polymerisation, free ATP was added at 2 µL/mL of 10x assay 

buffer (500 mM Tris-HCl, 100 mM MgCl2, 10 mM ATP, 100 mM DTT, pH 7.5). Lysates 

were loaded into an 8-chamber slide and imaged at 100x magnification using a Carl 

Zeiss LSM780 confocal microscope with ELYRA S.1 super resolution platform (Carl 

Zeiss, Germany) and analysed using the ZEN black edition imaging software.  
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3.8. Confocal Microscopy of Fixed Actin Polymerisation 

Isolated human macrophages (1x106 cells/mL) were treated with 3.4x108 beads 

coated with LLO and ActA (LLOActABeads) and incubated at 37˚C with 5% CO2 under 

80% humidity 1 hour and 2 hours, respectively, before being fixed with 4% 

paraformaldehyde for 10 min. Fixed cells were labelled with 1 µL/mL (1x) Oregon 

Green Phalloidin to determine actin polymerisation. Cells were imaged using a Carl 

Zeiss LSM780 confocal microscope (Carl Zeiss, Germany) and analysed with ZEN 

black edition imaging software. This pilot study was done to test ActA activity prior to 

higher throughput assessment using imaging flow cytometry.   

3.9. Live Cell Imaging of Listeria monocytogenes 

Listeria monocytogenes EDG-e was inoculated in 10 mL Brain heart infusion broth 

overnight. An aliquot of the overnight culture (1 mL) was centrifuged at 10 000 rpm 

and cells washed three times with PBS (pH 7.4). After wash steps cells were 

resuspended in 1 mL PBS (pH 7.4), resulting in a concentration of ~ 3.9 x 109 CFU/mL. 

Listeria monocytogenes EDG-e were added to macrophages at a concentration of 

6.83 x 106 CFU/150µL culture media (multiplicity of infection > 22). 

Time lapse videos of infected macrophages were taken on a Carl Zeiss LSM780 

confocal microscope (Carl Zeiss, Germany) with ZEN black edition imaging software 

at 100x magnification. 

3.10. Bead Expulsion Assay using Imaging Flow Cytometry 

The AMNIS imaging flow cytometer has the unique ability of analysing samples at high 

throughput while simultaneously taking an image of every event, producing a highly 

reliable quantitative as well as qualitative results. Different methods of lifting 

macrophages from culture surfaces were tested to determine optimal conditions in 

terms of cell survival and immunocytochemistry fluorophore preservation prior to 
analysis via imaging flow cytometry (Appendix 3). The optimal detachment method of 

‘23°C Accutase Fix’ is described here. In order to assess time dependant expulsion of 

beads, macrophage populations were exposed to either 6.8x108 LLOActABeads or 

serum coated beads (SerumBeads). These cells were then incubated at 37°C with 5% 

CO2 under 80% humidity in separate 35 mm tissue culture dishes (Bio-Smart 
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Scientific; 20035) for each time point. Culture dishes were removed from incubation 

from the 15 min time point at 10 min intervals up to 75 min, media was aspirated and 

replaced with 1 mL 23°C Accutase. Dishes were then incubated at 23°C for 10 min 

before adding an additional 1 mL 23°C Accutase and incubating for another 10 min. 

Cells were carefully scraped using a cell scraper and transferred to 15 mL tubes for 

centrifugation at 400 x g for 10 min at 23°C in a swinging bucket centrifuge. 

Supernatant was discarded and pellet resuspended in 200 µL BD 

Fixation/Permeabilization solution (BD Biosciences; 554714) containing Hoechst 

(Sigma-Aldrich; 33342) and Oregon Green 488 Phalloidin at 5 µL/mL (0.5x) and 0.25 

µL/mL (0.25x), respectively. Cells were then incubated at 4°C for 20 min to allow for 

fixing, permeabilization and staining before centrifugation at 400 x g for 10 min at 23°C. 

Supernatant was discarded and the stained cell pellet was resuspended in 50 µL BD 

Perm/Wash solution (BD Biosciences; 554714) before being analysed on the 

ImageStream Mark II AMNIS imaging flow cytometer (Millipore Sigma, United 

Kingdom) using IDEAS acquisition software (version 6.2). Appropriate gates were 

drawn on the Aspect Ratio vs. Area graph to exclude debris, and the autosampler was 

set to record and count 10 000 events in the cell gate per sample. Illumination settings 

were set at 40 mW for 405 nm laser (Hoechst: nuclei), 100 mW for 488 nm (Oregon 

green phalloidin: actin) and 75 mW for the 642 nm laser (Crimson red: beads). 

Magnification was set at 60x with EDF (Extended Depth of Field) selected and 

instrument set to highest sensitivity with lowest speed. A spot count analysis was set 

up to determine intracellular bead count. After applying the previously determined 

focussed cells and single cells, the truth populations were chosen. Cells were 

organised according to Intensity MC Channel11 (bead channel). Low truth populations 

were chosen by selecting cells containing 0-1 bead and high truth populations were 

chosen from cells containing the highest number of beads in this channel. A total of 

50 cells were chosen for each truth population. To determine the average amount of 

beads/cell, the cumulative number of beads present in all bead-containing cells were 

averaged according to the number of cells in the sample for each time point. To 

determine the number of phagocytically active cells, the percentage cells of the total 

cell population containing 1 or more beads was recorded. 
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3.11. Statistical Analysis 

All statistical analysis was done using Graph Pad Prism 5. All data are presented as 

means ± SEM. Linear regression and ANOVA with Bonferroni host-hoc tests were 

conducted where appropriate. A p-value of < 0.05 was considered statistically 

significant. 
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Chapter 4: Results 

4.1. Heterologous Expression and Yield of LLO and ActA GFP 
Fusions 

Recombinant GFP-LLO and GFP-ActA-GST were successfully expressed in E. coli 

and expression/purification were validated using SDS-PAGE analysis. SDS-PAGE 

analysis indicated fluorescent protein products corresponding to a size slightly lower 
than that of LLO fused to GFP (~85 kDa; Figure 4.1). This is due to the samples not 

being boiled, which is important to maintain GFP fluorescence, causing GFP-LLO to 
migrate faster through the gel (Appendix 4). Liberation of LLO from its GFP fusion 

partner was achieved using the WELQut protease with amino acid recognition 

sequence W-E-L-Q-↓-X. Cleavage with WELQut was performed at several 

concentrations and as expected, liberated LLO increased with protease concentration, 
with 0.4 U/µg resulting in the best cleavage (Figure 4.2). Both GFP and WELQut 

protease contain His-tag sequences, making it possible to remove them through 

IMAC. Using this method LLO was separated from its fusion partner and from the 
protease (Figure 4.3). Liberated LLO corresponded to the correct size of ~56 kDa 

when separated using SDS-PAGE (Figure 4.4). The purity of LLO after purification 

was satisfactory with a single band observed after separation with SDS-PAGE 
(Figures 4.3, 4.4).  

 
Figure 4.1: SDS-PAGE of heterologously expressed GFP-LLO. Left: Stained gel, Right: 
Fluorescent image of GFP-LLO. L: Ladder (NEB ladder #P7712), 1: GFP-LLO eluted from IMAC column 
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Figure 4.2: SDS-PAGE of GFP-LLO cleavage. Left: Stained gel, Right: Fluorescent image of GFP-
LLO and GFP. L: Ladder (NEB ladder #P7712), 1: GFP-LLO (1 mg/mL), 2-5: GFP-LLO cleaved with 
WELQut protease at 0.02 U/µg, 0.04 U/µg, 0.2 U/µg 0.4 U/µg, respectively. A: GFP-LLO, B: LLO, C: 
GFP, D: WELQut protease. 
 
 
 

 
Figure 4.3: SDS-PAGE of GFP-LLO cleavage and IMAC purification. Left: Stained gel, Right: 
Fluorescent image of GFP-LLO and LLO. L: Ladder (NEB ladder #P7712), 1: Uncut GFP-LLO, 2-7: 
Flow through from IMAC purification using increasing concentrations of imidazole, 10 mM, 20 mM, 30 
mM, 40 mM, 50 mM and 500 mM, respectively. A: GFP-LLO, B: LLO, C: GFP, D: WELQut protease. 
Cleavage reaction adjusted to final imidazole concentration of 10 mM before loading onto gel 
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Figure 4.4: SDS-PAGE of purified GFP-LLO and LLO used in erythrocyte lysis assay. Left: 
Stained gel, Right: Fluorescent image of GFP-LLO and GFP. L: Ladder (NEB ladder #P7712), 1: Uncut 
GFP-LLO, 2: Cleaved, IMAC purified and desalted LLO. A: GFP-LLO, B: LLO. 
 

Purification of ActA proved to be more challenging due to degradation during 
expression and purification and required some optimisation (Appendix 2). In order to 

increase yields of intact ActA a dual purification method was used. In order to use two 

affinity chromatography methods His tagged GFP and GST was fused to the N- and 

C-terminals of ActA, respectively. From SDS-PAGE analysis, clear degradation can 

be seen in samples collected from the first IMAC purification steps (in red frames 
Figure 4.5). The second purification step, utilizing the GST-tag (and glutathione 

agarose), yielded a pure product with little to no degradation (lane 5 of Figure 4.5). It 

should be noted that ActA has been shown to have aberrant migration when 

separating with SDS-PAGE, this is most likely due to its high proline content (Noireaux 

et al., 2000). To liberate ActA-GST from its fusion partner the same protease employed 

for GFP-LLO was used. After cleavage of GFP-ActA-GST a clear drop in the band 

(and fluorescence) corresponding to GFP could be observed along with the liberation 
of ActA-GST (lane 6 of Figure 4.5). Additional bands were observed after desalting 

and concentrating steps and possible degradation of the ActA product during the 16 

hours cleavage step can be observed (Figure 4.5). The purity of ActA-GST after 

affinity chromatography and desalting/concentration was also satisfactory (lane 8 of 
Figure 4.5). 
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Figure 4.5: SDS-PAGE of GFP-ActA-GST purification. Left: Stained gel, Right: Fluorescent image 
of GFP-ActA-GST and GFP. L: Ladder (PageRuler #26632), 1: IMAC flow through, 2: IMAC elution 
containing GFP-ActA-GST, 3: Dilution of IMAC elution before GST purification, 4: Flow through from 
GST column, 5: Elution from GST column containing GFP-ActA-GST, 6: WELQut protease cleavage of 
GFP-ActA-GST eluted from GST column, 7: Flow through from IMAC column containing ActA-GST after 
WELQut digestion, 8: Desalted and concentrated ActA-GST obtained from IMAC flow through. A: GFP-
ActA-GST, B: ActA-GST, C: GFP. Degradation products are outlined in red. 
 

Optimal GFP-LLO yields where obtained when expression was induced with 0.5 mM 

IPTG resulting in a GFP-LLO concentration of 109.01 mg/L and LLO concentration 

(after cleavage and purification) of 51.48 mg/L. Degradation of GFP-ActA-GST during 
expression and purification (Figure 4.5) resulted in a lower yield compared to GFP-

LLO with a final yield of ActA-GST of 890.35 µg/L.  

4.2. Microbial Effector Activity 

4.2.1. Haemolytic Activity of GFP-LLO and LLO 

The activity of purified GFP-LLO and LLO was determined in terms of its capacity for 

haemolysis of human donor erythrocytes (Figure 4.4 and 4.6). Potent LLO haemolytic 

activity was observed at pH 6.0 and 5.5, with LLO concentrations as low as 0.043 

ng/200µL (0.215ng/mL) resulting in haemolysis (13.03 % ± 0.4561), whereas 

significant reductions in haemolysis is observed at higher pH (pH 6.0: 4.026% ± 0.4478 

and no relative haemolysis at pH 7.4; Figure 4.6). This trend is also seen at 

0.43ng/200µL (2.15ng/mL) LLO where a pH of 7.4 (0.2110% ± 0.06090) resulted in 

significantly less haemolysis when compared to pH 6.0 and 5.5 (pH 6.0: 41.63% ± 

0.8381 and pH 5.5: 63.01% ± 0.6482). Thus, purified LLO had potent activity by 

inducing haemolysis especially at pH levels below that of physiological pH 7.4. Higher 

concentrations seemed to have saturated the sample to overburden pH dependency, 
subsequently inducing complete haemolysis at all pH levels including pH 7.4 (Figure 
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4.6). Of note, an upward trend in haemolysis from pH 7.4 to 5.5 is still observed, 

indicating that pH levels still play some role at higher concentrations. A two-way 
ANOVA of the data presented in Figures 4.6 and 4.7 was conducted to determine the 

effect of dose as well as pH.  

 
Figure 4.6: Erythrocyte haemolysis following LLO exposure at varying pH. Relative haemoglobin 
absorbance was collected at 540 nm, values expressed as percentage of positive control, mean ± SEM 
(n=3). Analysis via Two-way ANOVA. Brackets indicate p < 0.05. * = p < 0.05 vs Untreated. 
 

The activity of GFP bound LLO was also determined (Figure 4.7). The GFP-LLO 

haemolytic activity was significantly active below physiological pH at concentrations of 

0.0125ng/200µL (0.0625ng/mL) (pH 6.0: 4.890% ± 0.5885, pH 5.5: 14.17% ± 1.144; 
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Figure 4.7). Similar to LLO, haemolytic activity increased with increasing GFP-LLO 

concentration with haemolytic activity observed at pH 7.4 when GFP-LLO 

concentration is increased to and above 12.5ng/200µL (62.5ng/mL; 52.51% ± 1.206)  

 
Figure 4.7: Erythrocyte haemolysis following GFP-LLO exposure at varying pH. Relative 
haemoglobin absorbance was collected at 540 nm, values expressed as percentage of positive control, 
mean ± SEM (n=3). Analysis via Two-way ANOVA. Brackets indicate p < 0.05. * = p < 0.05 vs Untreated. 
 

4.2.2. Bead Coating 

The approximate concentration of the LLO and ActA-GST (intact) coating was 

determined at ~21.02 µg and ~11.09 µg, respectively coated onto 3.4x1010 beads 
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(Figure 4.8). Indicating ~0.62 ng LLO with ~0.33 ng ActA coated onto each 0.2 µm 

bead.  

 
Figure 4.8: SDS-PAGE of LLO and ActA before and after coating onto beads. L: Ladder (Biorad 
#1610363), 1: ActA stock, 2: LLO stock, 3: Mixed LLO and ActA stock, 4: Supernatant of mixed LLO 
and ActA stock after coating (residual LLO and ActA left over after coating). A: ActA, B: LLO. 
 

4.2.3. Actin Polymerisation Activity of ActA 

The ability of ActA to polymerise actin was assessed by exposing erythrocyte lysates 

to polystyrene beads coated with ActA (ActABeads). Figure 4.9 shows actin 

polymerisation ‘clouds’ (white arrows) occurring in response to ActA. These clouds 

seem to start forming at 60 min post introduction of beads and tether beads to one 

another. This is apparent when considering the absence of these ‘clouds’ during 

SerumBeads exposure at the same time point. Some background polymerisation is 

observed. 
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Figure 4.9: Actin polymerisation induced by exposure to ActABeads. Panels indicate marked actin 
polymerisation ‘clouds’ when exposed to 1x (45.00µg), 0.5x (22.50µg) and 0.25x (11.25µg) ActABeads 
(white arrows), compared to SerumBeads control at the same time point. All frames indicate 
polymerisation at 70 min after introduction of beads. 
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4.2.4. In Vitro Validation of Actin Polymerisation 

The macrophages shown in Figure 4.10 were exposed to live L. monocytogenes and 

allowed to infect cells for 3 hours. Live cell time lapse images were collected with 

phase contrast to determine analysis time points for later LLOActABeads infection. 

From 2 hours post infection the cells showed actin polymerisation (white arrows), 

induced by L. monocytogenes infection. When comparing this to a different cell 

population at ~5 min post infection, no such actin polymerisation is observed, rather 

extension of pseudopodia is seen. Importantly, the phenomenon of membranous actin 

polymerisation is also seen when cells are exposed to synthesised effectors (Figure 
4.11), supporting induction of similar cellular processes when exposed to our synthetic 

microbe coated beads. Previous reports have shown these membrane actin spikes 

(Ishida et al., 2019), however, those present are significantly more in comparison. 

Additionally, marked cell shrinkage can be observed at 3 hours post infection, likely a 

process related to expulsion and intracellular pathogen load. (One limitation of this 

experiment was the inability to visualise L. monocytogenes associated actin comets. 

This is due to the inability of labelling live cells with the phalloidin actin stain. A pilot 

study was launched to determine possible phagocytosis of the label (Appendix 5), 

however, the stain remained within phagosomes, isolated from cytosolic actin 

filaments.)   
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Figure 4.10: Morphological changes during L. monocytogenes infection. Representative phase 
contrast images show actin polarisation of a primary human M1 macrophage, as evidenced  by 
membranous “spikes” protruding from the macrophage membrane (white arrows).  
 

Actin polymerisation induced by LLOActABeads was also confirmed in vitro using 
confocal microscopy (Figure 4.11). After two hours of exposure to LLOActABeads, 

human primary M1 macrophages exhibited greater actin polymerisation and 

membrane extensions or ‘spikes’ (white arrows) compared to cells at 1-hour, as well 

as previous reports of homeostatic membrane ‘spikes’ (Ishida et al., 2019). This is 

apparent when considering that only membrane extrusions, likely associated with cell 

movement, is observed in the SerumBeads control group. No rigid actin spikes can be 

seen protruding from membranes at either 1-hour or 2-hour time points during 

SerumBeads infection. These findings were satisfactory to progress this protocol into 

high throughput assessment for quantitative evaluation.  
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Control: SerumBeads 

 
Treated: LLOActABeads 

 
Figure 4.11: Confocal microscope assessment of actin polymerisation. Images of separate cell 
populations exposed to SerumBeads and LLOActABeads, indicating extent of actin polymerisation 
(white arrows) at two time points. 
 

4.3. Cargo Expulsion: Quantitative Data  

Representative images of morphological changes in cells undergoing different 
engulfment and expulsion phases are presented in Figure 4.12. Bead count and 

localisation is observed as well as pseudopodia (blue arrows) and actin polymerisation 

(“membrane spikes”) (white arrows). Pseudopodia protrude from macrophages under 

both SerumBeads and LLOActABeads conditions at the 15 min time point, indicating 
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that engulfment is initiated in similar time frames while the coated effectors has not yet 
been activated (rows A and E of Figure 4.12). Accumulation of beads inside 

macrophages over time was observed in cells exposed to SerumBeads, but not those 

exposed to LLOActABeads (rows A-D and rows E-H of Figure 4.12, respectively). 

Almost all cells produced membrane spikes when exposed to LLOActABeads (rows 
F-H of Figure 4.12). This was particularly pronounced at 75 min and suggests that 

expulsion of beads through these spikes had occurred (Figure 4.12). Of interest, when 

considering the location of beads still inside host macrophages (Figure 4.13), 

SerumBeads seemed to be homogenously distributed throughout cells whereas 

LLOActABeads tend to localise toward the periphery. This could potentially be linked 

to the occurrence of actin polymerisation and should be quantitatively evaluated as an 

additional marker indicative of bead expulsion efficacy. 
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Figure 4.12: Phagocytic phases under control and effector treated conditions over time. 
Macrophage populations were exposed to SerumBeads or LLOActABeads for different time periods. 
Blue arrows: pseudopodia. White arrows: actin membrane spikes. Accumulation of beads is seen 
under SerumBeads exposure. BF1: first bright-field channel. 
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Figure 4.13: Intracellular bead location at 75min post infection. Representative images of 
macrophages at the same time point suggest a tendency for bead distribution predominating at the 
periphery of cells during LLOActABeads exposure.  
 

Most significant in terms of the current aim, was the intracellular accumulation of 

SerumBeads in macrophages over time, while  a significantly smaller accumulation of 
LLOActABeads was recorded (ANOVA main effect of treatment, p < 0.01; Figure 
4.14). 
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Figure 4.14: Number of beads per cell during exposure to SerumBeads and LLOActABeads. 
Average number of beads per cell given for effector treated (LLOActABeads) and control (SerumBeads) 
over time. Data points are means and error bars indicate SEM. Statistics: #, ANOVA main effect of 
treatment, p < 0.01. 
 

In addition, the percentage of cells containing intracellular beads (i.e. cells actively 

participating in phagocytosis) remained similar for the two treatment conditions 
(Figure 4.15). No significant inhibitory effect of effector coating on cellular bead uptake 

was observed (Figure 4.15). Furthermore, our pilot data showed satisfactory 

engulfment of 4 µm beads when coated with LLO (Appendix 6). Additionally, both 

conditions had a near identical bead/cell average at the 15min time point (Figure 
4.14), further hinting that exposure to effectors does not have an inhibitory effect on 

cellular bead uptake. Together, this suggests that the reduced number of beads seen 

under LLOActABeads exposure can only be attributed to a progressive loss or 
expulsion of beads from cells (Figure 4.14).     
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Figure 4.15: Percentage of cells actively participating in phagocytosis during SerumBeads and 
LLOActABeads exposure. Percentage of bead containing cells per population over time, indicate a 
similar number of cells during both conditions. Data points are means and error bars indicate SEM. 
Statistics: ANOVA main effect of treatment, p = 0.75. 
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Chapter 5: Discussion 

The majority of research focused on host-microbe interaction to date has been aimed 

at prevention of microbial infection or dissemination through identifying the active 

effectors or characterizing the redundant signalling pathways involved (Proal et al., 

2017; Ireton et al., 2018). In contrast, with this project we set out to identify functionality 

and utilisation of microbial effectors for therapeutic outcome. This builds on our 

previous work where ingestion and intracellular preservation of cargo has been 

achieved, while maintaining the transmembrane migratory capacity of carrier cells 

(Visser et al., 2018). In a paradigm-shifting approach, we decided to re-use this 

knowledge of microbes in a novel manner: our approach was to engineer a system 

that would promote dissemination of beneficial components/compounds rather than 

microbes themselves. In particular, we proposed to facilitate release of therapeutic 

cargo from carrier cells through the activity of specific microbial effectors and their 

manipulation of the host cell signalling pathways involved in expulsion mechanisms. 

Our previous work utilised microbial metabolites in a similar manner to induce 

phagosome maturation arrest and subsequent preservation of ingested cargo (Visser 

et al., 2018). Maturation arrest is however only transiently induced (with these 

metabolites and other compounds) allowing a period in which macrophages can move 

toward the target area before maturation arrest is lost and expulsion initiated. In this 

regard non-lytic release is advantageous as deposition of additional M1 type carrier 

macrophages into target areas would facilitate resolution of infection/inflammation 

(Abbas et al., 2014). In order to achieve our initial aim of  identifying adequate microbial 

effectors, the current literature needed to be evaluated in terms of the efficacy of 

inducing expulsion from carrier cells. Adequate knowledge of known expulsion-

inducing effectors with their signalling pathways and the possibility to obtain these 
effectors for experimental testing also needed to be addressed (Chapter 2). Following 

identification, focus was placed on how effectors could be synthesised, validated for 

purity and activity and tested in vitro. The subsequent sections will discuss how our 

methodological approach, and the results obtained, aided in the development of a cell-

based drug delivery system. 
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5.1. Microbial Effector Identification 

An important hallmark for effector identification was non-lytic release of cargo from 

carrier cells. As mentioned elsewhere, this would deposit additional functional M1 

macrophages to the target site. Due to macrophage plasticity (Mosser et al., 2008) 

these cells could then shift toward a M2 phenotype and contribute to resolution of 

inflammation/damage. Therefore, focus was initially placed on the vomocytosis 

capability of Cryptococcus neoformans due to the possibility of maintaining carrier cell 

viability following this form of expulsion (Johnston et al., 2010). However, our initial 

experimentation elucidated that vomocytosis is a rare event (7 out of 100 000 cells) 
and responsible effectors are largely unidentified (Appendix 7). This could be 

attributed to the fact that C. neoformans does not seem to have  directly evolved with 

the purpose of evading the host immune system (Steenbergen et al., 2003) – at least 

in part because it seems dependent on host immunity for its ability to infect host cells, 

as poor infective capacity has been reported for C. neoformans in the absence of 

opsonisation (Johnston et al., 2013). Conversely, others have shown engulfment of L. 

monocytogenes to be independent of opsonisation (Pierce et al., 1996), a finding 
confirmed by our own results (Figure 4.9). Therefore, we shifted our attention to 

effectors already identified in other intracellular pathogens which are known to 

successfully evade host immunity. The keystone bacterium Porphyromonas gingivalis 

exhibits similar mechanisms of expulsion, with the advantage (at least in the current 

context) of almost exclusively disseminating in a non-lytic fashion (Takeuchi et al., 

2011). The high incidence of expulsion from host cells made this microbe a more 

desirable candidate compared to C. neoformans. Reports indicate 44% infection after 

24h incubation of uninfected cells with P. gingivalis containing cells (Yilmaz et al., 

2006), indicating the effectivity with which this bacterium can spread throughout the 

periodontium. These mechanisms are likely actin dependant and evade humoral 

immunity through direct cell-to-cell spread. However, the mechanisms of action 

responsible for this effective dissemination are even less well understood than those 

of C. neoformans. Nonetheless, from our review of the literature (as presented in 
Chapter 2), we identified a key similarity in these and other reports on microbial 

egress: the majority of literature consulted seems to describe a requirement for 

phagocytic engulfment with phagosomal manipulation by the microbe to maintain its 

own viability and even assist in its proliferation. This immune evasion technique is then 
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commonly followed by an actin polymerisation-dependent mechanism of egress from 

the host cell. Therefore, we shifted our focus to the better understood mechanisms of 

L. monocytogenes.  

5.1.1 Mechanisms of Listeria Effectors LLO and ActA 

The main effectors responsible for L. monocytogenes egress are LLO and ActA. 

Briefly, LLO create pores in the phagosomal membrane when under acidic pH 

conditions, to induce its escape into the cytosol (Alberti-Segui et al., 2007). Once in 

the cytosol,  activity of ActA is reported to induce actin polymerisation in the more 

physiological pH of the cytosol (Skoble et al., 2000). These effectors are not produced 

by other microbes; however, similar mechanisms of action are employed, and 

homologues do exist. Pore forming toxins other than LLO are produced by other 

bacteria and not only induce pore formation but also manipulate carrier cell ion 

concentration, manipulating infected cells in more subtle ways (Dal Peraro et al., 

2016). Furthermore, a similar actin polymerizing factor to ActA is produced in Shigella 

flexneri (IcsA) (Welch et al., 2013). ActA and IcsA are not homologues and induce 

polymerisation in distinct manners, but still achieve a similar outcome. For example, 

LLO negative mutants of L. monocytogenes are able to infect neighbouring cells via 

cell-to-cell spread but are unable to escape from these host cells. These microbes are 

harboured inside double membrane vesicles and are unable to disseminate due to 

absence of LLO pore formation (Gedde et al., 2000). Similarly, the absence of ActA in 

L. monocytogenes infection has been reported to render intracellular bacteria immotile 

and markedly non-infectious (Pillich et al., 2017). Thus, these effectors are of pivotal 

importance for L. monocytogenes dissemination and survival and use of these 

effectors in a synthetic microbe system would be advantageous. Purchased microbial 

effectors are expensive, and availability is limited. In addition, a substantial amount of 

effector would be needed for experimentation in a novel project like this. Given the risk 

involved in an ambitious endeavour such as proposed here, the high cost of effectors 

could not be justified. Practically, 50 µg of LLO costs ~$263 (Abcam) whereas we 

produced >50 mg/L for ~$145 ($0.145 per 50µg) In addition, we could only source 

ActA from MyBioSource at ~$775 for 50 µg and delivery to South Africa is limited. 

Furthermore, commercially available effectors are limited to those that are well-studied 

and commercially viable. This limits the combinations of effectors that can be used, 
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especially if working with novel effectors. In order to overcome these limitations 

heterologous expression was utilized. 

5.2. Effector Synthesis 

Previously, LLO has been purified from L. monocytogenes directly - however, these 

methods resulted in low yield and were relatively time consuming (Traub et al., 1995). 

Other authors turned to purification of LLO from E. coli to increase yields while lowering 

production time (Churchill et al., 2005). Methods for purification of ActA have also been 

established (Kocks et al., 1993; Welch et al., 1998; Noireaux et al., 2000; Skoble et 

al., 2000). These purified proteins had appropriate activity by either erythrocyte lysis 

(LLO) or actin polymerisation (ActA). Most notably, recombinant LLO has been used 

for the effective delivery of several compounds to the cytosol of cells (Mandal et al., 

2002; Provoda et al., 2003; Stier et al., 2005). However, yields needed to be further 

improved for our application.  

Fusion of proteins to GFP for heterologous expression have been previously reported. 

This fusion helps in soluble expression of functional proteins and has recently been 

reported by our group for the expression of lanthipeptides (van Staden et al., 2019) 
(used in Chapter 3). Similar methods have also been employed for the expression of 

LLO (Kwiatkowska et al., 2017) and ActA (Noireaux et al., 2000). However, these 

studies did not focus on increasing protein yields or using GFP fluorescence during 

purification. Using this method, we isolated sufficient protein for experimentation in our 

synthetic microbe system, while maintaining appropriate haemolytic and actin 

polymerizing activity for synthesised LLO and ActA, respectively. Of note is the 

heterologous GFP-linked expression method used for LLO resulting in significantly 

greater yields (> 50 mg/L) when compared to previously reported yields of 3.5 – 8 

mg/L (Churchill et al., 2005). In terms of haemolytic capacity of LLO in particular, a 

noteworthy additional finding was that GFP-fused LLO showed appropriate pH 

dependant haemolytic capacity of similar potency when compared to unbound LLO, 

suggesting that GFP-fusion does not affect activity of LLO. This is particularly 

interesting as GFP fusion could be used in future studies to easily determine the 

intracellular location of exogenous LLO, while maintaining the pH-dependent pore 

forming capacity of this toxin.  
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The pH-dependant nature of LLO pore formation is advantageous in a synthetic 

microbe system as this opens possible manipulation methods. For example, the pore 

forming capacity can be controlled for by inducing phagosome maturation arrest, 

leading to prolonged phagosome alkalinity. Thus, allowing a window period during 

which the carrier cells are able to reach the target location for delivery. Upon reaching 

the site, transient maturation arrest would be lost, and acidification induced LLO pore 

formation occurs to release the therapeutic cargo. In this regard, we have conducted 

a pilot study to determine the temporal limit of phagosome maturation arrest at 

between 2-3 hours post exposure to a phagosome maturation arrest inducing cocktail 
(Appendix 8). 

The use of a dual tagged system has previously been used for the expression of ActA 

(Noireaux et al., 2000). In this study the authors used an N-terminal GST-tag and a C-

terminal His-tag, without removal of the N-terminal tag after purification. Using the 

method described in our study we were able to visualize expression (through GFP 

fluorescence) during the different purification steps as well as the degradation that 

takes place. Furthermore, by removing the N-terminal GFP-tag our construct more 

closely resembles that of native ActA found on the membrane of L. monocytogenes.  

5.3. Validation of In Vitro Effector Activity 

Following confirmation of appropriate activity in solution, these effectors were coated 

onto beads to determine their capacity to induce expulsion from carrier cells. These 

beads represented the cargo of interest. Carboxylate modified beads were used as 

previous reports indicate that ActA does not bind to hydrophobic latex (Footer et al., 

2008). In addition, 0.2 µm beads were chosen due to previous reports of directional 

actin polymerisation-induced movement following coating of 0.5 µm carboxylate 

modified beads with ActA (Cemeron et al., 1999). Furthermore, current drug delivery 

systems utilise cargo of ~ 0.2 µm in size (Kleynhans et al., 2019), similar to the size of 

our cargo. 

These findings indicated a good likelihood for these LLOActABeads to induce 

expulsion from carrier cells. Initial evaluations were conducted via confocal 

microscopy and time lapse imaging to pinpoint expulsion. However, due to the lower 

optical range of 0.2 µm on the confocal microscope and the abundance of beads 
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present in samples, an unbiased evaluation could not be guaranteed. Larger beads 

conjugated with the required fluorophore could also not be sourced, thus 0.2 µm beads 

had to be used. The inability to differentiate a released bead from beads that have not 

yet been taken up was also problematic. Furthermore, this process was extremely time 

consuming and costly with a relatively low experimental success rate. Thus, we opted 

for high throughput assessment where the entire sample could be quantitatively 

analysed to determine cellular bead content. We acknowledge the importance of time 

lapse microscopy as definitive visual proof. However, our option of imaging flow 

cytometry is superior to time lapse confocal microscopy in terms of generation of 

quantitative data. Our approach allowed for greater statistical power and takes the 

entire sample into consideration, thereby generating an unbiased quantitative data set.  

High throughput analysis showed accumulation of intracellular beads under control 

conditions with a significantly lower accumulation during effector exposure. This 

phenomenon indicates that effector exposure induced either expulsion of intracellular 

beads or reduced the initial uptake of beads. The percentage of cells containing any 

number of beads were counted during each time point and treatment condition. This 

number indicates the percentage of cells that were able to phagocytose the cargo. A 

reduction in this percentage indicates that less cells were able to phagocytose the 

beads, and this would be reflected in the number of beads per cell. Here we found that 

the percentage of cells containing any number of beads remained the same for time 

and treatment (Figure 4.15). The number of beads per cell in the earliest 15 min time 

point of Figure 4.14 is also surprisingly similar for LLOActABeads and SerumBeads, 

indicating a similar propensity for engulfment under both conditions. Thus, 

LLOActABeads exposure induced expulsion of these beads over time and reduction 

thereof cannot be attributed to weaker bead engulfment. This is a novel discovery as 

no previous reports have shown intended and induced expulsion of cargo from carrier 

cells, using microbial effectors, in the absence of infection. 

Macrophages exposed to LLOActABeads presented marked actin polymerisation as 

well as clear membranous actin spikes. This is in accordance with reports of actin 

propelled membrane protrusions that are taken up by adjacent cells during L. 

monocytogenes dissemination (Pizarro-Cerda et al., 2012). Listeriolysin-O damages 

the plasma membrane of these protrusions resulting in surface presentation of the 

inner membrane leaflet lipid, phosphatidylserine (PS). These PS+ protrusions are 
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recognised by the T cell immunoglobulin and mucin-domain containing protein 4 (TIM-

4) on macrophages, which subsequently mediates the uptake of PS+ protrusions 

(Czuczman et al., 2014). Expelled bacteria may also be packed into PS+ vesicles, 

formed as a result of Ca2+ dependent membrane repair and scission of the initial PS+ 

protrusion (Czuczman et al., 2014). Both PS+ vesicles and protrusions are similarly 

taken up by neighbouring cells via TIM-4. This method of cell-to-cell spread was 

however not observed in the current study. One reason for this could be that cells were 

located to sparsely relative to each other in this in vitro model, so that reuptake could 

not readily happen. An alternative reason could be that the actin polarisation may have 

interfered with PS vesicle formation, so that expelled cargo was not associated with 

PS, and thus not readily taken up via TIM-4. There is the possibility that residual LLO 

itself could serve as opsonin for reuptake into neighbouring cells, but if this was to 

occur, one would not expect to see the clear decrease in the number of intracellular 

beads in the LLOActABeads group. Thus, although this remains to be definitively 

confirmed in an in vivo model, this does not take away from our data which indicates 

successful bead expulsion. 

For the sake of comprehensiveness, potential alternative interpretations for current 

data should be considered. The fact that each cell could not be labelled and followed 

individually to visually exact bead uptake and expulsion mechanisms, raises the 

possibility that beads could have been expelled via other mechanisms than that 

suggested here. For example, it could be argued that beads were able to passively 

move through the cell membrane, as has been shown for nanoparticles in the past 

(Tammam et al., 2017). However, in the current scenario, it is unlikely that passive 

movement of beads would have resulted in the average number of beads per cell 

being significantly different between the two treatment conditions, as was the case 

here. Seeing as this average was statistically different, it can only be argued that the 

presence of LLOActABeads indeed influenced the cells to induce significantly “loss” 

of beads.  

Furthermore, our data indicated that LLO itself served as an opsonin to upregulate 
bead uptake (Appendix 6). Thus, if no bead expulsion had occurred, one would 

expect a larger percentage of phagocytically active cells and a larger number of beads 

per cell in the LLOActABeads group when compared to the control – the opposite of 

what if reflected in current data  
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It is also necessary to consider that beads may have been expelled via mechanisms 

other than the currently known mechanisms of LLO and ActA. Firstly, it is theoretically 

possible that these effectors induced homeostatic recycling of cargo from 

macrophages, in a manner similar to nutrient digestion and excretion. To determine 

this, one would need to stain for secretory granules and their markers. Nonetheless, 

this is still unlikely as our initial findings indicated a significant influence of ActA on 

actin, evidenced by actin membrane spikes as well as actin ‘clouds’. Furthermore, 

appropriate pH-dependent activity of LLO was also observed. Secondly, considering 

that secretory granules alkalinise during exocytosis (Li, 2017), it could also be possible 

that the effectors induced cellular exocytosis in a manner independent of LLO activity. 

To this end, the phagosome could have alkalinised in preparation to expel its cargo 

into the extracellular matrix, thus, leading to inactivity of LLO in this alkaline 

environment but still ultimately ending in expulsion. This could be addressed in a 

number of ways that will be discussed in the future recommendations section. This 

being said, reports have indicated some effects of LLO on host cell genetic material 

(Hernández-Flores et al., 2015). It could therefore be possible that modulation of gene 

expression induced expulsion from the cell. This option remains to be revisited as 

more information becomes available on the intracellular interactions of LLO, to fully 

explore this possibility. However, none of the aforementioned alternative 

interpretations provides sufficient arguments against our finding that LLOActABeads 

treatment induced some mechanism by which ingested beads exited from the cells 

without damaging them. 

On a technical note, actin spikes observed during LLOActABeads exposure may be 

misinterpreted as pseudopodia. However, there is a marked difference in rigidity 

between the two extruding structures: pseudopodia present as more curved structures 

(See Figure 4.10 and Figure 5.1 for examples) - as expected when considering that 

pseudopodia need to encircle the material of interest in order to engulf it – whereas 

actin spikes present as linear, rigid structures. These actin spikes observed in the 

current study are likely the fluorescent remnants of a bead that has been expelled 

through the membrane via ActA induced actin polymerisation originating from within 

the cytosol. Thus, the expression of high numbers of these spikes in the 

LLOActABeads group confirms that beads were continually being expelled. In addition, 

it is important to note morphological differences between primary isolated 
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monocyte/macrophages and established cell lines such as J774 cells. These cells 

could present marked differences during phagocytosis or expulsion of cargo. One 

example from our group could be mentioned in this regard, where treatment of primary 

macrophages with phagosome maturation arresting agents did not significantly affect 

cell viability, however, treatment of J774 cells with these agents resulted in significant 

viable cell loss (data not shown).  

Furthermore, although LLO is able to perforate membranes, carrier macrophages did 

not exhibit apparent cellular perturbations evidenced by intact cell nuclei. In addition, 

other authors have reported internalisation of LLO coated beads as well as entry of 

noninvasive Listeria innocua into cells, indicating that these effectors are likely more 

opsonising in nature (Vadia et al., 2011). Therefore, we propose that the number of 

beads per cell – and by extension the percentage of phagocytically active cells – would 

be elevated under conditions of LLOActABeads exposure rather than inhibited.   

 
Figure 5.1: Differentiation between pseudopodia and actin spikes. Human macrophage extending 
pseudopodia toward 4 µm polystyrene beads coated with serum. Another macrophage containing 7 
polystyrene beads is also shown. 
 

Together, this provides evidence that the correct combination of synthesised effectors 

can be used to effectively mimic microbial effects on cellular processes, such as matter 

expulsion from phagosomes. Thus, this is novel evidence of how microbial processes 

may be harnessed for therapeutic benefit. 
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Chapter 6: Conclusion and Future Recommendations 

The findings presented here illustrate a novel prototype drug delivery system – the 

synthetic microbe – by which to achieve drug expulsion from human macrophage 

shuttles. A particularly novel approach is the use of harnessing microbial effectors to 

facilitate expulsion, in the absence of infection or micro-organisms, which largely 

negates concerns about risk to the patient recipient. Current data illustrate that the 

microbial effectors, LLO and ActA, can be employed to achieve their native affect 

without adverse outcomes to host carrier cells. This could initiate a paradigm shifting 

research area into the treatment of a plethora of diseases, which are currently 

hampered by limitations such as poor blood supply or high toxicity of pharmaceuticals.  

The exact mechanism with which LLO and ActA induce expulsion also need to be 

addressed by utilising time lapse microscopy. This was not a focus point during the 

current study as the possibility of expulsion needed to be indicated before one could 

endeavour into the exact mechanisms by which this is achieved and determine if the 

above stated mechanisms are at all true. The phagosome of macrophages would 

firstly need to be labelled with Rab5, Rab7 and LAMP1 to determine normal 

phagosome maturation. This would support the acidic activation of LLO and determine 

of the cargo exits the phagosome before expulsion or not. Additionally, to more 

precisely determine this, one could add the acidification marker pHrodo (Thermo 

Fisher) to cells. This marker emits at wavelength 533nm once inside an acidic 

environment and has no excitation/emission at above pH 6 (Visser et al., 2018). Thus, 

it is able to determine if the phagosomes acidify prior to expulsion – supporting activity 

of LLO – or if the phagosomes alkalinise before expulsion – supporting the induction 

of exocytosis in a more homeostatic manner. Furthermore, one could conduct 

transcriptomics to determine a genetic adaptation of host cells due to LLO exposure, 

as previous reports have indicated transcriptional modification (Hamon et al., 2007, 

2012). 

Additional follow-on experiments of the current study include testing of different 

effector concentrations coated onto beads. Future studies could include lower and 

higher concentrations of LLO and ActA to determine a possible dose response in bead 

expulsion over time. This would prevent, possible, over exposure of the patient to LLO 

and/or ActA and limit costs associated with protein synthesis.    

Stellenbosch University https://scholar.sun.ac.za



   
 

75 
 

The processing time required for isolation, culture and manipulation of cells in the 

current project, is a limitation in regard to acute treatment regimes. In an attempt to 

circumvent extended culture periods, we assessed the migratory capacity of 

phagosome maturation arrested monocytes. Unfortunately, this pilot study showed no 

migration of manipulated monocytes. However, these monocytes were able to 

phagocytose cargo. Thus, it is possible that cargo expulsion could also be induced 

within these monocytes, if the need for delaying expulsion is not necessary, making 

this prototype more applicable to acute as well as chronic diseases.  

Together with our previously described prototype – a macrophage drug shuttle – we 

believe that we have now arrived at a complete system for drug delivery which is ready 

for in vivo testing. Aspects which can only be accurately assessed and optimised in 

an in vivo model, include: a) the rate and extent of bead expulsion from host 

macrophages, b) identification of additional components to incorporate into the 

synthetic microbe with which to modulate these aspects for more control over the 

expulsion process, c) confirming the accuracy with which drug delivery occurs focally 

at the intended delivery site only and d) the effect of carrier macrophages on 

inflammation and other cellular and tissue recovery processes after drug delivery.  

Additional aspects regarding development of a polymer coating evaluated through in 

vitro investigation include a) optimisation of cargo coating and effector ratios, b) 

investigation into additional or more effective effectors to incorporate into the multi-

layered polymer coating and c) controlling the accuracy of drug delivery by adapting 

this polymer coating. 

Transient phagosome maturation arrest would need to be utilised to lengthen the 

period of cargo harbouring before effectors are activated and expulsion induced. 

Preliminary findings have been promising to indicate a prolonged period of cargo 

retention before expulsion is initiated. This would allow time for carrier macrophages 

to reach the intended area. The better this resolution of phagosome maturation arrest 

can be controlled, the more likely a burst release of cargo can be achieved. This would 

alleviate previous limitations in conventional drug delivery by administering an 

adequate dose to the target area. In addition, this would prevent excessive host drug 

exposure. Thus, a smaller amount of drug, at a higher concentration can be 

administered to the target area only. 
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The use of a multi-layered nanoparticle coating may also be necessary to facilitate 

more controlled delivery. An outermost pH sensitive layer may lengthen the period of 

cargo harbouring, with incorporation of escape inducing agents (i.e. LLO and ActA) 

into a middle layer (Chapter 2). This will allow time for transient phagosome 

maturation arrest to expire, subsequently lowering phagosomal pH and degrading the 

outermost layer before reaching and releasing this effector treated layer. Furthermore, 

an additional inner most coating could be included to protect the cargo itself from 

phagosomal pH drop and degradation. In addition, this layer could ensure cargo is 

kept intact. This innermost protective layer could also be designed so that it may be 

externally broken down by e.g. ultrasound administration. This would prevent host 

exposure to drugs deposited at unwanted locations. The need for controlled delivery 

can only be evaluated once an in vivo trial has been executed. Similarly, we envisage 

that the type of polymer and/or external triggers will be dictated by the specific 

application for which the synthetic microbe is required. 

In terms of specificity of delivery to required sites, deposition of cargo at unwanted 

locations is unlikely, as macrophages infiltrate into damaged/infected areas during the 

inflammatory process – which is expected to prevail at sites of infection. However, this 

potential risk cannot be ignored, and in vivo evaluation is required to confirm specificity 

of focal delivery. For this reason, patients receiving this treatment would likely need to 

be evaluated beforehand to ensure that no additional sites of inflammation exist. This 

is not an uncommon procedure as patients are readily kept for screening before 

therapeutic intervention. Practically, drug and cell location within the host could still be 

evaluated in real time, during or post treatment. To this end, GFP bound LLO was 

shown to have similar activity to unbound LLO. Thus, pre-clinical in vivo (likely 

zebrafish) testing and optimisation of drug deposition locations should be conducted. 

Furthermore, cell labels such as CellTracker Violet (Thermo Fisher) can be used to 

determine locations of carrier cells during zebrafish in vivo testing. 

Finally, migration of carrier cells to target locations could potentially alleviate 

inflammation due to macrophage phenotype plasticity. Once the delivered drug had 

exerted its antimicrobial effect, the extracellular milieu will change. We hypothesise 

that this may result the carrier M1 macrophages to undergo a phenotype shift toward 

M2 anti-inflammatory macrophages. These macrophages would be able to contribute 

to resolution of inflammation/infection. 
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Taken together, we believe that the findings reported here present a prototype which 

– after rigorous in vivo evaluation and optimisation – has a high likelihood for 

translation into clinical practice. 
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Appendices 

Appendix 1: Basic macrophage biology and the Molecular Basis of 
Phagocytosis 
 
The M1 macrophage phenotype is the only phenotype to have been shown to migrate 
through endothelial barriers (Arnold et al., 2007 b; Chazaud et al., 2009). This 
phenotype is also honed toward particle engulfment and digestion, and is the main 
phenotype to which inflammatory monocytes differentiate (Imhof et al., 2004; Freeman 
et al., 2014). Monocytes have a relatively short lifespan in circulation (10-20 hours) 
(Guyton et al., 2011). Extravasation of monocytes is needed to induce differentiation 
into resident tissue macrophages. This process ensures a significant increase in 
lifespan through the protective and nutrient- and chemokine-rich extra-circulatory 
environment that augment cell survival. The M2 phenotype is more closely associated 
with resolution of inflammation (Abbas et al., 2014) and macrophages do present with 
some phenotype plasticity (Mosser et al., 2008). Thus, it is an additional future aspect 
of this project to determine if delivered M1 macrophages are able to shift toward the 
M2 phenotype after deposition of cargo. This would have to be tested in vivo.  
 
Recognition 
Macrophages recognise matter as foreign via binding to different pattern recognition 
receptors (PRRs) found on immune cells of both the innate and adaptive branch 
(Anderson et al., 2012). PRRs differentiate between molecules released from dying 
self-cells and foreign material through binding to damage-associated molecular 
patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs), respectively 
(Abbas et al., 2014). Self-cells undergoing necrosis release formylated peptides such 
as N-formylmethionine from damaged mitochondria (Zhang et al., 2010). These self-
originating DAMPs can bind to formyl peptide receptors on monocytic cells, initiating 
chemotaxis and eventualy phagocytosis (Bardoel et al., 2011). Recognition of PAMPs 
is oriented toward many PRR subtypes, such as NOD-like receptors (NLRs) 
(recognise DAMPs as well), RIG-like receptors (RLRs) and Toll-like receptors (TLRs). 
NLRs are mainly associated with sterile inflammation like gout via NLRP3 associated 
inflammasome formation (Misawa et al., 2013). The membrane bound TLRs bind 
bacterial hallmark molecules. The TLR5 subtype typically binds to flagella, while TLR2 
and TLR4 binds bacterial cell wall components like peptidoglycan and 
lipopolysaccharide (LPS), respectively (Abbas et al., 2014).  
IgG receptors are more closely associated with phagocytosis. IgG antibodies attach 
to microbes to opsonise them. This opsonisation facilitates phagocytosis of material. 
Macrophages recognise the constant γ heavy chain in Fc regions of IgG antibodies 
with Fcγ receptors (CD64) on their cell surface. Recognition induces FcγR clustering 
and subsequent actin polymerization and engulfment through pseudopod extension 
(Swanson et al., 2004). Pseudopodia formation and actin polymerization is dependent 
on PI3k recruitment for production of phosphatidylinositides. FcγR mediated 
phagocytosis is the main form of phagocytosis simulated in experimental phagocytosis 
models, because engulfment does not require stimulation by other cells types like T 
cells or NK cells (Liu et al., 2013). 
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Pseudopodia and Encapsulation 
Phagocytosis is initiated by extension of pseudopodia. Internalisation and nascent 
phagosome formation are completed within 5 min (Visser & Smith, unpublished data). 
Macrophages are extremely ambitious in their phagocytic ability and are able to engulf 
particles that are closely comparable with their own size (Huynh et al., 2007). This 
leads to the question of where the extra membrane is produced. This can be 
addressed by looking at the type III PI3k.   
The type III PI3ks consists of one catalytic subunit in humans, hVPS34. Type III PI3ks 
phosphorylate phosphatidylinositol (PI) to PI3P on endosomes and autophagosomal 
structures (Backer, 2008). Formation of PI3P is accompanied by the closure of the 
phagocytic cup and subsequent disappearance of PI(4,5)P2 (Botelho et al., 2000) that 
lead to and are essential for maturation of newly formed phagosomes (Vieira et al., 
2001). Thus, PI3P function is centred more around phagosomal/endosomal 
maturation than as a source of extra membrane during engulfment.  
 
Nascent Phagosomal Stage 
This stage can be distinguished from engulfment by phagocytic cup closure behind 
the engulfed material of interest. Pseudopod closure is dependent on type I PI3k, PIP3 
and PI(4,5)P2. Inhibition of PI3k with, LY294002, prevented antibody opsonized 
particle engulfment as a result of unsuccessful pseudopod closure (Beemiller et al., 
2006).  
The successfully engulfed material is encapsulated into a nascent phagosome 
expressing Rab5 (Fairn et al., 2012). Rabex-5 is requited an activates Rab5 (Horiuchi 
et al., 1997). Rab5 then recruits endosomal early antigen 1 (EEA1) (Scott et al., 2002) 
and the type III PI3k, hVPS34, (Kinchen et al., 2008) to the phagosome. PI3P is 
generated by hVPS34 on the cytosolic side of the nascent phagosome and serves as 
a docking station for other maturation effectors. EEA1 can then dock onto PI3P and 
ensures EEA1-mediated tethering and fusion of phagosomes with late endosomes for 
further maturation (Vieira et al., 2002). EEA1 thus plays a central role in phagosome 
maturation.  
 
Late Phagosomal Stage 
GTPase-activating protein (GAP) mediates Rab5 inactivation and dissociation, 
marking the late phagosomal stage (Fairn et al., 2012). This is accompanied by Rab7 
recruitment, late endosome fusion, expression of markers like mannose-6-phosphate 
receptor (MPR), lysobisphosphatidic acid (Fratti et al., 2001) and LAMP (Desjardins, 
1995). During this stage, PI3P is incorporated and degraded inside the phagosome 
(Gillooly et al., 2000). Elimination of PI3P is likely necessary for removal of nascent 
phagosomal markers, dependent on PI3P expression, such as EEA1. The late 
phagosomal stage is initiated, in vitro, at about 10-30 min after formation of the nascent 
phagosome (Fratti et al., 2001). This  coincides with PI3P disappearance at 10 min 
after its formation (Vieira et al., 2001).  
The expression of Rab7 on both late endosomes and late phagosomes allows Rab7 
to regulate membrane trafficking between nascent phagosomes, late phagosomes 
and lysosomes (Press et al., 1998). Fusion between nascent phagosomes and late 
endosomes could allow for close proximity of Rab7 and PI3P that facilitates SNX 
retromer functioning (Cullen et al., 2011). Thus, SNX retromers likely recycle cargo 
between nascent phagosomes and late phagosomes. Rab7 accelerates maturation to 
the phagolysosome biogenesis stage via the action of Rab7-interacting-lysosomal-
protein (RILP) (Harrison et al., 2003). RILP and oxysterol-binding protein related-
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protein 1 (ORP1L) together link phagosomes to dynein (Johansson et al., 2007), for 
centripetal movement of late phagosomes along microtubules toward lysosomes for 
fusion (Harrison et al., 2003). Dynein mediated lysosome fusion is likely dependent on 
Rab7 and the HOPS complex (Akbar et al., 2011). HOPS acts as a tethering protein, 
keeping phagosomes and lysosomes in close proximity to each other, similar to the 
function of EEA1 (Hickey et al., 2010).  
 
Phagolysosome Biogenesis Stage 
Lysosomal fusion with phagosomes is the final stage in maturation, referred to as 
phagolysosome biogenesis (Seto et al., 2011). This stage is achieved around 1 h after 
formation of nascent phagosomes, under in vitro conditions (Jahraus et al., 1998). 
SNARE proteins mediate fusion (syntaxin 7, syntaxin 8, VAMP7 and VAMP8) (Becken 
et al., 2010) and provide phagolysosomes with proteases (e.g. cathepsin D), reactive 
nitrogen species (RNS) and reactive oxygen species (ROS) with which to neutralize 
ingested particles. Fusion also elevates LAMP expression and facilitates an acidic 
phagosomal lumen (Jahraus et al., 1994). 
Phagolysosomal degradation of protein is hugely dependant on proteases such as 
cathepsin D. Delivery of this protease is controlled by the trans-Golgi network-localised 
Rabs (22b, 32, 34,38 and 43) (Ng et al., 2007). Blockage of cathepsin D delivery 
resulted in phagosome maturation arrest. The ER-localized Rab20, was reported to 
co-localize with V-ATPases on phagosomes, suggesting its involvement during 
phagosome acidification (Curtis et al., 2005).  
It seems that phagocytosis has evolved from endocytic nutrient processing to a 
specialized self-defence mechanism conserved uniquely to professional phagocytes. 
This phenomenon can, however, still be manipulated and applied to therapy, as the 
focus of the current study. 
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Appendix 2:  ActA Expression Optimisation 

Expression of ActA proved difficult as degradation was evident when separated via 

SDS-PAGE. Initial experiments using GFP-ActA resulted in significant degradation 
even at different incubation times after expression (Figure 1). Cleavage of GFP-ActA 

with WELQut protease resulted in dropouts corresponding to ActA and GFP, but with 
significant degradation (Figure 2). In order to better visualize the degradation, a 

second fluorescent marker (mCherry) was incorporated at the C-terminal of GFP-ActA. 

Before and after cleavage of GFP-ActA-mCherry with WELQuet protease and 
separation using SDS-PAGE, clear degradation patterns could be observed (Figure 
3). From the fluorescent image of the SDS-PAGE gel multiple red fluorescent bands 

could be observed, which corresponds to different ActA-mCherry products (intact 

ActA-mCherry and degradation products). The degradation patterns do not give much 

insight into where the degradation takes place, due to the aberrant migration of ActA 

in SDS-PAGE gels. It is possible that some E. coli proteases that are co-purified with 

various ActA constructs cause the degradation. Therefore, it was ultimately decided 

to utilize a dual purification method as to reduce the capture of degradation products 

and possible proteases that are co-purified (as the two affinity purification methods are 

fundamentally different).  

 
Figure 1: SDS-PAGE of GFP-ActA expressed for different times at 26°C. Left: Stained gel, Right: 
Fluorescent image of GFP-ActA and degradation products. L: Ladder (NEB ladder #P7712), 1-4: 2, 4, 
6, 18 hours expression, respectively. Black arrow indicates GFP-ActA. Degradation products are 
outlined in red. 
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Figure 2: SDS-PAGE GFP-ActA cleavage. Left: Stained gel, Right: Fluorescent image of GFP-ActA 
and GFP. L: Ladder (NEB ladder #P7712), 1: Uncut GFP-ActA, 2: GFP-ActA cut with WELQut protease. 
A: GFP-ActA, B: ActA, C: GFP, D: WELQut protease. 
 
 

 
Figure 3: SDS-PAGE GFP-ActA-mCherry cleavage. Left: Stained gel, Right: Fluorescent image. L: 
Ladder (NEB ladder #P7712), 1: Uncut GFP-ActA-mCherry, 2: ActA-mCherry cut with WELQut 
protease. A: GFP-ActA-mCherry, B: ActA-mCherry, C: truncated ActA-mCherry, D: GFP. 
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Appendix 3: Preparation of Macrophages for Imaging Flow 
Cytometry 

A pilot study was launched to determine the most effective method of lifting 

macrophages from culture surfaces, while maintaining labelled fluorescent markers. 

Live cell imaging has the advantage to record cells in an unhindered state, but, in the 

case of imaging flow cytometry cells need to be lifted from culture surfaces without 

damaging membranes or confounding experimental outcomes. Primary macrophages 

are also notoriously hard to lift from surfaces in a viable state. Thus, different methods 
of fixing cells prior to lifting and fixing after lifting was tested (Figure 4). In Figure 4 

the methods are ranked according to effectiveness with optimal combinations for 

viable cell yield ranked highest on the y-axis and optimal combinations for membrane 

marker retention ranked highest on the x-axis. Generally, lifting cells prior to fixing with 

PBS containing 1mM ethylenediaminetetraacetic acid (EDTA) resulted in higher cell 

viability (determined via Hoechst staining), compared to commercially available 

Accutase lifting. However, PBS-EDTA treatment led to incomplete retention of the 

fluorescent membrane marker (CellMask Orange). This is particularly interesting when 

considering that complete (100% of cells recorded) membrane marker retention was 

recorded with 23˚C Accutase treatment. Thus, it is important to compare different cell 

detachment methods, especially during flow cytometric analysis, as the use of PBS-

EDTA could have confounded results obtained from further experimentation. To this 

end, 23˚C Accutase Fix was deemed as the superior detachment method in this study. 
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Figure 4: Expression of viable cell yield over membrane marker retention. Values expressed as 
absolute cell yield over percentage of membrane positive cells. Plotted according to (x;y) co-ordinates. 
37˚C PBS-EDTA Fix (23.46%;11426), 4˚C PBS-EDTA Fix (0.0950%;5438), 23˚C Accutase Fix 
(100%;4868), 37˚C PBS Fix (0.1952%;3360), 4˚C PBS Fix (0.2364%;3151), Fix 4˚C PBS 
(0.0061%;2069), Fix 4˚C PBS-EDTA (0.0127%;1933), Fix 4˚C HBSS (0.0018%;1780), 4˚C HBSS Fix 
(0.0003%;1614), 4˚C Accutase Fix (2.034%;100). A threshold for marker retention is indicated in grey. 
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Appendix 4: GFP-LLO Migration in Gels 
Separation of GFP-LLO using SDS-PAGE resulted in a band corresponding to a size 

slightly lower than that predicted for GFP-LLO (~ 85kDa). In order to visualize GFP 

fluorescence in SDS-PAGE gels samples are not boiled, which may result in faster 

migration through the gel. In order to confirm this, GFP-LLO was incubated with SDS-

PAGE sampling buffer at 37°C for 30 min or boiled for 5 min. Gels were 
electrophoresed as described in Chapter 3. From SDS-PAGE gels it is evident that 

treatment of the sample before loading does indeed influence its migration through the 
gel (Figure 5). Boiling the samples resulted in a single band corresponding to the 

correct size of GFP-LLO (Figure 5 B). Cleaved and purified LLO does not suffer the 

same discrepancy with regards to migration through the gel. 

 
Figure 5: SDS-PAGE GFP-LLO and LLO treated at 37°C (A) or 100°C (B) before SDS-PAGE 
separation. Left: Stained gel, Right: Fluorescent image of GFP-LLO (37˚C). L: Ladder (NEB ladder 
#P7712), 1: GFP-LLO eluted from IMAC column, 2: GFP and WELQut eluted from column after GFP-
LLO digestion, 3: Flow through from IMAC column containing LLO. GFP-LLO and LLO indicated with 
green and black arrows, respectively. GFP and WELQut protease indicated with green and red stars, 
respectively. C) Fluorescent image of Gel depicted in figure (A).  
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Appendix 5: Phalloidin Actin Staining in Live Cells 
The possibility of labelling live cells with the phalloidin actin stain was determined 
(Figure 6). The stain was taken up by live primary isolated macrophages, however, it 

remained within intracellular phagosomes throughout the experimental period. Thus, 

only fixed cells were labelled with the actin stain. 

 
Figure 6: Actin phalloidin stain taken up by live cells. The actin phalloidin stain remained inside 
phagosomes when taken up by primary macrophages.  
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Appendix 6: Opsonising Effect of LLO 

The capacity of macrophages to engulf beads coated with microbial effectors was 

determined by coating 4 µm carboxylate modified polystyrene beads with LLO. 

Satisfactory engulfment was observed 30 min post introduction of LLO coated beads 
(Figure 7). Engulfment increased until all observed cells contained beads. Previously 

fluorescent antibody coated beads needed to be exposed to serum in order to 

opsonise the beads and induce engulfment. These findings indicate that LLO is 

opsonic in nature. Thus, exposure of macrophages to LLOActABeads would more 

readily result in a normal (or upregulated) engulfment rate, than inhibition thereof.  

 
Figure 7: Engulfment of LLO coated beads. Primary macrophages readily engulfed LLO coated 
beads. Intracellular beads indicated by white arrows. 
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Appendix 7: Incidence of Cryptococcus neoformans Vomocytosis 

A pilot study was conducted to determine the incidence of vomocytosis. J774 

macrophages were infected with C. neoformans and vomocytosis only occurred in ~7 

out of 100 000 infected cells. Representative images of vomocytosis are given in 
Figure 8.  Due to the very low occurrence of vomocytosis in this micro-organism, 

attention was shifted toward the more effective egress inducing pathogen, Listeria 

monocytogenes. 

 
Figure 8: Incidence of Cryptococcus neoformans vomocytosis. Infected J774 macrophages 
indicate vomocytosis of 3 Cryptococcus neoformans cells (white arrows). 
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Appendix 8: Delaying Cargo Expulsion 

Cargo delivery with the synthetic microbe model needs to be time dependant as carrier 

cells need to be able to reach target destinations before expulsion of drugs or cargo. 

Thus, carrier macrophages were treated with phagosome maturation arresting agents 

to prevent acidification of phagosomes that in turn prevents activation of LLO, 

subsequently delaying the effect of ActA to induce cargo expulsion. The percentage 
of non-effector exposed cells carrying degraded cargo is plotted over time (Figure 9). 

A marginal difference in the number of cells with degraded cargo can be seen during 

the 2-hour time point. This degradation process is increased around 3 hours where 

after it reaches control conditions. This curve indicates that phagosome maturation 

arrest is maintained for around 2 hours post treatment with arrest inducing agents.  

 
Figure 9: Degradation of Cargo. Values expressed averages with errors bars indicating SEM. 

The temporal limit of phagosome maturation arrest during LLOActABeads exposure 

was determined (Figure 10). Preliminary results indicate a marked reduction in the 

arrested period to about less than 30 min. Indicated by a steep increase in the number 
of beads per cell (Figure 10) until around 30 min, after which the number of beads per 

cell plateau out. This could be attributed to bead expulsion being induces from the 30 

min time point or to a limit in bead uptake being reached at 30 min. However, additional 

data would need to be collected to adequately determine this. 

 

0 1 2 3 4
0

5

10

15

20

25
MatArrest
Control

Time (h)%
 C

el
ls

 c
on

ta
in

in
g 

Ab
sB

ea
ds

w
ith

 n
o 

re
d 

si
gn

al
 [I

gG
]

Stellenbosch University https://scholar.sun.ac.za



   
 

103 
 

 
Figure 10: Expulsion efficiency during phagosome maturation arrest. Graph indicate the number 
of average beads per cell during macrophage phagosome maturation arrest. Values expressed 
averages with errors bars indicating SEM. 

 
Table 1.1: Examples of drug delivery systems: Reticuloendothelial System (RES), Gastrointestinal Tract (GIT). 
1: (Langer et al., 1976; Cohen et al., 1991; Kim et al., 1999; Ding et al., 2006) 2: (Sugahara et al., 2010; Nance et 
al., 2012; Bertrand et al., 2014; Zhao et al., 2014; Hoshyar et al., 2016) 3: (Ghalanbor et al., 2010) 4: (Pasut et 
al., 2012) 5: (Edwards, 1997) 6: (Abla et al., 2005; Chen et al., 2006; Alkilani et al., 2015) 7: (Morishita et al., 
2006).  
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